
From last time...
1)  The slot machine in the picture has 3 “states,”  cherries, 
plums, and lemons. 

a) List all the microstates of the machine.

b)  How many microstates belong to the macrostate, “all the same”?

c)  How many microstates belong to the macrostate, “mixture”?

d)  What is the likelihood of achieving each macrostate?

e)  Which macrostate is the most likely?  What does this tell you 
about its entropy?  Is this macrostate an ordered or disordered 
macrostate?  Why (try to use information in your argument)?

2.  Use the network at right to answer the following:

a) What is the degree of each node?

b)  What is the average clustering coefficient?  
(Hint:  C=(3xNumber of Triangles)/(Number of Triads)
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Part 2:  Nonlinearity, Chaos and Emergence; Scaling and 
Fractality

What is Complexity?
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Systems as diverse as...

Protein-protein Interactions

Air Traffic Networks

Social Interaction Networks

Contain similar information on a global scale because of...
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Systems as diverse as...

Protein-protein Interactions

Air Traffic Networks

Social Interaction Networks

Simple Interactions
Self-Organizing Behavior

Contain similar information on a global scale because of...
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Systems as diverse as...

Protein-protein Interactions

Air Traffic Networks

Social Interaction Networks

Shared emergent properties!

Simple Interactions
Self-Organizing Behavior

Contain similar information on a global scale because of...
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Where do we use Complex Networks?
•Modeling network formation and structure (e.g. How do large 
social networks, like Facebook form?)

•Exploring disease/information spread in populations

•Predicting long-term behaviours (e.g. gene-regulatory networks)
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What is the most salient representation of a system?
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Where do we use Complex Networks?
•Modeling network formation and structure (e.g. How do large 
social networks, like Facebook form?)

•Exploring disease/information spread in populations

•Predicting long-term behaviours (e.g. gene-regulatory networks)

What is the most salient representation of a system?

How do interactions in the system self-organize to produce 
emergent behaviors?

How do changes in system structure (local or global) affect 
dynamics?

Statics

Dynamics
Monday, April 4, 2011



What is dynamics?

Descriptions of systems that show complex CHANGING behaviour that
emerges from the collective actions of many interacting components 
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What is dynamics?

Descriptions of systems that show complex CHANGING behaviour that
emerges from the collective actions of many interacting components 

•How can systems change?

•What types of behaviours are possible?

•What predictions about those behaviours can be made?
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A brief history of dynamics...
Isaac Newton

•Invents Calculus (math of 
motion and change)

•Laws of Motion
•Kinematics (how) vs. 
Dynamics (why)
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A brief history of dynamics...
Isaac Newton

•Invents Calculus (math of 
motion and change)

•Laws of Motion
•Kinematics (how) vs. 
Dynamics (why)

Pierre-Simon Laplace

• Newtonian “clockwork universe”
•Predict everything for all time

Henri Poincaré

•3-body problem
•“Sensitive dependence on

initial conditions”

Edward Lorenz 
(and many others)

•“Butterfly Effect”
•Chaos
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But why do some systems have this 
“sensitivity to initial conditions”?!

Linear Systems Nonlinear Systems

• Understand parts individually
• Add behaviours back together to 

understand whole system

• Individual parts might be 
understood

• Behaviour of whole is NOT simple 
sum of parts
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But why do some systems have this 
“sensitivity to initial conditions”?!

Nonlinearity

Linear Systems Nonlinear Systems

• Understand parts individually
• Add behaviours back together to 

understand whole system

• Individual parts might be 
understood

• Behaviour of whole is NOT simple 
sum of parts
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A linear system
Population of breeding frogs.  Each year, all frogs pair up to reproduce and each set of parents 

has exactly 4 offspring.  The parents then die.  
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A linear system
Population of breeding frogs.  Each year, all frogs pair up to reproduce and each set of parents 

has exactly 4 offspring.  The parents then die.  

This time, after Year 0, habitat becomes fragmented...half of population in one 
of two ponds.

Year 0
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A linear system
Population of breeding frogs.  Each year, all frogs pair up to reproduce and each set of parents 

has exactly 4 offspring.  The parents then die.  

This time, after Year 0, habitat becomes fragmented...half of population in one 
of two ponds.

Pond A

Year 1

Pond B

Year 2

Pond B
Pond A

The “sum of frogs”
remains the same

because the reproductions
can be “broken” apart

and added back together. 

Year 0
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A nonlinear system:  The Logistic Map

xt+1 = Rxt(1-xt)
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A nonlinear system:  The Logistic Map

xt+1 = Rxt(1-xt)

Size of next 
generation’s population

Size of current 
generation’s population

Combo of birth/death rate

What happens if we change the value of R (and x0)?
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The Logistic Map:  Experiment 1

xt+1 = Rxt(1-xt)

Start with R=2 and x0=.5
-Make a plot of x(t) vs. t 

Repeat for R=2 and x0=.2
-Make a plot of x(t) vs. t 

Repeat for R=2 and x0=.99
-Make a plot of x(t) vs. t 

What do you notice?
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-Make a plot of x(t) vs. t 

Repeat for R=2 and x0=.2
-Make a plot of x(t) vs. t 

Repeat for R=2 and x0=.99
-Make a plot of x(t) vs. t 

What do you notice?

0 5

R = 2.0
1

0.8
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0.4

0.2

x(
t)

0
10 15 20
t

figure 2.6. Behavior of the logistic map for R = 2 and x0 = 0.2.

The same eventual result (xt = 0.5 forever) occurs but here it takes five
iterations to get there.

It helps to see these results visually. A plot of the value of xt at each time
t for 20 time steps is shown in figure 2.6. I’ve connected the points by lines
to better show how as time increases, x quickly converges to 0.5.

What happens if x0 is large, say, 0.99? Figure 2.7 shows a plot of the
results.

Again the same ultimate result occurs, but with a longer and more dramatic
path to get there.

You may have guessed it already: if R = 2 then xt eventually always gets
to 0.5 and stays there. The value 0.5 is called a fixed point: how long it takes
to get there depends on where you start, but once you are there, you are fixed.

If you like, you can do a similar set of calculations for R = 2.5, and you
will find that the system also always goes to a fixed point, but this time the
fixed point is 0.6.

For even more fun, let R = 3.1. The behavior of the logistic map now gets
more complicated. Let x0 = 0.2. The plot is shown in figure 2.8.

In this case x never settles down to a fixed point; instead it eventually settles
into an oscillation between two values, which happen to be 0.5580141 and
0.7645665. If the former is plugged into the formula the latter is produced,
and vice versa, so this oscillation will continue forever. This oscillation will be
reached eventually no matter what value is given for x0. This kind of regular

dynamics, chaos, and prediction 29

x(t)=.5 is called a fixed point
Time to get there depends on x0

Value is determined by R
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The Logistic Map:  Experiment 2

xt+1 = Rxt(1-xt)

Start with R=3.1 and x0=.5
-Make a plot of x(t) vs. t 

Repeat for R=3.1 and x0=.2
-Make a plot of x(t) vs. t 

What do you notice?
Is there a fixed point?
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The Logistic Map:  Experiment 2

xt+1 = Rxt(1-xt)

Start with R=3.1 and x0=.5
-Make a plot of x(t) vs. t 

Repeat for R=3.1 and x0=.2
-Make a plot of x(t) vs. t 

What do you notice?
Is there a fixed point?
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figure 2.7. Behavior of the logistic map for R = 2 and x0 = 0.99.
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figure 2.8. Behavior of the logistic map for R = 3.1 and x0 = 0.2.

final behavior (either fixed point or oscillation) is called an “attractor,” since,
loosely speaking, any initial condition will eventually be “attracted to it.”

For values of R up to around 3.4 the logistic map will have similar behavior:
after a certain number of iterations, the system will oscillate between two
different values. (The final pair of values will be different for each value of

30 background and history

This is an attractor (the f.p. was, too)
• In this case, it is a period-2 attractor because it 

oscillates between 2 values
• Time to “settle into” attractor depends on x0 
• Values and period of attractor depend on R
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The Logistic Map:  Experiment 3

xt+1 = Rxt(1-xt)

Start with R=3.49 and x0=.5
-Make a plot of x(t) vs. t 

Repeat for R=3.49 and x0=.2
-Make a plot of x(t) vs. t 

What do you notice?
How many fixed points are there?

What is the period?
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The Logistic Map:  Experiment 3

xt+1 = Rxt(1-xt)

Start with R=3.49 and x0=.5
-Make a plot of x(t) vs. t 

Repeat for R=3.49 and x0=.2
-Make a plot of x(t) vs. t 

What do you notice?
How many fixed points are there?

What is the period?
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figure 2.9. Behavior of the logistic map for R = 3.49 and x0 = 0.2.

R.) Because it oscillates between two values, the system is said to have period
equal to 2.

But at a value between R = 3.4 and R = 3.5 an abrupt change occurs.
Given any value of x0, the system will eventually reach an oscillation among
four distinct values instead of two. For example, if we set R = 3.49, x0 = 0.2,
we see the results in figure 2.9.

Indeed, the values of x fairly quickly reach an oscillation among four
different values (which happen to be approximately 0.872, 0.389, 0.829, and
0.494, if you’re interested). That is, at some R between 3.4 and 3.5, the period
of the final oscillation has abruptly doubled from 2 to 4.

Somewhere between R = 3.54 and R = 3.55 the period abruptly dou-
bles again, jumping to 8. Somewhere between 3.564 and 3.565 the period
jumps to 16. Somewhere between 3.5687 and 3.5688 the period jumps to
32. The period doubles again and again after smaller and smaller increases in
R until, in short order, the period becomes effectively infinite, at an R value
of approximately 3.569946. Before this point, the behavior of the logistic
map was roughly predictable. If you gave me the value for R, I could tell you
the ultimate long-term behavior from any starting point x0: fixed points are
reached when R is less than about 3.1, period-two oscillations are reached
when R is between 3.1 and 3.4, and so on.

When R is approximately 3.569946, the values of x no longer settle into
an oscillation; rather, they become chaotic. Here’s what this means. Let’s
call the series of values x0, x1, x2, and so on the trajectory of x. At values of
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Period-4 attractor
The map has undergone a period doubling
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The path to chaos...
For smaller and smaller changes in R, period doublings keep 

happening until...
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figure 2.10. Two trajectories of the logistic map for
R = 4.0 : x0 = 0.2 and x0 = 0.2000000001.

R that yield chaos, two trajectories starting from very similar values of x0,
rather than converging to the same fixed point or oscillation, will instead
progressively diverge from each other. At R = 3.569946 this divergence
occurs very slowly, but we can see a more dramatic sensitive dependence on
x0 if we set R = 4.0. First I set x0 = 0.2 and iterate the logistic map to obtain
a trajectory. Then I restarted with a new x0, increased slightly by putting a 1
in the tenth decimal place, x0 = 0.2000000001, and iterated the map again
to obtain a second trajectory. In figure 2.10 the first trajectory is the dark
curve with black circles, and the second trajectory is the light line with open
circles.

The two trajectories start off very close to one another (so close that the
first, solid-line trajectory blocks our view of the second, dashed-line trajec-
tory), but after 30 or so iterations they start to diverge significantly, and soon
after there is no correlation between them. This is what is meant by “sensitive
dependence on initial conditions.”

So far we have seen three different classes of final behavior (attractors):
fixed-point, periodic, and chaotic. (Chaotic attractors are also sometimes called
“strange attractors.”) Type of attractor is one way in which dynamical systems
theory characterizes the behavior of a system.

Let’s pause a minute to consider how remarkable the chaotic behavior
really is. The logistic map is an extremely simple equation and is completely
deterministic: every xt maps onto one and only one value of xt+1. And yet the

32 background and history

R=3.569946 (or thereabouts!)
Period becomes infinite-- i.e. CHAOS 
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R that yield chaos, two trajectories starting from very similar values of x0,
rather than converging to the same fixed point or oscillation, will instead
progressively diverge from each other. At R = 3.569946 this divergence
occurs very slowly, but we can see a more dramatic sensitive dependence on
x0 if we set R = 4.0. First I set x0 = 0.2 and iterate the logistic map to obtain
a trajectory. Then I restarted with a new x0, increased slightly by putting a 1
in the tenth decimal place, x0 = 0.2000000001, and iterated the map again
to obtain a second trajectory. In figure 2.10 the first trajectory is the dark
curve with black circles, and the second trajectory is the light line with open
circles.

The two trajectories start off very close to one another (so close that the
first, solid-line trajectory blocks our view of the second, dashed-line trajec-
tory), but after 30 or so iterations they start to diverge significantly, and soon
after there is no correlation between them. This is what is meant by “sensitive
dependence on initial conditions.”

So far we have seen three different classes of final behavior (attractors):
fixed-point, periodic, and chaotic. (Chaotic attractors are also sometimes called
“strange attractors.”) Type of attractor is one way in which dynamical systems
theory characterizes the behavior of a system.

Let’s pause a minute to consider how remarkable the chaotic behavior
really is. The logistic map is an extremely simple equation and is completely
deterministic: every xt maps onto one and only one value of xt+1. And yet the

32 background and history

R=3.569946 (or thereabouts!)
Period becomes infinite-- i.e. CHAOS 

Implications:
• Before infinite period, behaviours of logistic map are roughly predictable; after they are NOT
•For any R in chaotic region, any two values of x0 arbitrarily close will yield trajectories that DIVERGE!
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R that yield chaos, two trajectories starting from very similar values of x0,
rather than converging to the same fixed point or oscillation, will instead
progressively diverge from each other. At R = 3.569946 this divergence
occurs very slowly, but we can see a more dramatic sensitive dependence on
x0 if we set R = 4.0. First I set x0 = 0.2 and iterate the logistic map to obtain
a trajectory. Then I restarted with a new x0, increased slightly by putting a 1
in the tenth decimal place, x0 = 0.2000000001, and iterated the map again
to obtain a second trajectory. In figure 2.10 the first trajectory is the dark
curve with black circles, and the second trajectory is the light line with open
circles.

The two trajectories start off very close to one another (so close that the
first, solid-line trajectory blocks our view of the second, dashed-line trajec-
tory), but after 30 or so iterations they start to diverge significantly, and soon
after there is no correlation between them. This is what is meant by “sensitive
dependence on initial conditions.”

So far we have seen three different classes of final behavior (attractors):
fixed-point, periodic, and chaotic. (Chaotic attractors are also sometimes called
“strange attractors.”) Type of attractor is one way in which dynamical systems
theory characterizes the behavior of a system.

Let’s pause a minute to consider how remarkable the chaotic behavior
really is. The logistic map is an extremely simple equation and is completely
deterministic: every xt maps onto one and only one value of xt+1. And yet the

32 background and history

R=3.569946 (or thereabouts!)
Period becomes infinite-- i.e. CHAOS 

Implications:
• Before infinite period, behaviours of logistic map are roughly predictable; after they are NOT
•For any R in chaotic region, any two values of x0 arbitrarily close will yield trajectories that DIVERGE!

Apparent randomness can arise from VERY simple deterministic 
systems!
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Should we abandon all hope?!

Surprisingly, there is substantial mathematical order in chaos!

Universals in Chaos

The term chaos, as used to describe dynamical systems with sensitive depen-
dence on initial conditions, was first coined by physicists T. Y. Li and James
Yorke. The term seems apt: the colloquial sense of the word “chaos” implies
randomness and unpredictability, qualities we have seen in the chaotic ver-
sion of logistic map. However, unlike colloquial chaos, there turns out to
be substantial order in mathematical chaos in the form of so-called universal
features that are common to a wide range of chaotic systems.

the first universal feature: the period-doubling
route to chaos

In the mathematical explorations we performed above, we saw that as R was
increased from 2.0 to 4.0, iterating the logistic map for a given value of R
first yielded a fixed point, then a period-two oscillation, then period four,
then eight, and so on, until chaos was reached. In dynamical systems theory,
each of these abrupt period doublings is called a bifurcation. This succession of
bifurcations culminating in chaos has been called the “period doubling route
to chaos.”

These bifurcations are often summarized in a so-called bifurcation diagram
that plots the attractor the system ends up in as a function of the value of a
“control parameter” such as R. Figure 2.11 gives such a bifurcation diagram
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R

figure 2.11. Bifurcation diagram for the logistic map, with
attractor plotted as a function of R.

34 background and history
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Fractals and Dimension
What does dimension actually mean?

Start with a 
line... Bisect it... Bisect it

again...

Each level is made up 
of 2 half-size copies 
of the previous level.

Now start with
a square...

Bisect each 
side...

Bisect each 
side again...

Each level is made up 
of 4 1/4-size copies 

of the previous level.

If you do the same thing with a cube, you will find that each level is made up of 8 1/8-size 
copies of the previous level.

So what’s the pattern?
Each level (scaling) is made up of smaller copies of the previous level, where the 

number of copies is:

N=2dimension

Or more generally, N=xdimension where x is the number of divisions of a length-scale.
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A Strange Dimension...
We weren’t surprised by the dimension of regular geometric 
objects (lines, squares, cubes, etc.).  What about the 

dimension of something a little less “regular”?  

The Koch Snowflake
The Koch curve can be constructed by starting with an equilateral triangle, then recursively altering each line segment as follows:

1. divide the line segment into three segments of equal length.
2. draw an equilateral triangle that has the middle segment from step 1 as its base and points outward.
3. remove the line segment that is the base of the triangle from step 2

Monday, April 4, 2011
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Calculating the Dimension of the Koch Curve

1)  Draw a few iterations (3 or 4) of the Koch curve

2)How many times smaller are the line segments of the 
current level than were the line segments of the 

previous level? (How many divisions were made for each line?)

3)How many “copies” of the previous level does the current 
level contain?

4)Using the relation N=xdimension, calculate the approximate
dimension of the Koch curve.  What do you notice?!
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Fractal Dimension and Complexity
The “strange” results you found for the Koch curve are an 

example of fractal dimension.

Quantifies how the total size of an object will change as magnification changes
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Fractal Dimension and Complexity
The “strange” results you found for the Koch curve are an 

example of fractal dimension.

Quantifies how the total size of an object will change as magnification changes

‘Fractal dimension quantifies the 
“cascade of detail” in a complex system-- how 

interesting that detail is as a function of how much magnification
you have to do at each level to see it.’
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Summing up...

•Nonlinear dynamics are a manifestation of self-
organization and lead to emergent properties/behaviors 
in complex systems

•Study/classify systems based on types of universal 
behaviours/scalings they show

•One very useful measure of complexity is fractal 
dimension, which shows (roughly) how detail scales with 
magnification
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