

January 2010

Wabamun Area Sequestration Project: Risk-based Leakage Model

Submitted to:

Rob Lavoie Project Manager Wabamun Area Sequestration Project University of Calgary Energy & Environmental Systems

REPORT

Project Number: Distribution: 08-1334-0082

Golder Associates University of Calgary Wabamun Area Sequestration Project

A world of capabilities delivered locally

Table of Contents

1.0	INTRODUCTION1			
2.0	CONC	EPTUAL MODEL DESCRIPTION	2	
	2.1	Transient Pressure in an Injection Reservoir	4	
	2.2	Radial Extent of the CO ₂ Plume	5	
	2.3	CO ₂ Leakage to Surface from an Abandoned Nisku Well	7	
	2.4	CO ₂ Leakage to Surface from an Abandoned Banff Well	8	
3.0	SIMUL	ATOR DEVELOPMENT	11	
	3.1	User Interface	11	
4.0	BENC	HMARKING	20	
	4.1	CO ₂ Leakage – Abandoned Nisku Well	20	
	4.2	CO ₂ Leakage – Abandoned Banff Well	20	
	4.3	Plume Migration – Nisku Formation	21	
5.0	WASP	SPECIFIC DATA	22	
	5.1	Probabilistic Inputs	22	
6.0	SENSITIVITY ANALYSIS			
	6.1	Leakage in Nisku Abandoned Well	25	
	6.2	Leakage in Banff Abandoned Well	27	
	6.3	CO ₂ Plume Migration in the Nisku	29	
7.0	SUMM	ARY AND RECOMMENDATIONS	31	
8.0	REFERENCES			

TABLES

Table 1: Time to Reach 5 km Distance from Injection vs. Sres	6
Table 2: Parameters and Distribution Types for the Nisku Formation Model Inputs	13
Table 3: Parameters and Distribution Types for the Banff Formation Model Inputs	14
Table 4: Parameters and Distribution Types for the Nisku Abandoned Well	15
Table 5: Parameters and Distribution Types for the Banff Abandoned Well	16
Table 6: Description of Model Outputs	19

Table 7: Probabilistic Inputs for Nisku and Banff Formation Properties	22
Table 8: Probabilistic Inputs for Abandoned Wells Parameters	24

FIGURES

Figure 1: Conceptual Model of Leakage from Injection Formation through Single Well in the Nisku Formation	2
Figure 2: Conceptual Model of Cross-Formational Leakage through Multiple Wells	3
Figure 3: Transient Pressure at Distances of 1 to 20 km from the Injection Location	5
Figure 4: Maximum Radial Extent of Plume in Reservoir Formation for S _{res} =0.384	6
Figure 5: CO ₂ Leakage Rate for Single Abandoned Well Model with r=1 km, k_{1s} =10-15m ² , D_{1s} =10m and r_{1s} =0.1m	7
Figure 6: CO ₂ Leakage Rate as a Percent of Cumulative Annual Injected Rate for a Single Abandoned Well Model with r=1 km, k _{1s} =10 ⁻¹⁵ m ² , D _{1s} =20 m and r _{1s} =0.1 m	8
Figure 7: Leakage Rate Curve for $r_1=5$ km, $r_2=1$ km, $k_{12}=10^{-11}$ m ² , $k_{2s}=10^{-15}$ m ² $r_{w1}=0.1$ m and $D_{w1}=10$ m	9
Figure 8: Plume Arrival Curve for $r_1=5 \text{ km}$, $r_2=1 \text{ km}$, $k_{12}=10^{-10} \text{ m}^2$, $k_{w1}=k_{w2}=10^{-15} \text{ m}^2 r_w=0.1 \text{ m}$ and $D_w=10 \text{ m}$	10
Figure 9: Simulation Model Main Dashboard	11
Figure 10: Input for CO ₂ Injection Rate	12
Figure 11: Nisku Formation Properties Dashboard	13
Figure 12: Banff Formation Properties Dashboard	14
Figure 13: Nisku Abandoned Well Properties Dashboard	15
Figure 14: Banff Abandoned Well Properties Dashboard	16
Figure 15: Check Box for Well Leakage Scenario Selection	17
Figure 16: Dialog Box for Simuation Duration and Number of Time Steps	18
Figure 17: Dialog Box for Setting Number of Monte Carlo Realizations	18
Figure 18: Results Dashboard	19
Figure 19: Transient Leakage Flux Curve in m3/s for Abandoned Well in Nisku	20
Figure 20: Transient Leakage Flux Curve as a % of Injection Rate for Abandoned Well in Banff	21
Figure 21: Maximum CO ₂ Plume Radius for the Nisku for Sres=0.3	21
Figure 22: Tornado Plot of the Sensitivity Analysis Results for Leakage Through Abandoned Nisku Well	26
Figure 23: X-Y Function Chart of Sensitivity Results for Leakage through Abandoned Nisku Well	27
Figure 24: Tornado Plot of the Sensitivity Analysis Results for Leakage Through Abandoned Banff Well	28
Figure 25: X-Y Function Chart of Sensitivity Results for Leakage through Abandoned Banff Well	28
Figure 26: Tornado Plot of the Sensitivity Analysis Results for Plume Migration in the Nisku	29
Figure 27: X-Y Function Chart of Sensitivity Results for Leakage Plume Migration in the Nisku	30

APPENDICES

APPENDIX A Conversion from Hydraulic Head to Pressure

APPENDIX B Nordbotten et al. Equations for Multiple Wells and Multiple Layers

APPENDIX C Leakage Flux for One Injection Well and One Abandoned Well with One Aquifer Penetration

APPENDIX D

Leakage Flux for One Injection Well and Two Abandoned Wells with Two Aquifer Penetrations

1.0 INTRODUCTION

The Wabamun Area Sequestration Project (WASP) is a desktop study led by the University of Calgary that is investigating the feasibility of geologically storing one gigatonne of carbon dioxide (CO_2) in the Wabamun Lake area of Alberta where four coal-fired power plants collectively emit over 30 MT of CO_2 each year. The primary WASP study area contains substantial oil and gas activity and includes the presence of thousands of producing and abandoned wells dating back to the 1950s. The success of a geological storage program will depend in part on the ability to choose storage formations from which only minimal amounts of CO_2 will leak back to the surface (NKCB, 2009). Wells, in particular those that are long abandoned and completed to uncertain standards, are generally considered to be one of the major potential pathways for release of CO_2 from a storage reservoir.

Within the High Grade Study Area, the Devonian Nisku formation was selected as the prime target for CO_2 storage by the WASP investigators. There are 18 abandoned wells penetrating the Nisku within a few kilometers of a potential CO_2 injection location. In the same area there are over 100 well penetrations in the overlying Banff formation, separated from the Nisku by the Calmar Aquiclude. While the potential leakage of CO_2 through the abandoned wells in the Nisku formation is of obvious importance, leakage through the more prevalent wells in the overlying Banff formation via indirect pathways must also be evaluated.

As a participant in WASP, Golder Associates was tasked to develop a probabilistic analytical simulator capable of evaluating alternative leakage scenarios associated with legacy wells in multiple formations. The scope of the initial simulation tool included the simplest scenario of leakage to the surface via a single abandoned well in the Nisku formation and was extended to leakage through a combination of wells in the Nisku and Banff formations. The simulator that was developed is based to a large extent on the analytical solutions developed by Nordbotten, Celia and Bachu (Nordbotten et al., 2004 and Nordbotten et al., 2005). The use of analytical expressions in the simulator allows the uncertainty in the input parameters to be explicitly represented and propagated in the model calculations using the Monte Carlo simulation method. The probabilistic method facilitates sensitivity analysis for prioritizing the site characterization data needs for reducing the overall uncertainty in system performance. The simulator is scalable and can be expanded to represent CO_2 release through additional leakage pathways such as faults, fracture networks and spill points.

The simulator includes an intuitive, user interface for defining the input parameters and describing different release scenarios (i.e., 'what if' analysis) that are fundamental in CO_2 sequestration risk analysis and useful for developing a diagnostic understanding of the different leakage scenarios. The user interface provides a number of predefined model outputs including time histories of formation pressure, CO_2 plume migration within the injection formation, and CO_2 flux rates from breached wells. The default input parameters in the simulator that describe the potential leakage characteristics of the abandoned wells in the Wabamun region were developed by members of the WASP research team.

This report describes the conceptual model of the geologic sequestration system represented in the simulator and the analytical expressions used to approximate the movement of CO_2 through an injection formation and it's potential release through one or more abandoned wells. The mathematical implantation of the analytical solutions in the simulator is summarized and the input parameters identified. Initial estimates for the input parameter for the model developed by the WASP team are defined. The user interface for the simulator is then described and example outputs are presented.

2.0 CONCEPTUAL MODEL DESCRIPTION

The Wabamun Lake area of Alberta has supported substantial oil and gas activity dating back to the 1950s involving thousands of producing and abandoned wells drilled to intersect multiple formations in the area. Within what is referred to as the High Grade Study Area, there are a total of 95 wells, 56 of which have been abandoned. The wells, in particular those long abandoned and completed to uncertain standards, represent potential pathways for release of CO_2 if one or more of the reservoir formations in this area are used for geologic sequestration.

The WASP study team has identified the Devonian Nisku formation as a prime candidate for potential CO_2 sequestration in the Wabamun Lake area. Out of the 52 abandoned wells in the High Grade Study Area, 32 were completed in formations above the Nisku and twelve were completed below. Well integrity in the High Grade Study Area has been studied by Nygaard (2009) who concluded that approximately 50% of the cement plugs in the abandoned wells were likely to be fractured. Of the five wells that were studied in detail, one well was an open hole (i.e., was not plugged). These preliminary results demonstrate the uncertainty associated with the abandoned wells as potential leakage mechanisms if the area is eventually used for CO_2 sequestration. While the potential leakage of CO_2 through the abandoned wells in the Nisku formation is of obvious importance, leakage through the more prevalent wells in the overlying Banff formation via indirect pathways must also be evaluated.

As a member of the WASP Team, Golder Associates was tasked to develop a probabilistic simulator based on the methodology and equations developed in Nordbotten et al. [2004, 2005a, 2005b and 2009]. The scope of the initial phase of the simulator consists of two scenarios: 1) the leakage of CO_2 from the injection formation (i.e., the Nisku) to the surface via a single abandoned well assumed to intersect the Nisku (Figure 1), and 2) the leakage rate for a cross-formational flow through two wells, from the injection formation into an overlying aquifer and then to the surface (Figure 2). The Monte Carlo method is used to explicitly represent the uncertainty in the analytical expressions based on the existing site information or expert opinion where little to no data exists.

Figure 1: Conceptual Model of Leakage from Injection Formation through Single Well in the Nisku Formation

Figure 2: Conceptual Model of Cross-Formational Leakage through Multiple Wells

The simulator was developed in the following steps:

- Define the mathematical models The analytical expressions and algorithms for plume migration and well leakage from Nordbotten et al. were reviewed and modified to represent single and two-well scenarios in Figures 1 and 2.
- Implement the mathematical models in a simulation software package The analytical expressions and algorithms were implemented using the GoldSim simulation software code. This step included the development of a user interface to facilitate use by other WASP Team members.
- Verify and benchmark the simulator Benchmark component calculations in the simulator against independent calculations developed in Excel.
- Coordinate a preliminary data set for the simulator Gather input data including probability distributions for uncertain input parameters in the simulator.
- Sensitivity analysis Perform sensitivity analyses for the major performance metrics (e.g., formation pressure, plume migration, CO₂ flux) in the simulator to determine the input parameters that have the greatest influence on projected performance.

The simulator, based on a set of assumed conditions and properties, can be used to evaluate the following performance metrics:

- arrival times for the CO₂ plume reaching abandoned wells in the Nisku or Banff formations (i.e., cross-formational flow through scenario);
- transient formation pressure at the base of the abandoned wells;

- leakage rates from abandoned wells in the Nisku and Banff formations; and
- sensitivity of the plume and leakage rate projections to variations in the input parameters in the simulator.

These performance metrics are important considerations for planning purposes for both geological sequestration and enhanced oil recovery. The performance metrics are calculated based on the following input parameters to the model:

- injection rate;
- injection duration;
- distance between the injection and abandoned wells;
- well radius;
- length, permeability and radius of the wellbore plug in the abandoned wells;
- formation hydrogeologic properties; and
- CO₂ properties.

2.1 Transient Pressure in an Injection Reservoir

The starting point for developing the simulator was estimating the transient pressure in the reservoir formation during CO_2 injection. The change in the formation pressure as CO_2 is injected into a reservoir is approximated using the standard Theis well pumping equation (Nordbotten et al., 2004):

$$p(r,t) = p_{init} + \frac{\mu Q_0}{4\pi k_1 b_1} W(u)$$
(1)

where W(u) is the familiar well function from hydrogeology (Freeze and Cherry, 1979) which is an exponential integral function of the first order $E_1(u)$ For evaluation of the exponential integral see (Gautsch and Cahill, 1964). The argument u of the well function is given by

$$u = u(r,t) = \frac{c\mu r^2}{4k_1 b_1 t}$$
(2)

Where *c* is the compressibility of the CO₂-rock system, μ is CO₂ viscosity, *r* is the radial horizontal distance from the injection site, k_1 is the permeability of the reservoir formation, b_1 is the thickness of the reservoir formation and *t* is time.

Figure 3 shows the transient pressure curves in the CO_2 reservoir at variable distances from the injection location for an injection period of 50 years.

Figure 3: Transient Pressure at Distances of 1 to 20 km from the Injection Location

Note that the transient pressure curves follow a "smoothed" step function in time which decreases in overall magnitude with distance for a given injection period.

2.2 Radial Extent of the CO₂ Plume

The radial extent of the CO_2 plume from an injection well is calculated using a 2-phase radial flow analytical solution developed by Nordbotten et al. (2005). Assuming the CO_2 injection rate (Q_0) is constant, the radial extent of the CO_2 plume r_{max} is given by

$$r_{max} = \sqrt{\frac{\lambda_c V(t)}{\pi \varphi \lambda_w b_1}} \tag{3}$$

Where λ_c is mobility of CO₂, λ_w is the mobility of water, V(t) is the cumulative CO₂ volume injected at time *t*, ϕ is porosity of the reservoir and b_1 is the thickness of the reservoir. The mobility values are related to the viscosities μ_{α} and relative permeability values k_{α} by

$$\lambda_{\alpha} = \frac{k_{\alpha}}{\mu_{\alpha}} \tag{4}$$

Where $\alpha = c$ or *w*. The two relative permeability values are a function of the CO₂ saturation fraction *S*_{res} and have been measured and tabulated for the Wabamun formation by Benion and Bachu (2005).

In the case where S_{res}=0.384, the relative permeability values for the two phase are equal and then

$$\frac{\lambda_c}{\lambda_w} = \frac{\mu_w}{\mu_c} \tag{5}$$

Note that for constant injection rate, V(t) can be replaced by $Q_0 t$. Figure 4 shows the radial extent of the plume as a function of time. Plume arrival times at a distance 5 km from an injection well are tabulated for different values of S_{res} in Table 1. The arrival times are based on the expected value for all the model parameters.

Figure 4: Maximum Radial Extent of Plume in Reservoir Formation for Sres=0.384

Table 1: Time to Reach 5 km Distance from Injection vs. Sres

Saturation Fraction Sres	Time to Reach 5 km (yr)
0.36	7.4
0.37	6.6
0.38	5.9
0.384 (Default)	5.6
0.4	4.6
0.41	4.0

Equation (4) can also be used to calculate the radial extent of a CO_2 plume in a shallower formation (Banff) under the cross-formational scenario. The volume injected is replaced by the volume leaked from the injection reservoir formation to the shallower formation through the Nisku abandoned well (Figure 2). The resulting equation is

$$r_{\max(Banff)} = \sqrt{\frac{\lambda_c V_{12}(t)}{\pi \varphi \lambda_w b_2}}$$
(6)

Where $V_{12}(t)$ is the volume of CO₂ entering the Banff formation through the abandoned well and b₂ is the thickness of the Banff formation. $V_{12}(t)$ is given by

$$V_{12}(t) = \int_0^t Q_{12}(t')dt'$$

Where from Appendix D

$$Q_{12}(t) = \frac{k_{12}\pi r_{12}^2}{\mu D_{12}} \left[\frac{(a_1 + b_1)d_2 - (a_2 + b_2)d_1}{(a_1b_2 - a_2b_1)} \right]$$

and the coefficients a_1 through d_3 are in turn functions of 4 time-dependent well functions.

(7)

Equation 3 is based on the following assumptions:

- a vertically averaged pressure within the formation;
- radial propagation of pressure (Darcy flow) in the formation;
- isotropy in the reservoir permeability tensor; and
- the injection formation is confined.

2.3 CO₂ Leakage to Surface from an Abandoned Nisku Well

The leakage component is modelled as a one-dimensional Darcy process through an abandoned well. Leakage from the injection reservoir to the surface is driven by the pressure difference between transient pressure at the base of the well in the reservoir formation and atmospheric (surface) pressure. Several well leakage paths were identified in Chapter 5 of the IPPC report (IPCC, 2005), in papers by Bachu and coworkers, such as (Gasda et. al., 2004).

Starting from the analytical solutions developed by Nordbotten et al. (2004) as detailed in Appendix B and Appendix C, the pressure $p(\bar{r}_1, t)$ at the foot of the abandoned well, located at distance \bar{r}_1 from the injection well can be estimated. This is then substituted into the one dimensional Darcy equation in the vertical direction to give the following expression for surface leakage flux through the plug in the first abandoned well.

$$Q_{1s}(t) = \frac{\pi r_{w1}^2 k_{1s}}{\mu D_{1s}} \left[p_s - \frac{p_{init} + \frac{\mu Q_0 W[u(\bar{r}_1, t)]}{4\pi k_1 b_1} + \frac{k_{1s} r_{w1}^2 p_s W[u(r_{w1}, \gamma t)]}{4k_1 b_1 D_{1s}}}{\left(1 + \left\{ \frac{k_{1s} r_{w1}^2 W[u(r_{w1}, \gamma t)]}{4k_1 b_1 D_{1s}} \right\} \right)} \right]$$
(8)

Here k_{1s} is the permeability of the abandoned well plug between the reservoir and the surface, r_{w1} is the abandoned well radius, p_s is atmospheric pressure, $\gamma = 0.92$ is the constant from the Nordbotten et al. theory, and D_{1s} is the length of the cement plug.

Figure 5 shows the transient surface leakage during the injection period through a single abandoned well penetrating the Nisku located 1 km from the injection site. The well leakage parameters pertain to those for a fractured cement plug. Note the leakage profile is similar to the pressure profile smoothed step function shape of the transient leakage profile. Also note that the model predicts that leakage already exists prior to injection because of the pre-existing pressure difference between the atmosphere and the Nisku formation. The onset of leakage of actual CO_2 must be estimated using the two-phase plume migration model as described in Section 2.2. The time of arrival of the CO_2 plume arrival is estimated using equation (3).

Figure 5: CO₂ Leakage Rate for Single Abandoned Well Model with r=1 km, $k_{1s}=10-15m^2$, $D_{1s}=10m$ and $r_{1s}=0.1m$

Single Abandoned Well in Nisku

Figure 6 shows the same CO₂ leakage rate expressed as a percent of the cumulative storage volume.

Figure 6: CO₂ Leakage Rate as a Percent of Cumulative Annual Injected Rate for a Single Abandoned Well Model with r=1 km, $k_{1s}=10^{-15} \text{ m}^2$, $D_{1s}=20 \text{ m}$ and $r_{1s}=0.1 \text{ m}$

Leakage for Abandoned Well in Nisku

2.4 CO₂ Leakage to Surface from an Abandoned Banff Well

The conceptual model for cross-formational flow from an abandoned well in the Nisku to an abandoned well in the Banff formation is shown in Figure 2. As in the previous section, the conceptual model is based on Nordbotten et al., (2004). The model makes the following assumptions:

- a vertically averaged pressure within the injection (Nisku) and overlying (Banff) formations;
- radial propagation of pressure (Darcy flow) in both formations;
- isotropy in the Nisku and Banff formation permeability tensors;
- no leakage through the underlying aquiclude and overlying (Calmar) and higher aquicludes (cap rocks);
- one dimensional Darcy flow from the Nisku formation to the Banff Formation through the first abandoned well cement plug;
- one dimensional Darcy flow from the Banff formation to the surface through the second abandoned well cement plug; and
- no leakage from the Nisku to the surface through the abandoned well.

Similar to the single abandoned well solution, the formation pressure is calculated as a function of the radial distance from the injection location within the reservoir formation. This is done by using the well pumping function (exponential integral) for single phase flow in a porous medium. The leakage component is modelled as a vertical one-dimensional Darcy process through the abandoned well which permits leakage between the Nisku and Banff formations. This process is driven by the pressure difference between CO₂ pressures in the two formations. Darcy flow is assumed in the Banff formation with the leakage flux acting as the system driver in the same way that the injection flux was the driver for radial flow in the Nisku formation. This radial flow causes a

pressure increase at the bottom of abandoned wells penetrating the Banff formation which in turn causes leakage to the surface, modelled as vertical one-dimensional Darcy flow.

Tithe next step in the modelling process is to evaluate the CO_2 pressure at the location of the abandoned well in the two formations. The pressure at the foot of the well penetrating the Banff formation is used in the one dimensional vertical Darcy equation to compute the CO_2 leakage rate through the abandoned well to the surface from the Banff formation.

The resulting equation for leakage from the Banff formation to the surface is given by the expression

$$Q_{2s}(t) = \frac{k_{2s}\pi r_{w2}^2}{\mu D_{2s}} \left[p_s - \frac{(a_2b_3 - a_3b_2)d_1 + (b_1a_3 - a_1b_3)d_2 + (a_1b_2 - a_2b_1)d_3}{(a_1b_2 - a_2b_1)c_3} \right]$$
(9)

Where k_{2s} is the permeability of the (2nd) abandoned well plug between the Banff formation and the surface, r_{w2} is the radius of the 2nd abandoned well, p_s is atmospheric pressure, and D_{2s} is the length of the cement plug for the 2nd abandoned well. The set of coefficients a_1 through d_3 are defined in Appendix D. Some are dependent on the two well pumping functions which govern horizontal radial CO₂ flow from the injection well to the 1st abandoned well, and the CO₂ flow from the 1st abandoned well to the 2nd abandoned well (penetrating the Banff). Others depend on the well functions associated with vertical leakage flow from the Nisku to the Banff layers and also from the Banff to the surface.

Figure 7 shows and example of the leakage flux through an abandoned well penetrating the Banff to the surface for $r_1=5 \text{ km}$, $r_2=1 \text{ km}$, $k_{2s}=10^{-15} \text{ m}^2$, $k_{12}=10^{-11} \text{ m}^2$, $r_w=0.1 \text{ m}$ and $D_w=10 \text{ m}$, where w=1s, 2s, 12. The horizontal distance between the injection well and the 1st abandoned well is r_1 and the horizontal distance between the 1st and 2nd abandoned wells is r_2 . The permeability of the 1st abandoned well pathway allowing leakage from the Nisku to the Banff is that of a compromised well plug ($k_{12}=10^{-11} \text{ m}^2$). Because of the relatively high permeability, the leakage rate from the well penetrating the Banff is almost equal to that from the Nisku well.

Figure 7: Leakage Rate Curve for $r_1=5$ km, $r_2=1$ km, $k_{12}=10^{-11}$ m², $k_{2s}=10^{-15}$ m² $r_{w1}=0.1$ m and $D_{w1}=10$ m

Although the leakage from the Banff formation is relatively large for the above parameters, the onset of the CO_2 leakage is delayed until the arrival of the CO_2 plume. Figure 8 shows the arrival time of the CO_2 plume at theoretical wells in the Nisku and Banff formations 5 km and 6 km respectively from the injection well. The arrival time of the plume at the abandoned well in the Nisku is the time since the onset of injection whereas the arrival time of the CO_2 plume at the abandoned well in the Banff is the time from the onset of arrival of the plume at the vell in the Nisku formation (i.e., the total time for the plume to reach the well in the Banff is given by the sum of the two times which is approximately 22 years.

Figure 8: Plume Arrival Curve for $r_1=5$ km, $r_2=1$ km, $k_{12}=10^{-10}$ m², $k_{w1}=k_{w2}=10^{-15}$ m² $r_w=0.1$ m and $D_w=10$ m

3.0 SIMULATOR DEVELOPMENT

The analytical solutions presented in Section 2 were implemented using the GoldSim software package, a publically available, dynamic probabilistic simulation software platform. It is used to develop simulation platforms in a wide range of market sectors from mining to aerospace. The software uses an object-oriented programming language to develop a mathematical model that calculates changes in the specified system as a function of time. The simulation duration and time steps between calculations is specified by the user. Input parameters can be represented as deterministic or probabilistic values and the software uses the Monte Carlo method to propagate the uncertainties throughout the model calculations. The software has a library of distribution types (e.g., normal, log-normal, uniform, Weibull) that can be used to represent the probability distribution functions for uncertain inputs. Inputs and outputs can be controlled using a series of dashboards that serve as the user interface for the simulator.

The software programming language allows for the mathematical expressions of the different components in the system (e.g., reservoir pressure, plume migration, well bore flux rate) to be developed in a modular fashion. The components are linked through the parameters and functions they have in common. This hierarchical architecture facilitates revisions and additions to the model as the complexity of the system representation is increased or the conceptual model evolves. Additional components in the model architecture are used to store the input parameters, model outputs and user interface instructions for the simulator.

3.1 User Interface

The user interface for the simulator consists of a series of dashboards to define the input parameters and assumptions in the simulation and display the results in various graphical and tabular formats. The Main dashboard is shown in Figure 9. The Main dashboard contains links to other dashboards for entering the input parameters for the simulation, selecting different abandoned well scenarios to run (i.e., single vs. multiple wells), and generating graphical and tabular outputs of the simulation results.

The graphic of the conceptual model in the Main dashboard contains a series of five links for setting the input parameter values to be used in a simulation. The input parameter dashboards are accessed by clicking on the "buttons" shown in Figure 9.

Figure 9: Simulation Model Main Dashboard

Injection Rate

The analytical expressions for calculating the formation pressure and CO_2 plume migration assume a constant CO_2 injection rate over the simulation period. The rate is set by clicking on the button labeled "Injection Rate" in the Main dashboard which produces the text box shown in Figure 10. The injection rate units are metric tonnes per year.

Figure 10: Input for CO₂ Injection Rate

ilement ID:	Inj_Rate Appearance
escription:	CO2 well injection rate
)isplay Units:	tonne/yrype Scalar
Data Definitio	
Data Definition	
Data Definiti 1e+006 ton	
Data Definiti 1e+006 ton Data Source Type:	on ne/yr
Data Definition	None

Nisku Properties

The input parameters to define the properties of the Nisku formation are contained in a separate dashboard that is accessed by clicking on the "Nisku Properties" button on the Main dashboard. The Nisku formation properties dashboard is shown in Figure 11. Table 2 shows the parameters and the associated probability distribution types assumed in the model. Changes to the model are made by entering the distribution parameters in the dashboard (e.g., mean and standard deviation for a normal distribution. The probability distribution functions for the Nisku formation porosity and permeability are discrete distributions based on empirical data developed by the WASP team (Eisenger, 2009). The discrete data for these distributions is fixed, i.e., it cannot be changed by the user. Return to the Main dashboard by clicking on the button at the bottom of the screen.

Figure 11: Nisku Formation Properties Dashboard

📕 GoldSim Pro -	WASP_Risk_Model_Version 0.2				
Eile Edit View Gr	aphics Model Run Help				
D 🚅 🖬 🐰	ħ 🖻 b. 4 15 💕 🔊 🗉	M 🝸 🖽 % 🕸	5 DB 🦹 🔓 🖓 🖪	日令 西南	自主国主の
🕒 主 💠 💠 Cor	ntainer Path: \Dashboards\Nisku_Forma	tion_DB			v .
					•
					1
					1
	Nisku Formation Proper	ties			1
		Mean Value	Standard Dev.		
	Thickness (m)	63.88	8.99		1
	CO2 Viscosity (kg/m/s)	5e-005	1e:005		
		00000	10 000		
	Porosity	Porosity - E	mpirical Data		= (
	Permeability (m2)	Permeability	- Empirical Data		
		Min	Max		
	Compressibility (1/kPa)	1.45e-7	1.45e-6		
			March Harbs		
	CO2 Density (ka/m3)	416	736	816	
				1	
	Formation Pressure (MPa)	12.3	19.7	22.6	- E
	CO2 Saturation Fraction	0.384			6
					1
		Main Dashl	poard		3
					>
in Mode: Editing is di	sabled. Press E5 to start simulation. E4 to	edit model.		Scale: 100% Ei	ter ON Dup Mode

Table 2: Parameters and Distribution Types for the Nisku Formation Model Inputs

Input Parameter	Probability Distribution Function	
Formation thickness	Log-normal	
CO ₂ viscosity	Normal	
Porosity	Discrete PMF	
Permeability	Discrete PDF	
Formation compressibility	Uniform	
CO ₂ density	Triangular	
Initial formation pressure	Triangular	
CO ₂ saturation fraction	Uniform	

Banff Properties

The input parameters to define the properties of the Banff formation are contained in a separate dashboard that is accessed by clicking on the "Banff Properties" button on the Main dashboard. The Banff formation properties dashboard is shown in Figure 12. Table 3 shows the parameters and the associated probability distribution types assumed in the model. Changes to the model are made by entering the distribution parameters in the dashboard (e.g., mean and standard deviation for a normal distribution). The probability distribution functions for the Banff formation porosity is a discrete distribution based on the empirical data from the Nisku formation (Eisenger, 2009). The discrete data is fixed, i.e., it cannot be changed by the user. The user returns to the Main dashboard by clicking on the button at the bottom of the screen.

Figure 12: Banff Formation Properties Dashboard

🗾 GoldSim Pro - WASP_Risk_Model_Version 0.2							
Eile Edit View Graphics Model Run Help							
□☞■ ※ № 億 @ 毎 ॡ @ 匆 ■ 舞 図 回 % ※ № १ ┣ Q 四 8 約 近 町 5 ± 巨 ± 0 ±							
🖬 🗓 Φ Φ Container Path: \Dashboards\Bartf Formation_DB							
	<u>ــــــــــــــــــــــــــــــــــــ</u>						
					4		
E	Banff Formation Prope	rties			l l		
F	Porosity	Porosity -	Empirical Data		0		
r	ormation Pressure				A		
Ġ	Gradient (kPa/m)	13.4					
		Mean	Standard Dev.				
c	:02 Viscosity (kg/m/s)	5e-005	1e-005		- 1680		
		Min	Мах		更		
c	Compressibility (1/Pa)	1.45e-010	0		OK		
s	Saturation	0					
			March Libraha				
T I	hickness (m)	63.88	MOST LIKely	80	40		
		05.00	00.00				
	:02 Density (kg/m3)	416	736	816			
F	ermeability (md)	6	20	40	1.7		
					88		
		Main Dasht	poard		Ş		
					j ji		
Run Mode: Edition is disabled. Press E5 to start simulation. E4 to edit model. Scale: 100% Eliter ON Bun Model -:							

Table 3: Parameters and Distribution Types for the Banff Formation Model Inputs

Input Parameter	Probability Distribution Function
Formation thickness	Log-normal
CO ₂ viscosity	Normal
Porosity	Discrete PMF
Permeability	Discrete PDF
Formation compressibility	Uniform
CO ₂ density	Triangular
Initial formation pressure	Triangular
CO ₂ saturation fraction	Uniform

Nisku Abandoned Well Properties

The input parameters to define the properties of the abandoned well in the Nisku formation are contained in a separate dashboard that is accessed by clicking on the "Nisku Well Prop," button on the Main dashboard. The

abandoned well properties dashboard is shown in Figure 13. Table 4 contains a list of the parameters and the associated probability distribution functions.

Figure 13: Nisku Abandoned Well Properties Dashboard

GoldSim Pro - WASP_Risk_Model_Version 0.2					
Eile Edit View Graphics Model Run Help					
🗈 😅 🖬 🐇 ங 🛍 🖪 🖨 🔚 🛍 🌮 🔳 🗛 🔽 🖼 % DB 💡 퇹 🔍 🗄	3日令 所有与±慢±				
🕒 🗈 💠 🔸 Container Path: 🚺 ashboards\Nisku_well					
	4				
Nisku Abandoned Well Properties	1 L				
Distance from injection well (km) 5					
Min Max					
weil radius (m)					
Plug Length (m) 20 30					
Plug Permeability (m2) 1e-21 1e-17					
	11				
Main Dashboard					
	<u>.</u>				
	1.7				
Run Mode: Editing is disabled. Press F5 to start simulation. F4 to edit model.	Scale: 100% Filter ON Run Mode				

Table 4: Parameters and Distribution Types for the Nisku Abandoned Well

Input Parameter	Probability Distribution Function
Distance from injection well	Deterministic
Well radius	Uniform
Plug length	Uniform
Plug permeability	Uniform

Banff Abandoned Well Properties

The input parameters to define the properties of the abandoned well in the Banff formation are contained in a separate dashboard that is accessed by clicking on the "Banff Well Prop," button on the Main dashboard. The Banff abandoned well properties dashboard is shown in Figure 14. Table 5 contains a list of the parameters and the associated probability distribution functions.

Figure 14: Banff Abandoned Well Properties Dashboard

🄰 GoldSim Pro -	WASP_Risk_Model_Version 0.2	
Eile Edit View Gr	raphics <u>M</u> odel <u>R</u> un <u>H</u> elp	
🗅 🚅 🔛 🐰	™ 🛍 🖪 🗁 🛱 💕 🗊 🖬 🙀 💟 🖼 % 35 B 🦹 限 Q, 🖸 🖉 🖑	近近山+厚+
🖿 💶 💠 🔶 Co	ntainer Path: \Dashboards\Banff_well	
		<u>່</u>
		4
	Banff Abandoned Well Properties	
		S
	Distance from Nisku well (km) .1	0
		A
	Min Max	
	Well radius (m) 0.1 0.15	
	Plug Length (m)	
	Plug Permeability (m2) 1e-21 01e-17	興
	Main Dackboard	
	main 2 ashbudiu	
		<u>v</u>
<		▶ 1.7
Run Mode: Editing is d	isabled. Press E5 to start simulation. E4 to edit model. Scale: 1009	% Filter ON Run Mode

Table 5: Parameters and Distribution Types for the Banff Abandoned Well

Input Parameter	Probability Distribution Function
Distance from Nisku well	Deterministic
Well radius	Uniform
Plug length	Uniform
Plug permeability	Uniform

Abandoned Well Scenario Selection

The simulator includes two abandoned well scenarios as described in Section 2. The leakage scenario shown in Figure 1 through a single well in the Nisku formation is selected by placing a check mark in the check box to the right in the Main dashboard (Figure 15). The leakage scenario shown in Figure 2 from the Nisku, through the Nisku abandoned well into the Banff formation and then through the Banff abandoned well is selected by clearing the check box.

Figure 15: Check Box for Well Leakage Scenario Selection

Simulation Settings

The Simulation Settings button on the Main dashboard is used to set the duration of the simulation, the number of time-steps (and, therefore, the time step length), and the number of Monte Carlo realizations to run. The dialog box for the simulation settings is shown in Figure 16 (note: "Time" tab at top of box must be selected). CO_2 injection is assumed to take place over the entire duration of the simulation. Therefore the total injected mass of CO_2 is equal to the duration entered and the injection rate entered in a separate dashboard in the model. The timestep interval is determined by the number of time steps entered in the lower section of the dialog box. For example, a value of 50 time steps and a duration of 50 years results in a one-year time step intervals in the simulation. A value of 600 would result in a one-month time step.

Clicking on the "Monte Carlo" tab at the top of the dialog box produces the dialog box shown in Figure 17. The number of iterations or individual model simulations that are performed for a Monte Carlo analysis is selected using the input field at the top of the dialog box. A deterministic run (a single realization) can be selected by clicking on the radio button in the lower field of the dialog box (Figure 17).

Figure	16: Dialog	Box for	Simuation	Duration and	d Number of	Time Steps
--------	------------	---------	-----------	--------------	-------------	------------

Simula	tion Settings			×
Time	Monte Carlo Globa	ls Information		
2	Specify model star for model calculation	t time and duration, and ons and result plotting.	define global time steps	
Bas	ic Time Settings			
	Time Display Units:	vr		
	Duration:	50 yr		
	Start-time:	1/21/2009 🗸	12:00:00 AM 😂	
	End-time:	1/21/2059 💉	12:00:00 PM	
Time	e Phase Settings			51
	Time Range [yr]	#Steps Length	[yr] Plot Every FV	
	0 - 50	50 1	1	
	<u>A</u> dd <u>R</u> em	love	Advanced	
		ОК	Cancel Help	>

Figure 17: Dialog Box for Setting Number of Monte Carlo Realizations

Simulation Settings							
Time Monte Carlo Globals Information							
Define Monte Carlo options to carry out a probabilistic simulation, and specify the sampling method for Stochastic variables.							
Probabilistic Simulation:							
# Realizations: 1000 💭 # Histories to save:	1000	*					
Run the following Realization only: Realization:	1	A V					
Use Latin Hypercube Sampling							
Repeat Sampling Sequences Random Seed:	1						
Deterministic Simulation							
Some Simulation deterministically using:							
Element Deterministic <u>V</u> alues							
C Element Mean Values							
Specified Quantile: 0.5							
OK Car	ncel	Help					

Simulation Results

Simulation results can be viewed by clicking on the Simulation Results button on the Main dashboard. The Results dashboard is shown in Figure 18. Table 6 contains a description of each of the model outputs that can accessed from the dashboard.

Figure 18: Results Dashboard

📕 GoldSi	m Pro - WASP_Risk_Model_Version 0.2		
Eile Edit	<u>View G</u> raphics <u>M</u> odel <u>R</u> un <u>H</u> elp		
🗋 🗅 🚅 I	3 X 🖻 🖻 G 🍜 🏣 🗳 😏 🖪 M 🖸	🝸 🗉 % 🦂 DB 🤶 ┣ 🔍 🖪	四 🖑 🔟
E 1 4	Container Path: \Dashboards\Simulation_results_db		
			<u>^</u> 1.
	Results Dashboard		
	CO2 arrival time at Nisku well	Plume Arrival #1	ی۔ م
	Formation pressure at base of Nisku well	CO2 Pressure @ Ab Well #1	
	Leakage rate in Nisku well	Leak Rate @ Ab Well #1	
	Nisku well leakage rate (% of injection rate)	% Leak /yr @ Ab Well #1	
	Nisku well leakage rate (% of cum. tot.)	% Cum Leak/yr @ Ab Well #1	CK I
	CO2 arrival time at Banff well	Plume Arrival #2	
	Formation pressure at base of Banff well	CO2 Pressure @ Ab Well #2	
	Leakage rate in Banff well	Leak Rate @ Ab Well #2	
	Banff well leakage rate (% of cum. tot.)	% Leak /yr @ Ab Well #2	
	Banff well leakage rate (% of cum. tot.)	% Cum Leak/yr @ Ab Well #2	88
	Main Dashboard		ji.
<			>
Run Mode: E	diting is disabled. Press F5 to start simulation, F4 to edit mod	del. Scale: 100% Filter	ON Run Mode

Table 6: Description of Model Outputs

Model Output	Description
Plume Arrival #1	PDF of CO ₂ plume arrival at base of Nisku abandoned well
CO ₂ Pressure @ Ab Well #1	PDF of formation pressure at base of Nisku abandoned well in MPa
Leak Rate @ Ab Well #1	PDF of leakage rate from Nisku abandoned well to surface in m ³ /yr
% Leak/yr @ Ab Well #1	PDF of leakage rate from Nisku abandoned well to surface as a percentage of annual CO_2 volume injected
% Cum Leak/yr @ Ab Well #1	PDF of leakage rate from Nisku abandoned well to surface as a percentage of total volume injected to date
Plume Arrival #2	PDF of CO ₂ plume arrival at base of Banff abandoned well in years
CO ₂ Pressure @ Ab Well #2	PDF of formation pressure at base of Banff abandoned well in MPa
Leak Rate @ Ab Well #2	Leakage rate of CO ₂ from the Banff abandoned well to the surface in units of m ³ /yr
% Leak/yr @ Ab Well #2	Leakage rate of CO_2 from the Banff abandoned well to the surface as a percentage of the injection rate
% Cum Leak/yr @ Ab Well #2	Leakage rate of CO_2 from the Banff abandoned well to the surface as a percentage of total CO_2 volume stored

4.0 **BENCHMARKING**

The WASP leakage simulator was benchmarked against independent calculations that were performed by repeating the main analytical calculations in an Excel spreadsheet developed by Golder and also a spreadsheet developed by Lavoie (2009) for the plume migration calculations. A more rigorous benchmarking of the leakage model against a numerical simulator such as TOUGH2 (2009) is required to test the validity of the assumptions and the accuracy of the mathematical development. This is one of the major follow on tasks recommended in the Section 7.

4.1 CO₂ Leakage – Abandoned Nisku Well

Figure 19 shows leakage rate outputs from the Simulator and Excel models for the abandoned well in the Nisku in m^3/yr . The input parameters for the two different methods are the expected values in Table 2 with the two well plug permeabilities equal to $10^{-15} m^2$. Close agreement is observed for the two different models.

4.2 CO₂ Leakage – Abandoned Banff Well

Figure 20 shows leakage rate outputs from the GoldSim model and Excel model for the abandoned well in the Banff as a percentage of total volume stored. The input parameters are the deterministic parameters from Table 2 with the two well plug permeabilities equal to $10^{-15} m^2$. The results from the two different models are essentially the same.

Figure 20: Transient Leakage Flux Curve as a % of Injection Rate for Abandoned Well in Banff

4.3 Plume Migration – Nisku Formation

Figure 21 shows the maximum extent of the plume for the GoldSim model and Excel model for S_{res} =0.384. The input parameters are the deterministic parameters from Table 2. The results from the two different models are almost identical.

5.0 WASP SPECIFIC DATA

This section summarizes the site specific input data for the WASP High Grade Study Area. Deterministic values were used for all input parameters during model development and testing. Probabilistic values were implemented in the simulator for the sensitivity analyses discussed in Section 6.

5.1 **Probabilistic Inputs**

Many of the input parameters in the model are uncertain due to limited site data, natural variability and the difficulty in characterizing hydrogeological systems. These uncertain quantities are represented in the model by probability distribution functions and are propagated in the calculations of leakage flux through the abandoned wells and plume radii using the Monte Carlo method. Parameters describing the formation characteristics were supplied by the WASP team (Eisinger, 2009) and are summarized in Table 7.

The uncertainty in the permeability and porosity of the Nisku formation are represented by discrete distributions based on the WASP Static Model (2008). Permeability is represented by a discrete cumulative distribution function (CDF) which was input directly into the simulator while the formation porosity is represented by a discrete probability mass function (PMF). The permeability, porosity and thickness distributions for the Banff formation were assumed to be the same as the Nisku.

The uncertainty in the initial pressure in the Nisku formation is represented by a triangular distribution (Lavoie, 2008). The spread of the distribution is approximately \pm 25% of the mean value. The initial pressure in the Banff is based on the same distribution that is reduced based on an assumed linear relationship between formation pressure and depth (AAPG, 1996).

The uncertainty distribution for the formation compressibility is represented by a uniform distribution. The data on the thickness of the Nisku formation (Eisinger, 2009) was fit to a log normal distribution using an Anderson-Darling fit .

The leaky well parameters for the abandoned well plugs are represented by uniform distributions based on the ranges suggested by Nygaard (2009) for intact and fractured cements and an open hole.

Name	Symbol		Value		Expected Value	Reference
Permeability of Nisku	k_1	CDF: Discrete			1.59×10 ⁵ md	Eisinger, 2009
formation		P(k ₁)	<i>k</i> ₁(<i>md</i>)			
		0	0			
		0.05	0.01			
		0.19	0.1			
		0.3	1			
		0.3	1			
		0.59	10			
		0.81	100			
		0.975	1,000			
Compressibility of CO ₂ rock system in Nisku	C1	PDF: Uniform <i>c~U(1.45×10⁻¹</i>	Distribution $1^{0} - 1.45 \times 10^{-9}$	(Pa) ⁻¹	7.975×10 ⁻¹⁰ (Pa)-1	Eisinger, 2009
Compressibility of CO ₂ rock system in Banff	C ₂	Assumed to be	e the same as I	Nisku	7.975×10 ⁻¹⁰ (Pa)-1	

Table 7: Probabilistic Inputs for Nisku and Banff Formation Properties

Name	Symbol		V	alue		Expected Value	Reference
Thickness of Nisku formation	b_1	PDF: Log <i>b</i> 1~ <i>LN(63.</i>	normal: 88,8.99) m	,		6388 m	Eisinger, 2009
Porosity of Nisku	\Box	PMF: Discrete				0.04	Eisinger, 2009
Formation		р(Д)	□(%)	р(Д	□(%)		-
		0.014	1e-006	0.004	0.13		
		0.146	0.01	0.003	0.14		
		0.274	0.02	0.002	0.15		
		0.22	0.03	0.002	0.16		
		0.114	0.04	0.002	0.17		
		0.07	0.05	0.002	0.18		
		0.04	0.06	0.002	0.19		
		0.038	0.07	0.002	0.2		
		0.018	0.08	0.002	0.21		
		0.014	0.09	0.002	0.22		
		0.011	0.1	0.002	0.23		
		0.009	0.11	0.001	0.24		
		0.006	0.12				
Porosity of Banff Formation		Assume sa	ame as Nis	ku		0.04	
Initial pressure in Nisku	p_1^{init}	p_1^{init} ~tri(12	<i>p</i> ^{<i>init</i>} <i>∼tri</i> (12.3, 19.7, 22.6) <i>M</i> Pa			18.2 MPa	Eisinger, 2009
Initial pressure in Banff	p_2^{init}	$p_2^{init} \sim p_1^{init}$ Use same pressure c	– 4.08 <i>MP</i> as Nisku, change with	a. ~tri(10, except cor decrease	13,16) MPa rect for d depth	15.2	(Lavoie, 2008) and (AAPG, 1996)
Permeability of Banff formation	k2	~Assumed	d same as l	Nisku.		18.7 md	
Thickness of Nisku formation	<i>b</i> ₂	~Assumed	d same as l	Nisku		63.88 m	
CO ₂ viscosity in Nisku formation	Cı	Kolmogoro data <i>□~N(5</i> <10	ov-Smirnov) ⁻⁵ , 1×10 ⁻⁵)	r fit to WAS Pa⋅s	P measured	5×10 ⁵ Pa-s	Data: (Eisinger, 2009)
CO ₂ density in Nisku formation		Kolmogorov-Smirnov fit to WASP measured data \Box - <i>tri(416, 736, 816) kg</i>				565 kg/m ³	Data: (Eisinger, 2009)
CO ₂ viscosity in Banff formation	$\Box_{\!\!\!2}$	Assume sa	ame as Nis	sku		5×10 ⁵ Pa-s	Data: (Eisinger, 2009)
CO ₂ density in Banff	$\Box_{\mathbb{P}}$	Assume s	ame as Nis	ku		5×10 ⁵ Pa-s	Data: (Eisinger,

Table 7: Probabilistic Inputs for Nisku and Banff Formation Properties (continued)

Table 8: Probabilistic	Inputs for	Abandoned	Wells	Parameters
------------------------	------------	-----------	-------	------------

Name	Symbol	Value	Expected Value	Reference
Permeability of well plug in 1 st abandoned well between Nisku and surface	k _{1s}	These will depend on well completion state. The following distributions will be used: $k_w \sim U(10^{21} - 10^{17}) m^2$: Open Hole	5×10 ⁻¹⁸ m ²	Data from Nygaard, 2009
Permeability of well plug in 2 nd abandoned well between Banff and surface	k _{2s}	$k_{\rm w} \sim U(10^{-16} - 10^{-14}) m^2$: Fractured cement $k_{\rm w} \sim U(10^{-12} - 10^{-10}) m^2$: Intact cement	5×10 ⁻¹⁸ m ²	
Permeability of well plug in 1 st abandoned well between Nisku and Banff	k ₁₂		5×10 ⁻¹⁸ m ²	
Length of well plug in 1 st abandoned well between Nisku and surface	Dıs	These will depend on well completion state. The following distributions will be used:		
Length of well plug in 2 nd abandoned well between Banff and surface	D _{2s}	$D_w \sim U(0.1-10) m$: Open Hole $D_w \sim U(10-20) m$: Fractured cement $D_w \sim U(20, 30) m$: Intact cement	25 m	
Length of well plug in 1 st abandoned well between Nisku and Banff	D ₁₂		25 m	
Radius of 1 st abandoned well between Nisku and surface	r _{1s}	These will depend on well completion state. The following distributions will be used:		
Radius of 1 st abandoned well between Banff and surface	r _{2s}	$r_w \sim U(0.19-0.22) m$: Open Hole $r_w \sim U(0.15-0.2) m$: Fractured cement $r_w \sim U(0.1-0.15) m$: Intact cement	0.125 m	
Radius of 1 st abandoned well between Nisku and Banff	r ₁₂		0.125 m	

6.0 SENSITIVITY ANALYSIS

Sensitivity analysis is used to identify the input parameters which most strongly influence a specific output from the model. The model outputs used to evaluate the simulator sensitivity are the two leakage rates for the abandoned wells penetrating the Nisku and Banff formations and the maximum extent of the CO_2 plume migration. Each sensitivity analysis is a series of simulations in which selected independent variables are varied, one variable at a time, through a range of values while the other values are assigned their expected value. A lower bound, central, and upper bound value are assigned to each independent variable. Simulations are run at the three different values for the first dependent variable while the other independent variables are assigned their central value. The process is repeated for each independent variable. The central, lower and upper bound values in the sensitivity analysis are based on the 50^{th} , 5^{th} and 95^{th} percentile values respectively from the probability distribution functions in Tables 2 and 3 in Section 5.

The results of a sensitivity analysis can be illustrated using a Tornado diagram, a graphical representation of the degree to which a model output is sensitive to the specified independent variables. The x-axis of a Tornado chart represents the values of the result for different values of the independent variables. Each bar represents the range of result values produced when each independent variable is set to lower bound, central, and upper bound values (with the other variables being held constant). A light blue bar indicates that the value was produced by the lower bound value (Low), and a dark blue bar indicates that the value was produced by the upper bound value (High). The variables are organized from top to bottom according to the total range of results produced. That is, the variable that produces the largest range of the result between the lower and upper bound values is at the top of the chart. Hence, bars become smaller toward the bottom of the chart, and the overall effect is to take on the appearance of a "tornado". The solid vertical line represents the value of the result when the central values are used for all independent variables. Figure 25 in the next section is an example of a Tornado chart.

The X-Y function chart is another type of sensitivity analysis that provides a graphical representation of the degree to which the result is sensitive to the specified independent variables. Similar to the method used for the Tornado plots, a series of deterministic simulations are performed, varying one independent variable at a time through its range of values. In addition to the lower bound, central and upper bound values, simulations are performed at other intermediate values. The charts in the figures include 11 points or values. There is one line for each variable. Each line illustrates how the result changes when that independent variable is varied from its lower bound to its upper bound (with the other variables being held constant). Because the variables sometimes have different units and a different range, the x-axis does not represent actual values; rather it represents normalized values (and hence they all range from 0 to 1). Figure 22 in Section 6.1 is an example of an X-Y function chart.

The results from the sensitivity analyses for the four outputs are described below.

6.1 Leakage in Nisku Abandoned Well

The parameters identified as potentially having a strong influence on the leakage in the Nisku abandoned well are:

- plug permeability in the abandoned well;
- plug length;
- abandoned well radius;
- density of CO₂ in the Nisku formation;
- CO₂ viscosity in the Nisku;

- permeability of the Nisku formation;
- initial pressure in the Nisku; and
- Nisku thickness.

The results of the sensitivity analyses for the leakage through an abandoned well in the Nisku formation are shown in Figures 22 and 23. The parameter with the strongest influence on well leakage is plug permeability with a linear relationship between permeability and the leakage rate. The CO_2 viscosity and abandoned well radius are the next to parameters with the greatest influence on the leakage rate. The CO_2 viscosity relationship is nonlinear at the lower range of the distribution included in the sensitivity analysis. The sensitivity of well leakage to CO_2 density, formation pressure and plug length are similar with a slightly nonlinear relationship for all three parameters. The leakage rate is largely insensitive to the permeability and thickness of the Nisku formation.

Tornado Sensitivity Chart - Analyzed Result: Nisku_Leakage [m3/s]

Figure 23: X-Y Function Chart of Sensitivity Results for Leakage through Abandoned Nisku Well

Normalized X-Y Function Plot - Analyzed Result: Nisku_Leakage

6.2 Leakage in Banff Abandoned Well

The parameters identified as potentially having a strong influence on the leakage in the Banff abandoned well are:

- the abandoned well parameters associated with leakage through the plug between the Banff and the surface;
- the Banff formation hydrogeological parameters;
- the abandoned well parameters associated with leakage through the conduit plug between the Nisku and Banff formations; and
- the Nisku formation hydrogeological parameters.

The results of the sensitivity analyses for the leakage through an abandoned well in the Banff formation are shown in Figures 24 and 25. The results are similar to the leakage in the Nisku abandoned well (Section 6.1). The parameter with the strongest influence on well leakage is plug permeability with a linear relationship between permeability and the leakage rate. The CO_2 viscosity and abandoned well radius are the next to parameters with the greatest influence on the leakage rate. The CO_2 viscosity relationship is nonlinear at the lower range of the distribution included in the sensitivity analysis. The sensitivity of well leakage to CO_2 density, formation pressure and plug length are similar with a slightly nonlinear relationship for all three parameters. The leakage rate is largely insensitive to the permeability and thickness of the Nisku formation.

Tornado Sensitivity Chart - Analyzed Result: Banff_Leakage [m3/s]

Figure 25: X-Y Function Chart of Sensitivity Results for Leakage through Abandoned Banff Well

Normalized X-Y Function Plot - Analyzed Result: Banff_Leakage

6.3 CO₂ Plume Migration in the Nisku

The parameters identified as potentially having a strong influence on the maximum radial extent of the plume and plume arrival time in the Nisku abandoned well are:

- the saturation fraction of CO₂ in the Nisku;
- the porosity of the Nisku; and
- the CO_2 density in the Nisku.

The results of the sensitivity analyses for the leakage through an abandoned well in the Banff formation are shown in Figures 26 and 27. The parameter with the strongest influence on plume radius is the CO_2 saturation ratio with a highly nonlinear relationship between the ratio and plume radius. The Nisku porosity is the next parameter with the greatest influence on the plume migration but has a significantly smaller influence than the CO_2 saturation ratio. The sensitivity of the plume radius to CO_2 density is relatively small.

Figure 26: Tornado Plot of the Sensitivity Analysis Results for Plume Migration in the Nisku

CO2_Sat_Nisku_Dist Porosity_Nisku Density_CO2_Nisku

Tornado Sensitivity Chart - Analyzed Result: Plume_radius_nisku [km]

Normalized X-Y Function Plot - Analyzed Result: Plume_radius_nisku

7.0 SUMMARY AND RECOMMENDATIONS

Golder Associates have developed a probabilistic analytical simulator capable of evaluating alternative leakage scenarios associated with legacy wells in multiple formations. The simulator can be used to evaluate the simplest scenario of leakage to the surface via a single abandoned well in the Nisku formation and the more complicated scenario of leakage through a combination of wells in the Nisku and Banff formations. The mathematical models are based to a large extent on the analytical solutions developed by Nordbotten et al., (2004, 2005). The use of analytical expressions in the simulator allows the uncertainty in the input parameters to be explicitly represented and propagated in the model calculations using the Monte Carlo simulation method. The simulator is scalable and can be expanded to represent CO₂ release through additional leakage pathways such as faults, fracture networks and spill points.

The simulator includes a user interface for defining the input parameters and describing different release scenarios (i.e., 'what if' analysis) that are fundamental in CO_2 sequestration risk analysis and useful for developing a diagnostic understanding of the different leakage scenarios. The interface contains a number of predefined model outputs including time histories of formation pressure, CO_2 plume migration within the injection formation, and CO_2 flux rates through the abandoned wells. The preliminary set of input parameters in the simulator that describe Nisku and Banff formation properties and the characteristics of the potential leakage pathways up the abandoned wells were developed by members of the WASP research team.

The reference input parameters were used to perform sensitivity analyses to identify those that most strongly influence the projected CO_2 plume migration and potential leakage through abandoned wells. The results from the sensitivity analysis can be used to prioritize site characterization data needs for reducing the overall uncertainty in the performance of a potential CCS site.

The conceptual model that forms the basis for the simulator can be expanded to include other potential pathways (e.g., faults and spill points) and multiphase flow. These features can be accommodated by adding additional modules to the existing model. Prior to further development or using the simulator for guiding site characterization activities, Golder recommends the current version of the simulator be thoroughly tested by the WASP research team in order that any errors or omissions are addressed. Furthermore, while the simulator has been benchmarked against independent calculations, the large number of input parameters and calculations as well as the imbedded logic in the simulator calls for additional testing. For example, the simulator could be more thoroughly benchmarked using an established reservoir simulator such as TOUGH2 (Preuss, 2009). For these reasons, the simulator should be considered a prototype until this testing has taken place and the model has been revised as appropriate.

8.0 **REFERENCES**

- AAPG, 1996. *Hydrocarbon Migration and Its Near-Surface Expression*, Ed. D Schumacher and AA Abrams, AAPG Memoir 66, AAPG Press, Oklahoma, OK, 1996.
- Anton, 1984. Elementary Linear Algebra, 4th Edition, H Anton, J Wiley & Sons, New York, 1984.
- Aziz and Settari, 1979. *Petroleum Reservoir Engineering*, K Aziz and A Settari, Applied Science Publishers Ltd., London, 1979.
- Celia, 2008. Implications of Abandoned Wells for Site Selection, MA Celia, Princeton University, and Risk of Leakage versus Depth of Injection, Presentation by MA Celia, Princeton University, <u>http://www.princeton.edu/cee/people/data/c/celia/profile/the-darcy-lecture-outline/?__toolbar=1</u>, 2009
- CO₂-PENS, 2007. CO₂-PENS: A System Model for the Geological Sequestration of Carbon Dioxide, PH Stauffer, HS Viswanthan, RJ Pawar and GD Guthrie, GoldSim User Conference, San Francisco, October, 2007.
- CONRAD, 2006. *Risk Assessment of Potential Oil Sands Coke Combustion in the Final Storage Landscape*, report prepared by Golder Associates for CONRAD, May, 2006.

Eisinger, 2009. Spreadsheet of WASP Formation Parameters, C Eisinger, private communication, March, 2009;

Freeze and Cherry, 1979. Groundwater, RA Freeze and JA Cherry, Prentice-Hall, Englewood Cliffs, NJ, 1979.

- Gasda et al, 2004. SE Gasda, S Bachu and MA Celia, Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin, Environmental Geology, Vol 46, pp707-720, (2004).
- Ghaderi, 2009. CO₂ Injection into Saline Aquifers Containing H2S (Sour Aquifers): The Wabamun Area CO₂ Sequestration Project, S Ghaderi, M Shevalier, Y Leonenko, B Mayer, I Hutcheon, R Lavoie and D Keith, Proceedings of the AAPG/SEG/SPE Hedberg Conference, Vancouver, 2009.
- Gautsch and Cahill, 1964. W Gautsch and WF Cahill, *Exponential Integral and Related Functions*, Chapter 5, *Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*, Ed. M Abramowitz and IA Stegun, National Bureau of Standards, Washington DC, 1964.
- GoldSim, 2006. *Risk-Based Decision Support For Housing Development On Undermined Land*, Andrew McGoey-Smith, Ray Predika, Jack Crooks, and Ian Miller, GoldSim Users Conference, Vancouver, June, 2006.

GoldSim, 2009. GoldSim, Monte Carlo Simulation Software for Decision and Risk Analysis, www.goldsim.com.

- IPCC, 2007. Chapter 5, Underground geological storage, Intergovernmental Panel on Climate Change (IPCC), United Nations Environmental Program, 2007, <u>http://www.ipcc.ch/pdf/special-reports/srccs/srccs_chapter5.pdf</u>.
- IUPAC, 2006. IUPAC Goldbook on-line corrected version, http://goldbook.iupac.org/S05921.html
- Ghaderi et al, 2009. S Ghaderi, M Shevalier, Y Elonenko, B Mayer, I Hutcheon, R Lavoie, and D Keith, CO₂ Injection into Saline Aquifers Containing H₂S (Sour Aquifers): The Wabamun Area Sequestration Project, AAPG/SEG/SPE Hedberg Conference, Vancouver, BC, Aug 16-19, 2009
- Lavoie, 2008. *Analytical Plume Size and CO*₂ *Injectivity*, Presentation, Wabamun Lake CO₂ Sequestration Project Kick-off Meeting, R Lavoie, February 22nd, 2008.

Lavoie, 2009. Excel Spreadsheet of WASP Plume Radius Model, R Lavoie, private communication, 2009.

- Morgan and Henrion, 1990. Uncertainty: A Guide to Dealing with Uncertainty in Quantitative Risk and Policy Analysis, MG Morgan and M Henrion, Cambridge University Press, New York, 1990.
- Nordbotten et al. 2004. JM Nordbotten, MA Celia and S Bachu, *Analytical solutions for leakage rates through abandoned wells*, Water Resources Research, Vol. 40, W04204, pp1-10, 2004.
- Nordbotten et al., 2005a. JM Nordbotten, MA Celia and S Bachu, *Injection and Storage of CO₂ in Deep Saline Aquifers: Analytical Solution for CO₂ Plume Evolution During Injection*, Transp. Porous Med. Vol. 58, pp339-360, 2005.
- Nordbotten et al., 2005b. JM Nordbotten, MA Celia and S Bachu, and H Dahle, *Semianalytical Solution of CO*₂ Leakage from an Abandoned Well, Environ. Sci. Technol. Vol. 39, pp602-611, 2005.
- Nordbotten et al., 2009. JM Nordbotten, D Kavetski, MA Celia and S Bachu, *Model for CO₂ Leakage Including Multiple Geological Layers and Multiple Leaky Wells*, Environ. Sci. Technol., Vol. 43, pp743-749, 2009.
- Nygaard, 2009. Status of Well Completion for WASP, private communication, R Nygaard, February, 2009.
- Numerical Recipes, 1997. *Numerical Recipes in C: The Art of Scientific Computing*, 2nd Edition, WH Press, WT Vetterling, SA Teukolsky and BP Flannery, Cambridge University Press, Cambridge, MA, 1997.
- Preuss, 2009. TOUGH2, A General-purpose Numerical Simulation Program for Multi-phase Fluid and Heat Flow in Porous and Fractured Media, K Preuss, Lawrence Berkley Laboratory, <u>http://esd.lbl.gov/TOUGH2</u>
- Static Model, 2008. Presentation on the *Static Model*, WASP Sponsors Meeting, C Eisinger and Jerry Jensen, 26th September, 2008.

Report Signature Page

GOLDER ASSOCIATES LTD.

S/&e

Kevin Heal, B.Comm. Project Manager

KH/CFV/SL

Charles V-

Charles F Voss, MS Principal

http://capws/if11028wabamunareasequestrationproject/phases and tasks/report/draft report/wasp draft report ver12_final.docx

APPENDIX A

Conversion from Hydraulic Head to Pressure

The following relationships hold linking hydraulic head h to pressure p, transmissivity T to hydraulic conductivity K, hydraulic conductivity to permeability k and storability S to compressibility c:

$$h = \frac{p}{\rho g} \tag{A1}$$

$$T = Kb \tag{A2}$$

$$K = \frac{\rho g}{\mu} k \tag{A3}$$

$$S = \rho g b c \tag{A4}$$

Therefore the standard well pumping equation (Nordbotten et al., 2004)

$$h(r,t) - h_{init} = \frac{Q_w}{4\pi T} W(u) \tag{A5}$$

where $W(u)=E_1(u)$ becomes

$$p(r,t) - p_{init} = \frac{\mu Q_w}{4\pi k b} W(u) \tag{A6}$$

where

$$u = \frac{c\mu r^2}{4kt} \tag{A7}$$

and the well pumping function $E_1(u)$ is the exponential integral function:

$$E_1(u) = -\gamma - \ln(u) - \sum_{n=1}^{\infty} \frac{(-1)^n u^n}{n \cdot n!}$$
(A8)

Where $\gamma=0.557$ is Euler's constant.

The starting point for the mathematical model of leakage is equation (2) from Nordbotten et al. (2004) which is (A6). This is the pressure equation for single injection into the storage formation (CO_2 reservoir), without leakage outwards:

$$h(r,t) - h_{init} = \frac{Q_w}{4\pi T} W(u) \tag{A9}$$

here *h* denotes hydraulic head (as defined in Darcy's equation for flow in a porous medium)

r denotes the distance between the injection well;

t denotes time since start of injection;

 h_{init} is the hydraulic head of the target formation prior to injection; and

 Q_w denotes volumetric flow rate (injection rate for an injection well and later, leakage rate for an abandoned well), which is assumed to be constant; and u is given by (A7).

APPENDIX B

Nordbotten et al. Equations for Multiple Wells and Multiple Layers

The Nordbotten et al. equations for *M* multiple active and *N* abandoned wells, where the abandoned wells penetrate *L* multiple formation layers, are given by equation (7) of (Nordbotten et al., 2004) where the substitutions (A1) to (A3) have been made, the weight of the CO_2 has been included as was the case in (Nordbotten et al., 2005b), and the partial derivative replaced as per the discussion in 2.3 of (Nordbotten et al., 2004). They are a set of *L* coupled algebraic equations:

$$p_{l}(r,t) - p_{l}^{init} = \frac{\mu}{4\pi k_{l} b_{l}} \sum_{i=1}^{M} Q_{l,i} W(r - r_{i},t) + \frac{\mu}{4\pi k_{l} b_{l}} \sum_{j=M+1}^{M+N} Q_{l,j}^{+} W(r - r_{j},\gamma t)] - \frac{\mu}{4\pi k_{l} b_{l}} \sum_{j=M+1}^{M+N} Q_{l,j}^{-} W(r - r_{j},\gamma t)]$$

A(12)

where

$$Q_{l,j}^{+}(t) = \frac{\pi r_{wj}^{2} k_{wj} [p_{top} - p_{l}(r, t)]}{\mu D_{wj}}$$
(A13)

is the vertical leakage flux (out) of the l^{th} layer to a top layer above (could be the adjacent layer or the surface), D_{wj} is the length of porous material in the well bore through which leakage can occur, L_{wj} is the distance between the storage formation and the top layer and

$$Q_{l,j}^{-}(t) = \frac{\pi r_{wj}^2 k_w [p_l(r,t) - p_{l-1}(r,t)]}{\mu D_{wj}}$$
(A14)

is the leakage in to the *l*th layer from the adjacent (*l*-1)th layer below and γ =0.92. Note γ is not the same here as the Euler constant.

For *N* abandoned wells, the pressure is evaluated at a total of *N* times at the appropriate radial distance from each abandoned well. This results in *NL* equations in *NL* unknowns in block tri-diagonal form which can be solved by standard linear equation solving techniques, as discussed earlier in this document.

APPENDIX C

Leakage Flux for One Injection Well and One Abandoned Well with One Aquifer Penetration

For the case of 1 injection well and 1 abandoned well, we have M=1 and N=1 which reduces (A12) down to one equation in 1 unknown for evaluating the pressure at the abandoned well location. Note that the second term and third terms in equation (A12) are singular if we evaluate them at the middle of the injection well. Therefore we evaluate the expression with an offset equal to the abandoned well radius $\bar{r}_1 = r_1 + r_{w1}$ which results in a finite *W*-value. Since we are interested in leakage from the storage formation through the wellbore directly to the surface only, we have

$$p(\bar{r}_{1},t) - p_{init} = \frac{\mu}{4\pi k_{1} b_{1}} Q_{0} W[u(\bar{r}_{1} - r_{0},t)] + \frac{k_{1s} r_{w1}^{2}}{4k_{1} b_{1} D_{1s}} [p_{s} - p(\bar{r}_{1},t)] W[u(\bar{r}_{1},\gamma t)]$$
(A15)

where, in general,

$$\bar{r}_1 = r_1 + r_{w1} \tag{A16}$$

and D_{1s} is the vertical length associated with the porous material between the storage formation, L_{1s} is the distance from the storage formation to the surface, ρ is the density of CO₂ in the reservoir, k_{1s} is the permeability of porous material between the storage formation and the surface along the wellbore, and p_s is the pressure at the surface (atmospheric pressure).

Rearranging (A15), and using (6), the following two equations are obtained for estimating surface leakage through a single abandoned well:

$$Q_{1s}(t) = \frac{\pi r_{w1}^2 k_{1s} [p_s - p(\bar{r}_1, t)]}{\mu D_{1s}}$$
(A17)

where

$$p(\bar{r}_{1},t) = \frac{p_{init} + \frac{\mu Q_{0} W[u(\bar{r}_{1},t)]}{4\pi k_{1} b_{1}} + \frac{k_{1s} r_{w1}^{2} p_{s} W[u(r_{w1},\gamma t)]}{4k_{1} b_{1} D_{1s}}}{\left(1 + \left\{\frac{k_{1s} r_{w1}^{2} W[u(r_{w1},\gamma t)]}{4k_{1s} k_{1} b_{1} D_{1s}}\right\}\right)}$$
(A18)

Note that for wells in 'good condition', the cement permeability k_{1s} is low (of the order of 10^{-11} m² or less) and the cement plug length is high (larger than 10m), hence the denominator term is close to unity. We can then approximate (A18) with

$$p(\bar{r}_1, t) \simeq p_{init} + \frac{\mu Q_0 W[u(\bar{r}_1, t)]}{4\pi k_1 b_1} + \frac{k_{1s} r_{w1}^2 p_s W[u(r_{w1}, \gamma t)]}{4k_1 b_1 D_{1s}}$$
(A19)

APPENDIX D

Leakage Flux for One Injection Well and Two Abandoned Wells with Two Aquifer Penetrations

The starting point for the single injection well and 2 abandoned well penetrations, with 1 penetration in the storage formation, and one penetration in a less deep formation close to the storage formation, is equation (A12). This situation corresponds to a single injection into the Nisku formation and 1 abandoned well penetration in and Nisku formation and a second well penetration in the Banff formation. We assume negligible leakage occurs between the Nisku and the surface.

We evaluate this equation for each layer and at each abandoned each well location, offset by well distance r_{wj} so that the *W*-values are non-singular. Given that we know the pressure at the surface, we have 3 equations in 3 unknowns.

In the Nisku layer, the pressure at the foot of the first abandoned well is a sum of the initial pressure prior to injection, the pressure flow due injection and the loss of pressure through a pathway in the first abandoned well. The injection pressure can be calculated by applying the Theis equation which accounts for the vertically averaged radial flow in the Nisku formation from the foot of the injection well to the foot of the first abandoned well. The pressure lost through the abandoned well is calculated using the Theis type equation, except with injection replaced by the vertical flux from the Nisku to the Banff layers. Here the well function is evaluated at a distance equal to the well radius which accounts for pressure loss through the cement in the well casing.

Similarly, the pressure in the Banff formation at 1st abandoned well is the sum of the initial formation pressure prior to injection, the pressure gained from leakage through the 1st abandoned well and the pressure lost through leakage through the 2nd abandoned well. The well leakage pressure is computed by multiplying the leakage fluxes by an appropriate well function.

In conceptual terms we have a summation of four different well functions times three vertical fluxes

$$p_{1}(\bar{r}_{1}) = p_{1}^{init} + W_{inj \ well \rightarrow well 1}^{rad \ flow} \cdot Q_{inj} + W_{1 \rightarrow 2}^{well 1} \cdot Q_{1 \rightarrow 2}^{vert \ flux}$$

$$p_{1}(\bar{r}_{2}) = p_{2}^{init} - W_{1 \rightarrow 2}^{ab \ well 1} \cdot Q_{1 \rightarrow 2}^{vert \ flux}$$

$$p_{2}(\bar{r}_{2}) = p_{2}^{init} - W_{well 1 \rightarrow well 2}^{rad \ flow} \cdot Q_{1 \rightarrow 2}^{vert \ flux} + W_{2 \rightarrow s}^{well} \cdot Q_{2 \rightarrow s}^{vert \ flux}$$

Which in our standard mathematical notation becomes:

$$p_1(\bar{r}_1) = p_1^{init} + \frac{\mu Q_0}{4\pi k_1 b_1} W[u_1(\bar{r}_1), t] + \frac{k_{12} r_{12}^2}{4 b_1 k_1 D_{12}} [p_2(\bar{r}_1) - p_1(\bar{r}_1)] \cdot W[u_1(r_{w1}, \gamma t)]$$
(A19)

$$p_2(\bar{r}_1) = p_2^{init} - \frac{k_{12}r_{12}^2}{4b_2k_2D_{12}} [p_2(\bar{r}_1) - p_1(\bar{r}_1)] \cdot W[u_2(r_{w1},\gamma t)]$$
(A20)

$$p_{2}(\bar{r}_{2}) = p_{2}^{init} - \frac{k_{12}r_{12}^{2}}{4b_{2}k_{2}D_{12}} [p_{2}(\bar{r}_{1}) - p_{1}(\bar{r}_{1})] \cdot W[u_{2}(\bar{r}_{2}), \gamma t] + \frac{k_{2s}r_{2s}^{2}}{4b_{2}k_{2}D_{2s}} [p_{s} - p_{2}(\bar{r}_{2})] \cdot W[u_{2}(r_{w2}, \gamma t)]$$
(A21)

where

$$u_i(r,t) = \frac{c\mu_l r^2}{4k_l t} \tag{A22}$$

And *l*=1 or 2.

These equations (A19) to (A21) can be arranged into the following matrix equation where the dot (\cdot) denotes matrix multiplication. The matrix formulation will be used in the next section for solving the pressure for *N* wells and *L* layers.

$\begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \cdot \begin{bmatrix} p_1(r_1) \\ p_2(r_1) \\ p_2(r_2) \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$	(A23)
Where the matrix coefficients are given by:	
$a_1 = 1 + \frac{k_{12}r_{12}^2W[u_1(r_{w1},\gamma t)]}{4b_1k_1D_{12}}$	(A24)
$b_1 = -\frac{k_{12}r_{12}^2W[u_2(r_{w1},\gamma t)]}{4b_1k_1D_{12}}$	(A25)
$c_1 = 0$	(A26)
$a_2 = -\frac{k_{12}r_{12}^2W[u_1(r_{w1},\gamma t)]}{4b_2k_2D_{12}}$	(A27)
$b_2 = 1 + \frac{k_{12}r_{12}^2W[u_2(r_{w1},\gamma t)]}{4b_2k_2D_{12}}$	(A28)
$c_2 = 0$	(A29)
$a_3 = -\frac{k_{12}r_{12}^2W[u_2(\bar{r}_2),\gamma t)]}{4b_2k_1D_{12}}$	(A30)
$b_3 = \frac{k_{12}r_{12}^2 W[u_2(\bar{r}_2,\gamma t)]}{4b_2 k_2 D_{12}}$	(A31)
$c_3 = 1 + \frac{k_{2s} r_{2s}^2 W[u_2(r_{w2}, \gamma t)]}{4b_2 k_2 D_{2s}}$	(A32)

And the *d*-vector elements are:

$$d_1 = p_1^{init} + \frac{\mu Q_0 W[u_1(\bar{r}_1), t)]}{4\pi k_1 b_1}$$
(A33)

$$d_2 = p_2^{init} \tag{A34}$$

$$d_3 = p_2^{init} + \frac{k_{2s}r_{2s}^2 W[u_2(r_{w2},\gamma t)]}{4b_2 k_2 D_{2s}} p_s \tag{A35}$$

The matrix equation can easily be solved using Cramer's rule from matrix algebra (Anton, 1984) to give

$$p_1(\bar{r}_1) = \frac{(b_2d_1 - b_1d_2)}{(a_1b_2 - a_2b_1)} \tag{A36}$$

$$p_2(\bar{r}_1) = \frac{(a_1d_2 - a_2d_1)}{(a_1b_2 - a_2b_1)} \tag{A37}$$

$$p_2(\bar{r}_2) = \frac{(a_2b_3 - a_3b_2)d_1 + (b_1a_3 - a_1b_3)d_2 + (a_1b_2 - a_2b_1)d_3}{(a_1b_2 - a_2b_1)c_3}$$
(A38)

for the three pressure terms.

The leakage rate of CO_2 to the surface is given by Darcy's equation through the abandoned well is given by:

$$Q_{2s}(t) = \frac{k_{2s}\pi r_{w2}^2}{\mu D_{2s}} \left[p_s - \frac{(a_2b_3 - a_3b_2)d_1 + (b_1a_3 - a_1b_3)d_2 + (a_1b_2 - a_2b_1)d_3}{(a_1b_2 - a_2b_1)c_3} \right]$$
(A39)

and the flux between the two formations through the abandoned well is given by

$$Q_{12}(t) = \frac{\pi r_{12}^2 k_{12} [p_2(\bar{r}_1) - p_1(\bar{r}_1)]}{\mu D_{12}}$$
(A40)

which substituting for the two pressure terms becomes

$$Q_{12}(t) = \frac{k_{12}\pi r_{12}^2}{\mu D_{12}} \left[\frac{(a_1 + b_1)d_2 - (a_2 + b_2)d_1}{(a_1b_2 - a_2b_1)} \right]$$
(A41)

These equations will be implemented in the simulation model to provide estimates of CO₂ surface through the abandoned wells.

Note that the pressure equations reduce to a simpler form by making some approximations. First the determinant det(A) can be closely approximated by unity when the well plug permeability terms are low $(k_{wi} < 10^{11} m^2)$

$$\det(A) = (a_1b_2 - a_2b_1)c_3 \simeq 1$$

because the first term resulting from the multiplication of all three diagonal terms (each in turn close to unity) of matrix *A* dominates the determinant.

Second we note that the terms c_1 and c_2 are identically zero

 $c_1 = c_2 = 0$

Finally, we note that the diagonal terms of the *A*-matrix are close to unity for abandoned wells in a state of good completion:

$$a_1 \simeq 1$$
,

 $b_2 \simeq 1$ and

 $c_3 \simeq 1$

so that

$$p_1(\bar{r}_1) \simeq p_1^{init} + \frac{\mu Q_0}{4\pi k_1 b_1} W[u(\bar{r}_1 - r_0), t] + b_1 d_2$$
(A42)

where the sum of the first two terms are equal to the pressure in the reservoir after injection and the third term accounts for leakage from the reservoir to the surface since it depends on leakage flux from the first to the second formation multiplied by leakage flux from the second formation to the surface. Note that the third term in the equation is negative.

$$p_2(\bar{r}_1) \simeq p_2^{init} - a_2$$
 (A43)

and

$$p_2(\bar{r}_2) \simeq p_2^{init} - a_3 d_1 + b_3(p_s - d_1) \tag{A44}$$

At Golder Associates we strive to be the most respected global group of companies specializing in ground engineering and environmental services. Employee owned since our formation in 1960, we have created a unique culture with pride in ownership, resulting in long-term organizational stability. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees now operating from offices located throughout Africa, Asia, Australasia, Europe, North America and South America.

rica	+ 27
ia	+ 85
stralasia	+ 61
rope	+ 35
rth America	+ 1 8
uth America	+ 55

27 11 254 4800

852 2562 3658 61 3 8862 3500

+ 356 21 42 30 20

+ 1 800 275 3281

55 21 3095 9500

solutions@golder.com www.golder.com

Af

Golder Associates Ltd. 102, 2535 - 3rd Avenue S.E. Calgary, Alberta, T2A 7W5 Canada T: +1 (403) 299 5600

