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ABSTRACT

This work addresses the applications of adaptive
antenna arrays for GPS, in order to achieve a more
accurate estimation of user position, as well as signal
enhancement and interference cancellation.

A hybrid algorithm solution for adaptive antenna
array is proposed, which is based on a constrained
adaptive algorithm, associated with a multilayer
perceptron neural network.

Two hybrid algorithms, using two kinds of
constrained algorithms, are compared to each other
and to the classical solutions. Simulations consider
different realistic GPS situations, pointing out the
effectiveness of the hybrid approach, in terms of
lower computational burden, lower stead- state error
and better radiation patterns with respect to the
classical solutions.

INTRODUCTION

The Global Positioning System is important for a
great variety of applications, including civil or
military users. It enables real-time position, time and
velocity accurate estimation, and possibility to use
on a variety of platforms, 24 hours a day [1].

GPS signals are subject to several impairments, such
as multipath, fading, tropospheric and ionospheric
delays, power flutuactions due to scintillation,
doppler effects, clock and receiver errors.

On the other hand, adaptive antennas may be
considered as emerging techniques, which play an
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important role for mobile communications, for
example. In fact, these devices are based on signal
processing algorithms.

The application of adaptive antenna arrays for GPS
is one of the ways in order to achieve a more
accurate estimation of user position, as well as signal
enhancement and interference cancellation. In fact,
adaptive arrays provide an automatic adjustment of
the radiation pattern, according to the incident
signals and a given adaptation criterion, associated
with an efficient signal processing algorithm [1],[2].
Such algorithms are generally based on space-time
theory, involving DOA _estimation, and impose some
a priori knowledge on the number of interference as
well as on desired signals.

The adaptive antenna array has been shown as an
interesting tool for GPS applications because the
system requires increasingly quality and feasibility

[1].

In this paper, a hybrid algorithm solution for
adaptive antenna array is proposed, which is based
on a Frost (FR) [8] and Resende (RES) [6]
constrained adaptive algorithm, associated with the
MUSIC algorithm for direction of arrival (DOA)
estimation, and on a multilayer perceptron neural
network (MLPNN).

Two hybrid proposals, using this two kinds of
constrained algorithms, are compared to each other
and to the classical solutions. Simulations have been
carried out considering different realistic GPS
situations.

The article is structured as follows. Next section
describes the adaptive antenna array and the related
signal processing. In the following section, classical
solutions and our new hybrid signal processing
constrained algorithms are proposed, afterwards
simulations results are presented and discussed.
Finally, the conclusions summarizes the paper.

ADAPTIVE ANTENNA ARRAY AND THE
SIGNAL PROCESSING

Adaptive array theory has undergone extensive
developments and has been used in applications
linked with  radar, geophysics, mobile
communications and GPS.

In adaptive spatial filtering, the filter process spatial
samples of a wave front captured by an antenna
array. For the antenna, the direction of arrival of the
incoming signal plays the same role as frequency for
the temporal filter. The radiation pattern, which
plays for spatial domain the same role as the
frequency spectrum for the temporal filter, shows
the array sensibility in relation with the direction of
arrival of the captured signals.

The concept of spatial filtering is to modify the
antenna radiation pattern according to some pre-
established criterion, which optimizes reception of
the desired signals. The antenna is no longer a
passive subsystem acting as a transparent transducer,
but an active device which controls the radiation
pattern performance based on an intelligent
processing.

One way to solve for this problem is to design a
multiple antenna, such that elements are physically
arranged into an array which can be linear, planar or
circular. This array can steer nulls toward
interference that provides a control for each element
of the array, in a manner that it effectively creates a
nearly hemispherical gain pattern when there is no
external interference.

This array can detect the presence of interference
and to steer a null in its hemispherical gain pattern
toward each external interference. The degree of
freedom here is limited by the array elements
number, generally M —1 nulls for M array
elements and the depth of the null is limited by the
number of nulls that is been steered at the same time.
We need to consider that if we have a desired signal
and a interference signal coming from the same
region, the desired signal could being null together
with the interference signal but it is better than have
all desired signals suppressed by an interference.

In this context, we will analyze the performance of
adaptive linear antenna arrays in the following
sections, in order to mitigate the interfering signals
by the insertion of nulls in the radiating pattern in
the interference directions.

The linear antenna array is uniformly spaced, with
M identical isotropic elements and can be visualized
in figure 1. Each element is weighted with a
complex weight. The mathematical model can be
described by:

u, ()= 3,7 a, 0,5, (k)e’ @) n=0,....M —1(1)
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Where: ¢ (¢.) is the complex response of the n-th

array  element  in  direction ?, and

1.0.)= _2mi sen¢, is a function associated with
n 2' 1

i

the linear geometry.

Figure 1: Linear array.

Based on this model, a hybrid algorithm solution is
proposed, which switches between a constrained
adaptive algorithm (classical approach) and a
supervised multilayer perceptron neural network
(MLPNN).

SIGNAL PROCESSING  ALGORITHMS:
CLASSICAL AND HYBRID SOLUTION

The use of signal processing constrained algorithms
as a solution for interference mitigation in GPS
antenna array is achieved by the imposition of
constraints to the antenna weights, in order to assure
a constant amplitude and linear phase response in
the direction of the desired signal. The constraints
are imposed after the estimation of the desired signal
direction of arrival (DOA), using the MUSIC
algorithm [4].

First, we will describe three classical supervised
algorithms: the Linear Constrained Minimum
Variance-LCMV  proposed by Frost [8]; the
Constrained Fast Least-Square — CFLS proposed by
Resende et al. [6] and a Multilayer Perceptron
Neural Network - MLPNN [10]. After this, we will
describe the proposed hybrid algorithm, defined by
FR/MLPNN and RES/MLPNN.

FROST ALGORITHM

The so-called Frost (FR) algorithm is a constrained-
LMS-based adaptive technique. The Linearly
Constrained Minimum Variance (LCMV) criterion

consists of minimizing the output power of a filter
whose input can be applied in spatial filter, and the
parameters are subject to a set of linear constraints.
This is done in each iteration in order to move the
coefficients vector in the negative direction of the
cost function gradient, plus the constraint function
obtained by Lagrange multipliers method [12].

The Lagrange multipliers A are chosen in a way that
the weight vector W(k) have the constraints
reached. For this, consider the correlation matrix
R . knew, so at the £ instant the gradient function
to be minimized is:

Vw(k )F LCMV[W(k )] = Rxxw(k ) + C/,L(k ) (2)

After the k-th iteration the updating formula of the
coefficients vector is:

wik+1)=w(k)-uR wk)+CAk)] 3

where [ is the step size.

The Lagrange multipliers must to be chosen in order
to w(k+1) fulfill the constraints. This set of
constraints is imposed by:

C'w(k)=f (4)

Where C is the constraint matrix and f is given by:

=1/, S Sy ) )

so that f; is equal to :

0 dB , for i=0,..,D—1, to the desired
signals.

-30dB, fori=D,..D+1-1, 6)
to the interference signals, and

e[f(el) e./f(ez) e./f(em[fl)
C= e./2.f(91) el'zf(ez) e./f(emu) (7)

ej(Mfl)f(f?l) ej(M—l)f(Bz) ej(M’I)f(oDHfl)

After algebraic manipulations the updating formula
is given by:

W) =w(h) ~I-CCO Ry +

8)
+O(CTO) [ -C w(k)]
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As observed in [12] the updating equation (8) shows
that the factor [f —C"w(k)] is not null, because
only if at the k-th iteration the coefficients vector
reach the constraint accurately this will occur. This
fact normally is not achieved because of finite
numerical accuracy that can occur in the
mathematical operations and values representation.

This fact gives to Frost algorithm the characteristic
to numerical robustness to constraint shifts in the
adaptation process.

RESENDE ALGORITHM

A constrained fast recursive least square algorithm,
know as CFLS [6],[12] can be considered as a least-
square version of the Frost technique and can solve
problems in constrained adaptive spatial filtering.
The CFLS is an algorithm derived directly from the
optimum solution, as RLS algorithm. The
convergence speed is greater than the algorithms
based in gradient, for exemple Frost algorithm.

The complete derivation of Resende (RES)
algorithm is too extensive task to be presented here,
so a brief will be discussed. In order to take into
account the same constraints as in the Frost
algorithm, that are imposed in each iteration and
objective is to reach the optimal solution by a
recursive process, then:

w(k)=T ()l ()l t ©)
Where :
r(k)=R,_ "' (k)C (10)

R, is the correlation matrix estimation

And

R“(k)=iloc’“u(i)x”(i) (an

The equation (4) can be written as:

w(k+1)=Q(k+1)f (12)

where:

Qk+)=r(k+1c*rk +)]" 3

As previously we know that the algorithm can be
derived if the recursion is obtained for Q(k +1)
and if this recursion is numerically controlled,

x(k+1)=C"g(k +1) (14)

and

y'(k+1)=u"(k+1)Q(k) (15)

where u(k+1) is the incoming signal, then the
following recursion is obtained:

Q(k+1)=Q'(k +1)+clc”c" [xc"Q (k +1)] (16)
If Q'(k+1) denotes a matrix with arithmetical

inaccuracy errors, a correcting term can be
introduced and the updating matrix is given by:

Q (k+1)=[Q(k)- gk +1)y" (k+1)
[H x(k+ 1)y (k +1) } a7

-y (k+1)x(k+1)

where g(k +1) is the adaptive gain obtained by

RLS algorithm, x and y are auxiliary vectors and Q’
is an auxiliary matrix.
The initial conditions are:

w(0)=Q(0)
Q(0)=r©)c"TE)]" (18)
ro)=Rr, (o)

The constrained algorithm structure used here was
developed in parallel, and in this way each adaptive
algorithm is associated with a desired signal. Figure
2 shows the constrained algorithm structure.

e

contrer
1

[~ RES1orFR1 >
F—

[~ RES2or FR2 >
F—

[ RES3or FR3

—

]
RES4 or FR4

Figure 2: Constrained Algorithm Structure

THE MULTILAYER PERCEPTRON NEURAL
NETWORK

The perceptron is the simplest form of a neural
network, consisting of a single neuron with
adjustable synaptic weight and a threshold [10].
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The multilayer perceptron (MLP) is an important
class of neural networks called multilayer
feedforword networks (MLPNN). Typically,
consists of a set of sensor units that are the input
layer, one or more hidden layers and output layer of
computation nodes. The input signal propagates
through the network in a forward direction, on a
layer by layer basis.

In the MLP, the model of each neuron includes a
non-linearity at the output end. The common form of
non-linearity that satisfies this requirement is a
sigmoidal defined by:

! i=0,.,H-1 (19

< 1+exp(-v,) +/

Where v, is the network internal activity level of

neuron j, and Y f is the output of the neuron. In our

case, we will use a hyperbolic tangent as a sigmoidal
non-linearity, which is anti-symmetric with respect
to the origin and for which the amplitude of the

output lies inside the range —1<y, <1. The
hyperbolic tangent is defined by:

¢(v)= atanh(pv) (20)

Where a and b are constants. The hyperbolic tangent
is just the logistic function biased and re-scaled, as
shown by:

2a

atanh(bv)= —————a
1+ exp(bv)

e2))

The network contains one or more layers of hidden
neurons that are not part of the input or output of the
network. These hidden neurons enable the network
to learn complex tasks[10].

The network exhibits a high degree of connectivity,
determined by the synapses of the network, which
determine the MLPNN computational power.

These characteristics are also responsible for the
MLPNN drawbacks. The presence of the distributed
form of non-linearity and the high connectivity of
the network makes the theoretical analysis of
multilayer perceptrons difficult to perform and the
use of hidden neurons turns problematic the learning
process.

The MLPNN is trained by mean of the algorithm,
which can be summarized as:

input vector: X =[LXy,X},....X;, 1", with M
input.

output vector: Y =[Vg,VreerVyl . with N
input.

Weight matrix between the input layer and hidden
layer, for H neurons, considering the bias:

A(M+I)xH
Weight matrix between the hidden layer and output
layer, for H neurons, considering the bias:

B(H+1)xN
Considering the hyperbolic tangent as activation
function:
eTxTA _ e—TxTA
Y=o B (22)
e +e
where, T control the sigmoid inclination and the
MLPNN parameter updating are obtained according
to the error function minimization [10].Figure 3
shows the MLPNN structure.

y K
0

y (K

y &
N

Figure 3 — MLPNN Structure

HYBRID SOLUTION

The hybrid solution has evolved from the requisite
to have better accuracy, lower computational
burden, lower stead-state error and mitigation of
interference, improving in his way the antenna array
performance for GPS applications.

The hybrid solution is based on a constrained
adaptive algorithm, associated with MUSIC
algorithm for direction of arrival (DOA) estimation,
and a multilayer perceptron neural network
(MLPNN).

The assembly formed by the set DOA estimator,
jointly with the constrained adaptive algorithm, that
can be Frost or Resende, is used for updating the
antenna array. Just with the convergence is reached,
the structure is switched to a MLPNN, which
receives the constrained adaptive algorithm solution
as a training sequence. The adaptation of MLPNN is
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carried out until a new evaluation of DOA is
necessary, due the change of satellite elevation and
azimuth angles with the time.

The structure of the algorithm applied here is
showed in the block diagram in fig. 4.

DOA CONTROL

1T

Y

= RES1orFR1

[— RES2 or FR2 >

B switcH % MLPNI%

— RES3or FR3 A

PR
RES4 or FR4
—b{ DELAY

Figure 4 — Hybrid Algorithm Solution

SIMULATIONS RESULTS

Simulations of two different scenarios have been
carried out in order to evaluate the hybrid solution
algorithm performance.

For the first scenario (scl), so called critical
scenario, it was chosen the desired signals (Des)
coming from satellites with elevation of 0°, 60°,
330° and 300°, and the interfering signals (Int) from
315°, 85° and 275°. For the second one (sc2), so
called normal scenario, the desired signals comes
from elevation angles of 18°, 60°, 80° and 30° and
the interfering signals comes from 45°, 300°, 350°,
in according to the reference in fig. 1. The desired
and interfering angle spectrum estimation was
performed by MUSIC algorithm.

The linear antenna array was formed by 8 isotropic
elements and were established 7 incoming signals.
The same constraints was established for both
scenarios, to cancel interfering signals with -30 dB
gain and capture the desired signals with 0 dB gain.
The signal noise ratio (SNR) and signal interfering
ratio (SIR) was established very strong, SNR equal -
14.8 dB and SIR equal 3dB. When the MLPNN was
used the number of neurons was 30.

The performance of Resende algorithm (RES) for
the first scenario (scl) and Frost algorithm (FR) for
the second one (sc2) in the classic solution is
showed in fig. 5 to 8.

Observing the temporal evolution (figs. 5 and 7) it is
clearly noted the convergence problems take place,
mainly when the antenna array is receiving the
signals from scl. The small degree of freedom
between the number of the antennas and the
incoming signals did not make possible the noise
cancellation, consequently did not allowed the open
eye condition in two of algorithm output. This is due
the high symbol error rate (SER) provided by the
constrained algorithm, which is 0.0931.

It is important to consider that in the scl the
interfering signals were located very close with the
desired signals and in angles near to the horizon,
factors that made difficult the algorithm
convergence. In the sc2, this angle distribution is
less critical but the degree of freedom remains small.

The result can be analyzed in the radiation pattern.
From figs. 6 and 8, where could be observed a good
agreement with the constraints in the capture of all
desired signals, as well as the interference
cancellation. The FR algorithm in the scenario scl
shows similar performance. The RES algorithm
performance in the scenario sc2 is compared with
Frost algorithm in sc2. For this last one a SER
decrement to 0.002 is achieved.

The hybrid solution RES/MLPNN and FR/MLPNN
are robust. This can be observed in figs. 9 and 11.
The comparison between these two solution enables
to conclude that the MLPNN achieves the
convergence independently the high (scl) and low
(scl) SER in the training sequence from FR or RES
algorithm, with the enough iterations number. While
the FR or RES do not achieve that goal.

This can be observed again in the array radiation
pattern, figs. 10 and 12, where it is easy to verify
that the desired signals are attained according to the
constraints requisites, while the interference signal
are properly canceled. These structures attain the
open eye condition without any problem. The
convergence is achieved because of angular space
between desired and interfering signals.

For both cases (classical and hybrid), when the
degree of freedom between the antenna array
elements and incoming signals increase, the SER
decrease and a convergence improvement in RES
and FR algorithm is reached. For the MLPNN the
increase of the degree of freedom allows a decrease
of the neurons number and a lower computational
burden with respect to the classical solution.
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In fig. 13 and 14, it is shown the simulations results,
with the same constraints, but for 10 array elements
and 20 neurons for the hybrid structure
RES/MLPNN in the scl.

The computational burden of this hybrid solutions
have origin in Resende and Frost algorithm
associated with the MUSIC algorithm, and it is in
order to square number of array elements. The
MLPNN has computational complexity in order to

A4H(M +5)+3(H +1)N sums and
2H(M +4)+2(H +1)N multiplication.

CONCLUSIONS

This work points out that spatial processing
techniques provide new perspectives in applications
related with GPS. The use of hybrid algorithms lead
to good solutions where the interfering and
multipath ~ signals need to be canceled. Others
scenarios, that made a better representation of GPS
problem will be established in order to test the
hybrid structure.

Different antenna array geometric configuration will
be tested, in order to compare the performance,
testing less antenna elements and ambiguity
resolution. Future studies will work on in the way of
have DOA estimators with lower computational
burden.

In this work, the computational burden of the hybrid
algorithm, is not forbidden in comparison with the
reached performance on the task of cancel
interfering signals, convergence speed and good
results of the array radiation pattern.
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Figure 14 — Array Radiation Pattern
Figure 13 — Temporal evolution RES/MLPNN - sc 1 — 20 neurons — 10 antennas
RES/MLPNN - scl — 20 neurons — 10 antennas Output 1 to 4

Output 1 to 4
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