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In recent years the research community has accumulated overwhelming evidence for the emergence of
complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical
systems. The complex properties of real-world networks have a profound impact on the behavior of
equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic
spreading is central to our understanding of the unfolding of dynamical processes in complex networks.
The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of
novel analytical frameworks, and it has produced results of conceptual and practical relevance. A
coherent and comprehensive review of the vast research activity concerning epidemic processes is
presented, detailing the successful theoretical approaches as well as making their limits and
assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share
a common interest in studying epidemic spreading and rely on similar models for the description of the
diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results
and the paradigmatic models in infectious disease modeling, the major results concerning generalized
social contagion processes are also presented. Finally, the research activity at the forefront in the study
of epidemic spreading in coevolving, coupled, and time-varying networks is reported.
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I. INTRODUCTION

Since the first mathematical approach to the spread of a
disease by Daniel Bernoulli (1760), epidemic models lie at
the core of our understanding about infectious diseases. As
experimenting in vivo epidemics is not a viable option,
modeling approaches have been the main resort to compare
and test theories, as well as to gauge uncertainties in
intervention strategies. The acclaimed work of Kermack
and McKendrick (1927), defining the modern mathematical
modeling of infectious diseases, has evolved through the
years in an impressive body of work, whose culmination is
well represented by the monumental summary of Anderson
and May (1992). At the same time, the epidemic modeling
metaphor has been introduced to describe a wide array of
different phenomena. The spread of information, cultural
norms, and social behavior can be conceptually modeled as
a contagion process. How blackouts spread on a nationwide
scale or how efficiently memes can spread on social networks
are all phenomena whose mathematical description relies on
models akin to classic epidemic models (Vespignani, 2012).
Although the basic mechanisms of each phenomenon are
different, their effective mathematical description often
defines similar constitutive equations and dynamical behav-
iors framed in the general theory of reaction-diffusion

processes (van Kampen, 1981). It is not surprising then that
epidemic modeling is a research field that crosses different
disciplines and has developed a wide variety of approaches
ranging from simple explanatory models to elaborate stochas-
tic methods and rigorous results (Keeling and Rohani, 2007).
In recent years we witnessed a second golden age in

epidemic modeling. Indeed, the real-world accuracy of the
models used in epidemiology has been considerably improved
by the integration of large-scale data sets and the explicit
simulation of entire populations down to the scale of single
individuals (Eubank et al., 2004; Ferguson et al., 2005;
Longini et al., 2005; Halloran et al., 2008; Balcan, Colizza
et al., 2009; Chao et al., 2010; Merler et al., 2011).
Mathematical models have evolved into microsimulation
models that can be computationally implemented by keeping
track of billions of individuals. These models have gained
importance in the public-health domain, especially in infec-
tious disease epidemiology, by providing quantitative analyses
in support of policy-making processes. Many researchers are
advocating the use of these models as real-time, predictive
tools (Nishiura, 2011; Tizzoni et al., 2012; Nsoesie et al.,
2014). Furthermore, these models offer a number of interest-
ing and unexpected behaviors, whose theoretical understand-
ing represents a new challenge, and have stimulated an intense
research activity. In particular, modeling approaches have
expanded into schemes that explicitly include spatial struc-
tures, individual heterogeneity, and the multiple time scales at
play during the evolution of an epidemic (Riley, 2007).
At the core of all data-driven modeling approaches lies

the structure of human interactions, mobility, and contact
patterns that finds its best representation in the form of
networks (Butts, 2009; Vespignani, 2009, 2012; Jackson,
2010; Newman, 2010). For a long time, detailed data on
those networks were simply unavailable. The new era of the
social web and the data deluge is, however, lifting the limits
scientists have been struggling with for a long time. The
pervasive use of mobile and wifi technologies in our daily life
is changing the way we can measure human interactions and
mobility network patterns for millions of individuals at once.
Sensors and tags are able to produce data at the microscale of
one-to-one interactions. Proxy data derived from the digital
traces that individuals leave in their daily activities (micro-
blogging messages, recommendation systems, consumer rat-
ings) allow the measurement of a multitude of social networks
relevant to the spreading of information, opinions, habits, etc.
Although networks have long been acknowledged as a

key ingredient of epidemic modeling, the recent abundance of
data is changing our understanding of a wide range of
phenomena and calls for a detailed theoretical understanding
of the interplay between epidemic processes and networks.
A large body of work has shown that most real-world
networks exhibit dynamic self-organization and are sta-
tistically heterogeneous—typical hallmarks of complex sys-
tems (Albert and Barabási, 2002; Dorogovtsev and Mendes,
2002, 2003; Newman, 2003b, 2010; Boccaletti et al., 2006;
Caldarelli, 2007; Costa et al., 2007; Cohen and Havlin, 2010;
Baronchelli et al., 2013). Real-world networks of relevance
for epidemic spreading are different from regular lattices.
Networks are hierarchically organized with a few nodes that
may act as hubs and where the vast majority of nodes have few
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interactions. Both social and infrastructure networks are
organized in communities of tightly interconnected nodes.
Although randomness in the connection process of nodes is
always present, organizing principles and correlations in the
connectivity patterns define network structures that are deeply
affecting the evolution and behavior of epidemic and con-
tagion processes. Furthermore, network’s complex features
often find their signature in statistical distributions which are
generally heavy tailed, skewed, and varying over several
orders of magnitude.
The evidence of large-scale fluctuations, clustering, and

communities characterizing the connectivity patterns of real-
world systems has prompted the need for mathematical
approaches capable of dealing with the inherent complexity
of networks. Unfortunately, the general solution, using,
e.g., the master equation of the system, is hardly achievable
even for very simple dynamical processes. For this reason,
an intense research activity focused on the mathematical
and computational modeling of dynamical processes on
networks has started across different disciplines
(Dorogovtsev, Goltsev, and Mendes, 2008). The study of
network evolution and the emergence of macrolevel collective
behavior in complex systems follows a conceptual route
essentially similar to the statistical physics approach to
nonequilibrium phase transitions (Henkel, Hinrichsen, and
Lübeck, 2008). Hence, statistical physics has been leading the
way to the revamped interest in the study of contagion
processes, and more generally dynamical processes in com-
plex networks. Indeed in the last ten years, an impressive
amount of methods and approaches ranging from mean-field
theories to rigorous results has provided new quantitative
insights in the dynamics of contagion processes in complex
networks (Keeling and Eames, 2005; Danon et al., 2011).
However, as is often the case in research areas pursued by

different scientific communities, relevant results are scattered
across domains and published in journals and conference
proceedings with completely different readership. In some
cases, relevant advances have been derived independently by
using different jargons as well as different assumptions and
methodologies. This fragmented landscape does not advance
the field and is, in many cases, leading to the compartmen-
talization and duplication of the research effort. We believe
that a review is timely to contextualize and relate the recent
results on epidemic modeling in complex networks. Although
infectious diseases will be at the center stage of our presen-
tation, social contagion phenomena and network dynamics
itself are discussed, offering a general mathematical frame-
work for all social and information contagion processes that
can be cast in the epidemic metaphor. The final goal is to
provide a coherent presentation of our understanding of
epidemic processes in populations that can be modeled as
complex networks.
After a review of the fundamental results in classical

epidemic modeling and the characterization of complex net-
works, we discuss the different methodologies developed in
recent years to understand the dynamic of contagion processes
in the case of heterogeneous connectivity patterns. In par-
ticular, in Sec. IV we specifically spell out the assumptions
inherent to each methodology and the range of applicability of
each approach. In Sec. V those theoretical approaches are

applied to classic epidemic models such as the susceptible-
infected-susceptible (SIS) and susceptible-infected-recovered
(SIR) models. In those sections particular care is devoted to
shed light on the role of the interplay of the time scales of
the epidemic process and of the network dynamics and on the
appropriateness of different modeling approximations. In
Secs. VI and VII we focus on various approaches to the
mitigation and containment of epidemic processes and on the
analysis of several variations of the basic epidemic models,
aiming at a more realistic description of contagion processes
and contact patterns. In Sec. VIII we provide a summary of
recent results concerning time-varying networks. Although
this is an area that is rapidly advancing due to both theoretical
and data gathering efforts, we report on results that are
expected to become foundational. In Sec. IX we discuss
the generalization of epidemic processes in complex, multi-
species reaction-diffusion processes, an area relevant in the
analysis of epidemics in structured populations. Finally, in
Sec. X, we review the generalization of epidemic modeling of
social contagion phenomena. The number of specific models
for social contagion is extensive and we therefore confine
ourselves to the most relevant to highlight differences and
novel dynamical behaviors in the evolution of the epidemic
process. We conclude with an outlook on the field and the
challenges lying ahead of us.
The upsurge of interest in epidemic modeling in complex

networks has led to an enormous body of work: a query on the
Thompson Web of Science database with the keywords
“epidemic” and “networks” returns more than 3600 papers
in just the last 15 years. A review of all these papers is
unfortunately hardly feasible. Therefore, we have concentrated
our attention on to what we believe are the most influential
papers. In providing a unified framework and notation for the
various approaches, we aim at fostering synergies across
application domains and provide a common knowledge plat-
form for future efforts in this exciting research area.

II. THE MATHEMATICAL APPROACH TO EPIDEMIC
SPREADING

A. Classical models of epidemic spreading

In more than 200 years of its history, the mathematical
modeling of epidemic spreading has evolved into a research
area that spans across several fields of mathematical biology
as well as other disciplines and is treated in classic books such
as those by Anderson and May (1992), Andersson and Britton
(2000), Diekmann and Heesterbeek (2000), Keeling and
Rohani (2007), Brauer and Castillo-Chavez (2010), and
Diekmann, Heesterbeek, and Britton (2012). Here we merely
set the notation and present some of the basic elements and
approximations generally used in the modeling of epidemic
phenomena in order to provide the necessary conceptual
toolbox needed in the following sections.
Epidemic models generally assume that the population

can be divided into different classes or compartments depend-
ing on the stage of the disease (Anderson and May, 1992;
Diekmann and Heesterbeek, 2000; Keeling and Rohani,
2007), such as susceptibles (denoted by S, those who can
contract the infection), infectious (I, those who contracted the
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infection and are contagious), and recovered or removed1 (R,
those who are removed from the propagation process, either
because they have recovered from the disease or because they
have died). Additional compartments can be used to signal
other possible states of individuals with respect to the disease,
for instance immune individuals. This framework can be
extended to take into account vectors, such as mosquitoes for
malaria, for diseases propagating through contact with an
external carrier. Epidemic modeling describes the dynamical
evolution of the contagion process within a population. In
order to understand the evolution of the number of infected
individuals in the population as a function of time we have to
define the basic individual-level processes that govern the
transition of individuals from one compartment to another.
The simplest definition of epidemic dynamics considers

the total population in the system as fixed, consisting of N
individuals, and ignores any other demographic process
(migrations, births, etc.). One of the simplest two-state
compartmentalizations is the SIS model with only two
possible transitions: The first one, denoted S → I, occurs
when a susceptible individual interacts with an infectious
individual and becomes infected. The second transition,
denoted I → S, occurs when the infectious individual recovers
from the disease and returns to the pool of susceptible
individuals. The SIS model assumes that the disease does
not confer immunity and individuals can be infected over and
over again, undergoing a cycle S → I → S, which, under
some conditions, can be sustained forever. Another basic
model is the classic three-state SIR model. In the SIR model,
the transition I → S of the SIS process is replaced by I → R,
which occurs when an infectious individual recovers from the
disease and is assumed to have acquired a permanent
immunity, or is removed (e.g., has died). Clearly, the SIR
process does not allow for a stationary state.
The SIR and SIS models exemplify a basic classification of

epidemic models given in terms of their long time behavior;
see Fig. 1. In the long time regime, the SIS model can exhibit a
stationary state, the endemic state, characterized by a constant
(on average) fraction of infected individuals. In the SIR
model, instead, the number of infected individuals always
tends to zero.
In the SIS and SIR models, the infection and recovery

processes completely determine the epidemic evolution.
The I → R and I → S transitions occur spontaneously after a
certain time the individuals spend fighting the disease or taking
medical treatments; the transition does not depend on any
interactions with other individuals in the population. The S → I
transition instead occurs only because of the contact or
interaction of the susceptible individual with an infectious
one. In this case the interaction pattern among individuals is a
specific feature of the transition and has to be taken into account.
The distribution of the “infectious period” and the transition

probability can generally be estimated from clinical data.
However, in a simplistic modeling scheme, the probability of
transition is often assumed constant. In this way, a discrete-
time formulation defines the recovery probability μ that

an individual will recover at any time step. The time
an individual will spend on average in the infectious compart-
ment, the mean infectious period, is then equal to μ−1 time
steps. In a continuous-time formulation and assuming a
Poisson process (Cox, 1967), μ is a rate (probability per unit
time) and the probability that an individual remains infected
for a time τ follows an exponential distribution PinfðτÞ ¼
μe−μτ, with an average infection time hτi ¼ μ−1. The Poisson
assumption for the processes of infection and recovery leads
naturally to a Markovian description of epidemic models
(Ross, 1996).
The probability of the S → I transitions is more compli-

cated and it is dependent on several factors and on the
modeling approximations considered. In the absence of
detailed data on human interactions, the most basic approach
considers a homogenous mixing approximation (Anderson
and May, 1992) which assumes that individuals interact
randomly with each other. In this assumption, the larger the
number of infectious individuals among an individual’s
contacts, the higher the probability of transmission of the
infection. This readily translates to the definition of the force
of infection α, that expresses the probability, also called the
risk, at which one susceptible individual may contract the
infection in a single time step. In the continuous-time limit we
can define α as a rate and assume that

α ¼ β̄
NI

N
; ð1Þ

FIG. 1 (color online). Typical profile of the density iðtÞ of
infected individuals vs time in a given epidemic outbreak. In
the first regime t < t1, the outbreak is subject to strong statistical
fluctuations. In the second regime t1 < t < t2, there is an
exponential growth characterized by the details of the epidemic
process. In the final regime (t > t2), the density of infected
individuals either converges to zero, for SIR-like models, or to a
constant, possibly zero, for SIS-like models.

1In the rest of the review we will use the words removed or
recovered in this context, interchangeably.
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where β̄ depends on the specific disease as well as the
contact pattern of the population, and NI is the number of
infected individuals. Thus, α is proportional to the fraction
ρI ¼ NI=N of infected individuals in the population. In
some cases β̄ is explicitly split in two terms as βk, where β is
now the rate of infection per effective contact and k is the
number of contacts with other individuals. This form of the
force of infection corresponds to the mass-action law
(Hethcote, 2000), a widely used tool in the basic mean-
field description of many dynamical processes in chemistry
and physics. The force of infection depends only on the
density of infectious individuals and decreases for larger
populations, all other factors being equal. It is possible
however to consider forces of infection of the type α ¼ βNI ,
where the per capita infection probability is proportional to
the actual number of infected individuals NI , and assumes
that the number of contacts scales proportionally to the size
of the population. Indeed, also intermediate expressions for
the force of infection depending on the size of the population
as N−a have been discussed in the literature (Anderson and
May, 1992).
Generalizing the previous approach, an epidemic can be

rephrased as a stochastic reaction-diffusion process (van
Kampen, 1981). Individuals belonging to the different com-
partments can be represented as different kinds of “particles”
or “species” that evolve according to a given set of mutual
interaction rules, representing the different possible transitions
among compartments, and that can be specified by means of
appropriate stoichiometric equations. In the continous-time
limit each reaction (transition) is defined by an appropriate
reaction rate. We can therefore adopt the reaction-diffusion
formalism to describe the basic epidemic models; see Fig. 2.
The SIS model is thus governed by the reactions

Sþ I→
β
2I;

I→
μ
S;

ð2Þ

where β and μ are transition rates for infection and recovery,
respectively. In this model infection can be sustained forever
for sufficiently large β or small μ. The SIR model (Kermack
and McKendrick, 1927) is instead characterized by the three
compartments S, I, and R, coupled by the reactions

Sþ I→
β
2I;

I→
μ
R: ð3Þ

For any values of β and μ, the SIR process will always
asymptotically die after affecting a given fraction of the
population.
Many more epidemic models can be defined analogously to

the SIS and SIR models. A useful variant is the SI model,
which considers only the first transition in Eqs. (2) and (3),
i.e., individuals become infected and never leave this state.
While the SI model is a somewhat strong simplification (valid
only in cases where the time scale of recovery is much larger
than the time scale of infection), it approximates the initial
time evolution of both SIS and SIR dynamics. More realistic
models are defined in order to better accommodate the
biological properties of real diseases. For instance, the
susceptible-infected-recovered-susceptible (SIRS) model is
an epidemic model incorporating a temporary immunity. It
can be defined from the SIR model by adding a microscopic
transition event

R→
η
S; ð4Þ

where η is the rate at which the immunity of a recovered
individual is lost, rendering him or her susceptible again. The
SEIR model is a variation of the SIR model including the
effects of exposed (E) individuals, which have been infected
by the disease but cannot yet transmit it. The SEIR model is
one of the paradigmatic models for the spreading of influenza-
like illnesses and in the compact reaction-diffusion notation
reads as

Sþ I→
β
Eþ I;

E→
γ
I;

I→
μ
R:

ð5Þ

All the above models can be generalized to include demo-
graphic effects (birth and death processes in the population),
the age structure of the population, other relevant compart-
ments (such as asymptomatic infected individuals), etc.
A more complete and detailed review of epidemic models
and their behavior can be found in Anderson and May (1992),
Keeling and Rohani (2007), and Brauer and Castillo-
Chavez (2010).

B. Basic results from classical epidemiology

Although epidemic spreading is best described as a sto-
chastic reaction-diffusion process, the classic understanding

FIG. 2 (color online). Diagrammatic representation of different
epidemic models in terms of reaction-diffusion processes. Boxes
stand for different compartments, while the arrows represent
transitions between compartments, happening stochastically
according to their respective rates.
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of epidemic dynamics is based on taking the continuous-time
limit of difference equations for the evolution of the average
number of individuals in each compartment. This determin-
istic approach relies on the homogeneous mixing approxima-
tion, which assumes that the individuals in the population are
well mixed and interact with each other completely at random,
in such a way that each member in a compartment is treated
similarly and indistinguishably from the others in that same
compartment. This approximation, which is essentially equiv-
alent to the mean-field approximation commonly used in
statistical physics, for both equilibrium (Stanley, 1971) and
nonequilibrium (Marro and Dickman, 1999) systems, can be
shown to be correct in regular lattices with high dimension,
but it is not exact in low dimensions (ben-Avraham and
Havlin, 2005). Under this approximation, full information
about the state of the epidemics is encoded in the total number
Nα of individuals in the compartment α or, analogously, in
the respective densities ρα ¼ Nα=N, whereN is the population
size. The time evolution of the epidemics is described by
deterministic differential equations, which are constructed
applying the law of mass action, stating that the average
change in the population density of each compartment due to
interactions is given by the product of the force of infection
times the average population density (Hethcote, 2000).
The deterministic equations for the SIR and SIS processes

are obtained by applying the law of mass action and read as

dρI

dt
¼ βρIρS − μρI; ð6Þ

dρS

dt
¼ −βρIρS þ χρI; ð7Þ

where χ ¼ μ for the SIS process and χ ¼ 0 for the SIR model,
and the force of infection is α ¼ βρI . These equations are
complemented with the normalization conditions ρR ¼ 1 −
ρS − ρI and ρS ¼ 1 − ρI for the SIR and SIS models, respec-
tively. If we consider the limit ρI ≃ 0, generally valid at
the early stage of the epidemic, we can linearize the above
equations obtaining for both the SIS and SIR models the
simple equation

dρI

dt
≃ ðβ − μÞρI ð8Þ

whose solution

ρIðtÞ≃ ρIð0Þeðβ−μÞt ð9Þ
represents the early time evolution. Equation (9) illustrates
one of the key concepts in the classical theoretical analysis of
epidemic models. The number of infectious individuals grows
exponentially if

β − μ > 0 ⇒ R0 ¼
β

μ
> 1; ð10Þ

where we defined the basic reproduction number R0 as the
average number of secondary infections caused by a primary
case introduced in a fully susceptible population (Anderson
and May, 1992). This result allows one to define the concept
of epidemic threshold: only if R0 > 1 (i.e., if a single infected

individual generates on average more than one secondary
infection) an infective agent can cause an outbreak of a finite
relative size (in SIR-like models) or lead to a steady state with
a finite average density of infected individuals, corresponding
to an endemic state (in SIS-like models). If R0 < 1 (i.e., if a
single infected individual generates less than one secondary
infection), the relative size of the epidemics is negligibly
small, vanishing in the thermodynamic limit of an infinite
population2 (in SIR-like models) or leading to a unique steady
state with all individuals healthy (in SIS-like models). This
concept is very general and the analysis of different epidemic
models (Anderson and May, 1992) reveals in general the
presence of a threshold behavior, with a reproduction number
that can be expressed as a function of the rates of the different
transitions describing the epidemic model.
A few remarks are in order here. First, although we have

stated that epidemic processes can be considered as reaction-
diffusion systems, the classic approach completely neglects
the diffusion of individuals. Spatial effects can be introduced
by adding diffusive continuous terms or by considering patch
models. Furthermore, epidemic spreading is governed by an
inherently probabilistic process. Therefore, a correct analysis
of epidemic models should consider explicitly its stochastic
nature (Andersson and Britton, 2000). Accounting for this
stochasticity is particularly important when dealing with
small populations, in which the number of individuals in
each compartment is reduced. For instance, while the epi-
demic threshold condition R0 > 1 is a necessary and sufficient
condition for the occurrence of an epidemic outbreak in
deterministic systems, in stochastic systems this is just a
necessary condition. Indeed even for R0 > 1 stochastic fluc-
tuations can lead to the epidemic extinction when the number
of infectious individuals is small. Analogously, all the general
results derived from deterministic mean-field equations
can be considered representative of real systems only when
the population size is very large (ideally in the thermodynamic
limit) and the fluctuations in the number of individuals can be
considered small. Indeed, most of the classical results of
mathematical epidemiology have been obtained under these
assumptions (Anderson and May, 1992).
Another point worth stressing is the Poisson assumption.

Although we mostly focus on Poissonian epidemic processes
(see Secs. VII.A and VIII for some remarks on the non-
Poissonian case), a different phenomenology, both more
complex and interesting, can be obtained from nonexponen-
tially distributed infection or recovery processes.
Finally, the classic deterministic approach assumes random

and homogeneous mixing, where each member in a compart-
ment is treated similarly and indistinguishably from the others
in that same compartment. In reality, however, each individual
has his or her own social contact network over which diseases
propagate, usually differing from that of other members in a
group or compartment. Diekmann, Heesterbeek, and Britton
(2012) illustrated the weakness of R0 by discussing a line and
square lattice topology and they concluded that network and

2In the present context, since we do not consider spatial effects, the
thermodynamic limit is simply defined as the limit of an infinitely
large number of individuals.
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percolation theory needs to be consulted to compute the
epidemic threshold, leading to a new definition of the basic
reproduction number depending on the topology of the
network. Thus, for example, in the case of a homogeneous
contact network in which every individual is in contact with
the same number of individuals hki, the basic reproduction
number takes the form

R0 ¼ hki β
μ
. ð11Þ

The impact of heterogeneous connectivity patterns, reflected
by an underlying network topology, on the epidemic behavior
is the focus of the present review.

C. Connections with statistical physics models

The interest that models for epidemic spreading have
attracted within the statistical physics community stems
from the close connection between these models and more
standard nonequilibrium problems in statistical physics
(Marro and Dickman, 1999; Henkel, Hinrichsen, and
Lübeck, 2008). In particular, the epidemic threshold concept
is analogous to the concept of phase transition in non-
equilibrium systems. A phase transition is defined as an
abrupt change in the state (phase) of a system, characterized
by qualitatively different properties, and that is experienced
varying a given control parameter λ. The transition is
characterized by an order parameter ρ (Yeomans, 1992),
which takes (in a system of infinite size) a nonzero value in
one phase, and a zero value in another (see Fig. 3). The phase
transition takes place at a particular value of the control
parameter, the so-called transition point λc, in such a way that
for λ > λc we have ρ > 0, while for λ ≤ λc, ρ ¼ 0. Apart from
the determination of the transition point, the interest in
physics lies in the behavior of the order parameter around λc,
which in continuous or critical phase transitions3 takes a
power-law form ρðλÞ ∼ ðλ − λcÞβcrit , defining the critical
exponent βcrit (Yeomans, 1992).
The SIS dynamics thus belongs to the wide class of

nonequilibrium statistical models possessing absorbing states,
i.e., states in which the dynamics becomes trapped with no
possibility to escape. The paradigmatic example of a system
with an absorbing state is the contact process (CP) (Harris,
1974), where all nodes of a lattice or network can be either
occupied or empty. Occupied nodes annihilate at rate 1; on the
other hand, they can reproduce at rate λ, generating one
offspring that can occupy an empty nearest neighbor. The
contact process experiences an absorbing state phase transtion
(Marro and Dickman, 1999; Henkel, Hinrichsen, and Lübeck,
2008) at a critical point λc between an active phase, in which
activity lasts forever in the thermodynamic limit, implying a
finite average density of occupied nodes, and an absorbing
phase, in which activity eventually vanishes, corresponding to
an empty system. In the case of the SIS model, the active
phase is given by the infected state, and the absorbing phase

by the state where no individual is infected; see Fig. 3. The
order parameter is therefore the prevalence or density of
infected individuals, and the control parameter is given by the
spreading rate or effective infection rate, which equals
λ ¼ β=μ. The epidemic threshold (critical point) λc separates
thus the infected from the healthy phase. While this distinction
is strictly true in the thermodynamic limit, for finite systems
the dynamics for any value of λ sooner or later visits the
absorbing state and remains trapped there. The absorption
event can occur even in the active phase well above the critical
point, because of random fluctuations, illustrating that the
determination of the critical point is a nontrivial task, for both
theoretical approaches and numerical simulations (Marro and
Dickman, 1999; Henkel, Hinrichsen, and Lübeck, 2008). It is
interesting to note that the dynamics of the SIS process is
essentially identical to that of the contact process in lattices;
indeed, the difference between the SIS and the contact process
lies exclusively in the number of offsprings that an active
individual can generate. While in the contact process one
particle generates always on average one offspring per unit
time, an infected individual in the SIS model can infect all his
or her nearest neighbors in the same time interval. This
difference is trivial when the number of nearest neighbors is
fixed, but it can lead to a dramatic difference when the number
of nearest neighbors has large fluctuations (see Sec. V).
The SIR model also exhibits a transition between a phase

where the disease outbreak reaches a finite fraction of the
population and a phase where only a limited number of
individuals are affected. This is strongly reminiscent of the
transition occurring in percolation (Grassberger, 1983;
Stauffer and Aharony, 1994). In the simplest possible setting
of (bond) percolation in a lattice, the connections between
nearest neighbors of a lattice or network are erased with
probability 1 − p and kept with complementary probability p.
A critical value pc separates a supercritical percolating
phase, where a macroscopic connected cluster spans the
whole lattice, from a subcritical phase where only connected
clusters of finite size exist. The order parameter describing
the transition is the probability PGðpÞ that a randomly chosen

FIG. 3 (color online). Phase diagram of a typical nonequilibrium
absorbing state phase transition (SIS-like). Below the critical
point λc, the order parameter is zero (healthy phase in an
epidemics interpretation). Above the critical point, the order
parameter attains a nonzero average value in the long time regime
(endemic or infected epidemic phase).

3In first-order transitions the order parameter takes a discontinuous
jump at the transition point (Stanley, 1971).
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site belongs to the spanning cluster. In the case of networks,
the percolating phase corresponds to the presence of the
largest connected component with a size proportional to the
network size (the giant component, see Sec. III.A), while
in the subcritical phase it has a relative size that vanishes
in the thermodynamic limit. In the case of networks, the
order parameter is proportional to the relative size of the
giant component. The mapping between SIR and bond
percolation is made through the assimilation of the size of
connected components with the size of epidemic outbreaks,
with a control parameter that depends on the spreading rate
λ ¼ β=μ. This connection will be further developed and
exploited in Sec. V.B.
Finally, it is worth mentioning first-passage percolation

(Hammersley and Welsh, 1965; Kesten, 2003) as another
classical problem related to epidemics. In this model, a non-
negative value τij is defined on each edge of a graph and
interpreted as the time needed to cross the edge. Given a
topology and the distribution of the times τij, first-passage
percolation investigates which points can be reached in a
certain time starting from a fixed origin. The SI model for
epidemics can be seen as the limit of first-passage percolation
with all passage times distributed exponentially.

III. NETWORK MEASURES AND MODELS

Although very common, the homogeneous assumption
used in the previous section to derive the constitutive
deterministic equations of basic epidemic processes may be
inadequate in several real-world situations where individuals
have large heterogeneity in the contact rate, a specific
frozen pattern of interaction, or are in contact with only a
small part of the population. These features may have different
relevance depending on the disease or contagion process
considered. However, a wide range of social and biological
contagion processes requires capturing the individuals’
contact pattern structure in the mathematical modeling
approaches. This is even more relevant, because most real-
world systems show very complex connectivity patterns
dominated by large-scale heterogeneities described by
heavy-tailed statistical distributions.
Network theory (Newman, 2010) provides a general

framework to discuss interactions among individuals in
detail. In this section, we provide a short summary of the
main definitions and properties of networks, relevant for
epidemic spreading, and a basic introduction to the language
of graph theory that is necessary for a formal analysis of
network properties. Network science is burgeoning at the
moment, and for more extensive accounts of this field see
Dorogovtsev and Mendes (2003), Caldarelli (2007), Cohen
and Havlin (2010), Dorogovtsev (2010), Newman (2010),
and Barabási (2015).

A. General definitions

Networks are mathematically described as graphs. A graph
is a collection of points, called vertices (nodes in the physics
literature or actors in the social sciences). These points are
joined by a set of connections, called edges, links, and ties, in
mathematics, physics, and social sciences, respectively. Each

edge denotes the presence of a relation or interaction between
the vertices it joins. Edges can represent a bidirectional
interaction between vertices, or indicate a precise direction-
ality in the interaction. In the first case we talk about
undirected networks, and in the second case, about directed
networks or digraphs. From an epidemiological point of view,
the directedness of a network is indeed relevant since it
imposes restrictions on the possible paths of propagation of
the contagion. A compact way to specify all connections
present in a graph of size N (i.e., with N vertices) is the N × N
adjacency matrix A, with elements aij ¼ 1 if an edge is
connecting nodes i and j and zero otherwise. A is symmetric
in undirected graphs and asymmetric in directed graphs.
A path Pi0;in connecting vertices i0 and in is a sequence

of connected edges fðij; ijþ1Þg, j ¼ 0;…; n − 1; the number
of edges traversed n is the hop count, also called the length, of
the path. A graph is connected if there exists a path connecting
any two vertices in the graph. A loop is a closed path with
i0 ≡ in. A component C of a graph is defined as a connected
subgraph. The giant component is the component or subgraph,
whose size scales as the number of vertices in the graph.
From an epidemiological perspective, a disease in the giant
component may in principle infect a macroscopic fraction of
the graph, while if the disease starts outside of the giant
component, the total number of infected vertices will be
necessarily limited, representing a fraction that decreases with
the network size.
In the case of directed graphs, the structure of the

components is more complex as the presence of a path from
node i to node j does not necessarily guarantee the presence of
a corresponding path from j to i. In general (see Fig. 4) the
component structure of a directed network can be decomposed
into a giant weakly connected component (GWCC), corre-
sponding to the giant component of the same graph in which
the edges are considered as undirected, plus a set of smaller
disconnected components. The GWCC is itself composed of
several parts because of the directed nature of its edges: (1) the
giant strongly connected component (GSCC), in which there
is a directed path joining any pair of nodes; (2) the giant in
component (GIN), formed by the nodes from which it is
possible to reach the GSCC by means of a directed path;
(3) the giant out component (GOUT), formed by the nodes
that can be reached from the GSCC by means of a directed

FIG. 4 (color online). Component structure of a directed graph.
Adapted from Dorogovtsev, Mendes, and Samukhin, 2001.
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path; (4) the tendrils that connect nodes that cannot reach the
GSCC or be reached from it; and (5) the tubes that connect the
GIN and GOUT, but do not belong to the GSCC.

B. Network metrics

A large number of metrics have been defined to characterize
different aspects of the topology of complex networks.

1. Shortest path length and network diameter

In order to characterize the distance among nodes we
introduce the shortest path length, sometimes also referred
to as the chemical distance or geodesical distance. The
shortest path distance lij between two nodes i and j is
defined as the length of the shortest path (not necessarily
unique) joining i and j. The diameter of a network is the
maximum value of all the pairwise shortest path lengths, and
the average shortest path length hli is the average of the value
of lij over all pairs of vertices in the network.

2. Degree and degree distribution

The degree ki of vertex i in an undirected network is the
number of edges emanating from i, i.e., ki ¼

P
jaij. In the

case of directed networks, we distinguish between in-degree
kini and out-degree kouti as the number of edges that end in i or
start from i, respectively. In undirected networks we define the
degree distribution PðkÞ as the probability that a randomly
chosen vertex has degree k, or, in finite networks, as the
fraction of vertices in the graph with degree exactly equal to k.
In the case of directed networks, there are instead two different
distributions, the out-degree PoutðkoutÞ and in-degree PinðkinÞ
distributions. The in-degree and out-degree of a given vertex
might be not independent. Correlations are encoded in the
joint probability distribution Pðkin; koutÞ that a randomly
chosen vertex has in-degree kin and out-degree kout. It is
useful to consider the moments of the degree distribution
hkni ¼ P

kk
nPðkÞ. The first moment, the average degree

hki ¼ 2L=N, twice the ratio between the number L of edges
(or links) and the number N of nodes, provides information
about the density of the network. A network is called sparse if
its number of edges L grows at most linearly with the network
size N; otherwise, it is called dense. In directed networks,
since every edge contributes to the in-degree of one node and
to the out-degree of another node we have that hkini ¼ hkouti.

3. Degree correlations

Two-vertex degree correlations can be conveniently mea-
sured by means of the conditional probability Pðk0jkÞ that an
edge departing from a vertex of degree k is connected to a
vertex of degree k0 (Pastor-Satorras, Vázquez, and Vespignani,
2001). A network is called uncorrelated if this conditional
probability is independent of the originating vertex k. In this
case, Pðk0jkÞ can be simply estimated as the ratio between the
number of edges pointing to vertices of degree k0, k0Pðk0ÞN=2,
and the total number of edges, hkiN=2, to yield Punðk0jkÞ ¼
k0Pðk0Þ=hki. The empirical evaluation of Pðk0jkÞ turns out to
be quite noisy in real networks, due to finite-size effects. A
related, simpler, measure of correlations is the average degree

of the nearest neighbors of vertices of degree k, k̄nnðkÞ
which is formally defined as (Pastor-Satorras, Vázquez, and
Vespignani, 2001)

k̄nnðkÞ ¼
X
k0
k0Pðk0jkÞ: ð12Þ

For uncorrelated networks, k̄unnnðkÞ ¼ hk2i=hki does not
depend on k. Therefore, a varying k̄nnðkÞ is the signature
of degree correlations. The analysis of empirical networks has
suggested a broad classification of networks in two main
classes, according to the nature of their degree correlations
(Newman, 2002a): Assortative networks exhibit an increasing
k̄nnðkÞ, indicative that high degree nodes tend to connect to
high degree nodes, while low degree nodes are preferentially
attached to low degree nodes. Disassortative networks, on the
other hand, show a decreasing k̄nnðkÞ function, suggesting
that high degree nodes connect to low degree nodes, and
vice versa. Assortativity by degree can be characterized
by the Pearson correlation coefficient r (Newman, 2002a):
Uncorrelated networks have r ¼ 0, while assortative (disas-
sortative) networks present r > 0 (r < 0), respectively.

4. Clustering coefficient and clustering spectrum

The concept of clustering refers to network transitivity,
i.e., the relative propensity of two nodes to be connected,
provided that they share a common neighbor. The clustering
coefficient C is defined as the ratio between the number of
loops of length three in the network (i.e., triangles), and the
number of connected triples (three nodes connected by two
edges). A local measure ci of clustering (Watts and Strogatz,
1998) can also be defined as the ratio between the actual
number of edges among the neighbors of a vertex i, ei, and its
maximum possible value, thus directly measuring the prob-
ability that two neighbors of vertex i are also neighbors of
each other. The mean clustering of the network hci is defined
as the average of ci over all vertices in the network. The
clustering spectrum c̄ðkÞ is defined as the average clustering
coefficient of the vertices of degree k (Vázquez, Pastor-
Satorras, and Vespignani, 2002; Ravasz and Barabási,
2003), satisfying hci ¼ P

kPðkÞc̄ðkÞ.

5. Centrality and structure in networks

The concept of centrality encodes the relative importance of
a node inside a network, a relevant issue in the context of
social network analysis (Wasserman and Faust, 1994). Many
different definitions of centrality have been proposed, based
on different indicators of the structural importance of nodes.
The simplest of them is the degree, referred to as degree
centrality. The higher its degree, the more the node can
be considered influential and/or central in the network.
Alternative definitions are based on the shortest paths between
vertices. Thus, the closeness centrality Ci is defined as the
inverse of the average of the shortest path lengths from vertex i
to all other vertices in the network. With this measure, we
consider a vertex central if it is situated on average at a short
distance to all other vertices in the network. A different
perspective on centrality is provided by the betweenness
centrality bi of vertex i, defined as the number of shortest
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paths between any two vertices in the network that pass
through vertex i. More precisely, if Lh;j is the total number
of shortest paths from h to j, and Lh;i;j is the number
of these shortest paths that pass through vertex i, then
bi ¼

P
h≠jLh;i;j=Lh;j. Betweenness measures thus centrality

from the perspective of the control of information flowing
between different nodes, assuming this information flows
following the shortest path route (Freeman, 1977).
Another way to characterize the centrality of nodes resides

in the concept of K-coreness. The K-core of a network is a
maximal connected subgraph, such that all vertices in the
subgraph have degree k ≥ K (Seidman, 1983). The K-core
decomposition is an iterative procedure that classifies the
vertices of the network in nested levels of increasing con-
nectivity (increasing K-core). The algorithm runs as follows:
One starts with the complete network and removes iteratively
all vertices with degree k ¼ 1, until only vertices with degree
k ≥ 2 are present. The set of removed nodes represents
the K ¼ 1-shell, while the remaining nodes constitute the
K ¼ 2-core. In the next iteration of the process, all vertices
with degree k ¼ 2 are removed (the K ¼ 2-shell), and we are
left with the K ¼ 3-core. This iterative process is stopped
when we arrive at the maximum KS-core, where one more
application of the algorithm leaves no vertices. At each node is
assigned a centrality measure equal to its K-core index, the
deeper the more central.
It is worth remarking that real networks can display higher

levels of architecture that are difficult to capture with a single
number. Many networks possess a community structure, in
which different sets of nodes, called communities or modules,
have a relatively high density of internal connections, while
they are more loosely connected among them. The problem of
computing the community structure of a given network has
been an active topic in network science and a large number of
different approaches have been considered [see Fortunato
(2010) for a review].

C. Generalizations of simple graphs

The simple concept of graph considered above can be
refined at different levels, adding more and more complexity
and detail in order to better represent the real system under
consideration. A first extension is that of bipartite graphs,
in which we have two different kinds of nodes, and edges
join only two nodes of a different kind. A classical example is
the network of heterosexual sexual relationships (Liljeros
et al., 2001).
Another important generalization consists of the definition

of weighted networks, in which a real number ωij (the weight)
is associated with the edge between vertices i and j. Weighted
networks constitute the natural choice to represent many
systems, including transportation networks (e.g., the airport
network), in which the weight of an edge measures the
fraction of people or goods transported by the edge in a
given interval of time, or social networks, for which weights
measure the relative intensity or frequency of contacts
between pairs of vertices. The addition of weights allows
one to define a complete new set of topological metrics
(Braunstein et al., 2003; Barrat, Barthélemy, Pastor-Satorras,

and Vespignani, 2004; Onnela et al., 2005; Serrano, Boguñá,
and Pastor-Satorras, 2006; Ahnert et al., 2007). Among those,
the strength of a node si, defined as the sum of the weights of
all edges incident to it, i.e., si ¼

P
jωij, generalizes to

weighted networks the concept of degree.

D. Network classes and basic network models

The recent abundance of data and measurements of real-
world networks has highlighted the existence of different
classes of networks, characterized by a large variability in
basic metrics and statistical properties. This classification in
its turn has fueled an intense theoretical research effort
devoted to the study of different network generation models.
The usefulness of these models in the present context is that
they serve as generators of synthetic networks, with controlled
topological properties, in which the behavior of dynamical
processes such as epidemics can be studied in detail. In the
following we survey some of the main network classes and
models that are used for exploring the properties of epidemic
processes.

1. Random homogenous networks

The first theoretical model of random networks is the
classical random graph model (Solomonoff and Rapoport,
1951; Erdős and Rényi, 1959; Gilbert, 1959). In its simplest
formulation, the graph GpðNÞ is constructed from a set of N
nodes in which each one of the NðN − 1Þ=2 possible links is
present with probability p. The degree distribution is given by
a binomial form, which in the limit of constant average degree
(i.e., p ¼ hki=N) and large N can be approximated by a
Poisson distribution PðkÞ ¼ e−hkihkik=k!. The clustering coef-
ficient is simply given by hci ¼ p, and the average shortest
path length is hli≃ logN= loghki (Dorogovtsev, 2010). This
model is therefore adequate in the case of networks governed
only by stochasticity, although GpðNÞ tends to a regular graph
for large N and constant p. The degree distribution is peaked
around the average value, thus denoting a statistical homo-
geneity of the nodes. Interestingly, the model features for
hki > 1 the small diameter observed in most real-world
networks. However, any other structural properties, including
the generally high clustering coefficient observed in real-
world networks, cannot be reproduced by this model.

2. Small-world networks

The small-world model of Watts and Strogatz (1998)
represents a first attempt to obtain a network with small
diameter hli and large clustering coefficient. This model
considers an ordered lattice, such as a ring of N vertices, each
one of which is symmetrically connected to its 2m nearest
neighbors. This initial configuration has a large clustering
coefficient and large average shortest path length. Starting
from it, a fraction p of edges in the network is rewired, by
visiting allm clockwise edges of each vertex and reconnecting
them, with probability p, to a randomly chosen node. In
another version of the model (Monasson, 1999), a fraction p
of edges is added between randomly chosen pairs of vertices.
The overall effect of the rewiring processes is to add long-
range shortcuts, that, even for a small value of p ∼ N−1,
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greatly reduce the average shortest path length, while pre-
serving a large clustering for not very large values of p. This
model, although better suited for social networks with high
clustering coefficient, has a degree distribution and centrality
measures decaying exponentially fast away from the average
value. The small-world model thus generates homogeneous
networks where the average of each metric is a typical value
shared, with little variations, by all nodes of the network.

3. Heavy-tailed networks

Empirical evidence from different research areas has shown
that many real-world networks exhibit levels of heterogeneity
not anticipated until a few years ago. The statistical distribu-
tions characterizing heterogeneous networks are generally
skewed and varying over several orders of magnitude. Thus,
real-world networks are structured in a hierarchy of nodes
with a few nodes having very large connectivity (the hubs),
while the vast majority of nodes have much smaller degrees.
More precisely, in contrast with regular lattices and homo-
geneous graphs characterized by a typical degree k close to
the average hki, heterogeneous networks exhibit heavy-
tailed degree distributions often approximated by a power-
law behavior of the form PðkÞ ∼ k−γ , which implies a
non-negligible probability of finding vertices with very large
degree. The degree exponent γ of many real-world networks
takes a value between 2 and 3. In such cases networks are called
scale free, since the second moment of the degree distribution
diverges in the infinite network size limit (N → ∞). It is
understood that in real-world networks the finite size N and
the presence of biological, cognitive, and physical constraints
impose an upper limit to the second degree moment. However,
the second moment of the distribution is in many cases
overwhelmingly large, reflecting enormous connectivity fluc-
tuations. The presence of large-scale fluctuations associated
with heavy-tailed distributions is often true not only for the
degree of nodes but it is also observed for the intensity carried
by the connecting links, transport flows, and other basic
quantities.
Several variations of the classical random graph model have

been proposed in order to generate networks with a power-law
degree distribution. One variation, the so-called configuration
model (Bender and Canfield, 1978; Molloy and Reed, 1995),
considers a random network with a fixed degree distribution,
instead of the fixed average degree of classical random
graphs. Its construction is as follows: To each of the vertices,
we assign a degree ki, given by a random number selected
from the probability distribution PðkÞ, subject to the con-
ditions m ≤ ki ≤ N, where m is the desired minimum degree,
and such that

P
iki is an even number. The actual graph is

constructed by randomly connecting the nodes with
P

iki=2
edges, preserving the degree originally assigned. In finite
networks, an average maximum degree or degree cutoff km,
known as the natural cutoff of the network (Boguñá, Pastor-
Satorras, and Vespignani, 2004) is observed, which is a
function of the network size of the form kmðNÞ ∼ N1=ðγ−1Þ

(Cohen et al., 2000). The original configuration model leads
for power-law distributions with γ ≤ 3 to the formation of
networks with multiple and self-connections. The additional
prescription that multiple and self-connections are removed

leads to the generation of disassortative correlations (Park and
Newman, 2003; Maslov, Sneppen, and Zaliznyak, 2004).
These correlations are avoided in the uncorrelated configu-
ration model (Catanzaro, Boguñá, and Pastor-Satorras, 2005)
by imposing a hard structural cutoff km ∼ N1=2.
A different modeling paradigm, namely, the class of

growing network models, is based on the empirical observa-
tion that many real networks do not have a constant number of
vertices and edges, but are instead growing entities, in which
nodes and links are added over time. The first undirected
model of this kind is the Barabási-Albert model (Barabási and
Albert, 1999), based on the assumption that newly added
edges will tend in general to be connected to nodes chosen
via some preferential attachment rule. The simplest of
these preferential rules is a degree-biased rule, in which the
probability to add a connection to a vertex i is some function
FðkiÞ of its degree. The Barabási-Albert model, assuming the
simplest, linear, form for the preferential attachment function,
is defined as follows: (i) The network starts with a small
nucleus of m0 connected vertices; every time step a new node
is added, with m (m ≤ m0Þ edges which are connected to
old vertices in the network. (ii) New edges are connected
to the ith node in the network with probability equal to
FðkiÞ ¼ ki=

P
jkj. In the long time limit, the network thus

generated has a degree distribution PðkÞ ∼ k−3 (Barabási and
Albert, 1999; Dorogovtsev, Mendes, and Samukhin, 2000).
The original growing network model has been subject to an
impressive number of variations and extensions toward
realistic growing dynamics and to accommodate for different
exponents of the degree distribution and other properties such
as high clustering and tunable degree-degree correlations
(Newman, 2010).

E. Static versus dynamic networks

So far we assumed that the topology defining the network is
static: the set of nodes and links do not change over time.
However, many other real networks are far from static, their
links being created, destroyed, and rewired at some intrinsic
time scales. In some of these dynamical networks, such as the
Internet (Pastor-Satorras and Vespignani, 2004), the time scale
of the network evolution is quite slow. A static network
provides a good approximation, when the properties of
dynamical processes evolve at a much faster time scale than
topological changes. The opposite limit defines the so-called
annealed networks (Gil and Zanette, 2005; Stauffer and
Sahimi, 2005; Weber and Porto, 2007; Boguñá, Castellano,
and Pastor-Satorras, 2009), which describe the case when the
evolution of the network is much faster than the dynamical
processes. In this limit, the dynamical process unfolds on a
network that is rapidly rewiring so that the dynamics effec-
tively occurs on an average network in which each connection
is possible according to a specific probability that depends on
the degree distribution PðkÞ and the two-node degree corre-
lations Pðk0jkÞ. An annealed network is thus described by a
mean-field version of the adjacency matrix that is presented
in Sec. IV.
The above two limits are relevant in the definition of the

approximations and the limits of applicability of the most
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commonly used theoretical approaches to epidemic spreading
in networks. There are, however, several other instances of
networks, such as in social systems, where the connectivity
pattern varies over time scales comparable to those of the
dynamical processes on top of it and it is crucial to explicitly
take into account the concurrent dynamics of the spreading
process and the connectivity pattern. The effect on epidemic
spreading of the dynamical nature of such temporal (Holme
and Saramäki, 2012) networks is discussed in Sec. VIII.
Finally, coevolution of the network and the dynamical

process occurs when the topological structure of a network
reacts dynamically to the evolution of a dynamical process
taking place on top of it. Indeed, individual social activity
can be altered by the presence of an epidemic outbreak
(e.g., avoiding contacts that amount to link deletion), thus
affecting the topology of the underlying social network, which
in turn feeds back nontrivially on the spreading dynamics.
The coupling of topology with disease evolution in such
coevolving networks is discussed in Sec. VII.B.7.

IV. THEORETICAL APPROACHES FOR EPIDEMIC
MODELING ON NETWORKS

A continuous-time epidemic process with constant tran-
sition rates between compartments on any graph can be
described by Markov chain theory. We consider a network
defined by its adjacency matrix A and a general epidemic
process with q compartments. The state of node i at time t is
specified by a random variable XiðtÞ ∈ f0; 1;…; q − 1g,
where XiðtÞ ¼ α means that node i belongs to compartment
α at time t. We assume that all transitions between compart-
ments are given by independent Poisson processes with given
rates. Under these conditions, the evolution of the epidemic
process can be described in terms of a Markov chain (van
Kampen, 1981; Van Mieghem, 2014b). In a network with N
nodes, the total number of states equals qN , all possible
combinations in which all N nodes can take a value from 0 to
q − 1. The elements of the qN × qN infinitesimal generator Q
of the continuous-time Markov chain are explicitly computed
for q ¼ 2 in Van Mieghem, Omic, and Kooij (2009), Simon,
Taylor, and Kiss (2011), and Van Mieghem and Cator (2012),
while the general case is treated in Darabi Sahneh, Scoglio,
and Van Mieghem (2013). Once the infinitesimal generator Q
and the initial infection probabilities are known, the state
probabilities Pr ½X1ðtÞ ¼ x1;…; XNðtÞ ¼ xN � at time t, for
each xj ¼ 0; 1;…; q − 1, can be computed using ordinary
matrix operations, from which all desired information can be
deduced in principle.
Although the Markov approach is exact, its use has been

limited to a few exact results in the case of the SIS model.
Indeed, using an exact Markov approach is impervious for a
number of reasons. First, the linear set of qN × qN equations to
be solved limits the analysis to very small graphs. Second, the
structure of the infinitesimal generator Q is rather complex,
which prevents one from gaining general insights, although it
is possible (Van Mieghem and Cator, 2012) to deduce a
recursion relation between the Qmatrix in a graph with N and
N þ 1 nodes. Third, in most cases, we are interested in the
steady-state (or stationary) behavior or in the final size of the
epidemic. The peculiar property of the exact continuous-time

Markov process is the appearance of an absorbing state, which
is equal to the overall-healthy state (xj ¼ 0 for each node j) in
which the activity (virus, information spreading, etc.) has
disappeared from the network. Mathematically, an absorbing
state means that the Q matrix has a row of zero elements, the
Markov chain is reducible, and the steady state is equal to this
overall-healthy state for finite N. These complications mean
that only a time-dependent analysis, focusing on metastable
states, may answer questions of practical interest.
More, in general, few exact results have been derived for

epidemic spreading in networks. For this reason, the deriva-
tion of explicit results on the behavior of epidemic spreading
processes in networks mostly relies on mean-field theoretical
approaches of a different kind. In the following we review
these approaches and discuss the different approximations and
assumptions on which they are based. The detailed applica-
tions of these approaches to the paradigmatic cases of the SIS
and SIR models will be presented in Sec. V.

A. Individual-based mean-field approach

Individual-based mean-field (IBMF) theory represents a
drastic simplification of the exact description presented
previously. The basic idea (Wang et al., 2003; Chakrabarti
et al., 2008; Van Mieghem, Omic, and Kooij, 2009; Gómez
et al., 2010) is to write down evolution equations for the
probability ραi that the node i belongs to the compartment α,
for any node i, assuming that the dynamic state of every node
is statistically independent of the state of its nearest neighbors.
The mean-field equations can be obtained, under this
assumption, by applying an extended version of the law of
mass action, i.e., assuming that the probability that node i is in
state α and its neighbor node j in state α0 is ραi ρ

α0
j . More

systematically, they can be obtained directly from the gov-
erning equations derived from the qN-state Markov chain,
assuming that the expected values of variable pairs factorize
E½XiXj� ¼ E½Xi�E½Xj�. This method is akin to the classic
assumption of the mean-field theory, while keeping the full
topological structure of the network encoded in all the entries
of the adjacency matrix aij, that it is considered to be static or
quenched, using the language of mean-field theory in stat-
istical mechanics.
The solutions of IBMF theories depend in general on the

spectral properties of the adjacency matrix, and, in particular,
on the value of its largest eigenvalue Λ1. Their predictions are
generally in agreement with numerical simulation results
obtained for static networks. As is well known from the
theory of critical phenomena, the agreement tends to decrease,
when the densities ραi → 0 and the independence assumption
breaks down.
Individual-based mean-field approximations can be

extended by using pair-approximation approaches (ben-
Avraham and Köhler, 1992), in which the expectations
E½XiXj� are considered as relevant dynamical quantities, for
which the evolution equations are written. In order to provide
these equations in closed form, the three-point correlation
functions E½XiXjXm� are factorized as a function of the single
and two points correlation functions. By the same token it is
possible to derive exact equations for the correlation functions
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up to n points (Van Mieghem, 2014a). An approximation is,
however, always required to close the set of equations by
expressing (nþ 1)-point correlations as functions of correla-
tions of lower order. As the order n grows, these approx-
imations are characterized in general by increasing levels of
accuracy.
Although the IBMF method can be generalized to time-

dependent adjacency matrices and adaptive models, explicit
solutions have been obtained mainly for the SIS models on
static networks.

B. Degree-based mean-field approach

Degree-based mean-field (DBMF) theory was the first
theoretical approach proposed for the analysis of general
dynamical processes on complex networks, and its popularity
is due to its applicability to a wide range of dynamical
processes on networks (Barrat, Barthélemy, and Vespignani,
2008; Dorogovtsev, Goltsev, and Mendes, 2008). The DBMF
approximation for dynamical processes on networks starts
with the assumption that all nodes of degree k are
statistically equivalent. This assumption implies that, instead
of working with quantities Φi specifying the state of vertex i
(as in the IBMF theory), the relevant variables Φk are
specifying the state of all vertices with degree k, the degree
class k (Pastor-Satorras and Vespignani, 2001b; Boguñá and
Pastor-Satorras, 2002). The assumption also implies that
any given vertex of degree k is connected with the same
probability Pðk0jkÞ to any node of degree k0. The approach
is a convenient complexity reduction technique that consists
of a drastic reduction in the number of degrees of freedom
of the system.
DBMF theory for epidemic models focuses on the partial

densities of individuals of degree k in the compartment α,
ραkðtÞ, or, in other words, the probability that an individual in
the population with degree k is in the compartment α. These
variables are not independent, but fulfill the conditionP

αρ
α
kðtÞ ¼ 1. The total fraction of individuals in the compart-

ment α is ραðtÞ ¼ P
kPðkÞραkðtÞ. The explicit rate equations

for the quantities ραkðtÞ are obtained by using the law of mass
action and assuming the independence of the expectation
values (see Sec. II.B).
The DBMF theory implicitly contains an approximation

that is not always clearly stated. The statistical equivalence
within degree classes considers the network itself in a mean-
field perspective, in which the adjacency matrix aij is
completely destroyed, only the degree and the two-vertex
correlations of each node being preserved. This is equivalent
to replacing the adjacency matrix in the IBMF theory by its
ensemble average āij, expressing the probability that vertices i
and j are connected (annealed network approximation), taking
the form (Dorogovtsev, Goltsev, and Mendes, 2008; Boguñá,
Castellano, and Pastor-Satorras, 2009)

āij ¼
kjPðkijkjÞ
NPðkiÞ

: ð13Þ

In the case of uncorrelated networks, the simple form āij ¼
kikj=ðNhkiÞ is obtained.

The solutions obtained from DBMF theories depend in
general on the statistical topological properties of the under-
lying networks, and in the case of uncorrelated networks, on
the moments of its degree distribution. Although the DBMF
theory is a strong approximation in the case of dynamical
processes occurring on static networks, it appears to be a
suitable approximation to capture the behavior of epidemics
mediated by interaction patterns changing on a time scale
much faster than the time scales of the spreading process. In
this limit, we can consider the epidemic process to spread on a
network that is constantly rewired, while preserving the given
functional form for PðkÞ and Pðk0jkÞ. This process amounts
to a contagion process spreading on an effective mean-field
network specified by the annealed network approximation.
Furthermore, the DBMF provides a good description of a wide
range of dynamical processes that include complex compart-
ment transitions, multiple occupancy of nodes, and time-
varying connectivity patterns.

C. Generating function approach

For the SIR model and similar models without steady state,
the long time (static) properties of the epidemic outbreak can
be mapped into a suitable bond percolation problem (see
Sec. II.C). In this framework, the probability p that a link
exists is related to the probability of transmission of the
disease from an infected node to a connected susceptible one.
The problem of percolation in networks (Molloy and Reed,

1995; Callaway et al., 2000; Cohen et al., 2000) can be
tackled with generating functions (Wilf, 2006). We consider
the case of bond percolation, in which edges in a network are
removed with probability 1 − p and kept with probability p
(see Sec. II.C). We define u as the probability that a randomly
chosen edge does not lead to a vertex connected to the
(possibly existing) giant component. A randomly chosen edge
is not connected to the giant component if either it has been
removed or it leads to a vertex of degree k, whose remaining
k − 1 edges either do not exist or do not lead to the giant
component, i.e.,

u ¼ 1 − pþ
X
k

kPðkÞ
hki ð1 − pþ puÞk−1: ð14Þ

This equation is valid for degree uncorrelated networks
which have no loops,4 in which a randomly chosen edge
points to a vertex of degree k with probability kPðkÞ=hki; see
Sec. III.B.3. The probability 1 − PG that a randomly chosen
vertex does not belong to the giant component is proportional
to the probability that it has degree k, and all of its outgoing
edges either have been removed or do not lead to the giant
component, i.e.,

PGðpÞ ¼ 1 −
X
k

PðkÞð1 − pþ upÞk: ð15Þ

Equations (14) and (15) can be conveniently written in terms
of the degree distribution generating function (Wilf, 2006)

4The formalism can be extended to degree-correlated networks;
see Sec. VII.B.1 and Goltsev, Dorogovtsev, and Mendes (2008).
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G0ðzÞ ¼
P

kPðkÞzk and the excess degree generating function
G1ðzÞ ¼

P
kðkþ 1ÞPðkþ 1Þzk=hki, taking the form

u ¼ 1 − pþ G1ð1 − pþ puÞ; ð16Þ

PGðpÞ ¼ 1 − G0ð1 − pþ puÞ: ð17Þ

The condition for the existence of a giant component trans-
lates into the condition for the existence of a nonzero solution
of Eq. (16), which is (Callaway et al., 2000)

p > pc ¼
G0

0ð1Þ
G0

00ð1Þ ¼
hki

hk2i − hki : ð18Þ

In the vicinity of the critical point, the expansion of the
generating functions around the nonzero solution yields the
scaling behavior of the order parameter PGðpÞ ∼ ðp − pcÞβperc
with βperc ¼ 1 in the case of homogeneous networks. In the
case of heterogeneous networks with degree distribution
PðkÞ ∼ k−γ , we surprisingly find that the percolation threshold
tends to zero for γ < 3 in the limit of an infinite network
size N → ∞ (Cohen, ben-Avraham, and Havlin, 2002). The
critical exponent βperc assumes in this class of networks the
following values (Cohen, ben-Avraham, and Havlin, 2002):

βperc ¼

8>><
>>:

1=ð3 − γÞ for γ < 3;

1=ðγ − 3Þ for 3 < γ ≤ 4;

1 for γ ≥ 4.

ð19Þ

For the case γ ¼ 3, a stretched exponential form PGðpÞ ∼ e1=p

is expected, based on the mapping to the SIR model; see
Sec. V.B.1.
The above expressions are very general and can be used

also to study immunization strategies and other containment
measures in the case of SIR-like models. See also Hamilton
and Pryadko (2014) and Karrer, Newman, and Zdeborová
(2014) for recent further improvements on these results.

V. EPIDEMIC PROCESSES IN HETEROGENEOUS
NETWORKS

A. Susceptible-infected-susceptible model

An impressive research effort has been devoted to
understanding the effects of complex network topologies
on the SIS model. The SIS dynamics involves only two-
state variables and may reach a stationary state, making it
ideal for the application of several theoretical approaches.
For this reason, there are a large number of results
concerning the SIS model, obtained with approaches
ranging from approximate mean-field theories to exact
methods. In the following, we follow a historical perspec-
tive that starts with the basic and easily generalizable
mean-field approaches and moves then to recent exact
results that put our understanding of the SIS model in
complex networks on firm theoretical ground.

1. Degree-based mean-field theory

The first approach to the study of the SIS model in
complex networks (Pastor-Satorras and Vespignani, 2001b)
used a DBMF theory (commonly referred to in the physics
literature as the heterogeneous mean-field approach), whose
general methodology can be extended to a wealth of
dynamical processes in networks (Barrat, Barthélemy, and
Vespignani, 2008). In the DBMF approach, the SIS model is
described in terms of the probability ρIkðtÞ that a node of
degree k is infected at time t, assuming the statistical
equivalence of all nodes of degree k. The SIS dynamical
equation for ρIkðtÞ is derived by applying the law of mass
action,

dρIkðtÞ
dt

¼ −ρIkðtÞ þ λk½1 − ρIkðtÞ�
X
k0
Pðk0jkÞρIk0 ðtÞ; ð20Þ

where, without loss of generality, we rescaled time by μ−1,
so that the recovery rate is unitary and the infection rate is
equivalent to the spreading rate λ ¼ β=μ. The first term
accounts for the recovery of nodes of degree k, proportional
to the probability ρIkðtÞ that a node of degree k is infected.
The second term accounts for the infection of new nodes
and is proportional to the probability that a node of degree k
is susceptible, 1 − ρIkðtÞ, times the probability Pðk0jkÞ that
this node is connected to a node of degree k0, multiplied by
the probability ρIk0 ðtÞ that this last node is infected, times the
rate of infection λ. This factor is summed over all the
possible values of k0. The extra factor k takes into account
all the possible edges through which the disease can arrive
at a node of degree k.
Equation (20) for the DBMF approximation to the SIS

model cannot be solved in a closed form for general degree
correlations. The value of the epidemic threshold can however
be obtained by means of a linear stability analysis (Boguñá
and Pastor-Satorras, 2002). Performing an expansion of
Eq. (20) at first order in ρIkðtÞ leads to

dρIkðtÞ
dt

≃X
k

Jkk0ρIk0 ðtÞ; ð21Þ

where the Jacobian matrix element is Jkk0 ¼ −δkk0 þ
λkPðk0jkÞ and δij is the Kronecker delta symbol. A null
steady state, corresponding to the healthy phase, is stable
when the largest eigenvalue of the Jacobian is negative. The
endemic phase will thus take place when −1þ λΛM > 0,
where ΛM is the largest eigenvalue of the connectivity
matrix (Boguñá and Pastor-Satorras, 2002), whose elements
are

Ckk0 ¼ kPðk0jkÞ: ð22Þ

From the Perron-Frobenius theorem (Gantmacher, 1974),
since C is non-negative, and assuming that it is irreducible,
its largest eigenvalue is real and positive. Therefore, the
endemic state occurs for
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λ > λDBMF
c ¼ 1

ΛM
: ð23Þ

In the case of uncorrelated networks, in which
Pðk0jkÞ ¼ k0Pðk0Þ=hki, it is possible to obtain an explicit
solution of the DBMF equations by writing

dρIkðtÞ
dt

¼ −ρIkðtÞ þ λk½1 − ρIkðtÞ�Θ; ð24Þ

where

Θ ¼
X
k0

k0Pðk0Þ
hki ρIk0 ðtÞ. ð25Þ

The latter expression gives the probability of finding an
infected node following a randomly chosen edge. In the steady
state, imposing the stationarity condition dρIkðtÞ=dt ¼ 0, we
obtain

ρIk ¼
λkΘðλÞ

1þ λkΘðλÞ ; ð26Þ

whereΘ is now a constant that depends on the spreading rate λ.
Equation (26) shows that the higher the degree of a node, the
higher its infection probability, indicating that strongly inho-
mogeneous connectivity patterns impact the epidemic spread-
ing. The factor ΘðλÞ can be computed self-consistently,
introducing Eq. (26) into Eq. (25) to obtain

ΘðλÞ ¼ 1

hki
X
k

kPðkÞ λkΘðλÞ
1þ λkΘðλÞ : ð27Þ

The self-consistent equation (27) admits a nonzero solution,
corresponding to the endemic state, only when the following
threshold condition for uncorrelated networks is fulfilled
(Pastor-Satorras and Vespignani, 2001b):

λ > λDBMF;unc
c ¼ hki

hk2i : ð28Þ

The uncorrelated threshold can also be obtained from the
general expression (23) by noticing that the elements of the
connectivity matrix reduce to Ckk0 ¼ kk0Pðk0Þ=hki, which
has a unique nonzero eigenvector with eigenvalue hk2i=hki.
For a fully homogeneous (regular) network with hk2i ¼ hki2,
Eq. (28) recovers the result λDBMF

c ¼ 1=hki, as expected from
the simple arguments from Sec. II.B [see Eq. (11)].
Equation (28) implies that, in networks with a power-law

degree distribution with exponent 2 < γ ≤ 3, for which
hk2i → ∞ in the limit of a network of infinite size, the
epidemic threshold tends asymptotically to zero. This was one
of the first results pointing out the crucial effect of degree
heterogeneities on epidemic spreading. The critical behavior
of the prevalence in the vicinity of the epidemic threshold
can be obtained by solving Eq. (27) for Θ in the continuous
degree approximation and introducing the result into the
definition ρIðλÞ ¼ P

kPðkÞρIk. From these manipulations,
one obtains (Pastor-Satorras and Vespignani, 2001a) ρIðλÞ∼
ðλ − λDBMF

c ÞβDBMF
SIS , with the critical exponent

βDBMF
SIS ¼

8>><
>>:

1=ð3 − γÞ for γ < 3;

1=ðγ − 3Þ for 3 < γ ≤ 4;

1 for γ ≥ 4.

ð29Þ

For the case γ ¼ 3, a prevalence following a stretched
exponential form is obtained, namely, ρIðλÞ ∼ e−1=ðmλÞ

(Pastor-Satorras and Vespignani, 2001b). Noticeably, these
exponents take the exact same form as those observed for the
percolation problem, Eq. (19). It is interesting to note that for
2 < γ ≤ 3 the exponent governing the prevalence behavior
close to the threshold is larger than 1. As noted by Pastor-
Satorras and Vespignani (2001b) this implies that, while the
vanishing threshold makes the spreading of pathogens more
easy, the very slow growth of the epidemic activity for
increasing spreading rates makes epidemic in these networks
less threatening.

2. Individual-based mean-field theory

As discussed in Sec. IV, the state of the system in the SIS
model is fully defined by a set of Bernoulli random variables
XiðtÞ ∈ f0; 1g: XiðtÞ ¼ 0 for a healthy, susceptible node and
XiðtÞ ¼ 1 for an infected node. It is possible to construct a 2N

Markov chain (Van Mieghem, Omic, and Kooij, 2009; Simon,
Taylor, and Kiss, 2011; Van Mieghem and Cator, 2012),
exactly specifying the time evolution of the SIS model.
While exact, as mentioned, the Markov chain approach
complicates analytical calculations. A simpler route to derive
rigorous results on the SIS model is to use the property of a
Bernoulli random variable Xi that the expectation E½Xi� is
equal to the probability that node i is infected, i.e., E½Xi� ¼
Pr ½Xi ¼ 1�≡ ρIiðtÞ. This allows one to write the exact
equations for the expectation of being infected for each node
i of the SIS model (Van Mieghem, 2014a, 2014b),

dE½XiðtÞ�
dt

¼ E

�
−μXiðtÞ þ ½1 − XiðtÞ�β

XN
j¼1

aijXjðtÞ
�
. ð30Þ

Equation (30) holds also for asymmetric adjacency matrices,
i.e., for both directed and undirected networks and for time-
varying networks where the adjacency matrix AðtÞ depends on
time t (Guo et al., 2013). The SIS governing equation (30)
states that the change over time of the probability of infection
E½XiðtÞ� ¼ Pr ½XiðtÞ ¼ 1� of node i equals the average of two
competing random variables: (a) if the node i is infected
(Xi ¼ 1), then dE½Xi�=dt decreases with a rate equal to the
curing rate μ, and (b) if the node is healthy (Xi ¼ 0), it can be
infected with infection rate β from each infected neighbor. The
total number of infected neighbors of node i is

P
N
j¼1 aijXj.

For a static network, Eq. (30) reduces to (Sharkey, 2011;
Schwartz and Stone, 2013; Van Mieghem, 2014b)

dρIiðtÞ
dt

¼ −ρIiðtÞ þ λ
XN
j¼1

aijρIjðtÞ − λ
XN
j¼1

aijE½XiðtÞXjðtÞ�;

ð31Þ

where t has been rescaled by 1=μ and λ ¼ β=μ.
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The above equations do not lend themselves to an explicit
solution because the equation for ρIiðtÞ depends on the two-
node expectation E½XiðtÞXjðtÞ�. Its exact computation
requires the knowledge of the joint probability distribution
Pr ½Xi ¼ 1; Xj ¼ 1� for the state of nodes i and j. In order to
derive a closed set of N dynamical equations, the IBMF
approximation is usually made [also termed quenched mean-
field (QMF) or N-intertwined mean-field approximation
(NIMFA)], which assumes that the states of neighboring
nodes are statistically independent, i.e.,

E½XiðtÞXjðtÞ�≡ E½XiðtÞ�E½XjðtÞ� ¼ ρIiðtÞρIjðtÞ. ð32Þ

Under this approximation the dynamical equation (31) for the
SIS model becomes (Hethcote and Yorke, 1984; Wang et al.,
2003; Chakrabarti et al., 2008; Van Mieghem, Omic, and
Kooij, 2009)

dρIiðtÞ
dt

¼ −ρIiðtÞ þ λ½1 − ρIi ðtÞ�
XN
j¼1

aijρIjðtÞ: ð33Þ

The physical interpretation is immediate: the change in the
probability ρIi has a destruction term, equal to the probability
that node i is infected times the rate of recovery μ ¼ 1, and a
creation term, equal to the probability that node i is suscep-
tible, times the total probability that any of its nearest
neighbors is infected, times the effective transmission rate
λ ¼ β=μ. Again, time has been rescaled in Eq. (33).
Noticeably, Eq. (33) can be derived using other approaches.
For example, Gómez et al. (2010) proposed a discrete-time
equation additionally taking into account the possibility of
reinfection in a single time step of length Δt. The equation
thus obtained leads to Eq. (33) in the continuous-time
limit Δt → 0.
To obtain a prediction of the threshold, we can apply a

linear stability analysis on Eq. (33). Indeed, linearizing
Eq. (33) leads to the Jacobian matrix with elements
Jij ¼ −δij þ λaij. An endemic state occurs when the largest
eigenvalue of J is positive. This condition translates in the
epidemic threshold

λ ≥ λIBMF
c ; λIBMF

c ¼ 1

Λ1

; ð34Þ

where Λ1 is the largest eigenvalue of the adjacency matrix
(Wang et al., 2003; Chakrabarti et al., 2008; Van Mieghem,
Omic, and Kooij, 2009).
In networks with a power-law degree distribution

PðkÞ ∼ k−γ , Eq. (34) can be combined with Λ1 ∼
maxf ffiffiffiffiffiffiffiffiffi

kmax
p

; hk2i=hkig (Chung, Lu, and Vu, 2003), where
kmax is the maximum degree in the network, to produce an
expression for the scaling of the epidemic threshold
(Castellano and Pastor-Satorras, 2010, 2012)

λIBMF
c ≃

�
1=

ffiffiffiffiffiffiffiffiffi
kmax

p
γ > 5=2;

hki=hk2i 2 < γ < 5=2.
ð35Þ

The relevance of this result is the prediction, in the thermo-
dynamic limit, of a vanishing epidemic threshold for every

network for which the maximum degree is a growing function
of the network size, which is essentially the case for all
random, nonregular networks. Although the expression for the
epidemic threshold obtained from the IBMF theory is not
exact [see Givan et al. (2011) for a detailed assessment of the
independence assumption], it provides a relatively good
accuracy when compared with the results of extensive
numerical simulations; see Sec. V.A.5.
It is worth bridging the IBMF approach with the DBMF

approach presented in the previous section. As stated in
Sec. IV, the DBMF approach is based on the assumption of
the statistical equivalence of all nodes with the same degree k,
actually defining the spreading process on an effective mean-
field graph, whose adjacency matrix is given by the annealed
form āij ¼ kjPðkijkjÞ=ðNPðkiÞÞ. This elucidates the connec-
tion between the IBMF and DBMF approaches. The latter can
be simply derived by substituting the annealed adjacency
matrix in Eq. (33). By performing a degree-based average
ρIk ¼

P
i∈kρ

I
i =ðNPðkÞÞ, Eq. (20) is thus recovered from the

IBMF approach. Hence, DBMF is equivalent to IBMF with
the additional approximation that the detailed topological
network structure is replaced by its annealed version.
Within the framework of IBMF theory, it is also possible to

derive the behavior of the prevalence ρI in the stationary state
just above the epidemic threshold (Goltsev et al., 2012; Van
Mieghem, 2012a)

ρIðλÞ≃ 1

N

P
N
j¼1 ðx1ÞjP
N
j¼1 ðx1Þ3j

λ − λc
λc

; ð36Þ

where ~x1 is the principal eigenvector (PEV) corresponding to
the largest eigenvalue of the adjacency matrix. The complete
expansion of the prevalence in the stationary state around the
epidemic threshold is derived by Van Mieghem (2012b).
Based on Eq. (36), the validity of the IBMF prediction for

the epidemic threshold was recently questioned (Goltsev
et al., 2012) according to the following argument. For
λIBMF
c to be the true epidemic threshold, the stationary state
above it must be endemic with a finite fraction of the network
infected. This requires that for N → ∞ the prefactor

A ¼ 1

N

P
N
j¼1 ðx1ÞjP
N
j¼1 ðx1Þ3j

ð37Þ

in Eq. (36) must tend to a constant of Oð1Þ. Whether A is
constant or not depends on the localization of the PEV,
i.e., whether its weight is evenly distributed (delocalized)
on all nodes of the network, or localized in a few nodes.
Goltsev et al. applied this idea to the analysis of power-law
distributed networks, arguing by means of analytical cal-
culations and numerical experiments [see also Martin,
Zhang, and Newman (2014)] that, for γ ≤ 5=2, the PEV is
delocalized, while it is localized for γ > 5=2. This implies
that, while λIBMF

c always marks a transition to an active state,
this one is endemic only for γ < 5=2, corresponding to a
delocalized PEV; for γ > 5=2, instead, a localized PEV
indicates that the transition at λIBMF

c is not to an endemic
state, but to a subendemic state, in which activity is
restricted to the neighborhood of the hubs with largest
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degree. Support of this argument [which is mean field in
nature, based on Eq. (36)] is provided by Lee, Shim, and
Noh (2013), who characterize the subendemic state as a
Griffiths phase [see also Boguñá, Castellano, and Pastor-
Satorras (2013)].

3. Extensions of degree-based and individual-based mean-field
approaches

Several extensions of the degree-based and individual-
based mean-field theories have been proposed, taking into
account the role of dynamical correlations, which are
neglected in both approaches.
A natural way to include the effect of correlations is to

consider additional variables representing the state of pairs,
triples, etc., of neighboring nodes. Eames and Keeling (2002)
introduced an extended degree-based approach where the
evolution of the average number hIki of nodes of degree k in
the infected state depends on the number hSkIli of connections
between susceptibles of degree k with infected nodes of
degree l. The dynamics can be written in terms of the
properties of triples, such as hSkSlImi and so on and so forth.
If averages for triples are approximated with averages for pairs
and single nodes, the dynamical equations are reduced to a set
of Oðk2maxÞ nonlinear ordinary differential equations (ODEs).
This procedure can be iterated, but the increased accuracy is
counteracted by a rapid growth in the number of equations.
Similarly, Gleeson (2011), building on the results of

Marceau et al. (2010), proposed a general theory for
binary-state dynamics in networks. This approach takes into
account explicitly the dynamical correlations between adja-
cent nodes [see also Lindquist et al. (2011) for a similar
approach]. The theory is based on a set of master equations for
the quantities sk;mðtÞ and ik;mðtÞ which, in the context of the
SIS model, are defined as the fraction of nodes of degree k
which are susceptible (respectively, infected) at time t and are
connected to m ≤ k infected neighbors. By means of combi-
natorial arguments, these quantities can be related to the
prevalence ρIk of nodes of degree k, allowing the determination
of the prevalence and epidemic threshold. This theoretical
approach provides a good description of the time evolution of
the prevalence (Gleeson, 2013) and good estimates of the
epidemic threshold for random regular lattices (Gleeson,
2011). Gleeson’s approach presents again the drawback that
the estimation of the threshold in more complex networks
requires the numerical solution of large sets of coupled
equations, which hinders the analysis of large network sizes.
Another degree-based approach, proposed by Boguñá,

Castellano, and Pastor-Satorras (2013), takes into account
long distance correlations by explicitly considering the pos-
sibility of reinfection between nodes i and j, separated by a
topological distance lij possibly larger than 1. For this
purpose, the original SIS dynamics is replaced by a modified
description valid over coarse-grained time scales. In such
longer temporal intervals, a given infected node i can
propagate the infection to any other node j at distance lij

in the network, via a sequence of microscopic infection events
of intermediate, nearest neighbor nodes. The infection rate β is
then replaced by an effective rate β̄ðlij; βÞ. On the coarse-
grained time scale the recovery rate μ of node i is also replaced

by an effective rate μ̄ðki; βÞ. Both parameters β̄ðlij; βÞ and
μ̄ðki; βÞ can be estimated from the properties of the network
and the SIS model. Writing down a mean-field theory for such
extension of the SIS model, upper bounds for the epidemic
threshold λc of the original SIS model are deduced, which
are in good agreement with numerical simulations; see
Sec. V.A.5.
For individual-based approaches, the consideration of

dynamical correlations can be introduced in a systematic
way, by the analog of a cluster expansion (ben-Avraham and
Köhler, 1992). The exact SIS equation (31) is, as discussed
previously, not closed, due to the presence of the term
involving dynamical correlations between pairs of adjacent
nodes. One way to proceed consists of complementing
Eq. (31) with an equation for the evolution of the pair
correlations E½XiðtÞXkðtÞ�. The ðN

2
Þ governing equations for

dE½XiXj�=dt for i ≠ j take the form (Cator and Van Mieghem,
2012)

dE½XiXj�
dt

¼ −2μE½XiXj� þ β
XN
k¼1

aikE½XjXk�

þ β
XN
k¼1

ajkE½XiXk�

− β
XN
k¼1

ðaik þ ajkÞE½XiXjXk�; ð38Þ

while for i ¼ j Eq. (30) holds. Equations (30) and (38) are still
an exact description of the dynamics involving now the terms
E½XiXjXk�, that in turn need to be determined, via ðN

3
Þ

differential equations involving joint fourth order expectations
and so on. In summary, the approach leads to a set ofP

N
k¼1ðNkÞ ¼ 2N − 1 exact equations describing the evolution

of the SIS process (to be complemented with the conservation
of probability) that form a hierarchy: the equations for the
evolution of correlations of order n depending on those of
order nþ 1.
To allow computations in practice, this hierarchy must be

limited to some small n by imposing a closure condition for
the set of equations. The simplest closure condition E½XiXj� ¼
E½Xi�E½Xj� leads to the IBMF approximation. Higher order
closures include dynamical correlations in a more detailed
way, thus providing a more accurate description of the system
dynamics. The assumption of different closure relations leads
to different degrees of tractability of the ensuing equations.
Some of those can be proved to be exact for simple networks
(Kiss et al., 2015). For example, focusing on general closure
forms, Cator and Van Mieghem (2012) proposed the expres-
sion E½XiXjXk� ¼ E½XiXj�E½Xk�. Analogously, Mata and
Ferreira (2013), applying standard techniques from pair
approximations in statistical physics, proposed the closure

E½XiXjXk� ¼
E½XiXj�E½XjXk�

E½Xj�
: ð39Þ

The particular interest of the closure (39) is that it allows one
to derive an explicit expression for the epidemic threshold in
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terms of the largest eigenvalue of the new Jacobian matrix of
the dynamical equations (Mata and Ferreira, 2013):

Jij ¼ −
�
1þ λ2ki

2λþ 2

�
δij þ

λð2þ λÞ
2λþ 2

aij: ð40Þ

A completely different approach to determine the epidemic
threshold for the SIS model was proposed by Parshani, Carmi,
and Havlin (2010). The idea is to map the SIS dynamics
with fixed infection time, to a percolation process, mirroring
the approach successfully used for the SIR model (see
Sec. V.B.4). In SIS dynamics, however, the mapping is
approximate and one has to take into account the reinfection
probability π, i.e., the probability that an infected node
reinfects the node from which it originally received the
disease. By estimating π and using it in a modified percolation
approach, values of the epidemic threshold are derived,
in good agreement with numerical simulations, also for
heavy-tailed degree distributions.

4. Exact results

Although the mean-field approaches provide a general
theoretical picture of the behavior of the SIS model in
networks, a few exact results exist that provide rigorous
bounds for the threshold and the dynamical behavior
of the model. A first exact result concerning the lower
bound of the epidemic threshold (Van Mieghem and van de
Bovenkamp, 2013) can be achieved by revisiting Eq. (31).
Since 0 ≤

P
N
k¼1 akiXiðtÞXkðtÞ, it is possible to write the

inequality:

dρIiðtÞ
dt

≤ −ρIiðtÞ þ λ
XN
k¼1

akiρIkðtÞ. ð41Þ

Denoting the vector W ¼ ðρI1; ρI2;…; ρINÞ, the solution of the
inequalities (41) is

WðtÞ ≤ eðλA−IÞtWð0Þ: ð42Þ

The exponential factor is dominated by the fastest growing
mode, which is λΛ1 − 1, where Λ1 is the largest eigenvalue
of the non-negative matrix A, which is real and positive, by
the Perron-Frobenius theorem (Gantmacher, 1974). When
λΛ1 − 1 ≤ 0, then Wi ¼ ρIi ðtÞ decreases exponentially in t
toward zero and the epidemic dies out fast, so that

λc ≥
1

Λ1

: ð43Þ

Interestingly, this lower bound coincides with the IBMF
result.
Ganesh, Massoulie, and Towsley (2005) proved that the

average time E½T� for the SIS Markov process to hit the
absorbing state, when the effective infection rate λ < 1=Λ1,
obeys

E½T� ≤ logN þ 1

1 − λΛ1

ð44Þ

from which Eq. (43) is deduced.
Above the epidemic threshold instead, the activity must be

endemic, so that the average time to absorption is E½T� ¼
OðecNÞ for some constant c > 0. Chatterjee and Durrett
(2009) proved that in graphs with power-law degree distri-
bution E½T� > OðebN1−δÞ for any δ > 0. This result pointed to
a vanishing threshold in the large N limit, but still left the
possibility open for nonendemic long-lived metastable states,
such as those predicted by Goltsev et al. (2012) and Lee,
Shim, and Noh (2013). This possibility was recently ruled out
by the work of Mountford et al. (2013), showing that for any
λ > 0 and large N, the time to absorption on a power-law
graph grows exponentially in N, implying that there is
endemic activity for any λ > 0.
For the complete graph, the exact average survival time was

determined using the Markov theory (Van Mieghem, Sahneh,
and Scoglio, 2014). In particular, the average survival time for
all λ and N is

E½T� ¼
XN
j¼1

Xj−1
r¼0

ðN − jþ rÞ!
jðN − jÞ! λr ð45Þ

whose asymptotic behavior for large N is

E½T� ∼ 1

μ

λ
λc

ffiffiffiffiffi
2π

p

ð λλc − 1Þ2
exp ðNflog λ

λc
þ λc

λ − 1gÞffiffiffiffi
N

p

for an effective infection rate λ ¼ β=μ above the epidemic
threshold λc. Since an infection can survive the longest in the
complete graph, the maximum average lifetime (or survival)
time of an SIS epidemic in any network with N nodes is not
larger than Eq. (45), or larger than E½T� ¼ OðeN lnðλ=λcÞÞ.
For power-law graphs, Chatterjee and Durrett (2009)

provided exact bounds for the exponent βSIS governing the
singular behavior ρI ∼ λβSIS of the activity at the transition,
namely, γ − 1 ≤ βSIS ≤ 2γ − 3. This implies that the mean-
field value βSIS ¼ 1 does not hold for any γ > 2, as well as the
failure of the DBMF prediction, Eq. (29).
For a few special classes of simple graphs such as the

complete graph and the star, the 2N-state Markov chain can be
reduced to a much smaller number of states, enabling an exact
solution (Van Mieghem and Cator, 2012; Cator and Van
Mieghem, 2013; Schwartz and Stone, 2013; Van Mieghem,
2013). More results can be classified as asymptotic exact
results, where the network size N → ∞. An overview of
asymptotic exact results is given by Durrett (2010).

5. Numerical simulations of the SIS model on networks

As presented above, the different approximations of the SIS
process on networks yield different results for the numerical
value of the epidemic threshold. This is particularly important
in the case of networks with a heavy-tailed degree distribution
PðkÞ ∼ k−γ , where the two main approximations, IBMF and
DBMF, lead to the same result for γ < 5=2, but to noticeable
differences for γ > 5=2, especially in the case γ > 3. In this
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region, while DBMF predicts a finite threshold, IBMF
indicates a vanishing one, albeit at a relatively small rate
with the system size.
Computational efforts have been mostly devoted to the

numerical determination of the epidemic threshold of the
SIS model on power-law distributed networks, in order to
assess the validity of the different theoretical approaches.
For a detailed study on graphs of small size see C. Li, van de
Bovenkamp, and Van Mieghem (2012).
The standard numerical procedure to study absorbing phase

transitions, such as the epidemic transition of SIS, is based on
the determination of the average of the order parameter (in this
case the density of infected nodes), restricted only to surviving
runs (Marro and Dickman, 1999), i.e., runs which have not
reached the absorbing state up to a given time t. Such a
technique is not efficient, because close to the threshold long
time surviving configurations are rare and an exceedingly
large number of realizations of the process are needed in order
to get substantial statistics. This problem is particularly severe
for a large network size, for which very large simulation times
are required, due to the presence of a long initial transient.
These issues make the standard procedure impractical and
have not led to reliable conclusions until recently.
In order to overcome the restrictions of the surviving runs

method, Ferreira, Castellano, and Pastor-Satorras (2012) and
Mata and Ferreira (2013) use the quasistationary state (QS)
method (de Oliveira and Dickman, 2005; Ferreira et al.,
2011), based on the idea of constraining the system in an
active state. This procedure is implemented by replacing the
absorbing state, every time the system tries to visit it, with an
active configuration randomly taken from the history of the
simulation [see also Van Mieghem and Cator (2012) for an
implementation of the same idea by means of an external
field]. With this technique, the threshold is estimated by
studying the susceptibility (Ferreira, Castellano, and Pastor-
Satorras, 2012), defined as

χ ¼ N
hρI2i − hρIi2

hρIi : ð46Þ

When plotted as a function of λ in a system of size N, the
susceptibility χ exhibits a maximum at a value λpðNÞ,
corresponding to a transition rounded by finite-size effects.
In the thermodynamic limit, the position of the peak tends to
the critical point as λpðNÞ − λcð∞Þ ∼ N−1=ν̄ (Binder and
Heermann, 2010). Large-scale simulations performed using
the QS method (Ferreira, Castellano, and Pastor-Satorras,
2012; Mata and Ferreira, 2013), see Fig. 5, show that, for
γ < 5=2, the IBMF and a pair approximation at the individual
level (PQMF) are almost exact, coinciding asymptotically
with the DBMF result in this range of degree exponents. For
5=2 < γ < 3, on the other hand, the IBMF result provides the
correct scaling of the threshold with network size. For the
crucial case γ > 3, where IBMF and DBMF provide radically
different predictions, the results are not as conclusive. A new
numerical approach has been proposed to explore this region
(Boguñá, Castellano, and Pastor-Satorras, 2013), based on the
study of the lifetime of individual realizations of the SIS
process starting with a single infected node. Each realization is

characterized by duration T and coverage C, where the latter is
the fraction of distinct nodes infected at least once during the
realization. In the thermodynamic limit, realizations can be
either finite (i.e., having a finite lifetime and, therefore,
vanishing coverage) or endemic (i.e., having an infinite
lifetime and coverage equal to 1). The average lifetime
E½T� of finite realizations plays the role of a susceptibility,
exhibiting a peak at the transition, whose position can then be
used to estimate the threshold. The nontrivial problem to

FIG. 6 (color online). Numerical thresholds for the SIS model as
a function of the network size N in power-law distributed
networks with degree exponent γ ¼ 3.5, computed using the
average lifetime method proposed by Boguñá, Castellano,
and Pastor-Satorras (2013). Numerical data are compared
with different theoretical approaches as well as with the
upper bound obtained from the DBMF theory with long-range
dynamical correlations, developed by Boguñá, Castellano, and
Pastor-Satorras (2013). Adapted from Boguñá, Castellano, and
Pastor-Satorras, 2013.

FIG. 5 (color online). Numerical thresholds for the SIS model as
a function of the network size N in scale-free networks with
degree exponent γ ¼ 2.25, computed using the QS method,
compared with different theoretical predictions. The upper inset
shows the behavior of the susceptibility as a function of the
spreading rate for different values of N ¼ 103; 104; 105; 106; 107,
from right to left. The lower inset shows the difference between
the different theoretical thresholds and the peaks of the suscep-
tibility. Adapted from Mata and Ferreira, 2013.
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determine whether, in a finite system, a realization is endemic
or not, can be overcome by declaring endemic all realizations
for which the coverage reaches a predefined value (e.g.,
C ¼ 0.5). Numerical simulations performed with this method
indicate that the extended DBMF approach by Boguñá,
Castellano, and Pastor-Satorras (2013) provides a good fit
to the numerical threshold for γ > 3, see Fig. 6, with a scaling
with network size that is essentially given by the IBMF
expression (35).

6. Finite-size effects and the epidemic threshold

As seen in the previous sections, the connectivity pattern of
the network explicitly enters in the determination of the
epidemic threshold that generally depends on the moments
of the degree distribution and/or the maximum degree of the
network. This finding has particular relevance in networks
with heavy-tailed degree distributions, where the probability
of nodes with very large degree is appreciable. In the limit of
infinite-size networks, the epidemic threshold may be vanish-
ing, thus prompting the disruption of the classical epidemic
framework where the disease can spread only for adequate
transmissibility of the pathogen. While mathematically com-
pelling, the argument of a vanishing threshold was soon
recognized as not realistic in real-world networks (May and
Lloyd, 2001; Pastor-Satorras and Vespignani, 2002a). Even if
the connectivity pattern of a network is well approximated by
a heavy-tailed distribution in a given range of degree values,
any real-world network is composed by a finite number of
nodes N. For instance, the finite size of scale-free networks is
generally related to the presence of a natural maximum degree
kmax ∼ N1=ðγ−1Þ, as reported in Sec. III.D, that translates into a
finite effective epidemic threshold. Although the finite size
of the network is often a determinant element in the estimation
of the epidemic threshold, for instance in the analysis of
numerical simulations (see Sec. V.A.5), there are many other
limitations to the maximum degree of the network. These
limits are often imposed by spatiotemporal constraints, such
as maximum occupancy in spatial locations and the finite time
each individual can interact with other individuals. As well,
intrinsic cognitive and biological constraints may be at work
in real-world systems. One example is provided by the so-
called Dunbar’s number that limits humans’ degree to between
100 and 200 individuals, a size apparently imposed by the
finite neocortical processing capacity of the brain (Dunbar,
1998). Interestingly, Dunbar’s number has been observed in a
wide range of human activities, including communication on
modern information technologies, making it a relevant limit in
the case of many information diffusion processes (Gonçalves,
Perra, and Vespignani, 2011; Miritello et al., 2013).
In view of these inherent limitations, it is often convenient

to assume that even in the case of heavy-tailed networks the
degree distribution is characterized by the analytic form
PðkÞ≃ k−γ exp ð−k=kcÞ, where kc is a characteristic degree
size. The exponential cutoff makes it extremely unlikely to
observe nodes with degree much larger than kc, effectively
introducing an intrinsic limit to the connectivity capacity of
nodes (Pastor-Satorras and Vespignani, 2002a). Within the
DBMF approach this leads, for large kc and 2 < γ < 3, to
λDBMF;unc
c ≃ ðkc=mÞγ−3 where m is the minimum degree of the

network, which can be generalized for other values of γ and
which shows the effect of the degree limitations imposed by
the intrinsic biological, social, and cognitive constraints in
real-world networks. Similar finite-size effects and consid-
erations also apply to the epidemic threshold obtained with the
IBMF theory and other approaches.
It is important to stress however that the presence of an

epidemic threshold because of finite-size effects and other
connectivity limitations should not be considered as an
argument to neglect the network heterogeneity. It is indeed
possible to show with simple calculations (Pastor-Satorras and
Vespignani, 2002a) that simple homogenous approaches can
overestimate the actual epidemic threshold in heterogeneous
networks by one or more orders of magnitude.

B. Susceptible-infected-recovered model

The SIR model is a cornerstone in infectious disease
modeling. It applies to the wide range of diseases that provide
immunity to the host and it is also a widely used modeling
scheme in knowledge and information diffusion (see Sec. X).
Theoretically, the SIR model represents a different challenge
with respect to the SIS model because it does not allow for a
stationary state. The two most used routes to a general analysis
of the SIR model have been initially the DBMF theory and the
mapping of static properties to the percolation model. Here we
start with a presentation of the DBMF approach, focusing then
on other degree-based, individual-based, and alternative
methods which have been completing the understanding of
the SIR dynamics in networks in recent years. We end the
section with an overview of the exact results on static
properties which can be obtained by mapping SIR to bond
percolation.

1. Degree-based mean-field approach

The DBMF approach can be easily adapted to provide
insight into the dynamic and static properties of the SIR
model. In the DBMF approximation, we define as a function
of time three different partial densities, namely, of infected,
susceptible, and recovered nodes of degree k, denoted by the
variables ρIkðtÞ, ρSkðtÞ, and ρRk ðtÞ, respectively.
The order parameter (prevalence) of the SIR model, defined

as the number of recovered individuals at the end of the
epidemics, is then given by ρR∞ ¼ limt→∞

P
k PðkÞρRk ðtÞ. In

describing the time evolution of these densities, one can
follow the analogy with the SIS model, to obtain the set of
equations (Lloyd and May, 2001; Moreno, Pastor-Satorras,
and Vespignani, 2002)

dρIkðtÞ
dt

¼ −ρItðtÞ þ λkρSkðtÞΓkðtÞ;
dρRk ðtÞ
dt

¼ ρIkðtÞ;
ð47Þ

complemented with the normalization condition ρSkðtÞ ¼ 1−
ρIkðtÞ − ρRk ðtÞ, where

ΓkðtÞ ¼
X
k0
Pðk0jkÞρIk0 ðtÞ: ð48Þ
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The value of the epidemic threshold in the case of general
correlations can be obtained as in the SIS case, by performing
a linear stability analysis. The same result follows, with the
epidemic threshold given by the inverse of the largest
eigenvalue ΛM of the connectivity matrix, Eq. (22). As for
SIS, in the case of uncorrelated networks the epidemic
threshold is given by λc ¼ hki=hk2i (Lloyd and May, 2001;
Moreno, Pastor-Satorras, and Vespignani, 2002). For uncor-
related networks, within the same DBMF approximation, it is
also possible to integrate the rate equations over time, starting
from a small seed, thus obtaining the full temporal evolution
of the spreading process. The solution depends on a differ-
ential equation for an auxiliary function ϕðtÞ, which cannot be
solved analytically in general. However, in the infinite time
limit, it is possible to determine the dependence of the final
prevalence ρR∞ on λ:

ρR∞ ¼
X
k

PðkÞð1 − e−λkϕ∞Þ; ð49Þ

where

ϕ∞ ¼ 1 −
1

hki −
X
k

kPðkÞ
hki e−λkϕ∞ : ð50Þ

The solution of Eq. (50) leads again to the epidemic threshold
λc ¼ hki=hk2i, a result that recovers the naive expectation for
regular networks; see Eq. (11), λc ¼ 1=hki. For a power-law
degree distribution PðkÞ ∼ k−γ , a detailed analysis (Moreno,
Pastor-Satorras, and Vespignani, 2002) leads to a prevalence,
in the vicinity of the epidemic threshold, of the form
ρR∞ ∼ ðλ − λcÞβSIR , with exponent βSIR coinciding with the
value for bond percolation, Eq. (19). The above results are
exact for annealed networks, when the topology changes
[preserving PðkÞ] at a very fast rate (Volz and Meyers, 2009).
Instead, when considering it as an approach to static networks,
the DBMF can be improved taking into account the fact that,
in the SIR process, a vertex cannot propagate the disease to the
neighbor who originally infected it, because the latter is
necessarily not susceptible. This effect can be included in
the DBMF equations by discounting, from the number of
edges pointing from infected individuals of degree k0 to
vertices of degree k, the edge from which the original infection
arrived to the vertices of degree k0. In this way, Eqs. (47) are
recovered but now the ΓkðtÞ function takes the form (Boguñá,
Pastor-Satorras, and Vespignani, 2003b)

ΓkðtÞ ¼
X
k0

k0 − 1

k0
Pðk0jkÞρIk0 ðtÞ: ð51Þ

The value of the epidemic threshold in this case is given by
λc ¼ 1= ~ΛM, where ~ΛM is the largest eigenvalue of the new
connectivity matrix

~Ckk0 ¼
kðk0 − 1Þ

k0
Pðk0jkÞ: ð52Þ

In the case of uncorrelated networks, the largest eigenvalue of
the matrix ~Ckk0 is ~ΛM ¼ hk2i=hki − 1 (the corresponding

eigenvector has components ~vk ¼ k) so that the epidemic
threshold is

λc ¼
hki

hk2i − hki : ð53Þ

As shown below, Eq. (53) is an approximation of the exact
result (62). However, this modified DBMF approach captures
the correct qualitative behavior, discriminating between van-
ishing threshold, for scale-free networks, and finite threshold,
for γ > 3.
The DBMF approach allows one to also tackle the scaling

of the time evolution of the epidemic outbreak. This is
particularly important in the context of models like SIR that
do not have a stationary state. For simplicity we initially focus
on the SI model (Anderson and May, 1992), representing a
disease in which infected individuals never recover and keep
propagating the disease forever. The SI model can be
considered the limit of the SIR model in which the recovery
rate μ is set to zero. While this simplification leads to a trivial
asymptotic state in which the whole population becomes
eventually infected, it is nevertheless interesting due to its
simplicity, which allows one to obtain explicit results for the
initial time evolution of epidemic outbreaks. The DBMF
analysis of the SI model proceeds from the analog of Eq. (47),
valid for generic networks (Barthélemy et al., 2004, 2005)

dρIkðtÞ
dt

¼ βk½1 − ρIkðtÞ�ΓkðtÞ; ð54Þ

with

ΓkðtÞ ¼
X
k0
Pðk0jkÞρIk0 ð0Þ

þ
X
k0

k0 − 1

k0
Pðk0jkÞ½ρIk0 ðtÞ − ρIk0 ð0Þ�: ð55Þ

The first term in Eq. (55) accounts for a very small initial seed
of infected individuals, with initial partial density ρIkð0Þ, which
can infect all their neighbors. The second term represents the
contribution of individuals infected during the outbreak,
which can infect all their neighbors, with the exception of
those who transmitted the disease. Linear stability analysis
shows that the time evolution at very short times (when the
partial densities of infected individuals are very small) follows
an exponential growth ρIðtÞ ∼ et=τ, where the characteristic
time is given by τ ¼ ðβ ~ΛMÞ−1, where again ~ΛM is the largest
eigenvalue of the connectivity matrix in Eq. (52). In the case
of uncorrelated networks this implies (Barthélemy et al.,
2004, 2005)

τ ¼ hki
β½hk2i − hki� : ð56Þ

The solution for the SI model can be extended to the case of
the general SIR model by allowing a nonzero healing rate,
which leads to the general time scale of the initial growth
(Barthélemy et al., 2005)
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τ ¼ hki
βhk2i − ðμþ βÞhki : ð57Þ

These results readily indicate that the growth time scale
of an epidemic outbreak is inversely proportional to the
second moment of the degree distribution hk2i; when this
quantity diverges, as in the case of scale-free networks, not
only does the threshold tend to vanish, but also the time
until the establishment of the infection becomes very small
(vanishing in the thermodynamic limit). Computer simula-
tions allow one to obtain a detailed picture of the mecha-
nism of spreading of a disease in a scale-free network
(Barthélemy et al., 2004, 2005): Initially, the infection
reaches the hubs and from them it quickly invades the rest
of the network via a cascade through progressively smaller
degree classes.

2. Individual and pair-based mean-field approaches

As in the SIS case, a systematic way to attack the SIR
model is based on the full master equation for the exact
evolution of probabilities of microscopic states, and the
derivation, starting from it, of deterministic evolution
equations for dynamical quantities. In this framework,
Sharkey (2008) considered SIR with Poissonian infection
and recovery processes and derived from the master
equation the 2N equations for the probabilities for the state
of individuals

dρSi ðtÞ
dt

¼ −β
X
j

aijhSiIji;

dρIiðtÞ
dt

¼ β
X
j

aijhSiIji − μρIi ;

ð58Þ

where Si and Ij are Bernoulli variables equal to 1 when the
node is susceptible (infected, respectively) and 0 otherwise,
ρSi ¼ hSii is the probability that node i is in state S, ρIi ¼
hIii is the analog for state I, and hSiIji is the joint
probability of state SiIj. In order to close Eqs. (58), the
simplest possibility is to assume that the state of neighbors
is independent (individual-based mean-field approximation).
Alternatively, one can derive from the master equation the
evolution of the probabilities of pairs of neighbors, which
depend in turn on the state of triples of neighboring nodes.
The closure of the hierarchy at this level (pair-based mean-
field) requires the approximation of probabilities for triples
with moments of lower order. There are several possible
ways to implement the closure and the best choice is not a
trivial problem. The validity of the different approximation
schemes has been investigated by Sharkey (2011), who
showed that replacing hSiIji ¼ hSiihIji is equivalent towriting
down an equation for the evolution of hSiIji containing
unphysical terms (i.e., terms assuming that a node is at the
same time susceptible and infected). The consequences of
these unphysical terms are relevant: from the individual-based
mean-field approach one can derive an expression for the
SIR epidemic threshold equal to what is found for the
SIS case (Youssef and Scoglio, 2011; Prakash et al., 2012):

λc ¼ 1=Λ1, where Λ1 is the largest eigenvalue of the
adjacency matrix. This result, however, is even qualitatively
not correct, as it predicts a vanishing threshold for power-law
distributed networks with γ > 3, at odds with exact results
(see Sec. IV.B.4) and numerical simulations (Castellano and
Pastor-Satorras, 2010). The pair-based approach instead,
complemented with the closure in Eq. (39), is proven to
be an exact description of the stochastic system for a tree
topology (Sharkey et al., 2015). In the case of networks with
loops it is possible to find a precise connection between the
detailed loop structure and the closures that leave the
description exact (Kiss et al., 2015). From these individual
and pair-based approaches, by summing over all nodes, the
equations for the probabilities of the global quantities ρI and
ρS can be obtained, thus providing a microscopic foundation
of equations obtained at a population level by means of the
mass-action principle. Equation (58) and similar pair-based
approaches can be written also for heterogeneous infection
and recovery rates (Sharkey, 2008). Hence, the approaches
apply in full generality also to directed and weighted
networks.

3. Other approaches

Because of its great relevance, the time evolution of the SIR
dynamics has been tackled with many other approaches. The
extended degree-based approach of Eames and Keeling (2002)
(see Sec. V.A) can be applied also to the SIR model, providing
a set of closed ODEs that can be integrated numerically or
used to derive an expression for the basic reproduction ratio
R0. Also the extended degree-based approach of Lindquist
et al. (2011) can be applied to SIR, by categorizing each node
by its disease state (i.e., S, I, R), as well as by the number of
neighbors in each disease state. In this way, an excellent
agreement with numerical simulations for both the temporal
evolution and the final outbreak size is found. The threshold
condition derived analytically turns out to be equal to the exact
one obtained using percolation theory, Eq. (62).
An alternative approach by Volz (2008) describes the

Poissonian SIR epidemics at the global population level.
Based on the probability generating function for the degree
distribution, it describes the evolution of the infection using
only three coupled nonlinear ordinary differential equations.
The solution of these equations is in excellent agreement with
numerical simulations (Lindquist et al., 2011); it is shown to
be exact in the thermodynamic limit (Decreusefond et al.,
2012; Janson, Luczak, and Windridge, 2014) and it allows one
to derive the exact expression, Eq. (62), for the epidemic
threshold, in the case of static uncorrelated networks. In this
case, the approach of Volz (2008) can be shown (House and
Keeling, 2010) to be a specific case of the extended degree-
based theory of Eames and Keeling (2002). Volz’s approach
can be made more physically transparent and simpler, reduc-
ing to a single evolution equation (Miller, 2011). The basic
idea of this improved approach is to focus on the state of a
random partner instead of a random individual. From this
starting point, a fully general theoretical framework (edge-
based compartmental modeling) can be developed, allowing
one to deal with many different scenarios, including static and
dynamic networks, both undirected and directed (Miller, Slim,
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and Volz, 2012; Valdez, Macri, and Braunstein, 2012b; Miller
and Volz, 2013). For other approaches to SIR dynamics based
on the probability generating function, see Marder (2007) and
Noël et al. (2009, 2012).
A derivation of a condition for the possibility of a global

spreading event starting from a single seed in SIR-like models
on generic networks is presented by Dodds, Harris, and Payne
(2011) and generalized by Payne, Harris, and Dodds (2011).
The approach is based on the state of “node-edge” pairs and
relates the possibility of spreading to the condition that the
largest eigenvalue of a “gain ratio” matrix (encoding infor-
mation on both the topology and the spreading process) is
larger than 1.
Finally, a new, substantial step forward in the understanding

of the SIR model is the recent application of the message-
passing approach to SIR dynamics (Karrer and Newman,
2010). This approach provides an exact description of the
dynamics on trees, via a closed set of integrodifferential
equations, allowing the calculation of the probabilities to be in
states S, I, or R for any node and any time. When loops are
present, the method gives instead a rigorous bound on the size
of disease outbreaks. On generic (possibly directed) trees the
approach of Karrer and Newman (2010) has been shown
(Wilkinson and Sharkey, 2014) to coincide for Poissonian
infections with the pair-based moment closure presented by
Sharkey et al. (2015). Remarkably, the message-passing
approach allows one to deal with fully generic (non-
Poissonian) infection and recovery processes.

4. Mapping the SIR model to a percolation process

The connection between the static properties of the SIR
model and bond percolation (see Sec. IV.C) was recognized
long ago (Ludwig, 1975; Grassberger, 1983; Andersson and
Britton, 2000). In the context of epidemics on complex
networks, the mapping has been studied in detail by
Newman (2002b). Considering a SIR model with uniform
infection time τ, i.e., where infected nodes become recovered
at time τ after infection,5 and infection rate β, the transmis-
sibility T is defined as the probability that the infection will be
transmitted from an infected node to a connected susceptible
neighbor before recovery takes place. For continuous-time
dynamics the transmissibility can be computed as (Newman,
2002b)

T ¼ 1 − lim
δt→0

ð1 − βδtÞτ=δt ¼ 1 − e−τβ: ð59Þ

The set of recovered nodes generated by an SIR epidemic
outbreak originated from a single node is nothing else than
the cluster of the bond percolation problem (with occupation
probability T) to which the initial node belongs. The
correspondence is exact: all late-time static properties of
the SIR model can be derived as direct translations of the
geometric properties of the percolation problem. For treelike
networks the exact epidemic threshold is given by Eq. (18),
so that

Tc ¼
hki

hk2i − hki ⇒ βc ¼
1

τ
ln

hk2i − hki
hk2i − 2hki . ð60Þ

The behavior of the outbreak size close to the epidemic
threshold, ruled by the equivalent percolating giant compo-
nent, is given in terms of the exponents in Eq. (19).
Equation (60) confirms for the SIR model that the epidemic
threshold has a qualitatively different behavior for scale-free
networks (γ ≤ 3) and for scale-rich ones (γ > 3). In the
former case the second moment of the degree distribution
diverges, so that the threshold vanishes: scale-free networks
are extremely vulnerable to disease spreading.
The above results can be considered exact only for a tree

(completely loopless) structure. In other networks, the pres-
ence of loops and multiple spreading paths leads in general to
correlations, which may invalidate the results obtained for
trees. However, for random networks which are locally
treelike the presence of long loops (infinitely long in the
thermodynamic limit) is not sufficient to alter the validity of
the results obtained using the tree ansatz (Dorogovtsev,
Goltsev, and Mendes, 2008). A different conclusion holds
instead in networks with short loops (finite clustering) as
discussed in Sec. VII.B.2.
The derivation of Eq. (60) is based on a uniform infection

time. More realistically, we assume that infection times τi and
rates βij vary between individuals. This implies that the
transmissibility Tij depends on the specific edge ði; jÞ. One
possible approach, that reduces to the solution of the homo-
geneous case (Newman, 2002b), is to neglect fluctuations, and
replace Tij by its mean value

hTiji ¼ 1 −
Z

dτ
Z

dβe−βτQðβÞPðτÞ; ð61Þ

where Q and P are the distributions of βij and τi, respectively.
The case of nondegenerate τi includes the usual definition of
the SIR model with constant recovery rate μ for which
recovery times are distributed exponentially with average
hτii ¼ 1=μ. In such a case, performing the integral in Eq. (61)
and setting βhτii ¼ β=μ ¼ λ yields hTiji ¼ λ=ð1þ λÞ,
implying

λc ¼
hki

hk2i − 2hki : ð62Þ

This approximation leads to the exact epidemic threshold, the
mean outbreak size below it, and the final size above it, but
fails in other respects (Kenah and Robins, 2007); see also
Trapman (2007). The discrepancy is due to correlations
(Karrer and Newman, 2010): “if an individual recovers
quickly, then the probability of transmission of the disease
to any of its neighbors is small; if it takes a long time to
recover the probability is correspondingly larger.” Newman’s
approximation is not exact also when the τi are degenerate and
the βij vary (Miller, 2007).
The correct way to take into account the heterogeneous

transmissibility maps the disease spreading to a bond perco-
lation process, involving now a semidirected network
(epidemic percolation network) (Kenah and Robins, 2007;

5Note that this does not coincide exactly with the definition given
in Sec. II.A.
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Miller, 2007); see Sec. III.A. The mapping works as follows.
For each pair of connected nodes i and j in the contact
network, place a directed edge from i to j with probability
1 − e−βijτi and a directed edge from j to i with probability
1 − e−βjiτj . Tools from percolation theory on directed networks
(Boguñá and Serrano, 2005), see Sec. VII.B.4, allow one to
exactly characterize the long time features of the epidemic
process. In particular, the epidemic transition is associated with
the formation of a GSCC in the directed network. If such a
component exists, then an infection originating in one of its
nodes or in the GINwill spread to all nodes in the GSCC and in
theGOUT, giving rise to amacroscopic outbreak. It is crucial to
recognize that the GIN and GOUT components play com-
pletely different roles: nodes in GOUT are necessarily part
of macroscopic outbreaks but cannot originate them. The
opposite is true for nodes in GIN. As a consequence
the probability that an epidemic occurs (given by the size of
GIN ∪ GSCC) and the size of the epidemic (equal to the size
of GSCC ∪ GOUT) do not coincide (Meyers, Newman, and
Pourbohloul, 2006; Miller, 2007). The mapping to percolation
on semidirected networks is valid for any type of contact
network underlying the SIR epidemics. For trees and locally
treelike networks it is again possible to apply the machinery
of probability generating functions to derive explicit results
for the related percolation properties. Other discrepancies of
the mapping to percolation approach to the SIR model are
reported by Lagorio et al. (2009).

VI. STRATEGIES TO PREVENT OR MAXIMIZE
SPREADING

A. Efficient immunization protocols

The fact that epidemic processes in heavy-tailed networks
have a vanishing threshold in the thermodynamic limit, or a
very small one in large but finite networks (see Sec. V),
prompted the study of immunization strategies leveraging on
the network structure in order to protect the population from
the spread of a disease. Immunization strategies are defined by
specific rules for the identification of the individuals that shall
be made immune, taking into account (local or nonlocal)
information on the network connectivity pattern. Immunized
nodes are in practice removed from the network, together with
all the links incident to them, and each strategy is assessed by
the effects of immunizing a variable fraction g of nodes in the
network. The application of immunization does not only
protect directly immunized individuals, but can also lead,
for a sufficiently large fraction g, to an increase of the
epidemic threshold up to an effective value λcðgÞ >
λcðg ¼ 0Þ, precluding the global propagation of the disease.
This effect is called herd immunity. The main objective in this
context is to determine the new epidemic threshold as a
function of the fraction of immunized individuals. Indeed, for
a sufficiently large value of g, any strategy for selecting
immunized nodes will lead to an increased threshold. We
define the immunization threshold gcðλÞ, for a fixed value of λ
such that, for values of g > gcðλÞ the average prevalence is
zero, while for g ≤ gcðλÞ the average prevalence is finite.
The simplest immunization protocol, using essentially no

information at all, is the random immunization, in which a

number gN of nodes is randomly chosen and made immune.
While random immunization in the SIS model (under the
DBMF approximation) can depress the prevalence of the
infection, it does so too slowly to increase the epidemic
threshold substantially. Indeed, from Eq. (20), an epidemics
in a randomly immunized network is equivalent to a standard
SIS process in which the spreading rate is rescaled as
λ → λð1 − gÞ, i.e., multiplied by the probability that a given
node is not immunized, so that the immunization threshold
becomes (Pastor-Satorras and Vespignani, 2002b)

gcðλÞ ¼ 1 −
hki
λhk2i : ð63Þ

For heterogeneous networks, for which hk2i diverges and
any value of λ, gcðλÞ tends to 1 in the limit N → ∞, indicating
that almost the whole network must be immunized to suppress
the disease.
This example shows that an effective level of protection in

heavy-tailed networks must be achieved by means of opti-
mized immunization strategies (Anderson and May, 1992),
taking into account the network heterogeneity. Large degree
nodes (the hubs leading to the large degree distribution
variance) are potentially the largest spreaders. Intuitively,
an optimized strategy should be targeting those hubs rather
than small degree vertices. Inspired by this observation, the
targeted immunization protocol proposed by Pastor-Satorras
and Vespignani (2002b) considers the immunization of the gN
nodes with largest degree. A simple DBMF analysis leads to
an immunization threshold given, for the SIS model, by the
implicit equation (Pastor-Satorras and Vespignani, 2002b)

hk2igc
hkigc

¼ 1

λ
; ð64Þ

where hknig is the nth moment of the degree distribution PgðkÞ
of the network resulting after the deletion of the gN nodes of
highest degree, which takes the form (Cohen et al., 2001)

PgðkÞ ¼
Xkc
k0≥k

Pðk0Þ
�
k0

k

�
ð1 − gÞkgk0−k: ð65Þ

Equation (64) can be readily solved in the case of scale-free
networks. For a degree exponent γ ¼ 3, the immunization
threshold reads gcðλÞ≃ exp½−2=ðmλÞ�, where m is the mini-
mum degree in the network. This result highlights the
convenience of targeted immunization, with an immunization
threshold that is exponentially small over a large range of the
spreading rate λ. A similar effect can be obtained with a
proportional immunization strategy (Pastor-Satorras and
Vespignani, 2002b) [see also Dezsö and Barabási (2002)
for a similar approach involving the cure of infected individ-
uals with a rate proportional to their degree], in which nodes of
degree k are immunized with probability gk, which is some
increasing function of k. In this case, the infection is
eradicated when gk ≥ 1 − 1=ðλkÞ, leading to an immunization
threshold (Pastor-Satorras and Vespignani, 2002b)
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gcðλÞ ¼
X
k>λ−1

�
1 −

1

kλ

�
PðkÞ; ð66Þ

which takes the form gcðλÞ≃ ðmλÞ2=3 for scale-free networks
with γ ¼ 3.
Other approaches to immunization stress that not only

the behavior close to the critical point should be taken into
account, but also the entire prevalence curve (the so-called
viral conductance) (Kooij et al., 2009; Youssef, Kooij, and
Scoglio, 2011; Van Mieghem, 2012b). Additionally, strategies
involving possible different interventions on different nodes
have been analyzed within a game-theoretic formalism (Van
Mieghem and Omic, 2008; Omic, Orda, and Van Mieghem,
2009; Gourdin, Omic, and Mieghem, 2011).
The previously discussed immunization protocols are

based on a global knowledge of the network properties (the
whole degree sequence must be known to selectively target
the nodes to be immunized). Actually, the more a global
knowledge of the network is available, the more effective is
the immunization strategy. For instance, one of the most
effective targeted immunization strategies is based on the
betweenness centrality (see Sec. III.B.5), which combines the
bias toward high degree nodes and the inhibition of the most
probable paths for infection transmission (Holme et al., 2002).
This approach can even be improved by taking into account
the order in which nodes are immunized in a sequential
scheme in which the betweenness centrality is recomputed
after the removal of every single node, and swapping the order
of immunization in different immunization sequences, seeking
to minimize a properly defined size for the connected
component of susceptible individuals. This approach has been
proven to be highly efficient in the case of the SIR model
(Schneider et al., 2011). Improved immunization performance
in the SIR model has been found with an “equal graph
partitioning” strategy (Chen et al., 2008) which seeks to
fragment the network into connected components of approx-
imately the same size, a task that can be achieved by a much
smaller number of immunized nodes, compared with a
targeted immunization scheme.
The information that makes targeted strategies very effec-

tive also makes them hardly feasible in real-world situations,
where the network structure is only partially known. In order
to overcome this drawback, several local immunization
strategies have been considered. A most ingenious one is
the acquaintance strategy proposed by Cohen, Havlin, and
ben-Avraham (2003), and applied to the SIR model. In this
protocol, a number gN of individuals is chosen at random and
each one is asked to point to one of his or her nearest
neighbors. Those nearest neighbors, instead of the nodes, are
selected for immunization. Given that a randomly chosen edge
points with high probability to a large degree node, this
protocol realizes in practice a preferential immunization of the
hubs that results in being effective in hampering epidemics.
An analogous result can be obtained by means of a random
walk immunization strategy (Holme, 2004; Ke and Yi, 2006),
in which a random walker diffuses in the network and
immunizes every node that it visits, until a given degree of
immunization is reached. Given that a random walk visits a
node of degree ki with probability proportional to ki (Noh and

Rieger, 2004), this protocol leads to the same effectiveness as
the acquaintance immunization.
The acquaintance immunization protocol can be improved

by allowing for the consideration of additional information,
always at the local level. For example, allowing for each node
to have knowledge of the number of connections of its nearest
neighbors, a large efficiency is attained by immunizing the
neighboring nodes with the largest degree (Holme, 2004). As
more information is available, one can consider the immuni-
zation of the nodes with highest degree found within short
paths of length l starting from a randomly selected node
(Gomez-Gardenes, Echenique, and Moreno, 2006). The
random walk immunization strategy, on the other hand, can
be improved by allowing a bias favoring the exploration of
high degree nodes during the random walk process (Stauffer
and Barbosa, 2006). Variations of the acquaintance immuni-
zation scheme have also been used for weighted networks.
The acquaintance immunization for weighted networks
is outperformed by a strategy in which the immunized
neighbors are selected among those with large edge weights
(Deijfen, 2011).
A different approach to immunization, the high-risk immu-

nization strategy, applied by Nian and Wang (2010) to the
SIRS model, considers a dynamical formulation, in which
nodes in contact with one or more infected individuals are
immunized with a given probability. Again, by immunizing
only a small fraction of the network, a notable reduction of
prevalence and increase of the epidemic threshold can be
achieved.
Finally, for the SIR model, the mapping to percolation

suggests which nodes to target in a vaccination campaign,
depending on whether the probability of an outbreak or its size
are to be minimized (Kenah and Miller, 2011). A targeted
vaccination of nodes in the GSCC implies a reduction of both
the probability of a major epidemics and its size.

B. Relevant spreaders and activation mechanisms

Although the problem of immunization is central in the
study of epidemics because of its practical implications, the
attention of the research community has recently been
attracted by the somewhat related theme of discovering which
nodes are most influential or effective in the spreading
process. For instance, what node should be chosen as initial
seed in a SIR epidemic, in order to maximize the total number
of nodes eventually reached by the outbreak? This is a very
natural question to be posed (Kitsak et al., 2010), in particular,
when the propagation process does not involve a disease to be
contained but rather a positive meme (such as a crucial piece
of information, see Sec. X) whose spreading is instead to be
maximized.
The traditional common wisdom, derived from early

studies on the immunization problem (Pastor-Satorras and
Vespignani, 2002b), was that nodes with the highest degree
play the role of superspreaders in networks. This view was
challenged by Kitsak et al. (2010) who pointed out that the
K-core index (see Sec. III.B.5) is a much better predictor of
the final outbreak size in the SIR model spreading on several
real networks, where (as opposed to uncorrelated networks)
the set of nodes with large degrees does not coincide with
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highK. The intuitive reason is that the most densely connected
core gets easily infected by an outbreak initiated by one of its
vertices, finally transmitting the infection to a large portion
of the entire network. High degree nodes which are not part
of the core may spread the activity to a large number of
neighbors but the infection hardly extends farther.
These findings have stimulated a flurry of activity aimed at

understanding which of several possible topological centrality
measures (degree, betweenness, K-core index, closeness, and
many others) are more correlated with spreading influence in
various types of networks and contagion dynamics (Bauer and
Lizier, 2012; Chen et al., 2012, 2013; Chung et al., 2012;
Hou, Yao, and Liao, 2012; P. Li et al., 2012; da Silva, Viana,
and da Fontoura Costa, 2012; Hébert-Dufresne et al., 2013;
Liu, Ren, and Guo, 2013; Zeng and Zhang, 2013). These
studies consider different issues and features of the interplay
between the network and the spreading process, and such a
large variability does not allow one to reach firm conclusions.
Various quantities are used to evaluate the spreading effec-
tiveness: in some cases only top influential spreaders are
considered, in others complete rankings of all nodes are
compared. Moreover, the consideration of different real net-
works in different papers does not help in comparing
approaches and, in particular, to disentangle the effects of
specific topological features such as degree heterogeneity,
clustering, or assortativity. Finally not all studies properly take
into account the fact that results may be largely different
depending on which part of the epidemic phase diagram is
considered: the absorbing phase, the transition regime, or the
phase where activity is widespread. As a consequence, a clear
picture that uniquely determines the best centrality measure
that identifies superspreaders for different epidemic models
and different networks has yet to be defined.
The K-core decomposition is in many cases a good

predictor of spreading efficiency. Nevertheless an interesting
finding (Klemm et al., 2012; Hébert-Dufresne et al., 2013) is
that the removal of a node with high-K-core index has a
limited effect as multiple paths exist among the nodes in the
central cores. Thus in general efficient spreaders are not
necessarily also good targets for immunization protocols. An
extension of the K-core decomposition to weighted networks
with application to a SIR epidemics on weighted networks
(see Sec. VII.B.3) was also proposed (Garas, Schweitzer, and
Havlin, 2012).
Similar to the problem of finding efficient spreaders is the

identification of nodes which are infected earlier than the
others, thus playing the role of “sensors” for epidemic
outbreaks (Christakis and Fowler, 2010; Garcia-Herranz
et al., 2014). The strategy of considering friends of randomly
chosen nodes allows one to select, without any knowledge of
the global network structure, individuals with high degree,
high betweenness, small clustering, and high-K-core index,
which are actually reached early by epidemic outbreaks. This
effect lies at the basis of the acquaintance immunization
strategy (Cohen, Havlin, and ben-Avraham, 2003) discussed
previously.
Another problem, conceptually close to the search for

superspreaders, is the identification of what topological
features trigger global epidemics, i.e., what network subsets
determine the position of the epidemic threshold (Castellano

and Pastor-Satorras, 2012). For SIS, the epidemic threshold
scales, within the IBMF approximation, as the inverse of the
largest eigenvalue of the adjacency matrix Λ1 (see Sec. V.A.2).
Applying the scaling form of Λ1 for large uncorrelated scale-
free networks (Chung, Lu, and Vu, 2003), the scaling of the
threshold with network size is given by Eq. (35). This result
can be interpreted as follows (Castellano and Pastor-Satorras,
2012): For γ > 5=2, the node with the largest degree (hub)
together with its direct neighbors forms a self-sustained
nucleus of activity above λc which propagates to the rest of
the system. For γ < 5=2 instead, the threshold position is
dictated by the set of most densely interconnected nodes, as
identified by the K-core of the largest index. Topological
correlations may alter the picture. For SIR dynamics instead,
the largest hub is not able to trigger the transition and the
position of the threshold is always dictated by the maximum
K-core.
All investigations described so far attempt to relate dynami-

cal properties of the spreading process to purely topological
features of the contact pattern. Taking a more general
approach, Klemm et al. (2012) defined a “dynamical influ-
ence” centrality measure, which incorporates not only topo-
logical but also dynamical information. The dynamical
influence is the leading left eigenvector of a characteristic
matrix that encodes the interplay between topology and
dynamics. When applied to SIR and SIS epidemic models,
the characteristic matrix coincides with the adjacency matrix.
The dynamical influence predicts well which nodes are
active around the transition, while it is outperformed by
other centrality measures far from the threshold (Klemm
et al., 2012).
A growing activity has also recently been concerned with

the inverse problem of inferring statistically, from the
configuration of the epidemics at a given time, which of
the nodes was the initial seed originating the outbreak (Comin
and da Fontoura Costa, 2011; Pinto, Thiran, and Vetterli,
2012; Brockmann and Helbing, 2013; Altarelli et al., 2014;
Lokhov et al., 2014).
Finally, the problem of finding efficient spreaders is not

limited to disease epidemic models; it is possibly even more
important for complex contagion phenomena (such as rumor
spreading or the diffusion of innovations); see Sec. X.

VII. MODELING REALISTIC EPIDEMICS

A. Realistic models

The simple SIS and SIR models considered so far can be
generalized to provide a more realistic description of the
disease progression by introducing additional compartments
(see Sec. II.A) and/or by allowing additional transitions
between the different compartments. These variations, that
can be studied analytically or most often numerically, may
alter the basic phenomenology of the epidemic process. In this
section, we survey some of those models and refer the
interested reader to the work of Masuda and Konno (2006)
for more complicated models that include pathogens’ com-
petition and game-theoretical inspired (Webb, 2007) conta-
gion processes.
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1. Non-Markovian epidemics on networks

The modeling framework presented in the previous sections
is mostly based on the Poisson approximation (Tijms, 2003)
for both the transmission and recovery processes. The Poisson
approximation assumes that the probabilities per unit time of
transmitting the disease through a given edge, or recovering
for a given infected node, are constant, and equal to β and μ,
respectively. Equivalently, the total time τi that a given node i
remains infected is a random variable with an exponential
distribution PiðτiÞ ¼ μe−τiμ, and that the time τa for an
infection to propagate from an infected to a susceptible node
along a given edge (the interevent time) is also exponentially
distributed PaðτaÞ ¼ βe−τaβ. A notable variation assumes that
all infected nodes remain infective for a fixed time τ. The SIR
model can be analyzed exactly in this setting by means of the
generating function approach (see Sec. V.B.4).
From a practical point of view, the Poisson assumption

leads to an increased mathematical tractability. Indeed, since
the rates of transmission and recovery are constant, they do
not depend on the previous history of the individual, and thus
lead to memoryless, Markovian processes (van Kampen,
1981; Ross, 1996; Tijms, 2003; Van Mieghem, 2014b).
While the Poisson approximation may be justified when only
the average rates are known (Lambiotte, Tabourier, and
Delvenne, 2013), it is at odds with empirical evidence for
the time duration of the infective period in most diseases
(Blythe and Anderson, 1988), whose distribution usually
features a peak centered on the average value but exhibits
strongly nonexponential tails. Furthermore, the interest in
nonexponential transmission processes has also been fueled
by the recent evidence on the patterns of social and commu-
nication contacts between individuals, which have been
observed to be ruled by heavy-tailed distributions of interevent
times (see Sec. VIII).
The framework of non-Poissonian infection and recovery

processes can be set up as follows, for either the SIS or SIR
model (Boguñá et al., 2014): Infected individuals remain
infective for a period of time τi, after which they recover, that
follows the (nonexponential) PiðτiÞ distribution. For simplic-
ity, it is assumed that this distribution is the same for all nodes.
Infection events take place along active links, connecting
an infected to a susceptible node. Active links transmit the
disease at times following the interevent distribution PaðτaÞ,
i.e., a susceptible individual connected to an infected node
becomes infected at a time τa, measured from the instant the
link became active. If a susceptible node is connected to more
than one infected node, it becomes infected at the time of the
first active link transmitting the disease. The complexity of
this non-Markovian process is now evident: the infection of a
node depends not only on the number of neighbors, but also
on the time at which each connection became active.
Numerical results on non-Poissonian epidemics in net-

works are relatively scarce. Simple event-driven approaches
rely on a time ordered sequence of events (tickets) that
represent actions to be taken (recovery or infection) at given
fixed times, which are computed from the interevent distri-
butions PiðτiÞ and PaðτaÞ. These approaches are quite
demanding, so only small system sizes can be considered.
For example, Van Mieghem and van de Bovenkamp (2013)

reported results for the SIS model with Poissonian recovery,
with rate μ, while infection happens with a nonexpo-
nential distribution following the Weibull form PaðτaÞ∼
ðx=bÞα−1e−ðx=bÞα . In this case, strong variations in the value
of the prevalence and of the epidemic threshold are found
when varying the parameter α. A promising approach is
provided by the general simulation framework proposed by
Boguñá et al. (2014), based on the extension of the Gillespie
algorithm for Poissonian processes (Gillespie, 1977). This
algorithm allows the simulation of much larger network sizes.
The consideration of non-Poissonian infection or recovery

processes does not lend itself easily to analytical approaches
(Lambiotte, Tabourier, and Delvenne, 2013). Some simple
forms for the distribution of infectious periods, such as the
Erlang distribution, which can be described as the convolution
of identical Poisson processes (Cox, 1967), can be tackled
analytically by postulating an extended epidemic model with
different infective phases and Poissonian transitions among
them (Lloyd, 2001a, 2001b). However, general non-
Poissonian forms lead to convoluted sets of integrodifferential
equations (Keeling and Grenfell, 1997). As a consequence
there are not many analytical results for non-Poissonian
transitions in complex networks. We mention the results of
Min, Goh, and Kim (2013) which consider the SIR process on
a network in which infection events follow an interevent
distribution PaðτaÞ. Assuming that infected nodes remain in
that state for a fixed amount of time τi, it is possible to
compute (Min, Goh, and Kim, 2013) the disease transmis-
sibility as

TðτiÞ ¼ 1 −
Z

∞

τi

ψðΔÞdΔ; ð67Þ

where ψðΔÞ ¼ R
∞
Δ PaðτaÞdτa=

R
∞
0 PaðτaÞdτa is the probabil-

ity distribution of the time between infection (assumed uni-
form) and the next activation event. Equation (67) assumes
that the dynamics of infections follows a stationary renewal
process (Cox, 1967; Van Mieghem, 2014b). Applying the
generating function approach (see Sec. V.B), the epidemic
threshold is obtained, as a function of τi, from the implicit
equation

TðτicÞ ¼
hki

hk2i − hki : ð68Þ

For a power-law distribution PaðτaÞ ∼ τ−αa , it is found that τic
diverges as α → 2, implying that only diseases without
recovery are able to spread through the network (Min,
Goh, and Kim, 2013). An important step forward in the
treatment of generic nonexponentially distributed recovery
and transmission times in the SIR model is the application of a
message-passing method, as reported by Karrer and Newman
(2010). This approach leads to an exact description in terms of
integrodifferential equations for trees and locally treelike
networks, and to exact bounds for non-tree-like networks,
in good agreement with simulations.
Finally, Cator, van de Bovenkamp, and Van Mieghem

(2013) proposed an extension of the SIS IBMF theory for
nonexponential distributions of infection or healing times.
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Using renewal theory, their main result is the observation that
the functional form of the prevalence in the metastable state is
the same as in the Poissonian SIS model, when the spreading
rate λ ¼ β=μ is replaced by the average number of infection
attempts during a recovery time. The theory by Cator, van de
Bovenkamp, and Van Mieghem (2013) also allows one to
estimate the epidemic threshold in non-Markovian SIS
epidemics.

2. The SIRS model

The behavior of the SIRS model on complex networks was
analytically considered by Bancal and Pastor-Satorras (2010)
at the DBMF level. Within this approximation, the steady-
state solution of the SIRS model can be exactly mapped to that
of the SIS model, via the identification of the densities of
infected individuals

ρSIRSðη; λÞ ¼
η

ηþ 1
ρSISðλÞ; ð69Þ

where η is the immunity decay rate. Therefore, within DBMF,
all the critical properties of the SIRS model are the same as the
SIS model, the only effect of η being a rescaling of the density
of infected individuals.
Numerically, the SIRS model was studied by Abramson

and Kuperman (2001) on small-world Watts-Strogatz net-
works (see Sec. III.D) within a discrete-time deterministic
framework, in which infected individuals remain infective for
a fixed time τI , after which they recover, while recovered
individuals remain in this state for a fixed time τR. For large
values of the Watts-Strogatz model rewiring probability p, a
periodic steady state is observed, in which the state of all
nodes stays synchronized (Abramson and Kuperman, 2001).
The level of synchronization increases with the average degree
and also with p, after a threshold pc depending on hki for
fixed network size.
The SIRS model can also be interpreted in terms of a

disease that causes death (I → R), leading to an empty node
that can be later occupied by the birth of a new, susceptible
individual (R → S). Within this interpretation, Liu, Tang, and
Yang (2004) considered a generalized SIRS model, allowing
additionally for simple recovery (I → S with rate γ) and death
of susceptible individuals due to other causes (S → R with
rate α). Applying a DBMF formalism, they recovered again a
threshold inversely proportional to the second moment of the
degree distribution, modulated by the diverse parameters in
the model, in agreement with the SIS result.

3. The SEIR model

The SEIR model is generally used to model influenzalike
illness and other respiratory infections. In the context of
networks, this model has been used by Small and Tse (2005)
to numerically study the evolution of the severe acute
respiratory syndrome (SARS) in different social settings,
using both deterministic and stochastic versions of the model,
in which different reaction rates were adjusted using empirical
spreading data of the disease. The edge-based compartmental
modeling approach can be adapted to deal with multiple

infectious stages, including SEIR as a particular case (Miller
and Volz, 2013).
Exposed individuals can also play a role in more complex

epidemiological models. Thus, for example, the SEIRS model
can be used to mimic the eventual waning of the immunization
of recovered individuals, which implies one additional tran-
sition rule, Eq. (4). The properties of the SEIRS model in
Watts-Strogatz small-world networks (see Sec. III.D) have
been described by Peng and Li (2009). A variation of the
SEIRS model without the recovered compartment, or, in other
words, in the limit of the reaction rate η → ∞ (susceptible-
exposed-infected-susceptible), which coincides with a two-
stage variation of the classical contact process (Krone, 1999)
has been analyzed in heterogeneous networks by Masuda and
Konno (2006). Application of DBMF theory recovers the
mapping to the simple SIS model obtained in the case of the
SIRS epidemics.

B. Realistic static networks

The analytical and numerical results presented so far for the
paradigmatic SIS and SIR models have focused mainly on
random undirected uncorrelated networks, which are only
characterized by their degree distribution, assuming that the
rest of the properties are essentially random. However, real
networks are far from being completely random. Beyond the
degree distribution, a multitude of other topological proper-
ties, such as clustering, degree correlations, weight structure,
etc. (see Sec. III.A), are needed to characterize them.

1. Degree correlations

Most theoretical results on epidemic spreading in networks,
especially at the DBMF level, are obtained imposing a lack of
correlations at the degree level, that is, assuming that the
probability that a vertex of degree k is connected to a vertex of
degree k0 is given by Pðk0jkÞ ¼ k0Pðk0Þ=hki (Dorogovtsev and
Mendes, 2002). However, most natural networks show various
levels of correlations, which can have an impact on dynamical
processes running on top of them.
From a theoretical point of view, the specific effect of

degree correlations, as measured by the different observables
detailed in Sec. III.B.3, is difficult to assess. However, some
specific results are available. At the level of DBMF theory
(see Sec. V.A.1) it was shown that for scale-free networks with
γ < 3 no sort of degree correlations is able to alter the
vanishing of the epidemic threshold in the thermodynamic
limit (Boguñá, Pastor-Satorras, and Vespignani, 2003a,
2003b). From a numerical point of view, however, the precise
determination of the effects of degree correlations on the
position of the epidemic threshold and the shape of the
prevalence function is problematic. Indeed, it is generally
not possible to ascertain if the changes in the epidemic process
are due to the presence of correlations or other topological
properties generally related to correlations, such as local
clustering. Initial simulations on network models (Eguíluz
and Klemm, 2002; Warren, Sander, and Sokolov, 2002)
claimed that disassortative degree correlations could induce
a finite threshold in the SIS model in scale-free networks.
However, those claims were based on networks with an
underlying finite-dimensional structure (Vázquez et al.,
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2003), and most probably the finite threshold observed was
due to this effect.
For the SIS model, the main IBMF result, Eq. (34), stating

that the epidemic threshold is the inverse of the largest
eigenvalue of the adjacency matrix Λ1, remains unaltered.
The presence of correlations has only the effect of changing
the largest eigenvalue. In this respect, Van Mieghem et al.
(2010) showed that increasing the degree assortativity, by
means of an appropriately defined degree preserving rewiring
scheme, increases the largest eigenvalue of the adjacency
matrix, thus reducing the effective IBMF epidemic threshold,
in a network of fixed size N. On the other hand, the induction
of degree disassortativity reduces the largest eigenvalue, with
a corresponding increase of the effective IBMF threshold.
This observation has been confirmed by Goltsev et al. (2012)
who estimated, by means of the power iteration method, the
largest eigenvalue of the adjacency matrix as

Λ1 ≃ hk2i
hki þ hkiσ2r

hk2i ; ð70Þ

where σ is a positive function of the moments of the degree
distribution and r is the Pearson correlation coefficient (see
Sec. III.B.2). Thus assortativity with r > 0 (respectively,
disassortativity with r < 0) is associated with an increase
(respectively, decrease) of the largest eigenvalue. Other
properties of the largest eigenvalue in general networks with
any kind of correlations, such as the bound

max
� ffiffiffiffiffiffiffiffi

hk2i
q

;
ffiffiffiffiffiffiffiffiffi
kmax

p 	
≤ Λ1 ≤ kmax;

are derived by Van Mieghem (2011).
Regarding the SIR model, the mapping to percolation (see

Sec. V.B) allows one to obtain more precise information.
Assortative correlations can induce a vanishing threshold in
networks with finite second moment of the degree distribution
(Vázquez and Moreno, 2003). The more general treatment by
Goltsev, Dorogovtsev, and Mendes (2008), considering the
branching matrix Bk;k0 ¼ ðk0 − 1ÞPðk0jkÞ (Boguñá, Pastor-
Satorras, and Vespignani, 2003b), allows one to explicitly
check the effects of degree correlations on the epidemic
threshold. Indeed disassortative correlations increase the
threshold from its uncorrelated value, while assortative cor-
relations decrease it (Goltsev, Dorogovtsev, and Mendes,
2008; Miller, 2009a). These results, valid for the SIR model,
can also be extended to the SEIR model (Kenah and Miller,
2011). While no explicit expression for the threshold can be
obtained, it is possible to work out upper and lower bounds, in
terms of the transmissibility T, that read as

1

maxkBðkÞ
≤ Tc ≤

hkðk − 1ÞiP
kkðk − 1ÞBðkÞPðkÞ ; ð71Þ

where BðkÞ ¼ P
k0Bk;k0 (Goltsev, Dorogovtsev, and Mendes,

2008). With respect to the behavior of the outbreak size close
to the epidemic threshold, degree correlations are irrelevant, in
the sense that the critical exponents are not changed, when the
following conditions are fulfilled (Goltsev, Dorogovtsev, and
Mendes, 2008): (i) The largest eigenvalue of the branching

matrix is finite if hk2i is finite, and infinite if hk2i → ∞;
(ii) the second largest eigenvalue of Bk;k0 is finite; and (iii) the
eigenvector associated with the largest eigenvalue has nonzero
components in the limit k → ∞. On the other hand, if any one
of these conditions is not fulfilled [large assortativity leads to
the failure of condition (ii), while strong disassortativity
affects condition (iii)], degree correlations become relevant
and they lead to new critical exponents. At the DBMF level
the results of Boguñá, Pastor-Satorras, and Vespignani
(2003a) for the SIS model extend to the SIR case, implying
again the inability of degree correlations to alter the vanishing
of the epidemic threshold in the thermodynamic limit for
γ < 3. This result has been confirmed numerically by means
of the direct numerical solution of the DBMF equations of the
SIR model on scale-free networks with weak assortative
correlations (Moreno, Gómez, and Pacheco, 2003). The main
effect of these correlations is to induce a smaller overall
prevalence and a larger average lifetime of epidemic
outbreaks.

2. Effects of clustering

While a priori entangled with degree correlations and
other topological observables, the effect of clustering on
epidemic spreading has been the subject of a large interest,
due to the fact that social networks, the basic substrate for
human epidemic spreading, are generally highly clustered.
Initial work in this area (Keeling, 1999), based on a simple
mean-field approximation (and thus valid in principle for
homogeneous networks), already pointed out the effects of
clustering (measured as the clustering coefficient C, see
Sec. III.B.4) on the SIR dynamics. A noticeable departure
from the standard mean-field results in the absence of
clustering is observed, and, in particular, a decrease of the
outbreak size when increasing C. In the case of the Watts-
Strogatz model (see Sec. III.D), the paradigm of a network
with large clustering, exact analytical results, confirmed by
numerical simulations, were obtained by Moore and Newman
(2000) for any value of the rewiring probability p. Another
analytical approach was proposed by Newman (2003a), who
considered a network model based on a one-mode projection
of a bipartite network (see Sec. III.C) and applied the usual
mapping to percolation. Apart from confirming the observa-
tion by Keeling (1999) that epidemic outbreaks are a decreas-
ing function of C, it was observed that, at odds with the
behavior of networks with no clustering, for large C the
outbreak size saturates to a constant value when increasing
the transmissibility even for moderate values of T, suggesting
that “in clustered networks epidemics will reach most of the
people who are reachable even for transmissibilities that are
only slightly above the epidemic threshold” (Newman,
2003a). Along the same line, Miller (2009a), considering a
model of random networks with assortative correlations and
tunable clustering, was able to show that, for a SIR dynamics
with uniform transmissibility T, clustering hinders epidemic
spreading by increasing the threshold and reducing prevalence
of epidemic outbreaks.
A more general approach, valid for any network, confirms

the previous observations (Serrano and Boguñá, 2006). In this
approach, the generating function calculation scheme includes
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the concept of edge multiplicity mij, defined as the number
of triangles in which the edge connecting nodes i and j
participate. In the limit of weak clustering, corresponding to
constant mij ¼ m0, the clustering spectrum (see Sec. III.B.4)
follows the scaling c̄ðkÞ ∼ k−1, which is essentially decoupled
from two-vertex degree correlations. The epidemic threshold
depends on m0 and is shifted with respect to the unclustered
result; however, for scale-free networks, this shift is not able to
restore a finite threshold in the thermodynamic limit. For
strong clustering, with a clustering spectrum decaying more
slowly than k−1, numerical simulations in a model with
tunable clustering coefficient (Serrano and Boguñá, 2005)
confirm the inability of clustering to restore a finite threshold
in scale-free networks. Other numerical and anaytical works
(Miller, 2009a, 2009b) confirmed these results in different
clustered network models.
Within the context of IBMF theory for the SIS model, it is

possible to find bounds for the largest eigenvalue of the
adjacency matrix as a function of the clustering (measured
by the number of triangles in the network), indicating that
SIS epidemic threshold decreases with increasing clustering
coefficient (Van Mieghem, 2011).

3. Weighted networks

If we want to take into account that not all contacts in a
social network are equally facilitating contagion (e.g., due to
the different relative frequency of physical contacts associated
with different edges), we must consider weighted networks,
where a weight ωij ≥ 0 is assigned to the edge between
connected nodes i and j (see Sec. III.C). The models for
epidemic spreading are generalized assuming the rate of
disease transmission between two vertices equal to some
function of the weight of the link joining them. The simplest
possibility occurs when the probability of infection trans-
mission along an edge is directly proportional to the edge
weight.
The IBMF theory for the SIS model is readily applied, just

replacing in Eq. (33) the adjacency matrix aij by the matrix
Ωij ¼ ωijaij. The IBMF threshold is the inverse of the largest
eigenvalue of Ω (Schumm et al., 2007). Peng, Jin, and Shi
(2010) considered a generalized SIS model defined by the
matrix βij, whose terms are the probabilities that node i is
infected by node j through an edge joining them. Defining the
parametrized adjacency matrixMij ¼ βij þ ð1 − μiÞδij, where
μi is the recovery probability of node i, Peng, Jin, and Shi
(2010) [see also Van Mieghem and Omic (2008)] showed that
endemic states occur when the largest eigenvalue (in absolute
value) of the parametrized adjacency matrix is larger than 1.
The DBMF approach to the SIS process on weighted

networks is simplified by the introduction of additional
assumptions, such as a functional dependence of the weights
of edges on the degree of the nodes at their end points
(Baronchelli and Pastor-Satorras, 2010). Karsai, Juhász, and
Iglói (2006) considered the SIS process in a network with
local spreading rate, at the DBMF level λkk0 ∼ ðkk0Þ−σ with σ
in the range [0, 1]. The resulting equations are found to
depend on the effective degree exponent γ0 ¼ ðγ − σÞ=
ð1 − σÞ. For γ0 < 3, a null threshold in the thermodynamic
limit is obtained, while for γ0 > 3, the threshold is finite.

Karsai, Juhász, and Iglói (2006) additionally discussed a
finite-size scaling theory, relating the average prevalence
with the network size, which is checked against numerical
simulations. The strict correlation between weights and
degrees is relaxed in other works, such as Yang and Zhou
(2012), where a purely edge-based mean-field approach
for weighted homogeneous networks for the SIS model
was proposed. By means of this approach, and focusing
on bounded and power-law weight distributions, Yang
and Zhou (2012) showed that the more homogeneous
the weight distribution, the higher is the epidemic
prevalence.
Other approaches to the SIS model include a pair-based

mean-field approach (Rattana et al., 2013) for networks with
random and fixed deterministic weight distributions. The
main result is the observation that a weight distribution leads
to the concentration of infectiousness on fewer target links
(or individuals) which causes an increase in the epidemic
threshold in both kinds of networks considered.
Gang et al. (2005) reported numerical results for the

behavior of the SI model on the growing weighted network
model proposed by Barrat, Barthélemy, and Vespignani
(2004) with a local spreading rate of the form λij ∼ ðωijÞα.
The main results obtained concern the slowing down of the
disease spread in weighted networks with respect to their
unweighted counterparts, which is stronger for larger weight
dispersion. Interestingly, they also reported a decay in the
velocity of spread, after a sharp peak, taking a slow power-law
form, at odds with the exponential form obtained in non-
weighted networks (Barthélemy et al., 2005).
In the case of the SIR model Chu et al. (2011) presented a

DBMF analysis in the case of weights correlated with the
degree. The analysis is based on a transmission rate λk0k from
vertices of degree k0 to vertices of degree k, taking the form
λkk0 ¼ λkωkk0=sk (where sk is the strength of a k node) and on
an infectivity of nodes ϕðkÞ, denoting the rate at which a node
of degree k transmits the disease. Writing down rate equations
for the usual relevant DBMF quantities for the SIR model, and
assuming ωkk0 ∼ ðkk0Þσ and ϕðkÞ ∼ kα, Chu et al. (2011) found
the threshold

λc ¼
hkσþ1i
hkαþσþ1i : ð72Þ

By means of numerical simulations, Chu et al. (2011) addi-
tionally reported that the size of epidemic outbreaks increases
with the exponent α, while it decreases with increasing σ. An
analysis of the SIR model in terms of pair approximations for
IBMF theory is presented by Rattana et al. (2013), reaching
analogous results such as those obtained for the SIS model
within the same formalism.
It is also noteworthy to mention the numerical work of

Eames, Read, and Edmunds (2009) on the SIR model in a
realistic social network constructed from actual survey data on
social encounters recorded from a peer-group sample of
49 people. The results of Eames, Read, and Edmunds
(2009) highlighted the strong correlations between infection
risk and node degree and weight, in correspondence with
the observations at the DBMF level. Additional simulations
considering different immunization strategies (see Sec. VI.A)
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indicate that, for this particular realistic network, targeting for
total degree or total weight provides approximately the same
efficiency levels.
Concerning other models, Britton, Deijfen, and Liljeros

(2011) discussed an epidemic model in a weighted network
in which the weights attached to nodes of degree k are
random variables with probability distributions qðωjkÞ, in a
construction akin to a weighted configuration model (see
Sec. III.D). In this kind of network, Britton, Deijfen, and
Liljeros (2011) observed, by means of an analysis based on
branching theory, that both the epidemic threshold and the
outbreak probability are affected by the correlations between
the degree of a node and the weights attached to it. This
observation is confirmed by numerical simulations of their
weighted network model fitted to empirical data from
different network examples, showing that the epidemic
threshold is different in the original network with respect
to a network with reshuffled weights. On the other hand,
Deijfen (2011) analyzed immunization of weighted net-
works with random and degree dependent weights, observ-
ing that targeting the largest weights outperforms other
immunization strategies.
In the framework of epidemic models on weighted net-

works it is possible to also include the CP on networks. In this
model each infected node may transmit the disease to at most
one neighbor for each time step. This can be interpreted in
continuum time as a SIS-like model with a spreading rate
λkk0 ¼ 1=k for any edge departing from a node of degree k.
This modification has the effect of reducing the importance of
degree fluctuations in the spreading dynamics: the threshold is
finite for any value of the exponent γ (Olinky and Stone, 2004;
Castellano and Pastor-Satorras, 2006). The same conclusion
can be drawn also for a model where multiple neighbors can
be infected simultaneously, but up to a fixed maximum value
of neighbors (and not for any k as in SIS) (Joo and
Lebowitz, 2004).

4. Directed networks

Directed networks are useful to represent specific types of
epidemic transmission in which there is an intrinsic direction-
ality in the propagation. An example is given by diseases
communicated by means of blood transfusions or needle
sharing. The study of epidemic processes in directed networks
is difficult due to the component structure of this kind of
networks (see Sec. III.A). Indeed, the position of a node in a
specific network component can restrict or enhance its
spreading capabilities with respect to other positions. Thus,
in order to be able to generate a macroscopic outbreak, a seed
of infection should be located on the GIN or GSCC compo-
nents; seeds on the GOUT or the tendrils will in general
produce small outbreaks, irrespective of the spreading rate. In
this sense, the distribution of outbreak sizes starting from a
randomly chosen vertex is proportional to the distribution of
outcomponents.
In the case of the SIR model, the mapping to percolation

allows one to apply the generating function formalism
developed for percolation in random directed networks
(Newman, Strogatz, and Watts, 2001; Schwartz et al.,
2002). For purely directed networks (i.e., in which all edges

have assigned a directionality), computations depend on the
joint probability Pðkin; koutÞ (see Sec. III.B.2) that a randomly
chosen node has in-degree kin and out-degree kout, which in
general exhibits correlations between the two values. In the
absence of correlations among the degrees of neighbors,6

under the treelike assumption, the critical transmissibility is

Tc ¼
hkini

hkinkouti ; ð73Þ

where averages are taken over the distribution Pðkin; koutÞ
(Newman, Strogatz, and Watts, 2001). The same result can be
obtained by means of more intuitive arguments (Schwartz
et al., 2002). Equation (73) highlights the important role of
correlations between the in-degree and out-degree values in
directed networks. Its full discussion is, however, not easy,
since one cannot impose arbitrary forms to Pðkin; koutÞ given
the explicit constraint hkini ¼ hkouti. Schwartz et al. (2002)
discussed the effects of scale-free degree distributions with
exponents γin and γout for in-degree and out-degree values,
respectively, and given correlations Pðkin; koutÞ. With this
distribution, epidemics in the GWCC behave as in an
undirected network with effective degree distribution
PðkÞ ¼ P

k
kin¼0

Pðkin; k − kinÞ, while the βSIR exponent char-
acterizing the size of supercritical outbreaks takes the form of
Eq. (19), with an effective γ� ¼ γout þ ðγin − γoutÞ=ðγin − 1Þ
(Schwartz et al., 2002).
More generally, it is possible to consider semidirected

networks, in which edges may be directed or undirected
(Meyers, Newman, and Pourbohloul, 2006). The network
specification is then given in terms of the probability
Pðkin; kout; kÞ that a vertex has kin incoming edges, kout

outgoing edges, and k bidirectional edges. The presence of
undirected links implies the existence of short loops of
length 2, and thus the violation of the treelike assumption.
Considering the possibility of different transmissibilities Tu
and Td for undirected and directed edges, respectively,
Meyers, Newman, and Pourbohloul (2006) found expressions
for the critical values of one of them, keeping the other fixed.
The rather involved expressions simplify when imposing that
the in-degree, out-degree, and undirected degree values of
each vertex are uncorrelated. In particular, when these
quantities obey Poisson distributions, the epidemic threshold
is given by (Meyers, Newman, and Pourbohloul, 2006)

Tuchkiu þ Tdchkid ¼ 1; ð74Þ

where hkiu and hkid are the undirected and directed average
degrees, respectively. The analysis of these results allows the
identification of the key epidemiological difference between
directed and undirected networks: while in undirected net-
works the probability of an outbreak and the expected fraction
of the population affected (if there is one) are equal, they differ
in directed networks: depending on the topology any of the
two can be larger (Meyers, Newman, and Pourbohloul, 2006).

6Note that these are correlations among two connected vertices,
while correlations between kin and kout are for the same node.

Romualdo Pastor-Satorras et al.: Epidemic processes in complex networks 955

Rev. Mod. Phys., Vol. 87, No. 3, July–September 2015



The generic case of semidirected networks with arbitrary
one-point and two-point correlations is treated in Boguñá and
Serrano (2005). The temporal evolution of epidemic outbreaks
is considered using the edge-based compartmental modeling
in Miller and Volz (2013).
Epidemic processes on purely directed networks can be

tackled by an extension of the standard DBMF. The key point
is the consideration of new degree classes which are defined in
terms of the pair of in-degree and out-degree values ðkin; koutÞ.
This implies that the dynamical quantities characterizing the
processes also depend on these two values ρα

kin;kout
; see

Secs. IV.B and V.B.1. Equations for the SIS and SIR models
[Eqs. (20) and (47)] translate directly with just one caveat:
degree-degree two-vertex correlations (see Sec. III.B.3) in
purely directed networks translate into the conditional prob-
ability Poutðkin0; kout0jkin; koutÞ that an outgoing edge from a
vertex ðkin; koutÞ is connected to a vertex ðkin0; kout0Þ. Lack of
two-point degree-degree correlations implies

Poutðkin0; kout0jkin; koutÞ ¼ kin0Pðkin0; kout0Þ
hkouti : ð75Þ

Boguñá and Serrano (2005) developed this DBMF formalism
for the SIR model, finding a threshold that, in the general case,
is a function of the largest eigenvalue of the extended
connectivity matrix kin0Pðkin0; kout0jkin; koutÞ, and that, without
degree-degree correlations, reduces to Eq. (73).
In the case of the SIS model, the IBMF result is the same as

in undirected networks, since directionality (i.e., the asym-
metry of the adjacency matrix) does not explicitly enter into
the theory. See also the generalization of the IBMF theory
presented by Peng, Jin, and Shi (2010) (Sec. VII.B.3). The
value of the largest eigenvalue has been numerically studied in
synthetic semidirected networks with directionality ξ, defined
as the fraction of directed edges (Li, Wang, and Van Mieghem,
2013). The main result obtained is the increase of the epidemic
threshold lower bound when increasing directionality ξ,
implying that directed networks hinder the propagation
of epidemic processes. At the DBMF level, an extension
analogous to the one considered for the SIR model leads to a
threshold with the same functional form, Eq. (73), in degree-
degree uncorrelated networks (Tanimoto, 2011).

5. Bipartite networks

Bipartite networks (see Sec. III.C) represent the natural
substrate to understand the spreading of sexually transmitted
diseases, in which two kinds of individuals (males and
females) are present and the disease can be transmitted only
between individuals of different kinds.7 In other contexts,
bipartite networks can be used to represent vector-borne
diseases, such as malaria, in which the transmission can take
place only between the vectors and the hosts (Bisanzio et al.,
2010), or the spreading of diseases in hospitals, in which the
different kinds of nodes account for (isolated) patients and
caregivers (Ancel et al., 2003).

Dealing with the SIR dynamics, Newman (2002b) consid-
ered a variation of the mapping to percolation, for a model on
bipartite networks characterized by the partial degree distri-
butions PmðkÞ and PfðkÞ, finding that the epidemic threshold
takes the form of a hyperbola in the space defined by the male
and female transmissibilities Tm and Tf,

TmTf ¼ hkimhkif
hkðk − 1Þimhkðk − 1Þif

; ð76Þ

where the moments hkiα and hkðk − 1Þiα are computed for the
degree distribution PαðkÞ.
In the case of the SIS model on bipartite networks, Gomez-

Gardenes et al. (2008) found analogous results at the DBMF
level, with the threshold on the hyperbola defined by the male
and female spreading rates λm and λf of the form

λmλf ¼ hkimhkif
hk2imhk2if

; ð77Þ

see Wen and Zhong (2012) for further results with the DBMF
formalism. The general behavior of the SIS model on
multipartite networks, allowing for more than two different
classes of nodes, has been discussed by Santos, Moura, and
Xavier (2013).
Expressing in Eq. (76) the transmissibility in terms of the

spreading rate Ti ¼ λi=ðλi þ 1Þ (see Sec. V.B) and comparing
with Eq. (77), an interesting observation emerges (Hernández
and Risau-Gusman, 2013). In the SIR case, when λf diverges
the threshold value for λm goes to a finite value. Hence the
possibility of an endemic outbreak is completely ruled out by
reducing the spreading rate of a single type of nodes. In the
SIS case instead, the asymptotic value is λm ¼ 0 and as a
consequence reducing only one spreading rate may not be
sufficient to guarantee no endemic spreading. This last
conclusion, however, turns out to be an artifact of the
DBMF approach (Hernández and Risau-Gusman, 2013): a
finite asymptotic threshold is found also for SIS dynamics in a
theoretical approach based on a pair approximation, con-
firmed by numerical simulations. The previous conclusions
hold when the topology-dependent factors appearing on the
right-hand sides of Eqs. (76) and (77) are finite. However, it is
enough that one of the restricted degree distributions has a
diverging second moment to have an epidemics spreading
over the whole network, no matter how small the spreading
rates λi are.

6. Effect of other topological features

Many works have dealt with networks endowed with a
modular (community) structure, i.e., subdivided into groups
with a relative high density of connections within groups and a
smaller density of intergroup links; see Sec. III.B.5. SIS
dynamics was studied by Liu and Hu (2005) on a generali-
zation of the classical random graph model with probability p
(q) of intra-(inter-)community links. The epidemic threshold
is found to decrease with p=q; this effect, however, cannot be
attributed to the community structure only, because of the
concurrent change of the degree distribution, which gets
broader. Other studies have decoupled the two effects, by7We neglect here homosexual contacts.
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comparing spreading dynamics on modular networks and
on randomized networks with the same PðkÞ, obtained by
suitable reshuffling (Maslov and Sneppen, 2002). They
support instead the opposite view that the community struc-
ture of a network tends to hinder epidemic spreading. Using
IBMF, Bonaccorsi et al. (2014) expressed the epidemic
threshold explicitly in terms of the sizes and spreading rates
in the clusters.
For the SI dynamics, the modular structure makes the

growth of the infection slower: prevalence at fixed time is
reduced in networks with community structure (Huang and Li,
2007). The interpretation is that the presence of communities
tends to confine the outbreak around the initial seed and
hinders the transmission to other communities. This effect is
further enhanced in weighted social networks (Onnela et al.,
2007) by the correlation between topology and weights
(Granovetter, 1973): the ties bridging between strongly con-
nected communities are typically weak and this greatly delays
the propagation among different communities (Onnela et al.,
2007; Karsai et al., 2011). Investigations on the SIRS model
with fixed infection and recovery times have focused on the
oscillations of the number of infected nodes in the stationary
state (Yan et al., 2007; Zhao and Gao, 2007). For both
topologies with scale-free and with non-scale-free degree
distributions it turns out that the modular structure reduces
the synchronization. Also for SIR dynamics modularity is
found to make spreading more difficult: the final value of ρR is
smaller for stronger community structure (Wu and Liu, 2008).
More convincingly, Salathé and Jones (2010) showed, for both
empirical and synthetic networks, that community structure
has a major hindering effect on spreading: the final value of ρR

and the height of the peak of ρI decrease with the modularity.
Moreover, they showed that in networks with strong com-
munity structure targeting vaccination interventions at indi-
viduals bridging communities is more effective than simply
targeting highly connected individuals.
It is also worth mentioning the observation that SIS-like

processes on complex networks may give rise to the nontrivial
scenario of Griffiths phases (Vojta, 2006), regions of the phase
space where the only stationary state is the absorbing one,
which is however reached via anomalously long nonuniversal
relaxation (Muñoz et al., 2010). This behavior arises because
of rare-region effects, which can be due either to quenched
local fluctuations in the spreading rates or to subtle purely
topological heterogeneities (Juhász et al., 2012; Ódor and
Pastor-Satorras, 2012). Such rare-region effects have been
discussed in the case of the SIS model on loopless (tree)
weighted networks (Buono et al., 2013; Ódor, 2013a, 2013b),
where they have been related to the localization properties of
the largest eigenvalue of the adjacency matrix (Ódor, 2013b).

7. Epidemics in adaptive networks

Previous sections focused on the evolution of epidemics on
static networks or on annealed topologies where connections
are rewired on a time scale much smaller than the character-
istic time scale of the infection process. For real human
disease epidemics, however, the assumption that the structure
of contacts does not depend on the progression of the
contagion is often unrealistic: In the presence of infectious

spreading, human behavior tends to change spontaneously,
influencing the spreading process itself in a nontrivial feed-
back loop. The modifications induced by this coupling may be
distinguished depending on several features (Funk, Salathé,
and Jansen, 2010): the source of information about the
contagion, the type of information considered, and the type
of behavioral change induced. The source of information
about the spreading process may be local (individuals decide
depending on the state of their direct contacts) or global
(information on the state of the whole system is publicly
available). Different types of information may influence the
behavioral choice: in prevalence-based models decisions are
made based on the observation of the epidemic state of others;
in belief-based models what matters is the awareness or the
risk perception which may be (at least partially) independent
from the actual disease dynamics and often behaves in turn as
a spreading process (Bagnoli, Liò, and Sguanci, 2007; Salathé
and Bonhoeffer, 2008; Funk et al., 2009; Perra et al., 2011;
Bauch and Galvani, 2013; Granell, Gómez, and Arenas,
2013). Finally, the behavioral change can be of different
types: affecting the state of the individual (for example, via
voluntary vaccination) or the structure of contacts (eliminating
existing connections or creating new ones). Many models
incorporating these features have been investigated in math-
ematical epidemiology, generally assuming well-mixed pop-
ulations (Funk, Salathé, and Jansen, 2010). Here we focus on
epidemic spreading on adaptive (or coevolving) contact net-
works, where the topology of the interaction pattern changes
in response to the contagion. The coevolution between
structure and dynamics is a common theme in many contexts,
from game theory to opinion dynamics (Gross and Blasius,
2008; Nardini, Kozma, and Barrat, 2008).
The first investigation of an adaptive topology for SIS

dynamics (Gross, D’Lima, and Blasius, 2006) includes the
possibility for individuals to protect themselves by avoiding
contacts with infected people. Infected individuals are allowed
at each time step to infect each of their susceptible contacts
with probability p or recover with probability r (usual SIS
dynamics); in addition, susceptibles can decide (with prob-
ability w) to sever a link with an infected and reconnect to a
randomly chosen susceptible. The possibility of rewiring links
drastically changes the phase diagram of the model. The
threshold pc, below which the system always converges to the
absorbing healthy state, is much larger than in the case of no
coevolution (w ¼ 0): rewiring hinders the disease propaga-
tion. More interestingly, above this threshold a bistability
region appears (see Fig. 7) with associated discontinuous
transitions and hysteresis. In this region both the healthy and
endemic states are stable and the fate of the system depends on
the initial condition. If p is further increased above a second
threshold, bistability ends and the endemic state is the only
attractor of the dynamics. The coevolution also has strong
effects on the topology of the contact network, leading to the
formation of two loosely connected clusters of infecteds and
susceptibles, with a general broadening of the degree dis-
tribution and buildup of assortative correlations. The rich
phase diagram is recovered by a simple homogeneous mean-
field approach which complements the equation for the
prevalence with two additional equations for the density of
links of I-I and S-I types. A bifurcation analysis also predicts
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the existence of a very narrow region with oscillatory
dynamics. A more detailed approach to the same dynamics
(Marceau et al., 2010) explicitly takes into account the degree
of nodes, writing equations for the evolution of the proba-
bilities Skl (Ikl) that nodes in state S (I) have degree k and l
infected neighbors. The numerical integration of the equations
is in excellent agreement with numerical simulations with
respect to both the transient evolution and the stationary state.
Different initial topologies (degree-regular, Poisson, power-
law distributed) with the same average connectivity may lead
to radically different stationary states: either fully widespread
contagion or rapid disease extinction.
The qualitative picture emerging from the model of Gross,

D’Lima, and Blasius (2006) is found also for the adaptive
SIRS model (Shaw, 2008) and for the SIS dynamics where a
susceptible individual rewires to any randomly chosen other
vertex (not necessarily susceptible) (Zanette and Risau-
Gusmán, 2008). The possibility that also infected individuals
decide to rewire their connections has been discussed by
Risau-Gusman and Zanette (2009). In the SIS model, the
interplay of the adaptive topology and vaccination has also

been investigated (Shaw and Schwartz, 2010). It turns out that
the vaccination frequency needed to significantly lower the
disease prevalence is much smaller in adaptive networks than
in static ones.
The effect of the same type of adaptive rewiring introduced

for SIS has also been studied for SIR dynamics (Lagorio et al.,
2011). In this case the effects of the coevolution are less
strong, as the time needed to reach the stationary (absorbing)
state is short (logarithmic in the system size N) and the global
topology is only weakly perturbed in this short interval. The
phase diagram remains qualitatively the same of the non-
adaptive case with a single epidemic transition separating a
healthy state from an endemic one. The mapping to perco-
lation (see Sec. V.B) is also useful here. Coevolution leads to
an effective transmissibility T which decreases with the
rewiring probability w. One can then identify a critical value
wc above which the adaptive behavior is sufficient to com-
pletely suppress the epidemics.
The assumptions that disconnected links are immediately

rewired and that the target vertices of the reconnection step are
randomly selected in the whole network are highly implau-
sible in real-world situations. Attempts to go beyond these
limitations include the consideration of different rates for
breaking and establishing links (Van Segbroeck, Santos, and
Pacheco, 2010; Guo et al., 2013) and “intermittent” social
distancing strategies, such that a link is cut and recreated
(between the same vertices) after a fixed time interval (Valdez,
Macri, and Braunstein, 2012a) or with a certain rate after both
end points have healed (Tunc, Shkarayev, and Shaw, 2013).
The latter strategies are intended to mimic what happens with
friends or working partners, with which connections are
reestablished after the disease. The overarching structure of
the network remains static and there is no real coevolution (no
new links are formed). As a consequence the phase diagram of
epidemic models remains the same found on static networks,
with only an increase in the epidemic threshold due to social
distancing.

C. Competing pathogens

Another generalization of the basic modeling scheme
considers the evolution of multiple epidemic processes in
competition in the same network, a scenario with clear
relevance for realistic situations. The crucial concept here
is cross immunity, i.e., the possibility that being infected by
one pathogen confers partial or total immunity against the
others.
Newman (2005) considered two SIR epidemic processes

occurring one after the other in the same static network, in
conditions of total cross immunity: The second pathogen can
affect only survivors of the first, i.e., in the “residual” network
obtained once the nodes recovered when the first epidemics
ends are removed. The mapping of SIR static properties to
bond percolation allows one to understand this case. If the first
pathogen is characterized by a transmissibility above a certain
value (coexistence threshold), the residual network has no
giant component and the second pathogen cannot spread
globally, even if it has a large transmissibility. Global spread-
ing of both pathogens can occur only for values of the
transmissibility of the first infection in an interval between

FIG. 7 (color online). Density of the infected nodes i� as a
function of the infection probability p for different values of the
rewiring rate w. In each diagram thin lines are computed using a
homogeneous mean-field approach while circles are the results of
numerical simulations. Without rewiring only a single continuous
transition occurs for pc ≈ 0.0001 (a). By contrast, rewiring causes
a number of discontinuous transitions, bistability, and hysteresis
loops (indicated by arrows) in (b)–(d). Adapted from Gross,
D’Lima, and Blasius, 2006.
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the epidemic and the coexistence thresholds. A generalization
to the case of partial cross immunity has been discussed by
Funk and Jansen (2010). The case of competing SIR infec-
tions spreading concurrently has been investigated by Karrer
and Newman (2011), again in the case of complete cross
immunity: Infection by one pathogen confers immunity for
both. Nontrivial effects occur when both transmissibilities are
above the threshold for single spreading (otherwise one of the
pathogens does not spread globally and there is no real
interference). If one of the pathogens has a transmissibility
significantly larger than the other, it spreads fast and the
second spreads afterward in the residual network, much as in
the case of subsequent infections. If the growth rates are
similar, the final outcome shows strong dependence on
stochastic fluctuations in the early stages of growth, with
very strong finite-size effects. An alternative approach, based
on the edge-based compartmental modeling, allows one to
theoretically investigate the dynamics of two competing
infectious diseases (Miller, 2013). Poletto et al. (2013)
considered cross-immune pathogens in competition within
a metapopulation framework (see Sec. IX). The dominance of
the strains also depends in this case on the mobility of hosts
across different subpopulations.
Mutual cross immunity for two competing SIS dynamics

has been considered by Trpevski, Tang, and Kocarev (2010)
[see also Ahn et al. (2006)], while the domination time of two
competing SIS viruses was analyzed by van de Bovenkamp,
Kuipers, and VanMieghem (2014). Depending on the network
topology, for some values of the parameters it is possible to
find a steady state where the two processes coexist, each
having a finite prevalence.
Another nontrivial and relevant example of interacting

epidemics is the case of coinfection processes, where the
opposite of cross immunity holds: The second pathogen can
spread only to individuals that have been already infected by
the first. Newman and Ferrario (2013) reported the first
theoretical and numerical investigation of this type of dynam-
ics on complex networks.

VIII. EPIDEMIC PROCESSES IN TEMPORAL NETWORKS

The majority of the results presented so far considered the
spreading of the epidemic process in the limit of extreme time
scale separation between the network and the contagion
process dynamics (see, however, Sec. VII.B.7 for a discussion
on adaptive networks, whose topology changes in reaction to a
disease). In static networks, the epidemic spreads on a
network that is virtually frozen on the time scale of the
contagion process. In the opposite limit, the DBMF theory
considers an effective mean-field network where nodes are
effectively rewired on a time scale much faster than the
contagion process. However, in the case of many real-world
networks those assumptions are rather simplistic approxima-
tions of the real interplay between time scales. For instance, in
social networks, no individual is in contact with all of his or
her friends simultaneously all the time. On the contrary,
contacts are changing in time, often on a time scale that is
comparable with the one of the spreading process. Real
contact networks are thus essentially dynamic, with connec-
tions appearing, disappearing, and being rewired with

different characteristic time scales, and are better represented
in terms of a temporal or time-varying network (Holme and
Saramäki, 2012, 2013), see Fig. 8.
Temporal networks are defined in terms of a contact

sequence, representing the set of edges present at a given
time t. By aggregating the instantaneous contact sequence at
all times t < T, a static network projection can be con-
structed; see Fig. 8. In this aggregated network, the edge
between nodes i and j is present if it ever appeared at any
time t < T. A more informative static representation is a
weighted network, in which the weight associated with each
edge is proportional to the total number of contacts (or the
total amount of time the contact was active) between each
pair of individuals. These static network projections, how-
ever, do not account for the nontrivial dynamics of the
temporal network and are thus often inappropriate when
considering dynamical processes unfolding on time-varying
connectivity patterns.
Recent technological advances allow one to gather large

amounts of data on social temporal networks, such as
mobile phone communications (Onnela et al., 2007) and
face-to-face interactions (Cattuto et al., 2010). From the
analysis of these data sets, social interactions are charac-
terized by temporally heterogeneous contact patterns.

FIG. 8 (color online). A temporal (or time-varying) network can
be represented as a set of nodes that, at every instant of time, are
connected by a different set of edges. An integrated network over
a time window T is constructed by considering that nodes i and j
are connected by an edge if they were ever connected at any time
t ≤ T. Adapted from Perra, Gonçalves et al., 2012.

Romualdo Pastor-Satorras et al.: Epidemic processes in complex networks 959

Rev. Mod. Phys., Vol. 87, No. 3, July–September 2015



Indeed it is more the norm than the exception to find that
the temporal behavior of social interactions is character-
ized by heavy-tail and skewed statistical distributions. For
instance, the probability distributions of the length of
contacts between pairs of individuals, of times between
consecutive interactions involving the same individual,
etc., all follow a heavy-tailed form (see Fig. 9) (Holme,
2005; Hui et al., 2005; Onnela et al., 2007; Cattuto et al.,
2010; Tang et al., 2010; Doerr, Blenn, and Van Mieghem,
2013). These properties contrast with the Poissonian
behavior expected in purely random interactions, thus
catalyzing the recent interest in the study of the burstiness
of human behavior (Oliveira and Barabasi, 2005).
The time-varying connectivity pattern of networks

affects epidemic processes in a number of different ways.
The presence of a temporal ordering in the connections of
the network limits the possible paths of propagation of the
epidemic process. In particular, not all the edges of the
eventually aggregated network projection are available for
the propagation of a disease. Starting on a given node, only the
nodes that belong to its set of influence (Holme, 2005),
defined as the nodes that can be reached through paths
that respect time ordering, may propagate the disease.
Furthermore, the Poissonian approximation for the trans-
mission rate of infectious individuals is not correct because
the time between consecutive nodes’ contacts is generally

power-law distributed. However, this non-Poissonian behavior
is different from the one presented in Sec. VII.A.1, where we
considered fixed networks in which a disease takes, to
propagate from an infected individual to a susceptible one
along a fixed link, a time τa that is not exponentially
distributed. Here we have the situation in which the very
link that can propagate the disease appears at instants of time
that are separated by an interevent time τl that can be
distributed nonexponentially. Finally, the relation between
the intrinsic time scales of the temporal network and those of
the dynamics plays a substantial role. Thus, for slow dynamics
with a very large relative time scale, it can be a good
approximation to consider as a substrate the weighted inte-
grated network. If the dynamics is fast, with a small relative
time scale, comparable to that of the temporal network, then
the substrate must be the actual contact sequence defining the
temporal network.
Among the effects that a non-Poissonian temporal network

induces on epidemic spreading, one of the most remarkable is
a substantial slowing down of the spread velocity. This
observation was first made by using an SI model (Vazquez
et al., 2007) [see also Min, Goh, and Vazquez (2011)] in the
context of the spreading of email worms among email users.
Empirical data show that the distribution of times between
consecutive email activities is heavy tailed and well approxi-
mated by the form Pðτ0Þ ∼ τ0−1−β. The generation time τ,
defined as the time between the infection of the primary
individual and the infection of a secondary individual, is given
by the residual waiting time distribution, assuming a sta-
tionary process (Cox, 1967) gðτÞ ¼ R

∞
τ Pðτ0Þdτ0=hτi ∼ τ−β,

where it is assumed that the time at which emails are received
is uniformly random. The average number of new infections at
time t, nðtÞ is estimated as nðtÞ ¼ P

D
d¼1 ZgĝdðtÞ, where Zd is

the average number of users at a distance d (at d email steps)
from the first infected user, D is the maximum possible value
of d, and ĝdðtÞ is the convolution of order d of gðτÞ. Assuming
that the integrated network of email contacts is sparse, Min,
Goh, and Vazquez (2011) found that nðtÞ ∼ t−β, independently
of the integrated network structure. This result implies that the
disease spreads much more slowly than in a regular static
network, where an exponential increase of infected individuals
is observed. The slowing down in temporal networks has been
empirically measured in different systems (Vazquez et al.,
2007; Karsai et al., 2011; Stehle et al., 2011; Kivelä et al.,
2012) and also reported in other dynamical processes, such as
diffusion (Hoffmann, Porter, and Lambiotte, 2012; Perra,
Baronchelli et al., 2012; Starnini et al., 2012) or synchroni-
zation (Fujiwara, Kurths, and Díaz-Guilera, 2011). The
situation is however not completely clear, since other works
suggest instead a dynamic acceleration (Jo et al., 2014). These
temporal effects are, moreover, entangled with topological
ones, as shown by Rocha, Liljeros, and Holme (2011)
analyzing the SI and SIR models in empirical spatiotemporal
networks. Temporal correlations accelerate epidemic out-
breaks, especially in the initial phase of the epidemics, while
the network heterogeneity tends to slow them down.
The time-varying structure of temporal networks is also

able to alter the value of the epidemic threshold, as analyti-
cally shown for the SIS and SIR processes in activity-driven

FIG. 9 (color online). Statistical properties of four temporal face-
to-face contact networks (Cattuto et al., 2010). The probability
distributions of the length of conversations Δt, total time spent in
conversation between pairs of individuals ω, and the gap τ
between conversation with different individuals all show a long-
tailed form, compatible with a power law. Adapted from Starnini
et al., 2012.
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network models (Perra, Gonçalves et al., 2012). The activity-
driven network class of models (Perra, Gonçalves et al., 2012;
Starnini and Pastor-Satorras, 2013) is based on the concept of
activity potential, defined as the probability per unit time that
an individual engages in a social activity. Empirical evidence
shows that the activity potential varies considerably from
individual to individual and the dynamics of the networks is
encoded in the function FðaÞ that characterizes the probability
for a node to have an activity potential a. The activity-driven
network model considers N nodes whose activity ai is
assigned randomly according to the distribution FðaÞ.
During each time step the node i is considered active with
probability ai. Active nodes generate m links (engage in m
social interactions) that are connected to m individuals chosen
uniformly at random. Finally, time is updated t → tþ 1. The
model output is a sequence of graphs, depending on the
distribution FðaÞ, which is updated at every time step t. An
integrated network at time T can be constructed by consid-
ering the union of the sequence of graphs; see Fig. 8. This
integrated network has a degree distribution which depends
on the activity distribution as PTðkÞ≃ ð1=TÞFðk=T − haiÞ
(Starnini and Pastor-Satorras, 2013), where hai is the average
activity and for simplicity we take m ¼ 1. The empirically
observed power-law activity distributions FðaÞ can thus
explain the long tails in the degree distribution of social
networks (Perra, Gonçalves et al., 2012). Perra, Gonçalves
et al. (2012) considered the behavior of the SIS model in
activity-driven networks, writing dynamical mean-field equa-
tions for the infected individuals in the class of activity rate a,
at time t, namely, Ita. The discrete-time dynamical evolution
considers concurrently the dynamics of the network and the
epidemic model, yielding

Itþ1
a ¼ λmðNa − ItaÞa

Z
da0

Ita0
N

þ λmðNa − ItaÞ
Z

da0
Ita0a

0

N
;

ð78Þ

where Na ¼ FðaÞN is the total number of individuals with
activity a and where the recovery probability μ ¼ 1. In
Eq. (78), the first term on the right-hand side takes into
account the probability that a susceptible of class a is active
and acquires the infection getting a connection from any other
infected individual (summing over all different classes), while
the last term takes into account the probability that a
susceptible, independently of his activity, gets a connection
from any infected active individual. A linear stability analysis
of Eq. (78) leads to an epidemic threshold

λc ¼
1

mðhai þ
ffiffiffiffiffiffiffiffiffi
ha2i

p
Þ
. ð79Þ

The same epidemic threshold is obtained for the SIR model,
applying mean-field approximations (Liu et al., 2014) and a
mapping to percolation (Starnini and Pastor Satorras, 2014).
This result highlights the crucial fact that scale-free integrated
networks can lead to a vanishing threshold for epidemics with
a very large time scale, while epidemics with a short time
scale, comparable to the one of the contact sequence, can be
associated with a finite, nonvanishing threshold; see Fig. 10.

This observation has been confirmed in studies of other
temporal network models (Rocha and Blondel, 2013).
Finally, a recent avenue of research in this area has been the

identification of effective immunization protocols for tempo-
ral networks (Lee et al., 2012). The idea here is to define a
training window ΔT, such that information is gathered from
the contact sequence at times t < ΔT. A set of individuals to
be immunized is chosen and effectively vaccinated at timeΔT.
The effects of the immunization are then observed for t > ΔT.
Lee et al. (2012) explored two local strategies, inspired by the
acquittance immunization protocol for static networks
(Cohen, Havlin, and ben-Avraham, 2003): In the “recent”
strategy, a randomly chosen individual is asked at time ΔT for
its last contact; this last contact is immunized. In the “weight”
strategy, a randomly chosen individual at time ΔT is asked for
its most frequently contacted peer, up to time ΔT; this most
frequent contact is immunized. By means of numerical
simulations Lee et al. (2012) observed that both protocols
offer, for a limited amount of local information, a reasonable
level of protection against the disease propagation. An
interesting issue is the question about the amount of infor-
mation (the length ΔT of the training window) sufficient to
achieve an optimal level of immunization for a fixed fraction
of immunized individuals. Starnini et al. (2013) found a
saturation effect of the level of immunization for training
windows of about 20%–40% of the total length of the contact
sequence, for several immunization protocols, indicating that
a limited amount of information is actually enough to
optimally immunize a temporal network. In the case of the
activity-driven networks, analytical expressions for several
immunization strategies can be obtained (Liu et al., 2014).

IX. REACTION-DIFFUSION PROCESSES AND
METAPOPULATION MODELS

So far we reviewed results concerning spreading and
contagion processes in which each node of the network

FIG. 10 (color online). Prevalence of the SIS model on the
temporal network defined by the activity-driven model, as a
function of the basic transmission probability λ. The threshold
observed for the dynamics on the temporal network coincides
with the theoretical prediction Eq. (79). Simulations on integrated
networks show instead a threshold that becomes smaller when
increasing the integration time T. Adapted from Perra, Gonçalves
et al., 2012.
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corresponds to a single individual of the population. A
different framework emerges if we consider nodes as entities
where multiple individuals or particles can be located and
eventually wander by moving along the links connecting the
nodes. Examples of such systems are provided by mechanistic
epidemic models where particles represent people moving
between different locations or by the routing of information
packets in technological networks (Sattenspiel and Dietz,
1995; Keeling and Rohani, 2002; Gallos and Argyrakis, 2004;
Watts et al., 2005). More in general models of social behavior
and human mobility are often framed as reaction-diffusion
processes where each node i is allowed to host any non-
negative integer number of particles N ðiÞ, so that the total
particle population of the system is N ¼ P

iN ðiÞ. This
particle-network framework considers that each particle dif-
fuses along the edges connecting nodes with a diffusion
coefficient that depends on the node degree and/or other node
attributes. Within each node particles may react according to
different schemes characterizing the interaction dynamics of
the system. A simple sketch of the particle-network frame-
work is represented in Fig. 11.

In order to have an analytic description of reaction-diffusion
systems in networks one has to allow the possibility of
heterogeneous connectivity patterns among nodes. A first
analytical approach to these systems considers the extension
of the degree-based mean-field approach to reaction-diffusion
systems in networks with arbitrary degree distribution. For
simplicity, we first consider the DBMF approach to the case of
a simple system in which noninteracting particles (individ-
uals) diffuse on a network with arbitrary topology. A con-
venient representation of the system is therefore provided by
quantities defined in terms of the degree k:

N k ¼
1

Nk

X
i∈VðkÞ

N ðiÞ; ð80Þ

where Nk ¼ NPðkÞ is the number of nodes with degree k and
the sum runs over the set of nodes VðkÞ having degree equal to
k. The degree block variable N k represents the average
number of particles in nodes with degree k. The use of the
DBMF approach amounts to the assumption that nodes with
degree k, and thus the particles in those nodes, are statistically

FIG. 11 (color online). (a) Schematic illustration of the simplified modeling framework based on the particle-network scheme. At the
macroscopic level the system is composed of a heterogeneous network of subpopulations. The contagion process in one subpopulation
can spread to other subpopulations because of particles diffusing across subpopulations. (b) At the microscopic level, each
subpopulation contains a population of individuals. The dynamical process, for instance, a contagion phenomenon, is described by
a simple compartmentalization (compartments are indicated by different colored dots in the picture). Within each subpopulation,
individuals can mix homogeneously or according to a subnetwork and can diffuse with probability p from one subpopulation to another
following the edges of the network. (c) A critical value pc of the individuals or particles diffusion identifies a phase transition between a
regime in which the contagion affects a large fraction of the system and one in which only a small fraction is affected (see the discussion
in the text).
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equivalent. In this approximation the dynamics of particles
randomly diffusing on the network is given by a mean-field
dynamical equation expressing the variation in time of the
particle subpopulationN kðtÞ in each degree block k. This can
be easily written as

dN k

dt
¼ −dkN kðtÞ þ k

X
k0
Pðk0jkÞdk0kN k0 ðtÞ: ð81Þ

The first term of the equation considers that only a fraction dk
of particles moves out of the node per unit time. The second
term instead accounts for the particles diffusing from the
neighbors into the node of degree k. This term is proportional
to the number of links k times the average number of particles
coming from each neighbor. This is equal to the average over
all possible degrees k0 of the fraction of particles moving on
that edge, dk0kN k0 ðtÞ, according to the conditional probability
Pðk0jkÞ that an edge belonging to a node of degree k is
pointing to a node of degree k0. Here the term dk0k is the
diffusion rate along the edges connecting nodes of degree k
and k0. The rate at which individuals leave a subpopulation
with degree k is then given by dk ¼ k

P
k0Pðk0jkÞdkk0. In the

simplest case of homogeneous diffusion each particle diffuses
with rate r from the node in which it is and thus the diffusion
per link dk0k ¼ r=k0. On uncorrelated networks Pðk0jkÞ ¼
k0Pðk0Þ=hki and hence one easily gets in the stationary state
dN k=dt ¼ 0 the solution (Noh and Rieger, 2004; Colizza,
Pastor-Satorras, and Vespignani, 2007)

N k ¼
k
hki

N
N

: ð82Þ

Equation (82) explicitly brings the diffusion of particles in
the description of the system and points out the importance
of network topology in reaction-diffusion processes.
This expression indicates that the larger the degree of a node,
the larger the probability to be visited by the diffusing
particles.

A. SIS model in metapopulation networks

The above approach can be generalized to reacting
particles with different states by adding a reaction term
to the above equations (Colizza, Pastor-Satorras, and
Vespignani, 2007). We now describe a generalization to
this setting of the standard SIS model in discrete time, with
probability per unit time β of infection and probability μ of
recovery. We consider N individuals diffusing in a hetero-
geneous network with N nodes and degree distribution PðkÞ.
Each node i of the network has a number IðiÞ of infectious
and SðiÞ of susceptible individuals. The occupation numbers
IðiÞ and SðiÞ can have any integer value, including
IðiÞ ¼ SðiÞ ¼ 0, that is, void nodes with no individuals.
This modeling scheme describes spatially structured inter-
acting subpopulations, such as city locations, urban areas, or
defined geographical regions (Grenfell and Harwood, 1997;
Hanski and Gaggiotti, 2004) and is usually referred to as the
metapopulation approach. Each node of the network rep-
resents a subpopulation and the compartment dynamics

accounts for the possibility that individuals in the same
location may get into contact and change their state
according to the infection dynamics. The interaction among
subpopulations is the result of the movement of individuals
from one subpopulation to the other. We have thus to
associate with each individual’s class a diffusion probability
pI and pS that indicates the probability for any individual to
leave its node and move to a neighboring node of the
network. In general the diffusion probabilities are hetero-
geneous and can be node dependent; however, for simplicity
we assume that individuals diffuse with probability pI ¼
pS ¼ 1 along any of the links departing from the node in
which they are. This implies that at each time step an
individual sitting on a node with degree k will diffuse into
one of its nearest neighbors with probability 1=k. In order to
write the dynamical equations of the system we define the
following quantities:

Ik ¼
1

Nk

X
i∈VðkÞ

IðiÞ; Sk ¼
1

Nk

X
i∈VðkÞ

SðiÞ; ð83Þ

where the sums
P

i∈VðkÞ are performed over nodes of degree
k. These two quantities express the average number of
susceptible and infectious individuals in nodes with degree
k. Clearly, N k ¼ Ik þ Sk is the average number of individ-
uals in nodes with degree k. These quantities allow one to
write the discrete-time equation describing the time evolu-
tion of IkðtÞ for each class of degree k as

Ikðtþ 1Þ ¼ k
X
k0
Pðkjk0Þ 1

k0
½ð1 − μÞIk0 ðtÞ þ βΓk0 ðtÞ�; ð84Þ

where Γk0 ðtÞ is an interaction kernel, a function of Ik0 and Sk0 .
Equation (84) is obtained by considering that at each time
step the particles present on a node of degree k, first react,
and then diffuse away from the node with probability 1. The
value of Ikðtþ 1Þ is obtained by summing the contribution
of all particles diffusing to nodes of degree k from their
neighbors of any degree k0, including the new particles
generated by the reaction term Γk0 . In the case of uncorre-
lated networks, Eq. (84) reduces to

Ikðtþ 1Þ ¼ k
hki ½ð1 − μÞĪðtÞ þ βΓ�; ð85Þ

where ĪðtÞ ¼ P
kPðkÞIk is the average number of infected

individuals per node in the network and Γ ¼ P
kPðkÞΓk.

Analogously the equation describing the dynamics of
susceptible individuals is

Skðtþ 1Þ ¼ k
hki ½S̄ðtÞ þ μĪðtÞ − βΓ�; ð86Þ

where S̄ðtÞ ¼ P
kPðkÞSk.

In order to explicitly solve these equations we have to
specify the type of interaction among individuals. In the usual
case of a mass-action law for the force of infection, we have
Γk ¼ IkSk=N k. This implies that each particle has a finite
number of contacts with other individuals. Considering the
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stationary state t → ∞, and by using some simple algebra,
we can find that an endemic state Ī > 0 occurs only if
β=μ > 1, thus recovering the classic epidemic threshold
in homogeneous systems (Colizza, Pastor-Satorras, and
Vespignani, 2007).
A different result is obtained if we consider the case in

which each susceptible individual may react with all the
infectious individuals in the same node. In this case
Γk ¼ IkSk, i.e., all individuals are in contact with the same
probability (absorbed in the factor β), independently of the
total population present in each node. This law, referred to as
the pseudomass-action law, is sometimes used to model
animal diseases as well as mobile phone malwares. In this
case, an active stationary solution Ī > 0 occurs if (Colizza,
Pastor-Satorras, and Vespignani, 2007)

N̄ ≥ N̄ c ≡ hki
hk2i

μ

β
; ð87Þ

where N̄ ¼ P
PðkÞN k ¼ N =N is the average number of

individuals per node. This result implies that a stationary state
with infectious individuals is possible only if the particle
density average N̄ is larger than a specific critical threshold.
However, the network topological fluctuations affect the
critical value. In particular, in heavy-tailed networks with
hk2i → ∞ we have that N̄ c → 0, i.e., topological fluctuations
induce a vanishing of the threshold in the limit of an infinite
network.
The different behavior obtained in the two types of

processes can be understood qualitatively by the following
argument (Colizza, Pastor-Satorras, and Vespignani, 2007). In
a process governed by the mass-action law the epidemic
activity in each node is rescaled by the local population N i
and it is therefore the same in all nodes. In this case, the
generation of infected individuals is homogeneous across
the network and an epidemic active state depends only on the
balance between β and μ, whose values must poise the system
above the critical threshold. In contagion processes deter-
mined by the pseudomass-action law, whatever the parameters
β and μ, there exists a local density of individuals able to
sustain the generation of infected individuals to keep the
system in the active state. In this case topological fluctuations
induce density fluctuations in the network as the diffusion
process brings individuals to each node proportionally to the
degree k, Eq. (82). Whatever the average number of individ-
uals per node in the thermodynamic limit, there is always a
node (with a virtually infinite degree) with enough individuals
to keep alive the contagion process, leading to the disappear-
ance of the phase transition.
While the above results are obtained by a discrete

formulation that generally well suits simulation schemes
in which reactions and diffusion are executed sequentially,
the continuum formalism of these models was derived
by Saldaña (2008) [see also Baronchelli, Catanzaro, and
Pastor-Satorras (2008)]. In the continuum derivation the
same phenomenology is obtained although the results
concerning the critical value in pseudomass reactionlike
processes scales as the maximum degree in the net-
work N̄ c ∼ k−1max.

It is worth stressing that in most contagion processes the
mobility of individuals is generally extremely heterogeneous
and not simply mimicked by constant diffusion probabilities
as those used in the previous simple example. The interaction
among subpopulations is the result of the movement of
individuals from one subpopulation to the other. For instance,
it is clear that one of the key issues in the modeling of
contagion phenomena in human populations is the accurate
description of the commuting patterns or traveling of people.
In many instances even complicated mechanistic patterns can
be accounted for by effective couplings expressed as a force of
infection generated by the infectious individuals in subpopu-
lation j on the individuals in subpopulation i. More realistic
descriptions are provided by approaches which include
explicitly the detailed rate of traveling or commuting obtained
from data or from an empirical fit to gravity law models
(Viboud et al., 2006). For analytical studies, simplified
approaches use the Markovian assumption in which at each
time step the movement of individuals is given according to a
matrix dij that expresses the rate at which an individual in the
subpopulation i is traveling to the subpopulation j. This
approach is extensively used in large populations where the
traffic wij between subpopulations is known, stating that
dij ∼ wij=N j. Several modeling approaches to the large-scale
spreading of infectious disease (Baroyan et al., 1969; Rvachev
and Longini, 1985; Flahault and Valleron, 1992; Grais et al.,
2004; Hufnagel, Brockmann, and Geisel, 2004; Colizza
et al., 2006; Colizza, Barrat et al., 2007; Balcan, Colizza
et al., 2009) use this mobility process based on real data about
transportation networks. A detailed description of different
mobility and diffusion schemes can be found in Colizza and
Vespignani (2008).

B. SIR model in metapopulation networks and the global
invasion threshold

In the analysis of contagion processes in metapopulation
networks, the diffusion parameters that mimic the mobility
rate of individuals or particles in the system may cause severe
changes to the phase diagram by inducing a novel type of
critical threshold. To see these effects we consider SIR-like
models with no stationary state possible. If we assume a
diffusion probability p for each individual and that the single
population reproduction number of the SIR model is R0 > 1,
we can easily identify two different limits. If p ¼ 0, any
epidemic occurring in a given subpopulation will remain
confined; no individual can travel to a different subpopulation
and spread the infection across the system. In the limit p → 1
we see that individuals are constantly wandering from one
subpopulation to another and the system is in practice
equivalent to a well-mixed unique population. In this case,
since R0 > 1, the epidemic will spread across the entire
system. A transition point between these two regimes is
therefore occurring at a threshold value pc of the diffusion
rate, identifying a global invasion threshold that depends on
the mobility as well as the parameters of the contagion process
(see Fig. 11). In other words, in a model such as the SIR
model, the epidemic within each subpopulation generates a
finite fraction of infectious individuals in a finite amount of
time, and even if R0 > 1 the diffusion rate must be large
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enough to ensure the diffusion of infected individuals to other
subpopulations before the local epidemic outbreak dies out. It
is worth remarking that this does not apply in models with
endemic states such as the SIS model. In this case the disease
produces infectious individuals indefinitely in time and sooner
or later the epidemic will be exported to other subpopulations.
The invasion threshold is encoded in a new quantity R�

characterizing the disease invasion of the metapopulation
system. R� denotes the number of subpopulations that become
infected from a single initially infected subpopulation, i.e., the
analog of the reproduction number R0 at the subpopulation
level. It defines the critical values of parameters that allow the
contagion process to spread across a macroscopic fraction of
subpopulations. Interestingly, this effect cannot be captured by
a continuous description that would allow any fraction pĪ of
diffusing infected individual to inoculate the virus in a
subpopulation not yet infected. In certain conditions this
fraction pĪ, that is a mean-field average value, may be a
number smaller than 1. This is a common feature of continu-
ous approximations that allow the infection to persist and
diffuse via “nanoindividuals” that are not capturing the
discrete nature of the real systems. The discrete nature of
individuals and the stochastic nature of the diffusion can
therefore have a crucial role in the problem of resurgent
epidemics, extinction, and eradication (Ball, Mollison, and
Scalia-Tomba, 1997; Cross et al., 2005, 2007; Watts et al.,
2005; Vazquez, 2007).
In order to provide an analytical estimate of the invasion

threshold, we considered a metapopulation network with
arbitrary degree distribution PðkÞ, where each node of degree
k has a stationary population N k. By using a Levins-type
approach (Colizza and Vespignani, 2007) it is possible to
characterize the invasion dynamics by looking at the treelike
branching process describing the contagion process at the
subpopulation level (Levins, 1970). We define D0

k as the
number of diseased subpopulations of degree k at generation
0, i.e., those which are experiencing an outbreak at the
beginning of the process. Each infected subpopulation will
seed—during the course of the outbreak—the infection in
neighboring subpopulations, defining the set D1

k of infected
subpopulations at generation 1, and so on. This corresponds to
a basic branching process where the number of infected
subpopulations of degree k at the nth generation is denoted
as Dn

k . We can write the iterative equation relating Dn
k and

Dn−1
k as

Dn
k ¼

X
k0
Dn−1

k0 ðk0 − 1ÞPðkjk0Þ
�
1 −

Dn−1
k

Nk

��
1 −

�
1

R0

�
λk0k

�
:

ð88Þ

In this expression we assume that each infected subpopulation
of degree k0 at the ðn − 1Þth generation may seed the infection
in a number of subpopulations of degree k according to the
number of neighboring subpopulations ðk0 − 1Þ that discount
the neighboring population from which the infection was
originally transmitted. The right term takes into account the
probability Pðkjk0Þ that each of the k0 − 1 neighboring
populations has degree k, the probability that the seeded

population is not infected, and the probability to observe an
outbreak in the seeded population. This last probability stems
from the probability of extinction Pext ¼ 1=R0 of an epidemic
seeded with a single infectious individual (Bailey, 1975),
when one considers a seed of size λkk0 given by the number of
infected individuals that move into a connected subpopulation
of degree k0 during the duration of the local outbreak in the
subpopulation of degree k.
The quantity λkk0 can be explicitly calculated by considering

that, in the case of a macroscopic outbreak in a closed
population, the total number of infected individuals during
the outbreak evolution will be equal to ᾱN k where ᾱ depends
on the specific disease model and parameter values used. Each
infected individual stays in the infectious state for a time μ−1

equal to the inverse of the recovery rate, during which it can
travel to the neighboring subpopulation of degree k0 with rate
p. Here for simplicity we consider that the mobility coefficient
p is the same for all individuals. Under this condition the
number of infected individuals that may move into a con-
nected subpopulation of degree k0 during the duration of the
local outbreak in the subpopulation of degree k is given by

λkk0 ¼ p
N̄ ᾱ μ−1

hki ; ð89Þ

where we considered that each individual will diffuse with the
same probability in any of the k available connections and that
N k is given by Eq. (82).
In order to provide an explicit solution to the above

iterative equation we consider in the following that
R0 − 1 ≪ 1, thus assuming that the system is very close
to the epidemic threshold. In this limit we can approximate

the outbreak probability as 1 − R−λk0k
0 ≃ λk0kðR0 − 1Þ. In

addition, we assume that at the early stage of the epidemic
Dn−1

k =Nk ≪ 1, and we consider the case of uncorrelated
networks, obtaining

Dn
k ¼ ðR0 − 1Þ kPðkÞhki2

pN̄ ᾱ

μ

X
k0
Dn−1

k0 ðk0 − 1Þ: ð90Þ

By defining Θn ¼ P
k0D

n
k0 ðk0 − 1Þ, the last expression can be

conveniently written in the iterative form

Θn ¼ ðR0 − 1Þ hk
2i − hki
hki2

pN̄ ᾱ

μ
Θn−1 ð91Þ

that allows a growing epidemic only if

R� ¼ ðR0 − 1Þ hk
2i − hki
hki2

pN̄ ᾱ

μ
> 1; ð92Þ

defining the global invasion threshold of the metapopula-
tion system.
The explicit form of the threshold condition can be used to

find the minimum mobility rate ensuring that on average each
subpopulation can seed more than one neighboring subpopu-
lation. The constant ᾱ is larger than zero for anyR0 > 1, and in
the SIR case for R0 close to 1 it can be approximated by
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ᾱ≃ 2ðR0 − 1Þ=R2
0 (Bailey, 1975), yielding a critical mobility

value pc below which the epidemics cannot invade the
metapopulation system given by

pcN̄ ≥
hki2

hk2i − hki
μR2

0

2ðR0 − 1Þ2 : ð93Þ

In Fig. 12 we show the total fraction of infected individuals
across all subpopulations, also called the global attack rate, as
a function of both R0 and p, as obtained from extensive
Monte Carlo simulations in an uncorrelated metapopulation
network with PðkÞ ∼ k−2.1, N ¼ 105, N̄ ¼ 103, and μ ¼ 0.2.
The global attack rate surface in the p-R0 space shows that the
smaller the value of R0, the higher the mobility p in order for
the contagion process to successfully invade a finite fraction of
the subpopulations.
The invasion threshold R� > 1 implicitly defines the critical

mobility rate of individuals and is an indicator as important as
the basic reproduction number R0 > 1 in assessing the
behavior of contagion processes in structured populations.
It shifts the attention from the local outbreak to a global
perspective where the interconnectivity and mobility among
subpopulations is important in possibly hampering the spread-
ing process. The presence of the factor hki2=hk2i in the
explicit expression of the threshold points out that also at the
global level the heterogeneity of the network plays an
important role. In other words, the topological fluctuations
favor the subpopulation invasion and suppress the phase
transition in the infinite size limit.
While the analysis we presented here is simplified, in the

last years several studies have provided insight on metapo-
pulation spreading fully considering the stochastic and dis-
crete nature of the process in various realistic contexts:
heterogenous schemes for the diffusion of individuals
(Colizza and Vespignani, 2008; Gautreau, Barrat, and
Barthélemy, 2008; Ni and Weng, 2009; Ben-Zion, Cohen,
and Shnerb, 2010), heterogeneous populations (Poletto,

Tizzoni, and Colizza, 2012; Apolloni, Poletto, and Colizza,
2013), non-Markovian recurrent mobility patterns mimicking
commuting among geographical regions (Balcan and
Vespignani, 2011, 2012; Belik, Geisel, and Brockmann,
2011), and the introduction of individual behavioral responses
to the presence of disease (Meloni et al., 2011; Nicolaides,
Cueto-Felgueroso, and Juanes, 2013). Indeed one of the
interesting applications of the particle-network framework
and the study of reaction-diffusion processes in metapopula-
tion networks consists of providing analytic rationales for
data-driven epidemic models.

C. Agent based models and network epidemiology

In recent years, mathematical and computational
approaches to the study of epidemics have been increasingly
relevant in providing quantitative forecast and scenario
analysis of real infectious disease outbreaks (Lofgren et al.,
2014). For this reason, epidemic models have evolved into
large-scale microsimulations, data-driven approaches that can
provide information at detailed spatial resolutions. An exam-
ple is provided by agent based, spatially structured models that
consider the discrete nature of individuals and their mobility
and are generally including the stochasticity of interactions
and the mobility of individuals. These models are based on the
construction of synthetic populations characterizing each
individual in the population and its mobility pattern, often
down to the level of households, schools, and workplaces
(Eubank et al., 2004; Hufnagel, Brockmann, and Geisel,
2004; Ferguson et al., 2005; Longini et al., 2005; Colizza,
Barrat et al., 2007; Chao et al., 2010). The synthetic
population construction is a data hungry process and the
resulting model is in most of the cases nontransparent to an
analytical understanding. For this reason, the analysis of these
models relies on computational microsimulations of the
epidemic evolution that keep track of each single individual
in the population. The resulting ensemble of possible epi-
demic evolutions is then leveraged to provide the usual
quantitative indicators such as median, mean, and reference
ranges for epidemic observables, such as newly generated
cases, seeding events, and time of arrival of the infection. The
statistical information generated by the computational
approaches is then exploited with different visualization
techniques that reference the data geographically. At first
sight this modeling approach seems unrelated to network
epidemiology. In reality, most of the data-driven computa-
tional approaches are relying on the construction of synthetic
populations and interaction patterns that are effectively
encoded as multiscale networks of individuals and locations
(Marathe and Vullikanti, 2013).
An example of the underlying network structure of data-

driven epidemic models is provided by the global epidemic
and mobility (GLEAM) model that integrates census and
mobility data in a fully stochastic metapopulation network
model that allows for the detailed simulation of the spread of
influenzalike illnesses around the globe (Broeck et al., 2011).
This model uses real demographic and mobility data. The
world population is divided into geographic census areas that
are defined around transportation hubs and connected by
mobility fluxes. Within each subpopulation, the disease

FIG. 12 (color online). Global threshold in a heterogeneous
metapopulation system. The 3D surface representing the value of
the final epidemic size in the metapopulation system as a function
of the local threshold R0 and of the diffusion probability p. If R0

approaches the threshold, larger values of the diffusion proba-
bility p need to be considered in order to observe a global
outbreak in the metapopulation system. Adapted from Colizza
and Vespignani, 2007.
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spreads between individuals. Individuals can move from one
subpopulation to another along the mobility network accord-
ing to high quality transportation data, thus simulating the
global spreading pattern of epidemic outbreaks. At the finer
scale of urban areas, synthetic population constructions are
even more refined and consider a classification of locations
such as houses, schools, offices, etc. The movement and time
spent in each location can be used to generate individual-
location bipartite networks whose unipartite projection
defines the individual-level, synthetic interaction network that
governs the epidemic spreading (Eubank et al., 2004;
Halloran et al., 2008; Merler et al., 2011; Fumanelli et al.,
2012). Also in this case, although the model underlying the
computational approach is a network model, each individual is
annotated with the residence place and age, as well as other
possible demographic information that can be exploited in the
analysis of the epidemic outbreak (see Fig. 13).
Data-driven computational approaches can generate results

at an unprecedented level of detail and have been used
successfully in the analysis and forecast of real epidemics
(Hufnagel, Brockmann, and Geisel, 2004; Balcan, Colizza
et al., 2009; Balcan et al., 2009; Merler et al., 2011) and a
policy-making scenario analysis (Eubank et al., 2004;
Ferguson et al., 2005; Longini et al., 2005; Colizza, Barrat
et al., 2007; Brockmann and Helbing, 2013). Similar
approaches are becoming more and more popular in the
simulation of generalized contagion processes and social
behavior (Marathe and Vullikanti, 2013). Although realistic
and detailed computational approaches often provide non-
intuitive results, the key mechanisms underlying the epidemic
evolution are difficult to identify because of the amount of

details integrated in the models. In such cases, the analytic
understanding of the basic models presented in this review can
be the key to the systematic investigation of the impact of the
various complex features of real systems on the basic proper-
ties of epidemic outbreaks. For instance, the simple calcu-
lation of the invasion threshold explains why travel
restrictions appear to be highly ineffective in containing
epidemics in large-scale data-driven simulation: the complex-
ity and heterogeneity of the present time human mobility
network considerably favor the global spreading of infectious
diseases. Only unfeasible mobility restrictions reducing the
global travel fluxes by 90% or more would be effective
(Cooper et al., 2006; Hollingsworth, Ferguson, and Anderson,
2006; Colizza and Vespignani, 2008; Bajardi et al., 2011). The
understanding of the behavior of reaction-diffusion processes
in complex networks is therefore a crucial undertaking if we
want to answer many basic questions about the reliability and
predictive power of data-driven computational models.

X. GENERALIZING EPIDEMIC MODELS AS SOCIAL
CONTAGION PROCESSES

Infectious diseases certainly represent the central focus of
epidemic modeling because of the relevance they played, and
continue to play in present days, in human history. The
contagion metaphor however applies in several other domains
and, in particular, in the social context: the diffusion of
information (Bikhchandani, Hirshleifer, and Welch, 1992),
the propagation of rumors, and the adoption of innovations or
behaviors (Bass, 1969; Rogers, 2010) are all phenomena for
which the state of an individual is strongly influenced by the

(a) (b) (c)

FIG. 13 (color online). Schematic illustration of the construction of a synthetic population and the resulting contact network. (a) At the
macroscopic level, a synthetic population and its movements are constructed from census and demographic data. (b) A bipartite network
associating individuals to locations, and eventually weighting the links with the time spent in the location, is derived from the synthetic
population. (c) The unipartite projection of the bipartite network provides a contact network for the contagion process. Different
transmission rates and weights on the network depend on the location and type of interactions.
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interaction with peers. Mediated by the network of social
contacts, these interactions can give rise to epidemiclike
outbreaks: fads, information cascades, memes going viral
online, etc. The term social (or complex) contagion generally
denotes these types of phenomena. New communication
technologies, online social media, and the abundance of
digital fingerprints that we, as individuals, disseminate in
our daily life provide an unprecedented wealth of data about
social contagion phenomena, calling for theoretical
approaches to measure, interpret, model, and predict them.
Simple models for disease epidemics are the natural paradigm
for this endeavor and have been applied to social spreading
phenomena (Goffman and Newill, 1964; Goffman, 1966;
Bettencourt et al., 2006). Some specific features of social
contagion, however, are qualitatively different from pathogen
spreading: the transmission of information involves inten-
tional acts by the sender and the receiver, it is often beneficial
for both participants (as opposed to disease spreading), and it
is influenced by psychological and cognitive factors. This
leads to the introduction of new ingredients in the models,
from which the name complex contagion derives. In this
section we discuss recent developments in this modeling
effort, which we divide into two broad categories depending
on whether the spreading process (threshold models) or the
recovery process (rumor spreading models) of the disease
epidemic propagation is changed. In light of the modeling
efforts, a review of papers analyzing empirical data fol-
lows next.
As the topics presented here encompass a vast spectrum of

disciplines, including physics, computer science, mathemat-
ics, and social sciences, the usual caveat about the impos-
sibility of an exhaustive review of all the literature is to be
particularly stressed. Our limited goal is to try to outline the
most important contributions in a unitary framework. This
endeavor is made even more difficult by the fact that the
propagation of social contagion is also close to other processes
such as failure cascades [in network routing protocols or
mechanical failure (Motter and Lai, 2002)] or the adoption of
strategies in game-theoretic context (Easley and Kleinberg,
2010) that are beyond the scope of this review.

A. Threshold models

For disease epidemics it is customary to assume that a
susceptible individual has a constant probability to receive the
infection from a peer upon every exposure, independently of
whether other infected individuals are simultaneously in
contact or other exposures have occurred in the past. While
generally reasonable for the transmission of pathogens
[although exceptions may occur (Joh et al., 2009)], this
hypothesis is clearly unrealistic in most situations where a
social meme is spreading: a piece of information is more
credible if arriving from different sources; the push to adopt a
technological innovation is stronger if neighboring nodes in
the social network have already adopted it. These consid-
erations lead naturally to the introduction of “threshold
models” for spreading phenomena, where the effect of
multiple exposures changes from low to high as a function
of their number. Figure 14 displays the probability of infection
(adoption) Pinf after K attempts in the different scenarios. In

the case of SIR [Fig.14(a)] each attempt has a fixed probability
p of success and Pinf ¼ 1 − ð1 − pÞK .
Threshold models have a long tradition in the social and

economical sciences (Granovetter, 1978; Morris, 2000). In the
context of spreading phenomena on complex networks, a
seminal role has been played by the model introduced by
Watts (2002). Each individual can be in one of two states (S
and I) and is endowed with a quenched, randomly chosen
threshold value ϕi. In an elementary step an individual agent
in state S observes the current state of its neighbors and adopts
state I if at least a threshold fraction ϕi of its neighbors is in
state I; else it remains in state S.8 No transition from I back to
S is possible. Initially all nodes except for a small fraction are
in state S. Out of these initiators a cascade of transitions to the
I state is generated. The nontrivial question concerns whether
the cascade remains local, i.e., restricted to a finite number of
individuals, or it involves a finite fraction of the whole
population. Given an initial seed, the spreading can occur
only if at least one of its neighbors has a threshold such that
ϕi ≤ 1=ki. A cascade is possible only if a cluster of these
“vulnerable” vertices is connected to the initiator. For global
cascades to be possible it is then conjectured that the subnet-
work of vulnerable vertices must percolate throughout the
network. The condition for global cascades can then be
derived applying on locally treelike networks the machinery
of generating functions for branching processes. In the simple
case of a uniform threshold ϕ and an Erdős-Rényi pattern of
interactions the phase diagram as a function of the threshold ϕ
and of the average degree hki is reported in Fig. 15. For fixed
ϕ, global cascades occur only for intermediate values of the
mean connectivity 1 < hki < 1=ϕ. The transition occurring
for small hki is trivial and is not due to the spreading
dynamics: the average cascade size is finite for hki < 1
because the network itself is composed of small disconnected
components: the transition is percolative with power-law
distributed cascade size. For large hki > 1=ϕ instead, the
propagation is limited by the local stability of nodes. As the
transition is approached increasing hki the distribution of
cascade size is bimodal, with an exponential tail at small
cascade size and global cascades increasingly larger but more

(a) (b) (c)

FIG. 14 (color online). Probability Pinf of infection for a
susceptible individual after K contacts with infected individuals.
(a) Independent interaction (e.g., SIR-type) model. (b) Stochastic
threshold model. (c) Deterministic threshold model. Adapted
from Dodds and Watts, 2004.

8This is the definition for relative threshold models. In many cases
absolute thresholds are considered (Granovetter, 1978; Kempe,
Kleinberg, and Tardos, 2003; Centola and Macy, 2007; Galstyan
and Cohen, 2007; Kimura et al., 2009; Karimi and Holme, 2013). For
strongly heterogeneous networks the different definitions may lead to
important changes.
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rare, until they disappear altogether, implying a discontinuous
(i.e., first-order) phase transition in the size of successful
cascades. Heterogeneous thresholds reduce the system stabil-
ity, increasing the range of parameters where global cascades
occur. Degree heterogeneity has instead the opposite effect.
The critical value of the threshold ϕc ¼ 1=hki separating

global cascades for ϕ < ϕc from localized spreading for ϕ >
ϕc highlights the peculiar features of threshold dynamics
(Centola, Eguíluz, and Macy, 2007). Adding new links to the
network makes hki grow, thus reducing ϕc and making
system-wide spreading more difficult, the opposite of what
occurs for SIR epidemics. Note indeed that the dependence of
the threshold on the average degree is the same (for homo-
geneous networks) in both the threshold model and SIR
dynamics, but in the latter case the global spreading occurs
above the threshold (for λ > 1=hki), while in the former case
global cascades are possible below the threshold (ϕ < 1=hki).
By the same token, link rewiring which destroys clustering of
a network is seen to reduce the average cascade size for the
threshold model. Instead of the strength of the weak ties
(Granovetter, 1973) here the weakness of the long ties
(Centola and Macy, 2007) is at work.
Watts’s model can be seen as a particular instance of a more

general model (Dodds and Watts, 2004), which includes also
independent interaction models (SIR, SIRS) as particular
cases. The model incorporates individual memory, a variable
magnitude of exposure (dose amount), and heterogeneity in
the susceptibility of individuals. At each contact with an
infected neighbor a susceptible receives with probability p a
random dose dðtÞ [distributed according to fðdÞ]. A suscep-
tible individual i accumulates the doses diðtÞ over a time T
and it becomes infected if at some time the accumulated dose
DiðtÞ ¼

P
t
t0¼t−Tþ1

diðt0Þ is larger than a threshold d�i [random

for each node with distribution gðd�Þ]. Recovery is possible
with probability r provided the dose DiðtÞ falls below d�i . The
probability that a susceptible individual who encounters K ≤
T infected individuals in T time steps becomes infected is
therefore

PinfðKÞ ¼
XK
k¼1

K
k
pkð1 − pÞK−kPk; ð94Þ

where

Pk ¼
Z

∞

0

dd�gðd�ÞP
�Xk

i¼1

di ≥ d�
�

ð95Þ

is the average fraction of individuals infected after receiving
k positive doses in T time steps. When all doses di are
identical, all members of the population have the same
threshold d�, and p < 1, then the model reduces to the
standard SIR [Fig. 14(a)]. In other cases it is a deterministic
or stochastic threshold model, depending on whether thresh-
olds vary [Fig. 14(b)] or are all identical [Fig. 14(c)].
Adding a probability ρ that a recovered individual becomes

susceptible again leads to a SIRS-like dynamics. Setting r ¼ 1
and ρ ¼ 1 gives a SIS-like model, for which the stationary
fraction of active nodes as a function of p is the order
parameter. Three qualitatively different shapes of the phase
diagram are found, depending only on T and P1 and P2, the
probabilities that an individual will become infected as a result
of one and two exposures, respectively. If P1 > P2=2 there is a
standard epidemic transition between an absorbing healthy
phase and an active infected one. The phenomenology is
the same as SIS, indicating that successive exposures are
effectively independent. The two other possible behaviors
both exhibit a discontinuous phase transition for finite p,
differing in the sensitivity with respect to the size of the
initial seed.
By means of an analytical approach for locally treelike

networks, Gleeson and Cahalane (2007) extended Watts’s
approach to consider a finite fraction of initiators pin. It turns
out that this change may have dramatic effects on the location
of the transitions as a function of hki and even make the
transition for small hki discontinuous. Singh et al. (2013)
showed that for any ϕ < 1 there is a critical value pin

c ðϕÞ such
that for p > pin

c ðϕÞ the cascades are global. Further work
along the same lines has generalized the analytical treatment
to modular networks (Gleeson, 2008), degree-correlated
networks (Gleeson, 2008; Dodds and Payne, 2009), and
to networks with tunable clustering (Hackett, Melnik, and
Gleeson, 2011). In the latter case, it turns out that for large and
small values of hki clustering reduces the size of cascades,
while the converse occurs for intermediate values of the
average degree.
Watts’s threshold model has been extended in many

directions, to take into account other potentially relevant
effects that may influence the spreading process. Interaction
patterns described by layered networks are found to increase
the cascade size (Brummitt, Lee, and Goh, 2012) while the
consideration of temporal networks (Holme and Saramäki,
2012) with the associated bursty activity of individuals may

FIG. 15 (color online). Phase diagram of Watts’s threshold
model. The dashed line encloses the region of the ðϕ; hkiÞ plane
in which the condition for the existence of global cascades is
satisfied for a uniform random graph with uniform threshold ϕ.
The solid circles outline the region in which global cascades
occur for the same parameter settings in the full dynamical model
for N ¼ 10 000 (averaged over 100 random single-node pertur-
bations). Adapted from Watts, 2002.
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either facilitate (Takaguchi, Masuda, and Holme, 2013) or
hinder (Karimi and Holme, 2013) the spreading process.
Watts’s model on a basic two-community network is consid-
ered by Galstyan and Cohen (2007). Finally it is worth
mentioning the work of Lorenz, Battiston, and Schweitzer
(2009) who proposed a general classification of models for
cascades, including, among many others, standard epidemic
models and Watts’s model as particular cases.
A large interest in threshold models has also been spurred

by the goal of identifying influential spreaders, i.e., the
starting nodes which maximize the size of cascades, a topic
of interest also for traditional epidemic models (see
Sec. VI.B). Kempe, Kleinberg, and Tardos (2003) showed
that the problem of finding the set of initiator nodes such that
the total size of the cascade is maximal (Domingos and
Richardson, 2001) is nonpolynomial (NP) hard, for both linear
threshold models and an independent cascade model, which is
essentially an inhomogeneous SIR. Moreover, they provided a
greedy hill-climbing algorithm that provides an efficient
approximation to the NP-hard solution, outperforming ran-
dom choice as well as choices based on degree centrality and
distance centrality, when tested on some empirical networks.
The method of Kempe, Kleinberg, and Tardos (2003) is
computationally costly. An improvement which makes it
much faster is provided by Kimura et al. (2009).

B. Rumor spreading

Models for rumor spreading are variants of the SIR model
for disease epidemics in which the recovery process does not
occur spontaneously, but rather is a consequence of inter-
actions. The basic idea behind this modification is that it is
worth propagating a rumor as long as it is novel for the
recipient: If the spreader finds that the recipient already knows
the rumor, he or she might lose interest in spreading it any
further. The formalization of this process is due to Daley and
Kendall (1964, 1965); individuals can be in one of three
possible states9: ignorant (S, equivalent to susceptible in SIR),
spreader (I, equivalent to infected), and stifler (R, equivalent
to recovered). The possible events and the corresponding
rates are

Sþ I→
β
2I ; Rþ I→

α
2R ; 2I→

α
2R . ð96Þ

In a slightly distinct version, introduced by Maki and
Thompson (1973), the third process is different: when a
spreader contacts another agent and finds it in state I, only
the former turns into a stifler, the latter remaining unchanged,
i.e., the third process is

2I→
α
Rþ I: ð97Þ

As for the SIR model, starting from a single informed
individual the rumor propagates through the network with an
increase in the number of spreaders. Asymptotically all
spreaders turn into stiflers and in the final absorbing state
there are only ignorants or stiflers. The “reliability,” i.e., the

fraction r∞ of stiflers in this asymptotic state, quantifies
whether the rumor remains localized (r∞ → 0 for system size
N → ∞) or spreads macroscopically. The solution of both
versions of the model on the complete graph (Sudbury, 1985;
Barrat, Barthélemy, and Vespignani, 2008) gives the whole
temporal evolution of the reliability, yielding r∞ as the
solution of

r∞ ¼ 1 − e−ð1þβ=αÞr∞ . ð98Þ

As a consequence, r∞ is positive for any β=α > 0, i.e., the
rumor spreads macroscopically for any value of the spreading
parameters at odds with what happens for the SIR dynamics,
which has a finite threshold for homogeneous networks.
Since models for disease epidemics are strongly affected by

complex topologies, it is natural to ask what happens for
rumor dynamics. When the Maki-Thompson model is simu-
lated on scale-free networks it turns out that heterogeneity
hinders the propagation dynamics by reducing the final
reliability r∞, still without introducing a finite threshold
(Liu, Lai, and Ye, 2003; Moreno, Nekovee, and Pacheco,
2004; Moreno, Nekovee, and Vespignani, 2004). Why this
happens is easily understood: large hubs are rapidly reached
by the rumor, but then they easily turn into stiflers, thus
preventing the further spreading of the rumor to their many
other neighbors. This is confirmed by the observation that
the density of ignorants of degree k at the end of the
process decays exponentially with k (Moreno, Nekovee,
and Vespignani, 2004). Degree-based mean-field approaches
(Nekovee et al., 2007; Zhou, Liu, and Li, 2007) are in good
agreement with the numerical findings. The phenomenology
of rumor spreading is markedly different from the behavior of
the SIR model and this is due to the healing mechanism
involving two individuals, present in both Maki-Thompson
and Daley-Kendall dynamics. If spontaneous recovery is also
allowed with rate μ, justified as the effect of forgetting, it turns
out that the model behaves exactly as SIR: macroscopic
spreading occurs only above a threshold inversely propor-
tional to the second moment hk2i, which then vanishes in
the large network size limit for scale-free networks (Nekovee
et al., 2007). Again the interpretation of this outcome is not
difficult: the forgetting term is linear in the density of
spreaders and thus dominates for small densities, since the
healing terms, due to the processes in Eqs. (96) and (97), are
quadratic.
When the pattern of interactions among individuals is

given by the Watts-Strogatz topology, rumor dynamics gives
rise to a nontrivial phenomenon: a phase transition occurring
at a critical value of the rewiring probability p (Zanette,
2001): For large values of p the network is essentially
random and the rumor reaches a finite fraction of the vertices.
For small values of p the spreading occurs only in a finite
neighborhood of the initiator, so that the density of stiflers
vanishes with the system size. In other transitions occurring
on the Watts-Strogatz network, the critical point scales to
zero with the system size N, a consequence of the fact that
the geometric crossover between a one-dimensional lattice
and a small-world structure scales as 1=N (Watts and
Strogatz, 1998). Strikingly instead, the threshold pc for
macroscopic rumor spreading converges to a finite value as9For consistency, we use the same symbols of the SIR model.
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the system size grows. This indicates that the transition
cannot be explained only in geometrical terms; some non-
trivial interplay between topology and dynamics is at work.
Interestingly, the transition at finite pc persists also when an
annealed Watts-Strogatz network is considered.
Recently, some activity has been devoted to the inves-

tigation of the role of influential spreaders in rumor spreading,
in analogy to what has been done for disease epidemics (see
Sec. VI.B). Borge-Holthoefer and Moreno (2012) looked for
the role of nodes with large K-core index for the Maki-
Thompson dynamics on several empirical networks. It turns
out that the final density of stiflers does not depend on the
K-core value of the initiator. Nodes with high-K-core index
are not good spreaders; they are reached fast by the rumor and
short-circuit its further spreading. An empirical investigation
of cascades on the Twitter social network (Borge-Holthoefer,
Rivero, and Moreno, 2012) points out instead that privileged
spreaders (identified by large degree k or large K) do exist in
real-world spreading phenomena, in patent contrast with the
predictions of rumor spreading models. To reconcile theo-
retical predictions and empirical observations it is necessary to
amend the Maki-Thompson dynamics. Two possible mod-
ifications have been proposed by Borge-Holthoefer et al.
(2013). In one case individuals are not always active and do
not spread further twits reaching them while inactive. In the
second an ignorant contacted by a spreader turns into a
spreader only with probability p, while with probability 1 − p
it turns directly into a stifler. The modified rumor spreading
models are able to qualitatively reproduce the empirical
findings, provided (for the first) that the probability to be
active is proportional to the node degree or (for the second)
that the probability p to actually spread is very small (of the
order of 10−3).

C. Empirical studies

Empirical data for a large number of spreading processes in
the real world have been analyzed in terms of epidemiclike
phenomena. Here we outline some of the most important
contributions.
Leskovec, Adamic, and Huberman (2007) analyzed an

instance of viral marketing, in the form of the email recom-
mendation network for products of a large retailer. There are
large variations depending on the type of goods recom-
mended, its price, and the community of customers targeted,
but in general recommendations turn out to be not very
effective and cascades of purchases are not very extended. The
key factor, different from disease epidemics, is that the
“infection probability” quickly saturates to a low value with
the number of recommendations received. Moreover, as an
individual sends more and more recommendations the success
per recommendation declines (high degree individuals are not
so influent). Overall, viral marketing is very different from
epidemiclike spreading.
A case where cascades are large and the spreading is a real

collective phenomenon is the propagation of chain letters on
the Internet. Liben-Nowell and Kleinberg (2008) found tree-
like dissemination patterns, very deep but not large. A simple
epidemiclike model, with an individual having a probability to
forward the message to a fraction of his or her contacts, gives

instead wide and shallow trees. More realistic propagations
are obtained introducing two additional ingredients, asyn-
chronous response times and “backresponse” (Liben-Nowell
and Kleinberg, 2008).
Cascading behavior in large blog graphs is actively inves-

tigated (Gruhl et al., 2004; Adar and Adamic, 2005).
Leskovec et al. (2007) found that in this case cascades tend
to be wide, not deep, with a size distribution following a power
law with a slope of −2. The shape of cascades is often starlike.
A single-parameter generative model (essentially a SIS-like
model in the absorbing phase) is in good agreement with
empirical observations regarding frequent cascade shapes and
size distributions.
Also the behavior of individuals is subject to social

influence and thus gives rise to collective spreading.
Obesity, smoking habits, and even happiness (Christakis
and Fowler, 2007, 2008; Fowler and Christakis, 2008) have
been claimed to spread as epidemics in social networks [see,
however, Shalizi and Thomas (2011) for a criticism of these
results]. In an empirical investigation Centola (2010) analyzed
an artificially structured online community, devised to
check whether spreading is favored by random unclustered
structures [as in the “strength of weak ties” hypothesis
(Granovetter, 1973)] or by clustered ones with larger diameter
(Centola and Macy, 2007). The latter structures turn out to
favor spreading, the more so for increasing degree. At the
individual level, the presence of two or three neighbors
adopting a behavior leads to an increase in the probability
of doing the same. For four and more neighbors the proba-
bility remains instead constant.
For a long time empirical investigations of spreading

phenomena suffered from the drawback that the network
mediating the propagation was unknown and its properties
had to be in some way guessed from how the spreading
process itself unfolds. Online social networks (such as
Facebook and Twitter) are an ideal tool to bypass this problem
as they provide both the topology of existing connections
and the actual path followed by the spreading process on top
of the contact graph (Lerman and Ghosh, 2010). In one of
such social networks (Digg), Ver Steeg, Ghosh, and Lerman
(2011) found that while the network of contacts has a scale-
free degree distribution, the size of cascades is log-normally
distributed, with essentially all propagations limited to a
fraction smaller than 1% of the whole network. Within the
framework of a SIR model this would imply that the spreading
parameter of each cascade is fine-tuned around the transition
point. Two additional ingredients help to reconcile the
empirical findings with models: on the one hand, Digg contact
network has a high clustering and this feature leads to a
reduction of outbreak size; on the other hand, as in Centola
(2010), the probability to transmit the spreading quickly
saturates as a function of the number of active neighbors.
Another empirical investigation of Digg (Doerr et al., 2012)
[see also Van Mieghem, Blenn, and Doerr (2011)] found that
links between friends in the social network contribute surpris-
ingly little to the propagation of information.
Another critical element of the spreading of memes in

modern online social networks is the competition among a
large number of them. Weng et al. (2013) analyzed Twitter,
finding a broad variability of the lifetime and popularity of
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spreading memes. A minimalistic model, based on the
heterogeneous structure of Twitter graphs of followers and
on “limited attention,” i.e., the survival of memes in agents’
memory for only a finite time due to competition with others,
is sufficient to reproduce the empirical findings. Surprisingly,
it is not necessary to assume a variability in the intrinsic appeal
of memes to explain the heterogeneous persistence and
popularity of individual memes.
Another information spreading experiment was performed

by Iribarren and Moro (2009), in which subscribers to an
online newsletter in 11 European countries were offered a
reward to recommend it via email. The recommendations were
tracked at every step by means of viral propagation and it was
thus possible to reconstruct the recommendation cascades
originated by 7154 initiators. The topology of the observed
cascades is essentially treelike, in agreement with the results
of Liben-Nowell and Kleinberg (2008), and of very small size,
suggesting again a behavior at or below a possible critical
point. The heterogeneity of the viral spreading process was
quantified by looking at the distribution of time elapsed
between receiving an invitation email, and forwarding it to
another individual. This distribution can be fitted to a long-
tailed log-normal form. On the other hand, the average
number of informed individuals forwarding the message at
time t was also found to decay slowly (with a log-normal
shape), in contrast with the exponential decay expected in
epidemics below the threshold. Similar results were reported
for the retweet time of Twitter messages; see Doerr, Blenn,
and Van Mieghem (2013).

XI. OUTLOOK

In the last years the entire field of epidemic modeling in
networks has greatly progressed in the understanding of the
interplay between network properties and contagion proc-
esses. We hope to have fairly portrayed the major advances
and achieved clarity of presentation on the various theoretical
and numerical approaches in a field that has literally exploded.
However, the results and understanding achieved so far have
opened the door to new questions and problems, often
stimulated by the availability of new data. For this reason,
the research activity has not slowed its pace and there is still a
number of major challenges.
As shown in the previous sections, we are just moving the

first steps to access the mathematical and statistical laws that
characterize the coevolution mechanisms between the network
evolution and the dynamical process. This is a key element in
most social networks, where it is almost impossible to
disentangle the agents cognitive processes shaping the net-
work evolution and their perception and awareness of the
contagion processes.
Indeed, the adaptive behavior of individuals in response to

the dynamical processes they are involved in represents a
serious theoretical challenge dealing with the feedback among
different and competing dynamical processes. For instance,
some activity has already been devoted to coupled behavior-
disease models and to the competition among different
contagion processes in networks, but much more work is
needed to build a comprehensive picture. The final goal is not
only to understand epidemic processes and predict their

behavior, but also to control their dynamics. The development
of strategies for favoring or hindering contagion processes is
crucial in a wide range of applications that span from the
optimization of disease containment and eradication to viral
marketing. Also in this case, much more work is needed
investigating how coevolution and feedback mechanisms
between the network evolution and the spreading dynamics
affect our influence and ability to control epidemic processes.
Networks show also a large number of interdependencies

of various nature: physical interdependency when energy,
material, or people flow from one infrastructure to another;
cyber interdependency when information is transmitted or
exchanged; geographic interdependency signaling the colo-
cation of infrastructural elements; or logical interdependency
due to financial, political coordination, etc. Interdependence is
a major issue also in diffusion and spreading processes. One
simple example is provided by the spreading of information in
communication networks that induces an alteration of the
physical proximity contact pattern of individuals or of the
flows and traffic of mobility infrastructure. This has triggered
interest in the understanding of contagion processes in
coupled interdependent networks (Son et al., 2012). More
broadly, the community is becoming aware that, especially in
the area of modern social networks populating the information
technology ecosystem, epidemic spreading may occur on
different interacting networks that however affect each other.
This is the case of information processes where different types
of social communication networks (phone, real-world, digital)
coexist and contribute to the spreading process. This evidence
has led recently to the introduction of multilayer or multiplex
networks (Boccaletti et al., 2014; Kivelä et al., 2014).
Multiplex networks are defined by a set of N nodes and a
set of L layers, which represent “dimensions” or “aspects” that
characterize a node. A node can belong to any subset of layers,
and edges represent interactions between nodes belonging to
the same layer. We can consider that a vertex is connected
to itself across the different layers, or allow for interlayer
connections between nodes in different layers. Every layer is
represented thus by a network, and the whole multiplex by a
set of interconnected networks. The analysis of epidemic
processes in these networks shows interesting and peculiar
behaviors. Several studies have focused on physical-informa-
tion layered networks and studied the epidemic dynamics on
the different layers as a function of the interlayer coupling and
the epidemic threshold values on each layer (Marceau et al.,
2011; Yagan et al., 2013; Buono et al., 2014) For the SIR
model it is also observed that depending on the average degree
of interlayer connections (Dickison, Havlin, and Stanley,
2012) a global endemic state may arise in the intercon-
nected system even if no epidemics can survive in each
network separately (Saumell-Mendiola, Serrano, and
Boguñá, 2012; Sahneh, Scoglio, and Chowdhury, 2013).
SIS dynamics on multiple coupled layers has also been
analyzed by Cozzo et al. (2013) and Sahneh, Scoglio, and
Chowdhury (2013) in a generalized mean-field framework.
However, epidemic behavior on multiplex networks is still
largely unexplored for more complex models, complex
contagion phenomena, and in data-driven settings.
The ever increasing computational power is also favoring

detailed models that simulate large-scale population networks,
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including geographic and demographic attributes on an
individual by individual basis. These models can generate
information at an unprecedented level of detail and guide
researchers in identifying typical nonlinear behavior and
critical points that often challenge our intuition. These results
call for a theoretical understanding and a systematic classi-
fication of the models’ dynamical behaviors, thus adding
transparency to the numerical results. Results raise new general
questions such as the following: What are the fundamental
limits in the predictability of epidemics on networks?Howdoes
our understanding depend on the level of data aggregation and
detail? What is the impact of the knowledge on the state and
initial conditions of the network on our understanding of its
dynamical behavior? These are all major conceptual and
technical challenges that require the involvement of a vast
research community and a truly interdisciplinary approach,
rooted in the combination of large-scale data mining tech-
niques, computational methods, and analytical techniques.
The study of epidemic spreading is a vibrant research area

that is finding more and more applications in a wide range of
domains. The need for quantitative and mathematical tools
able to provide understanding in areas ranging from infectious
diseases to viral marketing is fostering the intense research
activity at the forefront in the investigation of epidemic
spreading in networks. We hope that the present review will
be a valuable reference for all researchers that will engage in
this field.
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