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ABSTRACT

High sensitivity receiver technology is necessary to ensure sufficient observation
availability of satellite navigation in degraded signal environments. However, high
sensitivity processing in the deteriorated line-of-sight conditions is susceptible to
bringing about severely erroneous navigation observations. Therefore, when using
a satellite navigation system, such as the Globa Positioning System (GPS) or the
future European Galileo in poor signal conditions, monitoring the reliability and the
quality of the obtained user navigation solution is of great importance.

Thisthesis assesses reliability testing and quality control procedures at the user-level
in Global Navigation Satellite Systems (GNSS) with the aim of enhancing accuracy
and reliability in poor signal conditions with failure detection and exclusion tech-
niques. Reliability testing, namely receiver autonomousintegrity monitoring (RAIM)
and fault detection and exclusion (FDE), traditionally rely on statistical tests in or-
der to isolate one erroneous measurement from position estimation. In this thesis,
a dightly wider point of view is taken to the quality monitoring problem of both
user position and velocity, and observation weighting, navigation geometry and ac-
curacy estimation aspects, and statistical reliability theory with applications to per-
sonal satellite navigation are assessed. The principal focus of this thesis includes
developing and analyzing different FDE schemes based on recursive statistical test-
ing intended for challenging signal environments. The operating environment for the
monitoring functionsis therefore different from traditional safety-critical navigation,
where the usual problem isthe failure of only one satellite, and where the error is not
necessarily due to obstructions in the propagation path asis the case in urban areas.

The results of applying the developed FDE and quality control methods to high-
sensitivity GPS data from indoor and urban tests and simulated GPS/Galileo data
demonstrate that reliability and quality monitoring yield a significant improvement
in accuracy and are essential in enhancing the user navigation solution reliability.
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1. INTRODUCTION

This chapter gives an introduction to the thesis. First, motivation to the subject is
given and the research objectives are stated. Secondly, contributions of the thesis are
discussed and, finally, the thesis outlineis given.

1.1 Motivation - Satellite-Based Personal Navigation and Reliability

Global Navigation Satellite Systems (GNSS), i.e., the United States (US) Global Po-
sitioning System (GPS), the Russian GLONASS system, and the future European
satellite navigation system Galileo, are designed to provide position, velocity, and
timing capabilities to users all over the world. Currently, the only fully operational
system is the GPS operated by the US Department of Defense. Traditionally, satel-
lite navigation has been utilized in applications in environments with relatively good
signal line-of-sight reception conditions. However, there is a growing need to use
satellite navigation for a variety of navigation problems. Navigation capability is
also required in degraded signal environments such as in urban canyons and indoors.
Thisis due to the emergency call positioning demands, i.e., the E911 mandate set by
the Federal Communications Commission (FCC) in the US and the E112 directive
set by the European Commission (EC) in Europe, and, e.g., location-based services
(LBS) becoming increasingly popular in personal and vehicular telematics applica-
tions. The extended utilization of navigation promotes the need for specia high sen-
Sitivity receiver processing techniques and certain assistance support through, e.g.,
wireless networks, to enable the acquisition and tracking of satellite signals in the
attenuated and obstructed signal-environments of urban and indoor areas. Currently,
high sensitivity GPS (HSGPS) receiver technology is used to acquire and track weak
GPSsignalsin degraded signal environmentsin order to provide enhanced navigation
availability for applications such as personal cellular telephone location. However,
higher measurement noise due to lower signal strength and high signal reflection oc-
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currence, i.e., multipath, prevents high sensitivity GPS from achieving the same level
of performance regarding reliability and accuracy under obstructed signal environ-
ments than in outdoors. This promotes the need for reliability analysis and quality
monitoring to assess, detect, and isolate failure situations, and exclude the erroneous
measurements in the obstructed line-of-sight conditions with receiver autonomous
integrity monitoring (RAIM).

In literature, publications directly about failure detection and exclusion for personal
applicationsin degraded signal environments do not readily exist. Most of the RAIM
research has been targeted to high-precision applications within reasonably good sig-
nal line-of-sight conditionsrequiring high levels of integrity, e.g., (Pervan et al., 1998;
Hatch et a., 2003; Walter and Enge, 1995; Powe and Owen, 1997; Special ION Publi-
cation on RAIM, 1998). Thefocuswithin RAIM research has mainly been on aircraft
applications but there has been some research done within marine navigation, e.g.,
(Ryan, 2002; MacGougan and Liu, 2002), as well as within integrated GPS/Galileo
and GPS/GLONASS navigation, e.g., (Zink et al., 2000; Kinkulkin, 1997).

Since location accuracy and reliability are generally very poor under the degraded
signal conditions, methods to improve these characteristics are essential. The mul-
tiple simultaneously occurring faults are more likely in urban areas than in, e.g., an
airplane landing situation, where till, in general, the biggest concern is the failure
of a satellite instead of a blunder in the measurement due to problems in the prop-
agation path. The error detection function in degraded line-of-sight conditions is,
moreover, much different from what it was originally designed to bein, e.g., the avi-
ation community; detecting and isolating a signal from one failed satellite. In urban
areas, thereis aneed to analyze, detect, and exclude multiple faults in the navigation
system caused by, e.g., multipath propagation, cross-correlation effects, or echo-only
signal reception, and thus ensure a desired level of performance. This motivates the
need for autonomous reliability and quality checking procedures at user level, i.e.,
RAIM procedures aiming at fault detection and exclusion (FDE).

By effective fault detection and exclusion, navigation accuracy and reliability can
be enhanced even in difficult signal environments in order to ensure reliable user
position and velocity solutions. An important part of the successful detection and
isolation function is proper variance modeling of the navigation measurements. In
situations with sufficient availability, the accuracy of the user solution can also be
predicted from RAIM detection parameters, the test statistic, which provides infor-
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mation to the user about the current accuracy. Having an estimate of the reliability
of the solution has great advantages; even knowing the uncertainty of a user position
is an essential information, which allows the use of certain positioning applications
relying on the latest reliable user position estimate and the certainty information. As
additional information, the user can also be informed about the possible effect of an
undetected failure in the navigation solution and the external reliability boundary that
the system can marginally be protected against when fault detection and exclusion is
applied. However, in personal applications, the essential failure detection and iso-
lation capability is, overall, occasionaly quite limited, e.g., due to the absence of
sufficient redundancy to perform the statistical testing of RAIM and FDE, especially
in case of standalone GPS. Height constraining, map-aiding, and additional measure-
ment sources, such as self-contained sensors or cellular network signals increase the
availability of a navigation solution aswell as the reliability assessment.

Traditionally, an interest to the position solution integrity and reliability has been
only within safety-critical navigation applications such as in aviation, especially in
approach and landing situations. In addition, only position integrity and reliabil-
ity has been of concern. Strict requirements for false alarm rates, missed detection
probabilities, time-to-alarms, and overall protection limits of the system set by, e.g.,
the Federal Aviation Administration (FAA) in the US, dictate the integrity monito-
ring schemesintroduced in the literature (Parkinson and Spilker, 1996; Kaplan (Ed.),
1996; Special ION Publication on RAIM, 1998). However, for personal positioning
applications, there are no integrity requirements set, except for, e.g., the few accuracy
requirements of the E911 mandate.

The requirements set for cellular handset navigation in emergency call situations,
i.e., the E911 (Enhanced 911) mandate set in the US (E911, 2004) and the E112 (En-
hanced 112) directive set in Europe (E112, 2002), seek to improve the effectiveness
and reliability of mobile phone 911/112 service by providing emergency call dis-
patchers with additional information on calls. Phase Il of the E911, as an example,
requires wireless carriers to provide location information within 50 to 100 metersin
most cases basically over afour-year roll-out schedule, which begun in the beginning
of October 2001 and is to be completed by December 31, 2005. The EC E112 di-
rective providesthe legal framework to grant access to location information by emer-
gency service operators. Initial objectivesinclude a positioning accuracy of amobile
phone caller within 10 to 100 m depending on the environment with the position to be



4 1. Introduction

available within 30 seconds of call initiation (CGALIES, 2002). However, despite the
fact that no integrity requirements are set for most personal positioning applications,
e.g., in route finding or recreational positioning, autonomous failure detection and
isolation on the user level is essential when enhancing the overall performance. In
addition, in less safety-critical personal positioning applications than mobile phone
emergency call positioning, the availability is more likely a more important perfor-
mance parameter than accuracy and reliability in obstructed signal conditions. Even
an erroneous solution can be better than no solution at all, especidly if thereisin-
formation available on the uncertainty of the solution. The dilemma of availability
versus accuracy is, however, highly application dependent.

1.2 Research Objectives

The erroneous navigation situations frequently encountered in personal navigation
applications in degraded signal environments need to be detected and corrected with
appropriate reliability monitoring techniques. Though adding complexity to the com-
putation of the user navigation solution estimation, reliability and quality monitoring
enhances navigation accuracy, or when not available or successful in identifying the
outliers, at least provides accuracy and reliability predictions. The chalengesin de-
signing reliability testing schemes in the absence of, e.g., time-to-alarm and protec-
tion level requirements existing in aviation, lie in making sure that the assumptions
made for the statistical tests about the error distributions are sufficiently valid. This
includes taking into account the possibly occurring multiple blunders that are rare
in good line-of-sight situations and their larger magnitudes. It is also a challenge
to choose the proper false alarm rates needed to set the statistical test threshold. In
addition, minimizing the computational burden of the FDE schemesisimportant.

The main objectives of this research underlie essentially in the error assessment and
failure detection and exclusion functions for personal navigation applications in de-
graded signal environments. Overall, the user-level reliability testing procedures have
to first try to certify the detection capability, face multiple erroneous signals, and
then isolate the erroneous measurements sequentially. Sometimes, reliability moni-
toring is simply unavailable due to insufficient redundancy. However, overal, with
attenuated signals, the detection and isolation function is extremely essential to en-
sure reliable user position and velocity estimates, and not just settling with increased
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availability. It is necessary to demand reliable in addition to available, also in weak
signal conditions.

1.3 Main Contributions

In this thesis, navigation observation errors are discussed with given real-life experi-
ments in good, lightly, and heavily degraded signal conditions. The errors presented
provide information about the performance levels obtainable in poor signal condi-
tions. Variance models are introduced and they are based on the carrier-to-noise
density ratio of the satellite signal. The variance models tie the weak and, therefore,
erroneous observations better to the system model and improve the navigation resullts.

The core of the thesisis formed of the three fault detection and exclusion schemes
developed for persona satellite navigation applications. observation Subset Test-
ing scheme, Forward-Backward FDE, and Danish estimation method. The obser-
vation Subset Testing scheme consists of analysis of all the possible navigation mea-
surement subsets in order to exclude the erroneous observations. The Forward-
Backward FDE scheme involves recursive global and local reliability testing in order
to detect and isolate errors. The Danish estimation method iteratively modifies the
weights of the navigation observations by assesseing measurement residuals in or-
der to de-weight the effect of erroneous observations. The introduced FDE methods
are novel approaches for navigation applications in degraded signal environments,
they enhance the accuracy and reliability, and have no mgjor differences but con-
tain each some desirable features. The Subset Testing provides the highest avail-
ability of a reliable flagged solution but it is computationally the most expensive.
The Forward-Backward FDE provides a good balance between the increased accu-
racy and the availability obtained, yet being computationally sightly expensive. The
Danish Method is computationally light and provides the best obtained accuracy but
it provides clearly the lowest availability of a reliable solution. The results suggest
that proper observation weighting and all the FDE approaches completed by quality
control improve the navigation results significantly, with the amount of improvement
depending on the environment and the quality and quantity of the navigation obser-
vations.

The main contributions of this thesis can be summarized as follows
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e Presenting and analyzing range and range rate error level s obtained with ahigh
sensitivity receiver in indoor and urban experiments.

¢ Introducing navigation range and range rate observation variance models for
degraded signal conditions to enhance solution estimation and reliability as-
sessment.

e Bringing the statistical reliability theory and traditional navigation RAIM ap-
proaches closer together, and discussing position as well as velocity reliability
monitoring.

e Presenting a navigation observation ' Subset Testing’ scheme based on assess-
ing least squares measurement residuals with chi-square statistics.

e Presenting a novel recursive 'Forward-Backward FDE' procedure including
statistical testing based on |east squares measurement residuals as well as tak-
ing into account the influentiality of the observations being assessed.

e Introducing a novel iteratively reweighted estimation scheme in navigation,
the 'Danish Method’, as an estimation technique including inherently the ex-
clusion function of erroneous measurements by down-weighting.

e Presenting anavigation solution quality control schemeincluding assessing the
consistency of the obtained solution, redundancy numbers of the observations
as well as solution geometry.

e Comparing the external reliability, i.e., the theoretical boundary of the error
that the system can marginally be protected against, and accuracy estimates of
the obtained solutions with the true error levels.

e Presenting extensive results of the developed FDE methods with real-life ex-
periments and a GPS/Galileo simulation broadening the general impressions
what levels of accuracy and reliability can be obtained in poor signal condi-
tions.

Applying the devel oped methods enhance significantly navigation accuracy and avail-
ability. Inthisthesis, only snapshot reliability monitoring schemes are considered but
extensions to filtering approaches including dynamic information are possible.
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1.4 Author’s Contribution

The Subset Testing procedure was introduced by the author to be used as a fault
detection and exclusion scheme in navigation applications in degraded signal en-
vironments. The Subset Testing and its performance have been reported earlier in
[P5]. The Forward-Backward FDE method including the feature of checking the in-
fluentiality of the observation under assessment prior to the exclusion decision was
constructed by the author. The author also reported similar, yet not identical FDE
schemes in [P1] and [P3]. The novel Danish estimation method was also introduced
by the author to be used with the specific test parameter presented in this thesis in
the de-weighting of deteriorated navigation observables. However, the idea of iter-
ative re-weighting was originally proposed in (Jargensen et al., 1985), and later on
extended to high-precision navigation in (Wieser, 2001). The idea of the Danish es-
timation is also discussed in [P1] and [P3]. The author presented a simple quality
control procedure for degraded signal areas taking into account the consistency, re-
dundancy, and the geometry aspects of the obtained navigation solution, which are
known to affect the navigation performance. Quality control aspects of failure iso-
lation and geometry assessment are discussed in [P7]. The author introduced expo-
nential variance models for lightly and heavily degraded signal conditions and an-
alyzed their applicability with real-life experiments. While showing the significant
improvement gained with the different FDE and reliability enhancement procedures,
the author also showed real-life high sensitivity GPS performance capability. HSGPS
performance analysis has been presented in [P2], [P4], and [Pg].

1.5 ThesisOutline

In Chapter 2, the basic navigation principles, i.e., signals, measurements, and re-
ceiver principles, are presented. In addition, the basics of high sensitivity receiver
principles are discussed. Plans and current status of the European Galileo project are
summarized together with abrief overview of the Russian GLONASS system and the
land and satellite based augmentation systems. Navigation observables and signal er-
ror sources are discussed in Chapter 3, where in addition to a general error budget
provided for satellite navigation systems, real-life measurement errors obtained from
different navigation environments are presented to give an impression on the occa-
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sional severity of the faultsin actual applications.

The estimation of user position, velocity, and time solutions is discussed in Chapter
4 together with aspects on the geometry and accuracy estimation. In Chapter 5, relia-
bility monitoring is discussed with introduction to different performance parameters,
such as accuracy, availability, continuity, integrity, and reliability. In addition, the
theory of reliability including internal and external reliability parameters and general
hypothesis and statistical reliability testing, i.e., outlier detection based on residual
analysis, is presented. Influentiality, also called separability, of observations subject
to monitoring is briefly addressed.

Chapter 6 provides details about fault detection and exclusion: the different ap-
proaches of traditional GPS RAIM and their similarity to statistical reliability testing
are discussed. The devel oped fault detection and exclusion methods are presented in-
cluding Subset Testing, Forward-Backward FDE, and the Danish estimation method.
The quality control procedure, which takes into account solution consistency and re-
dundancy, observation redundancy numbers, and sol ution geometry, isalso presented.
New C/No dependent variance models for the navigation observables are introduced
for lightly and heavily degraded signal environments.

In Chapter 7, result of the quality control and reliability monitoring procedures on
static and kinematic real-life high sensitivity GPS data and simulated GPS/Galileo
dataare assessed. The clear advantages of quality control and FDE are shown. Lastly,
in Chapter 8, conclusions are given with final notes and remarks for future work.



2. GLOBAL NAVIGATION SATELLITE SYSTEMS

This chapter discusses global navigation satellite systems; basic operation and sig-
nal specifics. The discussion of this chapter on GNSS is based on the descriptions
and discussions in, e.g., (Kaplan (Ed.), 1996; Leick, 2004; Strang and Borre, 1997;
Misraand Enge, 2001; Parkinson and Spilker, 1996; Hof mann-Wellenhof et a ., 2001,
Poutanen, 1999; Lachapelle, 2003; ICD, 2000; SPS, 2001; FRP, 2001), and other re-
ferencesmentioned. Thereview of the GNSS principlesin this section is not intended
to be comprehensive, but more fundamental background, which is essential to bein-
troduced before the discussion about navigation fault detection and exclusion. More
specific and extensive explanations of the navigation system issues discussed can be
found in the references. The chapter includes discussion about the GPS system, high
sensitivity GPS, the future Galileo system, the Russian Glonass system, ground and
space based augmentation systems, and, finaly, briefly introducing a few GNSS as-
sistance possibilities.

2.1 Overview of GPS

This section contains a brief coverage of the Global Positioning System.

211 System

The NAVSTAR (Navigation System by Timing And Ranging) GPS (Global Posi-
tioning System) is a line-of-sight, all weather, world-wide continuously available
satellite-based radio-frequency (RF) positioning system providing 3-dimensional po-
sition, velocity, and time capability to an end-user with an appropriate receiver. GPS
isimplemented and operated by the United States Department of Defense (DoD) and
it consists of space, control, and user segments. The space segment includes the
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satellites, the control segment takes care of managing the satellite operations, and the
user segment covers the civil and military GPS user equipment. The full operational
constellation of GPS was declared in April 1995 with the baseline GPS system being
specified for 24 satellites. However, the system currently employs more satellites than
specified in the nominal constellation; by the writing of this thesis the GPS constel-
lation consists of 29 Block I1/11A/IIR satellites (US Naval Observatory, 2004). The
system utilizes the concept of one-way time of arrival (TOA) using satellite transmis-
sions that are referenced to highly stable atomic standards onboard the satellites and
synchronized with an internal GPS system time.

The GPS constellation includes 6 Earth-centered orbital planes, 60 degrees apart,
nominally inclined 55 degrees to the equator. Each orbital plane contains thus 4-5
satellites. The atitude of a GPS satellite is 20183 km from the mean surface of the
Earth, and the GPS satellites orbit the Earth in one-half of a siderea day, i.e., in 11
hour 58 minute orbital periods. The navigation parameters of the GPS system are
based in the ECEF (Earth Centered Earth Fixed) WGS-84 (World Geodetic System
84 datum) world-wide common grid reference system. The time base for the GPS
system is maintained by the control segment and follows within specified limits the
UTC(USNO), Coordinated Universal Time reference kept at the US Naval Observa
tory.

The system currently includes two navigation carrier signal frequencies for GPS
satellite ranging code and navigation data transmissions: L1 (1575.42 MHz) and
L2 (1227.60 MHz). At higher frequencies ranging error due to ionospheric refrac-
tion would decrease but space |oss and atmospheric attenuation increase. The carrier
frequencies are modulated by spread spectrum (SS) codes with a unique pseudo-
random noise (PRN) sequence associated with each space vehicle (SV) and by the
navigation data message. The satellite transmission are CDMA (Code Division Mul-
tiple Access) spread spectrum frequency and time synchronized signals and include
two modul ation codes for pseudoranging: coarse/acquisition, C/A, and precision (en-
crypted), P(Y), codes. The civilian users of the standard positioning service (SPS)
can only observe the public C/A-code on L1, and the users of the precise position-
ing service (PPS) available to the military and other authorized instances have access
to also the encrypted P(Y)-codes on the L1 and L2 carriers. The prevention of the
precision code to the civil segment has been accomplished with a technique called
anti-spoofing (AS) resulting in the encrypted P(Y)-code. Selective Availability (SA)
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was another technique used to limit the access of the GPS for SPS users until it was
deactivated on 2 May 2000 with a US Presidential Decision. The SA purposefully
degraded the signals avail able through satellite clock dithering, leading to erroneous
timing marks on the ranging signals and imprecise values of the ephemeris param-
eters being broadcast to the user. These errors caused by the SA were larger than
the errors inherent to the radionavigation system. Nowadays, with the SA turned
off, the advantage of PPS over SPS is the increased robustness; higher resistance to
jamming, the dual-frequency measurement available allowing compensation for the
signal propagational effects of the ionosphere, faster codes leading to higher preci-
sion of range measurements, and lower error effects of multipath propagation.

The chipping rate of the civilian C/A-code is 1.023 MHz, whereas the chipping rate
of the military P(Y)-code is ten times more, 10.23 MHz. The repeat time is 1 ms
for the C/A-code and one week for the P(Y)-code. In order for the user receiver
to track one SV in common view with several other SVs by the CDMA technique,
the receiver must replicate the unique PRN sequence for the desired SV along with
the replica carrier signal including also the Doppler effects caused by the relative
motion of the satellite and the user, and finally make the necessary comparisons to
solve the signal TOA. The navigation data provides the means for the user receiver
to determine the location of the satellite at the time of the signal transmission. The
navigation message, which contains information on the satellites, GPS time, clock
behavior, and system status, is modulated on both theL1 and L2 carriersat achipping
rate of 50 bit per second (bps) with a bit duration of 20 ms.

To obtain the 3-dimensional user position utilizing the GPS system, the ranging mea-
surements are needed to at least four satellites: the unknowns to be solved for are
basically user latitude, longitude, height, all referenced to the WGS-84 frame, and
the receiver clock offset from GPS system time. In addition, also the user velocity
can be solved for in three dimensions from the range rate measurements.

2.1.2 Satellite Signal Structure

While traveling through the ionosphere, a linearly polarized radio frequency signal
undergoes changesin its polarization. Thus, to avoid the changes in the polarization,
known as Faraday rotation, the satellite signals are sent as right-hand circularly po-
larized electromagnetic waves (Ray, 2000). Each GPS signal consists of three com-
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ponents: the carrier, the ranging code, and the navigation data. The carrier consists
of the RF sinusoidal signal either with the frequency L1 or L2. The ranging codes,
i.e., the PRN codes, are generated to have special properties to allow all satellites to
transmit at the same frequency without interfering with each other. For example, each
satellite transmits a different set of C/A-codes which belong to the Gold code family
(Gold, 1967) and characteristically have low cross-correlation properties between the
codes. Thus, it is possible to distinguish the signals received simultaneously from
different satellites. Table 1 summarizes the GPS signal structure. Each code is com-

Table 1. GPS Sgnal Structures.

Signal Ranging Code Navigation

Signal Message
L1 C/IA 300m 1.023 MHz | Data Rate: 50 bps
1575.42 MHz | P(Y) 30m 10.23 MHz | Chip Width: 20 ms
L2 P(Y) 30m 10.23 MHz | Duration: 12.5 min
1227.6 MHz

bined with the navigation data by modulo-2 addition. The code and the navigation
message is then modulated on the carrier using binary phase shift keying (BPSK)
digital modulation. The modulated carrier signals that leave the GPS satellite are of
the following form

g, (t) = ApPI()@NI (t) cos(2n f1t) + ACl (t) NI (t) sin(2n fat) (1)

s, (t) = BpP! (t)®NI(t) cos(2n ft) )

where @ implies modulo-2 addition, i.e., the exclusive-or operation (XOR), j isthe
superscript identifying the PRN number of the satellite, Ap, Ac, Bp are the amplitudes
of P(Y)-codesand C/A-code, P! (t) isthe P(Y)-code, C!(t) isthe C/A-code modulated
on L1 in quadrature with P(Y)-code, N/ (t) is the navigation data modulated onto L1
and L2, and f1 and f; represent the L1 and L2 frequencies, respectively.

Impressing both the C/A and P(Y) on L1 is obtained by generating two carrier sig-
nals: an in-phase component and a quadrature component obtained by shifting it in
phase by 90 degrees. GPS signals are spread spectrum making the GPS signals re-
sistant to interference and decreasing the effect of a possible jammer at, e.g., the L1.
The modulation of a carrier by a binary code spreads the signal energy over awide
frequency band: the C/A-code main lobe bandwidth is about 2 MHz and it is about
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20 MHz for the P(Y)-code. The signal energy can be despread in areceiver when the
code is known. Finally, the transmit time of the satellite signal can be estimated by
correlating the received signal with its replica generated by the receiver.

The GPS signal structure is complex and will not be reviewed in more detail here.
Instead, only abrief introduction was provided. For more details on the signal struc-
ture, refer to, e.g., (Parkinson and Spilker, 1996; Kaplan (Ed.), 1996; Misraand Enge,
2001).

A master control station uses data from a network of monitoring stations around the
world to monitor the satellite transmissions, compute the broadcast ephemerides, ca-
librate the satellite clocks, and periodically update the navigation message. The navi-
gation data contains, among others, orbital datafor computing the satellite positions.
The complete navigation message contains 25 frames, each consisting of 1500 bits.
Each frame is subdivided into five 300-hit subframes, and each subframe consists of
10 words of 30 bits each. At the 50-bps chipping rate, it takes 6 seconds to transmit
a subframe, 30 seconds to complete aframe, and 12.5 minutes for the whole naviga-
tion message to be completed. Each subframe begins with a telemetry word (TLM)
and a handover word (HOW). The TLM contains afixed synchronization pattern and
the HOW is a truncation of the GPS time of week. Subframes 1-3 repeat the same
information from frame to frame. Subframes 4-5 of the consecutive frames, on the
other hand, consist of different pages of the navigation message. Subframe 1 con-
tains the GPS week number, space vehicle accuracy and health status, satellite clock
correction terms, clock reference time, the differential group delay information, and
the issue of date clock term. Subframes 2 and 3 contain ephemeris parameters for the
transmitting satellite, and subframes 4 and 5 contain special messages, ionospheric
correction terms, coefficients to convert GPS system time to Coordinated Universal
Time (UTC), and amanac data. The navigation message also contains information
of the user range error (URE), which isa projection of ephemeris curvefit errors onto
the user range and includes effects of satellite timing errors.

2.1.3 Receiver Operation

In terms of code measurements, the precision code theoretically provides better over-
al performance. Unfortunately, the P(Y)-code is currently encrypted to limit its use
to the military community, and, therefore, due to the civilian personal positioning
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orientation of this work, the focus in this thesis is merely on the L1 carrier and the
civilian C/A-code.

To acquire asignal, the receiver generates a replica of the known C/A-code, and at-
tempts to align it with the incoming code. In the receiver, a sharp correlation peak
is obtained when the code replicais aligned with the code received from the signal.
The time shift required to align the receiver-generated code replica and the incoming
signal isthe apparent transmit time. The code tracking is accomplished in afeedback
control loop, called adelay lock loop (DLL), which continuously adjusts the replica
code to keep it aligned with the code in the incoming signal. After the alignment is
complete, the PRN codeis removed from the signal leaving the carrier modulated by
the navigation message. Then, another feedback control loop is employed, a phase
lock loop (PLL), where essentially the receiver generates asinusoidal signal to match
the frequency and phase of the incoming signal and, in addition, extracts the naviga-
tion message. The Doppler shift of the satellite-to-user signal is also measured in
the PLL. In addition, afrequency lock loop (FLL) can be utilized to estimate the fre-
quency error of the signal. It is possible to use a combined FLL/PLL initially, and
then switch to PLL, or, alternatively, the FLL can be used continually to aid the PLL
(Kaplan (Ed.), 1996).

GPS provides code phase measurements from the code tracking procedure and car-
rier phase measurements from the carrier tracking process. The code phase measure-
ments from different satellites have acommon bias due to the receiver clock bias, and
are therefore called pseudoranges. The carrier phase gives a precise measurement of
change in the pseudorange over a time interval, and an estimate of its rate, i.e., the
Doppler frequency. The GPS measurements in the receiver consist of replica code
phase, and replica carrier Doppler phase if the GPS receiver isin phase lock with the
satellite carrier signal or replica carrier Doppler frequency if the receiver isin fre-
quency lock with the satellite carrier signal. The replica code phase can be converted
into satellite transmit time, which is used to compute the pseudorange measurement.
The replica carrier Doppler phase or frequency can be converted into delta pseudor-
ange. The replica carrier Doppler phase measurement can also be converted into an
integrated carrier Doppler phase measurement used for ultra-precise static and kine-
matic surveying. Thus, the obtained GPS signal measurements include, in general,
pseudorange, carrier phase, and Doppler. The pseudoranges are derived from the
PRN codes and are therefore classified according to code and frequency as L1-C/A,
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L1-Pand L2-P. Carrier phase measurements are obtained by measuring the phase of
the incoming carrier (L1 and/or L2) resulting in the range to a satellite with an am-
biguous number of cycles. The Doppler measurements that are the derivatives of the
carrier phase measurements denote the Doppler shift caused by the relative receiver-
satellite motion. The L1 C/A code pseudorange and Doppler measurements, denoted
in this thesis also as pseudorange rates, are of primary use to most civilian usersin
personal applications. They allow determination of both position and velocity. Car-
rier phase measurements are used for geodetic grade applications and are thus outside
the scope of thisthesis.

A block diagram of basic GPS receiver principles is given in Fig. 1 (Lachapelle,
2003; Misraand Enge, 2001). Thereceiver basically consists of three main segments:
the RF front end, the signal processing segment, and the navigation processing seg-
ment. The NCO in Fig. 1 stands for a numerically controlled oscillator.

Intermediate |IN-Phase (1) Doppler
f;zc:::lr;r?g Quadra-Phase (Q) emoval —-‘ Correlators }—»{ Accumulators ‘
> = g , l ,
= = g o Signal processing:
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clock

4. Data recovery
Antenna l

« Pseudorange
« Doppler
« Carrier phase

Estimation:
Position, Velocity, Time

Fig. 1. GPSReceiver - Block Diagram.

Fig. 1 describes the different functions in a digital GPS receiver including first pre-
amplification of the incoming GPS signal and then down-conversion of the signa
into a intermediate frequency (IF), which is easier to work with from a signal pro-
cessing perspective. After this, the IF signal is sampled and turned into in-phase and
guadra-phase parts. Then, the core IF signals processing is performed to generate the
pseudorange, Doppler, carrier phase measurements, and the navigation information,
from which the unknown user coordinates can be computed.
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Receivers may nowadays have up to 24 channels each of which designed to process
datafrom a single satellite either on L1 or L2 frequency. The operations on asingle
channel inthe signal processing part include Doppler removal, correlation, where the
signal is mixed with the user generated local copy of the C/A-code, integration, i.e.,
accumulation, acquisition, and, finally, the carrier and code tracking.

Acquisitionisthefirst step in processing the sampled GPS | F data (L achapelle, 2003).
The three key parameters to be determined in the acquisition is the C/A-codes, their
respective C/A-code phases, and carrier frequency with individual Doppler shifts.
With no initial aiding information, the search space in acquisition consists of all
possible C/A-codes, 1023 C/A-code chips shifts (time), and any associated Doppler
shifts (frequency). Thus, the acquisition is a 2-dimensiona search over frequency
and time. The changing code offset is then tracked with aDLL and the Doppler fre-
guency withaPLL. Inthe DLL, the received signal is correlated with the local C/A
code using usually three different offsets. the early, prompt, and late correlators. A
discriminator in the DLL determines the current offset from the actua code offset.
The PLL matches the incoming carrier phase with the local inphase carrier. A carrier
phase discriminator provides then an estimate of the phase error.

Thethird part of the receiver, the navigation processor, consists of computing the po-
sition, velocity, and time (PVT) using the raw pseudorange measurements, Doppler,
and the navigation bits. The navigation processor can include reliability monitoring
functionsin addition to the PV T estimation processes.

2.1.4 GPS Modernization

With the SA still active, the SPS was defined to provide the user a predictable hori-
zontal positioning accuracy of 100 meters, given in 95-percentage (FRP, 1999). The
specification was conservative and the actual SPS performance while SA was active
was considerably better (Misra and Enge, 2001). No officia post-SA specifications
are currently readily available, but it has been estimated that with SA set to zero the
total standalone horizontal accuracy of SPS, in 95-percentile, would be from 22.5
m (Sandhoo and Shaw, 2000) to 19.1 m (McDonald and Hegarty, 2000), to as good
as 10 m (Misra and Enge, 2001). The dominant error source of the SPS in good
line-of-sight conditions with SA discontinued is the mismodeling of the ionosphere
(Parkinson and Spilker, 1996).
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GPS is, however, a vulnerable system to radio frequency interference because the
signals are extremely weak and the spread spectrum processing gain against inter-
ference is quite modest. Currently, GPS is undergoing major modernization to meet
the current and future military and civil navigational demands with the objective of
improving the resistance to interference and accuracy of the position, navigation, and
timing services for both military and civil users. GPS modernization is made possi-
ble by the advances in satellite and receiver technology. Additional signals will be
transmitted to the users with the effect from future satellite generation launches im-
proving the overall performance of the GPS. In addition, the modernization allows a
better distinction between the military and civilian uses of GPS.

An essential element of GPS modernization involves sharing, or dual use, of the
current L-band spectrum by multiple signals that provide enhanced radionavigation
servicefor civilian and military users (Betz, 1999). Additional objectives of the mod-
ernization process include improved anti-jamming capability and shortened time-to-
first-fix (TTFF) dueto the upcoming C/A-codeon L2, L2C, and providing the civilian
community an extra safety-of-life signal, L5 centered at 1176.45 MHz. In addition,
the new L2C signal will provide the civilian community a more robust signal capa
ble of improving resistance to interference and allowing for longer integration times
in the receiver. Thereby, the tracking noise will be reduced and accuracy increased
as well as the positioning capability inside buildings improved. Overall, making the
SPS more accurate and robust is planned to be accomplished by the C/A-coded signal
on L2 and astronger, wide-band signal on L5. At the same time, new military codes,
M-codes, will be added to L1 and L2 but will spectrally be separated from the civil
codes by being centered 6-9 MHz above and below the L1 and L2 centers. In addi-
tion, future GPS satellites will be designed to be capable of broadcasting regionally
the M-codes at a 20 dB higher power. Plans of upgrading the control segment have
also been made by, e.g., increasing the number of monitor stations for real-time data
collection and processing used for ephemeris and clock parameter prediction.

Fig. 2 illustrates the modernized GPS signal evolution from the current signal archi-
tecture to the future military and civil signal services. The evolution starts with the
current signal architecture, i.e., the C/A-code only on L1 and the encrypted P(Y)-
code on both the L1 and L 2 frequencies. It evolvesto add the capabilities of the C/A-
code on L2, and then the M-code and the L5 signal (Fontana and Latterman, 2000;
Misra and Enge, 2001). The planned progression of the modernization in terms of
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Fig. 2. @) Present Sgnal, b) New Civil Sgnal, and c) Sgnal for Civil Safety-of-Life Applica-
tions and New Military Sgnals.

the different generations of satellitesis shown in Table 2 (Fontanaet al., 2001; Leick,
2004). The deployment of the fully modernized GPS system is planned to begin in
year 2005. In reality, the deployment of the modernized satellites has been somewhat
delayed. Nowadays, it is estimated that eight Block 1IR satellites will be modern-
ized to radiate the new military M-coded signal on both the L1 and L2 channels as
well as the more robust civil signal, L2C, on the L2 channel (JPO, 2005). The first
modernized Block IR, designated as the IIR-M, is how planned for launch in 2005.
Thefirst Block I1F satellite, the next generation of the GPS SV's that will provide all
the capabilities of the previous blocks with some additional benefits as well is now
scheduled for launch in 2006 (JPO, 2005). Improvementsinclude an extended design
life of 12 years, faster processors with more memory, and the new civil signal on the
third frequency, L5.

The L2C civil signal will consist of a 10230-length CM-code (civil moderate length)
that carries data and a 767250-length CL-code (civil long). Both of the codes will
have a chipping rate of 511.5 kHz as opposed to the chipping rate of 1.023 MHz on
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the C/A-cade on L1. Thus, the L2CM-code will last 20 ms and the L2CL will last
1.5s. The CM will carry dataand the CL isapilot signal. The pilot signal has been
designed for high sensitivity applications requiring long integration periods (Mattos,
2004). In addition, the very long codes help to combat against the cross-correlation
problem when trying to separate the wanted signal from the unwanted ones. However,
while the tracking sensitivity will be enhanced having the pilot signal, the extremely
long codes will make it impractical to use for acquisition. Thus, in practice, it will
become necessary to acquire the L1 code first, or, simply, just compromise between
reasonable acquisition times when the signal is strong, and high sensitivities when
the signal isweak, albeit then at slow acquisition times.

The future GPS L5, will have a code length of 10230 chips, a chipping rate of 10.23
MHz, and be built in layers, so that when having a strong signal, the acquisition
can be performed on a single layer with switching to the full length code only when
required (Mattos, 2004). Each code will be a modulo-2 sum of two subsequences,
whose lengths will be 8190 and 8191 chips that recycle to generate the 10230 codes.
The Block 1IR-M and |1F satellites will transmit a new military M-code signal on
L1 and L2 that uses binary-valued modulations by a technique called binary offset
carrier (BOC) (Leick, 2004). The difference between the BOC and the conventional
rectangular spreading code modulation is seen in the power spectral densities, as
shown in genera termsin Fig. 2. The offset carrier modulation (Betz, 1999; Lucia
and Anderson, 1998) provides a simple and effective way of moving signal energy
away from band center, offering a high degree of spectral separation from conven-
tional phase shift keyed signals, whose energy is concentrated near band center. The
resulting split spectrum signal effectively enables frequency sharing, while providing

Table 2. Expected Generations of Satellitesin GPS Moder nization.
Signal | Block IIR, 1978-2003 | Block IIR-M, 2003- | Block I1F, 2005-

L1CIA X X X
L1 P(Y) X X
L1M X X
L2C X X
L2 P(Y) X X X
L2M X X
L5C X
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attributes that include simple implementation, good spectral efficiency, high accu-
racy, and enhanced multipath resolution (Betz, 1999). The new military M-code will
use BOC(10,5), which results in a subcarrier frequency of 10.23 MHz and a spread-
ing code rate of 5.115 MHz. The densities for BOC(10,5) are maximum at the nulls
of the P(Y)-codes, which isan essential aspect to obtain increased spectral separation
of different code modulations.

A full constellation, often defined as consisting of a minimum of 18 satellites, with
a C/A-code on both L1 and L2 is expected around 2010 if the satellite launches
progress as planned. The horizontal position error performance in 95-percentile is
estimated to be as good as 5 m with the two civil signals present from around year
2010 onwards (Misraand Enge, 2001), and (Lubaet al., 2004) estimates that the SPS
95% horizontal accuracy with the dua civil frequency will be as good as 3.7 m. A
full constellation with the new civil code on L5 is unlikely before year 2015. With
the three civil signals available, a rough estimate for the 95-percentage horizontal
position error isastunning 1 m (Misraand Enge, 2001). These error estimates, how-
ever, assume so caled 'normal’ signal circumstances with average error conditions
and proper signal reception.

2.1.5 High Sensitivity GPS

In degraded signal conditions, weak signals such as attenuated line-of-sight signals,
diffracted signals, multipath signals, or echo-only signalsinherently include large as-
sociated noise and other errors. The expansion of GPS due to, e.g., location-based
services, to areas with poor signal conditions requires, however, high sensitivity re-
ceiver processing (Peterson et al., 1997; Moeglein and Krasner, 1998; Garin et al.,
1999; Chansarkar and Garin, 2000; MacGougan et al., 2002; MacGougan, 2003).
Therefore, the thereby obtained weak and erroneous signals are required to be used,
if the objective is to obtain a position solution with respect to no solution at al. In
addition, the cellular positioning mandates, i.e., the E911 and the E112, drive high
sensitivity and also assisted GPS (AGPS) development (Lachapelle, 2003). With high
sensitivity processing inherently including a higher positioning availability, which
is even further increased if aiding information is provided to the system through a
network, i.e., assisted GPS, capabilities to a much wider range of applications are
therefore opened.
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HSGPS operation principles

The GPS signal faces|osses during its propagation from the satellite to the Earth. The
line-of-sight GPS signals received by users are -160 dBW in strength as presented in
Table 3 showing the total GPS signal power budget (Lachapelle, 2003). The dimen-

Table 3. GPS Sgnal Power Budget.

SV Antenna Power 13.4 dBW
SV Antenna Gain 13.4 dBW
User Antenna Gain 3.0dBW
Free-Space Loss -184.4 dBW
Atmospheric Attention Loss  -2.0 dBW
Depolarization Loss -3.4 dBW
User received power -160.0 dBW

sion dBW denotestheratio of power relativeto 1 Watt. The-160.0 dBW corresponds
t0-130 dBm, which denotes power with respect to 1 mW. The free-spaceloss, i.e., the
geometrical spreading effect, accounts for the largest loss in the GPS signal power
budget. The GPS signals are not to exceed the internationally agreed upon power
values set to avoid interference with other users and systems.

The noise power within the main lobes of L1 C/A code signa before the correla-
tion process is well below the noise level. The signal is managed to be acquired
and tracked by correlation and integration. In conventional GPS, the signal can be
acquired and tracked because integrating the despread signal reduces the noise band-
width. In poor signa conditions, the power of the satellite signa is even further
decreased: metals and concrete result in up to a 20 dB loss or more, plywood sheets
may lead to a 3 dB loss, drywall into aloss o about 1 dB, trees typically into aloss
of 5to 8 dB and up to 20 dB or even more, depending on the tree size and density of
foliage. Thus, the amount of signal attenuation depends on the material, its density,
and how much material the signal passes through (MacGougan, 2003). High sensitiv-
ity GPS (HSGPS) is known as atechnology utilizing longer integration of signalsto
make signal peaks visible out of noise even for very low-power GPS signals (Peterson
etal., 1997). To obtain and track the attenuated signal s, which can be attenuated up to
asigna strength of about -155 dBm, very long signal integration times are needed to
increase the signal-to-noise ratio above the noise floor. High sensitivity GPS receiver
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manufacturers are mostly aiming to operate at attenuations of up to 27 to 33 dB with
respect to the typical received power.

Coherent integration in the receiver consists of smple summation. The navigation
message, however, limits the coherent integration time. During integration, i.e., cor-
relation, the autocorrelation peak grows faster than the noise enabling the acquisition
and tracking of the signal. Non-coherent integration, on the other hand, consists of
accumulation of the square root of the sum of the squared output of the coherent in-
tegration causing a squaring loss due to the squaring of also the noise. In general,
to acquire the weak GPS signals, coherent integration and non-coherent accumula:
tion are performed to effectively increase the total signal dwell time. The coherent
integration period is limited to 20 ms due to the length of the navigation bits and, in
addition, residual frequency errors during the coherent integration period. Residual
frequency errors are caused by satellite motion, receiver clock instability and user
motion induced Doppler effects. Navigation bit prediction, when knowing the GPS
time well enough, can, however, extend the coherent signal integration time. The to-
tal accumulation time of the signal in high sensitivity processing can be expressed as
N times M ms, where N is the coherent integration time in ms, and M is the amount
of non-coherent accumulation in ms. The total dwell-time of HSGPS receivers can
be up to hundreds of milliseconds while for conventional GPS it is less than the 20
ms coherent integration interval maximum.

There are anumber of factors affecting HSGPS performance that have to betakeninto
consideration in the design process of the receivers. Firstly, thermal noise should be
minimized to maintain the tracking and avoid carrier tracking error. The ability to
predict a bit transition is important in order to obtain a long coherent interval. Fur-
thermore, the residual frequency error can be reduced by using a more stable oscilla-
tor. In genera, high sensitivity methods can be implemented in either aided (AGPS)
or unaided modes. In aided mode, high sensitivity receivers rely on assistance data
including time, approximate position, satellite ephemerides, and possibly code dif-
ferential GPS corrections (Syrjarinne, 2001; Agarwal et al., 2002). Assisted GPS
works by giving the receiver a hint of which frequency binsto search (van Diggelen,
2002). This speeds up the acquisition time, or, aternatively, allows the receiver to
dwell longer in each frequency/code bin resulting in higher sensitivity. To obtain the
extra processing gain required for indoor operation, the receiver must also have the
capability to search al possible code bins in parallel. Thus, massive paralel corre-
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lation is necessary to facilitate the complex task of searching for the weaker GPS
signals while using long coherent integration periods and further non-coherent ac-
cumulation (van Diggelen and Abraham, 2001; van Diggelen, 2002, 2001, Eissfeller
et a., 2004). In unaided mode, the high sensitivity receiver lacks the ability of the
aided receiver to acquire weak signalsif it has no a-priori knowledge. However, if the
receiver is initialized with the same assistance data, by acquiring and tracking four
or more GPS satellites with strong signals, it has the same functional capability as an
assisted GPS receiver so long as it can maintain timing, approximate position, and
satellite ephemerides [P2].

The increased tracking capability of HSGPS is highly beneficia in terms of solu-
tion availability and increased redundancy for reliability of navigation. However, si-
multaneousdly, severe interference effects in the poor signal conditions of indoor and
urban environments lead to large measurement errors when the receiver failsto accu-
rately estimate the time of arrival of the line-of-sight signal. The measurement errors
are generaly caused by measurement noise, distortion of the line-of-sight correla-
tion peak due to non-line-of-sight combination, and complete blockages of line-of-
sight signal leading to acquisition of long-delay multipath signals, cross-correlation
peaks or echo-only signals. The robustness of the tracking loop in the presence of
weak signals can be, however, somewhat enhanced by implementing, e.g., atracking
scheme capable of monitoring the quality of the autocorrelation function (Fantino
et al., 2004). However, the severe observation errors cannot be avoided, and reli-
ability and integrity analysis and monitoring in terms of proper fault detection and
exclusion (FDE) becomes increasingly important in HSGPS for degraded environ-
ment positioning [P2, P6]. In addition, the higher time-to-first fix (TTFF) of the
navigation solution due to the longer integration times causes a significant problem
with HSGPS for some applications.

2.2 Overview of Future Galileo

The permanent European reference in time and space, Galileo, is intended to be
launched by the European Union (EU) and the European Space Agency (ESA) within
the next couple of years. Commercialy Galileo is expected to be operational by the
year 2008. The Galileo system is intended specifically for civil purposes as opposed
to the GPS aimed first of all to US military requirements.
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221 System

The planned Galileo system consists of 30 satellites divided between three circular
orbits inclined at 56 degrees at an altitude of 23616 km to cover the Earth’s whole
surface. Ten satellites will be spread evenly around each plane, with each taking
about 14 hoursto orbit the Earth. Each plane will also have one active spare satellite,
which is able to cover for any failed satellite in that plane.

The satellites orbiting the Earth will be supported and monitored by a worldwide
network of ground stations. Two Galileo control centers in Europe will control the
constellation as well as the synchronization of the satellite atomic clocks, integrity
signal processing, and data handling of all internal and external elements. Then, a
globa communications network will interconnect all the ground stations and facilities
using terrestrial and very small apertureterminal (V SAT) satellitelinks. Datatransfer
to and from the satellites will be performed through a globa network of Galileo
uplink stations, each with a’telemetry, telecommunications and tracking’ station and
amission uplink station. Galileo sensor stations around the world will then monitor
the quality of the satellite navigation signal. Information from these stations will be
sent out by the Galileo communications network to the two ground control centers.
In addition, regional components will independently provide integrity information
of Galileo services. Authorized uplink channels provided by Galileo will be used
to disseminate regional integrity data. It is planned that the system will guarantee
that a user will aways be able to receive integrity data through at least two satellites
with a minimum elevation angle of 25 degrees in order to provide extra accuracy
or integrity around, e.g., airports, harbors, railheads and in urban areas to possibly
extend navigation services also to indoor users.

The Galileo Terrestrial Reference Frame (GTRF) isamost coinciding with the WGS-
84 coordinate system used by the GPS. Galileo will use the International Atomic
Time (IAT) in the timing, as opposed to GPS using Universally Coordinated Time.
The Galileo system will transmit ten navigation signals in right hand circular po-
larization (RHCP): six will serve open and safety-of-life services, two are aimed at
commercial services, and two are intended to public regulated services. These sig-
nals will be broadcast at the following frequency bands: E5a-E5b, 1164-1215 MHz;
E6, 1260-1300 MHz; and E2-L1-E1, 1559-1591 MHz. The E2-L1-E1 bandwidth
is aready used by the GPS, so this joint frequency transmittance will be done on a
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non-interference basisin order to avoid affecting current GPS services while offering
users still simultaneous access to GPS and Galileo at minimal increases in cost and
complexity of the user equipment. All the Galileo satellites will make use of CDMA
compatible with the GPS approach.

222 Services

The Galileo infrastructure is being implemented in three phases. The development
and in-orbit validation phase is planned to take place between the years 2000 and
2005 and it will consist of the consolidation of the mission requirements, the de-
velopment of 2-4 satellites and ground-based components, and the validation of the
system in orbit. The deployment phase is planned to take place between the years
2006 and 2007 and it will consist of the construction and launch of the remaining
26-28 satellites and the installation of the complete ground segment. The third phase
is the commercial operations phase and it is expected to be operational from 2008
onwards.

The various service requirements that Galileo is designed to satisfy can be divided
into five different service groups (Onidi, 2002; Dutton et al., 2002; Hein et al., 2002;
Galileo Brochure, 2003), and they are presented below.

The Galileo open service (OS) is designed for mass-market applications and it will
provide signals for timing and positioning free of charge. OS will be available to
any user equipped with a receiver capable of navigating with Galileo signals. It is,
anyhow, expected that most applications in future will use a combination of Galileo
and GPS signals, which will improve performance in severe environments, such asin
urban areas. OS will provide integrity information computed by the system but the
quality of the signals can still only be estimated by integrity monitoring algorithms
at the user level. OS will not guarantee any service or liability issues.

The safety-of-life (SoL) service will be used for most transportation applications that
are somehow safety-critical. The SoL service will provide the same accuracy in po-
sition and timing as the OS with the main difference being the high integrity level
obtained by means of integrity data messages within the OS signalsfor safety-critical
applications, where guaranteed accuracy is essential. The SoL service will be certi-
fied and its performances will be obtained through a dual-frequency receiver (e.g.,
frequency bands L1 and E5a).
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The commercia service (CS) is aimed at market applications requiring higher per-
formance than offered by the OS. It will provide added-val ue services on payment of
afee by adding two signals to the open access signal. This pair of additional signals
is protected at receiver level through commercial encryption using access-protection
keys, which will be managed by the service providers and a future Galileo oper-
ating company. The value-added services that the commercia service will enable
are, e.g., high data-rate broadcasting, service guarantees, precise timing services, the
provision of ionosphere delay models, and local differential correction signals for
extreme-precision position determination.

Thefourth service that Galileo will provideisthe public regulated service (PRS) that
isexpected to be used by groups such asthe police and customs. Civil institutionswill
control accessto the encrypted public regulated service, which isrequired to be oper-
ational dueto the robustness of itssignal at all timesand in all circumstances, notably
during periods of crisis, when some other services may be intentionally jammed.

The fifth service the Galileo system will provide, the search and rescue service, will
allow important improvements in the existing humanitarian search and rescue ser-
vices. These will include near real-time reception of distress messages from any-
where on the Earth, when the current average waiting time is an hour. In addition,
improvements will include precise location of emergency aerts, multiple satellite
tracking to overcome terrain blockage in severe conditions, and increased availability
of the space segment when 30 medium earth orbit Galileo satellites will be present in
addition to the four low earth orbit and the three geostationary satellites.

2.2.3 Signal Structure

The Galileo navigation signals will consist of ranging codes and data messages. The
ranging codes will be generated by highly stable, autonomous atomic clocks aboard
each satellite. The data messages will be uplinked to the satellites from the ground
stations, stored onboard, and transmitted continuously using a packet data structure.
The satellite data messages are expected to include not only satellite clock, orbit
ephemeris, identity and status flags, and constellation almanac information, but also
an accuracy signal giving a prediction of the satellite clock and ephemeris accuracy
over time. With this accuracy signal, users can weight their measurements of each
satellite to improve the overall navigation accuracy.
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The Galileo satellites will be designed to transmit up to four L-band carriers. A range
of data message rates at 50-1000 symbols per second is being considered. Low rates
cause minimum disturbance to the navigation signal, while high rates maximize the
potential for value-added services such as weather aerts, accident warnings, traf-
fic information, and map updates. In all, data broadcasting capacity in the Galileo
satellites must be maximized without compromising the navigation accuracy.

Galileo will provide services on signals mainly on four frequencies|abeled E5a, E5b,
E6 and L1. Galileo OS signals will be transmitted on E5a, E5b and L1. Each OS
signal consists of two navigation code signals, transmitted in quadrature. One of the
OS code signalsis an unmodulated pilot, which can be used for signal acquisition in
poor reception conditions, and the other is modul ated with a navigation data message.
The SoL service will use the OS signals with the addition of integrity data added to
the navigation messages on E5b and L1. The CS will use the OS signals possibly
with supplementary messages as well as the special-purpose E6 signal, which will
comprise a pilot and a data channel using secret codes that will be accessible by
subscription. The PRS will use spectrally separated signals with secure and secret
codes on the E6 and L 1 frequencies.

The E5a and E5b signals will be generated together using aternative binary offset
component modulation (Alt-BOC) in order to use a single transmitter in the satel-
lite for both signals. The E5a signal is designed for low carrier-to-noise ratio, C/No,
applications with a very low-rate data signal not sufficient for Safety-of-Life appli-
cations. The E5b signal will have a higher data rate, which will accommodate open
service, safety-of-life, and possibly also commercia service data. The E6 signal will
probably carry BOC(10,5) modulation for the PRS together with quadrature phase
shift keying (QPSK) components for the commercia service. The latter can be en-
crypted to allow afee to be charged for the very accurate three-carrier (TCAR) posi-
tioning service. The OS Galileo L1 signa is planned to have a code length of 8184
with a 2.046 MHz chipping rate and be BOC(1,1) modulated to ensure the neces-
sary compatibility with GPSL1. The L1 signal will carry two BOC-components, the
data channel B and pilot channel C, for open, CS and SoL services. A BOC(15, 2.5)
signal, again spectrally separate, will be provided for the public regulated service
(Mattos, 2004; Dinwiddy et a., 2004; Hein et al., 2004).

The Galileo partners, the European Space Agency (ESA) and the European Com-
mission (EC), have agreed that Galileo will offer guaranteed performance to its users
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(Dinwiddy et al., 2004). The performance, which should be obtained by a standard
receiver working in a normal environment when using only L1 in Galileo OS, has
been estimated to be 15 m in horizontal position error accuracy, expressed in 95-
percentage, (Dinwiddy et al., 2004), and when using both E5a and L1 or E5Sb and
L1, 4 m. A standard receiver is generally specified with typical antenna gain, noise
figure, clock stability, and other characteristics, while the environment is specified
with commonly experienced levels of tropospheric, ionospheric and multipath dis-
tortions, and of user visibility, user dynamics and externa interference. A typical
horizontal positioning accuracy for combined Galileo OS and GPS C/A is estimated
in (Rodriguez et d., 2004) to be as good as 2.15 m.

2.3 Oveview of GLONASS

The Russian GLONASS (Global’ naya Navigatsionnaya Sputknikkovaya Sistema)
satellite system originates from as far back as 1982, when the first satellite of this
system was launched. Nominally, the satellites of the GLONASS system arein three
orbital planes separated by 120 degrees, and equally spaced within each plane with
anomina inclination of 64.8 degrees. The nominal orbits are circular with each ra-
dius being about 25500 km resulting in an orbital period of approximately 11 hours
and 15 minutes. Each GLONASS satellite transmits at its own frequencies currently
according to

K
fliz=(178+ 1_6) *Z 3)

where K is an integer value between -7 and +12, Z=9 for L1, and Z=7 for L2 (K&
plan (Ed.), 1996). The frequencies are expressed in MHz. L1 is around the central
frequency 1602 MHz and L2 around 1246 MHz.

Thereare C/A-codeson L1 and C/A and P-codeson L2, asin GPS, however, with nat-
urally different code structures from the GPS codes. The GLONASS satellite clocks
are steered according to UTC(SU), Coordinated Universal Time, Soviet Union, and
the GLONASS broadcast navigation message contains satellite positions and veloc-
ities in the PZ-90 geocentric reference system, the Earth Parameter System 1990.
GLONASS navigation message as a part of the navigation radiosignal includes the
broadcast ephemerides, the time scale shifts of the satellitesrelativeto the GLONASS
System Time and UTC(SU), time marks, and GLONASS amanac. Currently, the
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state of the GLONASS system has deteriorated due to lack of finances, and at the
writing of this thesis, there are thirteen operationa GLONASS satellites. Thus,
GLONASS observations have primarily been used to supplement and strengthen GPS
solutions. However, the GLONASS program is also undergoing modernization to
improve the ground support segment, the augmentation of the system with differen-
tial services, and, most importantly of all, the space segment with more GLONASS
satellites. In future, with more GLONASS satellites available, the Galileo system
becoming operational, and the modernization of GPS, the user of global navigation
satellite systems can expect an outstanding radionavigation performance of in terms
of availability and accuracy.

Fig. 3 describes the frequency allocation of the three GNSS: the GPS, the Galileo,
and the GLONASS.
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Fig. 3. Allocation of GPS, Galileo, and GLONASS Frequency Bands.

2.4 Satellite Augmentation Systems

Standalone satellite navigation is not adequate for all navigation and positioning ap-
plications. Many civil applications, e.g., related to harbors and restricted waterways
in marine navigation and to guidance and approach situations in aviation navigation,
require greater accuracy than provided by standalone navigation systems. Navigation
solution estimates can be improved by mitigating measurement errors by using dif-
ferential corrections to remove common errors from two or more receivers viewing
the same satellites. Measurement errors are both spatially and temporally correlated,
and, thus, areference receiver with a known location can determine the biases in its
measurements due to, e.g., atmospheric delays and receiver noise, and provide them
as differential corrections to user receivers in the same area. The users incorporate
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the corrections to improve the accuracy of their position solutions. With GPS, thisis
denoted as differential GPS, DGPS, e.g., (Kaplan (Ed.), 1996; Misraand Enge, 2001;
Parkinson and Spilker, 1996). The accuracy of differential navigation depends most
of al on the closeness of the user to areference receiver and also on the delay in the
corrections transmitted over aradio link. However, the accuracy with DGPS can in
optimal cases be even in the sub-meter level.

Differential services, both commercial and federally provided, are nowadays widely
available (Misraand Enge, 2001). GNSS augmentation systems, such aslocal ground-
based augmentation systems (GBAS) or regional satellite-based augmentation sys-
tems (SBAS) provide correction data to remove or reduce some of the error compo-
nents of a GNSS ranging signal.

2.4.1 Loca Area Ground-Based Augmentation Systems

In local area ground-based augmentation systems, each reference station determines
the pseudorange measurement errors at its location and passes the information to the
users (Kaplan (Ed.), 1996). Local area augmentation usualy serves users with dif-
ferential corrections via a radio link within close proximity, since it is limited by
spatial decorrelation of the errors. The US Coastguard provides differential correc-
tions to users for free on marine radiobeacon frequencies. A number of countries
have implemented systems compliant with the US Maritime DGPS standards to en-
hance safety on waterways (Misra and Enge, 2001). In addition, the US Federa
Aviation Administration (FAA) isimplementing an augmentation system called local
area augmentation system (LAAS) (Enge, 1999) to be deployed at airports to guide
aircrafts during approach and landing operations under poor visibility. The LAAS
reference stations will be set up on airports and their carrier-smoothed code measure-
ments will be transmitted to aircraft resulting in a position estimate relative to the
reference receiver (Misraand Enge, 2001).

2.4.2 Wide Area Satellite-Based Augmentation Systems

In wide area satellite-based augmentation systems, a network of monitoring stations
determines and continually updates the time-varying and spatially varying compo-
nents of the total error over an entire region of coverage and makes the correction
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values available to users within the coverage region (Kaplan (Ed.), 1996). A set of
reference stations is deployed in aregion of interest and measurements from each are
processed centrally to form the differential corrections. The corrections are broad-
cast separately from geostationary satellites for different error sources, i.e., satellite
clock, ephemeris, and ionosphere, so that each user can apply the differential correc-
tion vectors appropriately depending on the user’s location. In addition, the ranging
signals from the geostationary satellites provide an additional signal increasing the
navigation redundancy.

US FAA developed wide area augmentation system (WAAS) (Enge et a., 1996;
Skone et al., 2004) for GPS is a solution for the requirements of safety in civil avia-
tion. Dual-frequency (L 1-L 2) measurements from about 25 WAAS reference stations
distributed over the US are processed at a master station to estimate differential cor-
rections and error bounds. The corrections are separated into three components. a
fast changing component due to the clock error and two slow-growing components
due to ephemeris error and ionospheric propagation delays for a set of points corre-
sponding to a latitude and longitude grid (Misra and Enge, 2001). The differential
corrections are coded in a navigation message of GPS/SPS-like signals transmitted
a L1 from geostationary satellites. A WAAS-equipped receiver needs to be able to
receive the additional ranging signal and to demodulate the navigation message for
the differentia corrections.

Currently, a WAAS-like GPS augmentation system is also being deployed in Eu-
rope. The system is called the European geostationary navigation overlay system
(EGNOS) (Soley et a., 2004; Gauthier et a., 2003; Kirjner et a., 2003). The EG-
NOS system provides a GEO-ranging (R-GEO) service that will consist of trans-
mission of GPS-like signals from 3 GEO satellites to augment the number of navi-
gation satellites available to the users, a GNSS integrity channel (GIC) service that
include broadcasting GPS/GLONASS integrity information up to the level required
for civil aviation precision approaches, and a wide area differential (WAD) service
comprising the broadcasting of differential corrections to increase the accuracy of
the GPS/GLONASS navigation service (Gauthier et a., 2003). The Japanese are also
developing their own satellite-based wide-area GPS augmentation system called the
multifunctional transportation satellite based satellite augmentation system (MSAS).
MSAS is developed and operated by the Japan Civil Aviation Bureau (JCAB) that is
compatible with the United States WA A S and the European EGNOS systems (Tomita
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et a., 2003). In addition, Indiais developing a wide-area differential GPS service.
The Indian space-based augmentation system is known as GAGAN (GPS And GEO
Augmented Navigation). The Indian SBAS, when operationalized, is expected to fill
the gap between the European EGNOS and the Japanese M SAS to provide seamless
navigation to civilian aircrafts (Sisodia et a., 2003).

2.5 Assisting Personal Satellite Navigation

GNSSisunableto provide navigation capability continuously indoorsin astandalone
mode, especiadly if thick layers of building material hinder the signal reception and
if assistance data aiding for the signal acquisition and tracking processesis not avail-
able. Additional sensor systems, such as self-contained sensors of micro electro me-
chanical systems (MEMS), can provide navigation capability in the case of a gap
in GNSS availability. In addition, e.g., fingerprinting with wireless local-area net-
works (WLAN), or, alternatively, triangulation or location by cell identification of
cellular positioning techniques can also be used in parallel and in assisting GNSS
performance. Using hybrid solutions or assisting the GNSS navigation extends the
positioning capability of satellite navigation systems from environments with line-of-
sight to satellite signals to areas where blockages hinder proper satellite navigation.
Using hybrid systems with multiple sensor types compensates for the shortcomings
of a single technology, and seamless navigation from outdoors to indoors is the ulti-
mate goal.

2.5.1 Cdlular Networks

Assisted GPS (Syrjarinne, 2001; Garin et a., 1999), AGPS, includes inherently a
channel for providing the necessary assistance information in order to extend high
sensitivity operation even to very harsh signal environments. Assisted GPS provides
the necessary assistance data via a wireless link, and shortens thereby the TTFF and
may protect the navigation system from the acquisition of long-delay multipath peaks
and cross-correlation by providing approximate location and time.

There are also multiple independent cellular network positioning techniques, e.g.,
time-of-arrival (TOA), angle-of-arrival (AOA), enhanced observed time difference
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(E-OTD) positioning, or location fingerprinting (LF) (Syrjarinne, 2001), just to men-
tion afew. These cellular positioning techniques provide user location information
within the cellular network coverage, however, with orders of magnitudes of lower
accuracy that GNSS offers when available. In addition, a fusion of measurements
from a cellular network positioning method and GNSS might enable positioning in
the cases in which neither of the methods has a sufficient amount of observations to
position calculation (Syrjarinne, 2001).

As abrief mentioning, there are some new, evolving techniques related to using digi-
tal television (DTV) signasin obtaining user location information, and as an example
of thiskind of a technique, augmenting GPS with television signals is discussed in
(Rabinowitz and Spilker, 2004).

2.5.2 Sdf-Contained Inertial Sensors

Miniature inertial navigation system (INS) sensors, such as micro electro mechani-
cal system (MEMS) gyroscopes and accelerometers, can be utilized in providing a
navigation solution to the user when satellite signals are completely blocked. Alter-
natively, if there are satellite signals available, sensor and satellite navigation system
data can be integrated in order to obtain enhanced positioning performance, e.g.,
(Mezentsev, 2005).

Theinertial measurement unit (IMU) sensor systems provide information on the user
orientation and dynamics. To aid the GNSS navigation in, e.g., a pedestrian applica-
tion, the self-contained sensors can be processed in pedestrian mechanization mode
by exploiting an acceleration pattern to detect and count foot steps. In such mecha-
nizations, the position error depends on the heading error and the step length estima-
tion error. Once a GNSS solution is unavailable, such systems, thus, mostly navigate
in a pure inertial or pedestrian dead reckoning (PDR), e.g., [P4], mode, where the
error drift in time is substantial. However, INS and PDR require initial values and
aso information for the system calibration from an absolute positioning system, i.e.,
the GNSS, and, thus, the output errors are related to GNSS errors.

In this thesis, reliability monitoring aspects of only satellite navigation systems are
considered in cases where degraded satellite navigation measurements have been ob-
tained and a navigation fix with the available measurements is necessary. However,
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when having access to multiple types of measurements, the reliability monitoring
capability can, in principle, be extended to the hybrid systems.



3. NAVIGATION OBSERVABLES AND ERROR SOURCES

This section discusses havigation observables and their error sources.

3.1 Observables

First, navigation observables, i.e., code, phase, and Doppler measurements are pre-
sented.

3.1.1 Code Pseudorange Measurement

The apparent transit time of the satellite signal from a satellite to the user receiver
can be measured as the amount of shift required to align the C/A-code replica gen-
erated at the receiver with the signa received from the satellite (Misra and Enge,
2001). Thereceived signa isidentified and aligned with the receiver clock generated
signal using the autocorrelation properties of the PRN codes. Multiplying the transit
time with the speed of light results in the measured satellite-to-user range. Timing
errors between the receiver clock and the satellite clock from system time cause the
measured range, however, to differ from the geometric distance corresponding to the
instants of transmission and reception of the satellite signal. Therefore, the measured
range is called the pseudorange. In addition to the clocks causing the pseudorange
to differ from the geometric range, the pseudorange measurement contains various
other error components. The measured code pseudorange from satellite i, p', can be
denoted in unit of meters as

pi = +c(dT —dti)+dpi +dici>no+dt;opo+8pi )

where

ri is the geometric range between satellite i and receiver antenna[m]
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c isthe speed on light [m/9]
dT isthe receiver clock error with respect to GPS time [g]
dti isthe satellite clock error with respect to GPS time [ 5]
dp' is the ephemeris error [m]

Gidnos Ghiopo are theionospheric and tropospheric delays, respectively [m]

epi consists of noise, unmodelled errors, and multipath error [m].

The receiver noise in the code pseudorange measurement is from 5 cm to 300 cm
for the C/A-code (Lachapelle, 2003). In theory, if the line-of-sight signal is present,
the code multipath error can reach magnitudes of half a code chip in length at the
maximum (Ray, 2003; Lachapelle, 2003; Parkinson and Spilker, 1996), with the half
achip representing a distance of around 150 m for the C/A-code.

3.1.2 Carrier Phase Measurement

The most accurate satellite-to-user distances can be obtained from a carrier phase
observation which contains the difference in phase of the incoming satellite carrier
signal and the receiver generated carrier signal with the same frequency. The car-
rier phase measurement is an indirect and an ambiguous measurement of the signal
transit time (Misraand Enge, 2001). Theinitial observation consists only of the frac-
tional part of the carrier phase difference. When tracking is continued, the fractional
part plus the integer number of cycles since the signal left the satellite is recorded,
moreover, with the initial integer number of whole cycles, denoted as the integer
ambiguity, as an unknown that has to be be solved for. Similar to the code measure-
ment, the measured carrier phase observation from satellitei, ¢', contains many error
components as expressed in unit of metersin the following

q)i =l +c(dT —dti) +dpi + AN —dici)no+dt;opo+g¢i (5
where

ri is the geometric range between satellite i and receiver antenna[m]

c isthe speed on light [m/g]
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dT isthe receiver clock error with respect to GPS time [9]
dti isthe satellite clock error with respect to GPS time [ 5]
dp' is the ephemeris error [m]

A isthe carrier wavelength [m]

N isthe integer ambiguity

Gidnos Ghiopo are theionospheric and tropospheric delays, respectively [m]

£¢i consists of noise, unmodelled errors, and multipath error [m].

The ionospheric delay error has a negative sign in the carrier phase expression due
to that the ionosphere causes a carrier phase advance. The receiver noise in the car-
rier phase measurement can reach up to approximately 5 mm. Multipath effects in
the phase measurement stay approximately within amagnitude of 0.25A (Lachapelle,
2003; Ray, 2003), where A is the wavelength of the carrier, i.e., with L1, approxi-
mately A=19 cm.

Due to the ambiguous starting value of the carrier phase observation, in standalone
navigation mode, there is no way of knowing the whole number of carrier cycles be-
tween the satellite and the user antenna and using the carrier phase for absolute esti-
mation of user position. In relative navigation, however, the obstacle of the unknown
number of whole carrier cycles can be overcome by integer ambiguity resolution
techniques, resulting in navigation solutions of high-accuracy.

3.1.3 Doppler Measurement

The relative motion of a satellite and the user results in changes in the observed fre-
quency of the satellite signal (Misra and Enge, 2001). Doppler is a measurement
of the instantaneous phase rate of a tracked satellites signal. The Doppler shift, or
equivalently the range rate, caused by satellite and user motion can be considered as
aprojection of the relative velocity vector onto the line of sight vector. The velacity
of the user with respect to the satellites can be determined with the Doppler mea-
surement. The equation for the measured Doppler for satellitei, ¢', in units of m/sis
expressed as

0' = '+ ¢c(dT —df') +dp' — dign + Ghfopo T & (6)
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where

fi isthe geometric range rate between satellite i and receiver antenna[m/g|
c isthe speed on light [m/9]

dT isthereceiver clock error drift with respect to GPStime [ seconds/second]
dff isthe satellite clock error drift with respect to GPStime [ seconds/second]
dp' is the ephemeris error drift [m/s]

di(imo, d};opo are the ionospheric and tropospheric delay drifts, respectively [m/]

8(-; consists of noise and rate of change of multipath delay [m/g].

Since the carrier is tracked continuously, the integer ambiguity term is dropped out
from the Doppler equation of changein carrier phase measurement over atime inter-
val. The noise in the Doppler measurement, eq)' can reach up to 5 mm/s (Lachapelle,
2003). Dueto thefrequency offset, i.e., thereceiver clock biasrate, the rate of change
of the carrier phase measurement, the measured Doppler, can actually be denoted as
apseudorange rate p, which ismade up of the actual range rate and the receiver clock
frequency bias (Misraand Enge, 2001), and it isthe basis of determining the velocity
of the user. The pseudorange rate measurement discussed widely in this thesis is,
thus, the measured Doppler observation in m/s.

3.2 Error Sources

Errors in navigation ranging signals can be grouped into three categories. satellite-
based errors, signal propagation errors, and receiver-based errors. Satellite-based
errorsinclude satellite clock and ephemeris errors. Signal propagation errorsinclude
errors associated with the atmospheric propagation delay due to the ionosphere and
the troposphere and multipath propagation delay and interference. Receiver-based
errors include receiver noise affecting the precision of a measurement and smaller
errors, such as, e.g., inter-channel biases and antenna errors. The ability to obtain
accurate and reliable position, velocity, and time from satellite navigation signals
depends upon the predictability, controllability, and detectability of the measurement
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errors. Thus, knowing the major sources of possible errorsis essential in the pursuit
of obtaining user position solutions with desired performance levels. In any given
error, important characteristics include the magnitude and the temporal and spatial
variability of the measurement fault.

In the following, the different error sources of pseudorange measurements are dis-
cussed specificaly, and they are directly transferable to the errors in pseudorange
rate observations, i.e., the measured Doppler.

3.2.1 Satellite-Based Range Errors

Satellite-based range errors consist of the errorsin the orbital and satellite clock pa-
rameters broadcast in the navigation message of which the GPS control segment is
responsible of. The prediction error of the satellite ephemeris and clock parameters
grows with the age of data, i.e., the time since the last parameter upload. Thus, the
more frequent the data uploads by the control segment to the satellites and the more
accurate the model s used to estimate and predict the ephemeris and clock parameters,
the less significant are the satellite-based range errors.

Ephemeris Errors

The ephemeris error dp' () results when the transmitted broadcast ephemeris in the
navigation message does not correspond to the true satellite location. The satellite
ephemeris parameters broadcast to the user via the navigation message are purely
estimates made by the control segment based on previous measurements of satellite
motion and knowledge about the Earth’s gravity field, and they contain thus aresidual
error.

There are three ephemeris error components along orthogonal directions defined rel-
aive to the satellite orbit: along-track (AT), cross-track (XT), and radia (R) error
components. The radial component of the error directly affects the range measure-
ment. The magnitude of the ephemeris prediction error is, however, realized when
the total error vector is projected onto a user line-of-sight unit vector. The ephemeris
error components are shown in Fig. 4. With typical data uploads once a day by the
control segment, a current estimate of the root-mean-sguare (rms) range error due to
the ephemeris parameters is about 1.5 m (Misra and Enge, 2001). In an estimated
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SPS C/A-code pseudorange error budget in (Kaplan (Ed.), 1996), the one-c error of
the ephemeris prediction is estimated as 4.2 m.

XT Cross-track axis
........ AT Along-track axis
dPR" .. R Radial axis

Line-of-sight
vector i
Predicted
Orbit

Satellite
Orbit

Fig. 4. Ephemeris Error Components.

Satellite Clock Errors

The satellites contain highly stable atomic clocks that control all timing operations
including broadcast signal generation. However, overall, the satellite clock error may
deviate up to approximately 1 ms from GPS system time (Kaplan (Ed.), 1996). The
satellite clock error is similar to that of the orbital error. Satellite clock behavior is
predicted by the master control station from previous measurements of the satellite
clock error, and the clock error model parameters are transmitted to the satellite for
rebroadcast to the users in the navigation message. The broadcast error model as-
sumes quadratic error growth as presented in the satellite clock error model equation
for satellitei in Eq. 7.

dt' = &g+ a1 (t —toc) 4 @l (t —toc)? + Aty )

where

al, isthe clock bias[m]
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al, isthe clock drift [§/s]

al, isthe frequency drift [/s]

toc IS the reference time of clock data[s]
t isthe current time epoch [

At; isthe correction due to relativistic effects[9].

To take into account both special and general relativity, the satellite clock frequency
is adjusted from the default 10.23 MHz to 10.22999999545 MHz prior to launch
(Kaplan (Ed.), 1996). Therelativistic correction At; isnecessary to beincluded in the
polynomial clock correction model in order take into account that the satellite orbit’s
dlight eccentricity causesthe satelliteto travel through different levels of gravitational
potential and a change in the velocity of the satellite and, thus, a change in the clock.
When the satellite is at perigee, i.e., closest to the Earth, the satellite velocity is
higher and the gravitational potential is lower, both causing the satellite clock to run
slower. When the satellite is at apoges, i.e., at a greatest distance from the Earth, the
satellite velocity is lower and the gravitational potentia is higher, both causing the
satellite clock to run faster. In addition, with the typical once-per-day control segment
uploads, the current estimate of the rms range error due to the clock error parameters
isabout 1.5 m (Misraand Enge, 2001). In the SPS error budget (Kaplan (Ed.), 1996)
it has been estimated that the ranging error due to the satellite clock errors arein the
order of 3 m (the one-c value).

3.2.2 Signal Propagation Errors

GPS signals are affected by the medium through which they travel from the satellites
to the receiver antenna. At a height of about 1000 km from the surface of the Earth,
the signals enter the ionosphere. At a height of about 40 km, the signals encounter
the electronically neutral gaseous troposphere. In the vicinity of the receiver antenna,
multipath propagation effects introduce interfering signals degrading the code and
also carrier measurements.
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lonosphere Errors

The ionosphere is a dispersive medium which extends from about 50 to about 1000
km above the Earth and is characterized by free electron and ions. Ultraviolet rays
from the sun ionize a portion of gas molecules in the ionosphere and release free
electrons which affect electromagnetic wave propagation (Kaplan (Ed.), 1996). The
signal delay due to the ionosphere is directly proportional to the integrated electron
density along the signal path, i.e., the total electron content (TEC), and inversely pro-
portional to the squared frequency of the signal (Strang and Borre, 1997). TEC is
defined as the number of electronsin atube of 1 n? cross section extending from the
receiver to the satellite (Misra and Enge, 2001). Therefore, since the ionosphere is
a dispersive medium, i.e., the refractive index of the ionosphere is dependent on the
frequency of the RF signal, two-frequency (L1-L2) GPS users can take advantage of
this property of the ionosphere to measure and correct for the first order ionospheric
range and range rate effects directly (Klobuchar, 1996). The ionospheric delay | for
zenith in measurements of pseudorange (p) and carrier phase (¢), which are depen-
dent of the frequency of the radio wave f and the TEC, are equal in magnitude but
oppositein sign as presented in the following

_ 40.3-TEC

lp _|¢—T (8)

The code phase measurements are delayed with the same amount that the carrier
phase measurements are advanced.

The general major effects the ionosphere can have on the GPS signals include delay
of the signal modulation, i.e., absolute range error, carrier phase advance, i.e. relative
range error, Doppler shift, i.e., range rate error, refraction or bending of the radio
wave, distortion of pulse waveforms, and signal amplitude and phase scintillation
(Klobuchar, 1996).

The density of the free electrons in the ionosphere varies strongly with the time of
day and the latitude. During the day, there can be up to five times more delay due
to the ionosphere as during the night. In addition, the time of the year has an effect
on the effect on the ionosphere. Solar flares and the resulting magnetic storms can,
especialy in polar areas, create quickly varying electron densities (Misra and Enge,
2001). In addition, changesin solar activity in the solar cyclesthat reach a maximum
every 11 years directly influence the ionosphere and, thus, the GPS performance. At
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solar activity maximums, the ionospheric delay can be up to four times more as in
minimum periods. In al, for a signal arriving vertically with respect to a user, the
ranging delay due to the ionosphere can be from about 3 m at night to about 15 m at
daytime. At low satellite viewing angles up to 10 degrees, the delay can range from
9 m at night to as high as 45 m during the day (Kaplan (Ed.), 1996).

Models of the ionosphere should be employed to correct for the ionospheric delay.
For example, an ionospheric delay compensation model by Klobuchar removes, on
the average, about 50 percent of the ionospheric delay at midlatitudes by assum-
ing that the vertical ionospheric delay can be approximated by utilizing the satellite
broadcast ionospheric delay coefficients in a model including half a cosine function
of thelocal time during daytime and a constant level during nighttime (Kaplan (Ed.),
1996; Misra and Enge, 2001). The ionospheric delay can be determined from broad-
cast parameter values and the user’s latitude, longitude, satellite elevation, azimuth
angles, and local time. The ionospheric delay of the Klobuchar model can be ex-
pressed as a function of zenith angle { as follows (Misraand Enge, 2001)

diono(c_,) = diono., z° OFlono(C_,) (9)
where diono, 7 isazenith delay, and OFjono(C) isan obliquity factor for zenith angle C.

A zenith ionospheric delay estimate at local timet can, according to Klobuchar, be
expressed as

d\iono7 z _ A]_ +A2COS ZTC(tA;Ag) |f ’t — Ag‘ < A4/4
C Al otherwise

where A; is a nighttime value of the zenith delay fixed at 5 x 10°, A, is an amplitude
of the cosine function for daytime values, A3 is the phase corresponding to the peak
of the cosine function fixed a 14 h local time, and A4 is the period of the cosine
function. This model for the zenith ionospheric delay is also called the broadcast
model. The values of A, and A4 are specified in the navigation message broadcast by
the satellites and updated daily.

The path length of asignal traveling through the ionosphere depends on the el evation
angle of the satellite, and is accounted for in the form of the obliquity factor (Misra
and Enge, 2001). The abliquity factor can be expressed as

RESinC)]fl/z

OFiono(8) = [1- (R 1

(10)
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where Re is the average radius of the Earth and h; is the mean ionospheric height.
The vaue of OFn0() varies from one at the zenith direction ({=0) to about three
for a satellite elevation angle of 5 degrees (Misra and Enge, 2001).

There are also other models for ionospheric compensation, for example wide area
models, global grid-based ionospheric models, a 3-D model based on ground-based
tomography, or avoxel approach that represents and estimates the ionosphere and its
electron density (Lachapelle, 2003). The major effects of the ionosphere on asingle-
frequency GPS user can be mitigated greatly when applying differential corrections;
at least when the relative geographic area of the differential region used is small such
as in harbors or in aircraft landing areas. However, when the differential approach
is attempted over a wide area, the differential ionospheric time delay across a large
region can become again a significant limitation to the overall positioning accuracy
(Klobuchar, 1996).

In the SPS error budget (Kaplan (Ed.), 1996), it is estimated that the one-c value due
to the residual ionospheric delay isin the order of 5m.

Troposphere Errors

The lower part of the Earth’s atmosphere, the troposphere, consists of dry gases,
i.e., the dry component, and water vapor, i.e., the wet component, causing the GPS
signals to be refracted. Water vapor generally exists only below altitudes of 12 km
above sealevel and most of the water vapor isbelow 4 km. The dry component of the
troposphere, mainly N, and O, gases, extends to a height of about 40 km. The dry
gases, however, can be found in gradually thinning layers at altitudes of hundreds of
meters (Misra and Enge, 2001). At the GPS frequencies, oxygen O, is the dominant
source of attenuation.

The troposphere is a non-dispersive medium, i.e., it affectsthe signalsat L1 and L2
similarly. Thus, in the troposphere, arefractive index n, which represents a factor by
which asigna is slowed down relative to vacuum, does not depend on the frequency
(Misraand Enge, 2001). The refractive index is dependent on the local temperature,
pressure, and relative humidity (Kaplan (Ed.), 1996). Refractivity N can be defined
by the refractive index as N = (n— 1) x 105, and it can be divided into wet and dry
components as follows

N = Ngry + Nuet (11)
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The refractivity can be interpreted as a parts per million (ppm) error. The speed of
the GPS signals is lower in the troposphere than in free space, and the typical range
error due to the tropospheric delay is from about 2.5 m to 25 m depending on the
satellite elevation angle and thus signal path length. The troposphere produces also
attenuation on the signals, generally, however, remaining under 0.5 dB (Parkinson
and Spilker, 1996). About 90 percent of the tropospheric delay is due to the dry
component and it is easily predictable based on the user latitude, season, and atitude.
The wet atmosphere consisting of water vapor is much harder to be estimated sinceit
varies with local weather and can change rapidly. Models of the troposphere attempt
to estimate the dry and wet refractivities along the satellite signals paths in order to
predict the total tropospheric delay (Misraand Enge, 2001).

It is impractical to measure the precise temperatures and pressures along the prop-
agation path of the signal with weather instruments, and, thus, models of standard
atmosphere for the day of the year and the user’s latitude and altitude are usually
used to predict the required meteorological information. Tropospheric models trying
to account for the height dependence of the tropospheric effects include, to men-
tion the two most common ones, the empirically derived Hopfield two quartic model
(Spilker, 1996) that assumes the refractivity varies with altitude and includes two
different quartics for the dry and wet atmospheric profiles, and the Saastamoinen
total delay model (Saastamoinen, 1972; Spilker, 1996), which uses gas laws and as-
sumptions regarding changes in pressure, temperature, and humidity with altitude.
More tropospheric delay models and mapping functions, i.e., obliquity factors, can
be found in (Spilker, 1996). In general, for most users and circumstances, a ssimple
model is effectively accurate to about one meter (Spilker, 1996). In (Kaplan (Ed.),
1996), the one-c value for the residual tropospheric delay is estimated as 1.5 m.

Orbita error, satellite clock error, and atmospheric delays are spatialy correlated
and can significantly be mitigated by differencing the measurements with a receiver
a a known location, i.e., differential GPS (DGPS). In addition, the analytic error
modeling based on the parameters included in the broadcast navigation message need
to be utilized in order to reduce the errors.
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Signal Multipath Errors

In multipath propagation, the measurement error is caused by reflected signals from
the Earth and nearby objects, such as buildings and vehicles, entering the front end of
aGPSreceiver, and masking thereal correlation peak by distorting the peak dueto the
presence of indirect signals (Parkinson and Spilker, 1996). In typical multipath, the
antenna receives the line-of-sight (LOS) signal and one or more of its often weaker
reflections. A simple picture describing the modes of degradation with attenuated sig-
nalsand signalsfrom multiple paths entering the receiver in poor signal-environments
isshown in Fig. 5. Multipath can be divided into specular and diffuse multipath. In
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Fig. 5. Modes of Degradation in Urban Environments: Attenuation and Multipath Propaga-
tion.

specular multipath, parallel incident rays remain paralel after reflection, and in dif-
fuse multipath, the incident wave is reflected in many directions. Specular multipath
occurs on smooth surfaces, when the rays remain paralel, and diffuse multipath oc-
curs due to rough surfaces, e.g., on an ocean surface, and resultsin scattered rays and
loss of field strength in the direction of the antenna (Lachapelle, 2003). Multipath
decorrelates spatially very rapidly and, thus, multipath cannot be reduced through
differential processing. However, multipath is correlated from day-to-day for agiven
location, due to the periodic nature of the satellite orbits, if the reflection geometry is
constant over time.

The interfering multipath signals actually change the phase being measured (Misra
and Enge, 2001). Multipath generally causes a systematic error in the measurements
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and can cause the measured range to be too large or too small with respect to the
true range depending on the phase of the reflected signal or signals. Pseudorange
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Fig. 6. Pseudorange Multipath Formulation.

multipath can be described asin Fig. 6, where the correlation function is presented
in afundamental level for the direct line-of-sight signal, the reflected signal, and the
composite signal, which the receiver observes, i.e., the sum of the received signals.
The reflected signal has a lower amplitude due to imperfect reflection. The range
measurement error due to multipath depends on the strength of the reflected signal
and the delay between the direct and reflected signals (Misraand Enge, 2001). Mul-
tipath affect both code and carrier measurements but the magnitude of the error is
greater on the code measurement. In theory, pseudorange multipath error can reach
magnitudes of about 0.5 of acode chip, i.e, 150 min C/A case, depending on the re-
ceiver correlation technology. For narrow correlator receivers, the effect of multipath
islower.

Multipath error is dependent on the reflecting geometry. Overal, multipath can be
mitigated by proper antenna site selection, receiver design, and error detection tech-
niques. The antenna site should be selected in away that there is a minimum amount
of obstructions surrounding the antenna location. In addition, an antenna can be se-
lected, which minimizes multipath, e.g., a groundplane or a chokering antenna. In
receiver design, multipath can also be taken into account in the hardware technology
mostly for code multipath mitigation by using narrow correlators (van Dierendonck
et a., 1992), strobe correlators, pulse aperture correlators (PAC), or multipath es-
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timation delay lock loop (MEDLL) technology (Ray, 2000; Lachapelle, 2003). In
the effort of mitigating multipath induced measurement errors, error detection and
quality control algorithms such as RAIM and fault detection and isolation/exclusion
(FDE/FDI) are also essential. GPS multipath error is greatly varying depending on
the reflecting geometry surrounding the receiver antenna, and it can reach from under
ameter with acarefully picked antennatype and location to over a hundred metersin
worst cases in urban areas near large, high-rise buildings. Thus, since multipathis so
difficult to model, it is a severe problem to the position accuracy. In (Kaplan (Ed.),
1996), arough estimate of 2.5 m is estimated as the one-c error due to multipath.

Multipath is indeed the largest error source in degraded signal environments, which
are of most concern in thisthesis. Due to the continuously changing satellite geome-
try and the motion of the user, the satellite signal reflectionsfrom the user surrounding
obstructions are unpredictable, and the effects of multipath are very hard to foresee.
A specid case of multipath, especially when poor signal conditions are considered,
is echo-only signal tracking, which is also shown in Fig. 6. The direct line-of-sight
signal is faded to a non-acquirable power level but a few strong signal reflections
still reach the antenna (Mezentsev, 2005). The range error caused by this type of
phenomenon is theoretically unlimited.

3.2.3 Receiver-Based Range Errors

Receiver-based errors include antenna errors, the receiver clock error to be estimated
in the solution computation, inter-channel biases, receiver noise, and timing and
tracking errors.

Receiver inherent noise affects the resol ution of the GPS code and carrier signalsran-
domly. Receiver noise is a broad term including RF radiation sensed by the antenna
in the band of interest unrelated to the signal, and noise introduced by the antenna,
amplifiers, cables, and the receiver. Interference from other GPS signals and GPS-
like broadcasts from system augmentations and signal quantization noise can also be
counted as receiver noise (Misraand Enge, 2001).

In the delay-lock-loop of a GPS receiver, the dominant sources of pseudorange error
arethermal noisejitter and the effects of dynamic stress error. The secondary sources
of error include code hardware and software resolution and oscillator stability (Ka-
plan (Ed.), 1996). The C/A code receiver noise is generally one order of magnitude
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higher compared to that of the P(Y') code due to the chip width of the C/A code being
ten times that of the P(Y) code chip width (Ray, 2000; Kaplan (Ed.), 1996). In a
typical modern receiver, the one-c error of the receiver induced noise and resolution
is estimated to be on the order of 1.5 m for the C/A-code (Kaplan (Ed.), 1996).

3.3 Signal Strength and Interference

Carrier-to-noise density, C/Np, is a measure of signal strength and it represents the
current signal power conditions independently of receiver implementation, i.e, of the
processing bandwidth. The C/Np is the most fundamental parameter describing the
navigation signal quality. The unitsof C/Np arein dBHz. Typically, for avery strong
GPS signdl, the C/Np is larger than 40 dBHz. When the C/Ny value goes beyond
approximately 28 dBHz, the signal isweak, likely erroneous, and the receiver is also
likely to loose lock on this signal (Lachapelle, 2003).

Signal-to-noiseratio, SNR, on the other hand, isameasure of signal strength relative
to aprocessing bandwidth, and, thus, it isameasure of how well agiven receiver will
perform. The unitsof SNR arein dB, i.e.,, it isadimensionlessratio.

The satellite navigation frequency bands are protected by international and Federal
Communication Commission (FCC) frequency assignments. However, there is a
chance of unintentional interference and even intentional interference on the satel-
lite navigation signals (Parkinson and Spilker, 1996). Any radionavigation system
can be disrupted by interference of sufficiently high power. Extra-terrestria inter-
ference caused by fluctuations in the total electron content in the ionosphere diffract
the radiofrequency signalsinto a pattern of amplitude and phase variations that move
across the surface of the Earth in an effect known as scintillation. Terrestrial inter-
ference caused by out-of-band emissions of other signal sources, such as mobile and
fixed very high frequency (VHF) and ultra high frequency (UHF) transmitters, broad-
cast television, and ultra-wideband radar and communications may produce harmon-
ics in the L-band. GNSS signals are aso vulnerable to disruptions in continuous
functionality caused by unintentional human misunderstandings.

Theintentional emission of radiofrequency energy of sufficient power and character-
isticsto prevent receiversin atarget areafrom tracking GPS signalsis called jamming
(Lachapelle, 2003). Jamming can be accomplished by continuous wave, wideband,
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narrowband, or GPS-type signals exceeding typically the GPS signal power by 40 dB
to jam an aready locked GPS receiver. Spoofing is an intentional interference mech-
anism aiming at shifting the position solution to be solved for by injecting misleading
information to the system. A spoofing signal can be swept acrossthe GPS signal time
delay portion, where the receiver correlator gates are centered, and then be captured
and pulled away from the true range. The spoofer must know the relative position of
the target receiver and be able to predict the next code pulse to shorten the measured
range (Lachapelle, 2003). The anti-spoofing encryption on the GPS P(Y)-code makes
it difficult to be spoofed due to the spoofer being unaware of which code chip comes
next in P(Y) but, however, the C/A-code is susceptible to spoofing. Techniquesto im-
prove jam resistance of GPS receivers may be classified into precorrelation methods
that are waveform specific and include, e.g., adaptive spatial, temporal and spectral
processing (Lachapelle, 2003), and postcorrelation methods including, e.g., the im-
plementation of additional sensors. In addition, RAIM and FDE methods are also
able to mitigate the effects of unintentional and intentional interference effects by
detecting the inconsi stency.

The planned GPS modernization efforts, i.e., the higher signal power, a C/A-code on
the L2 frequency band, and a more robust civil code on L5, will reduce the suscepti-
bility of civil GPS applications to interference (Lachapelle, 2003).

3.4 User Error Budgets

Based on the discussed pseudorange error constituents, a user error budget can be
gathered to aid the understanding of standalone GPS accuracy. Sincethe error sources
are reasonably independent, the square root of the sum of the squares of errors can
be expressed as the user equivalent range error (UERE) in meters as follows

_ 2 2 2 2 2
OUERE = \/Geph + G%c + Gjono 1 Otropo + Omp + Onoise (12)

where ogph istheiserror dueto the ephemeris data, ch isthe error dueto the satellite
clock, 62, isthe residual error due to the ionosphere, Gtzropo istheresidual error due
to the troposphere, 62p is the error due to multipath, and 62, is the error due to
receiver induced noise.

The probability level of UERE is about 68%. With the estimates for the standard
deviations of the pseudorange error constituentsin (Kaplan (Ed.), 1996), the approx-
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imate total one-c value for the UERE can be set as oyere =~ 8 m. In real-life, the
pseudorange error can rarely be represented with one unified estimate, since the error
depends on the path length that the satellite signal passes through the atmosphere,
i.e., the elevation angle, and often also on the power of the received signd, i.e., the
carrier-to-noiseratio. A unified estimate for the range rate error, similar to the UERE,
isnot readily available to be formed, since the error constituents arein literature usu-
aly given only for the range observations. Overall, however, the position error is a
function of both pseudorange errors and user-to-satellite geometry and, in the same
manner, the velocity error is a function of both pseudorange rate errors and the so-
lution geometry. Multiplying the UERE value with a dilution of precision (DOP)
parameter, a value describing the user/satellite geometry, and estimated standard de-
viation of the position error can be obtained. The user/satellite geometry is discussed
in later chapters of the thesis more thoroughly.

3.5 Real-Life Estimated Pseudorange and Pseudorange Rate Errors

This section presents real-life observed pseudorange and pseudorange rate errors ob-
tained by post-processing when knowing the reference position and vel ocity in good,
lightly degraded, and heavily degraded signal conditions. The pseudorange and pseu-
dorange rate residual s were obtained by fixing the user position and velocity coordi-
nates to known values and removing them from position and velocity computation
leaving only the clock errors to be estimated. The residuals from this process can
thus be regarded as unbiased estimates of the pseudorange and pseudorange rate er-
rors, including atmospheric errors as well as multipath and receiver noise.

3.5.1 Good Signal Conditions

Pseudorange and pseudorange rate errors from good line-of-sight conditions are first
presented with data obtained from a rooftop antenna presented in Fig. 7 with a SIRF
XTrac-LP high sensitivity GPS (HSGPS) receiver for 23 minutes at afternoon hours.
The reference position for the experiment was very accurate due to the location of
the antenna being at a surveyed reference station.

The following Figures 8, 9, and 10 demonstrate that the errors are generally small
in the good signal conditions, with a standard deviation of 4 m for the pseudorange
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Fig. 7. Outdoor Roof: Multistorey Building.
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Fig. 8. Outdoor Roof: Pseudorange and Pseudorange Rate Errors vs. Carrier-to-Noise Ra-

tios.

errors and 0.05 m/s for the pseudorange rate errors in this short experiment. First,
errorsare presented for each available satellite in the test asafunction of their carrier-
to-noiseratios, C/Np. Then, histograms of the errors as well as empirical cumulative
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distribution functions of the absolute values of the errors describe the distribution of
the errorsin the pseudoranges and pseudorange rate observations, respectively. Error
statistics for the pseudorange and pseudorange rate measurements are shown along
with the histogramsin Fig. 9.

35.2 Lightly Degraded Signal Conditions

Pseudorange and pseudorange rate errors from an indoor-experiment are shown, where
HSGPS data were collected inside awooden, residential garage for 12 hours using a
SIRF XTrac-LP HSGPS receiver. The garage in question is shown in Fig. 11. The
reference position for the test was obtained by surveying, and the reference is accu-
rate within centimeters. The reference velocity for the static test is naturally zero.

Fig. 11. Indoor: Residential Garage.

Figures 12, 13, and 14 present the pseudorange and pseudorange rate errors for each
satellite as functions of C/Np, as histograms, and as empirical cumulative distribution
functions of the absolute error values, respectively. In addition, in Fig. 13, error
statistics for the observations are provided.

In the wooden garage, the maximum errors caused mainly by multipath and cross-
correlation effects are severe but overall the error level is moderate with the standard
deviation for the pseudorange measurements being around 10 m and around 0.5 m/s
for the pseudorange rate measurements.
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3.5.3 Heavily Degraded Signal Conditions

Pseudorange and pseudorange rate errors are presented from a 35-minute HSGPS
test in a parking lot in a deep urban canyon shown in Fig. 15. The reference point
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Fig. 14. Indoor: Empirical Cumulative Distribution Functions of Pseudorange and Pseudo-
range Rate Errors.

for the experiment accurate to a couple of meters was obtained by averaging reliable
solutions and map matching. Naturally, the reference velocity was 0 m/s.
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Fig. 15. Urban Canyon: Parking Lot.

Figures 16, 17, and 18 demonstrate the heavily deteriorated measurements obtained
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Fig. 18. Urban Canyon: Empirical Cumulative Distribution Functions of Pseudorange and
Pseudorange Rate Errors.

in the parking lot in the urban area by presenting pseudorange and pseudorange rate
errors as functions of C/Np, as histograms of the errors, and as cumulative distribu-
tion functions of the absolute errors. The signals in the short urban test are highly
attenuated and contaminated by multipath and echo-only signals, with a standard de-
viation of the pseudorange error reaching 69 m and pseudorange rate error reaching
0.5 m/s, as presented in Fig. 17. The pseudorange errors are generally proportion-
aly more deteriorated in this urban canyon experiment than the pseudorange rate
measurements.
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This section discusses the estimation processes of user position, velocity, and time.

4.1 User Position, Velocity, and Time Solution

Positioning with GNSS is based on computing the user position from biased measure-
ments of the satellite-to-user ranges, pseudoranges. Pseudoranges are here denoted
with the symbol p. The user velocities are estimated from biased measurements of
the satellite-to-user range rates, pseudorange rates. Pseudorange rates are denoted
with the symbol p.

First, position estimation is considered.

In order to determine user position in three dimensions and the offset of the receiver
clock from system time, pseudorange measurements need to be made to at least four
satellites. A single pseudorange is represented by

pj=rj—rif+ct+egp (13)

where j ranges from 1 to n and reference the satellites. The parameter n represents
the number of satellites available. Vector r; is the satellite position vector at signal
transmit time, r is the receiver position vector at signal receive time, t is the biasin
the receiver clock from system time in seconds, ¢ is the speed of light, and g, isthe
composite of errors produced by, e.g., aamospheric delays, satellite ephemeris mis-
modeling, and receiver noise. The pseudorange errors were discussed in the previous
chapter.

To extract the user state to be estimated, x = [, y, z, —ct]T =[rT, —ct]7, where x,
y, and z refer to the user position coordinates in Earth Centered Earth Fixed (ECEF)
WGS-84 coordinate frame, the measurement equation (13) must be linearized about
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anomina value. Usually, thisnominal valueisacurrent best estimate (Parkinson and
Spilker, 1996). With anominal estimate of the state, xo = [ro", —Cto]", and estimates
of bias contributions caused by ionospheric and tropospheric delays, relativistic ef-
fects, and satellite clock errors, €, o, aprediction of the pseudorange measurement
j can be obtained as follows

pj,o=|rj—rol +cto+¢&p, o (14)

A reduced pseudorange measurement vector, Ap, is obtained as

Ap=po—p (15)

where pg and p are vectors of the predicted pseudoranges from Eqg. 14 and the ac-
tually measured pseudoranges, respectively. If the linearization point is sufficiently
closeto the true values of position and receiver clock error, the reduced pseudorange
measurements can be modeled as linearly related to the error in the state estimate,
Ax = [ArT, —cAt]T (Kaplan (Ed.), 1996; Parkinson and Spilker, 1996). By perform-
ing a Taylor expansion about the current state estimate, a linearized pseudorange
equation is obtained as

Ap = HAX + Ag, (16)

where H denotes a linear connection matrix consisting of direction cosines of line
of sight unit vectors pointing from the approximate user position to the available
satellites. The vector Ae,, containsresidual pseudorange errors after the known biases
have been removed, and it is assumed to be normally distributed according to Ag, ~
N(0,X%), where X is a diagonal covariance matrix of the observations. The linear
connection matrix H can be expressed as

a1 a1 aan 1
ae ap ap 1

H= (17)
an an an 1
where
Xj —Xo
= XiTX 18
= Ty 4o
Yi—Yo
A 1
M (49
zj—
ay = A2 (20)

vyl
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and x;j, y;j, and z; refer to the coordinates of satellite j and Xo, Yo, and zg refer to the
coordinates of the approximate user position Xo.

Thelinearized model in Eq. (16) isthe fundamental pseudorange measurement equa-
tion in navigation (Parkinson and Spilker, 1996). The unknown array Ax, defined as

AX = [AX, Ay, Az, —cAt]" (21)

is the vector offset of the user’s true position and time bias, x, from the values at the
linearization point, Xp. Once the unknowns Ax are abtained, the user coordinates and
the receiver clock offset are obtained as follows

X = Xg+ AX (22)

Since Ap iscontaminated by unknown random errors as discussed in Chapter 3, equa-
tion (16) should be treated as a stochastic equation and the unknown to be estimated
for, Ax, should be determined using parameter estimation techniques such as least
sguares estimation. The estimation of parametersin linear models means essentially
the estimation of the expected values of the observations (Koch, 1999).

Asinthefirst step of position computation the system of equations must be linearized,
then in the second step the solution has to be calculated with the help of an iterative
procedure. If the displacement from the linearization point to be solved for exceeds
an acceptable value, the processisreiterated with po being replaced by anew estimate
of pseudorange from equation (14) based on the cal culated point coordinates x, y, and
Z (Kaplan (Ed.), 1996). The iterations are stopped when the displacement is within
close proximity to the current linearization point.

For user velocity computation, a similar estimation process as for the user position
can be conducted. The pseudorange rate observation can be expressed as

ry—r
Irj—=rl

pj:(Vj—V)- +Cf+€pj (23)
wheret is the receiver clock drift in seconds/s, the vector vj is the satellite velocity
vector at signal transmit time, v is the receiver velacity vector at signal receive time,
and g, isthe error in the observation in m/s. Again, the observation can be predicted
based on the current estimates, and, thus, the predicted pseudorange rate observation

can be written as
r—ro

————— +clo+¢&, 24
Iy —ro T e 29

Pj, 0= (Vj—Vo)"
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The vector of the reduced pseudorange rate measurements is obtained as
Ap=po—p (25)
The linearized Doppler measurement equation is then obtained as follows (Kaplan
(Ed.), 1996; Parkinson and Spilker, 1996; Misra and Enge, 2001)
Ap = HX 4 Ae; (26)

with the unknown user velocity estimate vector being X = [, y, z, —cf].

4.2 Least Squares Navigation Solution

In order to reduce the influence of errors in the observations, a greater number of
measurements than the number of unknown parameters in the model can be used
(Bjorck, 1996). Thus, when using measurements from more than four satellites, the
resulting problem is to solve an overdetermined linear system of equations.

To address the problem more generally than just for the user position and velocity
estimation, lets assume that the n-dimensional vector y € R" of observationsisrelated
to the p-dimensional unknown parameter vector x € RP by a linear relation of the
following form

y=Hx+¢ 27

where the n x p-dimensional matrix H € R™P is a known linear connection matrix
and € is avector of random errors normally distributed asN(0,X). In addition, in the
linearized mode, it is assumed that

E(y) = Hx (28)

V(y)=% (29)

where E(-) is the expectation function and V (-) is the variance covariance function
(Draper and Smith, 1981). The general linear model presented in Eg. 27 follows a
Gauss-Markoff model (Koch, 1999).

A least sguares solution (LS) minimizes the sum of the squared residuals (Bjorck,
1996; Kay, 1993; Koch, 1999), i.e.,

miny [|Hx — y]|? (30)
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When applied to the navigation problem, the minimization problem can be expressed
as
minay |HAX — Ap||? (31)

for the position estimation case, and as
ming [[Hx — Ap||® (32)
for the velocity estimation case. The || - || denotes the Euclidean vector norm.

A weighted least squares (WLYS) estimate is equal to a best linear unbiased estimate
(BLUE) (Kaoch, 1999) if the inverse of the variance covariance matrix (VCM) of the
observations, 1 | is used as weight matrix. The BLUE is the most convenient
estimate for practical implementations because it yields the lowest estimation error
among all linear estimators (Kay, 1993). Weighted least squares tries to arrive at a
best solution by minimizing the sum of the weighted discrepancies among observa-
tions (Kuang, 1996). With the assumption that HT =~1H is non-singular, which isthe
case if X isnon-singular and there are at least as many independent observations as
unknowns, the BLUE of the unknown user parameters x is (Draper and Smith, 1981;
Neter et al., 1996; Huber, 1981)

f=(HT=H) HTz Yy (33)

Similarly, the weighted least squares solution of the incremental user position AX is

AR = (HTEZ,TH) THTE, 1Ap (34)

and the BLUE of the user velocity x is
X=(HT=;™H) HTZ; "ap (35)

The weight matrix, i.e., the inverse of the covariance matrix of the observations, can
be obtained from general assumptions or models, and by assessing the observations.
Signal elevation or strength dependent variance models can be used, and they will be
discussed more in the following chapters.

When in velocity estimation the resulting BLUE estimate of Eq. 35 is the user velo-
city estimate, in position computation, on the other hand, the estimate of the unknown
user position coordinates, X, is obtained by adding the incremental component AX of
Eq. 34 to the linearization point as follows

R = Xo+ AX (36)
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The optimality of the previous BLUE requires that the linearization error is negligi-
ble, and to ensure this, the estimation is repeated with the previous estimate as new
approximation until convergence is obtained.

The advantage in using parameter estimation and actually treating the observations
as random values rather than computing a unique solution from just as many obser-
vations as necessary is to have access to the redundancy, which is the basis of both
improved precision and quality control. Assuming a correct measurement model,
observationa residuals defined as the difference between the estimated values of the
observations and their corresponding measured values (Kuang, 1996) indicate the
extent to which the measurements agree with each other. Outliers, i.e., gross errors,
pose a serious threat to least squares analysis (Barnett and Lewis, 1978; Miyashita,
1982). Residuals are, therefore, useful for monitoring the quality of the estimated
parameters. Least squares estimation by itself has a breakdown point of 0%, which
reflects the extreme sensitivity of the least squares method to outliers (Rousseeuw
and Leroy, 1987). The breakdown point can be defined as the smallest fraction of
contamination that can cause the estimator to take values arbitrarily far from the re-
gression coefficients (Rousseeuw and Leroy, 1987).

Often, additional information on the user position is available, e.g., the height. The
additional information will result in an increased measurement redundancy for the
solution computation as well as the quality checking availability. This information
can be incorporated strictly as a condition; however, to account for the uncertainty of
this additional information it is often better to treat it as an additional measurement.
Thisisalso easily accomplished, since after asimple coordinate transformation to the
local level frame, no modification to the above model is required except for adding
arow to the design matrix H and Ap and arow and column to %,. If the variance of
this additional observation is low w.r.t. that of the pseudorange measurements asis
the case when the height is known, the observation acts like a constraint and leaves
only horizontal and time components as unknowns to be estimated. This approach is
denoted as height constraining, and it isincorporated in the computation of the results
in the section presenting the testing and analysis.
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4.3 Kaman Filtering in Navigation

The least squares approach takes into account only the current measurements when
estimating the unknown user position or velocity. Kaman filtering (Gelb, 1974;
Brown and Hwang, 1997), however, combines information of the statistical nature of
system errors with information of system dynamics, as represented by a state space
model, to arrive at an estimate of the state of the navigation system (Kaplan (Ed.),
1996). A Kaman filter is a recursive agorithm that uses a series of prediction and
measurement update steps to obtain an estimate of the state vector. The advantage of
the Kalman filter is the ability to take past measurements and aid the current epoch
by propagating past measurement to the present. However, if the dynamic model
is incorrect, the solution will be suboptima even with good measurements (Ryan,
2002).

Kaman filtering is often the most preferred choice for navigation applications. How-
ever, due to the low accuracy level, the absence of additional sensors apart from the
GPSreceiver, and the poor knowledge about the user dynamics, the usual advantages
of aKaman filter do not apply in the severely degraded signal conditions of concern
in this thesis. The dynamic model needed for filtering may not be known in personal
satellite-navigation applications. However, all the strategies for reliability monito-
ring and quality control can easily be applied to Kalman filtering as well (Kuusniemi
et al., 2004). The weight models can be used without modifications, and the global
and local reliability tests to be discussed can be performed using the innovations in
the testing as described in (Teunissen, 1998). If the predicted state is also erroneous,
the FDE can be performed as described in this thesis later on but applied on the es-
timated filtering residuals of an extended least squares model (Wieser et al., 2004,
Hewitson and Wang, 2004), which results from adding the predicted states as direct
observations to the measurement model.

4.4 Robust Estimation Techniques in Navigation

In addition to least squares estimation or the Kalman filtering approach, different
estimators that are robust against errors can be chosen for the navigation solution
computation. Not much effort will here be invested into the different robust tech-
niques and only a few remarks on the existence of such estimators will briefly be
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discussed.

An outlier in a set of data can be defined as an observation, which appears to be
inconsistent with the remainder of that set of data (Barnett and Lewis, 1978; Beckman
and Cook, 1983). The observations might be falsified by outliers, which change the
distribution of the observations. An estimator is to be said robust if its distribution
isinsensitive to small changes in the distribution of the population (Koch, 1999) or
deviations from the assumptions (Huber, 1981; Hampel et al., 1986), i.e, if it, to
some extent, tolerates outliers.

A least median of squares (LM S) method (Rousseeuw and Leroy, 1987) isan estima-
tor that is very robust with respect to outliers and is capable of surviving outliersin
the data set if they are less than 50%. However, the LMS cannot be easily migrated
from a single parameter case with independent, identically distributed observations
to a heterogeneous multiparameter case. Certain M-estimators, that are generaliza-
tions of maximum likelihood estimation, are fairly robust against outliers, and were
originaly introduced by Huber (Huber, 1981). However, the M-estimators cannot
be established if the distribution of the observations is unknown. In addition, there
exist certain empirical robust estimation procedures with no generally valid statisti-
cal explanation, such as, e.g., an iteratively reweighted least squares estimator, e.g.,
(Rousseeuw and Leroy, 1987; Jergensen et al., 1985), which is simple, computation-
aly efficient, and has been found to perform well in practical implementations. Its
application into navigation in degraded signal environments will be presented in the
later chapters of thisthesis.

4.5 Geometrical Aspects

The quality of the user position estimate depends not only on the quality of the range
measurements but al so on the user/satel lite observation geometry. Thedilution of pre-
cision (DOP) concept provides a simple quality measure of the user/satellite geome-
try (Kaplan (Ed.), 1996; Misra and Enge, 2001; Strang and Borre, 1997; Hofmann-
Wellenhof et al., 2001). DOP is a measure of the geometrical strength of the satellite
configuration (Wells et al., 1987). Bad geometry may amplify random errors and
biases and, therefore, produce large position errors.

The concept of dilution of precision istheideathat the position error that results from
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measurement errors depends on the user/satellite relative geometry, as formulated in
(Kaplan (Ed.), 1996). In a simplified example in Fig. 19, a user receiver obtains
measures for the distances between the receiver and a pair of satellites, S; and Sp,
at known locations. If the range measurements were perfect, the user receiver would
obtain its location exactly at the intersection of two circles centered at $; and S
with the measured ranges as their radii (Misra and Enge, 2001). However, due to
range measurements being imperfect, uncertainty is obtained in the user location
with the amount of uncertainty depending besides the range measurement errors on
the user/satellite geometry. While in the two cases @) and b) in Fig. 19 the quality
of the range measurements is the same, clearly the quality of the position estimates
is better in case a) due to the area of uncertainty, the shaded area, is consequently
smaller. Overall, case a) has better geometry, and, thus, smaller dilution of precision.

Fig. 19. Relative Geometry and Dilution of Precision.

The formal derivation of the DOP concept is provided in, e.g., (Kaplan (Ed.), 1996;
Parkinson and Spilker, 1996). Basically, the DOP parameters can be computed from
the elements of a cofactor matrix Q = (H"H) ! expressed as

O Oxy Oxz Oxt

_ | 9 Gy Oz Oy 37
Q Ox Oxy Oz Oz 37
Gex Gy Gz Ot

The matrix H is the design matrix, i.e., the linear connection matrix defined in Eq.
17. The commonly used DOP parameters include GDOP (Geometric DOP), PDOP
(Position DOP), and TDOP (Time DOP), and they are defined as

GDOP = /o + Gy + Oz + Gt (38)
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PDOP = /G + Gy + Oz (39)
TDOP = /Gt (40)

The position deviation vector from the linearization point, the vector Ax, was defined
in the ECEF coordinate frame but with an orthonormal matrix R it can be repre-
sented in atopocentric local east north up (ENU) coordinate frame (Misraand Enge,
2001) as

AX| = RLAX (41)

where Ax| = [Axe, Ayn, Azy]" and R_ is expressed by

—sin(A) cos(A) 0 0 R
R.= | —sin(g)cos(A) —sin(g)sin(A) cos(¢) O _[ RLH] (42)
cos(@)cos(A)  cos(@)sin(A) sin(¢) O Ls

where the parameters ¢ and A represent the latitude and longitude of the geodetic
coordinates of the user, respectively. Transforming the cofactor matrix Q from the
equatorial system to the topocentric local coordinate system by using the transfor-
mation matrix R while ignoring the time parameter can be expressed as (Hofmann-
Wellenhof et a., 2001)

OxixL OxiyL OxLzl
QL=RIQR! = | Gyx Gy Gya (43)
Ozax. OxyL Ozz

The elements of the transformed cofactor matrix yield to HDOP (Horizontal DOP)
and VDORP (Vertical DOP), and they are expressed as

HDOP = /0xx + Qyiyi (44)
VDOP = \/Qa4 (45)

4.6 Accuracy Estimation

When the general linear model of Eq. 27 isassumed and redundant observations have
been obtained, least squares residualsin a navigation situation can be formed as

V=HX-y (46)
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The aposteriori variance factor of the estimation process can be expressed as
D IREY
n—p
The covariance matrix of the estimated unknowns gives a measure of the accuracy of
the estimated parameters and their correlation

52— (47)

Se=(HTZ H) (48)
Estimates of the accuracy and reliability of the user parameters, both for position and
velocity, can be obtained when multiplying the a posteriori variance factor, 63, with
the covariance matrix of the estimated user parameters, Xz, resulting in mean radial
spherical error (MRSE) and distance root mean squared (DRMYS) estimates (Leick,
2004). In the local level frame, an estimated covariance matrix of the estimated
unknowns can thus be expressed as
6% One Onu
SeL =62RIR! =62RL(HTSIH) 'Rl = | 6ne 62 6eu (49)
6w Geu 6

which leads to the three-dimensional MRSE and two-dimensional DRM S accuracy

estimates
M = /63 + 6¢ + 65 (50)
D=/6%+ 62 (51)

The estimates M and D can be used to assess the trustworthiness and accuracy of the
estimated solution. The M estimate contains about 61% probability (Leick, 2004; van
Diggelen, 1998) while the measure D contains about 63% of probability (Hofmann-
Wellenhof et al., 2001; van Diggelen, 1998).
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5. RELIABILITY THEORY

The advantage in using parameter estimation and actually treating the observations
asrandom values rather than computing a unique solution from just as many observa-
tions as necessary is to have access to the redundancy, which is the key to improved
precision and quality control. The relation between satellite measurements and un-
known navigation parameters is comprised in the functional model, while the uncer-
tainty is described in the stochastic model. Gross errors like outliers, i.e., blunders,
are not captured in the functional relation, and since gross errors are different from
ordinary noise modeled by the stochastics, the stochastical model can not either ac-
count for the blunders. The occurring blunders will bias the navigation solution and,
thus, it is important to detect the anomalies in the observations and exclude them.
The detection of model errors is based on statistical hypothesis testing to which the
presence of redundant measurementsis crucia (Tiberius, 1998). Assuming a correct
measurement model, observational residual s defined as the difference between the es-
timated values of the observations and their corresponding measured values (Kuang,
1996) indicate the extent to which the measurements agree with each other. Residuals
are, therefore, useful for monitoring the quality of the estimated parameters. Without
sufficient redundancy, no consistency checks can be performed, quality control be-
comes infeasible, and there is no way of testing whether the data can be considered
to be statistically consistent with the assumed model (Teunissen, 1990).

The performance of a navigation situation can be defined with parameters such as
accuracy, availability, integrity, continuity, and reliability. Accuracy is the ability of
the system to maintain the position within atotal system error and availability is the
percentage of time that the services of a navigation system are usable. Integrity is
often defined as the ability of the navigation system to provide timely warnings to
the user when the system should not be used for navigation and continuity as the
capability of a system to provide navigation accuracy and integrity throughout an
intended operation (Ober, 2003). Reliability refers to the ability to detect blunders
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and to estimate the effects that undetected blunders may cause on a solution (Leick,
2004) and it is defined more carefully in this chapter.

When redundant observations have been made and the general linearized model is
assumed, least squares residuals of the observationsy can be obtained as

V=HX—y=—Ry (52)

where R is a projector from the reduced observations to the LS residuals. For the
redundancy matrix, the following equation can be derived

R=C¢x ! (53)

where the matrix Cy denotes the covariance matrix of the residuals and is computed
asfollows
Co=Z—HHTZH)HT (54)

The trace of the matrix R isthe overall redundancy, i.e., the degree of freedom, e.g.,
(Schaffrin, 1997), and, therefore, R is referred to as the redundancy matrix. With
uncorrelated observations, this matrix plays a key role in quality control. The ith
diagonal element of matrix R, r;j , corresponds to the contribution of the ith observa-
tion to the overall redundancy but it is also the scale factor with which a bias of an
observation will be reflected by its residual. 1t can be proven (Kuang, 1996; Leick,
2004) that each r; is always between 0 and 1 and they sum up the total redundancy
of the system. The r; can be seen as the contribution of the observation y; to the to-
tal redundancy of the system (Kuang, 1996). A balanced adjustment problem would
have all the diagonal elements of the redundancy matrix approximately equal. When
ri iscloseto zero, the ith observation contributes very little to the redundancy, which
also implies that it is hardly controlled by the other observations. Thus, very small
redundancy numbers are not desirable, and a zero redundancy number implies an
uncontrolled observation, e.g., (Leick, 2004).

The effect, V;V;, of an error Vy; in observation y; onto its corresponding residual is
determined by theith diagonal element of R as

Vi\AIi = —I‘iVyi (55)

Since r; is aways between 0 and 1, possibly only a small part of an error shows
up in the residuals and the rest of it will be absorbed in the determination of the
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unknown parameters. An error in a observation that has a large redundancy number
will affect more the corresponding residual and is easier to be detected. The effect of
agross error Vy; in observation y; onto the other residuals v (j#i, j =1:n), ViV;,
is determined by the off-diagonal elements of the redundancy matrix R as

VI\7j = _rjivyia J7é|7 J =1:n (56)

Thus, due to the correlation of the residuals, a gross error in an observation might
have spread over al the residuals. If a blunder is large enough to cause many reli-
ability test failures, resulting in many alternatives, it is essential to ensure that any
two alternatives are separable (Hewitson, 2003). Therefore, in order to pinpoint the
erroneous observation y; through examination of its corresponding residua V;, the
following equation (Kuang, 1996) must be assessed

ri>[rji| (j#, i=1:n) (57)
If Eq. 57 does not hold, localization of the gross error is difficult.

The residual vector, ¥, can be used to test the internal consistency among the ob-
servations (Kuang, 1996). The vector can also be used to check the validity of the
assumptions underlying the used functiona and stochastic models and further to de-
tect and identify a potential model error (Teunissen, 1998). In thisthesis, reliability is
considered to consist of reliability testing, i.e., detecting and identifying a measure-
ment error asin RAIM, and statistical reliability, i.e., assessing theoretical reliability
conditions.

5.1 Rdiability Testing

Conceptually, statistical reliability tests serve to determine whether or not anything
has gone wrong with the basic postulates assumed. A null hypothesis (Hp) denoting
a fault-free situation is a reference level from which any deviation of the different
aternative hypothesis (H,) hasto be detected by statistical testing. Due to the finite-
ness of the available sample in statistical testing, no definite statistical decision can
be made (Kuang, 1996). There are always two types of potential errorsinvolved in a
statistical test identified astype | and typell errors. Typel error is defined asthe error
of rgjecting the null hypothesis Hy when Hg is actually true. The probability of com-
mitting atype| error is called the significance level, denoted as o, and the probability
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of making a correct decision is called the confidence level (1— o). A typell error is
defined as the error of accepting Hg when it is actually false, and the probability of
committing thistype of error is denoted by 3. The probability of rejecting Ho when it
isindeed falseis called the power of thetest (1—3). Table 4 summarizes the statisti-
cal testing of the null hypothesis against the alternative hypothesis (Kuang, 1996). It

Table 4. Satistical Testing of a Null Hypothesis against an Alter native Hypothesis.

Decision Accept Ho Reject Hog
Situation
- istrue Correct decision Typel error
0 Confidencelevel 1— o | Significance level o
_ Typell error Correct decision
Ho isfa -
olStalse Probability B Power of thetest 1 —

is assumed that under Hy and H, the probability density functions of a chosen stetis-
tic take the same form but have different mean and variance values as shown in Fig.
20. In Fig. 20, the power of the test also defines the smallest difference d that can be
detected if the test has been executed at a significance level oo (Kuang, 1996). If the

Fig. 20. Type | Error oo and Type |l Error B in an One-Tailed Test.
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probability of both types | and Il of error is wished to be decreased, d, the internal
reliability, will be increased, i.e., the detectable difference between Hp and Hg, will
be larger.

To detect a measurement error, the least squares residuals can be statistically tested.
In a’global test’, the null-hypothesis Hg states that the adjustment model is correct
and the distributional assumptions meet the reality, as opposed to the aternative H,
which states that the adjustment model is not correct (Leick, 2004; Baarda, 1968;
Kuang, 1996; Ryan, 2002). If the global test fails, a’local test’ with more specific
aternative hypotheses needs to be performed for failure isolation.

The outlier detection and isolation is based on statistical testing of the estimated
observational residuals. The estimated residuals are, in principle, indicative of the
behavior of both the observation and the mathematical model. However, it is very
difficult to separate the two since mathematically either a bad geometrical model and
model assumptions or bad observations will affect the residuas in the same way.
In the error detection and isolation process, the errors in the linearized model are
assumed Gaussian zero-mean in the unbiased error-free case.

51.1 Global Test

Theglobal test for detecting an inconsistent adjustment model is based on the quadratic
form UT=~10, which follows a central chi-square distribution with n— p degrees of
freedom if the observation errors are normally distributed as N(0,X) (Kuang, 1996;
Leick, 2004). The parameter p denotes the number of parameters to be estimated
and n the number of available observations. If the test statistic exceeds a threshold
le_m n_p Where o represents the false alarm rate, i.e., the significance level of the
global test, the null hypothesis Hg isrejected in favor of Ha. Fig. 21 presents the cen-
tral and non-central %2 density functions for eight degrees of freedom, n— p = 8, that
represent the null-hypothesis, Hp, and the alternative hypothesis, H,, of the global
consistency test. InFig. 21, parameter 3 represents the probability of a missed detec-
tion and § the non-centrality parameter of the biased 2 distribution. The hypothesis
testing in the global test is conducted as

Ho: (NoIntegrity Failure), V' M <x3 , 1, (58)
Ha: (Integrity Failure), 071 >%3 o 1 p (59)
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Fig. 21. Central and Non-Central %2 Density Functionsin Global Testing, n— p = 8.

If the null hypothesis Hyp must be rejected and H, accepted, an inconsistency in the
assessed observations is assumed, and the existing errors should be identified and
mitigated.

5.1.2 Local Test

The most likely reason for the rejection of Hp in the global test is the presence of
outlying observations. Strict testing is easy under the assumption that there is only
one outlier in the current time instance, which is the usual assumption in, e.g., tradi-
tional RAIM. The attempt to identify such an individual measurement error may be
performed if the redundancy is at least two. The residuals, V , can be standardized as

Vi

(Co)ii
where n denotes the number of observations and the matrix Cy, denotesthe covariance
matrix of theresidualsand isshownin Eqg. 54. The standardized residual s can be used
for outlier detection with uncorrelated, normally distributed observations in a sense

that if the ith observation is not an outlier, w; is normally distributed as w;~N(0,1).
Each standardized residua w; is compared to a ap-quantile of the standard normal

, |

w = ' 1:n (60)
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distribution, n, s, with the predetermined false alarm rate, the significance level
0. The null-hypothesis Hg ;, which denotes that the ith observation is not an outlier,
is rejected if the w; exceeds the threshold Ny . The underlying assumptions of
the local test include that the model and the assumption that the measurement error
vector follows € ~ N(0,X) are correct except for the single constant bias of the ith
observation. The standardized residuals are then normally distributed (Teunissen,
1998; Leick, 2004) with zero expectation when Hy; is correct, and with a non-zero
expectation otherwise. The local testing is based on the comparison

Hoi: (i not anoutlier), w; < ”17‘*70 (61)

Hai ¢ (i-anoutlier), wi>n, o (62)

Thus, the Ho; is rejected, i.e., Haj is recognized, if the critical value is surpassed.
Fig. 22 presents the unbiased and biased density functions of the normal distribution

E

g2
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2

Fig. 22. Density Functions of the Unbiased and Biased Normal Distributions in the Local
Test.

that represent the null-hypothesis, Hp;, and the alternative hypothesis, H,;, of the
local outlier test of observation i. The required probability o is split equally to be
contained in the right-hand side tail and the left-hand side tail, respectively.

Only if Hg of the global test is rejected, the local test is carried out for fault identi-
fication and only the observation with the largest value of w; is tested and possibly
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rejected. An outlier in one observation generally causes several w; to be increased.
The measurement with the largest standardized residual exceeding the thresholdisre-
garded as an outlier and that measurement is excluded from the solution computation
(Teunissen, 1998), i.e., the kth observation is suspected to be erroneous when

Hak: Wk >Ww Vi, A Wi > nl_u_20 (63)

Theglobal and local consistency testsare apart of astatistical reliability testing/outlier
detection procedure introduced originally by Baarda in 1968 (Baarda, 1968) for the
detection and identification of outliers in geodetic networks, and known as data
snooping. If Hp in the global test is rejected, the local test is carried out for fault
identification. The parametersa,, o, B areinterrelated (Baarda, 1968; Caspary, 1988)
and only two of them can be chosen arbitrarily. The risk level o of the global test
must be related to the corresponding parameter in the local test, o, together with
the probability of missed detection 3, which is the same for both tests. An erroneous
measurement that causes the global test to fail should be indicated by the correspond-
ing local test with the same probability. The o, o, and B values are linked by the
following equations

o = 802 = (nlf%o +n1,B)2 (64)
Xzﬁ, n-p,& — le—a, n—p (65)

where § is the non-centrality parameter of a non-central chi-square distribution re-
lated to the global hypothesistesting and &y isthe expected val ue of the biased normal
distribution related to the local test.

The assumption of asingle outlier is a severe restriction, especialy if degraded sig-
nal conditions are considered. However, it was found that data snooping can also
cope with multiple blunders if it is performed iteratively (Hawkins, 1980; Petovello,
2003). After exclusion of an observation, the parameter estimation, statistical tests,
and possibly the rejection of an observation can be repeated for that epoch until no
more outliers are identified.

52 Satistical Reliability

This section discusses the statistical reliability boundaries in a positioning situation.
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Choosing values of o,y and 3 determine a bias or a so-called non-centrality parameter
of Haj, and it is denoted by &, the internal reliability (Leick, 2004; Ryan, 2002). In-
ternal reliability quantifies the blunder 8y that can be detected on each measurement
through statistical reliability testing. The smallest such blunder that can be detected is
called the marginaly, or alternatively minimum, detectable blunder (MDB). External
reliability, on the other hand, is quantified by the size of the error in the navigation
solution that is caused by an undetected error of the same size as the respective MDB
(Leick, 2004; Kuang, 1996; Baarda, 1968; Ryan, 2002; Petovello, 2003). These mea-
sures are described in the following.

5.2.1 Internal Reliability

A minimum detectable blunder, MDB, i.e., a parameter of internal reliability, is a
measure of the capability to detect a blunder with the probability (1-8) with (1-0)
percent of confidence with the underlying assumptionsincluding the presence of only
asingle blunder at atime and uncorrelated measurements. For the given probability
levels ap and B, the MDB for observation i, denoted as m, is expressed as

_ So(B)ii

(Co)ii

where dg is the non-centrality parameter defined in Eq. 64. The MDB represents the

theoretical limit of an observation error that can marginally be detected and isolated

but often, in redlity, it is likely that the occurring faults are smaller than the MDB
values.

(66)

5.22 External Reliability

The MDB itself is not of much interest but the effect, which an undetected outlier
could have on the result, is important. The external reliability acts as a measure
of this effect. External reliability, denoted as g, describes the effect a marginaly
detectable blunder in the ith measurement has on the state estimate, and is computed
as

g=—HZH)HTZ Im; (67)
where the vector m; is a column vector containing all zeros except for the minimum
detectable blunder of the ith observation, my, in the ith position. The externa relia-
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bility represents the error of the estimated parameters that may be caused by an indi-
vidual bias of the size of the MDB. The system can be marginally protected against
this error with given probabilities oo and . For this reason, the external reliability
can also be called the protection level. If only certain elements of the protection level
vector are of interest, they can be investigated individually (Petovello, 2003). Thero-
tation matrix R rotatesthe WGS-84 x, y, and z coordinatesinto alocal level system,

i.e., into an east north up (ENU) coordinate system. R = F\I;"lfz was expressed
L3

in Eq. 42. A three-dimensiona total positioning error (TPE) due to the ith MDB,
Ap;, can be defined as

ap = /gR[Re = /o2 +6,2 6,2 (68)

Moreover, a horizontal positioning error (HPE) due to the ith MDB, Aq;, can be
defined as
Ag = QTRLLZTRLLZQ (69)

where Ry, , is the submatrix of the rotation matrix Ry in Eq. 42, and it extracts the
horizontal components from the parameter vector and converts them to local com-
ponents, east and north. The matrix R, thus assist in extracting the radial two-
dimensiona position error computed from the position error in the x, y, and z in
WGS-84 ECEF coordinates that corresponds to the effect of the MDB of the ith ob-
servation in the ith observation.
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The estimation problem of a user navigation solution involves linearization, and the
least squares adjustment has to be accomplished iteratively. A large gross error in
the observations may damage the linearization process and cause the iteration pro-
cedure to diverge leading to no solution (Kuang, 1996). Therefore, pre-adjustment
data screening is essential. It can be performed, e.g., by comparing predicted mea-
surements based on the previous epoch and forward prediction and the obtained mea-
surements. A simple threshold of a large magnitude can be implemented in a pre-
adjustment monitor to make sure al the huge outliers, e.g., in the order of kilometers
for the pseudorange case, are excluded before going to user navigation solution esti-
mation and the following fault detection and exclusion.

Fault detection and exclusion (FDE) is an essential part of navigation integrity mo-
nitoring and reliability assurance. The reliability monitoring can be performed on
al types of navigation system observables, but in this discussion, it is assumed that
pseudorange and pseudorange rates are monitored in paralel in order to assure re-
liable position and velocity solutions of a user in poor line-of-sight conditions. The
assumption of the measurement errors being normally distributed is unfortunately not
necessarily true in degraded signal environments. When there is only a single blun-
der, methods for outlier identification work quite well. However, it is more difficult
to diagnose outliers when there are several of them and assessment for such multiple
blunders often give rise to extensive computations (Rousseeuw and Leroy, 1987).

There are different approachesto provide an independent assurance of the integrity of
the system. In this thesis, the attention is focused on approaches, which are referred
to as a snapshot schemes due to that they are based upon ng single epoch so-
lutions with only current redundant measurements being used in the self-consistency
check. In general, system integrity monitoring, i.e., RAIM can be improved when
available dynamic information is fused together with GNSS range measurements in
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a Kalman filter (Hewitson and Wang, 2004; Ryan and Lachapelle, 1999). The state
and observation model assumptions must be correct in order to the Kalman filter-
ing to provide optimal estimations of the navigation parameters. Unmodelled errors
can occur as well as deviations from the assumed models, i.e., outliers among mea-
surements and the predicted state vector (Wieser et ., 2004). Therefore, reliability
monitoring is essential even in filtering. If formulation of al the possible failure
scenarios existing is feasible, failure detection, identification, and model adaptation
(DIA) can be performed (Wieser et d., 2004; Teunissen, 1998) in order to complete
the reliability testing of the filter solution.

Due to the low accuracy level and the usually poor knowledge about the user dy-
namics, the usual advantages of a Kalman filter do not clearly apply in the severely
degraded signal conditions of concern in this thesis. Fault detection and exclusion
procedures devel oped and assessed in thisthesis for personal navigation applications
test for inconsistency and the individual outliers on the epoch level and, thus, the
concentration is mainly on single-epoch RAIM and FDE in the following discus-
sions. The snapshot approachesto be discussed are, however, applicable, extendable,
and transformabl e into afiltering environment,

Before introducing the different FDE approaches devel oped for personal applications
in degraded signal environments, traditional RAIM methods are first brought up.

6.1 Traditional RAIM for Safety Critical Applications

Traditionally receiver autonomous integrity monitoring (RAIM) has been used in
aviation application for specific phases of flight. Integrity monitoring in these safety-
critical applications is highly essential to ensure a certain degree of integrity for the
navigation function. Navigation system integrity refers to the ability of the system
to provide timely warnings to users when the system should not be used for naviga-
tion. The basic GPS system provide integrity information to the usersviathe naviga-
tion message but thisis not timely enough for some applications (Farrell and Graas,
1998). Receiver autonomous integrity monitoring, referred to simply as RAIM, isan
additional means of providing integrity and to detect when a satellite failure has oc-
curred (Parkinson and Spilker, 1996). RAIM allows errors to be detected by the GPS
receiver itself without expensive ground equipment (Brown, 1987). One redundant
measurement is necessary for detecting a faulty measurement source. If additional
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redundant measurements are available, it is possible to isolate the faulty measurement
source or exclude it from the navigation solution (Sturza, 1988). Overall, RAIM isa
technigue that uses an overdetermined solution to perform a consistency check, and
the RAIM methods must detect if the horizontal error goes beyond a certain threshold
within a specified level of confidence (Kaplan (Ed.), 1996).

Many RAIM schemes have been proposed in literature (Parkinson and Spilker, 1996)
and they all are based on some kind of self-consistency check among the available
measurements. The schemes proposed in literature can be described as snapshot
approaches because they use a single set of GPS measurements collected simulta-
neously. Three RAIM methods for safety-critical applications have received specia
attention: aleast-sguares-residuals method, a parity method, and a range comparison
method. The primary emphasis on these methods is on failure detection only and
to protect against excessive horizontal position error (Parkinson and Spilker, 1996;
Parkinson and Axelrad, 1988; Brown, 1992). In addition, a maximum residual algo-
rithm by R. J. Kelly (Kelly, 1998) based on alikelihood ratio test has received special
attention in its isolation capability for safety critical applications. The three most
discussed and applied traditional RAIM agorithms in the GPS literature are proven
to be equivalent, and in addition, with the same confidence levels, they are shown to
be mathematically equivalent to the maximum residual algorithm as well.

6.1.1 Screening Out Poor Geometries

Before applying aRAIM method in the safety-critical applicationsit hasto be assured
that the level the system can theoretically be protected against does not exceed the
level of performance required for the specific application. This consists of generating
an upper bound in the navigation solution space called the horizontal protection level
(HPL), which equals the external reliability boundary discussed in the reliability sec-
tion, and comparing thisHPL to ahorizontal alarm limit (HAL) predetermined by the
system requirements. Screening out bad geometries is crucial in safety-critical nav-
igation applications in order to stay within the requirements. However, in personal
navigation applications, due to the lack of requirements, there is no need to screen
out a solution based on the theoretical external reliability boundary, which states the
error level the system can, in theory, be marginally protected against.
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6.1.2 Least-Squares-Residuals RAIM Method

In the least-squares-residuals method, a measure of consistency is the range residual
vector V presented earlier, which is the difference between the empirical measure-
ments in y and the predicted measurements based on least squares solution (Kaplan
(Ed.), 1996). The sum of the squares of the residuals plays the role of the basic ob-
servable in the least-squares-residuals RAIM method and it is called the SSE and
presented in the following (Brown, 1992)

SSE =0TV (70)

The SSE is a nonnegative scalar quantity, which makes for a ssmple decision rule.
Namely the semi-infinite real line has to be partitioned into two parts, one for 'no
failure’ and the other for ’failure. The dividing point is called the threshold (Parkin-
son and Spilker, 1996). If all elements of the error vector € have the same independent
zero-mean Gaussian distribution, the statistical distribution of SSE is completely in-
dependent of the satellite geometry for any n. Therefore it is easy to implement a
constant alarm-rate algorithm, where the thresholds, that yield to the desired alarm
rate for the various anticipated values of n, are precalculated (Parkinson and Spilker,
1996). For the zero-mean Gaussian assumption made for all the elements of €, SSE
has a chi-square distribution with (n — 4) degrees of freedom (Brown, 1992), if it as-
sumed that there are 4 unknowns. On the other hand, if the elements of € are biased,
the SSE has anoncentral chi-square distribution with also (n— 4) degrees of freedom
(Chin et a., 1992). To determine the threshold for the number of satellites in view
using the SSE valuein thetest statistic, chi-square statisticsis applied with a constant
alarm rate (Kaplan (Ed.), 1996; Parkinson and Spilker, 1996).

The least-squares-residuals RAIM method is mathematically equivalent to the global
test of Chapter 5.1.1 applicable for failure detection.

6.1.3 Parity RAIM Method

Inthe parity RAIM scheme, alinear transformation is performed on the measurement
vector as follows

p=Py (71)
The (n— p) x 1 vector p iscalled the parity vector (Parkinson and Spilker, 1996) and
it isthe result of operating on the measurement vector y with a special (n— p) x (n)
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matrix P, whose rows are mutually orthogonal, unity in magnitude, and also mutually
orthogonal to the columns of the design matrix H. The matrix P can be obtained
for example with QR-factorization on the linear connection matrix H (Kaplan (Ed.),
1996).

Under the assumption that the elements of the error vector € are independent similar
zero-mean Gaussian random variables, the following statements can be made

E(p) = 0 (72)
E(pp’) = o (73)

where E(-) denotes the expectation function, | the identity matrix, and o? is the
variance associated with any particular element of €. Conceptualy, in the parity
method, the vector p is used as a test statistic. However, because of the special
properties of the parity vector, the individual elements of p are decoupled and have
the same variance. For simple detection, all information needed about p is obtained
merely at looking at its magnitude or its magnitude squared (Parkinson and Spilker,
1996). Thus, in the parity method, the test statistic for detection reduces to a scalar,
just as in the least-squares-residuals method. It is also shown in (Sturza, 1988) that
the sums of the squares of the elements of p and SSE areidentical as presented in the
following (Parkinson and Spilker, 1996)

p'p=0"0=SE (74)

Therefore, although the dimensionality of p and v are different, their magnitudes are
the same. Thus, if the test statistic p" p is the only interesting quantity, the trouble of
finding the orthogonal transformation P that leads to p is not necessary, and only the
SSE, directly from the measurement-residual space, can be used. So, in detection ap-
plication, which isthe most common integrity function in safety critical applications,
the least-squares-residuals and parity methods lead to identical observables. Then,
in case of a failure detection with these methods in the safety-critical applications,
the user is usually encouraged to switch to other navigational means than the satellite
navigation system.

6.1.4 Range Comparison RAIM Method

Let us imagine having more than four satellites in view. A solution can be obtained
that satisfies the first four measurement equations. The resulting solution can then
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be used to predict the remaining measurements, and the predicted values can then
be compared with the actual measured values. If the differences are small, there is
a near-consistency in the measurements, and the detection algorithm declares 'no
failure'. On the other hand, if some of the residuals are large, the algorithm declares
"failure’. Thisisthe essence of the range comparison method (L ee, 1998; Parkinson
and Spilker, 1996).

6.1.5 Maximum Residual RAIM Algorithm

An integrity monitoring scheme called the maximum residual algorithm presented
by R.J. Kely in (Kelly, 1998) includes the detection and isolation of a measurement
under the assumption of only one satellite channel failure based on alikelihood ratio
test. It obtains its performance standards from airspace required navigation perfor-
mance (RNP). The maximum residual algorithm is basically similar to the local test
described above in the reliability testing section for outlier isolation. More details on
Kelly’s maximum residual algorithm for can be found in (Kelly, 1998).

The four above mentioned and discussed RAIM agorithms published in GPS litera-
turein the context of aviation are mathematically equivalent to each other. The statis-
tics community uses the same agorithms for data outlier detection and identification.
Therefore, the statistical reliability testing procedures presented earlier are similar to
these traditional RAIM algorithms. The naming conventions are, however, different
in statistics community and, e.g., the aviation integrity monitoring literature. For
error exclusion, the aviation community has also applied observation subset tests as,
e.g., using the failure detection test statistic in the decision making for the best subset,
or, e.g., using a maximum separation of solutions -method discussed in (Parkinson
and Spilker, 1996; Brown, 1998). However, the assumption of a single satellite fail-
ure has been strongly dominant in the error exclusion methods in, e.g., the aviation
community. Nowadays, with the future Galileo in the horizon, also multiple failures
have been considered in a few of the aviation community integrity algorithms, e.g.,
(Lee, 2004; Macabiau et a., 2005) and (Misra and Bednarz, 2004), which presents a
robust integrity monitor for GPS and Galileo that selects satellite subsets with good
geometries.
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6.2 Developed FDE for Personal Satellite Navigation Applications

In personal satellite navigation applications in degraded signal-environments, no in-
tegrity requirements limit the fault detection algorithms. However, failure occurrence
is higher and thereis ahigh probability of encountering multiple simultaneous obser-
vation errors, blunders, due to the high level of multipath interference and attenua-
tion. In the sametime, thereisalack of redundancy in many cases, which restrictsthe
availability of fault detection and exclusion. Nevertheless, performing proper failure
monitoring and isolation is essential in order to improve the reliability and accuracy
in the environments with deteriorated line-of-sight signal reception. In the follow-
ing, different methods are proposed to be used for the failure detection and exclusion
function and the reliability enhancement in degraded signal environments.

6.2.1 Observation Subset Testing

Usually, alarge error can be localized by assessing the least squares residuals by sta-
tistical testing. However, the least squares procedure may smooth out multiple gross
errors across an entire data set, and al so a specific large error might be smoothed out
throughout its neighboring observations. In this case, localization of the gross errors
based on statistical rejection of residuals available from least squares adjustment is
very difficult. Therefore, performing severa least squares adjustments by taking out
or re-inputting one or more of those observations at atime in order to locate the right
observations containing the gross error may be necessary (Kuang, 1996).

Observation subset testing with the test statistic of the global test as the decision pa-
rameter may be conducted to find a subset from which the supposed blunders are ex-
cluded. Thisisdone by searching for a subset that most clearly passes the global test,
i.e., which satisfies its selfconsistency test with the smallest test statistic. In subset
testing, the test statistics for the global consistency test are computed for all the pos-
sible subsets that include p+ 1 to n— 1 measurements, i.e., fromwhichn— (p+1) to
1 observation has been excluded. Parameter n denotes the number of available mea-
surements and the parameter p represents the number of unknown parameters to be
solved for. The subset that has the smallest acceptable test statistic, i.e., the smallest
test statistic below the threshold, and, in addition, the largest number of measure-
ments, is chosen to provide the best position solution, as shown in Fig. 23. However,



88 6. Fault Detection and Exclusion

the subset testing procedure is computationally heavy and is not feasible as a FDE
procedure to combined GPS/Galileo navigation, since, e.g., in case of 18 available
satellite signals and 4 unknowns, it would be necessary to assess over 254000 subsets
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Fig. 23. FDE by Observation Subset Testing.

6.2.2 Forward-Backward FDE

If m outliers are suspected, a redundancy of at least m+ 1 is needed in order to
possibly identify them. However, due to the mutual influence of observations, i.e., an
error of one observation is absorbed by the residuals of all observations, erroneous
rejection of a good observation is possible, especially with large or multiple biases
(Lu, 1991). In degraded signal-environments, the redundancy is generally poor and,
thus, it is desired to keep as many observations as possible for obtaining an efficient
estimate [P1, P3, P5]. Therefore, if more than one observation is being excluded, the
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iterated reliability checking should include a reconsideration of an earlier rejected
observation (Wieser, 2001).

The Forward-Backward FDE method includes using the global test to identify anin-
consistent solution and performing the local test to identify and exclude the erroneous
measurement. The exclusion is, however, not performed if there is another observa-
tion that is more influential than the one being subject to assessment. Thus, in the
FDE execution, no influential observations may be tolerated. When pinpointing the
observation i to be excluded, it should be excluded from the solution only if the ith
redundancy number r; follows the equationr; > |rji| (j#i, j =1:n). Theglobal test
and the local test with the additional influentiality check are performed recursively
until no more erroneous measurements are found and the solution is flagged reliable
or the solution is declared unreliable. In addition, the reconsideration of an earlier
rejected observation isincluded in the Forward-Backward FDE scheme, as presented
in Fig. 24. Thisis performed by reconsidering all the excluded measurements and
performing global tests to find the measurements that can be implemented back to
the solution computation. Thus, a measurement that has been excluded earlier is
used again for the solution computation if the global test passes when tentatively in-
cluding it into solution estimation. This is performed to ensure that the order of the
excluded measurements does not cause an unnecessary exclusion. Due to the impor-
tance of the measurements to the geometry of the solution unnecessary exclusions
are unwanted.

Taking into account the influentiality of the observation subject to exclusion could be
implemented in all the discussed FDE methods, but, for comparison purposes, it is
only taken into account in the Forward-Backward procedure.

6.2.3 lIterative Reweighted Estimation - The Danish Method

The Danish method (Jergensen et al., 1985; Wieser, 2001) isan iteratively reweighted
least squares algorithm which implements a robust estimator. It is very popular in
geodetic applications. The Danish Method has received attention also in a few dif-
ferent fields: Leick talks about changing weights of observationsin (Leick, 2004) in
order to detect blunders and minimize or even eliminate their effect on the adjustment
as well as Huber briefly mentions in (Huber, 1981) about modified weights in the
computation of the regression estimate. The Danish Method aims at achieving con-
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Fig. 24. Forward-Backward FDE Procedure.

sistency between the model and the observations by modifying the a priori weights of
the few observations, which are not consistent with the majority of the observations.
Iteratively reweighted least squaresis, however, not based on rigorous statistical the-
ory (Leick, 2004) but locates and potentially eliminates the blunders automatically
while examining the residuals per iteration. If the magnitude of aresidua is outside
a defined range, the weight of the corresponding observation is reduced with the pro-
cess of re-weighting and readjusting continuing until the solution converges and no
weights are being changed (Leick, 2004). The Danish method has very similar per-
formance as the FDE methods described earlier but it is computationally much more
efficient. Asany robust estimator and FDE scheme it has a breakdown point of 50%,
i.e., it can only be successful if there are more good observations than outlying ones.

To incorporate the geometry of the satellite distribution and the different quality of the
observations, a hint given in (Jargensen et al., 1985) is followed and a re-weighting
based on normalized residuals is here suggested. The variance for observation i in
iteration k+ 1 of an epoch, cﬁk 41, Can then be constructed as follows

er Wy>T
Gﬁk+l:Gi2,0'{ Tk (75)
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where
Wik = _ Vik (76)
(C\‘/u)u
T = nliocio

where Gfo denotes the a priori variance of observation i. Such an 'apriori’ variance
can be obtained as an example from aC/Np-dependent variance model. If theith nor-
malized residual exceeds the critical value T computed from the normal distribution,
the Danish method increases the variance exponentially. If the normalized residual
of the ith observation, w k, is less than the threshold T, the a priori variance for that
observation is maintained in the estimation procedure. Therefore, the prior values are
lower bounds for the variances actually used. In each iteration, the estimated resid-
uals are normalized using the standard deviations from the first iteration as seen in
Eq. 76, and the variances of all observations are modified according to Eq. 75. Note
that the values w; i are exactly the standardized residuals after the first iteration but
not after subsequent ones. However, this standardization by a fixed quantity helps
to isolate the inconsistent observations and allows for convergence at the same time
(Kuusniemi et al., 2004). The variance covariance matrix in the kth iteration for n
observations is hence constructed as follows

o3 0 - 0
5=| ¢ : (77)
: - 0
O --- 0 Gﬁ,k

The iterations in the modified Danish estimation method start with a traditional least
squares estimation using the inverse of the variance covariance matrix of the observa-
tions as the weight matrix (Wieser, 2001). After this, in each iteration k, the normal-
ized residuals for all observations are computed. Then, new variances are computed
and least squares estimation iteration is conducted. When the variance of an obser-
vation grows exponentially, the weight of that observation decreases rapidly in the
estimation and the observation can be regarded as being excluded. The iterations for
an epoch are stopped when the variances no longer change significantly and the norm
of the unknowns to be estimated is small enough for the solution to be accepted.

The Danish method is similar in its exclusion capability to the previous Forward-
Backward FDE and Subset Testing but it is computationally more efficient. Theratio
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of the processing times was about 1:50 for both the Subset Testing and Forward-
Backward FDE when processing the data sets presented in the following chapter.
Although the difference in the processing times might have been somewhat more
bal anced by optimizing the source code, the Danish method is, however, much lighter
computationally. The major drawback of the Danish method isthat it is an empirical
procedure with no generally valid statistical explanation. The Danish method is,
however, simple, computationaly efficient, and has found to perform very well in
practical applications, as will be demonstrated in the results section.

K weights
v
Danish modified
Method: » == | Global |A, Solution
. | | K measurements 7| Test unreliable
. "excluded” I,
0
Solution
reliable

Fig. 25. FDE by the Danish Method.

6.3 Quadlity Control

The quality of the user position estimate depends not only on the quality of the range
measurements but also on the user/satel lite observation geometry. Thedilution of pre-
cision (DOP) concept provides a simple quality measure of the geometry. The DOP
values should not surpass a predetermined threshold even after rejection of outliers
to ensure good user/satellite observation geometry. Bad geometry amplifies random
errors and biases and, therefore, produce large position errors. The overall quality
control procedure implemented in this thesis includes assessing the user redundancy,
the consistency using FDE, and the geometry. For a user navigation solution to pass
the quality control there should be enough redundancy to perform the reliability test-
ing. In addition, no zero redundancy numbers of observations should be tolerated,
since a zero redundancy implies an uncontrollable observation and any bias in that



6.3. Quadlity Control 93

observation cannot be identified. The quality control also includes the reliability mo-
nitoring itself in terms of executing the FDE procedures.

The overall quality control scheme is presented in Fig. 26. In the quality controlled
results presented in the following section, a position DOP (PDOP) cut-off of 10 is
employed that was regarded to represent an appropriate threshold for screening poor
geometries in degraded signal environments. Naturally, the cut-off value is a flexi-
ble parameter that can be chosen as wanted depending on the application. A failure
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Fig. 26. Quality Control of a Navigation Solution.

detection and isolation method can be combined with geometry assessment also as
isdone in [P7], where FDI and certain KDOP analysis are done in parallel. KDOP
denotes a geometric dilution of precision weighted by user equivalent range errors.
The KDOP measure aimsto combine geometrical integrity with signal condition esti-
mates, and comparison of KDOP values of different satellite combinations may result
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into a satelliteisolation (Sairo et a., 2003).

6.4 Observation Weighting Based on Carrier-to-Noise Ratio

In general, an identity matrix is not a sufficient approximation for the weight matrix
1. It yields still an unbiased estimate, but causes erroneous accuracy estimates
and misleading reliability analysis results (Kuusniemi et al., 2004). A more suitable
variance model of the observations can be derived by investigating satellite datafrom
real-world experiments. For this purpose, HSGPS data was collected using a SIRF
XTrac— LP™ HSGPS receiver. The data is now analyzed in order to discover ap-
propriate variance models for the pseudorange and pseudorange rate measurements
dependent on the signal power for lightly and heavily degraded signal environments.
The variance models for the observations that are discussed are only generally valid
ideas and they are not trying to be optimum or universal weighting schemes. More
specific models can be developed for definite data sets and equipment used but the
objective hereis to introduce more generally applicable models.

6.4.1 Variance Models for Lightly Degraded Signal Environments

First, lightly degraded data from an indoor HSGPS test of 12 hoursis analyzed. The
datais the same as discussed in Section 3.5.2. First pseudorange measurements are
considered after which the pseudorange rate measurements are discussed.

Variance Mode for Pseudorange Observations

In high-precision positioning, satellite elevation dependent weighting of the obser-
vations has been used successfully (Wang et al., 1998). The number and the impact
of possible error sources increase with decreasing satellite elevation, but the eleva-
tion is not necessarily an indicator of the actual signal quality (Wieser, 2001). The
carrier-to-noise ratio measured by the receiver is such anindicator. Fig. 27 showsthe
previous pseudorange errors of the garage experiment when satellite elevation and
carrier-to-noise ratio, C/No, are varied. It can be seen, as expected, that larger obser-
vation errors are obtained with low elevation satellites, but there is an even stronger
correlation between the spread of the observation errors and the C/Ny values. Thus,
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Fig. 27. Lightly Degraded Sgnal Environment: Pseudorange Error as a Function of Eleva-
tion and Carrier-to-Noise Ratio.

it is suggested that the C/Np is used as an input to a variance model for weighting
the GNSS measurements, especialy in obstructed line-of-sight conditions. An ad-
vantage of the C/Np weighting is that it performs as well as an elevation dependent
in clear sky conditions but often better in poor signal-environments. A C/Np based
variance covariance matrix of the observations can be constructed as follows

L =diag(s1, %, Sn) (78)

where
—C/Ng
s=a+bx10 10 (79)

The constants a and b need to be chosen according to the environment and the user
equipment. Here the following values have been used for the pseudorange measure-
ments for lightly degraded signal conditions; a = 10 n? and b = 150° n?Hz. The
assumptions made in the new variance model include that the pseudorange measure-
ments are uncorrelated and the errors are normally distributed with N(0,X%;). This
model has been developed in (Hartinger and Brunner, 1999) for use with GPS car-
rier phase observations but it may be equally beneficial with pseudoranges as well
as pseudorange rates, as discussed shortly. The resulting dependence of the modeled
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standard deviation and the C/Ny valuesis presented in Fig. 28. The standard devia-
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Fig. 28. Lightly Degraded Sgnal Environment: Absolute Pseudorange Error and the Stan-
dard Deviation of Pseudorange Error as a Function of Carrier-to-Noise Ratio.

tion, o, asoutput by the variance model of Eq. 79 witha= 10m? and b = 150° n?Hz
has been plotted on top of the absolute pseudorange error data. 69% of the abso-
lute pseudorange error is here within the standard deviation values from the variance
model. In addition, the 36, bound has been plotted, which roughly corresponds to
a99.7% confidence level for normally distributed data. The figure indicates that the
overal fit is good, but a locally better fit could be obtained for this specific dataset
with higher o, at medium to high C/Ny and lower o, a low C/No. However, the
model as defined in Eg. 79 is simple and performs well with a variety of GPS data.
Fig. 29 presents the normal probability plots for graphical normality testing of the
true pseudorange errors normalized by their standard deviation from a constant vari-
ance model on the left hand side and from the new variance model on the right hand
side. The pseudorange errors normalized with the standard deviation are denoted as
misclosure data. The errors were obtained by fixing the user position coordinates
to known values and removing them from the adjustment process leaving only the
clock error to be estimated. The residuals from this process are regarded as unbiased
estimates of the pseudorange errors. The standard deviation for the pseudorange er-
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rors from a constant variance model has been computed as sampl e standard deviation
from the data (6, = 10 m), and the standard deviation from the new variance model
has been computed from Eqg. 79 and shown aso in Fig. 28. In anorma probabil-
ity plot, the plot is linear if the data comes from a normal distribution (DeVor et al.,
1992). Superimposed on the plot is aline extrapolated out to the ends of the sample
to help evaluate the linearity of the data. Thus, the left hand side of Fig. 29 shows
that there are strong deviations from normality in the misclosure data when a constant
variance is applied. The figure indicates that the central part of the data has signif-
icantly smaller standard deviation than the tails of the data set. Thus, using equal
variances for observations in the estimation procedure is not a proper model and the
new variance model is needed for providing an optimum estimate and a basis for sub-
sequent statistical reliability testing (Kuusniemi et al., 2004). The normal probability
plot of the misclosures of the pseudorange error normalized by their standard devia-
tions from the new variance model in Eq. 79 isillustrated on the right hand side of
Fig. 29. Clearly, this model matches the data much better than the equal-variance
model. The remaining deviations towards the tails of the distribution indicate that
there are outliers which cannot be covered by the variance model. They need to be
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handled by the reliability monitoring (Wieser and Brunner, 2000).

Variance Model for Pseudorange Rate Observations

A similar analysis of a C/Np-dependent generally valid variance model of the form
a+bx 10%/0NO of Eqg. 79 can be performed also for the pseudorange rate observations.
Aswell asthe spread of the pseudorange measurement errorsis more correlated with
the signal power than the signal elevation angle, also the pseudorange rate measure-
ments are more clearly dependent on the carrier-to-noise ratios as presented in Fig.
30.
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Fig. 30. Lightly Degraded Sgnal Environment: Pseudorange Rate Error as a Function of
Elevation and Carrier-to-Noise Ratio.

The new variance model of Eq. 79 can thus aso be applied for the pseudorange
rate measurements, and the following values have been used for the pseudorange
rate variance model: a = 0.01 g and b =25 gHz. The assumptions made in the
new variance model include that the pseudorange rate measurements are uncorrel ated
and the errors are normally distributed with N(0,X;). The resulting dependence of
the modeled standard deviation and the C/Np values is presented in Fig. 31. The
standard deviation, o, as output by the variance mode! in Eq. 79 with a = 0.01 g
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Fig. 31. Lightly Degraded Signal Environment: Absolute Pseudorange Rate Error and the
Sandard Deviation of Pseudorange Rate Error as a Function of Carrier-to-Noise
Ratio.

andb=25 g H z has been plotted on top of the absol ute pseudorange error data. 69%
of the absolute pseudorange rate error stayswithin the standard deviation values from
the variance model. In addition, the 3o, bound has been plotted, and 98% of the data
is within this bound. The figure indicates as well that the overall fit is good, but a
more complex, locally better fit could again be obtained for this specific dataset.

The left hand side of Fig. 32 presents a normal probability plot for graphical nor-
mality testing of the pseudorange rate errors normalized by their sample standard
deviation which is denoted as misclosure data. A sample standard deviation of 0.5
m/s was applied in the constant variance model. The left hand side of the normal
probability plotsin Fig. 32 shows that there are strong deviations from normality in
the misclosure data of the pseudorange rate observations when normalization with
the equal variance model has been performed. The figure indicates that the central
part of the data has significantly smaller standard deviation than the tails of the data
set. Thus, using equal variances for observations in the estimation procedure is not a
proper model. The normal probability plot of the misclosures of the pseudorange rate
error normalized by their standard deviations from the new variance model in Eqg. 79
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Fig. 32. Lightly Degraded Signal Environment: Normal Probability Plots of Pseudorange
Rate Misclosure Data with a Constant Variance Model and the New Variance Modd!.

isillustrated on the right hand side of Fig. 32. There are only dight improvements
in normality of the misclosure data with the new variance model, and the remaining
deviations towards the tails of the distribution indicate that there are still a few out-
liers which cannot be covered by the variance model, and they need to be accounted
for by reliability testing.

6.4.2 Variance Models for Heavily Degraded Signal Environments

The model as defined in Eq. 79 is simple and performs well with a variety of GPS
data. However, the parameters a and b need to be derived differently for a heav-
ily attenuated signal environment, since the a and b values introduced above for the
pseudorange and pseudorange rate observations in lightly degraded signal environ-
ments are not suitable for a heavily attenuated signal environment with a higher level
of overal signal degradation. Thus, similar figures as Fig. 28 and Fig. 31 will
be shown for a 30-minute urban canyon experiment with a HSGPS receiver. This
data experiment and the errors occurring were described also in Section 3.5.3. First,
pseudorange measurements are considered after which the pseudorange rate measure-
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ments are discussed in order to compose the variance model sfor the pseudorange and
pseudorange rates in a heavily deteriorated signal environment.

Variance Model for Pseudorange Observations

The spread of the pseudorange measurement errorsis more correlated with the signal
power than the signal elevation angle also in a heavily deteriorated signal environ-
ment, as presented in Fig. 33. The figure shows, that at low carrier-to-noise ratios,
however, the pseudorange errors seem to be shifted toward the negative side, most
likely due to the multipath degradation and echo-only signal reception specific for
this particular urban canyon environment.
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Fig. 33. Heavily Degraded Sgnal Environment: Pseudorange Error as a Function of Eleva-
tion and Carrier-to-Noise Ratio.

For the heavily degraded signal environment, a variance model with the parameters
a= 500 n? and b = 10°% m?Hz for the pseudorange caseis now applied. Theresulting
dependence of the modeled standard deviation and the C/Ng values is presented in
Fig. 34. The standard deviation, o, as output by the variance mode! in Eq. 79 with
a =500 m? and b = 10° m?Hz has been plotted on top of the absolute pseudorange
error data. 69% of the absolute pseudorange error is within the standard deviation



102 6. Fault Detection and Exclusion

900 : : :
Absolute Pseudorange Error
x4 | + 3xStd. Dev.

69% of Absolute Error within Std. Dev.
96% of Absolute Error within 3 x Std. Dev.

—C/N,

500+ - c :\/500+106*1o 10
\ # I

Absolute Pseudorange Error [m]

CIN, [dBHz]

Fig. 34. Heavily Degraded Sgnal Environment: Absolute Pseudorange Error and the Stan-
dard Deviation of Pseudorange Error as a Function of Carrier-to-Noise Ratio.

vaues from the variance model. In addition, the 3c,, bound has been plotted, which
corresponds here to only a 96% of the error staying within that bound. The figure
indicates that the overall fit is not very good, and locally better fit could be obtained.
Fig. 35 presentsthe normal probability plots of the pseudorange datawhen a constant
variance model has been applied with the variance composed from the sample stan-
dard deviation (69 m) and when the new proposed variance model of Eq. 79 has been
applied with a = 500 n¥ and b = 10° mPHz Fig. 35 implies that the new variance
model is actually not much more suitable in a normality sense, and the misclosures
with the new variance model do not follow anormal distribution better than the con-
stant variance model. However, the errors are still modeled quite well with the new
variance model since the results presented in the following chapter of the downtown
parking lot experiment show that the new variance mode! is profitable.

Variance Modéd for Pseudorange Rate Observations

In addition, the pseudorange rate measurement errors are more correlated with the
signal power than the signal elevation angle in the heavily deteriorated signal envi-
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Fig. 35. Heavily Degraded Signal Environment: Normal Probability Plots of Pseudorange
Misclosure Data with a Constant Variance Model and the Proposed Variance Model.

ronment of the urban canyon parking lot as presented in Fig. 36. The figure shows,
that at low carrier-to-noise ratios, however, the pseudorange rate errors seem also to
be shifted toward the negative side, most likely dueto the signal degradations specific
for this particular urban canyon environment.

For this heavily deteriorated signal environment, the new variance model of Eq. 79
is applied for the pseudorange rate measurements with the values a = 0.001 g and
b=40 g Hz The resulting dependence of the modeled standard deviation and the
C/No values is presented in Fig. 37. The standard deviation, ¢, as output by the
variance model in Eq. 79 with a = 0.001 g and b =40 gHz has been plotted on
top of the absolute pseudorange error data. Even 71% of the absolute pseudorange
rate error iswithin the standard deviation values from the variance model. |n addition,
the 30, bound has been plotted, and only 93% of the data is within this bound. The
figure indicates as well that the overall fit is not very good in this short test.

Fig. 38 presents the normal probability plots of the pseudorange rate data when
a constant variance model has been applied with the variance composed from the
sample standard deviation (0.5 m/s) and when the new proposed variance model of
Eq. 79 has been applied with a=0.001 "% and b= 40 " Hz. Fig. 38 impliesthat the
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Fig. 36. Heavily Degraded Signal Environment: Pseudorange Rate Error as a Function of
Elevation and Carrier-to-Noise Ratio.

misclosures with the new variance model do not follow a normal distribution as well
as the pseudorange rate errors normalized with the constant variance derived from
the sample. However, there is in percentage not a magjor difference, since still only
about 3% of the misclosures deviate from normality when the new variance model
is applied and they can be detected by reliability monitoring. The pseudorange rate
errors of the downtown parking ot experiment are still modeled quite well with the
new variance model, and the results of the downtown parking lot experiment will
show, that the new variance model is profitable with respect to a constant variance
model.

It is noted, that on occasions in urban and indoor environments, some strong echo-
only signals that are significantly erroneous may still have a moderate signal power.
In this case, the large observation error will not necessarily be reflected in the signal
power, and thus, in the C/No dependent weight model. These outliers are then left to
reliability monitoring to be detected and excluded. On the average, however, alow
power signal includes more noise and is more erroneous than a strong signal, and,
thus, weighting based on the signal power level is justified.
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7. RESULTS-TESTING AND ANALYSIS

The theory of HSGPS lies in the improved ability to acquire and track weak GPS
signals. However, while the increased tracking capability of HSGPS is highly advan-
tageous in terms of solution availability and improved redundancy, simultaneously,
severe interference effects due to poor signal conditions lead to large measurement
errors, and reliability monitoring becomes increasingly essential. Epoch-by-epoch
least squares (LS) is used in the analysis of the developed reliability enhancement
methods henceforth instead of more practical filtering approaches due to sensitivity
analysis purposes.

7.1 Real-Life High-Sensitivity GPS Tests and Reliability Analysis

In this section, the results of real-life tests performed with a high sensitivity GPS
receiver in different signal environments are presented. The HSGPS data sets are
examined to assess the performance of the discussed quality monitoring methods.
The test receiver used was a SIRF XTrac — LP™ evaluation kit. The sensitivity
of the receiver goes as low as -186 dBW, which corresponds to 25-30 dB fading of
nominal line-of-sight GPS signal power.

7.1.1 Static HSGPS Tests

Two static HSGPS experiments will be analyzed; a static test inside a wooden, resi-
dential garage, and a static test in an urban canyon.

Indoor Residential Garage Test

I ntroduction to Procedure
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Fig. 39. Residential Garage as the Setting of the Satic Indoor HSGPS Test.

The experiment was carried out inside the residential garage of Fig. 39 over atime
period of 12 hours in June 2003. The inside of the garage is shown on the right
hand side of Fig. 39 and the left hand side shows the exterior. During the test, the
wooden garage door was closed. The SIRF XTrac — LP™ HSGPS receiver and a
NovAtel 600 series antenna were used in the garage test, for both the initialization
for 20 minutes outdoors in good line of sight conditions before the actua start of the
experiments and in the indoor data collection. Only the indoor data is assessed here.

Theanalysisisfocused on the effectiveness of the reliability testing schemes on posi-
tion and velocity accuracy and reliability. In the least squares data processing, height
constraining was used in order to have the best obtainable redundancy for reliability
monitoring. The height of the static indoor test was known, as will often be the case
in indoor applications, and this information was added to the estimation processes to
gain the additional redundancy.

First, the availability conditions are discussed. The pseudorange and pseudorange
rate, i.e., measured Doppler, errors as well as carrier-to-noise ratios of the avail-
able observations were presented in Section 3.5.2. Then, results of applying the new
variance model, and the reliability enhancement methods and quality control to the
indoor-experiment are shown and assessed in terms of error distributions. The un-
certainty levelsfor the reliability monitoring were chosen as follows: the false alarm
rate was set to oo = 0.1% and the probability of missed detection was set to § = 10%,
i.e., the power of the test was set to 90%. With different settings for the confidence
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levels, also different reliability monitoring results would be abtained than presented
herewith.

Fig. 40 presents the number of available satellites in the 12-hour indoor experiment.
Thereisasurprisingly good availability in the indoor test, providing good reliability
monitoring capability. However, the number of satellites varies strongly which is
different from atypical outdoor situation in a favorable environment.
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Fig. 40. Garage: Number of Available Satellites.

Position and Velocity Estimation

First, least squares is compared with weighted least squares with the new variance
models, both in position domain in Fig. 41 and then in velocity domain in Fig.
42. The effect of applying the fault detection and exclusion methods, the Forward-
Backward FDE of Fig. 24, the Danish Method of Fig. 25, and Subset Testing of
Fig. 23, are then presented. Firgt, the results are presented in position domain in
Fig. 43, and then in velocity domain in Fig. 44. Table 5 summarizes the horizontal
position errors and Table 6 summarizes the horizontal speed errors for the indoor
garage experiment with HSGPS.

The resultsin Figures 41 and 42 show that weighting with the new variance models,
2 —~C/Ng 2 —C/No .
o5 =10+ 150%2%10 10 m? and o5 =0.01+25%10" 0 n? /s?, improve the standard




110 7. Results - Testing and Analysis

LS T T
400.. * Weighted LS (WLS) | |
Horizontal Error Statistics [m]:
300~ LS WLS
Min 0.03 0.06
Max 5086 211
E 200/ Mean 105 7.3
) * Std. Dev. 95 56
_‘E
T 100~ , |
= ¥
o}
-100} - ]

3300 200 -100 O 100 200 300 400
Easting [m]

Fig. 41. Garage: Horizontal Position Errors with Unweighted and Weighted Least Squares.
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Fig. 42. Garage: Horizontal Speed Errors with Unweighted and Weighted Least Squares.

deviation of the error by about 40% in the horizontal position case and by about
60% in the horizontal speed case when compared to the unweighted least squares
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Fig. 43. Garage: Horizontal Position Errors when Three Different Fault Detection and Ex-
clusion Methods Applied.

Table 5. Garage: Horizontal Position Errors and Availability Summarized.

LS | WLS | F-B FDE | Danish Method | Subset Testing
Min (m) 003 | 006 | 006 0.06 0.06
Max (m) 506.0 | 211.0 | 935 935 135.4
Mean (m) 105 | 7.3 7.0 6.9 7.0
Sid. Dev.(m) | 95 | 56 5.0 5.0 5.3
Availability (%) | 99.9 | 999 | 937 90.2 94.1

Table 6. Garage: Horizontal Speed Errors and Availability Summarized.

LS | WLS | F-B FDE | Danish Method | Subset Testing
Min (m) 0.001 | 0.001 | 0.001 0.001 0.001
Max (m) 336 | 86 5.8 5.8 125
Mean (m) 05 | 03 0.3 0.3 0.3

Sid. Dev.(m) | 0.7 | 03 0.2 0.2 0.3

Availability (%) | 99.9 | 99.9 | 933 88.9 94.1




112 7. Results - Testing and Analysis

35/ T T T T
| Forward-Backward FDE

| Danish Method
30} | o Subset Testing

Horizontal Speed Error Statistics [m/s]:

~E =r Forward-Backward FDE Danish Method Subset Testing

= Min 0.001 0.001 0.001

@ 50/Max 5.8 5.8 12.5

o |Mean 03 03 03

9 |std.Dev. 0.2 0.2 0.3

g 15:Availability(%) 93.3 88.9 941 -

g .

5 o

T 10- 1

At

51%500 400, 520800 526200 531600 537000 542400 547800 553200 558600
14:40:00 00 17°40:00 19:10:00 20:40:00 22'10:00 22:40:00 01:10:00 02:40:00 04:10:00

GPS Time (s) / Local Time (hh:mm:ss)

Fig. 44. Garage: Horizontal Speed Errors when Three Different Fault Detection and Exclu-
sion Methods Applied.

computation with assumed equal variances of o3 = 8 n? and 63 = 0.05° n?/s°.
In addition, with proper weighting, the maximum error goes even down from 500
to about 200 m in the horizontal position case and from 34 to about 9 m/s in the
horizontal speed case. Availability of a LS and a WLS solution in time is 99.9%
during the 12-hour indoor-experiment; only 0.1% of the time there were not enough
satellites to compute a solution.

Overall, the availability of a position solution decreases to approximately 93% when
applying the quality checks in the Forward-Backward FDE, the Danish Method, and
the Subset Testing. However, this availability is still outstanding. Applying the re-
liability monitoring methods improve the results in the position and the velocity do-
mains even further, as seen in Figures 43 and 44, and the Danish method and the
Forward-Backward FDE method perform the best in this experiment, however, with
lower availability of reliable flagged solutions than with the Subset Testing proce-
dure. With the quality controlled Forward-Backward FDE applied, approximately
6.3% of the position solutions were excluded by the quality control of Fig. 26 includ-
ing 5.6% of time epochs with observations with a zero redundancy number, 0.5% of
time epochs of unsuccessful failure identification, i.e., final global test did not pass,
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0.2% of time epochs with insufficient initial redundancy, and less than 0.1% due to
a PDOP surpassing the threshold 10. In the epochs that passed the quality control,
only about 2% required the exclusion of erroneous range observations. Only up to
two exclusions were made to the pseudorange observations. With the proper C/No-
dependent variance models already applied, however, only few outliers remained that
needed to be detected and excluded.

The accuracies of the position and velocity are indeed further improved when apply-
ing reliability monitoring and quality control methods. However, the Subset Testing
performs here worst when without any reweighting or checking the influentiaity of
the measurements it lets some subsets with errors pass the global test due to the er-
rors there canceling each other out. In addition, when excluding a measurement, the
geometry degrades further and the errors remaining have more effect on the solution.
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Fig. 45. Garage: Empirical Distribution Functions of Horizontal Position Errors.

Fig. 45 shows the empirical cumulative distribution functions of the horizontal po-
sition errors of the garage experiment when least squares, weighted least squares,
least squares completed by Forward-Backward FDE, the Danish Method, and |east
squares compl eted by Subset Testing have been applied, respectively. Thisfigure also
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Fig. 46. Garage: Number of Exclusions of Pseudorange Observations.

suggests that the variance model has a significant impact, but the additional overall
accuracy gain by the quality controlled reliability testing is small. This was to be
expected; reliability testing is not about improving the precision, i.e., accuracy in the
absence of biases, but about rejecting the usually few contaminated solutions. Itisa
security feature which only shows up in the maximum error and the absol ute number
of large errors.

Fig. 46 presents the number of exclusions of pseudorange observations performed in
the position estimation. The global tests in the Subset Testing scheme alow for the
most exclusions to be performed and in some of these cases excluding an erroneous
measurement degraded the overall geometry making the result worse.

Fig. 47 shows the empirical cumulative distribution functions (CDF) of the horizon-
tal speed errors of the garage experiment when least squares, weighted least squares,
least squares completed by Forward-Backward FDE, the Danish Method, and |east
squares compl eted by Subset Testing have been applied respectively. Fig. 48 presents
the number of exclusions of the pseudorange rate observations performed in the ve-
locity estimation. With the quality controlled F-B FDE applied, approximately 6.7%
of the velocity solutions were excluded by the quality control of Fig. 26 including
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Fig. 47. Garage: Empirical Distribution Functions of Horizontal Speed Errors.
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Fig. 48. Garage: Number of Exclusions of Pseudorange Rate Observations.

5.6% of time epochs with observations with a zero redundancy number, 0.9% of time
epochs of unsuccessful failure identification, i.e., final global test did not pass in
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the velocity computation, 0.2% of time epochs with insufficient initial redundancy,
and less than 0.1% due to a PDOP surpassing the threshold 10. In the epochs that
passed the quality control, only about 5% required the exclusion of erroneous range
rate observations, i.e., the measured Doppler, as shown in Fig. 48. Here, the Danish
Method shows most exclusions of observations by modifying the weights of the mea-
sured Doppler observations. In addition, the Forward-Backward FDE shows the least
exclusions due to the feature in the procedure of not performing an exclusion if the
observation to be excluded is not the most influential one. The Subset Testing slightly
now failsto find the most suitable subset in its global testing sinceit resultsin alarger
maximum horizontal speed error value than when applying only the weighted least
squares without any quality control.

Reliability Boundaries

As the position solution is more meaningful to real-life navigation applications, the
theoretical reliability levels and their relation with real-life errors are here assessed
only in position domain.
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Fig. 49. Garage: HPE Values.

The theoretical reliability boundary, i.e., the horizontal protection limit, is discussed
next with the external reliability measure, the Horizontal Positioning Error (HPE) of
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Eq. 69. Fig. 49 presents the maximum horizontal positioning error, HPE, predicted
for each epoch inthe garage test. The system can thus marginally be protected against
thisradial error when quality control and reliability testing are applied. Fig. 50 shows
the empirical cumulative distribution function (CDF) of the HPE. We see that 72%
of the time, the system is marginally protected against position errors of 100 m. Only
about 1% of the time the HPE is larger than 500 m. Fig. 51 is used to compare
the horizontal positioning error, HPE, against which the solution can be marginally
protected, to the real quality controlled position error available from least squares
completed with Forward-Backward FDE in this indoor experiment. The plot shows
the empirical distribution of the actual 2-dimensional error of the quality controlled
result scaled by the corresponding HPE. A value greater than 1 would indicate that the
actual error surpasses the HPE, but this does not occur here. Given the probability
B of missed detection, we might expect a few epochs, where this actually occurs.
However, B = 10% only means that in 10% of the cases where an outlier of exactly
the size of a minimum detectable blunder (MDB) actually occurs, this outlier will
not be detected, and an error of size HPE results. In redity, only perhaps P1 =
10% outliers occur in the first place, and of those only a small percentage, say P2,
will be close to the MDB (Kuusniemi et al., 2004). Most will be smaller and thus
perhaps go unnoticed but certainly cause less error than the HPE, or larger and thus be
easily detected (Kuusniemi et a., 2004). So, the probability of actually encountering
an outlier of size MDB which is unnoticed is much smaller than B, namely about
P1xP2x.

Position Accuracy Estimation

Fig. 52 showsthe horizontal position errors of the static indoor test and the respective
DRMS accuracy estimates, D from Eq. 51, when the Forward-Backward FDE, the
Danish Method and the Subset Testing were successively applied. The percentages of
how often the actual errors are within the respective DRM S estimates are provided in
the figure. The DRMS estimate provides here a reasonable estimation of the errors.
The analysis is here concentrated only on the position accuracy due to the wider
applicability of the position solution to real-life applications. In thistest, the DRMS
estimate does provide quite close to the 63.2% of probability it is supposed to if
the assumptions are met. The noise assumptions of the new variance model cg =
10 + 1502 10%/0NO do match the real errors well in this test, and the a posteriori
variance factor reflects the true error conditions quite well.
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Fig. 52. Garage: Horizontal Position Errors and DRMSError Estimates when Three Differ-
ent Fault Detection and Exclusion Methods Applied.
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Fig. 53 presents a more detailed distribution of the ratio between the horizontal posi-
tion errors of the quality controlled result with the Forward-Backward FDE applied
and the corresponding DRMS error estimate. The figure shows that 61.2% of the
error stay within the estimate, i.e., when the ratio equals 1, and the rest of the errors
exceed the values of the estimate as expected.

Downtown Parking Lot Test

Introduction to Procedure

Fig. 54. Urban Environment Parking Lot as the Setting of the Static Outdoor HSGPS Test.

A test was carried out in a parking lot in an urban canyon over a time period of 35
minutes in February 2004 in downtown Calgary, Canada. The parking lot used in the
experiment is shown in Fig. 54 where the parking lot is presented from both sides
with the antenna of the experiment set on the roof of atest van. A SIRF XTrac—
LP™ HSGPS receiver and a NovAtel 700 series antenna were used in the test. The
reference for the experiment accurate to about a meter was obtained by averaging
obtained reliable solutions and map-matching. Height constraining was used to have
the best obtainable redundancy. The false alarm rate for the reliability processing was
set to oo = 0.1% and the probability of missed detection was set to f = 10%.

The analysis is here focused on accuracy and reliability and the effect of applying
the reliability and quality monitoring procedures. First, Fig. 55 presents the number
of available satellites in the parking lot experiment, and overall, quite good avail-
ability is obtained in this urban canyon. However, as shown in Section 3.5.3., which
presented the pseudorange and pseudorange rate error with their respective carrier-
to-noise ratios for this test, very low power, erroneous signals were obtained. There
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are some greatly outlying observation errors present, both in range and range rate
measurements, which are the result of severe multipath degradation, i.e., echo-only
signal tracking. On occasions, the absolute value of the pseudorange errors reach
around 800 m and the absolute value of the pseudorange rate errors reach around 7
m/s due to the multipath deteriorations caused by the nearby high buildings.

Number of Satellites

i
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13:00:00  13:05:00 13:10:00 1315:00 13:20000 1325000 13:30:00 1335000 13:40:00

GPS Time (s) / Local Time (hh:mm:ss)

Fig. 55. Parking Lot: Number of Available Satellites.

Position and Velocity Estimation

Fig. 56 presents in alocal level frame the horizontal position solution when un-
weighted and weighted least squares (L S) were applied. A variance of 63 = 207 n?
was assumed for the equal variance unweighted LS, and for the weighted LS, the new
variance model for heavily degraded signal conditions of csg =500+10°%10 “0® e
was applied. Fig. 56 showsthe huge errors present due to the severely outlying obser-
vations. The standard deviation of the horizontal position error is still improved with
just applying the new variance model from approximately 900 m to 500 m. There
were a few positions, both with LS and weighted LS, that were off by hundreds of
kilometers from the reference position, and these errors were here left out from the
assessment due to their obvious faultiness. These deletions have reduced the avail-

ability to 96.4% and 97.4% with LS and weighted LS, respectively. The maximum
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errors still obtained, however, are in the order of 10 kilometers.

Fig. 57 presents the horizontal speed error of the static test with LS and weighted
LS. Here, avariance for the equal variance model of unweighted LS was assumed to
be 67 = 0.05% n¥ /s, and for the weighted LS the new variance mode! for heavily
degraded signal conditions of 65 = 0.001+ 40 107 10° P /s°. The standard devia-
tion of horizontal speed error is reduced by almost 90% from 26 to 3 m/s when just
applying the new C/Np based variance model.

LS r ]
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4000} i i i -2
2 & |
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H H H I H H
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Fig. 56. Parking Lot: Horizontal Position Errors with Unweighted and Weighted Least
Squares.

Fig. 58 presents the horizontal position errorsin alocal level frame around the refer-
ence position when the three FDE methods and quality control are applied. The error
is reduced drastically with the availability still being fairly good, around 90%. Asan
elaboration on the reliability and quality monitoring, as an example, with Forward-
Backward (F-B) FDE, around 9% of the time a solution is flagged as unreliable from
quality control, including 6% of time instants, epochs, being flagged unreliable dueto
zero redundancy numbers, 2% dueto afailed final global consistency check, and 1%
flagged unreliable due to insufficient initial redundancy for reliability testing. In 18%
of the reliably flagged solutions of F-B FDE accompanied by quality control, exclu-
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Fig. 57. Parking Lot: Horizontal Speed Errorswith Unweighted and Weighted Least Squares.

sions have been made. Subset Testing performs here slightly worse than the F-B FDE
and the Danish Method due to the global testing of al the subsets lets some faulty
solutions pass the test, but, however, the Subset Testing has the highest availability.

Fig. 59 presents the horizontal speed error in the static downtown test when the FDE
methods and quality control have been applied. Again, the F-B FDE and the Danish
Method performs best with respect to accuracy resulting in standard deviations of 0.1
m/s. The Subset Testing results in a few erroneous speed results, however, having
the highest availability. As an example, in the F-B FDE, a solution was declared
unreliable 9.5% of the time by quality control, including 6% due to zero redundancy
numbers, 2.5% due to final global test failure, and 1% due to insufficient initial re-
dundancy. In none of the solutions did the PDOP exceed the predetermined threshold
of 10. Overdl, in the remaining solutions that passed the quality control, the F-B
FDE performed exclusions 15% of the time.

Tables 7 and 8 summarizes the accuracy and availability of the parking lot experiment
for position and velocity errors, respectively. Overall, the F-B FDE accompanied with
quality control performs best in terms of considering both accuracy and availahility.

Fig. 60 shows the empirical cumulative distribution functions (CDF) of the horizon-
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Fig. 58. Parking Lot: Horizontal Position Errors when Three Different Fault Detection and

Exclusion Methods Applied.

Table 7. Parking Lot: Horizontal Position Errors and Availability Summarized.

LS WLS | F-B FDE | Danish | Subset Testing
Min (m) 1.4 2.2 11 11 1.1
Max (m) 9.7+10% | 9.6%10° | 147.7 | 246.8 321.2
Mean (m) 240.2 88.1 37.9 376 40.7
Std. Dev. (m) 908.3 490.1 21.0 20.9 31.7
Availability (%) | 96.4 97.4 91.3 85.6 93.6

Table 8. Parking Lot: Horizontal Speed Errors and Availability Summarized.

LS | WLS | F-B FDE | Danish | Subset Testing
Min (m) 0.001 | 0.001 | 0001 | 0.001 0.001
Max (m) 244.9 | 57.1 34 15 54.2
Mean (m) 55 | 05 0.1 0.09 0.1
Sid. Dev. (m) | 26.3 | 238 0.1 0.1 12
Availability (%) | 964 | 97.4 | 905 80.9 93.6
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Fig. 59. Parking Lot: Horizontal Speed Errors when Three Different Fault Detection and
Exclusion Methods Applied.
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Fig. 61. Parking Lot: Number of Exclusions of Pseudorange Observations.

tal position errors of the parking lot experiment when least squares, weighted least
squares, least squares completed by Forward-Backward FDE, the Danish Method,
and least squares completed by Subset Testing have been applied, sequentially, giv-
ing hereby information on the distribution of the errors. With the FDE approaches
and quality control applied, amost 80% of the solutions are within 50 meters from
thereference. Fig. 61 presentsthe number of exclusions of pseudorange observations
performed in the position estimation with the different FDE approaches showing that
the Subset Testing alows for the most exclusions.

Fig. 62 showstheempirical cumulative distribution functions (CDF) of the horizontal
speed errors of the static urban canyon experiment when least squares, weighted |east
squares, least squares completed by Forward-Backward FDE, the Danish Method,
and least squares completed by Subset Testing have been applied, sequentially. With
FDE and quality control, around 99% of the speed solutions are below 0.5 m/s. Fig.
63 presents the number of exclusions of pseudorange rate observations performed in
the vel ocity estimation showing again the most exclusions performed by Subset Test-
ing. At occasions, the pseudorange and pseudorange rate observations from the same
satellite were excluded, but, however, not dways. In addition, when resultingin are-
liable flagged subset, the Subset Testing always resulted in a reliable subset for both
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Fig. 63. Parking Lot: Number of Exclusions of Pseudorange Rate Observations.

the position and the velocity computation, though the subsets not always containing
observations from the exactly same satellites. Generally, dightly more exclusions
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were performed on the pseudorange rate measurements. Therefore, the Subset Test-
ing resultsin an equal percentage of availability of areliable flagged solution for both
the position and speed solutions.

Position Reliability Boundaries

Next, the externa reliability boundary, the HPE, is assessed as well as its relation
with real errors in the static parking lot test. Fig. 64 presents the HPE values in
time and statistics of the HPE in the parking ot experiment. A standard deviation of
about 500 m is obtained in the HPE in thistest. Fig. 65 provides information on the
distribution of the HPE, and it shows that around 7% of the theoretical HPE boundary
exceeds 1000 m. Fig. 66 presents the empirical distribution of the ratio between the
real horizontal position error obtained by F-B FDE and quality control and the HPE
boundary. It shows that none of the real errors reach the HPE boundary, since the
HPE represents the worst case scenario that the system can be protected against if
errors of the size of the MDB would occur.
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Fig. 64. Parking Lot: HPE Values.

Position Accuracy Estimation

The analysis is here concentrated only on the position accuracy due to the wider
applicability of the position solution to real-life applications. Fig. 67 shows the hori-
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zontal position errors of the static parking lot test and the respective DRM S accuracy
estimates, D of Eg. 51, when the Forward-Backward FDE, the Danish Method and
the Subset Testing were successively applied. The percentages of how often the ac-
tual errors are within the respective DRMS estimates are provided in the figure, and
in these three situations, only approximately around 30% of the actual horizontal er-
rors are within the DRMS error estimate. The DRMS estimate provides till a quite
reasonable estimation of the errors despite the noise assumptions of the new variance
model cg =500+ 10°% 10 % not matchi ng thereal errors perfectly inthistest. The
a posteriori variance factor thus does not completely reflect the true error conditions

but it still gives areasonable indication.
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Fig. 67. Parking Lot: Horizontal Position Errors and DRMS Error Estimates when Three
Different Fault Detection and Exclusion Methods Applied.

Fig. 68 presentsthe empirical distribution of the ratio between the horizontal position
error of the quality controlled result with the Forward-Backward FDE applied and the
DRMS error estimate. The figure shows the only 30% of the error staying within the
estimate, i.e., when the ratio equals 1, and the rest of the errors exceed the values of
the estimate.
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Fig. 68. Parking Lot: Empirical Distribution of the Ratio Between Horizontal Position Error
and DRMSError Estimate.

7.1.2 Kinematic HSGPS Tests

Two real-life kinematic HSGPS tests were performed in downtown Calgary, Canada,
namely a pedestrian test and a vehicular test. The test trgjectories of the two tests
are shown in Fig. 69. In addition, pictures describing the test conditions in terms
of the surrounding buildings causing blockages are provided. A picture showing the
environment in the pedestrian test is provided in Fig. 70. Furthermore, a picture
describing the test conditions in the vehicular test is provided in Fig. 71. Ascan
be seen, there are high structures surrounding the streets in the experiments causing
outlying observations due to multipath degradation. No definite reference could be
obtained in the kinematic experiments and, thus, no absolute accuracy and reliabil-
ity analysis will be given here, but rather just assessments comparing the results in
the position domain to a map in a local level frame. The map includes the refer-
ence routes. The pedestrian test also included some static points when the pedestrian
made stops on street corners, and in the vehicular test, an external velocity reference
from an IMU/GPS (Integrated Measurement Unit/Global Positioning System) was
available.
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Fig. 69. Trajectories of the Urban Environment Kinematic HSGPS Tests.

Fig. 70. Surroundings of the Pedestrian HSGPS Experiment.
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Fig. 71. Surroundings of the Vehicular HSGPS Experiment.

Downtown Pedestrian Test

Introduction to Procedure

First, the results for a 30-minute pedestrian test are presented and assessed. The
test was carried out in an urban canyon downtown environment in December 2003
in Calgary, Canada. A SIRF XTrac— LP™ HSGPS receiver and a NovAtel 700
series antenna were used in the pedestrian test with the antenna mounted on top of
a backpack carried by the pedestrian. The pedestrian traveled the route shown in
Fig. 69 making stops of few seconds in each street corner, which will be pointed
out in the speed solution figures. Fig. 72 presents the number of available satellites
and the corresponding carrier-to-noise ratios for the pedestrian experiment. Very low
power signals were obtained, but, overall, availability is fairly good considering the
surroundings. Height constraining was used to have the best obtainable redundancy.
Thefalse darm rate for the reliability processing was set to o = 0.1% and the proba-
bility of missed detection was set to B = 10%.

Position and Velocity Estimation
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Fig. 72. Pedestrian Test: Available Satellites and Their C/Ny Values.

Fig. 73 presentsthe position results for the pedestrian test with unweighted (o5 = 20
n¥) and weighted (65 = 500+ 10° 101" n?) least squares (L S). It shows on amap
the huge errors in order of kilometers that are obtained, and some of the errors are
even outside of the scope of the map in the figure with the maximum errors being
in the order of 80 kilometers. The new variance model reduces a few of the largest
errors. The availability for LS and weighted LS is 100%.

Fig. 74 presents the horizontal speed of the pedestrian test with unweighted (o5 =
0.052 /%) and weighted (o2 = 0.001+40+ 10" m?/s?) LS applied. Though
there were no definite reference, the static periods are pointed out in the figure, and,
generally, the speed of the pedestrian carrying a heavy backpack with the test equip-
ment on the back does not exceed 3 to 4 m/s. Especially in the end of the test, where
the environment was harsh in terms of high skyscrapers, huge errorsin the horizontal
speed solution of 200 to 300 m/s were obtained. More detailed statistics of the hori-
zontal speed for unweighted and weighted LS is provided in the figure. Availability
of aLS and weighted LS velocity solution was 100%.

Fig. 75 presents separately the horizontal positions of the pedestrian test in local
level maps when the three FDE approaches accompanied with quality control were
applied, respectively. The true route is also shown in the subfigures. The Danish
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Fig. 73. Pedestrian Test: Horizontal Position with Unweighted and Weighted Least Squares.
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Fig. 74. Pedestrian Test: Horizontal Speed with Unweighted and Weighted Least Squares.
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Method performs the best in terms of accuracy but it has the lowest availability of
around 69%. The maximum errors when the FDE approaches are applied are now
reduced to around 300 m, which isamajor enhancement to the accuracy compared to
when no reliability monitoring was applied in Fig. 73. Subset Testing resulted in the
highest availability of approximately 77%. Table 9 summarizes the availabilities of
a position solution in percentage with LS, weighted LS, F-B FDE, Danish Method,
and Subset Testing.
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Fig. 75. Pedestrian Test: Horizontal Position when Three Different Fault Detection and Ex-
clusion Methods Applied.

Table 9. Pedestrian Test: Availability Summarized of Position Solutions.
LS | WLS | F-B FDE | Danish | Subset Testing
Availability (%) | 100 | 100 74.7 68.5 76.6

Fig. 76 presents the exclusions performed by the FDE procedures to the range mea-
surements. It shows that Subset Testing generally allows for the most exclusions.
However, usually, only one exclusions of a range observation is made by the FDE
approachesin this pedestrian test.

To elaborate in more detail on the reliability and quality control, in the Forward-
Backward (F-B) FDE scheme, as an example of the FDE procedures, epochs were
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flagged as unreliable around 25% of the time and these included 20% of epochs being
flagged unreliable due to zero redundancy numbers, 4% of epochs failing the final
global test, and 1% of epochs lacking theinitial redundancy for reliability testing. No
rejections due to the PDOP exceeding the threshold were necessary. Of the remaining
reliable flagged epochs, in 11% of epochs, exclusion was performed.
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Fig. 76. Pedestrian Test: Number of Exclusions of Pseudorange Observations.

Fig. 77 presents the horizontal speed solutions when the FDE and quality control
have been applied. The static periods are pointed out in the figure. There are till
some major errors persisting, especially with the Subset Testing, whose global testing
is sometimes letting the erroneous solutions pass the consistency check. However,
overall, the maximum errors are reduced now significantly. Table 10 summarizes
the availabilities of a horizontal speed solution in percentage with LS, weighted LS,
F-B FDE, Danish Method, and Subset Testing. The Subset Testing aways found
simultaneously a reliable flagged solution also here for both position and velocity
computation though performing different amounts of exclusions.

Fig. 78 presents the exclusions made by the FDE approaches on the range rate obser-
vations, i.e., the measured Doppler. The Subset Testing approach demonstrates the
most exclusions. Again, as an example of the reliability and quality control opera-
tion, in the F-B FDE approach as much as 41% of the time epochs were flagged as
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Fig. 77. Pedestrian Test: Horizontal Speed when Three Different Fault Detection and Exclu-
sion Methods Applied.

unreliable by quality control. Thisincludes having an observation with a zero redun-
dancy number in 20% of epochs, a global consistency test failure in 20% of the time
epochs, and not having enough initial redundancy to perform reliability testing in 1%
of the time. Furthermore, on the remaining reliable flagged solutions by the quality
control, exclusions of range rate observations were made by the F-B FDE scheme in
23% of the time epochsin the pedestrian test.

Position Reliability Boundaries

Next, the theoretical external reliability is briefly presented, i.e., the HPE values re-
sulting in the pedestrian test. Fig. 79 presents the HPE values in time and elaborates
on the statistics. The standard deviation of HPE in the pedestrian test is around 800
m, and the real-life errors obtained with the quality controlled FDE approaches are
clearly less. Fig. 80 shows the distribution of the HPE values, where it can be seen

Table 10. Pedestrian Test: Availability Summarized of Speed Solutions.

LS | WLS | F-B FDE | Danish | Subset Testing
Availability (%) | 100 | 100 | 587 56.3 76.6
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Position Accuracy Estimation

Due to not having a definite reference in the pedestrian test, the DRM S values when
different FDE approaches are applied can only be roughly compared to the true errors
visible on the maps in a local level framein Fig. 75. Fig. 81 presents the DRMS
horizontal accuracy estimates from the three FDE approaches, and it shows that the
maximum DRMS error estimate is just under 400 m. This suits somewhat well the
map displaysof Fig. 75, and it can be roughly estimated that the true errors are within
about 50% of the DRM S estimates giving thus a reasonable estimate of the position
accuracy.

Downtown Vehicular Test

Introduction to Procedure

A vehicular test was carried out with atest van in an urban canyon downtown environ-
ment in February 2004 in Calgary, Canada. A SiRF XTrac — LP™ HSGPS receiver
and a NovAtel 700 series antenna were used in the vehicular test with the antenna
being placed on the roof of the van. Fig. 82 presents the number of available satel-
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Fig. 81. Pedestrian Test: DRMS Error Estimates when Three Different Fault Detection and
Exclusion Methods Applied.

lites and their corresponding carrier-to-noise ratio levels in the vehicular test. Very
low power signals are also obtained due to the heavy obstructions of skyscrapers
surrounding the route. Overall, a quite good signal availability is, however, obtained.
Height constraining was again used to have the best obtainable redundancy. Thefalse
alarm rate for the reliability processing was set to oo = 0.1% and the probability of
missed detection was set to = 10%.

Position and Velocity Estimation

Fig. 83 presents the unweighted (o5 = 20% n¥) and weighted (o5 = 500+ 10°
10~ 0 m?) L S position results of the vehicular test. Some severely outlying solutions
were obtained, especially with the equal variance assumption of unweighted LS, and
for both LS and weighted LS, solutions out of the scope of the map in Fig. 83 were
also obtained having error in the order of hundreds of kilometers. Thus, reliability
monitoring is essential.

Fig. 84 presents the horizontal speed solution of the vehicular test with unweighted
. —C/Nog .

(o5 = 0.05° P /s”) and weighted (65 = 0.001+ 40+ 10 10 n?/s°) LS applied. A

reference of the horizontal speed is included in the figure. The reference speed was
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obtained from an integrated IMU/GPS system that was mounted to the test van to
have a reference of the velocity of the vehicle. The IMU/GPS system used was a
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Black Diamond System by NovAtel Inc. The unweighted LS demonstrates a few
huge errors, up to aimost 1300 m/s, and also the weighted L S demonstrates a maxi-
mum horizontal speed of over 1000 m/s as can be seen from the statistics displayed in
Fig. 84. However, despite the few huge outliers, the weighted LS follows generally
quite well the reference speed.

200
Reference
180} LS :
+ Weighted LS (WLS) |
160 satistics of Horizontal Speed [m/s]: :
IR .To | E— LS WLS Reference i |
£ '®IMin 003 001 0001 j
5 qoptMax 1276 1146 3
D Mean 35 18 6: :
@100_51(1.-...3@.\?-._95 ............ 73 3 S i
£ * L #* * :
G 80| : ook
N s +
£ 60 -
TS S Z e % b S
20_ .........................................................................................................
503700 503000 503900
12:38:20 12:48:20

12:43:20
GPS Time (s) / Local Time (hh:mm:ss)

Fig. 84. \ehicular Test: Horizontal Speed with Unweighted and Weighted Least Squares.
Reference Included in the Figure.

Fig. 85 shows the horizontal position results in a local level frame when applying
the FDE approaches accompanied with quality control to the vehicular test. The
true route is shown on the separate maps along with the point solutions. All the
huge errors are now vanished, but there isin places error in the order of around 400
m, with all the FDE schemes. Overdl, however, reasonably good accuracies and
availabilities are obtained with al the reliability monitoring procedures considering
the harsh environment. Subset Testing demonstrates again the best availability of a
reliable flagged solution as aresult of its global testing on al the subsets.

Fig. 86 presents the number of exclusions made by the FDE schemes to range mea-
surements, and up to 3 exclusions were performed by all the procedures. Again, as
an example of the operation of the reliability monitoring, in the F-B FDE, 6.5% of
the solutions were flagged unreliable including 3.1% of time epochs having an ob-
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Fig. 85. ehicular Test: Horizontal Position when Three Different Fault Detection and Ex-
clusion Methods Applied.

servation with a zero redundancy number and 3.4% of epochs not passing the global
consistency check. Of the remaining reliable flagged solutions, the F-B FDE per-
formed exclusions to 23% of the epochs. Table 11 summarizes the availabilities of a
horizontal position solution in percentage with LS, weighted LS, F-B FDE, Danish
Method, and Subset Testing.

Table 11. Vehicular Test: Availability Summarized of Position Solutions.
LS | WLS | F-B FDE | Danish | Subset Testing
Availability (%) | 100 | 100 93.5 84.6 96.2

Fig. 87 presents the horizontal speed solutions of the vehicular test when FDE ap-
proaches and quality control were applied. The reference is included in the figure.
The F-B FDE performs here the best of the three approaches compared to the ref-
erence speed. However, the Subset Testing has the highest availability of reliable
flagged solutions, 96%. Table 12 summarizes the availabilities of a horizontal speed
solution in percentage with LS, weighted LS, F-B FDE, Danish Method, and Subset
Testing.

Fig. 88 presents the number of exclusions performed by the FDE procedures on the
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Fig. 86. Vehicular Test: Number of Exclusions of Pseudorange Observations.

range rate observations and up to 4 simultaneous exclusions were made at one single
time instant. As an example in the velocity computation, the quality control in F-B
FDE flagged around 25% of time epochs as unreliable including 3.1% of the time
epochs containing a measurement with a zero redundancy number and 22% of the
time epochs containing a solution that did not pass the final global test. Overdl, on
the remaining reliable flagged solutions, the F-B FDE performed exclusions on 53%
of the epochs.

Position Reliability Boundaries

Figures 89 and 90 present the HPE values of the vehicular test with subject to thetime
of the experiment and as an experimental cumulative distribution function. Details
of the statistics of the HPE are also provided. The theoretical horizontal positioning
error boundary hasin thistest a standard deviation of approximately 450 meters, and

Table 12. \ehicular Test: Availability Summarized of Soeed Solutions.
LS | WLS | F-B FDE | Danish | Subset Testing
Availability (%) | 100 | 100 75 74 96
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by comparing the obtained results to the reference route in the map of Fig. 85, the
actual errors do not exceed the HPE.
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Fig. 89. \ehicular Test: HPE Values.
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Position Accuracy Estimation

Fig. 91 presents the DRMS horizontal position error estimate for the vehicular test
with different FDE processing options. By examining Fig. 85, the real errors are
on occasions slightly larger than the DRMS estimates of Fig. 91, but, overal, the
horizontal accuracy estimate DRM S gives areasonably good indication of the current
error level aso here.
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Fig. 91. ehicular Test: DRMS Error Estimates when Three Different Fault Detection and
Exclusion Methods Applied.

7.2 Integrated GPS/Galileo Simulation and Reliability Analysis

As seen in the previous real-life GPS experiments, standalone GPS, even if it isHS-
GPS, does not provide throughout a sufficient amount of redundancy and available
satellite signals to perform robust fault detection and exclusion. Standalone GPSis
not necessarily sufficient if the aim is to ensure a desired level of accuracy of, e.g.,
the FCC E911 demands, in obstructed signal conditions of personal positioning en-
vironments. Future Galileo, combined with GPS, will provide twice the number of
satellites above the horizon (Ryan and Lachapelle, 2000; Weber et al., 2001). Thus,
better avail ability, accuracy, and reliability are expected even in extreme masking en-
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vironments such as in urban canyons (O’ Keefe, 2001; Malicorne et al., 2001), abeit
till with a poor geometry. Furthermore, in harsh environments, all satellite signals
are attenuated and, thus, erroneous, implying still a substantial need for reliability
assessment.

Since no Galileo satellite signals are available yet, a software ssimulator is avaluable
tool in evaluating the GPS/Galileo constellation and to check the usefulness of the
discussed GNSS reliability testing methods for degraded signal environments. Thus,
in addition to the real-life GPS tests, a GNSS software simulator, namely SmGNS2,
developed by the PLAN group (Position, Location And Navigation) of the Depart-
ment of Geomatics Engineering, University of Calgary, is used here to produce data
for testing purposes of the discussed reliability and quality monitoring schemes. In
generating the GNSS measurements, the simulator first computes the true observ-
ables, the ranges and carrier phase, between the receiver and each GNSS satellite
in-view. It then adds errors that affect the signals, with five different error factors
being modeled: orbital uncertainties, ionospheric and tropospheric errors, as well as
single-reflector multipath and receiver noise (Luo and Lachapelle, 2003). The as-
sumed GPS/Galileo constellation shown in Fig. 92 consists of 24+5 GPS satellites
on 22000-km-radius circular orbits with an inclination angle of 55 degrees, and 27+3
Galileo satellites on 29378-km-radius circular orbits with an inclination angle of 54
degrees (Alves, 2001).

7.2.1 Degraded Signal-Environment Simulation

I ntroduction to Procedure

A 6-hour data scenario of GPS/Galileo measurements with substantial errors in the
range measurements was generated and the capability of detection and exclusion of
erroneous pseudorange observations as well as the resulting accuracy is herewith as-
sessed. Only position reliability and accuracy is of interest in this assessment and,
thus, only pseudorange errors were concerned and assessed in the simulation. Two
frequencies, L1 and E1, were considered in the simulation. Additional random pseu-
dorange errors with a standard deviation of as high as 150 m were added to the sim-
ulation to represent the urban environment related substantial signal degradations of
echo-only tracking, e.g., which the signal simulator is not equipped to produce. When
processing the simulated GNSS data, the measurement variances were assumed equal
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to GPS and Galileo signas (a one-c,, value of 8 m), and height constraining was ap-
plied. No C/Ny values were simulated and, thus, no C/Np dependent weighting, i.e.,
a variance model, was applied. The simulated 6-hour data set was set to Tampere
coordinates (61.4498 degrees N, 23.8554 degrees E, 150 m height), Finland, with an
elevation mask angle of 2 degrees at the beginning of GPS week 1321 (first week of
May 2005). The false alarm rate for the reliability processing was set to oo = 0.1%
and the probability of missed detection was set to B = 10%.

As background information about the simulation, Fig. 93 presents the number of
satellites in view for the GNSS simulation scenario. Fig. 94 presents the simulated
pseudorange errors in this simulated data set by presenting the elevation angles for
al available satellites versus their corresponding pseudorange error. Errorsin this
simulation include moderate ionosphere and troposphere errors, receiver noise, and
orbital errorsin al the observations, as inherent to the simulator data generation. In
addition, randomly added errors were included that represented in-phase and out-of-
phase multipath reaching up to hundreds of meters in six of the satellites in view,
however not all simultaneously. Fig. 95 presents a histogram of the simulated errors
including details of the statistics of the simulated range errors, and Fig. 96 presents
an empirical cumulative distribution function of the simulated pseudorange errors.
The statistics of the simulated errors reveal that the maximum absolute value of an
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error simulated is 958 m and the standard deviation of al the errors equals 76.9
m. Fig. 97 presents the number of simulated outlying observations in time in the
simulation. In one single time epoch, up to six simultaneous observation errors are
present that are exceeding a maximum MDB of the corresponding time epoch in
absolute value. Thus, if the error of an observation is exceeding the MDB value, it
isidentified here as being an outlier. 99.8% of the time epochs contained erroneous,
outlying observations as shown in Fig. 97
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Fig. 93. Smulation: Available Satellites.

Position Estimation

Fig. 98 presents the horizontal position errorsin alocal level frame of the simulation
test obtained by unweighted (o5 = 8% n) least squares (L S) estimation. The standard
deviation of the LS horizontal position error is 19 meters without any reliability or
quality monitoring applied.

Fig. 99 presents the horizontal position errors of the simulation test in aloca level
frame when quality control and the Forward-Backward (F-B) FDE and the Danish
method have been applied to the simulation experiment data, respectively. The stan-
dard deviation of the horizontal position error when the F-B FDE has been applied is
2.3 meters and 1.9 meters when the Danish method has been applied. Subset testing
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is not feasible to be applied to a GPS/Galileo situation due to the enormous amount
of subsetsto be assessed. The availability of areliable flagged solution is 96.3% with
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Fig. 98. Smulation: Horizontal Position with Unweighted Least Squares.

the F-B FDE, but the Danish Method suffers from the low assumed noise (6, = 8 m)
of the observations whose weights are not being modified by the Danish re-weighting.
The observations, whose weights are actually being modified in the Danish Method,
are not, however, totally excluded from the estimation. Thus, the final global test has
a higher failure rate, when the observations are not excluded but rather just down-
weighted. This causes an unbalance between the observations with the unmodified
and modified weights and the global test flags the solutions asinconsistent. The avail-
ability of areliable flagged solution obtained with Danish estimation is therefore here
only 42%.

Table 13. Smulation: Horizontal Position Errors and Availability Summarized.

LS | F-B FDE | Danish
Min (m) 0.4 0.02 0.06
Max (m) 144 65 18
Mean (m) 33 4.0 3.6
Std. Dev. (m) 19 2.3 19
Availability (%) | 100 96 42
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Fig. 99. Smulation: Horizontal Position with Forward-Backward FDE and the Danish
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Table 13 summarizes the horizontal position errors of the simulation experiment and
presents the percentages of available solutions, i.e., reliable flagged solutions in the
quality controlled Forward-backward FDE and the Danish Method cases. Fig. 100
presents the cumulative distribution functions of the horizontal errors of the results
when |east squares estimation, quality control and Forward-backward FDE, and qual -
ity control and the Danish Method are applied, respectively. Thefigures and the table
show how accuracy is much improved when applying the FDE schemes, and there
is no major difference in the resulting accuracy of the FDE schemes, except for the
low availability resulting from the Danish Method and the one individual maximum
error value resulting when applying the F-B FDE. The maximum error value of 65
m caused when applying the F-B FDE is obtained due to false exclusions. In that
particular solution, 7 satellites were excluded, which is more than the three which
were actually erroneous in that epoch. Moreover, totally false, not even erroneous
satellites, were being excluded. The reason for this is the fact that the actual simu-
lated errors canceled each other out in the extent that the exclusion procedure was
fooled to excluded incorrectly. However, this was just one single epoch, and most of
the time the exclusions were directed to the actually erroneous measurements.
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As a more detailed elaboration on the operation of the reliability and quality moni-
toring, in the F-B FDE, as an example, 4% of the time epochs were rejected due to
being flagged unreliable because of afailed global consistency test. 1n 99.9% of the
remaining reliable flagged solutions, exclusions were performed with the F-B FDE.
Similar exclusion performance is obtained with the Danish Method, i.e., exclusions
were performed in around 99.9% of the reliable flagged solutions, however, a much
larger number of solutions, as much as 58%, were flagged as inconsi stent by the final
global test due to modifying of weights bringing about inconsistency. Overall, Fig.
101 presents the number of exclusions made by the Forward-Backward FDE proce-
dure implemented within least squares estimation and by the Danish Method, respec-
tively. Fig. 102 presents the values of the number of outlying simulated observations
minus the exclusions performed by the F-B FDE and the Danish Method, respec-
tively. The larger than zero values indicate that not al outlying observations were
excluded and the smaller than zero values indicate that too many exclusions were
performed subject to the number of outlying observations. However, the outlying ob-
servationswereidentified as only the oneswith an error larger than the corresponding
MDB, and, thus, also observations with smaller errors have been here excluded by
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the FDE procedures. Moreover, F-B FDE performed the exclusions totally success-
fully 60% of the exclusions and the Danish Method performed successful exclusions
52% of the exclusions.

Exclusions

f PR
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Fig. 101. Smulation: Exclusions Performed with Forward-Backward FDE and the Danish
Method.

Position Reliability Boundaries

Figures 103 and 104 present the HPE values of the simulation experiment with sub-
ject to the time of the experiment and as an experimental cumulative distribution
function. The standard deviation of the HPE valuesin the simulation test isaslow as
1.8 meters due to the low assumption of 6, = 8 m applied and not amore appropriate
variance model. However, the HPE is still mostly quite close to what the system can
be protected against by reliability monitoring of F-B FDE as shown in Fig. 99.

Fig. 105 presents the cumulative distribution function of the ratio between the hori-
zontal position error obtained by the quality control and the Forward-Backward FDE
and the HPE. There are under 3% of position errors obtained that exceed the theoret-
ical HPE boundary.

Position Accuracy Estimation
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Fig. 106 shows the horizontal position errors of the simulation when the Forward-
Backward FDE and the Danish Method are successively applied as well as the re-
spective DRMS accuracy estimates, the D of Eg. 51. The percentages of how often
the actual errors are within the respective DRM S estimates are provided in the figure,
and in these situations, 57% of the actual horizontal errors are within the DRM S error
estimate with the Forward-Backward FDE case and 73% in the Danish Method case.
The DRMS estimates provide thus a good estimation of the position errors, and the a
posteriori variance factor does reflect the accuracy conditions.
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Fig. 106. Smulation: Horizontal Position Errors and DRMS Error Estimate when Two Dif-
ferent Fault Detection and Exclusion Methods Applied.

Fig. 107 presents the ratio between the horizontal position errors of the quality con-
trolled result with the Forward-Backward FDE applied and the DRM S error estimate.
Thefigure showsthat as expected 57% of the error stay within the estimate, i.e., when
the ratio equals 1, and the rest of the errors exceed the values of the estimate.

The performance enhancement of the quality and reliability monitoring with F-B
FDE or the Danish Method is very distinct in the simulation experiment as seen from
comparing Figures 98 and 99. The performance of reliability monitoring in the sim-
ulation is, however, somewhat inferior in relation to the demonstrated performance
with HSGPS data due to the lack of signal quality indicators, i.e., theC/Np. Thesig-
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Fig. 107. Smulation: Empirical Distribution of the Ratio Between Horizontal Position Error
of the Forward-Backward FDE and DRMSError Estimate.

na power was used successfully in the HSGPS tests to obtain an observation noise
estimate and, thus, an equal variance had to be used for all the observations in the
estimation schemes in the simulation experiment. Proper variance modeling is the
key to successful and robust reliability testing as well as also accuracy estimation.

The problems of reliability monitoring, i.e., most importantly having the proper noise
assumptions and a sufficient amount of redundancy to detect and isolate multiple
errors, will not, however, be solved completely by the European Galileo system.
Galileo will yield additional satellites and additional frequencies but is based on sig-
nals whose propagation is subject to the same restrictions and problems as currently
with, e.g., GPS. In an open field, redundancy and precision will be enhanced by
Galileo. However, indoors and in urban environment, the segments in the sky where
a clean signal can go through are narrow, so the number of clearly tracked Galileo
satellites will be near the number of GPS satellites with good signals. Therefore,
Galileo will not improve the geometry in such environments; it mainly acts asif the
GPS observations were more precise. Moreover, the Galileo satellites increase the
number of observations but, in unfavorable environment, also the number of outliers.
Therefore, Galileo will not improve the overall outlier detectability. The implicit
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quality monitoring in Galileo will not help with the local user-surrounding prob-
lems and thus reliability monitoring remains important even in the future integrated
GPS/Galileo environment (Kuusniemi et al., 2004).



8. CONCLUSIONS

Though reliability and quality monitoring is not always available in difficult signal
environments due to the insufficient amount of observables, it is always when avail-
able essentia in enhancing significantly the navigation reliability and accuracy and,
therefore, constantly necessary.

Thisthesis discussed and gave insight to position and velocity FDE in personal satel-
lite navigation. Indoor and urban canyon HSGPS data were analyzed in terms of
observation errors and their distributions with respect to elevation and C/Np values.
Variance models were proposed to be used in weighting attenuated GNSS measure-
ments. It was shown that the C/Ng based model can provide more realistic variances
than the traditional elevation dependent approach, and much more realistic ones than
the assumption of equal variance. Reliability theory in terms of reliability testing
and statistical reliability conditions of a navigation system was discussed. The appli-
cation of reliability theory in the failure detection and exclusion schemes devel oped
was demonstrated using data from real-life HSGPS experiments and a GPS/Galileo
simulation. The discussed reliability enhancement procedures, i.e., the Forward-
Backward FDE reliability testing scheme, the robust Danish estimation method, and
the Subset Testing, demonstrated significant reliability and accuracy improvements
in degraded signal-environment navigation. The FDE schemes used the proposed
variance models and they were combined with the additional quality control scheme
taking into account measurement redundancy, consistency, and geometrical condi-
tions.

The Danish Method is computationally more convenient than the Forward-Backward
FDE and the Subset Testing mainly due to the fact that it operates on all the obser-
vations simultaneously. In some experiments, the Danish Method had slightly better
resultsin terms of the maximum horizontal error but with the lowest availability of a
reliable flagged solution. In general, the methods have no major differences in per-
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formance. The Subset Testing is, however, not feasible for a combined GPS/Galileo
situation with up to 24 satellites above the horizon. Moreover, the Forward-Backward
FDE and the Subset Testing ultimately differ in the check for the influentiality of the
observation subject to consideration whether to exclude it or not. In these particular
test presented, the Forward-Backward FDE did not perform the re-implementation
of an earlier regjected observation but the exclusion of a measurements was often re-
considered due to the influentiality assessment. Overall, using the proposed variance
models, reliability monitoring, and quality control, the accuracy improvement was
significant in all the conducted experiments compared to 'standard methods' based
on equal weights with no FDE. Modifying the predetermined confidence levels of
false darms and missed detection in the reliability enhancement techniques would
have resulted in dlightly different results.

The lack of redundancy isthe limiting factor of reliability enhancement. In addition,
generaly, if there are more erroneous observations than observations with acceptable
quality, no reliability monitoring can enhance the results. The reliability monito-
ring can then, in the best case, only mark the result as unreliable. Unfortunately,
GNSS in poor signal-environments usually provides only few surplus measurements
and, therefore, the GNSS observations alone may not provide sufficient possibility
for reliability monitoring. Therefore, additiona information should be considered
to assist in navigation and to also help the reliability assessment and enhancement.
Such information could be obtained from digital television signals, cellular network
time-of-arrival measurements, or additional sensors such as self-contained inertial
sensors, which are independent of the GNSS signal propagation effects. The prob-
lem of sufficient redundancy will not be completely solved either by the European
Galileo system, which will yield additional satellites and additional frequencies but
is based on signals whose propagation is subject to the same restrictions and prob-
lems as currently with, e.g., GPS. In an open field, redundancy and precision will
be, of course, enhanced by Galileo. However, indoors and in urban environment, the
segments in the sky, where a clean signal can go through, are narrow. Therefore, the
number of clearly tracked Galileo satellites will be near the number of GPS satellites
with good signals. This implies that Galileo will not improve the geometry in such
environments; it mainly acts as if the GPS observations were more precise. Galileo
satellites increase the number of observations but, in unfavorable environment, also
the number of outliers.
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In this thesis, epoch-by-epoch least squares estimation was used for sensitivity ana-
lysis purposes to assess the implemented reliability enhancement methods. However,
the ideas introduced are easily transferable and extendable to Kalman filtering and,
thus, widely applicable.

8.1 Main Results

Thisthesis considered reliability and quality monitoring at the user-level for satellite-
based personal navigation applications. Reliability monitoring was conducted on
both position and velocity solutions. Failure detection and exclusion methods devel-
oped proved to be of great importance in degraded signal environments in order to
ensure reliable and accurate user navigation solutions. Navigation error sources were
discussed with real-life experimentsin good, lightly attenuated, and heavily degraded
signal conditions. The magnitudes of multipath, echo-only signal tracking, and noise
induced errorsin the satellite navigation observables are highly dependent of the en-
vironment where the navigation takes place and, thus, the chosen environments rep-
resented only a few typical cases of what can be realized. Accuracy prediction and
reliability theory were presented including parameters for accuracy estimation, reli-
ability testing procedures, and statistical reliability boundaries. Statistical reliability
testing was briefly compared to traditional RAIM methods introduced in literature
mainly for safety-critical applications. Three schemes to fault detection and exclu-
sion for personal satellite navigation applications were developed: the observation
Subset Testing scheme, the Forward-Backward FDE scheme, and the Danish estima-
tion method. In addition, quality control and variance modelsfor range and range rate
measurements for lightly and heavily degraded signal environments were introduced.

The final section of the thesis presented results with data from static and kinematic
real-life high sensitivity GPS experiments and from a GPS/Galileo simulation. The
results suggest that the presented observation weighting, FDE, and quality control en-
hancement methods improve the navigation results significantly. In addition, based
on the results of the experiments, the accuracy prediction parameter gives a good ap-
proximation of the position errors obtained and can thus be utilized in estimating the
error conditionsto the user. Though the Subset Testing ishot feasible for GPS/Galileo
due to the enormous amount of subsets to be assessed, the two other FDE methods
and quality control improve substantially also the integrated GPS/Galileo navigation
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solution reliability and accuracy. With GPS/Galileo, the availability and reliability
will be improved especialy in open line-of-sight conditions but reliability and qual-
ity monitoring are still essential, especially in heavily masked environments.

8.2 Future Development

The discussed reliability and quality monitoring results will be necessary to be trans-
ferred and extended to an extensively utilized Kalman filtering environment. Kalman
filtering is widely accepted to provide optimal estimations of the navigation param-
eters of a dynamic platform, assuming the state and observation models are correct.
In addition, computational and power requirements are essential to be accounted for
when designing the reliability enhancement schemes. Power and memory consump-
tionsare especially important design parameters for aportable wireless device, which
is most likely the platform for the personal navigation applications of the degraded
signal environments, where reliability enhancement need to be implemented.

Additional sensors, such as MEMS, DTV, and cellular network observables, are es-
sential to be included in the user navigation solution estimation and reliability and
quality assessment in order to reach sufficient availability of navigation capability
in the urban and indoor areas. Integrating a satellite navigation receiver with a mo-
bile phone and using AGPS will also enable hybrid navigation solutions with cellular
network and satellite observations and, thereby, further improve availability. MEM S
sensors have been successfully integrated with a satellite navigation receiver espe-
cialy for pedestrian navigation applications. The advantage of MEMS integration
lies essentially also in the increased availability of a navigation solution. Limitations
of the MEMS sensors are, however, severe, and related to the drift of the sensor de-
rived solution in time without calibration from an absolute navigation system, i.e.,
the GNSS. Research work with GNSS and MEMS integration as well as AGPS and
hybrid solutionsis till in progress.

It is likely that in the future there will exist personal navigators in which navigation
capability from multiple sensor sources have been integrated and complex reliability
enhancement techniques have been incorporated. These navigators would provide
seamless navigation capability from outdoors to indoors with superior performance
enabling awide variety of navigation applications and added-val ue services.
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