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Abstract

Tactical-grade, low-cost Inertial Navigation Systems (INSs) and Micro-Electro-
Mechanical Systems (MEMYS) inertial sensors have gained great interests in civilian and
commercial fields during the last decade. The Global Positioning System (GPS) is
recognized as the ideal complement to INS by offering absolute positioning information
and consistent accuracy in open sky to overcome the problem of INS time-dependent
error growth. However, GPS suffers from degraded signal acquisition or poor satellite
geometry when a vehicle is traveling in urban, dense foliage or canyon areas. In addition,
the GPS signals will be totally unavailable in the isolated environments such as tunnels,
mines or indoor areas. Hence, alternative aiding instruments or techniques such as
odometers, non-holonomic constraints, Zero-velocity Updates (ZUPTs) and Coordinate
Updates (CUPTs) become essential to restrict the accumulated time-dependent errors of a
stand-alone INS. While Kalman filter is widely employed as the real-time estimation
method to fuse the multi-sensor information, optimal smoothing will be utilized as the

post-processing methodology to provide better navigation solutions.

In this research, two different fixed-interval smoothing algorithms will be utilized and
evaluated. The first algorithm is the Two Filter Smoother (TFS), while the second
algorithm is the Rauch-Tung-Streibel Smoother (RTSS). The TFS is performed by
combining the results of Forward Kalman Filtering (FKF) and Backward Kalman
Filtering (BKF) through minimizing the smoother error covariance. The traditional TFS

was not applicable for some INS-based multi-sensor systems because of the high

i1



nonlinear characteristics in the INS navigation equations. Thus, the revised TFS
algorithm will be derived in details. The performance of Kalman filtering as well as the
optimal smoothing methodologies is evaluated in three application conditions: land-
vehicle navigation, pipeline surveying, and horizontal/vertical indoor building navigation,
surveying and mapping. The integration strategies of INS and the aiding techniques
mentioned earlier are proved to be applicable and effective. The results of all investigated
applications show that the TFS substantially improve the position estimation accuracy
over the corresponding filtered solution. In addition, the estimation efficiency of the TFS

is comparable to the commonly used RTSS.
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Chapter One: INTRODUCTION

1.1 Background

Inertial Navigation Systems (INSs) were widely applied as either the dominant or the
associated equipments for navigations of long-range travelling vehicles, such as
submarines, aerotransports, or commercial airliners. Since late 1970s, optical gyroscope-
based INS was employed as the well-functioned complement in the integrated radio
navigation systems in aviation applications (King, 1998). With the tremendous
development of the Global Positioning Systems (GPS) and Micro-Electro-Mechanical
Systems (MEMS) inertial sensors, tactical-grade and low-cost Inertial Measurement
Units (IMUs) have gained great interests in both civilian and commercial fields in the last
decade. It has been proved through research and implementation that the INS/GPS
integration is the ideal technique for vehicular navigation. In the mean time, promising
potentials using INS exist in civilian and commercial applications for unmanned vehicles,
personal navigation, horizontal drilling, etc. (Kim and Sukkarieh, 2002; Syed, 2009;

Noureldin, 2002; ElGizawy, 2009).

The Dead-Reckoning (DR) nature of the stand-alone INS results in the error
accumulation of navigation parameters. Moreover, low-cost INS confronts the problem of
large and unpredictable sensor errors and noises (Niu and El-Sheimy, 2005). Therefore,
aiding navigation information becomes essential to overcome these inadequacies. GPS, a

Radio-Frequency (RF) signal-based system, is capable of providing absolute positioning
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solutions with long-term accuracy under all weather conditions (Kaplan and Hegarty,
2006). However, this performance is usually interrupted by frequent signal outages,
multipath, and poor satellite visibility in urban, dense foliage or canyon areas. The
integration of INS and GPS takes advantage of the complementary attributes of both
systems and outperforms either single system operated alone (Yang, 2008). Different
integration strategies, i.e. loose-coupled, tightly-coupled, and deeply-coupled INS/GPS

integrations, have been researched and developed since the last decade (Petovello, 2003).

Due to the dependency on Line-Of-Sight (LOS) measurements, the high-accuracy,
continuous GPS positioning updates are not available in the isolated or signal-degraded
environments such as tunnels, mines or indoor areas. Under these conditions, the
information from alternate navigation-related techniques needs to be integrated with the
stand-alone INS to limit the navigation error growth. Among them, the aiding
performance of odometers, magnetometers, and non-holonomic constraints are most
commonly used during GPS signal outages in land-vehicle navigation (Shin, 2001; Shin,
2005). Zero-Velocity Update (ZUPT) is another efficient method to improve the
navigation accuracy by limiting the growing velocity errors with appropriately chosen
time durations and intervals (EI-Sheimy, 2007). Further, Coordinate Update (CUPT),
occasionally available at certain predetermined surveying stations (i.e. control points), is
capable of helping to improve the navigation performance and achieve high accuracy
positioning measurements. The integration strategies with INS and the aiding techniques

have been demonstrated to be feasible for pipeline surveys, pedestrian navigation, and
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vertical mine shaft surveys (Shin and EIl-Sheimy, 2005; Syed, 2009; Skaloud and

Schwarz, 2000).

Kalman Filter (KF) is recognized as the classic real-time estimation method to integrate
multi-sensor information from INS and aiding sources. In the KF context of integration
systems, INS provides the predictions as well as the system knowledge, while the aiding
sensors provide the measurement updates. Extended Kalman Filter (EKF) is utilized to
resolve the nonlinearity problem in the INS navigation equations; it simply applies the
Taylor series expansion on the nonlinear system along with observation equations, and
takes terms to the first order, where the Probability Density Function (PDF) is
approximated by a Gaussian distribution (Gordon et al, 1993). KF is a recursive
algorithm that implements a series of prediction and measurement update steps to obtain
the optimal estimates based on minimum variance criterion (Gelb, 1974). It will only
work in prediction mode during measurement gaps where the navigation solution
accuracy degrades rapidly with time. As a result, this performance cannot meet the
accuracy requirements of several navigation and surveying applications. Hence, post-
processing methods such as backward smoothing can be employed in this case to yield

better navigation solutions.

Optimal smoothing is a post-mission estimator that provides the optimal estimates by
utilizing all available past, current and future measurements (Gelb, 1974). The fixed-
interval smoother has been used in most navigation applications compared to other types

such as fixed-point and fixed-lag smoothing algorithms (Nassar et. al, 2005). In addition,
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fixed-interval smoothing has been used in most surveying applications, because
surveying is typically amenable to post-processing where best position information is
pursued for all measured points (Shin and El-Sheimy, 2002). The Rauch-Tung-Striebel
Smoother (RTSS) (Rauch et al., 1965) has been widely applied in navigations due to its
robustness and effectiveness. The RTSS does not require the process of the full-scale
Backward Kalman Filter (BKF). By utilizing all the information stored in the Forward
Kalman Filter (FKF), the RTSS recursively updates the smoothed estimate and its

covariance in a backward sweep.

Fraser and Potter (1969) proposed that the fixed-interval smoother can be accomplished
by a combination of two Kalman filters manipulated forward and backward, i.e. FKF and
BKF, using a series of convenient discrete-time equations. It has been demonstrated that
the aforementioned Two Filter Smoother (TFS) and the RTS smoother are
mathematically equivalent in linear cases (Crassidis and Junkins, 2004). However, the
traditional TFS was originally designed for linear systems. Therefore, it was not
applicable for INS-based multi-sensor systems because of the high nonlinear
characteristics in the INS navigation equations. The further attempt of applying the
common EKF both forward and backward failed to accurately estimate the smoothing
INS error states. This problem was resolved by a revised smoothing algorithm that was
proposed specifically for pipeline surveys using inertial measurements units (Yu et al.,
2005). The main idea in such modification was that the BKF nominal trajectory is
assumed to track both the FKF prediction and update results rather than the predictions

only (Liu et al., 2009). In this thesis, a special attention will be devoted to discussing and
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analyzing the TFS for all mentioned INS-based applications since very little research has

been published before in this area.

1.2 Objectives

The overall objective of this thesis is to evaluate the performance of Kalman filtering as
well as the optimal smoothing methodologies in different applications and conditions
using INS-based integrated systems. Land-vehicle navigation will firstly be investigated
to verify the feasibility of different smoothers where GPS updates are sufficiently and
continuously provided except for periods of GPS signal outages. Further, the forward
filter and the backward smoothing algorithms will be implemented and investigated in the
non-GPS navigation applications, including the pipeline surveys and horizontal/vertical
building surveys. CUPTs at Above Ground Markers (AGM) and odometer-based
velocities will provide auxiliary navigation information in pipeline surveying systems.
On the other hand, frequent ZUPTs and CUPTs at predetermined control points will be

used as the aiding sources for horizontal/vertical building surveying application.

The above objective is accomplished through performing the following research tasks:

1. To employ and implement KFs for INS/GPS, INS/CUPT/ODOM, and
INS/CUPT/ZUPT integration schemes.
2. To employ, develop and implement backward smoothing algorithms (TFS and

RTSS) for INS/GPS, INS/CUPT/ODOM, and INS/CUPT/ZUPT integrations.
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3. To demonstrate the estimation accuracy enhancement of both smoothers by
analyzing and discussing the corresponding navigation results in different INS-

based applications.

1.3 Thesis Outline

Chapter 2 presents the fundamentals of INS and the aiding techniques. The background
of different reference frames and attitude parameterization will be introduced. Using the
derived continuous-time INS navigation equations, INS mechanization formulas will be
derived and discussed in discrete-time form. A 21-state INS error model and the
corresponding measurement models of different aiding sources will be derived for the

KF. Inertial sensor calibration and INS initial alignment will be reviewed and discussed.

Chapter 3 discusses the optimal estimation techniques for INS-based integrated systems.
An overview of KF and EKF will be introduced as well as the FKF and BKF
mathematical concepts. The two different fixed-interval smoothing algorithms, i.e. the
TFS and RTSS, will be discussed and compared. A special emphasis will be directed
towards presenting the details of the modification requirements of the developed TFS to
overcome the nonlinearity problems. In this case, the rigorous mathematical derivations

are given. In addition, the considerations related to smoothers will be investigated.

Chapter 4 evaluates the performance of Kalman Filter and smoothers for land-vehicle

navigation using integrated INS/GPS systems. Two land-vehicle field tests are utilized.
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The first dataset incorporates a tactical-grade IMU (Litton LN200) while the second one
utilizes a custom-built MEMS IMU developed by the MMSS Research Group at UofC.

The achieved results for both tests will be analyzed and discussed.

Chapter 5 evaluates the performance of the different developed estimation techniques for
pipeline surveys using integrated INS/ODOM/CUPT systems including the KF, RTSS,
and TFS algorithms. A 21-hour long pipeline surveying dataset using tactical-grade IMU
(Litton LN200) will be used to demonstrate the positioning navigation accuracy

improvement of the designed smoothing methodologies.

Chapter 6 investigates the feasibility and the performance of the integrated
INS/CUPT/ZUPT systems for the horizontal/vertical building surveying application. The
corresponding KF, RTSS, and TFS modules will be designed and implemented
respectively. Two building surveying tests using the LN200 IMU are conducted to
evaluate and compare the horizontal/vertical surveying performance of filters and
smoothers. The first one is a horizontal surveying test along a fixed route inside and
outside a campus building with predetermined CUPT points. The second test is a vertical
test performed in a 7-floor campus elevator aided with the relative height of each floor

measured by trigonometric levelling techniques (i.e. a total station).

Chapter 7 presents the summary and main conclusions of the thesis and discusses the

recommendations for potential future work.



Chapter Two: INERTIAL NAVIGATION SYSTEMS AND AIDING
TECHNIQUES

2.1 Overview of Aided Inertial Navigation Systems

The publication of Schuler Pendulum principle issued the theory reference for inertial
navigation which was firstly applied by Germany in 1942 (King, 1998). The upcoming
Gimbaled Inertial Navigation Systems (GINSs) that were successfully designed for
aircrafts and submarines, however, relied on complex, sizable, expensive but precise
gimbaled platforms and gyroscopes (Stevenson et al., 1970). The invention of light-
weight digital computers permitted to remove the mechanical parts and triggered the
appearance of Strapdown INSs (SINSs) (Savage, 2004). With the development of
miniaturized optical and MEMS gyroscopes, SINS gained many advantages including
smaller volume, less power requirement, lower cost and faster respond. After the Global
Positioning System (GPS) Selective Availability (SA) error removal and the Galileo plan
agreement (Kaplan and Hegarty, 2006), low-cost INS/GPS integration was widely

researched and applied in civilian navigation fields during the last decade.

INS is built with inertial sensors: accelerometers sensing linear accelerations and
gyroscopes (gyros) sensing angular rotation rates. Orthogonally mounted inertial sensor
triads on a rigid body compose the Inertial Measurement Unit (IMU), the key component
of a SINS. IMU computes navigation solutions by processing the inertial sensor

measurements through the mechanization equations with respect to the predefined
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reference frame. With the IMU rigidly tied on the host, SINS is considered to be a self-
contained Dead-Reckoning (DR) system as it is capable of providing the complete 3-D
navigation parameters, namely positions, velocities and attitudes, without any external

signal receiving or transmission (Jekeli, 2001).

Generally speaking, the IMU performance is dominated by the gyroscope accuracy
(Abdel-Hamid, 2005). According to the sensor characteristics including biases and scale
factors, gyroscopes are usually classified into several categories: strategic-grade,
navigation-grade, tactical-grade and customer-grade gyroscopes (El-Sheimy, 2007).
Another classification is based on the manufacture principles: mechanical gyros,
suspended gyros, Ring Laser Gyros (RLG), Fiber Optical Gyros (FOG) and MEMS
gyros. Considering the requirement of low-cost and miniaturization, SINS is based on the
tactical-grade and customer-grade gyroscopes (Titterton and Weston, 2004). An
investigation of gyroscope technology with respect to the sensor bias and scale factor is

roughly described in Figure 2.1.
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Figure 2.1 Investigation of Gyroscope Technology (After EI-Sheimy, 2007)
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Compared to the development of gyros, accelerometers are much more successfully
designed and produced to achieve the miniaturization and inexpensiveness
simultaneously. Performance of accelerometer technology is described with respect to the

sensor bias and scale factor, as shown in Figure 2.2.
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Figure 2.2 Investigation of Accelerometer Technology (After EI-Sheimy, 2007)

Compared to the higher-grade systems, low-cost INS confronts the problems of large and
unpredictable sensor errors and noises. This inadequacy leads to the fast navigation error
accumulation over short time intervals (Nassar, 2003). The inertial sensor calibration
techniques are essential to model the determinant errors and uncertainties. Another
practical way to improve the accuracy is aiding the INS with other complementary
sensors or navigation-related information (Shin, 2005). The augmentation navigation
means in this thesis comprise: GPS, odometers, non-holonomic constraints, Zero

Velocity Updates (ZUPTs), and Coordinate Updates (CUPTSs).
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2.2 Overview of Reference Frames and Attitude Parameterization

SINS algorithms require frequent transformations between different reference frames, in
which the sensor measurements and navigation states are defined. On the other hand,
background information about attitude representations and their conversions is an
foundation for the reference frame transformations. The details related to the reference

frames and attitude parameterization will be discussed in this section.

2.2.1 Reference Frame

Frequently used reference frames in SINS are listed as follows:

Inertial Frame (i-frame)

An inertial frame is idealized as a right-handed orthogonal, non-rotating and non-
accelerating frame with respect to fixed stars. An operational i-frame is realized by
defining its origin at the Earth center, its z-axis parallel to the Earth instantaneous spin

axis, and its x-axis pointing towards the vernal equinox (Petovello, 2003).

Earth-Centered Earth-Fixed Frame (ECEF or e-frame)
ECEF is defined as a right-handed orthogonal frame which has its origin at the Earth
center, its z-axis parallel to the Earth mean spin axis, and its x-axis pointing towards the

mean meridian of Greenwich.
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Navigation Frame (n-frame)
The navigation frame is a local geodetic frame. In this thesis, it is defined as the north-

east-down (NED) right-handed frame.

Body Frame (b-frame) and Host Frame (h-frame)

The body frame is the same as the IMU orthogonal body axis in which the accelerations
and angular rotation rates by inertial sensors are resolved (Scherzinger, 1996). The host
frame is defined as the forward-right-down axis set aligned with the roll, pitch and
heading axes of the host. In SINS, the b-frame and h-frame are assumed to be overlapped

for convenience.

Computer Frame (c-frame) and Platform Frame (p-frame)

The computer frame is the assumed navigation frame by the SINS computer. The
platform frame is the assumed inertial stabilized platform axis set in which the
measurements from the hypothesized inertial sensors are resolved (Scherzinger, 1996). P-

frame is actually the b-frame counterpart in Gimbaled INSs.

2.2.2 Attitude Representations

Frequently used attitude representation methods in SINS are listed as follows:

Angular Rotation Vector and Angular Velocity
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The transformation of a frame from its initial orientation to its final destination, or the
transformation between two different frames is preferred to be represented with a single

rotation operation around its direction axis. Angular rotation vector describes the

magnitude and the direction of this rotation in a 3 X1 vector ¢ = [,ux MM ]T :

Angular velocity describes the rotation speed and the instantaneous axis direction about

which the rotation occurs. It is usually represented by a vector of three components as,

VA
W5 = (2.1

NS VS HS

where the superscript ¥ denotes the coordinate frame in which the angular velocity
components are projected (it is normally set as the frame [3); the subscript @f3 denotes

that the coordinate frame /3 rotates with respect to frame « .

An alternative expression of angular velocity is the skew-symmetric matrix form as (El-

Sheimy, 2007),

0 -0 o
Q=)= o 0 -o, (2.2)
-0, O, 0

The relationship between angular rotation vector and angular velocity is described as

(Bortz, 1971),
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ﬂ:dﬂ/dtza)fﬁ+%ﬂxwfﬁ+éﬂx(ﬂxa}fﬁ) 2.3)

Euler Angles and Directional Cosine Matrix (DCM)

An Euler angle is the rotation angle about one coordinate frame axis. The relative
orientation between two frames can be decomposed as a sequence of three rotations
expressed by Euler angles. Mathematically, it can be explained as a product of three
elementary rotation matrix obtained by Euler angles (Savage, 2004). This product is
defined as Directional Cosine Matrix (DCM) as one of the main methods for attitude

parameterization.

The Euler angle elementary matrix and the corresponding DCM are formulated as,

CJ=R.(6,)R,(6,)R.(6.)

1 0 0 |cos@d O —sinf | cosd, sinf, 0O 2.4)
=0 cos@  sinf, 0 1 0 —sinf. cos6. O '
0 —sinf.  cosé, | sin 6’}, 0 cos 6’}, 0 0 1

where,
@ denotes the Euler angle;

C f denotes the DCM from & frame to /3 frame;

R denotes an elementary rotation matrix, and its subscript denotes the instantaneous axis

about which the Euler angle is rotated.



15
Attitude Quaternion
Quaternion implementation is preferred in updating the attitude in INS as the linearity of
quaternion differential equations, the lack of trigonometric functions, and the small
number of parameters allow efficient algorithm (Farrell and Barth, 1998). Similar to the
angular rotation vector, quaternion defines the frame transformation using a single
rotation about its direction axis. It is represented in a 4 X1 parameter vector by the

rotation vector as (Savage, 2004),

= el = el 2.5)

where,

q;‘ denotes the quaternion, which signifies the rotation from & frame to ,3 frame;

H ,UH denotes the Euclidean norm of the rotation vector, which is the rotation magnitude

as,

N s (2.6)

The product of quaternion vectors represents a series of continuous rotations as,

Vil |V, sV, +s,V.+V XV,
° = , 2.7)
S, s ss,—V'V,

2

quq}?'q;:[
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where,
® denotes the quaternion product; X denotes the vector cross product;
V' denotes the vector part of a quaternion, which is composed of first three components;

s denotes the scalar part of a quaternion, which is the last component.

The conjugate quaternion is described as,

()" =a.=| |4 2.8)

where (g )" denotes the conjugate quaternion of qy-

2.2.3 Reference Frame Transformations

Frequently used reference frame transformations in SINS are discussed below.

Transformations between i-frame, e-frame and n-frame
The relationship between i-frame, e-frame and n-frame are depicted in Figure 2.3. The

DCM from n-frame to e-frame is expressed in terms of the geodetic latitude ¢ and

longitude A as,
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C'=R (—¢p- 7/2)R_(A)
—sin@cosA —sin@sinAd  cos@
—sin A cos A 0

—cos@cosA —cospsindA —sin@

2.9)

The corresponding quaternion is,

—sin(~z/4—@/2)sin(1/2)]

) sin(—z/4—@/2)cos(A/2)

q, = . (2.10)
cos(—z/4—@/2)sin(A/2)

| cos(—z/4—@/2)cos(A/2) |

The angular velocities frequently used are listed as (Titterton and Weston, 2004; El-

Sheimy, 2007),

w =[0 0 w];w =7.2921158rad/s (2.11)
w =C'w. =[w,cos¢p 0 —a sing] (2.12)
no— ﬂ - _ﬂ( . T

=[v,/(N+h) —-v,/(M+h) —v, tan@/(N+ n1"
where,
V., V, are the east and north velocities;
N, M are the meridian and prime vertical radii of curvature;

h is the ellipsoidal height;

A=v, (N +h)/cos@,¢p=v /(M +h) 2.14)
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Figure 2.3 i-frame, e-frame and n-frame (After Shin, 2005)

Transformations between b-frame and n-frame

The DCM from b-frame to n-frame is given as (Shin, 2001):

C, =R (=A)R (=p)R (-1)

[cosA —sinA Of cosp O sinp|1 0 0 (2.15)
=|sinA cosA O 0 1 0O ||[0 cosr —sinr
0 0 I|f—sinp O cosp|0 sinr cosr

[cos pcosA —cosrsin A+sinrsin pcosA  sinrsin A+ cosrsin pcos A

=|cospsinA cosrcosA+sinrsin psinA  —sinrcos A+ cosrsin psin A

—sin p sin 7 cos p COS ¥ COS p

where 7, p, A are the roll, pitch and heading angles, which are the three components of

Euler angles.

The conversion from DCM to the Euler angles is shown as (Farrell and Barth, 1998):
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_ c
p = —tal’l 1(—1 _31C2 )
31

r=tan"(c,/c,) (2.16)
A=tan"'(c,/c,)

where ¢, is the (i, j) elementin DCM C'.

The conversions between quaternion and DCM are shown as (Shin, 2001):

a9, -9, —q;, +q, 2q49,-9.49,) 2(q,9, — 9,9,)
C=| 2(q9,+v9:9) 4 —q,—q.+q;, 2q,9,—q4,) (2.17)
29,9, -9,9.)  24,9,+949,) 4 —4q,—4q; +4q,

and,

q, _0.25(032 - 023)/0.5/\/1 +c, +c, e,

o =% | 0.25(c,, —¢,)/0.5/ /1 +¢, +c,, +c, 218

4, | |0.25(c, —¢,)/0.5/1+¢, +c, +c,
q, | 0.5\/1+c11 +c,, tc,,

Transformations between n-frame, c-frame and p-frame

The relationship between n-frame, c-frame and p-frame is illustrated in Figure 2.4, where
the perturbation angle from n-frame to c-frame is defined as 08, the perturbation angle
from n-frame to p-frame is defined as ¢, and the perturbation angle from c-frame to p-
frame is defined as ¥ . Since all these misalignments are small angles, the following

equations are yielded as (Scherzinger, 1996; Shin, 2005),



30 =[0Acosp —Sp —Asing|

=[8v,(N+h) —& /(M+h) —&, tang/(N+h)]

C, =1-(00x);C! =1—-(Wx);C/ =1 —($x)

d=y + 00

where,

oA, §§D denote the latitude and longitude errors;

oV, ,0v, denote the north and east velocity errors;

(X) denotes the skew symmetric matrix of a three element vector.

True n-frame

_,-—'-'""_'_'_—'_‘_

Figure 2.4 n-frame, c-frame and p-frame (After Shin, 2005)
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2.3 Inertial Navigation System (INS) Fundamentals

2.3.1 INS Navigation Equations

Without a detailed derivation, the INS navigation equations in the n-frame which define
the dynamics model of the navigation states in continuous-time domain can be described

as (Schwarz and Wei, 1999; Savage, 2004),

r D™
V=L =R+ al )XV + g" (2.22)
C, C (@ x) (@] X)C;}

where,

r' =[¢ A h]T is defined as the position vector, which is essentially the polar

coordinate expression in e-frame; its Cartesian coordinate counterpart is

r‘= [rx r,or ]T
’ ' . (2.23)
= [(N +h)cos@cosA (N +h)cospsind (N1 —e*)+ h)sin ga]

with e is the first eccentricity of reference ellipsoid;
f',@, are the specific force and angular rate measurements from inertial sensors
projected in b-frame, which are the time-varying parameters in navigation equations;

g" denotes the gravity vector in n-frame;

/(M + h) 0 0
D' = 0 1/(M +h)/cosp 0O (2.24)
0 0 -1
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2.3.2 Inertial Sensor Calibration and Measurement Error Compensation

Generally, the raw outputs of inertial sensors are corrupted by biases, scale factors, non-

orthogonalities and noises, shown as in Eq. (2.25)-(2.26).

a)k

o =& |=b,+b, +(U+L,+L,)0 +w, (2.25)
2}
Ie

fk = fky = baccO + bacck + (I + LaccO + Lacck )fk + Wacck (2.26)
fi

where,

the superscripts X, y, Z denote the sensor triad axes;
the subscripts O denote the determinant sensor error; the subscripts k denote the random

sensor error at time epoch 7, ;

the subscripts g denote the gyroscope; the subscripts acc denote the accelerometer;

~

f , f denote the vectors of the raw accelerometer outputs and the true specific force;

@ , W denote the vectors of the raw gyro outputs and the true angular rate;
b denotes the bias vector; w denotes the random noise;

L denotes the linear sensor error matrix with scale factor SF' and non-orthogonality

1 as,
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X Xy pod x Xy Xz
SF, r, r, SF, r; r,
— yx y yz . — yx y yz
L, r, SF, ry |\L,=|r, SF, r,
2x 2y z 2x 2y z
Ty r, SF, " r., SF,
(2.27)
X Xy Xz x Xy pod
SFacc 0 racc 0 racc 0 SFacck racck acck
_ yx y vz . yx y ¥z
acc0 racc 0 SFaCC 0 racc 0 ’ Lacck racck SFaCCk racck
x 2y Z x y Zz
acc0 racc 0 S acc0 racck racck SFacck

The process to calculate or estimate these determinant or random sensor error parameters,
i.e. biases, scale factors, and non-orthogonalities, is known as sensor calibration.
Determinant sensor errors are preferred to be calibrated beforehand in laboratory. Normal
SINS laboratory calibration technologies are following the idea to compare the IMU
outputs with the reference information including gravity and earth rotation rate (Niu et
al., 2006). The random errors are always mathematically modeled as stochastic processes
(Nassar, 2003). Allan Variance method is utilized as part of the lab work to determine the
model types and estimate the model parameters for the random noise (Hou, 2004).
Random sensor error parameters can be calibrated in field tests or be estimated on-line in
the integrated navigation systems. The effect of random errors will be suppressed using

optimal estimation methods with aiding sources, as discussed in the succeeding chapters.

With calibrated parameters, sensor errors can be compensated from raw outputs as,

o =(I+L,+L,)" (& -b,-b,) (2:28)

fk = (I + L + Lacck )_1 (fk - baccO - bacck ) (2'29)

accO
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Instead of specific forces and angular rates, incremental velocities and angles are the

outputs in most of the high-grade IMUs. Integration procedures to relate the two types of

IMU outputs are introduced as follows (Savage, 2004),

AG, =" wdt = w At

Av, =" fdt=fAt,

where

A8, Av denote the incremental angles and velocities;

At =t —t,_, is the time increment.

2.3.3 INS Mechanization

SINS mechanization is defined as the integration process to calculate the navigation
states, i.e. positions, velocities and attitudes, with raw inertial sensor measurements.
Therefore, the mechanization algorithm can be regarded as the discrete-time form of the
INS navigation equations. Several approximation methods were applied to solve the
quaternion differential equations in attitude integration. Further, a single-speed
mechanization algorithm considering midway navigation states and applying quaternion

algebras was developed by Savage (2004). Forward SINS mechanization is the
integration process to determine the navigation states from the previous time epoch 7,
to the current time epoch #, using compensated IMU outputs. Its simplification by Shin

(2005) will be summarized in this thesis.

(2.30)

(2.31)
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Velocity Integration

The discrete-time form of the second component in Eq. (2.22) can be written as,

v, =v,  + AV}; +Av,
AV, =1 = (0.5¢,X)]C1 A’

gk = [wlz + w:n]k—I/ZAtk

1 1
AV = Av) +5A6’k XAV} +E(A6’k_1 XAV) + AV, XAB,)

# =

Avenk = [gn - (2(0,2 + (U:n)Xv" ]k—I/ZAtk

where,

the subscripts kK —1,k —1/2,k denote the previous, midway and current time epochs
t, .t t, respectively;

k=1>"k-1/2"

the subscripts bk denote the corresponding variable is projected to the b-frame at 7, ;
AV’ is the increment induced by gravity and Coriolis force;
Av';} is the increment induced by specific force;

G, is the n-frame rotation vector from (n,k —1) to (n,k);

the second and third terms at the right of Eq. (2.35) are the rotational and sculling motion.

Positions at midway are required to be extrapolated from the previous time navigation

states as,

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)
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h ,=h _M (2.37)
2
0Py =Vy /(M +hy_,,,)/2 (2.38)
6ﬂk—1/2 = ka—l /(N + hk—l/Z ) / Cos(gok—l ) / 2 (2'39)
50/<—1/2 = [52%—1/2 COos ¢k—1 - 5¢k—1/2 - 52%—1/2 sin ¢k—1 ]T (2-40)
sin[0.566, .| 58
— k-1/2
R B T (2.41)
c0s|0.556, .,
D =Dt ® s, (2.42)

where the midway latitude and longitude can be extracted from quaternion g¢ ..

Velocity at midway are extrapolated as,

Av!

n — n k—l — n
vk—l/2 - vk—l + 9 - vk—l +

AV;(_l +AV! 2.43)
5 .

where Av, | is the second and third velocity increments at the right of Eq. (2.32) stored

in the previous epoch.

Position Integration

The midway velocity can be updated by interpolation as,

n n
o VetV

Ve == (2.44)
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The height can be updated by the midway downside velocity as,

h =h

k 1 —V

AV A (2.45)

The current time quaternion q:,’: containing position information can be updated by the

products of e-frame and n-frame rotations as,

ek—1 ek—1 nk—1

Qi =Dt ®* D (2.46)
T =Gy (2.47)
sin|0.5¢,

o = e (2.48)
cosHO.Sng
smHO 5& | £

Qoo = [ I (2.49)
cos0.5& |

g, = W AL, (2.50)

where,

G, 1s recalculated with the renewed midway velocity using Eq. (2.34);

& denotes the e-frame rotation vector from (e,k —1) to (e, k);;

q:,f ' qek , denote the quaternion vectors corresponding to the rotation vectors above.



Attitude Integration

The midway positions can be renewed by interpolation as,

O, +tQ
D1 =%

A +A
/lk—I/Z: k12 ‘

h  +h
hk—l/z %
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(2.51)

(2.52)

(2.53)

The quaternion ¢, containing attitude information can be updated by the products of n-

frame and e-frame rotations as:

nk—1 nk— 1 bk—1

Qbk = qbk 1 qbk

nk—1

nk __
Qbk - an 1 Qbk

s1nH0 59, H p
G = H¢k H k
i cosHO.5¢ku
_sin0.5¢, |

= el 7
cosHO.Sng

@, ~ A9+1A9 XAB,

where,

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)
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@, is the b-frame rotation vector from (b, k —1) to (b,k);

the second term at the right of Eq. (2.58) denotes the second-order coning correction.

2.3.4 INS Error Model

SINS navigation equations are the non-linear models to describe the dynamics of the
navigation states. The linearized equations can be derived by perturbation analysis
(Britting, 1971), which are transferred as the models of the navigation error states, i.e.

position errors, velocity errors, and attitude angle errors. For convenience, the ¥ -angle

error model, which indicates the perturbation is conducted with respect to the computer
frame, will be utilized in this thesis. In addition, the random sensor error parameters
including residual bias and scales factor are modeled as first-order Gauss-Markov
processes, of which the model parameters could be determined by auto-correlation
analysis or Allan Variance technique. Materials (Nassar, 2003; Shin, 2005; Weinred and
Bar-Itzhack, 1978; Scherzinger, 1996) for detailed deductions of the above algorithm

models are recommended to readers with interest.

The continuous-time ¥ angle error model for navigation states and sensor error states

are shown as:

O ==, X' + o
N =Xy —-Qa+a& )XV +%& +C F" (2.59)
Y =—(@, + @) xy - C, b0,
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where,
the position error vectoris Or* =[or, or, I, ] ;

the superscript ¢ denotes the computer frame;

the sensor measurement errors are written as,

&' =b, +SF, f"+w,, (2.60)

ow, =b +SF w, +w (2.61)
l 8 8 8
the gravity perturbation is,

=D& =di S & o 2.62
% ¢ lag([M+h N+h \/MN+h]) (262

where the diag(®) denote the diagonal matrix form of a vector.

The stochastic models for the sensor random bias and scale factor are given as first order

Gauss-Markov models (Godha, 2006):

b, ==t ,bi + 1., (2.63)
b =—a',b +17, (2.64)
SF!, =0t SF. +1]., 2.65)
S]Vg" =—a,, SF +1., (2.66)
where,

the superscript i denotes sensor triad axis of the IMU;
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& is the correlation time reciprocal;

the spectral density of the driving noise 7] is achieved using correlation time reciprocal

. 2
and the process variance O~ as,

q =~2ao’ (2.67)

The combination of Eq. (2.59) and Eq. (2.63)-(2.66) yields the forward linear dynamics
process model with both the navigation error parameters and the sensor error parameters
defined as the system states. The discrete-time form of this process model can be given

by (Grewal and Andrew, 2001; Brown and Hwang, 1997),

(E)QXQ (FZ )9><12

5xk = Fk—ldxk—l + Wk—l - (I + |: :| Atk—l)éxk—l + Wk—l

012><9 (F3 )12><12
(I + FAt F At
— ( 1 k—1 )9><9 ( 2 k-1 )9><12 :| 5)(:/(_1 + Wk_l (2.68)
| O12><9 (I + F3Atk—1 )12><12 k=1
— (F;,)QXQ (Fz:)9><12 :| &k_l + Wk_l
L 012><'9 (P-; )12><12 k-1

where,

the 21 system state vector is,

& =@ (&) @' (D) (@) (SFEY (SE)] e

g acc

F

. 1s the state transition matrix, obtained from the numerical approximation of the

continuous-time dynamics matrix F'(#), which is composed of the following matrix,
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- (C(); X) 33 1 33 O3><3
E = (Dg )3><3 [_(260; + a)eLL‘ )X]m (fcx)m (2.70)
O3><3 03><3 [—((l); + a):c )X]3><3
O3><3 03><3 O3><3 03><3
Fz - 03><3 C; 03><3 Osxah Cbnf (2.71)
- Cbn 03><3 - Cbn a)ibb O3><3
F =-diag((@,),, (@), @y, @.).) @.72)

the spectral density matrix for the driving noise W in continuous-time domain is,

Q =diag (lolx3 (qVRW )l><3 (qARW )l><3 (q ¢b )1><3 (qaccb )1><3 (ngF ) 1x3 (qaccSF )l><3b
2.73)

where,

are the Velocity Random Walk (VRW) and Attitude Random Walk (ARW)

QVRW > QARW
variances;

the spectral density for the Gauss-Markov models of the sensor error parameters in

discrete-time domain is,

g, =0’ (1—e’"") =200’ At,_, (2.74)

2.3.5 Initial Alignment

INS initial alignment is defined as the process to determine the initial values of the

navigation parameters. Dependable position and velocity information can be provided by
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high-accuracy GPS solutions. Since the accuracy of the initial attitudes predominantly

governs the navigation error accumulation, initial alignment is narrowly considered as the
procedure to initialize the attitude information, contained in the DCM C : (Britting,

1971). For IMUs whose gyro bias and noise levels are smaller than the values of the
Earth rotation rate, such as navigation-grade or high-end tactical-grade IMUs, a coarse
alignment followed by a fine alignment can be applied to estimate the initial attitude
parameters. The coarse alignment is an analytic method providing the averaged solutions.
It can be decomposed as the levelling step, determining the initial roll and pitch, and the
gyrocompassing step, determining the heading angle (Titterton and Weston, 2004). With
the established DCM from the b-frame to the n-frame, the fine alignment is an optimal
estimation method by an INS-only KF using horizontal specific force and east-channel
gyro error measurements. Both of the two alignment methods are processed in stationary
mode and implemented on the basis of the reference information including gravity and

Earth rotation rate (Farrell and Barth, 1998).

For low-cost IMUs, the poor gyroscope characteristics result in the failing of initial
heading alignment (Godha, 2006). On the other hand, stationary alignment cannot meet
the real-time consideration in civilian and commercial applications, such as vehicle
navigation (Shin, 2001). Aiding sources including magnetometers, GPS multi-antenna
systems and/or GPS-derived velocity information are indispensable to the in-motion
alignment techniques. Besides, kinematic alignment is researched from the system

observability point of view in aircraft applications (Bar-Itzhack and Porat, 1980).
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2.4 Measurement Models for Aiding Sources

Since the EKF is commonly applied to resolve the non-linearity in system model, it is the
measurement misclosure, or the difference between the INS mechanization outputs and

the observations from aiding sources that is concerned in the INS-based integration

systems,
&k = Tivs ~ Zaiding (2.75)
where Z,, is the INS mechanization solution; 7, . is the aiding sensor observation.

2.4.1 Global Positioning System (GPS)

The GPS is a Global Navigation Satellite System (GNSS) developed by the United States
Department of Defence (DOD), which provides absolute positioning information and
long-term accuracy under all weather conditions (Kaplan and Hegarty, 2006). Due to its
dependency on radio signal transmission and line-of-sight (LOS) measurements, GPS
suffers from various error sources and poor satellites geometry. To eliminate or mitigate
the common errors between receivers, epochs, satellites or stations, the Differential GPS
(DGPS) technique is implemented to improve the positioning accuracy to centimeter
level. Several strategies were performed to integrate the GPS and INS data to overcome
their individual disadvantages and reach superior performance. In this thesis, loosely-
coupled integration is introduced which utilizes position or position/velocity

measurements from GPS-only filter to aid INS solutions.



35

The measurement model using GPS position solutions considering the lever arm effect

can be written as (Shin, 2005):

&, =0 +(C)lo, X)W, +v, (2.76)

where,

lgPS denotes the lever-arm effect between the GPS antenna and IMU mass center
projected in the b-frame;

v, is the GPS position measurement noise, with the spectral density matrix obtained
from statistic and/or kinematic GPS data processing as,

R, =diag([o, o, 0, (2.77)

the measurement vector is,

&k =D (ZNnSk - ;';;ZSk ) + Chnl(l;PS ) (2.78)
(M +h) 0 0
D= 0 (M +h)cosgp 0 (2.79)
0 0 -1
where 7y , Tng, denote the position vectors achieved by INS and GPS.

The measurement model using GPS velocity solutions considering the lever arm effect

can be written as,

oz, =, — (@' x)C (1, Xy, —C' (1, xw )Xy, +C, (,X)d0w +v, (2.80)

GPS GPS GPS
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where,

v, is the GPS velocity measurement noise, with the spectral density matrix obtained

from statistic and/or kinematic GPS data processing as,

R, =diag([o] o) 0] 1) (2.81)

VE D
the measurement vector is,

&k = ‘711’:/& - (&')1: X)Cbnl ps Cbn (l ; X)QZ - ‘7;PSk 5 (2.82)

GPS GPS

~n ~n

where subscripts V., , V., denote the velocity vectors achieved by INS and GPS.

2.4.2 Odometer and Non-Holonomic Constraints

Odometers, or milometers, are applied in land-vehicle navigation and pipeline surveys to
provide augmented host velocity observations. The measurement model using odometer
velocity measurements considering the misalignment between h-frame and b-frame can

be written as (Shin and El-Sheimy, 2005),

&, =C/C'ov—C'C'(vi X, —C (' X)ow, +v, (2.83)

odometer

where,

C : denotes the DCM from b-frame to h-frame;

lb
odometer

denotes the lever arm effect between the odometer and IMU mass center
projected in b-frame;
is the velocity vector achieved by INS mechanization;

vn
INS
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Vv, is the odometer measurement noise, with the spectral density matrix evaluated by the

priori knowledge on sensor characteristics;

the measurement vector is,

~

&, = ;6 ,NSk+C( S T

odometer odometerk
NSk + C (

(2.84)

T

—[V e 0 O]

odometerk

('32

_ )
- b odometer

where,

h
odometer

% denotes the velocity vector observed by odometer projected to host-frame;

X

% denotes the odometer observation along the forward direction in h-frame.

odometer
Non-holonomic constraints is defined as the fact that unless the vehicle jumps off the
ground or slides on the ground, the velocity of the vehicle in the plane perpendicular to
the forward direction is almost zero, as in Eq. (2.85) (Sukkarieh, 2000; Nassar et al.,

2006; Godha, 2006). This is illustrated as in Figure 2.5.

o =000 =0 (2.85)

where the superscripts y, z denote the transversal and down directions in h-frame.

Simplified from Eq. (2.83), the measurement model using non-holonomic constraints can

be written as,

x; |
&k = &kz = (C:C: )2:3,3:3 &}; - [C: C: (vInNS X)]2:3,3:3 V., +v (2.86)
k

where,
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the subscript 2 :3,3: 3 denotes the last two rows’ elements of a 3 X 3 matrix;
Vv, is the assumed non-holonomic constraints noise;

the measurement vector is,

y
INS

~ o~ \%
&, =(C;'C)),, . (2.87)

k4
INS

Z

where v, .,V are the velocities achieved by INS in east and down directions.

Figure 2.5 Non-holonomic Constraints

2.4.3 Zero-Velocity Updates (ZUPTs) and Coordinate Updates (CUPTs)

ZUPTs are applied at time intervals when the host vehicle is stopped occasionally or
intentionally to restrict the position error accumulation rate and the roll, pitch errors (EI-

Sheimy, 2007). The simplified ZUPT measurement model can be built as,

0z, =0V, +v, (2.88)

where,
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v, 1s the assumed ZUPT noise;

the measurement vector is,

&, =V (2.89)

CUPTs are applied when the host vehicle reaches the control stations where the local
geodetic coordinates are obtained in advance using high accuracy surveying tools, e.g.

DGPS (EI-Sheimy, 2007). The simplified CUPT measurement model can be built as,

&, =05 +v, (2.90)
where,

v, is the assumed CUPT noise;

the measurement vector is,

&, = DT = Topn) 291)

~

where 7,7, denote the position vectors achieved by INS and CUPT at the

[ — th station.
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Chapter Three: OPTIMAL ESTIMATION TECHNIQUES IN NAVIGATION

3.1 Overview of Filtering and Smoothing

Estimation is a data processing technique that applies the predefined statistical criterion
to extract the desired information from the available resources (Gelb, 1974). Generally
speaking, the objective of optimal estimation in navigation systems is to obtain the “best”
estimates of the system states, including navigation parameters, inertial sensor errors, and
other related parameters in the augmentation sensors. The “best” in this case means the
Minimum Mean-Square Error (MMSE), which is the commonly used mathematical
criterion in statistical sense (Brown and Hwang, 1997). To achieve the best performance,
the navigation estimator utilizes all the available information: the sensor measurement
data, the knowledge of system dynamics and measurement mechanizations, the noise

statistics, and the initial conditions (Gao, 2007).

Based on the desired estimation time (t) and the availability of measurements, estimation
problems could be divided into three categories (El-Sheimy, 2007):

Prediction, when (t) occurs after the last available measurement point;

Filtering, when (t) coincides with the last available measurement point;

Smoothing, when (t) falls within the span of available measurement data.

The three types of estimation problems are depicted in Figure 3.1.
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Elx

It

2,1 <t]

Prediction

0

Figure 3.1 Prediction, Filtering and Smoothing

Literally understanding, the function of a filter is to separate the desired signal from the
raw data with random noise and deterministic interference. This usually refers to passing
signals in a specified frequency range and rejecting those outside that range in the
applications of communications, controls, and electrics. This concept had not been
challenged until Wiener proposed several meaningful assumptions: suppose the desired
signal is not a deterministic process but a stochastic process similar to the characteristic
of noise; suppose both the signal and noise share a significant overlap in frequency
domain (Brown and Hwang, 1997). The Wiener Filter (Wiener, 1949) was published and
researched afterwards to solve these problems by applying the MMSE criterion with the
known spectral properties of the original signal and noise. However, it was limited to
statistically stationary processes and provided estimation only in steady-state regime
(Gelb, 1974); on the other hand, the filter must be physically realizable. The limitations
of Wiener Filter restricted its propagation in engineering fields regardless of its success in

image processing (Acharya and Ray, 2005).
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In 1960, R.E.Kalman offered an alternative explanation of Wiener Filter with state-space
and time domain formulations. Beginning with the trajectory estimation problem
introduced by Schmidt (Grewal and Andrew, 2001), Kalman Filter (KF) was
unexpectedly applied in a wide variety of researching and industrial areas. KF is
recognized as the classical estimation tool in the applications of control, navigation, and
multi-sensor fusion. Further, it is credited as one of the most suitable estimators to be

implemented by modern digital techniques.

Although the research of smoothing actually predated the KF, it was the KF that made
smoothing algorithms applicable in navigation field. Smoothing problems were classified
into three categories by Meditch (1969): fixed-point, fixed-interval, and fixed-lag
smoothers. As depicted in Figure 3.2, suppose t,,t, are the initial and final points in a
time interval; ¢ is the desired estimate time; A is the length of a sliding time window. In

fix-point smoothing, the optimal estimate X, is obtained by using all the future
measurements after the fixed estimation time ¢ as f, increases; in fix-interval smoothing,
X, is obtained by using all the past, current and future measurements in the fixed time
interval [z,,7,] as t varies between 7, and 7, ; in fix-lag smoothing, X, is obtained by all

the future measurements in the fixed time window A as #, increases (f equals to 7, —A).
While fixed-point and fixed-lag smoothing could be regarded as near real time estimation
methods, fixed-interval smoothing can only be implemented in post missions. Fixed-

interval smoothing has been used in most surveying applications, because surveying is
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typically amenable to post-processing where best position information is pursued for all
measured points (Shin and El-Sheimy, 2002). The details about fixed-point and fixed-lag
smoothing are introduced in Nassar (2003), Gelb (1974), and Crassidis and Junkins
(2004). Due to the nature of the analyzed INS-based applications in this thesis, only
fixed-interval smoothing algorithms will be discussed in details.

I Elx,|z,.t T ]

<t’'<
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Figure 3.2 Fixed-point, Fixed-lag and Fixed-interval Smoothing

3.2 Kalman Filter (KF)

KFs are based on the linear dynamics systems in time domain. A typical state-space

representation of the linear system requires building the system dynamics model, and the
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observation relationship between the measurement quantities and the system states. This
requirement can be described as the continuous-time system equation and the discrete-

time measurement equation, as shown in Eq. (3.1) and (3.2) respectively.

x(t)=F(@)x(t)+ G(t)w(r) 3.1)
z,=H x +v, (3.2)
where,

t indicates the continuous time; the subscript k represents the discrete time epoch 7, ;

X is the system state vector; Z is the measurement vector;

w is the system noise vector, assumed to be a Gaussian white noise with the covariance
matrix, E[w()w(7)"1=0Q()S(t —T) , where the operator J(-) denotes the Dirac
delta function and Q is called the spectral density matrix (Gelb, 1974);

V is the measurement white noise vector;

F is the system dynamics matrix; G is the system noise shaping matrix;

H is the observation design matrix.

Eq. (3.1) is preferred to be transformed to a discrete-time form for digital

implementation:

x, =P  x +w 3.3)

k k,k=1""k-1 k-1

where,
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k
W, = .[k_lq) L G(@W(T)dT is the driven response at f, due to the presence of the

input white noise during the time interval (¢,_,,f, ) (Brown and Hwang, 1997);

k-1?

P is the system transition matrix from epoch ¢, | to ¢

k., k=1 k>

the subscript k —1 represents the time epoch 7, _, .

For most system models in reality, the dynamics matrix F'(¢) is considered to be time

invariant during the small time interval Af =¢, —¢, . Thus, the transition matrix can be

obtained from the dynamics matrix by simple numerical approximation as (Gao, 2007),

O, =Y"(sI-F)']=e™ =1+ FAt (3.4)
Because a white sequence is a sequence of zero-mean random variable that is
uncorrelated timewise, the covariance matrix associated with w, and v, is given by
(Brown and Hwang, 1997),
, 1=k
E[ww']= 0 . 3.5)
0, ik
r R, i=k
Elvyv, 1= ) (3.6)
0, i#k
E[wyv'1=0 Vik (3.7)

where the process noise matrix is derived as,
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0, = Elwow, 1=E{[ "0, .com@ael] " @, copwaman] |
=["[" @, .GEOEWEOW G (P addn 3.8)

z%[q’kG(h)Q(h)GT(h )P, +G(1,)0(,,)G" (t,)IAL,

The determination of the initial state estimate X, and its covariance P, = E [)Acofcg ]is the

first step of the KF. With a priori information of both the noise characteristics and the
initial conditions, the KF algorithm can be implemented recursively using a series of

prediction and measurement update steps (Gelb, 1974).

The KF prediction stage is built on the system model as,

X, =P, 5, 3.9)
Ec_ = ¢k,k—lf)k-*—(bk,k—l + Qk—l (3'10)
where,

X~ denotes the prediction state estimate; X" denotes the update state estimate;

P~ denotes the prediction covariance matrix; P denotes the update covariance matrix.

In the measurement update stage, the optimal state estimate and its covariance are
updated with the predictions and the observations. This group of equations is listed as

follows,

K. =P H (HP H +R)" (3.11)
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v, =z, —H.X, (3.12)
X, =x +Kyv, (3.13)
P'=(I-K,H,)P (3.14)
where,

Vv, 1s the innovation sequence, which denotes the difference between the observation and
the prediction.
K, is the KF gain, or the weighting matrix, which decides how much of the new

information contained in the innovations should be accepted by the system (Petovello,

2003). The derivation of the gain matrix is based on the minimum variance criterion.

The KF algorithm is summarized in Figure 3.3.

A prior noise
Knowledge
LR, 0

v

Initial Conditions
x,P

0

Prediction
A At
X = q)k,k—lxk—l

Rr_ = ¢k,k*lfl-‘-¢k,k71 + Qkfl

[}

Update
Kk = PkinT(HkPI;H: +Rk)71
Ve =% — Hk‘ill;

Measurement
Zk’Hk
X =X +Kyv,
Pk+ =(- Kka )Pk_

Figure 3.3 Kalman Filter
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3.2.1 Extended Kalman Filter (EKF)

The aforementioned mathematical models are assumed to be linear. Unfortunately, they
are non-linear in most of the navigation applications. The typical discrete-time non-linear
system model and measurement model are illustrated in the following equations (Grewal

and Andrew, 2001),

x, =f(x_,k=D+w,_ (3.15)
Z, =h(x,,k)+v, (3.16)

where f(+),h(:) are the non-linear functions describing the system dynamics behavior

and the measurement mechanization respectively.

The principle method to deal with the non-linear estimation problems is to linearize the
models about a predetermined or instantaneous nominal trajectory. This nominal
trajectory is defined as the trace of a time-varying parameter vector, which is typically
the sequence of the system state vectors with the expected or estimated values (Grewal
and Andrew, 2001). By using Taylor series expansion, the linearization process of the

non-linear system model is listed as,

x M= (M k=1) (3.17)

k-1 2°

x, =x, "+, (3.18)
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Nom of (x(1),t Now
%=quk—D+szfug,k—D+l%§ll (x_, —x" ") +w,_,
x:xliv_olM , t=k—1
= LEODE (g,
x:xﬁl_olM , t=k—1
3.19)

or,
S = of (x(),1) S 4w,

L NN (3.20)

= Fk—ldxk—l + Wk—l

where,

x"" denotes the nominal trajectory;

Ox is the system state perturbation from the nominal trajectory, which is also called
“error state’’;

f(x(¢),t) is the continuous non-linear function;
F,_, is the linearized system dynamics matrix, corresponding to the system transition

matrix @, | in the linear case.

Similarly, the linearization of the measurement model is written as,

wost oh(x(2),t Now
7, =h(x k) +v, =h(x° ,k)-l—%)) (x, —x ")+ v,
0 e (3.21)
="M 4 (x(2),1) (x, — x4+ v,
a.x X:x/i\’OM’ =k

or,
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&, =z, — h(x!™" k)
_ Oh(x().1) P

a k k
X x:x,l(v OM =k

=H, ox, +v,

3.22)

where,
07 is the measurement perturbation from the nominal trajectory, which is also called

“measurement closure” between actual and predicted measurements;

H, is the linearized observation design matrix.

The combination of Eq. (3.20) and (3.22) reconstructs the linear system model and
measurement model. As a result, the implementation of KF on this group of models
achieves the optimal estimates of the error states. Lastly, the original system state is
obtained by Eq. (3.18), which is called state “reset”. If this reset stage is executed in
closed loop after each KF measurement update step, or in other words, if the feedback on
the nominal trajectory exists, the nominal trajectory trusts the estimation results and
varies according to them. Afterwards, this error state will be set as “zero” to indicate the
nominal value is the same as the estimation. This approach is named as Extended Kalman
Filter (EKF). On the other hand, if the reset stage is executed in open loop, or in other
words, if only the feedforward on the KF estimates exists, the nominal trajectory is
determined beforehand and ignores the filter estimates. In this case, it is called Linearized
Kalman Filter (LKF) (Nassar, et al., 2005; Shin, 2005). A description of the relationship
between the filtering results and the nominal trajectory for LKF and EKF are shown in

Figure 3.4 and Figure 3.5 respectively. It tells us that while the LKF nominal trajectory is
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independent of the filtering estimation results, the EKF nominal trajectory follows them

if the feedback rate is the same as the measurement update rate.

I8
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Figure 3.4. Relationship between Filtering Results and LKF Nominal Trajectory
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Figure 3.5 Relationship between Filtering Results and EKF Nominal Trajectory
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3.2.2 EKF for Aided Inertial Navigation Systems

In aided INS, the INS error model is derived to represent the dynamics of navigation
error states by applying the perturbation analysis. The reference values used in the
perturbations are essentially the values of the nominal trajectory, about which the original
INS mechanization equations are linearized. Moreover, while the determinant parts of the
sensor parameters are calibrated in advance, the random sensor errors are modeled by

linear stochastic processes. Eq. (3.23)-(3.25) describe the definitions of the system state

X, the nominal state xoM , and the corresponding error state Ox as follows:

x=[(r)",m"(g)" .}, (b,) ,(SF) ,(SF, )T (3.23)

acc

xNOM — [(rNOM )T’ (VNOM )T, (quOM )T, (b;)T, (b:CC)T, (SFgO)T, (SFO )T]T (3.24)

b acc

& =[(0r)", ()", ¥, ()" ,(b,,) ,(85F,)" ,(&8F, )T (3.25)

acc acc

where bO,SF ® denote the determinant bias and scale factors; the representations of

other denotations refers to Section 2.3.4.

The relationship between the states above is given by:
x=x"" - (3.26)

where the attitude parameter correction is specifically processed by the quaternion

production rule as in Shin (2005):

nNOM

g, =4,°%°4, =4, °4, (3.27)
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sin|0.54|
7= | @29
cosHO.Sg/)H
@=y + o6 (3.29)
or, /(N +h)
00=| —or,/(M+h) (3.30)
—or, tan@/(N + h)

where 00,0, are the rotation vectors referred to Section 2.2.

Referring to Section 3.2.1, the corresponding x . in Eq. (3.22) denotes the measurement

difference between INS solutions and GPS observations at time epoch 7, as,
_ ~INS ~GPS
&, =7 -% (3.31)

The corresponding system transition matrix and observation design matrix F,_, H, in

Eq. (3.20) and (3.22) are derived from the non-linear INS mechanization and

measurement relationship f,., /1 as,
d
F_ = s M=k (3.32)
ox
oh N
H =—x=5%""t=k (3.33)
ox

where the details of F,_| refers to Eq. (2.68)-(2.74); H  refers to Section 2.4;
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A_NO

M
X, denotes the predicted value of the nominal trajectory at epoch £, , which equals to

. . . . A NOM
one step INS mechanization solution from the updated nominal value x;_l as,

A~y NOM

A _NOM
X = as (Gl ) (3.34)

The group of KF prediction and update equations are recursively processed to achieve the

optimal estimates of the error state as in Eq. (3.9)-(3.14).

In EKEF, the error state correction in Eq. (3.26)-(3.30) is applied not only on the system
output as a feedforward loop, but also on the nominal trajectory as a feedback loop after a
full KF step. In addition, the updated error state will be reset as “zero” to indicate the
nominal value is the same as the updated estimation. In this case, the nominal trajectory
trusts the filtering estimation results and varies accordingly. The error state feedforward

and feedback loops are described respectively as,

=" & (3.35)

= & =53 & =0 (3.36)

where = denotes the error state reset.

Eq. (3.36) reformulats the succeeding KF loop as,

~_ NOM 1+ NOM ~t
Xis = les ('xk ) = f;Ns ()Ck 3.37)

ox,, =F_ox =0 (3.38)
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A A— NOM _ A_ NOM

Xest = X - &kﬂ =X (3.39)
+ — - - —

&kﬂ - &kﬂ + Kk+l[6zk+l - Hk+1&k+1] - Kk+15Zk+l (3-40)

s+ n- NOM + _ a- Nom A .

Xiwt = Xi - &k+l =X - Kk+l&k+l =X T &ku (3.41)

where Eq. (3.37) indicate that the nominal trajectory is determined by the Kalman Filter

estimate.

The algorithm structure of EKF for INS-based integration is illustrated in Figure 3.6.

Nonlinear
Initial System Dynamics Nominal Value
e _NOM
Conditions £ = fns Gk =1 xi
T Li
- - Prediction System Dynl:;?és Eq. (2.68)
A prior noise > &, = Fk_l&;_l
Knowledge B .
P =F_FF_+0,,
Feedback
— pNOM e o Update
‘ ’ £ KszcinT(HkI)kinTJrRk)il
& —H & easurement Mode
v = —_— —_—
Feedforward Loe e &, =H b, +v,
X - & =% + K,

B'=(I-KH)F

Figure 3.6 EKF Structure for INS-based Integration (After Liu et. al., 2009)

3.3 Fixed-Interval Smoothing

As discussed in Section 3.1, the fundamental idea of the fixed-interval smoothing is to
obtain the optimal estimate at the current time by utilizing all the available measurements

within the fixed time interval (Gelb, 1974). This concept can be intuitively performed by
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combining two Kalman filters, including one Forward Kalman Filter (FKF) and one

Backward Kalman Filter (BKF). As depicted in Figure 3.7, while the FKF obtains its
estimate with all the measurements up to the current time epoch 7, , the BKF optimally
estimates the states by incorporating the measurements after f, within the assumed time
interval. Further, since the BKF is implemented reversely with time, the BKF prediction

results )AC;k does not assimilate the measurement Z, , which has already been used by the

FKF update )AC;k . These two estimates are uncorrelated since no common data are used

(Jansson, 1998). At the final step, both the solutions from the two filters will be combined
in the following equations, of which the overall derivation refers to Gelb (1974),

Crassidis and Junkins (2004).

1Ay I
Xo =P (P X, + P, X)) (3.42)
P =P, +P, )" (3.43)

where the subscript Sk, Fk, Bk denote the smoothing, forward filtering, and backward

filtering results at the time epoch f, respectively.

Eq. (3.43) obviously indicates that the smoothing covariance is smaller than either filter
covariance. As a result, it implies that the smoothed estimate, if not more accurate, could
never be worse than the individual filter estimate (Brown and Hwang, 1997).
Furthermore, since the smoothing algorithm depends on both of the two filters, accurate

filtering is prerequisite to accurate smoothing (Gelb, 1974).
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Figure 3.7 FKF, BKF and Smoothing

Mayne (1966) and Fraser (1967) derived different formulations of smoothing solutions
by using the Maximum Likelihood (ML) principle. A simplified derivation and
interpretation was published by Fraser and Potter (1969) regarding the optimum smoother
as the combination of two optimum linear filter estimates. The discrete-time formulations
of the Two Filter Smoother (TFS) are summarized in details in Crassidis and Junkins

(2004), and Maybeck (1994).

On the other hand, earlier work yielded the fixed-interval smoother estimate as a
correction to the KF estimate. Rauch-Tung-Striebel Smoother (Rauch et al., 1965) or
RTSS derived by ML criterion has maintained its popularity since the initial paper
(Crassidis and Junkins, 2004). To avoid the covariance matrix inversion required by

RTSS, the smoothers by Bryson and Frazier (1962), Bierman (1973), expressed the
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correction term with the adjoint or costate variable which included the measurements by
introducing the variational calculus to the smoothing problem. However, the application
of Bryson and Frazier smoother is limited due to its numerical instability for long

duration estimation (Mayne, 1966).

Most of the smoothers mentioned above were designed for linear dynamic systems.
Therefore, they were not applicable for INS-based multi-sensor systems because of the
high nonlinear characteristics of the INS navigation equations. The further attempt of
applying the common EKF both forward and backward failed to accurately estimate the
smoothing INS error states. This problem was resolved by a revised algorithm that was
proposed specifically for pipeline surveys using IMUs (Yu et al., 2005). In this thesis, the
schemes of two fixed-interval smoothers will be described in details for INS-based
integration systems, i.e. TFS and RTSS. Further, the considerations related to optimal

smoothing will be discussed.

3.3.1 Two-Filter Smoother (TFS)

As discussed above, TFS can be accomplished from a combination of two KFs
manipulated forward and backward, i.e. FKF and BKF. The forward filter is the
conventional EKF as in Section 3.2.2, which starts from a priori initial conditions
determined by the INS initial alignment:

ox,, =0

. (3.44)
PF+0 = E[dx;oé‘x;o ]
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where the subscript 0 denotes the starting time epoch.

X
—— Forward INS :> > Forward
Kalman Filter

GPS
Measurement

> — —»| Backward
Kalman Filter

X p

Forward Nominal
Trajectory

Figure 3.8 TFS Structure (INS/GPS) (After Liu et. al., 2009)

A completely independent backward filter is a choice for TFS, in which the backward
INS mechanization is programmed to provide the INS solutions for both the backward
nominal trajectory and the backward measurement updates. However, this encounters
difficulty to implement backward initialization, as the unpredictable ending conditions of
the test time interval cannot assure the serious requirement of statistic backward INS
initial alignment. Conversely, the implementation of BKF without a backward INS
mechanization relies on the stored FKF results. More specifically, the nominal trajectory
and the measurements of BKF copy their counterparts of FKF. The TFS algorithm
structure is illustrated in Figure 3.8. The details about BKF and its combination with the

FKF in the TFS algorithm are introduced in discrete-time form as follows:

New Variable Definition and Initialization
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In order to avoid the undesirable matrix inversions and to provide a valid boundary
initialization, the following new variables in BKF are defined to replace the original error

state and its covariance matrix (Crassidis and Junkins, 2004):

M,=P (3.45)
&, =P ox=M,d, (3.46)

where M , is the covariance matrix inversion.

The smoothing is initialized using the FKF results at the final epoch 7 as,
A, = O, (3.47)
P, =P, (3.48)

which leads the BKF initialization derived by Eq. (3.42)-(3.43) as,

Py =Py +P )" (3.49)
M, =P, =P/-F, =0 (3.50)
P = (3.51)
&gy = Py (P, &y + Py 8%,0) (3.52)

@};N = PB;V_I &;N = PS;VI&SN - P;;v_l&z;N =0 (3.53)
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where Eq. (3.51) and (3.53) indicate that the BKF initial error state is finite but uncertain.
This is necessary since the two estimates from FKF and BKF are required to be

uncorrelated (Jansson, 1998).

BKF Models

The backward INS error model as required by the BKF, which represents the inverse

dynamic process of the system error states from the current time epoch 7, to the previous

epoch 7, is simply obtained by inversing the dynamics matrix from Eq. (3.20). The

BKF system model as well as the measurement model can be written by,

O, =F_ 0k, +F_w, (3.54)
5Zk—1 = Hk—ldek—l + vk—l (3'55)
&k—l - Zklis - Zk(fs (3.56)

where Zklis remain as the same INS solutions in FKF; the backward system dynamics

matrix and observation design matrix are linearized about the FKF prediction results as,

ad

F_ = ﬂx =X, ,t=k (3.57)
ox

H, =a—hx=fc;k_1,r=k—1 (3.58),
ox

The equations above suggest that the backward nominal trajectory is predetermined as the

sequence of FKF predictions, i.e.:
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3.59)

BKF Prediction

Referring to Maybeck (1994), the discrete-time form BKF prediction equations are

derived with the new defined variables. From Eq. (3.54), since &Bk and w, are

uncorrelated, the BKF prediction covariance is derived as,

PB_k—l = E &B_k—l&B_k—lT J= E[(Fk_—ll&;—k + Fk_—llwk )(Fk_—II&;k + Fk_—ll Wk )T]
= E[F,\ (&, &, +28%,w, +ww)F '] e
_ + ot T . 4T )
= F_{E[&, &, 1+2E[&, w, 1+ E[ww, 1}F_,
=F\(P, +Q)F
where,
&1;/(—1 = &;k—l - &Ck—l;&;k = &;—k - éxk 3.61)

To apply the definition of the new variables, the Sherman-Morrison-Woodbury Matrix
Inversion Lemma shown as follows is used (See proof in Goluband Van Loan, 1996;
Crassidis and Junkins, 2004):

Let,

F=[A+ BCD]"' (3.62)

where A, B, C, D are arbitrary 11X 7 non-singular matrix. Then,

F=A"-A"B(DA"'B+C™")" DA™ (3.63)
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With A= P, ;B=1;C=Q;D =1, the prediction covariance inversion is yielded as:

Ml;k—l = FkT—1(I - Kl;k—l)M;k Fk—l (3.64)
K, =M, 0M,0+D)" (3.65)
where K, | is the BKF prediction gain.

Using these equations, the desired form for the predicted error state is derived as,

Bk—1

= FkT—l(I - K;k—1)M;ka—1Fk_—11(PB;@;k)

=F ,(I-K, )M, P,5,
= Fkil (I - K;k—l)g.\ygk

g-\y;k—l = M;k—lé"\x;k—l = M;k—l (Fk_—llé"’\x;k ) = M A Fk_—ll (PB; @;k )

(3.66)

BKF Update
The formulations of Information Kalman Filter (IKF) using the new defined variables are
introduced for the BKF wupdate equations in order to overcome the potential

computational and numerical difficulties for large measurement sets (Crassidis and

Junkins, 2004) as follows:

M, =M, +H R 'H, 3.67)

Vo =9,—H/R' (& —HZX, (3.68)
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The derivation for Eq. (3.68) is introduced as follows. By using Eq. (3.59), the backward

error state update is given by,

&;k :&;k +K;k[5zk _H 5)%_ ]
= 52;1( _52;1( +K;k[5zk _Hk (x;k _)%;" )]

where K, is the BKF update gain. Eq. (3.69) yields,

. _&+ X, _KBk[& —-H ('x;k _)%;k)]
=(5e _K HkA;k) KBk(& Hk Fk)
:(I_KBka)'x KBk(& Hk Fk)

(3.69)

(3.70)

Referring to (Crassidis and Junkins, 2004), the alternative forms for Kalman filter gain

K and I — KH are,

K;—k = PB"I—(HkTR_1

I_K;ka =PB-;(PB_K_1 =PB-;(MI;K

Substituting these two equations above to Eq. (3.70) yields,

o=k -
=P M, %, —P.H'R" (& —H.%,)

BK Bk
Eq. (3.73) is rearranged as,

P, %, =M,%, —H R (& -H*%,)

y M+ At

BK Bk

=y, —H R (& —H,X,)

3.71)

3.72)

3.73)

3.74)

3.75)
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Figure 3.9 Relationship between BKF, FKF and Smoother in TFS

(After Liu et. al., 2009)

However, the straightforward practice of IKF on non-linear INS navigation model failed
to achieve the expected superior smoothing results. This problem was resolved by the
revision that was originally proposed for pipeline surveys using inertial measurement (Yu
et al., 2005). As shown in Figure 3.9, the main idea of this modification is that the BKF
nominal trajectory is reset to the FKF updated result at the BKF prediction step, which
means the BKF nominal trajectory is revised to track the EKF estimation of the forward
filter. This concept resembles the EKF error state feedback step. The details begin with a

series of expressions as:

A ~A_ NOM
=3 -

o= +
Fk Fk Fk X Fk &Fk

(3.76)

3.77)
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P L iy S

Bk

(3.78)

A _ NOM _
where X, , 5)%Bk

is the revised BKF predicted nominal value, and the error state
prediction (or the predicted perturbation);

Eq. (3.76) indicates that the FKF updated system state is perturbed from the FKF
prediction as discussed in previous sections;

Eq. (3.77) indicates that the BKF updated system state is perturbed from the FKF
prediction;

Eq. (3.59) indicates that the BKF predicted system state is originally perturbed from the
FKF prediction;

Eq. (3.78) indicates that the BKF predicted system state is reset to be perturbed from the

FKF update.

By using the relationship equations above, Eq. (3.68) is rearranged as,

M &5 =M (%, — &)

BK Bk
= M;K Al;k H R_l(& Ijk Fk) (3.79)
=M, (x, —%,)-H R (&, —HX,)
=M, (X —&,)-H'R"' (&% —H.X,)
The desired form for updated error state is derived from Eq. (3.79) as (Yu et al., 2005):
&, =M, b,
=M % —-M, (% —&, )+H R'(% —HZX,) (3.80)

=M % —-M, % —H'R'Hx +H'R'& +M, &,

BK Fk BK Fk
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Substituting Eq. (3.67) into Eq. (3.80) yields,
@;k = (Ml;k + HkTR_lHk )x;k - M;K)%;k o HkTR_lije;k + HkTR_lé‘Zk + M;Ké)%;k
=M, (X, —%)+HR"'& +M, 5, (3.81)
=M, &, +HR'&, +M,,
Therefore, Eq. (3.81) along with Eq. (3.67) constitutes the modified BKF updating

equations.

FKF and BKF Combination
The smoothing estimate, i.e. the combination of the FKF update and the BKF prediction

as in Eq. (3.42)-(3.43), will be fixed according to the revised relationship equations as

(Yu et al., 2005):

P, =P +P ) =(M; +M,)" (3.82)

n el Ay 1Al
Xge = PSk (PFk Xp T PBk ka)

=PSk (M;k)%;k + j}l;k)

= PSk [M;k )AC;k + Ml;k (‘)%;k - 5)%1;/( )] (3.83)

=P, (M, +M,)%;, — P,M, 5%,

Fk

ot - _ 2+
=Xp — })Ské.?Bk =Xpg — &Sk
Another form to express the combination is derived as,
A _ A — + _ _ A —
X = Xpe — (&Fk + PSk 5)‘\7& ) =Xp — &Sk (3.84)

which indicates that the smoothing result can be regarded as the simple fixing of the FKF
estimation; moreover, either the FKF update or the FKF prediction can be considered as

the smoother nominal trajectory. These concepts are shown in Figure 3.9.
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The two descriptions of the smoothing error state estimate corresponding to Eq. (3.83)

and Eq. (3.84) are,

&Sk = PSk 5-;71;{ ; &Sk = &;k + PSk 5.;71;k (3'85)

Additionally, Joseph forms of BKF and smoother covariance equations are used to yield
stable solutions as in Table 3.1 (Maybeck, 1994).

Table 3.1 Joseph forms

BKF

_ _ N _ T
MBk = EcT{ [/ - KBk ]MBk+1[I - KBk ]T + KBkQ lKBk }F;c
Prediction

Joseph 1
KSk = (PF;MI;I{ + 1)7
f _ prpT
orms | Smoother W, =P'K!

Covariance | Y5 =1 -W,M
P, =Y, PY! +WSkM;kWSZ

Sk ™ Fk™ Sk

3.3.2 Rauch-Tung-Striebel Smoother (RTSS)

The Rauch-Tung-Striebel Smoother (RTSS) was first presented by Rauch et al. (1965). It
was proved as the optimal smoothing method for linear systems on basis of Maximum
Likelihood (ML) criterion. It was demonstrated that the traditional TFS proposed by
Fraser and Potter (1969) and the RTSS were mathematically equivalent in linear case.
The RTSS has been widely applied in navigation applications due to its robustness and

effectiveness.
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The implementation of RTSS does not require the process of a full-scale BKF. It can be
regarded as an add-on correction to the Kalman Filter (Gelb, 1974). RTSS is consisting of
one forward data processing part and one backward data processing part. The former is
the FKF as discussed in the previous section. The backward processing part propagates
the filtering results and achieves the smoothing system state estimate by utilizing a set of

equations as following,

Ky, =P F(P,)" (3.86)
P, =P . +K,P,. —P. IK, (3.87)
&Ky, =&, + K [Fry,, — ] (358)
Xy =X, — Ok, (3.89)

where K, denotes the RTSS gain; 5)25,( denotes the RTSS perturbation.

The equations show that the FKF prediction results can be regarded as the RTSS nominal
trajectory. Further, by utilizing all the information stored in the FKF, the RTSS
recursively updates the smoothed estimate and its covariance in a backward sweep. On
the other hand, the determination of the RTSS estimates does not involve the smoother
covariance; the smoothing gain can be computed during the forward filter process. This
convenience brings an important characteristic that the forward filter covariance as well
as the state matrix needs not to be stored, if the smoother covariance calculation for

analysis purpose can be omitted.
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3.4 Smoother Considerations

3.4.1 Smoothability

A state is defined to be “smoothable” if an optimal smoother provides this state a superior
estimate compared to that obtained by the simpler means of extrapolating the final FKF
estimate backward in time (Gelb, 1974; Maybeck, 1994). Fraser (1967) showed that only
those states controllable by the system driving noise were smoothable in linear systems.
This indicates that the estimation accuracy of constant variable with no driving noise can
barely be improved by optimal smoothing over filtering. This was simply proved with
continuous-time smoothing equations by assuming the process noise as “zero” in a linear
system. An alternative demonstration of this conclusion can be derived by examining the
duality between control and estimation from solving the two-point-boundary-value-
problem (TPBVP) associated with the optimal control theory (Crassidis and Junkins,
2004). The quantity representation of smoothability has not been clarified and is beyond

the content of this research.

3.4.2 Measurement Gap Filling

KF update steps take place when measurements are available. IMU data rate is always
higher than that of the augmentation sensor. Besides, due to occasional signal blockages
and unexpected faults, the augmentation observations (especially GPS) are sometimes
unavailable. These conditions are called measurement gaps. Under these conditions, the

KF only works in prediction modes. Meanwhile, the error state and the covariance
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updates cannot be generated and the smoothing computation is interrupted, or even halted.
To solve this problem, the straightforward idea is to interpret the KF prediction solution
as the temporary update replacement (Nassar, 2003; Shin and El-Sheimy, 2002; Godha,
2006) as shown in Figure 3.10. It is reluctantly accepted for INS-based integration
estimation applications since the predictions are the best obtainable resources when no

dependable measurements are offered. This replacement is described as,

P;GAP = F_GAP ; PB-:?AP = PB_GAP (3'90)
R poap = Rpgaps Ryiap = My (3.91)

where the subscript GAP denotes the time intervals corresponding to the measurement

gaps.

Z o

Measurement
Gap

Figure 3.10 Measurement Gap Filling

3.4.3 Storage Requirement

The FKF information required for storage in TFS and RTSS is listed as,

. . A— NOM
¢ FKF nominal trajectory X,

+

* FKF error state update &X,, ; FKF covariance update P, ;
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FKF error state prediction &Fk ; FKF covariance prediction PF; .

Other concerns related to storage requirement for smoothers include:

If the reset feedback rate equals to the KF computing rate, only the nominal
trajectory at the final epoch is needed to be stored. Others can be recomputed by

using the FKF error state update.
If the feedback rate equals to the KF computing rate, &, =0 ke (t,,f,).

Apparently, the FKF error state predictions are not required for storage under this
condition.

Because of the symmetric nature of covariance matrix, special polynomial
techniques can be applied to improve its storage efficiency (Shin and El-Sheimy,
2002).

In RTSS, the FKF covariance and the nominal trajectory need not to be stored
since the RTSS gain can be computed during the forward filter process, if the
smoother covariance for analysis purpose can be omitted.

TFS does not acquire storing all the intermediate results of the forward filter.
Instead, only the estimates and covariance during the intervals where the
smoothing would be implemented are required to save. Conversely, since RTSS is
recursively processed, all the information starting from the FKF final time epoch

to the current smoothing time epoch is necessarily to be stored.
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Chapter Four: OPTIMAL SMOOTHING FOR LAND-VEHICLE NAVIGATION
USING INTEGRATED INS/GPS SYSTEMS

4.1 Overview of Land-Vehicle Navigation Using Integrated INS/GPS Systems

The last two decades have shown an increasing trend in the use of navigation
technologies in vehicular applications which made Land-Vehicle Navigation (LVN) a
typical business in the market. The most commonly used navigation systems in LVN
applications are the systems that integrate a Global Positioning System (GPS) and an
Inertial Navigation System (INS). This is due to the fact that both systems are
complimentary and their integration overcomes their individual limitations. In INS/GPS
integrated systems, the GPS provides position/velocity and the INS provides attitude
information. In addition, the INS is used to detect and repair GPS cycle slips; it is also
used for navigation during GPS signal loss of lock. The integration of high or medium
quality Inertial Measuring Units (IMUs) with GPS has been implemented for precise
kinematic navigation. However, these inertial systems are limited by their significant size
and cost. In addition, with the new government regulations, the use of such systems will
be restricted and permitted only for authorized personnel (Niu et. al., 2006). To meet the
high demand in LVN, the market has been directed towards using Micro-Electro-

Mechanical Systems (MEMS) inertial sensors.

In general, any type of IMU/GPS integrated system sometimes has a major problem. This

problem is associated with the frequent occurrence of GPS outages caused by GPS signal
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blockages in certain situations such as urban centres. In case of GPS signal blockages,
navigation is provided using the IMU instead of the GPS until satellite signals are
obtained again with sufficient accuracy. Since any IMU can only provide very short-time
high accuracy navigation, the accuracy of the provided navigation parameters during
these periods decreases with time. During GPS signal outages, the accumulated IMU
position error at the end of the outage interval is dependent on the outage time interval
(time elapsed since last GPS update), the quality of the IMU, the quality of the GPS
updates before the outage and the vehicle dynamics before and during the outage (Nassar
et al. 2004). Kalman Filter (KF) is recognized as the most widely used optimal estimator
in INS/GPS integrated systems. With the development of low-end tactical-grade and
MEMS IMUs, the Extended Kalman Filter (EKF) is commonly accepted to resolve the
system nonlinearity and accomplish the real-time navigation. However, in the context of
INS/GPS integration, the KF will work in prediction mode during GPS signal outages
where the navigation solution is completely obtained by stand-alone INS. During these
GPS outages, the navigation accuracy degrades rapidly with time due to the INS time-
dependent error behavior. As a result, this performance cannot meet the requirement of
high accuracy LVN. Hence, post-processing methods such as backward smoothing can be

employed in such cases to provide a better navigation solution.

The process model and the measurement model for integrated INS/GPS systems and the
affiliated a priori noise knowledge for both forward and backward filters are referred to

the discussions in the previous chapters.
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The performance of both optimal smoothers will be demonstrated using two land-vehicle
INS/GPS data sets with intentionally simulated GPS outages. The first data set
incorporates a tactical-grade IMU (Litton LN200) while the second one utilizes a low-
cost MEMS custom-built IMU by the MMSS Research Group at UofC. The achieved
results for both data sets will be analyzed and discussed. Moreover, the TFS results are
compared to those obtained by the RTSS. Finally, the effect of the GPS signal outage

length on the smoother performance will be evaluated.

4.2 Tactical-grade IMU Test (1** Test)
4.2.1 Description of the 1* Test

A tactical-grade IMU, Litton LN200, was used to conduct the first field test. This test was
performed along an L-shape route, in Balzac Park, Calgary, Alberta. NovAtel OEM4
GPS receivers were used to provide DGPS solutions. A navigation-grade IMU
(Honeywell CIMU) was used to provide the inertial reference trajectory for the test by
processing the DGPS/CIMU without any GPS signal outages. Three GPS outages, each
with 60s length, were intentionally simulated in this test to evaluate the smoothing
efficiency. The reference trajectories, as well as the GPS outages for this test are
illustrated in Figure 4.1. The centimetre positioning accuracy levels, in terms of the
Standard Deviations (STDs) for the DGPS solutions, are shown in Figure 4.2. The tuned
parameters of the inertial sensors for the process noise spectral density matrix in the KF
are listed in Table 4.1 (See Litton LN200 IMU Specifications in Appendix A), where the
tuning technique refers to Goodall (2009). The data processing strategies to evaluate the

performance of filters and smoothers are listed step by step as follows,
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Table 4.1 Kalman Filter Process Noise Parameters in the 1 test

Tuned Parameters
VRW 0.030m/ s/~ hour
ARW 0.125deg/~ hour
Gauss-Markov of Gyro Bias o =1deg/ hour T =1hour
Gauss-Markov of Acc Bias o =300mGal T =1hour
Gauss-Markov of Gyro SF o =100PPM T =4hour
Gauss-Markov of Acc SF o =300PPM T =4hour

4.2.2 FKF Results of the 1* Test

Since tactical-grade IMU is used in this test, analytic coarse alignment as well as fine
alignment is introduced to determine the initial attitude during the first 185s static IMU
data interval. DGPS solution provides the initial position estimation. The initial velocity

is set to be zero as static initial alignment is utilized.

Figure 4.3 shows the forward filtering trajectory including the zoomed GPS outage
regions compared to the reference solution. As expected, the FKF trajectory diverges
from the reference at each of the GPS outage periods. As discussed earlier, KF will only
work in prediction mode during GPS measurement gaps. Therefore, the positioning
accuracy achieved by stand-alone INS will degrade rapidly with time. Figure 4.4 depicts
the KF position errors of the LN200 IMU during three GPS outages in the first test. The

LN200 position errors are calculated by subtracting the filtering results from the
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corresponding reference solutions. It can be noted that the horizontal position error
increases to the meter level during the outages, and the height error reaches the decimetre
level. A further representation of the degraded estimation accuracy can be observed from
Figure 4.6, which depicts the position error STDs. The velocity errors and STDs during

the three GPS outages are shown in Figure 4.5 and Figure 4.7 respectively.
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4.2.3 TFS Results of the 1* Test
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As stated earlier in Chapter 3, the implementation of TFS requires processing a backward
filter, of which the INS solutions are dependent on the forward filter counterparts. The
combination of the saved FKF results and the post-computed BKF results yields the

smoother solutions. In order to avoid the undesirable matrix inversions and provide a
valid backward initialization, new variables PB_1,5yB are introduced to replace the

system error state and its covariance. Since the smoother is initialized using the FKF
results at the final time epoch, the BKF initial error state is uncertain and its

corresponding covariance is set to be infinity. As a result, the BKF results in terms of the
original error state description O » Will not be available to be calculated at the beginning

part of BKF until the covariance matrix becomes relatively finite. Therefore, only the
BKF results during the three GPS outages will be computed and shown for reference in
this thesis since the measurement gaps are simulated with a reasonable distance from the

final time epoch.

Figure 4.8 shows the trajectories of FKF, BKF, and TFS as well as the reference solution
in the zoomed outage regions. Similar to FKF, the BKF trajectory diverges from the
reference counterpart at each of the GPS outages, towards an uptrend reverse to the time
increasing direction. Apparently, the smoothing trajectory approaches the reference
solution compared to filtering results. Note that the BKF divergence at the third outage is
even greater than the FKF. This is due to the fact that the norm of the backward

covariance matrix is still remarkable since it is near the ending time epoch. This is
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gradually moderated as the backward filter runs reversely with time, which could be

observed from the other two outages.
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The LN200 TFS position errors across the three GPS outages and the corresponding

STDs are shown in Figure 4.9 and Figure 4.11 respectively. It can be noted that while the

horizontal position error is restricted to decimetre level, the height error is restricted to

centimetre level. Additionally, the TES velocity errors and STDs across the 3 DGPS

outages are shown in Figure 4.10 and Figure 4.12 respectively. The position errors for

TFS are calculated using the same criterion as in the FKF case.
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4.2.4 RTSS Results of the 1" Test
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Figure 4.13 shows the trajectories of FKF and RTSS as well as the reference solution in

the zoomed outage regions. The LN200 RTSS position and velocity errors are shown in

Figure 4.14. Their corresponding STDs are depicted in Figure 4.15.
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4.2.5 Comparison between the TFS and RTSS Results of the 1* Test

The accumulated position errors can also be observed in the backward filtering results,
but it will diverge towards the uptrend reverse to the FKF counterpart, i.e. the time
increasing direction. By the combination of both filtering results, the position error drifts
are expected to be suppressed or removed by the smoothing approaches. This effect is
illustrated in Figure 4.16 which compares the north position errors between FKF, BKF,
TFS and RTSS during the first 60s GPS outage. It shows that the position error drifts is
restricted, or smoothed in the middle of both the forward and backward directions. In

addition, Figure 4.17 shows the corresponding north position STD comparison.

The north position error and STD comparison in the other two outages are depicted in
Figure 4.18 and Figure 4.19, respectively. They further indicate that the effect of large
covariance matrix in backward filtering results will be gradually neutralized as the BKF

is processed reversely with time.
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Table 4.2 LN200 Position Errors of FKF, TFS, and RTSS
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North(m) East(m) Height(m) 3D (m)
Outage || FKF | TFS | RTS || FKF | TFS | RTS || FKF | TFS | RTS || FKF | TFS | RTS
#1 0.968 | 0.042 | 0.042 || 4.490 | 0.167 | 0.167 || 0.086 | 0.010 | 0.010 || 4.594 | 0.169 | 0.169
#2 1.302 | 0.118 | 0.119 || 1.664 | 0.109 | 0.109 || 0.343 | 0.038 | 0.038 || 2.141 | 0.161 | 0.162
#3 1.426 | 0.093 | 0.096 || 2.349 | 0.067 | 0.072 ]| 0.188 | 0.019 | 0.020 || 2.752 | 0.108 | 0.108
Mean || 1.232 | 0.084 | 0.085]]2.835 | 0.114 | 0.116 ]| 0.205 | 0.022 | 0.023 || 3.162 | 0.146 | 0.147
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The summary of the FKF, TFS, and RTSS LN200 results of the 1* test is shown in Table
4.2, in which the maximum position errors along north, east, and height directions are
listed in each of the three GPS signal outage periods. The results showed that the
navigation errors are significantly improved by both smoothing algorithms during GPS
outages. In addition, the smoothing effect of the TFS is almost the same as the RTSS.

The improvement level of both smoothers is nearly 95.4 %.

4.2.6 Effect of GPS Measurement Gap Length of the 1* Test

In addition to the three shown 60s GPS outage durations, 10s, 30s, 90s gap lengths are
tested to evaluate the filtering and smoothing performance respectively. Similar to Figure
4.16, the comparison between the north position errors of FKF, BKF, TFS, and RTSS in
the first 10s outage is illustrated in Figure 4.20. The corresponding comparison in the first

30s and 90s outage is shown in Figure 4.21 and Figure 4.22 respectively.

The detailed comparisons between different measurement GPS gap lengths (FKF, BKF,
TFS, and RTSS) in terms of the mean maximum 3-D position errors and the
improvement levels of smoothers over forward filtering are listed in Table 4.3. Further,
the mean values of maximum position errors (north, east, height and 3-D) across all three
outages for each estimation method and each measurement gap length are depicted in
Figure 4.23 to Figure 4.26. The results show that although the position errors (including
the smoothing results) rise as the outage length increases, the improvement level of each
smoother over filtering becomes greater accordingly. This indicates that the efficiency of

smoothers is upgrading with the increasing GPS outage period length despite that the
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upgrade is not remarkable from 60s to 90s. Also, the TFS and RTSS reach almost the

same enhancement
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Table 4.3 LN200 3-D Position Error and Smoothing Improvement Level

Comparison between Different Outage lengths

Outage (|| Mean Maximum 3-D Position Error(m) Improvement (%)

Length FKF TFS RTSS TFS RTSS
10s 0.078 0.034 0.034 56.4 56.4
30s 0.519 0.053 0.053 89.8 89.8
60s 3.162 0.146 0.147 95.4 95.4
90s 11.54 0.398 0.392 96.6 96.6




10s Outage Length

0.08

0.07

0.06

0.05

0.04

0.03

0.02

Mean Maximum Position Error

0.01

Figure 4.23 Mean Values of Maximum Position Errors across Three GPS 10s

Outages

30s Outage Length
0.7 ; ! ! .

0.6L ................. 13-D ..... ....... ~{CITFS |

05 - ................. 4Height ................ i

e ¥ ............. ................. T— ................ i
ozt ............. ................. ................. ................ ]

ozt N ............. ............. ................ ]

Mean Maximum Position Error

01+ - ............. ............. ................ ]

Figure 4.24 Mean Values of Maximum Position Errors across Three GPS 30s

Outages

92



Mean Maximum Position Error

Figure 4.25 Mean Values of Maximum Position Errors across Three GPS 60s

Mean Maximum Position Error

Figure 4.26 Mean Values of Maximum Position Errors across Three GPS 90s

60s Outage Length

: : G
L 13-D ............... ——— [ IJTFs 4
| 2: North - ; B RTSS
............ 3:East | W ]
4: Height

Outages

90s Outage Length

: : 5 B FKF
1:3D rs
o Nortty |- |
3: East : Rlss
4:Height | W®: l

Outages

93



94

4.3 MEMS IMU Test (2™ Test)

4.3.1 Description of the 2™ Test

The second dataset was conducted along a large clockwise cycle route, Calgary, Alberta.
A custom-built MEMS IMU integrated using inertial sensors from Analog Device Inc.
(ADI), and a GPS Single Point Positioning (SPP) solution was used to verify the filtering
and smoothing performance under the condition of meter level positioning aiding. The
navigation-grade IMU (Honeywell C-IMU) was used to provide the reference trajectory

without any GPS outages.

Five GPS outages, each with 60s length, were intentionally simulated in the second test to
verify and compare the performance of filters and smoothers for error bridging. The
reference trajectory, including the GPS outage regions for this test is illustrated in Figure
4.27. The positioning accuracy levels, in terms of the STDs for the GPS SPP solutions,
are shown in Figure 4.28. The tuned parameters of the inertial sensors for the process
noise spectral density matrix used in the KF are listed in Table 4.4. The data is processed

as the same strategies of the 1*' test discussed in the previous Section.
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Table 4.4 Kalman Filter Process Noise Parameters in the 2™ Test

Tuned Parameters

VRW 0.660m/ s/~ hour

ARW 3.000deg/ hour
Gauss-Markov of Gyro Bias o =100deg/ hour | T =1lhour
Gauss-Markov of Acc Bias o =5000mGal T =1hour
Gauss-Markov of Gyro SF o =1000PPM T =4hour
Gauss-Markov of Acc SF o =1000PPM T =4hour

4.3.2 FKF Results of the 2" Test
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Since MEMS IMU were used in this test, static gyro compassing alignment step will fail

to estimate the initial heading error. Therefore, the initial heading solution in the

CIMU/GPS reference file is transferred to start the MEMS IMU/GPS FKF, while the

initial roll and pitch are computed by levelling alignment. The initial positions are

provided by the GPS measurements and the initial velocities are set to be zero. With five

60s GPS outages, the FKF results are illustrated in Figure 4.29-Figure 4.31, which show

the FKF trajectory, the position and velocity errors with respect to the reference

solutions, and the position and velocity STDs respectively.
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4.3.3 Smoothing Results of the 2" Test

Figure 4.32 shows the TFS position and velocity errors across five GPS outages in the o
test. The corresponding position and velocity STDs are shown in Figure 4.33. It can be
noted that while the horizontal position error is restricted to 5-meter level from 100-meter
level, the height error is restricted to S-meter level from 10-meter level by using TFS.
The TFS trajectory and the RTSS processing results are included in Appendix B for

reference.
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The summary of the MEMS IMU FKF, TFS and RTSS results (maximum position errors)
of the 2™ test is given in Table 4.5 corresponding to the five GPS outage periods. Note
that the system here integrates GPS SPP (and not DGPS) with the MEMS IMU. The
enhancement level of the positioning accuracy of the two smoothers is about 95.7%

compared to the FKF results.

4.3.4 Effect of GPS Measurement Gap Length in the 2™ Test

Similar to the 1% test, 10s, 30s and 90s GPS outages are processed and analyzed in the
second dataset. The figures to illustrate the measurement gap length effect refer to the
Appendix B. The comparisons between different measurement gap lengths for FKF, TFS
and RTSS in terms of the mean maximum 3-D position errors and the improvement
levels are listed in Table 4.6. It can be noted that although the position errors rise as the
outage length increases, the efficiency of both smoothers is upgrading with the increase

of the GPS signal outage period length.
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Figure 4.32 MEMS TFS Position and Velocity Errors
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Table 4.5 MEMS Position Errors of FKF, TFS, and RTSS (60s Outage Length)

4500

5000

North(m) East(m) Height(m) 3D (m)

Outage || FKF | TFS | RTS || FKF | TFS | RTS || FKF | TFS | RTS || FKF | TFS | RTS
#1 161.3 | 1.978 | 1.978 || 446.4 | 3.780 | 3.763 || 33.79 | 6.200 | 6.198 || 170.7 | 7.262 | 7.251
#2 97.96 | 4.685 | 4.682 || 240.8 | 4.886 | 4.886 || 12.00 | 4.774 | 4.775 || 260.3 | 6.207 | 6.205
#3 35.26 | 4.603 | 4.600 || 66.20 | 7.535 | 7.535 || 9.381 | 3.886 | 3.886 || 75.59 | 9.510 | 9.507
#4 303.1 | 4.741 | 4.752 || 32.92 | 2.961 | 2.965 || 10.90 | 5.352 | 5.352 || 305.1 | 7.617 | 7.624
#5 5.210 | 7.436 | 7.436 || 118.5 | 3.036 | 3.043 || 4.957 | 4.503 | 4.503 || 118.6 | 8.967 | 8.967
Mean || 120.6 | 4.689 | 4.690 || 100.6 | 4.440 | 4.439 || 14.21 | 4.943 | 4943 || 186.1 | 7.912 | 7.911

Table 4.6 MEMS 3-D Position Error and Smoothing Improvement Level
Comparison between Different Outage lengths

Outage Mean Maximum 3-D Position Error(m) Improvement (%)
Length FKF TFS RTSS TFS RTSS
10s 6.599 4.313 4313 34.6 34.6
30s 36.20 4.780 4.782 86.8 86.8
60s 186.1 7.912 7911 95.7 95.7
90s 999.1 35.74 35.82 96.4 96.4
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Chapter Five: OPTIMAL SMOOTHING FOR PIPELINE SURVEYS USING
INTEGRATED INS/ODOM/CUPT SYSTEMS

5.1 Overview of Pipeline Surveys

Pipelines are constructed to transport or dispose liquid and gases, commonly operated by
oil, gas, sewerage and chemical industries. The vast and complex underground network
requires regular surveys to inspect, detect and isolate the damage along the pipelines
(Hanna, 1990; Todd et al., 1990). Other than the frequent air scanning, Pipeline
Inspection Gauges (PIG) are the alternative tools that can be sent through the pipelines to
monitor the inside conditions. An example of the PIG is shown in Figure 5.1. The PIG is
a torpedo shaped vehicle with red plastic rings/cups that fit tightly against the pipe wall.
Behind the cups are the carrying wheels. In the figure, the thin wheels sticking at the back

of the tool are the odometers (Kennedy, S., 2003).

Figure 5.1 An Example of A PIG (Courtesy of BJ Pipeline Inspection Services)

The INS is employed to conduct the overall PIG navigation due to the unavailability of
GPS inside the pipeline. Considering the pipeline size and the surveying accuracy

requirement, IMUs with FOG gyros are typically used as the ideal surveying tools in this
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application. Aiding sensors are applied to compensate the growing errors induced by the
stand-alone INS. Coordinate Updates (CUPT), also known as control point update, can be
available along the pipeline, which usually exist several kilometres apart. These
coordinates are always located at pipeline features (e.g. valves) or at Above Ground
Markers (AGMs), of which the geodetic positions are precisely surveyed by DGPS (Shin
and El-Sheimy, 2005). The tracking modules of control points detect the magnetic signals
of the PIG and store the time when the PIG passes underneath them (Yu et al., 2005).
Although the accuracy of CUPTs is violated by the uncertain lever-arm effect due to the
time synchronization issue between the IMU and AGMs, currently most of the processed

pipeline trajectories are forced to fit to these points (Kennedy, S., 2003).

Odometers (ODOMs) can provide the forward velocity information by differentiating the
distance travelled by the PIG. Additionally, the measurement updating equations can be
augmented with the non-holonomic constraints. The PIG is pushed in and driven through
the pipeline by the differential pressure of medium flows like oil, gas or refined products.
As a result, the PIG might experience some unexpected speed excursions when it is stuck
due to mechanical failure or residue on the pipe wall (deposit solids from gases and
waxes from oil), and suddenly re-pushed by the building up flow pressure (Kennedy, S.,
2003; Allan and Hawes, 2005). Besides, the vibrations and the varying contacts between
the odometer wheels and the pipe wall could increase the uncertainty in the velocity

measurements.
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The PIG sits stationary in the launch trap in the beginning of the surveying job, which
provide the required time for INS initial alignment. While the PIG travels along the
pipeline, the Data Acquisition System (DAS) on the PIG stores outputs from all the
sensors, including IMU, odometers and other inspection tools, in real-time (Yu et al.,
2005). The collected multi-sensor data are then processed in post mission to achieve the
navigation solutions using filtering and smoothing methodologies. These solutions will
provide the reference for both the pipeline trajectory and the leakage, blockage, and

damage locations.

In this thesis, the performance of KF and optimal smoothers for pipeline surveys will be
demonstrated using one real data set of the integrated INS/ODOM/CUPT system. The
knowledge about the process model and the measurement models were discussed in the

previous chapters.

5.2 Test Description

The PIG integrates a tactical-grade IMU (LN200), odometers and other inspection
sensors. The sampling rates of the IMU and odometers are 100 Hz and 4 Hz respectively.
The odometer-derived velocity measurement is shown in Figure 5.2. The PIG travelled
slowly with a speed ranging from 0.2 m/s to 0.8m/s. Note that the noise level of the
output is not obvious, which indicates the whole surveying process was under a benign

vibration condition in a relatively clean pipeline. The bumps at 5 km after the PIG left the
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launching point illustrate that the PIG experienced speed excursions, induced by sharp

pipe curves or the push by accumulated flow pressure at the unexpected blockages.

The PIG approximately travelled 32 km in about 21.4 hour. 12 GPS-derived coordinates
were provided along the whole survey route, of which the first CUPT point corresponds
to the starting survey point (distance 0.0m). Each of the travelled distance (calculated by
odometer data) and time separations between the adjacent CUPTs are listed in Table 5.1.

The pipeline route linearly interpolated by the CUPTs is illustrated in Figure 5.3.

Speed (m/s)

0 5 10 15 20 25 30
Distance (km)

Figure 5.2 PIG Velocity Measurement from Odometer
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Table 5.1 Time and Distance Separation between CUPT's

CUPTs Time Separation (min) Distance (m)
#1 0 0
#2 238 4770
#3 48 1239
#4 111 3913
#5 73 1818
#6 149 3599
#7 55 1337
#8 65 1564
#9 185 4414

#10 148 3439
#11 74 1755
#12 121 3389
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5.3 Results

The IMU data was processed using KF with the aiding from CUPTs and odometer-
derived velocity measurements. Since the PIG stayed stationary at the launching trip in
the first 300s before being pushed into the pipeline, analytic coarse alignment associated
with fine alignment was applied to initialize the attitude. The first GPS-derived
coordinate provided the initial positions, and the initial velocity is set to be zero. The
tuned sensor parameters for the process covariance matrix and the measurement
covariance matrix are listed in Table 5.2.

Table 5.2 Kalman Filter Noise Parameters

Tuned Parameters
VRW 0.015m/ s/ hour
ARW 0.15deg/~ hour
Gauss-Markov of Gyro Bias o =1deg/ hour T = 4hour
Gauss-Markov of Acc Bias o =300mGal T =4hour
Gauss-Markov of Gyro SF o =100PPM T =4hour
Gauss-Markov of Acc SF o =300PPM T =4hour
CUPT STD 0.5m
Odometer STD 0.05m/s

The INS/ODOM/CUPT integration results will be discussed and analyzed in the
following order,

¢ Pipeline Surveying Forward Kalman Filter (FKF)
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e Two Filter Smoother (TFS)

e RTS Smoother (RTSS)

5.3.1 FKF Results

Figure 5.4 shows the forward filtering trajectory and the zoomed regions compared to the
route interpolated by CUPTs (i.e. the reference). Note that the filtering positioning errors
diverged before being restricted by the control points. For example, the horizontal
positioning error increases to 278.3m before it reaches the second CUPT, while it is
reduced to 1.569m afterwards. This improvement can be further checked by the FKF
height estimation with respect to the CUPT interpolation in Figure 5.5. These errors are
calculated by subtracting the FKF position estimations from the corresponding reference
coordinates at control points. The difference between FKF positioning results and the
CUPT interpolation is shown in Figure 5.6 for a rough evaluation of the filtering
performance during intervals without the aiding of control points. Note that since the
CUPTs are linearly interpolated to obtain the north, east, and height coordinates, the
interpolation route can hardly reveal the actual pipeline trajectory in field and are
provided as approximate reference. Since the stand-alone INS positioning errors could
reach tens of kilometres within one hour (EI-Sheimy, 2007; Shin and El-Sheimy, 2005),
the hundred-meter level divergence in Figure 5.6 indicates that the odometer-derived
velocities as well as the non-holonomic constraints keep the filtering trajectory straight

and effectively restrict the unaccepted position error accumulation.
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The FKF velocity estimation results as well as the odometer-derived speed are shown in
Figure 5.7, which indicate that the PIG proceeded in the pipeline slowly and stably except

for some speed excursions in the up direction.
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Figure 5.7 FKF Velocity Estimation

Figure 5.8 shows the FKF attitude of the PIG, the bump at the beginning in the pitch

figure indicates that the PIG experienced a sharp jump about 30 degrees. This occurred
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when the PIG was pushed down from the launching trip into the pipeline by the flows
during a short time interval. Further, irregular and trembling roll angles could be

observed within -50 degrees as the PIG travelled through the pipeline.
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Figure 5.8 FKF Attitude Estimation

5.3.2 TF'S Results

The plane trajectory estimations by the TFS as well as the associated BKF are shown in
Figure 5.9. The height estimation is shown in Figure 5.10. Similar to FKF results, the
BKF trajectory diverged from the reference coordinates before it reached the control
points, in the reverse directions. The positioning errors are effectively restricted by
smoothing. Note that the TFS horizontal positioning error is reduced to 2.85m before it
reaches the 10th CUPT compared to 51.8m in FKF and 55.6m in BKF, while the height
error is reduced to 9.5 m compared to -36.6m in FKF and 21.9m in BKF. A further 3-D

trajectory illustration of this improvement is shown in Figure 5.11.
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5.3.3 RTSS Results

The RTSS trajectory compared to FKF and the CUPT interpolation is shown in Figure
5.12 including the zoomed regions. The height estimation and 3-D trajectory are shown
in Figure 5.13 and Figure 5.14 subsequently. Similar to the TFS results, the RTSS

significantly improves the positioning estimation over forward filtering.
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5.3.4 Comparison

! 0SB OSA

Figure 5.15 Time Epochs when the PIG Passes an AGM

As depicted in Figure 5.15, the passing time of the PIG under an AGM is between two
data output time epochs, including the time one sample before (OSB) and the time one
sample after (OSA) (Yuksel, 2008). Table 5.3 listed the computed OSB and OSA

position errors of the forward filtering, including north, east, height, horizontal (2-D) and
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3-D, by subtracting the filtering results from the corresponding reference coordinates at

control points. Similarly, the position errors of BKF, TFS and RTSS are summarized in

Table 5.4-Table 5.6. In addition, illustrations of the 2-D and 3-D errors are shown in

Figure 5.16-Figure 5.17 respectively.
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The comparison between the errors indicates that the position errors can be effectively

restricted by the coordinate updates. Further, the divergence of the navigation errors in

FKF and BKF are substantially improved by both smoothing algorithms. The smoothing
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efficiency of TFS is nearly 90.0% according to the 3-D OSB errors compared to the
filtering results, while the improvement level of RTSS is nearly 92.9%. The smoothing
effect of the TFS is nearly 42.3% according to the OSA 3-D errors compared to the

filtering solution, while the improvement level of RTSS is nearly 48.0%.

Note that the smoothers improved the position errors during GPS outages by 95.4% in the
first test and 95.7 % in the second test as shown in Chapter 4, which are greater than
those in this test. Further, the enhancement efficiencies of TFS and RTSS in this test are
not exactly the same. However, with the consideration of the fact that the coordinate
measurement updates in vehicle navigation application are much more sufficient than
those in pipeline navigation, both TFS and RTSS can be accepted as the effective
smoothing methodologies in the application of pipeline surveys, and their smoothing

efficiency are comparable to each other.

Additionally, the height errors are greater than in horizontal directions, after they are
restricted by the CUPTs and further smoothed by TFS and RTSS. This is mainly due to
the longer lever-arms in the vertical direction than in the horizontal plane between the
above ground markers and the passing PIG inside the underground pipeline. On the other
hand, referring to the velocity and pitch estimations in Section 5.3.1, the PIG experienced
some sudden jumps, speed excursions and continuous trembling velocity in the up
direction, which could increase the height uncertainty and jeopardize its estimation

accuracy.



Table 5.3 FKF Positioning Errors
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North East Height 2-D 3-D

OSB | OSA OSB OSA OSB | OSA OSB | OSA OSB OSA

#1 ||-0.081 | -0.095 | 0.782 | 0.906 |]-0.045 | -0.021 || 0.787 | 0.911 ||0.788 | 0.911
#2 1869 | -0.817]]206.2 | 1.334 || -35.54 | -5.410 || 278.3 | 1.565 ||280.5 | 5.632
#3 ||-13.00 | -0.673 || -3.392 | 0.729 ||-15.67 | -5.188 || 13.44 | 0.992 [|20.64 | 5.282
#4 ||-10.54 | -0.594 || 6.647 | 1.046 |]-36.62 | -5.162 || 12.46 | 1.203 || 38.68 | 5.301
#5 ||-5.514 | -0.497 || 3.825 | 0.927 |[-18.13 | -3.058 || 6.711 | 1.052 || 19.33 | 3.234
#6 ||-1.113 | -0.656 || -20.58 | -0.083 || -35.25 | -4.705 || 20.61 | 0.662 ||40.83 | 4.751
#7 ||-5.413 | 0.437 ||-1.752 | 0.577 ||-16.10 | -7.138 || 5.610 | 0.724 || 17.08 | 7.174
#8 ||-3.364 | 0.704 || 11.52 | 0.499 ||-20.55 | -5.608 || 12.00 | 0.863 [|23.80 | 5.674
#9 || -74.57 | -0.269 || -11.52 | 0.651 || -47.55 | -7.703 || 75.45 | 0.704 || 89.19 | 7.735
#10 |]-48.94 | -0.360 || -17.05 | 0.729 || -36.60 | -4.363 || 51.83 | 0.812 || 63.45 | 4.438
#11 |-11.25 | -0.319 || -3.367 | 0.617 || -20.33 | -4.293 || 11.74 | 0.695 || 23.48 | 4.349
#12 ||-24.60 | -0.416 || -2.621 | 0.190 || -38.06 | -7.369 || 24.74 | 0.458 || 45.40 | 7.383
Mean |{32.11 | 0.486 [[24.10 | 0.691 |]26.70 | 5.001 [|42.81 | 0.887 ||55.27 | 5.155




Table 5.4 BKF Positioning Errors
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North East Height 2-D 3-D

OSB | OSA OSB | OSA || OSB | OSA OSB | OSA OSB | OSA

#1 ||-54.04 | 0.212 ||-79.56 | 0.546 ||37.71 | 6.217 ]| 96.18 | 0.585 || 103.3 | 6.244
#2 |13.918 | -7.623 ||-0.175 | -5.438 || 12.44 | 4.956 || 3.922 | 9.364 || 13.05 | 10.59
#3 |1 80.46 | -0.247 || 44.47 | 0.659 ||32.71 |4.311 ||91.93 | 0.704 ||97.58 | 4.368
#4 16294 | 0.012 ||26.67 | 0.763 || 18.09 | 3.036 || 68.35 | 0.763 ||70.70 | 3.131
#5 || 34.42 | 0.031 ||31.43 | 0.782 ||56.65 | 7.882 ||46.61 | 0.783 ||73.36 | 7.921
#6 || 12.10 | -1.723 || 13.79 | 2.223 || 19.11 | 24.70 || 18.34 | 2.812 ||26.49 | 24.86
#7 ||-4.714 | 0.547 || 12.26 | 0.949 || 14.73 | 7.916 || 13.13 | 1.096 || 19.73 | 7.991
#8 [1222.0 | 1.214 ||-13.29 | 0.177 ||42.20 | 8.796 ||222.4 | 1.226 ||226.3 | 8.881
#9 ||-130.7 | -0.440 || -38.18 | 1.004 || 37.91 | 3.895 || 136.2 | 1.096 || 141.3 | 4.047
#10 |151.82 | -0.070 |} 20.16 | 1.335 |[21.89 | 12.80 || 55.60 | 1.337 ||59.75 | 12.87
#11 | -9.918 | -0.332 || -7.797 | 0.739 || 30.98 | 2.750 || 12.62 | 0.810 || 33.45 | 2.866
#12 ||-0.234 | -3.378 || 0.187 | -0.794 || -7.468 | -2.375 || 0.299 | 3.471 || 7.474 | 4.205
Mean || 55.60 | 1.319 ||24.00 | 1.284 |{27.66 | 7.469 ||63.79 | 2.004 ||72.71 | 8.164




Table 5.5 TFS Positioning Errors
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North East Height 2-D 3-D

OSB | OSA OSB OSA OSB | OSA OSB | OSA OSB OSA

#1 || 0.205 | 0.208 [|-0.428 | -0.444 || 4.412 | 4.458 || 0.475 | 0.490 ||4.437 | 4.485
#2 ||-7.489 | -0.017 || -5.849 | 0.049 |{0.374 | 0.229 ]| 9.503 | 0.052 || 9.510 | 0.235
#3 ]| 0.018 | 0.349 ||0.190 | -0.389 ||-1.505 | -1.624 ]| 0.191 | 0.523 || 1.517 | 1.706
#4 |1-0.025 | 0.163 || 0.275 | -0.098 || -1.647 | -1.679 || 0.276 | 0.190 || 1.670 | 1.689
#5 ||-0.273 | -0.083 {| 0.147 | -0.227 || 3.980 | 3.968 ||0.310 | 0.241 |]3.992 | 3.975
#6 ||-0.422 | 0.273 ||2.540 | 0.020 |{20.21 | 6.184 ||2.575 | 0.274 ||20.37 | 6.190
#7 ||-0.355 | -0.347 ]| 0.378 | 0.136 |[-0.301 | -2.252 || 0.519 | 0.372 || 0.600 | 2.282
#8 || 0.702 | 0.094 [|-0.666 | -0.061 || 1.386 | -2.274]10.968 | 0.112 | 1.691 | 2.277
#9 ||-0.717 | -0.617 || -0.106 | -0.485 ||-2.989 | -3.006 || 0.725 | 0.785 ||3.076 | 3.107
#10 |12.096 | 0.386 || 1.056 | 0.033 ||9.481 | 1.353 ||2.347 | 0.388 ||9.767 | 1.408
#11 |[-0.403 | 0.011 ||-0.349 | -0.597 || -2.562 | 0.736 || 0.534 | 0.598 ||2.617 | 0.946
#12 |1-0.953 | 0.616 ||-0.023 | 0.501 ||-7.280 | -7.318 || 0.953 | 0.794 || 7.342 | 7.361
Mean || 1.138 | 0.264 || 1.001 | 0.253 ||4.677 | 2.923 || 1.615 | 0.402 || 5.549 | 2.972
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Table 5.6 RTSS Positioning Errors

North East Height 2-D 3-D

OSB | OSA OSB OSA OSB | OSA OSB | OSA OSB OSA

#1 |1 0.202 | 0.202 |]-0.400 | -0.414 || 4.524 | 4.574 ]| 0.448 | 0.461 ||4.546 | 4.597

#2 ||-11.65 | 0.204 ||-9.337 | 0.186 |[0.293 | 0.292 || 14.93 | 0.276 || 14.93 | 0.402

#3 ||-0.333 | 0.126 [|-0.062 | -0.553 ||-1.293 | -1.331 || 0.339 | 0.567 || 1.337 | 1.447

#4 ||-0.188 | -0.003 [|0.229 | -0.145 || -1.443 | -1.475 ]| 0.296 | 0.145 || 1.473 | 1.482

#5 |1-0.317 | -0.128 || 0.418 | 0.044 || 2.127 | 2.115 ]}0.525 | 0.135 ||2.191 | 2.119

#6 ||-0.276 | 0.169 [|-0.380 | -0.007 || 5.413 | 5.408 ||0.470 | 0.169 ||5.433 |5.411

#7 || -1.057 | -0.151 || -0.379 | -0.173 || -1.438 | -1.426 || 1.121 | 0.230 || 1.823 | 1.445

#8 ]10.350 | -0.064 || 0.008 | -0.055 ||-2.228 | -2.229 || 0.350 | 0.084 ||2.255 |2.231

#9 ||-0.043 | 0.039 ||0.208 | -0.174 ||-3.317 | -3.334 ]| 0.212 | 0.178 |{|3.323 | 3.339

#10 ||-0.112 | 0.177 ||0.205 |-0.115 || 1.275 | 1.286 || 0.234 | 0.211 |{1.296 | 1.303

#11 |[-0.283 | -0.147 || -0.281 | -0.652 || 0.767 | 0.755 |} 0.399 | 0.668 || 0.864 | 1.008

#12 |12.517 | 0.615 || 1.161 | 0.501 ||-7.317 | -7.318 ||2.772 | 0.793 || 7.824 | 7.361

Mean || 1.444 | 0.169 |{1.089 | 0.252 ||2.619 | 2.629 || 1.841 | 0.326 ||3.941 | 2.679

* The mismatches between the OSB results of TFS and RTSS at certain control points are

caused by the algorithm numerical stability during implementations.
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Chapter Six: OPTIMAL SMOOTHING FOR HORIZONTAL/VERTICAL
BUILDING SURVEYS USING INTEGRATED INS/ZUPT/CUPT SYSTEMS

6.1 Introduction to Building Surveys

Location Based Services (LBS) triggered the growing demands of indoor/outdoor
navigations in urban areas. Navigation and surveying of public and residential buildings
can be one of the promising LBS applications with great potentials. The databases
containing precisely surveyed positioning information are essentially helpful for public
safety, convenience, emergency route guidance, and personal tracking (Singh, 2006;

MacGougan, 2003).

However, GPS positioning accuracy suffers from the faded signal power and multipath
effect in urban or indoor environments. This inadequacy drives the emergence of various
indoor positioning techniques. Among them, the most significant include high-sensitivity
GPS (HSGPS) and assisted-GPS (AGPS), which are designed to improve tracking and
acquisition of low-power GPS signals (Watson, 2005). Another commonly researched
technique is wireless location such as utilizing WiFi signals by fingerprinting or
proximity methods (O’Keefe, 2008). This technique is recommended to be applied in
areas where sufficient wireless access points are deployed reasonably, such as public

libraries, hospitals, business buildings, research parks and so forth.
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Gyros and accelerometers can be used in indoor navigation systems as supplements or
alternatives. The potential success of indoor navigation systems with MEMS inertial
sensors could contribute to great investment opportunities for mini unmanned vehicles,
portable navigation devices, and individual guidance devices. The feasibility has partially

been researched by assessing the performance of INS-based Pedestrian Navigation

Systems (PNS) (Godha et al., 2006; Syed, 2009).

The absence of GPS updates and the time-dependent error behaviour of INS call for the
external aiding information. Zero Velocity Updates (ZUPTs) are efficient and feasible for
indoor navigations, since the carriers would likely experience frequent stops. ZUPTs with
appropriate time durations and intervals effectively limit the growing velocity errors,
slowing down the positioning errors and providing the chances to evaluate the sensor bias
and attitude errors (El-Sheimy, 2007; Huddle, 1998). Moreover, CUPTs are indispensable
for stand-alone INS to control the fast growing positioning errors. Control points can be
fixed separately at certain frequently passed locations around buildings by conventional
surveying techniques. In the sequel, the IMU measurements associated with the
corresponding aiding information will be post-processed to obtain the navigation

solutions using both filters and smoothers.

In this Chapter, two building surveying tests conducted by one of the ENGO 500 Project
Groups at the Department of Geomatics Engineering (UofC) will be utilized to evaluate
the indoor/outdoor navigation performance of filters and smoothers on integrated

INS/ZUPT/CUPT systems. Tactical-grade IMU (Litton LN200) was used in both tests.
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The objective of the first test was to evaluate the horizontal navigation quality along the
fixed route around some buildings at U of C with predetermined CUPT points inside and
outside them. On the other hand, the second test aimed at evaluating the height estimation
quality in a 7-floor campus elevator with the relative height of each floor measured by a
total station. The vertical positioning information will be useful for safety monitoring of
lifts in underground mining operations as well as recreational applications (Martell, 1991;
Skaloud and Schwarz, 2000). GPS solutions were available while outdoor for both tests
(where precise initial alignment was achieved). Frequent ZUPTs were added during both
tests with intentionally chosen time durations and intervals. A cart installed with
equipment including LN200, NovAtel OEM4 GPS receiver, laptops and other necessary
hardware were used to collect the data of both tests. More details on these tests can be

found in Isackson et al (2008).

6.2 Description and Results of the First Test
6.2.1 Horizontal Test Description

Before the horizontal test, a conventional traverse survey was performed to place 7
control points inside the basements of and outside the Engineering Complex at the U of C
campus (See Figure 6.1 and Figure 6.2). Two Alberta Survey Control Markers (ASCMs),
263079 and 26252, were used to provide Universal Transverse Mercator (UTM)
coordinates. The traverse started south from ASCM 263079 where three outside control
points were placed. The 4™ to 7™ control points were placed in the basement of the

Engineering Complex. The coordinate values of the traverse points in both UTM and
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WGS84 are listed in Table 6.1. Note that height coordinates were not provided in this test

since it aims to evaluate the horizontal navigation quality only.

% 10°

5.663 - 26252
5.663 |-
56629 -

5 BRZ2E -

263073
5.6625 -

Northing (m)

5 6625 -

56627 -

56627 -

5 BRZ6E —

5 6626

1 1 ]
7.oo7 7.008 7.0o9
Easting {m) w100

Figure 6.1 Points of the Traverse in UTM Coordinates (Zone 11)
(After Isackson et al., 2008)

The equipment on the cart (See Figure 6.2) was left stationary for more than 10 minutes
for GPS signal acquisition and INS initial alignment. The procedure of the horizontal
testing was conducted along the reverse route. The test started from Point #1 to #7. It
continued along the basement passing Point #6, #5, #4 and exited the Engineering
building at Point #3. After exiting the building and regaining satellite observations, the
cart was carried down the stairs and continued north back along the surveyed route from
Point #3 to Point #2 until reaching the beginning control point (Isackson et al., 2008).
Note that the GPS signals are intentionally blocked during this time interval while data

processing to simulate the indoor environment. Also, another 10 minute static
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observations were recorded at the end of the survey. Twenty one ZUPTs, among which
six happened at the ground control points from Point #7 to Point #2 (Each lasted for

about one minute; See the green rows in Table 6.2), were implemented.

Satellite

Hybrid
T e " 3

b

_|Engineering
1 Complex

9 Tals Atlas - Termsaat ’

Figure 6.2 Horizontal Testing Equipment and Route (Courtesy of Google)



Table 6.1 Traverse Control Point Coordinates (After: Isackson et al., 2008)

UTM Zone 11 WGS84

~—

=

I~ Northing (m)| Easting (m) | Latitude (° *>”) | Longitude (° ")
1 5662726.691 700731.313 51 |04 51.175 | 114 | 08 | 2.777
2 5662616.010 700741.973 51 | 04| 47583 | 114 | 08 | 2.451
3 5662583.347 700837.085 51 | 04| 46407 | 114 | 07 | 57.634
4 5662587.373 700851.430 51 | 04| 46.519 | 114 | 07 | 56.890
5 5662635.169 700850.177 51 | 04| 48.066 | 114 | 07 | 56.859
6 5662659.228 700862.281 51 | 04| 48.829 | 114 | 07 | 56.189
7 5662706.688 700859.918 51 | 04| 50.366 | 114 | 07 | 56.215

Table 6.2 Horizontal Testing ZUPTs (After: Isackson et al., 2008)

Start GPS Time End GPS Time Duration
ZUPT®#)

(s) (s) (s)
1 333876.01 334962.566 1087
2 334987.116 335002.226 15
3 335029.487 335042.557 13
4 335067.957 335082.677 15
5 335108.928 335123.768 15

335241.48 335257.36

335441.993 335496.204

13 335708.617 335731.638 23
14 335758.528 335772.298 14
15 335797.189 335814.769 18
16 335838.689 335856.04 17
17 335880.52 335894.81 14
19 335992.092 336007.732 16
20 336033.912 336052.683 19
21 336089.653 336108.034 18




128

6.2.2 Horizontal Test Results

The accumulated systematic position errors due to initial value errors and determinant
accelerometer biases over short time intervals are highly correlated to the velocity errors
(Skaloud and Schwarz, 2000). Because of this correlation, approximately 75-80% of
position errors over a short travel period can be removed with the aid by ZUPTs (Huddle,
1998). The residual errors in navigation-grade INS are mainly caused by white noise and
will accumulate with the square root of stop number if regular ZUPT time durations and
intervals are chosen (Huddle, 1998). However, the exclusive use of ZUPTs is limited by
the inability to estimate the acceleration-dependent errors (e.g. accelerometer scale
factor), since the integrated acceleration between two stops sums up to zero by a constant

error (Skaloud and Schwarz, 2000).

The research on INS system observability demonstrated a strong coupling effect exiting
between tilt errors and horizontal velocities (Bar-Itzhack and Berman, 1988). Hence, the
observed velocity errors during ZUPTs are capable of providing accurate estimations of
roll, pitch and the associated horizontal gyro drifts (Grejner-Brzezinska et al., 2001).
Conversely, the weak observability of heading error by velocities as well as the lack of
dynamics during static periods leads to the uncontrolled azimuth and the vertical gyro
drift (Godha et al., 2006). Unfortunately, the azimuth error is one of the primary factors
contributing to the positioning divergence. As a result, external information, from CUPTSs
in this case, is required to observe and estimate the uncompensated residuals induced by

acceleration-dependent and azimuth errors when using ZUPTs only. The errors can be
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further restricted and removed by backward smoothing in post-mission. The horizontal
indoor navigation dataset will be processed in the order of INS-Only, INS/ZUPT,
INS/CUPT, and INS/ZUPT/CUPT for performance evaluation under different integration

strategies. Then, both filtering and smoothing results of FKF, TFS and RTSS will be

discussed and analyzed.

INS-Only

The INS-Only trajectories including forward filtering, TFS, and RTSS are shown in
Figure 6.3. It can be observed that the forward filtering diverged after the GPS
measurements became unavailable, i.e. near Point #7. Meanwhile, neither TFS nor RTSS
could improve the filtering performance. Note that the DGPS solutions were only
available at the beginning part (raw data processed by Waypoint GrafNav/GrafNet™
software from NovAtel Inc). Therefore, without the external aiding, the long-term stand-

alone INS results cannot meet the indoor navigation requirements.

2000 ......................................... T
\
_ 1800 - _ i ---DGPS i
E '":’_IGtP? E -60f —Filtering L
—Flltering 1 — *
£ 1000 g £ 0l TFS I
2 RTSS 2 i i “
5001 " AO0F | ® 0 CUPT ‘I(
CUPT L - i
: A20f T : ¥
[ PRI - 0 RSP PRSI S——— e 1
A40L i ...a.._._..‘_.__.;._.;ii..
500 i E i i {17 S TS SR P, SO U,
-5000 0 5000 10000 15000 1] 20 40 60 80 100 120
East (m) East (my}

Figure 6.3 INS-Only Trajectories
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INS/CUPT
Figure 6.4 shows the INS/CUPT trajectories of forward filtering, TFS and RTSS. Similar
to the discussions in Section 5.3.4, the positioning displacement between the estimation
results and the corresponding reference coordinates at the control point will be calculated
in terms of both the time one sample before (OSB) the CUPT and the time one sample
after (OSA) the CUPT. Table 6.3 lists the OSB position errors of forward filtering TFS
and RTSS, with respect to north, east, and 2-D. Table 6.4 lists the OSA position errors.

The 2-D position errors are illustrated in Figure 6.5.

The results indicate that without the ZUPT aiding, the filtering position errors obtained
by stand-alone INS increased rapidly with time to hundred-meter level before restricted
by the coordinate updates. Further, TFS and RTSS substantially improved the positioning

accuracy both during CUPT-free gaps and at control points.

0 s S s U e e e e B D e e e
501 T - -
£ 00| —Filtering |
=2 —TFS
RTSS
: +
. : CUPT
200 3 i i |
0 50 100 150 200
East (m])

Figure 6.4 INS/CUPT Trajectories
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Table 6.3 INS/CUPT Position Errors One Sample Before (OSB) Control Points

North(m) East(m) 2-D (m)
Control FKF TFS RTSS FKF TFS RTSS FKF TFS RTSS
Point
#7 3.922 0.0463 | 0.0463 0.2675 | 0.0476 | 0.0475 3.931 | 0.0664 | 0.0664
#6 107.1 -0.0435 | -0.0435 151.9 | -0.0692 | -0.0692 || 185.9 | 0.0817 | 0.0817
#5 -25.52 -0.0205 | -0.0205 || -6.085 | -0.0356 | -0.0356 || 26.24 | 0.0411 | 0.0411
#4 -43.49 0.0030 | 0.0030 -89.80 | 0.0373 | 0.0373 99.78 | 0.0374 | 0.0374
#3 -1.578 0.0595 | 0.0595 23.92 | 0.0858 | 0.0857 23.98 | 0.1044 | 0.1044
#2 -516.2 0.2058 | 0.2058 693.7 | -0.1143 | -0.1143 || 864.7 | 0.2354 | 0.2355
Abs Mean 116.3 0.0631 | 0.0631 161.0 0.0650 | 0.0649 200.8 0.0944 | 0.0944

Table 6.4 INS/CUPT Position Errors One Sample After (OSA) Control Points

North(m) East(m) 2-D (m)
Control FKF TFS RTSS FKF TFS RTSS FKF TFS RTSS
Points
#7 0.0256 0.0068 | 0.0068 || 0.0101 | -0.0066 | -0.0066 || 0.0275 | 0.0095 | 0.0095
#6 -0.0830 | -0.0055 | -0.0055 |} -0.0307 | -0.0049 | -0.0049 || 0.0885 | 0.0073 | 0.0073
#5 -0.0313 | -0.0068 | -0.0068 || -0.0560 | -0.0124 | -0.0124 || 0.0641 | 0.0141 | 0.0141
#4 0.0534 -0.0003 | -0.0003 || 0.1146 | 0.0072 | 0.0072 || 0.1264 | 0.0072 | 0.0072
#3 -0.0492 0.0243 | 0.0244 || 0.1109 | 0.0339 | 0.0339 || 0.1213 | 0.0416 | 0.0418
#2 0.1357 0.0826 | 0.0826 || -0.0521 | -0.0240 | -0.0240 || 0.1454 | 0.0860 | 0.0860
Abs Mean 0.0630 0.0211 | 0.0211 || 0.0624 | 0.0148 | 0.0148 || 0.0955 | 0.0277 | 0.0277
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INS/ZUPT
The INS/ZUPT trajectories are shown in Figure 6.6. Apparently, frequent ZUPTs helped
to control the filtering horizontal error drifts around ten-meter level throughout the entire
surveying process. As discussed previously, without the external aiding like CUPTSs, the
exclusive use of ZUPTs is unable to estimate the acceleration-dependent errors and the
weak observable heading errors. The visible translational displacement between
estimated trajectories and control points (as shown in the zoomed figure) shows the
consequence of these limitations. The position errors in terms of the time “AT” the
control points (different from the aforementioned OSA since a time interval of ZUPT
existed at each of the points) are calculated by subtracting the INS/ZUPT estimations
from the corresponding reference coordinates, which are listed in Table 6.5. The
comparison between filtering and smoothing manifests that the aiding from velocity
updates could not help optimal smoothing to provide notable improvement over filtering.
On the contrary, the filtering performance even outweighs the TFS by checking the

absolute mean errors.

INS/CUPT/ZUPT

Figure 6.7 depicted the INS/CUPT/ZUPT trajectories of forward filtering, TFS and
RTSS. It indicates that this integration gains the merits of the two strategies analyzed
earlier (i.e. CUPTs & ZUPTs). With frequent ZUPTs, the filtering position errors are
effectively controlled during the CUPT-free intervals. On the other hand, the CUPTs lead
the estimation trajectory to converge towards the control points, which mitigates the

notable translational displacement in Figure 6.6. Table 6.6 and Table 6.7 list the position
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errors OSB and AT the control points respectively. By checking the mean 2-D position

errors, the improvement level by TFES is nearly 66.4% while it is 55.7% by RTSS.
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Figure 6.6 INS/ZUPT Trajectories
Table 6.5 INS/ZUPT Position Errors AT Control Points
North(m) East(m) 2-D (m)
gontrol FKF TFS | RTSS || FKF TFS | RTSS || FKF TFS | RTSS
oint
#7 -0.458 | -1.030 | -0.862 ||-1.198 | -1.581 | -1.463 || 1.283 | 1.887 | 1.698
#6 -1.122 | -1.158 | -0.724 || -2.063 | -2.308 | -1.610 || 2.349 | 2.582 | 1.765
#5 -0.206 | -0.134 | -0.271 || -0.265 | -0.202 | -0.401 ]} 0.336 | 0.242 | 0.484
#4 -0.349 | -0.223 | -0.426 || -1.002 | -0.949 | -1.103 ]} 1.061 | 0.974 | 1.182
#3 1.567 1.702 | 1.095 ||-1.746 | -1.712 | -1.723 || 2.346 | 2.414 | 2.041
#2 1.271 1.241 | 1.241 ||-1.976 | -2.043 | -2.075 ]| 2.350 | 2.310 | 2.417
Abs 0.829 0915 | 0.770 ||1.375 |1.466 | 1.396 [|1.621 |1.748 | 1.598
Mean
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Figure 6.7 INS/CUPT/ZUPT Trajectories

Table 6.6 INS/CUPT/ZUPT Position Errors OSB Control Points
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North(m) East(m) Horizontal(m)
antrol FKF TFS RTS FKF TFS RTS FKF TFS RTS
POI:;; -0.3934 0.0543 | -0.0424 || -1.1696 | -0.0391 | -0.0847 {] 1.2340 | 0.0669 | 0.0948

#6 0.1418 -0.0079 | -0.0016 || -0.0827 | -0.0143 | -0.0037 || 0.1642 | 0.0164 | 0.0040
#5 0.6957 0.0082 | 0.0047 || 1.2651 | 0.0172 | 0.0110 || 1.4438 | 0.0190 | 0.0120
#4 -0.2099 -0.0278 | -0.0080 || -0.7426 | -0.0032 | -0.0009 || 0.7717 | 0.0280 | 0.0081
#3 2.0378 0.0448 | 0.0107 ||-0.6014 | 0.0226 | -0.0087 {]2.1247 | 0.0502 | 0.0138
#2 0.1987 -0.0002 | 0.0004 |[]-0.1794 | -0.0012 | -0.0021 || 0.2677 | 0.0012 | 0.0022
Abs Mean |1 0.6129 0.0239 | 0.0113 || 0.6735 | 0.0163 | 0.0185 || 1.0010 | 0.0303 | 0.0225
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Table 6.7 INS/CUPT/ZUPT Position Errors AT Control Points

North(m) East(m) Horizontal(m)
Co-ntmI FKF TFS RTS FKF TFS RTS FKF TFS RTS
POI:;; 0.0910 -0.0134 | -0.0273 ]| 0.0785 | -0.0322 | -0.0584 |} 0.1202 | 0.0349 | 0.0645
#6 0.0046 -0.0116 | -0.0026 [} 0.0346 | -0.0075 | -0.0097 || 0.0349 | 0.0138 | 0.0100
#5 -0.017 0.0008 | 0.0032 ||-0.0173 | 0.0075 | 0.0089 || 0.0243 | 0.0076 | 0.0095
#4 -0.010 -0.0137 | -0.0077 || 0.0046 | 0.0018 | 0.0009 || 0.0114 | 0.0138 | 0.0077
#3 -0.028 -0.0017 | 0.0051 ]] 0.0093 | 0.0006 | 0.0008 | 0.0299 | 0.0018 | 0.0052
#2 0.0026 -0.0014 | -0.0018 |} 0.0031 | 0.0035 | 0.0020 [{0.0041 | 0.0037 | 0.0027
Abs Mean |1 0.0257 0.0071 | 0.0079 || 0.0246 | 0.0089 | 0.0135 ||0.0375 | 0.0126 | 0.0166

Comparison between Different Integration Strategies

The positioning accuracy of the horizontal test under different integration strategies can
further be explained by the north position covariance information, as shown in Figure 6.8.
The first plot indicates that the filtering position estimation by stand-alone INS degrades
rapidly with time before being constrained by coordinate updates. At the same time,
backward smoothing significantly improves the positioning accuracy over filtering. The
second plot denotes that frequent ZUPT aiding restricts the position STD within 5 meters
throughout the process, which is a notable overall improvement compared to the
INS/CUPT results. However, it can be observed that the position accuracy keeps
degrading with time and the smoothing cannot efficiently limit or remove this
divergence. This demonstrates the fact that the residual position errors after the ZUPT

corrections will remain and accumulate. The last plot shows that INS/CUPT/ZUPT
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integration can include the merits of both the two aiding sources and achieve a superior

performance.
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Figure 6.8 North Position STDs Using Different Integration Strategies

Roughly speaking, the position states in INS-based integration systems are not driven by
random noises (Refer to the Q matrix in Section 2.3.4). As discussed in Section 3.4.1,
only those states which are controllable by the system driving noise are smoothable in
linear systems. However, the results shown in the previous Chapters proved that
smoothers provide the position a superior estimation over filtering. This could probably
be explained by the fact that the measurements from either GPS solutions or CUPTs
directly improve the observability of the position states, which in turn improve their

smoothability. Note that, due to the nonlinearity nature, the comprehensive controllability
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and the observability knowledge in the INS-based integration systems has not yet been
fully understood. Therefore, it could be reasonable that the position errors are smoothable
as long as CUPTSs are provided; conversely, this performance can hardly be achieved by

ZUPT, which is a velocity-based aiding technique.

The attitude standard deviations under different integration strategies are illustrated in
Figure 6.9. These plots indicate that the roll and pitch angles can accurately be estimated
using each of the three implemented integration strategies. Compared to the results of the
INS/CUPT scheme, the ZUPT aiding (in both INS/ZUPT and INS/CUPT/ZUPT schemes)
provides tilt angles with high accuracy due to their tight coupling with horizontal
velocities. Meanwhile, the implementation of optimal smoothing improves the tilt error
estimation accuracy. On the other hand, the estimation of heading error is not as accurate
as the tilt angles and its STD diverges with time. This is mainly because of its poor
observability from the occasional coordinate updates and frequent velocity updates.
Further, smoothing can hardly obtain enhancement of heading estimation over filtering
despite the minor improvement provided by the INS/CUPT/ZUPT scheme. This once
again implies that the smoothability of a system state is not only related to the driving

noise controllability but also its observability from measurements.



Roll STD (deg)

Pitch STD

Roll STD (deg)

Pitch STD

Roll STD {deg)

Pitch STD

=
=

=
=
&

=l

=
=
-

=
=
=

=

(=
=
-

2
=
R

=

INS/CUPT [ Fkf
! ! : —TFS
; : — RTSS
3.352 3.354 3.356 3.358 3.36
Time (s) x10°

3.354 3.356 3.358 3.36

Time (s) < 10°
INS/ZUPT —_FKF
[ : ' T|—TFs []
: : : . |—RTSS
3.352 3.354 3.356 3.358 3.36

Time (s) x10°

3.354 3.356 3.358 3.36

Time (s} x10°
INS/CUPT/ZUPT ——FKF
ks ! ! I : & TFS 4
—RTSS
3.352 3.354 3.356 3.358 3.36
Time (s} X 105

3.354 3.356 3.358 3.36
Time (s} x10°

= =
P w2
W o B

Heading STD [deg)
-
[

INS/CUPT

: —FKF
—17Fs

0.15
0.1
0.051 J
[ - i L i i
3.352 3.354 3.356 3.358 3.36
Time (s} % 10°
INS/ZUPT
0.4 — T . .
0.35) —FKF |
—TFS
0.3 | ——IRTSS |\l el

S
P
o

Heading STD [deg)
-
[

0.15
0.1
0.051- J
0 L i | i i
3.352 3.354 3.356 3.358 3.36
Time (s} % 10°
INS/CUPT/ZUPT
04— T T T T
: : ——FKF
0.351- | ——TF8 |
—RTSS

=
R
&

Heading STD (deg)
[—]
PO 1
@on [

o=
=

0.05

3.352

3.354

i i i
3.356 3.358 3.36
Time (s} x 105

Figure 6.9 Attitude STDs Using Different Integration Strategies
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The gyro bias standard deviations are shown in Figure 6.10. The estimations of north and

east gyro biases achieve high performance by ZUPT aiding and backward smoothing

because of their strong and direct influence on tilt angles. Unfortunately, vertical gyro
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bias cannot be estimated accurately due to its coupling with azimuth, despite the little

improvement of vertical gyro bias estimation provided by optimal smoothing (most

notable when using INS/CUPT/ZUPT).

6.3 Description and Results of the Second Test

6.3.1 Vertical Test Description

The vertical test was conducted in an elevator of the ICT building at U of C. The
transparent windows on the elevator make the laser ranging feasible in this test (Figure
6.11). The height of each of the building seven floors was measured in advance to
provide aiding information as well as the reference to evaluate the estimation accuracy. A
total station (see Figure 6.11) was set up at a long enough distance from the building to
minimize foresight errors and a target was set up at the top of the north corner of the
elevator window. This target was observed at each floor to provide the zenith angle
measurement. Using trigonometric functions, the relative height value to the total station
horizontal line was calculated for each floor (Isackson et al., 2008), see Figure 6.11. The

corresponding vertical survey measurements and calculations are listed in Table 6.8.

The equipment cart was left stationary outside the ICT building for over 10 minutes
before moving into the elevator. While ascending, the elevator was stopped at each floor
for about 25-40 seconds for a ZUPT. After reaching the top, the cart followed a single
descent to the bottom floor and was carried outside the building again. Another 10 minute

static observations were recorded at the end of the survey (Isackson et al., 2008). The
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vertical test route, the height CUPT interpolation and GPS observations in the vertical

direction are illustrated in Figure 6.12. The time interval and duration of the ZUPT

corresponding to each floor are listed in Table 6.9.
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Figure 6.11 Vertical Height Survey Principle of the ICT Building at U of C
(After Isackson et al., 2008)



Table 6.8 Vertical Survey Measurements and Calculations
(After Isackson et al., 2008)
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Floor # | Zenith Angle Relative Height Per Floor Height

0 (degree) Height h (m) | Floor Ah (m) (m)
1 90.9892 -0.715 0.000 0.00
2 81.8842 5.6965 6.411 6.41
3 76.3083 9.7485 4.052 10.46
4 70.9178 13.8525 4.104 14.57
5 65.9486 17.879 4.027 18.59
6 61.2992 21.936 4.057 22.65
7 57.0303 25.951 4.015 26.67
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Figure 6.12 Vertical Testing Route (After Isackson et al., 2008)
Table 6.9 Vertical Testing ZUPTs (After Isackson et al., 2008)

Start Time (s) Stop Time (s) Duration (s)
1395.2 1419.6 24
1429.1 1472.0 43
1479.6 1518.6 39
1526.2 1561.4 35
1569.0 1608.9 40
1616.5 1657.0 41
1664.4 1717.6 53
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6.3.2 Vertical Test Results

The straight vertical nature of the elevator ascending and descending route gains some
special conditions for error propagation (Skaloud and Schwarz, 2000). The fixed heading
maintains the balance between the accelerometer biases and the tilt errors after the
levelling alignment. Moreover, the homogenous and benign acceleration profile along a
straight trajectory moderates the cross correlations of position errors in the horizontal
channels induced by the acceleration-dependent terms. This was analytically derived with
respect to the azimuth misalignment and the gyro drift by Wong (1982). Finally, the
hardly sensed translational displacement avoids the position errors induced by the

azimuth uncertainty.

Considering the above factors, the remaining position errors by ZUPTs in a vertical
surveying are mainly the results of accelerometer bias uncertainty, accelerometer scale
factor, elevator vibration, cable torsion and so forth (Skaloud and Schwarz, 2000;
Martell, 1991). Aiding from height coordinate updates and optimal smoothing will be
implemented to restrict the uncompensated errors and to improve the estimation. Since
the ascending time between neighbouring floors is normally 7-8 seconds (except for 10s
to the 2™ floor), the accumulated vertical positioning error during that short time interval
is roughly within decimetre level based on both the tactical-grade IMU (LLN200)
specification (See Appendix A) and the vertical surveying advantages. Therefore, the
performance when using height CUPT aiding with INS will be similar to the case of

INS/CUPT/ZUPT scheme. In this test, only the results of INS-Only, INS/ZUPT and
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INS/CUPT/ZUPT will be analyzed and compared using filtering and smoothing

algorithms.

INS-Only
The height estimation processed by INS-Only is shown in Figure 6.13. It indicates that
the filtering results degrade downwards to an unacceptable level after entering the ICT

building. Although the height error is restricted by smoothing, its accuracy cannot meet

the requirement of indoor navigation.
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Figure 6.13 INS-Only Height Estimation

INS/ZUPT

The height estimations using INS/ZUPT integration are shown in Figure 6.14 and listed
in Table 6.10, respectively. Note that the height errors are the averaged vertical

displacements between the estimations and the corresponding vertical surveyed
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measurements. It suggests that the ZUPT aiding effectively prevents the filtering height
estimation from diverging. However, decimetre level bias exists at each floor and
increases along the ascending direction. Different from the conclusion obtained in the
horizontal test, optimal smoothing significantly improves the height estimation by 71.8%
for TFS and 69.2% for RTSS. This is probably granted by the advantages of the fixed-

heading vertical survey stated earlier.

INS/CUPT/ZUPT

The height estimation results of INS/CUPT/ZUPT are shown in Figure 6.15 and given in
Table 6.11 respectively. The vertical positioning displacements between the estimation
results and the corresponding reference coordinate at each floor will be calculated in
terms of the time one sample before (OSB) the height CUPTs. The figure shows that the
vertical biases between filtering results and floor height measurements are constrained to
centimetre level with the aiding from CUPTs. Furthermore, the filtering estimates are
efficiently improved by backward smoothing. The enhancement level is 61.8% for both

smoothers according to the OSB-CUPT height errors.
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Figure 6.14 INS/ZUPT Height Estimation

Table 6.10 INS/ZUPT Height Errors at Each Floor

Height Error(m)
Floor

FKF TFS RTSS

#1 0.1001 0.0233 0.0838
#2 0.3206 0.1174 0.1588
#3 0.3726 0.0325 0.1148
#4 0.4268 -0.0119 0.0737
#5 0.4697 -0.0822 0.0401
#6 0.5472 -0.0963 -0.0410
#7 0.3026 -0.3507 -0.2688
Abs Mean 0.3628 0.1020 0.1116

147



Height {m)

Height {m}

1125

;Filteirng
1120+ —TFS
—RTSS
A5 L s ' CUPT
E
1110 E
&
i [
; : T
1100 - :
: £l
1095 i 1 L i I
5.935 5.94 5.945 5.95 5.955 5.96
GPS Time (s) x10°
4th Floor
111215, : :
—Filteirng
—TFS
—RTSS
: : E
=
[=2]
3
I
1112.05 : :
5.9538 5.9539 5.9539 5.9539 5.954
GPS Time (s} x 105

148

1125}
1120}
1115} : :
: —Filteirng
1110} —TFS
: ——RTSS
1105 - ST
1100}
1095 1 i | i i 1 i
5.9525 5.953 5.9535 5.954 5.9545 5.955 5.9555
GPS Time (s) x10°
5th Floor
TUIGABL b e Filteirng |
: i |—TFS
1m642L- b | ——RTSS
* CUPT
AT b e D s vsnmonns rossmsornostonismoassmn ol
1116.1
A116.00L 4N T
1116.08 -

5.9543 5.9543 5.9543 5.9544 5.9544 5.9545

GPS Time (s} x 105

Figure 6.15 INS/CUPT/ZUPT Height Estimation

Table 6.11 INS/CUPT/ZUPT Height Errors at Each Floor

OSB-CUPT Height Error(m)
Floor

FKF TFS RTSS

#1 -0.2811 0.0075 0.0075
#2 0.1105 0.0327 0.0327
#3 0.0593 0.0112 0.0112
#4 0.0648 -0.0042 -0.0042
#5 0.0398 0.0089 0.0089
#6 0.0754 0.0110 0.0109
#7 -0.0963 | -0.2027 -0.2027
Abs Mean 0.1039 0.0397 0.0397
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The results demonstrate that the advantages of the vertical straightness nature and the low
acceleration profile substantially suppress the height error accumulation. Moreover, the
aiding from ZUPT and CUPT at each floor was successfully applied in this inertial
survey with a tactical-grade IMU. However, rigorous vertical path or frequent
ZUPT/CUPT might not be available in certain surveying environments like underground
mining or high-rise building (Martell, 1991; Skaloud and Schwarz, 2000). Although the
height accuracy in the presented test can hardly be achieved under these conditions, the
integration strategies and the smoothing methodologies introduced in this Chapter

provided their suitability and potentials in vertical positioning surveying applications.
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Chapter Seven: CONCLUSIONS AND RECOMMENDATIONS

7.1 Summary

The main objective of this thesis was to evaluate the performance of filtering and optimal
smoothing methodologies in different INS-based integrated system applications using
different strategies, update navigation information and auxiliary sensors. The background
of the inertial navigation concepts and the estimation/filtering/smoothing techniques were
introduced and discussed in Chapters 2 and 3. The performance evaluations of Kalman
Filter (KF) and optimal smoothing algorithms were presented in the Chapters 4, 5 and 6
for the following INS-based applications: Land-Vehicle Navigation (LVN), pipeline

surveys, and horizontal/vertical building surveys, respectively.

For the work carried out herein, the major contributions of the thesis can be summarized
as follows:

e Development and implementation of Kalman Filter (KF) algorithms and the
corresponding RTSS schemes for INS/GPS, INS/ODOM/CUPT, and
INS/ZUPT/CUPT integrated systems, respectively.

e Derivation, development and implementation of the Two Filter Smoother (TFS)
algorithms for different INS-based applications including LVN, pipeline surveys,
and horizontal/vertical building surveys using several integration strategies:

INS/GPS, INS/ODOM/CUPT, and INS/ZUPT/CUPT systems, respectively.
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Performance evaluation and demonstration of the navigation estimation accuracy
improvement using the developed smoothing techniques over the corresponding
filtering algorithms for all INS-based applications and integration strategies
mentioned above.
Detailed analyses and comprehensive considerations for the smoothability,
storage requirement, and measurement update gap filling while applying
smoothing algorithms.
Augmentation of the MMSS Research Group software: Aided Inertial Navigation
System (AINS™) Toolbox, with the newly developed TFS and horizontal/vertical

CUPT aiding modules.

7.2 Conclusions

For the results obtained throughout the thesis, the corresponding analyses lead to the

following conclusions in terms of the used INS-based applications:

A. Land-Vehicle Navigation (LVN)

1.

A tactical-grade IMU and a MEMS IMU were used in the INS/GPS field tests
with several periods of GPS signal outages. For each IMU, the results showed that
both the TFS and RTSS substantially improved the position estimation accuracy
during these GPS outages. For the 60s outages for example, both smoothers

improved the 3-D position errors by more than 95% in the case of each IMU.
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2. The estimation efficiency and effectiveness of the developed TFS were

comparable to the commonly used RTSS.

The efficiency of both smoothers is upgrading with the increasing length of GPS
outages. The improvement levels in the first test (using the tactical-grade IMU)
were 56.4%, 89.8%, 95.4% and 96.6% for 10s, 30s, 60s and 90s GPS outages,
respectively. The corresponding improvement levels in the second test (using the

MEMS IMU) were 34.6%, 86.8%, 95.7% and 96.4% respectively.

B. Pipeline Surveys

1.

Odometer-derived velocities and non-holonomic constraints were used as
auxiliary updates for the INS during navigation between control points. It was
shown that those updates kept the filtering trajectory straight and effectively
prevented the stand-alone INS error accumulation from growing rapidly with
time. Then, using Coordinate Updates (CUPTSs) as position updates when the INS
passed by the fixed control points, the divergent position errors were effectively
restricted.

The positioning errors obtained by filtering in either forward or backward
directions were substantially reduced by the developed smoothing algorithms. The
improvement level of TFS and RTSS was above 90.0% in terms of the 3-D OSB
position errors; the corresponding improvement level was above 42% in terms of
the 3-D OSA position errors.

The height errors are greater than those in horizontal directions, even if they are

restricted by the CUPTSs and further smoothed by the TFS or RTSS algorithms. It
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was probably the consequence of the longer lever-arms in the vertical direction

between the above ground markers and the passing PIG inside the underground

pipeline. On the other hand, the sudden jumps, speed excursions and continuous

trembling observed in the up velocity could also increase the height uncertainty

and jeopardize its estimation accuracy.

C. Horizontal Building Surveys

1.

2.

The stand-alone INS results cannot meet the indoor navigation requirements.
Frequent ZUPTs help to control the horizontal drift of the filtering estimation
within ten-meter level throughout the entire surveying process; however,
metre-level translational displacements exist between the estimated
trajectories and the control points.

Consequently, applying optimal smoothing algorithms using ZUPTs only did
not provide significant improvement over filtering due to the lack of system
controllability and observability.

INS/CUPT/ZUPT integration strategy benefits from the virtues of both the
two aiding sources and achieves a superior performance compared to the other
two integration schemes (i.e. INS/CUPT and INS/ZUPT). The results showed
that the smoothing improved the filtering results by 66.4% in case of the TFS
and by 55.7% in case of the RTSS, respectively.

The roll and pitch angles can accurately be estimated under each of the
integration strategies. ZUPT aiding provided tilt angles high accuracy due to

their tight coupling with horizontal velocities. On the other hand, the
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estimation of heading error is not as accurate as the tilt angles because of its
poor observability from occasional coordinate updates and frequent velocity
updates. Meanwhile, the implementation of optimal smoothing improved the
tilt error estimation accuracy but could hardly obtain notable enhancement of

heading estimation over filtering.

D. Vertical Building Surveys

1.

For height estimation in the elevator of multi-floor building using an INS-
based system, the straight vertical nature of the elevator movement provides
several special advantages to constrain the accumulation of systematic errors.
ZUPTs aiding effectively controlled the filtering height drift, but decimetre
level bias existed at each floor and increased along the ascending direction.
By the virtue of the fixed heading along the vertical direction, optimal
smoothing significantly improved the height estimation by 71.8% using the
TFS algorithm and by 69.2% using RTSS.

The filtering vertical errors were reduced to centimetre level under
INS/CUPT/ZUPT integration strategy. Moreover, the filtering estimates were
efficiently improved by both of the TFS and RTSS algorithms with
enhancement levels of more than 61%.

The integration strategies and smoothing methodologies proposed in this
application have promising potentials in other vertical positioning surveying

applications.
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7.3 Recommendations for Future Work

1.

In the proposed TFS structure, the implementation of BKF without a backward
INS mechanization relies on the stored FKF results. Conversely, a completely
independent BKF is another choice for TFS, in which the backward INS
mechanization is implemented to provide the INS solutions for both the backward
nominal trajectory and the backward measurement updates.

The Adaptive Kalman Filter (AKF) aims to attain the optimal parameters in the
process and measurement noise matrices. This objective has the potential to be
fulfilled and researched using smoothing methodologies. The criterion to obtain
the accurate a priori information by observing the smoothing results is
recommended as a topic to be investigated.

The development and implementation of the RTSS and TFS in tightly-coupled
and deeply-coupled INS/GPS integrated systems should be considered in future
work.

Measurement-While-Drilling (MWD) and Wellbore-Mapping (WBM), for both
vertical and horizontal boreholes, are potential navigation fields for INS and
aiding sensors. Due to the operation environment, GPS is completely unavailable.
With the emerging technology of MEMS inertial sensors, and other small-size
aiding sensors, the design and implementation of the RTSS and TFS for these

applications are recommended.
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APPENDIX A

Summary of Litton LN-200 IMU Specifications (Source from www.littongcs.com)

Physical Characteristics:

e Weight: 1.54 pounds (700 grams)

e Size: 3.5 inches (8.9cm) diameter by 3.35 inches (8.5cm high)
e Power: 10 watts steady-state (nominal)

e (Cooling: Conduction to mounting plate

® Mounting: 4 Mounting bolts - M4

e Activation Time: 0.8 sec (5 sec to full accuracy)

Performance-Gyroscope:

¢ Gyro Bias Repeatability: 1 to 10 °/ hour (1 sigma)

e Random Walk: 0.04 to 0.1 °/~/hour Power Spectral Density: (PSD) level
e Scale Factor Stability: 100 PPM (1sigma)
e Bias Variation: 0.35 °/ hour (1 sigma) with 100 sec correlation time

¢ Non-orthogonality: 20 arcsec (1 sigma)

e Bandwith: >500 Hz
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Performance-Accelerometer:

¢ Bias Repeatability: 200 micro-g to 1 milli-g (1 sigma)

e Scale Factor Stability: 300 PPM (1 sigma)

e Vibration Sensitivity: 50 micro-g/g? (1 sigma)

e Bias Variation: 50 micro-g (1 sigma) with 60 sec correlation time

e Non-orthogonality: 20 arcsec (1 sigma)

e  White Noise: 50 micro-g/~/ Hz PSD Level

e Bandwidth: 100 Hz

Operation-Range:

® Angular rate: £1000 °/sec

® Angular Acceleration: £100,000 °/sec/sec
e Acceleration: 40 g

¢ Velocity Quantization: 0.00169 fps

e Angular Attitude: Unlimited

e Reliability (predicted): 32,995 hours MTBF
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APPENDIX B

B.1 Figures in Section 4.3.3 (2" dataset)
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Figure B.1 Trajectories of FKF, BKF, and TFS in the 2" Test
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Figure B.2 Trajectories of FKF and RTSS in the 2" Test
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B.2 Figures in Section 4.3.4 (2" dataset)
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