δ¹³C and δ¹⁵N isotopic analysis of solid materials

Isotope Science Laboratory – Applied Geochemistry Group (ISL-AGg)
Geoscience Department
University of Calgary

Overview:

Analyses of δ^{13} C, wt%C, δ^{15} N and wt%N of solid matter are done using Continuous Flow-Elemental Analysis-Isotope Ratio Mass Spectrometry (CF-EA-IRMS) technology. In the ISL-AGg, a Thermo DeltaVPlus® mass spectrometer is interfaced with either an Elementar Isotope CUBE® or Costech 4010® elemental analyzer via a ConfloIV® device. All materials (RMs, QA/QCs and unknowns) are packed in tin cups of varying and appropriate size, which are dropped by auto sampler onto a quartz tube combustion reactor. The temperature of this reactor is maintained at ~1000°C and 'flash-combustion' is achieved by injecting a pulse of O₂(gas) exactly at the time of sample drop. The eluent gases are then swept by the helium carrier stream through a reduction reactor (\sim 650°C), thus reducing NO_x species to N_{2(gas)}. GC separation of N₂ and CO₂ is achieved before the gas stream is leaked through the Conflo-IV open split into the ion source of the mass analyzer. δ^{13} C and δ^{15} N values are determined by comparing the respective sample peak areas, as [Vs], to reference gas peaks also inlet through the open split. For materials with widely varying [C:N] ratios, δ^{13} C and δ^{15} N analyses must be done separately. For samples whose C:N ratio approaches [3:1] (i.e. bone collagen) the peak jumping feature of the mass spectrometer can be used and a single sample suffices. instruments are fully automated and computer controlled using ISODAT 3.88 software. Prior to sample analysis instrument conditions: reactor temperature(s), carrier gas flows, ion beam background(s), ion source stability and signal linearity are checked and recorded ("Daily check" routine).

Stable isotope ratios are expressed as delta (δ) and are measures of a 'per mill' (‰), or parts per thousand difference between the isotope ratio of a sample and that of a known (International) standard material. Values are reported relative to 'Vienna Peedee Belemnite' (VPDB) formation for Carbon (Craig, 1957) and 'Atmospheric air' for Nitrogen (Air-N₂).

Internal lab standards:

Standard	Supplier	Prod. #	Formula
Caffeine	Sigma Aldrich	C-0750	$C_8H_{10}N_4O_2$
Gelatin	Sigma Aldrich	G-9382	unknown
Glycine	MP Biomedicals	100570	$C_2H_5NO_2$
Keratin	MP Biomedicals	902111	unknown

International standards:

Identifier	δ ¹³ C (‰)vpdb	δ ¹⁵ N (‰)Air-N2
USGS 24	-16.0 ± 0.1	
IAEA-CH-6	-10.4 ± 0.2	
IAEA-CH-7	-31.8 ± 0.2	
NBS 22	-30.03 ± 0.2	
USGS 40	-26.39 ± 0.2	-4.52 ± 0.2
USGS 41	37.63 ± 0.2	+47.57 ± 0.2
USGS 25		-30.40 ± 0.2
USGS 26		+53.70 ± 0.2
USGS 34		-1.80 ± 0.2
USGS 35		+2.70 ± 0.2
IAEA N1		$+0.43 \pm 0.2$
IAEA N2		+20.32 ± 0.2
IAEA NO ₃		+4.69 ± 0.2

- Internal lab standards are used at the beginning, between (~ every 5th) and the end of each sequence to correct for instrument drift and to normalize the data to internationally accepted standards
- Six (6) replicates of different weights are placed near the beginning of each sequence to allow for element wt.% determination and 'non-linearity' correction
- Internal lab standards have been characterized against the International Standards listed above and are re-checked periodically
- USGS LIMs is used for drift correction, normalization and data management. (http://water.usgs.gov/software/LIMS/)

Accuracy and Precision:

```
\delta^{13}Corganic ± 0.2 per mil (n=10 internal lab standards) \delta^{15}Norganic ± 0.2 per mil (n=10 internal lab standards) Elemental wt%C, wt%N and C/N ratio = ± 5% (relative error)
```

References:

Preston, T., Owens, N.J.P., 1983. Interfacing an automatic elemental analyzer with an isotope ratio mass-spectrometer – the potential for fully automated total nitrogen and N-15 analysis. Analyst 108, 971–977.

R.A. Werner and W.A. Brand, Referencing strategies and techniques in stable isotope ratio analysis, Rapid Communications in Mass Spectrometry, 2001: 15: 501-519

T.B. Coplen et al., New Guidelines for δ 13C Measurements, Analytical Chemistry, Vol. 78, No. 7, April 1, 2006

U.S. Geological Survey Report 01-4222, Compilation of Minimum and Maximum Isotope Ratios of Selected Elements in Naturally Occurring Terrestrial Materials and Reagents (Revised June 2002)