
0361-0128/11/3979/1043-16 1043

Introduction
The Bluebell Pb-Zn deposit is located in Riondel, on the

eastern shore of Kootenay Lake in southeastern British Co-
lumbia, western Canada (Fig. 1). It is hosted by Lower Cam-
brian marble of the Badshot and Mohican formations. The
Badshot Formation and along-strike equivalents form a
prominent marker unit in the Kootenay Arc, a narrow, elon-
gate region of the Canadian Cordillera that extends in an east-
ward-convex arch from near Revelstoke, British Columbia,
into northern Washington (Fig. 1).

The Kootenay Arc contains numerous carbonate-hosted
Pb-Zn deposits of varying age and mode of formation. Fyles
(1970) recognized three types of deposit: 

1. “Metaline-type” deposits, named after the district in
Washington, are developed in brecciated, dolomitized lime-
stone and bear many similarities to classic Mississippi Valley-
type deposits. They are lenticular, more or less stratiform de-
posits in relatively undeformed Middle Cambrian carbonate
rocks of the Nelway and Metaline formations (Fig. 1).

2. “Salmo-type” deposits are found in dolomitized zones of
Lower Cambrian (Badshot Formation and equivalent) lime-
stone. They comprise lenticular disseminations of pyrite, spha-
lerite, and galena in rocks that have undergone polyphase de-
formation. The sulfide is typically localized by folds and has
been penetratively deformed. This type includes the Jersey,
H.B., and Reeves McDonald deposits around Salmo and the
Duncan deposit in the Lardeau district (Fig. 1).

3. The third type of ore deposit, known as the “Bluebell
type,” consists of massive or disseminated sulfides in limestone
and marble adjacent to fractures in a number of different

stratigraphic units. These deposits are generally richer in sil-
ver, have a more complex mineralogy and are higher grade
than Salmo-type deposits (Fyles, 1970). Examples of this type
include Bluebell, the Florence-Lakeshore deposit near
Ainsworth, and the Lucky Jim deposit north of Sandon (Fig.
1; Fyles, 1967). 

The Bluebell-type deposits form a subset of vein and re-
placement-type Ag-Pb-Zn-Au deposits that are found around
the Nelson batholith and adjacent areas (Fig. 1). Beaudoin et
al. (1992a) studied the isotopic characteristics of this suite of
deposits and, based on Pb isotopes, identified four groups:
the Kokanee, Sandon, Ainsworth, and Bluebell groups. They
interpreted three sources of Pb—depleted mantle, lower
crust, and upper crust. The Bluebell group (including the
Bluebell deposit and some deposits in the northern part of
the Ainsworth camp) is characterized by Pb interpreted to be
from depleted mantle and lower crust, whereas Pb in the
Ainsworth deposits was considered to be derived from the
upper and lower crust. The Sandon and Kokanee Groups
contain Pb interpreted to be derived exclusively (Kokanee
group) or dominantly (Sandon group) from the upper crust. A
mantle source for CO2 was also suggested by Beaudoin et al.
(1991).

This suite of fracture-controlled deposits formed after re-
gional metamorphism and ductile deformation associated
with Mesozoic contractional Cordilleran orogenesis, probably
during the Eocene (Fyles, 1967; Beaudoin et al., 1992b). The
subject of this paper is the formation of the fracture network
that facilitated mineralization at Bluebell. In particular, we
focus on the hypothesis that fractures that controlled miner-
alization formed during, and as a result of, folding. We pre-
sent data on ductile and brittle structures around the deposit,
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FIG. 1.  Map of the Kootenay Arc showing the location of important lead-zinc deposits, igneous rocks, and major host car-
bonate units. The approximate line of section from Figure 3 is also shown. The name “Kootenay Arc” refers to the arcuate
shape of the belt rather than to a magmatic arc. After Fyles (1970).



propose a new interpretation of the youngest fold generation,
and argue that folding preceded fracture formation. The de-
posit formed above a multiply reactivated Paleoproterozoic
basement structure that may have provided a conduit for
deep mineralizing fluids.

Regional Geology
The Kootenay Arc is a narrow, curvilinear, metamorphosed,

and polydeformed region that forms part of the interior of the
Canadian Cordilleran orogen in southeastern British Colum-
bia. It is located to the west of the foreland fold and thrust
belt, on the west flank of the Purcell anticlinorium, a large
north-plunging structure cored by Mesoproterozoic rocks of
the Belt-Purcell Supergroup (Price, 1981). The Kootenay Arc
straddles the boundary between rocks that formed on the an-
cestral North American continental margin in the Protero-
zoic-early Paleozoic and those that formed in oceanic and
back-arc environments to the west of ancestral North Amer-
ica during the late Paleozoic-early Mesozoic (Klepacki, 1985;
Colpron and Price, 1995; Warren, 1997; for an alternative
view see Thompson et al., 2007). 

Rocks of the Kootenay Arc were deformed and regionally
metamorphosed in the Middle Jurassic-Early Cretaceous
during shortening associated with formation of the Canadian
Cordillera (Archibald et al., 1983; Leclair et al., 1993). They
were intruded by major plutonic suites in the Middle Jurassic,
and again in the mid-Cretaceous (115–95 Ma). The mid-Cre-
taceous plutons mostly postdate regional deformation and

metamorphism but there was further localized deformation
and minor magmatism associated with early Tertiary exten-
sion (Fyles, 1967; Fyles et al., 1973; Archibald et al., 1984; Se-
vigny and Theriault, 2003; Moynihan and Pattison, 2008).
Early Tertiary extensional structures are widely developed
across southeastern British Columbia, although estimates of
the magnitude of extension vary significantly (e.g., Parrish et
al., 1988; Johnson and Brown, 1996; Glombick et al., 2006).

Stratigraphy

The tight folds of the Kootenay Arc are developed in rocks
of Neoproterozoic-Mesozoic age (Fig. 2; Fyles and Eastwood,
1962; Fyles, 1964, 1967; Hoy, 1977). The Neoproterozoic-
Lower Cambrian Hamill Group (Colpron et al., 2002) is dom-
inated by quartz-rich metasedimentary rocks with minor am-
phibolite and calc-silicate. A regional unconformity is
developed in the Hamill Group (Devlin and Bond, 1988;
Warren, 1997), separating units that were deposited in fault-
bounded basins during rifting from an upper part distin-
guished by laterally continuous units deposited in a shallow-
marine setting. This unconformity is interpreted to record the
change from active continental rifting to thermal subsidence
on a passive margin between 549 and 520 Ma (Devlin and
Bond, 1988; Warren, 1997).

The Upper Hamill Group is conformably overlain by the
Mohican and Badshot Formations (Fig. 2; Fyles and East-
wood, 1962; Fyles, 1964). The Mohican Formation is a tran-
sitional unit comprising interlayered silicilastic and carbonate
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limestone, amphibolite 
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Hamill Group - micaceous quartzite, white quartzite, 
mica schist, amphibolite, calc-silicate, marble 

FIG. 2.  Summary of the stratigraphy of the Kootenay Arc, based on Fyles and Eastwood (1962), Fyles (1964, 1967),
Reesor (1973), Hoy (1980), Klepacki (1985), Devlin and Bond (1988), Leclair (1988), and Warren (1997).



metasedimentary rocks. It is overlain by Archaeocyathid-
bearing calcite and dolomite marble of the late Lower Cam-
brian Badshot Formation. The Badshot Formation forms a
laterally continuous marker unit and is interpreted to have
been deposited on a tectonically quiescent shallow-marine
shelf (Warren, 1997). The Badshot Formation is followed in
conformable succession by the lower Paleozoic Lardeau
Group, a varied sequence comprising siliclastic metasedi-
mentary rocks, mafic metavolcanic rocks, and carbonate and
calc-silicate rocks (Fyles and Eastwood, 1962; Fyles, 1964;
Hoy, 1977; Colpron and Price, 1995, and references therein). 

The lowest part of the Lardeau Group is a fine-grained
black metapelite that records deposition under deep water,
anoxic conditions. Its contact with the Badshot Formation is
interpreted to mark the point when the rate of carbonate pro-
duction could no longer keep pace with subsidence (Warren,
1997). A return to active rifting is recorded by metavolcanic
rocks and coarse grits of upper parts of the Lardeau Group.
This post-Cambrian extension on the western margin of an-
cestral North America is interpreted to be responsible for dif-
ferences between the Lardeau Group and age-equivalent
strata to the east (Colpron and Price, 1995).

The Lardeau Group is unconformably overlain by a se-
quence comprising upper Paleozoic-Mesozoic rocks of the
Milford, Kaslo, and Slocan groups (Fig. 2). These rocks, which
include metamorphosed limestone, argillite, sandstone, con-
glomerate, and mafic volcanic rocks, are generally interpreted
to record deposition in back-arc environments to the west of
ancestral North America, prior to Cordilleran shortening
(Fyles, 1967; Klepacki, 1985; Roback et al. 1994; Hoy and
Dunne, 1997).

Igneous rocks

Metasedimentary and metavolcanic rocks of the Kootenay
Arc host numerous Middle Jurassic (ca. 165 Ma) and mid-
Cretaceous granitic plutons and minor intrusive bodies
(Archibald et al. 1983, 1984; Logan, 2002). In the central
Kootenay Arc, the Middle Jurassic plutonic suite is repre-
sented by the calc-alkaline Nelson batholith and associated
minor bodies. The Nelson batholith is an 1800 km2 body in-
truded during the interval 159 to 173 Ma (Ghosh, 1995). It
ranges in composition from diorite to granite, but is dominated
by porphyritic hornblende granodiorite. The second major
plutonic suite was intruded during the interval 117 to 95 Ma.
Rock types include hornblende and biotite granodiorite,

 biotite granite, and two-mica granite, which are interpreted
to have been derived from crustal anatexis (Brandon and
Lambert, 1993). Examples include the Bayonne, Fry Creek,
and White Creek batholiths. 

The youngest igneous rocks in the Kootenay Arc are early
Tertiary mafic djkes and small intrusions, some of which are
lamprophyre (Fyles, 1967; Leclair, 1988; Beaudoin et al.,
1992b; Sevigny and Theriault, 2003). Beaudoin et al. (1992b)
reported K-Ar dates in the range of 26 to 30 Ma for whole-
rock analyses of altered gabbroic dikes from Bluebell; how-
ever, these dates were interpreted as resulting from alteration
and are not thought to represent the crystallization age of the
dikes. 

Deformation and metamorphism

The outcrop pattern in the central Kootenay Arc is domi-
nated by two generations of gently plunging folds (Fig. 3;
Fyles, 1964, 1967; Hoy, 1977, 1980; Leclair, 1988). The earli-
est folds are a series of high amplitude isoclines with an axial-
planar schistosity. The most clearly defined F1 folds in the
central Kootenay Arc are westward-closing recumbent anti-
clines cored by the Hamill Group. The largest of these, the
Riondel nappe (Hoy, 1977) (equivalent to the Meadow Creek
anticline in the Duncan Lake area; Fyles, 1964) has a 20-km-
long overturned lower limb (Fig. 3). F1 isoclines were coaxi-
ally refolded around gently plunging F2 axes, giving rise to a
type 3 interference pattern (Ramsay, 1967). F2 axial planes
generally dip gently to moderately steeply to the west, but
steepen toward higher structural levels to the east (Hoy,
1980). Mineral lineations (L1 and L2) generally plunge gently
north or south, parallel to fold axes. 

Deformation took place in the Kootenay Arc between de-
position of the Cambrian-Ordovician Lardeau Group and the
Mississippian Milford Group, and again in Late Permian-
Middle Triassic (Read and Wheeler, 1976; Klepacki, 1985).
However, Cordilleran (Middle Jurassic-Lower Cretaceous)
deformation is responsible for the dominant structures and
fabrics in the central Kootenay Arc (Archibald et al., 1983;
Leclair et al., 1993; Warren, 1997).

Cordilleran deformation was accompanied by Barrovian re-
gional metamorphism. A narrow, elongate region of anom-
alously high metamorphic grade runs parallel to Kootenay
Lake (Crosby, 1968; Livingstone, 1968; Reesor, 1973; Hoy,
1976; Archibald et al., 1983; Pattison et al., 2010). Metamor-
phic grade ranges from the biotite zone on the flanks of this
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high to the sillimanite zone in its core. The Bluebell deposit
lies in the sillimanite zone, in the center of this metamorphic
high. Rocks in the center of this belt were metamorphosed
under conditions approximating 650° to 700°C at 20 to 25 km
depth (Hoy 1977, Archibald et al., 1983; Moynihan and Patti-
son, 2008). The metamorphic high is bounded on the west
side by a series of normal faults that accommodated differen-
tial exhumation during early Tertiary extension. From east to
west, they are the Lakeshore, Josephine, and Gallagher faults
(Fig. 3). The Gallagher fault marks the western boundary of
the amphibolites facies belt and coincides with a change in
40Ar/39Ar mica cooling ages from Jurassic-Early Cretaceous in
the hanging wall to early Tertiary in the footwall (Mathews,
1983; Archibald et al., 1984; Moynihan and Pattison, 2008).
Outside of this amphibolites facies belt, greenschist and tran-
sitional greenschist-amphibolite facies regional metamorphic
assemblages are ubiquitous, but are locally overprinted in
low-pressure contact-metamorphic aureoles (Archibald et al.,
1983; Pattison and Vogl, 2005).

Basement controls on sedimentation, 
deformation and mineralization in the 
Kootenay Arc and Purcell anticlinorium

The craton to the east of and below the southeastern Cana-
dian Cordillera comprises a number of Archaean and Palaeo-
proterozoic domains that were assembled during the Paleo-
proterozoic (Ross, 1991; Price and Sears, 2000, and references
therein). Tectonic boundaries between these domains trend
northeast-southwest, and intermittent reactivation of these
basement structures affected patterns of sedimentation, de-
formation, and mineralization in overlying rocks.

A prominent northeast-southwest–trending zone referred
to as the Vulcan structure projects from the North American
craton across the Purcell anticlinorium and southern Koote-
nay Arc (Price, 2000; Price and Sears, 2000). Syndepositional
normal faults that formed above this basement structure ac-
count for large variations in the thicknesses and facies distri-
bution of Mesoproterozoic, Neoproterozoic, and Paleozoic
rocks (Lis and Price, 1976; Price, 2000; Price and Sears,
2000). The zone also exerted a control on the location of clas-
tic-hosted (Mesoproterozoic) and carbonate-hosted (Lower-
Middle Cambrian) Pb-Zn deposits (Kanasewich, 1968; Hoy,
1982; Hoy et al. 2000b). Reactivation of this zone during
Cordilleran deformation led to right-lateral reverse faulting
and localized granitic intrusions along the same trend (Price,
2000; Price and Sears, 2000).

Another multiply-reactivated northeast-southwest–trend-
ing basement structure recognized by McMechan (2010)
crosses the central Kootenay Arc around the latitude of Rion-
del-Ainsworth. Features associated with this zone include
anomalous northeast-trending faults in the Rocky and Purcell
mountains, a cluster of Ordovician-Early Devonian diatreme
pipes, Pb-Zn showings, and sedimentary facies and thickness
changes in Mesoproterozoic and Paleozoic rocks. It may also
have acted as a conduit for the mid-Cretaceous White Creek
batholith, which is intruded along one of the major transverse
faults in the Purcell anticlinorium. When palinspastically re-
stored to account for Cordilleran deformation, these features
line up parallel to the Red Deer zone, a geophysically imaged
boundary that marks the northwest margin of the Archean

Hearne province in the cratonic basement (McMechan,
2010).

The Bluebell Deposit
The Bluebell deposit was staked in 1882 and between 1885

and 1927, 540,000 tons (t) of ore, having an average grade of
6.5 percent Pb and 8.2 percent Zn, was produced (Hoy,
1980). Renewed production during the period 1952–1971
yielded 4,777,000 t, grading 5.1 percent Pb, 6.1 percent Zn,
1–2 oz/t Ag, 0.1 percent Cu, and 0.0003 percent Cd
(Changkakoti et al., 1988). There are three sulfide-rich zones;
from north to south these are the Comfort, Bluebell, and
Kootenay Chief zones (Fig. 4). 

Structural setting of the Bluebell deposit

The Riondel peninsula is underlain by a west-dipping panel
of penetratively deformed rocks belonging to the Hamill
Group, the Mohican and Badshot formations, and the Lardeau
Group (Hoy, 1980). The deposit is hosted in carbonate strata
of the Lower Cambrian Badshot and Mohican formations.
Stratigraphy of the mine site is outlined in Table 1.

These units lie in inverted stratigraphic sequence due to
their position on the overturned lower limb of the Riondel
nappe, a recumbent isoclinal F1 fold with an amplitude of >20
km (Fig. 3). The F1 Riondel nappe is refolded by a series of
tight-isoclinal F2 folds that plunge gently north and are over-
turned to the east. The penetrative S-L fabrics developed in
the rocks on the Riondel peninsula are associated with the de-
velopment of these F2 folds. S1 is only rarely preserved in
quartz-rich layers in the hinges of some minor F2 folds.
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TABLE 1.  Stratigraphy Around the Bluebell Mine Site 
(after Shannon, 1970).

Thickness (m) Stratigraphic unit Lithology

120 Hamill Group- White quartzite, brown mica 
Mohican Formation schist and pegmatite; a marble 

lens (“upper limestone” max. 
thickness of 5.5 m) 24 m above 
the Badshot Fm. contact 
marks the base of the 
Mohican Formation

30-45 Badshot Formation Mostly white, alternating fine- 
and coarse-grained calcite 
marble with some gray bands 
and phlogopite partings; some 
coarse-grained gray layers are 
dolomitic

215 Lardeau Group Graphitic gray and black 
schistose argillite or argilla-
ceous quartzite; beds are 
partly calcareous and some-
what feldspathic; locally, 
lenses of impure marble

150 Lardeau Group Hornblende schist with some 
interlayered quartz mica schist 
and limy schist

>490 Lardeau Group Quartz-calc-silicate schist, 
feldspathic and calcareous in 
places, with amphibolite and 
pegmatite sills, locally lenses 
of impure marble



S2 dips 20° to 60° to the west and is generally subparallel to
compositional layering (S0) except in the hinges of minor folds
(Figs. 5A, 6). Due to the convex-eastward curvature of the
Kootenay Arc, average S2 swings from south-southwest south
of the peninsula to south-southeast to the north (Hoy, 1977,
1980). Minor F2 folds are common; they plunge at low angles
to the north, are tight to isoclinal, and have rectilinear hinges.
Minor F2 fold axes and intersections of S2 with S0 are invari-
ably  colinear with a stretching lineation, L2 (Figs. 5A, 6). This
is defined by stretched quartz crystals and quartz-feldspar ag-
gregates in metasedimentary rocks, veins, and pegmatites;
aligned phyllosilicates and sillimanite-rich nodules in mica-
ceous schists, and aligned tourmaline crystals in quartz veins.
It lies orthogonal to the necks of calc-silicate boudins in
quartzite on S2 (Fig. 5B). Internal boudinage is also developed

within schistose layers and locally gives rise to discontinuous
undulations of S2. The alignment of sillimanite crystals and
sillimanite-rich nodules with L2 means that peak metamor-
phism preceded or was synchronous with D2 deformation.

The youngest folds in the area (F3) are open deflections of
S2/S0 that plunge southwest (Fig. 6; Fyles, 1967; Livingstone,
1968; Hoy, 1980; this study). These folds and later structures
are described in detail in a later section.

Nature and geometry of the deposit

The Bluebell orebodies, first described in detail by Irvine
(1957), comprised three zones separated by barren intervals
approximately 300 m wide (Fig. 4). The bodies were massive
sulfide replacements that developed in marble along steeply
dipping fractures (Irvine, 1957). The ore formed tabular
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 bodies with irregular outlines that were controlled by varia-
tion in the extent to which it spread along layers intersected
by the fractures (Irvine, 1957). Ore typically extended 1.5 to
3 m outward from fractures; however, where fractures inter-
sected favorable horizons, ore extended up to 30 m along the
layer. Larger bodies up to 30 m wide were also produced in
places where ore from adjacent, closely spaced fractures coa-
lesced. The orebodies extended downdip as much as 500 m
(Irvine, 1957). 

The sulfide bodies plunged west-northwest, parallel to the
intersection of fractures with stratigraphic layering. The min-
eralized fractures strike west-northwest and dip steeply
north. The attitudes reported by Irvine (1957) for each of the
ore zones are reproduced in Table 2; the small differences in
fracture orientations between the ore zones result from
abrupt changes across zones of brecciated rock that are up to
15 m wide (Irvine, 1957). The breccia zones are planar, ap-
proximately parallel to the mineralized fractures. 

In map view, the sulfide bodies formed elongate bodies
trending west-northwest (Fig. 4). In cross section, Ransom
(1977) described the idealized average body as being mush-
room shaped, with crosscutting keels 1 to 30 m wide, widen-
ing upward into a cap up to 6 m thick that extended as much
as 50 m from the keel zone. Some lateral shoots were also de-
veloped close to the base of the marble.

Ore was most extensively developed at the upper contact of
the Badshot Formation, at the contact between fine- and
coarse-grained marble within the formation, below schist
within the formation, and on the underside of granitic peg-
matite and mafic dikes (Fig. 7; Irvine, 1957; Shannon, 1970;
Ransom, 1977; Hoy and Ransom, 1981). Depressions on the
footwall and antiforms on the hanging wall were also favorable
sites for ore accumulation (Ransom, 1977). Ore accumulated
in these locations because they each presented an impediment
to upward movement of mineralizing fluids (Ransom, 1977).

Pegmatite dikes are deformed and are typically approxi-
mately parallel to stratigraphic layering, whereas mafic dikes
crosscut the west-dipping foliation (S2). Two kinds of mafic
dikes have been recognized. Deformed brown dikes (Shan-
non, 1970), referred to as lamprophyre by Ransom (1977),
strike north-south, dip east, and display normal-sense offsets
parallel to west-dipping S2. Younger dikes, which have been
referred to as diabase (Ransom, 1977), lamprophyre, and
greenstone (Shannon, 1970) typically trend west-northwest
and postdate ductile deformation and regional metamor-
phism. Altered gabbroic dikes of this type comprise partly al-
tered plagioclase phenocrysts sitting in a plagioclase-rich ma-
trix that has been partly altered to white mica, carbonate, and
opaques (Beaudoin et al., 1992a). These dikes probably be-
long to the Eocene suite developed regionally but this has not
been confirmed.

A number of faults transect the Badshot Formation (Fig.
4A). These faults have strike separations of up to 10 m and are
generally oriented parallel to mineralized fractures (Irvine,
1957). In the Kootenay Chief and Bluebell ore zones these
faults are concentrated in the central part of the ore zone
(Irvine, 1957). Shannon (1970) described mineralization
along faults, suggesting faulting predated mineralization.
Elsewhere, faults appear to truncate ore (Fig. 4A) and de-
formed galena crystals observed during the current study in-
dicate that there was local deformation after crystallisation of
the ore.

The mineralization at Bluebell is dominated by massive re-
placement of marble. These coarse-grained masses consist
mainly of pyrrhotite, sphalerite, galena, knebelite (Fe-Mn oli -
vine), quartz, and calcite (Westervelt, 1960; Ohmoto and Rye,
1970). Pyrite is present as a replacement product of pyrrhotite
but some may be primary (Shannon, 1970). Small amounts of
arsenopyrite, chalcopyrite, siderite, and rhodochrosite are
also present. Approximately 10 percent of the sulfide miner-
alization is contained in partially filled vugs, where pyrrhotite,
sphalerite, galena, and minor chalcopyrite are intergrown
with quartz and calcite (Ohmoto and Rye, 1970). 

Ohmoto and Rye (1970) identified three stages in the min-
eralization, starting with formation of knebelite (period I),
followed by massive sulfide-quartz-carbonate ores (period II),
and finally, formation of crystals in vugs (period III). The
boundary between periods II and III is arbitrary, with a grad-
ual increase in the abundance of calcite and quartz relative to
sulfides. Based on mineral assemblages and fluid inclusions,
Ohmoto and Rye (1970) estimated temperatures of 320° to
450°C during deposition of period III crystals, at a depth of
approximately 6 ± 2 km; earlier stages formed at tempera-
tures >450°C. 

The vuggy, space-filling nature of some of the ore, its asso-
ciation with late crosscutting fractures, its development in
marble belonging to different stratigraphic units, and the re-
lationship with unmetamorphosed mafic dikes collectively
provide compelling evidence that Bluebell is a late, fracture-
controlled replacement deposit (Irvine, 1957; Fyles, 1967;
Ohmoto and Rye, 1970; Shannon, 1970; Ransom, 1977; Hoy,
1980; Hoy et al., 2000a). Nelson (1991) and Hoy et al. (2000a)
noted the similarity of Bluebell to manto-type deposits.

Although the control exerted by the west-northwest–trend-
ing fractures in localizing the deposit has been well estab-
lished, the relative age and origin of the fractures is less clear.
Some previous authors have suggested fractures formed dur-
ing and as a result of folding (Irvine, 1957; Shannon, 1970;
Hoy, 1980; Hoy et al. 2000a). In the following section we give
a detailed account of late structures on the Riondel peninsula
and suggest that these interpretations are incompatible with
the observed geometry. Instead, we suggest that the folds and
fractures formed sequentially.

Late Folds and Fractures on the Riondel Peninsula

F3 folds

Southwest-plunging (F3) folds on the Riondel peninsula
were reported by Fyles (1967), Livingstone (1968), and Hoy
(1980). F3 folds are symmetric to weakly asymmetric gentle to
open southwest-plunging folds with steep axial planes (Figs.
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TABLE 2.  Orientation of the Mineralized Fractures in 
Each of the Three Ore Zones (from Irvine, 1957).

Ore zone Strike Dip

Comfort N72°W (288°) 83°N
Bluebell N76W (285°) 82°S
Kootenay Chief N63W (298°) 85°N



6, 8A). Where asymmetry is discernible, folds display S-
shapes when viewed down plunge. Folds are prominent at the
meter and centimeter scale; the only map-scale fold with this
orientation is the Sherraden Creek fold to the south of the
Riondel peninsula (Hoy, 1980). Livingstone (1968) noted that
L2 lineations around individual F3 folds fall on small circles
and suggested these folds formed by flexural slip. Hoy also
proposed this mechanism and noted the S asymmetry, inter-
preting this to reflect a “sinistral shear sense” (Hoy 1980, p.
67). This interpretation of the asymmetry may be valid if the
folds are modified buckles or drag folds, but a different origin
is suggested here.

A notable characteristic of F3 folds is that they are highly
discontinuous. Rather than forming elongate linear features,

they impart an irregular wavy character to folded surfaces
(Fig. 8B). In addition to being laterally discontinuous, folds
are discontinuous normal to S2/S0, leading to disharmony be-
tween adjacent layers. On suitably exposed surfaces the folds
appear as slightly elongate, scoop-shaped undulations that
commonly have length/width ratios of only 2 or 3:1. The dis-
continuous nature of these folds can make precise measure-
ment of individual fold hinges difficult. 

The key to the interpretation of F3 folds presented here is
the recognition of southwest-trending centimeter-scale shear
bands that transect S2 in schistose rocks of the Hamill Group
(Fig. 8C). These centimeter-scale shear bands are discontin-
uous in each direction and commonly merge with S2 at their
terminations. They dip northwest and cause discontinuous
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FIG. 7.  Examples of longitudinal profiles through Bluebell orebodies. These show the influence on ore location exerted
by fractures (A), mafic dikes (A), pegmatite (B, C) and lithology (A, C). From Shannon (1970).



sigmoidal deflections of S2 that define open folds with south-
west-plunging axes (Fig. 8C, D).

Shear bands are variably developed. In some instances,
they form narrow shear zones with relatively discrete offset of
layers and deflection of S2. Elsewhere the shear bands are
broad and diffuse (Fig. 8D); in these cases, they are mani-
fested in the thinning of the northern limbs of slightly asym-
metric sigmoidal antiforms. In each case, slightly asymmetric
discontinuous folds with southwest-plunging axes were pro-
duced as a result of shear-band development. Meter-scale
folds exposed on the shoreline have a similar geometry to
those observed at the centimeter scale. These are diffuse
shear bands developed on a larger scale.

This geometry is interpreted to result from heterogeneous
development of shear band cleavage (Platt and Vissers, 1980;
White et al., 1980; Dennis and Secor, 1987; Williams and
Price, 1990), and indicates reactivation of, and a component
of extension along, S2. The orientation and asymmetry of the

shear bands and associated folds indicate oblique dextral-
 normal sense shearing during D3, and the discontinuous na-
ture of the folds observed at Riondel is characteristic of these
structures (Passchier and Trouw, 2005). Southwest-plunging
F3 folds at all scales (Fig. 8) are interpreted to have formed in
a similar manner, based on the reasoning that folds over a
range of scales with common orientations and characteristics
most likely formed at the same time, by the same mechanism.
There is no evidence for shortening of S2 during or subse-
quent to D3; buckle folds are not developed.

Shear band cleavage fabrics and associated folds are widely
developed in schistose rocks in the footwall of the Gallagher
fault, the structurally highest of the early Tertiary normal
faults on the west side of Kootenay Lake (Fig. 3; Fyles, 1967).
These structures are best developed in the immediate foot-
wall of the fault and decrease in prominence eastward
(Moynihan and Pattison, 2008). An eastward decrease in the
intensity of F3 folding was also noted by Livingstone (1968).
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FIG. 8.  F3 structures on the Riondel peninsula, developed at a range of scales. A) Open, sigmoidal southwest-plunging F3

folds with steep axial planes. This photograph is taken looking up the plunge of the folds. Hammer for scale. B) Irregular un-
dulations on a quartz vein caused by F3. C) Photomicrograph of shear bands in garnet-sillimanite schist of the Hamill Group.
The field of view is 12 mm. Viewed normal to the axes of F3 folds. D) Incipient shear bands developed in Hamill Group semi-
pelite. The viewing direction is close to the axes of F3 folds. 



As F3 structures are restricted to the footwall of the fault, they
must be at least as old as the normal faulting. In thin section,
shear bands at Riondel are characterized by concentrations of
opaque material; however, elsewhere in the footwall of the
Gallagher fault, similar shear bands are rich in secondary chlo-
rite, suggesting development during retrograde metamor-
phism following peak metamorphism and D2 deformation.

The absolute age of phase III folding is poorly constrained.
It postdates Early to mid Cretaceous peak metamorphism
and D2 deformation (Leclair et al., 1993; Moynihan and Pat-
tison, unpub. data), but is older than mafic dikes of pre-
sumed, but unconfirmed, Eocene age. Livingstone (1968) re-
ported transection of F3 folds by medium- to fine-grained
leucrocratic dikes with chilled margins. The age of these dikes
was not established, but granitic intrusions younger than ap-
proximately 75 Ma (Campanian) have not been recorded in
the Kootenay Arc (Logan, 2002, and references therein).
Early Tertiary muscovite (55±3, 59±3 Ma) and biotite (50 ± 3
Ma) K-Ar ages from the Riondel peninsula (Beaudoin et al.,
1992a) are similar to those elsewhere in the footwall of the

Gallagher fault and record cooling that was probably coinci-
dent with regional extension (Archibald et al., 1984).

Late subvertical shear zones

S2 is overprinted by a number of meter-scale subvertical
ductile shear zones trending approximately 340°. Deflection
of S2/S0 into these shear zones indicates west side-down dis-
placement. It is not clear whether these shear zones formed
before, during or after F3 folding; however, the shear zones
predate fracturing, mafic dike intrusion, and mineralization.

Brittle fractures

Quartzite of the Hamill Group is extensively fractured.
Based on surface measurements taken west of the Comfort
and Bluebell ore zones, there are two dominant sets of frac-
tures; a third is also locally developed (Figs. 9, 10). Fractures
belonging to each of the two main sets are generally visible to-
gether in outcrop (Fig. 11A), with a typical spacing of cen-
timeter-decimeter. They have smooth segments but are later-
ally discontinuous, with numerous jogs between subparallel
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Poles to fractures (n= 411)
barren (n=372)
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FIG 9.  Equal area lower hemisphere stereonet showing contoured poles to brittle fractures in the Hamill Group (hang-
ing wall), directly to the west of the Comfort and Bluebell ore zones. There are two dominant orientations. The fracture set
trending west-northwest is mineralized and hosts mafic dikes. Fractures trending east-northeast are commonly filled with
quartz. A third set of fractures, striking north-northeast, is locally developed.



surfaces and slight angular changes in the orientation of indi-
vidual surfaces. The dominant fractures commonly belong to
the set clustered around an attitude of 295°/85° N (Figs. 9,

10). This is the orientation of the fractures that host mineral-
ization in each of the three ore zones (Irvine, 1957; Fyles, 1967;
Table 2). A small percentage of fractures with this orientation
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FIG. 10.  Synoptic equal angle lower hemisphere stereonet showing the geometric relationship between F3 folds and brit-
tle fractures. The orientations of the two dominant fracture sets are plotted using the values with the greatest concentration
of field measurements. The acute and obtuse bisectors of these fracture sets are also shown. The acute dihedral angle be-
tween the two sets of fractures is 57º. Mean S2 is marked with a black circle. Mean measured F3 is shown using a diamond
shape. The triangle indicates the orientation of the F3 axis constructed from all S2 measurements. 
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FIG. 11.  A) Photograph of the two dominant sets of fractures in quartzite of the Hamill Group on the Riondel peninsula.
Looking east onto S2/S0. Hammer for scale. B) Quartz vein occupying southeast-dipping fracture cut by west-
northwest–trending fractures.



have macroscopic quartz fillings. The quartz in these frac-
tures retains delicate growth textures, indicating growth into
open space with no subsequent recrystallization. 

The second prominent cluster of fractures is concentrated
around a strike of 68°/60° S (Figs. 9, 10). Quartz fillings are
much more common in these fractures compared with those
trending west-northwest. Mineralization along fractures with
this orientation has not been reported, but at UTM 11U
0509865 5512241, coarse-grained galena is intergrown with
quartz in a vein with this orientation. Space-filling textures
are preserved and the mode of occurrence suggests this local
concentration of galena formed through remobilization from
the main ore deposit. There is a particularly high concentra-
tion of thick quartz veins with this orientation directly above
the downdip projection of the Bluebell ore zone. Some of the
quartz veins filling fractures with this orientation are cut by
fractures belonging to the west-northwest–trending (mineral-
ized) set (Fig. 11B).

All of the mafic dikes observed on the shoreline of the
Riondel peninsula are oriented parallel to the west-north-
west–trending (mineralized) fracture set. They cut obliquely
across F3 folds and truncate north-northwest–trending sub-
vertical west side-down shear zones. At UTM 11U 0509849
5512370, a west-northwest–trending dike jogs onto a fracture
belonging to the east-northeast–trending (unmineralized) set
for a short segment. These relationships suggest that dikes
were intruded along fractures that formed before or during
emplacement. One of the dikes studied is cut by an array of
fractures belonging to the east-northeast–trending (unminer-
alized) set.

There is generally little or no displacement visible across
the measured fractures, but they locally have offsets of up to
a few centimeters. At the location of intersections between
the two sets of fractures, various relationships are apparent,
including simple crossing with no measurable offset, deflec-
tion of one fracture set close to the intersection line, termi-
nation of one fracture against another, and apparent offset of
one of the main throughgoing fractures, sometimes with
shorter parallel fractures developed around the intersection
line. The two main fracture sets are interpreted as having
formed as a conjugate set of shear fractures based on mutu-
ally crosscutting relationships and small spatially coincident
variations in the orientation of each set. If so, the ore-hosting
set must have been preferentially opened before or during
mineralization; these fractures also localized late faulting.

Discussion

Did mineralized fractures form during and 
as a result of folding?

Irvine (1957) proposed that formation of the mineralized
fractures at Bluebell accompanied folding. According to this in-
terpretation (Irvine 1957, p. 103), north-south shortening pro-
duced “cross-warps of the strata,” including the “gentle syn-
cline surrounding the Bluebell mine” with a wavelength of 5
km. The “hanging-wall quartzite, acting as a unit with the un-
derlying limestone, broke into segments, each of which...lifted
as a gentle anticlinal arch.” As a consequence, “a series of anti-
clinal arches formed within the confines of a synclinal fold.”
Arching produced “tension fractures....oriented parallel to the

fold axes.” This compressional period was then followed by
“one of relaxation, during which the anticlinal arches sustained
some degree of collapse along gravity faults which formed from
some of the tension fractures” (Irvine, 1957, p. 103).

There are a number of problems with this interpretation.
There is no evidence that there was north-south shortening.
Mapping of the region around the mine site has confirmed
the presence of a gradual change in the strike of S2, from the
south-southwest south of Riondel to south-southeast to the
north (Crosby, 1968; Hoy 1977, 1980); however, this “fold” is
not a local feature with a wavelength of just 5 km; it reflects
the curvature of the Kootenay Arc, a structural salient with a
wavelength of >275 km and an amplitude of 80 km (Fig. 1).
Varsek and Cook (1994) attributed formation of the arcuate
salient to the presence of a cratonic embayment to the east,
whereas Thompson et al. (2007) suggested that the shape re-
flects the subsurface geometry of a basement high to the
west. This salient formed during Middle Jurassic-Lower Cre-
taceous deformation, when rocks were undergoing north-
south extension at middle to upper amphibolite facies condi-
tions. A later fold generation with westerly plunging axes has
not been recognized in the area (Crosby, 1968; Livingstone,
1968; Hoy, 1977, 1980) and the map of the deposit does not
show each of the deposits located on antiformal crests (Fig.
4A). Buckling and outer arc extension would not be expected
in a weak carbonate layer surrounded by quartz-rich rocks.
The interpretation does not account for the observation that
“fractures are spaced uniformly along the limestone forma-
tion (Irvine, 1957, p. 103), nor does it explain the second set
of fractures that form an angle of approximately 60° with the
mineralized set. 

Shannon (1970) adopted the interpretation proposed by
Irvine (1957) and presented a block diagram to illustrate the
geometry of the deposit (Fig. 12); this was also reproduced in
Nelson (1991). In this illustration, the ore zones are shown
occupying the crestal region of three symmetric antiforms
plunging west-southwest, parallel to the strike of fractures
and mafic dikes. A similar diagram in Ohmoto and Rye (1970)
and Ohmoto (1971) shows fanning of fractures around an-
tiformal arches centered on each of the ore zones. These dia-
grams depict the overall form of the deposit adequately, but
details are misleading. Fractures and dikes trend west-north-
west, not west-southwest. Mineralized fractures consistently
dip north rather than fanning around ore zones. The folds de-
picted are not evident on the map, and the southwest-plung-
ing F3 folds are not represented in any way. The interpreta-
tion implicit in each of the diagrams that outer-arc extension
led to formation of the fractures in the marble is not sup-
ported by the data presented above.

An alternative proposal regarding the timing of fracture
formation was made by Hoy (1980, p. 85; also Hoy et al.,
2000a; Hoy and Lefubre, 2003), who suggested that “the frac-
tures and related mineralization may have developed during
the Phase 3 deformation.” However, the fractures cut across
and show no variation between F3 hinge zones, F3 limbs, and
areas unaffected by F3 folding. They do not exhibit any of the
geometric relationships with respect to fold axes that typically
develop during simultaneous folding and fracturing (Price
and Cosgrove, 1990). According to the interpretation pre-
sented here, the formation of F3 folds involved extension and
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slip along S2, and the formation of diffuse shear zones; this
deformation must have taken place prior to formation of frac-
tures. We interpret the brittle fractures as having originated
as a conjugate set of shear fractures, one of which was pref-
erentially opened and mineralized. Irrespective of whether or
not this is the case, we suggest that each of the fracture sets
formed after F3 folding. This result is identical to that of Fyles
(1967), who refuted the suggestion that mineralized fractures
on the Kootenay-Lakeshore properties (opposite the Riondel
peninsula) formed in response to folding.

The interpretation that folding played no role in formation
of the fractures does not contradict observations made by
Irvine (1957), Shannon (1970), and Ransom (1977) that un-
dulations, particularly in the hanging wall, were favorable
sites for ore formation. Preexisting folds of impermeable sur-
faces formed structural traps, passively inhibiting the passage
of fluids, thereby localizing ore formation. It is likely that local
antiformal structures that host ore (Irvine, 1957; Shannon,
1970) reflect undulations in layering resulting from a combi-
nation of D2 symmetric boudinage and particularly F3 asym-
metric warping. The scale and discontinuous nature of F3 is
reflected in the “dimpled” (Shannon, 1970, p. 117) character
of layering and the absence of large deflections of strati-
graphic contacts on the Riondel peninsula (Fig. 4A). 

Implications for formation of the deposit

At Bluebell, some or all of the mineralization postdated in-
trusion of undeformed mafic dikes. However, in the broader

Ainsworth-Riondel area there is temporal overlap of vein-
type mineralization and of mafic dikes-sills intrusion (Fyles,
1967). In the Ainsworth area, on the west side of Kootenay
Lake, lamprophyre dikes lie parallel to foliation or in the
same steeply dipping fractures as mineralized veins. Sills and
dikes are locally mineralized and are fractured and offset by
the vein faults (Fyles, 1967). As stated by Fyles (1970, p. 53),
“mafic dikes in the Bluebell and Ainsworth areas that follow
the same pattern of fracturing as the veins show that this min-
eralizing process is closely associated with magmatic activity.”
Abundant systematic fractures in the rocks at Bluebell and
elsewhere provided conduits for fluid movement into the
geochemical trap provided by the carbonate rocks. The high
spatial density of deposits and early Tertiary intrusions in the
Ainsworth-Bluebell area presumably reflects enhanced devel-
opment of fracture networks in the area. Development of this
fracture network took place independently of earlier folding
processes.

Beaudoin and co-workers (Beaudoin et al., 1991, 1992a)
linked alkaline magmatism and vein-hosted Ag-Pb-Zn-Au
mineralization with early Tertiary extension in southeastern
British Columbia. According to this interpretation, mantle
upwelling during extension led to adiabatic partial melting of
subcontinental mantle, generating lamprophyre and gabbro
dikes at approximately the same time as mineralization. Beau-
doin et al. (1991) noted the requirement for a large tran-
scrustal fault zone to connect deep-seated Pb, C, and possibly
O reservoirs with upper crustal levels and suggested this role
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was played by the Eocene Slocan Lake normal fault. The
 normal faults west of Ainsworth were also invoked as conduits
for mineralizing fluids.

A complicating factor is that recent interpretations (Cook
and Van der Velden, 1995; Carr and Simony, 2006) suggest
the Slocan Lake fault does not penetrate the crust, as pro-
posed by, for example, Cook et al. (1992). In additions, veins,
fractures, and faults that host ore deposits in the Ainsworth
area are younger than some, and probably all of the
Ainsworth normal faults. The Josephine fault is crosscut by
fractures of the Highland vein system (Fyles, 1967). The Gal-
lagher fault zone displays a combination of brittle and ductile
structures that must have formed prior to cooling of the rocks
and formation of open transverse fractures. It is likely that the
Lakeshore fault, which is represented by a zone of “highly
sheared” rock (Fyles, 1967) is also older than late, open frac-
tures. Whatever the role played by normal faulting in gener-
ating conditions that led to formation of ore deposits, timing
relationships suggest the Ainsworth faults were not direct
fluid pathways during mineralization.

Another potential route for passage of Pb and CO2 from
deep levels is along the multiply reactivated transverse base-
ment structure that crosses Kootenay Lake around the lati-
tude of Riondel/Ainsworth (McMechan, 2010). The sugges-
tion (McMechan, 2010) that this deep structure affected
mineralization in the overlying Bluebell and Lakeshore de-
posits is supported by the finding of Beaudoin et al. (1992a)
that Pb in these deposits came from a deeper source when
compared with other vein-type deposits in areas to the north-
west of the basement structure. This zone may have facili-
tated passage of mafic magma and hydrothermal fluids from
deep reservoirs. If so, similar fracture networks developed
elsewhere above this basement zone are prospective sites for
hydrothermal mineralization.
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