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Abstract 

Underwater target tracking in ocean environment has attracted considerable 

interest in both military and civilian applications. Towards this purpose, sonobuoys are 

among the most capable sonar systems used in underwater environments. Sonobuoys are 

used to detect and track underwater objects emitting sounds. Recently GPS receivers 

have been integrated to sonobuoy systems to provide accurate information about 

sonobuoys positions. An accurate knowledge of geographic positions of deployed 

sonobuoys is critical for the conduct of antisubmarine warfare (ASW) operations and 

detected target localization. It enables processing array of GPS sonobuoys thus improving 

the target tracking accuracy. Considering that sonobuoy positions are accurately known, 

the main factors influencing the operation of sonobuoys would be the interference 

sources and background noise. 

The background noise, the low sound pressure levels of some underwater targets, 

the sonobuoys drift, the attenuation of the sound pressure level, the sonobuoys 

deployment strategy and the self noise of hydrophones are among the main factors 

deteriorating the system accuracy and jeopardizing the overall performance. The present 

trend of decreasing signal of interest levels while increasing noise due to the growing 

ocean traffic has served to continually complicate ASW operations. Coherently 

processing an array of GPS sonobuoys can lead to noise reduction and hence higher 

signal to noise ratio (SNR). Some research activities targeted the utilization of an array of 

sonobuoys to utilize beamforming technology to reject unwanted noise and enhance the 

reception of desired signals. However, the limitation on the inter-element spacing was 

always considered the main factor affecting the system performance. 
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This research aims at: (1) Developing a high resolution spectral estimation 

algorithm to improve target detection and enhance the accuracy of bearing estimation; (2) 

Exploring the theoretical requirements for sonobuoy positioning in order to feasibly and 

coherently process a field of sonobuoys; (3) Designing a method for coherently 

processing uniform and arbitrary arrays of GPS sonobuoys; (4) Integrating frequency 

domain adaptive beamforming with artificial neural network (ANN) to resolve the 

ambiguity existing in bearing estimation when processing widely spaced array omni-

directional sonobuoys; (5) Developing a virtual array search method to enhance the 

bearing estimation when processing sparse array of directional sonobuoys. 

The proposed methods are examined and their performances are verified using acoustic 

level simulated data development for different underwater environmental conditions. 

Comparisons to the conventional processing techniques are conducted to assess the 

benefits of the proposed methods. The results show the proposed methods are capable of 

enhancing the accuracy of target bearing estimation especially in cases of relatively low 

SNR. The merits and limitations of the proposed methodologies are discussed and 

analyzed in this thesis.                
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Chapter One: Introduction 
1.1 Background 

 

1.1.1 Underwater Acoustics 

Sound is considered the best form of radiation that travels through the sea. This is 

because sound is the most robust form of radiation against attenuation by underwater 

conditions especially when compared to other sources of radiations such as 

electromagnetic waves. Because of its relative ease of propagation, people have applied 

underwater sound to a variety of purposes in their use and exploration of seas. The 

technique that uses sound propagation under water to navigate, communicate or to detect 

objects underwater is called SONAR which is an acronym for sound navigation and 

ranging [Urick96]. 

Applications of Underwater sound can be classified into civilian and military 

applications [Urick96]. Civilian applications of underwater sound include acoustic 

devices for navigation and localization, remote control and monitoring of underwater 

equipments, location and identification of underwater mammals and emergency 

communications. These devices are being used in scientific, commercial and recreational 

exploitation of the oceans [Wenz72, McDonald04]. Military applications of underwater 

sound include acoustic mines (mines that explode when the acoustic level in their 

passband reaches a certain value) and detection of underwater objects (ships and 

submarines) [Urick96]. This research focuses on the application of underwater target 

tracking in ASW. 
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The detailed characteristics of underwater environment and its boundaries that 

affect sound transmission are multifaceted [Urick96 and Burdick84]. Sound speed is a 

function of temperature, depth and salinity. Temperature is a function of depth, time, 

location and weather conditions. The ocean surface varies from a glossy smooth reflector 

to very rough and turbulent surface that scatters sound in random fashion. The ocean 

bottom has a wide variety of compositions, slope and roughness, all of which influence 

sound transmission. The effects of sound speed profile, the sound propagation channel 

and depth of the medium interact to produce the final acoustic transmission 

characteristics [Burdick84].  

 

1.1.2 Anti Submarine Warfare  

The development of sonar systems is closely coupled to the evolution of the 

submarine. Early attempts for developing of sonar system started at the beginning of the 

twentieth century. This was followed by several attempts which were highly encouraged 

by the World wars. British and American developments tended to be based on active 

(asdic) sonar systems whilst the Germans tended to concentrate on passive sonar systems 

[Atkins94].  

In 1940, the research in the area of ASW and the need to find sonar system that 

can detect German submarines led to the introduction of Omni-directional and directional 

sonar system called “sonobuoys” [Atkins94]. The main idea behind the development of 

sonobuoys was to have an expendable sonar system to be deployed from ships behind 

convoys and detect German submarines. In 1942 sonobuoys were redesigned to be 
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dropped from airplanes and by 1943 these devices were available for deployment in large 

quantities [Atkins94].  

Enhancement of sonar systems and introduction of new systems continued during 

the next decades. This was emphasized by the applications of sonar systems in both 

civilian and military applications [Atkins94].     

 

1.1.3 Underwater Acoustic sensors 

Different types of acoustic sensors had been introduced since the early attempts 

for underwater target localization. These attempts [Atkins94] started at the beginning of 

the twentieth century using sound tubes coupled to the human ear. Later research work 

carried on this area aimed to improve underwater target detection and localization which 

finally led to the introduction of sonobuoy in 1940 by the Americans who started the 

development of omni-directional and directional sonobuoys. Since then sonobuoys have 

attracted much attention. Many research efforts have been invested in this area to further 

improve its operation [Holler06]. 

Sonar systems can be active or passive. Sonar systems, equipments, and devices 

are said to be active when sound is purposely generated by one of the system components 

called the projector. Active sonar systems are said to echo-range on their targets. Passive 

or listening sonar systems use sound radiated (usually unwittingly) by the target. In this 

case only one-way transmission through the sea is involved, and the system centers 

around the hydrophone used to listen to the target sounds. Communication, telemetry, 
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and control applications employ a hybrid form of sonar system using a projector and 

hydrophone at both ends of the acoustic communication path [Urick96].   

Many of techniques that are used in current sonar systems were developed in the 

early part of the twentieth century [Atkins94]. 

Hull mounted sonars predominated at first [Atkins94 and Uick96] and, as these 

became larger, gyro stabilization and then electronic stabilization were required to 

counteract the movement of the vessel. Hull mounted sonars also had the advantage that 

the heading reference could be derived from the main heading compass [Atkins94] , 

whether magnetic or gyro, and that the transducer axes were fixed with respect to the 

axes of the vessel. The problems introduced by the self noise of the vessel could only be 

reduced by mounting the transducers away from the vessel. The first attempts involved 

towing the transducer array behind the host vessel [Atkins94 and Urick96]. Later 

developments included bottom mounted sensors, air launched sensors, dunking sonars, 

variable depth sonars, diver-held and side-scan sonars [Atkins94 and Urick96]. 

 

1.1.3.1 Towed Arrays 

These are sonar arrays towed behind submarines or surface ships [Atkins94]. It is 

basically a long cable, up to 5000 m, with hydrophones that is trailed behind the ship 

when deployed. The hydrophones are placed at specific distances along the cable. 

Usually no hydrophones are placed at the first few hundred meters of the cable. This is 

because their effectiveness is significantly reduced by the self noise of the vessel 

generated by on-board machinery and propeller noise. Figure 1.1 shows a surface ship 
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towed array before deployment in water. An illustration of towed array shape underwater 

is shown in Figure 1.2 where the towed array is attached to submarine. 

 

Figure 1.1 Deployment of surface ship towed array 

(Source: www.nurc.nato.int/) 
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Figure 1.2 Submarine towed array (Source: www.sensingways.com) 

 

1.1.3.2 Dipping (Dunking) Sonar Systems 

These are sonar transducers that are lowered into the water from helicopters or sea 

launched from a vessel and then recovered after the search is complete. Figure 1.3 shows 

a Dipping sonar system lowered from a helicopter [Atkins94]. 
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Figure 1.3 Dipping Sonar System (Source: www.dutchsubmarines.com) 

 

1.1.3.3 Side can Sonar Systems 

These systems are mainly used to efficiently create an image of large areas of the 

sea floor. This tool is used for mapping the seabed for a wide variety of purposes, 

including creation of nautical charts and detection and identification of underwater 

objects and Side scan uses a sonar device that emits fan-shaped pulses down toward the 

seafloor across a wide angle perpendicular to the path of the sensor through the water, 

which may be towed from a surface vessel or submarine, or mounted on the ship's hull. 

The intensity of the acoustic reflections from the seafloor of this fan-shaped beam is 

recorded in a series of cross-track slices. When stitched together along the direction of 
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motion, these slices form an image of the sea bottom within the swath (coverage width) 

of the beam. The sound frequencies used in side-scan sonar usually range from 100 to 

500 kHz; higher frequencies yield better resolution but less range [Atkins94]. Figure 1.4 

shows an example of sidescan sonar system attached to a surface ship. 

 

 

 

Figure 1.4 Sidescan Sonar (Source: www.punaridge.org) 

 

1.1.3.4 Synthetic Aperture Sonar systems (SAS): 

These systems use a combination of acoustic pings to form an image with much 

higher resolution than conventional sonars. SAS mainly produces a synthetic array equal 

to the distance traveled. Later on a synthetic aperture image is produced by 

reorganization of the data from all the pings. Figure 1.5 illustrates the operation of 

synthetic aperture sonar systems [Atkins94]. 
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Figure 1.5 SAS Sonar systems (Source:  www.appsig.com) 

 

1.1.3.5 Bottom Mounted Sensors 

Bottom mounted sensors for military applications are permanent installations 

which can be placed at well surveyed locations and subsequently calibrated using 

acoustic techniques [Atkins94]. They are normally buoyant devices but attached to 

concrete blocks via a release mechanism in order to recover them at a later date. Standard 

practice is to deploy them at positions determined by differential GPS and then to 

perform acoustic ranging calibrations. A bottom mounted sensor is shown in Figure 1.6 
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Figure 1.6 Bottom Mounted Sonar systems (Source: oceanexplorer.noaa.gov) 

 

1.1.3.6 Sonobuoy Devices 

Sonobuoy [Urick96, Boh05 and Des99] is mainly a microphone that is deployed 

from a platform to become submerged in the water and provides information about the 

local sound amplitude, as a function of frequency and time. Figure 1.7 shows loading of 

an aircraft with sonobuoys for future deployment in water.  

Sonobuoys are used to estimate and track the position of underwater objects that 

emit sounds [Urick96]. The platforms that deploy sonobuoys are usually helicopters or 
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airplanes (as shown in Figure 1.8) [Urick96], but they can also be surface ships. In order 

to determine the position of a submarine, it should be within the detection range of at 

least three sonobuoys (preferably four to achieve better accuracy) [Johansson97, Boh05 

and Des99]. However, the bearing of the submarine can be detected if the submarine lies 

in the detection range of one sonobuoy if equipped with a compass [Boh05 and Des99]. 

The advantages of sonobuoys [Johansson97] over other acoustic measuring systems 

include its relative low cost, ease of deployment and the fact that they are not disturbed 

by the noise from the deploying platform. An advantage of passive sonobuoys compared 

to active sonobuoys, which emit a sound signal, is that they do not reveal their presence 

[Johansson97]. The main factors that affect the operation of sonobuoys are interference 

from surrounding sources and background noise. 

In order to use the data received from the sonobuoys to provide a target position, 

the location of the buoy must be known in the aircraft [Atkins94]. Present buoy 

geolocation schemes involve a variety of radio direction finding schemes to home on the 

RF transmission of the sonobuoy. These methods require the ASW aircraft to maneuver 

to obtain a sonobuoy position, and also in most cases require the use of some form of 

directional antenna. These methods also mean the aircraft cannot stand-off at any 

distance from the buoy pattern without degrading localization accuracy. 
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Figure 1.7 Sonobuoy loaded on aircraft (Source: http://www.navy.mil) 
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 Recently global positioning systems (GPS) were introduced to sonobuoys for 

accurate knowledge of their geographic locations. The sonobuoys system employing GPS 

for positioning of deployed sonobuoys is known as “GPS Sonobuoys” [White04]. Figure 

1.9 shows a GPS sonobuoys system [Gregory01]. The floating part of the sonobuoy 

carries a GPS receiver which is used with another GPS receiver mounted on the platform 

(ship in this case)  to apply differential GPS for the sonobuoy position. This will lead to 

highly accurate position of the sonobuoy and hence the detected source can be accurately 

localized. 

 

Figure 1.8 Aircraft launched sonobuoy (Source:www.naval.com.br) 
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Figure 1.9 GPS Sonobuoys Concept  (Source : Gregory01) 

 

1.1.4 DIFAR Sonobuoy  

A DIFAR is an acronym for directional frequency analysis and recording. A 

DIFAR sonobuoy is an expendable unit for the reception of acoustic energy in the ocean 

which is transmitted via UHF link to another platform for analysis. It is composed of a 3-

element hydrophone array co-located in a submerged unit, attached to a floating 

electronics package at the surface [Boh05]. DIFAR sonobuoy is constituted from a small 

array of 3 acoustic sensors located in a single unit to provide both omni-directional 

amplitude and directional information. The acoustic sensors are suspended below a 

floating electronics assembly which contains processing and transmitter hardware.  

The basic technique allows processing of the discrete Fourier transform (DFT) of 

each channel to generate a bearing estimate through a simple arctangent calculation. A 
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display of bearing versus frequency, known as a B-scan display, allows targets to be 

localized and discerned based on the estimated bearing presented to an operator.  .  

 

1.2 Problem Statement 

In present ASW a group of passive sonobuoys are deployed according to some 

strategies in the water, each of which is equipped with a GPS. The sonobuoys 

simultaneously detect a single or multiple underwater targets (either static or mobile). In 

passive sonar detection and tracking, the sonar sensor receives a signal generated by the 

target. The detection process involves the recognition of target signals in the presence of 

background noise. Individual sonobuoys communicate with a central station (can be an 

airplane or a surface ship) directly and independently. Based on the information produced 

by the sonobuoys, we attempt to determine accurate target bearing. 

The input conditions of the problem are influenced by:  

1. Received signal to noise ratio: 

This factor is mainly based on the surrounding underwater noise which is 

basically the undesired sound [Urick9 and Boh05]. Three basic kinds of underwater 

noise emerge in the sonar process [Wenz71]; these are radiated noise, self-noise, and 

ambient noise. Radiated noise is the acoustic output of marine vehicles (such as ships, 

submarines and torpedoes), which are usually received at some distance by sensors 

that are not associated with the systems of the noise-generating vehicle. Self-noise is 

that noise generated by the total system, including the vehicle or platform, which 
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appears at the receiver output of the sonar. Self-noise includes the acoustic output of 

the sonar-carrying vehicle which is received by its own acoustic sensors. Ambient 

noise is the all encompassing noise associated with the given environment and is the 

limiting noise if and when the other components are sufficiently reduced or 

eliminated. Another source of noise is the Reverberation noise which is the defined as 

the sound from the active-sonar source that is scattered back in the direction of the 

receiver and persists to interfere with the reception of the desired echo. This source of 

noise is neglected in this study since it is associated with active sonar systems. 

Potential targets have recently become significantly quieter. As a result, there is a 

significant decrease in the current sonobuoys detection ranges.  

Another factor that affects the SNR of the received acoustic signal is the 

environmental conditions of the propagation medium. These environmental conditions 

include [Urick96]: i) Ocean temperature; ii) The height and directional distribution of 

ocean swell;  iii) wind speed and direction; iv) Atmospheric water content and rain 

rate; v) The changes in sea surface height associated with ocean tides, vi) Currents and 

planetary waves; vii)Concentrations of phytoplankton, sediments and suspended and 

dissolved material; x) The sound propagation path and the aerial extent and types of 

polar sea ice. 

The above mentioned factors add to the weak signal of submarines and contribute 

to the degradation of overall system performance. 

2. Sonobuoys Drift:  

In ASW the sonobuoys are usually deployed from aircrafts. This strategy can 

affect the accuracy of deployment positions [McIntyre99] and hence the field of 
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sonobuoys cannot be accurately designed according to a regular arrangement. Further, 

after deployment, the sonobuoys drift from their initial positions due to the effects 

of wind and currents [McIntyre99].This factor has a direct influence on the processing 

of the acoustic signal detected by the sonobuoys. Accordingly some sonobuoys might 

drift away such that the target is out of its detection range. Moreover, the sonobuoys 

drifting can prohibit proper simultaneous processing of the acoustic signal recorded by 

the sonobuoys field. 

 

1.3 Objectives and scope of research 

The Ultimate objective of this research is to develop a coherent array processing 

module of GPS sonobuoys field in order to enhance the target detection and bearing 

estimation accuracy. Towards achieving this goal, this thesis will focus on: 

1- Developing a high resolution spectral estimation algorithm to improve target 

detection and enhance the accuracy of bearing estimation 

Fast orthogonal search (FOS) algorithm with its high resolution spectral 

analysis capability is employed in this research for enhanced spectral estimation 

in low SNR environments. FOS enables target detection in case of low SNR and 

thus improves the bearing estimation accuracy. Moreover, the high resolution 

capability of FOS facilitates the detection of multiple targets that may be detected 

at very close frequencies. 

2- Investigating the theoretical requirements for sensor positioning in order to 

feasibly and coherently process a field of sonobuoys. 



18 

 

This thesis will investigate the limitations imposed by the theoretical 

requirements for coherent processing of GPS sonobuoy field. This is considered 

an essential step through which the proposed research will introduce solutions to 

limitations preventing the application of coherent array processing of GPS 

sonobuoys field. 

3- Designing an algorithm for coherently processing uniform and arbitrary arrays 

of GPS sonobuoys. 

In target tracking applications (e.g. ASW), processing the signals received 

by an array of GPS sonobuoys can significantly improve the bearing estimation 

and target localization. This research introduces a new approach to jointly process 

the data recorded from sparse array of GPS sonobuoys. The approach is examined 

for its contribution in bearing estimation enhancement when applied to uniform 

and arbitrary arrays of GPS sonobuoys. 

4- Developing beamforming algorithm to enhance target bearing estimation using 

widely spaced array of GPS sonobuoys. 

This research targets the development of a beamforming algorithm for 

coherent array processing of widely spaced uniform array of omni-directional 

GPS sonobuoys at relatively low SNR, which is usually the case in ASW. This 

research aims at extending the application of frequency domain adaptive 

beamforming using artificial neural network (ANN), which is employed to 

resolve the ambiguity existing in bearing estimation that resulted from the widely 

spaced array elements.  
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5- Designing a new bearing estimation technique for sparse array of DIFAR 

Sonobuoys based on searching virtual array transformation matrices  

Further enhancement of bearing estimation using an array of GPS DIFAR 

sonobuoys is targeted utilizing virtual array processing to design a set of 

transformation matrices. An advanced array mapping technique is employed to 

provide accurate transformation matrices of the DIFAR sonobuoys array 

elements. These transformation matrices are used by the proposed new technique 

to enhance bearing estimation for a group of widely spaced DIFAR sonobuoys at 

very low SNR. 

6- Examining the performance of the proposed methods using simulated data. 

In order to achieve the above objectives, acoustic level simulation of 

underwater sound received by sonobuoys is developed as part of this thesis 

research to enable examining the performance of the methods proposed above. 

This simulation provides an accurate knowledge of sound propagation from 

source to receiver and introduces the effect of different environmental conditions 

on sound propagation. The simulated environment is developed to be as close as 

possible to the real environment so that all the factors affecting sound propagation 

are considered. 

 

1.4 Thesis Structure 

The thesis is structured in seven chapters and includes a general conclusion and a 

list of references. The background of underwater acoustics, the recently developed 
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methods and the ongoing research work for underwater target tracking for both Omni and 

DIFAR sonobuoys are documented in Chapter 2. This chapter reviews the principles of 

both Omni and DIFAR systems, discusses the error sources associated with the present 

techniques, and outlines the limitations and shortcomings of the current processing 

methods. In addition, this chapter provides an overview of the recent developments in 

this technology and the research work related to the problem of underwater target 

tracking.   

The FOS algorithm is introduced in Chapter 3 as a replacement for FFT to enable 

high resolution spectral analysis of GPS sonobuoys data. This chapter discuss the 

parameters of FOS algorithm and their effect on the target detection accuracy. The 

limitations imposed by the application of FOS are discussed as well showing a qualitative 

analysis of achieved accuracies in target detection and bearing estimation. This analysis 

is based on comparing the system performance using FOS to the current system 

performance using FFT for target detection and bearing estimation accuracies.  

In Chapter 4 the processing of a group of DIFAR sonobuoys with omni, sine and 

cosine sensors is introduced as a new approach for enhancing bearing estimation. This 

chapter introduces derivations of the necessary changes required for array processing for 

different sonobuoys arrangements and provides a complete analysis of bearing estimation 

using a group of DIFAR sonobuoys. The presented analysis is based on examining the 

radiation pattern of the proposed array processing approach and the system performance 

at very low SNRs. Moreover, this chapter introduces an analysis of the effects of the 

operation environment on the overall system accuracy.   
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In Chapter 5 an array processing algorithm for a group of widely spaced DIFAR 

sonobuoys is introduced for Omni sonobuoys. The technique introduced in this chapter 

adopts the sole processing of data recorded by the Omni-directional sensors of DIFAR 

sonobuoys. This technique employs frequency domain beamforming algorithm which 

provides target bearing estimation using complex least mean square adaptive bearing 

estimation approach. This algorithm is aided by ANN to enable system operation for a 

widely spaced array of sonobuoys. Chapter 5 gives a complete analysis of the proposed 

system design parameters and discusses the enhancements introduced to the bearing 

estimation accuracy as well as the limitations of the proposed technique. 

In Chapter 6 a new method based on virtual array processing is introduced for 

processing a sparse array of DIFAR sonobuoys. This chapter will demonstrate the 

benefits of searching a set of virtual array transformation matrices in order to enhance 

bearing estimation using both uniform linear and arbitrary array of DIFAR sonobuoys. 

The merits and limitations of the proposed method are discussed in this chapter.  

Finally, Chapter 7 concludes the research work and provides recommendations 

for future development of the suggested techniques.  
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Chapter Two: Underwater Target Tracking 

 

2.1 Fundamentals of Sonar Systems 

Sonar systems are either active or passive. Sonar systems, equipments, and 

devices are said to be active when sound is purposely generated by one of the system 

components called the projector. Active sonar systems are said to echo-range on their 

targets. Passive or listening sonar systems use sound radiated (usually unwittingly) by the 

target. In this case only one-way transmission through the sea is involved, and the system 

centers around the hydrophone used to listen to the target sounds. Communication, 

telemetry, and control applications employ a hybrid form of sonar system using a 

projector and hydrophone at both ends of the acoustic communication path [Urick96].   

The basic passive form of the sonar equation may be written as follows [Tiel76, 

Urick96]: 

               SE = SL - TL - NL                                    2.1 

Where SE is the signal excess, SL is source pressure level, TL is the transmission loss 

and NL is noise pressure level. These parameters can be defined as follows: 

1. Signal excess is the received signal level (in dB) available for detection. When SE >0 

we are more likely to detect the target. When SE<0 we are less likely to detect the 

target. When SE = 0 we are just as likely to detect the target as to not detect the 

target. In the last situation the probability of detecting the target is 50%. 
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2. Source level is the level of target radiated signal (in dB) at a distance of 1 yard from 

the source. Target source level is dependent upon the type of target and its mode of 

operation. It is a function of frequency, speed, depth, and ocean environment aspects. 

Target source levels may be obtained from various tactical intelligence publications. 

3. Transmission loss is the decrease in signal intensity (in dB) as it travels through the 

ocean medium from the sound source to the receiving sensor. Propagation loss is a 

complex function of the environmental conditions.  

4. Ambient noise is the steady-state level (in dB) of the total noise background existing 

at the receiving sensor, as measured by a non-directional hydrophone. It is noise 

unrelated to the target signal of interest and consists of all the steady-state 

background noise of the sea and self-noise which tend to mask the desired signal.  

 

Apparently, the main factors that can influence the transmitted acoustic signal are the 

transmission loss and background noise.  

 

2.1.1 Transmission Loss 

As sound travels through the ocean, the absolute sound pressure level of sound 

source diminishes. This is referred to as transmission loss [Ultra06]. The two major 

phenomena contributing to propagation loss are: (1) Divergence (Spreading) which is a 

geometrical effect representing the regular weakening of a sound signal as it spreads 

outward from the source ; (2)Attenuation, and this mainly caused by different factors 
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including diffraction loss, absorption and scattering.  These phenomena are mainly 

influenced by following factors: 

2.1.1.1 Sound Velocity Profile (SVP)  

The average speed of sound propagation in water is 1,500 m/sec (4,920 ft/sec). 

However, the speed of sound in the ocean depends upon temperature, salinity and depth. 

Figure 2.1 shows and example of sound speed profile and shows the variation in sound 

speed with the depth of the water medium [Urick96]. It should be noted that this profile 

differs from one underwater environment to another. 

 

 

Figure 2.1 Typical Deep Ocean Sound Velocity Profile 

 



25 

 

2.1.1.2 Sound Propagation Paths 

Sound propagation paths can be placed in one of the following categories [Ultra06 

and Burdick84]: 

1) Direct path  

This occurs at short ranges where there is a near straight-line path between 

the sound source and the receiver (See Figure 2.2), with no reflection and only 

one change in direction due to refraction. Transmission loss equals spherical 

spreading loss plus attenuation loss [Urick96]. 

 

Ocean 

Sonobuoy 

Submarine 

Figure 2.2 Sound Propagation in Direct Path 

 

2) Surface duct 

This is caused by [Urick96 and Burdick84] wind-induced stirring and surface 

cooling which cause the temperature of the upper layer of the ocean to be mixed.  

The increase of pressure with respect to depth in a thermally mixed layer forms a 

positive sound-speed gradient.  Sound rays emitted from a source within the layer 

will be refracted upward away from the depth of maximum sound speed and 
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subsequently surface-reflected. Figure 2.3 shows surface duct effect on the 

transmitted signal between the source and the sonobuoy. 

Ocean Sonobuoy

Submarine 

Figure 2.3 Sound Propagation in Surface Duct 

 

3) Deep and shallow Sound channels  

The Deep Sound Channel [Urick96 and Burdick84] (DSC) (Figure 2.4) is 

result of the deep sea being warm on top and cold below. The surface-warming 

effect is not sufficient to extend all the way to the ocean bottom and is limited to 

shallow depths, where it forms the main thermocline (area where temperature 

decreases continuously with depth). Below the DSC, the water is nearly 

isothermal, which produces a positive sound-speed gradient. Accordingly a depth 

of minimum velocity exists, called the axis, toward which the sound rays are 

continuously refracted. Those rays which start at angles above the axis are bent 

downward by refraction. Those rays that start at angles below the axis are 

refracted upward. Sounds traveling in this manner are often received at distances 

as great as 10,000 nautical miles from the source.  
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Shallow sound channels (Figure 2.4) trap sound sources [Urick96 and Burdick84] 

producing extended ducted ranges for high frequency sources and relatively 

shorter ducted ranges for low frequency sources.  
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Figure 2.4 Deep and Shallow Water Channels 

 

4) Half channel 

This occurs in Polar Regions and the Mediterranean Sea [Urick96 and 

Burdick84]. This phenomenon occurs due to increase of sound-speed with depth 

from surface to bottom.  Under these conditions, the greatest sound speed is at the 

bottom of the ocean, and sound rays will be refracted upward, then reflected 

downward at the surface, then refracted upward again [Urick96] (See Figure 2.5). 
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Ocean floor

Sonobuoy
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Figure 2.5 Sound Propagation in Half Channel 

 

5) Bottom bounce 

Bottom bounce [Urick96] is the reflection of a sound ray off the ocean floor 

(Figure 2.6). Major factors affecting bottom-bounce transmission include water 

depth, angle of incidence, signal frequency, bottom composition, and bottom 

topography. For ASW, bottom bounce enhances the ranges by which receivers 

can receive sound rays [Ultra06].  
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Target 

Figure 2.6 Bottom Bounce 
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6) Convergence zone (CZ) 

Convergence zones [Urick96 and Burdick84] are regions at or near the ocean 

surface where sound rays are focused (converge), resulting in high sound levels. 

This convergence of sound rays forms intense sound fields that are useful in 

detecting distant submarines. Figure 2.7illustrates the convergence zone effect on 

underwater sound propagation.  

Figure 2.7: Convergence Zone[ Ultra06] 

 

7) Reliable acoustic path 

These are paths [Urick96] that are not influenced by the near-surface effects 

and bottom bounce varying losses. 

 

8) Shallow water. 
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 This forms Less than 8% of the total ocean area. In shallow water, multiple 

reflected paths usually accomplish sound propagation [Urick96]. Figure 2.8 

shows propagation paths in shallow water. 

 

Ocean floor 

Sonobuoy

Submarine 

 

Figure 2.8 Sound Propagation in shallow Water 

 

It is very common to study propagation loss using the “Propagation Loss Profiles” 

[Urick96]. Propagation loss profiles are curves that express propagation loss (in dB) for 

specific frequencies as a function of range from the source [Ultra06]. An example of a 

typical propagation loss profile is shown in Figure 2.9. The shape, slope, and loss levels 

shown in such profiles are dependent upon frequency of interest, depth of source and 

receiver, and oceanographic factors existing in the location of interest (e.g. water depth, 

bottom type, salinity, etc.). Propagation loss profiles are calculated using standard fleet 

acoustic performance models [Ultra06]. These models use a mix of both historic and 

current data (e.g. recently measured temperature profiles) for a given location of interest, 

along with target frequencies of interest, expected target depth, and hydrophone depth to 

calculate predicted propagation loss profiles for a given passive sensor.  
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Propagation loss profiles (Figure 2.9) are representations of the combined effects 

of direct path, bottom bounce, surface duct, convergence zone, and sound channel modes 

of sound propagation in the ocean.  In Figure 2.9 it is clear that in general as range 

increases, dB loss also increases; that is, as the signal travels over greater and greater 

distances, more and more of the signal level is lost due to propagation effects. However, 

sometimes there are limited exceptions to this generality which are shown on Figure 2.9. 

The propagation loss curve in the range of 6-15 Km reveals a cessation of its downward 

trend, followed by a short rise, before the trace again continues its downward trend. This 

is caused by the existence of bottom bounce reflected energy as the height; width and 

location of the rise are dependent upon the specific physical and oceanographic 

circumstances existing at a given location for a given frequency of interest [Ultra06].  

It can also be determined from Figure 2.9 that a rise occurs in the range of 29-37 

km. This characteristic results when oceanographic conditions permit the existence of a 

CZ sound transmission mode. Here again the size, shape and location of the rise may 

vary or fail to exist, depending upon the specific circumstances occurring at that time and 

location [Ultra06]. Recently a Canadian Parabolic equation (PECan) was introduced 

[Brooke01]. This is a model that has been developed and enhanced in recent years to 

become a fully modern underwater acoustic propagation modeling tool capable of 

computing acoustic predictions in realistic oceanic environments. 
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Figure 2.9   An Example of Propagation Loss Profile 

 

2.2 Acoustic sources of ASW targets 

The frequencies of interest radiated by a TOI are primarily composed of sounds 

generated as a vessel (either a surface ship or a submarine) propels itself through the 

ocean, and operates non-propulsion-related onboard systems. These sources are 

commonly grouped into 3 categories: the machinery sound, the propeller sound, and the 

hydrodynamic sound. The spectral shape of these components defines sources that can be 

exploited for identification and localization of a target [Des99].
 
 

The machinery sounds is resultant from pumps and motors used to keep onboard 

systems operating. Machinery sound tends to have a consistent frequency and lasts a 
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long-duration (continuous). The propeller sounds is resultant from the propulsion 

elements of a vessel, including the motor, the shaft, and the propeller. These sounds can 

vary from short to long duration, and are often very loud for a moderate to high speed 

target. Hydrodynamic noise results from the flow of material through pipes, as well as the 

flow of seawater over the hull and control surfaces of the vessel. These sources are highly 

dependent on speed, depth, and operating configuration of the vessel and can be readily 

exploited in traditional ASW [Boh05]. 

The acoustic sources which most easily identify a target are all narrowband in 

nature. Narrowband sources typically have a bandwidth of 0.3% to 0.03% of the source 

frequency (therefore typically less than 1 Hertz). On the contrary, broadband sources can 

have a bandwidth above 1% (therefore 1 Hz to several hundred or more Hertz). The 

amplitude of a narrowband source generally dominates above the broadband noise 

sources radiated by a target, making them easily identifiable [Des99]. It is these 

narrowband sources that are of interest to this research. Figure 2.10 is an illustration of 

sound levels of narrowband and broadband sources.  
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Figure 2.10 Sound Pressure Levels of Broadband and Narrowband Sources 

 

The frequency region of interest of passive SONAR for the purpose of ASW lies 

between 10 and 1000 Hz [Boh05]. Below 10Hz, turbulent pressure fluctuates due to 

oceanic and seismic activities drown out most other sources of interest. Above 1 kHz, 

high attenuation results in very short propagation ranges, making detection of a source 

above 1 kHz unlikely given the expected source level of radiated noise. The basic 

sonobuoy performs low-frequency analysis and recording (LOFAR), and is therefore 

known as a LOFAR sonobuoy.  

2.3 Sonobuoys Devices 

A sonobuoy is a free floating and disposable sensor system [Whi04]. The 

sonobuoy uses acoustic sensors in the water column connected by wire to a float on the 

surface of the ocean to listen to submarine radiating noise or sonar echoes. An 
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electromagnetic transmitter in the float relays the acoustic signals back to an airplane or 

other receiving platform for further processing. 

If the sonobuoy contains a magnetic compass and a beamformer to localize the 

acoustic signal in azimuth, then the submarine’s bearing can be determined relative to the 

sonobuoy’s location. Sonobuoys are grouped into three categories [Horsley89]: 

i) Passive Sonobuoys, which quietly listen to the acoustic signal from a target.  

ii) Active Sonobuoys, which emit a sound pulse (ping) to generate an echo from 

the target.  

iii) Special purpose buoys, which provide information about the environment 

such as water temperature, ambient noise level, etc.  

A sonobuoy can be deployed from an airborne platform such as the CP-140 

Aurora, a rotary-wing aircraft, or a surface vessel. Detected signals are processed for 

immediate tactical use and recorded for later analysis. More detailed analysis on this 

issue can be found in [Boh05 and Whi04]. 

2.4 Passive Sonobouys  

Target localization using passive sonars requires three successive steps to get the 

sources locations from the beamforming outputs [Solal91]: (1) Detecting the possible 

targets at regular time intervals by comparing the beamforming outputs to a threshold; (2) 

Data association and tracking which is based on associating events from the same target 

using a model of bearing time variation [Solal91]; (3) Target Motion Analysis (TMA) 
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which is the estimation of the source velocity and position from bearing measurements 

tracks. Generally, the measurements from the whole duration (batch method) are 

processed by the Maximum Likelihood estimator [Streit 2002]. TMA is mainly used in 

naval vessels to track vessels around ownship and use this information in deciding an 

appropriate course of action [Cunn05]. In the naval terms used in TMA, ownship refers to 

the current observation platform for the bearings. A bearing is the azimuth angle from an 

observation platform to the target [Nardone97]. Target refers to a source of bearings 

being tracked by ownship and the terms target and source may be used interchangeably 

[Cunn05].  The problem space is the set of possible scenarios of the location and 

movement of a target [Cunn05]. Solution is considered to be a single resolution to the 

location and movement of a target based in the problem space [Cunn05].  

 

In general, passive sonar systems exploit an array of hydrophones to infer bearings 

corresponding to a tracked target by using beamforming. Beamforming is utilized by the 

array signal processor to estimate the azimuthal arrival angle of the target acoustical 

emissions [Streit02]. This process is known as bearings-only TMA (BO-TMA) 

[Aidala79, Bavencoff06, Bonneton07 and Streit02] or bearings-only tracking (BOT) 

[Bavencoff06]. Passive sonobuoys adopt this technique in target tracking [Urick96, 

Boh05 and Des99].  
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2.5 DIFAR Sonobuoy  

A DIFAR is an acronym for directional frequency analysis and recording. A 

DIFAR sonobuoy is an expendable unit for the reception of acoustic energy in the ocean 

which is transmitted via UHF link to another platform for analysis. It is composed of a 3-

element hydrophone array co-located in a submerged unit, attached to a floating 

electronics package at the surface [Boh05]. 

A DIFAR sonobuoy is an improvement over a LOFAR sonobuoy in that its 3-

element construction makes it possible to obtain the incident direction of an incoming 

acoustic signal. The basic technique allows processing of the DFT of each channel to 

generate a bearing estimate through a simple arctangent calculation. A display of bearing 

versus frequency, known as a B-scan display, allows targets to be localized and discerned 

based on the estimated bearing presented to an operator.  

A sonobuoy of the AN/SSQ-53 series is a DIFAR sonobuoy constituted from a 

small array of 3 acoustic sensors located in a single unit to provide both Omni-directional 

amplitude and directional information. The acoustic sensors are suspended below a 

floating electronics assembly which contains processing and transmitter hardware.  

2.5.1.1 System Operation 

At the receiver unit, an Omni-directional element measures incident acoustic 

energy from any direction. A separate cruciform shaped assembly is composed of four 

ceramic discs, the orientation of which results in a beam pattern for each pair of discs 
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similar to a dipole. These beam patterns are referred to as the sine and cosine lobes, and 

are referenced to Magnetic North. Therefore, they are often called North-South and East-

West lobes [Whi04].
 
 

Figure2.1 illustrates the acoustic dipoles of a DIFAR sensor [Des99]. The 

direction-of-arrival (along the acoustic arrival axis) is referenced to the two orthogonal 

dipoles, which are aligned to Magnetic North, by the angle φ. Two orthogonal response 

axes are offset from Magnetic North by the local magnetic variation angle α. The total 

angle which provides a bearing to an acoustic source is θ between the arrival axis and the 

True North. The conversion between the Magnetic North and the True North is made at 

the processor prior to displaying to the operator. The vertical plane, corresponding to the 

depth direction, is not measured with a DIFAR sonobuoy. Therefore, it is not considered 

in this work. Acoustic pressure waves arrive at each sensor and induce a voltage by the 

piezo-electric properties of the ceramic material. The three separate channels of voltage 

information are referred to as the Omni, sine, and cosine channels, respectively. The time 

series of acoustic information are used to create a power spectral density (PSD) for the 

incoming acoustic signal. The PSDs are then used to calculate directional information.  
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Figure 2.11 Illustration of Acoustic Dipole Response of DIFAR Sensor 

 

2.5.1.2 Signal Processing Techniques and their Limitations 

The output of the sonobuoy based on the incoming acoustic signal is a time series 

for each of the three channels. The data of the three channels are multiplexed at the upper 

electronics portion of the sonobuoy assembly [Boh05] and transmitted to a processor 

(located onboard of an aircraft or a ship) via a UHF radio link. The latest generation of 

DIFAR sonobuoys digitally transmits the time series in order to avoid the limited 

dynamic range of the UHF link, and to minimize outside interference.
 
After receiving the 

acoustic signal, the processor demultiplexes the signal to create three concurrent time 

series [Boh05]. The Omni time series is expressed as xok, where o denotes Omni and the k 



40 

 

represents the index of the series, k=2..N. The three time series can be considered to be 

related by equation (2.1), such that: 

okx     Omni-directional Channel  

sinoksk xx    Sine (East-West) Channel     2.2 

cosokck xx    Cosine (North-South) Channel                     

 

Spectrum analysis 

The basic processing of sonobuoy output is mainly based on the power spectral 

density (PSD) of the received time series which is calculated from the discrete Fourier 

transform (DFT) of the received time series, as shown below. 





1

0

/2)(
1

)(
N

Njknenx
N

kX         2.3 

Where x (n) is the time series at time n; X (k) is the DFT at frequency k; N is the number 

of samples in the received time series. The general power spectral density (PSD) is 

obtained as: 

2* )()()()( kXkXkXk        2.4 

Where the asterisk (*) indicates the complex conjugate.  
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In DIFAR sonobuoys, the DFTs are created from band-limited sampled data to 

avoid aliasing, and are time averaged to create the PSD. Figures 2.12 and 2.13 show 

examples of spectral analysis performed on the Omni directional channel of DIFAR 

sonobuoy using simulated underwater tracking scenario. The simulated scenario 

consisted of four underwater sources with constant amplitude of ParedB 140  and 

arriving at the receiver with SNRs -10dB (Figure 2.12) and -30 db (Figure 2.13). It can be 

observed that the low SNR of the case of Figure 2.13 has a negative impact on the overall 

target detection capabilities. The source at 200 Hz becomes totally buried in noise and as 

a result it may not be detected. One of the methods explored in this thesis is to improve 

target detection at low levels of SNR utilizing advanced spectral estimation.  
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Figure 2.13 DFT for Signal Received from Four sources at SNR -30 dB 

 

As can be depicted in Figures 2.12 and 2.13, the amplitude of each frequency 

component is given in decibel relative micro Pascal ( PascalredB  ) which is the 

common unit for measuring underwater sound pressure level. This process is the first step 

in target detection and localization where the frequencies detected provide information 

for the system operator about the target type and its bearing. 

 

Limitations of spectrum analysis  

The spectral estimate of the data in the frequency domain is generally obtained 

through the use of the DFT or a spectral modeling technique, such as linear prediction 

(LP) or auto-regressive moving average (ARMA). However, the frequency resolution 

introduced by these techniques is limited and hence resolving sources of frequency 



43 

 

components close to each other may become very difficult. In addition, the above 

spectrum analysis procedure may not work efficiently in case of low SNR. Figure 2.13 

shows the same case as Figure 2.12 but at -30 dB SNR. It can be depicted that the 

component at 200 Hz (representing a submarine) is now totally buried in noise. 

Therefore, different spectral analysis methods are needed to deal with low SNR 

scenarios, which are mostly the case in underwater target tracking. 

Bearing calculation  

The cross spectra are used to calculate the direction of arrival of a sound at the 

receiver, also known as a bearing to a TOI. The quotient of the Omni-sine and Omni-

cosine PSD estimates yields a bearing from the simple trigonometric identity [Boh05]  













oc

osarctan̂          2.5  

Where the caret (^) indicates an estimate, os  and oc  are the Omni-sine and Omni-

cosine cross-spectra, respectively. 

The value of ̂  provides a single direction estimate between 0 and 2π for each 

frequency bin using a four-quadrant arctangent calculation. ̂  Is relative to magnetic 

north and must be corrected for local magnetic variation prior to being displayed to the 

operator as a true bearing [Des99 and Boh05]. 

Current systems employ Bartlett Beamforming which is known as the 

conventional beamforming [Des99, Puska05]. Conventional Beamforming technique 
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relies on the Cross Spectral Matrix (CSM) estimateQ


. The CSM is calculated from all 

the channels available and FFT can be used to build this matrix efficiently. Equations 2.6-

2.9 detail the calculation of CSM. The subscripts o, s and c indicate the omni, sine and 

cosine channels.  
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The conventional beam power estimate at any arbitrary direction )(CBE


 is given by 

 

 QE T
CB


)(          2.9 

 

Where   θθβ cossin1  and the subscript “CB” stands for conventional 

beamforming. The direction of arrival of a signal with certain frequency is the one that 
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has a maximum power estimate at that frequency bin. )(CBE


 is calculated for the whole 

spectrum estimated by FFT. 

 

Limitations of bearing calculations 

The data used to determine bearings are integrated over a relatively long period, 

and are subject to significant bearing errors. The following are the major error sources 

[Urick96, Des99, and Boh05] 

A. Bearing lag 

To provide a bearing estimate in a real-time system, only past information can be 

used. For a rapidly moving target, this will cause the bearing to lag behind the source. 

B. Bearing pull (Bearing bias) 

When two sources at the same frequency are received from different directions, 

the resultant bearing estimate will lie somewhere between the actual targets, usually 

closer to the stronger one. This effect is known as "bearing bias". 

C.  Interference sources 

Ocean noise can also greatly influence the incoming target signals. When the 

noise originates from specific directions and is of relatively high amplitude, it may 

introduce significant bearing errors or mask the TOI entirely. The operator is then 

provided with directional information from the stronger signal, which may be the noise. 

A similar error may also occur in the presence of two broadband signals from different 

origins. 
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Bearing debiasing algorithms have been devised to reduce bearing bias effects. 

These algorithms remove non-signal components, determined from adjacent bins from 

the bearing calculation, under the assumption that the signal of interest is narrowband. 

This method only addresses the bias that is introduced by relatively broadband 

interference over discrete tonals. However, bearing errors are still likely to occur in case 

of two sources producing narrowband signals in the same frequency bin. Noise sources of 

high amplitude may also introduce errors despite of dibiasing algorithms. 

The PSD estimate for each segment of N data points in the time series can be 

displayed as a line on an image plot called  [Des99 and Boh05], with amplitude scaled to 

brightness. The result of subsequent PSD slices being plotted is a 2-dimensional image 

with frequency on the x-axis, time on the y-axis, and the corresponding PSD amplitude is 

represented as display intensity.  

There are two types of displays [Des99] waterfall image and reverse waterfall 

image. In the waterfall image each new PSD slice is placed at the bottom of the image 

and all other slices are displaced upwards. While in reverse waterfall image older slices 

are displaced downwards. The general term for a frequency versus time plot is a low-

frequency analysis and recording spectrogram (abbreviated as LOFARgram), or simply a 

gram. A sample LOFARgram is shown in Figure 2.14 sources which are continuously 

present at a single frequency appear as a vertical line on the image. Noise, which contains 

signals at varying frequencies, amplitudes and phases, results in the overall salt-and-

pepper appearance of the gram as a whole. 
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Figure 2.14 Sample LOFARgram 10-150 Hz [Boh05] 

 

The output of the bearing calculation can be displayed similarly. For a given time 

slice, each frequency bin will have one bearing associated with it. With the frequency on 

the x-axis and the bearing on the y-axis, the plot indicates a bearing estimate for every 

frequency bin. This display format is referred to as a B-scan plot. A sample B-scan plot is 

shown in Figure 2.15. 

 

Figure 2.15 Sample B-scan plot corresponding to Figure 2.17 [Boh05] 
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The combination of a display of a LOFARgram and B-scan with matched x-axes 

provides sufficient information for a system operator to allow identification, localization, 

and tracking of acoustic targets. Because the frequency bins in the two displays 

correspond, sources identified based on their appearance in the gram can be localized by 

looking at the corresponding bearing in the B-scan display. 

A user-selectable threshold can be applied to the B-scan display to show only 

bearings that have sufficient amplitude to be of interest. This threshold is generally set to 

remove all bearings from the B-scan display that are of no interest; this assumes that 

signals-of-interest are of significantly greater amplitude than undesirable narrowband or 

broadband acoustic noise. Directional information can be incorporated into the 

LOFARgram through the use of color mapping. Algorithms to automate the tracking of 

sources based on bearing changes also exist [Boh05]. 

 

2.6 Research progress and Current state of the art 

Most of the research work adopted by DIFAR sonobuoys is inherent from research 

techniques and methods generally developed for passive sonar systems. Most of the 

research efforts towards the enhancement of TMA using passive sonar systems are 

mainly designed for BO-TMA. This area has attracted considerable attention since the 

passive sonar systems were introduced to the underwater tracking problem. The research 

work in the area of BO-TMA comprises a wide area of research since the process of BO-

TMA involves different stages that are integrated to provide adequate TMA [Solal91].  

The research efforts conducted for BO-TMA can be classified into three categories 
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corresponding to the passive sonar data processing stages [Solal91]. The first category 

involves the detection of acoustic signals. The second stage is the bearing estimation of 

the detected acoustic signals. The third stage integrates the obtained measurements from 

several passive sonar systems to provide TMA.  

 

2.6.1 Target detection 

This is the initial stage of the target localization process [Solal91]. The successive 

stages are mainly based on the accuracy of the spectral analysis method employed at this 

stage [Urick96 and Boh05]. Usually Fourier transform is used for spectral analysis 

[Maranda91, Boh05 and Urick96]. The research work associated with target detection is 

mainly concerned with employing different spectral estimation techniques [Boh05, 

Gabriel80, Jhonson91, Luby87, and Ping91]. Johnson [Jhonson91] proposes the 

application of maximum-linear-prediction estimation technique for spectral estimation 

and he showed improvement in the resolution of the spectral estimation when compared 

to windowed Fourier transform estimation procedure. Gabriel [Gabriel80] introduced 

super-resolution spectral estimator using maximum entropy spectral analysis (MESA) 

and the maximum-likelihood method (MLM). The super-resolution spectral estimator 

provided the ability to detect multiple targets with unequal-strength. However detecting 

multiple targets when they are relatively too close was unsuccessful using the super-

resolution spectral estimator. Moreover the super-resolution of coherent spatial sources or 

radar targets required sufficient relative motion or “Doppler cycles” for proper detection. 

This puts the limitation on the frequency and number of snapshots required for target 
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detection. Camillet [Camillet98] introduced a suboptimal method to detect wideband 

signals embedded in the reverberation noise they have created. The method introduced in 

[Camillet98] assumed local stationarity of the reverberation. Using this assumption, the 

proposed method cuts the received signal into blocks and on each block the noise is 

modeled as an autoregressive (AR) process. The received signal is whitened by using the 

modeled noises. The whitened signal is then applied to a matched filter to extract the 

desired signal. Camillet [Camillet98] demonstrated improvement in SNR of the received 

signal with some limitations related to the stationarity of the source acoustic signal. 

Bohac [Boh05] applied FOS for spectral estimation as a substitute for DFT. The 

significance of the work in [Boh05] is mainly the improvement of system capability in 

detecting narrowband targets when the difference between their frequencies is less than 

the DFT resolution. The results reported by Bohac illustrated the overall system 

improvement introduced by using FOS. However, the minimum SNR examined by 

Bohac was -10 dB and data record lengths employed were 10 seconds and 125 seconds. 

The data processed from each data record was formed by dividing the data record into 5 

slices and averaging them. This study can be extended to examine FOS versus DFT at 

lower SNRs and for variable data record lengths. 

 

2.6.2 Bearing Estimation 

Bearing estimation research work focused mostly on exploring bearing estimation 

methods to enhance the accuracy of the target localization [Jhonoson82, Des99, 

Ziomek89, Greshman95, Des99, Bonneton07,].  Johnson [Johnson82] studied the analogy 
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between the problem of determining the bearing of a radiating source with an array of 

sensors and the problem of estimating the spectrum of a signal. The author [Johnson82] 

examined the application of spectral estimation methods to the problem of bearing 

estimation. Results showed improvement in the bearing estimation resolution with some 

limitations on the level of SNR and the conditions required for the application of the 

proposed spectral estimation methods. Desroches [Des99] examined the application of 

some high-resolution beamforming techniques to the bearing estimation using single 

DIFAR sonobuoy. The results reported by Desroches examined the bearing estimation 

using a single DIFAR sonobuoy for SNRs ranging between 0.5 dB and 4 dB. It showed 

that high resolution bearing estimation techniques can enhance bearing estimation with 

some limitation on the level of SNR. Another approach for improving the resolution of 

bearing estimation was proposed in [Imai2000]. The proposed approach employed 

Wigner-Ville distribution method [Imai2000] for sonar beamforming to obtain sharper 

beam patterns than those of the beamforming method using conventional beamforming 

based on Fourier transform. The author in [Imai2000] demonstrated the enhancement in 

beamwidth over the conventional beamforming method; however the algorithm was not 

examined for noisy signal. The results presented were demonstrating the capability of the 

proposed algorithm in detecting the true bearing out of a set of echoes received from the 

target. Other approaches for improving bearing estimation resolution employed adaptive 

beamforming techniques to provide higher resolution beamforming [Greening02 and 

Kogon02]. Nevertheless, the arrays examined in [Greening02 and Kogon02] had an inter-

element spacing less than half wavelength of the tracked sources which can be more 

suitable for towed arrays.  
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2.6.3 TMA 

This area of research focuses on the manipulation of system recorded data to provide a 

complete solution of target trajectory and its moving velocity. The system recorded data 

includes target bearings, SNR, Doppler shift and other information from recording 

environmental conditions [Urick 96, Solal91, Nardone97 and Streit02].  A novel method 

of TMA is presented in [Maranda91]. In contrast to conventional TMA techniques, which 

use sequences of bearing and/or frequency estimates as their inputs, this new TMA 

method [Maranda91] estimates the target track directly from beam spectra.  This method 

provided high accuracy of target tracking for acoustic signals of -20 dB SNR. Another 

area of research in TMA is the matched–field processing [Bucker76 and Wilmut98].  The 

matched field tracking (MFT) method introduced by Buker [Buker76] provides solution 

for target tracking by estimating the target trajectory parameters. The estimated 

parameters are obtained by matching a measured acoustic field with a set of fields 

generated for different source locations. In [Wilmut98], piecewise MFT algorithm was 

introduced for finding the portion of a track that maximizes the track SNR. These 

methods enhanced system accuracy at low SNR and provided direct estimation of TMA 

parameters. However these methods are based on the bearing estimates obtained from the 

sensors and hence can significantly benefit from further improvement of the accuracy of 

bearing estimates observed by the acoustic sensors.  
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2.7 Conclusion 

The major weaknesses of the present processing techniques for DIFAR sonobuoys 

stem from their associated limitations. Those limitations can significantly degrade the 

system performance especially with the advances in submarine technologies. The system 

vulnerability is further increased by the environmental conditions. This suggests the 

modernization of current processing schemes in order to boost up the current systems and 

enhance their effectiveness against new technologies in submarine. Moreover, improving 

the current processing schemes of DIFAR sonobuoys enables robust operation in 

different oceanic environments. The main processing techniques introduced in this 

research fall in two main approaches. The first category involves enhancing the SNR of 

the received acoustic signal for DIFAR sonobuoys by introducing advanced spectral 

analysis technique, namely FOS. The second approach considers the processing of a 

group of DIFAR sonobuoys coherently in order to further enhance SNR of received 

signal and provide significant improvement of current system resolution. Finally the 

integration of the proposed approaches will provide significant improvement to the 

current system performance and extend the operational range of current DIFAR 

sonobuoys systems. 
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Chapter Three: Improved Target detection and Bearing 

Estimation Utilizing Fast Orthogonal Search for Real-Time 

Spectral Analysis  

In Chapter 2, it was demonstrated that the target detection and bearing estimation 

using DIFAR sonobuoys are obtained through spectral analysis of received signals which 

is carried out using DFT or a spectral modeling technique, such as LP or ARMA. 

However, the frequency resolution introduced by these techniques is limited and hence 

resolving sources of frequency components close to each other may become very 

difficult. The above spectrum analysis procedures may not work efficiently in case of low 

SNR due to spectral leakage caused by their limited frequency resolution. 

This chapter studies the implications of processing data received by GPS-

equipped sonobuoys using FOS for improving target detection and bearing estimation 

accuracies at low SNRs. The proposed methodology is FOS which offers high resolution 

spectral estimation and therefore enhances target detection and bearing estimation.  

Orthogonal search [Tseng93, Korenberg89A] is a technique developed for 

identifying difference equation and functional expansion models by orthogonalizing over 

the actual data record. It mainly utilizes Gram-Schmidt orthogonalization to create a 

series of orthogonal functions from a given set of arbitrary functions. This enables signal 

representation by a functional expansion of arbitrary functions and therefore provides a 

wider selection of candidate functions that can be used to represent the signal. FOS is a 

variant of the orthogonal search [Korenberg88] where the major difference is that FOS 
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achieves orthogonal identification without creating orthogonal functions at any stage of 

the process. As a result FOS is many times faster and less memory storage intensive than 

the earlier technique, while equally as accurate and robust [Armstrong06].  

FOS has been applied before in several applications [Adeney94, Korenberg88, 

Korenberg89A, Korenberg89B, McGaughey03, Armstrong06, and Bohac05]. The 

research work in [Bohac05] proposes the application of FOS in order to detect multiple 

signals that are non-separable by Fast Fourier Transform (FFT). In this research FOS is 

proposed as a search algorithm that can detect and extract target sound from the received 

signal at very low SNR’s. 

For the scope of this research, we decided to use FOS for its general advantages 

and capabilities as reported in previous research and other applications. We also 

compared its performance over the conventional method (based on FFT) presently used 

in processing the GPS Sonobuoys data. In addition, we briefly examined the benefits of 

wavelet multi-resolution analysis, but we determined that FOS could provide better 

advantages including: (1) higher frequency resolution that can reach 1/10 the FFT 

resolution; (2) the minimization of spectral leakage by using non orthogonal set of 

candidate functions to represent the signal. However, FOS is computationally expensive 

if compared to FFT. Spectral leakage minimization procedures have not been examined 

for FFT. The comparison is carried between FFT and FOS with no additional pre-

processing. 
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3.1 Fast Orthogonal Search (FOS) 

FOS [Adeney94, Korenberg88, Korenberg89A, Korenberg89B, McGaughey03] is 

a general purpose modelling technique which can be applied to spectral estimation and 

time-frequency analysis.  The algorithm uses an arbitrary set of non-orthogonal candidate 

functions  mp n  and finds a functional expansion of an input  y n  in order to minimize 

the mean squared error (MSE) between the input and the functional expansion. 

The functional expansion of the input  y n  in terms of the arbitrary candidate 

functions  mp n  is given by: 

0
( ) ( ) ( )

M

m m
m

y n a p n n


     3.1 

Where am is the set of weights of the functional expansion, and ( )n  is the modelling 

error.  

By choosing non-orthogonal candidate functions, there is no unique solution for 

Eq.3.1.  However, FOS may model the input with fewer model terms than an orthogonal 

functional expansion [Korenberg89A].  For the FFT to model a frequency that does not 

have an integral number of periods in the record length, energy is spread into all the other 

frequencies, which is a phenomena known as spectral leakage [Ifeachor02].  By using 

candidate functions that are non-orthogonal, FOS may be able to model this frequency 

between two FFT bins with a single term resulting in a many fewer weighting terms in 

the model [Chon01]. 

FOS begins by creating a functional expansion using orthogonal basis functions 
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such that 

0
( ) ( ) ( )
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   3.2  

Where wm(n) is a set of orthogonal functions derived from the candidate functions 

 mp n , gm is the weight, and ( )e n  is an error term.  The orthogonal functions wm(n) are 

derived from the candidate functions pm(n) using the Gram-Schmidt (GS) 

orthogonalization algorithm.  The orthogonal functions wm(n) are implicitly defined by 

the Gram-Schmidt coefficients mr  and do not need to be computed point-by-point. 

The Gram-Schmidt coefficients mr  and the orthogonal weights mg  can be 

found recursively using the equations [Korenberg89A] 
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In its last stage, FOS calculates the weights of the original functional expansion 
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am (Eq.3.1), from the weights of the orthogonal series expansion, gm and Gram-Schmidt 

coefficients mr .  The value of am can be found recursively using 

 , 1
M
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
 3.10 

where, 
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From 3.4, 3.5, 3.7 and 3.8 it can be noted that FOS requires the calculation of the 

correlation between the candidate functions and the calculation of the correlation between 

the input and the candidate functions. The correlation between the input and the candidate 

function    npny m  are typically calculated point-by-point once at the start of the 

algorithm and then stored for later quick retrieval. 

The MSE of the orthogonal function expansion has been shown to be [Chon01]: 

      
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2222  3.12 

It then follows that the MSE reduction given by the mth candidate function is given by: 

    mmDmgnmwmgmQ ,222   3.13 

FOS can fit a model with a small number of model terms by fitting terms which 

reduce the MSE in order of their significance.  The FOS search algorithm is stopped in 

one of three cases. The first is when certain maximum number of terms is fitted. The 

second case is when the ratio of MSE to the mean squared value of the input signal is 

below a pre-defined threshold. The third case is when adding another term to the model  

reduces the mse no more than would be expected if it were fitting white noise 
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[McGaughey03]. 

 

Spectral analysis with FOS is accomplished by selecting candidates pm(n) that are 

pairs of sine and cosine terms at each of the frequencies of interest.  The candidate 

functions pm(n) are given by 

 
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Where 1, ,m P  , ωm is the digital frequency of the candidate pair normalized to Nyquist 

frequency and P is the number of candidate pairs. By fitting a sine and cosine pair at each 

candidate frequency, the magnitude and phase at the candidate frequency can be 

determined [Ali03, McGaughey03]. 

There are two significant differences between FOS and conventional Fourier 

transform techniques (i.e. DFT or FFT) [Ali03, Chon01, Korenberg89B, Korenberg98, 

McGaughey03]: (1) FOS yields a parsimonious sinusoidal series representation by 

selecting the most significant sinusoidal components first; and (2) the frequencies of the 

sinusoids selected need not be commensurate nor integral multiples of the fundamental 

frequency corresponding to the record length [Korenberg89A]. This translates to better 

frequency resolution in the spectral model.   

FOS is appreciably better at rejecting coloured and white noise than the 

commonly used FFT techniques (example in [Chon01]), which is significant since these 

types of errors are typically present in underwater received sound. 
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It was reported [Adeney94] that when the time samples are equally spaced, closed 

form expressions may usually be used to obtain required cross correlations 

)()( npnp km between the non-orthogonal basis functions. In this case, FOS requires on 

the order of 2
tCMCN   floating-point operations, where C is the number of candidates, 

N is the number of samples and Mt is the number of terms in the final model. If only 

cross correlations between data and candidate basis functions are stored, but the closed-

form expressions mentioned are used, then 3
tCMCN  operations are required. If the 

closed-form expressions to obtain the required cross correlations are not used, but, once 

computed, these cross correlations are saved, then 3
tCMCMN   operations are required. 

Thus, in all cases, the required number of floating-point operations used in FOS is 

roughly proportional to C. The number of operations required by FFT [Helms 67] is in 

the order of NN 2log . Thus FOS is more computationally expensive than FFT. 

 

3.2 Application of FOS to the problem of underwater target detection 

and localization 

Apparently, FOS provides spectral analysis with a resolution better than FFT, 

hence providing better separation between different targets detected at closely spaced 

frequencies and better overall bearing estimation. This research also explores how the 

FOS algorithm can be tuned to provide reliable target detection and accurate bearing 

estimation in the case of extremely low SNR, which is presently a major challenge in 

ASW. The proposed model for FOS application is shown in Figure 3.1. The FOS 
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accuracy enhancement technique initially segments a noisy input time series into smaller 

analysis windows that are treated as stationary data. The input time series represents the 

signal received by one of the DIFAR sonobuoy three channels (omni, sine and cosine).  
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Figure3.1.  Application of FOS to the problem of underwater target detection  and localization 

 

Each segment is modelled using FOS to extract the frequency components of the 

received signal.  The output of this stage is the FOS model terms, which provides 

information on frequency, magnitude and phase for that segment of data. This process 
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repeats for all segments. The FOS model terms can be used to draw LOFARgram and 

also can be processed to provide bearing estimation of the received signal components.  

FOS accuracy enhancement parameters 

As FOS is generally known to be a data dependent algorithm [Adeney94, 

Korenberg88, Korenberg89A, Korenberg89B, McGaughey03]; the accuracy of the model 

produced by FOS depends on the data record being modelled, the candidate functions 

used to compute correlations, and the stopping conditions (thresholds) in the algorithm.  

Sinusoidal candidate functions were selected in this research because they had been 

successfully applied to de-noising [Korenberg89B] and in non-stationary signal analysis 

[Davis93].  Furthermore, the closed-form expressions for computing the cross-

correlations between sinusoids [Dwight60] make the execution time of FOS with 

sinusoidal basis functions considerably faster than it would be with most other types of 

basis functions [Korenberg89A]. 

The FOS candidate frequencies are chosen to have a higher resolution than FFT to 

achieve better de-noising. The frequency resolution of FFT is given by: 

 

 FFT Resolution = fs / N, 3.15 

 

where fs is the sampling frequency and N is the number of points in the record.  Subject 

to the SNR, it has been shown that FOS can achieve frequency resolutions up to 5 

[Korenberg98], 8 [Korenberg91], or 10 [McGaughey03] times the frequency resolution 

of the FFT.   
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From Eq. 3.15 it can be seen that a long record length gives good spectral 

resolution, which is needed to accurately model a time-series. However, in case of 

moving targets, a short record length is desired for accurate bearing estimation at 

different time instants. For this research, the candidate function spacing was typically set 

in the order of 1/10 the FFT resolution for each segment. 

Candidate frequencies can be selected so that the candidate functions focus on a 

particular frequency range of interest.  For example, the candidates can be spaced with a 

high resolution on a range of interest and outside the range of interest; the candidates can 

be spaced by FFT resolution intervals. 

It is desirable to have the minimum number of candidate frequencies in the 

spectral estimate. These should represent the most significant components of received 

signal. However, too few terms results in a model that does not accurately represent the 

received signal and too many terms will add noise terms into the received signal spectral 

estimate as well as increase the computation time.  In this research, maximum terms to 

add (MaxTTA) is typically set between 5 and 15, not including a DC model term. 

FOS stops the modeling procedure when the MSE reaches certain threshold. This 

threshold is chosen so that it is equivalent to the variance of the white Gaussian noise 

(WGN).  It is known that underwater sound received by the hydrophones includes WGN 

and coloured noise, which may not be rejected by this threshold.  Thus, a candidate 

acceptance threshold, requiring a frequency pair to fit a minimum percentage of the 

overall energy in the signal, is set.  These thresholds allow FOS to model the underwater 

received sound and reject frequency terms that model the noise.  
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3.3 Simulation WORK  

In this research the developed simulation is based on a module for normal mode 

generation which is a part of a simulation program developed at Curtin University of 

Technology [Centre for Marine Science and Technology (Actup version2.2)]. The 

selection of normal modes takes into consideration different environmental conditions 

including sound propagation path, speed profile, diffraction and reflection coefficients of 

different levels of the ocean and other factors affecting the propagation loss profile of 

sound [Hawker79, Porter85, Lim94A, and Lim94B].  

To study the effect of applying FOS technique, two scenarios are presented in this 

research. The first scenario examines single target detection. The second scenario 

examines target detection in presence of two additional interfering sources. For both 

scenarios target tone was simulated at 100 HZ and moving at a speed of 4 m/s at a 

constant depth of 100 m. The ocean depth of simulated environment is 900 m. The 

hydrophone part of the GPS-equipped sonobuoy was assumed to be at 100m depth. 

Simulation duration is 1 minute and sampling frequency used was 1 kHz. The additional 

sources in the second scenario were simulated with tone frequencies of 60 Hz and 160 Hz 

moving with speeds of 20 ms and 30 m/s respectively. Interfering sources are assumed to 

be at depth of 100 m and their power was simulated such that the minimum value of their 

SNR’s at the receiver is -10 dB. The SNR is considered to be the ratio between the signal 

power received by each sensor and the white noise power. It should be also noticed that 

target movement introduces Doppler shift in the received frequency. Doppler shift is a 

change in frequency of emitted waves produced by motion of an emitting source relative 
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to an observer. The Doppler shift introduced by the source movement is not significant 

since the 100 Hz source is moving at relatively low speed (4 m/s). The Doppler shift 

introduced by the sources can be calculated by: 

o
o

sr f
v

v
f                         3.16  

Where srv  is the relative velocity between source and receiver, ov  is the underwater 

sound propagation velocity and, of  is the source frequency. Given that the average 

underwater sound propagation velocity is 1500 m/s, the maximum Doppler shifts 

expected by the target is 0.27 Hz. 

Different levels of received SNR for the target tone were tested assuming 

different source level of the target signal in each case. The simulated noise was assumed 

to be white Gaussian although it is not guaranteed to be white Gaussian but white 

Gaussian noise assumption can be considered convenient for the comparison of FOS 

performance against FFT performance at same SNR values.  

Figure 3.2 shows the simulated sources trajectories. In the first scenario only the 

target of interest is present. FOS performance is compared to FFT at different levels of 

white noise and different length of the data set window. In the second scenario, two 

sources trajectories were simulated near the sonobuoy in order to investigate the 

performance of FOS in presence of other sources. The selected window sizes for the two 

scenarios are 5s , 10s, 20s, 30s, 40s and 60s. The transmission loss for the signals were 

calculated through the simulation program based on the ocean parameters, depth of 

sources ,depth of receiver hydrophone and frequency of acoustic source. Figure 3.3 

shows the transmission loss at different depths of the ocean. This figure shows that signal 
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level can significantly degrade with the depth even at close ranges. This transmission loss 

profile is very close to real environmental conditions which show it is very likely to 

receive signals at very low signal to noise ratios. Transmission loss profiles at depth of 

100m are shown in Figures 3.3-3.6.  

 

 

Figure 3.2 Trajectory of simulated sources relative to sonobuoy location 
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Figure 3.3 Transmission Loss vs. depth and range for 100Hz source lying at a depth of 100 m 

0 500 1000 1500 2000 2500 3000

35

40

45

50

55

60

65

70

75

80

85

Range (m)

T
ra

n
sm

is
s

io
n

 L
o

s
s 

(d
B

)

Transmission Loss Profile for 100Hz source at 100m depth

 

Figure 3.4 Transmission Loss vs. range for 100Hz source; source and receiver  at a depth of 100 m 
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Figure 3.5 Transmission Loss vs range for 60Hz source; source and receiver at a depth of 100 m 
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Figure 3.6 Transmission Loss vs range for 160Hz source; source and receiver at a depth of 100 m 
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The bearing error is calculated by comparing the estimated bearing to the average 

bearing during the time window of the tested data. FOS may select candidate frequencies 

that do not lie exactly at the same bin for each of the three channels, even though they are 

the result of the same real frequency in the time series (i.e., the bins don’t line up). The 

problem becomes that for a given frequency, an error of only one FOS frequency bin in 

any of the three channels will result in no available bearing information.  

Two previously suggested techniques to overcome this problem are mentioned in 

[Bohac 05]. One of these option is to average the spectral estimate for each channel in 

order to ensure the frequencies chosen by FOS are more likely to correspond for each 

channel. Another option is to reduce the frequency resolution of FOS to force the choice 

of frequency bins that correspond across the channels. Both of these techniques, however, 

dilute the significant resolution advantage of FOS over FFT. The approach suggested by 

Filip Bohac in [Bohac 05] is based on forcing FOS algorithm to use certain candidates in 

the model, regardless of their MSE reduction. Therefore it creates a model with the force-

fit candidates without performing a search, and then searches through all remaining 

candidates to complete the model until a stopping condition is reached.  

For this implementation, the corresponding values of frequency components 

computed for the three channels are chosen by selecting the nearest components to 

reference frequency bins. Reference frequency bins are extracted from the spectral 

analysis of the received signal component of the omni-directional sensor. In this manner 

FOS keeps its significant features which are high resolution and high accuracy spectral 

estimation without forcing certain candidate frequencies. This is essential for this 

research work as it targets the study of relatively very low SNR’s cases and therefore 
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spectral power assigned to each component has a crucial effect on accuracy of bearing 

estimation. 

3.4 Results and Discussion 

In this section, FOS is compared to FFT from two aspects: 1) Accuracy of 

detection and bearing estimation for different window sizes; 2) Accuracy of detection and 

bearing estimation at SNR’s  -10,-15,-20,-25,-30 and -35 dB for each window size. For 

each of the window sizes and each SNR, we calculate the percentage of failure in bearing 

estimation for both FOS and FFT. Cases with failure percentages over 60% are not 

considered in the comparison. We noticed that FOS minimized the spectral leakage 

inherent in FFT, thus improved the bearing estimation accuracy.  

 

3.4.1 First Scenario (Single source) 

A. Target Detection 

Target detection is based on detecting the presence of target frequency in the 

spectrum of the received signal. Figures 3.7 and 3.8 show the spectral estimate calculated 

using FOS versus the one calculated using FFT for SNR’s of -25 dB using window sizes 

of 5s and 60s respectively. 



71 

 

0 20 40 60 80 100 120 140 160 180 200 220 240
0

0.5

1

1.5

2

2.5

3
x 10

-3 FOS output for 5s window and SNR of -25dB

Frequency (Hz)

P
S

D

0 20 40 60 80 100 120 140 160 180 200 220 240
0

0.5

1

1.5

2

2.5

3
x 10

-3 FFT output for 5s window and SNR of -25 dB

P
S

D

Frequency (Hz)

Figure 3.7a. PSD using FOS for SNR=-25 dB 
using  5s data window 

Figure 3.7b. PSD using FFT for SNR=-25 dB 
using 5s data  window 
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Figure 3.8b.PSD using FFT for SNR=-25 dB 
using 60s data  window 

 

The outputs of FOS and FFT at SNR of -25dB in figures 8 and 9 shows that most 

of the signal power is assigned to the target frequency. However the value of power 

assigned to target using FFT varies as the window size varies. For 5s window the value of 

target signal power was around 0.0025 Watt. For FFT this value changed at 60s window 

where the value of power assigned to the target was around 0.002 Watt. On the other 

hand the target signal power value is almost constant for the PSD generated using FOS 
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for both window sizes. The power allocated to target frequency using FOS depends on 

the search algorithm that minimizes MSE and hence power is accurately allocated. In 

FFT spectral leakage causes some of the signal power to be distributed over the spectrum. 

This can effectively enhance target detection, especially when we are dealing with 

relatively very low SNRs.  

Figures 3.9 and 3.10 show the PSD calculated using FOS and FFT. The observed 

performance at -30 dB was almost similar to that at -25 dB except that signal power 

detected at 5s window was influenced by the high noise level. This caused allocation of 

some noise power to the target frequency component PSD. For the 5 sec window, both 

FOS and FFT produced noise based frequency components with higher amplitude than 

the 100 Hz. However, since FOS produced fewer spectral components, it is easier for an 

operator looking for the 100Hz to identify it in FOS output than in the FFT output. 
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Figure 3.9a. PSD using FOS for SNR=-30 dB 
using  5s data window 

Figure 3.9b. PSD using FFT for SNR=-30 dB 
using 5s data  window 
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Figure 3.10a. PSD using FOS for SNR=-30 dB 
using  60s data window 

Figure 3.10b. PSD using FFT for SNR=-30 dB 
using 60s data  window 
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Figure 3.11a. PSD using FOS for SNR=-35 dB 
using  5s data window 

Figure 3.11b. PSD using FFT for SNR=-35 dB 
using 5s data  window 
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Figure 3.12a. PSD using FOS for SNR=-35 dB 
using  60s data window 

Figure 3.12b. PSD using FFT for SNR=-35 dB 
using 60s data  window 

 

Figures 3.11 and 3.12 show the results from FOS versus FFT at -35 dB. The 

shown figures represent power spectral density calculated at 5s and 60s windows. 

Looking at the two figures it can be observed that the target signal is totally buried in 

noise at such low SNR. The noise levels appear with high amplitudes which makes 

source signal detection and extraction more difficult. On the other side FOS detected the 

100 Hz source with high accuracy. It can be noticed that there is an increase in power due 

to assigning some noise power to the source at 100 Hz. This did not influence the 

detection but, as discussed later, affected the bearing estimation since the same process 

was applied to the other two sensors (sine and Cosine). 

 

B. Bearing Estimation  

Bartlett Beamfomring was used to compute bearing estimation as discussed in 

Chapter 2. In order to study performance of system using FOS in spectral estimation 

against system using FFT, 30 runs were simulated for all cases. Each case represents a 
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definite window size and SNR of received signal. The error is the absolute difference 

between estimated bearing and the mean bearing of the target. The output estimate is 

considered to be correct if the error in bearing estimation is less than 10o. This value is 

related to the fact that ±10 degrees are the operationally accepted accuracy of a DIFAR 

sonobuoy [Bohac05]. Therefore the estimated bearing within 10 degrees of the input 

signal bearing is considered successful bearing estimation. 

Table3.1 shows the results for different cases examined. The percentage of failure 

in bearing estimation is tabulated for both methods FOS and FFT. The results show that 

the accuracy of bearing estimation increases as the window size increase. This can be 

noticed from the results for SNR cases of -25 dB, -30 dB and -35 dB. This is because 

increasing window size increases the total power of signal of interest relative to the noise 

which is a random signal.  

Comparing the bearing estimation percentage of failure between FOS and FFT we 

can observe the following:  

i) FOS outperforms FFT in all cases of SNR’s lower than -20 dB. This is 

related to the spectral estimation method used by FFT and FOS. FOS 

fitting of candidate functions achieves higher accuracy estimation of 

spectral power density as mentioned in the detection part. This influences 

the values of sine and cosine output PSD and hence provides more 

accurate bearing estimation. 

ii) In some cases (5s window and 10s window at SNR’s -30 dB and -35 dB), 

we noticed that both FOS and FFT methods have similar and relatively 
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large failure rates. These cases were ignored since both methods led to 

totally unreliable target detection. 

iii) Two factors determine the lowest SNR at which the target can still be 

detected. These are the window size and the desired acceptable accuracy. 

This depends on the system requirement. Small windows provide more 

accurate localization of the target and large windows provide less accurate 

localization. For SNR’s lower than -20 dB, the window size affects the 

percentage of failure. In less noisy environment, small windows of data 

can be applied. Relatively large windows will provide more accurate 

detection in highly noisy environments. However it will estimate an 

average bearing over the larger windows. 

iv) It is clear that FOS outperforms FFT in case of SNR -30 dB in all window 

sizes with different percentages. Moreover -30 dB SNR could be detected 

by system employing FOS with 0% failure versus 14% of failure for 

system employing FFT. 

v) FFT is faster than FOS. This difference in processing speed increase as the 

window size increase. This remains a disadvantage for FOS 
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Table 3.1.  Bearing estimation results for first scenario 

 

Window Size SNR 
Percentage of 
Failure using FOS 

Percentage of 
Failure using FFT 

Percentage of 
Improvement 

5 

-10 0% 0% 0% 
-15 0% 0% 0% 
-20 0% 0% 0% 
-25 28% 56% 28% 
-30 80% 87% 7% 
-35 94% 100% 6% 

          

10 

-10 0% 0% 0% 
-15 0% 0% 0% 
-20 0% 0% 0% 
-25 10% 10% 0% 
-30 65% 75% 10% 
-35 85% 95% 10% 

          

20 

-10 0% 0% 0% 
-15 0% 0% 0% 
-20 0% 0% 0% 
-25 5% 5% 0% 
-30 43% 71% 28% 
-35 70% 95% 25% 

          

30 

-10 0% 0% 0% 
-15 0% 0% 0% 
-20 0% 0% 0% 
-25 0% 0% 0% 
-30 30% 30% 0% 
-35 90% 95% 5% 

          

40 

-10 0% 0% 0% 
-15 0% 0% 0% 
-20 0% 0% 0% 
-25 0% 0% 0% 
-30 10% 10% 0% 
-35 50% 58% 8% 

          

60 

-10 0% 0% 0% 
-15 0% 0% 0% 
-20 0% 0% 0% 
-25 0% 0% 0% 
-30 0% 14% 14% 
-35 20% 30% 10% 
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3.4.2 Second Scenario (Target and two interference sources) 

A. Target Detection 

In this experiment we studied how target detection and bearing estimation are 

affected by strong interference sources at different levels of white background noise. 

Different window sizes were tested against different SNR’s in the same way as in the 

single source experiment. Figures 3.14-3.16 shows the spectral estimate from FOS versus 

FFT for SNR’s of -25 dB using window sizes of 5s and 60s. 
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Figure 3.13a. PSD using FOS for SNR=-25 dB 
using  5s data window 

Figure 3.13b. PSD using FFT for SNR=-25 dB 
using 5s data  window 
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Figure 3.14a. PSD using FOS for SNR=-25 dB 
using  10s data window 

Figure 3.14b. PSD using FFT for SNR=-25 dB 
using 10s data  window 
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Figure 3.15a. PSD using FOS for SNR=-25 dB 
using  20s data window 

Figure 3.15b. PSD using FFT for SNR=-25 dB 
using 20s data  window 
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Figure 3.16a. PSD using FOS for SNR=-25 dB 
using  60s data window 

Figure 3.16b. PSD using FFT for SNR=-25 dB 
using 60s data  window 

 

For windows of 5s and 10s the value of target signal power is not clear since two 

signal components are detected around 100 Hz which may be considered as a failure in 

target detection or if the closest frequency component to 100 Hz is considered a source 

then there exist a decrease in the power assigned to that source. Note that considering the 

closest frequency component as the target is a primary decision which can be enforced by 

examining successive windows. If nearly the same frequency keeps appearing in 

successive windows this component will be considered a target although it hasn’t been 

accurately detected. The output of FFT at SNR’s of -25dB for 20s window shows some 

degradation in performance which affects the value of the signal power assigned to the 

target frequency (100 Hz) that is around 0.0015 watt. The PSD at 100 Hz is more 

accurately detected using FOS (around 0.0025 watt). The values of PSD for the two 

interference sources varies as the window size varies since the other two sources are 

moving with relatively higher speed than the target and hence their power level exhibit 

significant variance over small intervals of time.  
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Similar degradation in performance was found at SNR’s of -30 dB and -35 dB. 

However FOS showed better performance in allocating signal power to target. The effect 

of interference, system degradation and robustness of FOS against interference sources 

can be clearly shown in bearing estimation of target. 

 

B. Bearing Estimation  

Bearing estimation technique and error detection criterion were applied similar to 

single source case. Table II shows the results for different cases considered. In Each case 

the percentage of failure in bearing estimation is tabulated for system output calculated 

using FOS against the one calculated using FFT. The results show that the accuracy of 

bearing estimation degraded as a result of interference sources added in this scenario. 

However FOS preserves its superiority over FFT especially when results are considered 

reliable (i.e at low levels of percentage of failure). 

From Table II we can observe that FOS outperforms FFT in all cases of SNR’s 

lower than -20 dB. In some cases of very low SNR’s FFT showed better performance but 

the percentages of failure in these cases are over 60%. These percentage shows error in 

bearing estimation for frequency components detected close to the target frequency 

which may be noise component at the selected window.  

The Table shows that system capabilities are significantly affected by interference 

sources. The main effect is shown in the system failure to accurately detect and estimate 

bearing for target at -35 dB using different window sizes. However FOS robustness 

against interference sources is fairly more than that of FFT. This is clear in cases of 10s 

window at SNR of -20 dB; Also in case of SNR -25 at 20s and 30s windows. Moreover 
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when looking at the case of -30 dB SNR and 60s window FOS shows significant 

improvement in detecting signals of low SNR. The failure percentage of system 

employing FOS (10 %) is half that of the system employing FFT and at the same time it 

is relatively low percentage. 
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Table 3.2 Bearing estimation results for second scenario 

Window Size SNR 
Percentage of 
Failure using FOS 

Percentage of 
Failure using FFT 

Percentage of 
Improvement 

5 

-10 0% 0% 0% 
-15 0% 0% 0% 
-20 35% 40% 5% 
-25 85% 65% -20% 
-30 90% 90% 0% 
-35 75% 95% 20% 

          

10 

-10 0% 0% 0% 
-15 0% 0% 0% 
-20 5% 15% 10% 
-25 60% 60% 0% 
-30 80% 85% 5% 
-35 85% 85% 0% 

          

20 

-10 0% 0% 0% 
-15 0% 0% 0% 
-20 0% 0% 0% 
-25 10% 20% 10% 
-30 30% 25% -5% 
-35 90% 95% 5% 

          

30 

-10 0% 0% 0% 
-15 0% 0% 0% 
-20 0% 0% 0% 
-25 0% 5% 5% 
-30 55% 60% 5% 
-35 90% 95% 5% 

          

40 

-10 0% 0% 0% 
-15 0% 0% 0% 
-20 0% 0% 0% 
-25 0% 0% 0% 
-30 45% 35% -10% 
-35 80% 80% 0% 

          

60 

-10 0% 0% 0% 
-15 0% 0% 0% 
-20 0% 0% 0% 
-25 0% 0% 0% 
-30 10% 20% 10% 
-35 90% 80% -10% 
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3.5 Conclusions 

The results showed that performance crucially depends on SNR and window size 

of analyzed data set. However, FOS showed better performance than FFT for most cases 

in which failure percentages were below 60%. For cases of small window size and low 

SNR, both FFT and FOS methods failed to accurately detect the target. FOS also provided 

clearer spectral estimation since it allocated power only for selected number of candidates. FOS 

nature of operation helps in providing a clear view of spectrum without using an 

amplitude threshold which might cause the loss of Target signal. This can provide a clear 

LOFARgram which facilitates target detection.  Moreover, the use of FOS enhances the 

accuracy of bearing estimation especially at relatively low SNR which was observed at 

SNR’s lower than -25 dB. Although in some cases similar performance in bearing 

estimation was noticed but FOS showed to be more robust than FFT at SNR’s below -25 

dB for. For short data records FOS showed better performance than FFT in both target 

detection and bearing estimation. This research shows that using FOS enhances the 

performance of underwater target tracking using DIFAR sonobuoys. Further work on 

interference cancellation can improve the overall system performance and enable robust 

target detection and bearing estimation at very low SNR’s. 
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Chapter Four: Direction of Arrival Estimation using an Array 

of GPS Sonobuoys 

Currently the bearing estimation of underwater targets using DIFAR sonobuoys 

field is based on combining the bearings obtained through individual element processing. 

This preserves the advantage of having a widely spread field of sonobuoys to detect 

underwater targets. Chapter 2 detailed the direction of arrival (DOA) estimation using 

Bartellet beamforming from the signals monitored by the three sensors of each DIFAR 

sonobuoy [Bohac05, Desroches99 and Maranda03]. In Chapter 2 it was shown that the 

detection range and bearing estimation accuracy of DIFAR sonobuoys are mainly 

influenced by the SNR of the received acoustic signals. It has been reported that array 

processing can provide an enhanced SNR compared to a single sensor system [Johnson93 

and Chen03]. Accordingly, processing a group of DIFAR sonobuoys field can introduce 

significant improvement to the bearing estimation accuracy, especially at low SNR 

environments which are presently common in ASW. Nevertheless, the DIFAR sonobuoys 

operation environment imposes some limitations on array processing.  These limitations 

are mainly imposed by the deployment methods and the variation of inter-element 

spacing over time.  In ASW, DIFAR sonobuoys are deployed from a helicopter or surface 

ship [Joh97, Boh05 and Des99]. Based on deployment method, the distance between the 

deployed DIFAR sonobuoys may range from few meters to hundreds of meters [Ultra06]. 

In addition the ocean tides cause relatively huge drifts in the locations of sonobuoys 

[Urick96]. Consequently array processing of DIFAR sonobuoys becomes challenging 

process throughout ASW operations. 
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In this chapter, a new approach for array processing of DIFAR sonobuoys is 

introduced and analyzed showing its significant contribution in improving the overall 

system performance. In addition, this chapter discusses the limitations associated with 

array processing of a group of DIFAR sonobuoys.  

The proposed technique was tested using simulated data developed for two 

different scenarios with different underwater environmental conditions. Comparisons 

between the proposed method and the technique presently utilized for DIFAR sonobuoys 

are demonstrated in this chapter.  The results show that processing of an array of DIFAR 

sonobuoys is capable of enhancing the accuracy of target bearing estimation especially in 

cases of very low SNR. Moreover, array processing provides critical enhancement for the 

resolution of bearing estimation. Merits and limitations of the proposed technique are 

discussed and analyzed in this study. 

4.1 Underwater Tracking Using Single DIFAR Sonobuoy 

As discussed in Chapter 2, the basic processing of single DIFAR sonobuoy is 

mainly based on applying Bartellet beamforming to the three sensor array of the DIFAR 

sonobuoys.
 
Figure 4.1 illustrates the acoustic dipoles of DIFAR sensors [Bohac05, 

Des99, Maranda03 and Osma09]. The DOA along the acoustic arrival axis is referenced 

to the two orthogonal dipoles, which are aligned to magnetic North, by the angle φ. Two 

orthogonal response axes are offset from magnetic North by the local magnetic variation 

angle α. The total angle θ which provides a bearing to an acoustic source is between the 
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arrival axis and the true North. The conversion between the magnetic North and the true 

North is made at the processor prior to displaying to the operator. 
 

 

Figure 4.1 Acoustic dipole response of DIFAR sonobuoy 

 

The output of the sonobuoy based on the incoming acoustic signal is a time series 

of N samples for each of the three channels. The data of these channels are converted into 

frequency domain by applying the DFT of the received time series. The general PSD is 

then obtained. The cross spectral matrix is then obtained which is used to calculate the 

DOA at the receiver, also known as the bearing to a target of interest (TOI). The quotient 

of the omni-sine and omni-cosine PSD estimates yields a bearing estimate using Bartellet 

Beamforming [Bohac05, Desroches99, Maranda04 and Osman09]. 
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4.2 Underwater Tracking Using Uniform Linear Array (ULA) 

of DIFAR Sonobuoys 

A Linear array processing of DIFAR sonobuoys can be established by using omni 

sensors only or by using omni, sine and cosine sensors of all sonobuoys in the array. 

Evaluation of these two modes of performance can be achieved by examining their 

radiation patterns. 

 

4.2.1 Radiation Pattern for a Linear Array of Omni-directional sensors 

The radiation pattern for ULA of DIFAR sonobuoys using omni-directional 

sensors is typical to that of omni-directional antenna array. The later was previously 

reported in literature [Johnson93 and Skolnik80]. Therefore the magnitude of the 

radiation pattern of ULA of N omni-directional sensors spaced a distance d is given by 

[Skolnik80]: 
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Where 0  is the DOA of the received signal,   is the received signal wavelength 

and   is the domain of the scanned DOAs.  

This pattern has nulls (zeros) when the numerator is zero which occurs when 

 ndsN  ,,2,,0/)sin(sin 0              
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The denominator becomes zero when 

 nd  ,,2,,0/)sin(sin 0   which causes the numerator to be zero. 

Thus L’Hoptial rule can be used to evaluate the field intensity pattern. It can be 

determined that the maximum field intensity for an array of N omni-directional sensors is 

equal to N and occurs when  nd  ,,2,,0/)(sin 0  .  The maximum at 

 /)sin(sin 0d = 0 is the center of the main beam and takes place at 0  . The 

grating lobes appear at  nd  ,,2,/)sin(sin 0  . Thus, the first grating 

lobe occurs at   /)sin(sin 0d . This corresponds to d/)sin(sin 0   .   

  Since the maximum value of )sin(sin 0   is 2, the grating lobes are 

avoided by ensuring that 2/ d  or 2/d . Consequently DOA ambiguity arises if 

the spacing between the DIFAR sonobuoys exceeds half the minimum wavelength of 

tracked target spectrum. This represents a challenge to the application of array processing 

of DIFAR sonobuoys since the spacing between the sonobuoys is most likely to exceed 

this value. 

 

4.2.2 Radiation Pattern for a Linear Array of DIFAR sonobuoys 

In this research, the radiation pattern for a Linear array of DIFAR sonobuoys was 

developed by defining a steering vector for the linear array of DIFAR sonobuoys and 

multiplying it by the normalized Fourier Transform of the received signal.  
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4.2.2.1 Modified Steering vector 

The steering vector of the individual DIFAR array was modified to accommodate 

all receivers of the ULA of the DIFAR sonobuoys. The introduced modification assumed 

that the DOA of the acoustic signal is identical at all DIFAR sonobuoys comprising the 

array. This assumption is based on two conditions: (1) The DIFAR sonobuoys are aligned 

to the same reference which is the magnetic North; (2) The radiation source is relatively 

far from the DIFAR sonobuoys. The first condition can be achieved through calibration 

[D’Spain92] while the second condition is most likely to be associated with low SNR 

which represents the main motivation for applying array processing of DIFAR 

sonobuoys. Therefore, the new array steering vector )(a  for a source arriving at angle 

  is given by: 
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Where 0  is the source frequency and nt  is the relative delay of the omni sensor 

associated with the nth DIFAR sonobuoy and is measured relative to the reference DIFAR 

sonobuoy.  
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4.2.2.2 Obtaining Radiation Pattern for a Linear Array of DIFAR sonobuoys 

In order to obtain the radiation pattern of ULA of DIFAR sonobuoys, let us first 

consider the radiation pattern of single DIFAR sonobuoy. The normalized Fourier 

Transform of input sinusoidal signal arriving from direction 0   and received by the 

DIFAR sonobuoy three-sensors (Omni, sine and cosine) is given by [Des99]: 

 

 00 cossin1  DIFARSingle       4.3 

 

As Illustrated in Chapter 2, the bearing estimation using Bartlett beamforming is 

obtained as the bearing value corresponding to the maximum beam power estimate 

( )(CBE


) which is given by 
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Where )(a  is the steering vector of the DIFAR sonobuoy and 

]cossin1[)(  DIFARSinglea . 

Therefore for a linear array made up of N DIFAR sonobuoys equally spaced by a 

distance d. the normalized Fourier Transform of the received signal can be calculated as 

the vector given by: 
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Similarly the steering vector of a linear array made up of N DIFAR sonobuoys 

can be driven from the steering vector of single DIFAR sonobuoy and is given by: 

 


TdNjdNjdNj

djdjdja





cos)/sin2exp(sin)/sin2exp()/sin2exp(

cos)/sin2exp(sin)/sin2exp()/sin2exp(cossin1)( 0





                 4.6 

Consequently, the magnitude of the radiation pattern can be obtained as: 

 

 HaE )(),( 0                  4.7 

 

Where ),( 0E  is the magnitude of the radiation pattern for a sinusoidal signal arriving 

at 0 . The result is the sum of multiplying the corresponding terms of the steering vector 

and the normalized Fourier transform of the received signal which can be manipulated 

using the law of the sum of arithmetical series [Bromwich26] to give: 

 



N

n

ndjE
0

0000 )/)sin(sin2exp(coscossinsin1),(           4.8 

The first term can be simplified using the trigonometric relation 

000 coscossinsin)cos(    and the sum term can be simplified by using the 

theory of sum of series [Bromwich26]. Accordingly, the final radiation pattern can be 

given as:  

   
 




/)sin(sinsin

/)sin(sinsin
)cos(1),(

0

0
00 




d

dN
E          4.9 
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The term  )cos(1 0   represents the radiation pattern of the DIFAR 

sonobuoy [Desroches99] while the term 
 
 


/)sin(sinsin

/)sin(sinsin

0

0



d

dN
 is the radiation 

pattern of N omni-directional sensors [Skolnik80]. Similar to the above analysis the value 

of the second term at zeros of the denominator can be evaluated by using L’Hopital rule. 

It can be determined that the maximum value of the second term in equation 4.9 is equal 

to N and occurs when  nd  ,,2,,0/)sin(sin 0  . The maximum at 

 /)sin(sin 0d = 0 is the center of the main beam and takes place at 0   .  

Similar values of the second term of equation 4.9 appear 

at  nd  ,,2,/)sin(sin 0  .  For an array of omni-directional sensors the 

first grating lobe occurs at   /)sin(sin 0d . This corresponds to 

d/)sin(sin 0   . The grating lobes are avoided by ensuring that 2/ d  or 

2/d . This limitation is extended when employing a group of linearly aligned DIFAR 

sonobuoys.  This is because the value of the first term in equation 4.9   )cos(1 0   

is maximum only at 0  .  The grating lobes therefore does not exist in this case since 

the product of the DIFAR beam pattern and linear sensor beam pattern suppresses the 

grating lobes associated with the linear sensor array. This is considered an advantage 

since it permits array processing for spacing values exceeding half the minimum 

wavelength of the observed spectrum. However, there is a limitation on the spacing value 

since the increase in the spacing values causes the grating lobes associated with the omni-

directional pattern take values close to the main beam value when multiplied by the 

radiation pattern of the single DIFAR array. Therefore, for reliable performance the first 



94 

 

grating lobe should be spaced away from the main beam. The value set for separation 

between the main beam and the first grating lobe defines the maximum allowable value 

of d.  

 To simplify the calculation consider the case of 00  . In this case the condition 

for the maximum allowable distance between the DIFAR sonobuoys is given by: 

 

)sin)/(sin( 01  d                 4.10 

 

Since 1sin1 0   , therefore the equation defining the limit of the distance between 

DIFAR sonobuoys can be given by: 

 

))1/(sin( 1  d               4.11 

 

In order to suppress side lobes, the distance between the DIFAR sonobuoys can be 

set so that the first grating lobe occurs at 0
01 5.65  which is the value at which the 

intensity of the radiation pattern of single DIFAR sonobuoy is equal to half the power of 

the main beam. This will guarantee that the value of highest side lobe is relatively small 

when compared to that of the main beam. Therefore: 

 

91.1/))15.65/(sin( minminmax  DIFARd             4.12 
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This value is close to the condition required for a ULA of omni-directional sensors. 

The condition can be extended by allowing the first grating lobe of the ULA to exist at 

closer range to the main lobe. This value has to be carefully selected to ensure stability of 

system performance at low SNRs. Figure 4.2 shows the radiation pattern of DIFAR 

sonobuoy. Figure 4.3 demonstrates performance comparison between four omni-directional 

sonobuoys and four DIFAR directional sonobuoys using the radiation pattern for different 

values of spacing between the sonobuoys (10, 50 and 300m). These figures were obtained 

using equation 4.8 where the target is assumed to have a wavelength of 15m and bearing of 

60o. As can be depicted from these two figures, the radiation pattern for a group of DIFAR 

sonobuoys posses some important features which provides significant enhancement for the 

overall system performance. The DIFAR sonobuoy array formed by omni, sine and cosine 

sensors provides a low resolution radiation pattern since the inter-element spacing are very 

close together and the number of sensors is relatively small.  
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Figure 4.2. Radiation Pattern for DIFAR Sonobuoy  (DOA=160o) 
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If Figures 4.3a, 4.3c and 4.3e (the case of omni-directional sonobuoys) are carefully 

examined, it can be determined that when the inter-element spacing values exceed 2/ , 

grating lobes appear and bearing estimation of signal source becomes ambiguous. On the 

other hand, when Figures 4.3b, 4.3d and 4.3f (the case of DIFAR sonobuoys) are 

examined, enhanced radiation pattern can be observed. The amplitude of the grating lobes 

were significantly reduced. One can also notice the enhancement introduced to the received 

SNR. This can be observed by comparing the amplitude values of the single sonobuoy 

pattern and the pattern of an array of sonobuoys. Moreover, the beamwidth of the main 

beam is significantly reduced in case of array processing. Consequently, the processing of a 

group of DIFAR sonobuoys results in significant enhancement of bearing estimation 

accuracy, especially at low SNRs.  

 

 
 

Figure 4.3a. Radiation Pattern for Linear array 
of 4 Omni-directional sensors (DOA=160o d=10 

m) 

Figure 4.3b. Radiation Pattern for Linear 
array of 4 DIFAR sonobuoys (DOA=160o d=10 

m) 
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Figure 4.3c. Radiation Pattern for Linear 

array of 4 Omni-directional sensors 

(DOA=160o d=50 m) 

Figure 4.3d. Radiation Pattern for Linear 

array of 4 DIFAR sonobuoys (DOA=160o d=50 

m) 
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Figure 4.3e. Radiation Pattern for Linear 

array of 4 Omni-directional sensors 

(DOA=160o d=300 m) 

Figure 4.3f. Radiation Pattern for Linear array 

of 4 DIFAR sonobuoys (DOA=160o d=300 m) 

 

From Eq. 4.9, it is clear that the array processing of DIFAR sonobuoys should 

always provide a unique solution of direction of arrival independent of the inter-element 
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distance. This is caused by the DIFAR beam pattern which provides a unique maximum 

value at the centre of the main lobe.  However, the low resolution of Bartlett beamforming 

causes the solution to be numerically unstable [Stoer02] in cases where the side lobes are 

too close to the main lobe. Observing Eq. 4.10, it is clear that increasing the spacing 

between DIFAR sonobuoys brings the side lobes closer to the main lobe especially for 

relatively large values of d. Moreover, the numerical instability further increases in cases of 

very low SNRs. The two conditions of large spacing and low SNR are typical features of 

underwater target tracking. An additional limitation is introduced by the fact that target 

tracking is based on detecting the spectral signature of the target [Bohac05, Desroches99, 

Maranda03 and Urick96]. The spacing between main lobe and side lobes is proportional to 

the minimum wavelength of the spectrum of interest.  Consequently the performance of 

system processing for an array of DIFAR sonobuoys can degrade significantly during 

operation especially in presence of strong tides that could extensively shift the original 

locations of DIFAR sonobuoys.  Figures 4.3b, 4.3d and 4.3f show an illustration of the 

effect of inter-element spacing between DIFAR sonobuoys on overall system performance. 

Form these figures it can be depicted that as the value of d increases side lobes amplitude 

becomes closer to the main lobe amplitude. In Figure 4.3d and 4.3f the amplitude of side 

lobe at 20 degrees is almost the same as the amplitude of the main lobe at 60 degrees. 

 

4.2.3 Simulation work: 

Acoustic level simulation was conducted to examine the performance of array 

processing of a linear array of four DIFAR Sonobuoys using Bartlett beamforming. The 
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noise added to the acoustic signal is white Gaussian noise and 100 Monte Carlo runs 

were used to calculate the percentage of error and examine the range of errors associated 

with different SNRs. In calculating the percentage of error, the estimated bearing was 

considered erroneous when absolute difference between the estimated bearing and the 

target DOA exceeds 10o. The received acoustic signal was assumed to be far field 

uniform plane wave. For the first scenario the sonobuoys are simulated with inter-

element spacing of 10m, 50m and 300m. The simulated acoustic source had a single tone 

frequency of 100 Hz and amplitude of 140 dB re µPa. Acoustic sources were simulated 

with bearings at 50o, 120o, 160o and 220 o.  

The system performance was examined for SNRs of -25dB, -35 dB and -40 dB. 

Results compared the output from the processing of single source versus an array of 

DIFAR sonobuoys. These comparisons were carried for processing windows of 10 

seconds. Figure 4.4 shows a general schematic of the simulations. The signal angle of 

arrival with respect to the north is similar at all array elements based on the far field 

assumption.  
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

 

Figure 4.4 Linear Array of DIFAR Sonobuoys 

 

4.2.4 Results and Discussion 

The figures shown below illustrate the results obtained in testing the performance 

of an array of DIFAR sonobuoys versus single DIFAR sonobuoy processing. Results are 

shown for the case of target with bearing of 160 o. The other cases of 50 o, 120 o and 220 o 

showed similar performance for the different spacing values and different levels of SNR.  

 

4.2.4.1 ULA of DIFAR Sonobuoys spaced 10 m apart 

The spacing of 10 m violates the condition of stability defined by equation 4.11 

However, the radiation pattern for this arrangement (Figure 4.3b) indicates that the first 

side lobe is reasonably spaced away from the main lobe. Hence the system can be 

considered stable. The results recorded for this case are shown in Figures 4.5, 4.6 and 4.7. 
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Figure 4.5 represents the case of -25 dB SNR. Up to this SNR, the performance of single 

sonobuoys processing is comparable to array processing. However array processing 

shows better performance since it possesses a 0% error corresponding to 2% error for the 

single sonobuoy processing. Figure 4.5a illustrates the improvement in the beamwidth 

which is around 40o in case of array of sonobuoys and around 130o in case of single 

sonobuoy. Figure 4.6 illustrates the dramatic degradation in the performance of single 

sonobuoy processing when the level of SNR decreases to -35 dB. The percentage of error 

increases to 48% which represents a significant system failure. On the other hand, the 

performance of array processing remains robust with 0% error. These results are 

consistent with the radiation pattern shown in Figure 4.3d which illustrates the amplitude 

gain achieved by employing an array of DIFAR sonobuoys. When the SNR is further 

decreased to -40 dB the performance of array processing of DIFAR sonobuoys shows 

some degradation in performance as the error rate jumps up to 22%. However the 

percentage of error for the single sonobuoy processing show severe degradation as it goes 

down to 78%. These results demonstrate the superior performance that can be obtained 

when utilizing array of GPS DIFAR sonobuoys. 
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Figure 4.5a. A sample of Bartlett Beamforming output ((DOA=160o, d=10m, SNR=-25dB) for 
single DIFAR sonobuoy (top panel) and ULA of DIFAR sonobuoys (bottom panel)  
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Figure 4.5b. Output of  Monte Carlo simulations 
for single DIFAR sonobuoy ((DOA=160o, SNR=-

25dB) 

Figure 4.5c. Output of Monte Carlo simulations 
for ULA of DIFAR sonobuoys  ((DOA=160o, 

d=10m, SNR=-25dB) 
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Figure 4.6b. Output of  Monte Carlo simulations 
for single DIFAR sonobuoy ((DOA=160o, SNR=-

35dB) 

Figure 4.6c. Output of Monte Carlo simulations 
for ULA of DIFAR sonobuoys  ((DOA=160o, 

d=10m, SNR=-35dB) 
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Figure 4.6a.  A sample of Bartlett Beamforming output ((DOA=160o, d=10m, SNR=-35dB) for 
single DIFAR sonobuoy (top panel) and ULA of DIFAR sonobuoys (bottom panel) 
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Figure 4.7a. A sample of Bartlett Beamforming output ((DOA=160o, d=10m, SNR=-40dB) for single 
DIFAR sonobuoy (top panel) and ULA of DIFAR sonobuoys (bottom panel) 
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Figure 4.7b. Output of  Monte Carlo simulations 
for single DIFAR sonobuoy ((DOA=160o, SNR=-

40dB) 

Figure 4.7c. Output of Monte Carlo simulations 
for ULA of DIFAR sonobuoys  ((DOA=160o, 

d=10m, SNR=-40dB) 
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4.2.4.2 ULA of DIFAR Sonobuoys spaced 50 meters apart 

The stability of system operation with such arrangement for DIFAR sonobuoys 

becomes questionable. Basically the distance between the main lobe and the first side 

lobe decreases significantly as shown in Figure 4.3d. This makes the system more 

susceptible to errors. Figures 4.8, 4.9 and 4.10 show a sample of the results obtained for 

processing ULA of DIFAR sonobuoys versus single processing. It is clear from these 

figures that the level of side lobes is notably amplified although the resolution of bearing 

estimation is improved. This effect is not noticeable at SNR of -25 dB as the percentage 

of bearing estimation error is 0%. At SNR’s -35dB and -40dB performance degradation 

appears as the percentage of error rises to 32% and 50% respectively. This value 

represents a relatively significant degradation in performance when compared to the error 

percentages of 0% and 21% obtained for the same level of SNR when DIFAR sonobuoys 

were spaced by 10 meters.  
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Figure 4.8a. A sample of Bartlett Beamforming output ((DOA=160o, d=50m, SNR=-35dB) 
for single DIFAR sonobuoy (top panel) and ULA of DIFAR sonobuoys (bottom panel) 
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Figure 4.8b. Output of Monte Carlo simulations for ULA of DIFAR sonobuoys  ((DOA=160o, d=50m, 

SNR=-25dB) 
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Figure 4.9a.  A sample of Bartlett Beamforming output ((DOA=160o, d=50m, SNR=-35dB) for single 
DIFAR sonobuoy (top panel) and ULA of DIFAR sonobuoys (bottom panel) 
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Figure 4.9b. Output of Monte Carlo simulations for ULA of DIFAR sonobuoys  ((DOA=160o, d=50m, 

SNR=-35dB) 
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Figure 4.10a.  A sample of Bartlett Beamforming output (d=50m, SNR=-40dB) for single DIFAR 
sonobuoy (top panel) and ULA of DIFAR sonobuoys (bottom panel) 
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Figure 4.10b. Output of Monte Carlo simulations for ULA of DIFAR sonobuoys  ((DOA=160o, d=50m, 
SNR=-40dB) 

 

4.2.4.3 ULA of DIFAR Sonobuoys spaced 300m Apart 

The results recorded for this part showed huge degradation in system 

performance. Mainly at such wide spacing the performance of single sonobuoy 

processing outperformed the array processing of sonobuoys group. Figures 4.11a shows 

an example where the performance of the single sonobuoy processing outperforms the 

array processing of sonobuoys group at SNR of -25dB. Moreover, the percentage of error 

recorded (10%) at this SNR is lower than the error percentage recorded for single 

sonobuoy processing (2%) at the same level of SNR. The system vulnerability increases 

at lower SNRs. This can be observed in Figures 4.12 and 4.13 where the system shows 

higher values of errors. In addition the range of errors in case of -40 dB SNR extends to 

cover the whole DOA possible values. 
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Figure 4.11a.  A sample of Bartlett Beamforming output ((DOA=160o, d=300m, SNR=-25dB) for 
single DIFAR sonobuoy (top panel) and ULA of DIFAR sonobuoys (bottom panel) 
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Figure 4.11b. Output of Monte Carlo simulations for ULA of DIFAR sonobuoys  
((DOA=160o, d=300m, SNR=-25dB) 
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Figure 4.12. Output of Monte Carlo simulations for ULA of DIFAR sonobuoys  
((DOA=160o, d=300m, SNR=-35dB) 
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Figure 4.13. Output of Monte Carlo simulations for ULA of DIFAR sonobuoys  
((DOA=160o, d=300m, SNR=-40dB) 

 

4.3 Processing arbitrary array of DIFAR sonobuoys: 

The environmental conditions of oceans are very likely to continuously cause 

irregular changes in the locations of the GPS sonobuoys. This results in a non-uniform 

array of sonobuoys. In this research the radiation pattern for the non-unifrom array of 

DIFAR sonobuoys was obtained in similar fashion to the linear array of DIFAR 

sonobuoys (i.e the radiation pattern resulting from the product of the steering vector of 

the non-uniform array and the normalized Fourier Transform of the received signal 

arriving from the direction 0 ). The radiation pattern equation for the non-uniform array 

of DIFAR sonobuoys did not have a simplified form as equation 4.8 as it comprises all 

the irregularities which can be produced at any location. 
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For the case study of array constellation shown in Figure 4.14a, the normalized 

Fourier Transform of the received signal arriving from direction 0 is give by: 


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The steering vector is given by  
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              4.14   

4.3.1 Simulation work 

In this part, an arbitrary array of 4 DIFAR sonobuoys is simulated. The inter-

element spacing values on the horizontal axis (east-west direction) are set to random 

selected values. Also the elements were shifted on the vertical axis (north-south 

direction) with random values. The acoustic source is similar to the one simulated in the 

test of linear array of DIFAR sonobuoys with the same features including a 10 second 

window size. The performance of arbitrary array processing is compared to single 

sonobuoy processing for SNR of -35 dB. The noise simulated is simulated in similar 

fashion to the noise simulated in the simulation of Linear DIFAR array tests. Figure 4.14 

and 4.15 show an illustration of the two simulated arbitrary arrays of DIFAR sonobuoys. 

For the first arbitrary array, the inter-element spacing of the horizontal axes are d1=50m, 
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d3=62m and d5=70m. The values of d2=40m, d4=70 and d6=100m. The second 

arbitrary array is similar to the first one except that d2=70m and d4=40m. The radiation 

pattern can be obtained by using equations 4.12 and 4.13 Figures 4.14b and 4.15b 

illustrates the radiation patterns obtained for the two et values of d1, d2, d3, d4, d5 and 

d6.  
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Figure 4.14  (a) Irregular array of DIFAR sonobuoys , (b) Radiation pattern for a source with a 
bearing of 160o impinging an irregular array of  4 DIFAR sonobuoys  with d1=50 m, d2=40m, 

d3=55 m, d4=70, d5=58 and d6= 100m. 
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(b) 

Figure 4.15  (a) Irregular array of DIFAR sonobuoys , (b) Radiation pattern for a source with a 
bearing of 160o impinging an irregular array of  4 DIFAR sonobuoys  with d1=50 m, d2=70m, 

d3=55 m, d4=40, d5=58 and d6= 100m. 

 

4.3.2 Results and discussion 

The radiation pattern of the arbitrary arrangement of sonobuoys shown in Figures 

4.14b and 4.15b demonstrate that the irregularity in the arrangement of sonobuoys can 

considerably change the array radiation pattern. Although the radiation pattern for the 

second arbitrary array exhibits more side lobes, the difference between the highest level 

of side lobe and the main lobe for the second arbitrary array is slightly lower than that of 

the first arbitrary array. The results recorded for the response of irregular array to 

different levels of SNR confirmed the observation depicted from its radiation pattern. 

Figures 4.16 ad 4.17 show the results obtained for SNR of -35db. Figure 4.16b shows the 

percentage of error obtained at SNR -35db (26%) which is still below that of single 

sonobuoy processing (50%) shown before at Figure 4.6b. The error percentage for the 
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arbitrary array of sonobuoys is close to the error percentage shown in Figure 4.9b (32%) 

for ULA of sonobuoys spaced at 50 meters apart for the same level of SNR. This 

suggests that arbitrary arrays of DIFAR sonobuoys can still provide superior results to the 

single sonobuoy processing. Moreover, the performance of arbitrary array is further 

enhanced by a small change in the arrangement of the array elements. In this case the 

arbitrary array shows a superior performance with 10% error as shown in Figure 4.17b. 

This means that arbitrary array can provide better performance than ULA. However the 

radiation pattern of the arbitrary array is very sensitive to the locations of the array 

elements and can provide unpredictable high side lobes which in turn can jeopardize the 

bearing estimation process. 
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Figure 4.16a. A sample of Bartlett Beamforming output (DOA=160o SNR=-35dB) for single DIFAR 
sonobuoy (top panel) and Arbitrary of DIFAR sonobuoys  shown in Figure 4.14 (bottom panel) 
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Figure 4.16b. Output of Monte Carlo simulations for the Arbitrary array of DIFAR sonobuoys 
shown in Figure 4.14  ( DOA=160o SNR=-35 dB ) 
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Figure 4.17a. A sample of Bartlett Beamforming output (DOA=160o SNR=-35dB) for single 
DIFAR sonobuoy (top panel) and Arbitrary of DIFAR sonobuoys  shown in Figure 4.15 (bottom 

panel) 
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Figure 4.17b. Output of Monte Carlo simulations for the Arbitrary array of DIFAR sonobuoys 
shown in Figure 4.15  ( DOA=160o SNR=-35 dB )  

 

4.4 Conclusion 

This chapter discussed the merits and limitation of a method suggested for array 

processing for a group of DIFAR sonobuoys. The steering vector for the array of DIFAR 

sonobuoys was derived as well as the radiation pattern of the array of sonobuoys. This 

was used to suggest a criterion for selecting the maximum spacing value between the 

DIFAR sonobuoys which showed that for guaranteed system stability the criterion 

obtained is close to the omni-directional array criterion. Nevertheless, a system with 

acceptable stability can be obtained with inter-element spacing exceeding the critical 

value of spacing with few meters. The array processing showed significant enhancement 

of system performance especially at SNR -35db and -40db which are considered 
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relatively very low SNR levels. The system of 10 meter spacing was able to provide a 

completely robust operation with 0% percentage error. Superior performance was also 

obtained at a SNR of -40 dB with of error percentage of 21%. System performance 

degraded with the increase in spacing values. This can be considered the main limitation 

on applying array processing to a group of free floating sonobuoys. Moreover the 

irregularity in the sonobuoys array arrangement provided some performance 

enhancement with 10% error at -35 dB DNR. This can be considered a limited 

improvement since the obtained performance is very sensitive to the changes in the 

locations of array elements. 

In general, it can be concluded that the array processing for a group of DIFAR 

sonobuoys provides noticeable enhancement to system accuracy and robustness. For 

ULA, the only limitation is imposed by the spacing between the DIFAR sonobuoys 

which can range from few meters to hundreds of meters that in turn provides unreliable 

performance for bearing estimation. Arbitrary array processing has an additional 

limitation which is the sensitivity of system performance to any changes in array 

arrangement. This research has further investigated these problems and explored several 

methods to mitigate the above limitation. Some new methods and approaches have been 

developed in this thesis and are presented in the next two chapters. 
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Chapter Five: A New DOA Estimation Approach for widely 

spaced arrays using Frequency Beamforming and ANN 

 

Beamforming using an array of sensors is one of the key methods of DOA 

estimation. Most of the DOA estimation methods employing beamforming impose 

limitations on the inter-element spacing between the array sensors. The maximum 

permissible distance is half the wavelength of the minimum frequency of the spectrum of 

interest. It was proved that exceeding the maximum distance generates grating lobes 

which lead to defective DOA estimation. In some cases it is not possible to comply with 

the array inter-element distance condition especially in cases of high frequency 

narrowband sources. In this case the array is spatially aliased. This research introduces a 

new method for processing spatially aliased arrays. The proposed approach employs a 

frequency beamforming technique aided with ANN. ANN is employed to resolve DOA 

ambiguity caused by spatial aliasing. The proposed method was tested using acoustic 

level simulated data and results show that the proposed method enables the processing of 

aliased arrays with different accuracies based on SNR and the inter-element distances of 

the aliased array. 

Spatial aliasing in uniformly spaced arrays is analogues to the time aliasing 

problem [Hinich78]. In spectral analysis the sampling interval must be less than half the 

smallest time period to avoid aliasing [Oppenheim98]. Similarly, spatial aliasing in 

uniformly spaced arrays can be avoided by ensuring that the spacing between array 
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elements is less than half the minimum wavelength of the received spectrum [Skolnik80]. 

This half wavelength spacing between array elements is mandatory to avoid ambiguities 

in DOA estimation. 

It has been reported that the half wavelength condition might not be always 

feasible [Zoltowski94]. For example in case of high upper end frequencies of observed 

spectrum, the elements become closely spaced [Zoltowski94]. This causes mutual 

coupling between array elements and provides poor resolution for DOA. The resolution 

capability and estimator accuracy of any arrival angle estimation algorithm is 

proportional to the aperture length measured in units of wavelengths. Moreover in some 

applications it is not possible to arrange the array sensors so that their inter-element 

spacing is less than half the minimum wavelength of the spectrum of interest. The spatial 

aliasing makes the system inappropriate for DOA estimation using conventional bearing 

estimation techniques. 

ANN have proven their ability as an efficient engineering tool for mapping 

complex nonlinear behavior, especially when there is significant scatter in the modeling 

data [Tsoukalas97]. ANN has been applied for the problem of DOA estimation (see El-

Zooghby97, Du02 and Gotsis09). The examined array structures in [El-Zooghby97 and 

Gotsis09] were designed with inter-element spacing less than half the wavelength of the 

upper bound frequency of interest. Applying the approaches proposed in [El-Zooghby97 

and Gotsis09] to the problem of DOA for spatially aliased arrays might provide a non 

robust solution due to the DOA ambiguity. This ambiguity might cause steering to the 

wrong direction which is masking the correct one. 
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Simplifying the parameters introduced to the artificial neural network provides a 

more robust DOA estimation. This can be achieved by applying an adequate DOA 

estimation algorithm combined with ANN to detect the DOA. 

To overcome the drawbacks of traditional beamformers, non conventional 

approach to adaptive beamforming are adopted in this research for underwater target 

detection and localization. The frequency based adaptive beamforming algorithm 

[Ziomek89] was chosen since it suits the problem of DOA estimation. This method 

doesn’t require directional information and at the same time provides iterative adaptive 

bearing estimation for all frequency components of the received signal  

The selected method is a modified complex least-mean-square (LMS) adaptive 

bearing estimation which is based on spectrum analysis of the received signal. It mainly 

processes the output frequency domain data from all elements in a planar array and 

provides estimates of the bearing of the incident plane wave fields [Ziomek89]. This was 

augmented by ANN to generate a non linear relation between DOA estimation 

parameters obtained from aliased array processing and the correct parameters. 

This research aims at: 1) Exploring the application of FB method for DOA 

estimation using spatially aliased arrays; 2) Identifying the effect of spatial aliasing on 

the FB method; 3) Identifying the parameters required to resolve the aliasing effect; 4) 

Deriving the relations governing those parameters together with their possible range of 

values; 5) Designing ANN to estimate the values of the spatial aliasing resolution 

parameters; 6) Integrating FB and ANN to introduce a module that incorporates the 

benefits of FB and ANN to estimate DOA using aliased array of sensors and 7)  

Examining  the proposed module by  using acoustic level data simulation. 
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5.1 Frequency domain adaptive beamforming for planar arrays 

The algorithm employed in this research is based on Frequency domain adaptive 

beamforming method for planar arrays [Ziomek89]. The algorithm is a modified complex 

LMS adaptive algorithm that processes the output complex frequency domain data from 

M X N elements arranged in a planar array in order to provide estimate of the bearing of 

incident plane wave fields. Least mean square solution is achieved through the 

minimization of an error factor. The error factor is defined as the difference between the 

signal received by the element at the array center and the estimated signal. The algorithm 

M X N structure requires an odd number of sensors in both X and Y directions in order to 

perform properly [Ziomek89]. Also it assumes that the array is composed of equally 

spaced point source elements lying in the XY plane, where M and N are the total odd 

number of elements in the X and Y directions respectively. 

The received signal values utilized in error calculation are obtained from the DFT of 

received signal with respect to the time index. The complex frequency domain samples at 

array elements are given by: 

),,(),,(),,( nmqZnmqYnmqR         5.1 

,',,0,,' LLq   

,',,0,,' MMm   

,',,0,,' NNn   

),,( nmqY and ),,( nmqZ  are the frequency spectrum of the deterministic signal and 

random receiver noise, respectively.  
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L`= (L-1)/2,    M`= (M-1)/2     , N`= (N-1)/2    , And    12  KL        5.2 

L is the total number of time samples. 

The acoustic field incident upon the planar array is assumed to be a general plane-

wave. Therefore the frequency spectrum of the deterministic signal ),,( nmqY  is 

represented by [Ziomek89]: 

)/2exp()/2exp()0,0,(),,( cndvfqjcmdufqjqYnmqY yooxoo             5.3 

Where 

dx and dy are the interelement spacing in meters in the X and Y directions, 

respectively and c is the speed of sound in meters per second. 

ou  and ov  Are the dimensionless direction cosines with respect to the X and 

Y axes, respectively. 

ooou  cossin          

ooov  sinsin                         5.4 

 o  and o  are the depression and bearing angles respectively. 

The algorithm uses a planar array to estimate both angles o  and o   for each 

harmonic q present in the multiple incident plane-wave fields via frequency domain 

adaptive beamforming. This research focuses on 2D direction of arrival estimation. Thus 

the proposed algorithm is only used to estimate the bearing o .  

The signal direction of arrival estimation in 2D is based on processing the output 

complex frequency domain data R(q,m,n) from all M X N elements in the planar array. 

The algorithm defines the complex estimation error as [Ziomek89]: 
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)(ˆ)()( qsqsqe                 5.5 

Where )(qs is defined as the reference signal and )(ˆ qs  is the estimated signal 

The estimated signal is defined by [Ziomek89]:  

)/()()()()(ˆ LMNqwqZqwqs T            5.6 

Where )(qw  is the weight vector 

 
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




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)(

qd

qc
qw               5.7 

And BqRAqZ T )()(                  5.8  

Where  
NMMM

IA


 0|   and  
NMMM

IB


 0|            5.9 

)(qc  and )(qd are the 1M  and the 1N  complex weigh vectors in the X and Y 

directions respectively given by [Ziomek89]: 

 TMqcqcMqcqc )',()'0,()',()(   

 TNqdqdNqdqd )',()'0,()',()(   

 

R(q) is M X N complex data matrix.  
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        5.10 

The complex weight vector that minimizes the mean-square error  2
)(qeE   is given 

by [Ziomek89]: 
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  )()()()(2)()( **

1 qwqZqZqeqwqw i
T

iii           5.11 

Where  

)(ˆ)()( qsqsqe ii   is the estimation error after the ith iteration, 

)/()()()()(ˆ LMNqwqZqwqs i
T
ii   is the estimate of s(q) after the ith iteration  and  

  is step size. 

The obtained steady state complex vectors are processed [Ziomek89] to obtain 

estimates of the direction cosines )(ˆ quLS
o  and )(ˆ qv LS

o . This starts by obtaining the real 

wrapped phase weights from the steady state complex weight vectors using the 

following relation 

 ),(exp),( mqjmqc ssss          

 ),(exp),( nqjnqd ssss           5.12 

),(),( nqandnq w
ss

w
ss  are the real, "wrapped" phase weights.  

The relation between the estimates of the direction cosines and the real wrapped 

phase weights is given by: 

cmdquqfmq x
w

ss /)(2),( 00          

cndquqfnq y
W
ss /)(2),( 00        5.13 

After unwrapping the phase weights, a least square estimate of the direction 

cosines ( )(ˆ quLS
o  and )(ˆ qv LS

o ) is obtained. )(ˆ quLS
o  and )(ˆ qv LS

o  are used to calculate the 

angle of arrival (AoA) )(qo  at each harmonic q using inverse tangent as shown in 

equation 11. 
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 )(ˆ/)(ˆtan)(ˆ 1 quqvq LS
o

LS
oo

        ,  0q       5.14 

 

5.2 Methodology 

5.2.1 FB for spatially aliased arrays 

The mathematical features of the FB method make it suitable to be oriented for 

the processing of spatially aliased uniform planar arrays. By analyzing the procedures of 

the FB algorithm it is clear that the effect of spatial aliasing appears mainly in equations 

11 to 14.  The ambiguity in the DOA estimation is mainly caused by the calculation of 

the unwrapped steady state phase weights in equations 11 and 12. The phases of the 

complex exponents in these two equations are confined to the values between   

and .  

To study the effect of aliasing on the phase weights, consider a single harmonic 

source of frequency sourcef  . The output index sourceq  of the FFT is given by:  

sourceq =
0f

f source          5.15 

At m=n=1, the maximum absolute values of ),(),( nqandnq w
ss

w
ss   correspond to   

ou  = ov =1. Also the minimum values of ),(),( nqandnq w
ss

w
ss   correspond to   

ou  = ov =1. To obtain a unique solution for the estimated AoA, the phase values 

must lie between   and . 

cdfmq ysource
w

ss /2),(
max

        5.16 

This implies that 
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 cdf xsource /2         5.17 

Since 
source

source f

c
          5.18 

Therefore  

2
source

xd


          5.19 

Similarly it can shown that  

2
source

yd


         5.20 

Equations 23 and 24 are the condition required to prevent phase ambiguity. This 

is typically the condition to prevent spatial aliasing for the uniform planar array. Spatial 

aliasing takes place if any of xd  and  yd  are larger than  2/source  . The effect of 

spatial aliasing on the estimation of the direction cosines ( ou  and ov ) is caused by the 

wrapped phase ambiguity. This ambiguity can be resolved by proper estimation of 

unwrapping parameters. These parameters and their ranges were defined using equations 

17 and 19 as follows: 

Considering the case of 1 nm , )(0 sourcequ  is thus given by: 

xsource
source

w
sssource df

c
mqqu




2
*),()(0       5.21 

xsource
source

w
ssxunwrappedsource df

c
mqrqu




2
*)),(**2()(0   , 5.22 

Where xr  is an integer value. 

This can be written as 
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))(()( 00 source
x

sourcex
unwrappedsource qu

d

r
qu 


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Therefore we can obtain a range of possible values of i by using the above 

boundary condition. First we define the minimum and maximum possible values of I 

( maxxr  and minxr ) as follows: 

 

  






 


source

sourcex
x

qud
egerr


))(1(

int 0
max  and  







 


source

sourcex
x

qud
egerr


))(1(

int 0
min  5.25 

This implies that the range of possible values of xr  is given by: 
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By following the same procedure for 0v  we get that 
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Where yr  is an integer value. 

The range of yr  can be derived in similar fashion as xr  shown above. Therefore  
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The selection of xr and yr  values resolves the phase ambiguities caused by the 

spatial aliasing. As the inter-element spacing increases the range of xr and yr  value 

increases. In this research work ANN is used to select the appropriate xr and yr  values. 

  

5.2.2 Design of an ANN module for phase ambiguity resolution 

The ANN is adopted to construct a non-linear relation that between the 

unwrapped direction cosines and the phase ambiguity resolution parameters. ANN is a 

massively parallel distributed processor that allows modeling highly complex and 

nonlinear problems with high level of stochastic that cannot be solved using conventional 

algorithmic approaches [Haykin99, Ham01]. It is composed of simple elements operating 

in parallel. Being inspired by the biological nervous system these elements are called 

“Neurons” [Ham01]. ANN functionality is determined by the connections between the 

neurons. It can be trained to perform a particular function by tuning the values of the 

weights (connections) between the neurons. The ANN resembles the brain in two aspects. 

First, the network acquires knowledge through a learning process. Second, the 

interneuron connection weights are used to store the knowledge. The input to the network 

includes the wrapped direction cosines while the network output is the corresponding 

unwrapping parameters ( xr and yr ). The developed ANN corresponds to a fixed array 

design and a single harmonic value. Data set is formed by simulating a single harming 

acoustic source with different SNR’s. The frequency of the simulated signal is the 

targeted source frequency. This takes place for all possible directions of arrival between  

  and .  
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As shown in Figure 5.1, during the training procedure of the network the wrapped 

direction cosines are fed to the network and the outputs are the unwrapping parameters 

corresponding to the simulated source DOA. The network outputs are compared to the 

desired unwrapping parameters. The error in between is fed to the learning criterion, 

which adjusts the network parameters in a way to minimize the mean square value of the 

error. Figure 5.2 shows the operation of the ANN module in the operation mode. It 

provides an estimate of unwrapping parameters based on the direction cosines at the 

input. The unwrapping parameters are used to calculate the unwrapped direction cosines 

and hence provide an estimate of signal DOA. 

 

Neural 
Network

Wrapped 
Direction 
cosines

Training 
Criterion

Desired unwrapping 
Parameters

ANN 
Parameter 

Adjustment

Simulated DoA
Corresponidng to the 
current signal record

Calculates  
unwrapping 
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Figure 5.1. Training procedure of ANN module. 
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Figure 5. 2. ANN operation for estimating the unwrapping parameters ( xr and yr ) 

 

In this study, a multi-layer perceptron (MLP) network with the architecture shown 

in Figure 5.3 is considered. The input layer of the network has two input neurons for the 

direction cosines. The output layer has two output neurons for the corresponding 

unwrapping parameters. We have also considered only one hidden layer. Different 

numbers of neurons were examined for the speed of convergence and minimum error 

value achieved.  The optimum number found was 256 neurons. More complex network 

structures of more hidden layers and more neurons in each layer can be adopted. 

However, we have determined that the network architecture shown on Figure 5.3 is 

appropriate enough for the considered application.     
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Figure 5. 3. Architecture of one hidden layer MLP network for phase ambiguity resolution 

 

The weights W and the biases b are the ANN parameters that are computed during 

the training procedure and they determine the input/output functionality of the network. 

The weights are multiplied by the inputs to each neuron while the biases are considered at 

each neuron to limit or lower down the input to the activation function  [Ham01]. A 

Hyperbolic tangent function (tansigmoid) is employed inside the hidden neurons to 

model the non-linearity in the input/output relationship. A linear activation function is 

considered at the neuron of the output layer to perform as a linear superposition of the 

outputs of the hidden neurons. It should be highlighted that individual ANN module of 

the form shown on Figure 5.3 is designed for each array design and desired source 

frequency. These types of networks are known as feed forward back propagation (FFBP) 

neural networks. The forward path of the computation involves feeding the inputs to the 

network starting from the input layer [Ham01]. The output is obtained and compared to 
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the target (desired performance) to determine the estimation error. This error is 

propagated through the network in the backward direction (opposite to the follow of the 

input data) starting from the output layer and is utilized to update the computation of the 

network parameters. The forward and backward computations are repeated until 

achieving the optimal values of the weights, which correspond to certain objective mean 

square estimation error. The network weights are updated according to certain learning 

rule to minimize the mean square value of the estimation error. In this study, we have 

utilized the levenberg-Marquardt learning rule, which provides the fastest training 

algorithm among other learning rules [Ham01]. 

 

5.2.3 FB-NN DOA estimation module 

 The module adopted in this research is demonstrated in Figure 5.4. First the 

received signal is processed using FB module which computes the unwrapped direction 

cosines. The desired frequency and direction cosines are fed into the unwrapping module. 

This module consists of various neural networks corresponding to the frequency pins of 

the spectrum of interest. The desired frequency is used to select the corresponding trained 

NN. The direction cosines are then fed into the selected NN to generate an estimate of 

unwrapping parameters. Using the unwrapping parameters, the final module unwraps the 

direction cosines and obtains an estimate of DOA for the intended source. 
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Figure 5.4. FB-NN  DOA estimation module 

 

5.3 Results and Discussion 

5.3.1 Simulation Scenario 

The simulation results presented in this section are based on processing the output 

electrical signals from a 3 X 3 planar array of hydrophones. The simulated data was 

generated using acoustic level simulation previously introduced in chapter 3. The 

simulated source is a non-moving acoustic source emitting single harmonic plan wave. In 

all tested cases the received signal frequency was chosen to be f=100Hz with an 

amplitude of 10 volts sampled at a rate of 1000 Hz. The data record used in each test is 5 

seconds which generate 5000 samples per record. The propagation velocity of the 

simulated signal is 1500 m/s which represent the average sound velocity underwater. This 

implies that the received signal wavelength is 7.5 m. Test cases represent different inter-
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element spacing values which exceeds 7.5 m (the maximum allowable inter-element 

spacing). The presented cases here correspond to inter-element spacing of 10 m, 19 m 

and 101m. These values were chosen to represent the effect of increased inter-element 

spacing on the proposed processing method. For each test case results were obtained for 

different levels of SNR. The SNR’s examined in each test are 0 dB, -10 dB, -15 dB and -

20 dB. Different noise levels were simulated using additive, wide-sense stationary, zero 

mean, white, Gaussian noise samples to corrupt the time samples of the signals. Figure 

5.3 shows a general representation of the simulated cases. 

 

5.3.2 Results 

Bearing angle estimation errors were obtained by running the simulation once and 

allowing the modified complex LMS algorithm 1000 iterations. The result bearing angle 

estimation parameters are then passed to the neural network to obtain the unwrapping 

parameters. Results are shown for all expected bearings between –π and π. 

 

Figure 5. 5. 3 X 3 planar array with d inter-element spacing and non moving source 
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The number of iterations and step size used in the FB method had a significant 

effect on solution accuracy.  Selection of step size and number of iterations was based on 

examination of different combinations of these two parameters. The best parameters were 

8106.6   for step size and 2000 the number of iterations.  

Feed forward back propagation (FFBP) network was then trained using a set of 

simulated data with SNR’s ranging between 0 dB and -20 dB. Each record of the data set 

represents DOA parameters corresponding to single harmonic signal. Data records were 

generated for bearings between -pi and pi with a resolution of 1 degree. This was 

repeated for different SNR’s (0 dB, -10 dB, -15 dB and -20 dB) resulting in a data set of 

1800 records. After building the ANN bank, test cases were run using additive, wide-

sense stationary, zero mean, white, Gaussian noise samples to corrupt the time samples of 

the signal. Each test record is a single harmonic source signal. The test record included 

test signals for sources arriving from all directions between –pi and pi. Test data sets 

were generated for SNRs 0 dB, -10 dB, -15 dB and -20 dB. 

The ANN training set was applied in a random order to generate a robust mapping 

that resolves ambiguity of aliased DOA parameters. The selection of the number of 

hidden layer nodes was based on several trials to achieve the optimum number of nodes 

corresponding to minimal error for NN solution. Figures 5.6, 5.7 and 5.8 demonstrate the 

significance of the number of hidden neurons. The error percentage represents the 

average error obtained for DOA estimation. The average error shown in Figures 5.6, 5.7 

and 5.8 is calculated by applying the no noise data set to the ANN and comparing the 

estimated DOA’s to the simulation data DOA’s.  The total number of errors corresponds 

to the instances when the difference between the estimated DOA and simulation data 
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DOA exceeds 5 degrees. This is divided by the total number of records to get the average 

error percentage. For the proposed design the selected optimum value for the NN hidden 

nodes was 256. This value provided the minimum error for the considered cases and 

hence it was employed for the evaluation of system performance in different cases and 

different SNR’s. 
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Figure 5.6. Error variation with the number of hidden nodes for Case I (10m dinter-element spacing) 
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Figure 5.7. Error variation with the number of hidden nodes for Case II (19m inter-element spacing) 
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Figure 5.8. Error variation with the number of hidden nodes for Case III (101m) 
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It can be observed that increasing the inter-element distance deteriorates the 

performance of the spatially aliased array. The increase in the inter-element spacing 

results in an increase of the unwrapping parameters range which broadens the solution 

space. Accordingly the system becomes more susceptible to errors. Figures 5.9 and 5.10 

illustrate the behavior of the unwrapped direction cosines versus the source bearing for 

the tested cases. The reference values represent the direction cosines associated with the 

simulated source. Direction cosines for each case correspond to different array inter-

element spacing (10m, 19m and 101m). This verifies the degradation in performance 

accompanying the increase in the inter-element spacing of the spatially aliased array. 

However it can be depicted from Figures 5.6, 5.7 and 5.8 that the variations in the 

average error percentages values achieved are significantly minimized as the number of 

hidden nodes of the ANN increase. The minimum average error percentages for the test 

cases vary between 1.2% and 11.1%. This shows a significant reduction compared to the 

initial range of average error percentages which vary between 4.1% and 49.7%. 
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Figure 5.9. Variation of estimated unit vector in x axis  against different source bearings 
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Figure 5. 10. Variation of estimated unit vector in y axis  against different source bearings 
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The second testing phase for the developed module was to examine its 

performance against different levels of SNR. Figure 5.11 illustrates the average error 

percentage for different cases versus SNR. These values were calculated using the 

module corresponding to ANN of 256 hidden nodes. For no noise case the variations in 

the average error percentage for different cases was considerably minimized by proper 

selection of the number of hidden nodes for the ANN. The system behavior degrades as 

the level of SNR decreases. The system degradation becomes more significant as the 

inter-element spacing increases. This fact can be considered a limitation over the increase 

of inter-element spacing for spatially aliased arrays. However using some denoising 

technique can boost the performance of the spatially aliased arrays and provide a wider 

range of proper inter-element spacing. 
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5.4 Conclusion 

This chapter introduced a spatially aliased array processing method based on non 

conventional FB technique augmented by ANN that enabled DOA ambiguity resolution 

when the inter-element distance between array elements exceeded the maximum 

allowable distance. The performance of the proposed method is influenced by the noise 

level and the distance between the array elements. We determined that at low SNR 

environments, this method cannot provide adequate performance for relatively large 

inter-element spacing. Another major limitation on the proposed FB-based method is the 

requirement of two dimensional array constellations with equal inter-element spacing and 

odd number of sensors in each dimension. In some applications, this array constellation 

can be realized, thus the proposed method can be applied efficiently. However, the 
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Figure 5. 11. Error variation with SNR for 256 hidden layers 
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limitations of this method preclude the use of this method when sonobuoys are deployed 

into water where their locations can vary over time so that equal inter-element spacing 

cannot be maintained and the required array arrangement cannot be realized. Therefore, 

this research has been extended further to explore innovative methods that enable 

processing an array of GPS sonobuoys with minimal limitations on the inter-element 

spacing and with no special requirements on the array constellation. This method shall be 

able to coherently process a sparse array of GPS sonobuoys and will benefit from the data 

recorded by the three sensors of DIFAR type of sonobuoys.        
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Chapter Six: Direction of Arrival Estimation using Virtual 

Array Search (VAS) 

 

In this chapter a new method for DOA estimation is introduced. This method 

employs advanced array interpolation technique for effective DOA estimation using an 

array of DIFAR sonobuoys. In chapter 4, it was shown that array processing of DIFAR 

sonobuoys field introduced significant improvement for the bearing estimation accuracy 

at relatively low SNR environments. The radiation pattern for a group of DIFAR 

sonobuoys should always provide a unique DOA solution independent of the inter-

element distance. This corresponds to the tip of the DIFAR sonobuoy beam pattern at the 

centre of the main lobe.  However, the low resolution of Bartlett beamforming may cause 

the solution to be numerically unstable [Nicholas96] in cases where the side lobes are too 

close to the main lobe. In this case the level of side lobes is very close to the main lobe 

and hence the system becomes unstable. Furthermore, the environmental conditions and 

deployment strategies cause the inter-element distance between sonobuoys to exceed the 

minimum distance required for stable array processing. These conditions can prohibit 

adequate processing of an array of DIFAR sonobuoys. 

In order to avoid the above limitations, virtual array (VA) processing using array 

interpolation is proposed as a technique for mapping an array of DIFAR sonobuoys to 

desirable constellations that enables reliable system processing. Array interpolation 

(mapping) was introduced around 1990 [Hyperg04]. It was usually applied for two main 

reasons [Hyperg04]: (1) to interpolate between available calibration points; (2) to 
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transform the sonobuoys received data to a corresponding one of particular array 

geometry. This enables the use of available fast DOA estimators that requires definite 

arrangements for the array elements [Hyperg04] (e.g. Multiple signal classification 

(MUSIC) [Schmidt86]). In this research array interpolation is applied to generate a 

virtual array.  

Virtual array search (VAS) is proposed in this research to mitigate the system 

deficiency caused by wide spacing between DIFAR sonobuoys. The proposed VAS 

algorithm is mainly based on advanced array interpolation technique which is suitable for 

one dimensional and two dimensional arrays. Thus it enables processing the sonobuoy 

recorded data for different array deployment strategies. In addition, this method increases 

system efficiency by enabling coherent array processing for an array of widely spaced 

elements. The array mapping process is mainly based on the design of transformation 

matrix that maps the signals received at the original array to the virtual array. This 

transformation matrix can significantly affect the operation of the virtual array depending 

on its mapping accuracy. Systematic mapping errors may dominate over noise effects and 

cause significant bias in the DOA estimates. To prevent mapping errors from improperly 

affecting the DOA estimates, the technique proposed in [Hyperg04] uses a geometrical 

interpretation of a Taylor series expansion of the DOA estimator criterion function to 

derive an alternative design of the mapping matrix. The key feature of the proposed 

design is that it takes into account the orthogonality between the manifold mapping errors 

and certain gradients of the estimator criterion function. With the new design, mapping of 

narrowband signals between dissimilar array geometries over wide sectors and large 

frequency ranges becomes feasible. The interpolation technique introduced in [Hyperg04] 
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suggests the processing of wide sectors and design one common mapping matrix for each 

sector (and each frequency band). Each of these mapping matrices has to be a 

compromise over its sector which represents a fundamental difficulty that leaves 

unavoidable mapping errors. As the width of these sectors increases, the interpolation 

errors increase.  Although these errors cannot be brought to zero, they are to some extent 

controllable through the proper choice of the interpolation matrix. Usually, the mapping 

matrix is designed to provide the best least squares fit between the transformed response 

vectors of the real array and the response vectors of the virtual array for a set of DOAs 

comprising a sector. Such a best array manifold match does not in general guarantee the 

smallest DOA estimate bias [Hyperg04] and hence introduces large mapping errors. The 

employed interpolation technique minimizes the influence of mapping errors on the DOA 

estimates by rotating the mapping errors into orthogonality with the gradient of the 

estimator criterion function. 

The proposed method was tested using simulated data. A comparative analysis is 

presented with respect to Bartellet beamforming on GPS sonobuoys field.  The results 

show that the proposed method is capable of enhancing the accuracy of target bearing 

estimation especially in cases of very low SNR. Merits and limitations of the proposed 

method are discussed and analyzed in this chapter. 

 

6.1 Virtual Array Search (VAS) 

In this research, the virtual array processing is introduced in a new approach 

different from those discussed above. The virtual array search is commonly used to 
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transfer an array arrangement to a designated one that suits the DOA estimation 

technique. In this research, the bearing estimation using Bartlett beamforming and is 

aided by the VAS approach. The received signals at the original array elements are 

mapped to the virtual array elements using all possible transformation matrices that are 

designed for all sectors covering all possible DOAs. Bartlett beamforming is then applied 

to all mapped arrays. The maximum power corresponding to each transformation matrix 

is recorded. The bearing corresponding to the maximum of the recorded maxima is 

selected to be the DOA. The procedure of using virtual array represents an additional 

condition to examine the DOA. VAS searches the original array radiation pattern for the 

true bearing based on the fact that the best fit for the DOA is the transformation matrix 

designed for its sector. Therefore, the VAS approach rejects other sectors and increases 

the accuracy level of the array processing system. Moreover, proper selection of sector 

width provides higher resolution for the system and efficient suppression of side lobes. 

Figure 6.1 shows an explanatory block diagram for the newly proposed VAS approach.  
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Figure 6.1. VAS approach 

 

 

6.2 Array Mapping 

The signal model used in this research has some assumptions including: (1) The 

received signal is a narrowband far-field; (2) The emitter is confined to the horizontal 

plane. The second assumption was used to simplify design since the tracking nature of 

DIFAR sonobuoys considers calculating the DOA only in the horizontal plane, thus no 

need for 2-D extension of the array elements [Hyperg04]. The complex baseband model 

for the received signal is given by: 

)()()()( tntsatx            6.1 
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Where )(tx  is 1m  array output vector at discrete time instant t ; 

   is the azimuth angle. 

 a  is 1m  complex array response to a source in direction   with unity power; 

 )(ts  is received signal at a reference point at time t ; 

)(tn  is 1n  noise vector at time t ; 

 

Figures 6.2 and 6.3 demonstrate the steering vectors associated with the elements 

of the original array and the virtual array, respectively. For the particular original and 

virtual arrays shown in these two figures, the steering vectors  a  and  va  are given 

as follows: 

 Tdjdjdja 0cos)/sin2exp(sin)/sin2exp()/sin2exp(cossin1)(    



Tvvv

vvv

vvvv

djdjdj

djdjdj

djdjdja






cos)/sin6exp(sin)/sin6exp()/sin6exp(

cos)/sin4exp(sin)/sin4exp()/sin4exp(

cos)/sin2exp(sin)/sin2exp()/sin2exp(cossin1)( 

                  6.2 

Where  va  is the steering vector of virtual array of DIFAR sonobuoys, d  and vd  are 

the inte-element distances for the Original array and virtual array respectively and   is 

the wavelength of the received signal. 
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The matrices comprising the steering vectors obtained at calN calibration 

directions for the original and virtual arrays shown respectively in Figures 6.2 and 6.3 can 

be given as follows: 

        )()2()1()( calNc aaaA    

        )()2()1()( calN
vvv

c
v aaaA        6.3 

Where  )(c  is the collection of adjacent calN calibration directions,  )(cA   and 

 )(c
vA   are the transformation matrices comprising steering vectors for original and 

virtual arrays respectively. 

The transformation matrix that maps the original array to the virtual array can be 

simply obtained by obtaining least squares fit between the transformed array response 

and the response of the virtual array over a sector of interest, that is [Hyperg04]:  

    2)()(minarg
F

c
v

cH

T
LS AATT          6.4 

 

Where 
F

  denotes the Frobenius norm  

With m3  elements in the original array and vm3  elements in the virtual array, the 

matrix of virtual response vectors has calv Nm 3  size. This implies that T  has size 

vmm 33  . If is not known analytically, the columns of  )(cA   are chosen as the array 

responses obtained from a calibration experiment. Assuming more calibration points than 

antenna elements in the real array ( )mNcal   and that  )(cA   is full rank, the least 

squares solution to (6.4) is [Hyperg04] 
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        )()(1)()( cH
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ccHc
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
       6.5 

The Bias effect of mapping the matrix obtained by least square fitting can be 

obtained by subtracting virtual array response vector from the product of array response 

vector of the real array and the Hermiston of transformation matrix. [Hyperg04]  

     )()()( c
v

cHc AATA          6.6 

The ultimate objective is to reach zero mapping error, however, for mapping 

between dissimilar and/or wide spaced arrays over large sectors, a perfect match will 

seldom be the case, and biased estimates may result. The interpolation technique 

introduced in [Hyperg04] incorporates additional properties to the LST  calculation 

procedures to minimize DOA bias in situations where   0)(  cA  .    

The DOA bias mitigation procedure employed in [Hyperg04] was developed for 

DOA using MUSIC and weighted subspace fitting (WSF) [Viberg91].  In this research 

work, the transformation matrix introduced in [Hyperg04] is applied to DOA using 

Bartelett beamforming. Since the transformation matrix obtained for MUSIC and WSF 

provides the optimum mapping parameters for these methods, the obtained solution for 

the transformation matrix can be considered an optimum mapping method for Bartlett 

beamforming. This assumption is based on the fact that the optimum transformation 

provides highly accurate interpolation of the array received signal.  

In case of MUSIC approach, the transformation matrix bias reduction is based on 

minimization of deterministic signal subspace eigenvector errors due to array 

transformations. Subspace-based DOA estimators are considered, and therefore, an 

estimate of the signal subspace eigenvector of the virtual array is needed. In this research, 
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VAS uses the same approach but with using the normalized steering vector instead of the 

eigenvalue vector employed by MUSIC. The design of the transformation matrix using 

the eigenvalue approach is explained in Appendix A and is shown in Eq. 6.7: 

   2)()(

1

2)()( Re2)()(1minarg i
v

Hi
v

N

i

i
v

iH

T
LS egkaaTkT

cal

 


    6.7 

Where vg  is the complex gradient of  veV ,0  with respect to with respect to the signal 

eigenvector of the virtual array ( ve ) and  veV ˆ,  is the criterion function associated with 

the MUSIC algorithm The derivation of formula of  vg  is detailed in Appendix A. )(i
ve  

is the virtual signal eigenvector mapping error in the i th calibration direction, 

)()()( i
v

i
s

Hi
v eeTe   ( )(i

se  is the signal eigenvector of the real array from a single emitter 

in the i th calibration direction and )(i
ve  is the signal eigenvector of the virtual array from 

a single emitter in the i th calibration direction). 

The algorithm presented in [Hyperg04] uses the property that the range of the 

signal subspace se equals the range of )(a  and that se  is only determined up to a phase 

factor. Therefore a unique signal eigenvectors can be obtained by choosing the phase 

factor so that se  equals the corresponding normalized array response vector )(a , that is: 

  2/1
)()()()(


  aaaae H

s            6.8 

This property enables the application of the above array mapping algorithm to the 

problem of DOA estimation using Bartlett beamforming. The transformation matrix 

minimization problem can therefore be expressed as: 

    2)(

1

2)()( )()(Re2)()(1minarg  v
HHi

v
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i
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iH

T
LS aaTgkaaTkT
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 
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 6.9 
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The minimization problem (Equation 6.9) is solved by [Hyperg04] applying the 

vec operator to both terms inside each norm and solve for a vectorized t version of T. 

First step is to reverse order between factors by taking the Hermitian transpose of Eq. 6.9.  

The transformation matrix criteria can then be written as [Hyperg04]: 
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Where A and vA are matrices of normalized response vectors, and )(c  is a calN1  vector 

of calibration azimuths. Consequently, the vec operator (that transforms a matrix into a 

vector) is applied to get: 
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Where   is the Kronecker product [Steeb97]. The terms of Equation 6.11 are then 

represented by the following notations [Hyperg04]: 

  )(
1 1 cHAkM           6.12 

  )(
2 1 cH

vAveckm           6.13 

  )()()(
3

iHTi
v

i agkM           6.14 

  )()()(
4

i
v

iH
v

i gakm           6.15 
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The sizes of 1M , 2m  and )(
3

iM  are mmNm vcalv  , 1calv Nm  and  mmv1  respectively. 

The term )(
4
im  is a scalar. By using these terms equation 6.11 can be written in the 

following form [Hyperg04]: 
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The short hand notation for equation 6.16 can be given as follows [Hyperg04]: 

2
minarg mMtT

T
opt          6.17 

The vectorized version of optimal transformation matrix is then obtained from the least 

square solution of Eq 6.17 ad given by [Hyperg04]: 

  
   mM
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Im

Re
        6.18 

Where M  is the Moore-Penrose Pseudoinverse [Stoer02] of M . 

 

6.2.1 Virtual array design parameters 

Since the virtual array design procedure can be carried offline, different design 

strategies can be tested to determine the one that is best suited for the application of 

interest. The virtual array design is mainly determined by three parameters: (1) the value 

of k; (2) the number of virtual elements; (3) The width of sectors for which optimum 

transformation matrices are developed. 



159 

 

The parameters of the optimum design were selected to achieve minimum DOA 

bias over all possible directions (i.e  20 ). This bias was calculated by examining the 

estimated bearing for simulated single tone signals. Each simulated signal corresponded 

to one of the possible DOAs. 

 

6.3 Simulation work 

The performance of VAS was evaluated using an array of 3 DIFAR sonobuoys 

with different inter-element spacing. VAS was tested using two scenarios for DIFAR 

sonobuoys arrangement. In the first scenario DIFAR sonobuoys are arranged as a ULA 

with inter-element spacing of 60m. In the second scenario DIFAR sonobuosy are 

arranged as an arbitrary array. Figure 6.4a and 6.5a illustrates the simulated ULA array 

and the arbitrary array respectively. The large circles represent the real DIFAR 

sonobuoys and the small circles represent the virtual array elements generated using array 

interpolation method. The signal angle of arrival with respect to the North is similar at all 

array elements based on the far field assumption. To hold the far field condition, the 

simulated acoustic source is set at a distance of 5000 m from the central element of the 

original DIFAR array. This value is much greater than 60 m and hence the far field 

condition holds for the simulated scenarios. The radiation pattern associated with the 

array arrangements are shown in Figure 6.4b and 6.5b. The high side lobes in the 

radiation pattern of the ULA (Figure 6.4b) increase the system vulnerability to bearing 

estimation errors especially at relatively low SNRs. The radiation pattern of the arbitrary 

array shown in Figure 6.5b demonstrates the increase in the level of side lobes with the 
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introduction of irregularities in the positions of the DIFAR sonobuoys. This significantly 

degrades the bearing estimation accuracy and hence it jeopardizes the overall TMA 

process. VAS is applied for these two scenarios to enhance the bearing estimation 

accuracy at low SNRs. The first step in applying VAS is to generate the transformation 

matrices for all sectors of angular space. The design of the transformation matrices 

includes selecting the appropriate value for the parameter k (Eq 6.11); 2), selecting the 

sector width and selecting the inter-element spacing between the virtual array elements. 

The minimum bias criterion is used to select the appropriate set of transformation 

matrices. VAS is then applied to the received signal to obtain an estimate of the target 

bearing. Three sonobuoys are simulated with inter-element spacing of 60 m. Simulations 

were carried for single tone source with bearings at 160o and 30o. The performance of 

VAS in bearing estimation for the two values of target bearing is examined to study the 

variation of VAS at different bearings. In both cases the source acoustic signal has a 

single tone frequency of 100 Hz and amplitude of 140 dB re µPa. The system 

performance was examined for SNRs of -30dB and -40 dB. Results compare the output 

from the processing of real array and virtual array of DIFAR sonobuoys. 
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Figure 6.4 (a) ULA of 3 DIFAR sonobuoys , (b) Radiation pattern for a source with a bearing of 160o 

impinging ULA of  3 DIFAR sonobuoys  with d=60 m 
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Figure 6.5  (a) Arbitrary array of DIFAR sonobuoys , (b) Radiation pattern for a source with a 
bearing of 160o impinging an arbitrary array of  3 DIFAR sonobuoys  with d1=60 m, d2=80m, d3=70 

and d4= 40m 
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6.3.1 Transformation Matrix design 

The transformation matrix sector width and the parameter k were selected using 

basic simulation of single tone signal without noise. Figure 6.6 shows the bias in degree 

introduced by the virtual array transformation matrix for the case of 3 DIFAR sonobuoys 

with inter-element spacing of 60 m. The number of virtual elements is constant for all 

shown plots and equal to 10 elements. This corresponds to virtual inter-element spacing 

is 10m. The shown biases correspond to different values of sector width. Observing the 

bias values, it can be depicted that decreasing the sector width mitigates the bias effect. 

The effect of virtual array inter-element spacing was examined as well using the 

simulated 3 DIFAR sonobuoys array. The results obtained for fixed sector widths of 2 

degrees and 1 degree are shown in Figures 6.7 and 6.8 respectively. These figures clearly 

demonstrate the effect of decreasing the virtual array inter-element spacing on mitigation 

of the bias effect.  The results obtained in Figures 6.6, 6.7 and 6.8 were used for the 

selection of sector width and virtual array inter-element spacing in the evaluation of VAS 

performance. It is clear from Figure 6.8a that using a sector width of 1 degree minimizes 

the bearing estimate bias for different inter-element spacing. The bias has a maximum 

value of 2 degrees for the case of 16 m inter-element spacing for the virtual array. The 

minimum bias is obtained for the case of 6 m inter-element spacing between virtual array 

elements. Based on these observations, the selected set of transformation matrices 

corresponded to the one shown in Figure 6.8b. The parameters of this set of 

transformation matrices are k=0.99, sector width= 1o and virtual array inter-element 
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spacing= 6m. It can be noted that the spacing of 6m holds the condition of stability for an 

array of DIFAR sonobuoys which is defined in chapter 4 (equation 4.13). 
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Figure 6.6 Bias error in bearing estimation for different sector width and fixed virtual inter-element 
spacing of dv=10m 
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Figure 6.7. Bias error in bearing estimation for different virtual inter-element spacing (dv) and fixed 
sector width of  2 degree 
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Figure 6.8. Bias error in bearing estimation for different virtual inter-element spacing (dv) and fixed 
sector width of  1 degree 

 

6.3.2 Bearing estimation using VAS 

VAS performance was evaluated based on transformation of an array of sparse 

DIFAR sonobuoys to a uniform linear array (ULA) with inter-element spacing less than 

DIFARdmax  . The real and virtual arrays are confined to the same plane.  Bartlett beamforming 

was used for DOA estimation. The noise added to the acoustic signal is white Gaussian 

noise and 100 Monte Carlo runs were used to calculate the bearing error ranges. The 

various mapping matrices were calculated with the sector width set at 1 degree and inter-

element spacing of 6m. The weighting constant (k) was set to 0.99. A set of calibrated 

directions uniformly spread across the azimuthal sector are used by VAS to estimate the 

true bearing of the target. The performance of VAS is evaluated by comparing its output 

to the output of the real array processing at different SNRs. 
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6.4 Results and Discussion 

The figures shown below illustrate the results obtained in testing the performance 

of an array of DIFAR sonobuoys versus single DIFAR sonobuoy processing. Results are 

shown for the case of target with bearings of 160o and 50o.  

 

6.4.1 DIFAR ULA array and Virtual array with 60m and 6m Inter-element spacing 

respectively 

The results recorded for this scenario are shown in Figures 6.9-6.16. Figure 6.9 

and 6.10 represents the case of -30 dB SNR. At this level of SNR,VAS showed slightly 

better performance over the real array processing with 10 % bearing error instead of 20%. 

The main contribution introduced by VAS is illustrated in Figures 6.9, 6.11, 6.13 and 

6.15 as it shows that VAS resultant radiation pattern was able to select the main lobe. The 

maximum value of this lobe takes place at the closest bearing to the true bearing of the 

target. Figure 6.12 and 6.16 illustrates the dramatic degradation in the performance of 

real array processing when the level of SNR decreases to -40 dB. The bearing error jumps 

to 58% which represents a severe system failure in bearing estimation. On the other hand, 

the performance of VAS remains close to the performance at -30 dB with only 15% error. 

The degradation in real array processing performance is caused by the high side lobes in 

the radiation pattern shown in Figure 6.4b. Moreover the errors resultant at -40 dB covers 

a wider range with some cases having bearing estimation error of 200o. The VAS on the 

other hand, exhibits a much smaller range of errors with a maxim error value of 30o. 

These results demonstrate the superior performance obtained by VAS which provided an 
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additional constrain for bearing estimation process. The results obtained for the case of 

simulated target with bearing of 30o (Figures 6.13-6.16) are very close to the results of 

simulated target with bearing of 160o. A slight variation can be observed in the 

performance of real and virtual array. However the real array processing results exhibited 

severe system failure at -40 dB with wider range of errors and the VAS processing 

preserved the system accuracy with bearing error of 20%.  
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Figure 6.9  A sample of Bartlett Beamforming output (d=60m, SNR=-30dB) for ULA of 3 
DIFAR sonobuoy (top panel) and  virtual array of 23 DIFAR sonobuoys (bottom panel)  
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Figure 6.10a Output of Monte Carlo simulations 
for ULA of  3 DIFAR sonobuoys  (d=60m, SNR=-

30dB) 

Figure 6.10b Output of Monte Carlo simulations 
for VA of 23 DIFAR sonobuoys  (d=6m, SNR=-

30dB) 
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Figure 6.11  A sample of Bartlett Beamforming output (d=60m, SNR=-40dB) for ULA of 3 
DIFAR sonobuoy (top panel) and  virtual array of 23 DIFAR sonobuoys (bottom panel)  
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Figure 6.12a Output of Monte Carlo simulations 
for ULA of  3 DIFAR sonobuoys  (d=60m, SNR=-

40dB) 

Figure 6.12b Output of Monte Carlo simulations 
for VA of 23 DIFAR sonobuoys  (d=6m, SNR=-

40dB) 
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Figure 6.13  A sample of Bartlett Beamforming output (d=60m, SNR=-30dB) for ULA of 3 
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Figure 6.14a Output of Monte Carlo simulations 
for ULA of  3 DIFAR sonobuoys  (d=60m, SNR=-

30dB) 

Figure 6.14b Output of Monte Carlo simulations 
for VA of 23 DIFAR sonobuoys  (d=6m, SNR=-

30dB) 
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Figure 6.15  A sample of Bartlett Beamforming output (d=60m, SNR=-40dB) for ULA of 3 
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Figure 6.16a Output of Monte Carlo simulations 
for ULA of  3 DIFAR sonobuoys  (d=60m, SNR=-

40dB) 

Figure 6.16b Output of Monte Carlo simulations 
for VA of 23 DIFAR sonobuoys  (d=6m, SNR=-

40dB) 

 

6.4.2 Arbitrary array of DIFAR sonobuoys 

The results recorded for this scenario are shown in Figures 6.17-6.24. It can be 

noticed that the performance of the arbitrary array of DIFAR sonobuoys is comparable to 

the performance of ULA of DIFAR sonobuoys. However, there is a slight increase in the 

error range for the arbitrary array of DIFAR sonobuoys at -30 dB SNR. The reason for 

this wider range of errors can be depicted from Figures 6.17, 6.19, 6.21 and 6.23. 

Obviously the arbitrary array of DIFAR sonobuoys exhibits a wider range of grating 

lobes and higher levels of side lobes. This results in degradation of performance in terms 

of error range. The performance of VAS remains consistent at -30 dB SNR with almost 

the same range of errors. This originates from the way VAS operates as it selects the true 

bearing out of the grating lobes.  Figures 6.20 and 6.24 illustrate a huge degradation in 

the performance of arbitrary array processing when the level of SNR decreases to -40 dB. 



171 

 

This degradation is very close to that of the ULA of DIFAR sonobuoys as the bearing 

error is around 60% which represents a severe system failure in bearing estimation. On 

the other hand, the performance of VAS remains close to the performance at -30 dB SNR 

with only 15 % bearing error. The results obtained for the case of simulated target with 

bearing of 30o (Figures 6.21-6.24) are very close to the results of simulated target with 

bearing of 160o. This indicates the consistent operation of VAS as it provides similar 

performance at different bearings. In addition VAS provides robust means for processing 

arbitrary arrays as ULA which can be considered as an advantage for bearing estimation 

methods designed for ULA processing.  
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Figure 6.18a The output of  Monte Carlo 
simulations for ULA of 3 DIFAR sonobuoy with 

d=60m and SNR=-30 dB 

Figure 6.18b The output of  Monte Carlo 
simulations for Vitual ULA of DIFAR sonobuoys  

with d=6m and SNR=-30 dB 
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Figure 6.17  A sample of Bartlett Beamforming output for arbitrary array shown in Figure 6.5 
(top panel) and  virtual array of 26 DIFAR sonobuoys (bottom panel) with SNR -30 dB 
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Figure 6.20a The output of  Monte Carlo 
simulations for ULA of 3 DIFAR sonobuoy with 

d=60m and SNR=-40 dB 

Figure 6.20b The output of  Monte Carlo 
simulations for Vitual ULA of DIFAR 

sonobuoys  with d=6m and SNR=-40 dB 
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Figure 6.19  A sample of Bartlett Beamforming output for arbitrary array shown in Figure 6.2 
(top panel) and  virtual array of 26 DIFAR sonobuoys (bottom panel) with SNR -40 dB 
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Figure 6.22a The output of  Monte Carlo 
simulations for ULA of 3 DIFAR sonobuoy with 

d=60m and SNR=-30 dB 

Figure 6.22b The output of  Monte Carlo 
simulations for Vitual ULA of DIFAR sonobuoys  

with d=6m and SNR=-30 dB 
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Figure 6.21  A sample of Bartlett Beamforming output for arbitrary array shown in Figure 6.2 
(top panel) and  virtual array of 26 DIFAR sonobuoys (bottom panel) with SNR -30 dB 
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Figure 6.24a The output of  Monte Carlo 
simulations for ULA of 3 DIFAR sonobuoy with 

d=60m and SNR=-40 dB 

Figure 6.24b The output of  Monte Carlo 
simulations for Vitual ULA of DIFAR sonobuoys  

with d=6m and SNR=-40 dB 
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Figure 6.23  A sample of Bartlett Beamforming output for arbitrary array shown in Figure 6.2 
(top panel) and  virtual array of 26 DIFAR sonobuoys (bottom panel) with SNR -40 dB 
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6.5 Performance analysis and limitations of VAS 

In this section the limitations of VAS are discussed based on the processing of 

ULA of DIFAR sonobuoys. The examination of VAS is based on the comparison of its 

performance at different inter-element spacing values of ULA of DIFAR sonbuoys. The 

inter-element spacing of virtual array elements were fixed to 6m to preserve the 

minimum bias in the transformation matrix as this value showed minimum bias for the 

transformation of the examined ULA spacing values. The ULA of DIFAR sonobuoys had 

inter-element spacing values of 60m, 150m and 300m. Arbitrary arrays of DIFAR 

sonobuoys do not have specified forms that can be compared to one other, therefore they 

were not considered in this section. Figures 6.25 and 6.26 demonstrate the results 

obtained using the same simulated signal utilized in the previous sections. 
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Figure 6.25 Performance of VAS versus Basic Processing of ULA at different inter-element distances 
for SNR -30 dB 
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Figure 6.26 Performance of VAS versus Basic Processing of ULA at different inter-element distances 
for SNR -40 dB 

 

The above Figures illustrate the significant contribution introduced by VAS. The 

maximum error reduction introduced by VAS is 10% for the case of SNR -30 dB (Figure 

6.25). This corresponded to ULA inter-element spacing of 50m. However the bearing 

error of VAS increases as the inter-element spacing between DIFAR sonobuoys 

increases. The improvement introduced by VAS is further illustrated in Figure 6.26 for    

-40 dB SNR where the error reduction established by VAS ranges between 25% and 

40%. The VAS method in this case provides robust system performance at very low 

SNR. This is more significant for the case of ULA of 100 m inter-element spacing. At 

this point VAS reduced the bearing error from 60% to 20% and hence it converted 

unstable system performance to a reliable one with a relatively acceptable accuracy. It 
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can be observed that at inter-element spacing of 300m the performance of original array 

processing is better than that of VAS. This can be considered as a limitation on the VAS 

method. However the system performance for this inter-element spacing possesses 

relatively high bearing errors for original array processing and VAS.  in Chapter 4 it was 

shown in section 4.2.3.4 that single sonobuoy processing provides better results than 

ULA array processing when inter-element spacing is 300m. This suggests that bearing 

errors exhibited by original array processing and VAS can be considered as a general 

limitation on array processing for ULA of DIFAR sonobuoys. 

 

6.6 Conclusion 

This chapter discussed the merits and limitation of a new method for array 

processing for a group of DIFAR sonobuoys. The new method (VAS) is based on 

searching a set of transformation matrices corresponding to different sectors of possible 

target bearing. The transformation matrices parameters or the VAS were selected based 

on minimizing the bearing bias. A set of transformation matrices was generated for 

different inter-element spacing values. These were used to examine the performance of 

VAS against conventional methods for processing an array of DIFAR sonobuoys. VAS 

showed significant enhancement of system performance especially at SNR of -40db 

which is considered relatively very low SNR level. The system of 50 m spacing was able 

to provide a robust operation using VAS with 10% bearing error. Superior performance 

was also obtained at a SNR of -40 dB with 16% bearing error. System performance 

degraded with the increase in inter-element spacing. This can be considered as the main 
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limitation on VAS or array processing to a group of free floating sonobuoys. Moreover, 

the VAS approach performed equally for both ULA and irregular arrays of DFAR 

sonobuoys.  

In general, it can be concluded that applying VAS for a group of DIFAR sonobuoys 

provides noticeable enhancement to system accuracy and robustness. The only limitation 

is imposed by the spacing between the DIFAR sonobuoys which can range from few 

meters to hundreds of meters. Further investigation of alternative techniques for 

transformation matrix design could extend system capabilities for larger values of array 

inter-element spacing.  

 

 

 

 

 

 

 

 



180 

 

Chapter Seven: CONCLUSION AND RECOMMENDATIONS 

FOR FUTURE RESEARCH 

7.1 Summary 

This thesis aimed at introducing a new signal processing scheme for bearing 

estimation using array of GPS sonobuoys. The objective of this research was to apply 

advanced high resolution spectral estimation method and develop a robust coherent array 

processing module of GPS sonobuoys field in order to enhance the target detection and 

bearing estimation accuracy. 

This research started with a qualitative study of the feasibility of utilizing FOS for 

spectral analysis of the acoustic signals for target detection phase in TMA process, which 

showed the low susceptibility of the FOS to various levels of noise. 

A new approach for array processing using a group of DIFAR sonobuoys was 

examined as well, showing its significant enhancements to the bearing estimation 

accuracy at very low SNRs.  The new approach examined the radiation pattern of both 

ULA and arbitrary array of DIFAR sonobuoys. The DIFAR array radiation pattern was 

developed for two operational modes of DIFAR sonobuosy which are: (1) omni-

directional operational mode, where DIFAR sonobuoys employ only omni-directional 

sensor data in bearing estimation process; (2) full operational mode, where the DIFAR 

sonobuoys used data recorded from the three sensors of each sonobuoy in the array. The 

equations for the radiation pattern of group of DIFAR sonobuoys were derived for the 

full operational mode. This approach showed a significant enhancement to bearing 
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estimation accuracy over the one provided by single sonobuoy processing at relatively 

low SNRs. The performance of array processing showed huge degradation at wide inter-

element spacing. This research proposed two bearing estimation techniques in order to 

account for the wide inter-element spacing between the elements of the DIFAR 

sonobuoys array. The first technique was based on bearing estimation using complex 

least mean square algorithm augmented by ANN to resolve the DOA ambiguity resulting 

from the wide inter-element spacing for a uniform 2-D array of omni-directional 

hydrophones. This technique provided enhanced bearing estimation accuracy at very low 

SNRs and relatively wide inter-element spacing. The second technique was based on 

bearing estimation using the conventional Bartlett beamforming augmented by the VAS 

approach. The VAS is mainly based on generating transformation matrices that are 

unique for different sectors. This provided additional criterion that enhanced bearing 

estimation accuracy for a group of widely spaced ULA of DIFAR sonobuoys and 

arbitrary array of DIFAR sonobuoys. Moreover this method provided an extension to the 

maximum inter-element spacing with relatively high bearing estimation accuracy. 

 

7.2 Conclusions 

The following conclusions can be drawn from the results of the simulations performed in 

the course of this study: 
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7.2.1 Qualitative study for the applicability of FOS in underwater Target Detection and 

Bearing Estimation 

The results showed that FOS provided better performance than FFT for most 

cases of low SNR. FOS also offered clearer spectral estimation since it allocated power only 

for selected number of candidates without using an amplitude threshold which might cause 

the loss of the target signal. Moreover, the use of FOS enhanced the accuracy of bearing 

estimation especially at relatively low SNR which was observed at SNRs lower than -25 

dB. For short data records FOS outperformed FFT in both target detection and bearing 

estimation. The simulation results demonstrated in Chapter 3 showed that FOS could 

significantly enhance the bearing estimation process by providing highly accurate 

spectral estimates. 

 

7.2.2 DOA Estimation using an Array of GPS Sonobuoys 

The steering vector for the array of DIFAR sonobuoys was derived as well as the 

radiation pattern of the array of sonobuoys. These were used to define the maximum 

spacing value between the DIFAR sonobuoys which showed that for guaranteed system 

stability, the maximum allowable inter-element spacing was close to the omni-directional 

array case. Nevertheless, it was shown that a system with acceptable stability can be 

obtained with inter-element spacing exceeding the critical value of spacing with few 

meters. The array processing for a group of DIFAR sonobuoys showed significant 

enhancement of system performance especially at SNR as low as -40dB. A completely 

robust operation with almost 0% error was obtained at relatively close inter-element 
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spacing of DIFAR sonobuoys array. Superior performance was also obtained at a SNR of 

-40 dB with an error of 21% which is compared to 75% error obtained for the case of 

single sonobuoy processing. Of course system performance degraded with the increase in 

inter-element spacing values. This can be considered the main limitation on applying 

array processing to a group of free floating sonobuoys. Arbitrary arrays of DIFAR 

sonobuoys were also examined and showed different performances based on the 

arrangement of the DIFAR sonobuoys. The irregularity in the sonobuoys array 

arrangement provided some performance enhancement with errors ranging between 10% 

and 26% at -35 dB SNR. Apparently, the error varied with the change in the arrangement 

pattern. Therefore, this can be considered a limited improvement since the obtained 

performance was very sensitive to the changes in the locations of array elements. In 

general the array processing for a group of DIFAR sonobuoys provides noticeable 

enhancement to system accuracy and robustness.  

 

7.2.3 DOA Estimation using Frequency Beamforming and ANN  

This approach was adopted to address the processing of spatially aliased array of 

Omni-directional hydrophones. The proposed method was based on non conventional FB 

technique augmented by ANN. Results showed that the proposed approach provided a 

robust module for processing spatially aliased arrays. For no noise cases the proposed 

module was capable of providing bearing estimation with average error of 11.1% which 

corresponds to 101m inter-element spacing. It was shown that the system performance is 

crucially affected by SNR of the received signal and the proper design of ANN. The 
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system performance degradation at relatively low levels of SNR imposed a limitation on 

inter-element spacing. The proposed approach had further limitations on the arrangement 

of array elements that required arranging the elements in 2-D constellation with odd 

number of sensors in each direction.  

 

7.2.4 Direction of Arrival Estimation using VAS 

The application of VAS to the problem of array processing for a widely spaced 

array of DIFAR sonobuoys showed considerable enhancement to the overall system 

performance. The new method (VAS) was based on searching a set of transformation 

matrices corresponding to different sectors of possible target bearings. The 

transformation matrices parameters of the VAS were selected based on bearing bias 

minimization. VAS showed improvement to system performance especially at relatively 

very low SNR environments. The system of 50 meter spacing was able to provide a 

robust operation using VAS with 10% error in bearing estimation at -30 dB SNR. 

Superior performance was also obtained at a SNR of -40 dB with an error of only 16%. 

System performance degraded with the increase in spacing values which was considered 

as the main limitation on VAS for array processing to a group of free floating sonobuoys. 

However, VAS was still able to perform adequately up to distances larger than those of 

other methods proposed in this thesis. Moreover the irregularity in the sonobuoys array 

arrangement did not affect the operation of VAS as it showed almost similar performance 

to those obtained when VAS was applied to a ULA of DIFAR sonobuoys.  

. 
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7.3 Thesis contributions 

In this thesis, a new spectral analysis methodology (FOS) based on orthogonal 

search was introduced as a replacement of the widely used DFT.  This method provides 

higher resolution spectral estimation which mitigates spectral leakage caused by the 

relatively low resolution of DFT. This method enhanced the detection accuracy of the 

DIFAR sonobuoys and provided a clear spectral estimate if compared to the conventional 

method. Moreover, this method enhanced the DIFAR sonobuoys bearing estimation 

accuracy at relatively low SNRs and outperformed DFT at relatively short data records.  

This thesis also introduced a new approach for coherent processing a group of 

DIFAR sonobuoys rather than combining the bearing estimates of a group of DIFAR 

sonobuoys processed individually. The new approach adopted the coherent processing of 

a group of DIFAR sonobuoys in ULA arrangement as well as arbitrary array 

arrangement. This approach showed significant improvement in bearing estimation 

accuracy at relatively very low SNRs with some limitations on inter-element spacing and 

arbitrary arrangements of the array elements.  

 In this thesis, a new method augmenting FB with ANN for processing omni-

directional array of GPS sonobuoys was proposed. The ANN module was efficiently 

utilized to resolve the DOA ambiguity resulting from the relatively large inter-element 

spacing. This research has also introduced the VAS approach used in processing a group 

of DIFAR sonobuoys using there omni, sine and cosine sensors.  
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7.4 Recommendations for future research 

The bearing estimation techniques developed in this thesis are new approaches to enable 

coherent array processing of a group of DIFAR sonobuoys. The research work presented 

in this thesis provided merits and limitations associated with this approach.  Therefore, 

the following recommendations are made for future studies on coherent array processing 

of a group of DIFAR sonobuoys: 

 

7.4.1 Improving the parameters of TMA 

The proposed methods in this thesis can be integrated with other system recorded 

data to provide a complete solution of target trajectory and its moving velocity. The 

system recorded data includes target bearings, SNR, Doppler shift and other information 

from recording environmental conditions. Investigating the enhancement of the accuracy 

of Doppler shift recorded data and environmental information can benefit the target 

tracking process and provide more accurate solution for TMA. Moreover TMA analysis 

techniques previously developed for bearing estimates from different sonobuoys can be 

modified to make use of the coherent array processing algorithm. The modification 

would be to divide the DIFAR sonobuoys into multiple arrays that provide bearing 

estimation with higher accuracy than individual DIFAR sonobuoy processing. Bearing 

estimates from multiple arrays can then be used by the TMA methods instead of using 

bearing estimates from data recorded by each DIFAR sonobuoy. 
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7.4.2 Exploring the application of VAS with other bearing estimation methods 

In order to avoid the shortcomings of the conventional bearing estimation algorithm 

provided by Bartlett beamforming, other techniques can provide more enrichment to the 

system performance and their suitability for bearing estimation might be investigated. 

The bearing estimation methods employing adaptive beamforming techniques to provide 

higher resolution beamforming [Greening02 and Kogon02] had an inter-element spacing 

less than half wavelength of the tracked sources which can be more suitable for towed 

arrays. These methods can be investigated for their application to DIFAR sonobuoys. 

Also VAS can be used as a tool that provides robust bearing estimation when inter-

element spacing values are relatively large or array elements are arbitrary arranged. 

7.4.3 Exploring the Benefits of FOS for ambiguity resolution of direction cosines in 
the frequency beamforming method   

In this thesis ANN was utilized to provide mapping between the ambiguous direction 

cosines and the correct ones. ANN requires long training time and provides empirical 

mapping function. It is therefore recommended to investigate the use of FOS to provide a 

nonlinear model for this ambiguity resolution. Establishment of the model could be faster 

than that of ANN while providing similar performance.   



188 

 

 

References 

 

[Adeney94]  Adeney, K.M. and Korenberg, M. J., “Fast orthogonal search for array 

processing and spectrum estimation”, IEE Proceedings-Vision, Image 

and Signal Processing, v 141, n 1, Feb. 1994, p 13-18. 

 

[Aidala79] Aidala, V.J., “Kalman Filter Behavior in Bearings-Only Tracking 

Applications”, Aerospace and Electronic Systems, IEEE Transactions 

on, v 15, n1, Jan. 1979, p 29 – 39. 

 

[Ali03] Ali, E.F.A., “Application of the Fast Orthogonal Search in Automatic 

Target Detection”, Ph.D. Thesis, Department of Electrical and 

Computer Engineering, Royal Military College of Canada, Kingston, 

Ontario, 2003. 

 

[Armstrong06] Armstrong, J., “Application of fast orthogonal search to accuracy 

enhancement of Inertial sensors for land vehicle navigation”, 

M.Sc.Thesis, Department of Electrical and Computer Engineering, 

Royal Military College of Canada, 2006. 

 



189 

 

[Atkins94]      Atkins, P., “Tutorial introduction and historical overview of the need for 

heading sensors in sonar applications”, IEE Colloquium on Heading 

Sensors for Sonar and Marine Applications, 1994, p 1-6. 

 

[Bavencoff06] Bavencoff, F.; Vanpeperstraete, J.M. and Le Cadre, J.P., ”Constrained 

bearings-only target motion analysis via Markov chain Monte Carlo 

methods”, Aerospace and Electronic Systems, IEEE Transactions on, v 

42,  n 4,  Oct. 2006,  p 1240 – 1263. 

 

[Beisner74] Beisner, H.M, “Numerical calculation of normal modes for underwater 

sound propagation”, IBM Journal of Research and Development, v 18, 

n 1, Jan. 1974, p 53-58. 

 

[Bienvenu91]  Bienvenu, G. and Owsley, N. L., “High resolution passive array 

processing. An overview of principles”, Lecture Notes in Control and 

Information Sciences, v 155, 1991, p 9-28. 

 

[Bonneton07] Bonneton, F and Jauffret, C., “Bearing Line Tracking and Bearing-Only 

Target Motion Analysis”, IEEE Aerospace Conference 2007, 3-10 

March 2007, p 1 – 9. 

 



190 

 

[Brooke01] Brooke, G.H.; Thomson D.J. and Ebbeson G.R., “PECan: a Canadian 

parabolic equation model for underwater sound propagation”, Journal 

of Computational Acoustics, v 9, n 1, March 2001, p 69-100. 

 

[Bromwich26] Bromwich, T.J., “An Introduction to the Theory of Infinite Series” 

MacMillan & Co. 1926. 

 

[Brown96]  Brown, P. and Kirby, S., “Operational field trials of GPS equipped 

Sonobuoys”, Proceedings of ION GPS 1996, v 2, Sept. 1996, p 1553-

1561. 

 

[Boh05] Bohac, F., “DIFAR Sonobuoy Bearing Estimation Using the Fast 

Orthogonal Search Algorithm”, M.Sc.Thesis, Department of Electrical 

and Computer Engineering, Royal Military College of Canada, 2005. 

 

[Bucker76] Bucker, H.P., “Use of calculated sound fields and matched-field 

detection to locate sound sources in shallow water”, Journal of the 

Acoustical Society of America, v 59, n 2, Feb. 1976, p 368-73. 

 

[Chan95] Chan, Y.T.; Niezgoda, G.H. and Morton, S.P., “Passive sonar detection 

and localization by matched velocity filtering”, Oceanic Engineering, 

IEEE Journal of, v 20,  n 3,  July 1995, p 179 – 189. 

 



191 

 

[Chen03] Chen, J.C.; Yip, L.; Elson, J.; Hanbiao Wang; Maniezzo, D.; Hudson, 

R.E.; Kung, Yao and  Estrin, D., “Coherent acoustic array processing 

and localization on wireless sensor networks”, Proceedings of the IEEE, 

v 91, n 8, Aug. 2003, p 1154 – 1162. 

 

[Chon01] Chon, K.H., “Source Accurate identification of periodic oscillations 

buried in white or colored noise using fast orthogonal search”, IEEE 

Transactions on Biomedical Engineering, v 48, n 6, June 2001, p 622-

629. 

[Cunn05] Cunningham, A.and Thomas, B., “Target motion analysis 

visualization”, Asia Pacific Symposium on Information Visualisation 

(APVIS 2005), v 45, Sydney, Australia, 2005, p 81 – 90.   

     

[D’Spain92] D'Spain, G.L.; Hodgkiss, W.S; Edmonds, G.L.; Nickles J.C.; Fisher, 

F.H.and Harriss, R.A, “Initial Analysis Of The Data From The Vertical 

DIFAR Array”, OCEANS '92 Proceedings,v1,  October 26-29, 1992 p 

346 – 351. 

 

[Davis93] Davis, T.E., “A Comparison of Fast Orthogonal Search, Fourier 

Transform and Wavelet Transform Approaches in Nonstationary Signal 

Analysis”, M.Sc. Thesis, Department of Electrical Engineering, Queen’s 

University, 1993. 

 



192 

 

[Des99] Desrochers, D., “High resolution Beamforming Techniques Applied to a 

DIFAR Sonobuoy”, M.Sc.Thesis, Department of Electrical and 

Computer Engineering, Royal Military College of Canada, 1999. 

 

[Du02] Du, K.-L.; Lai, A.K.Y.; Cheng, K.K.M. and Swamy, M.N.S., “Neural 

methods for antenna array signal processing:A review”, Signal 

Processing ,v 82, 2002, p547–561. 

 

[Dwight60] Dwight, H. B., “Tables of integrals and other mathematical data”, 

MacMillan, New York, 1960. 

 

[El-Zooghby97] El-Zooghby, A.H.; Christodoulou, C.G. and Georgiopoulos, M., “A 

neural network-based smart antenna for multiple source tracking”, 

IEEE Transactions on Antennas and Propagation, v 48, n 5, May 2000, p 

768 - 776  

 

[Gabriel80] Gabriel, W. F., "Spectral Analysis and Adaptive Array Superresolution 

 Techniques", in Proceedings of the IEEE, v 68, n 6, June 1980, p 654-

666. 

 

[Gotsis09] Gotsis, K.A.; Siakavara, K. and Sahalos, J.N, “On the Direction of 

Arrival (DoA) Estimation for a Switched-Beam Antenna System Using 



193 

 

Neural Networks”, IEEE Transactions on Antennas and Propagation, v 

57, n 5, May 2009, p 1399-1411. 

 

[Graves76] Graves R.D., Nagl A., Uberall H., Zarur G.L., “Normal mode theory of 

underwater sound propagation in a range dependent environment”, 

IEEE International Conference on Acoustics Speech and Signal 

Processing, April 1976, p 668-670. 

 

[Gershman95] Gershman, A. B.; Turchin, V. I. and Zverev, V. A., ”Experimental 

results of localization of moving underwater signal by adaptive 

beamforming”, IEEE Transactions on Signal Processing, v 43, n 10, Oct. 

1995, p 2249-2257. 

 

[Greening02] Greening, M.V. and Perkins, J.E., “Adaptive beamforming for 

nonstationary arrays”, Journal of the Acoustical Society of America, v 

112, n 6, Dec. 2002, p 2872-2881. 

 

[Gregory01]    Gregory, J. B. and Bonin, Y.R.M., “GPS Equipped sonobuoy”, Defense 

Research Establishment, Ultra Electronics -Hermes Electronics, 2002. 

 

[Ham01] Ham, F.M. and Kostanic, I.,”Principles of Neurocomputing for Science 

and Engineering”, McGraw-Hill, 2001. 

 



194 

 

[Hawker79] Hawker, K.E., “A normal mode theory of acoustic Doppler effects in the 

oceanic waveguide”, Journal of the Acoustical Society of America, v 65, 

n3, March 1979, p 675-681. 

 

[Haykin99] Haykin, S.,” Neural Networks. A Comprehensive Foundation, 2nd ed”, 

Englewood Cliffs, NJ: Prentice-Hall, 1999. 

 

[Haykin04]  Haykin, S., “Adaptive Filter Theory”, Prentice Hall, 4th edition, Sept.14 

2001. 

 

[Hinich78] Hinich, M. J., “Processing spatially aliased arrays”, Journal of the 

Acoustical Society of America,  v 64, n 3, Sept. 1978, p 792-794. 

 

[Holler06]    Holler, R., Horbach, A. and McEachern, J., “ Not ready for retirement: 

The sonobuoy approaches age 65”, Sea Technology, v 47, n 11, Nov. 

2006, p 10-14 

 

[Horsley89] Horsley, L.E., ”Modification and deployment techniques for hand-

deployed Arctic long-life sonobuoys”, IEEE Journal of Oceanic 

Engineering, v 14, n 2, April 1989, p 211 – 220.  

 



195 

 

[Hyperg04] Hyberg, P., Jansson, M. and  Ottersten, B., “Array interpolation and 

bias reduction”, IEEE Transactions on Signal Processing, v 52, n 10, 

Oct. 2004, p 2711-2720. 

 

[Ifeachor02] Ifeachor, E. C. and Jervis, B. W., “Digital Signal Processing”, Prentice 

Hall, 4th edition, Sept. 14, 2001. 

 

[Imai2000] Imai, R.; Hashimoto, Y.; Kikuchi, K. and Fujii, S, “High-resolution 

beamforming by the Wigner-Ville distribution method”,  IEEE Journal 

of Oceanic Engineering, v 25,  n 1,  Jan. 2000,  p 105 – 110 

 

[Johansson97] Johansson, K. and Svensson, P., “Submarine Tracking by Means of 

Passive Sonobuoys”, Methodology report, Division of Command and 

Control Warfare Technology SE-581, Sweden, June 1997. 

  

[Johnson82] Johnson, D.H., “The application of spectral estimation methods to 

bearing estimation problems”, Proceedings of the IEEE, v 70,  n 9,  

Sept. 1982 p 1018 – 1028 

 

[Johnson93]  Johnson D. H. and Dudgeon D. E., "Array Signal Processing", Prentice 

Hall, 1993. 



196 

 

[Kat95] Katsikas, S. K., Leros, A.K. and Lainiotis, D.G, “Underwater Tracking 

of a ManeuveringTarget Using Time Delay Measurements”, Signal 

Processing, v 41, January1995, p 17-29. 

 

[Keonwook03] Keonwook, Kim and  George, A.D., “Parallel subspace projection 

beamforming for autonomous, passive sonar signal processing”, Journal 

of Computational Acoustics, v 11, n 1, March 2003, p 55-74. 

 

[Kogon02] Kogon, S.M., “Robust adaptive beamforming for passive sonar using 

eigenvector/beam association and excision”, IEEE Sensor Array and 

Multichannel Signal Processing Workshop Proceedings, 2002, p 33-7. 

 

[Korenberg88] Korenberg, M.J., “Identifying nonlinear difference equation and 

functional expansion representations: the fast orthogonal algorithm”, 

Annals of Biomedical Engineering, v 16, n 1, January1988, p 123-142. 

 

[Korenberg89A]Korenberg, M. J., “A Robust Orthogonal Algorithm for System 

Identification and Time-Series Analysis”, Biological Cybernetics, v 60, 

February1989, p 267-276.  

 

[Korenberg89B]Korenberg, M.J. and Paarmann, L.D., “Applications of fast orthogonal 

search: time-series analysis and resolution of signals in noise”, Annals 

of Biomedical Engineering, v 17, n 3, May1989, p 219-31. 



197 

 

 

[Korenberg98] Korenberg, M.J. and Adeney, K.M., “Iterative Fast Orthogonal Search 

for Modeling by a Sum of Exponentials or Sinusoids”, Annals of 

Biomedical Engineering, v 26, March1998, p 315-327. 

 

[Kung98]        Kung, Y., Hudson, R.E., Reed, C.W., Daching, C. and  Lorenzelli, F., 

“Blind beamforming on a randomly distributed sensor array system”, 

IEEE Journal on Selected Areas in Communications, v 16, n 8, Oct. 

1998, p 1555-1567. 

 

[Lee05A] Lee, J.-H.and Wang, C.-C, “Adaptive array beamforming with robust 

capabilities under random sensor position errors”, Radar, Sonar and 

Navigation, IEE Proceedings, v 152,  n 6,  9 Dec. 2005, p 383 – 390. 

 

[Lim94A]        Lim, P.H. and Ozard, J.M., “On the underwater acoustic field of a 

moving point source. I. Range-independent environment”, Journal of 

Acoustical Society of America, v 95, n 1, January 1994, p 131-137.  

 

[Lim94B]  Lim, P.H. and Ozard, J.M., “On the underwater acoustic field of a 

moving point source. II. Range-dependent environment”, Journal of 

Acoustical Society of America, v 95, n 1, January 1994, p 138-51. 

 



198 

 

[Camillet98] Carmillet, V. and Jourdain, G., ”Low-speed targets sonar detection 

using autoregressive models inreverberation; experimental 

performances for wideband signals”, OCEANS’98 Proceedings, v 3, 

Oct. 1998, p 1285 – 1289. 

 

[Maranda91] Maranda, B.H. and Fawcett, J.A., ”Detection and localization of weak 

targets by space-time integration”, IEEE Journal of Oceanic 

Engineering, v 16, n 2, Apr. 1991,  p 189 – 194. 

 

[Maranda03]    Maranda, B.H., “The statistical accuracy of an arctangent bearing 

estimator”, Oceans’03 Proceedings, v 4, Sept. 2003, p 2127-2132. 

 

[Marsden87] Marsden, R. F. and Juszko, B.A., “An Eigenvector Method for the 

Calculation of Directional Spectra From Heave, Pitch and Roll Buoy 

Data”, Journal of Physical Oceanography, v 17, n 12,  Dec. 1987, p 

2157-2167. 

 

[McGaughey03] McGaughey, D.R.; Korenberg, M.J.; Adeney, K.M.; Collins, S.D. and 

Aitken, G.J.M., “Using the Fast Orthogonal Search with First Term 

Reselection to Find Subharmonic Terms in Spectral Analysis”, Annals of 

Biomedical Engineering, June 2003, v 31, p 741-75. 

 



199 

 

 [McDonald04]  McDonald, M.A., “FAR hydrophone usage in whale research”, 

Canadian Acoustics, v 32, n2, June 2004, p 155-60. 

 

[McIntyre99] McIntyre, C. M., Wang, J., and Kelly, L., “The effect of position 

uncertainty in multistatic acoustic localization”, in Proceedings of  

International Conference of Information, Decision, and Control, 

Adelaide, Australia, 1999. 

 

 [Mirsky90] Mirsky, L., “An Introduction to Linear Algebra”, Courier Dover 

Publications, 1990. 

 

[Nardone97] Nardone, S.C. and Graham, M.L., ”A closed-form solution to bearings-

only target motion analysis”, IEEE Journal of Oceanic Engineering, 

v22,n 1, Jan 1997 p 168 – 178. 

  

[Osman08] Osman, A., Noureldin, A., El-Sheimy, N., Mellema, G., Jim Theriault 

and Scott Campbell, “Synthetic Virtual Array Processing of GPS 

Sonobuoys for Underwater Target Tracking” , IEEE/MTS Oceans 2008, 

Quebec city, September 15 – 18, 2008 

 

[Oppenheim98] Oppenheim, Alan V.; Schafer, R. W. and Buck, J. R., “Discrete-time 

signal processing”, N.J.: Prentice Hall 1998, Page146. 

 



200 

 

[Ping91] Ping Cao; Cuschieri, J.M.; Sudhakar, R., “A High Resolution 3-d Sonar 

Imaging System For Autonomous Underwater Vehicles”, OCEANS '91 

Proceedings, v 2,  Oct. 1991, p 1019 – 1026 

 

[Porter85] Porter M.B. and Reiss E.L., “A numerical method for bottom interacting 

ocean acoustic normal modes”, Journal of the Acoustical Society of 

America, v 77, n5, May 1985, p 1760-1767. 

 

[Schmidt86]  Schmidt, R.O, “Multiple Emitter Location and Signal Parameter 

Estimation”, IEEE Trans. Antennas Propagation, v 34, March 1986, p 

276-280. 

 

 [Skolnik80]  Skolnik, M. I., “Introduction to Radar Systems” , 2nd ed., McGraw-Hill, 

NY ,1980. 

 

[Solal91] Solal, M.,Pillon D., Brasseur,  S.,”Simultaneous detection and target 

motion analysis from conventional passive beamforming outputs”, 

International Conference on Acoustics, Speech, and Signal Processing, 

1991. ICASSP-91., p 1321 – 1324. 

 

 [Steeb97] Steeb, Willi-Hans, “Matrix Calculus and Kronecker Product with 

Applications and C++ Programs”, World Scientific Publishing, 1997. 

 



201 

 

[Stoer02] Stoer, J.; Bulirsch, R., “Introduction to Numerical Analysis”, 3rd ed., 

Berlin, New York: Springer-Verlag, 2002. 

 

[Streit02] Streit, R.L. and Walsh, M.J., “Bearings-only target motion analysis with 

acoustic propagation models of uncertain fidelity”, Aerospace and 

Electronic Systems, IEEE Transactions on, v38, n 4, Oct. 2002, p 1122 – 

1137. 

 

[Thorn80] Thorn, J.V.; Booth, N.O. and Lockwood, J.C, “Random and partially 

random acoustic arrays”, Journal of the Acoustical Society of America, 

v 67, n 4, April 1980, p 1277-1286. 

 

[Tiel 97]       Tiel, R., “The passive sonar equation - effects of additive interference”, 

IEEE International Conference on Acoustics, Speech and Signal 

Processing, v 1, Apr 1976, p 675 – 678. 

 

[Tsoukalas97] Tsoukalas, L.H. and Uhrig, R.E.. “Fuzzy and neural approaches in 

engineering”, New York: John Wiley & Sons, Inc.,1997. 

 

[Tseng93]  Tseng, C.and Powers, E.J., “Application of orthogonal-search method to 

Volterra modeling of nonlinear systems”, IEEE International Conference 

on Acoustics, Speech, and Signal Processing, 1993, v 4, p 512-515.  

 



202 

 

[Ultra06] Ultra Electronics Maritime Systems, Informal Communication, October 

10 2006. 

 

[Urick96] Urick, R. J., “Principles of underwater sound”, Revised ed. xiii, New 

York: McGraw-Hill, 1996. 

 

[Viberg91] Viberg, M. and Ottersten, B., “Sensor array processing based on 

subspace fitting”, IEEE Transactions on Signal Processing, v 39, 

May1991, p 1110–1121. 

 

[Wenz72] Wenz, G.M., “Review of underwater acoustics research: noise”, Journal 

of the Acoustical Society of America, v 51, n 3, pt.2, March 1972, p 

1010-1024. 

 

[White04]     Whitehouse, H. J., Alsup J. M., Leese de Escobar A. and Sullivan S. F., 

“A GPS sonobuoy localization system”, Position Location and 

Navigation Symposium, April 2004, p 414-417. 

 

[Wilcox7] Wilcox, R.E., “Underwater Doppler tracking using optimization 

techniques”, Journal of the Acoustical Society of America, v 63, n3, 

March 1978, p 870-875. 

 



203 

 

[Wilmut98] Wilmut, M.J.; Ozard, J.M.; O'Keefe, K. and Musil, M., ”A piecewise 

matched-field tracking algorithm”, IEEE Journal of Oceanic 

Engineering, v 23, n 3, July 1998, p 167-173. 

 

 [Yoshinaga99] Yoshinaga, H.; Taromaru, M. and Akaiwa, Y., “Performance of 

adaptive array antenna with widely spaced antenna elements”, Gateway 

to 21st Century Communications Village. IEEE VTS 50th Vehicular 

Technology Conference, v 1, pt. 1, 1999, p 72-76. 

 

[Ziomek89] Ziomek, L.J. and Behrie, C.D., “Localization of multiple broadband 

targets via frequency domain adaptive beamforming for planar arrays”, 

Journal of the Acoustical Society of America, v 85, n 3, March 1989, p 

1236-1244. 

[Zhong05] Zhong, W.; Li, S. and Tai, H.M., “Signal subspace approach for 

narrowband noise reduction in speech”, Vision, Image and Signal 

Processing, IEE Proceedings ,v 152, n 6, 9 Dec. 2005, p 800 – 805. 

 

[Zoltowski94] Zoltowski, M.D., Mathews, C.P., "Real-time frequency and 2-D angle 

estimation with sub-Nyquist spatio-temporal sampling", IEEE 

Transactions on Signal Processing, v 42, n 10, 1994, p2781-2794. 

 

 

 



204 

 

APPENDIX A: VIRTUAL ARRAY TRANSFORMATION MATRIX DESIGN   

 

The transformation matrix bias reduction is based on minimization of 

deterministic signal subspace eigenvector errors due to array transformations. Subspace-

based DOA estimators are considered, and therefore, an estimate of the signal subspace 

eigenvector of the virtual array is needed. 

 

The DOA estimate is taken at the extreme point of a sufficiently smooth criterion 

function  veV ˆ,  associated with the MUSIC algorithm. The symbol vê  denotes a 

general approximation of ve  which represents the orthonormal eigenvectors 

corresponding to the eigenvalues of the signal subspace. The Taylor series expansion is 

given as [Hyberg04]: 

 

        regeVeVeV i
v

H
Vvvv  )(

00 Re2,,ˆ,ˆ                A.1 

 

Where vg  is the complex gradient of  veV ,0  with respect to ve   

  is the deterministic DOA perturbation 

r is the remainder term (can be neglected in a first-order analysis since it is at 

least quadratic in ve and/or  ).  

Assuming invariability of the second derivative, the resulting perturbation   in 0 can 

be expressed as (up to a first-order approximation) 
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This expression shows the effect of a small perturbation in ve  of the signal subspace 

ve on the DOA estimate. 

The transformation matrix is designed to achieve minimum bias for all possible 

DOAs in the sector of interest. The bias mitigation is achieved by satisfying two 

conditions: (1) Small error for the first order approximation (Equation A.2) to hold, and 

(2) Approximately preserving the orthogonality between the gradient of the criterion 

function and the mapping error. Thus, a bias minimization may be designed as 

[Hyperg04]: 

 

   
 )()(

)()(

1

2)(

,

Re2
1minarg

i
v

i

i
v

Hi
v

N

i

i
v

T
LS eV

eg
eT

cal







 


     A.3 

 

The first and second terms advocate the requirements 1 and 2 respectively. The 

symbol   is the vector 2-norm and   a weighting factor 10    that allows a 

balancing between the two properties i) and ii). Note that )(i
ve are affine functions of T, 

)()()( i
v

i
s

Hi
v eeTe  . Therefore the above criterion (Hyperg04), is a quadratic function of 

the elements of T. 
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A.1. Transformation matrix parameters 

The least square solution for equation A.3 is obtained by using the design 

criterion associated with MUSIC and WSF [Hyperg04]. The MUSIC estimate for one-

emitter scenarios is obtained by minimizing the criterion function [Hyperg04]: 

 

  )()(ˆ, ˆ  v
H
vvMUSIC aaeV

ve
             A.4  

 

Where vê an estimate of the signal subspace is, 
vê is the orthogonal projector onto the 

estimated noise subspace [Hyperg04 and Zhong05]. 
vê is given by [Hyperg04]: 
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The WSF estimate for one-emitter scenarios is obtained by minimizing the criterion 

function [Hyperg04]:   

 

   H
vvvWSF eweTreV

va ˆˆˆ, )(
              A.6 

 

Where Tr{.} is the trace operator, w  is the weighting matrix which reduces to scalar in 

case of single emitter.  )(va is the orthogonal projector onto the array manifold 

complement [Hyperg04 and Viberg91].  )(va  is given by [Hyperg04]: 

 



207 

 

H
vv

H
vv aaaa

va
1)()(

               A.7 

 

For the single source case, the two criterion functions lead to identical DOA 

estimates [Hyperg04]. By assuming that )()(  v
H
v aa  is constant, the WSF and MUSIC 

DOA estimate is obtained as the minimizing argument of: 

 

  )(ˆˆ)(ˆ,  v
H
vv

H
vv aeeaeV             A.8 

 

Where )(va  is the normalized array response vector for the virtual array and is given by 

[Hyperg04]: 
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Using the criterion function (Eq. A.8), the complex gradient vg  is given by 

[Hyperg04]:  

 

)()(  vv dg
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Where vd  is the derivative of the normalized response vector )(va of the virtual array 

with respect to ,      /)(vv ad . 
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A.2. Least mean square solution for Transformation matrix minimization criterion 

The algorithm presented in [Hyperg04] solves for the optimal transformation 

matrix by first simplifying the criterion function (Equation A.3). This function can be 

simplified by assuming the second derivative of the DOA estimation criterion (  veV ,0 ) 

is constant over the design sector [Hyperg04]. Using this assumption, the weighting 

factor   can be modified to include the second derivative. The simplified form 

[Hyperg04] of transformation matrix criterion function can then be obtained by 

substituting the parameters obtained in section A.1. The simplified form is given by 

[Hyperg04]: 
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Where 10  k  is the new weighting factor. 

 

 


