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Abstract. Growing degree days (GDD) is a simple temperature-based index of biological 
development. In this paper we evaluated the potential of using 2003-2005 MODIS-based 8-
day and 16-day composites of daytime surface temperature (TS) and enhanced vegetation 
index (EVI) values at 250 m resolution for mapping GDD. The work was applied to the 
Canadian Atlantic Maritime Ecozone as a demonstration of the methodology. The work 
proceeded by establishing an empirical relationship between mean tower-based estimates of 
TS for the MODIS-acquisition period of 10:30 am-12:00 pm and the daily mean TS calculated 
from half-hourly emitted infrared/longwave radiation measurements taken from four flux sites 
in southern commercial forests of Canada. The relationship revealed a strong correlation 
between variables (r2=98.4%) and was central to the calculation of daily mean TS from 
MODIS-based estimates of TS. Since seasonally-based estimates of GDD and EVI were 
strongly correlated (r2=87%), data fusion techniques were applied to enhance the GDD map 
originally produced at 1 km resolution (from infrared emission band data), to 250 m. In 
general, the MODIS-derived map of GDD showed a positive constant offset of about 511 
degree days from calculated long-term averages (1971-2000) based on temperatures collected 
at 101 Environment Canada climate stations. 

Keywords: data fusion, enhanced vegetation index, growing degree days, MODIS, surface 
temperature. 

1 INTRODUCTION 
Temperature and growing degree days (GDD) represent two important spatially-dynamic 
climatic variables, as both play vital roles in influencing forest development [1] by directly 
affecting plant functions such as evapotranspiration, photosynthesis, plant respiration, and in-
plant water and nutrient movement. Understanding the spatial distribution of GDD is crucial 
to the practice of sustainable forest management and agriculture, as GDD relates to the 
integration of growth. The focus of this paper is to develop a practical methodology to 
spatially estimate seasonal values of GDD using MODIS-based measurements of surface 
temperature and index-values of vegetation greenness applied over a forest-dominated portion 
of the Canadian Atlantic Maritime Ecozone. 

The most widely practiced and standard protocol for estimating GDD (typically, given as 
a unitless quantity) is to use daily mean air temperature acquired at approximately 1.5-2 m 
above grassed surfaces, 
 

baseTaTGDD −=  ,    (1) 
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(Ref. 2), aT is the daily mean air temperature (in oC) derived from the measurements of daily 

maximum and minimum air temperatures, and Tbase is the base temperature (in oC) below 
which vegetation ceases to be biologically active.  

When calculated from climate station data, GDD provides precise point estimates.  For 
greater spatial representation, normally interpolative (gridding) methods, like kriging, inverse 
distance weighing, and natural neighbour, among others, are used to generate continuous 
surfaces [3]. Different gridding methods produce significantly different surfaces for the same 
input data and, as a result, quality of the interpolation is very much a function of the method 
employed. Also, because these methods rely on uncovering patterns inherent in the data, 
independent (explanatory) variables like elevation, terrain configuration, and other underlying 
variables that may perhaps cause variation in the data field cannot be directly used in 
interpolation. Usually increasing the number of data points will help address this variation, if 
gradual enough. Augmenting existing data networks is sometimes not feasible due to the cost 
involved, initial purpose of the network, and infrastructural problems in remote areas. Remote 
sensing platforms can, however, provide a solution to this by providing nearly continuous 
spatial coverage.  

Remote sensing techniques were used in the past to calculate GDD. The most common 
approaches used optical remote sensing to derive normalized difference vegetation index 
(NDVI: a measure of vegetation greenness) to provide long-term expressions of GDD; for 
some example approaches, refer to Table 1.  

Table 1. Examples of estimating GDD using optical RS data 

Source Approach* 

Ref. 4 • Used a portable radiometer to generate growing-season, 10-day composite of NDVI for 
1995 over tall grass prairie ecosystems (C3/C4) in Kansas, USA in monitoring 
ecological disturbance. 

• Demonstrated that the transformation using normalized integrated NDVI with GDD is
a significantly better discriminator (p=0.0102).   

Ref. 2 • Used AVHRR-derived monthly composites of NDVI for the years 1983 through to 
1992 over China for determining eco-climatic parameters, including, GDD and 
rainfall.  

• Air temperatures from 160 climate stations were used to generate GDD; and 155 out of
160 stations showed that the NDVI-to-GDD correlation was significant at the 0.05 
level.  

Ref. 5,6 • Used AVHRR-derived time series (1985-1988 and 1995-1999) of NDVI over 
Kazakhstan for analyzing agricultural land cover change, and northern high-latitude 
region studied as part of the IGBP for analysis of land surface vegetation phenology. 

• Determined NDVI as a quadratic function of GDD in the quantification of land surface
vegetation phenology changes.  

Ref. 7 • Used 15-day composites of GIMMS-NDVI for the period 1982 through 2002 in 
Fennoscandia in characterizing birch phenology.  

• Data from 20 meteorological stations were used to produce GDD time-series. 
Correlation coefficients between GDD and TI NDVI, ranged between 77%-99%, with 
a mean value of 91%. 

*Note: AVHRR-Advanced Very High Resolution Radiometer; GDD-growing degree day; GIMMS-
Global Inventory Monitoring and Modelling Studies; IGBP-International Geoshpere-Biosphere 
Program; NDVI-normalized difference vegetation index; TI NDVI-time integrated normalized difference 
vegetation index. 
 
Since vegetation greenness depends on GDD accumulation, in theory, GDD should be 
strongly correlated to NDVI. However, NDVI has a tendency to saturate over dense 
vegetation, such as over dense deciduous forests at the height of the growing season [8, 9]. 
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Instead of using the GDD-NDVI approach, we propose to use MODIS-based surface 
temperature (TS) for the initial calculation of GDD at 1 km spatial resolution by means of Eq. 
(1); here we assume that the daily mean air temperature is approximated by the daily mean 
surface temperature (a function of emitted infrared/longwave radiation). In order to enhance 
the spatial resolution of GDD to 250 m, we opted to use data fusion techniques to augment the 
1 km resolution map to 250 m using the seasonally-averaged MODIS-derived enhanced 
vegetation index (EVI: Ref. 10) as a predictor (“in-filling”) variable of GDD.  EVI is suitable 
replacement to NDVI, because EVI exhibits sensitivity across forest densities [8, 9] and has 
an effective resolution smaller than the 1 km resolution of the initial GDD map.  

2 STUDY AREA AND DATA REQUIREMENTS 
Canada is divided into fifteen terrestrial ecozones (generalized zonal groupings based on 
similar types of soil formation, climate, and landuse cover) as described by the National 
Ecological Framework for Canada [11]. The Atlantic Maritime Ecozone in eastern Canada 
(Fig. 1a), is a forest-dominated ecosystem that occupies approximately three-fourths of the 
total land-surface area of the ecozone. The forest is characterized by a temperate evergreen-
deciduous mix (transitional) forest covertype, where a mix of deciduous species, such as 
maple (Aceraceae spp.), beech (Fagus grandifolia Ehrh.) and birch (Betulaceae spp.), and 
coniferous species such as spruce (Pinaceae spp.) and balsam fir [Abies balsamea (L.) Mill.] 
grow. The climate here is largely influenced by the region’s proximity to the Atlantic Ocean. 
The area experiences a cool-moist climate with a mean annual temperature and annual 
precipitation range of 3.5-6.5°C and 900-1500 mm, respectively. The combined land area of 
the provinces of New Brunswick (NB), Nova Scotia (NS) and Prince Edward Island (PEI) 
occupy about 80% of the total landbase of the Atlantic Maritime Ecozone. Forests occupy 
about 85% of NB’s landbase, 79% of NS’s, and 46% of PEI’s (Natural Resources Canada; 
http://www.nrcan-rncan.gc.ca/cfs-scf/national/what-quoi/sof/sof06/profiles_e.html, last 
visited Jan. 2007). 

 

 
Fig. 1. Location of the Atlantic Maritime ecozone in Canada (a), and NWL, Fluxnet-
Canada flux site in New Brunswick and Environment Canada climate stations (b). 

 
In this study, we used two sources of data, (i) MODIS-based products, and (ii) emitted 

longwave radiation measured by tower-mounted sensors. MODIS products, in particular, land 
surface temperature (MOD11A2: 8-day daytime TS at 1 km spatial resolution) and vegetation 
index-vales (MOD13Q1: 16-day NDVI/EVI at 250 m spatial resolution) available from 
NASA for the 2003-2005 period were employed. Specifically, for each year a total of 27 8-
day composites of daytime TS (between 30 Mar.-31 Oct. for 2003 and 2005, and 29 Mar.-30 
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Oct. for 2004) and 13 16-day EVI composites (between 07 Apr.-31 Oct. for 2003 and 2005, 
and 06 Apr.-30 Oct. for 2004) were used. We considered the period from April to October to 
represent the growing season, as the mean temperatures for the other months are generally < 
5°C, and, as a result, do not add to plant growth. We also acquired GDD Normal values (Tbase 
> 5°C) for 101 climate stations for the 1971-2000 period from 
http://www.climate.weatheroffice.ec.gc.ca/climate_normals/index_e.html, an Environment 
Canada website, last visited on Dec. 2006.  We also used tower-based estimates of TS derived 
from emitted longwave radiation acquired from the Nashwaak Lake flux site (NWL) in west-
central NB (Fig. 1b) and three other flux sites in Canada’s southern commercial forests, 
namely, in Quebec (QC), Ontario (ON) and Saskatchewan (SK; Fig. 1a) for the 2004-2005 
period. 

3 METHODOLOGY 
In a previous study [12], it was demonstrated that daily mean air and surface temperatures (Ta 
and TS) above a forest canopy at the NWL flux site were nearly identical under conditions of 
moderate ventilation. To simplify the calculation of GDD, we used the daily mean TS derived 
from 8-day MODIS composites to represent the daily mean Ta in Eq. (1). However, before 
proceeding with the calculation of GDD we needed to address two major concerns, 
particularly 

(i) Some of the 8-day MODIS images used in the composites were contaminated by 
cloud.  Since clouds obscure the tracking of ground radiation and surface 
temperature with infrared sensing technology, the presence of clouds in the images 
posed a significant problem in determining GDD. To deal with this problem, we 
introduced a new concept for estimating TS for cloud-contaminated pixels upon 
considering the average seasonal pattern of 8-day TS over the entire study area (∼40-
50oN). We considered the seasonal temperature pattern derived as a reasonable 
representation of TS for missing values in cloud-contaminated pixels. 
Mathematically, it is expressed as 

 

m

)i(sT
ni

1i
)i(sT

A
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=
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A)n(TnB S −= ,    (2b) 

 
where )i(sT is the mean TS for each of 27 8-day composites of TS for a specific year 
applied to every pixels (with i=1…n), )i(sT is the timeseries of image-based TS for a 
specific year over a cloud-contaminated pixel taking into account only TS values 
from cloud-free 8-day composites, n is the total number of 8-day composites (n=27), 
m is the total number of cloud-free 8-day composites, A is the average temporal 
deviation of TS from )i(sT  for a specific cloud-contaminated pixel, and nB is the 

estimated TS for the cloud-contaminated 8-day period for a specific cloud-
contaminated pixel. 

(ii) During the daytime, the MODIS sensor acquires images of the earth’s surface 
between 10:30 am-12:00 pm local solar-time. The 8-day MODIS TS composites 
represent daytime surface temperature averaged over the image-acquisition period. 
In order to convert the daytime 8-day MODIS TS composites into daily mean TS 
(based on 8-day composites) for GDD calculations, we developed an empirical 

http://www.climate.weatheroffice.ec.gc.ca/climate_normals/index_e.html
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relationship between average tower-based estimates of TS for the 10:30 am-12:00 pm 
period and daily mean TS derived from tower measurements of emitted longwave 
radiation (at the NWL, Fig. 1b). We hypothesized that this empirical relation would 
be sufficiently general to hold suitable for other locations. Localized calculations of 
TS was based on the measured emitted longwave radiation and a re-arrangement of 
the Stefan-Boltzmann equation, namely 

 

4 L
sT

εσ
↑=  ,     (3) 

 
where L↑ is the emitted longwave radiation (in W m-2), ε is the surface 
emissivity (dimensionless; set to 0.99; after Ref. 13), and σ is the Stefan-
Boltzmann constant (5.67 x 10-8 W m-2 K-4).  

Seasonal cumulative GDD was calculated at 1 km spatial resolution from 8-day MODIS-
based TS composites and a Tbase of 5oC. 

To enhance the spatial resolution of the initial GDD map to 250 m, we employed MODIS-
based seasonally-averaged EVI as basis for infilling of GDD values within individual 1 km2 
cells, as EVI typically varies across a spectrum of forest densities [10]. Infilling employed 
data fusion techniques, which took into account local and variance matching (LMVM) 
methods described in Ref. 14 and expressed as, 
 

)h,w(j,iL
)h,w(j,i)H(s

)h,w(j,i)L(s}.)h,w(j,iHj,iH{

j,iF +
−

= ,  (4) 

 
where Fi,j  is the fused seasonal GDD value at 250 m spatial resolution, Hi,j is the seasonally-
averaged EVI at pixel coordinates i,j; and )h,w(j,iH  and )h,w(j,iL are the local means and 

)h,w(j,i)H(s  and )h,w(j,i)L(s are the local standard deviations calculated inside a sampling 

window of w × h cell2 (3 × 3) of seasonally-accumulated GDD (at 1 km resolution; H) and 
seasonally-averaged EVI-values (at 250 m resolution; L), respectively. 

A map of averaged seasonal GDD at 250 m spatial resolution was produced for the 2003-
2005 period. Point-samples of image-based values, taken at locations coinciding with 101 
Environment Canada climate stations, were then compared against the climate station GDD 
Normals for the 1971-2000 period. Difference (offset) between the two sets of values was 
then used to correct the MODIS image-based GDD to generate a long-term (30-year), 250 m 
resolution image of GDD.   

4 RESULTS AND DISCUSSION 
Fig. 2a illustrates a distinct seasonal pattern of average TS over the entire study area derived 
from MODIS-based 8-day composites. Also shown is a quadratic fit to the TS as a function of 
day of year. The observed seasonal pattern is consistent with other mid-latitude locations [15]. 
We also estimated TS for cloud-contaminated pixels based on the seasonal temperature trends 
as discussed in the Methods Section. But clearly there is no way to verify the accuracy of 
these values since the level and local occurrence of cloud formation is difficult to predict. 
However, we conducted a level of verification by artificially treating cloud-free cells as cloud 
contaminated and comparing their estimated TS with their actual values as shown in Fig. 2b. It 
revealed a strong relation between the estimated and actual surface temperatures (r2=88.3% 
with a slope of 0.86) and, consequently, demonstrated the potential of using the procedure for 
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estimating TS for cloud-contaminated pixels. However, in fact cloudy areas have lower 
maximum temperatures and predictions based on seasonal estimates (as we have done here) 
could have introduced some level of bias. 

 

 
Fig. 2. (a) Seasonal pattern of average surface temperature over the entire study 
area; (b) comparison between estimated and actual surface temperature by 
artificially treating cloud-free cells as cloud contaminated.  

 
Fig. 3 illustrates the relationship between the average tower-based TS for the MODIS 

image-acquisition period (between 10:30 am-12:00 pm local solar time) and daily mean 
tower-based TS derived from emitted longwave radiation measured at four sites from the 
southern commercial forest zone of Canada for 2004 and 2005 (including the NB NWL flux 
site). In general, the relationship was quite strong (r2 > 97%) emphasizing the generality of the 
relationship; some variation in equation slopes and intercepts, albeit small, existed. Our 
analysis suggested that our approach most likely would be applicable at regional scales.  

 

 
Fig. 3. Relationship between average tower-based surface temperature between 
10:30 am-12:00 pm period and daily mean temperatures at four flux sites across 
Canada, namely NB=New Brunswick (NWL), QC=Quebec, ON=Ontario, and 
SK=Saskatchewan.  

 
We examined the seasonal patterns of MODIS-derived GDD at 1 km spatial resolution 

with respect to MODIS-based vegetation index-values, namely NDVI and EVI. To do this, we 
calculated the mean value of 8-day accumulated GDD, and 16-day accumulated NDVI and 
EVI for the entire study area and plotted their respective values as a function of day of year 
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(Fig. 4). Our analysis revealed that NDVI values saturated (reached a plateau) despite 
continued increases in GDD as shown in Fig. 4a. Tendencies of NDVI-values reaching 
saturation at the peak of growing season were corroborated by other researchers [8, 9]. In 
contrast, EVI values responded across the spectrum of seasonal changes in GDD (see Fig. 4b). 
Correlation between GDD and EVI was shown to be fairly strong, yielding an r2-value=87%. 
As a result of this correlation, the use of seasonally-averaged EVI values for enhancing the 
spatial resolution of GDD from 1 km to 250 m using data fusion techniques [14] was well 
justified (Fig. 5).   

 

 
Fig. 4. Relationships between 8-day accumulated GDD and MODIS-based 
vegetation index-values [NDVI, graph (a) and EVI, graph (b)] as a function of day 
of year. Circled values in graph (a) highlight the tendency of NDVI-values to 
saturate at high GDD. 

 

 
Fig. 5. Example of GDD values (a) at 1 km spatial resolution without data fusion, 
and (b) at 250 m spatial resolution with data fusion. 

 
Fig. 6 shows a comparison between seasonal GDD averages derived from 101 climate 

stations of Environment Canada and corresponding three-year average of MODIS-derived 
values of GDD at 250 m spatial resolution. We found an offset of 511 GDD (Fig. 6) between 
values. This difference could be attributed to the following reasons: 

(i) The 8-day MODIS-based TS product was the average daytime TS obtained during the 
image-acquisition period during generally “cloud-free conditions”. As, the presence 
of cloud is non-uniform and occurs irregularly for a given area (and image), TS at a 
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pixel could be based on an average of TS for any number of non-cloudy days (within 
the 8-day period) in any 8-day composite of TS. As the temperature is normally 
higher on clear days, the MODIS-based 8-day composite of TS could have over-
estimated actual 8-day surface temperature averages, which would have contributed 
to a higher, non-representative calculation of GDD for many of the pixels. 

(ii) The estimation of TS for cloud-contaminated pixels could have positive bias as the 
estimated values are based on a mean seasonal trend, which could have led to higher 
estimates of GDD.  

(iii) The current MODIS-based estimates of GDD were for a warmer three-year period. 
30-year Normals (1971-2000), because they represented averages, can conceal the 
influences of warmer years.  

 

 
Fig. 6. Comparison of seasonal GDD derived from MODIS images and 
Environment Canada air temperature records for the 1971-2000 period.  

 
Fig. 7a shows the long-term average of GDD derived from MODIS data and corrected 

based on the offset (-511 degree-days) between the two sets of values in Fig. 6. The average 
seasonal GDD was in the range of 1200-1800. We summarized the spatial pattern of GDD as 
follows: 

(i) High elevation areas, such as northwestern NB and the eastern part of NS had lower 
GDD in the 800-1400 range. This is consistent with the fact that high elevation areas 
are normally cooler than low elevation areas in summer. 

(ii) The areas along the coastlines had lower GDD at around 800-900 due to their 
proximity to cold ocean water. 

(iii) In general, GDD (and temperature) increased southward, as expected in the northern 
hemisphere. 

(iv) Land use patterns might also influence the observed GDD. For example, forested 
lands exhibited relatively cooler GDD with compare to agricultural lands due to the 
cooling effect associated with higher evapotranspiration rates in forested areas.   

For validation purposes, we generated a 30-year GDD map based on air temperatures from the 
1951-1980 period from about 70 climate stations for 7 ecoregions in the province of NB (after 
Ref. 16, 17) as shown in Fig. 7b. The GDD values are categorized according to the colours 
shown in the legend in Fig. 7c. A comparison between GDD values from the 1951-1980 
period and MODIS-image data over the 7 ecoregions of NB is shown in Fig. 7d. In relation to 
MODIS-derived GDD values, at least 75% of the area within the ecoregions falls within the 
reported ranges of GDD values [16] denoted along the y-axis of Fig. 7d. The comparison 
revealed that the spatial distribution of MODIS-derived GDD values had a similar and 
comparable pattern with the pattern of GDD values from the 1951-1980 period; the ranges for 
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individual ecoregions fall along the 1:1 correspondence line in Fig. 7d, except for ecoregion 4. 
Ecoregion 4, because of its proximity to cold water, demonstrated an abrupt temperature 
change from the coastline to the warmer interior (Fig. 7a). This feature was not wholly 
captured in the 1951-1980 period data [16; Fig. 7b], as data from only a few weather stations 
were available for the calculation of GDD.  
 

 
Fig. 7. (a) Spatial distribution of long-term averaged MODIS-derived GDD, (b) 
GDD ranges for the different ecoregions of the province of NB (after Ref. 16, 17), 
(c) GDD categories according to colour, (d) comparison between GDD values from 
1951-1980 period and MODIS-image data over the different ecoregions.   
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5 CONCLUDING REMARKS 
In this paper, we demonstrated the potential of using MODIS-based TS and EVI products for 
mapping the long-term average GDD for a significant portion of the Canadian Atlantic 
Maritime Ecozone. A simple method for the calculation of GDD was developed based on 
MODIS products and ancillary information, in particular, emitted longwave radiation from 
flux sites and GDD Normals from Environment Canada climate stations.  

This technique shows potential for predicting the temperature regime in the prediction of 
forest productivity. It also has potential to predict agricultural productivity in the province of 
PEI, where about 39% of the landbase is in crop production during the growing season. 
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