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The greenschist-amphibolite facies transition zonewithinmetabasites is of great importance due to the common
occurrence of this transitionwithin greenstonebelts, and the proposition thatfluids released across the transition
may be involved in orogenic gold deposit formation. In this work, the nature of devolatilization reactions occur-
ring across the greenschist-amphibolite facies transition zone is assessed from petrological examination and
thermodynamicmodelling of an exceptionally exposedpart of the Flin FlonGreenstone Belt (Manitoba/Saskatch-
ewan). The sequence at Flin Flon comprises an intact metamorphic sequence of ~10 km length spanning the
greenschist and lower amphibolite facies, the latter of which can be subdivided into three zones (from S to N):
the hornblende-actinolite zone, the hornblende-actinolite-oligoclase zone, and the hornblende-oligoclase zone,
demarcated by the hornblende-in, oligoclase-in and actinolite-out isograds. The crossing of the hornblende-in
isograd is associatedwith small amounts of hornblende growth, relatively little change in the proportions of chlo-
rite, and negligible fluid loss. By contrast, significant changes in the modal mineralogy occur across the 1500 m
wide hornblende-actinolite-oligoclase zone, with the breakdown of approximately 75% of the chlorite and the
loss of approximately 1-2wt%H2O. There is no textural ormodal evidence for significant loss or gain of carbonate
or sulphideminerals going through this interval. Petrological estimates of devolatilization across the greenschist-
amphibolite facies transition zone are compared with predictions from thermodynamic modelling. Although
there are differences between the two, both indicate that the fluid loss is strongly tied to variation in bulk com-
position, the latter predominantly the result of pre-metamorphic alteration processes. High-Mg and high-Ca ba-
salts, representative of pillow rim and corematerial, undergo anaverage of 1.8wt% (modelling estimate: 2.2wt%)
and 1.1 wt% H2O loss (modelling estimate: 1.8 wt%), respectively, across the hornblende-actinolite-oligoclase
zone. T-XCO2 modelling predicts that the XCO2 content of fluid produced from the hornblende- and oligoclase-
producing reactions is low (b0.08) and is not buffered to higher XCO2 compositions, consistent with the lack of
carbonate breakdown documented within the Flin Flon sequence over this interval. Fluid buffering path model-
ling predicts significant volumes of fluid release with higher XCO2 contents (N0.2) above the greenschist-
amphibolite facies transition zone within samples containing high carbonate contents (N5%). However, in con-
trast to the modelling, the majority of chlorite (N75%) breaks down at the main greenschist-amphibolite facies
transition zone in the Flin Flon sequence, andmost samples have low carbonate contents (1.5% average), limiting
the volumes of fluids with higher XCO2 compositions that can be generated at higher grades. Thus, whilst the
greenschist-amphibolite facies transition zone at Flin Flon is the site of significant devolatilization (1-2 wt%)
over a small interval of P-T space, is does not appear to have been accompanied by significant carbonate and sul-
phide breakdown, and the fluids generated across this interval were CO2-poor. If the Flin Flon sequence is repre-
sentative of other metamorphosed greenstone belts, it may be that metabasites metamorphosed across the
greenschist-amphibolite facies transition zone do not, in general, release the CO2– and gold hydrosulphide-
bearing fluids characteristic of orogenic gold deposits.

© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

The transition zone between greenschist and amphibolite facies as-
semblages within metabasalts is one of the most important metamor-
phic facies boundaries due to its widespread development, especially
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in greenstone belts, and its association with a number of major
devolatilization reactions. The greenschist-amphibolite facies transition
zone has attracted particular interest due to its common association
with orogenic gold deposits and the proposed link between the fluids
generated across the transition and the source fluids for orogenic gold
deposits (e.g. Elmer et al., 2006; Goldfarb et al., 2005; Goldfarb and
Groves, 2015; Kerrich and Fyfe, 1981; Phillips and Powell, 2009, 2010,
2011; Powell et al., 1991; Tomkins, 2010, 2013). Based on geological
and geochemical observations from orogenic gold deposits, it has been
suggested that a fluid source for orogenic gold formation should be ca-
pable of producing large volumes of fluids with dissolved Au in the
form of hydrosulphide complexes (e.g. Au(HS)2− and AuHS) and
mixed H2O-CO2 compositions with moderate XCO2 contents (e.g.
~0.2–0.3) (e.g. Elmer et al., 2006; Goldfarb and Groves, 2015; Kerrich
and Fyfe, 1981; Phillips and Evans, 2004; Pitcairn et al., 2006; Powell
et al., 1991; Tomkins, 2010, 2013). Thus, in the case of a metamorphic
devolatilization model, fluid production should coincide with sulphide
and carbonate breakdown in order to produce the expected fluid com-
positions (e.g. Elmer et al., 2006; Powell et al., 1991; Tomkins, 2010,
2013).

This study focuses on an exceptionally exposed greenschist-
amphibolite facies transition zone located in the Flin Flon Greenstone
Belt in Manitoba and Saskatchewan. A number of features make the
Flin Flon area an ideal natural laboratory for the detailed characteriza-
tion of the metamorphic evolution of greenschist and lower amphibo-
lite facies metabasalts: (1) the excellent exposure, including almost
100% exposure across much of the area covering the greenschist-
amphibolite facies transition; (2) thewell-defined volcanic stratigraphy
and field relations; (3) recognition and mapping of pre-metamorphic
hydrothermal alteration (Ames et al., 2016; this study); and (4) the
lack of significant post-metamorphic deformation that might compli-
cate the metamorphic sequence.

This study provides the first detailed field-based examination of
devolatilization within metabasites across the greenschist-amphibolite
facies transition zone, and provides a test of predictions made by
modelling-focused studies (e.g. Elmer et al., 2006; Powell et al., 1991).
The results of this study and the comparison of the natural observations
with thermodynamic modelling predictions are used to assess: (1) the
estimated amount and compositions of the fluid derived from the Flin
Flon sequence; (2) the nature and relative importance of reactions
across the transition zone; (3) the role of bulk compositional variation
in controlling the evolution of metamorphic mineral assemblages; and
(4) the potential for fluids generated across this metamorphic facies
transition to be associated with orogenic gold deposit formation.

2. Geological background

The Flin Flon – Glennie complex (FFGC) forms part of the Trans-
Hudson Orogen (THO), and straddles the border between Manitoba
and Saskatchewan (Fig. 1a, b). The FFGC is composed of a collection of
different accreted tectono-stratigraphic arc assemblages that form the
internal part of the THO (the ‘Reindeer Zone’), that separates the
Archean Superior, Hearne and Sask cratons. (Fig. 1a) (Lucas et al.,
1996; Stauffer, 1984; Stern et al., 1995; Syme et al., 1999). The first im-
portant tectono-metamorphic stage in the development of the FFGC in-
volved intra-oceanic accretion of various arc-related volcanic and
plutonic rocks to form the FFGC microcontinent, estimated to occur be-
tween approximately 1.92–1.83 Ga (e.g. Lucas et al., 1996; Stern et al.,
1995). The second stage involves the collision of the newly accreted
FFGC and a number of Archean cratonic belts, including the Sask and Su-
perior cratons, between approximately 1.84–1.69 Ga (Ashton et al.,
1999, 2005; Bickford et al., 1990; Fedorowich et al., 1995; Lucas et al.,
1996).

The area around the town of Flin Flon contains a number of prolific
volcanogenic massive sulphide (VMS) deposits, including the Flin
Flon, Callinan and, currently active, 777 deposits (e.g. Ames et al.,
2002, 2016; Syme et al., 1999). The field area for this study, shown in
Fig. 1b, comprises mostly volcanic rocks of the Flin Flon arc assemblage
and sediments of the Missi group. With reference to the VMS deposits,
the stratigraphy may be divided into footwall and hangingwall se-
quences (e.g. Ames et al., 2002, 2016; DeWolfe et al., 2009; Dewolfe
and Gibson, 2006). The footwall sequence consists of the Flin Flon for-
mation and hosts the Flin Flon, 777 and Callinan VMS deposits. The
overlying Hidden and Louis formations, which are composed predomi-
nantly of pillow basalts and mafic volcaniclastics, comprise the
hangingwall sequence to the Flin Flon orebodies and are the main
focus of this study. The broad Flin Flon domain is suggested to have un-
dergone three main metamorphic events: an early hornblende hornfels
facies stage resulting from granitoid intrusions around 1.86–1.84 Ga
(40Ar/39Ar); a later regional lower greenschist to lower amphibolite re-
gional event at 1.82–1.79 Ga (40Ar/39Ar); and a final retrograde episode
dated between 1.79 and 1.69 Ga (40Ar/39Ar) (Fedorowich et al., 1995).

3. Metamorphism and alteration of the Flin Flon area - overview

3.1. Methods

Mineral compositional analyses were determined utilizing wave-
length dispersive spectrometry (WDS) using a JEOL JXA-8200 electron
microprobe at the University of Calgary. An acceleration voltage of
15 kV, a current of 20 nA and an approximate spot size of 5 μm were
used for all spot analyses. Due to the fine grained nature of the meta-
morphic mineral assemblages, particularly within the matrix, a method
involving combining back-scatter electron (BSE) images with x-ray
compositional mapping was devised to accurately distinguish between
different mineral phases. Different combinations of x-ray maps were
overlain on top of BSE images in order to highlight areas of images cor-
responding to different minerals. These composite BSE and X-ray map
images were then analysed utilizing colour intensity thresholding,
using the program JMicrovision, to identify areas of the thin section
corresponding to different mineralogy. Bulk compositions were then
derived for these samples by combining themineralmodes and compo-
sitions. Idealized mineral compositions were used that were simplified
to match the chemical system available for modelling each mineral,
such as to minimize differences in the observed and model bulk and
mineral compositions that may arise from the more limited model
chemical systems used in some mineral activity-composition (a-X)
models.

3.2. Metamorphic zones and isograds

A collection of thin sections from over 600 samples was used to con-
struct a metamorphic isograd map for the Flin Flon area (Fig. 1b) (see
supplementary information, Table S1 for sample coordinates). The
sequence of metamorphic assemblages indicates a northwards increase
inmetamorphism fromprehnite-pumpellyite facies in the southeastern
part of the field area to lower amphibolite facies in the northwestern
portion. Within the western portion of the field area, the metamorphic
grade spans the greenschist and amphibolite facies, with the latter being
subdivided into three different regional metamorphic zones (from S to
N): hornblende-actinolite zone, hornblende-actinolite-oligoclase zone,
and the hornblende-oligoclase zone (Fig. 1b, c). These zones are delin-
eated, respectively, by the hornblende-in, oligoclase-in and actinolite-
out isograds (Fig. 1b, c).

3.3. Hydrothermal alteration

In addition to the regional metamorphism within the Flin Flon arc
assemblage, there is strong evidence for a pre-metamorphic hydrother-
mal alteration stage that developed at or shortly after the time of volca-
nism (Ames et al., 2002, 2016). Evidence for this alteration occurs both
as preservation of original alteration mineralogy (Ames et al., 2002,
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Fig. 1. Geological maps of the Flin Flon field area. (a) Simplified large scale geology map of North America showing the positioning of the major cratonic and orogenic belts. THO: Trans-
Hudson Orogen. Modified after Lucas et al. (1996); originally modified from Hoffman (1988). Approximate position of the Flin Flon field area marked by star. (b) Regional metamorphic
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(epidote-quartz, chloritization, silicification) within the hanging wall sequence. Modified from Ames et al. (2016).
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2016), and as distinct geochemical signatures that influenced the later
overprinting metamorphic assemblages.

The Hidden and Louis Formations, from which the majority of sam-
ples for this study were obtained, form part of the overlying hanging
wall sequence to the Flin Flon orebodies and thus represent the volcanic
stratigraphy deposited on top of the VMS hydrothermal system. Several
types of alteration are identifiable from field and thin section observa-
tions: epidote-quartz alteration (epidotization) (Fig. 2c, d),
chloritization, and silicification (Fig. 1c) (Ames et al., 2002, 2016; this
study).

Image of Fig. 1


(a) (b)
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Epidote+Quartz Altered Core with Chlorite RimStretched epidosite within shear zone

Strongly Zoned Pillow Basalts - Greenschist Facies Strongly Zoned Pillow Basalts - Amphibolite Facies

Fig. 2. Field observations of hydrothermal alterationwithin the Flin Flon block. (a) Altered, strongly zoned pillow basalts containing epidote-rich cores and chlorite-rich rims; (b) Strongly
zoned pillow basalt at amphibolite facies, containing coarse hornblende within well defined pillow rim areas; (c) Epidosite (epidote + quartz) nodule within sheared basalts;
(d) Epidotised pillow core consisting of coarser grained epidote + quartz with chlorite + amphibole dominated rim.
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4. Lithologies and bulk compositional trends

Bulk compositions were acquired from 54 basaltic samples (mostly
pillow basalts and basaltic dykes) spanning the greenschist and lower
amphibolite facies by combining mineral compositional and modal
data (see supplementary information, Table S3 for complete set of
bulk compositional data). In addition, themajor element bulk composi-
tions of eight representative basaltic samples were acquired by X-ray
fluorescence (XRF) at ACME Labs in Vancouver, complementing a data-
base of 67 major and trace element bulk compositions from the Open
File database of Ames et al. (2011). For comparison, bulk compositional
data were collected from the literature, consisting of basaltic analyses
from a range of different settings: fresh basaltic glass (Bach et al.,
1994); dredged unaltered basalts (Schilling et al., 1983); altered sea-
floor basalts (Cann, 1969; Hart et al., 1974; Herrmann et al., 1974;
Teagle and Alt, 2004), ophiolite sequences (Herrmann et al., 1974;
Vallance, 1965; Wang et al., 2012) and greenstone belt sequences
(Polat et al., 2003, 2007).

The bulk compositional data from the Flin Flon sequence and from
the literature compilation are plotted on a CaO-Na2O-MgO diagram
(Figs. 3a, b). The ratios between these components are a useful means
of distinguishing between different types of alteration (e.g. Cann,
1969; Humphris and Thompson, 1978;Widmer et al., 2000). Trends to-
wards CaO correlate with increasing proportions of epidote
(epidotization) or potentially other Ca-rich alteration minerals (e.g.
prehnite, pumpellyite, grossular). Increases in MgO correlate with
greater amounts of chlorite alteration (chloritization), whereas trends
towards the Na2O corner of the diagram indicate greater proportions
of sodic alteration phases such as albite (spilitization). Fig. 3b shows
that the bulk compositions of mafic samples within the Flin Flon se-
quence are highly varied, an observation ascribed to differing types
and degrees of hydrothermal alteration.
Variation in composition across individual basaltic pillows from core
to rim has been widely recognized to occur as a result of interaction
with hydrothermal fluids at relatively low temperatures on the seafloor
(e.g. Cann, 1969; Humphris and Thompson, 1978; Seyfried et al., 1978).
Inmost cases, the rimshave higherMgO and Fe2O3, and sometimes high
MnO and K2O, whilst the cores contain higher SiO2 and Na2O contents
(Fig. 3a) (e.g. Humphris and Thompson, 1978; Polat et al., 2003, 2007;
Seyfried et al., 1978). These trends are observed at Flin Flon where the
basalts slightly more enriched in Mg are typically pillow rim composi-
tions (‘high-Mg compositions’), now represented by greater propor-
tions of chlorite and amphibole, whilst the pillow cores are generally
more enriched in Ca relative to Mg (‘high-Ca compositions’), consistent
with greater proportions of epidote (Fig. 3b). In coarse grained pillow
basalts, this compositional variation is reflected by obvious mineralogi-
cal zoning visible in the field (Fig. 2b). This pillow basalt core-rim vari-
ation is the dominant bulk compositional heterogeneity observed in the
Flin Flon sequence.

Other more minor but still volumetrically significant lithologies de-
veloped from the hydrothermal alteration of basalts include spilites
and epidosites, generally attributed to higher temperature interaction
of fluidswith basaltic volcanics in deeper parts of the hydrothermal sys-
tem, or within hydrothermal upflow zones associated with black
smokers and massive sulphide deposits (e.g. Richardson et al., 1987).
A number of samples from Flin Flon are characterized by high Na2O/
CaO ratios (Fig. 3b, d) and plot within the spilitic field (Fig. 3d) (after
Mullen, 1983) and overlap compositionally with spilite compositions
taken from the literature (Fig. 3c).

For the purpose of the following modelling discussion, the Flin Flon
data are broadly divided into a number of groups: high-Mg, high-Ca
and high-Na. The high-Mg compositions reflect pillow rim composi-
tions, and are close in composition to the pillow rim compositions of
Polat et al. (2003, 2007) (Fig. 3) and similar to the average MORB

Image of Fig. 2
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compositions of Sun and McDonough (1989), though with slightly
lower MgO, CaO, K2O and TiO2. The high-Ca and high-Na compositions
reflect pillow core and spilite compositions respectively, and are repre-
sentative of bulk compositions for these lithologies documented in
other studies (Fig. 3).
5. Metamorphic devolatilization reactions – petrological
observations

Fig. 5 shows the modal and compositional data for the Flin Flon se-
quence plotted along a N-S transect (used as a proxy for increasing

Image of Fig. 3
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grade based on the location and orientation of the mapped isograds
shown in Figs. 1b, c) (see supplementary information, Table S2 for
modal data).

5.1. Greenschist facies

Samples within the greenschist facies are characterized by the diag-
nostic assemblage Act + Ab+ Ep+ Chl + Qtz+ Ttn± Bt ±Ms± Stp
± Kfs ± Ap (abbreviations after Kretz, 1983). Fig. 5 demonstrates that
there are no consistent trends in mineral modes or compositions
going up-grade in this zone.

An evaluation of the hydrousmineral contents of the greenschist fa-
cies rocks within the Flin Flon sequence provides the starting point for
determining the amount of fluid that may be released across the transi-
tion zone. Fig. 4 shows the calculated mineral-bound H2O contents (wt
%), and selected modal proportions of 26 greenschist facies samples
plotted according to their bulk composition (CaO-Na2O-MgO). The
modal proportion of chlorite, which contains the majority of the
mineral-bound hydrous content, varies from 4 to 24% with an average
of 12.2%. The H2O contents, which were calculated from combining
the modal proportions and H2O contents of the hydrous phases, vary
from approximately 0.8 wt% to 3.8 wt% H2O. Rocks that contain higher
MgO contents are associated with greater H2O contents as a result of
higher chlorite modal proportions. By contrast, rocks with high Na2O,
interpreted to result from pre-metamorphic spilitization, are character-
ized by considerably lower H2O contents.

5.2. Lower amphibolite facies: hornblende-actinolite zone

Entry into the amphibolite facies is marked by the hornblende-in
isograd. The lowermost zone of the amphibolite facies is the
hornblende-actinolite zone, which forms a ~3.5 km wide (N-S) zone,
bounded up-grade by the oligoclase-in isograd. The plots in Fig. 5
show that variations in mineral compositions and modes are small
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5.3. Lower amphibolite facies: hornblende-actinolite-oligoclase zone

The first appearance of oligoclase at the oligoclase-in isograd marks
the beginning of the hornblende-actinolite-oligoclase zone, which is
characterized by the assemblage Hbl + Act + Olig + Ab + Ep + Chl
+ Qtz + Ilm ± Ttn ± Bt ± Ms. ± Kfs ± Ap. The important modal and
compositional changes, shown in Fig. 5, may be summarised as follows
(all percentages within brackets refer to the average change in modal
proportionswithin this zone calculated through subtracting the average
modal proportions in the hornblende-actinolite zone from the average
modes in the hornblende-actinolite-oligoclase zone): (1) the first ap-
pearance of oligoclase; (2) a decrease in the average albite content
(−13%); (3) a small decrease in the total plagioclase (albite and oligo-
clase) content (−7%); (4) a large increase in the average hornblende
content (+20%); (5) a progressive decrease in the amounts of actinolite
which disappears at the top of the zone; (6) an increase in the total am-
phibole content (+15%); (7) a decrease in chlorite (−5% at the lower
grade half of the zone; −11% in the higher grade half); (8) a small de-
crease in epidote (−3%); (9) the appearance of ilmenite; (10) decrease
in titanite, which occurs mostly as retrograde rims around ilmenite
(Fig. 5). These changes in the modal proportions reflect the following
simplified reaction:

Actinoliteþ Albiteþ Chloriteþ Titanite þEpidoteð Þ
¼ Hornblendeþ Oligoclaseþ IlmeniteþH2O ð1Þ

These observations suggest that the reactions across the
hornblende-actinolite-oligoclase zone account for the majority of the
mineralogical transformation from a greenschist facies to amphibolite
facies assemblage, and thus are the most important in terms of the
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devolatilization across the greenschist-amphibolite facies transition.
These changes account for the breakdown of ~75% of the chlorite con-
tent relative to lower grades (greenschist facies and hornblende-
actinolite zone). This zone is only 1500 m wide (in a N-S direction, or-
thogonal to the isograds), with the majority of the chlorite breakdown
occurring within the upper ~750 m.

5.4. Amphibolite facies: hornblende-oligoclase zone

The highest grade of metamorphism is observed in the northern-
most portion of the field area, abovewhich the basaltic rocks are uncon-
formably overlain by metasediments of the Missi Group. The rocks are
characterized by the absence of actinolite above the actinolite-out
isograd and are predominantly composed of hornblende, plagioclase
(N50% oligoclase; b50% albite), and epidote. Chlorite is a minor compo-
nent, generally comprising b4% of the modal assemblage.

5.5. Carbonate and sulphide minerals

The modal amounts of carbonate and sulphide minerals relative to
changing grade is shown in Fig. 6. Themajority of basaltic samples con-
tain calcite, with an averagemodal proportion of 1.5%, though this value
is highly variable withmany samples containing b1% (Fig. 6a). Dolomite
was documented in only one sample, with no evidence found for anker-
ite or other carbonate phases. The modal proportions shown in Fig. 6a
demonstrate that there are no grade-related trends in the carbonate
content.

The occurrences of carbonate within the Flin Flon sequence may be
explained by some or all of the following: (1) the persistence of calcite
formed from pre-metamorphic hydrothermal alteration and vesicle
infilling of the original basalts; (2) growth of carbonate during prograde
metamorphism either due to metamorphic reactions or to fluid infiltra-
tion; (3) secondary carbonate as a result of post-metamorphic
alteration.
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Fig. 6. Modal proportions for carbonate and sulphide group minerals versus grade
(distance N) for the Flin Flon block.
Themost common occurrence of carbonate is as secondaryminerals,
interpreted to have formed after peakmetamorphism. Calcite veins and
other late features such as pressure shadows aroundmetamorphicmin-
erals such as actinolite and hornblende (Fig. 7d) are relatively abundant
features across the full range of grades. When selecting areas of the
matrix formodal analysis, steps were taken to avoid obvious areas of al-
teration to minimize the amounts of secondary carbonates included.
However, it is likely that some of the carbonate included is of post-
metamorphic origin and thus the modal proportions shown in Fig. 6
likely represent maximum estimates of the carbonate present during
metamorphism.

Evidence for calcite being the product of pre-metamorphic alter-
ation is identifiedwithin the lowest grade (prehnite-pumpellyite facies)
samples, where carbonate is commonly observed in relatively high
modal proportions in samples that have little metamorphic overprint.
Carbonate minerals are also observed as amygdules (infilled vesicles)
(Fig. 7c) that likely formed during seafloor alteration. A number of
pieces of evidence support the interpretation that carbonate within
the prehnite-pumpellyite samples and in amygdules formed prior to re-
gional metamorphism, including deformed carbonate-bearing
amygdules which must have formed pre-deformation (and hence pre-
metamorphism), and evidence for metamorphic replacement of
earlier carbonate grains. This carbonation most likely occurred during
seafloor alteration, but may also have occurred at some point between
formation on the seafloor and deformation/metamorphism during
orogenesis.

An important qualitative observation is that relatively high carbonate
contents are more common in low-grade, prehnite-pumpellyite facies
samples than in rocks from the greenschist and lower amphibolite facies.
This is interpreted to be the result of greater preservation of pre-
metamorphic carbonationwithin low grade samples, with the carbonate
being consumed inmetamorphic reactions at higher grades (greenschist
and higher). Detailed quantitative modal analysis has not been carried
out on the low grade samples because of their heterogeneity.

Sulphide minerals are present in very low mineral proportions
(b0.5%) within most basaltic samples and occur mostly as fine grains
dispersed within the matrix. The dominant sulphide minerals are chal-
copyrite and pyrite, with minor sphalerite, pyrrhotite, colbaltite, and
bornite. Many sulphide grains have textures that suggest a post-
metamorphic origin, such as filling spaces between euhedral peak
metamorphic mineralogy (e.g. amphibole needles) and cross-cutting
late veins. No evidencewas found for a consistent pattern of distribution
of these minerals such as the disappearance or appearance of any sul-
phide minerals (e.g. a pyrite-out isograd), with increasing grade across
the greenschist-amphibolite facies transition. However, given the spo-
radic and highly heterogeneous distribution of the sulphidemineralogy
and difficulty in distinguishing between sulphides of pre-metamorphic
or post-metamorphic origin, there remains some uncertainty in this
inference.

6. Thermodynamic modelling

6.1. Phase diagram P-T modelling

Isochemical phase diagrammodellingwas carried out using the pro-
gram Theriak-Domino, which utilizes the Gibbs free energy minimiza-
tion method (de Capitani and Brown, 1987; De Capitani and
Petrakakis, 2010). The internally consistent thermodynamic data set of
Holland and Powell (1998; updated to version ds5.5) was utilized in
conjunction with the following activity-composition (a-X) models:
clino-amphibole (Diener et al., 2007, with revised mixing models from
Diener and Powell, 2012), clinopyroxene (Diener and Powell, 2012;
Green et al., 2007), garnet (White et al., 2007), chloritoid (White et al.,
2000), chlorite (Holland et al., 1998), white mica (Coggon and
Holland, 2002), biotite (White et al., 2007), epidote (Holland and
Powell, 1998), spinel (White et al., 2002), ilmenite-hematite (White
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et al., 2000;White et al., 2005) and feldspar (Holland and Powell, 2003 –
Cbar-1 field model).

Pressure-temperature (P-T)modellingwas carried out in the system
Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3

(NCKFMASHTO). As the ferric iron content can play a significant role in
controlling the phase relations of metabasites (e.g. Diener and Powell,
2010, 2012; Rebay et al., 2010), determining an appropriate value was
of crucial importance. The FeO and Fe2O3 contents of 8 greenschist
and lower amphibolite facies samples were determined using ferrous
iron titration in conjunction with XRF analysis at ACME labs in Vancou-
ver. The determined XFe3+ values (XFe3+(wt%) = Fe2O3/Fe2O3 + FeO)
have an average of 26.2% with a range of 20–36%. The average XFe3+

for 47 samples calculated by combining mineral modes and composi-
tions is 18.9%, with most samples containing values between 10 and
30%. Given the potential for the XRF/titration data to be affected by ox-
idation during weathering and post-metamorphic alteration, the calcu-
lated XFe3+ values determined from the mineral modes/compositions
are interpreted to bemore representative of the actual XFe3+ values dur-
ing metamorphism. The average calculated XFe3+ values for the high-
Mg bulk composition (XFe3+ = 16.9%) and high-Ca bulk composition
(XFe3+ = 26.3%) were used for the following modelling.

Isochemical P-T phase diagrams were calculated for the average
high-Mg (Fig. 8a) and high-Ca (Fig. 8b) bulk compositions. These are
representative of pillow core and rim compositions respectively. Ap-
proximate pressure ranges for the Flin Flon sequence across the
greenschist-amphibolite facies transition zone are shown by the grey
bands in Fig. 8a and b, determined by the sequence of mineral assem-
blage changes, in particular the appearance of hornblende downgrade
of oligoclase.

The phase diagrams in Fig. 8a and b are coloured to indicate the key
assemblages across the greenschist-amphibolite facies transition zone:
(1) coexisting actinolite and hornblende (coloured brown);
(2) coexisting albite and oligoclase (coloured blue); (3) an ‘epidote am-
phibolite’ field characterized by coexisting epidote and hornblende
(coloured yellow); and (4) a ‘chlorite amphibolite’ field containing
coexisting chlorite and hornblende (coloured green). For the high-Mg
(pillow rim) bulk composition (Fig. 8a), chlorite is predicted to be stable
over a large range of P-T conditions, potentially coexisting with horn-
blende up to 530 °C. In contrast, the phase diagram for the high-Ca
bulk composition (pillow core) (Fig. 8b) predicts a large stability field
for epidote coexisting with hornblende, with epidote predicted to be
stable to much higher temperatures than chlorite. Whilst the stability
fields of chlorite and epidote are affected considerably by the bulk com-
position, the position of the hornblende-in and oligoclase-in reactions
do not shift significantly.

6.2. Bulk compositional controls on hydrous mineral contents

To better characterise the bulk compositional controls on the min-
eral modes and bulk rock H2O content at greenschist and amphibolite
facies, a compositional space that captures asmuch of the compositional
variation as possible was created. The CaO-Na2O-MgO system was the
starting point, as shown in Fig. 3a and b. Itwas found that therewas sys-
tematic variation in the other important oxide components (SiO2, FeO,
Fe2O3, Al2O3) within the CaO-Na2O-MgO compositional space. For ex-
ample, SiO2 increases towards the Na2O corner of the diagram, FeO in-
creases with rising MgO contents, Al2O3 increases slightly towards the
MgO corner,whilst K2O and TiO2 are consistent across the diagram. Tak-
ing into account this variation, a bulk compositional space in
NCKFMASHTO was created based on a CaO-Na2O-MgO triangle within
which the more minor coupled variations in the other components
(SiO2, FeO, Fe2O3, Al2O3) are linearly correlated. The corners of the trian-
gle, labeled CaO*, Na2O* and MgO* (Fig. 9), have the following bulk
compositions:
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CaO* (wt%)= SiO2 (56.108) TiO2 (1.020) Al2O3 (14.282) Fe2O3 (5.101)
FeO (8.161) MgO (0.00) CaO (15.012) Na2O (0.00) K2O (0.316).
Na2O* (wt%) = SiO2 (70.742) TiO2 (0.996) Al2O3 (12.953)
Fe2O3 (0.00) FeO (0.00) MgO (0.00) CaO (0.00) Na2O (15.00) K2O
(0.309).
MgO* (wt%) = SiO2 (40.546) TiO2 (1.014) Al2O3 (17.232) Fe2O3

(2.534) FeO (23.314) MgO (15.046) CaO (0.00) Na2O (0.00) K2O
(0.314).

Equilibrium thermodynamic calculations were carried out for bulk
compositions along a series of horizontal transects across the bulk com-
positional triangle in Fig. 9 using the program Theriak (de Capitani and
Brown, 1987; De Capitani and Petrakakis, 2010) calculating variations in
mineral modes and bulk rock H2O content as a function of bulk compo-
sition. To compare the changes in modes across the greenschist-
amphibolite facies transition zone, these diagrams were calculated at
greenschist facies P-T conditions (chosen as 400 °C; 4 kbar) and am-
phibolite facies conditions (chosen as 4 kbar, 550 °C; equivalent of
hornblende-oligoclase zone).

Figs. 9a-g show the results of the modelling for greenschist facies
conditions (400 °C; 4 kbar). These diagrams show the variation in wt%
H2O contents across the bulk compositional range, as well as variations
in the predicted modal proportions of amphibole (actinolite), plagio-
clase (albite), chlorite, epidote, titanite, and ilmenite. Amphibole
modal proportions show relatively modest variation with changing
bulk composition, whereas chlorite, epidote and plagioclase show
large increases in modes associated with greater MgO, CaO, and Na2O,
respectively. The mineral that influences the H2O content the most is
chlorite, as revealed by the strong correlation between the location
and orientation of the chloritemodal contours and theH2O content con-
tours. The metabasalts with compositions falling within the high-Mg
group contain model H2O contents between 3 and 4 wt%, whilst the
high-Ca metabasalts are characterized by H2O contents of 2.5–3.5 wt%.
By contrast, the high-Nametabasalts contain much lower H2O contents
of 0.4-2 wt%.
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The mineral modal proportions and H2O contents are considerably
different at amphibolite facies (4 kbar, 550 °C) (Figs. 9h-n). At this
grade, the majority of bulk compositions from the Flin Flon sequence
are predicted to no longer contain chlorite, with the exception of more
Mg-rich compositions. Epidote is restricted to compositionswith higher
CaO contents whilst ilmenite is stable over a significant portion of the
bulk compositional range. High-Mg and high-Ca bulk compositions
have between 1 and 1.9 wt% H2O whilst high-Na compositions are pre-
dicted to contain b1 wt% H2O.

7. Modelling of fluid compositions

A number of previous studies have utilized thermodynamic model-
ling techniques to explore carbonate-bearing equilibria and the nature
of fluids within metamorphosed mafic igneous rocks (Elmer et al.,
2006; Evans et al., 2010; White et al., 2003). Elmer et al. (2006) con-
ducted a detailed T-XCO2 modelling study investigating the composi-
tions of fluids derived from the greenschist-amphibolite facies
transition for an average greenstone bulk composition. Our study builds
upon this work by: (1) comparing modelling results with the extensive
modal, mineral and bulk compositional dataset acquired for the Flin
Flon sequence; and (2) illustrating howbulk compositional variation in-
fluences metamorphic assemblages, devolatilization reactions and the
volume and composition of fluid released through this transition.

7.1. T-XCO2 modelling - method

T-XCO2 diagrams were constructed for the same average bulk com-
positions used in Fig. 8 for the two most common lithologies in the Flin
Flon sequence: high-Mg (Fig. 10) and high-Ca (Fig. 11)metabasalts. The
modelling was carried out in the NCaFMASHOC model system using a
similar set of a-X models to those described previously, with the addi-
tion of the dolomite model of White et al. (2003) and a H2O-CO2 fluid
model (Holland and Powell, 2003), and the removal of a-X models for
micas and Fe\\Ti oxides due to the exclusion of K2O and TiO2 from the
chemical system. Calcite was treated as a pure end member. K and Ti
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Fig. 9.Calculation ofmineral-boundH2O content andmineralmodal proportions across a representative bulk compositional space (see definition of compositional apexes, CaO*, Na2O* and
MgO* and text description) at greenschist facies conditions (4 kbar, 400 °C) and amphibolite facies conditions (4 kbar, 550 °C). Top diagrams: (a) Calculated mineral-bound H2O content
(wt% values) at greenschist facies conditions (4 kbar, 400 °C); (h) Calculated mineral-bound H2O content (wt% values) at amphibolite facies conditions (4 kbar, 550 °C). Lower diagrams:
(b)-(g) Modal plots for the key minerals calculated at greenschist facies conditions (4 kbar, 400 °C); (i)-(n) Modal plots for the key minerals calculated at amphibolite facies conditions
(4 kbar, 550 °C). The colour scale varies for different minerals depending on the range of values (see individual colour scale bars for each mineral – numbers represent the modal
percentages). Note the compositional range does not include the lower 20% of the compositional range (i.e. 0–20% Ca). This is due to the lack of samples within this range and hence a
lack of bulk compositional data necessary for construction of this bulk compositional space.
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were excluded from the modelling as preliminary calculations found
that they had little effect on the position of the main phase equilibria,
and complicated the appearance of the diagram. T-XCO2 diagrams
were constructed for a pressure of 4 kbar, a temperature range of
350–600 °C, and a range of XCO2 of 0–0.5, with fluid modelled as
being in excess (Figs. 10, 11).
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7.2. Predicted fluid buffering paths - method

The calculation of fluid buffering paths requires the consideration of
a number of potentially unknown variables including: (1) the initial
XCO2 content of the fluid at greenschist facies conditions; (2) the
amount of fluid that remains in equilibrium with the rock as the rock
undergoes devolatilization along the fluid buffering path (equal to the
porosity threshold); and (3) the initial carbonate content of the rock
at greenschist facies conditions. The initial XCO2 content of the fluid is
unknown, though it can be partially constrained based on comparison
of the T-XCO2 diagrams (Figs. 10, 11) with the following observations
from the Flin Flon sequence. The majority of greenschist facies samples
contain calcite as the only carbonate phase, coexisting with actinolite,
which constrains the XCO2 content at 350 °C to very low XCO2 contents
(b0.002) such that the stable assemblage falls within a series of small
fields containing coexisting calcite-actinolite. The absence of dolomite
at all gradeswithin the Flin Flon sequence suggests that the fluid buffer-
ing path should remain within the calcite-only stability field going up-
grade (the spotted fields in Figs. 10, 11). Thus an initial XCO2 value of
0.001 was used starting with the typical greenschist facies assemblage
Act - Ab - Chl - Ep - Cal - Qtz.

The degree to which the fluid released from the breakdown of hy-
drous minerals remains within the rock has a large effect on the fluid
XCO2 evolution, and is controlled in nature by the rock porosity during
metamorphism. Data regarding the porosity of greenschist and lower
amphibolite facies metabasalts is limited and porosity measurements
carried out on samples of greenstonesmay differ from the porosity dur-
ingmetamorphismdue to a number of reasons including later deforma-
tion, post-metamorphic alteration (including surficial weathering) and
the possibility of transitory porosity generated by fluid overpressure
necessary for fluid escape during devolatilization (i.e. hydrofracturing).
The total average porosity of a collection of greenstone samples was es-
timated to be 0.669% by Norton and Knapp (1977) which, given the
aforementioned limitations, likely represents only an approximate esti-
mate of the porosity duringmetamorphism. Based on the above consid-
erations, a porosity of 0.5% was used for initial modelling. A variety of
higher and lower porosities were tested to examine the consequences
of varying porosity on the XCO2 buffering paths (see supplementary in-
formation, Fig. S1). In general, paths calculated with lower porosities
show greater shifts to higher XCO2 during decarbonation and lower
XCO2 during dehydration (Fig. S1).

Fluid buffering paths were calculated for the high-Mg (Fig. 10) and
high-Ca (Fig. 11) bulk compositions using initial carbonate contents
representing the observed average, minimum (zero) and maximum
carbonatemodal contents for each compositional group. Thefluid buffer
paths represent the predicted changing XCO2 content of the fluid with
increasing temperature and changing mineral assemblage.

7.3. Predicted T-XCO2 modelling and fluid buffering paths for the Flin Flon
Volcanics

Fig. 10a shows the T-XCO2 diagram and three fluid buffer paths cal-
culated using the average, minimum (zero) and maximum carbonate
contents for the high-Mg samples. Fig. 10b-d shows the predicted vari-
ation in the modal proportions of the main phases and the amount of
fluid released (in moles) with increasing temperature along each of
these buffer paths, which can be used in conjunction with the XCO2

fluid buffer paths to assess the combined amounts and compositions
of fluid released.

For the high-Mg composition, the total fluid predicted to be released
across the greenschist-amphibolite facies transition is ~5.9–9.3 mol, de-
pending upon the initial carbonate content. This devolatilization results
predominantly from the breakdown of chlorite, and is predicted to
occur in five discrete intervals of fluid release for a sample with an aver-
age carbonate content. The first is associated with entry into the
coexisting actinolite and hornblende field at 450 °C (point 1 in
Fig. 10), in which there is a marked predicted increase in the amount
of hornblende and reduction in the amount of chlorite, actinolite, epi-
dote and albite. This results in the predicted release of approximately
1.5mol of fluid (~24% of total fluid), with a low XCO2 of ~0.025. The sec-
ond major predicted interval of fluid release (point 2 in Fig. 10) occurs
over the span of only ~2 °C, immediately up-grade of an oligoclase-
producing reaction at 458 °C. This reaction involves the formation of ol-
igoclase andmore hornblende, the complete consumption of albite, and
a modal reduction in chlorite and epidote, resulting in the release of
1.7 mol of fluid (~27% total) with an XCO2 of 0.028. The third predicted
interval of fluid release (point 3) is associated with the final consump-
tion of epidote, across a temperature window of ~10 °C, resulting in
1.1 mol of fluid accounting for ~17% of the total fluid release, with an
XCO2 of 0.028–0.050. The fourth interval is associated with the com-
plete consumption of carbonate (calcite) over a ~5 °C interval in the
upper part of the Cal-Hbl-Chl-Pl field, with the release of 0.6 mol of
fluid (10% total fluid loss). The XCO2 of the fluid released going through
this interval is predicted to change from 0.12 to 0.23 because the fluid
composition is buffered to higher XCO2 contents within the Cal-Hbl-
Chl-Pl field as a result of the continuous breakdown of calcite. The last
predicted interval of fluid release results from the final breakdown of
the remaining chlorite (~540–550 °C) within the Hbl-Chl-Pl field, caus-
ing the loss of approximately 0.7 mol of fluid (11% total fluid loss) with
an XCO2 content of 0.08.

For the high-Mg basalt, the fluid buffering path for the maximum
carbonate content (4.2%) (Fig. 10c) is predicted to follow a broadly
similar evolution to that for the average carbonate buffering path.
However, a number of important differences occur: (1) there is a
much larger fluid loss within the Cal-Hbl-Chl-Pl field (point 4;
Fig. 10); (2) fluids are generally buffered to higher XCO2 contents,
particularly within the Cal-Hbl-Chl-Pl field (point 4) where fluids re-
leased over this interval have predicted XCO2 contents of 0.22 to
0.42. The predicted reactions and resulting devolatilization intervals
for the carbonate-absent system (Fig. 10d) are similar to those of
the average carbonate system (Fig. 10b), in terms of the amounts
of fluid loss and temperature intervals. However, in contrast to the
carbonate-present systems, there is no fluid loss reaction equivalent
to point 4 (Fig. 10d), suggesting that the loss of chlorite and resulting
devolatilization over this interval is only driven by the presence and
subsequent loss of carbonate.

The T-XCO2 diagram for the high-Ca basalt (Fig. 11a) shows three
major differences from that of the high-Mg basalt: (1) a larger predicted
stability field for epidote-bearing assemblages (shown in yellow); (2) a
reduced stability field for chlorite; and (3) an increase in the stability of
calcite to higher temperatures (shown by the dotted field in Fig. 11).
Buffering paths were calculated for average (1.72%) and maximum
(5.91%) carbonate contents, which are slightly higher carbonate propor-
tions than for the high-Mg basalts. The fluid buffering paths follow a
similar trajectory to those for the high-Mg basaltic composition, passing
through the coexisting actinolite-hornblende field (point 1 in Fig. 11)
and then the narrow temperature interval within which oligoclase ap-
pears and albite is consumed (point 2). A large amount of fluid loss
(2.6mol; 37% totalfluid loss for the average carbonate path) is predicted
to occur concomitant with the breakdown of chlorite, epidote, and car-
bonate to form hornblende within the Cal-Hbl-Chl-Ep-Pl field (point 3).
These paths differ from those for the high-Mg basalt, with fluid buffer-
ing paths for the high-Ca composition losing chlorite before calcite,
and epidote persisting up to higher temperatures. This difference is im-
portant because,whilst the equilibriumfluid compositions is buffered to
higher XCO2 contents within the Cal-Hbl-Ep-Pl field as a function of the
greater carbonate contents, the volume of fluid released with this com-
position is minimal because chlorite has already been consumed. Thus,
for the average carbonate system, only a small volume of fluid is pre-
dicted to be released with XCO2 compositions exceeding 0.125, despite
the fluid compositions in equilibrium with the rock being buffered to
much higher XCO2 contents.
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8.Discussion –metamorphic devolatilization across the greenschist-
amphibolite facies transition

In the following sections, natural observations from the Flin Flon se-
quence are compared to, and integrated with, the predictions derived
from the thermodynamic modelling. This provide insights into the
devolatilization reaction intervals, and the amounts and compositions
of fluids produced across the greenschist-amphibolite facies transition
zone in metabasites. This information is used to evaluate these fluids
as being the possible source fluids for orogenic gold deposit formation.

8.1. Fluid sources for orogenic gold deposition

There existsmuch debate as to the source of fluids that produce oro-
genic gold deposits (e.g. Elmer et al., 2006; Gaboury, 2013; Goldfarb
et al., 2005; Goldfarb and Groves, 2015; Groves et al., 1998; Phillips
and Powell, 2009, 2010; Powell et al., 1991; Tomkins, 2010, 2013; Xue
et al., 2013). The different suggested fluid sources can be broadly sepa-
rated into twomain categories: (1)fluids released during the crystalliza-
tion of felsic-intermediate magmas (e.g. Xue et al., 2013); and
(2) metamorphic fluids, most commonly interpreted to result from
the breakdown of hydrous minerals across the greenschist-
amphibolite facies transition zone (e.g. Elmer et al., 2006; Phillips and
Powell, 2010; Powell et al., 1991; Tomkins, 2010, 2013). The majority
of recent work has favoured a metamorphic origin (e.g. Goldfarb and
Groves, 2015; Phillips and Powell, 2010; Tomkins, 2010, 2013) for a
number of reasons including better consistency with geological and
geochemical features, such as fluid inclusion and stable isotope data,
and a stronger chronological link betweenmetamorphism and orogenic
gold formation (e.g. Goldfarb and Groves, 2015). Some studies have ar-
gued that metamorphosed carbonated mafic rocks are the most likely
source rocks for these gold bearing fluids (e.g. Elmer et al., 2006;
Phillips and Powell, 2010; Powell et al., 1991), whilst others have sug-
gested metamorphosed carbonaceous sedimentary rocks may provide
a more likely source (e.g. Gaboury, 2013; Large et al., 2011; Tomkins,
2010, 2013).

Whether the source rock is metavolcanic or metasedimentary, the
metamorphic devolatilization model (e.g. Phillips and Powell, 2010)
suggests that Au-bearing fluids are produced across the greenschist-
amphibolite facies transition zone, migrate from the host rocks, and
cause gold deposition and the formation of large fluid alteration haloes
at higher levels of the crust. Ideal metamorphic devolatilization source
areas are suggested to have the ability to: (1) produce significant vol-
umes of fluid; (2) release gold, likely in the form of hydrosulphide com-
plexes (e.g. Au(HS)2− and AuHS); and (3) to produce fluids with
moderate XCO2 compositions (e.g. Phillips and Powell, 2010; Tomkins,
2010, 2013).

The source of both the gold and the associated sulphur within the
metamorphic devolatilization model is suggested to be the breakdown
of pyrite to pyrrhotite, which liberates sulphur (FeS2 = FeS + 1/2S2)
(e.g. Phillips and Powell, 2010; Pitcairn et al., 2006, 2010, 2015;
Tomkins, 2010). Trace element analyses of phases within greenschist
and amphibolite facies samples suggest that pyrite is the main carrier
of gold within rocks of this grade (e.g. Pitcairn et al., 2006). A number
Fig. 10. T-XCO2 and fluid buffer path modelling for the average high-Mg basaltic composition (
Flon sequence. (a) T-XCO2 diagram calculated for the average high-Mg basalt. The transitional fi
addition, carbonate-bearing fields contain patterns indicating the type of carbonate present (cal
phase diagramand in themodal plots (see text for discussion). (b)-(d) Fluid buffering paths calc
contents: (b) average carbonate (0.98%); (c) maximum carbonate (4.2%); (d) carbonate-free s
(see bottom scale) whilst the thick dashed black lines represent the fluid release in moles (se
in the text. The reactions are listed below the diagram with the approximate compositions an
from all bulk compositional groups (excluding high-Na bulk compositions) for the key hydrou
grade – see discussion in text) for samples across the greenschist and greenschist-amphibolite
the rock is shown by the dashed black line (see top scale). (f) Modal plot for high-Mg basaltic
plus the calculated hydrous content (see top scale) plotted versus ‘distance N'.
of field based studies have documented changes in sulphidemineralogy
during progrademetamorphism, though this work has been focused on
meta-sedimentary sequences (e.g. Ferry, 1981; Pitcairn et al., 2006,
2010, 2015).

Fluids associated with orogenic gold deposits have been interpreted
as being mixed H2O-CO2 fluids with fairly consistent moderate XCO2

(e.g. 0.2–0.3) compositions based on fluid inclusion data and on the
presence of carbonate phases within gold-bearing veins (e.g. Gaboury,
2013; Groves et al., 1998; Kerrich and Fyfe, 1981; Ridley and
Diamond, 2000). In addition, it has also been suggested that CO2 plays
an important chemical role in gold transport by buffering the pH of
fluids such that higher concentrations of gold hydrosulphide complexes
can be maintained (Phillips and Evans, 2004). Thus, in order for a meta-
morphic devolatilization source fluid to be consistent with these obser-
vations, it should have moderate XCO2 values (~0.2–0.3) (Elmer et al.,
2006; Phillips and Powell, 2010). A detailed T-XCO2 modelling study
of greenschist-amphibolite facies rocks by Elmer et al. (2006), utilizing
similar modelling methods used in this paper, suggested that moderate
XCO2 values (0.2–0.3)may be produced by the coincident breakdown of
carbonate and chlorite within carbonate-rich mafic rocks.

This study builds upon this previouswork by adding constraints and
insights from an exceptionally well characterized natural sequence uti-
lizing: (1) a uniquely detailed documentation of modes, compositions
and textures of hydrous mineralogy as well as carbonate and sulphide
minerals; (2) field documentation of the dehydration reaction progress
and assessment of the relative important of different reactions involved;
(3) a large bulk compositional database and documentation of pre-
metamorphic alteration processes.

8.2. Comparison of predicted versus observed amounts of fluid release
across the greenschist-amphibolite facies transition

Table 1 summarizes the petrological and modelling estimates for
bulk rockmineral-boundH2O contents (wt%) from greenschist and am-
phibolite facies samples, as well as the average dehydration amounts
(wt%) for each bulk composition type calculated by subtracting the av-
erage greenschist and amphibolite H2O contents. The bulk rock H2O
contents (wt%) of Hacker et al. (2003) are also included for comparison,
whichwere estimated from a compilation of modal data for greenschist
and amphibolite facies metabasalts that approximate MORB bulk com-
positions (see Hacker et al., 2003 for a full description of the method).

A comparison of the modelling and petrological estimates of the
mineral-bound whole-rock H2O contents in Table 1 suggests that the
modelling slightly over-estimates the amount of devolatilization com-
pared to themodal estimates (by ~0.4–0.7 wt%; Table 1). The estimated
H2O contents for greenschist facies assemblages vary depending on the
bulk composition, with the high-Mg compositions having the highest
H2O contents (petrological estimate: 3.1 wt%; modelling estimate:
3.5 wt%), the high-Ca compositions having slightly lower H2O contents
(petrological estimate: 2.8 wt%; modelling estimate: 3.1 wt%), and the
high-Na basalts having the lowest H2O contents (petrological estimate:
1.7 wt%; modelling estimate: 1.6 wt%) (Table 1). The calculated
mineral-bound H2O contents at amphibolite facies conditions vary less
across the range of bulk rock compositions, with an average of 1.3 wt%
fixed porosity, varying carbonate contents) and comparison with modal data from the Flin
elds are coloured using the same scheme previously described for Fig. 8 and in the text. In
cite, dolomite or both). Themajor phases of fluid release that occur are labeled on both the
ulated using a 0.5% porositymodel (see text for description) for different starting carbonate
ystem. The solid coloured lines represent the modal proportions (%) for the major phases
e top scale). The numbers correspond to the key intervals of devolatilization as described
d amounts of the fluid released associated with each interval. (e) Modal plot for samples
s phases amphibole, epidote and chlorite plotted versus ‘distance N' (taken as a proxy for
facies transition zones (see bottom scale). In addition, the calculated hydrous content of
samples for the key hydrous phases amphibole, epidote and chlorite (see bottom scale)
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for high-Mg compositions (modelling estimate: 1.3 wt%) and 1.7 wt%
for high-Ca compositions (modelling estimate: 1.3 wt%). It was not pos-
sible to estimate an average observed H2O content for the high-Na bulk
composition at amphibolite facies conditions due to the lack of samples
at this grade and bulk composition at Flin Flon.

Comparison of the average H2O contents at greenschist and amphib-
olite facies is used to estimate the metamorphic devolatilization occur-
ring across the greenschist-amphibolite facies transition (Table 1).
High-Mg and high-Ca basalts, representative of pillow rim and corema-
terial, undergo an average H2O loss of 1.8 wt% (modelling estimate:
2.2 wt%) and 1.1 wt% (modelling estimate: 1.8 wt%), respectively.
Whilst it was not possible to estimate the average H2O loss for high-
Na basalts using the Flin Flon suite, due to the lack of samples at am-
phibolite facies conditions, the thermodynamic modelling predicts
that they will generate smaller volumes of fluids, ranging from
b0.1 wt% to 1.1 wt% (average: 0.9 wt%), which is consistent with
the lower observed H2O contents within greenschist facies samples
of this bulk composition. These results show that the amount of
devolatilization is strongly controlled by the bulk composition, which
is interpreted to mainly reflect pre-metamorphic alteration processes.

8.3. Comparison of predicted versus observed devolatilization intervals
across the greenschist-amphibolite facies transition zone

In order to compare the predicted versus model devolatilization in-
tervals, the observed modal abundances and bulk rock wt% H2O con-
tents from the Flin Flon sequence are plotted in Figs. 10 and 11
(Fig. 10e, f; Fig. 11e, f) alongside the modal evolution and fluid release
predicted by the modelling for different carbonate contents (Fig. 10b,
c, d; Fig. 11b, c, d). The observed modal abundances and bulk rock
H2O contents are shown in two plots in Figs. 10 and 11, with the first
(Figs. 10e, 11e) showing the modal abundances of the main hydrous
minerals (chlorite, epidote and amphibole) for samples from all bulk
compositional groups (excluding high-Na compositions, which have
highly variable modal abundances) and the second (Figs. 10f, 11f)
showing the modal changes for the selected relevant bulk composi-
tional group (i.e. high-Mg basalts in Fig. 10f; high-Ca basalts in
Fig. 11f). For practical calculation reasons, the thermodynamically pre-
dicted fluid release is given inmoles of fluid lost from the system,whilst
the observed fluid release is described in terms of changes in bulk rock
H2O content. As discussed in Section 8.2, the total amounts of
devolatilization across the transition zone are broadly similar compar-
ing themodelling predictions with the estimated observed fluid release
(Table 1).

In the following section, the relative importance of different
devolatilization intervals are discussed utilizing the Flin Flon observa-
tions and modelling predictions. For ease of comparison in this discus-
sion and in Figs. 10 and 11, the fluid release is largely considered in
terms of proportions of the total fluid loss and in terms of the modal
abundance of chlorite, the breakdown of which accounts for the vast
majority of fluid loss.

Within the hornblende-actinolite zone in the Flin Flon sequence,
mineralogical change is limited with no consistent change in the pro-
portions of chlorite and other hydrous mineralogy (e.g. epidote)
(Fig. 5; Fig. 10e, f; Fig. 11e, f). Thermodynamic modelling for both
high-Mgandhigh-Ca bulk compositions (Figs. 10, 11), suggests a similar
predicted reaction interval (point 1 in Figs. 10, 11) marking the first ap-
pearance of hornblende, coexisting with actinolite, albite, chlorite and
epidote. However, in contrast to the observations from Flin Flon, the
modelling predicts significant changes across the interval (the brown
field in Figs. 10 and 11) including: the complete replacement of actino-
lite by hornblende; a significant increase in the total amphibole content
(from 13% to 25% for the average carbonate buffering path for the high-
Mg bulk composition; Fig. 10b); and notable decreases in the propor-
tions of the hydrous minerals chlorite (from 22% to 15%; Fig. 10b) and
epidote (from 18% to 13%; Fig. 10b). The observed modal proportions
of hydrous minerals within the hornblende-actinolite zone at Flin Flon
suggests that the devolatilization within the hornblende-actinolite
zone is very minor, comprising a minimal proportion of the total fluid
loss andno chlorite loss (Fig. 10e, f; Figs. 11e, f). By contrast, the thermo-
dynamic modelling suggests a much higher amount of fluid loss for the
high-Mg compositions associated with ~5 modal% chlorite breakdown
(~24% total fluid loss; average carbonate buffering path; point 1 in
Fig. 10b).

Significant changes in the observed modal mineralogy occur within
the hornblende-actinolite-oligoclase zone in the Flin Flon sequence
(Fig. 5; Fig. 10e, f; Figs. 11e, f). The modal proportions of the hydrous
minerals drop significantly, with chlorite decreasing by ~11 modal%
on average from ~15% average in the greenschist facies to 4% in the
highest grade part of the hornblende-actinolite-oligoclase zone (~13
modal% average decrease for high-Mg basalts; ~8 modal% average de-
crease for high-Ca basalts) (Fig. 10e, f; Fig. 11e, f). The thermodynamic
modelling also predicts a significant interval of devolatilization accom-
panying the first appearance of oligoclase (point 2; Figs. 10, 11),
which coexists with albite over a very small temperature interval (~2
°C) and is associated with an increase in predicted hornblende modes
from 26% to 34% (high-Mg composition, average carbonate content)
(Fig. 10b). However, in contrast to observations from Flin Flon, albite
completely disappears over this small temperature interval and the de-
crease in the main hydrous mineral, chlorite, is relatively minor (15% to
11%) (Fig. 10b). The modelling predicts a significant decrease in the ep-
idote content (13% to 5%) which is not observed in the Flin Flon se-
quence (Fig. 10b).

The estimated observed H2O release across the hornblende-
actinolite-oligoclase zone at Flin Flon is approximately 1-2 wt%, de-
pending on bulk composition, driven by the breakdown of ~75% of the
total chlorite content (average 11 modal% loss) (Table 1; Fig. 10e, f;
Figs. 11e, f). The predicted H2O release from thermodynamic modelling
over the approximately equivalent interval marking the appearance of
oligoclase is considerably less than the observed fluid release, account-
ing for only 27% of the totalfluid loss and ~4modal% chlorite breakdown
for the high-Mg bulk compositions (average carbonate content)
(Fig. 10b).

The thermodynamic modelling suggests continued devolatilization
at grades above those of themain greenschist-amphibolite facies transi-
tion zone (Figs. 10, 11). These reactions are predicted to happen at con-
siderably higher temperatures than the first appearance of oligoclase
and thus they would likely occur at higher grades than those observed
within the Flin Flon sequence. This fluid release results from the pre-
dicted persistence of chlorite and epidote to higher grades where they
are predicted to break down to form more hornblende over a number
of devolatilization intervals (points 3, 4 and 5 in Fig. 10; points 3 and
4 in Fig. 11). For the high-Mg bulk composition, epidote is predicted to
disappear shortly after the appearance of oligoclase (point 3; Fig. 10)
whilst chlorite survives ~90 °C past the first appearance of hornblende,
reacting out over two intervals (points 4 and 5; Fig. 10). By contrast, for
the high-Ca bulk rock composition, chlorite is predicted to disappear at
grades just above the appearance of oligoclase (point 3; Fig. 11), whilst
epidote persists to much higher grade, breaking down continuously
over a ~100 °C interval (point 4; Fig. 11).

Whilst the final breakdown of chlorite and epidote are not seen in
the Flin Flon rocks, the observations from this sequence are useful in
interpreting potential further devolatilization at higher metamorphic
grades. As discussed above, the majority of the chlorite (~75%) is con-
sumed across the hornblende-actinolite-oligoclase zone and the low
proportions of chlorite in the upper part of the hornblende-actinolite-
oligoclase zone (average mode: 4%) suggests that devolatilization at
higher gradeswould be limited. Thus the significant thermodynamically
predicted devolatilization intervals at higher grades for the high-Mg
bulk composition (points 4 and 5; Fig. 10) seem unlikely to occur at
higher grades in the Flin Flon sequence. By contrast, epidote shows no
decrease in modal proportions across the transition, interpreted as
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Chl-out reaction. XCO2 ~ 0 
1.8 moles loss (~32% total)

Ep-out reaction. XCO2 ~ 0
0.9 moles loss (16% total)

1

2

1

2

Zero Carbonate
(c)

(a)

Fig. 11. T-XCO2 and fluid buffer path modelling for the average high-Ca basaltic composition (fixed porosity, varying carbonate contents). (a) T-XCO2 diagram calculated for the average
high-Ca basalt. (b)-(d) Fluid buffering paths are calculated using a 0.5% porosity model (see text for description) for different starting carbonate contents: (b) average carbonate (1.72%);
(c)maximum carbonate (5.91%); (d) carbonate-free system. The solid coloured lines represent themodal proportions (%) for themajor phases (see bottom scale) whilst the thick dashed
black lines represent the fluid release in moles (see top scale). (e) Modal plot for samples from all bulk compositional groups (excluding high-Na bulk compositions) for the key hydrous
phases amphibole, epidote and chlorite plotted versus ‘distance N’ for samples across the greenschist and greenschist-amphibolite facies transition zones (see bottom scale). In addition,
the calculated hydrous content of the rock is shown by the dashed black line (see top scale). (f)Modal plot for high-Ca basaltic samples for the key hydrous phases amphibole, epidote and
chlorite (see bottom scale) plus the calculated hydrous content (see top scale) plotted versus ‘distance N’.
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reflecting the sluggish dissolution kinetics of epidote leading to its per-
sistence to higher grade as a metastable relic (Starr and Pattison, 2019).
The breakdown of this epidote must occur at some point, resulting in a
smaller devolatilization event at higher grades, though it is unclear
whether this devolatilization would occur as a pulse over a small,
kinetically-overstepped, temperature interval or as a more gradual or
sequential event.

In summary, comparison of the observations from Flin Flon with the
modelled phase equilibria suggests a broadly comparable sequence of
mineral assemblage changes, including the sequential appearance of
hornblende, followed by oligoclase, associated with the breakdown
of actinolite, albite, epidote and chlorite. However, there are a number
of important features of the Flin Flon sequence that are not reproduced
within the modelling that affect interpretations of the devolatilization
across this important interval including: (1)the lack of observed reac-
tion progress and devolatilization within the hornblende-actinolite
zone; (2) the considerable observed reaction progress including chlorite
breakdown within the hornblende-actinolite-oligoclase zone; (3) the
lack of a modal decrease in epidote proportions; (4) greater observed
total amounts of chlorite breakdown across the greenschist-
amphibolite facies transition zone. The final point is particularly impor-
tant when evaluating the devolatilization evolution and particularly the
possible fluid compositions across the greenschist-amphibolite facies
transition zone, as discussed in the following section.

Determiningwhether differences in the thermodynamic predictions
and natural observations stem from limitations with the modelling or
whether they reflect real deviations from equilibrium behaviour is diffi-
cult. Modelling the greenschist-amphibolite facies transition zone is
particularly problematic due to the keymineralogical changes involving
phaseswithin the samemineral group coexisting acrossmiscibility gaps
(i.e. actinolite-hornblende and albite-oligoclasemiscibility gaps). This is
particularly an issue formodelling plagioclase groupminerals, forwhich
no a-X model exists for predicting two coexisting plagioclase group
minerals. Rather, the coexistence of albite and oligoclase is modelled
with a ‘solid-solution' oligoclase phase (Holland and Powell, 2003)
coexisting with end-member albite (e.g. Dale et al., 2005; Elmer et al.,
2006).

A number of features across the greenschist-amphibolite facies tran-
sition zone within Flin Flon are interpreted as being disequilibrium fea-
tures, as discussed in detail in Starr and Pattison (2019). Their study
concluded that the limited breakdown of epidote across the transition
zone and the persistence of actinolite and albite a considerable distance
up-grade of the oligoclase-in isograd likely resulted from themetastable
persistence of these minerals as a result of the sluggish dissolution ki-
netics of epidote, albite and actinolite.

8.4. Comparison of predicted versus observed compositions of fluid release
across the greenschist-amphibolite facies transition

T-XCO2 modelling and the calculation of fluid buffering paths was
used to predict the XCO2 compositions of fluid released at different in-
tervals across the greenschist-amphibolite facies transition. Observa-
tions from natural sequences such as at Flin Flon can be used to
qualitatively assess fluid compositions by considering the effect of the
breakdown of important accessory phases such as carbonate and sul-
phide minerals across devolatilization intervals.

The predicted XCO2 composition of the fluid produced as a result of
reactions involving the appearance of hornblende (point 1; Figs. 10, 11)
and oligoclase (point 2; Figs. 10, 11) is limited to low XCO2 values. Fluid
buffer path modelling predicts that the XCO2 content of fluid produced
at the model equivalent of the hornblende-in isograd (point 1; Figs. 10)
for the high-Mg basaltic composition may vary between 0.02 and 0.03
(based on mineral assemblage constraints), with a value of 0.02 pre-
dicted for both the average and maximum carbonate buffering paths
(Fig. 10). The predicted XCO2 values for the oligoclase-producing reac-
tion (point 2; Figs. 10) have a maximum range of 0.02–0.08, and
predicted values of 0.025 and 0.04 for the average and maximum car-
bonate buffering path respectively (Fig. 10). These values are very sim-
ilar (±0.01) for modelling of the average high-Ca basaltic composition.

The lack of carbonate consumption predicted across these devola-
tilization intervals, and the resulting low XCO2 fluid compositions
(points 1 and 2; Figs. 10, 11), agree with petrographic andmodal obser-
vations from the Flin Flon sequence that show no discernable change in
the carbonate modal proportions within the hornblende-actinolite and
hornblende-actinolite-oligoclase zones.

As discussed previously, there is no evidence for the breakdown of
pyrite or any other sulphide phase across the hornblende-in or
oligoclase-in isograds. This observation is potentially important because
pyrite is the most likely host mineral for gold (e.g. Pitcairn et al., 2006,
2010, 2015; Tomkins, 2010), as well as the most likely source for the
sulphur that is thought to complex with gold in orogenic gold fluids.
The lack of evidence for change in the sulphide mineralogy at Flin Flon
contrasts with observations from pelitic sequences that show a change
in sulphide mineralogy between greenschist facies assemblages,
which are dominated by pyrite, and amphibolite facies assemblages, in
which this pyrite appears to have been replaced by pyrrhotite (e.g.
Pitcairn et al., 2006, 2010, 2015). We note that the volume of sulphides
in the Flin Flon metabasic rocks is lower than commonly reported in
metapelites (e.g. Tomkins, 2010), and that their distribution is more
heterogeneous, often occurring in veins. Given the difficulties of accu-
rately determining prograde sulphide modal changes within the
metabasites at Flin Flon as described previously, it is unclear whether
small changes in the sulphide modal proportions would be resolvable.

Above the main greenschist-amphibolite facies transition, at grades
higher than those observed at Flin Flon, the T-XCO2 modelling predicts
thatfluid compositions are buffered to higher XCO2 values (N0.1)within
the Cal-Hbl-Chl-Ep-Pl or Cal-Hbl-Ep-Pl stability fields where chlorite,
epidote and carbonate are predicted to react out of the rock. However,
this does not implicate volumetrically significant fluid release with
high XCO2 values, because this is dependent upon the persistence of sig-
nificant amounts of hydrousminerals (predominantly chlorite) and car-
bonate to temperatures above the main greenschist-amphibolite facies
transition zone.

The modelling suggests that the ability of metabasalts to generate
significant volumes of higher XCO2 fluids (N0.1) is dependent on a num-
ber of factors, most importantly the abundance of carbonate minerals
and the bulk composition of the silicate component of the metabasic
rocks (Elmer et al., 2006; this study). For fluid buffering paths in rocks
that have high carbonate contents (e.g. the maximum carbonate con-
tent observed in the Flin Flon sequence) (Fig. 10a, c; Figs. 11a, c), the
fluid compositions are buffered to higher XCO2 than those for the aver-
age carbonate contents, and are predicted to retain sufficient chlorite
that, upon reaction, produces significant volumes of fluid with moder-
ate XCO2 values (0.2–0.3) (reaction 4; Fig. 10a, c; Figs. 11a, c). However,
for the average carbonate or carbonate free systems (Fig. 10a, b, d;
Figs. 11a, b, d), where most of the chlorite is predicted to react out at
lower grade, there is minimal fluid release associated with reaction in
these fields (reaction 4) and thus little fluid release with XCO2 contents
above 0.1.

Comparison of the T-XCO2 modelling for the high-Mg and high-Ca
bulk compositions, representing the pillow rim and core compositions,
suggests that the bulk composition of the silicate component of the
metabasites also plays an important role in controlling the fluid compo-
sitions. For the high-Ca composition, chlorite is lost at relatively low
temperatures prior to loss of a significant portion of the calcite
(Fig. 11). Thus for a high-Ca composition, whilst the fluids may be buff-
ered to higher XCO2 contents up-grade, the loss of chlorite at lower tem-
peratures reduces the potential for significant fluid volumes with these
higher XCO2 compositions.

Petrological observations from the Flin Flon sequence that bear on
the applicability of these modelling predictions include the loss of the
majority of the chlorite at the greenschist-amphibolite facies transition



Table 1
Average and range of H2O contents for greenschist and amphibolite facies samples estimated from petrological observations and thermodynamic modelling. ‘Petro’: H2O contents esti-
mated combining modal and compositional data of hydrous minerals. No values exist for the high-Na type due to insufficient data. Note that the petrological estimates for amphibolite
facies conditions use only samples either from the upper part of the hornblende-actinolite-oligoclase zone or the hornblende-oligoclase zone, as these aremost representative of amphib-
olite facies samples. ‘Model’: estimated using the bulk compositional modelling described in the text. Hacker (03): Hacker et al. (2003) – average H2O content for metabasites of MORB
composition at greenschist and amphibolite facies conditions calculated using a compilation of modal data. Dehydration wt%: Equal to the difference in hydrous content between the av-
erage greenschist and amphibolite facies values.

Bulk composition H2O wt% - GS facies
average

H2O wt% - GS facies
range

H2O wt% - amp facies
average

H2O wt% - amp facies
range

Dehydration wt%
average

High-Mg Type - Petro 3.1 2.1–3.7 1.3 1.2–1.4 1.8
High-Mg Type - Model 3.5 2.8–3.9 1.3 1.1–1.5 2.2
High-Ca Type - Petro 2.8 2.2–3.7 1.7 1.4–2.0 1.1
High-Ca Type - Model 3.1 2.4–3.6 1.3 1.1–1.7 1.8
High-Na Type - Petro 1.7 0.8–2.5 – – –
High-Na Type - Model 1.6 0.6–2.2 0.7 0.3–1.0 0.9
Hacker(03) - MORB Compilation 3.3 – 1.3 – 2.0
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just above the oligoclase-in isograd, the generally lowmodal abundance
of carbonate in this sequence, and the lack of evidence for its consump-
tion going up-grade. As discussed previously, modal analysis and petro-
graphic observations suggest the breakdown of the majority (N75%) of
the chlorite within the hornblende-actinolite-oligoclase zone (Fig. 5;
Fig. 10e, f; Fig. 11e, f), considerably more than predicted by the thermo-
dynamic modelling. The low proportions of chlorite remaining (aver-
age: 4%) limits the amount of fluid that could have been released
above the main greenschist-amphibolite facies transition zone, even if
some equivalent of the thermodynamically predicted reactions at
higher grades could have occurred. The combination of the modelling
with observations from Flin Flon imply that significant production of
fluids with XCO2 compositions N 0.1 is unlikely to have occurred at
Flin Flon.

8.5. Evaluating metabasites as the source of fluids for orogenic gold deposit
formation

The above results suggest that the greenschist-amphibolite facies
transition zone in metabasites represents a major interval of
devolatilization, associated with the breakdown of the majority of the
chlorite and mineral-bound water. However, these observations at
Flin Flon also suggest that this devolatilization does not coincide with
intervals of carbonate and pyrite breakdown that are thought to be im-
portant for generatingfluids associatedwith orogenic gold deposits. The
results suggest fluids released over the main greenschist-amphibolite
facies transition zone are likely to have low XCO2 compositions (b0.1),
and that significant volumes of fluids with higher XCO2 compositions
(N0.2) are unlikely to be produced. Likewise, there is no evidence
for the breakdown of pyrite across the devolatilization interval that
would be the main source for the gold hydrosulphide complexes that
are crucial for the transport of gold. These combined observations sug-
gest that the fluids released across the greenschist-amphibolite
facies transition at Flin Flon are unlikely to have the expected
fluid composition of a potential sourcefluid for orogenic gold formation.

It is important to consider whether the observations from the Flin
Flon Greenstone Belt are broadly applicable to other greenstone belts.
The Flin Flon sequence appears to be a typical example of mafic crust
undergoing burialmetamorphismas part of a greenstone belt, with nor-
mal bulk compositions (see comparison in Fig. 3) and the typical se-
quence of mineral isograds and P-T conditions for Barrovian style
metamorphism (e.g. Bégin, 1992; Liou et al., 1974; Starr and Pattison,
2019). However, an important variable, as noted by Elmer et al.
(2006), is that oceanic basaltic sequences may undergo different de-
grees of carbonation. This controls the later metamorphic fluid signa-
ture, as shown above, and it is thus possible that this segment of the
Flin Flon Greenstone Belt may represent a relatively uncarbonated seg-
ment of oceanic crust. The amount of carbonate within a sample at
greenschist or lower amphibolite facies is dependent upon the initial
carbonation associated with pre-metamorphic hydrothermal alteration
and the degree to which the carbonate is consumed downgrade of the
greenschist-amphibolite facies transition zone. Whilst there is tex-
tural evidence that small modal amounts of carbonate are stable at
greenschist and lower amphibolite facies at Flin Flon, comparison of
carbonate contents at prehnite-pumpellyite facies versus greenschist
facies conditions suggests that there is carbonate loss in the
prehnite-pumpellyite to greenschist facies transition (Starr et al., in
review). This is consistent with the general observation that rocks
within the prehnite-pumpellyite facies tend to retain significant igne-
ous and hydrothermal mineralogy whereas greenschist facies sam-
ples are usually completely overprinted by metamorphic
assemblages (Starr et al., in review). If the loss of carbonate at
lower grades is a common feature of greenstone belts, it is possible
that the low carbonate contents within greenschist and amphibolite
facies rocks at Flin Flon, and the resulting low-XCO2 compositions re-
leased across this interval, are typical even in sequences that may
have undergone extensive sea floor carbonation.

In addition, the observations from Flin Flon suggest that, in contrast
to thermodynamic modelling predictions, the majority of
devolatilization occurs going through the greenschist-amphibolite fa-
cies transition zone associated with chlorite consumption, with little
chlorite remaining for further dehydration. Modelling predictions and
observations fromFlin Flon suggest that thefluid released across this in-
terval is limited to lowXCO2 compositions (b0.08) regardless of the car-
bonate content. If the lack of overlap between the major dehydration
intervals resulting from chlorite consumption and the decarbonation in-
terval(s) resulting from carbonate consumption is true of other se-
quences, the greenschist-amphibolite facies transition zone in
metabasites may, as a general rule, be dominated volumetrically by
fluids with low XCO2 compositions. Further study of other natural se-
quences is required to test this hypothesis.

9. Conclusions

1. Documentation of mineral modes, compositions and textures indi-
cate that the mineralogical transformation from greenschist facies
to amphibolite facies in Flin Flon occurs predominantly within the
relatively narrow hornblende-actinolite-oligoclase zone where
there is significant devolatilization associated with the breakdown
of ~75% of the total chlorite content. By contrast little reaction prog-
ress (and hence devolatilization) is seen within the lower-grade
hornblende-actinolite zone.

2. Themajority of samples contain calcite in lowmodal abundance (av-
erage modal proportion: 1.5%). There is no modal or textural evi-
dence for the breakdown of carbonate minerals across the
greenschist-amphibolite facies transition zone. Sulphide minerals,
including pyrite, chalcopyrite, and pyrrhotite are present in very
low proportions (b0.5%). No modal or textural evidence was docu-
mented for the breakdown of any sulphide phase (e.g. pyrite) within
the Flin Flon sequence.
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3. Observations from Flin Flon, combined with thermodynamic model-
ling, suggests that the amount of devolatilization is strongly con-
trolled by variations in the bulk composition of the metabasites, the
latter interpreted to result from pre-metamorphic alteration pro-
cesses. Comparison of modelling and petrological estimates of the
total devolatilization suggests that the modelling slightly overesti-
mates the amount of fluid released. High-Mg and high-Ca basalts,
representative of pillow rim and core material, undergo an average
of 1.8 wt% (modelling estimate: 2.2 wt%) and 1.1 wt% (modelling es-
timate: 1.8 wt%) H2O loss respectively.

4. T-XCO2 phase diagram modelling, combined with the calculation of
fluid buffering paths for varying carbonate contents predict that the
Flin Flon sequence would predominantly produce fluids with low
XCO2 compositions (b0.08), for the hornblende and oligoclase-
producing reactions, across the greenschist-amphibolite facies tran-
sition zone. These modelling predictions are consistent with natural
observations from Flin Flon that indicate a lack of carbonate break-
down across the hornblende-actinolite and hornblende-actinolite-
oligoclase zones.

5. A number of natural observations from the Flin Flon sequence differ
from the modelling predictions including the lack of observed reac-
tion progress and devolatilization within the hornblende-actinolite
zone, the lack of a decrease in the epidote modal proportions, and
the considerable devolatilization resulting from the breakdown of
~75% of the chlorite across the hornblende-actinolite-oligoclase
zone. These differences are interpreted to reflect both limitations in
the thermodynamic modelling and departures from equilibrium
behaviour.

6. Fluid buffering path modelling predicts that fluid compositions may
be buffered to higher XCO2 values (N0.1) at higher grades above
the main greenschist-amphibolite facies transition zone for samples
with higher carbonate contents. However, several observations
from the Flin Flon sequence suggest that the volume of such fluids
produced at higher grades is limited. The breakdown of the majority
of the chlorite (N75%) across the greenschist-amphibolite facies tran-
sition zone suggests there is little remaining chlorite (average modal
proportions: 4%) to cause significant devolatilization at higher
grades. In addition, the modelling suggests that the release of fluid
with high-CO2 compositions is limited to samples that contain high
carbonate contents (N5%), which represents a small subset of those
within the Flin Flon sequence.

7. Modal and textural observations suggests that there is only minor
consumption of epidote across the transition zone, interpreted to
be due tometastable persistence owing to sluggish dissolution kinet-
ics. The breakdown of this epidote must result in a smaller
devolatilization event at higher grades than exposed at Flin Flon
though the nature of this event is difficult to characterise.

8. These observations, coupled with predictions from thermodynamic
modelling, suggest that the greenschist-amphibolite facies
transition zone in metabasites is associated with significant
devolatilization over a small spatial and thermal interval but
may not coincide with intervals of carbonate and pyrite break-
down. In this case, it is unlikely that fluids produced from
metabasites across the greenschist-amphibolite facies transition
zone would acquire the gold hydrosulphide (Au(HS)2−) complexes
and moderate XCO2 fluid compositions that are associated with
orogenic gold fluids.
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