APPENDIX III

## Referee:

Patron, D.R.M. (1985) Petrofenem of petter vochs in the balluchulich thermal awned. Unputt. Their., U. Edinimgh, 590 PP . MICROPROBE ANALYSES

Instrument and operating conditions

Microprobe analyses were obtained using a Cambridge Instruments Microscan 5 with two crystal spectrometers and a Link Systems energy dispersive system. Take off angle was $75^{\circ}$ and accelerating potential was 20 kV . For wavelength dispersive spectrometry (WOS), probe current (measured at a Faraday cage) was 30 nA , while for energy dispersive spectrometry (EDS), the probe current was 6 hA.

All analyses were performed with a focussed electron beam of 1-2 um diameter, penetrating to a depth of about 3 um. 40 second counting times on peaks of standards and unknowns were used, with 20 second counting times on the initial analysis of each new mineral.

Standards and correction procedure

The elemental standards used in this study are listed in Table AIII.1.

The vast majority of analyses were made using WDS. For WDS analysis, the raw $X$-ray counts are collected and run through on on-line computer program for ZAF corrections (after Sweatman \& Long (1969), using the absorption coefficients of Heinrich (1966)). The number of $X$-rays for an element in an an known is related to the number of $X$-rays in that element's standard, which is read at least once in the same probe session to account for system variations.

For EDS analysis, an X-ray spectrum is collected in 100 livetime seconds, followed by the fame online ZAF correction procedure described above. The abundance of each element is related to an overall element calibration/by a secondary cobalt standard, which is read several times throughout a given session to account for system variations.

* Note: there analyses are also referenced in:

Paction, D.R.M. (1987) Variations in Mg/FtMg, Fane (F ,Mg) $S_{i}=2 \mathrm{Al}$ in polities sinierabs in the Ballacholith Thermal aureole, Scotland.

Am. Mineral 72, 255-272
These unalises are densorited in the Am. Maniacal. archives.

| Table AIII.1 |  | Element standards used in this study |  |
| :---: | :---: | :---: | :---: |
| Element | Z | St and ard | Typical counts $\mathrm{sec}^{-1} \mathrm{wt}-\%-1$ |
| F | 9 | MgF2 | 19 |
| Na | 11 | $\mathrm{NaAlSi} \mathrm{L}_{2}$ | 120 |
| Mg | 12 | MgO | 230 |
| A1 | 13 | $\mathrm{Al}_{2} \mathrm{O}_{3}$ | 260 |
| Si | 14 | $\mathrm{CaSiO}_{3}$ | 180 |
| K | 19 | $\mathrm{KAISi}{ }^{0} 8$ | 62 |
| Ca | 20 | $\mathrm{CaSiO}_{3}$ | 130 |
| Ti | 22 | $\mathrm{TiO}_{2}$ | 170 |
| Cr | 24 | metal | 170 |
| Mn | 25 | metal | 165 |
| Fe | 26 | metal | 140 |
| Zn | 30 | metal | 70 |
| Ba | 56 | $\mathrm{BaSO}_{4}$ | 35 |

All radiation is $K \alpha$, except for Zn which is $L \alpha$. Zn and all elements up to Si were analysed using a quartz crystal; all other elements were analysed using an RAP crystal. All mineral standards are natural; all metals are synthetic. In general, lower counts $\mathrm{sec}^{-1}$ wt-\%-1 indicate poorer detection limits.

Precision on analyses
Listed below are the elements analysed in each mineral.
Mineral Elements analysed
Chlorite Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K
Muscovite
Biotite
Garnet
Cordierite
K-feldspar
Plagioclase
Spinel
Orthopyroxene
Quartz $\left.\begin{array}{l}\text { Aluminosilicate } \\ \text { Corundum }\end{array}\right\}$ $\mathrm{Si}, \mathrm{Ti}, \mathrm{Al}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{Na}, \mathrm{K}$ Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K, F $\mathrm{Si}, \mathrm{Ti}, \mathrm{Al}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Mg}, \mathrm{Ca}$ Si, Ti, Al, Fe, Mn, Mg, Ca, Na, K Si, Al, $\mathrm{Fe}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{K}, \mathrm{Na}$ $\mathrm{Si}, \mathrm{Al}, \mathrm{Fe}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{K}, \mathrm{Na}$
$\mathrm{Si}, \mathrm{Ti}, \mathrm{Al}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{Zn}$ $\mathrm{Si}, \mathrm{Ti}, \mathrm{Al}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Mg}, \mathrm{Ca}, \mathrm{Na}$

Si, Ti, Al, Fe, Mg, Ca, K, Na

Table AIII. 2 lists the detection limits and two different types of precision calculation for typical analyses of each mineral for WDS analysis. The detection limit calculation and the first precision calculation measure the best possible analytical precision of the microprobe, based on the following formulae:

1) Detection limit $=\frac{3}{m} \sqrt{\frac{R_{b}}{T_{b}}}$

where $m=$ counts (above background) $\sec ^{-1}(w t \%)^{-1}$

$$
\begin{aligned}
& R_{b}=\text { background count rate (counts sec -1) } \\
& T_{b}=\text { time on background (sec) } \\
& R_{p}=\text { peak count rate (counts sec -1) } \\
& T_{p}=\text { time on peak (sec) }
\end{aligned}
$$

A. CHLORITE 0182

| Oxide | Mean <br> $\mathrm{Wt} \%$ | Theoretical <br> precision <br> $\pm 2 \sigma$ | Detection <br> limit | Reprod. <br> $\pm 2 \sigma(n=5)$ |
| :--- | ---: | ---: | :---: | :---: |
| $\mathrm{SiO}_{2}$ | 25.80 | 0.20 | 0.04 | 0.34 |
| $\mathrm{TiO}_{2}$ | 0.07 | 0.03 | 0.03 | 0.01 |
| $\mathrm{Al}_{2} \mathrm{O}_{3}$ | 20.92 | 0.15 | 0.03 | 0.35 |
| $\mathrm{Fe0}$ | 18.11 | 0.15 | 0.03 | 0.30 |
| MnO | 0.22 | 0.02 | 0.03 | 0.02 |
| MgO | 20.47 | 0.14 | 0.02 | 0.20 |
|  |  |  |  |  |
|  |  |  |  | 0.83 |

C. BIOTITE D63b

| Oxide | Mean Wt \% | Theoretical precision $\pm 2 \sigma$ | Detection limit | Reprod. $\pm 2 \sigma(n=5)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{SiO}_{2}$ | 37.79 | 0.25 | 0.04 | 0.87 |
| $\mathrm{TiO}_{2}$ | 2.34 | 0.07 | 0.03 | 0.12 |
| $\mathrm{Al}_{2} \mathrm{O}_{3}$ | 19.31 | 0.14 | 0.02 | 0.62 |
| FeO | 7.0 | 0.11 | 0.04 | 0.6 |
| Mn0 | 0.10 | 0.03 | 0.03 | 0.01 |
| MgO | 16.84 | 0.13 | 0.02 | 0.40 |
| CaO | 0.01 | 0.02 | 0.02 | 0.01 |
| $\mathrm{Na}_{2} \mathrm{O}$ | 0.25 | 0.03 | 0.02 | 0.02 |
| $\mathrm{K}_{2} \mathrm{O}$ | 9.95 | 0.13 | 0.02 | 0.20 |
| F | 1.14 | 0.22 | 0.10 | 0.21 |
| TOTAL | 95.54 |  |  | 0.95 |

E. CORDIERITE D568

| Oxide | Mean Wt \% | Theoretical precision $\pm 2 \sigma$ | Detection limit | $\begin{aligned} & \text { Reprod. } \\ & \pm 2 \sigma(n=5) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{SiO}_{2}$ | 47.76 | 0.28 | 0.04 | 0.41 |
| $\mathrm{TiO}_{2}$ | 0.01 | 0.03 | 0.03 | 0.01 |
| $\mathrm{Al}_{2} \mathrm{O}_{3}$ | 32.31 | 0.17 | 0.02 | 0.41 |
| FeO | 11.09 | 0.13 | 0.04 | 0.10 |
| Mno | 0.20 | 0.03 | 0.03 | 0.01 |
| MgO | 6.69 | 0.08 | 0.02 | 0.05 |
| CaO | 0.01 | 0.01 | 0.02 | 0.01 |
| $\mathrm{Na}_{2} \mathrm{O}$ | 0.18 | 0.03 | 0.02 | 0.02 |
| $\mathrm{K}_{2} \mathrm{O}$ | 0.01 | 0.02 | 0.02 | 0.01 |
| TOTAL | 98.28 |  |  | 0.40 |

G. PLAGIOCLASE D568

| OxideMean <br> Wt $\%$ | Theoretical <br> precision <br> $+2 \sigma$ | Detection <br> limit | Reprod. <br> $\pm 2 \sigma(n=5)$ |  |
| :--- | ---: | :---: | :---: | :---: |
| $\mathrm{SiO}_{2}$ | 59.44 | 0.30 | 0.04 | 0.95 |
| $\mathrm{TiO}_{2}$ | 0.01 | 0.03 | 0.03 | 0.01 |
| $\mathrm{Al}_{2} \mathrm{O}_{3}$ | 25.51 | 0.15 | 0.02 | 0.51 |
| $\mathrm{FeO}^{2}$ | 0.07 | 0.03 | 0.03 | 0.02 |
| MgO | 0.02 | 0.02 | 0.02 | 0.01 |
| CaO | 7.50 | 0.11 | 0.02 | 0.38 |
| $\mathrm{Na}_{2} \mathrm{O}$ | 7.53 | 0.11 | 0.02 | 0.24 |
| $\mathrm{~K}_{2} \mathrm{O}$ | 0.26 | 0.03 | 0.02 | 0.04 |
|  |  |  |  |  |
| TOTAL 100.35 |  |  | 0.79 |  |

I. ORTHOPYROXENE 0568

| Oxide | Mean Wt \% | Theoretical precision $\pm 2 \sigma$ | Detection limit | Reprod. $\pm 2 \sigma(n=5)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{SiO}_{2}$ | 48.72 | 0.27 | 0.04 | 0.65 |
| $\mathrm{TiO}_{2}$ | 0.15 | 0.06 | 0.03 | 0.02 |
| $\mathrm{Al}_{2} \mathrm{O}_{3}$ | 2.18 | 0.06 | 0.02 | 0.12 |
| $\mathrm{Cr}_{2} \mathrm{O}_{3}$ | 0.05 | 0.03 | 0.03 | 0.01 |
| FeO | 37.56 | 0.23 | 0.04 | 0.16 |
| MnO | 0.64 | 0.04 | 0.03 | 0.05 |
| MgO | 11.30 | 0.12 | 0.02 | 0.03 |
| CaO | 0.16 | 0.03 | 0.02 | 0.03 |
| $\mathrm{Na}_{2}$ | 0.01 | 0.01 | 0.01 | 0.01 |

8. MUSCOVITE D608-1

| Oxide | Mean Wt \% | Theoretical precision $+2 \sigma$ | Detection limit | Reprod. $\pm 2 \sigma(n=5)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{SiO}_{2}$ | 45.15 | 0.27 | 0.04 | 0.79 |
| $\mathrm{TiO}_{2}$ | 0.07 | 0.03 | 0.03 | 0.03 |
| $\mathrm{Al}_{2} \mathrm{O}_{3}$ | 34.53 | 0.17 | 0.02 | 0.72 |
| FeO | 2.16 | 0.07 | 0.03 | 0.37 |
| Mno | 0.01 | 0.03 | 0.03 | 0.01 |
| MgO . | 0.73 | 0.03 | 0.02 | 0.29 |
| Na 2 O | 0.51 | 0.17 | 0.02 | 0.06 |
| $\mathrm{K}_{2} \mathrm{O}$ | 10.73 | 0.13 | 0.03 | 0.20 |
| TOTAL | 93.91 |  |  | 0.66 |

D. GARNET D568

| Oxide | Mean Wt \% | Theoretical precision $+2 \sigma$ | Detection limit | Reprod. $\pm 2 \sigma(n=5)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{SiO}_{2}$ | 37.53 | 0.25 | 0.04 | 0.41 |
| $\mathrm{TiO}_{2}$ | 0.04 | 0.03 | 0.03 | 0.01 |
| $\mathrm{Al}_{2} \mathrm{O}_{3}$ | 21.34 | 0.14 | 0.02 | 0.09 |
| $\mathrm{Cr}_{2} \mathrm{O}_{3}$ | 0.08 | 0.03 | 0.03 | 0.01 |
| Fe0 | 34.60 | 0.22 | 0.04 | 0.27 |
| Mn0 | 1.54 | 0.06 | 0.03 | 0.04 |
| MgO | 4.41 | 0.08 | 0.02 | 0.04 |
| CaO | 1.24 | 0.05 | 0.02 | 0.02 |

F. K-FELDSPAR D608-1

| Oxide | Mean Wt \% | Theoretical precision $\pm 2 \sigma$ | Detection limit | Reprod. $\pm 2 \sigma(n=5)$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{SiO}_{2}$ | 64.65 | 0.30 | 0.04 | 1.07 |
| $\mathrm{Al}_{2} \mathrm{O}_{3}$ | 18.81 | 0.13 | 0.02 | 0.12 |
| FeO | 0.02 | 0.03 | 0.03 | 0.02 |
| Ba | 0.41 | 0.07 | 0.06 | 0.04 |
| MgO | 0.02 | 0.02 | 0.02 | 0.01 |
| Ca0 | 0.05 | 0.03 | 0.02 | 0.02 |
| $\mathrm{Na}_{2} \mathrm{O}$ | 2.92 | 0.07 | 0.02 | 0.47 |
| $\mathrm{K}_{2} \mathrm{O}$ | 13.05 | 0.14 | 0.02 | 0.79 |
| TOTAL | 99.95 |  |  | 1.09 |

H. SPINEL 0608-1

| Oxide | Mean Wt \% | Theoretical precision $\pm 2 \sigma$ | ```Detection limit``` | $\begin{aligned} & \text { Reprod. } \\ & \pm 2 \sigma(n=5) \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{SiO}_{2}$ | 0.02 | 0.04 | 0.04 | 0.02 |
| $\mathrm{TiO}_{2}$ | 0.07 | 0.03 | 0.03 | 0.02 |
| $\mathrm{Al}_{2} \mathrm{O}_{3}$ | 56.12 | 0.19 | 0.03 | 0.41 |
| $\mathrm{Cr}_{2} \mathrm{O}_{3}$ | 0.04 | 0.03 | 0.03 | 0.01 |
| FeO | 41.38 | 0.23 | 0.04 | 0.17 |
| Mn0 | 0.51 | 0.04 | 0.03 | 0.03 |
| MgO | 2.38 | 0.06 | 0.02 | 0.04 |
| CaO | 0.01 | 0.02 | 0.02 | 0.01 |
| 2n0 | 0.27 | 0.07 | 0.05 | 0.03 |
| TOTAL | 100.82 |  |  | 0.51 |

The second precision calculation is a measure of the reproducability of several consecutive analyses within a small area ( $\sim 100$ $u^{2}{ }^{2}$ ) ; in general (but not always) it gives a higher $2 \sigma$ than that based on the counting statistics. In a sense, this calculation is probably a better estimate of the practical, or "user", precision of the microprobe; during the course of a probe session, slight fluctuations in the vacuum, beam current, and/or peak positions may influence the quality of analyses. These effects are impossible to quantify.

The minerals with the poorest reproducability are muscovite, biotite and K-feldspar. It is possible that these minerals may not have been homogeneous on the scale of $100 \mathrm{um}^{2}$.

## Explanation of tables

In the following tables, mineral spot analyses are listed that are closest to the average value of the good analyses of a particular mineral in a given rock. Allowance is made for core-rim variation. The analyses are grouped together by rock, which are ordered numerically.

The following abbreviations are used:
n.d.: not detected

CHL: primary chlorite
CHL-2: secondary chlorite, not specific
CHL-2(GT): chlorite that is an alteration of garnet
MU: primary muscovite
MU-2 secondary muscovite; not specific
BI: primary biotite. May be regional or contact metamorphic
BI-R: schistosity-parallel (regional) biotite, as opposed to late, cross-cutting biotite
BI-L: late biotite. May be with respect to regional or contact metamorphic specimens; in both cases, the biotite texturally appears to post date the dominant texture.

| BI-A: | biotite in medium and high grade rocks involved in the retrograde assemblage $\mathrm{Mu}-\mathrm{Chl}-\mathrm{Bi}$. |
| :---: | :---: |
| BI-MZ: | biotite in the leucosome (melt zone) of heterogeneous migmatites. |
| BI-S: | biotite in the selvage of partially melted rocks. |
| BI-M: | biotite in the mesosome or in the middle of disrupted bedding fragments (i.e. well away from the selvage). |
| BI-MS: | biotite midway between the selvage and the unaffected mesosome. |
| CD: | cordierite. |
| CD-C: | cordierite core. |
| CD-R : | cordierite rim. |
| CD-A: | pinitized cordierite. |
| $C D(+A S)$ : | cordierite in a layer containing andalusite. |
| CD-MZ: | cordierite in the leucosome (melt zone) of heterogeneous migmatites. |
| CD-S: | cordierite in the selvage |
| CD-M: | cordierite in the mesosome or in the middle of disrupted bedding fragments (well away from the selvage). |
| CD-MS: | cordierite midway between the selvage and mesosome. |
| GT-C: | garnet core. |
| GT-R: | garnet rim. |
| KF: | K-feldspar. |
| KF-C: | K-feldspr core. |
| KF-R | K-feldspr rim. |
| PL-A: | plagioclase (albite) |
| PL-0: | plagioclase (oligoclase) |
| SP: | spinel |
| HY: | hypersthene |
| EP: | primary epidote (in regional rocks). |
| EP-2: | secondary (alteration epidote). |
| SIL: | sillimanite. |
| AND: | andalusite. |
| COR: | corundum. |



























