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Abstract

Although GPS measurements are the essential information for currently developed land
vehicle navigation systems (LVNS), the situation when GPS signals are unavailable or
unreliable due to signal blockages must be compensated to provide continuous navigation
solutions. In order to overcome the unavailability or unreliability problem in satellite
based navigation systems and also to be cost effective, Micro Electro Mechanical
Systems (MEMS) based inertial sensor technology has pushed the development of low-
cost integrated navigation systems for land vehicle navigation and guidance applications.
In spite of low inherent cost, small size, low power consumption, and solid reliability of
MEMS based inertial sensors, the errors in the observations from the MEMS-based
sensors must be appropriately treated in order to turn the observations into useful data for
vehicle position determination. The error analysis would be conducted in the time domain

specifying the stochastic variation as well as error sources of systematic nature.

This thesis will address the above issues and present algorithms to identify and model the
error sources in MEMS-based inertial sensors. A Kalman filter will be described and
applied to analyze the performance of a minimum configured GPS/IMU system for
vehicle navigation applications. The performance of the testing system has been assessed
via a comparison to Precise Point Position (PPP) reference data. The testing results

indicate the effectiveness of the discussed error analysis and modeling method.
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Chapter 1

Introduction

1.1 Background and Objective

The rapidly expanding use of the Global Positioning System (GPS) enables commercial
navigation devices to be more popular and attainable for the civil users. GPS provides
absolute positioning information covering any part of the world during days and nights.
From the blackbox-sized military GPS receivers to the chipsets on cellular phones, GPS
receiver technology has been significantly enhanced over the past ten years and it will
enable more inexpensive and smaller GPS navigation devices to be possible in the near

future. While GPS provides bounded errors for the position and the velocity, GPS users



shall experience signal blockage due to such as interference and jamming. As GPS signal
is coming from about 20,200 km from the sky, it is relatively weak and is affected by the
atmosphere, line of sight and etc. In spite of many successful research activities to handle
identified error sources of GPS measurements such as ionosphere modeling, multipath
mitigation and differential GPS, the visibility to adequate number of GPS satellites from
the recipient is still critical in using GPS alone navigation devices. Under the tree, inside
the building, in the tunnel, between the tall buildings, GPS positioning is difficult due to

signal blockage and degradation.

Because of their complementary characteristics, Dead Reckoning (DR) method is often
considered to be integrated with GPS. Recently, a low cost integrated navigation system
for commercial applications such as car/personal navigation, accident record, and human
body detection is getting huge attention around the world. DR method is an approach that
has been widely used in marine and airborne navigation for decades, which is a relative
positioning method capable of deriving position based on three distinct inputs, namely, a
set of starting coordinates, the direction of travel, and the velocity of travel. There are
many different types of DR sensors available such as Compass, Gyroscope, Inclinometer,
Odometer, Accelerometer, Altimeter, etc. Each system provides its own distinguished
output and some sensors can be combined such as Inertial Measurement Unit (IMU),
which consists of 3-axis accelerometer and 3-axis gyroscope. Attempting to overcome the
cost and size constraints of traditional DR sensors, Micro Electro Mechanical Systems
(MEMS) based DR sensors have accelerated the development of low cost integrated

navigation systems on single board with latest GPS receiver technology. Considerable



applications and researches are now eagerly being carried out on satellite based
navigation system aided by MEMS based DR sensors and have drawn great expectations.
Among the applications of MEMS technology, MEMS based inertial sensors like MEMS
based gyroscopes and MEMS based accelerometers have been adopted and tested as
aiding sensors to improve the navigation information continuity in many applications.
MEMS based accelerometers and gyroscopes are becoming more attractive to
manufacturers of navigation systems because of their small size, low cost, light weight,

low power consumption and ruggedness.

For all that DR and GPS have excellent complementary synergy effect since DR sensors
are self-contained and provide the high frequency and continuous information, DR
sensors are subject to internal error behaviour and their errors tend to increase with time.
Despite remarkable advances of MEMS technology in cost and size constraints, MEMS
based inertial sensors have inherited the error behaviour of conventional inertial sensors
and they are still considered as very poor devices in accuracy which are suffering from a
variety of error sources that are slightly different upon the structure of sensor like
mechanical sensors. Hence, in order to integrate MEMS based inertial sensors with GPS
and provide a continuous and reliable navigation solution, the characteristics of different
error sources and the understanding of the stochastic variation of MEMS based inertial
sensors are of significant importance for the development of optimal estimation

algorithms (Park and Gao, 2002).



Here, the main purposes of this study are the error characterization of MEMS based
inertial sensors and the performance analysis of the prototype of a low cost GPS/MEMS
based inertial sensor integrated system for land vehicle applications. The fundamental
characteristics of MEMS based accelerometers and gyroscopes will be investigated and
the stochastic variation of the sensors will be assessed in the time domain analysis.
Furthermore, the different stochastic modeling methods will be studied and one of them
will be adopted for the performance analysis of the testing system. When the performance
of MEMS based inertial sensors is admissible for a certain application such as the land
vehicle navigation systems, a continuous integrated navigation system will be available
with cheaper and smaller inertial sensors complementing GPS signal interference and

jamming in so-called urban canyons.

1.2 Thesis Outline

Chapter Two gives an overview of currently proposed multi-sensor navigation systems.
More specifically, satellite based navigation system and dead reckoning navigation
system will be described separately in terms of its characteristics and error behaviours
related to multi-sensor navigation system performances. The fundamental ideas of
MEMS technology will be introduced and some of currently used MEMS based inertial

sensors will be discussed.



Chapter Three discusses how to analyze the stochastic variation of a sensor based on the
knowledge of probabilistic and statistical aspects. It gives the mathematical background
of time domain representation of stochastic processes and then, it discusses how to
approximately identify stochastic variation of measurement data as one of the standard

discrete stochastic models that will be used in the optimal estimation algorithm.

Chapter Four gives the estimation of deterministic error sources of MEMS based inertial
sensors and associated stochastic modeling. The major deterministic error sources (zero-
offset bias and 1% order scale factor) have been estimated and the random noises of
MEMS based accelerometer/gyroscope have been modeled based on the discussion of

different stochastic modeling methods in chapter Three.

Chapter Five holds the performance analysis of stochastic modeling discussed in the
previous chapters. After the experiment of static and 2-D kinematic land vehicle
navigation, testing results will be analyzed to explain the influences of previous

suggested stochastic modeling scheme in the position domain.

Finally, Chapter Six will be the conclusions of the research as well as some

recommendations for the future research.



Chapter 2

Multi-Sensor Navigation Systems

For last several decades, much effort has been applied to the development of sensing
devices which measure the physical quantities of interest such as acceleration, velocity,
position, pressure, weight, force, sound, and etc converting those quantities into electrical
signals. Recently, two main technical advances (Digital Signal Processing (DSP) and
Micro Mechanics) have accelerated the development of various applications with less
cost and space constraints. From the blackbox-sized military navigation systems to the
chipsets on cellular phones, recent advances in sensor technology have enormously been
applied in the navigation field. This chapter will provide the basic understanding of
multi-sensor navigation systems including specific navigation methods and MEMS

technology with MEMS based inertial sensors.



2.1 Concepts of Multi-Sensor Navigation Systems

For the determination of navigation states (e.g., position, velocity, attitude, acceleration),
different types of sensors can be considered. The compass can determine the direction
relative to the local magnetic north, and the odometer in the vehicle provides the change
of distance relative to the initial point. From the coin-sized magnetic compass to GPS or
Inertial Navigation System (INS), manifold sensors provide their own distinguished
outputs for the use of navigation solution. In many applications, more than one sensor are
involved so as to not only determine the navigation states at a certain time but also to
provide the continuous navigation trajectory. The term, ‘multi-sensor navigation systems’,
is therefore, often used. Such systems are typically operated with multiple sensors
referenced to a common platform and synchronized to a common time base (Schwarz,
2001, p. 2). Each sensor contributes its own stream of data and all the data is optimally

processed.

For most multi-sensor navigation systems, two main questions are commonly raised,

namely

= What kinds of sensors will be chosen?

«  How will the output of each sensor be combined to provide optimal solution?



Considering the cost, the space, the availability, and etc, the proper sensors should be
chosen and the development of optimal processing algorithm is necessary for multi-
sensor navigation systems. Some sensors have complementary aspects to each other and
sometimes, redundant sensors are needed to avoid the possible malfunction or unreliable
operation of sensors. Also, different data fusion algorithms can be used for different
environmental situations. Figure 2.1 shows one example of sophisticated multi-sensor

navigation system data fusion algorithms.

I R Master Filter
%
‘ Reference Sensor . Prediction
: 05 | RGROA
{ Local Sensor 1 zR, - ’[ Local Filter 1 XORG - ‘ iF(+)
Bl
X OP®A Update R
and
[ Local Sensor2 | = - :[L Local Filter 2 . & Fusion
[ Local Sensorn | &R Local Filter n ekl -
| xMRH4

Figure 2.1 Federated Kalman Filter for Multi-Sensor Navigation System (Carlson, 2002)

In the figure,

X is reference error estimate

z. is measurement sequence

1



R, 1S measurement error covariance

X;(+) islocal error estimate

P (+) 1islocal error covariance

X, (—) is optimal error estimate before #, in master filter
P (-) is covariance associated with X, (-)

X.(+) is global error estimate
P_(+) is global error covariance

B is sharing factor

This example illustrates the federated Kalman filter to a distributed navigation system
having 3 local sensors with the associated local filters. There is a reference sensor such as
INS whose outputs are employed as a common reference solution by each of three local
filters (Carlson, 2002). The federated Kalman filter combines local estimates in the
master filter in order to yield the global optimal estimate and then, includes feeding back
the information from the master filter to the local filters. This type of architecture
requires the full order state vectors in each of local filters, which is a very difficult
implementation requirement in applications. For the real implementation procedures,
some modifications and changes are necessary in order to make it work properly. All the
multi-sensor navigation systems do not have to be complicated like the previous example.
Besides, individual sensor investigation should have been performed precisely before
putting sensors together. It is a very critical procedure for the reliable and optimal

navigation solution to the end. The subsequent sections will briefly describe the two



important navigation methods: Satellite based Navigation method and Dead Reckoning

(DR) Navigation method.

2.2 Satellite based Navigation Method

Among the satellites which have been used, and still are used for their different goals,
satellite based navigation systems are NNSS TRANSIT (Navy Navigation Satellite
System TRANSIT) & NAVSTAR GPS (NAVigation System with Time and Ranging
Global Positioning System) by United States, GLONASS (GLObal Navigation Satellite
System) by Russia, and proposed GALILEO by European Union near future. In this
section, NAVSTAR GPS will be mainly discussed to enhance the understanding of the
main issues of the satellite based navigation method. The descriptions of GPS, the GPS

observables and the error budgets, and limitations will be given subsequently.

2.2.1 Descriptions of GPS

The NAVSTAR GPS is a satellite-based radio navigation system designed and operated
by the U.S. DoD (Department of Defense), providing three-dimensional position,
navigation, and time information to the users with a suitable equipment. It became fully
operational in 1994 with 21 satellites (plus 3 active spares) on 6 orbital planes in about

20,200 km altitude above the earth’s surface with 12 hours orbiting period covering

10



worldwide. GPS has been designed that at least 4 satellites could be visibly available

above the horizon anywhere on the earth, 24 hours a day.

Horizontal Plane

Receiver Location

Figure 2.2 GPS Positioning

GPS is primarily a navigation system. The fundamental navigation principle is based on
the measurement of so-called pseudoranges between the user and at least the four
satellites illustrated in Figure 2.2. Starting from the known satellite coordinates in a
suitable reference frame (WGS 84), the coordinates of the user antenna can be
determined. From the geometrical point of view, three range measurements are sufficient.
A fourth observation is necessary because GPS uses the one-way ranging technique, and
the receiver clock is not synchronized with the satellite clock. This synchronization error

is the reason for the term “pseudorange” (Seeber, 1993, p. 209).
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GPS signals are transmitted on two coherent carrier frequencies, L1 (1575.42 MHz) and
L2 (1227.60 MHz), which are modulated by various spread spectrum signals. The major
carrier, L1, is biphase-modulated by two types of pseudo-random noise codes: one at
1.023 MHz, called the ‘C/A-code’, and the other at 10.23 MHz, called the ‘P-code’. The
P-code is intended only for the authorized access because its one-chip wavelength of 30
m provides the most accurate positioning possible. The C/A-code, with its 300 m one-
chip wavelength, is used in all cases for initial acquisition and code-signal alignment
purposes. Most of civil users have the access to this less accurate C/A-code for
positioning. The second carrier signal, L2, contains only P-code modulation, and is
intended to give the authorized users the additional capability of actually measuring the
ionospheric delays using the two frequencies, the delays being frequency-dependent. In
official parlance, the P-code access is reserved for what is called the Precise Positioning
Service (PPS) mode of operation, whereas everything else is classified as the Standard
Positioning Service (SPS) (Brown and Hwang, 1997, p. 420). Table 2.1 summarizes

some characteristic features of NAVSTAR GPS satellite signals.

Table 2.1 GPS Satellite Signals (Seeber, 1993, p. 217)

Atomic clock (Cs, Rb) Fundamental frequency 10.23 MHz

L1 carrier signal 154 x 10.23 MHz
L1 frequency 1575.42 MHz

L1 wavelength 19.05 cm

L2 carrier signal 120 x 10.23 MHz
L2 frequency 1227.60 MHz

L2 wavelength 24.45 cm

P-code frequency (chipping rate) 10.23 MHz (Mbps)
P-code wavelength 2931 m

P-code period 266 days; 7 days/satellite
C/A-code frequency (chipping rate) 1.023 MHz (Mbps)
C/A-code wavelength 293.1 m

C/A-code period 1 millisecond

Data signal frequency 50 bps

Data signal cycle length 30 seconds

12



2.2.2 GPS Observables and Error Budgets

As mentioned earlier, at least 4 satellite measurements are acquired to determine the
recipient position slaved to the coordinate frame of reference such as WGS 84. Two
important observables are generated from GPS raw measurements, which are usually
called as pseudorandom code and the carrier signal. These two different observables
(code, carrier) are derived or tracked in the separate tracking loops, Delay Lock Loop
(DLL) for code tracking loop and Costas Phase Lock Loop (PLL) for carrier tracking
loop. A pseudorange from code measurements equals the time shift that is necessary to
correlate the incoming code sequence with a code sequence generated in the GPS
receiver, multiplied by the velocity of light, and the carrier phase is derived from a phase
comparison between the received Doppler shifted carrier signal and the (nominally
constant) receiver-generated reference frequency (Seeber, 1993, p. 249). Pseudoranges
from code/carrier phase measurements suffer from several error sources and their

measurement equations are (Cannon, 2001, p. 106/111)

P= p+dp+c(dt-dT)+d,, +d,,, +ép (2.1)
b=p+dp+c(dt—dT)+ AN -d,, +d,,, +&, (2.2)
where

P is the pseudorange measurement

(0] is the carrier phase measurement

yo, is the geometric range from the satellite to the receiver

13



dp  1isthe orbital errors

dt 1s the receiver clock offset to GPS time
dT is the satellite clock error

d, is the ionospheric delay
d is the tropospheric delay

Ep is the pseudorange measurement noise including multipath effect
A is the GPS carrier wavelength

N is the integer ambiguity

Eo is the carrier phase measurement noise including multipath effect

c is the speed of light

Three major differences between pseudorange measurement and carrier phase
measurement are phase advance in ionospheric delay, integer ambiguity, and
measurement noise. Contrary to the code measurement, carrier phase measurement has
phase advance phenomena resulting in negative sign in equation (2.2). The L1 carrier
wavelength is about 19 cm which intends to generate very precise measurements of the
phase of the carrier to be made. However, resolving the integer ambiguity is a delicate
task which requires quite a long integer convergence time of several tens of minutes or
estimated as a float term sometimes. Both of pseudorange and carrier phase measurement
noise consist of receiver noise and their own multipath effect. Multipath phenomenon
refers to the distortion of a directly received GPS signal by its spurious replica that took
an indirect path by the way of reflecting off one or more objects. Clearly, the indirect

path taken by the replica or multipath signal will be longer than that taken by the direct

14



signal. This signifies ranging error that can be quite sizable. As long as the receiver is
locked onto the direct signal by virtue of its stronger power, the multipath signal with its
erroneous ranging information will only appear to distort the direct signal and perturb its
phase to introduce a small ranging error. If the multipath signal is stronger than the direct
signal, particularly when the latter is completely obstructed, the multipath error can well

be far more significant (Brown and Hwang, 1997, p. 428).

The most common method to minimize the errors of SPS GPS measurements is the
Differential GPS (DGPS). With known coordinates of one receiver station, position of the
second receiver station can be accurately determined by canceling the common error
parts experienced by both stations shown in equation (2.1) and (2.2). Since DGPS method
is requiring two receiver stations such as a reference and a rover receiver, the solution is

dependent on the separation length of baseline between them. DGPS does not lessen

multipath effect and increase the noise level by a factor of 2. Table 2.2 summarizes

SPS GPS error budgets.

Table 2.2 SPS GPS Error Budgets (Cannon, 2001, p.131)

Error Sources Typical Values

Satellite error (1 0°)

Orbit & clock error 23 m
Propagation errors

Ionosphere 7m

Troposphere 0.2 m
Received errors

Code multipath 1.5m

Code noise 0.6 m

Carrier multipath 1 ~50 mm

Carrier noise 0.2 ~2 mm
Total ~11.6m
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2.2.3 Limitations of GPS

While GPS provides bounded errors for position and velocity, GPS users experience
signal blockage; interference or jamming. As GPS signal is coming from about 22,000
km from the sky, it is relatively weak and affected by the atmosphere, line of sight and
etc. In spite of many successful research activities to handle identified error sources such
as ionosphere modeling, multipath mitigation and DGPS, the visibility to adequate
number of GPS satellites from the recipient is still critical in using GPS alone navigation
devices. Under the tree, inside the building, in the tunnel, and between the tall buildings,
GPS positioning becomes difficult due to the signal blockage and degradation.
Limitations of GPS enforce one to integrate GPS with other navigation sensors to provide

the continuous navigation solution.

2.3 Dead Reckoning (DR) Navigation Method

Dead Reckoning (DR) navigation is one of the traditional navigation methods that has
been widely used in marine and long range flight applications, which is a relative
positioning method capable of deriving position based on three distinct inputs, namely, a
set of starting coordinates, the direction of travel, and the velocity of travel. With the
known initial coordinates in navigation frame, a set of sensors provides its own

navigation outputs in body frame and sensor outputs are processed in the computation
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algorithm to provide the new coordinates in navigation frame. DR navigation method is
self-contained and it does not require the external signals or inputs. There are many
different types of DR sensors available: Compass, Gyroscope, Inclinometer, Odometer,
Accelerometer, Altimeter, etc. Each system has distinct output and some sensors can be
combined. Two-dimensional DR navigation described in Farrell and Barth (1998, p.5)
will be illustrated and explained to help understand DR navigation method. In Figure 2.3,

only two coordinate frames are involved; body-frame and navigation-frame.

Navigation

Northing (n)  Frame
F 3

i

Instantaneous |- = = === — - - BOdy Frame

1 position

v

L
Instantaneous Easting (¢)
e position

Figure 2.3 Ideal two-dimensional DR Navigation (Farrell and Barth, 1998)

In a modern approach to dead reckoning, body-frame velocity and heading are measured
electronically. Instantaneous navigation-frame velocities are computed at a high rate
based on the measured heading and the body-frame velocity. The navigation-frame
velocities are then integrated to determine the navigation-frame positions. The

differential equations describing the ideal mechanization of this approach are
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{ n(t) } _ { cos(p(1))  —sin(y (1)) }{ u(t) } 23)
é(t) sin(y(r))  cos(y(?)) | v(®) .

where

(n,e) are the north and the east position in navigation-frame
(u,v) are the components of vehicle velocity in body-frame

7 is the angle between navigation north axis and body u axis

R = { cos(y(2))  —sin(y(1))
sin(y(1))  cos(y(?))

} is the transformation matrix between body

and navigation frame

It should be noted that the vehicle position accuracy is dependent on the accuracy of the
initial position estimates even in the ideal case. Also, since involved sensors and actual
computations are not perfectly accurate, equation (2.3) should be changed into the

equations including various system errors as follows:

(o) =[cos(&(z» ~sin( (1)) }V(z)} 0.4
) | Lsin@@)  cos(@) || 7(1) |

where
Y =y+oy,
V=v+6v,
u=(1+0s)u+ou
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oy, ov,ou are the bias terms and os is the scale-factor error

Assuming v = 0 and the lateral velocity is not measured, 6v = —v and equation (2.4) is

then reduced to

{ A(t) } B { cos(p(t) + Sy (1))  —sin(w(t) + Sy (1)) }[ (1+ 8s)u(t) + Su(t) } 25

é(t) sin(y(t) + oy (1)) cos(y(t) + oy (1)) V(1) + ov(z)
Figure 2.4 describes the actual case with some system errors.

Navigation
Northing (n} ~ Frame
A

Instantareoss |- - — = ——— - -
n position

Body Frame

L
Instantaneous Easting (e)
e positon

Figure 2.4 Actual two-dimensional DR Navigation (Farrell and Barth, 1998)
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Linear analysis of the actual system about the ideal system is carried out by subtracting
the actual system from the ideal system and linearizing it with the introduction of error

variables. Using Taylor’s Theorem, linear error differential equations are obtained as

oy
on| |10] on —usin(y(t)) ucos(y(t)) cos(w(t)) —sin(y(t)) || Os
s | |01 ¢ " ucos(y(t)) usin(yw(t)) sin(w(t)) cos(w(t)) || ou
ov

(2.6)

where on=n—n and de=e—¢.

Equation (2.6) is the simplified two-dimensional DR navigation error equation and is
very useful for system analysis. In real situation, much more complicated navigation
equations are used in three-dimensional rotating coordinate frame such as Earth-Fixed
Earth-Centered (EFEC) reference frame. Also, if the velocity of vehicle is obtained by

integration of measured accelerations, earth gravity forces should be properly modeled.

There are some of important characteristics to be noticed in the above example. First,

initial position errors (on,de) affect all the subsequent positions as a constant offset. That

means, one is expected to start with good initial estimated coordinates for the good
estimated coordinates in future times. Secondly, the heading bias and scale-factor error of
forward velocity is a function of velocity u . Thirdly, the result of error equations
depends on the system error modeling. If any of sensor’s error is not modeled properly or
the unmodeled error affects the system performance, the system would be unreliable and

the results would be inaccurate. The size and the nature of the sensor errors are not easy
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to characterize, are time variable, and can be affected by events outside the sensor itself
(Farrell and Barth, 1998, p. 7). DR navigation method is substantially subject to internal
error behaviours and its errors tend to increase with time. The errors that normally arise
in calculated navigation states are instrumental errors, computational errors, alignment
errors and environment errors. Then, it is of significant importance to characterize error

sources and develop precise stochastic modeling of the sensors.

2.4 MEMS Technology

Recent advances in Micro Electro Mechanical Systems (MEMS) based DR sensors are
quite significant and are promising the smaller and cheaper systems. MEMS is the
integration of mechanical elements, sensors, actuators, and electronics on a common
silicon substrate through the utilization of microfabrication technology (Huff, 1999), and
see Figure 2.5. MEMS technology is expected to revolutionize a variety of industrial field
products by combining together silicon-based microelectronics with micromachining
technology, hence, being so called as systems-on-a-chip (MEMS and Nanotechnology

Clearinghouse, 2003).

MEMS enables the development of smart product capabilities of microsensors and
microactuators. This technology is extremely diversely designed and manufactured.
Because MEMS devices are manufactured using batch fabrication, sophisticated small

silicon chip, which can be placed at a relatively low cost (Huff, 1999).

21
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U/7® ]

MicroElectronics MicroStructures

Figure 2.5 Components of MEMS
(http://www.gmu.edu/departments/seor/student_project/syst101 00b/team07/components
.html)

Microelectronics performs the decision making processes like “brain” of systems and
microsensors/microacuators are playing roles of “eyes” and “arms” to sense and control
the environment. In its most basic form, the sensors gather information from the
environment through measuring mechanical, thermal, biological, chemical, optical, and
magnetic phenomena (MEMS and Nanotechnology Clearinghouse, 2003). The
electronics process the information obtained from the sensors and direct the actuators
through some decision making capability to respond by moving, positioning, regulating,

pumping, and filtering, thereby, controlling the environment for some desired outcome or

purpose.

Since batch fabrication technique is used to manufacture MEMS products, a small silicon
chip is possibly produced at a relatively inexpensive cost with the capabilities of

functionality, reliability, and sophistication (MEMS and Nanotechnology Clearinghouse,
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2003). In the industrial sector, Albany NanoTech (2003) has indicated that “MEMS
devices are emerging as product performance differentiators in numerous markets with a
projected market growth of over 50% per year. As a breakthrough technology, allowing
unparalleled synergy between hitherto unrelated fields of endeavor such as biology and
microelectronics, many new MEMS applications will emerge, expanding beyond that

which is currently identified or known”.

The Silicon has been widely used as engineering materials since it possesses excellent
material properties making it an attractive choice for many high-performance mechanical
applications. Compared to many other engineering materials, it has much higher strength-
to weight ration which is allowing very high bandwidth mechanical devices to be realized.
However, MEMS technology is not only making things out of silicon. MEMS technology
is a new manufacturing technique of making complex electromechanical elements along
with electronics on or between silicon layers using batch fabrication techniques like

Integrated Circuits (IC) (Albany NanoTech, 2003).

2.5 MEMS based Inertial Sensors

MEMS research on inertial sensors has been focused primarily on accelerometers and
gyroscopes. Of the two, the accelerometers were developed first. Today, MEMS
accelerometers enjoy a large commercial market and are considered to be one of the most
successful micro sensors ever developed. MEMS gyroscopes, on the other hand, are a

relatively new technology. Commercialization of low-grade devices has begun while

23



intensive research is still being carried out in the laboratories on high-grade devices. A
couple of examples of MEMS based accelerometers and gyroscopes available in the

market are shown in Figure 2.6.

Figure 2.6 ADXL 202 Accelerometer and BEI QRS11 Gyrochip (Courtesy of Analog
Device and BEI Inc., U.S.A.)

2.5.1 MEMS based Accelerometers

MEMS accelerometers are widely utilized in a variety of developments and their success
is significant. MEMS accelerometers are getting more attractive to manufacturers of
navigation systems because of their small size, low cost, light weight, low power
consumption and ruggedness. Main considerations for MEMS inertial accelerometers are
the mass size, sensing of mass movement, restoring forces, and packaging process.
Normally, bigger mass is better and small currents require good electronics. Open/Closed
loop system is determined by the usage of restoring forces and vacuuming, thermal

sensitivity, and electronics integration are essential factors for packaging technology.
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Figure 2.7 illustrates the design of a bulk-micromachined and capacitive signal pick-off
accelerometer. The seismic mass and the top and bottom electrodes are made from the
silicon. The seismic mass is located in the center of two electrodes and is allowed to
move freely between top and bottom electrodes. The change of seismic mass location
from the center location is proportional to the change of capacitance and then,
capacitance change is being sensed and used to measure the amplitude of the force that

led to the displacement of the seismic mass (Kraft, 1997, p. 20).

Top electrode

Seismic mass

Bottom electrode

Figure 2.7 Micromachined Accelerometer Design (Kraft, 1997)

MEMS accelerometers can be classified by three categories, which are the position
detection of the seismic mass, operation mode, and fabrication process of the sensing
elements. The classification descriptions are summarized in the following based on Kraft

(1997, p. 12 ~p.19).
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Classification by position detection of the seismic mass

Piesoresistive Signal Pick-off sensors
This method is based upon the piezoresistors that are placed on the supporting beams of
the seismic mass. They change their resistance with the deflection of the seismic mass

due to the stress induced in the beam.

Capacitive Signal Pick-off sensors

The sensing element typically comprises a seismic mass which can move freely between
two fixed electrodes, each forming a capacitor with the seismic mass used as a common
center electrode. The differential change in capacitance between the capacitors is

proportional to the deflection of the seismic mass from the center position.

Piesoelectric sensing element sensors
This produces an electric charge when subjected to the force caused by the change of the

seismic mass.

Resonant element sensors

This type does not detect the position of the seismic mass directly but its influence on an

underdamped mechanical structure vibrating at its resonant frequency.
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Classification by operation mode

Open loop operation
The deflection of the proof mass provides a measure for the acceleration which is simple

design and low in cost.

Closed loop operation
This type uses some form of feedback where an external force is used to compensate the
inertia force on the proof mass due to the acceleration, thus keeping the proof mass at

zero deflection.

Classification by fabrication process of the sensing elements

Surface micromachining

In surface micromachined sensing elements, the seismic mass is located on the surface of
a die, typically it consists of several layers of polysilicon. It is compatible with a standard
integrated circuit manufacturing process; it only requires very few additional procedures.
Furthermore, with surface micromachining, much smaller sensing elements can be
fabricated, thus the interface electronics can be integrated on the same chip. However, the
drawback of very small sensing elements is that the seismic mass is very light and it is

hard to obtain a good resolution.
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Bulk micromachining

In bulk micromachined sensing elements, the seismic mass is inside block, designed as a
sandwich of several layers where the proof mass is usually made from single-crystal
silicon and the top and the bottom covers either from silicon or Pyrex glass. Because the
seismic mass lies within the die, it is well protected and it is possible to choose the
damping by varying the ambient pressure of the air or filling the cavity with suitable oil.
However, the drawback is that the manufacturing process is not readily compatible with
standard integrated circuit (IC) fabrication processes and the size of a typical sensing
element is about the size of a die making it difficult to integrate the sensing element with

the required interface electronics on a same chip.

LIGA (Lithography, Galvanic, Abformung) Process

LIGA fabrication process is the only process using nickel based seismic mass instead of
silicon (Kraft, 1997, p. 14). It has been used to produce the micromachined components
allowing three-dimensional structuring capability with high aspect ratios and much
greater structural heights which is superior to other micromachining processes. But it
involves complicated technical procedures and cannot be used for standard IC

manufacturing processes.

2.5.2 MEMS based Gyroscopes

Currently, most of the commercial gyroscopes can be categorized in three groups: rate

grade, tactical grade, and navigation grade based on their performance. Different
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principles of development of gyroscopes result in a variety of gyroscopes available in the
market. MEMS based gyroscopes has been drawn recent attentions to overcome the size,
the cost, and the power consumption constraints of the conventional gyroscopes because
of their compact size, low-cost, and low power consumption. The majority of MEMS
based gyroscopes currently under development operates in a vibratory mode and
measures the angular rate instead of the absolute angle. Their operational principle is
based on the coupling of mechanical energy between a vibrating motor element and a
sensor element through Coriolis acceleration (Tung, 2000). The sensing element is
vibrating with constant amplitude controlled by a vibrating motor that maintains the
oscillation at constant amplitude. Under the vibration, the sensing element will
experience Coriolis acceleration which is proportional to the applied rotation rate and it is

measured to provide the information proportional to the angular rotation.

Figure 2.8 illustrates one of MEMS based gyroscopes operating in vibratory mode. It
uses a vibrating quartz tuning fork to sense rotation rate and a similar fork in opposite
side as a pickup. The piezoelectric drive tines are driven by an oscillator circuit at precise
amplitude, causing the tines to move toward and away from one another at a high
frequency. This vibration causes the drive fork to become sensitive to angular rate about
an axis parallel to its tines, defining the true input axis of the sensor. For vibrating tines,
an applied rotation rate causes a sine wave of torque to be produced, resulting from
Coriolis acceleration, in turn causing the tines of the pickup fork to move up and down
(not toward and away from one another), out of the plane of the fork assembly. The

pickup tines thus respond to the oscillating torque by moving in and out of plane, causing
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electrical output signals to be produced by the pickup amplifier. Those signals are

amplified and converted into a DC signal proportional to the rate by the use of a

synchronous switch (demodulator) which responds only to the desired rate signals (BEI

Systron Donner Inertial Division. 2003).
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Figure 2.8 MEMS based Quartz Rate Sensor Diagram (Courtesy of BEI Inc., U.S.A.)

Similar to MEMS based accelerometers, either surface or bulk micromachining

fabrication can be used for MEMS based gyroscopes (Tung, 2000). In order to achieve a

better accuracy for the high-end market, the low-mass problem should be overcome

properly. The difficulty in overcoming the ‘mass’ factor in surface micromachining

gyroscopes has led to the recent renewed interest in bulk micromachining. A tremendous

progress for the important issues of bulk micromachining fabrication such as high aspect

ratio etching, wafer bonding and vacuum packaging enables the bulk micromachining

gyroscopes to gain more popularity in recent days.
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Chapter 3

Error Analysis of MEMS based Inertial

Sensors

This section consists of two main parts, namely, error characterization to identify
deterministic error and non-deterministic (stochastic) error sources, and the application of
stochastic modeling methods which should be used to characterize the random part of the
sensor output. For MEMS based inertial sensors, their deterministic error sources are
mainly focused on zero-offset bias and 1* order scale factor. Among special discrete
parametric stochastic modeling methods, Autoregressive (AR) model will be described in
details for stochastic variation of MEMS based inertial sensors. Modeling inertial sensor

errors using AR processes was first introduced and implemented in the reference (Nassar
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S. et al., 2003). Further implementation of AR processes for modeling navigation-grade

and tactical-grade inertial sensor errors can be found in (Nassar S., 2003).

3.1 Error Models of MEMS based Inertial Sensors

3.1.1 Error Model of MEMS based Accelerometer

The accelerometers that are currently used are mainly classified as either mechanical or
solid-state. As mentioned before, all accelerometers are suffering from various error
sources which are slightly different upon different types of the accelerometers.
Conventional error equation will be first introduced and the error equation will then be
simplified according to the tolerance of a specific application such as land vehicle

navigation system and MEMS technology.

Conventionally, the measurement in the X-axis provided by accelerometer (@ ) can be
expressed in terms of the applied acceleration acting along its sensitive axis (a, ) and the
accelerations acting along the pendulum and hinge axes, a and a_ respectively, by the

equation (Titterton and Weston, 1997, p.158):

a =1+S))a, +M,a,+M.a +B,+B,a.a,+n, (3.1)
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where

S is the scale factor error, usually expressed in polynomial form to include

X

non-linear effects

M ,, M are the cross-axis coupling factors

B, 1s the measurement bias or zero offset
B, is the vibro-pendulous error coefficient
n 1s the random noise

For such an accelerometer, which is dual axes and non-pendulous design, it is reasonable
to expect that cross-axis coupling factors and vibro-pendulous error would be
insignificant (Allen et al., 1998). Then, the conventional error model can be simplified as

below,

a.=a, +S.a +B, +n, (3.2)

As indicated by Equation (3.2), the bias and the scale factor are the main concerns for the
deterministic error sources. The last term is the stochastic variation of the sensor output.
The measurement from Y-axis will be expressed in the same way. In the testing, only 1*
order scale factor is considered and equation (3.2) will be modified for the 360° rotation

testing which will be described in the Chapter Four.
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3.1.2 Error Model of MEMS based Gyroscope

As mentioned in Chapter Two, current commercial gyroscopes utilize different principles
of development resulting in various types of gyroscopes with distinct characteristics of
each one. Accordingly, assuming the acceleration sensitive errors are negligible,

measured angular rate may be modeled for many applications as (Titterton and Weston,

1997, p. 235):
o, =1+S)o, +M o, +M o, +B,+n, (3.3)
where

S. is the scale factor error which may be expressed as a polynomial in @, to

represent scale factor non-linearity

M, M, is the cross-axis coupling coefficients

B . is the measurement bias or zero offset

n is the random noise

z

Using the same assumption in the previous section, equation (3.3) can be simplified
mainly concerning zero offset bias and 1* order scale factor as significant contributing

deterministic error sources.
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0. =0, +S.0.+B,+n, (3.4)

In equation (3.4), the deterministic and non-deterministic (stochastic) error sources for
MEMS based gyroscope are appropriately described, and an estimation and a
characterization of those main error sources will be subsequently dealt with in Chapter

Four.

3.2 Review of Stochastic Modeling

3.2.1 Stationary Stochastic Processes

Observed quantities in any fields of engineering contain the elements of uncertainty
resulting in random characters that we cannot determine theoretically due to various
factors. These random characters are usually considered as the random variables which
describe the result of a random phenomena. Stochastic (or random) process can be
defined to be a collection, or “family” of random variables, which cannot be described
fully in terms of a deterministic equation, the value of random variable at any particular
time is governed by chance. Thus, each time we perform the “experiment” the value of
the quantity that we record at each point of time is determined (at least in part) by some

random mechanism (Priestley, 2001, p. 100).
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Stationary stochastic process means a certain stochastic process of which
probabilistic/statistical properties do not change over time. If a process is stationary up to
the 2™ order, the process indicates the same mean and variance at all of different time
points and covariance between two different points only depends on the time interval
between these two points. This 2™ order stationary stochastic process concept is widely
used to deal with random time series in practice. The following mathematical expression

and the derivation of the process presume that a process is stationary up to 2™ order.

One way to specify a random process is to describe in detail the conceptual chance
experiment giving rise to the process (Brown and Hwang, 1997, p. 75). When the value
of the random process cannot be precisely determined, instead a range of possible values
can be described with a relative likeliness of each value in probability sense. As it can be
seen that many signals with same mean and variance values are quite different, it is very
clear that it needs more information than just the mean and the variance to describe
random process more precisely. The autocorrelation function (or autocovariance
function) for a random process using the second-order probability density function is
frequently used to describe random process in time domain. The autocorrelation function

for a random discrete process X (¢) is defined as

R, (r)=E[(X, —p) (X, -l L =mean value, 7=0,x1,£2,......, (3.5)

and the normalized autocorrelation function as,

36



0, (1) =R, (1)/ R, (0), r=041,42,..... (3.6)

Clearly, it tells how well the process is correlated with itself at two different times. If the

ergodic hypothesis applies, the autocorrelation function can also be written as

T

R,(r)= a time avarage of X, X, = liml X, X, dt (3.7)

T—o T 0

which has the maximum value when the shift 7 = 0 and the value decreases as the shift

7 increases. R, (0) is the mean-square value of the process X, and it is an even function
of 7. And also, it is just a mathematical way of saying that X, becomes completely

uncorrelated with X, for large 7 if there are no hidden periodicities in the process.

It has been seen that the autocorrelation function is an important descriptor of a random
process and one that is relatively easy to obtain because it depends on only the second-
order probability density for the process (Brown and Hwang, 1997, p. 84). Thus, if we are
given the form of R, (7), or if we can estimate R, (7) from observational data, then we
can use this information to help us to “identify” which of the special models (if any)

would fit the process under study (Priestley, 2001, p. 111).

If the autocorrelation function decreases rapidly with 7, the process changes rapidly with
time; conversely, a slowly changing process will have an autocorrelation function that

decreases slowly with 7. Thus, we would suspect that this important descriptor contains
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information about the frequency content of the process; and this is in fact the case
(Brown and Hwang, 1997, p. 85). For stationary processes, there is an important relation

known as the Wiener-Khinchine relation;
Sy(jo)=3[R,(7)] =jRX(T)€_jw’dT (3.8)

where 3[-] indicates Fourier transform and » has the usual meaning of (2 7 )(frequency
in hertz). S, is called the power spectral density function or simply the spectral density

function of the process. When we connect the usual spectrum concept like power and
spectral, some care is required. In real data, the infinitum can be achieved and is not
absolutely integrable. Thus, the integral for the Fourier transform does not converge.
Then, truncated version of the original dataset would be used and the Fourier transform

of a sample realization of the truncated process will then exist.

The autocorrelation function in the time domain and spectral density function in the
frequency domain are the Fourier transform pairs which contain the same basic

information about the process, but in different forms,

1 i jQ JjQn
x[n]= Zj.j((e e dQ) (3.9)
where
X(e™) = ix[n] e (3.10)

n=—00
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Since we can easily transform back and forth between the time and frequency domains,
the manner, in which the information is presented, is purely a matter of convenience for

the problem at hand in a mathematical sense (Brown and Hwang, 1997, p. 91).

3.2.2 Linear System Modeling

The main purpose of mathematical model of a real physical system is to construct a
proper, and tractable representation of system outputs. Since no model is perfect, one
attempts to generate models that closely approximate the behaviour of observed
quantities. The following linear state equation and sampled data output model are
frequently used in navigation field and they give us an useful insight of stochastic
modeling in practical application extracted and summarized based on the reference
(Maybeck, 1994, p. 145~147). When the most general deterministic linear system model

is extended to the stochastic linear system model of

&= F(6)x(t) + B{Ou(t) + G(t)n, (t) (3.11)

z(t) = H{)x(t) + n, (¢) (3.12)

which is generated by adding a noise process #,(¢) to the dynamics equation and #,(¢) to
the output equation. Using the insights from a probability theory, random parts of above
equations, n,(¢) and n,(r) can be characterized by the joint probability distribution

function. That is to say, knowledge of such a joint distribution function or an associated

joint density function completely describes the set of random variables. However, the
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complete depiction of a joint distribution or density is still generally intractable. Then, try
to express n,(¢) and n,(¢) as the outputs of linear state-described models, called “shaping

filters”, driven only by deterministic inputs and white Gaussian noise which is

completely characterized by first two corresponding moments, as shown in Figure 3.1.
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Figure 3.1 Linear System Model (Mayback, 1994)

A linear model of the physical system is driven by deterministic inputs, white Gaussian
noises, and Gauss Markov processes. The white noises are chosen as adequate
representations of wideband noises with essentially constant power density over the
system bandpass. The other Markov processes are time-correlated processes for which a
white model would be inadequate. However, these can be generated by passing white
noise through linear shaping filters (Mayback, 1994, p. 146). Consequently, one can

consider the original system model and the shaping filters as a single “augmented” linear
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system, driven only by deterministic inputs and white Gaussian noises. Augmented linear

system models are

%= F(O)x(t) + B()u(t) + G()w(t) (3.13)

2(t) = H(O)x(t) + () (3.14)

where x(¢) is now augmented system state, and w(¢) (dynamic driving noise) and
v(t) (measurement corrupting noise) are white Gaussian noises, assumed independent of
each other and of the initial condition x(#,) = x,, where x, is a Gaussian random variable.

These noises are modeling not only the disturbances and noise corruption that affect the
system, but also the uncertainty inherent in the mathematical models themselves. Now,

the main question is how to generate the shaping filters associated with the certain noise.

3.2.3 Gauss-Markov Processes

In many instances, the use of white Gaussian noise models to describe all noises in a real
system may not be adequate. It would be desirable to be able to generate empirical
autocorrelation or power spectral density data, and then to develop a mathematical model
that would produce an output with duplicate characteristics. If observed data were in fact
samples from stationary Gaussian process with a known rational power spectral density
(or corresponding known autocorrelation or autocovariance function), then a linear time-
invariant system, or shaping filter, driven by stationary white Gaussian noise, provides

such a model (Maybeck, 1994, p. 180).
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If a stationary Gaussian process X (¢) is exponentially time-correlated process, it is called

a Gauss-Markov process. The autocorrelation and spectral functions of this process are

the forms,

R,(r)=c’e (3.15)

S (-w)_ﬂ or S (S)_ﬂ (3.16)
x U > +,32 X _g? +/32 ’

and its shaping filter can be depicted by Figure 3.2,
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Figure 3.2 Shaping Filter of 1* order Gauss-Markov Process (Mayback, 1994)

The mean-square value and time constant for the process are given by the o and 1/

parameters, respectively. The Gauss-Markov process is a very important process in
applied work because (i) it seems to fit a large number of physical processes with a
reasonable accuracy, and (ii) it has a relatively simple mathematical description (Brown
and Hwang, 1997, p. 95). 1% order Gauss-Markov process is very frequently used to

describe the signal error behaviours providing an adequate approximation to a wide
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variety of empirically observed band-limited (wide or narrow band) noises and it has
been reported that 2™ order Gauss-Markov process provides a good model of oscillatory
random phenomena, such as vibration, bending, and fuel slosh in aerospace vehicles
(Maybeck, 1994, p. 185). In positioning and navigation fields, 1* order Gauss-Markov
process has been extensively adopted to describe the sensor noise behaviours due to its
simple representation of time-correlated signals. In fact, the estimated autocorrelation
sequences and its FFT transforms of the random behaviour of actual sensors have shown
quite different features from 1* order Gauss-Markov process. Especially for the inertial
sensor noises, it has been shown in Nassar S. et al. (2003) that the autocorrelation
function of INS sensor noise is not well represented by a 1* order Gauss-Markov process.
Moreover, in (Nassar S., 2003), it has been shown that the accuracy of modeling inertial
sensor errors is improved by 15 ~ 35% when using higher order AR models instead of 1%
order Gauss-Markov model. The reference by Nassar S. (2003) has given a detailed
overview of different modeling methods of AR processes and also provided the static and
kinematic testing analysis of navigation and tactical-grade IMUs comparing the proposed
higher order AR model results with 1% order Gauss-Markov model results. Considering
the very noisy measurements and poor performance of MEMS based inertial sensors in
this study, a more precise and appropriate stochastic modeling is recommended agreeing
with the above reference. In the following, some of special discrete parameter stochastic
models in probability and mathematical statistics theory will be introduced and among

them, AR model will be described in details.
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3.3 Special Discrete Parametric Models of Stochastic Processes

Considering the very noisy measurements and poor performance of MEMS based inertial
sensors, a more precise and appropriate stochastic modeling is desirable. Hence, some of
special discrete parameter stochastic models which provide us with a structure for fitting
models to practical data will be discussed. These models are widely used in developing
the theory of stationary stochastic (or random) processes in probability and mathematical

statistics field. Some of important discrete parameter stochastic models are summarized

in Table 3.1.
Table 3.1. Special Discrete Parametric Stochastic Models
Definition Remarks
Purely random process if it consists of a sequence of - No memory with all past
uncorrelated random variable values up to time (t-1)

- Flat power spectrum
E[X,]=u,E(X, - p)’]=0"

2L
White Noise R(s)=coviX,, X, }= o%,s=0
) 0,s#0
) 1,s=0
S)=
P =00,5 = 142,43,

Autoregressive process of order k(denoted by AR(k)) if | - X, depends on the

it satisfies the difference equation, combination of it own past and
random disturbance
X +aX_ +.+aX _, =¢ - Asymptotically stationary for
AR Model 1
arge t
where 4,,a,,..,a, , are constant coefficients, and {g }is a | - Also called Markov process

purely random process
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Moving average process of order (denoted by MA(1)) if
it may be expressed in the form,

- linear combination of present
and past values of {g,} process

of finite extent

MA Model | X, =D& +be,  +..+bg,, - X, can be computed as
where b,,5,,...,b,, are constant coefficients, and {¢,}isa | weighted average of
purely random process (£,8, 1ssE )
Mixed autoregressive/moving average process of order | - More general model of a
(k,]) (denoted by ARMA(k,])) if it satisfies an equation | large number of “real life”
of the form, process
- Fewer parameters are
X +aX  +.+aX,_ =be+bs  +.+bs required compared to pure
ARMA where again, {¢,}is a purely random process and AR/MA process
Model . - ARMA process corresponds
(@,,ay-,a, , by -, b)) are constant coefficients to the output obtained by
passing white noise through a
filter with a rational transfer
function
“Harmonic process” is defined by, - Related to the numerical
technique of harmonic
K analysis
X, =D 4, cos(@,t+4,) - Describe observational
= records as sums of sine and
where K,{4},{w,},(i=1,..,K), are constants, and the cosine waves whose amplitude
Harmonic | {¢,}.(i =1...,K)are independent random variables, each | and frequencies are chosen so
Model as to give the “best fit” to the

having a rectangular distribution on the interval (-z,7)

data

- Autocorrelation function
consists of a sum of cosine
terms, and hence never die out

White noise is the purely random process which actually does not exist. However it is

very important and useful mathematical concept to form the basic “building block™ used

in the construction of both the autoregressive and moving average models. Many of

signals which are frequently occurring in practical applications, are described by AR

model, MA model, and ARMA model (combination of AR and MA models). Among

above discrete parameter stochastic models, AR model is the most widely adopted to
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describe random noise output of practical application involving random behaving signals
with some of advantages over others, and has been introduced to model the stochastic
variation of inertial sensors such as accelerometer and gyroscope lately. The rest of the
discussion in this chapter is mostly focused on AR models which will be actually used to

characterize stochastic variation of MEMS based inertial sensor unit in Chapter Four.

First, in the autoregressive case, X, is expressed as a finite linear combination of its own
past values and the current value of ¢&,, so that the value of &, is “drawn into” the process

X, and thus influences all future values, X,, X In the moving average case, X,

A EIEERERR

is expressed directly as a linear combination of present and past values of the &, process
but of finite extent, so that & influences only (/) future values of X,, namely
, X,,; - This feature accounts for the fact that whereas the autocorrelation

function of an AR process “dies out gradually”, the autocorrelation function of an MA(/)
process, as we see, “cuts off” after the point / (Priestley, 2001, p. 136). The
autocorrelation function of an AR process which dies out gradually is more suitable of
many of the random signals in practical applications. Second, AR model parameters can
be estimated in a simpler linear equation compared to MA model. ARMA model has the
advantage of representing the same random process with fewer number of parameters
than AR model, but it may lead to a set of non-linear equations for parameter

determination resulting in much more computation loads.
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Considering the linear constant-coefficient difference equation of ARMA model,

X, +ax, , +..+ax,_, =be +beg,  +..+be&, , can be written as

N

A+ a,xt—k] = fbkg[t—z] (3.17)

k=1
where N/M is the order of AR/MA sequence.

Applying the z-transform and using the time-shift and the linearity property of the z-

transform,
N M
X(@)+ Y az"X(z) = Y bz 'E(2) (3.18)
k=1 =0
and then,
& -1
O
H(z) = = (3.19)

H(z) is normally called as transfer function of the system which completely

characterizes the system. Referring to Table 3.1, AR model can be considered as a special

case of ARMA model with M = 0, its z-transform can be inferred from equation (3.19) as
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H(Z) — E(Z) — bO

(3.20)

Estimation of the AR model parameters b, and a, is the main consideration, respectively.
With the standard form of AR model in Table 3.1, &, is a purely random process and b,

will be the variance o’ of ¢,. The different estimation methods of parameters a, have

been introduced in literatures and some of them will be described in the subsequent

section. Also, if the process is both causal and stable, then all the poles of H(z) must lie

inside the unit circle of the z-plane because the Region of Convergence (ROC) is of the
form | z | > 7 , and since the unit circle is included in the ROC, one must have 7, < 1,

where 7, €quals the largest magnitude of any of the poles of H(z).

More details of AR(1) and AR(2) models are discussed below and these mathematical

descriptions will be applied to the analysis of experimental results in subsequent sections.

First order Autoregressive Process (AR(1)) involves “one-step dependence” which is

normally expressed in the form,

X, —aX, =e¢ (3.21)

where ais a constant, and {&,} is a (stationary) purely random process. It is also called

Markov processes because the conditional distribution of X, depends only on X, |, i.e.
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PX X, X, 5, X, 5, )=pX, [ X, ) (3.22)

In order to keep mathematical derivation of AR(1) model in stationary up to order 2,

namely, variance and covariance of {X,} converge to finite values as t — o, one

assumes that ¢, =0, |a| < 1. Upon assumption,

E[X,]1=0, var(e,)=E[e’1=0., cov(g,,&)=E[lee =0, s#t (3.23)

For sufficiently large t,
oy ~ocll(l-a’), cov(X,, X

he)~0p-at [(1=a?) (3.24)

Therefore, autocorrelation function and its normalized autocorrelation functions can be

written as
aITI
R(r):ag2 — 7=0,21%2,...... (3.25)
(I-a”)
p(t)=R(r)/ R(0)= a, 7=0+1%2,...... (3.26)

Second order Autoregressive Process (AR(2)) equation can be written as,

X +a, X, +a,X, _, =¢ (3.27)
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where a,,a, are constants, and {¢,}is a (stationary) purely random process. Using the

backward shift operator B,

(1+a,B+a,B )X, =¢,, or (1-u,B)(1-u,B)X, =¢, (3.28)

where 1, i, ,(assumed distinct) are the roots of the quadratic f(z)=z"+a,z+a, .
Similar to AR(1) model derivation above, one requires that |, [<1,| u, |<1 for

asymptotically stationarity. Since {¢,} is an uncorrelated zero-mean sequence, one has,

E[X, . £]1=0, >1, E[X,¢,]=E[¢]]=0c. With these conditions, one can reach to,

-7t

o2 = (L+a,)o, (3.29)
(1-a,)d-a, +a,)(1-a, +a,)
p(ry = LM A= DM o For £<0. p(r) = p(—7)) (3.30)

(1, = g )L+ g p2)

Autocorrelation function will behave variously according to the roots of f(z) such as real

or complex of AR(2) model. Higher order than 2" order AR model will follow the
equation form indicated in Table 1, corresponding probability properties can be generated
similarly to AR(1) or AR(2) models. Considering the problem of fitting these models to
the observational data, two separate stages are involved, which are the estimation of the
parameters of the model and the determination of the order of the model. These issues are

subsequently discussed in the following sections.

50



3.4 Estimation of Parameters in Autoregressive (AR) Models

The most considered AR model parameter estimation methods are Yule-Walker method,
Burg method, and Unconstrained Least-Squares method. For a large amount of the
dataset, the results of these three different methods are providing a fairly close estimation
of the parameters. However, there are still some of different characteristics of each
method to be noticed. Before discussing the estimation methods of AR model, it will be
described first that the relationships between the AR model parameters and the
autocorrelation sequences relating the AR model parameters to the coefficients in a linear

predictor for the process X, .

3.4.1 Autocorrelation Sequence of AR Model and Levinson-Durbin Algorithm

From the standard form of AR(p) model, the relationship between the parameters and the

autocorrelation sequence are described as

(3.31)

t

X, +ta X, +~-+asz—p =&

E[X()X(t-1)]= —ZP: a,E[X(t-k)X(t-1)] (3.32)

k=1

Hence,
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.
- a,R,(t—k), >0
k=1
P
Ry (t)={ - R (t-k)+0; 7=0 (3.33)
k=1
R, (-7) <0

which can be expressed in the matrix form,

R,-a=-r, (3.34)
Ry(0)  Ry() - R(p-DTa] [R.)

Re®) RO o Be(p=2) @ |_ | R @) 539
Ry(p=D Ry(p=2) o R (0) Ja, Ry (p)

and the mean-square error . can be determined in equation (3.33) with 7 =0,

ol =R, (0)+ iakRX (k) (3.36)

k=1

Equations (3.35) and (3.36) are normally combined into a single matrix equation form as

R, (0) R (1) - Ry(p) | 1| |o?
RX:(I) RX:(O) ~~~~~~ Ry ({9 -1 a:1 _ ? (3.37)
R, (p) R, (p=1) - Ry 0) a, 0
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The matrix R, is the symmetric Toeplitz matrix and it can be efficiently inverted by use
of Levinson-Durbin (LD) algorithm instead of inverting R, directly to obtain the
parameters a, . LD algorithm is a computationally efficient algorithm for solving the

normal equations for the prediction coefficients. LD algorithm recursively processes the
symmetric Toeplitz matrix with the first order predictor to the higher order parameters.

The procedure is summarized below (Proakis, 1992, p. 224),

Compact normal equations of AR(p) model from equation (3.37) is
P

RX(T):—Zap(k)RX(r—k), r=12,...,p (3.38)
k=1

and the minimum mean-square prediction error(MMSE) is simply

P
E, =R, (0)+> a,(k)R(~k), r=0 (3.39)
k=0
the augmented normal equations can be expressed as
P
da, (bR, (r-k)=0, t=123....p, a,0)= (3.40)
k=0

beginning with the solution to the first-order predictor obtained by solving equation

(3.40),
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a,(l) = —11:"—((10)) (3.41)

and the resulting MMSE is

E, =Ry (0)+a,(DR, (-1) = R (0)[1~|a,(D '] (3.42)

let a,(1) = K, be the first reflection coefficient. Next, a set of equations from (3.37) is
used to solve for the coefficients a, (1) and a,(2) of the 2" order predictor and express

the solution in terms of 1* order predictor.

a,(DR (0) +a,(2)Ry (1) = —R, (1)

(3.43)
a,(DRy (1) +a,(2)R, (0) =-R, (2)
by using substituting a, (1) and the result of (3.41),
00— KD+ aORA) R+ a,OR () G
Ry (O)[1=]a, () "] E,
a,(1) = a, (1) + 4, (2)a; (1) (3.45)

let a,(2) = K,, the second reflection coefficient. Now, the general expressions of LD

algorithm for AR(p) model are summarized below,
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E, = R, (0) (3.46)

R (k)+ 2,0 (DR, (k= j)

a,(k)=K, =— (3.47)
k k Ek_l

a,(HN=a_()+K,a,_ (k-)), j=12, k=1, k=12,....p (3.48)

E, =E,_[1-|K, '] (3.49)

The key step of LD algorithm is to estimate the reflection coefficient based on the
previous coefficient/s. In the linear prediction estimation sense, the LD algorithm
described above is based on minimizing the forward prediction error. Equations above
are quite efficiently used to estimate AR model parameters for the different methods

which will be subsequently described.
3.4.2 Yule-Walker Method for AR Model Parameter Estimation

The Yule-Walker method constructs the equation (3.35) by using the estimates of
autocorrelation sequences from the windowed measured data and uses the LD algorithm
described above to solve for AR model parameters. That is, Yule-Walker method uses the
windowed input data and the minimization of the forward prediction error in the least-
squares sense. Since the autocorrelation matrix in equation (3.35) needs to be positive

semidefinite, the biased form of the autocorrelation estimate is advisable,

A Nzl _ _
Ry () % S (X, - X)X, - X) (3.50)
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in the practical situation. It always produces a stable AR model. However, Yule-Walker
method is not suitable for a short period of data resulting in poor performance of

parameter determination because it applies windowing to the data.

3.4.3 Burg Method for AR Model Parameter Estimation

Contrary to Yule-Walker method, the Burg method is not using the estimates of
autocorrelation sequences from the input data but it estimates the reflection coefficients
by minimizing both of the forward and the backward prediction errors in the least square

sense with the constraint that the AR parameters satisfy the Levinson-Durbin recursion.

The Burg method estimation derivation is summarized below (Proakis, 1992, p. 503).

Suppose that we are given the data X,, r = 0,1,2,...... ,N-1, and let us consider the

forward and backward linear prediction estimates of order p, which are given as

n P
X, ==Y a,(k)X,, (3.51)
k=1
n P
X, ,==a(k)X,_,., (3.52)
k=1

and the corresponding forward and backward errors are defined as elf (H)=X,-X, and

ef) =X, - X ., » Where a, (k), 0<k<p-1 are the prediction coefficients. The

least-squares error is
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E, =Y lle] (D] +eh(NF] (3.53)

=p

~

This error is to be minimized by selecting the prediction coefficients, subject to the

constraint that they satisfy the Levinson-Durbin recursion given by (3.48). When the

equation (3.48) is substituted into expressions for e/ (r) and e} (¢) , the result is the pair of

order-recursive equations for the forward and backward prediction errors given below,

ef (N=¢e(t)=X, (3.54)
e/ ()=el (t)+K,e, (t-1), k=12.... , P (3.55)
el(t)=K e/ ,(t)+e) (t-1), k=12.....p (3.56)

Now, if we substitute from (3.55) and (3.56) into (3.53) and perform the minimization of

least-squares error ( £, ) with respect to the reflect coefficient (K, ), we obtain the result,

N-l .
_Zezil (Ne (=D
K, = T J:‘k , k=12..... ,D (3.57)
EZH 61{—1(j) |2 +] elf—l(j -1 |2]
=k

The term in the numerator of (3.57) is an estimate of the cross-correlation between the
forward and backward prediction errors. With the normalization factors in the

denominator of (3.57), it is apparent that | K, |<1, so that the all-pole model obtained

from the data is stable.
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The main advantage of Burg method is that it has high resolution for short data records.
That is, Burg method is suitable not only for the large data records but also for the short
data records. It still provides a stable and computationally efficient model. Burg method,
however, is sensitive to the initial phase of a sinusoid for the sinusoidal signals in noise

and exhibits spectral line-splitting for high-order models.

3.4.4 Unconstrained Least-Squares Method for AR Model Parameter Estimation

Similar to Burg method, the unconstrained least-squares method minimizes both the
forward and backward linear prediction errors to determine AR model parameters but it is
not constrained by Levinson-Durbin recursion algorithm. The forward and backward
linear prediction errors described in (3,49) can be expressed with the corresponding

forward and backward linear prediction estimates,

E, =Y llef()F +1es()I]
v p , (3.58)
- @X(jwza,,(k)xu—k)f+\X(j—p>+za;(k)xu—p+k)|2}
ZP:ap(k)RX(l,k):—RX(l,O), [=12,.com (3.59)

The minimizing procedure of unconstrained least-squares method is the same as Burg

method. However, instead of using Levinson-Durbin recursion, minimization of £, with

respect to the prediction coefficients yields the set of linear equations and an associated

correlation matrix is not Toeplitz. The form of the unconstrained least-squares method
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described above has also been called the unwindowed data least-squares method. Its
performance have been found to be superior to the Burg method, in the sense that the
unconstrained least-squares method does not exhibit the same sensitivity to such
problems as line-splitting, sinusoidal signal in noise. Computational efficiency is also
comparable to the efficiency of the Levinson-Durbin algorithm but with this method,
there is no guarantee that the estimated AR parameters yield a stable AR model (Proakis,

1992, p. 508).

3.5 Determination of Order of the Stochastic Models

Even a priori information on the order of an AR Model was given, the optimal order of
the AR model is still unknown which needs to be estimated. One of the common ways to
determine the order of the AR model is to investigate the residual variance in accordance
to different orders. Assuming the true model is of finite order, as the estimated order is
getting close to the true model, the residual variance wouldn’t reduce significantly. It
should be kept in mind that a higher order AR model would increase the state vector of
the Kalman Filter error states. As a result, it would increase the computational loads even

result in the unstable solutions.

Some of model order selection methods have been reported such as Final Prediction Error
(FPE) and Akaike’s Information Criterion(AIC) proposed by Akaike (1969,1974),

Minimum Description Length(MDL) by Rissanen (1983) and etc. However, the methods
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above have been indicated that they do not provide definitive and consistent results
(Proakis, 1992, p. 510). Therefore, investigation of the residual variance considering state
vector increase of Kalman Filter will be used to select the model order in the testing. This

has been also suggested by Nassar S. (2003) for navigation and tactical-grade IMUs.
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Chapter 4

Estimation of Deterministic Error Sources

and Stochastic Modeling

4.1 Estimation Principles

Based on the study in the previous chapters, the estimation of deterministic error sources
and stochastic error characterization of a certain type of MEMS based inertial sensor will
be described subsequently in this chapter. In this research, RGA300CA inertial sensor
unit shown in Figure 4.1 from Crossbow Corp was used to facilitate the performance tests

since the sensor is claimed as the ideal system for a land vehicle. RGA300CA sensor
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consists of tri-axial bulk-micromachined capacitive accelerometer and single-axis

vibratory rate gyroscope.

Figure 4.1 RGA300CA (3-Axis Accel. & 1-Axis Gyro)

First, deterministic error sources of RGA300CA are confined to zero-offset bias and 1%
order scale factor from this point. The estimation of deterministic error sources of
accelerometer and gyroscope will be dealt with separately due to their distinct raw
measurements. The basic principle is to compare the actual measurements of
accelerometer and gyroscope with a reference dataset and to obtain the desired error
sources by one of conventional optimal estimation method (Least Squares). Details are

followed in the subsequent subchapters including testing results and analysis.

Once the deterministic error sources are estimated, the stochastic variation can be

assessed by compensating the deterministic error sources from raw measurements in
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static position for a certain period of time. The stochastic variation of each axis of
accelerometer and gyroscope will be described in time domain and characterized by using
Autoregressive (AR) model resulting in appropriate order and parameter/s of AR model
for each of them. Most of the tests have been performed in the Multi-Sensor Lab at The
University of Calgary with the room temperature (about 21°C) maintained. For the sensor
unit, 20 Hz datalogging rate and approximate bandwidth of 10 Hz were used with data
logging system (GyroView Version 2.4) from Crossbow Corp. and also, the model
SM2330SQ version 4.11 motor was used with SMI 1.310 windows S/W from Animatics
Corporation. Sensor unit and rotation panel were connected to separate computers with
RS-232 port cables; the output of the accelerometer measurements was saved in text file
format; both were turned on and off every time with about 30 minutes apart and were
warmed up for about 20 minutes before each datalogging. In addition, the local gravity
value (9.8080.m/s%) in the Multi-Sensor Lab at The University of Calgary has been used

as the reference gravity value.

4.2 Estimation of MEMS based Accelerometer Deterministic

Error Sources

First, RGA300CA has been tested in the rotation panel connected to SmartMotor from
Animatics Corp.. A testing table was carefully leveled relative to the local gravity vector.
Once an accelerometer was attached to the testing table properly, the accelerometer

output was collected at a constant speed of rotation depicted by Figure 4.2. The actual
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measurements of X/Y/Z axes of the accelerometer were compared with the reference

acceleration determined by the testing table orientation and local gravity value

(9.8080.m/s%).

Figure 4.2 Accelerometer Testing Setup

For an accelerometer which is non-pendulous in design, it is reasonable to expect that
cross-axis coupling factors and vibro-pendulous error would be insignificant (Allen, J.J.
et al., 1998). Therefore, the simplified error model given in equation (3.2) can be used.
As mentioned previously, the bias and the scale factor are the main concerns for the
deterministic error sources of the sensor, and only 1* order of scale factor is considered in

the testing.
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Before testing, a small modification is necessary to equation (3.2) in order to fit the 360°

rotation test setup as below:

a, = ax(cos9)+Sxax(cost9)+Bf +n, 4.1)
O=ow(t-t),0=360°/t,—t) (4.2)
where

0] is angular velocity

t is instantaneous time

¢ is time at first +1g

t is time at second +1g

Accelerameter Rotation Raw Measurements
T

— X-Axis
—_— Y-AXis
Z-Axis

Amplitude [G]

u] 50 100 150
Tirme [sec]

Figure 4.3 RGA300CA Accelerometer Rotation Measurements
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If the rotation panel can be controlled to provide precise angular velocity, the orientation
of acceleration motion can be generated easily. Otherwise, the angular velocity can be
estimated by obtaining the time (7,) at first +1g of an axis, and the time (¢,) at second
+1g of an axis using line regression method with the 2™ order polynomial function

( y=ax® +bx+c ). Namely, once the coefficients of the second order polynomial

. . . . b
function are obtained, the time #,and ¢, are determined by ¢ = 5 Even though there
a

still exist errors in the approximation, the line regression method can be considered much
more accurate than any other human measurements of revolution time. Due to the
instability of the rotating motor and the initial misalignments, the angular velocity should
be calculated for every run (20 times). Similar to the angular velocity calculation, the bias

or zero offset (B, ) and the scale factor (S, ) in equation (4.1) can be obtained by using

Least Squares method with the rotational measurements and reference gravity value. The
results of 20 tests with their mean & standard deviation for 3 axes are shown in Table 4.1,

and the bias and the scale factor stability are illustrated in Figure 4.4 and 4.5.

Table 4.1 Bias and Scale Factor Results of Accelerometer

X-axis Y-axis Z-axis
Bias[mg] S.F.[%]  Bias[mg]  S.F.[%]  Bias[fmg] | S.F.[%]
1 1.1548 -0.0849 0.6447 -0.0807 1.9912 -0.1045
2 2.8427 -0.0852 1.3094 -0.1033 3.2705 -0.1345
3 2.2067 -0.0355 3.8652 -0.1902 1.9736 -0.1370
4 1.7903 -0.0434 43118 -0.1551 1.5669 -0.1513
5 1.5776 -0.0306 4.3459 -0.1509 1.4362 -0.1606
6 1.6411 -0.1552 3.7548 -0.1318 1.1185 -0.1466
7 1.3423 -0.1358 3.5154 -0.1504 2.2184 -0.1504
8 1.5614 -0.1068 2.9473 -0.1144 0.5651 -0.0649
9 2.5189 -0.1131 3.2060 -0.1205 0.8855 -0.0846
10 3.8183 -0.1159 3.2152 -0.1254 1.2129 -0.0835
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11 1.5750 -0.1400 1.1294 -0.1651 3.2332 -0.0602
12 2.4533 -0.1262 1.1018 -0.1506 3.5628 -0.0751
13 3.3925 -0.1293 1.5480 -0.1209 3.1330 -0.0814
14 3.4469 -0.0925 1.9380 -0.1167 2.8823 -0.0851
15 2.4924 -0.0779 2.1209 -0.1322 2.6424 -0.0719
16 4.3743 -0.0651 2.2410 -0.1009 2.2395 -0.0692
17 3.0543 -0.0474 1.9292 -0.1189 1.9984 -0.0648
18 1.9111 -0.0833 1.8029 -0.1116 2.1606 -0.0706
19 2.7809 -0.0978 1.6697 -0.1042 1.8483 -0.0648
20 1.9869 -0.0937 1.8692 -0.1246 1.8634 -0.0629
Mean 23961 -0.0930 2.4233 -0.1284 2.0901 -0.0962
St.D. | 0.8858 0.0359 1.1304 0.0256 0.8356 0.0357
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Figure 4.4 Zero Offset Bias Stability of Accelerometer
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Figure 4.5 Scale Factor Stability of Accelerometer
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According to the results shown above, among three axes, y-axis has the largest
fluctuation of zero-offset bias and the smallest of scale factor but the differences between
axes are nominal. In terms of the magnitude, the mean values of zero-offset biases for 3
axes are a few mili-g’s which are more typical values compared with the basic
information (<£30mg) from the manufacturer’s specifications. Those results can be used
as a reference value to compare with values when the sensor unit is horizontally or
vertically leveled in the vehicle. In the unleveled case, the mean values of zero-offset
biases can be considered as mean zero error and then, they can be compensated from the
raw measurements of the accelerometer. Also, the mean values of 1% order scale factor
for 3 axes are much more descriptive than the value (< 1%) from the manufacturer’s

specifications. Those numbers will be referenced in performance analysis in chapter Five.

4.3 Estimation of MEMS based Gyroscope Deterministic Error

Sources

As discussed in the previous chapter, the deterministic error sources of RGA300CA Yaw
rate gyroscope are zero-offset bias and 1% order scale factor. Analogous to the
accelerometer case, the simplified form of error equation (3.4) without any modification
will be in use to analyze actual gyroscope’s Yaw rate measurements. This time, the
rotational table has been precisely leveled out horizontally shown in Figure 4.6 and
provided the reference angular rate which is supposed to be correspondent to Yaw rate of

gyroscope assuming that Earth rotation rate effect is nominal.

68



Figure 4.6 Gyroscope Testing Setup

During a typical test schedule, the rotation rate of the rate table is stepped through a
series of angular rates starting from zero deg/s recording data at each stage. The rotation
speed is kept constant for a set period at each step and the sensor outputs allowed to
stabilize, before recording the output signals. The applied angular rate is varied in
incremental steps between the maximum and minimum desired rotation rates. At each
step, the signals from gyroscope are recorded when the sensor is in equilibrium (Titterton

and Weston, 1997, p.205).

In this experiment, the applied rotation rate has been increased from zero deg/s to 80
deg/s and then, decreased until negative 80 deg/s. After that, it resumed to increase from
negative 80 deg/s to zero deg/s. For each rotation rate steps (10 deg/s), dwell time

consists of stabilization time (about 10 seconds) and sample time (about 10 seconds). 33
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subsets of data have been recorded based on the same scheme and combined together to

compose a series of measurements. One of the testing results has been illustrated in

Figure 4.7.
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Figure 4.7 Rate Table Step Sequence

Those recorded data has been averaged out to provide a list of measurements resulting in
measurement matrix in Least Squares estimation scheme. Accordingly, two parameters
(zero-offset bias and 1** order scale factor) could be estimated by simple Least Squares
process with 33 measurements. The same test has been performed ten times with
approximately 30 minutes interval. The results of 10 tests with their mean & standard
deviation for Yaw-rate are shown in Table 4.2 and the bias and the scale factor stability

are illustrated in Figure 4.8.
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Table 4.2 Bias and Scale Factor Results of Gyroscope

Yaw-Rate
Bias[d/s]  S.F.[%]

1 0.2359 | -0.3837
2 0.2284 | -0.3977
3 0.2469 | -0.3693
4 0.2206 | -0.4164
5 0.2990 | -0.4538
6 0.3164 | -0.3154
7 0.3071 | -0.4203
8 0.3180 | -0.4367
9 0.3310 | -0.3462
10 0.3095 | -0.4445

Mean 0.2813 | -0.3984
St.D. . 0.0407 @ 0.0449

Yaw-Rate Bias/Scale Factor Stability
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Figure 4.8 Zero-Offset Bias/Scale Factor Stability of Gyro.

The mean and the standard deviation shown in Table 4.2 are more specific values
compared with manufacturer’s specifications provided with the sensor unit. Relatively,
the results of gyroscope have less fluctuation than those of accelerometer in both of zero-

offset bias and scale factor. Shorter recording time of each step of rotation rate could be
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beneficial to the gyroscope’s results compared with accelerometer results. As mentioned
earlier in accelerometer case, the gyroscope’s results shown above can be used as the

comparable value when the sensor unit is actually set up for real applications.

4.4 Stochastic Modeling of MEMS based Accelerometer and

Gyroscope

Based on the discussion in section 3.4, 3.5, and 3.6 of Chapter Three, the stochastic
variation (random noise) of experimental output of accelerometer and gyroscope inside
RGA300CA will be analyzed and modeled appropriately. Among the various special
discrete parametric models of stochastic processes, Autoregressive (AR) model and
purely random process (white noise) will be used. AR model parameters will be
estimated by using Burg method. Then, corresponding order of AR model will be
approximated by investigating the residual variance in accordance to different orders

considering the increase of state vector in Kalman Filter error state.

Before proceeding, one of the important issues in the analysis of characteristics of
random process, which is the span of observation time of the experimental data should be
considered. This is a fundamental limitation, irrespective of the means of processing the
data. The following summarizes a thorough explanation and feasible example to get at
least a rough estimate of the amount of experimental data needed for a given required

accuracy provided by the reference (Brown and Hwang, 1997, p. 106 ~ p. 108). The time
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of the data to be analyzed must, of course, be finite; and as a practical matter, it is
preferred not to analyze any more data than is necessary to achieve reasonable results.
Remember that since this is a matter of statistical inference, there will always remain
some statistical uncertainty in the result. One way to specify the accuracy of the
experimentally determined spectrum or autocorrelation function is to say that its variance
must be less than a specified value. The variance of an experimentally determined

autocorrelation satisfies the inequality
41~,
VarV, (r) < T Ry (r)dr (4.3)
0

where it is assumed that a single sample realization of the process is being analyzed, and

T is time length of the experimental record

R, (7) is autocorrelation function of the Gaussian process under consideration
V,(r) is time average of X,(t)X,(t+7) where X,(¢) is the finite-length
sample of X(¢) [ie., V,(r) is the experimentally determined

autocorrelation function based on a finite record length]

T-t

V,(r) = [time avg. of X, ()X, (t+7)]= TL X, ()X, (t+7) dt (4.4)
.
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Also, V, (7) is admitted as an unbiased estimator of R, (7) and it would appear to be a
well-behaved estimator of R, (). When it is assumed that X (¢) is the 1* order Gauss-

Markov process with an autocorrelation function

R,(r)=ce (4.5)

Substituting the assumed Gauss-Markov autocorrelation function into Equation (4.3),

then it yields

20!

VarlV, (r)] <

(4.6)

Furthermore, when the estimated time constant (1/ /) of 1 sec and the accuracy of 10

percent are needed for its autocorrelation function,

=200 sec 4.7)

Note that 10 percent accuracy is really not an especially demanding requirement, but yet

the data required is 200 times the time constant of the process.
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Once the rough idea of the time span of experimental data was obtained, the
accelerometer’s output was analyzed first. For the stochastic modeling, the static
measurements of RGA300CA system for about 11 hours were collected 10 times with a

minimum 2 hours interval and 20 minutes warm-up period.

Figure 4.9 shows one sample dataset of accelerometer that have been repeated for about
11 hours in well-leveled static mode. It is clear that the temperature variation of the
sensor unit affects the sensor measurements significantly. It is well indicated in many
literatures that the temperature is the main concern of sensor output stability. Therefore,
relatively stable parts of the original accelerometer measurements were only used and the

trends of them were removed as shown in Figure 4.10.
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Figure 4.9 RGA300CA Accelerometer Static Measurements
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Figure 4.10 Trend-Removed Stable Part of Accelerometer Output

Using the experimental data shown above, the autocorrelation sequences for 3 axes were
generated and they have shown the significant different features compared with the
conventional autocorrelation features of 1* order Gauss Markov process which has been
widely used in navigation field. The following two Figures 4.11 and 4.12 indicate how
different theoretical autocorrelation function of 1% order Gauss Markov process and

empirically estimated autocorrelation functions are.
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Figure 4.11 Autocorrelation and Its FFT Transform of 1% Order Gauss Markov Process
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Figure 4.12 Empirically Estimated Autocorrelation Functions of 3 Axes of
Accelerometer

It is the biggest motivation to model the stochastic variation in the different way rather
than conventional 1* order Gauss Markov process. Figure 4.12 shows the results of one

of the sample datasets. As 1* order Gauss Markov modeling is quite well known, only
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AR modeling procedure will be described. As described earlier, there are two main steps
involved in AR modeling, namely, parameter estimation and order determination. Once
the three parameter estimation methods in the previous section were performed to
estimate the parameters using the sample dataset (about 8 hours with a sampling rate of
20Hz), they have provided very close results from one to the other. Therefore, in spite of
some distinct characteristics, any methods could be used in this experiment. In the testing,

the Burg method has been applied. To assess the proper determination of the order for

2
&

AR model, the estimated residual variance o’ in accordance to different orders was

chosen to be analyzed. In order to avoid abrupt increase in the error states of the Kalman

filter due to the increase of the order of the AR model, an appropriate order ought to be

determined when the variance plot starts to be leveled out in Figure 4.13.
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Figure 4.13 White Noise Variance Plot with Different Orders of AR model for
Accelerometer
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Based on the results shown in Figure 4.13, 4™ order AR model has been chosen and its

parameters were estimated by the Burg method.

For the stochastic variation of the gyroscope (yaw angle rate only), the analogous routine
has been performed. First step was to investigate the raw measurements of sensor output
and to try to remove the trend to get close to zero mean of dataset. And then, the
empirically estimated autocorrelation sequence was generated to view how correlated
each measurement is to one another as the time gap increases. Same as the accelerometer

case, 20Hz dataset were used and the time gap is increased by 0.05 second.

Different from accelerometer output, the gyroscope output has shown that it was little
affected by variation of sensor temperature in Figure 4.14. Accordingly, it was not
necessary to window some part of raw measurements like accelerometer’s case. For
stochastic analysis of the gyroscope, the whole data of about 11 hours datasets have been
used. The empirically estimated autocorrelation function of gyroscope output has shown
a strikingly result which is impulse amplitude when the time difference is zero and the
rest of them are pretty close to zero in Figure 4.15. It indicates that the stochastic
variation of gyroscope output would behave like a purely random process (white noise).
10 sets of static dataset have presented very similar results. Also, its FFT transform pair
(Spectral Density Function) has shown an empirical representation of white noise
assumption for the spectral amplitude of white noise to be spread out for all frequencies

sketched in Figure 4.16.
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Figure 4.14 Raw and Trend-Removed Data of Gyroscope Output
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Figure 4.15 Empirically Estimated Autocorrelation Function of Gyroscope Output
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Figure 4.16 Empirically Estimated Spectral Density Function of Gyroscope Output

The empirically estimated autocorrelation function and its FFT transform (spectral
density function) in Figure 4.15 and 4.16 have represented that the stochastic variation of
the gyroscope could be modeled as purely random process (white noise) even though the
white noise is only the mathematical abstraction, not the real process. In addition, as the
estimated residual variance o’ in accordance to different orders for the determination of
the proper AR model parameter estimation has been sketched in 4.17, the residual
variance has not significantly decreased in any point and has provided very close values
from zero order to 20™ order situation. It is another useful indication that gyroscope
output could be modeled as purely random process (white noise) with the mean square

value (o =0.19293 deg/s).
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Yaw-Fate White Input “ariance Using Berg Method
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Figure 4.17 White Noise Variance Plot with Different Orders of AR model for
Gyroscope Output
In sum, the two main parts of error analysis of MEMS based Inertial Unit (RGA300CA)
have been described. First, the main deterministic error sources (zero-offset bias and 1*
order scale factor) for both accelerometer and gyroscope of GRA300CA have been
estimated and the results in Table 4.1 and Table 4.2 will be referenced in the performance
test in the next chapter. Secondly, the random parts of the original measurements of
accelerometer and gyroscope of RGA300CA have been analyzed mainly in the time
domain and modeled by 4™ order AR model for the stochastic variations of X/Y/Z axes of
accelerometer and purely random process for the stochastic variation of the gyroscope.
Then, their results will be very essential input information in Kalman filter formulation in

static testing and also kinematic testing which implements MEMS based inertial sensors
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and a low-cost GPS receiver integrated system in the performance analysis in Chapter

Five.
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Chapter 5

Performance Analysis

This chapter presents the performance analysis of the static and kinematic testings for the
MEMS based inertial sensor (RGA300CA) with the methods suggested in the previous
chapters. For the static testing, one channel (X-axis) of 3-axis accelerometer will be
demonstrated and analyzed to provide the comparable results between 1* order Gauss
Markov and 4™ order Autoregressive stochastic modeling methods. For the kinematic
tests, the same schemes of stochastic modeling will be applied to Kalman filter
implementation. On October 21, 2003, a kinematic test was conducted using a MEMS
based inertial sensor (RGA300CA), a low-cost GPS receiver module (Leadtek GPS-
9543), a digital compass (Honeywell HMR-3300), and a high precision dual-frequency

GPS receiver (Javad Legacy GPS receiver). The testing took place at one of the parking
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lots in the University of Calgary. The reference trajectory was generated using Precise
Point Positioning (PPP) S/W developed by Dr.Gao’ research group in Geomatics

engineering department in the University of Calgary (Gao, 2003).

5.1 Static Testing and Results

The main purpose of the static testing is to test the implementation of Kalman filter in a
static mode with position updates with different accuracy to see the influence of the
stochastic modeling by 4™ order AR model over the conventional 1* order Gauss Markov
process modeling. Considering the fact that this type of MEMS inertial sensor can be

used with GPS, the position information from GPS is assumed to be available to update.

Accordingly, the corresponding Kalman filter state-space representation mathematics

with 4™ order AR model for one channel of accelerometer can be described as follows,

?=9 (5.1)
v=a
(p+Pp)=W+0v) (5.2)

(V+ ) =(a+ o)
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where [ p,v,a ] = [position,velocity,acceleration]. Then, the error state dynamic matrix

(F) is formed as in equation (5.3) and the transition matrix (®) can be approximated

shown as below,

op 0 1 0|l op
ov | =10 0 1 ]|| ov (5.3)
oa 0 0 0| dx
F

® =1+ FAt (5.4)
op, 1 At 0 || op,_,
ov, |=10 1 At| ov,_, (5.5)
oo, 00 1|,

Now, the error state model including 6 states, 1 for position, 1 for velocity, 4 for 4™ order
AR model for X-axis accelerometer bias leads to the matrix equation (Brown and Hwang,

1997, p. 207) as,

1 At: 0 0 0 0
0 1:Ar 0 0 0
0 0i-a, —a, —a, —a,
0 0 1 0 0 0
0 0: 0 1 0 0
0 0: 0 0 1 0

86

R

5pk—l
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oa

oa, ,

oa 5
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(5.6)

(5.7)



0= E[ww'] (5.8)

The parameter estimation results in the previous chapter have been used to construct the

state transition matrix and the covariance matrix ( Q) associated with w, . A 20Hz

sampling rate is also used. And the measurement equation in matrix form is,

zZ, =Mx, +V .
k H k k 59
oh
ov,
oa
z,=[100000] " *|+v, (5.10)
Oy
L)
[P ks ]
R=E[v'] (5.11)

As mentioned earlier, it is assumed that GPS positioning information is available to
update at certain accuracy. In the testing, four different position-updating accuracies (R
matrix) have been simulated to obtain the relative performance of stochastic modeling in
the position domain corresponding to different updating accuracies. Also, updating
intervals have been simulated in two ways. The first one is the sampling rate update
which means that there is no predicted interval. The second one is the case with update

period and prediction period simulating any possible GPS outages. For both cases, the
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.. . . h
position estimation errors of 1¥ order Gauss Markov process and 4" order AR model are

demonstrated using the same scale.

In from Figure 5.1 to Figure 5.4, the sampling rate (20Hz) updating results are sketched
approximately for 7 hours static data with different updating accuracies. As indicated in
Table 5.1, 4™ order AR model results have shown very similar improvement (about 30%)
over 1* order GM process model in four different updating accuracies. The scale of Root
Mean Square (RMS) value of the position estimation errors was dependent on the

updating accuracies which have been simulated in the testing.
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Figure 5.1 Position Estimation Error (Sampling Rate Updates [20Hz], R=107)
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Position Estimation Error of Stochastic Model
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Figure 5.2 Position Estimation Error (Sampling Rate Updates [20Hz], R=1)
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Puosition Estirmation Error of Stochastic Model
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Figure 5.4 Position Estimation Error (Sampling Rate Updates [20Hz], R=10")

Table 5.1 Statistics of Position Estimation Error (Sampling Rate Updates [20Hz])

Mean|[m] St.D[m] RMS[m] % Improv.
When R=10?,
1st G.M. model -0.0567 3.1563 3.15680924
4th AR model -0.0293 2.1212 2.12140235 32.80
When R=1,
1st G.M. model -0.0014 0.3259 0.325903007

4th AR model | -0.00077835 0.2181 0.218101389 33.08

When R=107,
I1st G.M. model = -0.48108E-04 0.0332 0.033200035
4th AR model | -0.26045E-04 0.0222 0.022200015 33.13

When R=10",
st G.M. model = -1.4642E-06 0.0034 0.0034
4th AR model -7.99E-07 0.0023 0.0023 32.35
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The Kalman filter error states have been estimated with position update/prediction
intervals. The position estimation errors using 30-second update/prediction period with
different updating accuracies have been sketched in from Figure 5.5 to Figure 5.8 and
their statistics are presented in Table 5.2. Being different from sampling rate update case,
the improvement rate in the 30-second update/prediction case has been gradually
decreased, as updating accuracies have gotten better. Furthermore, the improvement by
precise stochastic modeling tends to be lessened for the magnitude of position estimation
error itself when the prediction period is increased into 60 seconds or 120 seconds

described in Figure 5.9, Figure 5.10 and Table 5.3.
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Figure 5.5 Position Estimation Error (30sec. Update/30sec. Prediction, R=10%)
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FPosition Estimation Error of Stochastic Model
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Position Estimation Error of Stochastic Model
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Figure 5.8 Position Estimation Error (30sec. Update/30sec. Prediction, R=10"")

Table 5.2 Statistics of Position Estimation Error (30sec. Update/30sec. Prediction)

Mean|m] St.D[m] RMS[m] % Improv.
When R=10%,
Ist G.M. model | -0.0987 4.4690 4.470089785
4th AR model -0.0510 3.0227 3.023130214 32.37

When R=1,
1st G.M. model -0.0024 0.5071 0.507105679
4th AR model -0.0012 0.3575 0.357502014 29.50

When R=107,

Ist G.M. model | 1.4060E-04 ~ 0.1018  0.101800097

4th AR model | 2.0972E-04  0.0820 0.0820 19.45
When R=10",

I1st G.M. model | 8.9102E-05  0.0440 0.0440

4th AR model |4.9343E-05  0.0408 0.0408 7.27
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Table 5.3 Statistics of Position Estimation Error (R=10 [m])

Mean|[m] St.D[m] RMS[m] % Improv.
When 10sec Up/10sec Pr
1st G.M. model ' -7.7661E-05 0.0523 0.052300058
4th AR model | -3.9530E-05 0.0371 0.037100021 29.06

When 30sec Up/30sec Pr
1st G.M. model = 1.4060E-04 0.1018 0.101800097
4th AR model | 2.0972E-04 0.0820 0.0820 19.45

When 60sec Up/60sec Pr
Ist G.M. model | 2.5760E-04 0.2199 0.219900151
4th AR model @ 2.3117E-04 0.1961 0.196100136 10.82

When 120sec Up/120sec Pr
1st G.M. model -0.0046 0.6282 0.628216842
4th AR model -0.0039 0.5913 0.591312861 5.87

Consequently, the results of the Kalman filter implementation of X-axis of the
accelerometer in static mode presents that 4™ order AR model has performed better than
1** order Gauss-Markov model in both of continuous update and update/prediction cases.
In addition, the rate of the improvement by AR model over Gauss-Markov model tends to
decrease as updating information accuracy increases and prediction period increases. It is
because Kalman filter gain is more dependent on the measurement updating information
accuracy and then, the precise stochastic modeling of the system has less contribution to
the final position estimates when the prediction period gets longer due to GPS signal

outrage.
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5.2 Kinematic Testing and Results

5.2.1 Kinematic Testing System Configuration

The kinematic testing was conducted to qualify the performance of the integrated system
of MEMS based inertial sensor (RGA300CA) and the low-cost GPS receiver module
(Leadtek GPS-9543) utilizing different stochastic modeling schemes (4™ order AR model
and 1% order Gauss-Markov model). It is a simplified navigation testing with the
assumptions that the testing area is 2-dimensional, flat (nominal roll/pitch) and
nonaccelerating (short testing duration). Also, the initial misalignment is assumed to be

negligible.

For the initial position and heading information, a dual frequency GPS receiver (Javad
Legacy GPS receiver) and a digital compass (Honeywell HMR-3300) have been used and
the measurements from the high precision Javad Legacy GPS receiver were also

processed to generate the reference trajectory.

Two GPS antennas (Javad Legacy and Leadtek GPS 9531) were mounted on the roof of
the testing van and the testing system was held tight inside the vehicle shown in Figure
5.11 and Figure 5.12. Two laptop computers were needed to record the reference GPS

measurements and integrated system with different acquisition S/W separately.
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Figure 5.12 Testing Van
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Table 5.4 summarizes the basic specifications of each sensor in the testing system. Those

specifications are referenced and also compared with the results of static multi-position

testing, especially for RGA300CA.

Table 5.4 System Specifications (Courtesy of Crossbow, Leaktek, Honeywell Inc.)

Specifications
RGA300CA
Angular Rate
Range: Yaw (°/sec) +100
Bias: Yaw (°/sec) <+2.0
Scale Factor Accuracy (%) <1
Non-Linearity (%FS) <0.3
Resolution (°/sec) <0.025
Bandwidth (Hz) >25
Random Walk (°/hr'?) <2.25
Acceleration
Range: X/Y/Z (g) +2
Bias: X/Y/Z (mg) <+30
Scale Factor Accuracy (%) <1
Non-Linearity (%FS) <1
Resolution (mg) <1.0
Bandwidth (Hz) >50
Random Walk (m/s/hr'?) <0.15
GPS-9543
Main Chip SiRF star 1T
Tracking Channel 12
L1 Frequency (MHz) 1575.42 C/A code
Position Accuracy (m) 10, 2D
Input Massage NMEA/SiRF Binary
Output Massage SiRF Binary + NMEA-0183
Time Mark Output 1pps
HMR3300
Heading Accuracy 1°
Resolution 0.1°
Repeatability 0.5°
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5.2.2 Mathematical Error Model

Kalman filter mathematical derivation for 2-dimensional testing using X/Y accelerometer
and yaw rate measurements along with GPS position updates is followed below based on

the discussion in the reference (Farrell, J.A. and Barth, M., 1998, p.8~9).

Al [ v, 1 [v,]
e v, v,
v, |=lcos(y)a, —sin(y)a, |=|a, (5.12)
v, sin(y )a , + cos( y)a, a,

where [, ,c, ] are the measured accelerations in the body frame, , is the measured yaw

rate in the body frame, and

a, | _|cos(y) —sin(y) | a, (5.13)
o, sinw) cosw) |a, |

When bias errors are modeled in each of the sensors,

a,=a,+oa, (5.14)
a,=a,+oa, (5.15)
O, =0, + 00, (5.16)
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the actual mechanization system is modeled as

m<>- <>- Q. N>.

<>

<>

n

<>

cos(¥)@, — sin(1)@,
sin(y)a, + cos(y)ax,
15}

r

Linearization about the trajectory results in the following set of equations,
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(5.17)
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oa (5.18)
ow

including bias errors in error states, error state dynamic matrix (F) is formed as in

equation (5.18) and the transition matrix ( ® ) can be approximated shown as below,

on
oé
ov

ov

Sct,
Sct,
56,

(0010 0 0
0001 0 0

0000 a,
0000 0 0
0000 0 0
0000 0 0
0000 0 0

F

0
0

0

0
0
0

ol

0

0000 —a, cos(y) —sin(y) 0
sin(y) cos(yw) 0O

1

oS O O

100

on
oe
ov
ov

oa,
oa,
ow,

(5.19)



@, =1+ FAt
fon, | [10A6 0 0
Je, 010 At 0
ov,, 001 0 —a,At
v, 000 1 a,At
Sy, 000 0 1
da,| 000 0 0
da, | 000 0 0
6w, | 000 0 0

cos(w)At —sin(y)At 0
sin(yw)At cos(y)At

0
0

0

1
0
0

0
0

0

0
1
0

o
0

0
At

0 || oo

0
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(5.21)

Now, the error state model including 14 states, 2 for position, 2 for velocity, 1 for

misalignment, 8 for 4™ order AR model of X/Y-axis of accelerometer biases and 1 for

white noise for yaw rate bias lead to the matrix equation is
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0= E[ww'] (5.23)

2] [10000000000000]da,.,
_ +v, (5.24)

“101000000000000

z

e

R=E[vw'] (5.25)

Again, the parameter estimation results in the previous chapter have been used to

construct the state transition matrix and the covariance matrix ( Q) associated with
w, and R matrix has been constructed by using RMS values of GPS trajectory accuracy

compared with PPP solutions.

5.2.3 Testing Dataset and Data Processing

The testing dataset is composed of 3 different system files and 1 reference GPS file. The

system files are using the same computer time. Their logging formats are
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Table 5.5 Testing System Dataset Logging Formats

GPS

time index (int)GPS Time Lat Lon |GPS heading GPSVn GPSVe HDOP SN SNR total
Compass

time index |Compass heading Compass pitch Compass roll

RGA300CA

time index |RGA Roll RGA pitch RGA Yaw RGA Ax RGA Ay RGA Az RGA Temp

For the field testing, the system has included about 20 minutes warming-up period,
compass calibration period, static motion period, and kinematic motion period. After
warming period, a digital compass was calibrated using 360° rotation circle motion each
time and then, at least 5 minutes static collection was made. It has been done this way
because on/off zero-offset bias should have been examined before actual kinematic data
processing. Total kinematic testing duration was limited to 10 minutes and the same

testing routine was conducted 10 times.

For the initial heading, the term, magnetic north, refers to the position of the earth’s
magnetic pole and it differs from a geodetic north. The angle between magnetic north and
the geodetic north direction is called magnetic declination. As the magnetic declination
does not remain constant in time, it needs to be referred to a recent geographic lookup
table or geodetic services available in order to add or subtract the proper declination
angle to correct for the geodetic north. Fortunately, Natural Resources of Canada
(NRCan) provides a recent estimation of the declination based on Canadian Geomagnetic

Reference Field (CGRF) which is a model of the magnetic field over the Canadian region.
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As a result, 17.183° E declination angle was obtained through the University of Calgary

campus and then, it was added to the initial heading from HMR3300 magnetic compass.

The initial position was provided through Precise Point Positioning (PPP) process of
Javad Legacy GPS receiver measurements, which has sub-meter accuracy. PPP solution
also generates the reference trajectory to qualify the performance of the integrated system.

The data processing associated with kinematic testing is illustrated in Figure 5.13.

‘Javad ZPS Receiver }—.{ PFP 5/'W }—.{ Reference Position

[rutial Position
RGA300CA | | Dynamic Model
| l
Position
Kalman Filter » Velocity
Heading
3PS-9543 | | Measurement hModel
| l
[nitial Heading
‘ HIR3300 }—44 Heading }—.{ Compass Heading
T Declination Angle
Integrated System ‘ CORF ‘

Figure 5.13 Data Processing Flow

The trajectory generated by the integrated system has been compared with reference

trajectory using GPS time synchronization. The same data processing has been conducted

for two different stochastic modeling schemes.
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5.2.4 Testing Results and Analysis

The kinematic testing has been conducted in one of the parking lots in University of
Calgary which is relatively flat and an open area to fulfill the testing assumptions
described previously. The vehicle was driven at the speed of 10 to 30 km/hr with 6 major
turns. Around the corners, the speed was reduced and then, was accelerated along the
straight path comparatively. The same driving testing was repeated 10 times with the
same routine of data collection in the same area. One of the raw measurements of

accelerometer and gyroscope is sketched in Figure 5.14.
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Figure 5.14 Kinematic Testing Raw Measurements
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As illustrated and also described previously, the actual collection of dataset consists of
two parts, namely, static mode and kinematic mode after warming up and compass
calibration periods. About 5 minutes, the static mode dataset was referenced with zero-
offset bias estimation described in Chapter Four. With an initial position from PPP
processing of GPS measurements and initial heading corrected by CGRF, Kalman filter
error estimation has been processed composed of dynamic model using measurements of
X/Y axes of accelerometer, Yaw rate gyroscope of RGA300CA and measurement model
using measurements of GPS-9543 module. The trajectories of the integrated system using
4™ order AR model and 1* order GM model were generated with the 1-sec updates first
and were compared with PPP solution trajectory and GPS-9543 solution trajectory. After
that, the system trajectories were generated with 5-sec, 10-sec, 20-sec, 30-sec, 60-sec
update intervals. Some of them are illustrated in from Figure 5.15 to Figure 5.18.
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Figure 5.15 Kinematic Testing Trajectory Plots (1-sec Updates)
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Figure 5.18 Kinematic Testing Trajectory Plots (20-sec Updates)

In the 1-sec update case, the system trajectories by both 4™ AR model and 1% order GM
model processes have indicated slightly better performance than GPS-9543 solution. In
the 5-sec, 10-sec, 20-sec update cases, the system solutions are showing that the position
errors have increased between updates. The biggest position errors have often occurred in
the corner sections. It is because the Yaw rate error plays a bigger role than the
acceleration error in position generation. While previous four figures illustrate the
horizontal position trajectory, the following two figures show northing and easting
position errors of different updating cases compared with PPP solution. It is noticed that
the solutions of 4™ order AR model and 1% order GM model are varying as the updating

intervals have increased.
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It is clear that the position error in each channel tends to increase without GPS position
updates and settle down with updates. Also, the kinematic mode position error is much
bigger than the static mode position error in all update interval cases. In the 10-sec update
case, the maximum position error has reached to about 60 meters and even worse, 100
meter position error has been shown in the 20 sec update case. The numerical result of

position errors of kinematic testing is summarized in Table 5.6.

Table 5.6 Kinematic Position Errors

Position Errors

X RMS Y RMS Hrioz. RMS

1-sec Update

4th AR Model 2.2643 4.5664 5.0970
Ist GM Model 2.3521 4.7023 5.2578
5-sec Update

4th AR Model 3.4984 6.5326 7.4104
Ist GM Model 4.5062 6.3012 7.7466
10-sec Update

4th AR Model 10.9184 9.5629 14.5142
1st GM Model 13.6273 9.3777 16.5422
20-sec Update

4th AR Model 31.0981 25.9061 40.4749
Ist GM Model 22.6127 36.6627 43.0754
30-sec Update

4th AR Model 21.2120 76.1587 79.0575
Ist GM Model 60.9515 53.1926 80.8983
60-sec Update

4th AR Model 111.8538 165.9589 200.1340
1st GM Model 276.4774 149.9599 314.5278

Unit : [meters]
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Based on the position error plots and numerical values, the estimation with 4™ order AR
model has produced better results than the estimation with 1% order GM model in
kinematic testing. However, the improvement is relatively smaller than the one in static
testing. It can be explained that more unmodeled deterministic error sources are involved

in the kinematic environments.

The kinematic testing described here has made very important assumptions mentioned

earlier. Therefore, the results with those assumptions and data processing method

presented above, should be understood very carefully.
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Chapter 6

Conclusions and Recommendations

6.1 Conclusions

The main objectives of this research are to investigate the error behaviours of MEMS
based inertial sensors and the performance analysis of the prototype of a low-cost
GPS/MEMS based inertial sensor integrated system for land vehicle applications. The
major motivation is that GPS signal is not always available to the users and GPS based
solutions are degraded due to poor geometry, and multipath effect even though GPS
based navigation system is becoming smaller and inexpensive to be more popular and

attainable for civil users and have been immensely adopted for land vehicle applications.
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Complementing the disadvantages of the GPS based navigation system, MEMS based
inertial sensors have pushed the development of the inexpensive and smaller integrated
system to provide the reliable and continuous navigation solutions for land vehicle
applications. However, in spite of low inherent cost, small size, low power consumption,
and solid reliability of MEMS based inertial sensors, MEMS based inertial sensors are
still considered as very poor devices in accuracy. Consequently, this study has
emphasized the error characterization and performance analysis of MEMS based inertial
sensors trying to turn the raw measurements of the sensors into reliable and useful data in

optimal data processing for vehicle position determination.

The research led to the basic principle of multi-sensor navigation system, MEMS
technology and MEMS based inertial sensors, error analysis of MEMS based inertial
sensors, error estimation, and performance analysis. The major contributions of this

research are:

« Identification of different types of error sources of MEMS based inertial sensors

- Estimation of major deterministic error sources (zero-offset bias and 1% order scale
factor) and stochastic modeling of random noise using special standard parametric
stochastic models

« Performance analysis of MEMS based inertial sensors compared to Autoregressive

(AR) model and Gauss Markov (GM) model in static and kinematic environments
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Through Kalman Filter implementation in static testing and kinematic testing, the results
from the 1% order Gauss Markov process and the proposed 4™ order AR model have been
compared with different interval updates and with prediction. The 4™ order AR model has
resulted in a better performance in both cases in this experiment. In static testing, the
position estimation errors of 1% order GM process and 4™ order AR model were
compared according to different updating intervals and different updating information
accuracies. Overall, AR model results have shown a better performance over 1* order
GM process agreeing with the results in the reference (Nassar S. et al., 2003). As
indicated in Table 5.1, Table 5.2 and Table 5.3, the rate of improvement by AR model
over GM model tend to decrease as updating accuracy increases and prediction period
increases. The kinematic testing has been performed in the 2-dimentional, and relatively
flat environment assuming nominal Earth rotation rate effect and negligible initial
misalignment of the system. Also, it should be noticed that the initial heading from
HMR3300 digital magnetic compass was corrected by the recent estimation of the
magnetic declination based on CGRF. As illustrated in Table 5.6, the improvement in
kinematic testing by AR model is relatively smaller than the one in static testing, which
can be explained that the unmodeled error sources are involved in the kinematic

environments with a series of assumptions.

In order to adopt low-cost sensors in the integrated navigation system with satisfactory
performance, the precise calibration of the deterministic error sources and the proper
stochastic modeling of the noise behaviour of different sensors are recommended. Several

stochastic models have been discussed in this research and they can be used to help
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develop optimal algorithms for the integration of MEMS based inertial sensors with other

enabling systems such as GPS.

6.2 Recommendations

As illustrated in the performance analysis, the quality performance of MEMS based
inertial sensors is not quite acceptable to aid GPS system for land vehicle application for
longer period of GPS signal outrage. As MEMS technology enhances fast and more
MEMS based navigation sensors are available in the market, it is recommended to test
and qualify more and better performance sensors to develop GPS/MEMS based inertial

sensor integrated navigation system for continuous navigation solutions.

Based on different structure principles of MEMS based inertial sensors, it is
recommended to identify the various deterministic error sources of the sensors and

quantify them for optimal data processing algorithm and performance analysis.

Along with the identification and quantification of the deterministic error sources of
sensors, stochastic error analysis should also be emphasized. Stochastic analysis of sensor
random noise was mainly discussed in time domain in this research. For the better
understanding of the sensor system and enhancement of optimal algorithm, the stochastic
modeling is to be further investigated in the frequency domain. Depending on the nature

of sensors, environments, and implementation procedures, different types of stochastic
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modeling schemes could be considered and further investigated to identify the most

suitable modeling method for a certain application.

In the performance analysis, the limited and simplified Kalman filter was implemented
using a low-cost GPS chipset and MEMS based inertial sensors of 3-axis accelerometer
and 1-axis gyroscope in this research. Using different types of GPS receivers and various
grade MEMS based IMU's consisting of 3-axis accelerometer and 3-axis gyroscope,
Kalman filter estimation of 3-D kinematic motion will be implemented and the various

issues of Kalman filter implementation will be also studied for further research.
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