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Chapter 1

Introduction

1.1 Objectives and Motivations

The main objective of this thesis is to provide a complete and cohesive analysis of the ac-
quisition process clarifying different aspects that are often neglected in the current litera-
ture. In particular the thesis provides the statistical tools required for the characterization
of the acquisition process. A general methodology is developed and applied to

• the acquisition of new composite GNSS signals,

• the acquisition in the presence of interference.

The theoretical results obtained in the thesis have been verified by Monte Carlo sim-
ulations and, where possible, by means of real data. In particular the NordNav R30
front-end [1] has been used for collecting real GPS signals that have been used for testing
different algorithms considered in the thesis. Of particular interest are the data collected
at two different sites: the so called "colle della Maddalena" and the hill of the "Basilica di
Superga". These sites are located on two different hills around Torino (Italy). The first one
is characterized by the presence of several antennas for the transmission of analog and
digital TV signals, whereas the second one is in direct view of the colle della Maddalena
antennas. Two different kinds of interference have been observed. In the proximity of the
colle della Maddalena, the GPS signal was corrupted by a swept interference, whereas a
strong Continuous Wave Interference (CWI) has been observed on the hill of Superga.
Those data are analyzed in Chapters 11, 12 and 13.

1.2 Thesis Outline

This thesis is organized in two parts that respectively deal with the acquisition process in
the presence and absence of interfering signals.
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1 – Introduction

Part I deals with the development of a unified approach for the characterization of the
acquisition process from a functional and a statistical point of view. In particular the ac-
quisition process is analyzed in the presence of Additive White Gaussian Noise (AWGN)
only. The presence of AWGN only represents the normal operating conditions in which
a GNSS receiver is supposed to work and thus is considered in Part I.
The structure of the first part of this thesis and the logical dependencies between the
different chapters is depicted in Figure 1.1. In Figure 1.1 rounded rectangles represent
chapters whereas square boxes are used to highlight topics that have been specifically
developed in the thesis or arguments that link two different chapters. Although most of
the results presented in the first chapters of this part, essentially Chapters 2, 3 and part
of Chapter 5, are available in the literature, they are scattered in different textbooks [2–4]
and research papers. However, by presenting them in a cohesive and structured man-
ner, those chapters can serve as introductory material with key references for those who
would like to study the subject further. Moreover the theory developed in those chapters
will be extensively used in the second part of the thesis.
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1.2 – Thesis Outline
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1 – Introduction

Part I is organized as follows:

• In Chapter 2, a short review of Direct Sequence Spread Spectrum (DSSS) modula-
tions is provided and basic models for Global Navigation Satellite System (GNSS)
signals are introduced.

• Chapter 3 deals with the basic principles of the acquisition process. In particular a
multi-layer approach for characterizing the acquisition process is introduced. This
approach represents one of the innovative contributions of this thesis and it is es-
sentially aimed at providing a structured view of the different stages or layers that
form the acquisition process. In particular it is recognized that an acquisition sys-
tem implements some well-known results of detection and estimation theory and
that different logical and functional blocks take part in the process. In the GNSS
literature the exact role of these disciplines and of these functional blocks is some-
times unclear. In this chapter a general acquisition system is described as the inter-
action of four functional blocks that perform four different logical operations. The
framework developed by using these four elements allows to describe the majority
of the acquisition systems, providing an effective tool for comparative analysis. It
is further recognized that at each acquisition stage corresponds a different metric
that should be considered for the characterization of an acquisition algorithm.

• In Chapter 4 the concept of cell and decision probabilities is introduced. In partic-
ular, based on the multi-layer approach developed in chapter 3, it is recognized that
an acquisition scheme is essentially characterized by two different sets of probabil-
ities. The first set is relative to the search space cells that are random variables char-
acterized by their probability density function (pdf). The cell pdfs depend on the
techniques employed for evaluating the single cell and on the considered channel
model. For instance the type of integrations used for reducing the noise impact [2,5]
and the presence or absence of fading [6, 7], strongly impact the single cell proba-
bilities. The second probability set refers to the decision statistic provided by the
decision unit. In the rest of the thesis the first set of probabilities is called cell prob-
abilities whereas the second one is called decision probabilities.
These two sets are strongly dependent but they do not generally coincide. In the lit-
erature the role of cell probabilities is well assessed and different contributions ana-
lyze these probabilities [8–10]. Instead the decision probabilities are only marginally
considered. The major texts in the GNSS literature [2–4] usually analyze the cell
probabilities only, whereas the decision ones are completely ignored. The decision
probabilities allow to completely quantify the acquisition performance, since they
do not only depend on the statistical properties of the search space but also on the
strategy adopted for the signal detection.
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1.2 – Thesis Outline

The innovative contribution of this chapter consists in explicitly defining the con-
cept of decision probabilities and providing a general methodology for their anal-
ysis. Three acquisition algorithms are considered: the typical serial scheme, the
maximum search technique and a hybrid strategy, formed by the combination of
the two other methods. To the best of the author’s knowledge, the analysis of the
hybrid strategy, from the decision probabilities point of view, was still lacking in
the current literature and therefore it represents one of the innovative contributions
of this thesis. The first part of the chapter establishes a theoretical model describ-
ing the relationship between cell and decision probabilities in the three acquisition
strategies considered. In this context the cell probabilities are not specified and
general formulas, independent from the search space computation method, are de-
rived. In the second part, the theoretical model is tested by simulations.
Surprisingly, it is proved that secondary phenomena, such as the imperfect code
orthogonality and the presence of secondary correlation peaks, strongly impact the
decision probabilities. These secondary phenomena are generally neglected in the
literature [2, 4], since their impact is not clearly observable at the cell probabili-
ties level: the reported simulations allow a better understanding of their role in
the acquisition performance. An enhanced model accounting for these secondary
phenomena has been proposed herein, finally finding a good agreement with the
theoretical formulas.

• In Chapter 5 different integration techniques, i.e. coherent, non-coherent and dif-
ferentially coherent integration, are considered and analyzed. For each technique
the cell probabilities are provided.
Although those techniques are well known in the literature [8–12] various issues re-
main. Of particular interest is the characterization of the decision variable by means
of a single parameter, the post-correlation or output SNR. However the integration
techniques, described in the first part of the chapter, nonlinearly combine the input
signal samples, mixing the useful signal and noise components. This process leads
to a decision variable whose quality cannot be easily determined. All those issues
are discussed in this chapter and, in particular the problem of the so called squar-
ing loss is analyzed. Although the expression “squaring loss” is used throughout
the literature when referring to the change in output SNR by going from coherent
to non-coherent integration, a clear and unique mathematical definition cannot be
found and, as highlighted in [13], some paradoxes arise. In this chapter a new def-
inition of the output SNR is provided and used for evaluating the squaring loss.
An analytical formulation of the problem is provided, and a new criterion, called
equivalent area criterion, is proposed. Closed-form formulas, relating the input
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SNR and the number of non-coherent integrations to the output SNR are then de-
rived. To the best of the author’s knowledge, this criterion has never been pre-
viously adopted in the literature for quantifying the impact of non-coherent inte-
gration, and thus it represents the innovative contribution of this chapter. Results
from radar and signal detection theory are adapted to the GNSS acquisition case
and compared with formulas developed in the chapter. A methodology for test-
ing the quality of the conversion formulas is developed and it is proved that the
criterion provided gives better results than the ones already present in the litera-
ture. The problem of evaluating the number of non-coherent integrations from the
desired output SNR is also addressed. The comparison of the various criteria for
non-coherent summations is a further contribution of this chapter and shows that
there are significant differences in the number of non-coherent integrations pre-
dicted according to the different criteria.

• Chapter 6 deals with the different losses that are introduced in the acquisition pro-
cess by several factors such as front-end filtering, quantization, code delay and
Doppler frequency residual errors.
Particular attention has been given to the analysis of the quantization loss and to the
Automatic Gain Control (AGC) threshold setting. Although the quantization loss
in the context of DSSS signals has been extensively studied in the past [3, 14, 15],
a renewed interest on the subject has been spurred by the introduction of new
GNSS signals with power spectral densities (PSDs) different from that of the clas-
sical BPSK modulation. An example of this renewed interest is a recent work [16]
that assesses the combined effect of GNSS interference, bandlimiting, sampling,
and quantizing. For this reason the quantization loss and AGC setting are analyzed
in this chapter.

• Chapter 7 deals with the analysis of strategies for acquiring composite GNSS sig-
nals. In the first part of the chapter the analysis focuses on three different algorithms
for data and pilot combining on a single primary code period. The first technique,
non-coherent channel combining, is from the literature [17,18] and is used for com-
parison. The second strategy, coherent channel combining with relative sign re-
covery, corresponds to the sub-optimal detector described in [19] whereas the last
one, differentially coherent channel combining, is, to the best of the author’s knowl-
edge, new. Differentially coherent channel combining is obtained by modifying the
traditional differentially coherent acquisition technique [12] that exploits the corre-
lation properties between two consecutive GNSS signal periods. In this case data
and pilot components are used instead of the two consecutive signal periods. Some
modifications have also been introduced to deal with the phase difference between
the two components. For each acquisition strategy the probabilities of detection
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and false alarm are provided. In particular, closed-form expressions for the proba-
bilities of coherent channel combining and of the differentially coherent integration
strategy are derived. To the best of the author’s knowledge, these expressions are
new. Monte Carlo techniques have been used to support the theoretical analysis
and simulations and analytical expressions agree well, proving the effectiveness of
the proposed theory.
In the second part of the chapter acquisition algorithms able to deal with the prob-
lem of bit transitions are analyzed. Two classes of acquisition algorithms have been
identified, depending whether the bit information is recovered or not. Among the
first class three acquisition strategies, pure non-coherent, semi-coherent and the dif-
ferentially coherent combining, have been considered. Secondary code partial cor-
relation and the exhaustive bit search are the two techniques analyzed in the context
of the second class. For each acquisition algorithm the detection and false alarm
probabilities have been analyzed and different architectural aspects have been dis-
cussed.

• Finally in Chapter 8, conclusions for the first part of the thesis are drawn.

The widespread diffusion of precise positioning services and the growing demand for
GNSS receivers able to correctly operate in adverse conditions have motivated the study
of the different sources of interference that can possibly degrade acquisition. Due to its
weakness the GNSS signal is extremely vulnerable to different kinds of electromagnetic
emissions and for this reason appropriate countermeasures are required. The detection
and mitigation techniques considered in this thesis are placed before the acquisition block
and are aimed to clean the received signal from the interference. Thus the acquisition per-
formance has been used for characterizing the algorithms proposed in the thesis.

Part II deals with the analysis of the different sources of interfering signals. Appropri-
ate models are provided for each interference. The interference impact on the acquisition
process is characterized and different countermeasure are proposed.
The structure of the second part of this thesis and the logical dependencies between the
different chapters are depicted in Figure 1.2, where the same conventions used in Figure
1.1 have been used.
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Figure 1.2. Structure of the second part of the thesis, "Acquisition in the presence of
interference", and interdependence of the different chapters.
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Part II is organized as follows:

• Chapter 9 reviews the different classes of interference, analyzing the different sources
that can generate electromagnetic emission potentially dangerous for GNSS signals.
The chapter provides a review of literature results relative to interference in the
GNSS context.

• In Chapter 10 a first class of interference is analyzed. This class is denoted as
narrow-band Gaussian interference and refers to all those disturbing signals that
can be modeled as Gaussian processes. In particular the adjective "narrow-band"
refers to the fact that the spectrum of these signals occupies only a relatively small
portion of the receiver band.
In the literature, different parameters have been investigated in order to quantify
the effect of Gaussian interference on the signal quality, and in particular a quan-
tity called "effective C/N0" was introduced to reflect the effect of interference at the
input of the receiver, avoiding receiver-specific details such as integration time and
the use of coherent or non-coherent processing. Furthermore a parameter called
spectral separation coefficient (SSC) was introduced in [20, 21] to distinguish the
effects of the interference spectral shape from the effects due to the interfering
power.
In this chapter the concepts of effective C/N0 and SSC are extended to digital de-
vices and related to the Receiver Operating Characteristics (ROC) as indicators of
system performance. The analysis is supported by simulations.

• Chapter 11 is devoted to the development of a consistent model to evaluate the
performance of GNSS signal acquisition in the presence of CWI. The class of CWIs
includes all those narrow-band signals that can be reasonably represented as pure
sinusoids with respect to the GNSS bands. This kind of interfering signals can be
generated by UHF and VHF TV, VHF Omnidirectional Radio-range (VOR) and In-
strument Landing System (ILS) harmonics, by spurious signals caused by power
amplifiers working in non-linearity regions or by oscillators present in many elec-
tronic devices [22]. The problem of CWI detection and mitigation has been exten-
sively considered in the recent literature [23–25]. However a model focusing on the
detection and false alarm probabilities at the acquisition level has never been pre-
viously proposed and it thus represents an innovative contribution.
The proposed model is general and accounts for the impact of the CWI frequency
and of the GNSS code. In particular it is shown that the acquisition performance
strongly depends on two parameters that can be interpreted as the generalization
of the SSC developed for quantifying the impact of Gaussian narrow-band interfer-
ence.
The chapter also investigates the evolution of the CWI through the acquisition chain
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along with the impact of the coherent integration time. The analogy with models
for radar detection in clutter environments [26] and the role of the GNSS signal
phase are finally described.

• In Chapter 12 the problem of CWI mitigation is addressed. After a review of the
different techniques currently available in the literature, the chapter focuses on the
design of multi-pole notch filters. The chapter deals in detail with the problem of
determining the number of disturbing CWIs that affect the received signals and of
activating an appropriate number of notch filters for their removal. This problem
has rarely been treated in the literature and represents the innovative contribution
of the chapter. The proposed detection algorithm is based on the removal of the
constraint on the location of the filter zeros whose amplitude is adjusted by an
adaptive unit. The zeros amplitude is adjusted on the basis of the Jammer to Noise
ratio (J/N) and thus it can be used as metric for the detection of the disturbing sig-
nals.
A multi-pole notch filter is obtained by cascading two or more two-pole notch fil-
ters. When more than one CWI is present, the first two-pole notch filter in the chain
mitigates the most powerful disturbing signal, whereas the other filters remove the
other interferers with progressively decreasing power. The detection units coupled
with each notch filter in the chain allow to activate only a number of filters equal to
the number of interferences, thus minimizing the loss on the useful GNSS signal.

• Chapter 13 deals with the use of Time-Frequency (TF) analysis for interference
detection and mitigation. The chapter is organized in three different sections. In
the first one, a short review of TF techniques for signal analysis is provided and in
particular the spectrogram and the Wigner-Ville distributions are discussed. In the
second section the problem of implementing TF techniques in a GNSS receiver is
addressed. In particular an efficient solution for implementing the spectrogram on
GNSS receivers is proposed. This solution is based on the key observation that the
acquisition stage implicitly performs a sort of TF analysis. In the acquisition stage
the delay and the Doppler frequency of the GNSS signal are estimated exploiting
the correlation properties of the Pseudo-Random Noise (PRN) sequences used for
spreading the transmitted signal. In this section it is shown that the evaluation of
the search space for the delay and the Doppler frequency corresponds to the eval-
uation of a spectrogram, whose analysis window is adapted to the received signal.
Thus the adoption of a different analysis window allows the detection/estimation
of disturbing signals. Based on this principle the method described in the chapter
proposes a slight modification of the basic acquisition scheme that allows a fast and
efficient TF analysis for interference detection. The method reuses the resources al-
ready available for the acquisition stage and the analysis can be performed when
the normal acquisition operations shut down or stand temporally idle.
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In the last section of the chapter a TF excision technique is proposed and analyzed.

• Finally Chapter 14 concludes the part and the thesis.

1.3 Thesis Contributions

The main contributions of this thesis are summarized in the following:

• Introduction of a multi-layer model for describing the acquisition process and the
resulting distinction between cell and decision probabilities. Some results reported
in this thesis have been published by the author in [27, 28] and have been used
in [29, 30] as basic parameters for assessing the impact of network assistance on
GPS positioning. The information broadcasted by cellular network is used to re-
duce the size of the search space since it can provide a rough estimation of the code
delay and of the Doppler frequency of the different signals. In this way the GNSS
receiver has to test a reduced number of cells during the acquisition process. In this
case cell probabilities cannot be used to measure the improvement of the acquisition
performance since the statistic of the single cell remains unchanged. Only the de-
cision probabilities are able to completely characterize the acquisition performance
and the impact of network assistance.

• Analysis of the output SNR and the squaring loss in the context of coherent and
non-coherent integrations and the formulation of a new criterion, namely the Equiv-
alent Area criterion for determining the impact of non-coherent accumulations.

• Design of new acquisition algorithms suitable for the new composite GNSS signals.
Each acquisition algorithm has been characterized from a statistical point of view
and the false alarm and detection probabilities have been determined.

• Characterization of the different classes of interference and their impact on the ac-
quisition block. The thesis presents in a cohesive and structured manner results
from the literature and introduces new models for the characterization of interfer-
ence.

• A detection/mitigation algorithm for CWIs. A multi-pole notch filter able to deal
with multiple CWI has been designed. The algorithm is currently under patenting
process.

• A TF detection algorithm that exploits the acquisition structure for efficiently com-
puting the spectrogram of the received signal. The algorithm is currently under
patenting process.
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Chapter 2

Direct Sequence Spread Spectrum
(DSSS) and GNSS signals

Global Navigation Satellite Systems (GNSSs) are, in general, Direct Sequence Spread
Spectrum (DSSS) systems: spreading codes with good correlation/cross-correlation prop-
erties are used to spread the navigation message and serve as the basic tool for measur-
ing the transmission time from satellites to receiver. The signals broadcast by the dif-
ferent satellites are generally identified by different spreading sequences that are quasi-
orthogonal. Quasi-orthogonality means that the cross-correlation between two different
spreading sequences is almost zero. In this optic, GNSSs are Direct Sequence Code Di-
vision Multiple Access (DS/CDMA) systems. Examples of such systems are the GPS,
the future European Galileo and the Chinese Compass. The Russian GLONASS adopts
a Frequency Division Multiple Access (FDMA) system to differentiate the signals broad-
cast by the different satellites.

In Figure 2.1 the basic principles of DS/CDMA GNSSs can be summarized as fol-
lows: the signals broadcast by the different satellites are identified by means of different
pseudo-random noises (PRN). The PRNs are the sequences used to spread the transmit-
ted signals. The time needed by the transmitted signal to reach the receiver is estimated
by exploiting the correlation properties of the spreading sequences. An overview on
DSSS and CDMA can be found in [31] and the analysis of these techniques in the context
of GNSS is better reviewed in [2–4, 32].
In this chapter the signal model for DS/CDMA GNSSs is introduced. This model is sim-
plified in different ways allowing a first analysis of the acquisition performance and a
characterization of the acquisition process. Some simplifications adopted in this chapter
will be progressively removed in the next chapters and in particular in Chapter 6.
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RF
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PRN - 2
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Figure 2.1. Basic principles of DS/CDMA GNSSs: the signals broadcast by the differ-
ent satellites are identified by means of different PRNs. The transit time is estimated by
exploiting the correlation properties of the spreading sequences.

The signal at the input of a GNSS receiver, in a one-path additive Gaussian noise envi-
ronment, can be written as

rRF (t) =
L∑

i=1

yRF,i(t) + ηRF (t), (2.1)

that is the sum of L useful signals, broadcast by L different satellites, and a noise term
ηRF (t). The useful signals yRF,i(t) usually assume the following structure:

yRF,i(t) = Aici

(
t− τa

i,0

)
di

(
t− τa

i,0

)
cos

[
2π

(
fRF + f i

d,0

)
t + φi,0

]
(2.2)

where

• Ai is the amplitude of the i-th useful signal,

• τa
i,0 is the delay introduced by the communication channel,

• f i
d,0 is the Doppler frequency affecting the i-th useful signal and φi,0 is a random

phase,
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• fRF is the carrier frequency and depends on the GNSS and on the band under
analysis. For GPS L1 band fRF = 1575.42 MHz,

• ci (t) is the spreading sequence and can be given by the product of different terms.
ci (t) is assumed to take value in the set {−1,1},

• di (t) is the navigation message.

The spreading sequence ci (t) can be expressed as

ci (t) = c1,i (t) c2,i (t) sb,i (t) (2.3)

where c1,i (t) is the periodic repetition of the primary spreading code, c2,i (t) is the sec-
ondary code and sb,i (t) is the subcarrier signal. The subcarrier sb,i (t) is the periodic
repetition of a basic wave that determines the spectral characteristics of yRF,i(t). Two
examples of subcarrier signals are the Binary Phase Shifting Key (BPSK) and the Binary
Offset Carrier BOC(1,1). The basic waves that generate those subcarriers are shown in
Figure 2.2. The BPSK is adopted by the GPS Coarse Acquisition (C/A) and consists in a
constant pulse of duration Th. The periodic repetition of the BPSK basic wave leads to
sb,i (t) = 1. With the advent of new GNSSs, such as the European Galileo, the Chinese

1

Th
BPSK

1

Th

BOC(1,1)

Figure 2.2. Examples of basic pulses generating the subcarrier signals.

Compass and the modernized GPS, more complex modulations than the one described
by Eq. (2.2) have been adopted. Some of those modulations will be discussed in Chapter
7.
The term ηRF (t) is assumed to be Additive White Gaussian Noise (AWGN) with power
spectral density (PSD) N0

2 . Each useful signal yRF,i(t) is characterized by power

Ci =
A2

i

2
(2.4)
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and the overall signal quality is quantified by the carrier power-to-noise-density ratio
Ci/N0.
The input signal (2.1) is recovered by the receiver antenna, downconverted and filtered
by the receiver front-end. In this way the received signal, before the Analog to Digital
(AD) conversion, is given by

r(t) =
L∑

i=1

yi(t) + η(t)

=
L∑

i=1

Aic̃i

(
t− τa

i,0

)
di

(
t− τa

i,0

)
cos

[
2π

(
fIF + f i

d,0

)
t + φi,0

]
+ η(t)

(2.5)

where fIF is the receiver intermediate frequency. The term c̃i

(
t− τa

i,0

)
represents the

spreading sequence filtered by the frontend. At this point the simplifying condition

c̃i (t) ≈ ci (t) (2.6)

is assumed and the impact of the frontend filter is neglected. η(t) is the down-converted
and filtered noise component.
Finally Eq. (2.5) is sampled and digitalized. Neglecting the quantization impact, the
following signal model is obtained:

r(nTs) =
L∑

i=1

yi(nTs) + η(nTs)

=
L∑

i=1

Aic̃i

(
nTs − τa

i,0

)
di

(
nTs − τa

i,0

)
cos

[
2π

(
fIF + f i

d,0

)
nTs + φi,0

]
+ η(nTs)

(2.7)

In the following, the notation x[n] = x(nTs) will indicate a discrete-time sequence x[n],
obtained by sampling a continuous-time signal x(t) with a sampling frequency fs = 1/Ts.
For this reason Eq. (2.7) can be rewritten as

r[n] =
L∑

i=1

yi[n] + η[n]

=
L∑

i=1

Aic̃i

[
n− τa

i,0/Ts

]
di

[
n− τa

i,0/Ts

]
cos

[
2π

(
fIF + f i

d,0

)
nTs + φi,0

]
+ η[n]

=
L∑

i=1

Aic̃i [n− τi,0] di [n− τi,0] cos
[
2πF i

D,0n + φi,0

]
+ η[n]

(2.8)

where F i
D,0 =

(
fIF + f i

d,0

)
Ts and τi,0 = τa

i,0/Ts.
The spectral characteristics of η[n] depend on the type of filtering along with the sampling
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and decimation strategy adopted in the front-end. A convenient choice is to sample the
IF signal with a sampling frequency fs = 2BIF , where BIF is the front-end bandwidth.
In this case, it is easily shown that the noise variance becomes

σ2
IF = E{η2(t)} = E{η2(nTs)} = N0fs/2 = N0BIF (2.9)

The autocorrelation function

RIF [m] = E{η[n]η[n + m]} = σ2
IF δ[m]

implies that the discrete-time random process η[n] is a classical independent and identi-
cally distributed (iid) wide sense stationary (WSS) random process, or a white sequence.
δ[m] is the Kronecker delta.
As a result of code orthogonality, the different useful GNSS signals are analyzed sepa-
rately by the receiver, and thus the case of a single satellite is considered and the index i

is dropped. The resulting signal is

r[n] = y[n] + η[n] = Ac̃ [n− τ0] d [n− τ0] cos [2πFD,0n + φ0] + η[n] (2.10)
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Chapter 3

GNSS signal acquisition

3.1 Basic concepts

The first operation performed by a GNSS receiver is the signal acquisition that decides ei-
ther the presence or the absence of the signal under test and provides a rough estimation
of the code delay and of the Doppler frequency of the incoming signal. The acquisition
system implements some well-known results of the detection and estimation theory and
different logical and functional blocks take part in the process. In the GNSS literature
the exact role of these disciplines and of these functional blocks is sometimes unclear. In
this chapter a general acquisition system is described as the interaction of four functional
blocks that perform four different logical operations. The framework developed by using
these four elements allows one to describe the majority of the acquisition systems, pro-
viding an effective tool for comparative analysis. All the acquisition systems for GNSS
applications described in literature [2,4,32,33] are based on the evaluation and processing
of the Cross Ambiguity Function (CAF) that, in the discrete time domain, can be defined
as

Y (τ,FD) =
1
N

N−1∑

n=0

r[n]c[n− τ ] exp {−j2πFDn} (3.1)

where r[n] is the received signal, c[n − τ ] the local replica reproducing the PRN code,
the subcarrier and potentially the secondary code. τ and FD are the code delay and the
Doppler frequency tested by the receiver. Eq. (3.1) will be further discussed in following
sections.
Ideally the CAF should present a sharp peak that corresponds to the values of τ and FD

matching the delay and the Doppler frequency of the SIS. However the phase of the in-
coming signal, the noise and other impairments can degrade the readability of the CAF in
which case further processing is needed. For instance, in a non-coherent acquisition block
only the envelope of the CAF is considered, avoiding the phase dependence. Moreover
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Cross-Ambiguity Function
Evaluation

Envelope and 
Average

Detection and Decision

Multi-trial and
Verification 

Decision
variable

"CELL 
     DOMAIN"

"DETECTION 
          DOMAIN"

Figure 3.1. Conceptual representation of the acquisition process. GNSS acquisition is
composed of different steps that, starting from the input signal, lead to the final decision
and to a rough estimation of the Doppler frequency and code delay.

coherent and non-coherent integrations can be employed in order to reduce the noise im-
pact.
When the envelope of the averaged CAF is evaluated, the system can make a decision
on the presence of the satellite. Different detection strategies can be employed. Some
strategies are only based on the partial knowledge of the CAF and interactions among
the different acquisition steps may be required. The detection can be further enhanced
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by using multi-trial techniques that require the use of CAFs evaluated on subsequent
portions of the incoming signal.
In Figure 3.1 the general scheme of an acquisition system is depicted, highlighting the
presence of the four functional blocks:

• CAF evaluation,

• Envelope and Average,

• Detection and Decision,

• Multitrial and Verification.

The first two stages are devoted to the evaluation of the CAF (3.1) and to improve its
readability. The last two determine the signal presence and verify if the decision that has
been taken is correct. The different stages are strictly interconnected and each layer can
require further processing from the previous levels. These interactions are depicted in
Figure 3.1. The four blocks are discussed below.

3.2 CAF evaluation

The first stage of the acquisition block consists in the evaluation of the CAF of Eq. (3.1).
More in details the received signal r[n] is multiplied by two orthogonal sinusoids at the
frequency FD = (fIF + fd) Ts. In this way two new signals are generated:

Yc (n,FD) = r[n] cos (2πFDn)

Ys (n,FD) = −r[n] sin (2πFDn) .
(3.2)

The multiplication by these two orthogonal sinusoids is aimed at translating in baseband
the received signal, removing the effect of the Doppler shift. These multiplications corre-
spond to the complex modulation of Eq. (3.1) that is implemented in GNSS receivers by
splitting the incoming signal in two branches and separately multiplying them by cosine
and sine. The normalized frequency

FD = (fIF + fd) Ts =
fIF + fd

fs

is given by two terms:

• the intermediate frequency, fIF ,

• the local Doppler frequency fd.
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The intermediate frequency fIF is known and depends on the receiver architecture [32,
33], whereas fd is chosen from a finite set of the type:

fd = fd, min + l∆f for l = 0,1,...,L− 1. (3.3)

Different Doppler frequencies are tested in order to determine the Doppler shift of the
incoming signal. For low dynamic applications, −5 KHz ≤ fd ≤ 5 KHz [2]. The Doppler
step ∆f and its normalized counterpart ∆F = ∆f/fs are chosen in order not to exceed a
maximum loss due to Doppler residual errors, as discussed in Section 6.3.
The signals Yc (n,FD) and Ys (n,FD) are then multiplied by a local signal replica that re-
produces the primary PRN code c1[n], the subcarrier sb[n] and potentially the secondary
code c2[n]. The local signal replica is delayed by τ and the signals

Y ′
c (n,τ,FD) = r[n] cos (2πFDn) c[n− τ ]

Y ′
s (n,τ,FD) = −r[n] sin (2πFDn) c[n− τ ]

(3.4)

are obtained. The delay τ is taken from a set

τ = τmin + h∆τ for h = 0,1,...,H − 1. (3.5)

By testing the different delays, the acquisition block is able to estimate the delay of the
received signal r[n].
The signals Y ′

c (n,τ,FD) and Y ′
s (n,τ,FD) are then integrated, leading to the in-phase and

quadrature components YI (τ,FD) and YQ (τ,FD):

YI (τ,FD) =
1
N

N−1∑

n=0

Y ′
c (n,τ,FD)

YQ (τ,FD) =
1
N

N−1∑

n=0

Y ′
s (n,τ,FD) .

(3.6)

In Eq. (3.6), N represents the number of samples used for evaluating the in-phase and
quadrature components and is used to define the coherent integration time:

Tc = NTs (3.7)

that is usually chosen as a multiple of the primary PRN code period. In general, H can
be different from N since only a subset of all possible delays can be tested.
The two components of Eq. (3.6) represent the real and the imaginary parts of the CAF
that is finally given by

Y (τ,FD) = YI (τ,FD) + jYQ (τ,FD) (3.8)

and that corresponds to Eq. (3.1).
In Figure 3.2, the operations previously described are highlighted. The CAF is a bi-
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Figure 3.2. Conceptual scheme for the evaluation of the Cross Ambiguity Func-
tion (CAF). The received signal is multiplied by two orthogonal sinusoids and a
local signal replica. The resulting signals are then integrated, generating the real
and imaginary parts of the CAF.

dimensional function that depends on the Doppler frequency FD and on the delay τ .
Since both FD and τ are evaluated on the discrete sets represented by Eqs. (3.3) and
(3.5), the CAF results defined over a bi-dimensional grid that is usually referred to as the
search space. Each value of FD and τ defines a cell of the search space, that is in general,
a random variable to be used for deciding the presence of the useful signal.
Since at the “CAF evaluation” and “Envelope and Average” stages the cells of the search
space are processed separately, those two blocks are said to work in the cell domain, in
contrast with the last two blocks of Figure 3.1 that operate in the decision domain. In the
decision domain a function of possibly all the search space cells is used to determine the
final acquisition decision.
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3.2.1 CAF evaluation methods

In the acquisition systems described in the literature different methods of evaluating the
CAF are presented. They give the same (or approximately the same) results and the
choice of the method mainly depends on the hardware and software tools available for
the receiver implementation. In the following a macro classification of classical acquisi-
tion methods is described.

3.2.2 Method 1: Serial scheme

In this scheme a new CAF is evaluated at each instant n. The input vector r = [r[0],r[1],...,r[N − 1]]
can be updated instant by instant by adding a new input value and by discarding the for-
mer one. To avoid ambiguity in this case, the notation rn = [r[n]r[n − 1] · · · r[n −N + 1]
will be adopted. With this approach the delay τ moves throughout the vector rn at each
new instant. Therefore the local code c[n] is always the same and the CAF is given by the
expression

Y (τ,FD) =
1
N

N−1∑

m=0

r [τ −N + m + 1] c[m] exp {−j2πFDm} (3.9)

It is quite easy to verify that this approach is equivalent to moving the delay of c[n] as the
mutual delay between c[n] and the received code is the unknown quantity of interest.

3.2.3 Method 2: parallel acquisition in the time domain

In this scheme the vector r is extracted by the incoming SIS and multiplied by exp {−j2πFDn},
obtaining the sequence

ql[n] = r[n] exp {−j2πFDn} (3.10)

for each frequency bin. At this point the term

Y (τ,FD) =
1
N

N−1∑

n=0

ql[n]c [n− τ ] (3.11)

assumes the form of a Cross-Correlation Function (CCF), which can be evaluated by
means of a circular cross-correlation defined by

Ỹ (τ,FD) =
1
N

IDFT{DFT [ql[n]] DFT [c[n]]∗} (3.12)

where DFT and IDFT stand for the well-known Discrete Fourier Transform and Inverse
Discrete Fourier Transform. It is easy to show that the CCF and the circular CCF coincide
only in presence of periodic sequences. This is the case when FD = FD,0, except for
the noise contribution and a residual term due to a double frequency 2FD component
contained in the term ql[n]. In the other frequency bins, the presence of a sinusoidal
component could alter the periodicity of the sequence.
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Figure 3.3. Time parallel acquisition scheme: the CAF is determined by using a circular
convolution employing efficient FFT’s.

3.2.4 Method 3: FFT in the Doppler domain

In this scheme the vector r can be extracted by the incoming SIS instant by instant, as in
the method 1, and multiplied by c[n], obtaining the sequence

qi[m] = r[τ −N + 1 + m]c[m] (3.13)

for each delay bin. A similar result can be obtained by extracting an input vector r every
N samples, and multiplying it by a delayed version of the local code c[n]. As mentioned
before, this delay is obtained by applying a circular shift to the samples of c[n]. At this
point the term

Y (τ,FD) =
1
N

N−1∑

m=0

qi[m] exp {−j2πFDm} (3.14)

assumes the form of a Discrete-Time Fourier Transform (DTFT). It is well known that a
DTFT can be evaluated by using a Fast Fourier Transform (FFT) if the normalized fre-
quency FD is discretized with a frequency interval

∆F =
1
N
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3 – GNSS signal acquisition

in the frequency range (0,1), which corresponds to the analog frequency range (0,fs). The
evaluated frequency points become

fdTs =
l

N
− fIF Ts

and the CAF can be written as

S (τ,FD) =
1
N

N−1∑

m=0

qi[m] exp
{
−j

2π

N
lm

}
(3.15)

With this method the search space along the frequency axis and the frequency bin size
depend on the sampling frequency fs and on the integration time N . If the same support
and bin size used in methods 1 and 2 are used, the integration time has to be changed,
and some decimation (with pre-filtering) has to be adopted before applying the FFT. This
modifies the input signal, degrading its quality and introducing some losses [34]. In Fig-
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Figure 3.4. Frequency parallel acquisition scheme: the CAF is evaluated by using efficient FFT.

ure 3.4 the frequency domain acquisition block is reported. An “integrate and dump”
block followed by a decimation unit is inserted in order to reduce the number of sam-
ples on which the FFT is evaluated. This operation reduces the computational load but
introduces a loss in the CAF quality [34].

3.3 Envelope and Average

After having evaluated the CAF, the acquisition system has to remove the dependence
on the input signal phase and apply noise reduction techniques. The simplest way of
removing the dependence of the input signal phase is to consider the square absolute
value of the CAF (3.1). In this case the cells of the search space assume the following
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3.4 – Detection and Decision

expression:

S (τ,FD) =

∣∣∣∣∣
1
N

N−1∑

n=0

r[n]c[n− τ ] exp {−j2πFDn}
∣∣∣∣∣

2

(3.16)

The noise reduction is performed by the integration blocks 1
N

∑N−1
n=0 (·) before the enve-

lope operation. This operation corresponds to averaging different CAFs before evaluat-
ing the envelope and this kind of averaging is called coherent integration. This kind of
integration provides the best performance in terms of noise variance reduction. In fact
before the envelope the noise terms are zero mean Gaussian random variables and the
coherent integrations average elements that can be either positive or negative. In Figure
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Figure 3.5. Scheme of the basic acquisition block. Only coherent integrations are used.

3.5 the basic acquisition scheme, corresponding to the use of coherent integration only, is
reported. The envelope is obtained by squaring and summing the in-phase and quadra-
ture components. In this way S (τ,FD) assumes the following expression:

S (τ,FD) = Y 2
I (τ,FD) + Y 2

Q (τ,FD) (3.17)

Other integration techniques can be used to improve the quality of the search space and
reduce the impact of input noise. Examples of these techniques are non-coherent inte-
gration and differentially integration that will be better discussed in Chapter 5.

3.4 Detection and Decision

Once S (τ,FD) is evaluated, the system can make a decision regarding the presence of the
satellite. Different strategies can be employed. The detection strategies can control the

31



3 – GNSS signal acquisition

previous blocks, for example, by requiring the computation of S (τ,FD) only on a subset
of the values of τ and FD.
In Chapter 4, three different strategies are analyzed and compared in terms of system
performance.
The introduction of the Galileo SIS does not essentially change the role of this block and
the considerations described in Chapter 4 still apply.

3.5 Multi-trial and Verification

When a first decision about the satellite presence and a first estimation of the code delay
and of the Doppler frequency are available, the system can refine the results. Thus multi-
trial techniques, based on the use of different S (τ,FD) and evaluated over subsequent
portions of the input signal, can be employed. Two examples of these techniques are the
M on N [2] and the Tong [2, 35] methods.
Multi-trial techniques generally do not require the computation of more than one com-
plete S (τ,FD), since they interact with the other blocks changing the requirements for
the subsequent iterations occurring in the process.

3.6 Receiver Operating Characteristics

A general detection process consists in determining the presence of a desired signal from
a set of noisy data [36]. A general detection process is depicted in Figure 3.6: the noisy
input signal is processed and a decision variable derived. The decision variable is then
used for establishing the presence of the desired signal. The input signal is character-
ized by an input SNR, that is the ratio between the desired signal and noise powers. The
desired signal can be further degraded by the presence of additional impairments, such
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Figure 3.6. General detection scheme: the input signal is processed in order to produce
a decision variable used for establishing the presence of a desired signal. {C} is the set of
parameters describing the channel impact on the desired signal whereas {P} refers to the
processing parameters. β is the decision threshold, while Pd and Pfa are the detection and
the false alarm probabilities, respectively.
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3.6 – Receiver Operating Characteristics

as clutter, fading and interference. All these impairments are accounted for by specific
models [26, 37–39] and characterized by a set of parameters, {C}, describing the channel
responsible for the degradation of the useful signal.
The processing block is aimed at enhancing the desired signal by combining its samples
and by exploiting a priori information available at the detector.
The acquisition block is at first a detection process aimed to determine the presence or
absence of the signal transmitted by a specific satellite. In this sense an acquisition block
can be characterized by the same parameters adopted to characterize a general detector.
The aim of this and of the next section is the introduction of the basic tools for character-
izing a detection process and thus the acquisition block. Different processing techniques
can be adopted, such as coherent, non-coherent [40–42] and differentially non-coherent
integrations [9, 10]. The processing block is characterized by the set of parameters {P}
that, for instance, may include the coherent integration time and the number of non-
coherent integrations. The output of the processing block is a random variable, namely
the decision variable, characterized by two probability density functions (pdf) referring
to the presence or absence of the desired signal. These pdfs and, in particular, the cor-
responding complementary cumulative distributions, completely determine the detector
performance. The probability that the decision variable passes a threshold β is called the
detection probability if the desired signal is present, and false alarm probability if it is
absent. The plot of the detection probability versus the false alarm probability is called
the Receiver Operating Characteristic (ROC) [36, 43].
In the GNSS case the two conditions of signal presence and absence correspond to the
two hypotheses:

• the null hypothesis , H0: the signal is not present or not correctly aligned with the
local replica;

• the alternative hypothesis , H1: the signal is present and correctly aligned.

In particular the detection and the false alarm probabilities are defined as

Pfa(β) = P (X > β|H0) = P (X > β|τ 6= τ0 ∪ FD 6= FD,0) (3.18)

Pd(β) = P (X > β|H1) = P (X > β|τ = τ0 ∩ FD = FD,0) (3.19)

In Eqs. (3.18) and (3.19) a generic random variable X has been used. In Chapter 4 it is
shown that two different sets of probabilities can be defined. The first one is related to
the cell domain, whereas the second one is relative to the decision domain. In particular

X =

{
S (τ,FD) cell domain
D decision domain

(3.20)

The distinction between cell and decision probabilities and their relative role will be in-
vestigated in Chapter 4. In this section only cell probabilities are considered and thus
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3 – GNSS signal acquisition

X = S (τ,FD).
When only coherent integration is used, as in the scheme depicted in Figure 3.5, each cell
of the search space is given by Eq. (3.16):

S (τ,FD) =

∣∣∣∣∣
1
N

N−1∑

n=0

r[n]c[n− τ ] exp {−j2πFDn}
∣∣∣∣∣

2

S (τ,FD) is obtained as the square absolute value of a complex Gaussian random variable
with independent real and imaginary parts. Moreover

Var [YI (τ,FD)] = Var

[
Re

{
1
N

N−1∑

n=0

r[n]c[n− τ ] exp {−j2πFDn}
}]

= Var

[
1
N

N−1∑

n=0

r[n]c[n− τ ] cos (2πFDn)

]

=
1

N2

N−1∑

n=0

Var [r[n]c[n− τ ] cos (2πFDn)]

=
1

N2

N−1∑

n=0

σ2
IF

2
=

σ2
IF

2N

(3.21)

Similarly

Var [YQ (τ,FD)] = Var

[
Im

{
1
N

N−1∑

n=0

r[n]c[n− τ ] exp {−j2πFDn}
}]

= Var

[
1
N

N−1∑

n=0

r[n]c[n− τ ] sin (2πFDn)

]

=
1

N2

N−1∑

n=0

Var [r[n]c[n− τ ] sin (2πFDn)]

=
1

N2

N−1∑

n=0

σ2
IF

2
=

σ2
IF

2N

(3.22)

thus
Var [YI (τ,FD)] = Var [YQ (τ,FD)] = σ2

n (3.23)

Under the null hypothesis H0, E [S (τ,FD)] = 0 and thus

S (τ,FD) |H0 = Y 2
I (τ,FD) + Y 2

Q (τ,FD) |H0 ∼ Exp
(

1
2σ2

n

)
(3.24)

i.e. S (τ,FD) |H0 is exponentially distributed with parameter 1
2σ2

n
. Eq. (3.24) can be proved

by using basic properties of Gaussian random variables and of transformation of random
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3.6 – Receiver Operating Characteristics

variables [44]. The pdf of S (τ,FD) |H0 is given by

f0(s) =
1

2σ2
n

exp
{
− s

2σ2
n

}
(3.25)

and the probability of false alarm is

Pfa(β) =
∫ +∞

β
f0(s)ds = exp

{
− β

2σ2
n

}
(3.26)

Under the alternative hypothesis H1, YI (τ,FD) and YQ (τ,FD) are no longer zero mean,
and in particular:

E [YI (τ,FD)] = E

[
1
N

N−1∑

n=0

r[n]c[n− τ ] cos (2πFDn)

]

=
1
N

N−1∑

n=0

E [y[n] + η[n]] c[n− τ ] cos (2πFDn)

=
1
N

N−1∑

n=0

y[n]c[n− τ ] cos (2πFDn)

(3.27)

By using the signal model (2.10) and by assuming that FD = FD,0 and τ = τ0, Eq. (3.27)
becomes

E [YI (τ,FD)] =
A

N

N−1∑

n=0

c2[n− τ0] cos (2πFD,0n + φ0) cos (2πFD,0n)

=
A

2N

N−1∑

n=0

[cosφ0 + cos (4πFD,0n + φ0)]

=
A

2
cosφ0

(3.28)

Eq. (3.28) has been evaluated by neglecting the quantization effect, the impact of the
front-end filter and delay and frequency residual errors. The impact of these factors will
be analyzed in Chapter 6.
Similarly E [YQ (τ,FD)] is given by

E [YQ (τ,FD)] =
A

2
sinφ0 (3.29)

The variance of YI (τ,FD) and YQ (τ,FD) is not influenced by the presence of the useful
signal that is considered as a deterministic component. Thus

YI (τ,FD) |H1 ∼ N

(
A

2
cosφ0,

σ2
IF

2N

)

YQ (τ,FD) |H1 ∼ N

(
A

2
sinφ0,

σ2
IF

2N

) (3.30)
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The sum of the square of two non-zero mean independent Gaussian random variables
leads to a non-central χ2 random variable with two degrees of freedom [44]

S (τ,FD) |H1 = Y 2
I (τ,FD) + Y 2

Q (τ,FD) |H1 ∼ χ2
nc,2

(
λ,σ2

n

)
(3.31)

where

λ = E2 [YI (τ,FD)] + E2 [YQ (τ,FD)] =
A2

4
(3.32)

is the non-centrality parameter.
The pdf of S (τ,FD) under H1 is given by

f1(s) =
1

2σ2
n

exp
{
−s + λ

2σ2

}
I0

(√
sλ

σ2
n

)
(3.33)

where I0(·) is the modified Bessel function of the first kind and zero order [45]. The
detection probability is thus given by

Pd(β) = Q1

(√
λ

σ2
n

,

√
β

σ2
n

)
(3.34)

where QK(a,b) is the generalized Marcum Q-function [37, 46] defined as

QK(a,b) =
1

aK−1

∫ +∞

b
xK exp

{
−a2 + x2

2

}
IK−1 (ax) dx (3.35)

In Figure 3.7, ROC curves for different values of C/N0 are shown. The coherent integra-
tion time is limited to 1 ms.
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Figure 3.7. ROC curves for different values of C/N0. Basic acquisition scheme, 1
ms coherent integration time.

3.7 Coherent output SNR

Although the ROC completely characterizes the detector performance [43], it is often use-
ful to have a single metric, the output or equivalent coherent SNR, which encapsulates as
much information about the detector performance as possible. This parameter character-
izes the quality of the cell random variable and, in some sense, summarizes the informa-
tion carried by the ROC.
In general, determining the equivalent coherent SNR is a difficult problem, since a gen-
eral acquisition block employs non-linear operations for increasing the quality of the de-
cision variables and reducing the impact of phase and frequency errors and other signal
impairments. Nonlinear operations mix the useful signal and noise components leading
to cell and decision variables whose quality cannot be easily determined. The problem
of quantifying the equivalent coherent SNR when non-coherent integrations are used has
been thoroughly investigated in the literature and will be considered in Chapter 5.
When considering the basic acquisition scheme reported in Figure 3.5, one notices that
all the operations before the squaring blocks are linear and thus the variables YI (τ,FD)
and YQ (τ,FD) are Gaussian under the hypothesis that the input signal is also normally
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3 – GNSS signal acquisition

distributed. The quality of the GNSS signal is usually measured at this stage [20, 21] by
the so called coherent output SNR, defined as

ρc = max
φ0

E2 [YI (τ,FD)]
Var [YI (τ,FD)]

(3.36)

By using Eqs. (3.28) and (3.21), the coherent output SNR, under ideal conditions, assumes
the following expression

ρc = max
φ0

A2

4
2N

σ2
IF

cos2 φ0 =
A2

2
N

σ2
IF

=
λ

σ2
n

=
NC

N0fs/2
= 2

C

N0
NTs = 2

C

N0
Tc

(3.37)

The ROC defined by Eqs. (3.26) and (3.34) is a parametric curve where the decision
threshold β is only an intermediate parameter. Thus it is possible to operate the following
change of variable

β′ =
β

σ2
n

(3.38)

In this way the ROC can be parameterized with respect to β′, leading to the following
expression: {

Pfa(β′) = exp
{
−β′

2

}

Pd(β′) = Q1

(√
ρc,
√

β′
) (3.39)

From Eq. (3.39) it clearly emerges that, when only coherent integrations are used, the
ROC only depends on ρc, the coherent output SNR. In this case the coherent output SNR
completely characterizes the acquisition performance and corresponds to the equivalent
coherent SNR.
The coherent output SNR represents a fundamental metric for characterizing the acquisi-
tion performance. In other words, the degradations due to quantization, front-end filter-
ing and frequency and delay errors can be directly expressed in terms of losses affecting
ρc. These degradations will be discussed in Chapter 6.
In Chapter 5 different integration strategies are considered. Also in these cases the co-
herent output SNR represents a fundamental parameter for quantifying the acquisition
performance, however it is no longer sufficient for completely characterizing the acquisi-
tion block and additional parameters have to be introduced.
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Chapter 4

Cell and decision probabilities

In Chapter 3 it was shown that acquisition is a complex process that requires several steps
in order to provide a reliable decision variable that can be used for deciding the presence
of the signal and providing a rough estimation of its Doppler frequency and code delay.
Moreover, it has been recognized that GNSS acquisition is carried out in two different
domains, the cell domain and the decision domain. Thus two different sets of probabilities,
respectively related to the cell domain and to the decision domain, characterize the ac-
quisition performance. The first set is relative to the search space cells that are random
variables characterized by their pdfs. The cell pdfs depend on the techniques employed
for evaluating the single cell and on the channel model considered. For instance the type
of integration used for reducing the noise impact, coherent [2,5], non-coherent [40,42] and
differentially non-coherent [9], and the presence or absence of fading [6, 7], strongly im-
pact the single cell probabilities. The second probability set refers to the decision statistic
provided by the decision unit. In the rest of the thesis the first set of probabilities is called
cell probabilities whereas the second one is called decision probabilities. These two sets
are strongly dependent but they do not generally coincide. In the literature the role of cell
probabilities is well assessed and different works analyze these probabilities [47, 48].
Instead the decision probabilities are only marginally considered. The major texts in the
GNSS literature [2, 4, 32] usually analyze only the cell probabilities, whereas the decision
cells are completely ignored. The decision probabilities allow one to completely quantify
the acquisition performance, since they do not only depend on the statistical properties
of the CAF but also on the strategy adopted for the signal detection. Indeed two acqui-
sition systems can have the same cell probabilities and one can have better performance
than the other due to characterization by better decision probabilities. This chapter pro-
vides a complete framework for the analysis of decision probabilities, deriving their re-
lationship with cell probabilities. The concept of decision probabilities is not new, for
instance in [48, 49], the correlation maximum-based strategy is thoroughly analyzed and
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4 – Cell and decision probabilities

in [50, 51] the serial search technique is considered. However no explicit comparison be-
tween strategies is made and often the proposed models are not supported by simulation
results. In [47] the serial search with double dwell decision and the maximum search
technique are analyzed from the decision probabilities point of view. However only the
case of Doppler absence is considered and miss-detection and false alarm probabilities
are not studied.
Three acquisition algorithms are considered: the typical serial scheme, the maximum
search technique and a hybrid strategy [34, 52], formed by the combination of the two
other methods. The spread of GNSS receivers employing hybrid structures for signal
acquisition is self-imposing because, with the advent of longer spreading codes, a full
serial search would be too slow, while a full parallel search would be prohibitively ex-
pensive [53]. Furthermore the availability of digital techniques based on the FFT algo-
rithm [54] allows a faster computation of the search space so that the development of
hybrid algorithms is the natural consequence of the row-by-row structure of these tech-
niques. The first part of the chapter establishes a theoretical model describing the re-
lationship between cell and decision probabilities whit the three considered acquisition
strategies. In this context the cell probabilities are not specified and general formulas,
independent from the search space computation method, are derived. In the second part,
the theoretical model is tested by simulations. Surprisingly, it is shown that secondary
phenomena, such as the imperfect code orthogonality and the presence of secondary cor-
relation peaks, strongly impact the decision probabilities. These secondary phenomena
are generally neglected in the literature [2, 4, 32], since their impact is not clearly observ-
able at the cell probabilities level: the reported simulations allow a better understanding
of their role in the acquisition performance. An enhanced model accounting these sec-
ondary phenomena has been proposed, finally establishing a good agreement with the
theoretical formulas. The simulation tests have been also performed under unrealistic
conditions in order to have a complete validation of the theoretical results and in order
to clearly observe possible secondary effects.

4.1 Statistical model

Since the search space S(τ,FD) is evaluated over a finite and discrete set of code delays
and Doppler frequencies, τ = τmin+h∆τ and fd = fd, min+ l∆f , it can be represented as a
matrix of random cells Xn with n = 1,2,...,M = HL. Therefore, the basic elements of the
system performance evaluation are the detection and false alarm probabilities of a single
cell, hereinafter indicated respectively as Pd and Pfa, and also known as single-trial [2]
probabilities. The cells Xn are distributed according to

Xn|H0 ∼ fXn(x) (4.1)
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under the null hypothesis H0 that is verified when the local code delay or the local
Doppler shift do not match the input signal ones. The false alarm probability on a single
cell is given by

Pfa(β) =
∫ +∞

β
fXn(x)dx (4.2)

where β is a preassigned threshold. The alternative hypothesis H1 implies perfect code
and Doppler shift alignment and the corresponding random variable is distributed ac-
cording to

Xn|H1 ∼ fA(x) (4.3)

thus the cell detection probability is given by

Pd(β) =
∫ +∞

β
fA(x)dx (4.4)

Even if single cell statistics play a fundamental role in determining the overall perfor-
mance, the acquisition decision is taken on the basis of the whole search space. In par-
ticular a decision strategy is usually adopted and a decision statistic is derived from the
whole search space. Thus the acquisition performances are strongly dependent on the
decision statistic and the overall detection and the overall false alarm probabilities, denoted
PD (detection) and PFA (false alarm) should be evaluated.
In the next sections, the expression of PD and PFA are derived for the main searching
strategies described in literature, adopting the following assumptions:

• The alternative hypothesis H1 is verified only in one single cell. This means that if
the Doppler shift and the code delay are rightly compensated on the n-th cell, only
the n-th random variable is affected by this condition, being distributed according
to fA(x), whereas the adjacent cells still remain distributed according to fXn(x).
This condition corresponds to the assumption that the principal lobe of the correla-
tion function is tight enough to influence one cell only. The random cell verifying
H1 will be denoted by XA.

• Only one random variable XA is present in the search space.

• The variable XA can be in any cell with a uniform probability 1
M = 1

LH .

• All the random cells of the search space are assumed to be statistically independent.
This condition is justified in Appendix B.

Note that the probabilistic model of the searching process does not depend on the
specific expressions for fXn(x) and fA(x): these distributions depend on how the ambi-
guity function is evaluated over the search space, on the integration time and on the type
of averaging.
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4.1.1 Searching strategies

In the acquisition process different strategies can be adopted in order to explore the
search space more or less quickly and with a minor or greater accuracy. In this section
three strategies are considered.

1) Maximum: the CAF is evaluated all over the search space, for each value of Doppler
shift and code delay. Then the decision is taken only on the maximum of the am-
biguity function. If the maximum’s value is greater than the imposed threshold β,
the satellite is considered acquired and the estimated Doppler shift and code delay
are those corresponding to the maximum position.

2) Serial: this strategy consists in serially evaluating the ambiguity function cell by cell.
Once a value is obtained, it is immediately compared with the threshold and the
acquisition process stops at the first threshold crossing. The estimated Doppler
shift and code delay are those corresponding to the position of the cell under test.
In this way, on average, only half of the search space cells is evaluated.

3) Hybrid: the ambiguity function is evaluated row-by-row (or column-by-column), ex-
ploiting, for example, FFT-based algorithms, and the decision is taken on the max-
imum of each row (column). The acquisition process terminates as soon as the
maximum in the current row (column) exceeds the threshold.

4.2 Detection probability

This section is devoted to the evaluation of the decision detection probability PD for the
three strategies described in previous section.

4.2.1 Maximum search strategy

When the maximum search strategy is employed, a right detection is obtained when XA

assumes the maximum value of the search space and it passes the threshold β; then PD(β)
can be written as

PD(β) = P
(
XA = max

n
{Xn} ,XA > β

)
(4.5)

By definition XA is maximum only if it is greater than or equal to all the other random
variables. The equality condition is verified only when the Xn under test coincides with
XA (in this case Xn is another “name” of XA), then

P (XA = Xn) =

{
1 when XA ≡ Xn

0 otherwise
(4.6)
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4.2 – Detection probability

and thus PD can be written as

PD(β) = P (XA ≥ X1,XA ≥ X2,...,XA ≥ XM−1,XA ≥ XM ,XA > β)

By using the theorem of the total probability in the case of continuous random variables,
PD can be expressed as

PD(β) =
∫ +∞

β
P (XA ≥ X1,XA ≥ X2,...,XA ≥ XM−1,XA ≥ XM |XA = x)fA(x)dx

=
∫ +∞

β
P (XA ≥ X1|XA = x) · · ·P (XA ≥ XM |XA = β)fA(x)dx

=
∫ +∞

β

M∏

n=1

P (XA ≥ Xn|XA = x)fA(x)dx

(4.7)

In the last product all the terms are equal, except the one corresponding to the case XA ≡
Xn. So there are M − 1 terms of the type

P (XA ≥ Xn|XA = x) = P (Xn < x|H0) = 1− P (Xn > x|H0) = 1− Pfa(x) (4.8)

and one equal to
P (XA ≥ Xn|XA = x) = P (x ≥ x|XA = x) = 1 (4.9)

The detection probability becomes

PD(β) =
∫ +∞

β
[1− Pfa(x)]M−1 fA(x)dx (4.10)

Notice that if Pfa(β) is small enough, Eq. (4.10) reduces to

PD(β) ≈
∫ +∞

β
fA(x)dx (4.11)

4.2.2 Serial search technique

In the serial strategy the detection probability is given by

PD(β) =P (XA in cell 1,X1 > β)+

P (XA in cell 2,X2 > β,X1 < β)+

P (XA in cell 3,X3 > B,X1 < β,X2 < β)+

· · ·
P (XA in cell M,XM > β,X1 < β,X2 < β,...,XM−1 < β)

(4.12)

Analyzing the different terms in Eq. (4.12) it follows that
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4 – Cell and decision probabilities

•
P (XA in cell 1,X1 > β) = P (XA in cell 1)P (XA > B) =

1
M

∫ +∞

β
fA(x)dx

•
P (XA in cell 2,X2 > B,X1 < β) = P (XA in cell 2)P (XA > β)P (X1 < β)

=
1
M

∫ +∞

β
fA(x)dx [1− Pfa(β)]

•
P (XA in cell 3,X3 > β,X1 < β,X2 < β)

= P (XA in cell 3)P (XA > β)P (X1 < β)P (X2 < β)

=
1
M

∫ +∞

β
fA(x)dx [1− Pfa(β)]2

The other terms in the summation are obtained in the same way, and Eq. (4.12) becomes

PD(β) =
1
M

∫ +∞

β
fA(x)dx

M−1∑

n=0

[1− Pfa(β)]n (4.13)

and, after manipulations,

PD(β) =
1
M

1− [1− Pfa(β)]M

Pfa(β)

∫ +∞

β
fA(x)dx (4.14)

Also in this case, for Pfa(β) ¿ 1 Eq. (4.14) becomes

PD(β) ≈ 1− [1−MPfa(β)]
MPfa(β)

∫ +∞

β
fA(x)dx =

∫ +∞

β
fA(x)dx (4.15)

4.2.3 Hybrid search

By proceeding in the same way as the two previous cases the overall detection probability
results in

PD(β) =
1
L

1− [1− Pfa(β)]M

1− [1− Pfa(β)]H

∫ +∞

β
[1− Pfa(x)]H−1fA(x)dx (4.16)

where H is the number of code bins.
Also in this case, for small values of Pfa(β) the approximation

PD(β) ≈
∫ +∞

β
fA(x)dx (4.17)

holds.
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4.3 – Miss-detection probability

4.3 Miss-detection probability

A miss-detection occurs when the satellite is present but it is not detected. This happens
when no cell value exceeds the threshold, corresponding to the event that all the random
variables Xn are lower than the threshold β. Since the threshold is never reached, the
ambiguity function is evaluated in all cells. Therefore, the miss-detection probability is
the same for the three cases and is given by

PMD(β) =
M∏

n=1

P (Xn < β) (4.18)

where

P (Xn < β) =

{
1− Pd(β) when XA ≡ Xn

1− Pfa(β) when XA 6= Xn
(4.19)

and Pd(β) =
∫ +∞
β fA(x)dx is the single cell detection probability. The miss-detection

probability becomes

PMD(β) = [1− Pd(β)]
M−1∏

n=1

[1− Pfa(β)] = [1− Pfa(β)]M−1[1− Pd(β)] (4.20)

and therefore

PMD(β) = [1− Pfa(β)]M−1

∫ β

0
fA(x)dx (4.21)

4.4 False alarm probabilities

A false alarm occurs when the detection output is wrong (wrong satellite or wrong de-
lay or Doppler shift), corresponding to the event that a noise cell exceeds the threshold.
While the cell false alarm probability is by definition an absence of signal, the decision
false alarm probability changes depending whether the signal is present or not. In order
to avoid confusion, the decision false alarm probabilities will be designed hereinafter as
P a

FA (absence) and P p
FA (presence). The case of signal absence is analyzed first.

• Maximum. With this strategy, a wrong detection happens when the maximum
exceeds B; then the system false alarm probability P a

FA becomes

P a
FA(β) = P

(
max

n
(Xn) > β

)
= 1− P

(
max

n
(Xn) < β

)

= 1−
M∏

n=1

(1− P (Xn > β) = 1− (1− Pfa(β))M
(4.22)
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4 – Cell and decision probabilities

• Serial. In the serial strategy the system false alarm probability is given by

P a
FA(β) =P (X1 > β) + P (X2 > β)P (X1 < β)+

P (X3 > β)P (X2 < β)P (X1 < β) + ...

= Pfa(β) + Pfa(β)(1− Pfa(β)) + Pfa(β)(1− Pfa(β))2 + ...

=
M−1∑

n=0

Pfa(β)(1− Pfa(β))n = Pfa(β)
1− (1− Pfa(β))M

1− (1− Pfa(β))

= 1− (1− Pfa(β))M

(4.23)

• Hybrid. By proceeding as in the two previous cases it can be found that

P a
FA(β) = 1− (1− Pfa(β))M (4.24)

Eqs. (4.22), (4.23) and (4.24) show that the three searching strategies have the same per-
formance in terms of decision false alarm probability when the SIS is absent. However,
when the signal is present, the decision false alarm probabilities differ according to the
adopted algorithm, and they can be easily obtained by difference, that is

P p
FA(β) = 1− PD(β)− PMD(β) (4.25)

as the three cases (detection, miss-detection and false alarm in presence of signal) repre-
sent all the possible events.

4.5 Simulation analysis

In order to validate the results of Sections 4.2, 4.3 and 4.4, a simplified scenario has been
adopted using simplified expressions for the single cell probabilities. In particular, the
simulated code delay and Doppler shift have been selected exactly on the grid of the
search space, the received SIS has been coherently integrated over a single code period,
and no non-coherent averages have been performed. Under these hypotheses and as
reported in Section 3.6, the cell probabilities assume the following expressions:

Pfa(β) = exp
(
− β

2σ2
n

)
(4.26)

fA(x) =
1

2σ2
n

exp
(
−x + λ

2σ2
n

)
I0

(√
xλ

σ2
n

)
(4.27)

Pd(β) = Q1

(√
λ

σ2
n

;

√
β

σ2
n

)
(4.28)
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4.5 – Simulation analysis

where I0(·) is the modified Bessel function of the first kind of zero order [45] and Q1(·,·)
is the Marcum’s Q-function [37]. λ and σ2

n have been defined in Section 3.6 and are
respectively given by:

λ =
A2

4
=

C

2

σ2
n =

σ2
IF

2N
=

N0BIF

2N

It is worthwhile to notice that the false alarm probability in Eq. (4.26) has been derived
by supposing that the outputs of the in-phase and quadrature branches of the acquisition
block are zero-mean Gaussian random variables before squaring. This corresponds to
the hypothesis that the ambiguity function is null, in absence of noise, for τ 6= τ0 and
fd 6= fd,0. Eq. (4.26) is exact only when the signal is absent.
By substituting Eqs. (4.26), (4.27) and (4.28) into the expressions derived in Sections 4.2,
4.3 and 4.4, the decision detection probabilities take the following forms:

•

PD(β) =
M−1∑

i=0

(
M − 1

i

)
(−1)i

i + 1
exp

{
− iλ

2(i + 1)σ2
n

}
Q1

( √
λ

σn

√
i + 1

;

√
(i + 1)β

σn

)

(4.29)
for the maximum search strategy;

•

PD(β) =
1
L

1− [1− exp{− β
2σ2

n
}]M

1− [1− exp{− β
2σ2

n
}]H

H−1∑

i=0

(
H − 1

i

)
(−1)i

i + 1
exp

{
− iλ

2(i + 1)σ2
n

}
Q1

( √
λ

σn

√
i + 1

;

√
(i + 1)β

σn

)

(4.30)

for the hybrid search strategy;

• and

PD(β) =
1
M

1− [1− exp{− β
2σ2

n
}]M

exp{− β
2σ2

n
} Q1

(√
λ

σn
;
√

β

σn

)
(4.31)

for the serial search strategy.

Expressions (4.29) and (4.30) have been obtained by expanding binomials in Eqs. (4.10)
and (4.16) and manipulating the terms under the integrals in order to obtain the Marcum
Q-function definition. The main advantage of introducing the Q-function lies in the for-
mula implementation: the Q-function eliminates the necessity of computing the numer-
ical integrals that appear in the previous expressions of the probabilities, thus avoiding
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4 – Cell and decision probabilities

problems linked to the correct setting of the involved parameters. The summations in
Eq. (4.29) and Eq. (4.30) involve a high number of elements that, however, are rapidly
decreasing thus allowing a truncation over the first few terms.
In the same way, the miss-detection probability can be written as

PMD(β) =
[
1− exp

{
− β

2σ2
n

}]M−1
[
1−Q1

(√
λ

σn
;
√

β

σn

)]
(4.32)

4.5.1 Probability curves

The expressions of detection, false alarm, and miss-detection probabilities given in the
previous sections have been validated in two steps. In the first step an artificial search
space has been created generating M random variables with the statistical characteristics
leading to the cell probabilities reported before. This means that the searching strategies
described in Section 4.1.1 have been implemented in software and applied to a grid of
values obtained as the squared absolute value of a complex zero-mean Gaussian matrix
generated by simulation. Only one cell, representing the aligned case, presented a mean
equal to

√
λ.

The system performances have been evaluated in terms of ROC. In Figures 4.1 and 4.2 the
ROC curves show the decision detection and false alarm probabilities in the presence of
signal versus the decision false alarm probability in its absence. The decision false alarm
probability in the absence of signal has been chosen as a parameter for the threshold
setting, since it represents a more critical system performance indicator. In fact, it is easy
to show that the condition

P a
FA(β) ≥ P p

FA(β) ∀β (4.33)

is true for all strategies considered in this chapter. For this reason, the threshold is de-
rived by fixing a decision false alarm probability in the absence of signal: by inverting Eq.
(4.22), (4.23) or (4.24), a cell false alarm probability is evaluated and thus the threshold
β is fixed by means of Eq. (4.26). This procedure allows one to fix the P a

FA and thus to
control the decision false alarm probability P p

FA thanks to Eq. (4.33). Furthermore, deter-
mining the threshold from P p

FA(β) would require prior information about the signal, i.e.
its presence and its power level. These parameters are generally not available since they
should be estimated by the acquisition block. In the rest of the chapter, all ROCs will be
a function of the decision false alarm probability in the absence of signal.
The curves are reported by using a linear scale and the ROCs are evaluated for values of
the decision false alarm probability in the absence of signal on the entire range [0,1]. Even
if in practice the decision false alarm probability should be set to a value close to zero,
the aim of these simulations was to validate the theoretical model provided in previous
sections for every decision false alarm probability, and thus the entire range [0,1] has been
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Figure 4.1. Decision detection probability vs decision false alarm probability in the ab-
sence of signal, Gaussian model.
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Figure 4.2. Decision false alarm probability in the presence of signal vs decision false
alarm probability in the absence of signal, Gaussian model.
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investigated. The linear scale has been adopted since no appreciable representation en-
hancement was found by using the logarithmic scale.
The curves of Figures 4.1 and 4.2 have been evaluated with the parameters reported
in Table 4.1; the performance obtained with the artificial search space (indicated with
“Gaussian") and the theoretical ones (indicated with “theoretical") coincide, thus vali-
dating the formulas. In the second step, the acquisition system of Figure 3.5 has been

Table 4.1. Simulation parameters.

Parameter Value
C/N0 40 dB-Hz

Sampling frequency 2.046 MHz
Receiver bandwidth 1.023 MHz

No. of Doppler bins, L 17
No. of code samples, H 2046

M = LH 34782

implemented in software for the GPS SIS in the L1 band, and the decision probabilities
have been estimated by means of Monte Carlo simulation experiments. In this case, a
realistic search space is generated, since the acquisition system is fed by a source able to
simulate an Intermediate Frequency (IF) GPS signal affected by the AWGN and Doppler
shift. The simulation parameters are the ones in Table 4.1 and an intermediate frequency,
fIF = 38500 Hz, has been employed by applying the acquisition scheme proposed in [33].
In Figures 4.3, 4.4 and 4.5, the ROC decision probability curves of decision probabilities

are drawn as a function of the decision false alarm probability in the absence of signal.
Note that the curves obtained with the acquisition simulator and the theoretical ones
have the same shape but do not coincide, except for the case of the miss-detection. The
misalignment is due to the adopted simplified probabilistic model, as better explained
in Section 4.6. Both the simulated and theoretical curves give the same coarse informa-
tion on the system characteristics and therefore, they can be properly used to draw some
preliminary considerations. As expected, the searching strategy based on the maximum
gives the best performances. In this case, the ROC curve of Figure 4.3 tends to the point
(1,pmax), where pmax is the probability that the cell XA assumes the maximum value over
the whole search space. In fact, from Eq. (4.10) it follows that

pmax = lim
P a

FA→1

∫ +∞

β
[1− PFA(x)]M−1 fA(x)dx = lim

β→0

∫ +∞

β
[1− PFA(x)]M−1 fA(x)dx

=
∫ +∞

0
[1− PFA(x)]M−1 fA(x)dx = P

(
XA = max

n
{Xn}

)
.

(4.34)
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Figure 4.3. Decision detection probability vs decision false alarm probability in the ab-
sence of signal, simulated acquisition system.
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Figure 4.4. Decision false alarm probability in the presence of signal vs decision false
alarm probability in the absence of signal, simulated acquisition system.
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Figure 4.5. Decision miss-detection probability vs decision false alarm probability in the
absence of signal, simulated acquisition system.

The limit change of Eq. (4.34) is justified by the fact that a false alarm probability tending
to unity implies a null threshold. By using Eq. (4.29) and considering the case of Figure
4.3 results in

pmax =
M−1∑

i=0

(
M − 1

i

)
(−1)i

i + 1
exp

{
− iλ

2(i + 1)σ2
n

}
= 0.4584. (4.35)

The serial and hybrid systems exhibit similar performance, much worse than the one
based on the maximum. When the decision false alarm probability tends to unity, the
detection probability for the serial search equals the probability that the first cell corre-
sponds to the aligned case XA, i.e.

pser = lim
β→0

=
1
M

1− [1− Pfa(β)]M

Pfa(β)

∫ +∞

β
fA(x)dx =

1
M

= 1.6912 · 10−6. (4.36)

In the hybrid case the limit detection probability becomes

phyb =
1
L

∫ ∞

0
[1− Pfa(x)]H−1 fA(x)dx = 0.0446 (4.37)

i.e. the probability that XA is the maximum of the first Doppler row.
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4.6 – Enhanced model

4.6 Enhanced model

Since acquisition curves do not exactly coincide with the theoretical ones, a more thor-
ough analysis has been performed and simplifying hypotheses have been progressively
removed in order to provide more accurate models.
First of all, the cell false alarm probability of Eq. (4.26) has been evaluated supposing that
the ambiguity function, in absence of noise, is null when the code delay and the Doppler
frequency are not exactly matched, however secondary peaks are present, because of cor-
relation side values. In the simplified model each random variable Xn, except in the cell
where Xn ≡ XA, can be written as

Xn = ν2
I,n + Y 2

Q,n (4.38)

where YI,n and YQ,n are Gaussian zero-mean random variables, while in the actual search
space each cell is given by

Xn = (aI,n + YI,n)2 + (aQ,n + YQ,n)2

= (a2
I,n + a2

Q,n) + (Y 2
I,n + Y 2

Q,n) + ζn

(4.39)

where aI,n and aQ,n depend on the secondary correlation peaks and ζn is a zero-mean
random variable.
In order to account for the effect of secondary correlation peaks, a constant mean factor µ

has been introduced into the theoretical model. In particular, the search space cells have
been modeled as

Xn = (µ + YI,n)2 + (µ + YQ,n)2

= 2µ2 + (Y 2
I,n + Y 2

Q,n) + ξn

(4.40)

where the value of µ has been set to

µ =
1√
2

√
E

[
a2

I,n + a2
Q,n

]
(4.41)

E [·] is the expected value that can be easily estimated by averaging the secondary peaks
of a search space obtained in absence of noise. By applying this correction the cell false
alarm probability becomes

Pfa,C(β,µ) = Q

(
µ

σn
,

√
β

σn

)
. (4.42)

Eq. (4.42) allows one to obtain new expressions for the decision probabilities, providing
a more accurate model. Notice that a more conservative estimation of µ could be used in-
stead of Eq. (4.41). In particular the maximum of the secondary lobes of a noiseless search
space could be adopted instead of their mean. In this case the false alarm probability on
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Figure 4.6. Decision detection probability vs decision false alarm probability in the ab-
sence of signal, mean adjusted model.

the single cell would be overestimated, providing a bound for the decision probabilities.
In Figure 4.6 the curves obtained with the simulated acquisition block have been com-
pared with the new theoretical model accounting for the secondary peaks impact. In
this case, the theoretical values are closer to the simulated ones and the maximum search
performance exactly matches the one expected theoretically. However residual model
imperfections are still present in the hybrid and serial search cases. This residual effect
can be explained by the initial hypothesis that the main correlation peak affects only a
single cell. In Figure 4.7 the square root of the main lobe of a noiseless search space is re-
ported. The square root has been considered since it is directly connected with the mean
of the Gaussian random variables generating the search space. In particular the square
root of the aligned cell XA of a noiseless search space equals

√
λ, the amplitude parame-

ter of Eq. (4.27) and Eq. (4.28). From this figure it is clear that the cells in proximity of the
XA are significantly affected by the signal presence: the two adjacent cells along the code
direction value

√
λ/2 and similar values are assumed by the two adjacent cells along the

Doppler shift direction. The presence of these random variables with a significant mean
can cause additional false alarm for the serial and hybrid strategies, since side cells can
easily pass the fixed threshold. The maximum strategy is less affected since the probabil-
ity that a side cell passes XA is low.
In order to test the impact of adjacent cells with significant means on the decision proba-
bilities, an enhanced Gaussian model has been tested: all the simulated Gaussian random
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Figure 4.7. Part of a noiseless search space obtained with a GPS CA code with 2 sam-
ples/chip and a Doppler step of 666 Hz.

variables have a mean equal to µ, except the ones representing XA and the four adjacent
cells. The means of the four adjacent cells were set to the values measured by the squared
root of a noiseless search space. In Figure 4.8 the comparison between ROCs obtained
with the acquisition and the enhanced simulations is provided: results are very close,
proving the impact of adjacent cells.
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Figure 4.8. Decision detection probability vs decision false alarm probability in the ab-
sence of signal, enhanced model.

4.7 Network assisted GPS

The results reported in this chapter have been partially published in [27, 28] and they
have been recently adopted by [29, 30] for quantifying the impact of network assistance
on GNSS signal acquisition. Mobile phone networks have the capability of providing
additional information to GNSS receivers and in particular they can provide direct or in-
direct information about code phases, Doppler shifts, and transmitted data bits. When
the assistance is indirect, code delays and Doppler shifts are derived from it in the re-
ceiver [29]. Indirect assistance typically consists of satellite ephemerides, reference time,
reference frequency, and an initial location estimate. The main effect of network assis-
tance is to considerably reduce the size of the search space, reducing the set of satellites
to be searched and restricting the range of possible code delays and Doppler frequencies.
This principle is better highlighted in Figure 4.10 where the search space determined by
the satellite, the code delay (time) and the Doppler shift (frequency) is essentially re-
duced by network assistance. Since the main impact of network assistance is to reduce
the search space size, the statistic of a single cell is unaffected. As highlighted in [29, 30],
the single cell probabilities are independent from the search space size and thus are not
able to characterize the impact of network assistance. On the contrary decision probabil-
ities result in an effective metric for characterizing acquisition performances.
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Figure 4.9. Principle of network assisted GPS (AGPS): mobile telephone network
provides additional information to the GNSS receiver in order to reduce the size of
the acquisition search space.
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Figure 4.10. Reduction of the acquisition search space due to network assistance.
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Chapter 5

Increasing the acquisition
performance

In previous chapters the basic acquisition technique, based on coherent integration only,
has been analyzed. The coherent integration time is however limited by different factors
such as bit transition, signal dynamic and computational constraints. In fact the use of
a long coherent integration time increases the computation load, not only because of the
greater number of samples involved in the computation of the correlation function, but
also because the width of the frequency bin for the Doppler search has to be reduced
proportionally to the inverse of the integration time.
All these reasons have motivated the development of alternative integration strategies
that allow to deal with the different signal imperfections mentioned above. Those tech-
niques nonlinearly combine the input signal samples in a decision variable possibly hard-
ened against phase and frequency errors and other signal impairments.
Two common techniques for increasing the search space quality that belong to the second
stage (Envelope and Average) of the multi-layer approach described in Section 3.1, are:

• the non-coherent signal combining;

• the differentially coherent signal combining.

Those two techniques are well known in the literature and will be only briefly described
in the first part of this chapter.
The second part of the chapter is devoted to the performance characterization of the these
two integration strategies. In particular the problem of quantifying the impact of the two
methods is discussed: although the ROC completely characterizes the detector perfor-
mance [43] it is often useful to have a single metric, the output or equivalent coherent
SNR, which encapsulates as much information about the detector performance as pos-
sible. This parameter characterizes the quality of the decision variable and different ap-
proaches have been adopted in the literature for its evaluation [36, 42, 43].
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The case of non-coherent signal combining is considered and different methodologies
from the literature are discussed. The impact of non-coherent integrations on the acqui-
sition performance is studied in further detail. In particular the equivalent coherent SNR
for acquisition systems employing non-coherent integrations is defined as the SNR that
would yield similar performance in terms of ROCs if only coherent integrations were
used. An analytical formulation of the problem is developed, and a new metric called
equivalent area criterion is proposed. Closed-form formulas, relating the input SNR and
the number of non-coherent integrations to the equivalent coherent SNR are then de-
rived. To the best of our knowledge, this criterion has never been previously adopted in
the literature for quantifying the impact of non-coherent integrations, and thus it repre-
sents the innovative contribution of this chapter. Results from radar and signal detection
theory are adapted to the GNSS acquisition case and compared with formulas developed
in the chapter. A methodology for testing the quality of the conversion formulas is devel-
oped and it is proved that the provided criterion usually gives better results than those
present in the literature.
The problem of evaluating the number of non-coherent integrations from the equivalent
coherent SNR is also addressed. Comparisons of the various criteria for non-coherent
summations is a further contribution of this chapter and highlights that there are signif-
icant differences in the number of non-coherent integrations predicted according to the
different criteria. Although the obtained results have been specifically derived for GNSS
band-pass spread spectrum signals, they can be applied to the more general case of signal
detection with coherent and non-coherent integrations [36].

5.1 Non-coherent signal combining

A first technique for increasing the acquisition performance consists in simply summing
K instances of the output of the basic acquisition block. The squaring blocks remove the
phase dependence and the CAFs are non-coherently summed. In Figure 5.1 the acqui-
sition scheme with non-coherent integrations is reported. The final decision variable is
obtained as

SK (τ,FD) =
K−1∑

k=0

Sk (τ,FD) (5.1)

where the subscript K indicates that K non-coherent integrations have been used. The in-
dex k has been used in the right side of Eq. (5.1) to distinguish different realizations of the
basic CAF S (τ,FD). Those realizations have been evaluated by using non-overlapping
portions of the input signal r[n].
In Section 3.6 it has been shown that, for K = 1, i.e. in absence of non-coherent integra-
tion, the cells of the CAF are χ2 random variables with two degrees of freedom. Thus
SK (τ,FD) is given by the sum of K independent χ2 random variables with 2 degrees
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Figure 5.1. Acquisition scheme with non-coherent integrations.

of freedom. By using the properties of χ2 random variables, SK (τ,FD) is a χ2 random
variable with 2K degrees of freedom.
When the code and the Doppler frequency of the local signal replica match the ones of
the incoming signal, SK (τ,FD) is a non-central χ2 random variable with non-central pa-
rameter

λK = Kλ = K
A2

4
(5.2)

where λ is the non-centrality parameter defined in Section 3.6 and A is the useful signal
amplitude. When the local replica and the incoming signal are not aligned SK (τ,FD) is a
central χ2 random variable.
By using properties of non-central and central χ2 random variables [44, 55], it is possible
to derive the detection and false alarm probabilities related to SK (τ,FD):

Pfa,K(β) = exp
{
− β

2σ2
n

} K−1∑

i=0

1
i!

(
β

2σ2
n

)i

(5.3)

Pd,K(β) = QK

(√
K

λ

σ2
n

,

√
β

σ2
n

)
= QK

(√
Kρc,

√
β

σ2
n

)
(5.4)

where QK(a,b) is the generalized Marcum Q-function [37], σ2
n is the variance of the in-

phase and quadrature outputs (see Section 3.6) and ρc, the coherent output SNR.
By applying the change of variable

β′ =
β

σ2
n
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5 – Increasing the acquisition performance

it is possible to rewrite Eq.s (5.3) and (5.4) as




Pfa,K(β′) = exp
{
−β′

2

}∑K−1
i=0

1
i!

(
β′
2

)i

Pd,K(β′) = QK

(√
Kρc,

√
β′

) (5.5)

From Eq. 5.5 it emerges that the coherent SNR completely characterizes the ROC only
when K = 1 that is when only coherent integration is used. Moreover ROCs obtained
with different numbers of non-coherent integrations cannot be directly compared in terms
of coherent SNR since, even if the coherent SNR is the same, two different detection prob-
abilities are obtained for a fixed false alarm rate. It would be useful to have an unique in-
dicator enabling an easy and intuitive analysis of the acquisition performance also when
both coherent and non-coherent integrations are used. This is equivalent to determine an
unique parameter, a function of the number of non-coherent integrations and of the co-
herent SNR, that completely characterizes the system performance. This parameter, that
will be introduced in Section 5.3, is called equivalent coherent SNR and corresponds to
the coherent SNR when K = 1.

5.2 Differentially coherent combining
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Figure 5.2. Acquisition scheme with differentially coherent integrations.

In the non-coherent integration strategy the phase dependence is removed by squar-
ing the correlator outputs. In particular the final decision variable is obtained according
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5.2 – Differentially coherent combining

to Eq. (5.1), that can be rewritten as:

SK (τ,FD) =
K−1∑

k=0

Sk (τ,FD) =
K−1∑

k=0

[
Y 2

I,k (τ,FD) + Y 2
Q,k(τ,FD)

]2

=
K−1∑

k=0

|YI,k (τ,FD) + jYQ,k(τ,FD)|2

=
K−1∑

k=0

[YI,k (τ,FD) + jYQ,k(τ,FD)] [YI,k (τ,FD) + jYQ,k(τ,FD)]∗

(5.6)

where YI,k (τ,FD) and YQ,k (τ,FD) are the kth instances of the in-phase and quadrature
correlator outputs. Eq. (5.6) can be interpreted as follows: the correlator outputs present
residual phase effects that depend on the unknown phase of the input signal. These
dependence is removed by squaring the correlator outputs. However, in this way, also the
noise components are squared and the post-correlation averaging is less effective since
the noise components do not cancel out any longer. In order to overcome this problem
the decision variable (5.6) can be modified as follows:

S̃K (τ,FD) =
∑

k∈K

[YI,k (τ,FD) + jYQ,k(τ,FD)] [YI,k−l (τ,FD) + jYQ,k−l(τ,FD)]∗ (5.7)

where K defines the set of indexes that selects the complex correlations used for forming
the variable S̃K (τ,FD). In Eq. (5.7) the complex correlation YI,k−l (τ,FD) + jYQ,k−l(τ,FD)
evaluated on the (k − l)th portion of the useful signal is used to correct the phase of the
kth correlation YI,k (τ,FD) + jYQ,k(τ,FD). In this way independent noise components are
multiplied by each other and the resulting noise process is still zero mean.
The decision variable (5.7) is the basic element that defines differentially integrations.
Different forms of differential integrations are possible [9–12], depending on the separa-
tion, l, between complex correlations, the index set, K, and the function used for deter-
mining the final decision variable. In fact Eq. (5.7) cannot be used for detection purposes
since S̃K (τ,FD) is, in general, complex valued. The following cases are possible:

• differentially coherent integration [10–12]:

SK (τ,FD) = Re

{∑

k∈K

[YI,k (τ,FD) + jYQ,k(τ,FD)] [YI,k−l (τ,FD) + jYQ,k−l(τ,FD)]∗
}

(5.8)

• differentially non-coherent integration [9, 10]:

SK (τ,FD) =

∣∣∣∣∣
∑

k∈K

[YI,k (τ,FD) + jYQ,k(τ,FD)] [YI,k−l (τ,FD) + jYQ,k−l(τ,FD)]∗
∣∣∣∣∣

(5.9)
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5 – Increasing the acquisition performance

The detailed analysis of differentially integrations is out of the scope of this thesis and
can be found in the literature. In particular an exhaustive analysis of differentially in-
tegrations can be found in [10] that provides a statistical characterization of the dif-
ferent strategies. In the context of this chapter differentially coherent combining with
K = {2,4,...,2K} and l = 1 is considered. These results will be used in Chapter 7 for
developing a new acquisition algorithm for composite GNSS signals.
Under the previous assumptions the decision variable becomes

SK (τ,FD) =
K−1∑

k=0

Re {[YI,2k+1 (τ,FD) + jYQ,2k+1(τ,FD)] [YI,2k (τ,FD) + jYQ,2k(τ,FD)]∗}

=
K∑

k=1

[YI,2k+1 (τ,FD) YI,2k (τ,FD) + YQ,2k+1 (τ,FD) YQ,2k (τ,FD)]

(5.10)

and the corresponding acquisition scheme is depicted in Figure 5.2. The differentially
coherent acquisition scheme assumes that the two complex correlations, YI,2k+1 (τ,FD) +
jYQ,2k+1(τ,FD) and YI,2k (τ,FD) + jYQ,2k(τ,FD) have the same phase and thus the signal
component is concentrated on the real part of their product. However if some phase er-
rors are present, differentially coherent integration become ineffective [10]. The analysis
of phase and frequency errors on differentially coherent integration can be found in [10].
In [12] it is shown that Eq. (5.10) can be rewritten as the difference of two χ2 random
variables. In particular, when the signal is not present, i.e. under H0, SK (τ,FD) is the
difference of two central χ2 random variables with 2K degrees of freedom, whereas, un-
der H1 and in absence of phase errors, SK (τ,FD) is the difference of a non-central and a
central χ2 random variable. In particular, by introducing the notation

Xk (τ,FD) = YI,k (τ,FD) + jYQ,k(τ,FD) (5.11)

it is possible to rewrite Eq. (5.10) as follows:

SK (τ,FD) =
K−1∑

k=0

Re {X2k+1 (τ,FD) X∗
2k (τ,FD)}

=
1
4

K−1∑

k=0

[
|X2k+1 (τ,FD) + X2k (τ,FD)|2 − |X2k+1 (τ,FD)−X2k (τ,FD)|2

]

=
K−1∑

k=0

∣∣∣∣
X2k+1 (τ,FD) + X2k (τ,FD)

2

∣∣∣∣
2

︸ ︷︷ ︸
χ2

2K

−
K−1∑

k=0

∣∣∣∣
X2k+1 (τ,FD)−X2k (τ,FD)

2

∣∣∣∣
2

︸ ︷︷ ︸
χ2

2K

= C1 (τ,FD)− C2 (τ,FD)
(5.12)
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5.2 – Differentially coherent combining

where C1 (τ,FD) and C2 (τ,FD) are two independent χ2 random variables. The variance
of the Gaussian random variables that generate C1 (τ,FD) and C2 (τ,FD) is given by

Var
{
Re

[
X2k+1 (τ,FD) + X2k (τ,FD)

2

]}
=

1
2

Var
{

X2k+1 (τ,FD) + X2k (τ,FD)
2

}

=
1
8

Var {X2k+1 (τ,FD) + X2k (τ,FD)} =
1
8
4σ2

n =
1
2
σ2

n

(5.13)

From [10, 12] the pdf of SK (τ,FD) under H0 is given by:

pfa,K(x) =
(

1
σ2

n

)( |x|
2σ2

n

)K−1/2 KK−1/2

( |x|
σ2

n

)
√

πΓ(K)
(5.14)

where Ki(·) is the modified Bessel function of second kind and order i [45] and Γ(·) is the
Euler’s Gamma function [45].
The corresponding false alarm probability is obtained as

Pfa,K(β) =
∫ +∞

β
pfa,K(x)dx (5.15)

For the special case K = 1

S1 (τ,FD) = Re {X1 (τ,FD) X∗
0 (τ,FD)} (5.16)

corresponds to the difference of two chi-square random variables with 2 degrees of free-
dom or equivalently to the difference of two exponential random variables. In this way
S1 (τ,FD) results Laplace distributed and equation (5.14) becomes:

pfa,1(x) =
1

2σ2
n

exp
{
−|x|

σ2
n

}
(5.17)

and the corresponding probability of false alarm results:

Pfa,1(β) =





1− 1
2 exp

{
β
σ2

n

}
β < 0

1
2 exp

{
− β

σ2
n

}
β ≥ 0

(5.18)

These results will be used as basic elements for the analysis of a new acquisition algo-
rithm for composite GNSS signals.
The analysis of the detection probabilities results more complicated since the decision
variable is obtained as the difference of a non-central and of a central χ2 random vari-
able. In [12] it is claimed that no analytical expression for this detection probability has
been found. In [10] approximated expressions for this probability are provided. How-
ever in [56] the expression for the difference of independent non-central and central χ2

random variables is reported. Those results can be used for deriving the detection proba-
bility associated to Eq. (5.12). In the following only the expression for K = 1 is reported.
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This result will be better analyzed in Chapter 7 for the analysis of composite GNSS sig-
nals.
More in detail, the pdf of Eq. (5.12) under H1 and for k = 1 is given by

pd,1(x) =
1

2σ2
n

exp
{

2x− λ

2σ2
n

}
Q1

(√
λ

σ2
n

,

√
max

(
0,

4x

σ2
n

))
(5.19)

where λ = A2

4 is the non-centrality parameter defined in Section 3.6. The corresponding
detection probability is given by

Pd,1(β) = Q1

(√
2λ

σ2
n

,

√
max

(
0,

2β

σ2
n

))
− 1

2
exp

{
2β − λ

2σ2
n

}
Q1

(√
λ

σ2
n

,

√
max

(
0,

4β

σ2
n

))

(5.20)

5.3 Equivalent Coherent SNR

As discussed the performance of a signal detector is completely determined by its ROC
and thus two detectors are equivalent only if their ROCs completely superimpose. Thus,
in order to quantify the extent by which the performance of two detectors differs, it is
possible to introduce the following metric

d2 (K1,K2,ρc,1,ρc,2) =
∫ 1

0
[Pd,K1(ρc,1)− Pd,K2(ρc,2)]

2 dPfa (5.21)

that is the Euclidean square distance between two ROCs, the first one obtained with K1

non-coherent integrations and a coherent SNR equal to ρc,1, and the second one charac-
terized by K2 and ρc,2. In Eq. (5.21) the dependence of the detection probability on the
coherent output SNR has been explicitly reported. Since Eq. (5.21) corresponds to the
square norm of the difference of two ROCs, d2(K1,K2,ρc,1,ρc,2) is zero only if the two
ROCs are the same, that is if the two detectors have the same performance.
Since the coherent output SNR completely characterizes a ROC when only coherent inte-
gration is used, it is possible to define the equivalent coherent SNR as

ρK = arg min
ρ

d (1,K,ρ,ρc)

= arg min
ρ

{∫ 1

0
[Pd,1(ρ)− Pd,K(ρc)]

2 dPfa

} (5.22)

that is the value, ρ, that minimizes the distance between the original ROC, the one ob-
tained by K non-coherent integrations and a coherent SNR equal to ρc, and the ROC
obtained by using coherent integration only. The idea beyond Eq. (5.22) is that a ROC
can be approximated by another ROC obtained with coherent integration only, and that
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the equivalent coherent SNR is the parameter that leads to the best fit [43].
By means of differentiation, Eq. (5.22) can be rewritten as

ρK = ρ :
∫ 1

0
2 [Pd,1(ρ)− Pd,K(ρc)]

∂Pd,1(ρ)
∂ρ

dPfa = 0 (5.23)

Problem (5.23) cannot be solved easily in closed form and numerical methods have to be
employed. Thus alternative equivalence criteria should be utilized.
In this section three different criteria for obtaining an approximate expression for the
equivalent SNR, when non-coherent integrations are considered, are presented. The first
two criteria, the empirical formula and the generalized SNR, are from the literature and
thus they will only be summarized. The third one, called the equivalent area criterion, is
new and represents the original contribution of this section.
It can be noted that for many applications, such as for GNSS, only a limited region of the
ROC (the one for low values of false alarm probability) is usually of interest. Thus more
restrictive definitions of distance and consequently of equivalent coherent SNR can be
adopted. A solution can be, for example, limiting the integral in Eq. (5.21) on the interval
[0,Pmax], that is equivalent to consider the square distance of ROCs for values of false
alarm probability ranging from 0 to Pmax. However, by means of practical examples, we
will show that, in the case of the equivalent area criterion, the choice of Pmax = 1 leads to
closed-form formulas without compromising the ROC approximation for low values of
false alarm probability.

5.3.1 Empirical formula

A first expression for empirically evaluating the equivalent SNR is provided in [43]. It
can be noted that, once both false alarm and detection probabilities are fixed, then it is
possible, by utilizing only coherent integrations, to invert Eq. (3.39), thus determining
a value of coherent SNR denoted by ρK . In the same way, by utilizing K non-coherent
integrations, another value of coherent SNR ρc can be found. From those two SNRs, an
integration loss is defined as

L = 10 log10

ρc

ρK/K
(5.24)

and thus, the equivalent SNR, that is the one that leads to similar performance when only
coherent integrations are used, is obtained as:

ρK |dB = ρc|dB + 10 log10 K − L (5.25)

In [43] L is plotted for different values of K, as well as false alarm and detection proba-
bilities and it is noticed that for K À 1 the loss is approximated by

L = 10 log10

√
K − 5.5dB (5.26)
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5 – Increasing the acquisition performance

Eq. (5.26) has been obtained empirically by fitting loss curves reported in [43], and is
independent from the initial values of false alarm and detection probabilities used for
defining L. From Eq. (5.26) it is then possible to evaluate a first expression of the equiva-
lent SNR, that will be referred to as empirical formula, as a result of the derivation:

ρK |dB = ρc|dB + 10 log10

√
K + 5.5dB

ρK = 100.55
√

Kρc = 3.548
√

Kρc

(5.27)

5.3.2 Generalized SNR

A second approach for evaluating the impact of non-coherent integrations on the signal
quality has been utilized for GNSS by Lachapelle and Petovello in [42], and it is based
on [57]. It notes that the coherent SNR, when only coherent integrations are used, is
essentially the square mean distance between the signal peak and the noise floor, nor-
malized with respect to the noise variance. In [42] an equivalent SNR is thus defined
as

ρK =
E

[
SK

(
τ0,FD,0

)− SK

(
τ 6= τ0,FD 6= FD,0

)]2

Var [SK (τ,FD)]
(5.28)

that is the mean square distance of the signal peak from the noise floor, normalized by
the noise variance. In this case the decision statistic SK(FD,τ) is used and the phase de-
pendence is removed by the squaring block in the acquisition process. The SNR defined
in Eq. (5.28) will be also called generalized SNR since it defines a more general SNR with
respect to Eq. (3.36), and the formula for deriving it, once given the coherent SNR and K,
will be indicated as generalized SNR formula. In [42] Eq. (5.28) is used as an estimation
of the equivalent SNR; however Eq. (5.28) has been obtained from general assumptions
and it has not been directly derived from system performance indicators such as the false
alarm and detection probabilities.
Similarly to the approach of the empirical formula, a squaring loss L is defined (see Eq.
(5.24)) and, by using Eq. (5.28) and results from [57], the following expression is found

L = 10 log10

ρc

ρK/K
= 10 log10

4− π

π
+ ρc|dB −

− 20 log10

{
exp

(
−ρc

4

) [(
1 +

ρc

2

)
I0

(ρc

4

)
+

ρc

2
I1

(ρc

4

)]
− 1

} (5.29)

In Figure 5.3 the squaring loss L obtained according to Eq. (5.29) has been plotted. It is
important to recognize that these results indicate that for a coherent output SNR greater
than 10 dB the squaring loss becomes negative. This implies that for high coherent output
SNR the use of non-coherent integrations is preferable to coherent integration, leading to
a gain that tends to 3.67 dB. However this conclusion is never true since coherent inte-
gration leads to better performance in absence of bit transitions and other impairments.
Therefore it can be concluded that this kind of approach [42] [57] is to be considered valid
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Figure 5.3. Squaring loss vs coherent SNR obtained from Eq.(5.24). The dashed line
represents the loss evaluated according to Eq. (5.29) whereas the continuous curves
refer to the loss obtained by using the equivalent coherent SNR evaluated according
to the equivalent area criterion. In the latter case the loss depends on the number of
non-coherent integrations.

only for coherent SNR ¿ 10 dB. In Figure 5.3 the loss obtained according to definition
Eq. (5.24) and the equivalent coherent SNR evaluated by means of the equivalent area
criterion has been also depicted for comparison purposes. In this case the loss depends
on the number of non-coherent integrations and becomes negligible for high coherent
SNR.

5.3.3 Equivalent area criterion

ROCs are continuous, monotonically increasing curves constrained to pass through the
points (0,0) and (1,1), since both detection and false alarm probabilities are obtained by
integrating continuous probability density functions. These properties suggest a key ob-
servation: two ROCs are fairly superimposed if they are constrained to have the same
area. This observation is also confirmed by the behaviors of the ROCs depicted in Figure
5.4. Previous considerations suggest that the equivalent coherent SNR evaluated accord-
ing to the equivalent area criterion, is the one guaranteeing that the area under the ROC

69



5 – Increasing the acquisition performance

with only coherent integration is equal to the one obtained with K non-coherent integra-
tions:

ρK = ρ :
∫ 1

0
Pd,1(ρ)dPfa =

∫ 1

0
Pd,K(ρc)dPfa (5.30)

Notice that Eq. (5.30) can be rewritten as

ρK = ρ :
∫ 1

0
[Pd,1(ρ)− Pd,K(ρc)] dPfa = 0 (5.31)

This condition is similar to Eq. (5.23), in which the area of the ROCs is pondered by the
positive function ∂Pd,1(ρ)

∂ρ . This function, ∂Pd,1(ρ)
∂ρ , is positive since the detection probability

monotonically increases as the coherent SNR increases.
Eq. (5.30) is simpler than Eq. (5.23) and allows a closed-form solution.
In order to solve Eq. (5.30) it is possible to verify that the area under a ROC can be
expressed as ∫ 1

0
Pd,K(ρc)dPfa = 1−

∫ 1

0
PfadPd,K(ρc) (5.32)

that is the difference between the area of the square with unitary side that contains the
ROC and the area between the upper left side of the square and the ROC. In this way Eq.
(5.30) becomes

ρK = ρ :
∫ 1

0
PfadPd,1(ρ) =

∫ 1

0
PfadPd,K(ρc) (5.33)

This new condition is simpler than Eq. (5.30) since the derivative of the detection prob-
ability avoids the presence of the generalized Marcum Q-function in the computation of
the integrals. In fact, by applying a variable change and expressing the integrals in terms
of the normalized decision threshold β′, it results

ρK = ρ :−
∫ +∞

0
Pfa,1(β′)

∂Pd,1(β′,ρ)
∂β′

dβ′

= −
∫ +∞

0
Pfa,K(β′)

∂Pd,K(β′,ρc)
∂β′

dβ′
(5.34)

Notice that, in the change of variable, two different expressions of the false alarm prob-
ability are adopted in the two integrals. In order to solve Eq. (5.34), it is necessary to
evaluate the integral

AK = −
∫ +∞

0
Pfa,K(β′)

∂Pd,K(β′,ρc)
∂β′

dβ′ (5.35)

By substituting Eq. (5.5) into Eq. (5.35), it follows:

AK =
∫ +∞

0

1
2

(
β′

Kρc

)K−1
2

[
K−1∑

i=0

1
i!

(
β′

2

)i
]
·

exp
{
−1

2
(
2β′ + Kρc

)}
IK−1

(√
Kρcβ′

)
dβ′

(5.36)
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After some calculations and the substitution γ =
√

2β′ and aK =
√

ρc/2, AK becomes

AK =
(

1
2

)K

exp
{
−1

2
Ka2

K

} K−1∑

i=0

1
i!4i

·
∫ +∞

0
γ2iγ

(
γ√

KaK

)K−1

exp
{
−1

2
(
γ2 + Ka2

K

)}

· IK−1

(
γ
√

KaK

)
dγ

(5.37)

The term γ
(

γ√
KaK

)K−1
exp

{−1
2

(
γ2 + Ka2

K

)}
IK−1

(
γ
√

KaK

)
corresponds to the prob-

ability density function of a non-central χ random variable with 2K degrees of freedom
and non-centrality parameter λ =

√
KaK . Thus the integrals involved in the summation

in Eq. (5.37) correspond to the non-central moments of a χ-square random variable:

AK =
(

1
2

)K

exp
{
−1

2
Ka2

K

} K−1∑

i=0

1
i!4i

E
[(

χ2
2K

)i
]

(5.38)

and they can be evaluated by deriving its Moment Generating Function (MGF) [58]. Al-
ternatively E

[(
χ2

2K

)i
]

can be evaluated by using properties of the Gaussian random vari-

ables from which a χ2
2K random variable is generated.

When K = 1

A1 =
1
2

exp
{
−1

2
a2

1

}
=

1
2

exp
{
−1

4
ρc

}
(5.39)

and thus, by solving Eq. (5.34), the following expression for the equivalent SNR is ob-
tained:

ρK = Kρc − 4 log

[(
1
2

)K−1 K−1∑

i=0

1
i!4i

E
[(

χ2
2K

)i
]]

=

= Kρc − 4 log[PK−1(ρc)]

(5.40)

where PK(ρc) is a polynomial of degree K−1 in ρc. In Appendix C a recursive algorithm
for evaluating PK(ρc) is provided.
In Table 5.1 the expressions of the equivalent coherent SNR for K = 1,2,...,5 have been

explicitly reported whereas in Figure 5.4 original ROCs are compared with the ones deter-
mined by the equivalent coherent SNR and coherent integration only. The ROCs almost
superimpose for a wide range of false alarm probabilities assessing the validity of the
equivalent area criterion.
As for the minimum distance case, the integrals in Eq. (5.30) can be limited in the interval
[0,Pmax] where Pmax is maximum false alarm probability of interest. However, by doing
so, it is no longer possible to find a closed-form formula such as Eq. (5.40). Furthermore,
as pointed out by Figure 5.4, the approximation given by the equivalent area criterion is
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5 – Increasing the acquisition performance

Table 5.1. Equivalent coherent SNR when K non-coherent integrations are employed.

K AK Equivalent coherent SNR

1
1
2

exp
{
−1

4
ρc

}
ρ1 = ρc

2
1
2

exp
{
−1

2
ρc

}[
1 +

1
8
ρc

]
ρ2 = 2ρc − 4 log

[
1 +

1
8
ρc

]

3
1
2

exp
{
−3

4
ρc

}[
1 +

9
32

ρc +
9

512
ρ2

c

]
ρ3 = 3ρc−4 log

[
1 +

9
32

ρc +
9

512
ρ2

c

]

4
1
2

exp {−ρc}
[
1 +

29
64

ρc +
1
16

ρ2
c +

1
384

ρ3
c

] ρ4 = 4ρc − 4 log
[
1 +

29
64

ρc

+
1
16

ρ2
c +

1
384

ρ3
c

]

5

1
2

exp
{
−5

4
ρc

}
·

[
1 +

325
512

ρc +
575
4096

ρ2
c +

213
16751

ρ3
c +

12
30199

ρ4
c

]
ρ5 = 5ρc − 4 log

[
1 +

325
512

ρc +
575
4096

ρ2
c

+
213

16751
ρ3

c +
12

30199
ρ4

c

]

also accurate for low values of false alarm probability, without limiting the integrals in
Eq. (5.30) on the interval [0,Pmax]. This result is confirmed by Figure 5.5 where a com-
parison of ROCs obtained by using different criteria for evaluating the equivalent SNR is
depicted: also in this case the equivalent area criterion is the conversion formula provid-
ing the best results, providing a good approximation of the original ROCs also for low
values of false alarm probability.
Eq. (5.40) allows the evaluation of the equivalent coherent SNR for different values of

input SNR. However, for high values of K its computation can be burdensome. The diffi-
culties in using Eq. (5.40) are in the evaluation of the polynomial PK−1(ρc) that involves
the subsequent derivation of the MGF of a non-central χ2 random variable.
However when the coherent SNR is lower than 0 dB, PK−1(ρc) can be truncated at the
first two terms, and the logarithmic in Eq. (5.40) can be approximated by its Taylor ex-
pansion. In Appendix D it is shown that the constant term of PK−1(ρc) is always 1 and
that the linear term equals

K

4

[
1− 1

22K−1

(
2K

K

)]
ρc (5.41)
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Figure 5.4. Comparisons between ROCs obtained with K non-coherent integrations (con-
tinuous curves) and the ones obtained by using only coherent integration and the corre-
sponding equivalent coherent SNR (dashed curves). Parameter ρc is the coherent SNR.

From those results

PK−1(ρc) = 1 +
K

4

[
1− 1

22K−1

(
2K

K

)]
ρc + O(ρ2

c) (5.42)

For large values of K it is possible to apply the Stirling formula [59] for binomial, obtain-
ing the following approximation:

PK−1(ρc) ≈ 1 +
K

4

[
1− 2√

πK

]
ρc + O(ρ2

c) (5.43)

By substituting this result into Eq. (5.40), the following expression for the equivalent
coherent SNR is found:

ρK ≈ Kρc − 4 log
(

1 +
K

4

[
1− 2√

πK

]
ρc

)

≈ 2√
π

√
Kρc = 1.128

√
Kρc

(5.44)

Formula (5.44) states that the gain provided by non-coherent integrations is proportional
to the square root of K. This result is similar to the one obtained by the empirical formula
(5.27). However the coefficients that multiply the square-root of K are different, and the
gains evaluated by the two formulas differ of 5 dB. Those formulas will be compared and
tested in the next section.
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Figure 5.5. Comparisons of ROCs obtained by using different criteria for evaluat-
ing the equivalent coherent SNR. Continuous curves represent the original ROCs
obtained by using K non-coherent integrations. The other curves are obtained by
using only coherent integrations and the equivalent SNR evaluated according to dif-
ferent criteria. In the title, ρc is the coherent SNR, while the number of non-coherent
integrations is K = 5 in both subplots.

5.4 Formulas validation

In previous sections, different strategies have been presented in order to find a suitable
formula for determining the equivalent SNR. In Table 5.2 the three conversion formulas
previously considered are reported. These formulas are quite different and a criterion
for comparing their validity is necessary. In this section these formulas are tested by
using two different approaches. Firstly the conversion formulas are compared by using
target values of detection probability. Secondly the concept of ROC distance is defined
and employed to directly compare the formulas.

5.4.1 Test for fixed false alarm probability

The validity of the conversion formulas has been firstly tested by considering single val-
ues of the ROC for a fixed false alarm probability. Further, the conversion formulas allow
the determination of the number of non-coherent integrations needed to obtain a target
equivalent SNR given an input coherent SNR. In the second column of Table 5.2 the con-
version formulas have been inverted in order to find the expression of K as a function
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5.4 – Formulas validation

Table 5.2. Conversion formulas for determining the equivalent SNR and the num-
ber of non-coherent integrations.

Empirical
formula

ρK =
3.548

√
Kρc

K = f1(ρc,ρK)

=

⌈
0.282

(
ρK

ρc

)2
⌉

Generalized
SNR

approach

ρK =
Kρc10−L/10

K = f2(ρc,ρK)

=
⌈

ρK

ρc
10L/10

⌉

Equivalent
area

approach

ρK =
1.128

√
Kρc

K = f3(ρc,ρK)

=

⌈
0.887

(
ρK

ρc

)2
⌉

of an input coherent SNR, ρc, and of a target equivalent SNR ρK . dxe is the ceiling oper-
ator, that corresponds to the smallest integer greater or equal to x. Thus these formulas
have been used to determine K, once both target equivalent and coherent SNRs are fixed.
Then, for each value of false alarm probability, a detection probability is determined. By
using the target equivalent SNR and only coherent integration, another detection proba-
bility is obtained by inverting Eq. (5.5) with K = 1. This detection probability is denoted
hereinafter as the target detection probability and the best conversion formula is the one
that leads to the detection probability that better matches the target probability. In Fig-
ures 5.6 and 5.7 different detection probabilities have been plotted for Pfa = 10−3. For
each value of coherent SNR, four bars have been plotted, one representing the target de-
tection probability fixed by the target equivalent SNR and the other three obtained by
using the conversion formulas. In Figure 5.6 the case of a target equivalent SNR = 5 dB
is considered, whereas in Figure 5.7 the target equivalent SNR is equal to 10 dB. The dif-
ferent bars in both figures have been obtained by Monte Carlo simulation. It has been
verified that the estimated detection probabilities agree well with the theoretical values
thus proving the validity of Eq. (5.5).
Figures 5.6 and 5.7 highlight that the equivalent area approach effectively quantifies the
impact of non-coherent integrations when the target equivalent SNR is low, a scenario
where non-coherent integrations can be quite valuable. The generalized SNR approach
is preferable for high target equivalent SNR. It can also be noted that in this section only
the approximated expression (5.44) is employed for testing the validity of the equivalent
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Figure 5.6. Comparison between different detection probabilities achieved with
Pfa = 10−3 and target equivalent SNR = 5 dB.

area criterion and that better results could be expected upon using Eq. (5.40).

5.4.2 ROC distance

In Section 5.3 the equivalent SNR is defined as the one that minimizes the Euclidean
square distance between two ROCs: a ROC obtained by using only coherent integration
and a ROC obtained by using K non-coherent integrations.
The validity of the conversion formulas can be thus measured by the Euclidean square
distance between the ROC defined by the target equivalent SNR using coherent integra-
tion only and the one fixed by the input coherent SNR and the K non-coherent integra-
tions determined by using the conversion formulas:

J1(i) =
∫ 1

0
|Pd,1(ρK)− Pd,Ki(ρc)|2 dPfa

Ki = fi(ρc,ρK) i = 1,2,3.

(5.45)

where Ki is the number of non-coherent integrations determined by using the conversion
formulas in the second column of Table 5.2. This metric is obtained by averaging the
distance between detection probabilities with respect to all the possible values of false
alarm probabilities. However, only relative low values of false alarm probability are of
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Figure 5.7. Comparison between different detection probabilities achieved with
Pfa = 10−3 and target equivalent SNR = 10 dB.

interest, thus Eq. (5.45) can be generalized to

JPmax(i) =
∫ Pmax

0
|Pd,1(ρK)− Pd,Ki(ρc)|2 dPfa

Ki = fi(ρc,ρK) i = 1,2,3.

(5.46)

where Pmax is the maximum value of false alarm probability. In this way JPmax(i) is the
mean distance between detection probabilities with respect to the false alarm probabili-
ties in the range [0,Pmax]. In Figure 5.8 the number of non-coherent integrations required
for obtaining a target equivalent SNR = 5 dB (according to the different conversion for-
mulas) has been plotted for different values of coherent SNR. The corresponding ROC
distance, for Pmax = 0.1, has been reported in Figure 5.9. In this case the equivalent area
criterion is the one that gives the best performance. The ROC obtained with the number
of non-coherent integrations determined by this formula is the closest to that fixed by the
target equivalent SNR. In Figure 5.9 a horizontal line, indicated by the label “1-dB error
threshold” is also present. This line represents the distance between two ROCs obtained
by using only coherent integrations but whose coherent SNRs differ by 1 dB:

E1dB,Pmax =
∫ Pmax

0

∣∣∣Pd,1(ρK)− Pd,1

(
10−1dB/10ρK

)∣∣∣
2
dPfa (5.47)
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Figure 5.8. Number of non-coherent integrations vs coherent SNR for a target
equivalent SNR = 5 dB.

This error allows a qualitative perception of the error resulting from using the conversion
formulas in terms of the target equivalent SNR. In fact, if the ROC distance is below this
threshold then the error in obtaining the target equivalent SNR is less than 1 dB.
In Figure 5.9 the ROC distance obtained by using the equivalent area conversion formula
is quite close to the 1-dB error threshold, and below this threshold for coherent SNR
greater than -6 dB, showing the validity of this approach.
In Figures 5.10 and 5.11 the case of a target equivalent SNR = 10 dB is considered. In
this case the best performance is achieved by using the generalized SNR formula. The
equivalent area criterion overestimates the number of non-coherent integrations, leading
to an error greater than 1 dB with respect to the target equivalent SNR. The empirical
formula always underestimates the number of non-coherent integrations and can be used
as a lower bound on K.
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Figure 5.9. ROC distance with Pmax = 0.1 vs coherent SNR for a target equivalent SNR = 5 dB.
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Figure 5.10. Number of non-coherent integrations vs coherent SNR for a target
equivalent SNR = 10 dB.
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Chapter 6

Acquisition losses

In previous chapters the acquisition process was analyzed under ideal conditions, i.e.
different error sources were neglected. The following assumptions were made:

• the frontend does not essentially impact the signal component,

• the noise term entering the acquisition block is a white sequence,

• the quantization impact is essentially negligible,

• under the H1 hypothesis the Doppler frequency and the delay of the local signal
replica are exactly the same as that of the incoming signal.

In real applications none of these assumptions are strictly true and this has to be taken
into account in order to correctly characterize the acquisition performance. In this chapter
the effect of the frontend filtering on the useful signal and on the noise components is
discussed. The quantization impact is also quantified in term of coherent output SNR
and a general formula for the quantization loss is provided. Finally the effects of residual
Doppler frequency and delay alignment error are briefly discussed.

6.1 Frontend filtering

The first stages of a GNSS receiver are the antenna and the frontend, which are used to
recover the GNSS signal. The frontend downconverts, filters and amplifies the useful
signal (Figure 6.1). The received signal is then AD converted. In this section the filtering
effect of the frontend is considered. In particular it is assumed that the frontend can be
modeled as a low-pass filter that introduces correlation among the noise samples and
smoothes the useful signal.
Thus the signal at the input of the acquisition block is, in general, composed of a colored

noise component and a filtered version of the transmitted GNSS signal. These effects can
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Frontend

down-conversion

filtering

amplification
...

Equivalent 
front-end 

filter

Figure 6.1. The first stages of a GNSS receiver are the antenna and the fron-
tend, used to recover the GNSS signal. The frontend downconverts, filters and
amplifies the received signal.

be accounted for an equivalent filter hf [n] that models the frontend filtering. In Figure
6.2 the equivalent model for the frontend filtering is reported. In this section the effect of
the equivalent filter hf [n] on the coherent output SNR is derived.

6.1.1 Equivalent representation of the acquisition block

In order to simplify the analysis of the impact of the frontend filtering on the coherent
output SNR it is useful to introduce an equivalent representation of the acquisition block.
In particular, by considering Figure 3.5 it is possible to notice that all the operations be-
fore the squaring blocks are linear and thus can be modeled in terms of products and
convolutions. Consider at first the code multiplication and the subsequent integration:

YI (τ,FD) =
1
N

N−1∑

n=0

Yc [n,FD] c[n− τ ]

YQ (τ,FD) =
1
N

N−1∑

n=0

Ys [n,FD] c[n− τ ]

(6.1)

where YI (τ,FD), YQ (τ,FD), Yc[n,FD] and Ys[n,FD] are the signals introduced in Chapter
3. By manipulating Eq. (6.1) it clearly emerges that these operations can be expressed as
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6.1 – Frontend filtering

Figure 6.2. The signal at the input of the acquisition block is composed of the useful GNSS
signal and a noise component. In general the noise component is a colored sequence and
the useful signal is a filtered version of the transmitted GNSS signal. These effects can be
accounted by an equivalent filter hf [n] that models the frontend filtering.

a convolution with a code equivalent filter as

YI (τ,FD) =
N−1∑

n=0

rc [n,FD]
1
N

c[−(τ − n)] = rc [τ,FD] ∗ hc[τ ]

YQ (τ,FD) =
N−1∑

n=0

rs [n,FD]
1
N

c[−(τ − n)] = rs [τ,FD] ∗ hc[τ ]

(6.2)

where
hc[τ ] =

1
N

c[−τ ] (6.3)

is the equivalent code filter. This formulation of the code multiplication and of the sub-
sequent integration leads to the equivalent acquisition scheme reported in Figure 6.3a).
A second step in representing the acquisition block is obtained by introducing a complex
notation for denoting the multiplications by the two local carriers and the final squar-
ing operations. In fact the multiplication by the two local sinusoids on the in-phase and
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Figure 6.3. Equivalent representations of the basic acquisition scheme. a) the code mul-
tiplication and the subsequent integration can be interpreted as an equivalent filtering. b)
Equivalent complex representation of the acquisition block.

quadrature branches can be represented by a multiplication by a complex sinusoid and
the squaring operations can be substituted by a square modulus. These conventions lead
to the representation depicted in Figure 6.3b) that shows that the acquisition block is a
special form of the quadrature matched filter [60].

6.1.2 Coherent output SNR

In Section 3.7 the coherent output SNR has been defined as

ρc = max
φ0

E2 [YI (τ,FD)]
Var [YI (τ,FD)]

(6.4)

where YI (τ,FD) was obtained by neglecting the frontend filtering effect.
By using the equivalent representation developed in last section, one can possible to
write:

YI (τ,FD) + jYQ (τ,FD) = r[τ ] exp {−j2πFDτ} ∗ hc[τ ]. (6.5)
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6.1 – Frontend filtering

In the presence of frontend filtering, the input signal r[n] can be written (see Figure 6.2)
as

r[n] = rw[n] ∗ hf [n] = yw[n] ∗ hf [n] + ηw[n] ∗ hf [n] (6.6)

where hf [n] is the equivalent filter that accounts for the effects of the frontend. rw[n] =
yw[n] + ηw[n] is the ideal input signal; yw[n] is the unfiltered GNSS signal and ηw[n] is the
input white noise characterized by power spectral density equal to N0fs/2. rw[n] is the
ideal signal that follows the model described in Chapter 2. From Eq. (6.6) it is possible to
derive the power spectral density of the noise component η[n] = ηw[n] ∗ hf [n] as

Gη(f) =
N0

2
fs |Hf (f)|2 (6.7)

where Hf (f) is the Discrete Fourier Transform (DFT) of the equivalent filter hf [n].
By using Eq. (6.5) it is then possible to evaluate the variance of YI (τ,FD) + jYQ (τ,FD):

Var {YI (τ,FD) + jYQ (τ,FD)} = 2Var {YI (τ,FD)} =
N0

2
fs

∫ 0.5

−0.5
|Hf (f + FD)|2 |Hc(f)|2 df

≈ N0

2
fs

∫ 0.5

−0.5
|Hf (f + fIF Ts)|2 |Hc(f)|2 df =

N0

2
fs

∫ 0.5

−0.5
G̃(f) |Hc(f)|2 df

(6.8)

where G̃(f) = |Hf (f + fIF Ts)|2 is the noise PSD after modulation by the complex expo-
nential exp {−j2πFDn}. In Figure 6.4 the process that leads to G̃(f) is better explained.
The frontend filter colors the input noise that can present a PSD similar to the one in Fig-
ure 6.4a). The complex exponential translates the noise component to the baseband and
the equivalent code filter acts a low-pass filter. Since the Doppler frequency is usually
small with respect to the intermediate frequency and since |Hf (f + fIF Ts)|2 is usually
constant around the zero frequency, the effect of fd can be neglected.
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Figure 6.4. Effect of the different acquisition stage blocks on the noise PSD. a) Input signal
PSD. b) Effect of the complex modulation. c) Effect of the equivalent code filtering.
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6.1 – Frontend filtering

Since the noise power is equally distributed on the in-phase and quadrature compo-
nents it is possible to write:

Var {YI (τ,FD)} = Var {YQ (τ,FD)} =
N0

4
fs

∫ 0.5

−0.5
G̃(f) |Hc(f)|2 df (6.9)

When the noise component is a white sequence G̃(f) = 1, Eq. (6.9) becomes

Var {YI (τ,FD)} =
N0

4
fs

∫ 0.5

−0.5
|Hc(f)|2 df

=
N0

4
fs

N−1∑

n=0

|hc[n]|2 =
N0

4
fs

N−1∑

n=0

1
N2

=
N0fs/2

2N
=

σ2
IF

2N
.

(6.10)

Eq. (6.10) corresponds to the ideal case discussed in Section 3.6.
The mean of YI (τ,FD) + jYQ (τ,FD) is given by

E {YI (τ,FD) + jYQ (τ,FD)} = (y[τ ] exp {−j2πFDτ}) ∗ hc[τ ]

= [(yw[τ ] ∗ hf [τ ]) exp {−j2πFDτ}] ∗ hc[τ ]

= (yw[τ ] exp {−j2πFDτ}) ∗ (hf [τ ] exp {−j2πFDτ}) ∗ hc[τ ]

= [(yw[τ ] exp {−j2πFDτ}) ∗ hc[τ ]] ∗ (hf [τ ] exp {−j2πFDτ})
= [(yw[τ ] exp {−j2πFDτ}) ∗ hc[τ ]] ∗ h̃f [τ ]

(6.11)

where
h̃f [τ ] = hf [τ ] exp {−j2πFDτ} .

The term
(yw[τ ] exp {−j2πFDτ}) ∗ hc[τ ]

corresponds to the correlation with the ideal signal considered in Chapter 3 and, under
the condition of frequency alignment, FD = FD,0, it becomes

(yw[τ ] exp {j2πFDτ}) ∗ hc[τ ] =
A

2
R(τ − τ0) exp{jφ0} (6.12)

By exploiting the equality (6.12), Eq. (6.11) becomes

E {YI (τ,FD) + jYQ (τ,FD)} =
A

2
R(τ − τ0) exp{jφ0} ∗ h̃f [τ ]

=
A

2

[
R(τ − τ0) ∗ h̃f [τ ]

]
exp{jφ0} =

A

2

[
R(τ) ∗ h̃f [τ ] ∗ δ(τ − τ0)

]
exp{jφ0}

=
A

2
R̃(τ) ∗ δ(τ − τ0) exp{jφ0} =

A

2
R̃(τ − τ0) exp{jφ0}

(6.13)

where R̃(τ) = R(τ) ∗ h̃f [τ ] is the cross-correlation between the filtered and unfiltered
version of the GNSS code.
From Eq. (6.13) it is finally possible to derive the mean of YI (τ,FD), which results in

E {YI (τ,FD)} =
A

2
R̃(τ − τ0) cosφ0. (6.14)
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6 – Acquisition losses

Under the hypothesis of code alignment τ = τ0 the mean E {YI (τ,FD)} becomes

E {YI (τ,FD)} =
A

2
R̃(0) cosφ0 =

A

2

∫ 0.5

−0.5
G̃s(f)df cosφ0

=
A

2

∫ 0.5

−0.5
Gs(f)Hf (f + FD)df cosφ0 ≈ A

2

∫ 0.5

−0.5
Gs(f)Hf (f + fIF Ts)df cosφ0

(6.15)

where Gs(f) and G̃s(f) are the Fourier transforms of R(τ) and R̃(τ) respectively. It is
noted that in the absence of frontend filtering, R̃(τ) = R(τ). Thus, by exploiting R(0) = 1,
Eq. (6.15) becomes

E {YI (τ,FD)} =
A

2
cosφ0, (6.16)

which corresponds to the result obtained in Chapter 3.
By using Eqs. (6.8) and (6.15) it is finally possible to evaluate the coherent output SNR in
the presence of frontend filtering as:

ρc,f =

[
A
2

∫ 0.5
−0.5 Gs(f)Hf (f + fIF Ts)df

]2

N0
4 fs

∫ 0.5
−0.5 |Hf (f + fIF Ts)|2 |Hc(f)|2 df

= 2
C

N0
Tc

[∫ 0.5
−0.5 Gs(f)Hf (f + fIF Ts)df

]2

N
∫ 0.5
−0.5 |Hf (f + fIF Ts)|2 |Hc(f)|2 df

(6.17)
Finally the associated loss, often denoted as correlation loss, is given by

Lf =

[∫ 0.5
−0.5 Gs(f)Hf (f + fIF Ts)df

]2

N
∫ 0.5
−0.5 |Hf (f + fIF Ts)|2 |Hc(f)|2 df

. (6.18)

6.2 Quantization loss

The digitalization process essentially consists of two operations: sampling and quanti-
zation. Sampling transforms the time-continuous received signal in a time-discrete se-
quence and usually, if the Nyquist’s criterion is met, it does not affect the information
present in the original signal. On the other hand, quantization irreversibly degrades the
signal quality by mapping signal samples into a finite set of discrete values. Quantiza-
tion is imposed by the fact that only a limited number of bits is available for representing
the received signal. Even if in real receivers these two processes are simultaneously per-
formed by Analog to Digital converters (ADC), their effects can be analyzed separately:
in this section the quantization effect is considered.
Quantization effects have been extensively studied in the literature [61] and some useful
results describing the statistical and spectral nature of the quantization noise have been
derived [62]. However these results usually apply when a high number of bits for repre-
senting the received signal is available.

88



6.2 – Quantization loss

For mass-market applications, low-cost GNSS receivers with only a few bits are generally
employed. In particular GNSS receivers equipped with 1-bit ADCs are still common, and
2-bit frontends are widespread. The wide use of this kind of ADCs is justified by their
low cost and by the high sampling rate they can achieve. In these cases the statistical
theory [61] for the quantization noise does not apply, since by using only 1 or 2 bits, the
error committed in representing the signal is neither white nor uniform and its results
are strongly dependent on the input signal. In [14] the quantization effect on the delay
tracking loop is considered and the quantization loss for 1 and 2 bits is derived. In [3]
the impact of the number of bits and of the quantization threshold on GPS receivers is
studied. However no analytical results are reported and the study is essentially devel-
oped by simulations. All these investigations assume that the noise components entering
the ADC are white and the impact of noise correlation is not accounted for. In [63] the
joint effect of pre-filtering and quantization is studied, however only simulation results
are provided.
In this section the quantization loss, when the input noise is white, is theoretically de-
rived. The cases of 1 and 2 bits are reported and generalized to B bits. A general formula
for the quantization loss is thus provided.
Analytical results are supported by simulations.

6.2.1 One-bit quantization

D o w n - c o n v e r s i o n
&

i d e a l  s a m p l i n g

1

- 1

1 - b i t  q u a n t i z e r

r [n ]

S a m p l e d  G N S S  
s igna l  w i th  i n f i n i t e  

p r e c i s i o n

A c q u i s i t i o n
b l o c k

G N S S  
A n t e n n a

r  [n ]
B

Figure 6.5. One-bit quantization for GNSS signal.

In this section the acquisition performance, achievable using only 1 bit for the input
signal representation, is analyzed in terms of coherent output SNR. In Figure 6.5 the
analog-to-digital conversion, when only one bit is used is depicted. The analog signal is
at first downconverted and sampled. Then the 1-bit quantization is applied. The signal
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6 – Acquisition losses

r[n] is supposed to be represented with an infinite precision and corresponds to the signal
model (2.10), thus it is composed by a useful part, y[n], and a noise term η[n]. η[n] is a
Gaussian random process supposed to be white and zero-mean. r[n] enters the 1 bit
quantizer that produces a new random process rB[n]. rB[n] is a two-state random process
that is still white, since the 1-bit quantizer is a memoryless nonlinear device and the
samples of r[n] are supposed independent. The two values that r[n] can assume are
{−1,1}; this convention does not cause any loss of generality and any set of the kind
{−∆,∆}, with ∆ ∈ R+ would lead to the same expression for the coherent output SNR.
rB[n] is characterized by the following probabilities:

p1,1 = P (rB[n] = 1) = P (r[n] > 0) = P (y[n] + η[n] > 0) = P (η[n] > −y[n])

= Q

(
−y[n]

σIF

) (6.19)

p1,−1 = P (rB[n] = −1) = P (r[n] < 0) = P (y[n] + η[n] < 0) = P (η[n] < −y[n])

= Q

(
y[n]
σIF

) (6.20)

where Q(·) is the surviving function of a Gaussian random variable with zero-mean and
unit variance, defined as follows

Q(x) =
1√
2π

∫ +∞

x
exp

{
− t2

2

}
dt =

1
2

erfc
(

x√
2

)

erfc(·) is the complementary error function [45]. σIF is the standard deviation of η[n]
defined in Chapter 2. In Figure 6.6a) the two probabilities (6.19) and (6.20) are represented
as the two areas in which the probability density function of the noise component η[n] is
divided by the signal term y[n]. The expected value of rB[n] is given by

E (rB[n]) = 1 · p1,1 − 1 · p1,−1 = Q

(
−y[n]

σIF

)
−Q

(
y[n]
σIF

)
(6.21)

By considering Figure 6.6 it is clear that E [rB[n]] corresponds to the area under the Gaus-
sian distribution of η[n] in the interval [−|y[n]|,|y[n]|] multiplied by the sign of y[n]. In
GNSS applications the useful signal is generally buried in noise, and thus the condition
|y[n]| << σIF is usually verified. Under this condition the pdf of η[n] is almost constant
on the interval [−|y[n]|,|y[n]|] and the expected value of rB[n] can be approximated by
the area of the rectangle having sides 2|y[n]| and the maximum of the distribution of η[n],
multiplied by sign (y[n]):

E (rB[n]) ≈ sign (y[n]) 2|y[n]| 1√
2πσ2

IF

=

√
2
π

y[n]
σIF

(6.22)
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6.2 – Quantization loss

Figure 6.6. a) Representation of the probabilities characterizing the process rB [n] with
respect to the noise probability density function. b) Representation of the expected value
of rB [n] with respect to the noise probability density function.

The variance of rB[n] is given by

Var (rB[n]) = E
(
r2
B[n]

)− E (rB[n])2 ≈ E(1)− 2
π

y2[n]
σ2

IF

≈ 1 (6.23)

These results allow to characterize the signal rB[n] from the statistical point of view and
illustrate why it is possible to acquire a GNSS signal also when only one bit is used for
quantization. In fact the quantized signal results are, in average, proportional to the
useful GNSS signal and thus can be used for acquisition.
The signal rB[n] enters the acquisition block where it is multiplied by the local carrier
and code replica and then integrated in order to obtain the cross-correlation function
that will be used for signal detection. The correlation blocks (Figure 3.5) combine many
independent samples of rB[n] producing new random variables that can be considered
Gaussian for the central limit theorem. As discussed in Section 3.7 the coherent SNR is
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6 – Acquisition losses

obtained by

ρc,1 = max
φ0

E2 [YI (τ,FD)]
Var [YI (τ,FD)]

= max
φ0

E
{

1
N

∑N−1
n=0 rB[n]c[n] cos(2πFDn)

}2

Var
{

1
N

∑N−1
n=0 rB[n]c[n] cos(2πFDn)

}
(6.24)

where c[n] is the local code used to recover the transmitted signal. The received signal
and the local code are supposed to be perfectly aligned in frequency, delay and phase.
In this case

E

{
1
N

N−1∑

n=0

rB[n]c[n] cos(2πFDn)

}
=

1
N

N−1∑

n=0

E {rB[n]} c[n] cos(2πFDn)

≈ 1
N

N−1∑

n=0

√
2
π

y[n]
σIF

c[n] cos(2πFDn) =

√
2
π

A

2NσIF

N−1∑

n=0

c[n]2 =

√
2
π

A

NσIF

N

2
=

√
2
π

A

2σIF

(6.25)

and

Var

{
1
N

N−1∑

n=0

rB[n]c[n] cos(2πFDn)

}

=
1

N2

N−1∑

n=0

E
{
r2
B[n]

}
c2[n] cos2(2πFDn)−E

{
1
N

N−1∑

n=0

rB[n]c[n] cos(2πFDn)

}2

=
1

N2

N−1∑

n=0

c2[n] cos2(2πFDn)−
[

1
N

N−1∑

n=0

E {rB[n]} c[n] cos(2πFDn)

]2

=
1

N2

N

2
−

[
1
N

√
2
π

A

σIF

N−1∑

n=0

c2[n] cos2(2πFDn)

]2

=
1

2N

(6.26)

In Eq. (6.26) the condition A
σIF

<< 1 has been exploited. From Eqs. (6.25) and (6.26), it is
finally possible to evaluate the expression of the coherent output SNR in the presence of
1-bit quantization. In particular the coherent output SNR is given by:

ρc,1 =
2
π

NA2

2σ2
IF

(6.27)

By comparing Eq. (6.27) with expression (3.37) it emerges that quantizing the signal with
1 bit introduces a constant loss

L1 =
ρc,1

ρc
=

2
π

(6.28)

that corresponds to −1.96 dB.
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6.2 – Quantization loss

6.2.2 Two-bit quantization
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Figure 6.7. Two-bit quantization for GNSS signal.

When two bits are employed for signal quantization, the amplitude of the quantized
signal can assume 4 values that, in this case, have been conventionally fixed to −3,− 1,1
and 3. It can be noted that the choice of these values is arbitrary and equivalent to any
set of the type {−3∆,−∆,∆,3∆} where ∆ is any positive real number. The quantization
function over 2 bits is defined as

Qu
2(x) =





3 for x > 1
1 for 0 < x ≤ 1
−1 for − 1 < x ≤ 0
−3 for x ≤ −1

. (6.29)

In this case the quantization threshold has been fixed to 1. This choice does not reduce the
generality of the analysis, in fact the input signal amplitude is adapted to the quantization
function by means of the Automatic Gain Control (AGC) that is supposed to provide
a constant gain Ag. Changing the AGC gain is equivalent to change the quantization
threshold. After these preliminaries and by considering Figure 6.7 the quantized signal
rB[n] is equal to

rB[n] = Qu
2(Agr[n]), (6.30)

which is a random variable with values in the set {−3,− 1,1,− 3}. To each value of rB[n]
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6 – Acquisition losses

is associated a probability as follows:

p2,3 = P (rB[n] = 3) = P (Agr[n] > 1) = P (r[n] > 1/Ag) = P (y[n] + η[n] > 1/Ag)

= P (η[n] > 1/Ag − y[n]) =
1√

2πσ2
IF

∫ +∞

1/Ag−y[n]
exp

{
− z2

σ2
IF

}
dz

= Q

(
1/Ag − y[n]

σIF

)
(6.31)

p2,1 = P (rB[n] = 1) = P (0 < Agr[n] ≤ 1)

= P (0 < r[n] ≤ 1/Ag) = P (0 < y[n] + η[n] ≤ 1/Ag) = P (−y[n] < η[n] ≤ 1/Ag − y[n])

=
1√

2πσ2
IF

∫ 1/Ag−y[n]

−y[n]
exp

{
− z2

σ2
IF

}
dz = Q

(−y[n]
σIF

)
−Q

(
1/Ag − y[n]

σIF

)

(6.32)

p2,−1 = P (rB[n] = −1) = P (−1 < Agr[n] ≤ 0) = P (−1/Ag < r[n] ≤ 0)

= P (−1/Ag < y[n] + η[n] ≤ 0) = P (−1/Ag − y[n] < η[n] ≤ −y[n])

=
1√

2πσ2
IF

∫ −y[n]

−1/Ag−y[n]
exp

{
− z2

σ2
IF

}
dz = Q

(−y[n]− 1/Ag

σIF

)
−Q

(−y[n]
σIF

)

(6.33)

p2,−3 = P (rB[n] = −3) = P (Agr[n] ≤ −1) = P (r[n] ≤ −1/Ag) = P (y[n] + η[n] ≤ −1/Ag)

= P (η[n] ≤ −1/Ag − y[n]) =
1√

2πσ2
IF

∫ −1/Ag−y[n]

−∞
exp

{
− z2

σ2
IF

}
dz

= Q

(−1/Ag − y[n]
σIF

)

(6.34)

By using these probabilities it is possible to evaluate the mean value and the variance of
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6.2 – Quantization loss

rB[n], in particular

E{rB[n]} =1 · [p2,1 − p2,−1] + 3 · [p2,3 − p2,−3]

=
1√

2πσ2
IF

[∫ 1/Ag−y[n]

−y[n]
exp

{
− z2

2σ2
IF

}
dz −

∫ −y[n]

−1/Ag−y[n]
exp

{
− z2

2σ2
IF

}
dz

]

+
3√

2πσ2
IF

[∫ +∞

1/Ag−y[n]
exp

{
− z2

2σ2
IF

}
dz −

∫ −1/Ag−y[n]

−∞
exp

{
− z2

2σ2
IF

}
dz

]

=
1√

2πσ2
IF

[∫ +∞

−y[n]
exp

{
− z2

2σ2
IF

}
dz −

∫ −y[n]

−∞
exp

{
− z2

2σ2
IF

}
dz

]

+
2√

2πσ2
IF

[∫ +∞

1/Ag−y[n]
exp

{
− z2

2σ2
IF

}
dz −

∫ +∞

1/Ag+y[n]
exp

{
− z2

2σ2
IF

}
dz

]

=
1√

2πσ2
IF

[∫ y[n]

−y[n]
exp

{
− z2

2σ2
IF

}
dz + 2

∫ 1/Ag+y[n]

1/Ag−y[n]
exp

{
− z2

2σ2
IF

}
dz

]

=
sign(y[n])√

2πσ2
IF

[∫ |y[n]|

−|y[n]|
exp

{
− z2

2σ2
IF

}
dz + 2

∫ 1/Ag+|y[n]|

1/Ag−|y[n]|
exp

{
− z2

2σ2
IF

}
dz

]

(6.35)

In Figure 6.8 a pictorial representation of the integrals of Eq. (6.35) is provided. By

Figure 6.8. Pictorial representation of the integrals that lead to the expected
value of the quantized signal rB [n].

exploiting the fact that |y[n]|
σIF

¿ 1 it is possible to approximate the integrals in Eq. (6.35)
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by the sum of rectangles, as for the one bit case. In this way Eq. (6.35) becomes

E {rB[n]} ≈ sign(y[n])√
2πσ2

IF

2|y[n]|
[
1 + 2 exp

{
−(1/Ag)2

2σ2
IF

}]

=
2y[n]√
2πσ2

IF

[
1 + 2 exp

{
−(1/Ag)2

2σ2
IF

}]
.

(6.36)

The mean square value of rB[n] is given by

E
{
r2
B[n]

}
= 1 · [p2,1 + p2,−1] + 9 · [p2,3 + p2,−3]

= 1 + 8 [p2,3 + p2,−3]

= 1 +
8√

2πσ2
IF

[∫ +∞

1/Ag−y[n]
exp

{
− z2

2σ2
IF

}
dz +

∫ −1/Ag−y[n]

−∞
exp

{
− z2

2σ2
IF

}
dz

]
.

(6.37)

By exploiting the condition |y[n]|
σIF

¿ 1 and by considering that the AGC gain is inversely
proportional to σ2

IF , the mean square value Eq. (6.37) can be approximated by

E
{
r2
B[n]

} ≈ 1 +
8√

2πσ2
IF

[∫ +∞

1/Ag

exp
{
− z2

2σ2
IF

}
dz +

∫ −1/Ag

−∞
exp

{
− z2

2σ2
IF

}
dz

]

= 1 + 8erfc
(

1/Ag√
2σIF

)
.

(6.38)

The expression of the variance of rB[n] can be obtained by combining Eq.s (6.36) and
(6.38), however, since |y[n]|

σIF
¿ 1, the square of the mean value (6.36) is negligible with

respect to Eq. (6.38), leading to the approximation

Var {yB[n]} ≈ 1 + 8erfc
(

1/Ag√
2σIF

)
(6.39)

Given the mean and the variance of yB[n] it is possible to evaluate the coherent output
SNR, by proceeding in the same way of the one bit case. In this case the coherent output
SNR is equal to

ρc,2 =
2
π

[
1 + 2 exp

{
− (1/Ag)2

2σ2
IF

}]2

1 + 8erfc
(

1/Ag√
2σIF

) A2N

2σ2
IF

(6.40)

Thus the loss with respect to the ideal case is given by

L2(Ag) =
2
π

[
1 + 2 exp

{
− (1/Ag)2

2σ2
IF

}]2

1 + 8erfc
(

1/Ag√
2σIF

) (6.41)
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Figure 6.9. Signal quantization over B bits.

6.2.3 B-bit quantization

In this section a general formula, quantifying the loss introduced by quantizing the input
signal with B bits is derived. In order to evaluate the coherent output SNR and derive
the loss LB(Ag) it is necessary to statistically characterize the quantized signal rB[n], and
in particular its mean and variance are required.
The quantized signal rB[n] is a discrete random variable that can assume the values in
the set

B = {−(2B − 1),...,− 3,− 1,1,3,...,2B − 1}

that are the odd numbers {2i + 1}i=−2B−1,−2B−1+1,...,2B−1−1. A probability is associated to
any of these values as

pB,2i+1 = P (rB[n] = 2i + 1)

=





1√
2πσ2

IF

∫ +∞
(2B−1−1)/Ag−y[n] exp

{
− z2

2σ2
IF

}
dz for i = 2B−1 − 1;

1√
2πσ2

IF

∫ −(2B−1−1)/Ag−y[n]
−∞ exp

{
− z2

2σ2
IF

}
dz for i = −2B−1;

1√
2πσ2

IF

∫ (i+1)/Ag−y[n]
i/Ag−y[n] exp

{
− z2

2σ2
IF

}
dz otherwise

(6.42)

where the quantization thresholds have been assumed uniformly spaced and correspond
to the integers in the range [−(2B−1 − 1); 2B−1 − 1]. Ag is the gain provided by the AGC,
as depicted in Figure 6.9.
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By using the probabilities pB,2i+1, it is possible to evaluate the expected value of rB[n] as

E {rB[n]} =
2B−1−1∑

i=−2B−1

(2i + 1)pB,2i+1 =
2B−1−1∑

i=0

(2i + 1)
[
pB,2i+1 − pB,−(2i+1)

]

=
2B−1−1∑

i=0

[
pB,2i+1 − pB,−(2i+1)

]
+ 2

2B−1−2∑

i=1

i
[
pB,2i+1 − pB,−(2i+1)

]

+ (2B − 2)
[
pB,2B−1 − pB,−(2B−1)

]

=
1√

2πσ2
IF

∫ y[n]

−y[n]
exp

{
− z2

2σ2
IF

}
dz +

2(2B−1 − 1)√
2πσIF

∫ (2B−1−1)/Ag+y[n]

(2B−1−1)/Ag−y[n]
exp

{
− z2

2σ2
IF

}
dz

+
2√

2πσ2
IF

2B−1−2∑

i=1

i

[∫ i/Ag+y[n]

i/Ag−y[n]
exp

{
− z2

2σ2
IF

}
dz −

∫ (i+1)/Ag+y[n]

(i+1)/Ag−y[n]
exp

{
− z2

2σ2
IF

}
dz

]

=
1√

2πσ2
IF

∫ y[n]

−y[n]
exp

{
− z2

2σ2
IF

}
dz +

2√
2πσ2

IF

2B−1−1∑

i=1

∫ i/Ag+y[n]

i/Ag−y[n]
exp

{
− z2

2σ2
IF

}
dz

=
sign{y[n]}√

2πσ2
IF




∫ |y[n]|

−|y[n]|
exp

{
− z2

2σ2
IF

}
dz + 2

2B−1−1∑

i=1

∫ i/Ag+|y[n]|

i/Ag−|y[n]|
exp

{
− z2

2σ2
IF

}
dz




=
sign{y[n]}√

2πσ2
IF




2B−1−1∑

i=−2B−1+1

∫ i/Ag+|y[n]|

i/Ag−|y[n]|
exp

{
− z2

2σ2
IF

}
dz


 .

(6.43)

By applying the fact that |y[n]|
σIF

¿ 1, it is possible to approximate Eq. (6.43) by

E {rB[n]} ≈ sign{y[n]}√
2πσ2

IF




2B−1−1∑

i=−2B−1+1

2|y[n]| exp
{
−(i/Ag)2

2σ2
IF

}


=
2y[n]√
2πσ2

IF


1 + 2

2B−1−1∑

i=1

exp
{
−(i/Ag)2

2σ2
IF

}
 .

(6.44)

98



6.2 – Quantization loss

In the same way it is possible to evaluate the mean square value of rB[n] as:

E
{
r2
B[n]

}
=

2B−1−1∑

i=0

(2i + 1)2
[
pB,2i+1 + pB,−(2i+1)

]

=
1√

2πσ2
IF

2B−1−2∑

i=0

(2i + 1)2
[∫ (i+1)/Ag−y[n]

i/Ag−y[n]
exp

{
− z2

2σ2
IF

}
dz

+
∫ (−i+1)/Ag−y[n]

−i/Ag−y[n]
exp

{
− z2

2σ2
IF

}
dz

]

+
(2B − 1)2√

2πσ2
IF

[∫ +∞

(2B−1−1)/Ag−y[n]
exp

{
− z2

2σ2
IF

}
dz +

∫ −(2B−1−1)/Ag−y[n]

−∞
exp

{
− z2

2σ2
IF

}
dz

]
.

(6.45)

As usual, by using the hypothesis |y[n]|
σIF

¿ 1, it is possible to approximate Eq. (6.45) by

E
{
r2
B[n]

} ≈ 2√
2πσ2

IF

2B−1−2∑

i=0

(2i + 1)2
∫ (i+1)/Ag

i/Ag

exp
{
− z2

2σ2
IF

}
dz

+
2(2B − 1)2√

2πσ2
IF

∫ +∞

(2B−1−1)/Ag

exp
{
− z2

2σ2
IF

}
dz

=
2B−1−1∑

i=0

(2i + 1)2erfc
(

i/Ag√
2σIF

)
−

2B−1−2∑

i=0

(2i + 1)2erfc
(

(i + 1)/Ag√
2σIF

)

= 1 +




2B−1−1∑

i=1

(2i + 1)2erfc
(

i/Ag√
2σIF

)
−

2B−1−1∑

i=1

(2i− 1)2erfc
(

i/Ag√
2σIF

)


= 1 +
2B−1−1∑

i=1

[
(2i + 1)2 − (2i− 1)2

]
erfc

(
i/Ag√
2σIF

)

= 1 + 8
2B−1−1∑

i=1

i · erfc
(

i/Ag√
2σIF

)
.

(6.46)

As for the 2-bit case the variance of rB[n] can be calculated from Eqs. (6.44) and (6.46),
however, since the square of the mean of rB[n] is negligible with respect to Eq. (6.46), the
approximation

Var{rB[n]} ≈ 1 + 8
2B−1−1∑

i=1

i · erfc
(

i/Ag√
2σIF

)
(6.47)
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holds.
From Eqs. (6.47) and (6.44) the coherent output SNR results in

ρc =
2
π

[
1 + 2

∑2B−1−1
i=1 exp

{
− (i/Ag)2

2σ2
IF

}]2

1 + 8
∑2B−1−1

i=1 i · erfc
(

i/Ag√
2σIF

) A2N

2σ2
IF

, (6.48)

which corresponds to the loss

LB(Ag) =
2
π

[
1 + 2

∑2B−1−1
i=1 exp

{
− (i/Ag)2

2σ2
IF

}]2

1 + 8
∑2B−1−1

i=1 i · erfc
(

i/Ag√
2σIF

) . (6.49)

6.2.4 Analysis and Simulation

In this section the theoretical results obtained for the quantization loss are discussed and
analyzed in detail. In particular Monte Carlo simulations are used to support the theo-
retical analysis.

In Figure 6.10 the quantization loss (dB) are depicted as a function of the product of
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Figure 6.10. Quantization loss as a function of the normalized AGC gain (AgσIF ).

the AGC gain and the noise standard deviation σIF . In fact, by considering Eq. (6.49) it
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6.2 – Quantization loss

clearly emerges that the quantization loss only depends on the product AgσIF that cor-
responds to the noise variance after the AGC and before the quantization block. From
Figure 6.10 it emerges that, for B > 1, there is a value of Ag that minimizes the quantiza-
tion loss. Moreover, as B increases, the quantization loss presents a larger region that is
almost constant, thus the requirement for the AGC to provide the optimal gain Ag results
less stringent for high values of B. The behavior of the quantization loss can be explained
by the presence of a scaling error: an insufficient or excessive gain Ag results in an inap-
propriate use of the quantization function dynamic. An excessive gain Ag can also result
in saturation phenomena. In Table 6.1 the optimal AGC gain and the relative minimum

Table 6.1. Optimal AGC gain.

Bit number Optimal AGC Gain Minimum Loss (dB)
1 −1.96
2 1/σIF −0.55 dB
3 1.71/σIF −0.165 dB
4 2.98/σIF −0.05 dB
5 5.315/σIF −0.015 dB

quantization loss are reported as a function of the number of bits. The results agree well
with the minimum quantization losses reported by [2].

Table 6.2. Simulation Parameters
Parameter Value

Sampling frequency fs = 4.092 MHz
Intermediate frequency fIF = fs

4 = 1.023 MHz
Code GPS C/A

Code rate 1.023 Mchip/s

In order to validate the theoretical model developed in previous sections, the acqui-
sition chain characterized by the parameters in Table 6.2 has been simulated. The input
signal has been quantized with 2, 3 and 4 bits. Then the coherent output SNR has been
estimated as a function of the AGC threshold and the quantization loss derived. The sim-
ulation results are depicted in Figures 6.11 and 6.12. In Figure 6.11 the case of C/N0 = 35
dB has been considered: the quantization loss estimated by simulation and the theoretical
curves overlap well, proving the validity of the model developed in previous sections.
In Figure 6.12 a C/N0 = 45 dB has been considered. Also in this case simulations and
theoretical curves agree well although small deviations can be observed. These devia-
tions can be explained by the fact that, for increasing C/N0, the assumption |y[n]|

σIF
¿ 1
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Figure 6.11. Quantization loss: comparison between theoretical and Monte
Carlo results. (C/N0 = 35) dB.

(the amplitude of the signal component is negligible with respect to the noise variance)
is less and less valid, making formula (6.49) only approximately true.
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Figure 6.12. Quantization loss: comparison between theoretical and Monte
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6.3 Doppler and delay residual errors

The detection law for an acquisition system is derived supposing the system able to per-
fectly recover the code delay and the Doppler frequency shift. However, in real applica-
tions, these conditions are rarely verified. Neither the code delay nor the Doppler shift
is exactly in the set of delays and frequencies used in the search space evaluation. This
condition is the cause of additional impairments, or losses, which reduce the amplitude
of the correlation peak, reducing the coherent output SNR.
The effect of Doppler and code imperfect alignment has been thoroughly studied in the
literature [3, 10, 34], and thus will be only briefly discussed in this section. In particu-
lar [10] investigates the impact of residual Doppler shift, code shift, Doppler dynamics
and code Doppler. In [64] the analysis of these losses in presence of BOC modulated sig-
nals has been reported. This paper can be found in Appendix A.

In the presence of Doppler and code misalignment it is possible to show [3] that the
in-phase and quadrature components, YI (τ,FD) and YQ (τ,FD), assume the following
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expressions:

YI (τ,FD) =
A

2
sin (πNδF )

πNδF
R (δτ) cos φ0 + ηI (6.50)

YQ (τ,FD) =
A

2
sin (πNδF )

πNδF
R (δτ) sin φ0 + ηQ (6.51)

where

• A is the useful signal amplitude,

• δF is the normalized Doppler frequency error, (FD,0 − FD) Ts,

• δτ is the code delay residual error and R is the normalized cross-correlation be-
tween the local replica and the input useful signal.

The frequency error is limited by the Doppler bin step size and in particular

− ∆F

2
≤ δF <

∆F

2
. (6.52)

In the same way the code delay residual error is limited by the size of the step that the
acquisition process uses to search all the possible code delays:

− ∆τ

2
≤ δτ <

∆τ

2
. (6.53)

By considering Eqs. (6.50) and (6.51) it is possible to evaluate the coherent output SNR
which becomes:

ρc,e =
A2

4
sin2 (πNδF )

(πNδF )2
R2 (δτ)

2N

σ2
IF

= 2
C

N0
Tc

sin2 (πNδF )
(πNδF )2

R2 (δτ) . (6.54)

It can be noted that for δF = 0 and δτ = 0 Eq. (6.54) equals expression (3.37). Moreover
it is possible to define a loss associated to the Doppler frequency and code delay errors
given by ρc,e divided by the ideal coherent output SNR derived in Eq. (3.37). In particular
the following expression is obtained:

L (δτ,δF ) =
sin2 (πNδF )

(πNδF )2
R2 (δτ) . (6.55)

The loss (6.55) is given by the product of two terms that respectively depend on the
Doppler frequency and the code delay errors. Thus it is possible to isolate the loss asso-
ciated with the frequency residual error and the one associated with the code delay error
namely

LD (δF ) =
sin2 (πNδF )

(πNδF )2
(6.56)

and
LC (δτ) = R2 (δτ) . (6.57)
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6.3 – Doppler and delay residual errors

By considering Eq. (6.56) one notices that the frequency error δF is multiplied by the
factor N that represents the number of samples used to coherently integrate the input
signal. Thus, as the coherent integration time increases, the effect of Doppler frequency
residual errors becomes more and more severe. In order to limit this effect the Doppler
bin size has to be lowered as the coherent integration time is increased and a common
criteria, for setting ∆F , is the following

∆F ≤ 2
3N

or equivalentely ∆F · fs = ∆f ≤ 2
3Tc

. (6.58)
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Chapter 7

Acquisition of composite GNSS
signals

With the advent of new Global Navigation Satellite Systems (GNSS), such as the Euro-
pean Galileo and the Chinese Compass, and with the modernization of the American
GPS, new signals and new modulations have been introduced in order to provide better
performance by fully exploiting the technology currently available.
Modern GNSS signals are usually made up of two different components, namely the data
and pilot channels. The first one carries the navigation message, whereas the second
is dataless and thus can be used for precisely determining the pseudoranges, allowing
longer coherent integration time and the use of a pure PLL. Examples of such signals
are the Galileo E1 Open Service signal (OS) [65, 66], the Galileo E5a and E5b signals [66]
and the GPS L5 modulation [67]. In the Galileo E1 OS case, data and pilot are trans-
mitted with the same phase and are separated only by different ranging codes, whereas
in Galileo E5a, Galileo E5b and GPS L5 cases, the two components are broadcast with a
phase difference of 90 degrees.
The drawback of using data and pilot components is that by processing each channel in-
dependently half of the transmitted power is lost. In order to overcome the power loss
problem different techniques [17, 19, 68–71] have been proposed for combining data and
pilot components to recover power from both channels. The acquisition of the Galileo
E1 OS has been considered in [68] and [69] which propose to correlate the input signal
with two different composite codes, given by the sum and difference of the data and pi-
lot codes. However [68] and [69] do not characterize, from a statistical point of view, the
performance of the proposed algorithm, which is analyzed only in terms of its impact on
the architecture of a GNSS receiver. In [17] the data and pilot channels are acquired sep-
arately and the correlator outputs are non-coherently combined. The non-coherent com-
bining of L5 data and pilot components is further analyzed in [18]. In [19] the optimal
detector that combines pilot and data channels in the case of GPS L5 is derived. Then,
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7 – Acquisition of composite GNSS signals

from the optimal detector, two sub-optimal algorithms, suitable for low and high SNR
conditions, are developed. The sub-optimal algorithm in high SNR conditions consists of
correlating the input signal with two appropriate combinations of data and pilot codes
and using as decision variable the maximum between the two correlations. The detection
algorithms described in [19] are characterized only by simulations. In [70] and [71] some
implementations for the detection algorithms described in [19] are analyzed and some
FFT based techniques are proposed.

In this chapter different techniques for the acquisition of composite GNSS signals are
considered. At first the problem of data and pilot combining on a single code period is
addressed and three different techniques are analyzed.
The first technique, non-coherent channel combining, is from the literature [17, 18] and it
is used for comparison. The second strategy, coherent channel combining with relative
sign recovery, corresponds to the sub-optimal detector for high SNR described in [19]
whereas the last one, differentially coherent channel combining, is, to the best of the
author’s knowledge, new and represents one of the innovative contributions of this the-
sis. Differentially coherent channel combining is obtained by modifying the traditional
differentially coherent acquisition technique [12] that exploits the correlation properties
between two consecutive GNSS signal periods. In this case data and pilot components
are used instead of the two consecutive signal periods. Some modifications have also
been introduced to deal with the phase difference between the two components.
For each acquisition strategy the probabilities of detection and false alarm are provided.
In particular closed-form expressions for the probabilities of coherent channel combining
and of the differentially coherent integration strategy are derived. To the best of the au-
thor’s knowledge these expressions are new.
Monte Carlo techniques have been used to support the theoretical analysis; simulations
and analytical expressions agree well, proving the effectiveness of the developed theory.

In the second part of the chapter the problem of extending the integration time be-
yond one code period is discussed. In particular, for new GNSS signals, the navigation
message can change the polarity of the transmitted signal every code period, essentially
limiting the coherent integration time.
Two different integration strategies are considered:

• signal integration without sign recovery,

• signal integration with sign recovery.

The first strategy consists in removing the dependence on the navigation bits by using
a non-linear function (squaring, absolute value) whereas, in the second one the bits are
estimated and used to extend the coherent integration time.
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7.1 – Signal model

7.1 Signal model

When considering composite GNSS signals with data and pilot components emitted with
a 90-degree phase difference, the useful signal components, yi(t), of Eq. (2.5) can be
modeled as [66, 67]

yi(t) = AieD,i

(
t− τa

0,i

)
cos

(
2π

(
fIF + f i

d,0

)
t + φ0,i

)

+ AieP,i

(
t− τa

0,i

)
sin

(
2π

(
fIF + f i

d,0

)
t + φ0,i

) (7.1)

where eD,i (t) and eP,i (t) are the data and pilot components and the other parameters
correspond to those defined in Chapter 2. In general the data and pilot components,
eD,i (t) and eP,i (t), are given by the product of several terms

eD,i (t) = di(t)sb,i(t)sD,i(t)cD,i(t)

eP,i (t) = sb,i(t)sP,i(t)cP,i(t)
(7.2)

where di(t) is the navigation message, sbi(t) is the signal obtained by periodically re-
peating the sub-carrier, sD,i(t) and sP,i(t) are the secondary codes or synchronization
sequences for the data and pilot channels and cD,i(t) and cP,i(t) are the primary spread-
ing sequences. In the L5, E5a and E5b cases the subcarrier is a rectangular window whose
periodic repetition leads to sbi(t) = 1.
Since the signal in Eq. (7.1) is composed by two terms of the signal power Ci is given by

Ci = A2
i . (7.3)

The digital counterpart of Eq. (7.1) is given by

yi[n] =
√

CieD,i [n− τ0,i] cos
(
2πF i

D,0n + φ0,i

)
+

√
CieP,i [n− τ0,i] sin

(
2πF i

D,0n + φ0,i

)

(7.4)
where τ0,i = τa

0,i/Ts and F i
D,0 =

(
fIF + f i

d,0

)
Ts. As usual, due to the code orthogonality,

the case of a single useful signal can be considered and the final signal model is

r[n] =
√

CeD [n− τ0] cos (2πFD,0n + φ0)

+
√

CeP [n− τ0] sin (2πFD,0n + φ0) + η[n]
(7.5)

where the index i has been dropped for ease of notation.

7.2 Single period acquisition

In the majority of the new composite GNSS signals the primary spreading code is modu-
lated by a secondary code and, in the data channel case, by a navigation message. Those
two modulations can change the polarity of the GNSS signal every primary code period.
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Thus, without special integration strategies, the coherent integration time is limited to
one primary code period. In fact the effect of bit transition over one primary code pe-
riod can be easily managed by using the serial search and the parallel frequency search
techniques discussed in Section 3.2. By sliding the input signal the maximum of the cor-
relation is obtained when a whole primary code is aligned with the local signal replica
and thus the bit transition occurs at the boundary of the input vector, without conse-
quence for the acquisition process. Also the parallel search in the time domain can be
modified, by using zero-padding techniques, in order to deal with the bit transition over
one primary code period [72].
For these reason the acquisition on a single primary code represents the basic element for
the acquisition of composite GNSS signals. In this section different combining strategies,
over a single primary code period, are considered and analyzed.

7.2.1 Non-coherent channel combining
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Figure 7.1. Acquisition scheme for non-coherent channel combining: the data and the
pilot are acquired separately and the correlator outputs are non-coherently combined.

Non-coherent channel combining was originally proposed in [17] and consists of cor-
relating separately the input signal with the data and pilot local replicas. The correlator
outputs are then squared and non-coherently summed. A scheme for the non-coherent
combining strategy is depicted in Figure 7.1.
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As for the single channel acquisition, the correlator outputs can be written as

YD,I(τ,FD) =
√

C

2
dD

sin (πNδF )
πNδF

R(δτ) cos(δφD) + ηD,I

YD,Q(τ,FD) =
√

C

2
dD

sin (πNδF )
πNδF

R(δτ) sin(δφD) + ηD,Q

YP,I(τ,FD) =
√

C

2
dP

sin (πNδF )
πNδF

R(δτ) cos(δφP ) + ηP,I

YP,Q(τ,FD) =
√

C

2
dP

sin (πNδF )
πNδF

R(δτ) sin(δφP ) + ηP,Q

(7.6)

where dD and dP are the signs of the data and pilot components. It has to be noted that
data and pilot terms in Eq. (7.6) are characterized by a different phase difference, δφD

and δφP respectively. This is due to the fact that pilot and data channels are transmitted
with a phase difference of 90 degrees and thus, it can be assumed that

δφP = δφD +
π

2
. (7.7)

ηD,I , ηD,Q, ηP,I and ηP,Q are four independent zero mean Gaussian random variables
with variance given by Eq. (3.23):

σ2
n =

σ2
IF

2N
.

The independence between components from different channels can be proven by ex-
ploiting the orthogonality properties of the primary spreading codes as reported in Ap-
pendix E.
The components from Eq. (7.6) are combined to form the decision statistic:

S(τ,FD) = Y 2
D,I(τ,FD) + Y 2

D,Q(τ,FD) + Y 2
P,I(τ,FD) + Y 2

P,Q(τ,FD) (7.8)

In this case S(τ,FD) is a χ2 random variable with four degrees of freedoms. When the
received and the local signals are aligned, with respect to the delay and the Doppler
frequency, S(τ,FD) is non-central with a non-centrality parameter equal to 2λ with

λ =
C

4
sin2 (πδF )

(πδF )2
R2(δτ) ≈ C

4
=

A2

4
. (7.9)

Under H0, S(τ,FD) can be assumed to be a central χ2 random variable.
From these considerations it is possible to evaluate the probability of false alarm and
detection in the case of non-coherent combining as

Pnc
fa (β) = exp

{
− β

2σ2
n

}(
1 +

β

2σ2
n

)
(7.10)

Pnc
d (β) = Q2

(√
2λ

σn
,

√
β

σn

)
≈ Q2

(
A√
2σn

,

√
β

σn

)
. (7.11)
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7.2.2 Coherent channel combining with sign recovery
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Figure 7.2. Acquisition scheme for coherent channel combining with sign recovery: data
and pilot spreading sequences are combined to generate two equivalent codes. The maxi-
mum of the correlations with the two equivalent codes is used as decision variable.

Coherent channel combining with sign recovery has been considered in [71] and fur-
ther analyzed in [19]. However in [71] only the acquisition principle is described without
any statistical characterization of the combining method. In [19] it is shown that coherent
channel combining is a near-optimal implementation of the likelihood ratio test. More-
over [19] analyzes the algorithm by simulation, showing that coherent channel combin-
ing leads to performance similar to the one of the optimal detector for a wide range of
C/N0. Moreover, it can be easily shown [44, 60] that coherent channel combining is the
optimal joint estimator for the code delay, Doppler shift and relative sign between data
and pilot channels.
Coherent channel combining is based on the fact that, if the sign between data and pilot
were known, all the useful signal power could be recovered by employing the correct
composite local code:

c̃[n] =

{
cD[n] + jcP [n]
cD[n]− jcP [n].

(7.12)

In Eq. (7.12) it has been assumed that sb[n] = 1 and the navigation message, d[n], and the
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7.2 – Single period acquisition

secondary codes, sD[n] and sP [n] are constant over a primary code period.
Due to the navigation message and the secondary codes, the relative sign between the
data and the pilot channel is not known at the receiver and thus has to be estimated. In
coherent channel combining the relative sign is estimated by correlating the input signal
with both composite local codes (7.12): the sign estimate is the one that leads to the
highest correlation. Thus the decision variable is given by

S (τ,FD) = max
{∣∣Y + (τ,FD)

∣∣2 ,
∣∣Y − (τ,FD)

∣∣2
}

(7.13)

where

Y + (τ,FD) = YD (τ,FD) + jYP (τ,FD)

= [YD,I (τ,FD) + jYD,Q (τ,FD)] + j [YP,I (τ,FD) + jYP,Q (τ,FD)]

Y − (τ,FD) = YD (τ,FD)− jYP (τ,FD)

= [YD,I (τ,FD) + jYD,Q (τ,FD)]− j [YP,I (τ,FD) + jYP,Q (τ,FD)]

(7.14)

Eq. (7.13) states that the decision variable S (τ,FD) is given by the maximum between
the square modulus of the two correlations with the equivalent codes (7.12). Due to the
linearity of the correlation process, the correlations Y + (τ,FD) and Y − (τ,FD) can be ex-
pressed as a linear combination of the correlations with the data and pilot local codes as
stated in Eq. (7.14). In this way the decision variable can be evaluated by computing the
four components YD,I (τ,FD), YD,Q (τ,FD), YP,I (τ,FD) and YP,Q (τ,FD) thus requiring the
same computation load required by non-coherent channel combining. In Figure 7.2 the
acquisition scheme for the coherent channel combining is depicted.
The false alarm and detection probabilities for the coherent combining can be easily de-
termined by exploiting the following property:

P (S (τ,FD) > β) = P
(
max

{∣∣Y + (τ,FD)
∣∣2 ,

∣∣Y − (τ,FD)
∣∣2

}
> β

)

= 1− P
(
max

{∣∣Y + (τ,FD)
∣∣2 ,

∣∣Y − (τ,FD)
∣∣2

}
< β

)

= 1− P
(∣∣Y + (τ,FD)

∣∣2 < β,
∣∣Y − (τ,FD)

∣∣2 < β
)

= 1− P
(∣∣Y + (τ,FD)

∣∣2 < β
)

P
(∣∣Y − (τ,FD)

∣∣2 < β
)

.

(7.15)

The last line in Eq. (7.15) has been obtained by exploiting the independence between
|Y + (τ,FD) |2 and |Y − (τ,FD) |2 that derives from the independence of Y + (τ,FD) and
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Y − (τ,FD). In fact one has

E
{
Y + (τ,FD)

[
Y − (τ,FD)

]∗} =E {[YD (τ,FD) + jYP (τ,FD)] [YD (τ,FD)− jYP (τ,FD)]∗}
=E {[YD (τ,FD) + jYP (τ,FD)] [Y ∗

D (τ,FD) + jY ∗
P (τ,FD)]}

=E
{
|YD (τ,FD)|2 − |YP (τ,FD)|2

}

+ jE {YD (τ,FD) Y ∗
P (τ,FD)}+ jE {Y ∗

D (τ,FD) YP (τ,FD)}
= 0

(7.16)

In Eq. (7.16), the fact that E
{
|YD (τ,FD)|2

}
= E

{
|YP (τ,FD)|2

}
has been exploited, since

data and pilot channels have the same power and YD (τ,FD) and Y ∗
P (τ,FD) are zero mean

independent random variables. The independence of YD (τ,FD) and Y ∗
P (τ,FD) derives

from the orthogonality of the data and pilot codes. Eq. (7.16) proves that Y + (τ,FD) and
Y − (τ,FD) are uncorrelated, which also implies their independence, since both Y + (τ,FD)
and Y − (τ,FD) are Gaussian random variables [58]. |Y + (τ,FD) |2 and |Y − (τ,FD) |2 are
χ2 distributed with two degrees of freedom and, when the signal is absent, or the local
replicas are not aligned with the received signal, |Y + (τ,FD) |2 and |Y − (τ,FD) |2 are both
central. Since the equivalent codes (7.12) have twice the power of the single pilot and
data codes, the variance of Y + (τ,FD) and Y − (τ,FD) is 2σ2

n and inserting Eq. (3.26) into
Eq. (7.15) yields the false alarm probability

P ch
fa(β) = 1−

[
1− exp

{
− β

4σ2
n

}]2

. (7.17)

It can be noted that the exponential in Eq. (7.17) depends on 4σ2
n instead of 2σ2

n as for
Eqs. (7.10) and (3.26).
When the signal is present and correctly aligned with the local replica, |Y + (τ,FD) |2 and
|Y − (τ,FD) |2 are non-central χ2 random variables, and the respective non-centrality pa-
rameters have to be determined. In particular one can write:

E
[
Y + (τ,FD)

]
= E {[YD,I (τ,FD) + jYD,Q (τ,FD)] + j [YP,I (τ,FD) + jYP,Q (τ,FD)]}

=

{ √
C sin(πNδF )

πδF R(δτ) exp(jδφD) relative data/pilot sign = 1;
0 otherwise.

(7.18)

and similarly,

E
[
Y − (τ,FD)

]
=

{
0 relative data/pilot sign = 1√

C sin(πNδF )
πNδF R(δτ) exp(jδφD) otherwise.

(7.19)
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From these considerations it emerges that the decision variable S (τ,FD), under H1, is
given by the maximum between a central χ2 and a non-central χ2 random variables with
two degrees of freedom. The non-centrality parameter of the non-central χ2 random
variable is given by

C
sin2 (πNδF )

(πNδF )2
R2(δτ) ≈ C = 4λ. (7.20)

Given these premises it is finally possible to express the detection probability as

P ch
d (β) = 1−

[
1− exp

{
− β

4σ2
n

}][
1−Q1

(√
4λ

2σ2
n

,

√
β

2σ2
n

)]
(7.21)

7.2.3 Differentially coherent channel combining
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Figure 7.3. Acquisition scheme for differentially coherent channel combining with bit re-
covery: the correlations with the data and pilot local codes are performed separately and
differentially coherent combined. Some modifications have been introduced to the tradi-
tional differentially coherent combining scheme in order to account for the phase difference
between data and pilot channels.

In traditional differentially coherent combining [10, 12] correlations on two consecu-
tive portions of the incoming signal are evaluated and the decision variable is obtained
by taking the real part of the product of these two correlations. In this way the phase of
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7 – Acquisition of composite GNSS signals

the second correlation is used to compensate the phase of the first one. Moreover, since
the noise terms on the two correlations are independent, a lower noise amplification is
expected, with respect to non-coherent combining [11]. Differential combining is effec-
tive as long as the hypothesis of constant phase on the two subsequent correlations holds;
degradations are expected in presence of a time-varying phase.
When considering composite GNSS signals, data and pilot channels experience the same
transmission channel and thus they are likely affected by the same delay and Doppler
frequency. Moreover their phase is strictly related by Eq. (7.7). In this way the traditional
differentially coherent acquisition scheme can be modified in order to employ the data
and the pilot channel instead of two subsequent portions of the same signal. In Figure 7.3
the acquisition scheme employing differentially coherent channel combining is reported.
The input signal is separately correlated with the data and the pilot local codes, and two
complex correlations are formed, namely

YD (τ,FD) = YD,I (τ,FD) + jYD,Q (τ,FD) ;

YP (τ,FD) = YP,I (τ,FD) + jYP,Q (τ,FD)

Finally the decision variable is obtained as

S (τ,FD) = |Im {YD (τ,FD) Y ∗
P (τ,FD)}| . (7.22)

In Eq. (7.22) the imaginary part of the product YD (τ,FD) Y ∗
P (τ,FD) has been considered

instead of the real part for the traditional differentially coherent acquisition scheme [12].
This modification has been introduced in order to account for the phase difference (7.7)
between the data and pilot channels. Moreover in Eq. (7.22) the absolute value has been
introduced in order to remove the dependence on the product of the navigation message
and secondary codes.
In [12] it is shown that the real part of the product of two independent Gaussian random
variables can be rewritten as the difference of two independent χ2 random variables.
Similarly

Im {YD (τ,FD) Y ∗
P (τ,FD)} = Re {−jYD (τ,FD) Y ∗

P (τ,FD)} = Re {YD (τ,FD) [jYP (τ,FD)]∗}

=
∣∣∣∣
YD (τ,FD) + jYP (τ,FD)

2

∣∣∣∣
2

−
∣∣∣∣
YD (τ,FD)− jYP (τ,FD)

2

∣∣∣∣
2

.

(7.23)

When the useful GNSS signal is absent or not correctly aligned
∣∣∣YD(τ,FD)+jYP (τ,FD)

2

∣∣∣
2

and
∣∣∣YD(τ,FD)−jYP (τ,FD)

2

∣∣∣
2

are two independent central χ2 random variables with two degrees
of freedom and thus Im {YD (τ,FD)Y ∗

P (τ,FD)} is Laplace distributed [12, 56] as

Im {YD (τ,FD) Y ∗
P (τ,FD)} |H0 ∼ Laplace

(
0,

1
σ2

n

)
.
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7.2 – Single period acquisition

It can then be shown that the decision variable Y (τ,FD) = |Im {YD (τ,FD) Y ∗
P (τ,FD)}| is

exponentially distributed under H0. By exploiting these properties it is then possible to
write the probability of false alarm as

P dc
fa(β) = exp

{
− β

σ2
n

}
. (7.24)

When the signal is present, depending on the relative sign between data and pilot chan-

nels, either
∣∣∣YD(τ,FD)+jYP (τ,FD)

2

∣∣∣
2

or
∣∣∣YD(τ,FD)−jYP (τ,FD)

2

∣∣∣
2

is a non-central χ2 random vari-
able with two degrees of freedom and non-centrality parameter equal to λ. In order to
determine the probability density function of the decision statistic under H1, it is possible
to assume that Y (τ,FD) is given by the absolute value of the difference of a non-central
and a central χ2 random variable. In fact, the absolute value in Eq. (7.22) removes the de-
pendence on the relative sign between data and pilot channels making the case in which∣∣∣YD(τ,FD)+jYP (τ,FD)

2

∣∣∣
2

is non-central equivalent to the case in which
∣∣∣YD(τ,FD)−jYP (τ,FD)

2

∣∣∣
2

is non-central. From [56] (Chapter 4.C) the pdf of the difference between a non-central
and a central χ2 random variables with two degrees of freedom is given by

pd(x) =
1

2σ2
n

exp
{

2x− λ

2σ2
n

}
Q1

(√
λ

σ2
n

, max

(
0,

√
4x

σ2
n

))
(7.25)

Finally, by applying the modulus transformation to the difference of non-central and
central random variables, it is possible to determine the pdf of |Im {YD (τ,FD) Y ∗

P (τ,FD)}|
as

pS(s) =
1

2σ2
n

exp
{
−2s + λ

2σ2
n

}
+

1
2σ2

n

exp
{

2s− λ

2σ2
n

}
Q1

(√
λ

σ2
n

,

√
4s

σ2
n

)
(s > 0). (7.26)

The probability of detection is obtained by integrating by parts Eq. (7.26):

P dc
d (β) =

1
2

exp
{
−2β + λ

2σ2
n

}
− 1

2
exp

{
2β − λ

2σ2
n

}
Q1

(√
λ

σ2
n

,

√
4β

σ2
n

)
+ Q1

(√
2λ

σ2
n

,

√
2β

σ2
n

)

(7.27)

To the best of our knowledge expression (7.27) is new.

7.2.4 Simulation analysis and comparison

In previous sections three different schemes for the acquisition of composite GNSS sig-
nals have been analyzed by characterizing the respective probabilities of detection and
false alarm. The results are summarized in Table 7.1.
In this section the different acquisition schemes are compared in terms of ROCs and the
performance of each strategy is analyzed by simulation.
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7 – Acquisition of composite GNSS signals

Table 7.1. False alarm and detection probabilities for different acquisition schemes. The
symbol “¥” denotes the original contributions of this chapter.

Scheme Pfa(β) Pd(β)

Single chan-
nel acquisi-
tion

P sc
fa(β) = exp

{
− β

2σ2
n

}
P sc

d (β) = Q1

(√
λ

σ2
n

,

√
β

σ2
n

)

Non-
coherent
combining

Pnc
fa (β) =

= exp
{
− β

2σ2
n

}(
1 +

β

2σ2
n

) Pnc
d (β) = Q2

(√
2λ

σ2
n

,

√
β

σ2
n

)

Coherent
combining ¥

P ch
fa(β) =

= 1−
[
1− exp

{
− β

4σ2
n

}]2

P ch
d (β) =1−

[
1− exp

{
− β

4σ2
n

}]
·

·
[
1−Q1

(√
2λ

σ2
n

,

√
β

2σ2
n

)]

Differentially
coherent
combining ¥

P dc
fa(β) = exp

{
− β

σ2
n

}
P dc

d (β) =
1
2

exp
{
−2β + λ

2σ2
n

}

− 1
2

exp
{

2β − λ

2σ2
n

}
Q1

(√
λ

σ2
n

,

√
4β

σ2
n

)

+ Q1

(√
2λ

σ2
n

,

√
2β

σ2
n

)

7.2.5 Simulation results

Table 7.2. Simulation parameters.

Parameter Value
Sampling frequency, fs 40.92 MHz

BIF = fs/2 20.46 MHz
Intermediate frequency, fIF = fs/4 10.23 MHz

Code length N 10230 chip
Pre-detection integration time 1 ms

Samples/chip 4

The analytical results of the previous sections have been tested by simulation and
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particular false alarm and detection probabilities for the different strategies have been
evaluated by means of Monte Carlo simulations. For all simulations the parameters re-
ported in Table 7.2 have been adopted. The parameters of Table 7.2 reflect the code rate
and the bandwidth that will be adopted for GPS L5 and Galileo E5a and E5b signals. The
effect of the frontend filter has been neglected and the composite signal has been simu-
lated as an ideal QPSK modulation, using the spreading codes from [66].
Simulation results are reported in Figure 7.4. In particular the ROC curves for the differ-
ent acquisition methods have been estimated by means of Monte Carlo simulations and
compared with the theoretical models provided in previous sections: the false alarm and
detection probabilities evaluated by Monte Carlo simulations always overlap with the
theoretical curves highlighting the validity of the models provided in previous sections.
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Figure 7.4. Theoretical and simulated ROCs for the different acquisition methods.

7.2.6 ROC comparison

The three acquisition methods analyzed in previous sections have been compared in
terms of the ROC curves; ROCs for the single channel acquisition have been added as
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a comparison term. As expected, and as already reported [17], the single channel acqui-
sition always leads to the worst performance. This is due to the fact that only half of the
available signal power is exploited. The advantage of the single channel acquisition is the
relative simplicity of the algorithm, which requires only half of the computational load
needed by the other methods.
In Figures 7.5 and 7.6 the ROC comparison is reported for C/N0 of 40,35 and 30 dB-Hz.
The plots are in log-log scale in order to enhance the differences among the different al-
gorithms. In all considered cases, coherent combining outperforms the other strategies
although all the methods that combine both channels tend to converge to the same curve
for low C/N0. Differentially coherent and non-coherent combining show similar perfor-
mance, although the non-coherent combining algorithm works slightly better for high
values of false alarm probability whereas the differentially coherent is preferable for low
Pfa. The cross-over point between the differentially coherent and the non-coherent ROC
is located around a value of false alarm probability of 10−2. In Figure 7.7 the detection
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Figure 7.5. ROC comparison among the different acquisition strategies. C/N0 = 40 dB-Hz.
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Figure 7.6. ROC comparison among the different acquisition strategies. C/N0 =
35 and C/N0 = 30 dB-Hz .

probabilities for the different acquisition techniques have been plotted for different val-
ues of C/N0 and for a fixed false alarm rate Pfa = 10−3. From this plot it emerges clearly
that coherent channel combining outperforms the other acquisition strategies, since, for
a given C/N0, it yields the highest detection probability. In this case, since the probabil-
ity of false alarm is lower than 10−2, differentially coherent combining outperforms the
non-coherent channel combining strategy.
From this analysis it emerges that, when acquisition on a single code period is considered,
coherent channel combining with bit recovery is the most effective acquisition strategy.
For low C/N0, the sign estimation is no longer reliable and coherent channel combining
tends to have the same performance as non-coherent combining.
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Figure 7.7. Detection probability vs. C/N0 for a fixed false alarm rate, Pfa = 10−3.

7.3 Multiple code period integration

In order to increase the acquisition performance, different instances of the decision vari-
able S(τ,FD) can be combined in order to reduce the noise impact. However, since the
sign of the navigation message and of the secondary code can change each primary code
period, an adequate strategy to deal with this problem has to be adopted. In the following
the notation

Sk(τ,FD)

will indicate the decision variable evaluated on kth input signal portion and

S(τ,FD) = F [YD,1 (τ,FD) ,YD,2 (τ,FD) ,...,YD,K (τ,FD) ,YP,1 (τ,FD) ,YP,2 (τ,FD) ,...,YP,K (τ,FD)]

will indicate the final decision variable obtained by opportunely combining K indepen-
dent instances of the complex correlations of the data and pilot channels.
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7.3 – Multiple code period integration

7.3.1 Signal integration without sign recovery

This section is devoted to the analysis of different acquisition strategies that employ a
non-linear function in order to remove the dependence of the variables YD,k(τ,FD) and
YP,k(τ,FD) from the navigation message and the secondary codes. In particular a non-
linear function is used to remove the dependence from the signs dD,k and dP,k in Eq.
(7.6), where the index k has been added to denote time dependence. The principle of
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Figure 7.8. Principle of signal integration without sign recovery. A phase/sign indepen-
dent random variable Sk (τ,FD) is produced for each primary code period. These random
variables are then directly summed producing the final decision statistic S (τ,FD).

this kind of signal integration is reported in Figure 7.8. A sign independent random vari-
able Sk (τ,FD) is produced for each primary code period and the final decision random
variable is given by

S (τ,FD) =
K∑

i=1

Sk (τ,FD) . (7.28)
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7.3.2 Non-coherent integration

By applying the non-coherent channel combining strategy to Eq. (7.28) the final decision
random variable assumes the following expression:

S (τ,FD) =
K∑

k=1

Sk (τ,FD) =
K∑

k=1

|YD,k (τ,FD)|2 +
K∑

k=1

|YP,k (τ,FD)|2 . (7.29)

The expressions of the false alarm and detection probabilities for Eq. (7.29) are well
known from the literature [17] and are

Pfa(β,K) = exp
{
− β

2σ2
n

} 2K−1∑

i=0

1
i!

(
β

2σ2
n

)i

(7.30)

Pd(β,K) = Q2K

(√
2Kλ

σ2
n

;

√
β

σ2
n

)
(7.31)

where λ is the non-centrality parameter (7.9).

7.3.3 Semi-coherent integration

Semi-coherent integration was considered at first by [71] that only proposed the method,
without providing a rigorous analysis of its performance. In this section the semi-coherent
integration technique is further detailed and a closed-form formula for the false alarm
probability is provided. A technique, based on the numerical inversion of the character-
istic function (chf), is also provided for the evaluation of the detection probability.
In the semi-coherent integration strategy the decision variables on the single code period
are obtained as

Sk (τ,FD) = max
{∣∣Y +

k (τ,FD)
∣∣2 ,

∣∣Y −
k (τ,FD)

∣∣2
}

i.e. the decision variables obtained by employing coherent channel combining with sign
recovery, as discussed in Section 7.2.2. The final decision variable for the semi-coherent
integration strategy is given by

S (τ,FD) =
K∑

k=1

Sk (τ,FD) =
K∑

k=1

max
{∣∣Y +

k (τ,FD)
∣∣2 ,

∣∣Y −
k (τ,FD)

∣∣2
}

. (7.32)

In order to determine the expression for the false alarm and detection probabilities for
a generic K the following approach can be adopted. At first the chfs, Chfa(t,1) and
Chd(t,1), for the case K = 1 can be evaluated from Eqs. (7.17) and (7.21). The chfs for a
generic K are then obtained by raising to the power K Chfa(t,1) and Chd(t,1):

Chfa(t,K) = ChK
fa(t,1)

Chd(t,K) = ChK
d (t,1)

(7.33)
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Property (7.33) is a direct consequence of the independence of the single period decision
variables Sk (τ,FD).
The pdfs, and consequently the detection and false alarm probabilities, can be finally
obtained by inverting the chfs (7.33).
By deriving Eq. (7.17), the pdf of the decision variable under H0 and for K = 1 is given
by

ffa(x,1) = − d

dx
Pfa(x,1)

= 2
[

1
4σ2

n

exp
(
− x

4σ2
n

)]
−

[
1

2σ2
n

exp
(
− x

2σ2
n

)] (7.34)

Eq. (7.34) can be interpreted as the difference of two weighted exponential distributions
and thus the chf of Sk (τ,FD) under H0 is given by the following combination of expo-
nential chfs [44]:

Chfa(t,1) =
2

(1− j4σ2
nt)

− 1
(1− j2σ2

nt)
=

1
(1− j4σ2

nt)(1− j2σ2
nt)

(7.35)

Thus the chf of S (τ,FD) is given by:

Chfa(t,K) =
1

(1− j4σ2
nt)K(1− j2σ2

nt)K
=

K∑

i=1

[
aK,i

(1− j4σ2
nt)i

− bK,i

(1− j2σ2
nt)i

]
(7.36)

where the second part of Eq. (7.36) is the partial fraction expansion of 1
(1−j4σ2

nt)K(1−j2σ2
nt)K .

{aK,i}K
i=1 and {bK,i}K

i=1 are the coefficients of the partial fraction expansion of Eq. (7.36).
A recursive algorithm for the determination of the coefficients {aK,i}K

i=1 and {bK,i}K
i=1 is

reported in Appendix F.
The chf (7.36) can be interpreted as the linear combination of chfs of central χ2 random
variables with different degrees of freedom. Thus the probability density function of
S (τ,FD) is a linear combination of central χ2 probability density functions:

ffa(x,K) =
K∑

i=1

[
aK,i

(
1

4σ2
n

)i xi

(i− 1)!
exp

{
− x

4σ2
n

}
− bK,i

(
1

2σ2
n

)i xi

(i− 1)!
exp

{
− x

2σ2
n

}]

=
K∑

i=1

(
1

4σ2
n

)i xi

(i− 1)!
exp

{
− x

4σ2
n

}[
aK,i − bK,i2i exp

{
− x

4σ2
n

}]

(7.37)

From Eq. (7.37) it is finally possible to evaluate the false alarm probability related to
S (τ,FD) under H0 as

Pfa(β,K) =
∫ +∞

β
ffa(x,K)dx

= exp
{
− β

4σ2

} K∑

i=1

i−1∑

m=0

(
1

4σ2
n

)m 1
m!

[
aK,i − bK,i2m exp

{
− x

4σ2
n

}]
.

(7.38)
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Eq. (7.38) can be easily inverted by using a Newton-Raphson based algorithm. In this
way, the decision threshold β can be determined. A first approximated solution for the
threshold β can be obtained by using a normal approximation for S (τ,FD). In particular,
from Eqs. (7.32) and (7.34), it is possible to evaluate the mean and the variance of S (τ,FD)
under H0:

E [S (τ,FD) |H0] = 6Kσ2
n;

Var {S (τ,FD) |H0} = 10Kσ4
n.

(7.39)

and thus

Pfa(β,K) ≈ 1
2

erfc

(
β − 6Kσ2

n√
2 · 10Kσ4

n

)
for K À 1 (7.40)

where erfc(·) is the complementary error function [45].
Under H1 the pdf of Sk (τ,FD) assumes the following expression:

fd(x,1) = − d

dx
Pd(x,1)

=
1

4σ2
n

exp
{
− x

4σ2
n

}
+

1
4σ2

n

exp
{
−x + 4λ

4σ2
n

}
I0

(√
4λx

2σ2
n

)

− exp
{
− 2λ

4σ2
n

}
1

4σ2
n

exp
{
−x + λ

2σ2
n

}
I0

(√
λx

σ2
n

)

− 1
4σ2

n

exp
{
− x

4σ2
n

}
Q1

(√
4λ

2σ2
n

,

√
x

2σ2
n

)

(7.41)

The evaluation of Chd(t,1) can be obtained by computing the Fourier transform of Eq.
(7.41) that, after a significant effort of calculus, leads to

Chd(t,1) =
1

1− j4σ2
nt

[
exp

{
j4λt

1− j4σ2
nt

}
+ exp

{
− λ

2σ2
n

}
exp

{
jλt

1− j2σ2
nt

}]

− 1
1− j2σ2

nt
exp

{
− λ

2σ2
n

}
exp

{
jλt

1− j2σ2
nt

} (7.42)

It can be noted that Eq. (7.42) degenerates to Eq. (7.35) when the non-centrality parameter
λ is equal to 0. By using Eq. (7.33), the chf for S (τ,FD) under H1 assumes the following
expression:

Chd(t,K) =
[

1
1− j4σ2

nt

[
exp

{
j4λt

1− j4σ2
nt

}
+ exp

{
− λ

2σ2
n

}
exp

{
jλt

1− j2σ2
nt

}]

− 1
1− j2σ2

nt
exp

{
− λ

2σ2
n

}
exp

{
jλt

1− j2σ2
nt

}]K (7.43)

Although Eq. (7.43) could be eventually inverted by using a partial fraction expansion,
the resulting process is complex and a different approach should be taken. A solution is
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represented by numerical algorithms for the inversion of the characteristic function [73].
In this way, by using efficient FFT algorithms [73], the probability of detection Pd(β,K)
can be easily evaluated.

7.3.4 Differentially coherent integration

In the differentially coherent acquisition scheme the decision variable on a single code
period is given by:

Sk (τ,FD) = |Im {YD,k (τ,FD) [YP,k (τ,FD)]∗}| . (7.44)

The acquisition over several periods can be performed by directly summing K indepen-
dent realizations of S(FD,τ):

S (τ,FD) =
K−1∑

k=0

Sk (τ,FD) =
K−1∑

k=0

|Im {YD,k (τ,FD) [YP,k (τ,FD)]∗}| (7.45)

As proven in Section 7.2.3 Sk (τ,FD) are exponentially distributed and thus S (τ,FD) is
χ2 distributed with 2K degrees of freedom. Thus the false alarm probability for the non-
coherent differential combining assumes the following expression:

Pfa (β,K) = exp
{
− β

σ2
n

} K−1∑

i=0

1
i!

(
β

σ2
n

)i

. (7.46)

The detection probability for a generic K does not admit a easy expression, but it can be
evaluated by using a numerical method for the inversion of the characteristic function.
In particular, it has been proven in Section 7.2.3 that the detection probability for K = 1
is given by

Pd(β,1) =
1
2

exp
{
−2β + λ

2σ2
n

}
− 1

2
exp

{
2β − λ

2σ2
n

}
Q1

(√
λ

σ2
n

,

√
4β

σ2
n

)
+ Q1

(√
2λ

σ2
n

,

√
2β

σ2
n

)

(7.47)

The corresponding chf is obtained by deriving Eq. (7.47) and by evaluating its Fourier
transform. This computation leads to

Chd(t,1) =
exp

{
− λ

2σ2
n

}

1 + jσ4t2

[
jσ2t + exp

{
λ

2σ2

}
exp

{
jλt

1− jσ2
nt

}]
(7.48)

It is noted that, for λ = 0, Eq. (7.48) degenerates to the chf of a exponential random
variable [44]. The chf for a generic K is obtained by raising to the power K Eq. (7.48):

Chd(t,1) =
exp

{
−Kλ

2σ2
n

}

(1 + jσ4t2)K

[
jσ2t + exp

{
λ

2σ2

}
exp

{
jλt

1− jσ2
nt

}]K

(7.49)
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The detection probability can be then evaluated by numerically inverting [73] the chf
(7.49). It has to be remarked that the pdf corresponding to Eq. (7.47) is not, in general,
equal to zero initially. This corresponds to a discontinuity that would be hardly managed
by the FFT based inversion algorithm. The problem can be solved by considering the
regularized chf

C̃hd(t,K) = Chd(t,K) + Chd(−t,K). (7.50)

The Fourier transform of Eq. (7.50) is given by

f̃d(x,K) = fd(x,K) + fd(−x,K) (7.51)

that is the sum of the pdf fd(x,K) and of its symmetric fd(−x,K). f̃d(x,K) does not
present discontinuities in the origin and thus it can be easily evaluated by means of
FFT based techniques. Moreover fd(x,K) and fd(−x,K) have disjoint supports and thus
fd(x,K) can be easily recovered from f̃d(x,K).

7.3.5 Signal integration with sign recovery

In previous sections the total integration time has been extended by removing the sign
dependence by a non-linear operation such as squaring. This strategy is not, in gen-
eral, optimal [19] since the non-linear operation usually amplifies the noise components.
In [19] optimal and near-optimal detectors for composite GNSS signals have been stud-
ied, showing that a near-optimal detection strategy consists in estimating the relative
signs between data and pilot channel and among different consecutive portions of the
incoming signals. This kind of strategy is further analyzed in this section considering
two different methodologies. The first one, denoted as “exhaustive bit search” tests all
possible sign combinations without considering the additional information provided by
the secondary code. The second one, denoted as “secondary code partial correlation”,
exploits the constraints imposed by the secondary code on the possible bit combinations.
Those two strategies are better analyzed in the following paragraphs.

7.3.6 Exhaustive bit search

In order to increase the coherent integration time to K ms, it is possible to use the follow-
ing decision statistic:

S (τ,FD) = max
DK

∣∣∣∣∣
K∑

k=1

dD,kYD,k (τ,FD) + jdP,kYP,k (τ,FD)

∣∣∣∣∣

2

(7.52)

where
DK = {dD,k,dP,k}K−1

k=0 (7.53)
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is the set of the possible signs of the data and pilot components. YD,k (τ,FD) and YP,k (τ,FD)
are the correlations over the kth input signal period with the data and the pilot local repli-
cas defined as

YD,k (τ,FD) = YD,I,k (τ,FD) + jYD,Q,k (τ,FD)

YP,k (τ,FD) = YP,I,k (τ,FD) + jYP,Q,k (τ,FD)
(7.54)

where the components in Eq. (7.54) have been defined in Eq. (7.6).
If there were no secondary codes all the sign sequences would be possible and the ex-
haustive bit search would correspond to the Maximum Likelihood estimator for the code
delay, the Doppler shift and the bit sequence (7.53). However, since secondary codes are
foreseen for both the data and the pilot channel the exhaustive search algorithm results
suboptimal since it does not account for the constraints imposed by the secondary codes.
This strategy is analyzed in order to provide a comparison for the secondary code based
partial correlations. Moreover, for low values of K, secondary codes do not introduce any
constraints on possible bit combinations; in those cases the exhaustive search is the opti-
mal estimator for the code delay, the Doppler frequency and the bit combination (7.53).
In [19] it is shown that the decision statistics (7.52) is a near-optimum detector for estab-
lishing the signal presence, estimating the code delay and the Doppler frequency. The
sub-optimality is given by the fact that Eq. (7.52) also provides the set

D̂K = arg max
DK

∣∣∣∣∣
K∑

k=1

dD,kYD,k (τ,FD) + jdP,kYP,k (τ,FD)

∣∣∣∣∣

2

that is an estimation of the sequence of bits transmitted by the GNSS satellites.
In order to evaluate Eq. (7.52) all the possible sign combinations DK have to be evaluated
and tested. It is possible to construct, for each code delay and Doppler frequency the
following vectors:

D (τ,FD) =




YD,1 (τ,FD)
YD,2 (τ,FD)

...
YD,K (τ,FD)




; P (τ,FD) =




YP,1 (τ,FD)
YP,2 (τ,FD)

...
YP,K (τ,FD)




R (τ,FD) =

[
D (τ,FD)
jP (τ,FD)

]
(7.55)

that are the vectors containing the correlations of K code periods of the received signal
with the local data and pilot codes. For each bit combination it is also possible to define
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the column vector

di,K =




dD,1

dD,2

...
dD,K

dP,1

dP,2

...
dP,K




(7.56)

that accounts for the different signs that the data and the pilot components can assume.
The index i has been added in order to enumerate all the possible sign combinations:
each value of i univocally defines a sign combination. In this case i = 0,1, . . . 22K−1 − 1
since half of the possible combinations is discarded because obtained by reversing the
sign of the components of another vector di,K . Vectors only differing by the sign lead to
the same decision variable and thus half of the bit combinations are discharged leading
to 22K−1 different dK

i .
By using Eqs. (7.56) and (7.55), (7.52) can be written as

S (τ,FD) = max
i

∣∣dT
i,KR (τ,FD)

∣∣2 (7.57)

where (·)T denotes transposition. For each set of signs di,K a random variable

Si (τ,FD) = dT
i,KR (τ,FD)

is obtained and thus

S (τ,FD) = max
i
|Si (τ,FD)|2 (7.58)

Since each Si (τ,FD) is a linear combination of the Gaussian random variables contained
in the vector R(FD,τ), they are still Gaussian random variables that are however strongly
correlated. In fact the vectors containing all the different Si (τ,FD) can be obtained as

V (FD,τ) =




dT
0,K

dT
1,K
...

dT
2K−1−1,K




R (τ,FD) = M ·R (τ,FD) (7.59)

and thus

E
[
V (FD,τ)V H(FD,τ)

]
= ME

[
R (τ,FD) R (τ,FD)H

]
MH = σ2

nMMH (7.60)
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where σ2
n is the variance of the components of R (τ,FD) that have been assumed indepen-

dent. From Eq. (7.60) clearly emerges the correlation among the components of V (FD,τ).
This correlation prevents the evaluation of an analytical expression for the false alarm
and detection probabilities relative to Eq. (7.52). These probabilities will be analyzed by
simulations in Section 7.3.9.

7.3.7 Secondary code partial correlation

In the previous section the decision statistic is formed by taking the maximum of a set of
random variables obtained by considering all possible sign combinations occurring when
considering K consecutive signal periods. However both data and pilot components of
the composite GNSS signal can be modulated by a secondary code. The secondary code
limits the number of possible sign combinations reducing the computational load re-
quired for the evaluation of the decision statistic.
In [19] the case relative to the GPS L5 modulation is considered and in particular the
problem of optimally combining the data and pilot components is addressed. [19] con-
siders the case of K = M ·Nd where M is an integer greater than zero and Nd = 10 is the
length of the secondary code of data channel expressed in terms of primary code periods.
In this way the tiered code, obtained by combining the primary and the secondary codes,
of the data channel is fully acquired whereas the pilot signal is processed by means of
partial correlation. In this context we consider the case of partial correlations performed
on both data and pilot codes.

7.3.8 Number of bit combinations with secondary code constraints

As already pointed out, the secondary codes reduce the number of possible bit combi-
nations. The number of such combinations has to be kept as low as possible in order
to

• reduce the computational load,

• improve the system performance since, when only a few candidates are possible,
there are fewer opportunities to have a false alarm.

When both data and pilot channels are employed, the input block data, of duration K

ms, can assume one of the different positions shown in Figure 7.9. Moreover the data
secondary codes can assume any sign value, because of the navigation message. Let Nd

be the length of the data secondary code, Np the length of the pilot secondary code and
H = Np

Nd
. When K is lower or equal to Nd it is possible to treat separately each segment

in which the pilot code is divided by the data code. For each segment of secondary code,
there are two possible cases depending if the input signal block crosses or not the data
secondary code boundary. In the first case there are 2 (Nd −K + 1) possible combinations
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Np ms …..

Nd ms Nd ms Nd ms Nd msNd ms …..…..

K ms

data

pilot

Figure 7.9. Possible positions of the input signal block with respect to the data
and pilot secondary code.

since the input data block can assume Nd −K + 1 different delays without crossing the
boundary of the data secondary code. The factor 2 is due to the fact that the sign of the
data secondary code can be either positive or negative. When the input data block crosses
the data secondary code boundary there are 4(K − 1) possible combinations: the factor 4
is due to the different signs that the two consecutive secondary codes of the data channel
can assume with respect to the pilot channel. K − 1 is the number of delays that makes
the input signal block cross the secondary code boundary. In this way, when considering
both data and pilot channel and K ≤ Nd there are

2H(Nd + K − 1) (7.61)

possible combinations.
When only the data channel is considered only

Nd + K − 1 (7.62)

combinations have to be tested. In Table 7.3 the number of possible bit combinations to be
tested with and without the constraints imposed by the secondary codes are compared.
In order to have a fair comparison with the pilot and data case, the integration time for
the case of the data channel alone has been doubled. It can be noted that, when the
data channel alone is considered, the number of bit combinations is much lower than
in the case in which both channels are considered. It has also to be noted that formulas
(7.61) and (7.62) do not account for possible repetitions. In fact some combinations of
data and pilot secondary codes can lead to the same bit sequence. For this reason, when
K = 2 the number of possible sign combinations foreseen by Eqs. (7.61) and (7.62) is
greater than the number of all possible combinations. However, as K increases, due to
the pseudo-random nature of the secondary codes, the number of repetitions decreases
and Eqs. (7.61) and (7.62) become more and more accurate.
From formulas (7.61) and (7.62), it clearly emerges that the search over a single channel
results is more convenient than the dual channel combining. The drawback is seen by
the fact that the integration time K has to be doubled since half of the useful power is
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Table 7.3. Comparison of the number of possible bit combinations to be tested with and
without the constrains imposed by the secondary codes. In order to have a fair comparison
with the other two cases the integration time for the data channel alone has been doubled.

K Data + Pilot channels Data channel Exhaustive search
2 210 23 8
3 220 25 32
4 230 27 128
5 240 29 512
6 250 31 2048
7 260 33 8192
8 270 35 32768
9 280 37 131072

discarded. In the context of this thesis only the partial correlation over the data channel
is considered. As for the exhaustive bit search the false alarm and detection probability
cannot be easily derived and will be studied by simulations in the next section.

7.3.9 Simulation results

The integration strategies described in previous sections have been analyzed by means of
Monte Carlo simulations. The simulations parameters are reported in Table 7.4 and cor-
respond to those already used for the analysis of the acquisition on a single code period.
In Figures 7.10 and 7.11 the case of K = 3 is considered. As expected the exhaustive bit

Table 7.4. Simulation parameters.

Parameter Value
Sampling frequency, fs 40.92 MHz

BIF = fs/2 20.46 MHz
Intermediate frequency, fi,E5 = fs/4 10.23 MHz

Code length N 10230 chip
Integration time K ms
Samples/chip 4

search and the secondary code partial correlation strategies outperform the other tech-
niques. This gain however results in an additional computational load, required by the
search for the different bit combinations and by the reduced Doppler bin size. The sec-
ondary code partial correlation strategy has been implemented considering six periods
of the data channel and ignoring the pilot channel. This choice, as already pointed out in
Section 7.3.7, limits the number of bit combinations, reducing the search space dimension
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Figure 7.10. ROC comparison among different acquisition strategies. C/N0 = 30 dB-Hz, K = 3.

and providing a better immunity against noise. For this reason the secondary code partial
correlation strategy outperforms the exhaustive bit search acquisition that also requires a
heavier computational load.
The non-coherent, the semi-coherent and the differentially coherent integrations tech-
niques require similar computational loads. Among these strategies the semi-coherent
leads to the best performance. However, as the C/N0 decreases, the difference between
non-coherent and semi-coherent integrations tends to disappear. This is due to the fact
that, for low C/N0, it is not possible to effectively recover the relative sign between data
and pilot channels. Further investigations are required for establishing if non-coherent
integration is preferable to semi-coherent integration for very low C/N0. In Figures 7.12
and 7.13 the case of K = 5 has been considered. The results are similar to those found for
K = 3. The secondary code partial correlation strategy gives the best results in terms of
ROC. Without the secondary code constraint, the number of bit combinations increases
exponentially with respect to K. When the secondary code is considered the number
of possible bit combinations grows linearly with K. Thus the performance gain of the
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Figure 7.11. ROC comparison among different acquisition strategies. C/N0 = 35 dB-Hz, K = 3.

secondary code partial correlation with respect to the exhaustive bit search acquisition
increases as K increases. This fact emerges clearly by comparing Figures 7.10 and 7.11
with Figures 7.12 and 7.13. In Figures 7.14, 7.15 and 7.16 the case of K = 10 is considered.
The exhaustive bit search and the secondary code partial correlation strategies have not
been considered because of their computational load. The simulation results agree with
the previous analysis: non-coherent and semi-coherent integrations are preferable to the
other techniques and semi-coherent integration outperforms the traditional non-coherent
integration for high C/N0.
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Figure 7.12. ROC comparison among different acquisition strategies. C/N0 = 30 dB-Hz, K = 5.
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Figure 7.13. ROC comparison among different acquisition strategies. C/N0 = 35 dB-Hz, K = 5.
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Figure 7.14. ROC comparison among different acquisition strategies.
C/N0 = 25 dB-Hz, K = 10.
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Chapter 8

Conclusions

In this chapter, conclusions regarding the first part of this thesis are drawn. Recommen-
dations for future works are also provided.

Different tools for analyzing the acquisition process have been provided. More specif-
ically the acquisition block has been formalized as a multi-layer process operating in two
different domains: the cell and the decision domains. The distinction between these two
domains was not clearly stated in the previous literature and represents one of the main
contributions of this part. The distinction between cell and decision probabilities has been
also introduced and the relationship between those two sets of probabilities has been in-
vestigated. In the context of the multi-layer description of the acquisition block, the last
stage, i.e. the “Multi-trial and Verification” stage, has been briefly described and a com-
plete analysis of the verification strategies is desirable. This part of the decision process
should be further investigated in future works. Other aspects of the acquisition process
have also been investigated such as the acquisition losses due to the frontend filtering and
quantization. A general formula, quantifying the quantization loss when B bits are used
for representing the input signal, has been provided and verified by simulation. Quan-
tization and frontend filtering losses have been analyzed separately and further studies
will be devoted to their interaction. The theoretical developments of the first chapters
have been used to design new acquisition algorithms for composite GNSS signals. Each
acquisition strategy has been characterized from a statistical point of view through the
derivation of the cell false alarm and detection probabilities. From the analysis presented
the following remarks on the acquisition of composite GNSS signals emerge:

• When the acquisition on a single code period is considered the coherent channel
combining with bit recovery results in a more effective acquisition strategy. For
low C/N0 the bit estimation is no more reliable and the coherent channel combining
tends to have the same performance of the non-coherent combining.
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• Non-coherent and differentially coherent channel combining show similar perfor-
mance, although the non-coherent combining algorithm works slightly better for
high values of false alarm probability whereas the differentially coherent is prefer-
able for low Pfa.

• When considering acquisition on multiple code periods two classes of algorithms
can be identified: with and without bit recovery.

• The pure non-coherent, the semi-coherent and the differentially coherent combin-
ing belong to the first class, and require a reduced computational load with respect
to the other strategies since the bit combinations do not have to be searched and
the Doppler bin size does not have to be reduced. Among these strategies the semi-
coherent integration gives better performance for high C/N0. For low C/N0, semi-
coherent and non-coherent integration leads to similar performances.

• Among the second class, the secondary code partial correlation outperforms all the
other techniques requiring a lower computational load with respect to the exhaus-
tive search of all the possible bit combinations.

The analysis has also considered composite GNSS signals characterized by two dis-
tinct channels, namely the data and pilot channels, transmitted at the same time and
separated by different codes and phases. The new GNSS modulations are not limited
to this class of signals. An example is represented by the new L2C signal [74] that has
adopted time multiplex data and pilot channels. For this kind of signals new acquisition
techniques have to be designed.
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Chapter 9

Interference source classification

It is known that RF Interference is generally unpredictable and represents an impairing
factor in GNSS applications mainly because of the low power of the GNSS signal at the
Earth’s surface (at present the power of the GPS L1 civil code is −158.5 dBW and the
power of Galileo L1 signal is −152 dBW). A direct consequence of this fact is that not
only are the in-band interference sources likely to affect Galileo receivers, but also strong
out-of-band signals with their spectral side lobes and harmonics can have an effect. The
latters are due to the non-linearity of strong RF emitters in faraway bands but geograph-
ically located close to the end-user GNSS receiver; in these cases the power level of the
harmonics could be high enough to seriously interfere with the GNSS band.
The RFI may be intentional or unintentional. Moreover GNSS receivers are vulnerable to
spoofing, that is, the intentional transmission of a false but stronger version of the GNSS
signal.
In the context of this thesis the analysis is limited to unintentional interference and, in
particular, to RFI due to communication and electronic systems. This chapter deals with
the classification of different types and different sources of interference. In particular two
different classifications are possible: the first is based on the statistical, spectral and tem-
poral characteristics of the interference whereas the second is relative to the source that
generates the disturbing signal.
When considering the statistical, spectral and temporal characteristics of the interference
signal, four main classes can be identified:

• Narrow-band Gaussian interference [20–22],

• Continuous Wave interference (CWI) [22],

• Pulsed interference [75–79],

• Swept interference [22].

145



9 – Interference source classification

The term “narrow-band Gaussian” denotes all those interfering signals that can be ef-
fectively characterized by a normal pdf. The adjective “narrow-band” refers to the fact
that this kind of interference occupies only a portion of the GNSS signal band. Thus the
disturbing signal can have a wide band that is however relatively narrow with respect to
the GNSS signals.
The class of CWI includes all those disturbing signals that can be effectively modeled as
pure sinusoids. This kind of interference can be generated by a wide variety of electronic
systems. In fact almost every electronic device and communication system relies on oscil-
lators for the generation of sinusoidal signals that are used as carriers for the transmission
of the communication message or for synchronization purposes. Due to the presence of
non-linearities and imperfections in the electronic components harmonics can be gener-
ated in the GNSS bands. Those signals are then perceived as CWI.
All those disturbing signals that are concentrated in the time domain can be included into
the class of “pulsed interference”. Examples of these signals are Ultra Wide Band (UWB)
signals that are used for indoor localization and for short range communications between
personal electronic devices (PED). Pulsed signals are also used by radar and navigation
systems. Distance Measuring Equipment (DME) and TACtical Air Navigation (TACAN)
signal consists of the sequence of pairs of Gaussian pulses and are used for navigation
and landing operations. These signals are transmitted in the same frequency band of
Galileo E5 and GPS L5 signals, representing a potential treat [78, 79] for these GNSSs.
The term “swept interference” denotes all those disturbing signals characterized by an in-
stantaneous narrow band and by a time-varying central frequency. An example of swept
interference recorded in proximity of VHF emitters is reported in Section 13.2.
The main sources of unintentional RFI in GNSS applications are:

• FM, VHF and UHF emitters such as TV and radio transmitters;

• Personal electronic devices (PED);

• Satellite based Services;

• Radar and Navigation systems.

These sources will be better discussed in the next sections. In Table 9.1 the different types
of interference are related to the different sources. It can be noted that PEDs can generate
all types of interference, due to the great variety of devices that are included into this
class. In Figure 9.1 the frequency plan of Galileo and GPS is depicted together with the
different interference signals that can affect the different frequency bands.

146



9.1 – Interference from FM, VHF and UHF emitters

Table 9.1. Interference type and source classification.

Source
——
Type

Narrow-
band

Gaussian
Interference

CWI Pulsed
Interference

Swept
Interference

FM, VHF,
UHF

emitters
X X X

PED X X X X
Satellite
based

Services
X

Radar X

Figure 9.1. Interference source frequency bands.

9.1 Interference from FM, VHF and UHF emitters

One of the main sources of GNSS interference is due to harmonics and spurious emissions
from FM, VHF and UHF stations. In [22] the potential impact of FM, VHF and UHF
emitters on GNSS is analyzed in detail. It is shown that different harmonics can enter
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9 – Interference source classification

GNSS bands possibly degrading GNSS receiver functioning. In Table 9.2 the order and
the source of the different harmonics that can enter the L1 band is reported, showing
that almost each FM, VHF and UHF emitter can produce disturbing signals in the GNSS
frequencies.

Table 9.2. Harmonics from FM, VHF and UHF emitters, from [22].
Order Band (MHz) Usage

L1 1571.42 - 1579.42 C/A-GPS
2th 785.71 - 788.71 UHF TV
3th 523.807 - 526.473 UHF TV
4th 392.855 - 394.855 Mobile/Station
5th 314.284 - 315.884 Mobile/Station
6th 261.903 - 263.237 Mobile/Station
7th 224.488 - 225.631 Broadcasting
8th 196.427 - 197.428 VHF TV
9th 174.602 - 175.491 VHF TV
10h 157.142 - 157.942 VHF Maritime
11th 142.856 - 143.584 VHF Military
12th 130.952 - 131.618 VHFCOM
13th 120.878 - 121.494 VHFCOM
14th 112.244 - 112.816 VOR/ILS
15th 104.761 - 105.295 FM
16th 98.214- 98.714 FM

9.1.1 Interference from TV emitters

Different harmonics from TV ground stations can generate potentially dangerous inter-
ference for both GPS and Galileo receivers. In [22], five TV channels, generating har-
monics in the GPS L1 band, are reported with their relative power impact (Figure 9.2).
TV emissions are veritable sources of interference for GNSS receivers and they can gen-
erate both wide and narrow band interference: the video carriers can be considered as
medium/wide band signals whereas the sound carriers are considered as CWI.
In [80] and [81] a case of interference from TV signals is reported. In that case, however,
the interference signal did not enter the antenna. It entered the power connection for the
active antenna Low Noise Amplifier (LNA) and caused harmonic distortion in the LNA
that resulted in an average 5 dB decrease in C/N0.
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9.2 – Personal Electronic Devices

Figure 9.2. Potential interference from TV emitters (from [22]).

9.2 Personal Electronic Devices

There are two types of PEDs: those that intentionally transmit signals and that are known
as intentional transmitters and those that are unintentional radiators.
Intentional transmitters have to emit a signal in order to accomplish their function and
include:

• cell phones,

• pagers,

• two-way radios,

• remote-control toys,

• laptop connected to a wireless network.

Future intentional PEDs generations may be based on UWB signal allowing the devel-
opment of high bit rate personal devices, which should be monitored as new possible
interference sources for GNSS receivers.
PEDs that can be classified as unintentional transmitters, do not need to transmit a signal
in order to accomplish their function, but, as any electrical device, they emit some level
of radiation.
Examples of unintentional transmitters include:
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9 – Interference source classification

• compact-disc players,

• tape recorders,

• game-boys,

• laptop computers and palm pilots (not connected to a wireless network but radiat-
ing other kinds of signals),

• laser pointers.

The proximity of GNSS receivers to other electronic devices emitting intentional or unin-
tentional signals can cause a disruption of GNSS signal reception.

9.2.1 Ultra Wide-Band (UWB) interference

The FCC (Federal Communications Commission) defines UWB any signal that occupies
more than 500 MHz bandwidth in the 3.1 to 10.6 GHz band and meets the spectrum mask
in Figure 9.3 [82].
UWB signals emerged as a potential solution for low-complexity, low-cost, low-power

Figure 9.3. UWB spectral mask for indoor communication systems.

consumption, and high-data-rate wireless connectivity among devices within or enter-
ing the personal operating space. With the possibility to offer data transmission rates of
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100−500 Mbps at distances of 2−10 m using average radiated power of a few hundred mi-
crowatts, and the possibility of miniaturized low cost mass production, UWB technology
is currently seen by many to be the backbone of future short-range wireless communica-
tion systems. In addition, UWB signals have been utilized in imaging radar techniques
because of their wall penetration capability, and are being studied for indoor location and
navigation purposes because of their performance in multipath environment [83]. With
all these potential applications and advantages, ubiquitous UWB devices are becoming
reality.
The problem with UWB signals is their impact on existing spectral users, especially for
users of Galileo and GPS whose signal power is far below the noise floor.
Generally UWB signals are generated using very narrow pulses in the time domain, their
spectral properties depend on the pulse waveform, as well as on the pulse-width and the
duty-cycle. The use of very narrow pulses spreads the transmitted signal energy to an
extremely wide frequency band that can interfere with GNSS receiver bands.
Several studies [75–77] have concluded that UWB signals degrade GPS receiver perfor-
mance and for this reason, they can be potentially detrimental, especially for indoor
GNSS users. However these studies are mainly focused on the power portion of the
UWB signals interfering with the GNSS bands. In [84] a simulation approach is proposed
in order to take into account the UWB pulse waveform, the pulse repetition rate and
other parameters characterizing UWB signals; performances in terms of GPS receivers
acquisition success rate are drawn demonstrating that interference effects can be reduced
by opportunely choosing the modulation parameters. In [76] an entire Wireless Personal
Area Network (WPAN) based on UWB signals is considered and its impact on GPS re-
ceiver is studied. Also in this case the impact on GPS receivers strongly depends on UWB
modulation parameters.

9.3 Satellite-based Services

Radio Frequency (RF) emissions from satellite systems can represent a source of interfer-
ence for GNSSs. This kind of interference source can be divided in two classes:

• interference from Mobile Satellite Service (MSS) communications systems,

• interference among GNSSs.

MSS communications systems pose two distinct interference threats to the GNSS sig-
nals [85]. Mobile Earth Stations (MSEs), transmitting in the 1610-1660.5 MHz band, can
introduce wideband power in the GNSS band, raising the noise power level. Another
potential source of GNSS interference are the spurious harmonic emissions from geo-
stationary satellites that transmit in the 1525-1559 MHz band. These emissions are yet
unregulated by the ITU.
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The second class of interference is due to the fact that different GNSSs can broadcast in
the same frequency bands and thus the signal transmitted by one GNSS can jam another.
This problem has been seriously considered for the SIS of Galileo, which has been de-
signed to be compatible with the preexisting GPS. Two different types of effects can be
further identified: intersystem and intrasystem interference [86–89].

9.3.1 Intersystem and Intrasystem Interference

Galileo has been designed to be interoperable and compatible with GPS. Compatibility
implies that the two systems should operate with as little impact on each other as possi-
ble. However unintentional imperfections in the transmitter design can produce intrasys-
tem and intersystem interference. The term intersystem refers to interference produced
by GPS transmitter on the Galileo signal and vice versa, whereas the term intrasystem
refers to those impairments impacting the same system they are produced by. For exam-
ple an incomplete carrier suppression can produce an undesired narrowband component
with power concentrated around the carrier frequency.
Another type of imperfection involves intermodulation products caused by nonlinear
combinations of multiple signals at the transmitter.
Different works (e.g. [88] and [89]) have tested the impact of the Galileo signals and of
intersystem interference on the GPS system, but additional work has to be performed on
the Galileo robustness to GPS interference.

9.4 Radar and Navigation systems

The Galileo E5a/E5b and the GPS L5 signals will be located within the 960-1215 MHz
frequency band that is already used worldwide for Aeronautical Radionavigation Ser-
vices (ARNS) such as Distance Measuring Equipment (DME), TACtical Air Navigation
(TACAN) and Secondary Surveillance Radar (SSR), as well as by the U.S. Department of
the Defense (DoD) Joint Tactical Information Distribution System (JTIDS) and Multifunc-
tion Information Distribution System (MIDS).
The DME/TACAN systems consist of an airborne interrogator and a ground-based transpon-
der that emits high-power pulsed signals constituting a real threat. In [78,79] a thorough
survey of this kind of interference has been performed showing the need to develop miti-
gation techniques for this kind of impairments; the reallocation of DME/TACAN signals
has also been proposed as an alternative solution.
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9.5 Other sources

Several other interference sources can degrade GNSS receiver performance, such as im-
pulsive radars, power lines, military transmission and also natural electromagnetic phe-
nomena. In general these sources broadcast signals that can be generally described as
narrow or wide band signals and detected/mitigated by using appropriate techniques.
Some works deals with the impact of these specific interference sources, such as [90]
which analyzes the power line case.
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Chapter 10

Gaussian narrow-band interference

When an interfering signal is present an additional term has to be added to Eq. (2.10) in
order to account for the impact of the disturbing signal. In particular Eq. (2.10) becomes

r[n] = y[n] + η[n] + i[n] (10.1)

where i[n] models the disturbing signal. i[n] can assume different expressions depending
on the time/frequency and statistical characteristics of the disturbing signal. i[n] will be
better specified in the next chapters depending on the type of interference under analysis.

The first class of disturbing signals considered in this thesis is represented by narrow-
band Gaussian interference. This class of interferences includes all those signals that can
be effectively characterized by a Gaussian pdf, where the term “narrow-band” refers to
the fact that the spectrum of these signals occupies only a portion of the GNSS signal
band. Thus the disturbing signal can have a relatively wide band that is, however, nar-
row with respect to the one of the GNSS signal under consideration.
In the context of this chapter the interference is assumed to be zero mean and wide sense
stationary (WSS). In this way the disturbing signal i[n] can be modeled as a colored Gaus-
sian process

i[n] ∼ N
(
0,σ2

INT

)
(10.2)

characterized by a Power Spectral Density (PSD) Gl(f) and an autocorrelation function
Rl[n]. Gl(f) and Rl[n] allow to characterize the time/frequency characteristics of i[n].
This characterization of the disturbing signal is extremely general and allows to describe
a wide variety of interference.
Although quantifying the interference impact on the acquisition block is, in general, a
complex problem, under the assumption of narrow-band Gaussian interference the de-
velopment of a consistent theory, allowing comparative analysis, is possible. Moreover
the acquisition process within the GNSS receiver modifies the shape of the interfering
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signal, either mitigating or amplifying its impact and a reliable measure of the interfer-
ing degradation should account these interactions.
Different parameters have been investigated in order to quantify the effect of this kind
of interference on the signal quality, and in particular a quantity called “effective C/N0”
was introduced to reflect the effect of interference at the input of the receiver, avoid-
ing receiver-specific details such as integration time and the use of coherent or non-
coherent processing. Furthermore a parameter called Spectral Separation Coefficient
(SSC) was introduced [20, 21] to distinguish the effects of the interference spectral shape
from effects due to the interfering power. These parameters were first introduced by Betz
in [20,21] and then became widely accepted as reliable and effective measures of interfer-
ence degradation. In particular, both Galileo Signal Task Force and ESA adopted them to
investigate mutual system interference between GPS and Galileo signals.
When narrow-band Gaussian interference is present, the acquisition performance is com-
pletely characterized by the coherent output Signal to Noise and Interference Ratio (SNIR)
that represents a generalization of the coherent output SNR introduced in Section 3.7 and
better analyzed in Section 6.1. The Gaussian nature of the interference does not modify
the statistic of the correlator output and the ROCs maintain the same functional structure
of Eq. (3.39).
In this chapter the coherent output SNR in presence of narrow-band Gaussian interfer-
ence is derived for digital receivers and the concept of SSC is revised. It is important to
highlight that in [21] the concepts of SNIR and therefore of the SSCs were not directly
related to the receiver functional blocks. In addition, such parameters were derived in
the analog domain without taking into account the specific features of digital receivers.
The contribution of this chapter can be then summarized into two points:

• the definition and the analysis of the coherent output SNIR and SSCs for digital
receivers is provided,

• the chapter explains and analyzes the meaning and the effects of the SNIR and
SSCs considering the impact of such parameters on the acquisition block. It has
been proved that the acquisition performance directly depends on the SNIR and so
on SSCs.

Further details on the subject can be found in [91].

10.1 Digital SCCs

As already discussed in Section 6.1, all the operations in an acquisition system, prior to
the squaring blocks, are linear and the code correlation can be represented as an equiva-
lent filter characterized by an impulse response, namely

hc[τ ] =
1
N

c[−τ ].
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Since all the operations prior the squaring blocks are linear, the correlator output in pres-
ence of interference can be written as

YI (τ,FD) = SI (τ,FD) + ηI + νI

YQ (τ,FD) = SQ (τ,FD) + ηQ + νQ

(10.3)

where

• SI (τ,FD), SQ (τ,FD) are the useful signal components,

• ηI and ηQ are the noise terms,

• νI and νQ derive from the interference term i[n].

More specifically,

νI + jνQ =
1
N

N−1∑

n=0

i[n]c[n− τ ] exp {−j2πFDn}

= (i[τ ] exp {−j2πFDn}) ∗ hc[τ ] = g (τ,FD) ∗ hc[τ ]

(10.4)

where g (τ,FD) = i[τ ] exp {−j2πFDn}. Since i[n] is a Gaussian random process, νI and
νQ are Gaussian random variables. Moreover, it is possible to show [44] that νI and νQ

are independent since multiplication by sine and cosine and the subsequent low-pass
filtering project the interference on two orthogonal functions.
The interference i[n] is characterized by the PSD Gl(f). Now it is possible to evaluate the
variance of νI + jνQ considering that the signal g[n], obtained by modulating i[n], has the
PSD

Gj(f) = Gl(f + FD) (10.5)

and the interference term at the correlator output is characterized by

Gν(f) = Gl(f + FD) |Hc(f)|2 . (10.6)

Finally the variance of νI + jνQ is given by

Var [νI + jνQ] =
∫ 0.5

−0.5
Gν(f)df =

∫ 0.5

−0.5
Gl(f + FD) |Hc(f)|2 df. (10.7)

By introducing the normalized PSD

Ḡl(f) =
1
Cl

Gl (f + FD) (10.8)

where Cl =
∫ 0.5
−0.5 Gl (f) df = σ2

INT is the interference power, it is possible to express Eq.
(10.7) as

Var [νI + jνQ] = Cl

∫ 0.5

−0.5
Ḡl(f) |Hc(f)|2 df. (10.9)
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The narrow-band Gaussian interference increases the variance of the noise term at the
correlator output, which in this case is given by

σ2
out = Var [YI (τ,FD)] = σ2

n + σ2
i (10.10)

where σ2
n is the variance of the noise term given by Eq. (6.9)

σ2
n =

N0

4
fs

∫ 0.5

−0.5
G̃(f) |Hc(f)|2 df

and σ2
i is given by

σ2
i = Var [νI ] =

1
2

Var [νI + jνQ] =
1
2
Cl

∫ 0.5

−0.5
Ḡl(f) |Hc(f)|2 df. (10.11)

From Eqs. (6.9), (10.10) and (10.11) the variance at the correlator output is given by

σ2
out =

N0

4
fs

∫ 0.5

−0.5
G̃(f) |Hc(f)|2 df +

1
2
Cl

∫ 0.5

−0.5
Ḡl(f) |Hc(f)|2 df. (10.12)

In Section 6.1 the contribution of the useful signal term was evaluated and is given by Eq.
(6.15) as

E {YI (τ,FD)} =
A

2
R̃(0) cosφ0 =

A

2

∫ 0.5

−0.5
G̃s(f)df cosφ0

=
A

2

∫ 0.5

−0.5
Gs(f)Hf (f + FD)df cosφ0 ≈ A

2

∫ 0.5

−0.5
Gs(f)Hf (f + fIF Ts)df cosφ0

where R̃(τ), G̃s(f) and R(τ), Gs(f) are the correlation functions and the PSDs introduced
in Section 6.1. Hf (f) is the transfer function of the equivalent filter modeling the effect
of the frontend. Using these results, it is possible to evaluate the coherent output SNIR
defined as

ρd
c = max

φ0

E2 [YI (τ,FD)]
Var [YI (τ,FD)]

(10.13)

that is the same definition as Eq. (3.36) but in the presence of interference.
By using previous results the coherent output SNIR assumes the following expression

ρd
c =

[
A
2

∫ 0.5
−0.5 Gs(f)Hf (f + fIF Ts)df

]2

N0
4 fs

∫ 0.5
−0.5 G̃(f) |Hc(f)|2 df + 1

2Cl

∫ 0.5
−0.5 Ḡl(f) |Hc(f)|2 df

=
C

[∫ 0.5
−0.5 Gs(f)Hf (f + fIF Ts)df

]2

N0
2NTs

∫ 0.5
−0.5 G̃(f)N |Hc(f)|2 df + Cl

NTs
Ts

∫ 0.5
−0.5 Ḡl(f)N |Hc(f)|2 df

= 2
C

N0
Tc

[∫ 0.5
−0.5 Gs(f)Hf (f + fIF Ts)df

]2

∫ 0.5
−0.5 G̃(f)Gs(f)df + 2 Cl

N0
Ts

∫ 0.5
−0.5 Ḡl(f)Gs(f)df

(10.14)

158



10.1 – Digital SCCs

where
Gs(f) = N |Hc(f)|2

is the normalized PSD of the local code c[n]. Gs(f) is normalized since

∫ 0.5

−0.5
Gs(f)df =

∫ 0.5

−0.5
N |Hc(f)|2 =

1
N

N−1∑

n=0

|c[n]|2 = 1 (10.15)

The term

kd =
∫ 0.5

−0.5
Ḡl(f)Gs(f)df (10.16)

represents the projection of the interference normalized PSD over the local code PSD
and it is called digital spectral separation coefficient (SSC). The digital SSC accounts
for the effect of the spectral shape of the interference on the acquisition performance.
The acquisition block filters the interference, thus only a portion of the disturbing signal
power impacts the coherent SNIR. The digital SSC quantifies this portion the interference
signal. By using Eq. (10.16), the coherent output SNIR (10.14) can be rewritten as

ρd
c = 2

C

N0
Tc

[∫ 0.5
−0.5 Gs(f)Hf (f + fIF Ts)df

]2

∫ 0.5
−0.5 G̃(f)Gs(f)df + 2 Cl

N0
Tskd

. (10.17)

In absence of interference kd = 0 Eq. (10.17) is equal to Eq. (6.17). If the effect of the
frontend is negligible, i.e.

∫ 0.5

−0.5
Gs(f)Hf (f + fIF Ts)df =

∫ 0.5

−0.5
Gs(f)df = 1

and ∫ 0.5

−0.5
G̃(f)Gs(f)df =

∫ 0.5

−0.5
Gs(f)df = 1,

the coherent output SNIR assumes the following expression

ρd
c = 2

C

N0
Tc

1
1 + 2 Cl

N0
Tskd

(10.18)

and the loss due to the interference can be quantified as

LINT =
[
1 + 2

Cl

N0
Tskd

]−1

=
[
1 +

Cl

N0fs/2
kd

]−1

. (10.19)

The term 2 Cl
N0

Ts = Cl
N0fs/2 = Cl

N0Bs
represents the Jammer to Noise ratio (J/N) in ideal

conditions, i.e. when the receiver bandwidth is equal to fs/2. Thus the coherent output
SNR reduction is proportional to one plus the product between the SSC and the Jammer
to Noise ratio.
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10 – Gaussian narrow-band interference

10.2 ROC analysis and SSCs interpretation

As previously highlighted the correlator outputs, in the presence of narrow-band Gaus-
sian interference, are still independent Gaussian random variables, thus the detection
and false alarm probabilities have the same structure as that of Eq. (3.39) and can be
expressed as

Pfa (β) = exp
{
− β

2σ2
out

}
(10.20)

Pdet (β) =
∫ +∞
√

β

z

σ2
out

exp
{
−z2 + α2

2σ2
out

}
I0

(
zα

σ2
out

)
dz = Q1

(√
α2

σ2
out

,

√
β

σ2
out

)
(10.21)

with α =
√

µ2
I + µ2

Q and

σ2
out = σ2

n + σ2
i .

µI and µQ are the means of the random variables on the in-phase and quadrature branches
in case of perfect a delay/frequency alignment:

µI = σout

√
ρd

c cos θ

µQ = −σout

√
ρd

c sin θ

α = σout

√
ρd

c

(10.22)

Eqs. (10.10) and (10.22) prove that the ROCs in the presence of interference are completely
determined by the knowledge of the SSCs and of the output coherent SNIR.

10.3 Simulation results

The above analysis is now supported by simulations. An acquisition system like the one
represented in Figure 3.5 has been implemented and both false alarm and detection prob-
abilities have been evaluated using error count techniques. The system has been fed with
the useful signal, white noise and different types of interference. The narrow band inter-
ference has been simulated filtering white Gaussian noise. A base-band model has been
used since the demodulation and the Doppler frequency removal produce base-band sig-
nals. For this reason the notation “low-pass” interference indicates a signal whose central
frequency was originally close to the GNSS signal carrier and that has assumed a spec-
trum concentrated around the zero frequency after the demodulation and the Doppler
removal. The simulations have been carried out for different kinds of interference and
for both GPS BPSK and Galileo BOC(1,1) modulations, always leading to results in agree-
ment with the theoretical model. In Figures 10.1 and 10.2 the analysis of the impact of
a band-pass and a low-pass interference for the Galileo and GPS signal acquisition is re-
ported; the simulation parameters are given in Table 10.1 and the digital SSC values in
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Figure 10.1. ROC curves for the BOC(1,1) Galileo signal.

Table 10.1. Simulation parameters.

C/N0 Galileo 30 dB-Hz
C/N0 GPS 36 dB-Hz

samples per chip 4
sampling frequency fs = 4.092 MHz

Low-pass interference cut-off frequency fc = 0.125fs

Band-pass interference frequency interval [0.125fs; 0.375fs]
Interference to noise ratio Cl/(N0fs) 0 dB

Table 10.2. SSCs values, pure number.

GPS Galileo
Low-pass interference 3.198 0.617
Band-pass interference 0.337 1.661
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Figure 10.2. ROC curves for the GPS signal.

Table 10.2. As expected the GPS signal is more sensitive to interfering signals with spec-
tra concentrated around its carrier. This is due to the spectral shape of the GPS signal that
has a main lobe at the frequency carrier: in this case the SSC is greater than the one of the
BOC(1,1) that presents a zero at those frequencies and the ROCs worsen. On the contrary
the Galileo signal is more fragile with respect to interference centered on its side lobes.
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Chapter 11

Continuous Wave Interference (CWI)

In the previous chapter, the case of narrow-band Gaussian interference has been ana-
lyzed. In particular it has been shown that the presence of Gaussian interference does
not alter the statistical properties of the correlator outputs, which are independent Gaus-
sian random variables. When this condition is true the coherent output SNR allows to
quantify the interference impact. The validity of the coherent output SNR is however
limited to those interfering signals that lead to Gaussian random variables at the correla-
tor outputs and this condition is not, in general, true. Thus the acquisition block needs to
be characterized by means of the ROCs that represent a more general metric for quanti-
fying the performance of a detection system.
The presence of disturbing signals during GNSS acquisition is similar to the problem
of clutter in radar detection. Indeed, GNSS interference and radar clutter are both un-
wanted signals that affect the detection process [39]. However, to the best of the author’s
knowledge, the radar and in general the detection literature is lacking models to effec-
tively characterize GNSS interference. For instance, clutter is generally characterized by
K, Gamma or Gamma-derived distributions [26,39]; these models cannot however be di-
rectly applied to GNSS interferences.
This chapter is devoted to the development of a consistent model evaluating the perfor-
mance of GNSS signal acquisition in the presence of continuous wave (CW) interference.
The class of CW interferences includes all those narrowband signals that can be reason-
ably represented as pure sinusoids with respect to the GNSS bands. This kind of interfer-
ing signals can be generated by UHF and VHF TV, VHF Omni-directional Radio-range
(VOR) and Instrument Landing System (ILS) harmonics, by spurious signals caused by
power amplifiers working in non-linearity regions or by oscillators present in many elec-
tronic devices [22].
The problem of CW detection and mitigation has been extensively considered in the re-
cent literature [23–25]. However a model focusing on the detection and false alarm prob-
abilities has never been previously proposed and thus it is the focus of this chapter. The

163



11 – Continuous Wave Interference (CWI)

case of a basic acquisition scheme, without non-coherent integration is considered.
In [3] the CW impact in presence of a limited number of bits for the input signal quan-
tization is considered. [3] notes that the CW signal, in the GPS case, is most disturbing
when the interference is coherent with the GPS carrier frequency. In this case the CW is
downconverted to a constant by the frontend and thus only the case of a constant offset
at the input of the ADC is considered.
In this chapter the number of bits used for quantization is assumed to be large enough to
neglect the effect of the quantization noise. This assumption holds for new generations
of GPS receivers that can be equipped with ADCs with 8 or more bits [2].
The developed model is general and accounts for the impact of the CW frequency and
of the GNSS code. In particular it is shown that the acquisition performance strongly
depends on two parameters that can be interpreted as the generalization of the Spectral
Separation Coefficients (SSC) analyzed in the previous chapter.
The chapter also investigates the evolution of the CW through the acquisition chain along
with the impact of the coherent integration time. The analogy with models for radar de-
tection in clutter environments [39] and the role of the GNSS signal phase are finally
described.

When a real CWI is present, the disturbing signal of Eq. (10.1) assumes the expression

i[n] = AINT cos (2πfinTs + θint) = AINT cos (2πFintn + θint) (11.1)

where AINT and fi are the interference amplitude and frequency. θint is a uniformly
distributed random variable of the form

θint ∼ U [−π,π) . (11.2)

The power of the interference with respect to the noise variance is defined by the Jammer
to Noise ratio as follows:

J

N
=

A2
INT

2
1

σ2
IF

=
A2

INT

2N0BIF
. (11.3)

11.1 Detection and false alarm probabilities

In order to determine the probability of detection, it is necessary to determine the proba-
bility distribution of the decision variable S (τ,FD) under the hypothesis of perfect code
and frequency alignment. When the interference and useful signal phases are known,
S (τ = τ0,FD = FD,0) is a non-central χ2 random variable whose non-centrality parame-
ter depends on both the interference and useful signals. The distribution of S (τ = τ0,FD = FD,0)
is obtained by removing the hypothesis of knowing the useful signal and interference,
and by integrating over their random parameters.
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11.1 – Detection and false alarm probabilities

In this chapter the complex representation of the acquisition block will be used. This
representation has been discussed in Section 6.1.1 and depicted in Figure 6.3. In this way
the decision variable S (τ,FD) is obtained as the square absolute value of a complex cor-
relator output. Thus, in order to determine the distribution of S (τ = τ0,FD = FD,0) it
is necessary to evaluate the mean and variance of the correlator output when the GNSS
signal and the interference are assumed known. In the previous chapter the complex cor-
relator output has been denoted by Y (τ,FD) and, under the hypothesis of knowing the
signal and interference parameters, it is a complex Gaussian random variable.
For the linearity properties highlighted in the previous chapters it is possible to consider
the impact of the three components in Eq. (10.1) separately.

11.1.1 Useful signal contribution

When the code delay and the Doppler shift are correctly recovered the useful signal con-
tribution is given by

Sy =
1
N

N−1∑

n=0

Ac [n− τ0]
2 d [n− τ0] cos (2πFD,0n + φ0) exp {−j2πFD,0n} . (11.4)

The spreading code assumes only the values ±1 and vanishes when squared. The nav-
igation message is supposed to be constant over the integration interval and thus it is
neglected. From these considerations,

Sy =
A

N

N−1∑

n=0

exp {jφ0}+ exp {−j4πFD,0n− jφ0}
2

≈ A

2
exp{jφ0}. (11.5)

In Eq. (11.5) the Euler formula for the cosine has been employed and the high frequency
complex exponential has been considered filtered by the summation.

11.1.2 Interference contribution

By using the Euler formula the interference can be expressed as

i[n] =
AINT

2
exp {j2πFintn + jθint}+

AINT

2
exp {−j2πFintn− jθint} . (11.6)

The multiplication by the complex exponential at the frequency FD,0 produces the new
signal

iD[n] =
AINT

2
exp {j2π (Fint − FD,0) n + jθint}+AINT

2
exp {−j2π (Fint + FD,0)n− jθint} .

(11.7)
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In this way two complex exponentials at two different frequencies are produced. This
signal enters the equivalent filter whose output is given by

Sint = k1
AINT

2
exp {j2π (Fint − FD,0) τ0 + jθint + jθ1}

+ k2
AINT

2
exp {−j2π (Fint + FD,0) τ0 − jθint + jθ2}

(11.8)

where

• k1 = |Hc (Fint − FD,0) | and θ1 = ∠{Hc (Fint − FD,0)};

• k2 = |Hc (−Fint − FD,0) | and θ2 = ∠{Hc (−Fint − FD,0)}.

In Eq. (11.8) the fact that complex sinusoids are the eigenfunctions of linear and time
invariant systems has been exploited. Hc(f) is the Fourier Transform of the equivalent
filter hc[n].
Notice that the square of k1 and k2 can be written as

k2
1,2 = |Hc (±Fint − FD,0) |2 =

∫ ∞

−∞
|Hc (f) |2δ (f − (±Fint − FD,0)) df

=
1
N

∫ ∞

−∞
N |Hc (f) |2δ (f − (±Fint − FD,0)) df =

1
N

∫ ∞

−∞
Gs(f)Gi(f)df

(11.9)

where δ(·) denotes the Dirac’s delta, Gs(f) = N |Hc (f) |2 and Gi(f) = δ (f − (±Fint + FD,0)).
Expression (11.9) shows that k2

1 and k2
2 are proportional to the Spectral Separation Coef-

ficients [20, 21] of the two components of the interfering signal. However, in this case,
a different functional relation relates these parameters to the false alarm and detection
probabilities with respect to the case of Gaussian interference developed in Chapter 10.

11.1.3 Noise contribution

As already discussed in previous chapters, the multiplication by the complex exponential
equally splits the noise power on the two acquisition branches. The equivalent filter hc[n]
is low-pass and thus the real and imaginary parts of the process at its output can be
considered independent. The total variance of the output process is given by

2σ2
n =

1
N

σ2
IF =

1
N

N0BIF (11.10)

and thus
SW ∼ Nc

(
0,σ2

nI2

)
(11.11)

where I2 is the 2 × 2 identity matrix. The symbol Nc indicates that the process is both
complex and Gaussian.
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11.1 – Detection and false alarm probabilities

11.1.4 Detection probability

The input of the complex modulus is thus given by the sum of the three components
discussed above, namely

Y (τ0,FD,0) = YI(τ0,FD,0) + jYQ(τ0,FD,0) = Sy + Sint + SW (11.12)

which, given the phases of the useful signal and of the interference, is the Gaussian pro-
cess

Y (τ0,FD,0)|φ0,θint ∼ Nc

(
Sy + Sint,σ

2
nI2

)
. (11.13)

The square absolute value of Eq. (11.13) is a χ2 random variable characterized by the
probability distribution

Y (τ,FD)|ϕ0,θint ∼ pS

(
x|α,σ2

n

)
=

1
2σ2

n

exp
{
−x + α2

2σ2
n

}
I0

(√
xα2

σ2
n

)
x > 0 (11.14)

where

α2 = |Sy + SI |2

=
A2

4
+

A2
INT

4
k2

1 +
A2

INT

4
k2

2 +
A2

INT

2
k1k2 cos(ϕ1 − ϕ2)

+
AAINT

2
k1 cosϕ1 +

AAINT

2
k2 cosϕ2 = α2(ϕ1,ϕ2).

(11.15)

ϕ1 and ϕ2 are two new parameters given by

ϕ1 = θ1 + 2π(Fint − FD,0)τ0 + θint − φ0 (11.16)

ϕ2 = θ2 − 2π(Fint + FD,0)τ0 − θint − φ0. (11.17)

By integrating the distribution (11.14) it is possible to find the detection probability given
the useful signal and the interference phases, as

Pdet(β|ϕ0,θint) = Q

(
α

σn
;
√

β

σn

)
(11.18)

where Q(·; ·) is the Marcum Q-function introduced in [37].
In order to evaluate the overall detection probability it is necessary to remove the hypoth-
esis of knowing φ0 and θint and average (11.18) with respect to the probability densities of
these two random variables. By considering Eqs. (11.16) and (11.17) it is easy to note that
between the couples (ϕ1,ϕ2) and (φ0,θint) there is a linear injective map and thus a con-
venient and equivalent strategy for obtaining the detection probability is represented by
averaging Eq. (11.18) with respect to ϕ1 and ϕ2. Furthermore, in Appendix G, it is shown
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11 – Continuous Wave Interference (CWI)

that, due to the cosine periodicity, ϕ1 and ϕ2 can be considered as two independent ran-
dom variables uniformly distributed over the interval [−π,π). From these considerations
the final expression of the detection probability is

Pdet(β) =
1

4π2

∫ π

−π

∫ π

−π
Q

(
α(ϕ1,ϕ2)

σn
;
√

β

σn

)
dϕ1dϕ2. (11.19)

When ϕ1 and ϕ2 are considered as random variables, α(ϕ1,ϕ2) defined by Eq. (11.15) is
a random variable as well. α represents the amplitude of the cell used for the detection
in absence of the Gaussian noise and, in this case, fluctuates because of the presence of
the interference. Thus model (11.19) has a structure similar to the one of the detection
probabilities of fluctuating targets in the radar theory [26, 55].
In Appendix H it is shown that α2 can be expressed as

α2 = p1 +
√

Cp2 cosϕ2 +
√

p3 +
√

Cp4 cosϕ2 cosϕ3 (11.20)

where p1, p2, p3 and p4 are the four positive constants

p1 =
A2

4
+

A2
INT

4
k2

1 +
A2

INT

4
k2

2

p2 =
AINT√

2
k2

p3 =
A4

INT k2
1k

2
2

4
+

A2
INT A2

4
k2

1

p4 =
A3

INT√
2

k2
1k2.

(11.21)

ϕ2 and ϕ3 are two independent random variables uniformly distributed over the inter-
val [−π; π). From this expression it is possible to evaluate the maximum and minimum
values for α, namely

αmax =

√
p1 + A/

√
2p2 +

√
p3 + A/

√
2p4 =

√
p1 +

√
Cp2 +

√
p3 +

√
Cp4

=

√
C

2
+

AINT

2
(k1 + k2)

(11.22)

αmin =
(

A

2
− AINT

2
(k1 + k2)

)+

=

(√
C

2
− AINT

2
(k1 + k2)

)+

(11.23)

where the relationship C = A2

2 has been used. (x)+ = max(x,0) denotes the positive part
operator. The maximum value is obtained when both cosines in Eq. (11.20) are equal
to 1 and represents the case in which the useful signal and the filtered interference are
aligned in phase. For the minimum, two cases are possible: either the interference is
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strong enough to completely cancel the signal contribution and thus αmin = 0, or the

signal term dominates and αmin =
√

C
2 − AINT

2 (k1 + k2). In the latter case, the signal
and interference contributions are in opposition of phase. Eq. (11.23) summarizes these
two cases and can be obtained by substituting the two cosines in Eq. (11.20) by two new
variables, x = cosϕ2 and y = cosϕ3. By minimizing with respect to x and y and by
verifying the boundary conditions −1 ≤ x,y ≤ 1 the two minimum cases are found and
finally Eq. (11.23) is obtained.
The detection probability (11.19) can also be expressed as

Pdet(β) =
∫ αmax

αmin

Q

(
a

σn
;
√

β

σn

)
fα,d(a)da (11.24)

where fα,d denotes the probability density function of α under the hypothesis of signal
presence. This kind of expression is common in the radar literature [26,55] and once again
it highlights the analogy between this model and radar detection probabilities. However,
even if Eq. (11.20) allows to determine fα,d, its expression results quite complex and re-
quires numerical methods for its evaluation. In Figure 11.1 an example of the probability
distribution of α is shown. In this case C = 1, AINT = 2, k1 = 0.5 and k2 = 0.2. All those
parameters along with the values of α in Figure 11.1 are considered dimensionless since
one is dealing with digital signals. The dimension of the signals is lost during the AD
conversion and only the fundamental information about power and amplitude ratios is
preserved. In Figure 11.1 the probability distribution of α has been determined either by
Monte Carlo simulations or by numerically evaluating the fα,d derived from Eq. (11.20)
and the distributions of ϕ2 and ϕ3.

11.1.5 False Alarm probability

The false alarm probability can be easily derived from the detection probability by con-
straining C, the signal power, to zero. Eq. (11.15) then becomes

α2 =
A2

INT

4
k2

1 +
A2

INT

4
k2

2 +
A2

INT

2
k1k2 cos(ϕ1 − ϕ2) = α2(ϕ1 − ϕ2), (11.25)

which depends only on the phase difference ϕ1 − ϕ2. In Appendix H it is shown that
ϕ1 − ϕ2 can be substituted, due to the periodicity of the cosine, by a random variable θ

uniformly distributed in the range [−π,π). Since in this case the amplitude of the decision
cell depends only on one random variable, Eq. (11.19) becomes

Pfa(β) =
1
2π

∫ π

−π
Q

(
1
σn

√
A2

INT

4
k2

1 +
A2

INT

4
k2

2 +
A2

INT

2
k1k2 cos θ;

√
β

σn

)
dθ. (11.26)

An alternative expression for Eq. (11.26) can be obtained by employing the distribution
of the decision cell α(ϕ1 − ϕ2). By substituting C = 0 in Eqs. (11.20) and (11.21) or,
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Figure 11.1. Probability density function of the decision cell amplitude α under the hy-
pothesis of useful signal presence. AINT = 2, C = 1, k1 = 0.5 and k2 = 0.2.

equivalently, by considering Eq. (11.25), it follows that the decision cell amplitude is
given by

α =
AINT

2

√
k2

1 + k2
2 + 2k2

1k
2
2 cos θ. (11.27)

Eq. (11.27) states that the amplitude of a decision cell, in the absence of noise and un-
der the false alarm hypothesis, varies in the range

[
AINT

2 |k1 − k2|,AINT
2 (k1 + k2)

]
as the

square root of a translated sinusoid. θ is a random variable uniformly distributed in the
range [−π,π), thus, by applying Eq. (11.27) it is possible to find the probability density
function of α under the hypothesis of useful signal absence as

α ∼ fα,fa(a) =
2a

π

√
A4

INT k2
1k2

2
4 −

[
a2 − A2

INT
4

(
k2

1 + k2
2

)]2
,

AINT

2
|k1−k2| < a <

AINT

2
(k1+k2)

(11.28)
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Finally an equivalent expression for Eq. (11.26) is found by integrating the conditional
probability with respect to α:

Pfa(β) =
∫ AINT

2
(k1+k2)

AINT
2

|k1−k2|

2aQ
(

a
σn

;
√

β
σn

)

π

√
A4

INT k2
1k2

2
4 −

[
a2 − A2

INT
4

(
k2

1 + k2
2

)]2
da. (11.29)

In Figure 11.2 an example of fα,fa(a) is shown reported with AINT = 2, k1 = 0.5 and
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Figure 11.2. Probability density function of the decision cell amplitude α under the hy-
pothesis of useful signal absence. AINT = 2, k1 = 0.5 and k2 = 0.2.

k2 = 0.2.

11.2 Impact of the acquisition parameters

The impact of the CW interference essentially depends on

• the interference amplitude and frequency,

• the Doppler frequency of the useful signal,
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11 – Continuous Wave Interference (CWI)

• the GNSS code,

• the coherent integration time,

• the subcarrier, that is for example the BOC or the BPSK.

The role of the interference amplitude is evident from Eqs. (11.15) and (11.26) in the de-
termination of the false alarm and detection probabilities, whereas the impact of the other
parameters is implicit in the coefficients k1 and k2. In this section, the role of the system
parameters that impact k1 and k2 under the hypothesis of a sampling rate multiple of the
code rate is discussed. It is noted that Eq. (11.9) is general as it defines k1 and k2 without
any hypothesis regarding the sampling rate and it can be used also for GNSS signals that
employ multilevel modulations. In fact, the impact of the coherent integration time of
the GNSS code and of the modulation is included in the spectrum of the equivalent filter
hc[n]. The case analyzed in this section is aimed at giving a better insight on the impact
of the different parameters when their roles can be easily isolated.

The spreading sequence c[n] refers to the base-band local code modulated by the sub-
carrier and repeated L = N/(OvNc) times, where N is the total length of c[n], Nc is the
spreading code length and Ov is the number of samples per chip. When the sampling
rate is a multiple of the code period c[n], it can be written as

c[n] = ccode[n] ∗ sc[n] ∗ hL[n] (11.30)

where ccode[n] is the local code defined as

ccode[n] =
Nc−1∑

i=0

ciδ[n−Ovi] (11.31)

that is the spreading sequence {ci}Nc−1
i=0 spaced of OvTs. sc[n] is an equivalent subcarrier

signal of duration OvTs and hL[n] is the sequence

hL[n] =
L−1∑

i=0

δ[n−OvNci] (11.32)

that accounts for the use of more than one code period. sc[n] is not to be confused with
the signal sb[n] introduced in Chapter 2 where a different signal representation was used.
Eq. (11.30) is better explained in Figure 11.3 where the convolution of the spreading code

with the subcarrier signal is reported. The convolution with the subcarrier modulates the
spreading code producing one period of local replica.
Since the equivalent filter hc[n] is equal to 1

N c[−n] it can also be expressed as the convo-
lution of three terms as

hc[n] =
1

Nc
hcode[−n] ∗ 1

Ov
sc[−n] ∗ 1

L
hL[−n] (11.33)
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Figure 11.3. Pictorial representation of the convolution of the spreading sequence ccode[n]
with the subcarrier signal sc[n].

Thus the coefficients k1 and k2 can be expressed as

ki = |Hcode(∓Fint − FD,0)| · |Sc(∓Fint − FD,0)| · |HL(∓Fint − FD,0)| (11.34)

where Hcode(f), Sc(f) and HL(f) are the Fourier Transforms of hcode[n], sc[n] and hL[n],
respectively. Eq. (11.34) allows one to separate the different effects of the GNSS code,
the subcarrier and the coherent integration time. Figures (11.4) and (11.5) show the
different factors noted in Eq. (11.34) as a function of the frequency. The Fourier Trans-
form of the code behaves like a Gaussian process since each value of Hcode(f) is given by
the combination of several samples of a pseudo-random sequence. Thus Hcode(f) repre-
sents random-like oscillations and its impact on the CW can change drastically when two
different codes are used. The spectrum of the subcarrier presented in Figure 11.4 has a
sinc-like shape and refers to a BPSK modulation. In this case it is clear that the interfer-
ence is most disturbing when its frequency equals the frequency of the useful signal and
|Sc(f)| is maximized. As L → +∞, HL(f) tends to an impulse train and spectral lines at
the frequency multiple of 1/(NcOvTs) clearly appear. Since L is finite each spectral line
of HL(f) is convolved with a sinc function whose main support narrows as L increases.
Thus, by using long coherent integration time and consequently large L, the acquisition
process is more robust with respect to an interference whose frequency is not a multiple
of the inverse of the code period NcOvTs.
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11.3 Simulations

This section presents simulation results for supporting the model discussed in Section
11.1. The acquisition process described in Section 3.1 has been simulated by employing
the system setup with the parameters listed in Table 11.1.
The distributions of the decision cell in the presence and absence of a useful signal are

Table 11.1. Simulation parameters

Sampling frequency fs = 4.092 MHz
Intermediate frequency fIF = 38.5 KHz

Number of samples per chip Ov = 4 samples/chip
Modulation BPSK

C/N0 40 dB-Hz
J/N 10 dB

Receiver Bandwidth BIF = fs/2
Code length Nc = 1023

Number of code periods L = 4

reported in Figures 11.6 and 11.7. Notice that the theoretical model fits the distributions
obtained by Monte Carlo simulations proving the validity of the previous analysis.

ROCs have been also derived, either by simulations or by using Eqs. (11.19) and
(11.26).
Curves are reported by using a linear scale and the ROCs are evaluated for values of false
alarm probability on the whole range [0,1]. Even if in practice the false alarm probability
should be set to a value close to zero, the aim of these simulations was to validate the
theoretical model provided in previous sections for every false alarm probability, and
thus the whole range [0,1] has been investigated. The linear scale has been adopted since
no appreciable representation enhancement was found by using the logarithmic scale. In
Figure 11.8, two cases have been investigated: the first one considers the CW frequency
equal to the useful signal one, whereas in the second one, the two frequencies differ
by 500 Hz. As expected, the CW impact is greater in the first case than in the second
one. Furthermore, in the case in which the interference is coherent to the GNSS signal,
the system performance is at its lowest. ROCs estimated by Monte Carlo simulations
coincide with the theoretical model, supporting the validity of both Eqs. (11.19) and
(11.26).
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in the presence of useful signal. The theoretical model fits Monte Carlo simulations.
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Chapter 12

CWI mitigation

12.1 General Overview

An advanced receiver should be able to operate even in the presence of strong interfer-
ence. This kind of receiver should be equipped with additional units able to detect and,
under certain conditions, mitigate the impact of interfering signals. When present, these
units are generally placed before the traditional blocks of a GNSS receiver: only when the
interfering components are eliminated the received signal should be used to determine
the user’s position. If the detection/mitigation units are digital devices, then they are
placed after the frontend and are fed by the digitalized received signal. In Figure 12.1 the
scheme of a GNSS receiver equipped with digital detection/mitigation units is shown.
One of the cases in which mitigation units can effectively remove the interfering signal
is that CWI. In the frequency domain these signals are almost orthogonal with respect to
the GNSS signals, thus they can be removed from the useful signal with limited distor-
tion.
For this kind of disturbing signals the notch filter has proven to be an efficient mitiga-
tion technique, for its capability of attenuating the CWI and essentially preserving the
useful signal PSD. In the literature the notch filter has been widely used for interference
removal [92] in different contexts, such as biomedical applications [93] and DSSS com-
munications [25, 94, 95] to cite but a few.
The most important classes of notch filter-based CWI excision algorithms are:

• adaptive transversal FIR filters in time domain [96, 97],

• FFT-based FIR filters [97, 98],

• constrained poles and zeros IIR notch filters [99–101],

• unconstrained zeros IIR notch filters [95, 102].
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Figure 12.1. High-level scheme of a GNSS receiver equipped with interfering detec-
tion/mitigation units. In this context digital detection/mitigation units are considered
and additional devices are added between the frontend and the traditional receiver units.

The first class of notch filters is based on a FIR filter whose taps are iteratively evaluated
by different adaptive algorithms, such as the direct inversion matrix method proposed
by [97] and the Least Mean Square (LMS) algorithm of [96]. FIR notch filters do not have
stability problems but are computationally complex since the number of taps, required
for a thin notch, is relatively high, involving a high number of additions/multiplications.
FFT-based FIR filters exploit the efficiency of the FFT algorithm in order to evaluate a
spectral estimation of the signal components. When a frequency component passes a
fixed threshold a CWI is considered detected at this frequency and it is then excised. Dif-
ferent criteria for fixing the detection threshold are discussed in [98]. After frequency ex-
cision the signal is IFFT-transformed into the time domain. Such a technique corresponds
to circular filtering, and the equivalent impulse response presents notches corresponding
to the canceled components. This method presents the advantage of being able to deal
with multiple CWI.
A widely spread class of notch filters is represented by Infinite Impulse Response (IIR)
filters with constrained poles and zeros [103]. The diffusion of such filters is essentially
due to their low computational requirements, to their efficient implementation and to the
low number of parameters to be adapted. For these notch filters the zeros are constrained
on the unit circle and the poles lay on the same radial line of the zeros. Tracking perfor-
mance and convergence properties have been extensively studied [99, 104] however, due
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to the IIR nature of these notch filters, several issues still remain unexplored [99].
In the GNSS context, the use of IIR notch filters has been recently proposed [25, 95] for
interference removal. However some simplistic hypotheses are often assumed. For exam-
ple the problem of interference detection is usually not addressed and one CW presence
at the time is often assumed. The presence of more than one CWI is rarely considered
and the analysis is often limited to one complex interfering signal.
This chapter deals with design of an efficient CWI detection/mitigation technique based
on adaptive IIR notch filters. In particular the problem of determining the number of dis-
turbing CWIs that affect the received signals and of activating an appropriate notch filter
for their removal is thoroughly analyzed. This problem has been rarely treated in liter-
ature and is the focus of this chapter. The proposed detection algorithm is based on the
removal of the constraint on the location of the filter zeros whose amplitude is adjusted
by an adaptive unit. The zeros amplitude is adjusted on the basis of the Jammer to Noise
ratio (J/N ) and thus it can be used as a metric for the detection of the disturbing signals.
At first the case of a single complex interference is considered and the one-pole notch
filter is introduced. A complex interfering signal implies the presence of a single spectral
line that can be easily eliminated by a single pole notch filter. Thus the behavior of the
one-pole notch filter is examined. The system proposed by [95] has been used as start-
ing point. The notch bandwidth and depth (transfer function maximum and minimum
values) are analytically derived and some considerations are made. Another novel part
presented here is the evaluation of the Wiener solution related to the notch approach, in
order to analyze the asymptotical behavior of the filter. In fact, in [95] only an approx-
imated solution is given, since the autoregressive (AR) part of the filter is neglected for
simplicity. A complete Wiener solution that is an extended version with respect to the
one reported in [95] is provided, and it is worth mentioning that such a solution is valid
for every pole contraction factor that regulates the width of the notch. Simulation results
prove the exactness of the formula, providing curves that coincides with the theoretical
ones.
The results relative to the one-pole notch filter are extended to the case of a single real
CWI. This kind of signal presents two spectral lines in correspondence of the frequencies
fi and−fi, and thus two zeros are necessary to mitigate its impact. In this case a two-pole
notch filter is required. This kind of filter is characterized by two complex conjugate ze-
ros, z0 and z∗0 , that are continuously adapted in order to track the real CWI. The impact of
the two zeros on the useful GNSS signal is partially compensated by the presence of two
complex conjugate poles that have the same phase of z0 and z∗0 , and modulus contracted
by a factor kα, the pole contraction factor. The zeros are progressively adapted by a LMS
algorithm that minimizes the notch filter output power. In fact the CWI is expected to
carry high power concentrated at the frequencies fi and −fi and the minimization of the
output power is obtained when two deep notches are placed in correspondence of those
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frequencies. Thus the minimization of the output power involves the interfering cancel-
lation. The characteristic of the two-pole notch filter, the adaptive criterion employed for
tracking the real interferer and the loss introduced on the useful GNSS signal are studied.
When the interferer is not present, the two-pole notch filter can introduce degradation in
the GNSS signal and should be deactivated. Thus a detection algorithm is proposed and
coupled with the two-pole notch filter. The proposed detection criterion is simple and
requires a very low computational load. The detection unit is essentially based on the
convergence properties of z0. In fact, in absence of interference, the minimization of the
output power is obtained by enlarging the notch and removing as much noise power as
possible. The LMS can enlarge the notch because the modulus of the zeros is not con-
strained to unity and thus, in absence of interferer, z0 and z∗0 tend to zero. Absence of
interference is declared when the modulus of the zeros is below a fixed threshold: in this
case the notch filter is deactivated. In this way the two-pole notch filter is able to au-
tonomously detect the interfering presence and to initiate its activation or deactivation.
Finally a multi-pole notch filter, able to deal with multiple CWI is proposed. This algo-
rithm is obtained by cascading two or more two-pole notch filters. When more than one
CWI is present, the first two-pole notch filter in the chain mitigates the most powerful dis-
turbing signal, whereas the other filters remove the other interferers with progressively
decreasing power. The detection units coupled with each notch filter in the chain allow
the activation of only a number of filters equal to the number of interfering signals, thus
minimizing the loss on the useful GNSS signal.

12.2 One-pole notch filter

The one-pole notch filter is designed for filtering a complex sinusoidal interference that
can be modeled as

i[n] = AINT exp {j2πfiTsn + jφi} (12.1)

where:

• n is the discrete-time index,

• AINT is the amplitude of the complex sinusoid,

• fi and φi are the interference frequency and phase,

• Ts is the sampling interval corresponding to the sampling frequency fs = 1
Ts

.

Considering expression (12.1), one notices that the interference corresponds to only one
point on the unit circle of the z-plane, thus only one zero (z = z0) is required to mitigate
the interfering spectral line corresponding to the interference frequency. At the same
time a pole in z = kαz0 is required to compensate for the effects of the zero, where the
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parameter kα allows the regulation of the notch bandwidth. For stability reasons kα < 1.
Therefore, the transfer function of the filter is given by

Hn(z) =
1− z0z

−1

1− kαz0z−1
. (12.2)

The structure of the filter, shown in Figure 12.2, takes the following form where r[n] is

M A
b l o c k

r e a c t i o n
b l o c k

a d a p t i v e
b l o c k

A R  b l o c k

r [n ] x  [n ]
i

x  [n ]
f

Figure 12.2. Notch filter structure: r[n] is the digital input signal, xi[n] is the signal after
the AR block and xf [n] is the final filtered signal.

the input signal (10.1):
z[n] = y[n] + η[n] + i[n].

For this analysis the contribution of the GNSS signal, y[n], will be neglected due to its
weakness with respect to the interference signal.
r[n] is filtered by an Autoregressive Moving Average (ARMA) structure composed of
three blocks: the AR, the Moving Average (MA) and the adaptive block. The MA and AR
transfer functions are given by

HMA(z) = 1− z0z
−1 (12.3)

and
HAR(z) =

1
1− kαz0z−1

. (12.4)

12.2.1 The adaptive criterion

The core of the notch filter is represented by the adaptive block that tracks the interference
frequency and adjusts the filter parameters in order to achieve the minimization of a
specific cost function. In this section the algorithm reported in [95] is discussed and the
adaptive criterion is determined. In particular the only free parameters of the one-pole
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notch filter are the phase and the absolute value of the zero z0. The adaptive technique
chosen in [95] is a normalized LMS [105] technique that iteratively minimizes the cost
function

J [n] = E
{
|xf [n]|2

}
(12.5)

where xf [n] is the output of the notch filter. The minimization is performed with respect
to the complex parameter z0 using the iterative rule

z0[n + 1] = z0[n]− µ[n]g (J [n]) (12.6)

where g (J [n]) is the stochastic gradient of the cost function J [n],

g (J [n]) = ∇z0

{
|xf [n]|2

}
(12.7)

and µ[n] is the algorithm step, set to

µ[n] =
δ

Exi[n]
. (12.8)

Exi[n] is an estimate of E
[
|xi[n]|2

]
and δ is the non-normalized LMS algorithm step. xi[n]

is the output of the AR block as shown in Figure 12.2. δ controls the convergence prop-
erties of the algorithm and it should be accurately chosen in order to guarantee fast con-
vergence and reduced misadjustment. Since xf [n] is a complex signal and z0 is a complex
variable, the complex generalized derivative rules should be used in order to correctly
evaluate the stochastic gradient (12.7) as

∇f(x) =
∂f

∂Re{x} + j
∂f

∂Im{x} = 2
∂f

∂x∗
. (12.9)

Further details on the complex generalized derivative rules can be found in [105]. Using
this definition it is possible to compute

g (J [n]) = −4xf [n](x∗i [n− 1]). (12.10)

This LMS algorithm has been implemented and tested in MATLAB, proving the validity
of the notch filter criterion. In Figure 12.3 an example of transfer function of the imple-
mented notch filter is shown: a sinusoid hidden in noise with J/N = 6 dB is isolated
and canceled by the frequency response of the filter. The transfer function is obtained in
steady state conditions. It can be seen that the width of the rejection band is regulated
by the factor kα: the more kα is close to 1 the more the rejection band narrows; however
values of kα too close to 1 cannot be employed for stability and convergence reasons.
In Figure 12.4 and Figure 12.5 the spectrum of the noisy input signal and of the filtered
output signal are reported. It is noted how the interference peak has been eliminated.
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Figure 12.3. Transfer function of the notch filter, kα = 0.9 and kα = 0.7.
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Figure 12.4. Normalized spectrum of the input signal [dB]. The signal power has
been normalized to unity.
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Figure 12.5. Normalized spectrum of the filtered signal [dB]. The signal power
has been normalized to unity.

12.2.2 Wiener solution

As already pointed out the LMS algorithm tries to minimize the cost function

J [n] = E
{|xf [n]|2}

following the opposite direction of the stochastic gradient. However the LMS cannot
exactly find the optimal z0 that minimizes J [n], for the intrinsic nature of the algorithm
and for a residual misadjustment due to the adaption step of the method. The z0 that
exactly minimizes J [n] is called Wiener solution and it is in general not easy to evaluate,
either because in a real context the expectation present in the cost function requires a
delicate estimation process or because the relevant computational load does not allow
real time applications. In some cases however it is possible to theoretically evaluate the
Wiener solution. This is extremely useful for studying the asymptotical performance
of the LMS algorithm; in fact it is possible to show that in steady state conditions the
LMS solution tends to the Wiener one. Therefore the complete Wiener solution for the
one-pole notch filter is analyzed here, starting from the preliminary and approximated
results of [95]. The explicit evaluation of the Wiener solution is reported and the results
are compared with simulations.
The Wiener solution for z0 is obtained by imposing that the gradient of the cost function
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J [n] be zero, namely
∇J [n] = E[g(J [n])] = 0, (12.11)

which corresponds to solving the following equation:

E{xf [n]x∗i [n− 1]} = E{(xi[n]− z0xi[n− 1])x∗i [n− 1]}
= E{xi[n]x∗i [n− 1]} − z0E{|xi[n− 1]|2} = 0.

(12.12)

The Wiener solution given in [95] is approximated in the sense that is obtained by ne-
glecting the AR part of the notch filter. In fact, in [95] the signal xi[n] corresponds to the
input signal r[n] and thus Eq. (12.12) reduces to

E{r[n]r∗[n− 1]} − z0E{|r[n− 1]|2} = 0 (12.13)

Substituting r[n] = η[n] + AINT exp{j2πfiTsn + jφi} one obtains

E{r[n]r∗[n− 1]} = E{η[n]η∗[n− 1]}+A2
INT exp{j2πfiTs} = A2

INT exp{j2πfiTs} (12.14)

and

E{|r[n− 1]|2} = E{|r[n]|2}
= E{(η[n] + AINT exp{j2πfiTsn + jφi})(η∗[n] + AINT exp{−j2πfiTsn− jφi})}
= E{η[n]η∗[n]}+ A2

INT = σ2
IF + A2

INT

(12.15)

where σ2
IF is the variance of the input noise. Substituting Eqs. (12.14) and (12.15) into Eq.

(12.13) yields
A2

INT exp{j2πfiTs} − z0σ
2
IF − z0A

2
INT = 0 (12.16)

from which

z0 =
A2

INT exp{j2πfiTs}
σ2

IF + A2
INT

=
A2

INT /σ2
IF

A2
INT /σ2

IF + 1
exp{j2πfiTs}. (12.17)

It is noted that this solution is independent on the value of kα. As it will be shown
below, the experimental results are not in agreement with this. In Figure 12.6 the Wiener
solution according to [95] is shown.
In order to obtain the complete Wiener solution the autoregressive part of the filter cannot
be neglected, and therefore the approximation xi[n] = r[n] is no longer valid. So the
expression for xi[n] as function of the components of r[n] has to be evaluated. Therefore,
the impulse response of the AR block for Eq. (12.4) has to be derived as

hAR[n] =
+∞∑

i=0

(kαz0)iδ[n− i]. (12.18)
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Figure 12.6. Wiener solution according to [95].

In this way

xi[n] = r[n] ∗ hAR[n] =
+∞∑

i=0

(kαz0)iη[n− i] + AINT

+∞∑

i=0

(kαz0)i exp{j2πfiTs(n− i) + jφi}

=
+∞∑

i=0

(kαz0)iη[n− i] +
AINT exp {j2πfiTsn + jφi}

1− kαz0 exp{−j2πfiTs}
(12.19)

Using this result it is now possible to evaluate the terms in Eq. (12.12):

E{|xi[n− 1]|2} =
+∞∑

i=0

+∞∑

k=0

(kαz0)i(kαz∗0)
kE{η[n− i− 1]η∗[n− k − 1]}

+
AINT exp {j2πfiTs(n− 1) + jφi}

1− kαz0 exp{−j2πfiTs}
AINT exp {−j2πfiTs(n− 1)− jφi}

1− kαz∗0 exp{j2πfiTs}

=
+∞∑

i=0

(
k2

α|z0|2
)i

σ2
IF +

A2
INT

1− 2kαRe{z0 exp{−j2πfiTs}}+ k2
α|z0|2

=
σ2

IF

1− k2
α|z0|2 +

A2
INT

1− 2kαRe{z0 exp{−j2πfiTs}}+ k2
α|z0|2

(12.20)
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E{xi[n]x∗i [n− 1]} =
+∞∑

i=0

+∞∑

k=0

(kαz0)i(kαz∗0)
kE{η[n− i]η∗[n− 1− k]}

+
AINT exp {j2πfiTsn + φi}
1− kαz0 exp{−j2πfiTs}

AINT exp {−j2πfi(n− 1)Ts − jφi}
1− kαz∗0 exp{j2πfiTs}

=
+∞∑

i=1

(kαz0)
i (kαz∗0)

i−1 σ2
IF +

A2
INT exp{j2πfiTs}

1− 2kαRe{z0 exp{−j2πfiTs}}+ k2
α|z0|2

=
kαz0σ

2
IF

1− (k2
α|z0|2) +

A2
INT exp{j2πfiTs}

1− 2kαRe{z0 exp{−j2πfiTs}}+ k2
α|z0|2

(12.21)

In Eqs. (12.20) and (12.21) the cross-components between noise and complex exponential
have not been considered, since they are statistically independent and the noise has zero
mean.
Substituting expressions (12.20) and (12.21) into Eq. (12.12) yields:

z0σ
2
IF (kα − 1)

1− (k2
α|z0|2) +

A2
INT [exp{j2πfiTs} − z0]

1− 2kαRe{z0 exp{−j2πfiTs}}+ k2
α|z0|2 = 0 (12.22)

Eq. (12.22) cannot be easily solved directly, however some simplifications can be made by
imposing that the phase of z0 be 2πfiTs. This assumption is justified by the fact that the
phase of z0 does not affect the power of the noise component at the output of the notch
filter, because a change in the phase only changes the rejection band location but not the
overall shape of the transfer function, that results circularly shifted. Since the remaining
noise power is always the same, one can choose the phase that minimizes the exponential
component power and that corresponds to 2πfiTs. Using the condition

z0 = ρ exp{j2πfiTs}

and, applying some simplifications, Eq. (12.22) becomes

ρσ2
IF (kα − 1)
1− k2

αρ2
+

A2
INT (1− ρ)

1− 2kαρ + k2
αρ2

= 0

ρσ2
IF (kα − 1)
1 + kαρ

+
A2

INT (1− ρ)
1− kαρ

= 0,

which leads to the following second degree equation:

ρ(1− kαρ)− A2
INT

σ2
IF (1− kα)

(1− ρ)(1 + kαρ) = 0. (12.23)

This equation has two solutions but only one is acceptable for the condition ρ ≥ 0, namely

ρ =
−γ(1− kα)− 1 +

√
[γ(1− kα) + 1]2 + 4kαγ(γ − 1)

2kα(γ − 1)
(12.24)
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Figure 12.7. Notch filter Wiener solution: the absolute value of the notch filter zero z0 that
minimizes the output power is reported as function of J/N for different values of kα. The
label “calmettes” refers to the solution reported in [95] that is independent from kα.

with γ = A2
INT

σ2
IF (1−kα)

.

In Figure 12.7 the Wiener solution is represented. It is noted that, contrary to the
solution provided in [95], this solution depends on kα, so curves obtained for different
values of kα are shown. The solution provided in [95] is also depicted; it is observed that
the solution provided in [95] is the limit solution for kα tending to zero, that is when the
autoregressive block degenerates to a constant. In Section 12.2.4 the matching between
this Wiener solution and the experimental curves will be shown.

12.2.3 Bandwidth and attenuation

In this section some of the one-pole notch filter properties are analyzed, and more specif-
ically the shape of its transfer function, the minimum, the maximum, and its bandwidth,
namely

z0 = ρ exp{jω0}

and

z−1 · z0 = exp{−jω}ρ exp{jω0} = ρ exp{j(ω0 − ω)} = ρ exp{j∆ω}.
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12.2 – One-pole notch filter

The minimum and maximum values of |Hn(z)|2 on the unit circle, are calculated by eval-
uating the derivative of the function and finding where it is equal to zero, more specifi-
cally, by solving

d|Hn(exp{jω})|2
dω

= 0 (12.25)

with
Hn(exp{jω}) =

1− ρ exp{jω0} exp{−jω}
1− ρkα exp{jω0} exp{−jω}

In this way

|Hn(exp{jω})|2 =
1− 2ρ cos(ω0 − ω) + ρ2

1− 2ρkα cos(ω0 − ω) + ρ2k2
α

. (12.26)

Performing the derivative yields

d|Hn(exp{jω})|2
dω

=

=
2ρ sin(ω0 − ω)(1− 2ρkα cos(ω0 − ω) + ρ2k2

α)− 2ρkα sin(ω0 − ω)(1− 2ρ cos(ω0 − ω) + ρ2)
(1− 2ρkα cos(ω0 − ω) + ρ2k2

α)2

= 0
(12.27)

that is

2ρ sin(ω0 − ω)(1− 2ρkα cos(ω0 − ω) + ρ2k2
α − kα + 2ρkα cos(ω0 − ω)− ρ2kα)

= 2ρ sin(ω0 − ω)(1 + ρ2k2
α − kα − ρ2kα) = 0

(12.28)

and finally
sin(ω0 − ω) = 0

Therefore the solutions are ω = ω0 and ω = ω0 + π, which give the positions of the max-
imum and minimum values. In conclusion the minimum of |Hn(z)|2 is in z = exp{jω0},
giving an attenuation of

At = |Hn(z = exp{jω0})| =
∣∣∣∣

1− ρ

1− kαρ

∣∣∣∣

and the maximum is in z = exp{j(ω0 + π)}, giving

M = |Hn(z = exp{jω0 + jπ})| =
∣∣∣∣

1 + ρ

1 + kαρ

∣∣∣∣ .

Figures 12.8 and 12.9 show the evolution of the maximum and minimum values of the
notch filter transfer function as a function of kα. It can be noted that At increases with kα.
On the contrary, M decreases with kα and tends to 1 when kα tends to 1. In conclusion,
lower values of kα mean both a deeper notch and a higher M . Since the filter distortion
increases as a function of M as the latter takes on values larger than 1, the choice of kα

191



12 – CWI mitigation

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

kα

A

Figure 12.8. |Hn(z)| minimum vs kα, ρ = 0.985.
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Figure 12.9. |Hn(z)| maximum vs kα,ρ = 0.985.
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12.2 – One-pole notch filter

requires a tradeoff between notch depth and introduced distortion.

Now the 3 dB bandwidth, B3dB , is calculated and again a comparison with the solution
given in [95] is provided. In order to calculate the 3 dB bandwidth, the equation

|Hn (jω)|2 =
1
2
M (12.29)

has to be solved. The squared module of |Hn(z)| is given by

|Hn(z)|2 =
∣∣∣∣

1− z0z
−1

1− kαz0z−1

∣∣∣∣
2

=
1 + ρ2 − 2ρ cos(∆ω)

1 + ρ2k2
α − 2ρkα cos(∆ω)

(12.30)

and, after some manipulations, it is possible to rewrite Eq. (12.29) as

cos(∆ω) =
.5M + .5Mk2

αρ2 − 1− ρ2

−2ρ + Mkαρ
. (12.31)

Given the shape of the notch filter and the proximity of the two frequencies laying at a
distance B3dB , the approximation ω ≈ ω0, and therefore ∆ω ≈ 0, is valid. This leads to
the approximation cos(∆ω) ≈ 1 − 1

2∆2
ω. Substituting these results into Eq. (12.31), the

value of ∆2
ω can be obtained as

∆2
ω = 2 +

2 + 2ρ2 −M −Mk2
αρ2

ρ(Mkα − 2)
. (12.32)

This equation has two solutions ∆ω,1 and ∆ω,2, with the same absolute value and oppo-
site sign, so ∆ω,1 = −∆ω,2 = ∆ω and ∆ω,1 −∆ω,2 = 2∆ω.
Now,

∆ω = ω0 − ω = ω0 − 2πfTs

from which

f =
ω0 −∆ω

2πTs

and equivalently

f1,2 =
ω0 −∆ω,1,2

2πTs
.

B3dB can be obtained as the distance between the two frequencies solution of Eq. (12.32)
as

B3dB = f1 − f2 =
ω0 −∆ω,1

2πTs
− ω0 −∆ω,2

2πTs
=

∆ω,2 −∆ω,1

2π
=

∆ω

πTs
(12.33)

and finally

B3dB =
1

πTs

√
2 +

2 + 2ρ2 −M −Mk2
αρ2

ρ(Mkα − 2)
. (12.34)
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Figure 12.10 shows the shape of B3dB versus kα for different values of ρ. It is noted that
for ρ = 1 the curve is a straight line. In fact Eq. (12.34) becomes:

B1 =
|kα − 1|

πTs
(12.35)

This is the approximated formula for the 3 dB bandwidth given by Calmettes et al in an
earlier work [102], where the modulus of z0 was fixed to one.
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Figure 12.10. Normalized 3 dB bandwidth vs kα, for different values of ρ. The 3 dB
bandwidth is normalized with respect to the sampling frequency.

12.2.4 Performance analysis and test on real data

The performance of the filter has been tested imposing the amplitude and phase of the
interferer, and monitoring outputs like the filter transfer function and the position of the
zeros. Some of the most interesting results are reported below. The figures have been
obtained in steady state conditions, and with AINT = 10, J/N = 6 dB, kα = 0.9 and
δ = 0.07; moreover the frequencies have been normalized with respect to the sampling
frequency fs. Figure 12.11 shows the transfer function of the filter, together with the line
indicating the interfering frequency fi, proving that the filter has correctly detected the
complex sinusoid. Figure 12.12 shows how the modulus of z0 settles around one, prov-
ing the convergence of the algorithm. Some results of the comparison of the experimental
curves and the Wiener solution are also provided. The J/N has been made varying in
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Figure 12.11. Transfer function of the notch filter, kα = 0.9 and δ = 0.07.
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Figure 12.12. Convergence of modulus of the zero z0, kα = 0.9 and δ = 0.07.

the range (−15 dB, 15 dB), the total power of the signal has been held constant and kα
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has been successively fixed to 0.7, 0.8 and 0.9. Some 4000 iterations have been performed
and the steady state condition maintained. Figure 12.13 shows how the modulus of the z0
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Figure 12.13. LMS and Wiener solution for different values of kα and comparison be-
tween theoretical and simulation results.

changes with the varying of the J/N . It can be seen that the curves change for different
kα. Moreover the curves have been superposed to the Wiener solutions: it can be im-
mediately noted that the Wiener solutions provided with the complete analysis are very
close to the ones obtained by simulations.

The one-pole notch filter has been tested on real GPS data, collected with the Nord-
Nav R30 receiver [1]. Such data contain a narrowband interference. The interference
was generated by using the analog signal generator Agilent E4428C directly connected
to an antenna and irradiating in the proximity of the receiver antenna. The experimental
setup adopted for collecting the GPS data corrupted by CWI is depicted in Figure 12.14:
the Agilent E4428C signal generator was used to produce the CWI and the GPS signal
corrupted by the interference was collected by using the NordNav frontend. The GPS
signal was stored and post-processed by using MATLAB. Since the input signal is real,
with a real interfering, the one-pole notch filter is unable to directly deal with this kind of
signal. One way to successfully use it is to apply an Hilbert transform at the input signal
before the filtering. The procedure adopted for processing the collected GPS samples is
depicted in Figure 12.15: the Hilbert transform was used in order to produce a complex
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Figure 12.14. Scheme of experimental setup used for collecting and processing the
GPS data corrupted by CWI.

signal that can be processed by the one-pole notch filter. The one-pole notch filter has
then been used to excise the CWI from the complex signal that was then re-transformed
into a real sequence. This sequence was then fed into the acquisition block.
In Figure 12.16 the power spectral densities of the input signal and of the signal pro-
cessed by the one-pole notch filter, according to the scheme reported in Figure 12.15, are
depicted. The one-pole notch filter correctly determines the interference frequency effec-
tively excising the CWI. The effectiveness of the one-pole notch filter is still more evident
when considering Figures 12.17 and 12.18, which provide the CAFs evaluated on the un-
filtered and filtered GPS signal. Without a mitigation unit, it is not possible to detect
the signal peak whereas, as it clearly emerges from Figure 12.18, the one-pole notch fil-
ter effectively removes the CWI allowing a correct and more reliable signal acquisition.
Both search spaces have been evaluated by using a coherent integration time of 1 ms and
K = 3 non-coherent integrations.
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Figure 12.15. Procedure adopted for processing the GPS samples. An Hilbert
transform was used in order to produce a complex signal that can be processed
by the one-pole notch filter.
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Figure 12.16. PSD of the input and output signals.

Figure 12.17. CAF obtained by processing the GPS signal corrupted by the CWI. Without
mitigation unit is not possible to detect the signal peak. The search space has been evalu-
ated by using a coherent integration time of 1 ms and K = 3 non-coherent integrations.
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Figure 12.18. CAF obtained by processing the GPS signal corrupted by the CWI after
interference mitigation. The one-pole notch filter effectively removes the CWI and the
signal peak emerges from the search space. The search space has been evaluated by using
a coherent integration time of 1 ms and K = 3 non-coherent integrations.
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12.3 Two-pole notch filter

The case of a complex sinusoidal interference is extremely interesting for some prelimi-
nary analysis but with limited applicability. In fact the signal at the output of the GNSS
frontend is real and thus some additional devices, as the Hilbert transform employed in
Section 12.2.4, are required in order to produce a complex CWI. For these reasons the
one-pole notch filter has been modified in order to directly deal with real CWIs.
The presence of a real CWI means that two spectral lines have to be mitigated, thus re-
quiring two zeros in the transfer function. The structure of the two-pole notch filter is
similar to the one reported for the one-pole filter: an ARMA structure composed of three
blocks, namely the AR, the MA and the adaptive unit (see Figure 12.2). The filter is de-
signed for filtering the real sinusoidal interference as

i[n] = AINT cos(2πfinTs + φi) (12.36)

where:

• AINT is the interfering signal amplitude,

• fi and φi are the frequency and phase of the continuous wave,

• Ts the is the sampling interval,

• n is the time index.

The MA transfer function is then given by

HMA(z) = (1− z0z
−1)(1− z∗0z

−1) = 1− 2Re{z0}z−1 + |z0|2z−2. (12.37)

The AR block is constrained to compensate for the effects of the MA block other than the
zeros frequencies and its transfer function is given by

HAR(z) =
1

(1− kαz0z−1)(1− kαz∗0z−1)
=

1
1− 2kαRe{z0}z−1 + k2

α|z0|2z−2
. (12.38)

In this way the transfer function of the whole filter is given by

Hn(z) =
1− 2Re{z0}z−1 + |z0|2z−2

1− 2kαRe{z0}z−1 + k2
α|z0|2z−2

. (12.39)

The same LMS algorithm used for the complex case and consisting in the minimization of
the cost function E{|xf [n]|2}with respect to the complex parameter z0 has been adopted.
In this case, the expression of the stochastic gradient is given by

g(J [n]) = 4xf [n](z0xi[n− 2]− xi[n− 1]). (12.40)
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Figure 12.19. Magnitude of the adjusted parameter z0 through the LMS convergence process.

This LMS algorithm, according to expressions (12.6) and (12.40) has been implemented
and tested in MATLAB. The convergence of the adapted parameter z0 is shown in Figure
12.19 where the magnitude of the adjusted parameter z0 is reported. The magnitude of z0

converges to a value close to unity that creates two zeros in the transfer function of the fil-
ter corresponding to the frequencies ±fi. In Figure 12.20 an example of transfer function
of the implemented notch filter is reported where the system has reached the steady state
condition and the interfering sinusoid is isolated and canceled by the frequency response
of the filter. The J/N was equal to 0 dB.

12.3.1 The detection unit

In Figure 12.19 the convergence process of the modulus of the notch filter zero has been
reported. In this case the amplitude converges to a value that is close to unity. This is due
to the fact that a strong interference is present and thus the minimization of the power
of the notch filter output is achieved by narrowing the notch and removing as much
interfering power as possible. However as the interfering power decreases cost function
minimum is no longer achieved by removing only the interference but also by attenuating
a part of the noise and GNSS signal components. In this way the adaptive algorithm
chooses a wider notch that is able to capture not only the interference but also part of
the noise and signal power. Thus the amplitude of the notch filter zeros is extremely
dependent on the interfering power. In Figure 12.21 the convergence of the z0 amplitude
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Figure 12.20. Transfer function of the notch filter, kα = 0.9, steady state conditions.

is reported for different values of J/N . The zero amplitude is strongly dependent on
the interfering power and thus it can be used for detection purposes. The proposed
detection algorithm consists in verifying if the mean value of the amplitude of z0 passes
a fixed threshold. If that happens it means that the notch filter is tracking a CWI and
thus its output has to be used for positioning operation. Otherwise the unfiltered signal
has to be employed. In Figure 12.22 the mean magnitude of z0 has been reported as a
function of J/N for two different values of the pole contraction factor kα. The detection
threshold can be fixed by choosing a J/N = L that may however be considered harmful
for the GNSS receiver. By using Figure 12.22 the threshold T is determined as the value
to which the notch filter zero converges when a J/N of L is present. In this way the notch
filter is activated only if an interference characterized by J/N > L is present. In Figure
12.23 the scheme of the adaptive notch filter coupled with the interfering detection unit
is reported. The notch filter is always active but the detection unit decides if the GNSS
receiver should use the filtered signal or not. In Figure 12.24 the detection algorithm is
better described: the subsequent values of z0 produced by the adaptive unit of the notch
filter are low-pass filtered, obtaining an estimation of its mean. Then a simple test verifies
the condition |ẑ0| > T , where ẑ0 is the estimation of the mean of z0 and T is the detection
threshold. Then the detection unit decides if the filtered signal is better than the original
one according to the test result.
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Figure 12.21. Convergence characteristics of the amplitude of the notch filter
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Figure 12.22. Mean magnitude of the adjusted parameter z0: threshold setting.
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Figure 12.23. Scheme of the adaptive notch filter coupled with the detection unit.
The notch filter is always active but the detection unit decides if it is better to use the
original or the filtered signal.
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Figure 12.24. Detection algorithm based on the convergence characteristics of the
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12.4 Multi-pole notch filter

When the disturbing signal is given by the sum of several CWIs, namely

i[n] =
H∑

k=1

AINT,k cos (2πfi,knTs + φi,k) (12.41)

a multi-pole notch filter is required. In Eq. (12.41)

• AINT,k is the amplitude of the kth CWI,

• fi,k and φi,k are the frequency and phase of the kth component,

• Ts the is the sampling interval,

• n is the time index.

A multi-pole notch filter can be obtained by employing several two-pole notch filters in
cascade, one for each interfering signal. The first two-pole notch filter in the chain mit-
igates the most powerful disturbing signal, whereas the other filters remove the other
interferers with progressively decreasing power. This solution is not optimal in terms
of performance, since the minimization of the output signal power is not achieved glob-
ally but by using different stages that work separately. The design of a global adaptive
algorithm results very complex and it would not exploit the detection capability of the
algorithm proposed on the previous section. The solution of cascading two-pole notch
filters coupled with their detection unit is very simple to implement and allows one to
activate only the filters that are strictly necessary for removing the interfering signal. In
fact, if the number of interferences is less than the number of cells in the chain, the notch
filters in excess would distort the useful GNSS signal by removing portions of its spec-
trum. An easy and efficient solution of the multi-pole notch filter is presented in Figure
12.25. This implementation exploits the detection capabilities of the algorithm proposed
above; the excess notch filters are ignored when the interferences are no longer detected
in the filtering chain.

12.4.1 Multi-pole notch filter performance

In order to determine the multi-pole notch filters performance, different tests have been
performed using both real and simulated data. In this section the test performed by using
real GPS samples collected using the NordNav frontend is described. In Figure 12.26 the
experimental setup used for testing the multi-pole notch filter is shown. Three CWIs have
been simulated and added to the GPS samples collected by the NordNav frontend. Then
the resulting signal has been fed to the multi-pole notch filter. In Figure 12.27 the PSD
of the signal that enters the multi-pole notch filter is shown. The detection units coupled
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Figure 12.25. Scheme of the multi-pole notch filter.

with the two-pole notch filters correctly activate three mitigation units that progressively
remove the three disturbing signals. In order to show how the multi-pole notch filter op-
erates, the outputs of the three active cells have been monitored and their PSDs reported
in Figure 12.28. As already stated, the filter cancels the interferers in power order, accord-
ingly to the principle of the minimum output energy. The first peak to be attenuated is
the most powerful, then the one with medium power and finally the weakest one. The
fact that the third peak is quite weak is reflected in the third notch filter transfer func-
tion shown in Figure 12.29: the notch is quite broad and not specially deep; the adaptive
algorithm is trying to remove not only the interfering power but also the noise and the
useful signal one. The performed tests show the feasibility of the method and its good
performances. The detection units activate the correct number of two-pole notch filters
and the CW interferences are efficiently removed.
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Figure 12.26. Experimental setup used for testing the multi-pole notch filter.
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Figure 12.27. Resulting power spectral density of the input signal of the multi-pole notch filter.
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Figure 12.28. Resulting power spectral densities of the output signals of the three
two-pole notch filters activated by the detection units.
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Figure 12.29. Resulting transfer functions of the three notch filters activated
by the detection units.
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Chapter 13

Time-frequency analysis for
interference detection and mitigation

13.1 General Overview

In previous chapters Gaussian narrowband and continuous wave interference have been
thoroughly analyzed. However these two classes represent only a small fraction of the
possible disturbing signals that can degrade the performance of a GNSS receiver. Due
to its weakness, the GNSS signal is subject to interferences that are extremely different
in terms of time and frequency characteristics [22]. Thus the design of a general detec-
tor/mitigator, able to efficiently deal with different kinds of interference, is a complex
problem.
A solution is found through Time-Frequency (TF) analysis [106] that allows to detect and
efficiently remove a great variety of disturbing signals. Time-Frequency representations
(TFRs) map a one-dimensional signal of time, x(t) into a two-dimensional function of
time and frequency, Tx(t,f). In this way the signal is characterized over a time-frequency
plane yielding to a potentially more revealing picture of the temporal localization of the
signals spectral components.
In the past, great interest has been devoted to TF excision techniques in the context of
DSSS communications [107–112]. This interest is justified by the fact that the power of
DSSS signals is spread over a bandwidth that is much wider than the original informa-
tion bandwidth. As a result, DSSS signals present power spectral densities that can be
completely hidden under the noise floor and, consequently, only marginally impact the
interference detection/estimation on the TF plane.
In the context of GNSS, the use of TF analysis has been limited by the heavy computa-
tional load required by these techniques. The length of spreading sequences, up to sev-
eral thousands of symbols [2, 4], and the consequent memory and computational loads,
along with stringent real-time constraints, often leave an extremely limited amount of
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13 – Time-frequency analysis for interference detection and mitigation

computational resources for additional units, for example for interference detection and
mitigation. Thus other techniques, less computationally demanding, such as notch filter-
ing [95] and frequency excision [98], have been preferred to TF analysis. However, the use
of these detection/mitigation techniques is often confined to a specific class of disturbing
signals resulting in a completely ineffective processing for those interferences presenting
time/frequency characteristics different from the ones for which the algorithms were de-
signed.
In the literature some TF algorithms have been specifically developed for GNSS appli-
cations. However the implementation aspects are often only marginally discussed. [113]
proposes a TF detection/excision algorithm for GPS receivers based on the Wigner-Ville
distribution. Although the method is promising, [113] does not discuss any implementa-
tion issue as well as the computational requirements of the proposed method.
In [114] an excision algorithm based on the Short Time Fourier Transform (STFT) and
spectrogram is proposed. The method is implemented by exploiting the structure of the
FFT-based acquisition scheme [115] that is suitable only for those receivers that evaluate
correlations using the FFT. Moreover the method from [114] does not allow the use of
analysis windows different from the rectangular one. The size of the analysis windows is
also fixed and corresponds to the FFT size, potentially resulting in spectral leakage [116]
and poor TFR’s.
In this chapter the use of TF techniques for GNSS interference detection/mitigation is
considered. In particular a solution for efficiently implementing TF techniques in GNSS
receivers is proposed. This solution is based on the key observation that the acquisition
block implicitly performs a sort of TF analysis. More specifically, it is shown that the
evaluation of the search space for the delay and Doppler frequency corresponds to the
evaluation of a spectrogram, whose analysis window is adapted to the received signal.
Thus the adoption of a different analysis window allows for the detection/estimation of
disturbing signals. Based on this principle, this method proposes a slight modification of
the basic acquisition scheme that allows a fast and efficient TF analysis for interference
detection. The method reuses the resources already available for the acquisition stage
and the analysis can be performed when the normal acquisition operations shut down or
stand temporally idle.
The second part of the chapter is devoted to the design of an efficient TF excision method
based on the spectrogram. This method can be implemented by exploiting the structure
suggested in the first part of the chapter. Different aspects, not considered in the previous
literature, are analyzed, and in particular the performances of the GNSS acquisition block
with and without a mitigation unit are studied. Acquisition ROCs have been adopted as
metric for establishing the effectiveness of the proposed algorithm. Comparisons with
algorithms from the literature are also provided.
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13.1.1 Time-Frequency representations

In this thesis two different TF representations, the spectrogram and the Wigner-Ville dis-
tribution, are considered.
The discrete time spectrogram of a discrete signal r[n] is defined as [117]

Sw(τ,f) = |STFT(τ,f)|2 (13.1)

where STFT(τ,f) is the Short-Time Fourier Transform,

STFT(τ,f) =
N−1∑

n=0

r[n]w[n− τ ] exp {−j2πnf} , (13.2)

where w[n] is the analysis window of length L. The spectrogram has poor TF localization
properties and its characteristics strictly depend on the analysis windows. However it
requires a low computational load and is suitable for real-time applications. Moreover
different strategies [109,118] have been developed in order to select the analysis window
that maximizes the localization of the interference on the TF plane.
The discrete time Wigner-Ville distribution is defined as [119]

Wr,r(n,f) =
∑

i

r [n + i] r∗ [n− i] exp {−j4πif} (13.3)

and does not suffer from the time versus frequency resolution tradeoff problems of the
spectrogram. This property is however paid by higher computational requirements and
by the possible presence of cross-terms as highlighted in the following.
Since in practice only a finite portion of the signal r[n] is available for the evaluation of
the Wigner-Ville distribution, then Eq. (13.3) should be rewritten as

W̄r,r(n,f) =
∑

i

r [n + i] w[n + i]r∗[n− i]w∗ [n− i] exp {−j4πif} (13.4)

where w[n] is a window of finite duration that selects the portion of r[n] available for the
computation of Eq. (13.3). In Figure 13.1 an example of a spectrogram and a Wigner-
Ville distribution of a signal with sinusoidal frequency modulation is presented. The
Wigner-Ville distribution better localizes the signal on the TF plane, even if the presence
of cross-terms due to the interaction of the different signal components is more evident.
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Figure 13.1. Spectrogram and Wigner-Ville distribution of a signal with sinusoidal
frequency modulation. The spectrogram has been evaluated by using a Hamming
window of length L = 127 samples.

13.2 Reconfigurable GNSS Acquisition Scheme for Time-Frequency
Applications

By combining Eqs. (13.1) and (13.2) the following expression for the spectrogram is ob-
tained:

Sw (τ,f) =

∣∣∣∣∣
N−1∑

n=0

r[n]w[n− τ ] exp {−j2πnf}
∣∣∣∣∣

2

. (13.5)

By comparing Eq. (13.5) with the complex representation of the CAF discussed in Chap-
ter 3 and reproduced here for the sake of clarity

S (τ,FD) =

∣∣∣∣∣
1
N

N−1∑

n=0

r[n]c[n− τ ] exp {−j2πFDn}
∣∣∣∣∣

2

, (13.6)

it clearly emerges that the decision variable for the acquisition block is a spectrogram
scaled by the factor 1/N2 and with

w[τ ] = c[τ ], (13.7)

that is with the analysis window adapted to the GNSS signal. Since S (τ,FD) and Sw (τ,f)
have basically the same structure, the same functional blocks used for evaluating S (τ,FD)
can be employed for determining Sw (τ,f). Thus, by replacing the local code with an
appropriate analysis window and by opportunely changing the interval of Doppler fre-
quencies under test, the acquisition block can be easily employed for TF applications.
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13.2.1 Modified acquisition block

As already discussed in Chapter 3 different acquisition schemes are employed for deter-
mining a first, rough estimation of the code delay and Doppler frequency of the signal
emitted by the satellite under analysis. These methods can be classified in three main
classes:

• the classical serial search acquisition scheme [4,120] that evaluates the search space
cell by cell, subsequently testing the different values of code delay and Doppler
shift,

• the frequency domain FFT acquisition scheme [32], that exploits the FFT to evaluate
all the Doppler frequencies in parallel. In this scheme an Integrate and Dump (I&D)
block can be used in order to reduce the frequency points to be evaluated by the FFT.
The use of the FFT implies the analysis of frequency points outside the Doppler
range,

• the time domain FFT acquisition scheme [115], that uses the FFT to compute fast
code circular convolution.

In this section those three acquisition schemes are adapted in order to allow TF frequency
applications.
The main differences between the decision variable (13.6) and the spectrogram (13.5) are
as follows:

• the set of Doppler frequencies searched for during the acquisition process is usu-
ally limited to a few kHz around the receiver intermediate frequency, whereas the
spectrogram needs to be evaluated for a wider range of frequencies,

• the spectrogram and the decision variable S (τ,FD) employ two different analysis
windows.

In order to reuse the acquisition computational resources for TF applications, these two
differences have to be overcome. This can be easily achieved by introducing a window
generator able of producing an analysis window for the TF analysis. The window gener-
ator can be either a memory bank or a digital device producing signals used as analysis
window. Different analysis windows [116] can be stored in the memory bank and dif-
ferent window lengths can be obtained by means of down-sampling: in the memory
bank the full length version of an analysis window is stocked; when a shorter window
is needed to increase the spectrogram time resolution, a new window is produced by
down-sampling the original one and adding the corresponding number of zeros. The
simplest digital device producing analysis windows can be a generator of the signal

w[n] =

{
1 for n = 0,1,...,L− 1
0 for n = L,...,N − 1

(13.8)
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where L and N are the window and the local code length, respectively. Notice that
varying the window length, the time-frequency resolution changes and different win-
dow lengths can be suitable for different kinds of interference. The window signal w[n]
should have the same length of the received signal r[n] and of the local code c[n], since
the correlation is usually evaluated by multiplying two signals of the same length and
integrating the result. A selector is used to switch from the normal acquisition mode to
the TF one: in this way the local code c[n] is substituted by the signal w[n].
The delay τ , used to progressively shift the window analysis in Eq. (13.5) can assume val-
ues that are not in the set usually used for the search space computation. The frequency
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Figure 13.2. Modified serial search acquisition. The traditional serial search acquisition
scheme has been modified in order to explore a wider range of Doppler frequencies and to
allow the use of specific analysis windows for TF applications.

range can be extended by changing the initial frequency, the frequency step ∆f and the
number of frequency bins KB . This can be achieved by adopting a frequency generator
specifically designed for exploring a wider range of frequencies. The choice of increasing
the number of Doppler bins results a greater computational load whereas an exceedingly
large frequency step ∆f can result in a spectrogram poorly represented along the fre-
quency dimension. For this reason a compromise between frequency representation and
computational load can be reached by changing both the Doppler step and the number
of frequency bins. In Figures 13.2, 13.3 and 13.4 the traditional acquisition schemes have
been modified, introducing a window generator and an alternative frequency genera-
tor, allowing the evaluation of the spectrogram. It is noted that the parallel acquisition
scheme in the frequency domain does not require an alternative frequency generator,
since the use of the FFT for exploring the Doppler dimension already allows to analyze
frequency points outside the Doppler range. In this case the range of frequency under
analysis depends on M , the number of points integrated by the I&D block.
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Figure 13.3. Modified parallel acquisition in the frequency domain. The par-
allel acquisition scheme has been modified allowing the use of specific analysis
windows for TF applications.
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13.2.2 Real data and simulation tests

In order to show the effectiveness of the proposed acquisition scheme some examples
based on simulated and real data are reported herein.
Real data have been collected by using the NordNav-R30TM frontend [1] that is charac-
terized by the specifications reported in Table 13.1. Data collection has been performed

Table 13.1. NordNav-R30 characteristics.
Sampling Frequency fs = 16.3676 MHz

Intermediate Frequency fIF = 4.1304 MHz
Signal quantization 4 bits

Front-end filter bandwidth ≈ 2 MHz

at two different sites: the so called “colle della Maddalena” and the hill of the “Basilica
di Superga”. These sites are located on two different hills in the surroundings of Torino
(Italy). The first one is characterized by the presence of several antennas for the trans-
mission of analog and digital TV signals, whereas the second one is in direct view of the
colle della Maddalena antennas. Two different kinds of interference have been observed.
In the proximity of the colle della Maddalena, the GPS signal was corrupted by a swept
interference, whereas a strong CWI was observed on the hill of Superga.

In Figure 13.5 the spectrogram of the swept interference observed in the proximity of
the colle della Maddalena is shown. This spectrogram has been evaluated by employing
the modified parallel acquisition scheme in the time domain described in previous sec-
tion. The input signal has first been downsampled by a factor of 4, reducing the sampling
frequency to fs = 4.0919 MHz. This operation reduces the computational load without
effectively degrading the signal quality since the NordNav frontend is characterized by a
bandwidth of about 2 MHz. The Doppler step has been set to 10 kHz and the number of
Doppler bins was KB = 201. A Hamming window of duration Tw = N

10 was employed.
The analysis was extended to a signal portion of 10 ms. The presence of the swept in-
terference clearly emerges from Figure 13.5, that can be easily used for the estimation
of the interference instantaneous frequency. The information extracted from the spectro-
gram in Figure 13.5 can then be easily used for different excision algorithms [108,111]. In
Figure 13.6 the PSD of the input signal has been reported. In Figure 13.6 a) the PSD has
been estimated by considering the downconverted GPS signal with a sampling frequency
fs = 16.3676 MHz: in this case the interference spectral components clearly emerge, al-
though they are spread over a band of more than 1 MHz. In Figure 13.6 b) the PSD of
the signal used for the evaluation of the spectrogram in Figure 13.5 has been depicted.
In this case the interference cannot be easily localized in the frequency domain, proving
the effectiveness of TF detection techniques versus traditional pure frequency detection
methods.
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Figure 13.5. Spectrogram of a swept interference. The input signal has been collected by
using the NordNav R30 frontend in the proximity of TV repeaters. The spectrogram has
been evaluated by using the modified parallel acquisition scheme in the time domain.

In Figures 13.7 and 13.8 the spectrogram and the PSDs of the signal observed at the hill
of Superga are depicted. In this case the CWI is well localized in both TF and frequency
domains. The spectrogram has been evaluated by using the modified parallel acquisition
scheme in the time domain, with a Hamming window of duration Tw = N

8 . As for the
first case, the Doppler step has been set to 10 kHz and the number of Doppler bins was
KB = 201.

In order to further test the modified acquisition scheme for TF interference detection,
the case of pulsed interference has been considered. In particular GPS signals in the pres-
ence of pulsed interference have been simulated and analyzed with the modified parallel
acquisition scheme in the time domain. The same sampling frequency and intermediate
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Figure 13.6. Power Spectral density estimates of the input signal used for the
evaluation of the spectrogram in Figure 13.5. a) PSD of the original signal, sam-
pling frequency fs = 16.3676 MHz. b) PSD of the downsampled signal, sampling
frequency fs = 4.0919 MHz.

frequency of Table 13.1 have been adopted for the simulation. Pulsed interference can be
generated by different sources such as Distance Measuring Equipment (DME) and Tac-
tical Airborne Navigation (TACAN) [78] that are currently used for distance measuring
and for civil and military airborne landing. The pulsed interference has been simulated
as a pair of modulated Gaussian impulses [78]. The results of the test have been depicted
in Figure 13.9, where the case of impulses with a peak power equal to the noise variance
has been considered. In the bottom part of Figure 13.9 the time representation of the
input signal is shown. The light line represents the envelope of the pulsed interference
that cannot be directly identified from the time representation of the input signal. When
the TF representation is considered the pulsed interference is clearly identified, allowing
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Figure 13.7. Spectrogram of a CWI. The input signal has been collected by using the
NordNav R30 frontend. The spectrogram has been evaluated by using the modified
parallel acquisition scheme in the time domain.

the efficient excision of the disturbing signal. The spectrogram of Figure 13.9 has been
evaluated by using the modified parallel acquisition scheme in the time domain, with a
Hamming window of duration Tw = N

64 . The Doppler step has been set to 200 kHz and
the number of Doppler bins at KB = 41.
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Figure 13.9. Spectrogram and time domain representation of a simulated GPS signal cor-
rupted by pulsed interference. The spectrogram has been evaluated by using the modified
parallel acquisition scheme in the time domain.
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13.3 A Time-Frequency Excision Algorithm

TF excision techniques usually rely on the estimation of the interference instantaneous
frequency [106]. This information is used to control the coefficients of an excision filter
that adaptively removes the disturbing signal [107–109]. An alternative approach [111]
consists of using the instantaneous frequency estimation to downconvert the interference
around the zero frequency. A time-invariant high-pass filter is then used to remove the
jammer, and the original frequency content of the received signal is restored.
In this context a TF excision algorithm that is a further development of [111] is proposed.
TFRs are used for estimating the instantaneous frequency of the interference, that is ex-
cised by a notch filter. Different aspects, not considered in the previous literature, are
analyzed, and in particular the performances of the acquisition block with and without
mitigation are studied.
The general scheme of the proposed interference excision unit is reported in Figure 13.10.
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Figure 13.10. Functional scheme of the TF excision algorithm consisting of three blocks:
TF representation, instantaneous frequency estimation unit and notch filter.

At first the analytic representation of the received signal is evaluated as

rh[n] = r[n] + jr̂[n] (13.9)

where r̂[n] is the Hilbert transform of r[n] [121]. The analytic signal rh[n] has compo-
nents belonging only to the half plane of positive frequencies and its use is necessary for
avoiding the presence of cross-terms on the TF representation. These cross-terms would
be generated by the interaction between positive and negative frequency components, if
the real signal r[n] were employed [106].
Before entering the TF representation unit, rh[n] can be decimated by a factor K as

ra[n] = rh[Kn] (13.10)
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By decimating the signal rh[n] it is possible to reduce the computational load required
by the TFR. However the decimation can introduce aliasing and distortions and thus a
compromise has to be found.
The signal ra[n] enters the TF representation unit, that allows the estimation of the in-
terference instantaneous frequency by the subsequent unit. The estimated instantaneous
frequency f̂int[n] is employed to downconvert the interference component around the
zero-frequency. The jammer is then excised by a notch filter and the original frequency
content is restored. At the end only the real part of the obtained signal is considered and
the output signal is fed into the acquisition block.
The three functional blocks of the proposed method can be implemented by using differ-
ent techniques. For example, in [111], the Wigner-Ville distribution was used as TF rep-
resentation and the parameters that maximize the Hough Transform [122] of the Wigner-
Ville employed for the instantaneous frequency estimation.
The TFRs adopted in this thesis for implementing the proposed methods are the spectro-
gram and the Wigner-Ville distributions described in Section 13.1.1.
A simple algorithm called peaks-interpolation is used for estimating the interference in-
stantaneous frequency. This algorithm simply selects, for each time instant, the maxima
of the TF representation, and interpolates them to produce an estimation of the inter-
ference frequency. This algorithm relies on the hypothesis that the interference is present
and that its instantaneous frequency can be effectively approximated by a specific model.
This model is then used for interpolating the maxima of the TF representation. Although
this hypothesis is quite restrictive, it is usually adopted in the literature [111]. Further-
more the interference presence can be determined by monitoring the input signal power
or by using other techniques spread in the GNSS context.
For instance, if the interference can be approximated by a chirp, the peaks-interpolation
technique estimates the parameters that define the interference frequency as

[
f̂0

i ; âi

]
= arg min

f,a

∥∥∥~Y − f − a ~X
∥∥∥

2
(13.11)

where ~Y and ~X are the vectors of the coordinates of the TF maxima.

In [111] a simple FIR filter characterized by the transfer function

Hb(z) = 1− z−1 (13.12)

has been employed. However this kind of high-pass filter introduces a wide notch that
results in extreme degradation of the useful signal quality.
This clearly emerges from Figure 13.11, where the transfer function of the filter defined

by Eq. (13.12) is reported: all frequencies are distorted and the useful signal is compro-
mised.
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Figure 13.11. Transfer functions of the different excision filters.

In order to overcome this problem a IIR notch filter with the same structure of one-pole
notch filter analyzed in Section 12.2 and defined by

Hn(z) =
1− z−1

1− kαz−1
(13.13)

has been used. It is noted that the contraction factor kα can be regulated by the infor-
mation provided by the peaks-interpolation algorithm. In fact the mean square error
resulting from the interpolation process indicates how much the interference samples are
close to the interpolating curve. A high mean square error implies that the interference
is spread around the interpolating curve and consequently a wide notch is required for
effectively removing the disturbing signal.
In order to highlight the effectiveness of the notch filter (13.13), three different correla-

tions have been reported in Figure 13.12. A linearly frequency modulated signal has been
added to a BOC(1,1) signal characterized by a code of period 4092 and with a sampling
rate of 4 samples per chip. The simulated signal is noise-free for better highlighting the
excision filter impact on the correlation. When the mitigation unit is not present, inter-
ference makes the secondary lobes rise, potentially preventing the right detection of the
correlation peak in the presence of noise. When the excision unit is active the jammer
is excised and the secondary lobes are clearly reduced; however, when the simple FIR
filter proposed by [111] is employed, the mean correlation peak is heavily distorted and
thus the IIR notch filter is preferable. In this section the performance of the TF excision
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Figure 13.12. Correlations of a BOC(1,1) signal in the presence of interference only.
A linearly frequency modulated signal has been added to the GNSS signal and
processed with the excision algorithm. The notch filter clearly outperforms the FIR
filter proposed in [111].

algorithm is analyzed. More specifically the proposed algorithm is compared with the
methodology developed in [111], which is based on the Wigner-Ville distribution and on
the Radon-Hough transform. Different criteria are used for assessing the performance of
the TF algorithm. The quality of the IF estimation is determined through its Root Mean
Squared Error (RMSE), whereas the acquisition performance is evaluated by means of
ROCs. The impact of the excision algorithm is further highlighted by comparing the am-
biguity functions evaluated when the anti-jamming device is sequentially on and off.
The scenario adopted for the simulation is characterized by the parameters reported in

Table 13.2. Simulation parameters.
Parameter Value
GNSS code GPS C/A code
Sample rate 4 samples/chip

Sampling frequency 4.092 MHz
Coherent integration time 1 ms

Intermediate frequency 38.5 kHz
Spectrogram analysis window Hamming

Analysis window length 64 samples
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Table 13.2 and consists of a GNSS signal in zero mean Gaussian noise corrupted by a con-
stant amplitude linearly frequency modulated interference (chirp). The choice of such an
interference is common in the literature [110, 111] and it has therefore been employed as
test bench for the TF excision algorithm.
The instantaneous frequency of a chirp signal can be expressed as

fi[n] = f0
i + ain (13.14)

where f0
i is the initial interference frequency and ai is the interference frequency drift.

In Figure 13.13 the spectrogram of the signal used for simulations is depicted. The dis-

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

time samples

di
gi

ta
l f

re
qu

en
cy

spectrogram

Maximum values

Figure 13.13. Spectrogram of simulated GPS signal in zero mean Gaussian noise and
chirp interference. C/N0 = 36 dB-Hz, J/N = 10 dB.

turbing signal clearly emerges from the TF plane and thus its instantaneous frequency
can be easily estimated. In Figure 13.14 the Wigner-Ville distribution of the same sig-
nal is depicted. In order to detect the interference presence, the IF estimator is applied
to the spectrogram of Figure 13.13 and to the Wigner-Ville distribution of Figure 13.14,
respectively. The detection is performed taking the maximum values of the TFR.

In Figure 13.15 the RMSE of the interference frequency estimation provided by the
peaks-interpolation algorithm is depicted as a function of the number of samples used
for the TFR. The error is less than 6 kHz for all the used samples. This value is acceptable
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Figure 13.14. Wigner-Ville distribution of simulated GPS signal in zero mean Gaussian
noise and chirp interference. C/N0 = 36 dB-Hz, J/N = 10 dB.

since it is small enough to insure good mitigation. The Wigner-Ville distribution provides
a lower error, demonstrating the degradation caused by the spectrogram on the peaks-
interpolation performance. Anyhow the two curves of Figure 13.15 are comparable in
terms of RMSE and this justifies the choice of the spectrogram for the rest of the analysis
due to its lower computational complexity. In Figure 13.16 the RMSE for the spectrogram
case is depicted as a function of the J/N . The error is less than a few kHz also for low
J/N , and decreases as the J/N increases. Four different C/N0 values have been consid-
ered, however the impact of the GNSS signal on the estimation process is only marginal
and the peaks-interpolation error is almost constant with respect to the C/N0.
In order to test the behavior of the excision unit, and in particular the impact of an IIR
filter, ROCs under different working conditions have been evaluated by Monte Carlo sim-
ulations. In Figure 13.17 the true interference frequency has been used to downconvert
the disturbing signal. As expected the presence of an excision unit extremely increases
the system performance. Moreover, the higher the kα, i.e. the more the pole-contraction
factor approaches unity, the more the performance approaches to the ideal one, in ab-
sence of interference. The performance obtained by using the FIR filter proposed by [111]
(kα = 0) results clearly worse than the one achievable by employing the IIR filter (13.13).
This proves that the use of IIR notch filters very significantly increases the acquisition
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Figure 13.15. Peaks-interpolation performances in terms of RMSE vs the number
of samples used for the TFR.

performance and that the GNSS signal is not essentially impacted by the correlation in-
troduced by this kind of filters. In Figure 13.18 the interference IF has been recovered
by using either the peaks-interpolation technique in conjunction with the spectrogram or
the Radon transform in conjunction with the Wigner-Ville distribution [111]. Both estima-
tion techniques cause a slight degradation of the ROCs, however, in the case analyzed in
Figure 13.18, the peaks-interpolation algorithm provides a better performance. Finally,
in Figures 13.19 and 13.20, the impact of the excision unit on the ambiguity function is
shown. In this case, an excision filter with kα = 0.95 has been used and the interference
frequency has been estimated by using the peaks-interpolation technique. When the exci-
sion unit is active the jammer is effectively removed and the signal peak clearly emerges
from the noise floor of the ambiguity function, allowing correct signal acquisition.
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Figure 13.16. Mean squared error of the interference frequency estimation provided by
the peaks-interpolation algorithm vs the J/N .
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Figure 13.18. ROC curves for different IF estimation techniques. C/N0 = 36 dB-
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Figure 13.19. Search space of a GPS signal under interference: chirp, J/N = 10
dB, C/N0 = 45 dB-Hz.
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Figure 13.20. Search space of a GPS signal uner interference after TF-excision: chirp,
J/N = 10 dB, C/N0 = 45 dB-Hz.
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Chapter 14

Conclusions

This chapter concludes the second part of this thesis where signal acquisition in the pres-
ence of disturbing signals has been considered. A classification of the different interfer-
ence sources has been provided and different types of interference have been discussed.
Particular emphasis has been devoted to narrowband Gaussian interference and CWI.
The concept of SSC has been discussed and adapted to digital receivers. A statistical
model describing the impact of CWI on the acquisition process has been developed.
False alarm and detection probabilities have been analytically derived and Monte Carlo
simulations have been used to support the theoretical model. The impact of the differ-
ent system parameters have been analyzed by employing an equivalent representation,
based on the convolution of three terms of the local signal replica. This representation
has allowed isolating the role of the different parameters, giving a better insight into the
interaction between the CWI and the correlation process.
Mitigation techniques have been also considered with particular attention to CWI miti-
gation algorithms and Time-Frequency analysis.
IIR notch filters have been considered as an effective solution for CWI removal and an
innovative detection algorithm based on the convergence properties of the notch filter
zero has been proposed and analyzed. The two-pole notch filter coupled with the detec-
tion unit has been used as basic element for the design of a multi-pole filter capable of
efficiently removing more than one CWI. The derived results provide useful information
for the design of mitigation and detection units based on adaptive notch filters that result
in a computationally effective solution for CWI mitigation.
The use of TF analysis has been also considered for the design of a general mitigation
algorithm able to deal with different kinds of interfering signals.

The problem of pulsed interference, such as DME and TACAN signals, has been only
marginally considered. Thus their statistical characterization and the design of appropri-
ate mitigation algorithms should be considered and further analyses should be devoted
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to this kind of disturbing signals in future works.
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Appendix A

Acquisition analysis for Galileo BOC
modulated Signals: theory and
simulation

Paper presented at the European Navigation Conference (ENC)
Manchester (UK), 7-10 May 2006

Daniele Borio, Maurizio Fantino, Letizia Lo Presti, Laura Camoriano

A.1 Abstract

This paper is about the performance of a Galileo acquisition stage where the noise re-
duction and signal preservation is achieved by means of non-coherent summations. In
fact, the presence of a secondary code, planned for many Galileo modulation and which
further modulates the primary pseudo-random sequence, does not easily allow a coher-
ent integration on more than one code period. Moreover, coherent integration is made
much more complex by the longer codes employed for Galileo and by the use of the Bi-
nary Offset Carrier (BOC) modulations. In a mass-market receiver, where the complexity
burdens are extremely important, these problems must be taken into account. A very
easy solution is to combine the correlator outputs in a non-coherent process after the
squaring operation in the acquisition block with an effective noise reduction without in-
creasing dramatically the processing and memory capabilities of the receiver hardware.
An analytical model of the acquisition block, starting from the well known statistical
analysis carried out for GPS has been extended to Galileo. A complete digital acquisition
system is considered and parametric expressions, depending on the number of terms co-
herently and non-coherently integrated, on the impact of the sampling frequency, code
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time and Doppler step resolution have been derived for the threshold settings and de-
tection probability. The derived model for the non-coherent acquisition is validated by
means of Monte Carlo simulations. Finally the effects of additional impairments over
the correlation function have been considered: an incomplete code delay recovery and
slight mistakes in the Doppler frequency estimation, which can potentially reduce the
acquisition performance, have been taken into account.

A.2 Introduction

In order to track and successfully decode the information broadcast by the satellite con-
stellation, a GNSS receiver has to employ an acquisition strategy to first detect which
satellites are in view. For each satellite, the acquisition has to supply the tracking loops
with a coarse estimation of the received code delay, with an uncertainty usually of less
than half a chip, and a rough estimation of the Doppler frequency shift. Sometimes an
estimate of the receiver location and the time of the day are available to the receiver, so
that it is possible to reduce the acquisition research among a subset of the available satel-
lites. This solution is the so-called warm start. However, when such information is not
available the receiver must perform a cold start and all the constellation satellites have
to be searched for. This process is very time consuming, and to face this problem many
receivers perform a parallel search for the different satellites. If the acquisition process
is too slow the code delay and Doppler estimate might be out-of-date and the receiver
could not be able to track the signals. Therefore the acquisition speed and complexity
are very important parameters to be accounted in the GNSS receiver design. The acqui-
sition phase is, in practice, a two-dimensional search over different values of code delay
and Doppler shift for each satellite of the constellation. A two dimensional matrix, called
search space, is obtained by testing a discrete set of values for these two variables. Each
value of one of these two digitized variables specifies a bin in the grid, and the combina-
tion of one Doppler bin and one code bin is a cell. This search leads to a coarse estimation
of the code delay and of the Doppler frequency shift affecting the GNSS signal. The res-
olution of the code search depends on the accuracy required by the code tracking section
of the receiver and it is generally less than half a chip. The Doppler bin width depends
on the maximum frequency resolution inside the pull-in range of the carrier tracking
block and by the acquisition scheme properties. These parameters, and in particular the
Doppler frequency steps, have to be set with great care since they are crucial for the ac-
quisition speed. In Galileo the ranging code used for the L1F pilot channel is based on
the so called tired codes. Tired codes are built by modulating a short duration primary
code by a long duration secondary code. When only the primary code is used to detect
the satellites, the presence of the secondary code behaves exactly as the data transition
for the GPS signal and it can be the cause of sign reversals in the correlation operation
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over the integration interval. In order to increase the detection probability for a given
false alarm probability, a summation over more than a code period can be performed.
Unfortunately the presence of the secondary code on the Galileo signal does not allow
the receiver to perform the acquisition on consecutive pieces of signal, since every period
of the primary code is modulated by the secondary short code, then it is not guaran-
teed the absence of a secondary code transition in the subsequent integration period. By
the way, in order to increase the detection probability, a summation over more than one
code period in a non coherent way can be applied, accepting the squaring loss due to
the square operation performed prior the envelope detector. This paper analyzes the ac-
quisition performance of a Galileo receiver, devoting particular attention to the strategy
used to evaluate the search space. An analytical model is developed accounting both
coherent and non-coherent integration. The analysis is provided in terms of Receiver
Operating Characteristics (ROCs). The cases of an imperfect code delay recovery and
of slight Doppler shift estimation errors are studied and the losses introduced by these
impairments modeled. Simulations support the analytical model. The paper is orga-
nized as follows: Section A.3 introduces the GNSS signal model and presents the three
main schemes used to evaluate the search space. Section A.4.2 provides the analytical
model used to evaluate the system performance considering different losses that can oc-
cur during the acquisition process. In Section A.5 the model is validated by Monte Carlo
simulations and in Section A.6 the effects of coherent and non-coherent integrations are
compared. Finally Section A.7 concludes the paper.

A.3 Acquisition schemes

The problem of signal acquisition is commonly encountered in all CDMA applications.
Many acquisition schemes for CDMA signal can be found in literature. However, many
of them are not suitable for navigation purposes where the signal-to-noise ratio is very
low. Moreover ([A9] [A10]), many authors do not consider the residual carrier acquisition
but only the code synchronization. In the navigation context, however, the effects of the
unknown residual Doppler shift cannot be neglected and the GNSS signal that enters the
acquisition stage, after the down-conversion stages and the digitization, can be expressed
as

x [n] = AINxIN [n + θ] cos[2π(FBB + FD)(n + θ) + φ1] + nw[n] (A.1)

where AIN is the useful signal amplitude, xIN [n] is the received PRN code modulated
by the square sub-carrier, nw[n] is the Gaussian noise with zero mean and variance σ2

n,
FBB is the base-band frequency after the down conversions of the RF front-end, FD is the
Doppler frequency shift and finally θ is the received code delay. Notice that FBB andFD

are digital frequencies, that is frequencies normalized with respect to the sampling fre-
quency used by the ADC.
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This signal xIN [n] is then processed by the acquisition block that can use different tech-
niques in order to provide Doppler frequency and code delay estimations.
The most used acquisition strategies in navigation applications are the Serial Search
scheme, the Parallel acquisition in time delay domain (Fast Acquisition Scheme) and Par-
allel acquisition in Doppler frequency domain.

A.3.1 Serial search scheme

Figure A.1 shows a basic serial search acquisition scheme, which can be found in Refer-
ences [A1] and [A2]. This scheme is called “serial” as it performs a serial search in time
delay and Doppler frequency shift domains.

The input signal x[n] is multiplied by the local replica of the PRN code plus sub-carrier
xLOC [n + θ̂], where θ̂ is the local code delay. The signal is then split into two branches.
The upper one is multiplied by a local cosine and the lower branch is multiplied by a
local sine. The reference frequencies are the residual frequency plus the local Doppler
frequency shift FBB + F̂D. The system of Figure A.1 represents a non-coherent acqui-

Figure A.1. Serial Search Acquisition scheme.

sition scheme, which has to be adopted because of the unknown phase φ1 in Eq. (A.1).
Therefore two branches are necessary in order not to lose part of the signal power.
The signals on the two branches are then summed in the block called, in Figure A.1, Aver-
age and Dump or Integrate and Dump over one or more code periods to obtain a correlation
value. The correlator output for the in-phase branch and for the quadrature-phase branch
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can be written respectively as:

RI

(
θ,θ̂,FD,F̂D

)
=

N−1∑

n=0

AINxC [n + θ] cos[2π(FBB + FD)(n + θ) + φ1]

·ALOCxC [n + θ̂] cos[2π(FBB + F̂D)(n + θ̂) + φ2]

(A.2)

RQ

(
θ,θ̂,FD,F̂D

)
=

N−1∑

n=0

AINxC [n + θ] cos[2π(FBB + FD)(n + θ) + φ1]

·ALOCxC [n + θ̂] sin[2π(FBB + F̂D)(n + θ̂) + φ2]

(A.3)

where the local code is considered to be equal to the received one and it will be named
xC [n] and has amplitude ALOC .
The output of the envelope detector is, therefore

R
(
θ,θ̂,FD,F̂D

)
=

√
RI

(
θ,θ̂,FD,F̂D

)2
+ RQ

(
θ,θ̂,FD,F̂D

)2
(A.4)

The number of samples N depends on the sampling rate and on the so called inte-
gration time, which is generally an integer multiple of the code period. Increasing the
integration time the acquisition speed decreases but the system becomes more robust to
the additive noise. Accepting a squaring loss the robustness to the additive noise can
also be obtained by means of K non-coherent integrations prior the envelope operation,
as shown in Figure A.1.

A.3.2 Parallel acquisition in time delay domain

The scheme shown in Figure A.2 performs a parallel acquisition in time delay domain.
This system is described in References [A3] and [A4], and is often addressed with the
name of Fast Acquisition Scheme.

The input digital signal x[n] is split in the in-phase and quadrature-phase branches.
The resulting signals become the real part, xRe[n], and the imaginary part, xIm[n], of the
FFT input. The complex samples obtained from the FFT operation are then multiplied
by the complex conjugate samples of the local code xLOC [n] and then FFT inverse trans-
formed.

The described operations perform a circular correlation and provides the complete
correlation function over the integration period. In this way all the possible code delays
are computed at once.

This acquisition system is theoretically faster than the serial search scheme, since the
code delay steps are computed in parallel, but this gain is obtained only if the signal pro-
cessor is fast enough to compute the FFT over all the signal samples within one dwell
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Figure A.2. Parallel Acquisition in time domain scheme.

time.

This solution can be considered an alternative implementation to the serial search
scheme, that produces, in the correct frequency bin, the same results just performing the
correlation by means of FFTs.

A.3.3 Parallel acquisition in Doppler frequency domain

The acquisition system shown in Figure A.3 (see Reference [A4]) performs a parallel
search in the Doppler frequency domain. The digital input signal is multiplied by the
local replica code shifted by the local delay estimate θ̂ and the FFT of the obtained burst
of samples is computed. The result is passed through an envelope detector and all the
desired frequency bins are then investigated in parallel.

The performed FFT operation can be shown to be identical to the operations made by
the serial or fast acquisition scheme.
The number of Doppler frequency steps and FFT points are determined by the number
of code periods used for the FFT calculation. If T is the temporal duration of the input
samples the frequency resolution of the FFT results to be

∆f̂D =
1
T

(A.5)

This acquisition system requires, for each Doppler row of the serial search space, only
one FFT calculation, but the whole time delay domain has to be scanned serially.
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Figure A.3. Parallel Acquisition in Doppler frequency domain

A.4 Detection criteria

The acquisition system evaluates for each code delay and Doppler shift the search space
matrix, as reported in Equation A.4, and a threshold is set on the basis of the required
false alarm probability. The signal is then declared present when the value in a cell of the
search space overcomes the threshold.

The false alarm probability is defined as the probability that the signal is declared
present in a wrong cell, while the detection probability is the probability that a signal is
detected under the condition of perfect code delay and Doppler shift alignment.

The false alarm probability can be easily derived considering the signal belonging to
a wrong satellite or in misalignment conditions as the integral of the tail of a Rayleigh
distribution (see Reference [A6]), expressed by

fna,R(r) =
r

A2
LOC

(
N
2

)
σ2

n

e
− r2

A2
LOC

Nσ2
n u(r) (A.6)

where u(r) is the unitary echelon function and N is the number of samples coherently
summed in the integrate and dump block or processed by the FFT operation.
In order to improve the correlation performances, the detection and the decision can be
taken on the summation of several samples of the squared correlator output R2

I ,R2
Q (non-

coherent integration). In this case, according to the scheme of Figure A.1, the envelope G

can be written as:
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G =
K∑

i=1

R2
I [i] +

K∑

i=1

R2
Q[i] (A.7)

The summation on K independent instances of R2
I [i] and R2

Q[i]produces a mean effect
that reduces the noise impact. R2

I [i] and R2
Q[i] are distributed according to a Γdistribution,

which leads to a probability density function of the variable G equal to:

fk
G(r) =

1
2K(K − 1)!σ2K

r(K−1)e−
r

2σ2 u(r) (A.8)

where, in order to keep the notation more compact, the variable σ2 = A2
LOCσ2

nN/2 has
been introduced.

The false alarm probability is then:

Pfa

(
V
′
t

)
=

∫ +∞

V
′
t

f
(K)
G (x)dx (A.9)

where V
′
t is the squared value of the threshold, since G is the statistic prior the squaring

operation of the envelope detector. Using Equation A.8 and integrating by part K − 1
times Equation A.9, it is possible to derive the following expression for the probability of
false alarm:

Pfa

(
V
′
t

)
=

1
2K(K − 1)!σ2K

[
K∑

i=1

(2σ2)i (K − 1)!
(K − i)!

V
′K−i
t e−

V
′
t

2σ2

]

=
e−

V
′
t

2σ2 V
′K
t

2Kσ2K

K∑

i=1

1
(K − i)!

(
2σ2

V
′
t

)i

= e−
V
′
t

2σ2

K−1∑

i=0

1
i!

(
V
′
t

2σ2

)i

(A.10)

If the signal is present, the envelope is Rice distributed (see Reference [A6]) , that is its
probability density function is

fa,R(r) =
r

σ2
e
−

(
r2+α2

2σ2

)
I0

(rα

σ2

)
(A.11)

where α = AINALOCN/2. As in the non-aligned case, the general expression for the
probability density function, when K samples of the correlator output are summed up
can be derived, giving

f
(K)
a,R (r) =

√
kα

σ2

(
r√
kα

)k

e
− 1

2

(
r2+kα2

σ2

)
Ik−1

(
r

√
kα

σ2

)
(A.12)

246



A.4 – Detection criteria

The detection probability is then the integral over the tail of f
(K)
a,R (r) (see reference

[A7]), that is

Pd

(
V
′
t

)
=

∫ +∞√
V
′
t

σ

fK
a,R(x)dx

= QK


√K

α

σ
,

√
V
′
t

σ




(A.13)

A.4.1 Acquisition losses

The detection law for an acquisition system is derived supposing the system able to per-
fectly recover the code delay and the Doppler frequency shift. However, in real applica-
tions, these conditions are rarely verified. Neither the code delay nor the Doppler shift
are exactly in the set of delays and frequencies used in the search space evaluation. This
condition is the cause of additional impairments, or losses, which reduce the amplitude
of the correlation peak used for the signal acquisition. The two independent effects, re-
spectively due to Doppler and code imperfect alignment, are studied separately in this
section.

Code Phase Offset loss

It is well known that the correlation function depends on the code offset positions. Fig-
ure A.4 compares the correlation samples obtained with two different code delay phase
offset of the input signal and the same local generated code. Notice that, in order to per-
fectly reconstruct the correlation function by means of the input samples, the sampling
frequency is never synchronized with the PRN code rate, as explained in [A5].

Two main effects can be seen from this comparison. The correlation is not symmetric
anymore with respect to the highest peak. This can be explained by considering that a
sampling frequency not synchronized to the PRN code rate, leads to different digitized
sequences for different code phase offsets (see again Reference [A5]). The correlation
between two sequences, which are not exactly identical, is not generally an even function.
However, this aspect is not particularly meaningful for the performance of the acquisition
system, due to the very low signal-to-noise ratio of the received satellite signal.

More important is the reduction of the peak amplitude, which is related to the value of
the code phase offset. This introduces a system loss, with respect to the perfectly aligned
case, that can be expressed as the ratio between the value of RBOC(τ) and RBOC(0),
denoting with RBOC(τ) the BOC correlation function evaluated for a delay τ . Since
RBOC(0) = 1, the amplitude loss can be expressed just as
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Figure A.4. Autocorrelation function of Galileo BOC(1,1) code for two different
code phase alignments.

αloss = |RBOC (τ)| (A.14)

Since losses are normally in a logarithmic scale, and expressing the correlation function
by means of the approximated expression for RBOC(τ), it is possible to write the code
loss as:

αloss|dB = 20 log10 (RBOC(τ))

≈ 20 log10

[
Λ

(
τ

1/2

)
− 1

2
Λ

(
τ − 1/2

1/2

)
− 1

2
Λ

(
τ + 1/2

1/2

)] (A.15)

where Λ(τ)is the triangular function defined as

Λ
(

t

T

)
=

{
1− |t|

T |t| ≤ T

0 |t| > T
(A.16)

A plot of Equation (A.15) is depicted in Figure A.5:
Since the normal code resolution required for the signal identification is lower than
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Figure A.5. Performance loss as a function of the code phase offset.

half a chip/slot1 the reduction of correlation amplitude is always contained between 0
and about −15 dB.

Doppler Estimate Offset Error

As for the case of the correlation loss due to the code phase offset presented in Section
A.4.1, the Doppler phase error encountered in the acquisition process produces a reduc-
tion of the correlation peak.

In order to analyze just the Doppler effect, it will be assumed that the local code has
been aligned with the received one, in other words θ̂ = θ. The general expression of the
In-phase correlator output becomes

RI

(
FD,F̂D

)
= AINALOC

N−1∑

n=0

x2
C [n + θ] cos [2πFD(n + θ) + φ] cos

[
2πF̂D(n + θ)

]
(A.17)

1 Galileo code chips are further modulated by a squared sub-carrier, in this paper it is commonly referred
as slot the width of the sub-carrier chip
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that after some algebraic manipulation can be rewritten as

RI

(
FD,F̂D

)

= AINALOC
N

2

{
DN

[
π(FD + F̂D)

]
cos

[
2π

(
FD + F̂D

)
θ + π

(
FD + F̂D

)
(N − 1) + φ

]

+DN

[
π(FD − F̂D)

]
cos

[
2π

(
FD − F̂D

)
θ + π

(
FD − F̂D

)
(N − 1) + φ

]}

(A.18)

being DN (ω/2) = sin(ωN/2)
N sin(ω/2) the Dirichlet function.

Equivalently, in the case of the quadrature branch

RQ

(
FD,F̂D

)

= AINALOC
N

2

{
DN

[
π

(
FD + F̂D

)]
sin

[
2π

(
FD + F̂D

)
θ + π

(
FD + F̂D

)
(N − 1) + φ

]

+DN

[
π

(
FD − F̂D

)]
sin

[
2π

(
FD − F̂D

)
θ + π

(
FD − F̂D

)
(N − 1) + φ

]}

(A.19)

Following the same considerations pointed out in Section A.4.1, comparing the expres-
sions (A.18) and (A.19) with the maximum achievable value and neglecting the effect of
the terms FD + F̂D, which is practically negligible, the amplitude correlation loss due to
the Doppler estimate offset can be modeled as:

βloss
∼=

∣∣∣DN

[
π

(
FD − F̂D

)]∣∣∣
βloss|dB

∼= 20 log10

∣∣∣DN

[
π

(
FD − F̂D

)]∣∣∣
(A.20)

This amplitude loss is depicted in Figure A.6, where the integration time goes from T = 4
ms to T = 20 ms with 4 ms of step (that is assuming the values 4, 8, 12, 16, 20 ms) and the
Doppler search step is consequently reduced from ∆fD = 250 Hz to ∆fD = 50 Hz.

A.4.2 Detection probability in presence of losses

In the previous section it has been shown how an impairment due to code phase or
Doppler shift misalignments causes a correlation loss. These two effects have to be taken
into account in order to evaluate the correct detection probability of a real system. The
signal level depends on two main non-idealities:

1. the code loss due to an arbitrary code phase falling in between the correlation reso-
lution;

2. the loss due to the arbitrary Doppler frequency falling in between two frequency
bins.
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Figure A.6. Logarithmic Doppler loss.

In order to consider the different losses correctly, the probability distribution of the code
phase offset and Doppler shift, considered as random variables, have to be modeled.
The resolution used in the acquisition phase is usually of half a chip/slot and therefore
the maximum absolute phase offset ∆θcan be assumed uniformly distributed between
±1

4 chip/slot; analogously the Doppler frequency ∆fD can be assumed to be uniformly
distributed between zero and half the maximum absolute frequency bin width.
The combined loss due to the two independent effects is the sum of the contributions
of the two losses. Thus, according to the definition of Section , the detection probability
including the code phase offset and Doppler frequency shift loss effect is:

Pd = 2N

∫ 1/4

−1/4

∫ 1/2N

−1/2N
Qk



√

kα

σ
DN (πf)RBOC(θ),

√
V
′
t

σ


 dfdθ (A.21)

Figure A.7 reports the Receiver Operating Characteristic (ROC) which depicts the prob-
ability of detection versus the probability of false alarm. The curve has been obtained
considering the integration of a single Galileo BOC(1,1) code period, an IF filter band-
width of 4 MHz, a carrier to noise ratio C/N0 = 30 dB-Hz, and a sampling frequency of
about 4.21 MHz, which leads to a code ambiguity resolution of half a BOC slot. Figure
A.8 is the graph that shows the detection probability versus the C/N0 ratio for a false
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alarm probability Pfa = 10−3, for a Galileo BOC(1,1) signal, and with the same receiver
parameters of Figure A.7. These last curves will be referred in the following as SNR
curves.
Both curves have been obtained by means of the numerical solution of Equation (A.21)
derived in this section, for the BOC(1,1) signal.
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Figure A.7. Loss contribution comparison, ROC curve for the Galileo
BOC(1,1) signal and C/N0 = 30 dB-Hz

It is here important to remark how considerable is the loss of acquisition performance
due to the Doppler and code misalignment with respect to the ideal case. Moreover it has
to be considered that the curves which report the performance when both the code and
Doppler loss are considered have been obtained in an average misalignment condition
(both code and Doppler error uniformly distributed in the cell area), and so, they do not
represent the worst case.
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Figure A.8. Loss contribution comparison, SNR curve for the Galileo
BOC(1,1) signal and desired Pfa = 10−3

A.5 Acquisition Model Validation

The acquisition performance can be obtained analytically integrating Equations (A.10)
and (A.21). However in order to adopt the acquisition model in the acquisition block
design, it is necessary to validate the model comparing analytical and simulation results.
Both the detection and false alarm probabilities are determined by means of computer
simulations implementing a Monte Carlo technique or, in other words, the probabilities
are obtained dividing the number of successful events by the overall number of trials.
This comparison is depicted in Figure A.9 for the ROC curve in the case of a C/N0 = 30
dB-Hz and a non coherent integration from one up to five Galileo BOC(1,1) code peri-
ods. Solid lines correspond to the numerical solution of Equation (A.21) and the marked
values to the Monte Carlo simulations for the Serial Search scheme of Figure A.1. The
FFT in Time and in Frequency domains are not considered in this analysis, since they are
equivalent in terms of performance. Therefore the results would be practically equal and
indistinguishable. The validity of the model can be better appreciated by means of the
graph of Figure A.10; again the solid lines refer to the model of Equation (A.21) and the
marked values to the Monte Carlo simulations. As it can be seen from graphs of Figure
A.9 and Figure A.10, the analytical solution of Equation (A.21) produces the same results
obtained by means of the Monte Carlo simulations, which proves the validity and relia-
bility of the acquisition model studied in this paper.
A reliable model is of extreme importance in the design phase of an acquisition block , as
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Figure A.9. ROC Comparison for the Analytic and Simulated Results for the
Galileo BOC(1,1) signal for a C/N0 of 30 dB-Hz and from one up to five non-
coherent integration times.
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Figure A.10. SNR Comparison for the Analytic and Simulated Results for the
Galileo BOC(1,1) signal for a desired Pfa = 10−3 and from one up to five non-
coherent integration times.
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it allows the characterization of its expected performance, avoiding the use of very time
consuming Monte Carlo simulations.
It is here remarked how, from the analysis of Figure A.9 and Figure A.10, both for the
ROC and the SNR curve the gain in terms of Detection probability obtained increasing
the non-coherent integration time tends to decrease as K becomes larger.

A.6 Coherent and non-Coherent Integration Comparison

Coherent integration over more than a single code period is a common strategy to in-
crease the signal to noise ratio at the envelope detector input in the acquisition of GPS
signals. It has been presented how the Galileo code makes the coherent approach quite
difficult for the presence of the secondary codes and how the robustness in terms of sig-
nal to noise ratio can be achieved by means of non-coherent summation. In this section,
however, a comparison between these two strategies for the Galileo BOC(1,1) is carried
on.
For the sake of simplicity, and just with the aim to identify the loss in performance of
the non-coherent strategy, the presence of the secondary code has been discarded in the
analysis of the coherent integration approach.
The comparison is made both by means of the ROC and the SNR curves for the Galileo
BOC(1,1) modulation. Each graph reports the comparison between the same number
of code periods coherently and non-coherently integrated. The ROC curves have been
determined for the usual carrier to noise ratio of 30 dB-Hz, while the SNR curves for a
selected false alarm probability of 10−3.
The comparison from two to five PRN code periods has been reported from Figure A.11
to Figure A.18. Once again the solid lines represent the analytical solution of Equation
(A.21) while the marked values depict the results of Monte Carlo simulations.
In order to perform a fair comparison between the two different strategies the following
consideration has to be highlighted: the loss due to a code misalignment is not affected by
the number of integrated periods, but the case of the loss introduced by an arbitrary in-
put Doppler frequency is different. In fact, as addressed in Section A.4.1, the Doppler loss
can be approximated as stated in Equation (A.20). The Doppler loss depends mainly on
two parameters, which are the number of samples coherently integrated and the differ-
ence between the input and local Doppler frequencies shift FD − F̂D. From the definition
of the Dirichlet function it follows that when the number of samples in the coherent in-
tegration increases, the Doppler frequency step must be reduced to maintain the same
Doppler loss.
This condition is well represented in Figure A.6, where the Doppler loss is reported
for different values of code periods coherently integrated as a function of the difference
FD − F̂D.
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For such a reason, the results reported in this section have been obtained with a Doppler
loss equal to the value for a single code period involved in the integration operation.
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Figure A.11. Coherent and non-Coherent Integration Comparison for two Galileo
BOC(1,1) Code periods, ROC curve calculated for a C/N0 = 30 dB-Hz

The analysis shows how better performance can be achieved when a coherent integra-
tion strategy is adopted. The worse behavior of the non-coherent strategy can be totally
attributed to the loss introduced by the square operation prior of the envelope detector.
The noise samples of the autocorrelation function are less averaged by the K summations
and then lower detection probabilities can be obtained under the same system conditions.
The comparison can be better appreciated considering the gain in terms of C/N0 between
the coherent and non-coherent approaches required to obtain a determined detection
probability for a desired false alarm probability. This is the case of the results stated in Ta-
ble A.1, which reports the gain in terms of C/N0 between the coherent and non-coherent
strategies for a detection probability of 0.9 and a desired Pfa of 10−3.

Table A.1. Coherent and non-Coherent C/N0 gain comparison
Periods Coherent C/N0 [dB-Hz] Non-Coherent C/N0 [dB-Hz] Gain C/N0 [dB-Hz]

2 38.9 39.6 0.7
3 37.2 38.3 1.1
4 35.8 37.4 1.6
5 34.9 36.7 1.8
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Figure A.12. Coherent and non-Coherent Integration Comparison for two Galileo
BOC(1,1) Code periods, SNR curve for a desired Pfa of 10−3
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Figure A.13. Coherent and non-Coherent Integration Comparison for three Galileo
BOC(1,1) Code periods, ROC curve calculated for a C/N0 = 30 dB-Hz
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Figure A.14. Coherent and non-Coherent Integration Comparison for three Galileo
BOC(1,1) Code periods, SNR curve for a desired Pfa of 10−3
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Figure A.15. Coherent and non-Coherent Integration Comparison for four Galileo
BOC(1,1) Code periods, ROC curve calculated for a C/N0 = 30 dB-Hz
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Figure A.16. Coherent and non-Coherent Integration Comparison for four Galileo
BOC(1,1) Code periods, SNR curve for a desired Pfa of 10−3
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Figure A.17. Coherent and non-Coherent Integration Comparison for five Galileo
BOC(1,1) Code periods, ROC curve calculated for a C/N0 = 30 dB-Hz

259



A – Acquisition analysis for Galileo BOC modulated Signals: theory and simulation

20 25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Coherent and non-Coherent Integration Comparison

N=5
K=5

P
d

C/No [dB-Hz]

Figure A.18. Coherent and non-Coherent Integration Comparison for five Galileo
BOC(1,1) Code periods, SNR curve for a desired Pfa of 10−3
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A.7 Conclusions

In this paper the conventional acquisition architectures already used for GPS have been
investigated under the light of a possible employment for the acquisition of the Galileo
BOC(1,1) modulation.
The acquisition blocks have been studied considering a digital implementation and con-
sidering different loss factors. The correlation level is mainly affected by two impair-
ments due to the arbitrary code phase and Doppler frequency distribution in a cell. Con-
sidering uniform distributions for these two impairments, a model for the false alarm
and detection probabilities has been derived for a digital acquisition taking into account
the degradation of the performance with respect to the ideal case.
One of the main differences between GPS and Galileo is the presence of a secondary code
which modulates each primary code period. This reduces the possibility of increasing the
integration time in a coherent way, since a secondary code transition would lead to a sign
reversal in the correlation operation. To improve the signal to noise ratio a non–coherent
summation strategy can be used, both for the serial and parallel acquisition techniques,
to overcome the problem of the secondary code transitions. The acquisition model has
been derived considering the effect of the non-coherent strategy and subsequently vali-
dated by means of Monte Carlo simulations.
The availability of an analytic model, depending on the number of terms coherently and
non-coherently integrated, simplifies the design phase of the acquisition block avoiding
the use of onerous and infeasible Monte Carlo computer simulations.
A comparison between the coherent and non-coherent integration approaches is finally
carried on, showing how better performance might be achieved by a coherent strategy
in absence of secondary code transitions at the price of reducing the Doppler bin width
and then increasing the number of cells that have to be analyzed in the acquisition search
space.
The non-coherent strategy seems to be very interesting for its robustness to the sign re-
versal introduced by the secondary code. Therefore, without increasing the acquisition
complexity and time to first fix, it is possible to achieve a good compromise between
system performance and system complexity.
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Appendix B

Independence of search space cells

In this appendix the assumption of independence of the CAF elements is justified by
evaluating the cell correlation matrices.
In order to evaluate a search space S(τ,FD), N samples of the input signal of Eq. (2.10)
are collected and an input vector

r = [r[0], r[1], ... r[N − 1]]T (B.1)

is formed. This vector is then multiplied by two orthogonal sinusoids on the in-phase and
quadrature ways. These two real multiplications can be modeled through a modulation
by the complex sinusoid

exp {−j2π (fIF + fd) nTs} = exp {−j2πFDn} (B.2)

where fIF is the intermediate frequency and fd is the Doppler shift under test. Only a
finite set of Doppler frequencies is tested, fd = fd, min + l∆f with l = 0,1,...,L− 1, and the
signals after the Doppler demodulation are given by

yl = Elr l = 0,1,...,N − 1 (B.3)

where l is the Doppler frequency index and El are diagonal matrices of the form

El = diag {−j2π (fIF + l∆f) nTs} n = 0,1,...,N − 1. (B.4)

Vectors yl are then multiplied by a local replica of the code delayed of τ = τmin + m∆τ

and integrated over a period of N samples.
By using the code periodicity, these multiplication and integration can be expressed as

zl = Cyl = CElr (B.5)
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where

C =




c
shift_circ(c,1)
shift_circ(c,2)

...

shift_circ(c,H − 1)




in which c is the code, and shift_circ(c,m) is the function that rotates it by m steps. This
operation can be interpreted as a sort of transform, with a structure that is similar to
the Fast Fourier Transform, where the base is no longer formed by exponentials but by
rotated codes. In Eq. (B.5) the normalization factor 1

N is not considered. This normaliza-
tion however does not essentially change the statistical properties of the elements of the
search space that result only scaled.
At this point, it is possible to demonstrate the independence among the elements of a zl

and among the different zl. To this aim it is necessary to compute

• the covariance matrix of zl,

• the cross-covariance matrix of zl and zh, with l 6= h.

All kinds of search spaces are sets of random variables obtained from the elements of zl,
which are normally distributed under the hypothesis of Gaussian input signals r. For
this reason, the proof that the zl are uncorrelated implies statistical independence.
The covariance matrix can be evaluated starting from the correlation matrix

Czl
= E[zlzH

l ] = E[CElrrHEH
l CT ] = CElE[rrH ]EH

l CT . (B.6)

The element E[rrH ] contains a term due to the noise equal to σ2
IF , a cross-correlation

term between the noise and the signal components of r, and a term due to the signal
autocorrelation. The cross-correlation term is null since the noise and signal components
are uncorrelated. In the framework of the hypothesis adopted for the SIS code, the signal
autocorrelation can always be considered null thanks to the orthogonal property of the
codes, except in a single point of the search space. Therefore the signal only contributes
with a mean value, which does not impact the covariance matrix, and that can be written
as

Czl
= σ2

IFCElElCT = σ2
IFCCT (B.7)

where CCT is the code correlation matrix. A portion of CCT is shown in Figure B.1 in
the case of a BPSK signal. A GPS code with 2 samples per chip is used to form the C
and CCT matrices. The lighter colors represent high correlation values: in this case also
the sub- and the super-diagonal of CCT are clearly different from zero, because of the
code over-sampling. However, for a low over-sampling factor, due to the orthogonality
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proprieties of the code, the approximation CCT ≈ NI holds, where I is the identity
matrix of size N and

E[zizi
H ] ≈ σ2

IF NI (B.8)

where I is the identity matrix. This result shows the independence of the elements of zl,
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Figure B.1. Portion of the matrix CCT obtained with a GPS code of 1023 chips
and 2 samples per chip.

since the covariance matrix elements are zero except along the diagonal: the elements are
uncorrelated, Gaussian and, therefore, independent.

The cross-covariance matrix can be evaluated in the same way as that of the covari-
ance matrix, by writing

E[zlzH
h ] = E[CElrrHEH

h CT ] = CElE[rrH ]EH
h CT = σ2

IFCElEH
h CT (B.9)
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B – Independence of search space cells

with l 6= h. The term CElEH
h CT is ≈ 0 because it represents the correlation function

when the delay and Doppler shift are not matched. Therefore

E[zlzH
h ] ≈ 0 (B.10)
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Appendix C

Exact computation of the polynomial
PK−1(ρc)

The evaluation of the polynomial

PK−1(ρc) =
(

1
2

)K−1 K−1∑

i=0

1
i!4i

E
[(

χ2
2K

)i
]

=
(

1
2

)K−1 K−1∑

i=0

ai
K (C.1)

where
ai

K =
1

i!4i
E

[(
χ2

2K

)i
]

can be performed by using a recursive approach based on the fact that each χ2 random
variable can be decomposed as the sum of two independent χ2 random variables. In
particular

χ2
2K = χ2

m + χ2
n

where m and n are two positive integers, such that m + n = 2K. By using this property
the following relation can be derived:

ai
K =

1
i!4i

E
[(

χ2
2K

)i
]

=
1

i!4i
E

[(
χ2

m + χ2
n

)i
]

=
1

i!4i

i∑

h=0

(
i

h

)
E

[(
χ2

m

)h
]

E
[(

χ2
n

)i−h
]

=
1

i!4i

i∑

h=0

i!
h!(i− h!)

E
[(

χ2
m

)h
]

E
[(

χ2
n

)i−h
]

=
i∑

h=0

1
h!4h

E
[(

χ2
m

)h
] 1

(i− h)!4i−h
E

[(
χ2

n

)i−h
]

=
i∑

h=0

ah
mai−h

n .

(C.2)

Thus each term ai
K can be expressed as a convolution of coefficients deriving from χ2

random variables with less then 2K degrees of freedom. Furthermore it is possible to
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C – Exact computation of the polynomial PK−1(ρc)

explicitly evaluate the coefficients ai
0.5 as

ai
0.5 =

1
i!4i

E
[(

χ2
1

)i
]

=
1

i!4i
E

[
(Z + µ)2i

]
(C.3)

where Z is Gaussian random variable with zero mean and unitary variance and µ2 = ρc/4
is the non-centrality parameter of χ2

1 from which ai
0.5 derives. By expanding the binomial

in Eq. (C.3) one finds

ai
0.5 =

1
i!4i

2i∑

h=0

(
2i

h

)
E

[
Zh

]
µ2i−h. (C.4)

Since the moments of a standard Gaussian random variable are given by

E
[
Zh

]
=

{
h!

2h/2(h/2)!
for h even

0 for h odd.
(C.5)

Eq. (C.4) becomes

ai
0.5 =

1
i!4i

i∑

l=0

(
2i

2l

)
(2l)!
2ll!

µ2i−2l =
1

i!4i

i∑

l=0

(2i)!
(2i− 2l)!2ll!

(ρc

4

)i−l
. (C.6)

In this way all the ai
0.5 for i = 0,...,K − 1 can be evaluated and used as initial values for

determining ai
K by means of Eq. (C.2).
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Appendix D

PK−1(ρc) approximations

In this appendix the constant and linear terms of the polynomial PK−1(ρc) are evaluated
by using Gaussian random variable properties.
From Eq. (5.40), PK−1(ρc) is given by

PK−1(ρc) =
(

1
2

)K−1 K−1∑

i=0

1
i!4i

E
[(

χ2
2K

)i
]
. (D.1)

The random variable χ2
2K is obtained by summing the square of 2K normalized Gaussian

random variables with mean µi as

χ2
2K =

2K∑

i=1

(
Xi

σi

)2

=
2K∑

i=1

(
Zi + µi

σi

)2

=
2K∑

i=1

(
Zi

σi

)2

+ 2
2K∑

i=1

(
Ziµi

σ2
i

)
+

2K∑

i=1

(
µi

σi

)2
(D.2)

where Zi = Xi − µi are zero mean Gaussian random variables with variance equal to σ2
i .

Without loss of generality it is possible to assume σi = σ and µi = µ ∀i and thus Eq. (D.2)
becomes

χ2
2K =

2K∑

i=1

(
Zi

σi

)2

+ 2
µ

σ

2K∑

i=1

(
Zi

σ

)
+ λ

= C2K + 2

√
λ

2K
S + λ

(D.3)

where

• C2K is a central χ2 random variable with 2K degrees of freedom,

• S is the sum of the random variables Zi normalized by σ,
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D – PK−1(ρc) approximations

• λ is the non-centrality parameter given by

λ = 2K
(µ

σ

)2
=

K

2
ρc. (D.4)

By using Eq. (D.3) and the multinomial theorem it is possible to evaluate the raw mo-
ments of a non-central χ square random variable as

E
[(

χ2
2K

)i
]

= E




(
C2K + 2

√
λ

2K
S + λ

)i



= E


∑

h,j

i!
h!j!(i− h− j)!

Ch
2K2j

(√
λ

2K

)j

Sjλi−h−j




=
∑

h,j

i!2j/2

h!j!(i− h− j)!Kj/2
E

[
Ch

2KSj
]
λi−h−j/2

(D.5)

for 0 ≤ h ≤ i, 0 ≤ j ≤ i, and 0 ≤ i− h− j.
Eq. (D.5) can be used for determining the first coefficients of PK−1(ρc). It is important
to note that the index j in Eq. (D.5) can assume only even values. In fact when j is
odd, the product Ch

2KSj can be decomposed into the sum of products of odd powers of
independent zero mean Gaussian random variables and thus E

[
Ch

2KSj
]

is equal to zero.

D.1 Constant term

The constant term in PK−1 can be found by imposing i− h− j/2 = 0 and evaluating the
corresponding terms in Eq. (D.5). The only value of j and h that solves this condition
and respects the limits

0 ≤ h ≤ i

0 ≤ j ≤ i

0 ≤ i− h− j ≤ i

is

j = 0,h = i,

which leads to

Ei
0 = E

[
Ci

2K

]
= 2i Γ(i + K)

Γ(K)
= 2i (i + K − 1)!

(K − 1)!
(D.6)

where Ei
0 is a constant term, with respect to λ of E

[(
χ2

2K

)i
]
. Γ(·) is the Euler Gamma

function [45].
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D.2 – First power coefficient

The constant term in PK−1(ρc) is thus given by

p0 =
(

1
2

)K−1 K−1∑

i=0

1
i!4i

Ei
0 =

(
1
2

)K−1 K−1∑

i=0

1
i!4i

2i (i + K − 1)!
(K − 1)!

=
(

1
2

)K−1 K−1∑

i=0

1
i!2i

(i + K − 1)!
(K − 1)!

=
(

1
2

)K−1 K−1∑

i=0

1
2i

(
i + K − 1

i

)

=
(

1
2

)K−1

2K−1 = 1

(D.7)

In Eq. (D.7) the binomial property [123]

N∑

i=0

1
2i

(
i + N

i

)
= 2N

has been used.
Eq. (D.7) proves that the first term of PK−1(ρc) is equal to 1 independently from K.

D.2 First power coefficient

The coefficient corresponding to the first power of λ and consequently to the first power
of ρc in PK−1(ρc) can be evaluated by proceeding in the same way as for the constant
term case. The only values of h and j that lead to terms corresponding to the first power
of λ in Eq. (D.5) are

I) j = 0, h = i− 1,

II) j = 2, h = i− 2.

By evaluating these two cases it is possible to show that

Ei
1 =

2i−1i(i + K − 1)!
K!

λ =
2i−2i(i + K − 1)!

(K − 1)!
ρc (D.8)

where Ei
1 is a term of degree 1 with respect to λ and ρc in Eq. (D.5). From the previous

results it follows that

p1 =
1

2K−1

K−1∑

i=0

1
i!4i

2i−2i(i + K − 1)!
(K − 1)!

=
K

4

[
1− 1

22K−1

(
2K

K

)]
.

(D.9)
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Appendix E

Independence of the random
variables at the output of the data
and pilot correlators

In this appendix we show that the random variables obtained by correlating the input
composite GNSS signal with the local replicas of the data and pilot channels are approx-
imatively independent.
The correlator outputs are given by the signal and noise components. In particular the
noise components on the in-phase and quadrature branches are given by

ηX,I (τ,FD) =
1
N

N−1∑

n=0

η[n]eX [n− τ ] cos (2πFDn)

ηX,Q (τ,FD) = − 1
N

N−1∑

n=0

η[n]eX [n− τ ] sin (2πFDn)

(E.1)

or equivalently

ηX (τ,FD) = ηX,I (τ,FD) + jηX,Q (τ,FD) =
1
N

N−1∑

n=0

η[n]eX [n− τ ] exp {−j2πFDn} (E.2)

where the index X can be either X = D or X = P denoting either the data or the pilot
components. The signal eX [n− τ ] is the local code delayed by τ .
In order to prove the independence between the output of the data and pilot channels
it is sufficient to prove the independence of ηD and ηP , the noise terms in the data and
pilot correlations. Since both ηD and ηP are linear combinations of the samples of the
Gaussian process ηIF [n] they are two Gaussian random variables and thus, to prove their
independence, it is sufficient to prove that E [ηDη∗P ] = 0.
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E – Independence of the random variables at the output of the data and pilot correlators

By defining

M =




η[0]
η[1]
. . .

η[N − 1]


 ; Ex =




1 0 . . . 0
0 exp{−j2πFD} . . . 0
. . . . . . . . . . . .

0 0 . . . exp{−j2πFD(N − 1)}


 ;

D =




eD[−τ ]
eD[1− τ ]

. . .

eD[N − 1− τ ]


 ; P =




eP [−τ ]
eP [1− τ ]

. . .

eP [N − 1− τ ]


 ,

it is possible to rewrite Eq. (E.2) for the data and pilot components in the following form:

ηD(τ,FD) =
1
N

MT ExD

ηP (τ,FD) =
1
N

MT ExP.

(E.3)

Thus

E [ηD(τ,FD)η∗P (τ,FD)] = E
[
ηH

P (τ,FD)ηD(τ,FD)
]

= E
[

1
N2

PHEH
x M∗MT ExD

]
=

1
N2

PHEH
x E

[
M∗MT

]
ExD

=
σ2

IF

N2
PHEH

x ExD =
σ2

IF

N2
DHP ≈ 0.

(E.4)

The correlation Eq. (E.4) is almost zero for the quasi-orthogonality of the primary codes
eD and eP . In Eq. (E.4) the fact that EH

x Ex = IN and E{M∗MT } = σIF IN has been used.
IN is the identity matrix of size N .
From Eq. (E.4) ηD(τ,FD) and ηP (τ,FD) can be considered uncorrelated and thus indepen-
dent.
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Appendix F

Computation of the coefficients{
aK,i

}K
i=1

and
{
bK,i

}K
i=1

The partial fraction expansion

1
(1− j4σ2

nt)K(1− j2σ2
nt)K

=
K∑

i=1

[
aK,i

(1− j4σ2
nt)i

− bK,i

(1− j2σ2
nt)i

]

can be determined by establishing a recurrence relationship between the coefficients
{aK,i,bK,i}K

i=1 and {aK−1,i,bK−1,i}K−1
i=1 , obtained from the partial fraction expansion of

1
(1−j4σ2

nt)K−1(1−j2σ2
nt)K−1 .

In particular:

1
(1− j4σ2

nt)K(1− j2σ2
nt)K

=
1

(1− j4σ2
nt)(1− j2σ2

nt)
1

(1− j4σ2
nt)K−1(1− j2σ2

nt)K−1

=
[

2
(1− j4σ2

nt)
− 1

(1− j2σ2
nt)

] K−1∑

i=1

[
aK−1,i

(1− j4σ2
nt)i

− bK−1,i

(1− j2σ2
nt)i

]

=
K−1∑

i=1

2aK−1,i

(1− j4σ2
nt)i+1

+
K−1∑

i=1

bK−1,i

(1− j2σ2
nt)i+1

−
K−1∑

i=1

aK−1,i

(1− j4σ2
nt)i(1− j2σ2

nt)

−
K−1∑

i=1

2bK−1,i

(1− j4σ2
nt)(1− j2σ2

nt)i
.

(F.1)

In the summations of Eq. (F.1) there is only one fraction proportional to 1/(1 − j4σ2
n)K

and only one proportional to 1/(1− j2σ2
n)K , thus a first recurrence relation for aK,K and

bK,K can be found

aK,K = 2aK−1,K−1

bK,K = −bK−1,K−1.
(F.2)
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F – Computation of the coefficients {aK,i}K
i=1 and {bK,i}K

i=1

For determining the other recurrence relations it is noted that aK,i, for i > 1, depends
only on the coefficients in the summations

K−1∑

i=1

2aK−1,i

(1− j4σ2
nt)i+1

−
K−1∑

i=1

aK−1,i

(1− j4σ2
nt)i(1− j2σ2

nt)
(F.3)

and bK,i, for i > 1, depends only on the coefficients in the summations

K−1∑

i=1

bK−1,i

(1− j4σ2
nt)i+1

−
K−1∑

i=1

2bK−1,i

(1− j4σ2
nt)(1− j2σ2

nt)i
. (F.4)

The second summation in Eq. (F.3) can be further decomposed as:

−
K−1∑

i=1

aK−1,i

(1− j4σ2
nt)i(1− j2σ2

nt)
= −

K−1∑

i=1

aK−1,i

(1− j4σ2
nt)i−1

1
(1− j4σ2

nt)(1− j2σ2
nt)

= −
K−1∑

i=1

aK−1,i

(1− j4σ2
nt)i−1

[
2

(1− j4σ2
nt)

− 1
(1− j2σ2

nt)

]

=
aK−1,1

(1− j2σ2
nt)

−
[

K−1∑

i=1

2aK−1,i

(1− j4σ2
nt)i

−
K−1∑

i=2

aK−1,i

(1− j4σ2
nt)i−1(1− j2σ2

nt)

]
.

(F.5)

In an analogous way, the second summation in Eq. (F.4) can be expressed as:

−
K−1∑

i=1

2bK−1,i

(1− j4σ2
nt)(1− j2σ2

nt)i
= −

K−1∑

i=1

2bK−1,i

(1− j2σ2
nt)i−1

[
2

(1− j4σ2
nt)

− 1
(1− j2σ2

nt)

]

= − 2bK−1,1

(1− j4σ2
nt)

− 2

[
K−1∑

i=1

bK−1,i

(1− j2σ2
nt)i

−
K−1∑

i=2

2bK−1,i

(1− j4σ2
nt)(1− j2σ2

nt)i−1

]
.

(F.6)

From Eqs. (F.3), (F.4), (F.5) and (F.6) it is possible to derive the following recurrence rela-
tionship for aK,K−1 and bK,K−1:

aK,K−1 = 2aK−1,K−2 − 2aK−1,K−1 = 2aK−1,K−2 − aK,K

bK,K−1 = −bK−1,K−2 − 2bK−1,K−1 = −bK−1,K−2 + 2bK,K .
(F.7)

The summations between square brackets in both Eqs. (F.5) and (F.6) have the same struc-
ture as those of Eqs. (F.3) and (F.4), respectively. Thus, for determining the recurrence
relation for aK,i and bK,i, for i > 1, it is sufficient to continue to expand the summations
in Eqs. (F.5) and (F.6). By doing so the following recurrence relations are found:

aK,K−n = 2aK−1,K−n−1 − aK,K−n+1

bK,K−n = −bK−1,K−n−1 + 2bK,K−n+1.
(F.8)
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The coefficient aK,1 is given by two contributions, the first from Eq. (F.3) and the second
from Eq. (F.4). The term from Eq. (F.3) follows the recurrence relation in Eq. (F.8),
provided that aK−1,0 = 0, whereas the one from Eq. (F.4) can be easily determined by
using the residues theorem. bK,1 can be determined in the same way. Thus, the final
formula for aK,1 and bK,1 are

aK,1 = −aK,K−n+1 −
K−1∑

i=1

2i+1bK−1,i

bK,1 = 2bK,K−n+1 −
K−1∑

i=1

(−1)i+1aK−1,i.

(F.9)

Eqs. (F.2), (F.8) and (F.9) can be summarized in the following formula:

aK,K−n = 2aK−1,K−n−1 − aK,K−n+1 −BK−1,n

bK,K−n = −bK−1,K−n−1 + 2bK,K−n+1 −AK−1,n

(F.10)

where

• BK−1,n =
∑K−1

i=1 2i+1bK−1,iδ[n−K + 1]

• AK−1,n =
∑K−1

i=1 (−1)i+1aK−1,iδ[n−K + 1]

and δ[·] is the Kronecker delta. Using the recurrence relation (F.10) and the initial condi-
tions

a1,1 = 2, b1,1 = 1 (F.11)

it is finally possible to evaluate the coefficients for the partial fraction expansion of 1
(1−j4σ2

nt)K(1−j2σ2
nt)K .
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i=1
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Appendix G

Equivalent probability distribution
of ϕ1 and ϕ2

In this appendix it is shown that the random variables ϕ1 and ϕ2 defined by Eqs. (11.16)
and (11.17) can be substituted in Eq. (11.15) by two independent random variables uni-
formly distributed over the range [−π; π).
Firstly, the constant terms in Eqs. (11.16) and (11.17)

c1 = θ1 + 2π(Fint − FD,0)τ0,

c2 = θ2 − 2π(Fint + FD,0)τ0,

can be dropped. In fact ϕ1 and ϕ2 appear in Eq. (11.15) only as arguments of periodic
functions whose values do not change if ϕ1 and ϕ2 are translated. In fact these random
variables span a whole period of those functions even if translated. Thus the following
change of variables can be considered:

[
ϕ1

ϕ2

]
=

[
1 −1
−1 −1

][
θint

φ0

]
. (G.1)

The θint and φ0 independent and uniformly distributed random variables. Eq. (G.1) de-
fines a linear transformation that rotates and expands the support of the joint probability
density function of θint and φ0. The effect of this change of variables is better illustrated
in Figure G.1 where the effect of Eq. (G.1) on the support of the joint distribution is re-
ported. However only the values of ϕ1 and ϕ2 in the range [−π,π) are of interest, since
Eq. (11.15) can be expressed in terms of sines and cosines of these two variables. Thus,
since trigonometric functions are 2π-periodic, the values of ϕ1 and ϕ2 outside [−π,π) are
folded into this range leading to the joint probability distribution illustrated in the last
part of Figure G.1. The new joint distribution is still uniform on the new support and it
can be factorized as the product of the distributions of two uniform random variables.
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Figure G.1. Transformation from θint and φ0 to ϕ1 and ϕ2. Since the cosine is 2π-periodic
the values of ϕ1 and ϕ2 outside [−π;π) are folded into this range leading to two indepen-
dent random variables uniformly distributed.

This proves that ϕ1 and ϕ2 can be considered independent and uniformly distributed on
[−π,π).
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Appendix H

Proof of (11.20)

In this appendix the proof of Eq. (11.20) is given. Upon defining

p1 =
A2

4
+

A2
INT

4
(k2

1 + k2
2) =

C

2
+

A2
INT

4
(k2

1 + k2
2)

p2 =
AINT√

2
k2

the expression (11.15) can be rewritten as

α2 = p1 + p2

√
C cosϕ2 +

A2
INT

2
k1k2 cos(ϕ1 − ϕ2) + AINT

√
C

2
k1 cosϕ1

= p1 + p2

√
C cosϕ2 + cosϕ1

[
AINT

√
C

2
k1 +

A2
INT

2
k1k2 cosϕ2

]
+ sin ϕ1

A2
INT

2
k1k2 sinϕ2.

(H.1)

By defining

M(ϕ2) =

√√√√
(

AINT

√
C

2
k1 +

A2
INT

2
k1k2 cosϕ2

)2

+
(

A2
INT

2
k1k2 sinϕ2

)2

=

√[
A2

INT

C

2
k2

1 +
A4

INT

4
k2

1k
2
2

]
+ A3

INT

√
C

2
k2

1k2 cosϕ2

=
√

p3 + p4

√
C cosϕ2

(H.2)

and

γ(ϕ2) = arctan




A2
INT
2 k1k2 sinϕ2

AINT

√
C
2 k1 + A2

INT
2 k1k2 cosϕ2


 (H.3)

where

p3 = A2
INT

C

2
k2

1 +
A4

INT

4
k2

1k
2
2
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H – Proof of (11.20)

p4 =
A3

INT√
2

k2
1k2,

expression (H.1) becomes

α2 = p1 + p2

√
C cosϕ2 + M(ϕ2) cos [γ(ϕ2)] cos(ϕ1) + M(ϕ2) sin [γ(ϕ2)] sin(ϕ1)

= p1 + p2

√
C cosϕ2 +

√
p3 + p4

√
C cosϕ2 cos(ϕ1 − γ).

(H.4)

The term cos(ϕ1 − γ) can be substituted by cosϕ3 where ϕ3 is a new random variable
statistically independent from γ, and thus from ϕ2, uniformly distributed on the range
[−π,π). This property can be easily proved by noticing that the probability distribution of
cos(ϕ1−γ) is statistically independent from γ. In fact, for each fixed γ, ϕ1 uniformly spans
a period of the cosine and thus the statistical properties of cos(ϕ1 − γ) do not depend on
γ. This kind of argument can also be used to prove that cos(ϕ1 − ϕ2) behaves as cos θ

where θ is a random variable uniformly distributed over [−π; π).
By using this consideration, Eq. (H.4) becomes

α2 = p1 + p2

√
C cosϕ2 +

√
p3 + p4

√
C cosϕ2 cosϕ3 (H.5)

thus proving Eq. (11.20).
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