How are the characteristics of complex systems generated from, illustrated or measured by:

How are the characteristics of complex systems generated from, illustrated or measured by:

• Information and Computation

How are the characteristics of complex systems generated from, illustrated or measured by:

• Information and Computation

•Networks and Network Measures

How are the characteristics of complex systems generated from, illustrated or measured by:

• Information and Computation

•Networks and Network Measures

•Nonlinearity and Chaos

How are the characteristics of complex systems generated from, illustrated or measured by:

• Information and Computation

•Nonlinearity and Chaos

• Emergent Behaviour and Fractals

What is completion and Networks

Part 1: Information and Networks

Monday, April 4, 2011

Complex Systems are Everywhere...

• Simple Interactions

• Simple Interactions

• Simple Interactions

www.shutterstock.com - 58413937

•Large-scale, Emergent Properties

Monday, April 4, 2011

How are the characteristics of complex systems generated from, illustrated or measured by:

How are the characteristics of complex systems generated from, illustrated or measured by:

• Information and Computation

How are the characteristics of complex systems generated from, illustrated or measured by:

• Information and Computation

•Networks and Network Measures

How are the characteristics of complex systems generated from, illustrated or measured by:

• Information and Computation

•Networks and Network Measures

•Nonlinearity and Chaos

How are the characteristics of complex systems generated from, illustrated or measured by:

• Information and Computation

•Nonlinearity and Chaos

• Emergent Behaviour and Fractals

The Fundamental Task of Complex Systems

Order from Disorder

The Fundamental Task of Complex Systems

Order from Disorder

The Fundamental Task of Complex Systems

Order from Disorder

But How Do We Measure Order?

Order and Disorder: The Second Law of Thermodynamics

Entropy (disorder) tends to increase.

Order and Disorder: The Second Law of Thermodynamics

Entropy (disorder) tends to increase.

Monday, April 4, 2011

Ludwig Boltzmann

Nechanics (Physics)

he entropy of a system?

Nechanics (Physics)

ne entropy of a system?

(microscopic) configuration of a system

E.g. "All Heads"

Ludwig Boltzmann

Nechanics (Physics)

ne entropy of a system?

(microscopic) configuration of a system

E.g. "All Heads"

of microstates

E.g. "All the same"

Ludwig Boltzmann

Nechanics (Physics)

ne entropy of a system?

(microscopic) configuration of a system

E.g. "All Heads"

E.g. "All the same"

Ludwig Boltzmann

System is most likely to be found in macrostate with most microstates

Ludwig Boltzmann

• System is most likely to be found in macrostate with most microstates

Is this an ordered state or a disordered state?

Ludwig Boltzmann

• System is most likely to be found in macrostate with most microstates

Is this an ordered state or a disordered state?

Boltzmann says the most likely macrostate is the macrostate with the greatest entropy

Summing up...

Summing up...

Entropy tends to **increase**

A Problem: Maxwell's Demon

Question: How can entropy decrease if (apparently) no work is done?!

A Problem: Maxwell's Demon

Question: How can entropy decrease if (apparently) no work is done?!

Answer: The act of obtaining *information* through measurement constitutes the missing work.

A Problem: Maxwell's Demon

Question: How can entropy decrease if (apparently) no work is done?!

Answer: The act of obtaining *information* through measurement constitutes the missing work.

Information \longleftrightarrow Order/Disorder \longleftrightarrow Entropy

Monday, April 4, 2011

Problem: How can you transmit signals with less loss of information over telegraph and telephone wires?

Claude Shannon

Source

Problem: How can you transmit signals with less loss of information over telegraph and telephone wires?

Claude Shannon

Source \longrightarrow Macrostate ('made up of' lots of messages) MRESSELLE **Receiver**

Problem: How can you transmit signals with less loss of information over telegraph and telephone wires?

Claude Shannon

Source → Macrostate ('made up of' lots of messages)

Receiver

Problem: How can you transmit signals with less loss of information over telegraph and telephone wires?

Claude Shannon

Source \longrightarrow Macrostate ('made up of' lots of messages) Microstate (a particular MESSALE configuration of 'words') Receiver

Information content is defined in terms of the entropy of the message source.
The Next Step: Information Theory

Problem: How can you transmit signals with less loss of information over telegraph and telephone wires?

Claude Shannon

Source \longrightarrow Macrostate ('made up of' lots of messages) Microstate (a particular MESSALLE configuration of 'words') Receiver

Information content is defined in terms of the entropy of the message source.

Shannon Entropy

Where do we use Information Theory?

- •Cryptography (codes and cyphers)
- •Computer Science (data compression)
 - Bioinformatics (gene sequence alignment)

Where do we use Information Theory?

- •Cryptography (codes and cyphers)
- Computer Science (data compression)
- •Bioinformatics (gene sequence alignment)

What is the *useful* information in a system?

Where do we use Information Theory?

- •Cryptography (codes and cyphers)
- Computer Science (data compression)
- •Bioinformatics (gene sequence alignment)

What is the *useful* information in a system?

How non-random is the system?

Another Way to Search for Order and Information in Complex Systems: Networks

Another Way to Search for Order and Information in Complex Systems: Networks

• Edges can be directed

Another Way to Search for Order and Information in Complex Systems: Networks

• Edges can be directed

 Nodes/Edges can be weighted to convey information about, e.g. strength of interactions

Nodes: Genes (proteins) Edges: Activation/Inhibition

Gene Regulatory Network

Nodes: Genes (proteins) Edges: Activation/Inhibition

Gene Regulatory Network

Nodes: Organisms Edges: Trophic Relationships

Edges: Activation/Inhibition

Nodes: Genes (proteins)

Gene Regulatory Network

Nodes: Organisms Edges: Trophic Relationships

Edges: Activation/Inhibition

Nodes: Genes (proteins)

Gene Regulatory Network

Nodes: Organisms Edges: Trophic Relationships

The "ridiculogram": How do you find order or information in this mess?!

Information?

The World Wide Web

Earlier: Order was a measure of information content-- of how much a system differed from its random counterpart.

An Example...

What are some things you notice about this network?

Degree: How many edges are adjacent to a node

Degree: How many edges are adjacent to a node 🭕

Degree: How many edges are adjacent to a node

Degree: How many edges are adjacent to a node

Clustering Coefficient: 3 times number of closed triangles divided by number of possible triads (two edges with a shared node)

Degree: How many edges are adjacent to a node

Clustering Coefficient: 3 times number of closed triangles divided by number of possible triads (two edges with a shared node)

C=1/2

Degree: How many edges are adjacent to a node

Clustering Coefficient: 3 times number of closed triangles divided by number of possible triads (two edges with a shared node)

C=1/2

Distance: (Fewest) Edges between two nodes

Degree: How many edges are adjacent to a node

Clustering Coefficient: 3 times number of closed triangles divided by number of possible triads (two edges with a shared node)

C=1/2

Distance: (Fewest) Edges between two nodes

d=3

Degree: How many edges are adjacent to a node

Clustering Coefficient: 3 times number of closed triangles divided by number of possible triads (two edges with a shared node)

C = 1/2

Distance: (Fewest) Edges between two nodes

MANY other measures...

Degree: How many edges are adjacent to a node

Clustering Coefficient: 3 times number of closed triangles divided by number of possible triads (two edges with a shared node)

C = 1/2

Distance: (Fewest) Edges between two nodes

MANY other measures...

How would these measures compare if nodes were attached at random?

Another look at the "EXCEL" network...

Monday, April 4, 2011

Information from complex networks: Large-scale patterns

The Degree Distribution

Real-world Networks vs. Random Networks...

Random Graphs

Real-World Networks

Real-world Networks vs. Random Networks...

Random Graphs

• Small average path length: $d \sim ln(N)$

• Small average path length: $d \sim ln(N)$

•Large clustering coefficient

• Small average path length: $d \sim ln(N)$

•Large clustering coefficient

•Resilience to random attack

Contain similar information on a global scale because of...

Contain similar information on a global scale because of...

Simple Interactions

Contain similar information on a global scale because of...

Simple Interactions Self-Organizing Behavior

Contain similar information on a global scale because of...

Simple Interactions Self-Organizing Behavior

Shared emergent properties!
•Modeling network formation and structure (e.g. How do large social networks, like Facebook form?)

•Exploring disease/information spread in populations

• Predicting network dynamics (e.g. gene-regulatory networks)

•Modeling network formation and structure (e.g. How do large social networks, like Facebook form?)

• Exploring disease/information spread in populations

• Predicting network dynamics (e.g. gene-regulatory networks)

What is the most salient representation of a system?

 Modeling network formation and structure (e.g. How do large social networks, like Facebook form?)

•Exploring disease/information spread in populations

• Predicting network dynamics (e.g. gene-regulatory networks)

What is the *most salient* representation of a system?

How do interactions in the system self-organize to produce emergent behaviors?

 Modeling network formation and structure (e.g. How do large social networks, like Facebook form?)

• Exploring disease/information spread in populations

• Predicting network dynamics (e.g. gene-regulatory networks)

What is the most salient representation of a system?

How do interactions in the system self-organize to produce emergent behaviors?

How do changes in system structure (local or global) affect dynamics?