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Abstract 

 

Tactical-grade, low-cost Inertial Navigation Systems (INSs) and Micro-Electro-

Mechanical Systems (MEMS) inertial sensors have gained great interests in civilian and 

commercial fields during the last decade. The Global Positioning System (GPS) is 

recognized as the ideal complement to INS by offering absolute positioning information 

and consistent accuracy in open sky to overcome the problem of INS time-dependent 

error growth. However, GPS suffers from degraded signal acquisition or poor satellite 

geometry when a vehicle is traveling in urban, dense foliage or canyon areas. In addition, 

the GPS signals will be totally unavailable in the isolated environments such as tunnels, 

mines or indoor areas. Hence, alternative aiding instruments or techniques such as 

odometers, non-holonomic constraints, Zero-velocity Updates (ZUPTs) and Coordinate 

Updates (CUPTs) become essential to restrict the accumulated time-dependent errors of a 

stand-alone INS. While Kalman filter is widely employed as the real-time estimation 

method to fuse the multi-sensor information, optimal smoothing will be utilized as the 

post-processing methodology to provide better navigation solutions. 

 

In this research, two different fixed-interval smoothing algorithms will be utilized and 

evaluated. The first algorithm is the Two Filter Smoother (TFS), while the second 

algorithm is the Rauch-Tung-Streibel Smoother (RTSS). The TFS is performed by 

combining the results of Forward Kalman Filtering (FKF) and Backward Kalman 

Filtering (BKF) through minimizing the smoother error covariance. The traditional TFS 

was not applicable for some INS-based multi-sensor systems because of the high 
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nonlinear characteristics in the INS navigation equations. Thus, the revised TFS 

algorithm will be derived in details. The performance of Kalman filtering as well as the 

optimal smoothing methodologies is evaluated in three application conditions: land-

vehicle navigation, pipeline surveying, and horizontal/vertical indoor building navigation, 

surveying and mapping. The integration strategies of INS and the aiding techniques 

mentioned earlier are proved to be applicable and effective. The results of all investigated 

applications show that the TFS substantially improve the position estimation accuracy 

over the corresponding filtered solution. In addition, the estimation efficiency of the TFS 

is comparable to the commonly used RTSS. 
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Chapter One: INTRODUCTION 

 

1.1 Background 

 

Inertial Navigation Systems (INSs) were widely applied as either the dominant or the 

associated equipments for navigations of long-range travelling vehicles, such as 

submarines, aerotransports, or commercial airliners. Since late 1970s, optical gyroscope-

based INS was employed as the well-functioned complement in the integrated radio 

navigation systems in aviation applications (King, 1998). With the tremendous 

development of the Global Positioning Systems (GPS) and Micro-Electro-Mechanical 

Systems (MEMS) inertial sensors, tactical-grade and low-cost Inertial Measurement 

Units (IMUs) have gained great interests in both civilian and commercial fields in the last 

decade. It has been proved through research and implementation that the INS/GPS 

integration is the ideal technique for vehicular navigation. In the mean time, promising 

potentials using INS exist in civilian and commercial applications for unmanned vehicles, 

personal navigation, horizontal drilling, etc. (Kim and Sukkarieh, 2002; Syed, 2009; 

Noureldin, 2002; ElGizawy, 2009). 

 

The Dead-Reckoning (DR) nature of the stand-alone INS results in the error 

accumulation of navigation parameters. Moreover, low-cost INS confronts the problem of 

large and unpredictable sensor errors and noises (Niu and El-Sheimy, 2005). Therefore, 

aiding navigation information becomes essential to overcome these inadequacies. GPS, a 

Radio-Frequency (RF) signal-based system, is capable of providing absolute positioning 
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solutions with long-term accuracy under all weather conditions (Kaplan and Hegarty, 

2006). However, this performance is usually interrupted by frequent signal outages, 

multipath, and poor satellite visibility in urban, dense foliage or canyon areas. The 

integration of INS and GPS takes advantage of the complementary attributes of both 

systems and outperforms either single system operated alone (Yang, 2008). Different 

integration strategies, i.e. loose-coupled, tightly-coupled, and deeply-coupled INS/GPS 

integrations, have been researched and developed since the last decade (Petovello, 2003). 

 

Due to the dependency on Line-Of-Sight (LOS) measurements, the high-accuracy, 

continuous GPS positioning updates are not available in the isolated or signal-degraded 

environments such as tunnels, mines or indoor areas. Under these conditions, the 

information from alternate navigation-related techniques needs to be integrated with the 

stand-alone INS to limit the navigation error growth. Among them, the aiding 

performance of odometers, magnetometers, and non-holonomic constraints are most 

commonly used during GPS signal outages in land-vehicle navigation (Shin, 2001; Shin, 

2005). Zero-Velocity Update (ZUPT) is another efficient method to improve the 

navigation accuracy by limiting the growing velocity errors with appropriately chosen 

time durations and intervals (El-Sheimy, 2007). Further, Coordinate Update (CUPT), 

occasionally available at certain predetermined surveying stations (i.e. control points), is 

capable of helping to improve the navigation performance and achieve high accuracy 

positioning measurements. The integration strategies with INS and the aiding techniques 

have been demonstrated to be feasible for pipeline surveys, pedestrian navigation, and 
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vertical mine shaft surveys (Shin and El-Sheimy, 2005; Syed, 2009; Skaloud and 

Schwarz, 2000). 

 

Kalman Filter (KF) is recognized as the classic real-time estimation method to integrate 

multi-sensor information from INS and aiding sources. In the KF context of integration 

systems, INS provides the predictions as well as the system knowledge, while the aiding 

sensors provide the measurement updates. Extended Kalman Filter (EKF) is utilized to 

resolve the nonlinearity problem in the INS navigation equations; it simply applies the 

Taylor series expansion on the nonlinear system along with observation equations, and 

takes terms to the first order, where the Probability Density Function (PDF) is 

approximated by a Gaussian distribution (Gordon et al, 1993). KF is a recursive 

algorithm that implements a series of prediction and measurement update steps to obtain 

the optimal estimates based on minimum variance criterion (Gelb, 1974). It will only 

work in prediction mode during measurement gaps where the navigation solution 

accuracy degrades rapidly with time. As a result, this performance cannot meet the 

accuracy requirements of several navigation and surveying applications. Hence, post-

processing methods such as backward smoothing can be employed in this case to yield 

better navigation solutions. 

 

Optimal smoothing is a post-mission estimator that provides the optimal estimates by 

utilizing all available past, current and future measurements (Gelb, 1974). The fixed-

interval smoother has been used in most navigation applications compared to other types 

such as fixed-point and fixed-lag smoothing algorithms (Nassar et. al, 2005). In addition, 
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fixed-interval smoothing has been used in most surveying applications, because 

surveying is typically amenable to post-processing where best position information is 

pursued for all measured points (Shin and El-Sheimy, 2002). The Rauch-Tung-Striebel 

Smoother (RTSS) (Rauch et al., 1965) has been widely applied in navigations due to its 

robustness and effectiveness. The RTSS does not require the process of the full-scale 

Backward Kalman Filter (BKF). By utilizing all the information stored in the Forward 

Kalman Filter (FKF), the RTSS recursively updates the smoothed estimate and its 

covariance in a backward sweep. 

 

Fraser and Potter (1969) proposed that the fixed-interval smoother can be accomplished 

by a combination of two Kalman filters manipulated forward and backward, i.e. FKF and 

BKF, using a series of convenient discrete-time equations. It has been demonstrated that 

the aforementioned Two Filter Smoother (TFS) and the RTS smoother are 

mathematically equivalent in linear cases (Crassidis and Junkins, 2004). However, the 

traditional TFS was originally designed for linear systems. Therefore, it was not 

applicable for INS-based multi-sensor systems because of the high nonlinear 

characteristics in the INS navigation equations. The further attempt of applying the 

common EKF both forward and backward failed to accurately estimate the smoothing 

INS error states. This problem was resolved by a revised smoothing algorithm that was 

proposed specifically for pipeline surveys using inertial measurements units (Yu et al., 

2005). The main idea in such modification was that the BKF nominal trajectory is 

assumed to track both the FKF prediction and update results rather than the predictions 

only (Liu et al., 2009). In this thesis, a special attention will be devoted to discussing and 
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analyzing the TFS for all mentioned INS-based applications since very little research has 

been published before in this area. 

 

1.2 Objectives 

 

The overall objective of this thesis is to evaluate the performance of Kalman filtering as 

well as the optimal smoothing methodologies in different applications and conditions 

using INS-based integrated systems. Land-vehicle navigation will firstly be investigated 

to verify the feasibility of different smoothers where GPS updates are sufficiently and 

continuously provided except for periods of GPS signal outages. Further, the forward 

filter and the backward smoothing algorithms will be implemented and investigated in the 

non-GPS navigation applications, including the pipeline surveys and horizontal/vertical 

building surveys. CUPTs at Above Ground Markers (AGM) and odometer-based 

velocities will provide auxiliary navigation information in pipeline surveying systems. 

On the other hand, frequent ZUPTs and CUPTs at predetermined control points will be 

used as the aiding sources for horizontal/vertical building surveying application. 

 

The above objective is accomplished through performing the following research tasks: 

 

1. To employ and implement KFs for INS/GPS, INS/CUPT/ODOM, and 

INS/CUPT/ZUPT integration schemes. 

2. To employ, develop and implement backward smoothing algorithms (TFS and 

RTSS) for INS/GPS, INS/CUPT/ODOM, and INS/CUPT/ZUPT integrations. 
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3. To demonstrate the estimation accuracy enhancement of both smoothers by 

analyzing and discussing the corresponding navigation results in different INS-

based applications. 

 

1.3 Thesis Outline 

 

Chapter 2 presents the fundamentals of INS and the aiding techniques. The background 

of different reference frames and attitude parameterization will be introduced. Using the 

derived continuous-time INS navigation equations, INS mechanization formulas will be 

derived and discussed in discrete-time form. A 21-state INS error model and the 

corresponding measurement models of different aiding sources will be derived for the 

KF. Inertial sensor calibration and INS initial alignment will be reviewed and discussed. 

 

Chapter 3 discusses the optimal estimation techniques for INS-based integrated systems. 

An overview of KF and EKF will be introduced as well as the FKF and BKF 

mathematical concepts. The two different fixed-interval smoothing algorithms, i.e. the 

TFS and RTSS, will be discussed and compared. A special emphasis will be directed 

towards presenting the details of the modification requirements of the developed TFS to 

overcome the nonlinearity problems. In this case, the rigorous mathematical derivations 

are given. In addition, the considerations related to smoothers will be investigated. 

 

Chapter 4 evaluates the performance of Kalman Filter and smoothers for land-vehicle 

navigation using integrated INS/GPS systems. Two land-vehicle field tests are utilized. 
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The first dataset incorporates a tactical-grade IMU (Litton LN200) while the second one 

utilizes a custom-built MEMS IMU developed by the MMSS Research Group at UofC. 

The achieved results for both tests will be analyzed and discussed. 

 

Chapter 5 evaluates the performance of the different developed estimation techniques for 

pipeline surveys using integrated INS/ODOM/CUPT systems including the KF, RTSS, 

and TFS algorithms. A 21-hour long pipeline surveying dataset using tactical-grade IMU 

(Litton LN200) will be used to demonstrate the positioning navigation accuracy 

improvement of the designed smoothing methodologies. 

 

Chapter 6 investigates the feasibility and the performance of the integrated 

INS/CUPT/ZUPT systems for the horizontal/vertical building surveying application. The 

corresponding KF, RTSS, and TFS modules will be designed and implemented 

respectively. Two building surveying tests using the LN200 IMU are conducted to 

evaluate and compare the horizontal/vertical surveying performance of filters and 

smoothers. The first one is a horizontal surveying test along a fixed route inside and 

outside a campus building with predetermined CUPT points. The second test is a vertical 

test performed in a 7-floor campus elevator aided with the relative height of each floor 

measured by trigonometric levelling techniques (i.e. a total station). 

 

Chapter 7 presents the summary and main conclusions of the thesis and discusses the 

recommendations for potential future work. 
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Chapter Two: INERTIAL NAVIGATION SYSTEMS AND AIDING 

TECHNIQUES 

 

2.1 Overview of Aided Inertial Navigation Systems 

 

The publication of Schuler Pendulum principle issued the theory reference for inertial 

navigation which was firstly applied by Germany in 1942 (King, 1998). The upcoming 

Gimbaled Inertial Navigation Systems (GINSs) that were successfully designed for 

aircrafts and submarines, however, relied on complex, sizable, expensive but precise 

gimbaled platforms and gyroscopes (Stevenson et al., 1970). The invention of light-

weight digital computers permitted to remove the mechanical parts and triggered the 

appearance of Strapdown INSs (SINSs) (Savage, 2004). With the development of 

miniaturized optical and MEMS gyroscopes, SINS gained many advantages including 

smaller volume, less power requirement, lower cost and faster respond. After the Global 

Positioning System (GPS) Selective Availability (SA) error removal and the Galileo plan 

agreement (Kaplan and Hegarty, 2006), low-cost INS/GPS integration was widely 

researched and applied in civilian navigation fields during the last decade. 

 

INS is built with inertial sensors: accelerometers sensing linear accelerations and 

gyroscopes (gyros) sensing angular rotation rates. Orthogonally mounted inertial sensor 

triads on a rigid body compose the Inertial Measurement Unit (IMU), the key component 

of a SINS. IMU computes navigation solutions by processing the inertial sensor 

measurements through the mechanization equations with respect to the predefined 
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reference frame. With the IMU rigidly tied on the host, SINS is considered to be a self-

contained Dead-Reckoning (DR) system as it is capable of providing the complete 3-D 

navigation parameters, namely positions, velocities and attitudes, without any external 

signal receiving or transmission (Jekeli, 2001). 

 

Generally speaking, the IMU performance is dominated by the gyroscope accuracy 

(Abdel-Hamid, 2005). According to the sensor characteristics including biases and scale 

factors, gyroscopes are usually classified into several categories: strategic-grade, 

navigation-grade, tactical-grade and customer-grade gyroscopes (El-Sheimy, 2007). 

Another classification is based on the manufacture principles: mechanical gyros, 

suspended gyros, Ring Laser Gyros (RLG), Fiber Optical Gyros (FOG) and MEMS 

gyros. Considering the requirement of low-cost and miniaturization, SINS is based on the 

tactical-grade and customer-grade gyroscopes (Titterton and Weston, 2004). An 

investigation of gyroscope technology with respect to the sensor bias and scale factor is 

roughly described in Figure 2.1. 

Strategic-grade

Navigation-grade

Tactical-gradeStrategic-grade

Navigation-grade

Tactical-grade

 

Figure 2.1 Investigation of Gyroscope Technology (After El-Sheimy, 2007) 
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Compared to the development of gyros, accelerometers are much more successfully 

designed and produced to achieve the miniaturization and inexpensiveness 

simultaneously. Performance of accelerometer technology is described with respect to the 

sensor bias and scale factor, as shown in Figure 2.2. 

Strategic-grade

Navigation-grade

Tactical-grade

Strategic-grade

Navigation-grade

Tactical-grade

 

Figure 2.2 Investigation of Accelerometer Technology (After El-Sheimy, 2007) 

Compared to the higher-grade systems, low-cost INS confronts the problems of large and 

unpredictable sensor errors and noises. This inadequacy leads to the fast navigation error 

accumulation over short time intervals (Nassar, 2003). The inertial sensor calibration 

techniques are essential to model the determinant errors and uncertainties. Another 

practical way to improve the accuracy is aiding the INS with other complementary 

sensors or navigation-related information (Shin, 2005). The augmentation navigation 

means in this thesis comprise: GPS, odometers, non-holonomic constraints, Zero 

Velocity Updates (ZUPTs), and Coordinate Updates (CUPTs). 
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2.2 Overview of Reference Frames and Attitude Parameterization 

 

SINS algorithms require frequent transformations between different reference frames, in 

which the sensor measurements and navigation states are defined. On the other hand, 

background information about attitude representations and their conversions is an 

foundation for the reference frame transformations. The details related to the reference 

frames and attitude parameterization will be discussed in this section. 

 

2.2.1 Reference Frame 

 

Frequently used reference frames in SINS are listed as follows: 

 

Inertial Frame (i-frame) 

An inertial frame is idealized as a right-handed orthogonal, non-rotating and non-

accelerating frame with respect to fixed stars. An operational i-frame is realized by 

defining its origin at the Earth center, its z-axis parallel to the Earth instantaneous spin 

axis, and its x-axis pointing towards the vernal equinox (Petovello, 2003). 

 

Earth-Centered Earth-Fixed Frame (ECEF or e-frame) 

ECEF is defined as a right-handed orthogonal frame which has its origin at the Earth 

center, its z-axis parallel to the Earth mean spin axis, and its x-axis pointing towards the 

mean meridian of Greenwich. 
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Navigation Frame (n-frame) 

The navigation frame is a local geodetic frame. In this thesis, it is defined as the north-

east-down (NED) right-handed frame. 

 

Body Frame (b-frame) and Host Frame (h-frame) 

The body frame is the same as the IMU orthogonal body axis in which the accelerations 

and angular rotation rates by inertial sensors are resolved (Scherzinger, 1996). The host 

frame is defined as the forward-right-down axis set aligned with the roll, pitch and 

heading axes of the host. In SINS, the b-frame and h-frame are assumed to be overlapped 

for convenience. 

 

Computer Frame (c-frame) and Platform Frame (p-frame) 

The computer frame is the assumed navigation frame by the SINS computer. The 

platform frame is the assumed inertial stabilized platform axis set in which the 

measurements from the hypothesized inertial sensors are resolved (Scherzinger, 1996). P-

frame is actually the b-frame counterpart in Gimbaled INSs. 

 

2.2.2 Attitude Representations 

 

Frequently used attitude representation methods in SINS are listed as follows: 

 

Angular Rotation Vector and Angular Velocity 
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The transformation of a frame from its initial orientation to its final destination, or the 

transformation between two different frames is preferred to be represented with a single 

rotation operation around its direction axis. Angular rotation vector describes the 

magnitude and the direction of this rotation in a 13×  vector [ ]T

zyx
µµµµ = . 

 

Angular velocity describes the rotation speed and the instantaneous axis direction about 

which the rotation occurs. It is usually represented by a vector of three components as, 
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where the superscript γ  denotes the coordinate frame in which the angular velocity 

components are projected (it is normally set as the frame β ); the subscript αβ  denotes 

that the coordinate frame β  rotates with respect to frame α . 

 

An alternative expression of angular velocity is the skew-symmetric matrix form as (El-

Sheimy, 2007), 
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The relationship between angular rotation vector and angular velocity is described as 

(Bortz, 1971), 
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Euler Angles and Directional Cosine Matrix (DCM) 

An Euler angle is the rotation angle about one coordinate frame axis. The relative 

orientation between two frames can be decomposed as a sequence of three rotations 

expressed by Euler angles. Mathematically, it can be explained as a product of three 

elementary rotation matrix obtained by Euler angles (Savage, 2004). This product is 

defined as Directional Cosine Matrix (DCM) as one of the main methods for attitude 

parameterization. 

 

The Euler angle elementary matrix and the corresponding DCM are formulated as, 
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where, 

θ  denotes the Euler angle; 

β

αC  denotes the DCM from α  frame to β  frame; 

R  denotes an elementary rotation matrix, and its subscript denotes the instantaneous axis 

about which the Euler angle is rotated. 
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Attitude Quaternion 

Quaternion implementation is preferred in updating the attitude in INS as the linearity of 

quaternion differential equations, the lack of trigonometric functions, and the small 

number of parameters allow efficient algorithm (Farrell and Barth, 1998). Similar to the 

angular rotation vector, quaternion defines the frame transformation using a single 

rotation about its direction axis. It is represented in a 14 ×  parameter vector by the 

rotation vector as (Savage, 2004), 
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where, 

α

β
q  denotes the quaternion, which signifies the rotation from α  frame to β  frame; 

µ  denotes the Euclidean norm of the rotation vector, which is the rotation magnitude 

as, 

222
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The product of quaternion vectors represents a series of continuous rotations as, 
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where, 

•  denotes the quaternion product; ×  denotes the vector cross product; 

V  denotes the vector part of a quaternion, which is composed of first three components; 

s  denotes the scalar part of a quaternion, which is the last component. 

 

The conjugate quaternion is described as, 
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where 
1)( −α

β
q  denotes the conjugate quaternion of 

α

β
q . 

 

2.2.3 Reference Frame Transformations 

 

Frequently used reference frame transformations in SINS are discussed below. 

 

Transformations between i-frame, e-frame and n-frame 

The relationship between i-frame, e-frame and n-frame are depicted in Figure 2.3. The 

DCM from n-frame to e-frame is expressed in terms of the geodetic latitude ϕ  and 

longitude λ  as, 
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The corresponding quaternion is, 
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The angular velocities frequently used are listed as (Titterton and Weston, 2004; El-

Sheimy, 2007), 
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where, 

NE
vv ,  are the east and north velocities; 

MN ,  are the meridian and prime vertical radii of curvature; 

h  is the ellipsoidal height; 

)/(;cos/)/( hMvhNv
NE

+=+= ϕϕλ &&  (2.14) 
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Figure 2.3 i-frame, e-frame and n-frame (After Shin, 2005) 

Transformations between b-frame and n-frame 

The DCM from b-frame to n-frame is given as (Shin, 2001): 
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where Apr ,,  are the roll, pitch and heading angles, which are the three components of 

Euler angles. 

 

The conversion from DCM to the Euler angles is shown as (Farrell and Barth, 1998): 
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where 
ij

c  is the ),( ji  element in DCM 
n

b
C . 

 

The conversions between quaternion and DCM are shown as (Shin, 2001): 

















+−−+−

−+−−+

−−+−−

=
2

4

2

3

2

2

2

141324231

4132

2

4

2

3

2

2

2

14321

42314321

2

4

2

3

2

2

2

1

)(2)(2

)(2)(2

)(2)(2

qqqqqqqqqqqq

qqqqqqqqqqqq

qqqqqqqqqqqq

C n

b
 (2.17) 

and, 
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Transformations between n-frame, c-frame and p-frame 

The relationship between n-frame, c-frame and p-frame is illustrated in Figure 2.4, where 

the perturbation angle from n-frame to c-frame is defined as δθ , the perturbation angle 

from n-frame to p-frame is defined as φ , and the perturbation angle from c-frame to p-

frame is defined as ψ . Since all these misalignments are small angles, the following 

equations are yielded as (Scherzinger, 1996; Shin, 2005), 
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δθψφ +=  (2.21) 

where, 

δϕδλ,  denote the latitude and longitude errors; 

EN
vv δδ ,  denote the north and east velocity errors; 

)(×  denotes the skew symmetric matrix of a three element vector. 

 

Figure 2.4 n-frame, c-frame and p-frame (After Shin, 2005) 
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2.3 Inertial Navigation System (INS) Fundamentals 

 

2.3.1 INS Navigation Equations 

 

Without a detailed derivation, the INS navigation equations in the n-frame which define 

the dynamics model of the navigation states in continuous-time domain can be described 

as (Schwarz and Wei, 1999; Savage, 2004), 
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where, 

[ ]Tn
hr λϕ= is defined as the position vector, which is essentially the polar 

coordinate expression in e-frame; its Cartesian coordinate counterpart is 
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with e is the first eccentricity of reference ellipsoid; 

b

ib

b
f ω,  are the specific force and angular rate measurements from inertial sensors 

projected in b-frame, which are the time-varying parameters in navigation equations; 

n
g  denotes the gravity vector in n-frame; 
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2.3.2 Inertial Sensor Calibration and Measurement Error Compensation 

 

Generally, the raw outputs of inertial sensors are corrupted by biases, scale factors, non-

orthogonalities and noises, shown as in Eq. (2.25)-(2.26). 
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where, 

the superscripts zyx ,,  denote the sensor triad axes;  

the subscripts 0  denote the determinant sensor error; the subscripts k  denote the random 

sensor error at time epoch 
k

t ; 

the subscripts g  denote the gyroscope; the subscripts acc  denote the accelerometer; 

f
~

, f  denote the vectors of the raw accelerometer outputs and the true specific force; 

ω~ , ω  denote the vectors of the raw gyro outputs and the true angular rate; 

b  denotes the bias vector; w  denotes the random noise; 

L  denotes the linear sensor error matrix with scale factor SF  and non-orthogonality 

r as, 
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The process to calculate or estimate these determinant or random sensor error parameters, 

i.e. biases, scale factors, and non-orthogonalities, is known as sensor calibration. 

Determinant sensor errors are preferred to be calibrated beforehand in laboratory. Normal 

SINS laboratory calibration technologies are following the idea to compare the IMU 

outputs with the reference information including gravity and earth rotation rate (Niu et 

al., 2006). The random errors are always mathematically modeled as stochastic processes 

(Nassar, 2003). Allan Variance method is utilized as part of the lab work to determine the 

model types and estimate the model parameters for the random noise (Hou, 2004). 

Random sensor error parameters can be calibrated in field tests or be estimated on-line in 

the integrated navigation systems. The effect of random errors will be suppressed using 

optimal estimation methods with aiding sources, as discussed in the succeeding chapters. 

 

With calibrated parameters, sensor errors can be compensated from raw outputs as, 
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Instead of specific forces and angular rates, incremental velocities and angles are the 

outputs in most of the high-grade IMUs. Integration procedures to relate the two types of 

IMU outputs are introduced as follows (Savage, 2004), 
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 (2.31) 

where 

v∆∆ ,θ  denote the incremental angles and velocities; 

1−
−=∆

kk
ttt  is the time increment. 

 

2.3.3 INS Mechanization 

 

SINS mechanization is defined as the integration process to calculate the navigation 

states, i.e. positions, velocities and attitudes, with raw inertial sensor measurements. 

Therefore, the mechanization algorithm can be regarded as the discrete-time form of the 

INS navigation equations. Several approximation methods were applied to solve the 

quaternion differential equations in attitude integration. Further, a single-speed 

mechanization algorithm considering midway navigation states and applying quaternion 

algebras was developed by Savage (2004). Forward SINS mechanization is the 

integration process to determine the navigation states from the previous time epoch 
1−k

t  

to the current time epoch 
k

t using compensated IMU outputs. Its simplification by Shin 

(2005) will be summarized in this thesis. 
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Velocity Integration 

The discrete-time form of the second component in Eq. (2.22) can be written as, 
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where, 

the subscripts kkk ,2/1,1 −−  denote the previous, midway and current time epochs 

kkk
ttt ,,

2/11 −−
 respectively; 

the subscripts bk  denote the corresponding variable is projected to the b-frame at 
k

t ; 

n

ek
v∆  is the increment induced by gravity and Coriolis force; 

n

fk
v∆  is the increment induced by specific force; 

k
ς  is the n-frame rotation vector from )1,( −kn  to ),( kn ; 

the second and third terms at the right of Eq. (2.35) are the rotational and sculling motion. 

 

Positions at midway are required to be extrapolated from the previous time navigation 

states as, 
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where the midway latitude and longitude can be extracted from quaternion 
2/1

2/1

−

−

ek
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q . 

 

Velocity at midway are extrapolated as, 
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where 
n

k
v

1−
∆  is the second and third velocity increments at the right of Eq. (2.32) stored 

in the previous epoch. 

 

Position Integration 

The midway velocity can be updated by interpolation as, 
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The height can be updated by the midway downside velocity as, 

kDkkk
tvhh ∆−=

−− 2/11
 (2.45) 

 

The current time quaternion 
ek

nk
q  containing position information can be updated by the 

products of e-frame and n-frame rotations as, 
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t∆= ωξ  (2.50) 

where, 

k
ς  is recalculated with the renewed midway velocity using Eq. (2.34); 

k
ξ  denotes the e-frame rotation vector from )1,( −ke  to ),( ke ;; 

ek

ek

nk

nk
qq

1

1
,

−

−
 denote the quaternion vectors corresponding to the rotation vectors above. 
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Attitude Integration 

The midway positions can be renewed by interpolation as, 
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The quaternion 
n

b
q  containing attitude information can be updated by the products of n-

frame and e-frame rotations as: 
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where, 
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k
φ  is the b-frame rotation vector from )1,( −kb  to ),( kb ; 

the second term at the right of Eq. (2.58) denotes the second-order coning correction. 

 

2.3.4 INS Error Model 

 

SINS navigation equations are the non-linear models to describe the dynamics of the 

navigation states. The linearized equations can be derived by perturbation analysis 

(Britting, 1971), which are transferred as the models of the navigation error states, i.e. 

position errors, velocity errors, and attitude angle errors. For convenience, the ψ -angle 

error model, which indicates the perturbation is conducted with respect to the computer 

frame, will be utilized in this thesis. In addition, the random sensor error parameters 

including residual bias and scales factor are modeled as first-order Gauss-Markov 

processes, of which the model parameters could be determined by auto-correlation 

analysis or Allan Variance technique. Materials (Nassar, 2003; Shin, 2005; Weinred and 

Bar-Itzhack, 1978; Scherzinger, 1996) for detailed deductions of the above algorithm 

models are recommended to readers with interest. 

 

The continuous-time ψ  angle error model for navigation states and sensor error states 

are shown as: 
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where, 

the position error vector is 
T

DEN

c
rrrr ][ δδδδ = ; 

the superscript c  denotes the computer frame; 

the sensor measurement errors are written as, 

acc

b

accacc

b
wfSFbf ++=δ  (2.60) 

g

b

ibgg

b
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wSFb ++= ωδω  (2.61) 

the gravity perturbation is, 
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where the )(•diag  denote the diagonal matrix form of a vector. 

 

The stochastic models for the sensor random bias and scale factor are given as first order 

Gauss-Markov models (Godha, 2006): 
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 (2.66) 

where, 

the superscript i  denotes sensor triad axis of the IMU; 
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α  is the correlation time reciprocal; 

the spectral density of the driving noise η  is achieved using correlation time reciprocal 

and the process variance 
2σ  as, 

22ασ=q  (2.67) 

 

The combination of Eq. (2.59) and Eq. (2.63)-(2.66) yields the forward linear dynamics 

process model with both the navigation error parameters and the sensor error parameters 

defined as the system states. The discrete-time form of this process model can be given 

by (Grewal and Andrew, 2001; Brown and Hwang, 1997), 
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where, 

the 21 system state vector is, 
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SFSFbbvrx )()()()()()()( δδδδψδδδ =  (2.69) 

1−k
F  is the state transition matrix, obtained from the numerical approximation of the 

continuous-time dynamics matrix )(tF , which is composed of the following matrix, 
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diagF αααα  (2.72) 

the spectral density matrix for the driving noise w  in continuous-time domain is, 
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 (2.73) 

where, 

ARWVRW
qq ,  are the Velocity Random Walk (VRW) and Attitude Random Walk (ARW) 

variances; 

the spectral density for the Gauss-Markov models of the sensor error parameters in 

discrete-time domain is, 
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2.3.5  Initial Alignment 

 

INS initial alignment is defined as the process to determine the initial values of the 

navigation parameters. Dependable position and velocity information can be provided by 
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high-accuracy GPS solutions. Since the accuracy of the initial attitudes predominantly 

governs the navigation error accumulation, initial alignment is narrowly considered as the 

procedure to initialize the attitude information, contained in the DCM 
n

b
C  (Britting, 

1971). For IMUs whose gyro bias and noise levels are smaller than the values of the 

Earth rotation rate, such as navigation-grade or high-end tactical-grade IMUs, a coarse 

alignment followed by a fine alignment can be applied to estimate the initial attitude 

parameters. The coarse alignment is an analytic method providing the averaged solutions. 

It can be decomposed as the levelling step, determining the initial roll and pitch, and the 

gyrocompassing step, determining the heading angle (Titterton and Weston, 2004). With 

the established DCM from the b-frame to the n-frame, the fine alignment is an optimal 

estimation method by an INS-only KF using horizontal specific force and east-channel 

gyro error measurements. Both of the two alignment methods are processed in stationary 

mode and implemented on the basis of the reference information including gravity and 

Earth rotation rate (Farrell and Barth, 1998). 

 

For low-cost IMUs, the poor gyroscope characteristics result in the failing of initial 

heading alignment (Godha, 2006). On the other hand, stationary alignment cannot meet 

the real-time consideration in civilian and commercial applications, such as vehicle 

navigation (Shin, 2001). Aiding sources including magnetometers, GPS multi-antenna 

systems and/or GPS-derived velocity information are indispensable to the in-motion 

alignment techniques. Besides, kinematic alignment is researched from the system 

observability point of view in aircraft applications (Bar-Itzhack and Porat, 1980). 
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2.4 Measurement Models for Aiding Sources 

 

Since the EKF is commonly applied to resolve the non-linearity in system model, it is the 

measurement misclosure, or the difference between the INS mechanization outputs and 

the observations from aiding sources that is concerned in the INS-based integration 

systems, 

aidingINSk
zzz ~~~ −=δ  (2.75) 

where 
INS

z~  is the INS mechanization solution;
aiding

z~  is the aiding sensor observation. 

 

2.4.1 Global Positioning System (GPS) 

 

The GPS is a Global Navigation Satellite System (GNSS) developed by the United States 

Department of Defence (DOD), which provides absolute positioning information and 

long-term accuracy under all weather conditions (Kaplan and Hegarty, 2006). Due to its 

dependency on radio signal transmission and line-of-sight (LOS) measurements, GPS 

suffers from various error sources and poor satellites geometry. To eliminate or mitigate 

the common errors between receivers, epochs, satellites or stations, the Differential GPS 

(DGPS) technique is implemented to improve the positioning accuracy to centimeter 

level. Several strategies were performed to integrate the GPS and INS data to overcome 

their individual disadvantages and reach superior performance. In this thesis, loosely-

coupled integration is introduced which utilizes position or position/velocity 

measurements from GPS-only filter to aid INS solutions. 
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The measurement model using GPS position solutions considering the lever arm effect 

can be written as (Shin, 2005): 

kk
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vlCrz +×+= ψδδ )(  (2.76) 

where, 

b

GPS
l  denotes the lever-arm effect between the GPS antenna and IMU mass center 

projected in the b-frame; 

k
v  is the GPS position measurement noise, with the spectral density matrix obtained 

from statistic and/or kinematic GPS data processing as, 
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the measurement vector is, 
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where 
n

GPSk

n

INSk
rr ~,~  denote the position vectors achieved by INS and GPS. 

 

The measurement model using GPS velocity solutions considering the lever arm effect 

can be written as, 
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where, 

k
v  is the GPS velocity measurement noise, with the spectral density matrix obtained 

from statistic and/or kinematic GPS data processing as, 

]);([ 222

DEN vvvk
diagR σσσ=  (2.81) 

the measurement vector is, 

;~~)(
~~

)~(~~ n

GPSk

b

ib

b

GPS

n

b

b

GPS

n

b

n

in

n

INSkk
vlClCvz −×−×−= ωωδ  (2.82) 

where subscripts 
n

GPSk

n

INSk
vv ~,~  denote the velocity vectors achieved by INS and GPS. 

 

2.4.2  Odometer and Non-Holonomic Constraints 

 

Odometers, or milometers, are applied in land-vehicle navigation and pipeline surveys to 

provide augmented host velocity observations. The measurement model using odometer 

velocity measurements considering the misalignment between h-frame and b-frame can 

be written as (Shin and El-Sheimy, 2005), 
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where, 

h

b
C  denotes the DCM from b-frame to h-frame; 

b

odometer
l  denotes the lever arm effect between the odometer and IMU mass center 

projected in b-frame; 

n

INS
v  is the velocity vector achieved by INS mechanization; 
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k
v  is the odometer measurement noise, with the spectral density matrix evaluated by the 

priori knowledge on sensor characteristics; 

the measurement vector is, 
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where, 

h

odometer
v  denotes the velocity vector observed by odometer projected to host-frame; 

x

odometer
v  denotes the odometer observation along the forward direction in h-frame. 

 

Non-holonomic constraints is defined as the fact that unless the vehicle jumps off the 

ground or slides on the ground, the velocity of the vehicle in the plane perpendicular to 

the forward direction is almost zero, as in Eq. (2.85) (Sukkarieh, 2000; Nassar et al., 

2006; Godha, 2006). This is illustrated as in Figure 2.5. 
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where the superscripts zy,  denote the transversal and down directions in h-frame. 

 

Simplified from Eq. (2.83), the measurement model using non-holonomic constraints can 

be written as, 
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where, 
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the subscript 3:3,3:2 denotes the last two rows’ elements of a 33×  matrix; 

k
v  is the assumed non-holonomic constraints noise; 

the measurement vector is, 
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where 
z
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y

INS
vv ,  are the velocities achieved by INS in east and down directions. 
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Figure 2.5 Non-holonomic Constraints 

2.4.3 Zero-Velocity Updates (ZUPTs) and Coordinate Updates (CUPTs) 

 

ZUPTs are applied at time intervals when the host vehicle is stopped occasionally or 

intentionally to restrict the position error accumulation rate and the roll, pitch errors (El-

Sheimy, 2007). The simplified ZUPT measurement model can be built as, 

k

c

kk
vvz += δδ  (2.88) 

where, 
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k
v  is the assumed ZUPT noise; 

the measurement vector is, 

n

INSk
vz ~~ =δ  (2.89) 

 

CUPTs are applied when the host vehicle reaches the control stations where the local 

geodetic coordinates are obtained in advance using high accuracy surveying tools, e.g. 

DGPS (El-Sheimy, 2007). The simplified CUPT measurement model can be built as, 

k

c

kk
vrz += δδ  (2.90) 

where, 

k
v  is the assumed CUPT noise; 

the measurement vector is, 

)~~(~ n

CUPTi

n

INSii
rrDz −=δ  (2.91) 

where 
n

CUPTi

n

INSi
rr ~,~  denote the position vectors achieved by INS and CUPT at the 

thi − station. 
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Chapter Three: OPTIMAL ESTIMATION TECHNIQUES IN NAVIGATION 

 

3.1 Overview of Filtering and Smoothing 

 

Estimation is a data processing technique that applies the predefined statistical criterion 

to extract the desired information from the available resources (Gelb, 1974). Generally 

speaking, the objective of optimal estimation in navigation systems is to obtain the “best” 

estimates of the system states, including navigation parameters, inertial sensor errors, and 

other related parameters in the augmentation sensors. The “best” in this case means the 

Minimum Mean-Square Error (MMSE), which is the commonly used mathematical 

criterion in statistical sense (Brown and Hwang, 1997). To achieve the best performance, 

the navigation estimator utilizes all the available information: the sensor measurement 

data, the knowledge of system dynamics and measurement mechanizations, the noise 

statistics, and the initial conditions (Gao, 2007). 

 

Based on the desired estimation time (t) and the availability of measurements, estimation 

problems could be divided into three categories (El-Sheimy, 2007):  

Prediction, when (t) occurs after the last available measurement point; 

Filtering, when (t) coincides with the last available measurement point; 

Smoothing, when (t) falls within the span of available measurement data. 

The three types of estimation problems are depicted in Figure 3.1. 
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Figure 3.1 Prediction, Filtering and Smoothing 

Literally understanding, the function of a filter is to separate the desired signal from the 

raw data with random noise and deterministic interference. This usually refers to passing 

signals in a specified frequency range and rejecting those outside that range in the 

applications of communications, controls, and electrics. This concept had not been 

challenged until Wiener proposed several meaningful assumptions: suppose the desired 

signal is not a deterministic process but a stochastic process similar to the characteristic 

of noise; suppose both the signal and noise share a significant overlap in frequency 

domain (Brown and Hwang, 1997). The Wiener Filter (Wiener, 1949) was published and 

researched afterwards to solve these problems by applying the MMSE criterion with the 

known spectral properties of the original signal and noise. However, it was limited to 

statistically stationary processes and provided estimation only in steady-state regime 

(Gelb, 1974); on the other hand, the filter must be physically realizable. The limitations 

of Wiener Filter restricted its propagation in engineering fields regardless of its success in 

image processing (Acharya and Ray, 2005). 
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In 1960, R.E.Kalman offered an alternative explanation of Wiener Filter with state-space 

and time domain formulations. Beginning with the trajectory estimation problem 

introduced by Schmidt (Grewal and Andrew, 2001), Kalman Filter (KF) was 

unexpectedly applied in a wide variety of researching and industrial areas. KF is 

recognized as the classical estimation tool in the applications of control, navigation, and 

multi-sensor fusion. Further, it is credited as one of the most suitable estimators to be 

implemented by modern digital techniques. 

 

Although the research of smoothing actually predated the KF, it was the KF that made 

smoothing algorithms applicable in navigation field. Smoothing problems were classified 

into three categories by Meditch (1969): fixed-point, fixed-interval, and fixed-lag 

smoothers. As depicted in Figure 3.2, suppose Ttt ,0  are the initial and final points in a 

time interval; t  is the desired estimate time; ∆ is the length of a sliding time window. In 

fix-point smoothing, the optimal estimate 
t

x̂  is obtained by using all the future 

measurements after the fixed estimation time t  as Tt  increases; in fix-interval smoothing, 

t
x̂  is obtained by using all the past, current and future measurements in the fixed time 

interval ],[ 0 Ttt  as t  varies between 0t  and Tt ; in fix-lag smoothing, 
t

x̂  is obtained by all 

the future measurements in the fixed time window ∆  as Tt  increases ( t equals to ∆−Tt ). 

While fixed-point and fixed-lag smoothing could be regarded as near real time estimation 

methods, fixed-interval smoothing can only be implemented in post missions. Fixed-

interval smoothing has been used in most surveying applications, because surveying is 
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typically amenable to post-processing where best position information is pursued for all 

measured points (Shin and El-Sheimy, 2002). The details about fixed-point and fixed-lag 

smoothing are introduced in Nassar (2003), Gelb (1974), and Crassidis and Junkins 

(2004). Due to the nature of the analyzed INS-based applications in this thesis, only 

fixed-interval smoothing algorithms will be discussed in details. 
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Figure 3.2 Fixed-point, Fixed-lag and Fixed-interval Smoothing 

3.2 Kalman Filter (KF) 

KFs are based on the linear dynamics systems in time domain. A typical state-space 

representation of the linear system requires building the system dynamics model, and the 
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observation relationship between the measurement quantities and the system states. This 

requirement can be described as the continuous-time system equation and the discrete-

time measurement equation, as shown in Eq. (3.1) and (3.2) respectively. 

)()()()()( twtGtxtFtx +=&  (3.1) 

kkkk
vxHz +=  (3.2) 

where, 

t  indicates the continuous time; the subscript k  represents the discrete time epoch 
k

t ; 

x  is the system state vector; z  is the measurement vector; 

w  is the system noise vector, assumed to be a Gaussian white noise with the covariance 

matrix, )()(])()([ τδτ −= ttQwtwE
T

, where the operator )(⋅δ  denotes the Dirac 

delta function and Q  is called the spectral density matrix (Gelb, 1974); 

v  is the measurement white noise vector; 

F  is the system dynamics matrix; G  is the system noise shaping matrix; 

H  is the observation design matrix. 

 

Eq. (3.1) is preferred to be transformed to a discrete-time form for digital 

implementation: 

111, −−−
+Φ=

kkkkk
wxx  (3.3) 

where, 
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τττ
τ

dwGw
k

k kk
)()(

1 ,1 ∫ −−
Φ=  is the driven response at 

k
t  due to the presence of the 

input white noise during the time interval ),(
1 kk

tt
−

(Brown and Hwang, 1997); 

1, −
Φ

kk
 is the system transition matrix from epoch 

1−k
t  to 

k
t ; 

the subscript 1−k  represents the time epoch 
1−k

t . 

 

For most system models in reality, the dynamics matrix )(tF  is considered to be time 

invariant during the small time interval 
1−

−=∆
kk

ttt . Thus, the transition matrix can be 

obtained from the dynamics matrix by simple numerical approximation as (Gao, 2007), 

tFIeFsI
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Because a white sequence is a sequence of zero-mean random variable that is 

uncorrelated timewise, the covariance matrix associated with 
k

w  and 
k

v  is given by 

(Brown and Hwang, 1997), 
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where the process noise matrix is derived as, 
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The determination of the initial state estimate 
0

x̂  and its covariance [ ]T
xxEP

000
ˆˆ= is the 

first step of the KF. With a priori information of both the noise characteristics and the 

initial conditions, the KF algorithm can be implemented recursively using a series of 

prediction and measurement update steps (Gelb, 1974). 

 

The KF prediction stage is built on the system model as, 

+

−−

− Φ=
11,

ˆˆ
kkkk

xx  (3.9) 

11,1, −−

+

−

− +ΦΦ=
kkkkkkk

QPP  (3.10) 

where, 

−
x̂ denotes the prediction state estimate; 

+
x̂ denotes the update state estimate; 

−
P denotes the prediction covariance matrix; 

+
P denotes the update covariance matrix. 

 

In the measurement update stage, the optimal state estimate and its covariance are 

updated with the predictions and the observations. This group of equations is listed as 

follows, 

1
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kkk

T

kkk
RHPHHPK  (3.11) 
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xHzv ˆ  (3.12) 

kkkk
vKxx += −+ ˆˆ  (3.13) 

−+ −=
kkkk

PHKIP )(  (3.14) 

where, 

k
v  is the innovation sequence, which denotes the difference between the observation and 

the prediction. 

k
K  is the KF gain, or the weighting matrix, which decides how much of  the new 

information contained in the innovations should be accepted by the system (Petovello, 

2003). The derivation of the gain matrix is based on the minimum variance criterion. 

 

The KF algorithm is summarized in Figure 3.3. 
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Figure 3.3 Kalman Filter 
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3.2.1 Extended Kalman Filter (EKF) 

 

The aforementioned mathematical models are assumed to be linear. Unfortunately, they 

are non-linear in most of the navigation applications. The typical discrete-time non-linear 

system model and measurement model are illustrated in the following equations (Grewal 

and Andrew, 2001), 

11
)1,(

−−
+−=

kkk
wkxfx  (3.15) 

kkk
vkxhz += ),(  (3.16) 

where )(),( ⋅⋅ hf  are the non-linear functions describing the system dynamics behavior 

and the measurement mechanization respectively. 

 

The principle method to deal with the non-linear estimation problems is to linearize the 

models about a predetermined or instantaneous nominal trajectory. This nominal 

trajectory is defined as the trace of a time-varying parameter vector, which is typically 

the sequence of the system state vectors with the expected or estimated values (Grewal 

and Andrew, 2001). By using Taylor series expansion, the linearization process of the 

non-linear system model is listed as, 

)1,(
1

−=
−

kxfx
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k
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k
 (3.17) 

k

NOM

kk
xxx δ+=  (3.18) 
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or, 
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where, 

NOM
x  denotes the nominal trajectory; 

xδ  is the system state perturbation from the nominal trajectory, which is also called 

“error state”; 

)),(( ttxf  is the continuous non-linear function; 

1−k
F  is the linearized system dynamics matrix, corresponding to the system transition 

matrix 
1, −

Φ
kk

 in the linear case. 

 

Similarly, the linearization of the measurement model is written as, 
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or, 
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where, 

zδ  is the measurement perturbation from the nominal trajectory, which is also called 

“measurement closure” between actual and predicted measurements; 

k
H  is the linearized observation design matrix. 

 

The combination of Eq. (3.20) and (3.22) reconstructs the linear system model and 

measurement model. As a result, the implementation of KF on this group of models 

achieves the optimal estimates of the error states. Lastly, the original system state is 

obtained by Eq. (3.18), which is called state “reset”. If this reset stage is executed in 

closed loop after each KF measurement update step, or in other words, if the feedback on 

the nominal trajectory exists, the nominal trajectory trusts the estimation results and 

varies according to them. Afterwards, this error state will be set as “zero” to indicate the 

nominal value is the same as the estimation. This approach is named as Extended Kalman 

Filter (EKF). On the other hand, if the reset stage is executed in open loop, or in other 

words, if only the feedforward on the KF estimates exists, the nominal trajectory is 

determined beforehand and ignores the filter estimates. In this case, it is called Linearized 

Kalman Filter (LKF) (Nassar, et al., 2005; Shin, 2005). A description of the relationship 

between the filtering results and the nominal trajectory for LKF and EKF are shown in 

Figure 3.4 and Figure 3.5 respectively. It tells us that while the LKF nominal trajectory is 
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independent of the filtering estimation results, the EKF nominal trajectory follows them 

if the feedback rate is the same as the measurement update rate. 
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Figure 3.4. Relationship between Filtering Results and LKF Nominal Trajectory 

N0 K
(-)

K
(+)

K+1
(-)

K+1
(+)

Nominal 

Trajectory

True 
Trajectory

Estimation 
Trajectory

- Prediction

+ Update

Error State
Estimation

K-1
(-)

K-1
(+)

K K+1K-1

- + - + - +

N0 K
(-)

K
(+)

K+1
(-)

K+1
(+)

Nominal 

Trajectory

True 
Trajectory

Estimation 
Trajectory

- Prediction

+ Update

Error State
Estimation

K-1
(-)

K-1
(+)

K K+1K-1

- + - + - +

 

Figure 3.5 Relationship between Filtering Results and EKF Nominal Trajectory 
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3.2.2 EKF for Aided Inertial Navigation Systems 

 

In aided INS, the INS error model is derived to represent the dynamics of navigation 

error states by applying the perturbation analysis. The reference values used in the 

perturbations are essentially the values of the nominal trajectory, about which the original 

INS mechanization equations are linearized. Moreover, while the determinant parts of the 

sensor parameters are calibrated in advance, the random sensor errors are modeled by 

linear stochastic processes. Eq. (3.23)-(3.25) describe the definitions of the system state 

x , the nominal state 
NOM

x , and the corresponding error state xδ  as follows: 
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where 
00 , SFb  denote the determinant bias and scale factors; the representations of 

other denotations refers to Section 2.3.4. 

 

The relationship between the states above is given by: 

xxx
NOM δ−=  (3.26) 

where the attitude parameter correction is specifically processed by the quaternion 

production rule as in Shin (2005): 
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where ψφδθ ,,  are the rotation vectors referred to Section 2.2. 

 

Referring to Section 3.2.1, the corresponding 
k

zδ  in Eq. (3.22) denotes the measurement 

difference between INS solutions and GPS observations at time epoch 
k

t  as, 

GPS

k

INS

kk
zzz ~~~ −=δ  (3.31) 

The corresponding system transition matrix and observation design matrix 
kk

HF ,
1−

 in 

Eq. (3.20) and (3.22) are derived from the non-linear INS mechanization and 

measurement relationship hf
INS

,  as, 
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where the details of 
1−k

F  refers to Eq. (2.68)-(2.74); 
k

H  refers to Section 2.4; 
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NOM

k
x

−ˆ  denotes the predicted value of the nominal trajectory at epoch 
k

t , which equals to 

one step INS mechanization solution from the updated nominal value 
NOM

k
x

+

−1
ˆ  as, 

)ˆ(ˆ
1

NOM

kINS

NOM

k
xfx

+

−

− =  (3.34) 

 

The group of KF prediction and update equations are recursively processed to achieve the 

optimal estimates of the error state as in Eq. (3.9)-(3.14). 

 

In EKF, the error state correction in Eq. (3.26)-(3.30) is applied not only on the system 

output as a feedforward loop, but also on the nominal trajectory as a feedback loop after a 

full KF step. In addition, the updated error state will be reset as “zero” to indicate the 

nominal value is the same as the updated estimation. In this case, the nominal trajectory 

trusts the filtering estimation results and varies accordingly. The error state feedforward 

and feedback loops are described respectively as, 
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where ≡  denotes the error state reset. 

 

Eq. (3.36) reformulats the succeeding KF loop as, 
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where Eq. (3.37) indicate that the nominal trajectory is determined by the Kalman Filter 

estimate. 

 

The algorithm structure of EKF for INS-based integration is illustrated in Figure 3.6. 
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Figure 3.6 EKF Structure for INS-based Integration (After Liu et. al., 2009) 

3.3 Fixed-Interval Smoothing 

 

As discussed in Section 3.1, the fundamental idea of the fixed-interval smoothing is to 

obtain the optimal estimate at the current time by utilizing all the available measurements 

within the fixed time interval (Gelb, 1974). This concept can be intuitively performed by 



56 

 

combining two Kalman filters, including one Forward Kalman Filter (FKF) and one 

Backward Kalman Filter (BKF). As depicted in Figure 3.7, while the FKF obtains its 

estimate with all the measurements up to the current time epoch 
k

t , the BKF optimally 

estimates the states by incorporating the measurements after 
k

t  within the assumed time 

interval. Further, since the BKF is implemented reversely with time, the BKF prediction 

results 
−

Bk
x̂  does not assimilate the measurement 

k
z , which has already been used by the 

FKF update 
+

Fk
x̂ . These two estimates are uncorrelated since no common data are used 

(Jansson, 1998). At the final step, both the solutions from the two filters will be combined 

in the following equations, of which the overall derivation refers to Gelb (1974), 

Crassidis and Junkins (2004). 

)ˆˆ(ˆ
11 −−−+−+ +=

BkBkFkFkSkSk
xPxPPx  (3.42) 

111

)( −−−−+ +=
BkFkSk

PPP  (3.43) 

where the subscript BkFkSk ,,  denote the smoothing, forward filtering, and backward 

filtering results at the time epoch 
k

t  respectively. 

 

Eq. (3.43) obviously indicates that the smoothing covariance is smaller than either filter 

covariance. As a result, it implies that the smoothed estimate, if not more accurate, could 

never be worse than the individual filter estimate (Brown and Hwang, 1997). 

Furthermore, since the smoothing algorithm depends on both of the two filters, accurate 

filtering is prerequisite to accurate smoothing (Gelb, 1974). 
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Figure 3.7 FKF, BKF and Smoothing 

Mayne (1966) and Fraser (1967) derived different formulations of smoothing solutions 

by using the Maximum Likelihood (ML) principle. A simplified derivation and 

interpretation was published by Fraser and Potter (1969) regarding the optimum smoother 

as the combination of two optimum linear filter estimates. The discrete-time formulations 

of the Two Filter Smoother (TFS) are summarized in details in Crassidis and Junkins 

(2004), and Maybeck (1994). 

 

On the other hand, earlier work yielded the fixed-interval smoother estimate as a 

correction to the KF estimate. Rauch-Tung-Striebel Smoother (Rauch et al., 1965) or 

RTSS derived by ML criterion has maintained its popularity since the initial paper 

(Crassidis and Junkins, 2004). To avoid the covariance matrix inversion required by 

RTSS, the smoothers by Bryson and Frazier (1962), Bierman (1973), expressed the 
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correction term with the adjoint or costate variable which included the measurements by 

introducing the variational calculus to the smoothing problem. However, the application 

of Bryson and Frazier smoother is limited due to its numerical instability for long 

duration estimation (Mayne, 1966). 

 

Most of the smoothers mentioned above were designed for linear dynamic systems. 

Therefore, they were not applicable for INS-based multi-sensor systems because of the 

high nonlinear characteristics of the INS navigation equations. The further attempt of 

applying the common EKF both forward and backward failed to accurately estimate the 

smoothing INS error states. This problem was resolved by a revised algorithm that was 

proposed specifically for pipeline surveys using IMUs (Yu et al., 2005). In this thesis, the 

schemes of two fixed-interval smoothers will be described in details for INS-based 

integration systems, i.e. TFS and RTSS. Further, the considerations related to optimal 

smoothing will be discussed. 

 

3.3.1 Two-Filter Smoother (TFS) 

 

As discussed above, TFS can be accomplished from a combination of two KFs 

manipulated forward and backward, i.e. FKF and BKF. The forward filter is the 

conventional EKF as in Section 3.2.2, which starts from a priori initial conditions 

determined by the INS initial alignment: 
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where the subscript 0  denotes the starting time epoch. 
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Figure 3.8 TFS Structure (INS/GPS) (After Liu et. al., 2009) 

A completely independent backward filter is a choice for TFS, in which the backward 

INS mechanization is programmed to provide the INS solutions for both the backward 

nominal trajectory and the backward measurement updates. However, this encounters 

difficulty to implement backward initialization, as the unpredictable ending conditions of 

the test time interval cannot assure the serious requirement of statistic backward INS 

initial alignment. Conversely, the implementation of BKF without a backward INS 

mechanization relies on the stored FKF results. More specifically, the nominal trajectory 

and the measurements of BKF copy their counterparts of FKF. The TFS algorithm 

structure is illustrated in Figure 3.8. The details about BKF and its combination with the 

FKF in the TFS algorithm are introduced in discrete-time form as follows: 

 

New Variable Definition and Initialization 
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In order to avoid the undesirable matrix inversions and to provide a valid boundary 

initialization, the following new variables in BKF are defined to replace the original error 

state and its covariance matrix (Crassidis and Junkins, 2004): 

1−=
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PM  (3.45) 
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 (3.46) 

where 
B

M  is the covariance matrix inversion. 

 

The smoothing is initialized using the FKF results at the final epoch 
N

t as, 
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which leads the BKF initialization derived by Eq. (3.42)-(3.43) as, 
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where Eq. (3.51) and (3.53) indicate that the BKF initial error state is finite but uncertain. 

This is necessary since the two estimates from FKF and BKF are required to be 

uncorrelated (Jansson, 1998). 

 

BKF Models 

The backward INS error model as required by the BKF, which represents the inverse 

dynamic process of the system error states from the current time epoch 
k

t  to the previous 

epoch 
1−k

t , is simply obtained by inversing the dynamics matrix from Eq. (3.20). The 

BKF system model as well as the measurement model can be written by, 
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where 
INS

k
z

1

~
−

 remain as the same INS solutions in FKF; the backward system dynamics 

matrix and observation design matrix are linearized about the FKF prediction results as, 
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The equations above suggest that the backward nominal trajectory is predetermined as the 

sequence of FKF predictions, i.e.: 
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BKF Prediction 

Referring to Maybeck (1994), the discrete-time form BKF prediction equations are 

derived with the new defined variables. From Eq. (3.54), since 
Bk

xδ̂  and 
k

w  are 

uncorrelated, the BKF prediction covariance is derived as, 
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where, 
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To apply the definition of the new variables, the Sherman-Morrison-Woodbury Matrix 

Inversion Lemma shown as follows is used (See proof in Goluband Van Loan, 1996; 

Crassidis and Junkins, 2004): 

Let, 

1][ −+= BCDAF  (3.62) 

where DCBA ,,,  are arbitrary nn ×  non-singular matrix. Then, 

111111 )( −−−−−− +−= DACBDABAAF  (3.63) 
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With IDQCIBPA
Bk

==== +
;;; , the prediction covariance inversion is yielded as: 
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where 
−

−1Bk
K  is the BKF prediction gain. 

 

Using these equations, the desired form for the predicted error state is derived as, 
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BKF Update 

The formulations of Information Kalman Filter (IKF) using the new defined variables are 

introduced for the BKF update equations in order to overcome the potential 

computational and numerical difficulties for large measurement sets (Crassidis and 

Junkins, 2004) as follows: 
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The derivation for Eq. (3.68) is introduced as follows. By using Eq. (3.59), the backward 

error state update is given by, 
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where 
+

Bk
K  is the BKF update gain. Eq. (3.69) yields, 
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Referring to (Crassidis and Junkins, 2004), the alternative forms for Kalman filter gain 

K  and KHI −  are, 
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Substituting these two equations above to Eq. (3.70) yields, 
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Eq. (3.73) is rearranged as, 
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Figure 3.9 Relationship between BKF, FKF and Smoother in TFS  

(After Liu et. al., 2009) 

However, the straightforward practice of IKF on non-linear INS navigation model failed 

to achieve the expected superior smoothing results. This problem was resolved by the 

revision that was originally proposed for pipeline surveys using inertial measurement (Yu 

et al., 2005). As shown in Figure 3.9, the main idea of this modification is that the BKF 

nominal trajectory is reset to the FKF updated result at the BKF prediction step, which 

means the BKF nominal trajectory is revised to track the EKF estimation of the forward 

filter. This concept resembles the EKF error state feedback step. The details begin with a 

series of expressions as: 
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where 
−−

Bk

NOM

Bk
xx ˆ,ˆ δ  is the revised BKF predicted nominal value, and the error state 

prediction (or the predicted perturbation); 

Eq. (3.76) indicates that the FKF updated system state is perturbed from the FKF 

prediction as discussed in previous sections; 

Eq. (3.77) indicates that the BKF updated system state is perturbed from the FKF 

prediction; 

Eq. (3.59) indicates that the BKF predicted system state is originally perturbed from the 

FKF prediction; 

Eq. (3.78) indicates that the BKF predicted system state is reset to be perturbed from the 

FKF update. 

 

By using the relationship equations above, Eq. (3.68) is rearranged as, 
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The desired form for updated error state is derived from Eq. (3.79) as (Yu et al., 2005): 
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Substituting Eq. (3.67) into Eq. (3.80) yields, 
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Therefore, Eq. (3.81) along with Eq. (3.67) constitutes the modified BKF updating 

equations. 

 

FKF and BKF Combination 

The smoothing estimate, i.e. the combination of the FKF update and the BKF prediction 

as in Eq. (3.42)-(3.43), will be fixed according to the revised relationship equations as 

(Yu et al., 2005): 
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Another form to express the combination is derived as, 

SkFkBkSkFkFkSk
xxyPxxx ˆˆ)ˆˆ(ˆˆ δδδ −=+−= −−+−

 (3.84) 

which indicates that the smoothing result can be regarded as the simple fixing of the FKF 

estimation; moreover, either the FKF update or the FKF prediction can be considered as 

the smoother nominal trajectory. These concepts are shown in Figure 3.9. 
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The two descriptions of the smoothing error state estimate corresponding to Eq. (3.83) 

and Eq. (3.84) are, 

−+− +==
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Additionally, Joseph forms of BKF and smoother covariance equations are used to yield 

stable solutions as in Table 3.1 (Maybeck, 1994). 

Table 3.1 Joseph forms 
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3.3.2 Rauch-Tung-Striebel Smoother (RTSS) 

 

The Rauch-Tung-Striebel Smoother (RTSS) was first presented by Rauch et al. (1965). It 

was proved as the optimal smoothing method for linear systems on basis of Maximum 

Likelihood (ML) criterion. It was demonstrated that the traditional TFS proposed by 

Fraser and Potter (1969) and the RTSS were mathematically equivalent in linear case. 

The RTSS has been widely applied in navigation applications due to its robustness and 

effectiveness. 
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The implementation of RTSS does not require the process of a full-scale BKF. It can be 

regarded as an add-on correction to the Kalman Filter (Gelb, 1974). RTSS is consisting of 

one forward data processing part and one backward data processing part. The former is 

the FKF as discussed in the previous section. The backward processing part propagates 

the filtering results and achieves the smoothing system state estimate by utilizing a set of 

equations as following, 
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 (3.89) 

where 
Sk

K  denotes the RTSS gain;
Sk

x̂δ  denotes the RTSS perturbation. 

 

The equations show that the FKF prediction results can be regarded as the RTSS nominal 

trajectory. Further, by utilizing all the information stored in the FKF, the RTSS 

recursively updates the smoothed estimate and its covariance in a backward sweep. On 

the other hand, the determination of the RTSS estimates does not involve the smoother 

covariance; the smoothing gain can be computed during the forward filter process. This 

convenience brings an important characteristic that the forward filter covariance as well 

as the state matrix needs not to be stored, if the smoother covariance calculation for 

analysis purpose can be omitted. 
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3.4 Smoother Considerations 

 

3.4.1 Smoothability 

 

A state is defined to be “smoothable” if an optimal smoother provides this state a superior 

estimate compared to that obtained by the simpler means of extrapolating the final FKF 

estimate backward in time (Gelb, 1974; Maybeck, 1994). Fraser (1967) showed that only 

those states controllable by the system driving noise were smoothable in linear systems. 

This indicates that the estimation accuracy of constant variable with no driving noise can 

barely be improved by optimal smoothing over filtering. This was simply proved with 

continuous-time smoothing equations by assuming the process noise as “zero” in a linear 

system. An alternative demonstration of this conclusion can be derived by examining the 

duality between control and estimation from solving the two-point-boundary-value-

problem (TPBVP) associated with the optimal control theory (Crassidis and Junkins, 

2004). The quantity representation of smoothability has not been clarified and is beyond 

the content of this research. 

 

3.4.2 Measurement Gap Filling 

 

KF update steps take place when measurements are available. IMU data rate is always 

higher than that of the augmentation sensor. Besides, due to occasional signal blockages 

and unexpected faults, the augmentation observations (especially GPS) are sometimes 

unavailable. These conditions are called measurement gaps. Under these conditions, the 

KF only works in prediction modes. Meanwhile, the error state and the covariance 
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updates cannot be generated and the smoothing computation is interrupted, or even halted. 

To solve this problem, the straightforward idea is to interpret the KF prediction solution 

as the temporary update replacement (Nassar, 2003; Shin and El-Sheimy, 2002; Godha, 

2006) as shown in Figure 3.10. It is reluctantly accepted for INS-based integration 

estimation applications since the predictions are the best obtainable resources when no 

dependable measurements are offered. This replacement is described as, 
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where the subscript GAP denotes the time intervals corresponding to the measurement 

gaps. 
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Figure 3.10 Measurement Gap Filling 

3.4.3 Storage Requirement 

 

The FKF information required for storage in TFS and RTSS is listed as, 

• FKF nominal trajectory 
NOM

Fk
x−ˆ ; 

• FKF error state update 
+

Fk
x̂δ ; FKF covariance update 

+

Fk
P ; 
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• FKF error state prediction 
−

Fk
x̂δ ; FKF covariance prediction

−

Fk
P . 

 

Other concerns related to storage requirement for smoothers include: 

• If the reset feedback rate equals to the KF computing rate, only the nominal 

trajectory at the final epoch is needed to be stored. Others can be recomputed by 

using the FKF error state update. 

• If the feedback rate equals to the KF computing rate, ),(0ˆ
0 NFk

ttkx ∈=−δ . 

Apparently, the FKF error state predictions are not required for storage under this 

condition. 

• Because of the symmetric nature of covariance matrix, special polynomial 

techniques can be applied to improve its storage efficiency (Shin and El-Sheimy, 

2002). 

• In RTSS, the FKF covariance and the nominal trajectory need not to be stored 

since the RTSS gain can be computed during the forward filter process, if the 

smoother covariance for analysis purpose can be omitted. 

• TFS does not acquire storing all the intermediate results of the forward filter. 

Instead, only the estimates and covariance during the intervals where the 

smoothing would be implemented are required to save. Conversely, since RTSS is 

recursively processed, all the information starting from the FKF final time epoch 

to the current smoothing time epoch is necessarily to be stored. 
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Chapter Four: OPTIMAL SMOOTHING FOR LAND-VEHICLE NAVIGATION 

USING INTEGRATED INS/GPS SYSTEMS 

 

4.1 Overview of Land-Vehicle Navigation Using Integrated INS/GPS Systems 

 

The last two decades have shown an increasing trend in the use of navigation 

technologies in vehicular applications which made Land-Vehicle Navigation (LVN) a 

typical business in the market. The most commonly used navigation systems in LVN 

applications are the systems that integrate a Global Positioning System (GPS) and an 

Inertial Navigation System (INS). This is due to the fact that both systems are 

complimentary and their integration overcomes their individual limitations. In INS/GPS 

integrated systems, the GPS provides position/velocity and the INS provides attitude 

information. In addition, the INS is used to detect and repair GPS cycle slips; it is also 

used for navigation during GPS signal loss of lock. The integration of high or medium 

quality Inertial Measuring Units (IMUs) with GPS has been implemented for precise 

kinematic navigation. However, these inertial systems are limited by their significant size 

and cost. In addition, with the new government regulations, the use of such systems will 

be restricted and permitted only for authorized personnel (Niu et. al., 2006). To meet the 

high demand in LVN, the market has been directed towards using Micro-Electro-

Mechanical Systems (MEMS) inertial sensors. 

 

In general, any type of IMU/GPS integrated system sometimes has a major problem. This 

problem is associated with the frequent occurrence of GPS outages caused by GPS signal 
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blockages in certain situations such as urban centres. In case of GPS signal blockages, 

navigation is provided using the IMU instead of the GPS until satellite signals are 

obtained again with sufficient accuracy. Since any IMU can only provide very short-time 

high accuracy navigation, the accuracy of the provided navigation parameters during 

these periods decreases with time. During GPS signal outages, the accumulated IMU 

position error at the end of the outage interval is dependent on the outage time interval 

(time elapsed since last GPS update), the quality of the IMU, the quality of the GPS 

updates before the outage and the vehicle dynamics before and during the outage (Nassar 

et al. 2004). Kalman Filter (KF) is recognized as the most widely used optimal estimator 

in INS/GPS integrated systems. With the development of low-end tactical-grade and 

MEMS IMUs, the Extended Kalman Filter (EKF) is commonly accepted to resolve the 

system nonlinearity and accomplish the real-time navigation. However, in the context of 

INS/GPS integration, the KF will work in prediction mode during GPS signal outages 

where the navigation solution is completely obtained by stand-alone INS. During these 

GPS outages, the navigation accuracy degrades rapidly with time due to the INS time-

dependent error behavior. As a result, this performance cannot meet the requirement of 

high accuracy LVN. Hence, post-processing methods such as backward smoothing can be 

employed in such cases to provide a better navigation solution. 

 

The process model and the measurement model for integrated INS/GPS systems and the 

affiliated a priori noise knowledge for both forward and backward filters are referred to 

the discussions in the previous chapters. 
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The performance of both optimal smoothers will be demonstrated using two land-vehicle 

INS/GPS data sets with intentionally simulated GPS outages. The first data set 

incorporates a tactical-grade IMU (Litton LN200) while the second one utilizes a low-

cost MEMS custom-built IMU by the MMSS Research Group at UofC. The achieved 

results for both data sets will be analyzed and discussed. Moreover, the TFS results are 

compared to those obtained by the RTSS. Finally, the effect of the GPS signal outage 

length on the smoother performance will be evaluated. 

 

4.2 Tactical-grade IMU Test (1
st
 Test) 

4.2.1 Description of the 1
st
 Test 

A tactical-grade IMU, Litton LN200, was used to conduct the first field test. This test was 

performed along an L-shape route, in Balzac Park, Calgary, Alberta. NovAtel OEM4 

GPS receivers were used to provide DGPS solutions. A navigation-grade IMU 

(Honeywell CIMU) was used to provide the inertial reference trajectory for the test by 

processing the DGPS/CIMU without any GPS signal outages. Three GPS outages, each 

with 60s length, were intentionally simulated in this test to evaluate the smoothing 

efficiency. The reference trajectories, as well as the GPS outages for this test are 

illustrated in Figure 4.1. The centimetre positioning accuracy levels, in terms of the 

Standard Deviations (STDs) for the DGPS solutions, are shown in Figure 4.2. The tuned 

parameters of the inertial sensors for the process noise spectral density matrix in the KF 

are listed in Table 4.1 (See Litton LN200 IMU Specifications in Appendix A), where the 

tuning technique refers to Goodall (2009). The data processing strategies to evaluate the 

performance of filters and smoothers are listed step by step as follows, 
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• Land-vehicle Forward Kalman Filter (FKF) 

• Two Filter Smoother (TFS) 

o Backward Kalman Filter (BKF) 

o FKF/BKF Combination 

• RTS Smoother (RTSS) 

 

Figure 4.1 Reference Trajectory and GPS Outages in the 1
st
 test 

 

Figure 4.2 DGPS Positioning Accuracy in the1
st
 Test 
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Table 4.1 Kalman Filter Process Noise Parameters in the 1
st
 test 

Tuned Parameters 

VRW hoursm //030.0  

ARW hourdeg/125.0  

Gauss-Markov of Gyro Bias hourdeg/1=σ  hourT 1=  

Gauss-Markov of Acc Bias mGal300=σ  hourT 1=  

Gauss-Markov of Gyro SF PPM100=σ  hourT 4=  

Gauss-Markov of Acc SF PPM300=σ  hourT 4=  

 

4.2.2 FKF Results of the 1
st
 Test 

 

Since tactical-grade IMU is used in this test, analytic coarse alignment as well as fine 

alignment is introduced to determine the initial attitude during the first 185s static IMU 

data interval. DGPS solution provides the initial position estimation. The initial velocity 

is set to be zero as static initial alignment is utilized. 

 

Figure 4.3 shows the forward filtering trajectory including the zoomed GPS outage 

regions compared to the reference solution. As expected, the FKF trajectory diverges 

from the reference at each of the GPS outage periods. As discussed earlier, KF will only 

work in prediction mode during GPS measurement gaps. Therefore, the positioning 

accuracy achieved by stand-alone INS will degrade rapidly with time. Figure 4.4 depicts 

the KF position errors of the LN200 IMU during three GPS outages in the first test. The 

LN200 position errors are calculated by subtracting the filtering results from the 
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corresponding reference solutions. It can be noted that the horizontal position error 

increases to the meter level during the outages, and the height error reaches the decimetre 

level. A further representation of the degraded estimation accuracy can be observed from 

Figure 4.6, which depicts the position error STDs. The velocity errors and STDs during 

the three GPS outages are shown in Figure 4.5 and Figure 4.7 respectively. 

 

 

 

Figure 4.3 LN200 FKF Trajectory 
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Figure 4.4 LN200 FKF Position Errors 

 

Figure 4.5 LN200 FKF Velocity Errors 
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Figure 4.6 LN200 FKF Position Error STDs 

 

Figure 4.7 LN200 FKF Velocity Error STDs 

4.2.3 TFS Results of the 1
st
 Test 
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As stated earlier in Chapter 3, the implementation of TFS requires processing a backward 

filter, of which the INS solutions are dependent on the forward filter counterparts. The 

combination of the saved FKF results and the post-computed BKF results yields the 

smoother solutions. In order to avoid the undesirable matrix inversions and provide a 

valid backward initialization, new variables 
BB

yP δ,1−
 are introduced to replace the 

system error state and its covariance. Since the smoother is initialized using the FKF 

results at the final time epoch, the BKF initial error state is uncertain and its 

corresponding covariance is set to be infinity. As a result, the BKF results in terms of the 

original error state description 
B

xδ  will not be available to be calculated at the beginning 

part of BKF until the covariance matrix becomes relatively finite. Therefore, only the 

BKF results during the three GPS outages will be computed and shown for reference in 

this thesis since the measurement gaps are simulated with a reasonable distance from the 

final time epoch. 

 

Figure 4.8 shows the trajectories of FKF, BKF, and TFS as well as the reference solution 

in the zoomed outage regions. Similar to FKF, the BKF trajectory diverges from the 

reference counterpart at each of the GPS outages, towards an uptrend reverse to the time 

increasing direction. Apparently, the smoothing trajectory approaches the reference 

solution compared to filtering results. Note that the BKF divergence at the third outage is 

even greater than the FKF. This is due to the fact that the norm of the backward 

covariance matrix is still remarkable since it is near the ending time epoch. This is 
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gradually moderated as the backward filter runs reversely with time, which could be 

observed from the other two outages. 

 

 

Figure 4.8 Trajectories of FKF, BKF, and TFS in the 1
st
 Test 

The LN200 TFS position errors across the three GPS outages and the corresponding 

STDs are shown in Figure 4.9 and Figure 4.11 respectively. It can be noted that while the 

horizontal position error is restricted to decimetre level, the height error is restricted to 

centimetre level. Additionally, the TFS velocity errors and STDs across the 3 DGPS 

outages are shown in Figure 4.10 and Figure 4.12 respectively. The position errors for 

TFS are calculated using the same criterion as in the FKF case. 
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Figure 4.9 LN200 TFS Position Errors 

 

Figure 4.10 LN200 TFS Velocity Errors 
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Figure 4.11 LN200 TFS Position Error STDs 

 

Figure 4.12 LN200 TFS Velocity Error STDs 

4.2.4 RTSS Results of the 1
st
 Test 
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Figure 4.13 shows the trajectories of FKF and RTSS as well as the reference solution in 

the zoomed outage regions. The LN200 RTSS position and velocity errors are shown in 

Figure 4.14. Their corresponding STDs are depicted in Figure 4.15. 

 

 

Figure 4.13 Trajectories of FKF and RTSS in the 1
st
 Test 

  

Figure 4.14 LN200 RTSS Position and Velocity Errors 
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Figure 4.15 LN200 RTSS Position and Velocity Error STDs 

4.2.5 Comparison between the TFS and RTSS Results of the 1
st
 Test 

 

The accumulated position errors can also be observed in the backward filtering results, 

but it will diverge towards the uptrend reverse to the FKF counterpart, i.e. the time 

increasing direction. By the combination of both filtering results, the position error drifts 

are expected to be suppressed or removed by the smoothing approaches. This effect is 

illustrated in Figure 4.16 which compares the north position errors between FKF, BKF, 

TFS and RTSS during the first 60s GPS outage. It shows that the position error drifts is 

restricted, or smoothed in the middle of both the forward and backward directions. In 

addition, Figure 4.17 shows the corresponding north position STD comparison. 

 

The north position error and STD comparison in the other two outages are depicted in 

Figure 4.18 and Figure 4.19, respectively. They further indicate that the effect of large 

covariance matrix in backward filtering results will be gradually neutralized as the BKF 

is processed reversely with time. 
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Figure 4.16 LN200 North Position Errors in the 1
st
 Outage 

 

Figure 4.17 LN200 North Position Error STDs in the 1
st
 Outage 
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Figure 4.18 LN200 North Position Errors and STDs in the 2
nd

 Outage 

  

Figure 4.19 LN200 North Position Errors and STDs in the 3
rd

 Outage 

Table 4.2 LN200 Position Errors of FKF, TFS, and RTSS 

North(m) East(m) Height(m) 3 D (m)        

Outage FKF TFS RTS FKF TFS RTS FKF TFS RTS FKF TFS RTS 

#1 0.968 0.042 0.042 4.490 0.167 0.167 0.086 0.010 0.010 4.594 0.169 0.169 

#2 1.302 0.118 0.119 1.664 0.109 0.109 0.343 0.038 0.038 2.141 0.161 0.162 

#3 1.426 0.093 0.096 2.349 0.067 0.072 0.188 0.019 0.020 2.752 0.108 0.108 

Mean 1.232 0.084 0.085 2.835 0.114 0.116 0.205 0.022 0.023 3.162 0.146 0.147 
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The summary of the FKF, TFS, and RTSS LN200 results of the 1
st
 test is shown in Table 

4.2, in which the maximum position errors along north, east, and height directions are 

listed in each of the three GPS signal outage periods. The results showed that the 

navigation errors are significantly improved by both smoothing algorithms during GPS 

outages. In addition, the smoothing effect of the TFS is almost the same as the RTSS. 

The improvement level of both smoothers is nearly 95.4 %. 

 

4.2.6 Effect of GPS Measurement Gap Length of the 1
st
 Test 

In addition to the three shown 60s GPS outage durations, 10s, 30s, 90s gap lengths are 

tested to evaluate the filtering and smoothing performance respectively. Similar to Figure 

4.16, the comparison between the north position errors of FKF, BKF, TFS, and RTSS in 

the first 10s outage is illustrated in Figure 4.20. The corresponding comparison in the first 

30s and 90s outage is shown in Figure 4.21 and Figure 4.22 respectively. 

 

The detailed comparisons between different measurement GPS gap lengths (FKF, BKF, 

TFS, and RTSS) in terms of the mean maximum 3-D position errors and the 

improvement levels of smoothers over forward filtering are listed in Table 4.3. Further, 

the mean values of maximum position errors (north, east, height and 3-D) across all three 

outages for each estimation method and each measurement gap length are depicted in 

Figure 4.23 to Figure 4.26. The results show that although the position errors (including 

the smoothing results) rise as the outage length increases, the improvement level of each 

smoother over filtering becomes greater accordingly. This indicates that the efficiency of 

smoothers is upgrading with the increasing GPS outage period length despite that the 
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upgrade is not remarkable from 60s to 90s. Also, the TFS and RTSS reach almost the 

same enhancement level with each outage length. 

 

Figure 4.20 LN200 North Position Errors Comparison with 10s Outage Length 

 

Figure 4.21 LN200 North Position Errors Comparison with 30s Outage Length 
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Figure 4.22 LN200 North Position Errors Comparison with 90s Outage Length 

Table 4.3 LN200 3-D Position Error and Smoothing Improvement Level 

Comparison between Different Outage lengths 

Mean Maximum 3-D Position Error(m) Improvement (%) Outage 

Length FKF TFS RTSS TFS RTSS 

10s 0.078 0.034 0.034 56.4 56.4 

30s 0.519 0.053 0.053 89.8 89.8 

60s 3.162 0.146 0.147 95.4 95.4 

90s 11.54 0.398 0.392 96.6 96.6 
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Figure 4.23 Mean Values of Maximum Position Errors across Three GPS 10s 

Outages 

 

Figure 4.24 Mean Values of Maximum Position Errors across Three GPS 30s 

Outages 
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Figure 4.25 Mean Values of Maximum Position Errors across Three GPS 60s 

Outages 

 

Figure 4.26 Mean Values of Maximum Position Errors across Three GPS 90s 

Outages 
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4.3 MEMS IMU Test (2
nd

 Test) 

 

4.3.1 Description of the 2
nd

 Test 

 

The second dataset was conducted along a large clockwise cycle route, Calgary, Alberta. 

A custom-built MEMS IMU integrated using inertial sensors from Analog Device Inc. 

(ADI), and a GPS Single Point Positioning (SPP) solution was used to verify the filtering 

and smoothing performance under the condition of meter level positioning aiding. The 

navigation-grade IMU (Honeywell C-IMU) was used to provide the reference trajectory 

without any GPS outages. 

 

Five GPS outages, each with 60s length, were intentionally simulated in the second test to 

verify and compare the performance of filters and smoothers for error bridging. The 

reference trajectory, including the GPS outage regions for this test is illustrated in Figure 

4.27. The positioning accuracy levels, in terms of the STDs for the GPS SPP solutions, 

are shown in Figure 4.28. The tuned parameters of the inertial sensors for the process 

noise spectral density matrix used in the KF are listed in Table 4.4. The data is processed 

as the same strategies of the 1
st
 test discussed in the previous Section. 
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Figure 4.27 Reference Trajectory and GPS Outages in the 2nd Test 

 

Figure 4.28 GPS SPP Accuracy in the 2
nd

 Test 
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Table 4.4 Kalman Filter Process Noise Parameters in the 2
nd

 Test 

Tuned Parameters 

VRW hoursm //660.0  

ARW hourdeg/000.3  

Gauss-Markov of Gyro Bias hourdeg/100=σ  hourT 1=  

Gauss-Markov of Acc Bias mGal5000=σ  hourT 1=  

Gauss-Markov of Gyro SF PPM1000=σ  hourT 4=  

Gauss-Markov of Acc SF PPM1000=σ  hourT 4=  

 

4.3.2 FKF Results of the 2
nd

 Test 

 

Since MEMS IMU were used in this test, static gyro compassing alignment step will fail 

to estimate the initial heading error. Therefore, the initial heading solution in the 

CIMU/GPS reference file is transferred to start the MEMS IMU/GPS FKF, while the 

initial roll and pitch are computed by levelling alignment. The initial positions are 

provided by the GPS measurements and the initial velocities are set to be zero. With five 

60s GPS outages, the FKF results are illustrated in Figure 4.29-Figure 4.31, which show 

the FKF trajectory, the position and velocity errors with respect to the reference 

solutions, and the position and velocity STDs respectively. 
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Figure 4.29 MEMS FKF Trajectory 
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Figure 4.30 MEMS FKF Position and Velocity Errors 

  

Figure 4.31 MEMS FKF Position and Velocity Error STDs 

4.3.3 Smoothing Results of the 2
nd

 Test 

 

Figure 4.32 shows the TFS position and velocity errors across five GPS outages in the 2
nd

 

test. The corresponding position and velocity STDs are shown in Figure 4.33. It can be 

noted that while the horizontal position error is restricted to 5-meter level from 100-meter 

level, the height error is restricted to 5-meter level from 10-meter level by using TFS. 

The TFS trajectory and the RTSS processing results are included in Appendix B for 

reference. 
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The summary of the MEMS IMU FKF, TFS and RTSS results (maximum position errors) 

of the 2
nd

 test is given in Table 4.5 corresponding to the five GPS outage periods. Note 

that the system here integrates GPS SPP (and not DGPS) with the MEMS IMU. The 

enhancement level of the positioning accuracy of the two smoothers is about 95.7% 

compared to the FKF results. 

 

4.3.4 Effect of GPS Measurement Gap Length in the 2
nd

 Test 

Similar to the 1
st
 test, 10s, 30s and 90s GPS outages are processed and analyzed in the 

second dataset. The figures to illustrate the measurement gap length effect refer to the 

Appendix B. The comparisons between different measurement gap lengths for FKF, TFS 

and RTSS in terms of the mean maximum 3-D position errors and the improvement 

levels are listed in Table 4.6. It can be noted that although the position errors rise as the 

outage length increases, the efficiency of both smoothers is upgrading with the increase 

of the GPS signal outage period length. 

  

Figure 4.32 MEMS TFS Position and Velocity Errors 
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Figure 4.33 MEMS TFS Position and Velocity Error STDs 

Table 4.5 MEMS Position Errors of FKF, TFS, and RTSS (60s Outage Length) 

North(m) East(m) Height(m) 3 D (m)        

Outage FKF TFS RTS FKF TFS RTS FKF TFS RTS FKF TFS RTS 

#1 161.3 1.978 1.978 446.4 3.780 3.763 33.79 6.200 6.198 170.7 7.262 7.251 

#2 97.96 4.685 4.682 240.8 4.886 4.886 12.00 4.774 4.775 260.3 6.207 6.205 

#3 35.26 4.603 4.600 66.20 7.535 7.535 9.381 3.886 3.886 75.59 9.510 9.507 

#4 303.1 4.741 4.752 32.92 2.961 2.965 10.90 5.352 5.352 305.1 7.617 7.624 

#5 5.210 7.436 7.436 118.5 3.036 3.043 4.957 4.503 4.503 118.6 8.967 8.967 

Mean 120.6 4.689 4.690 100.6 4.440 4.439 14.21 4.943 4.943 186.1 7.912 7.911 

 

Table 4.6 MEMS 3-D Position Error and Smoothing Improvement Level 

Comparison between Different Outage lengths 

Mean Maximum 3-D Position Error(m) Improvement (%) Outage 

Length FKF TFS RTSS TFS RTSS 

10s 6.599 4.313 4.313 34.6 34.6 

30s 36.20 4.780 4.782 86.8 86.8 

60s 186.1 7.912 7.911 95.7 95.7 

90s 999.1 35.74 35.82 96.4 96.4 
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Chapter Five: OPTIMAL SMOOTHING FOR PIPELINE SURVEYS USING 

INTEGRATED INS/ODOM/CUPT SYSTEMS 

 

5.1 Overview of Pipeline Surveys 

 

Pipelines are constructed to transport or dispose liquid and gases, commonly operated by 

oil, gas, sewerage and chemical industries. The vast and complex underground network 

requires regular surveys to inspect, detect and isolate the damage along the pipelines 

(Hanna, 1990; Todd et al., 1990). Other than the frequent air scanning, Pipeline 

Inspection Gauges (PIG) are the alternative tools that can be sent through the pipelines to 

monitor the inside conditions. An example of the PIG is shown in Figure 5.1. The PIG is 

a torpedo shaped vehicle with red plastic rings/cups that fit tightly against the pipe wall. 

Behind the cups are the carrying wheels. In the figure, the thin wheels sticking at the back 

of the tool are the odometers (Kennedy, S., 2003). 

 

Figure 5.1 An Example of A PIG (Courtesy of BJ Pipeline Inspection Services) 

The INS is employed to conduct the overall PIG navigation due to the unavailability of 

GPS inside the pipeline. Considering the pipeline size and the surveying accuracy 

requirement, IMUs with FOG gyros are typically used as the ideal surveying tools in this 
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application. Aiding sensors are applied to compensate the growing errors induced by the 

stand-alone INS. Coordinate Updates (CUPT), also known as control point update, can be 

available along the pipeline, which usually exist several kilometres apart. These 

coordinates are always located at pipeline features (e.g. valves) or at Above Ground 

Markers (AGMs), of which the geodetic positions are precisely surveyed by DGPS (Shin 

and El-Sheimy, 2005). The tracking modules of control points detect the magnetic signals 

of the PIG and store the time when the PIG passes underneath them (Yu et al., 2005). 

Although the accuracy of CUPTs is violated by the uncertain lever-arm effect due to the 

time synchronization issue between the IMU and AGMs, currently most of the processed 

pipeline trajectories are forced to fit to these points (Kennedy, S., 2003). 

 

Odometers (ODOMs) can provide the forward velocity information by differentiating the 

distance travelled by the PIG. Additionally, the measurement updating equations can be 

augmented with the non-holonomic constraints. The PIG is pushed in and driven through 

the pipeline by the differential pressure of medium flows like oil, gas or refined products. 

As a result, the PIG might experience some unexpected speed excursions when it is stuck 

due to mechanical failure or residue on the pipe wall (deposit solids from gases and 

waxes from oil), and suddenly re-pushed by the building up flow pressure (Kennedy, S., 

2003; Allan and Hawes, 2005). Besides, the vibrations and the varying contacts between 

the odometer wheels and the pipe wall could increase the uncertainty in the velocity 

measurements. 
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The PIG sits stationary in the launch trap in the beginning of the surveying job, which 

provide the required time for INS initial alignment. While the PIG travels along the 

pipeline, the Data Acquisition System (DAS) on the PIG stores outputs from all the 

sensors, including IMU, odometers and other inspection tools, in real-time (Yu et al., 

2005). The collected multi-sensor data are then processed in post mission to achieve the 

navigation solutions using filtering and smoothing methodologies. These solutions will 

provide the reference for both the pipeline trajectory and the leakage, blockage, and 

damage locations. 

 

In this thesis, the performance of KF and optimal smoothers for pipeline surveys will be 

demonstrated using one real data set of the integrated INS/ODOM/CUPT system. The 

knowledge about the process model and the measurement models were discussed in the 

previous chapters. 

 

5.2 Test Description 

 

The PIG integrates a tactical-grade IMU (LN200), odometers and other inspection 

sensors. The sampling rates of the IMU and odometers are 100 Hz and 4 Hz respectively. 

The odometer-derived velocity measurement is shown in Figure 5.2. The PIG travelled 

slowly with a speed ranging from 0.2 m/s to 0.8m/s. Note that the noise level of the 

output is not obvious, which indicates the whole surveying process was under a benign 

vibration condition in a relatively clean pipeline. The bumps at 5 km after the PIG left the 
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launching point illustrate that the PIG experienced speed excursions, induced by sharp 

pipe curves or the push by accumulated flow pressure at the unexpected blockages. 

 

The PIG approximately travelled 32 km in about 21.4 hour. 12 GPS-derived coordinates 

were provided along the whole survey route, of which the first CUPT point corresponds 

to the starting survey point (distance 0.0m). Each of the travelled distance (calculated by 

odometer data) and time separations between the adjacent CUPTs are listed in Table 5.1. 

The pipeline route linearly interpolated by the CUPTs is illustrated in Figure 5.3. 

 

Figure 5.2 PIG Velocity Measurement from Odometer 
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Figure 5.3 Surveying Route Interpolated by CUPTs 

Table 5.1 Time and Distance Separation between CUPTs 

CUPTs Time Separation (min) Distance (m) 

#1 0 0 

#2 238 4770 

#3 48 1239 

#4 111 3913 

#5 73 1818 

#6 149 3599 

#7 55 1337 

#8 65 1564 

#9 185 4414 

#10 148 3439 

#11 74 1755 

#12 121 3389 
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5.3 Results 

 

The IMU data was processed using KF with the aiding from CUPTs and odometer-

derived velocity measurements. Since the PIG stayed stationary at the launching trip in 

the first 300s before being pushed into the pipeline, analytic coarse alignment associated 

with fine alignment was applied to initialize the attitude. The first GPS-derived 

coordinate provided the initial positions, and the initial velocity is set to be zero. The 

tuned sensor parameters for the process covariance matrix and the measurement 

covariance matrix are listed in Table 5.2. 

Table 5.2 Kalman Filter Noise Parameters 

Tuned Parameters 

VRW hoursm //015.0  

ARW hourdeg/15.0  

Gauss-Markov of Gyro Bias hourdeg/1=σ  hourT 4=  

Gauss-Markov of Acc Bias mGal300=σ  hourT 4=  

Gauss-Markov of Gyro SF PPM100=σ  hourT 4=  

Gauss-Markov of Acc SF PPM300=σ  hourT 4=  

CUPT STD m5.0  

Odometer STD sm /05.0  

 

The INS/ODOM/CUPT integration results will be discussed and analyzed in the 

following order, 

• Pipeline Surveying Forward Kalman Filter (FKF) 
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• Two Filter Smoother (TFS) 

• RTS Smoother (RTSS) 

 

5.3.1 FKF Results 

 

Figure 5.4 shows the forward filtering trajectory and the zoomed regions compared to the 

route interpolated by CUPTs (i.e. the reference). Note that the filtering positioning errors 

diverged before being restricted by the control points. For example, the horizontal 

positioning error increases to 278.3m before it reaches the second CUPT, while it is 

reduced to 1.569m afterwards. This improvement can be further checked by the FKF 

height estimation with respect to the CUPT interpolation in Figure 5.5. These errors are 

calculated by subtracting the FKF position estimations from the corresponding reference 

coordinates at control points. The difference between FKF positioning results and the 

CUPT interpolation is shown in Figure 5.6 for a rough evaluation of the filtering 

performance during intervals without the aiding of control points. Note that since the 

CUPTs are linearly interpolated to obtain the north, east, and height coordinates, the 

interpolation route can hardly reveal the actual pipeline trajectory in field and are 

provided as approximate reference. Since the stand-alone INS positioning errors could 

reach tens of kilometres within one hour (El-Sheimy, 2007; Shin and El-Sheimy, 2005), 

the hundred-meter level divergence in Figure 5.6 indicates that the odometer-derived 

velocities as well as the non-holonomic constraints keep the filtering trajectory straight 

and effectively restrict the unaccepted position error accumulation. 
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Figure 5.4 FKF Trajectory 

 

Figure 5.5 FKF Height Estimation 
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Figure 5.6 Positioning Difference between Filtering and CUPT Interpolation 

The FKF velocity estimation results as well as the odometer-derived speed are shown in 

Figure 5.7, which indicate that the PIG proceeded in the pipeline slowly and stably except 

for some speed excursions in the up direction. 

  

Figure 5.7 FKF Velocity Estimation 

Figure 5.8 shows the FKF attitude of the PIG, the bump at the beginning in the pitch 

figure indicates that the PIG experienced a sharp jump about 30 degrees. This occurred 
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when the PIG was pushed down from the launching trip into the pipeline by the flows 

during a short time interval. Further, irregular and trembling roll angles could be 

observed within -50 degrees as the PIG travelled through the pipeline. 

 

Figure 5.8 FKF Attitude Estimation 

5.3.2 TFS Results 

The plane trajectory estimations by the TFS as well as the associated BKF are shown in 

Figure 5.9. The height estimation is shown in Figure 5.10. Similar to FKF results, the 

BKF trajectory diverged from the reference coordinates before it reached the control 

points, in the reverse directions. The positioning errors are effectively restricted by 

smoothing. Note that the TFS horizontal positioning error is reduced to 2.85m before it 

reaches the 10th CUPT compared to 51.8m in FKF and 55.6m in BKF, while the height 

error is reduced to 9.5 m compared to -36.6m in FKF and 21.9m in BKF. A further 3-D 

trajectory illustration of this improvement is shown in Figure 5.11. 
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Figure 5.9 TFS and BKF Trajectory 

 

Figure 5.10 TFS and BKF Height Estimation 
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Figure 5.11 TFS and BKF 3-D Trajectory 

 

5.3.3  RTSS Results 

 

The RTSS trajectory compared to FKF and the CUPT interpolation is shown in Figure 

5.12 including the zoomed regions. The height estimation and 3-D trajectory are shown 

in Figure 5.13 and Figure 5.14 subsequently. Similar to the TFS results, the RTSS 

significantly improves the positioning estimation over forward filtering. 
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Figure 5.12 RTSS Trajectory 

 

Figure 5.13 RTSS Height Estimation 
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Figure 5.14 RTSS 3-D Trajectory 

 

5.3.4 Comparison 

AGM
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Figure 5.15 Time Epochs when the PIG Passes an AGM 

As depicted in Figure 5.15, the passing time of the PIG under an AGM is between two 

data output time epochs, including the time one sample before (OSB) and the time one 

sample after (OSA) (Yuksel, 2008). Table 5.3 listed the computed OSB and OSA 

position errors of the forward filtering, including north, east, height, horizontal (2-D) and 
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3-D, by subtracting the filtering results from the corresponding reference coordinates at 

control points. Similarly, the position errors of BKF, TFS and RTSS are summarized in 

Table 5.4-Table 5.6. In addition, illustrations of the 2-D and 3-D errors are shown in 

Figure 5.16–Figure 5.17 respectively. 

  

  

  

Figure 5.16 2-D Positioning Errors 
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Figure 5.17 3-D Positioning Errors 

The comparison between the errors indicates that the position errors can be effectively 

restricted by the coordinate updates. Further, the divergence of the navigation errors in 

FKF and BKF are substantially improved by both smoothing algorithms. The smoothing 
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efficiency of TFS is nearly 90.0% according to the 3-D OSB errors compared to the 

filtering results, while the improvement level of RTSS is nearly 92.9%. The smoothing 

effect of the TFS is nearly 42.3% according to the OSA 3-D errors compared to the 

filtering solution, while the improvement level of RTSS is nearly 48.0%. 

 

Note that the smoothers improved the position errors during GPS outages by 95.4% in the 

first test and 95.7 % in the second test as shown in Chapter 4, which are greater than 

those in this test. Further, the enhancement efficiencies of TFS and RTSS in this test are 

not exactly the same. However, with the consideration of the fact that the coordinate 

measurement updates in vehicle navigation application are much more sufficient than 

those in pipeline navigation, both TFS and RTSS can be accepted as the effective 

smoothing methodologies in the application of pipeline surveys, and their smoothing 

efficiency are comparable to each other. 

 

Additionally, the height errors are greater than in horizontal directions, after they are 

restricted by the CUPTs and further smoothed by TFS and RTSS. This is mainly due to 

the longer lever-arms in the vertical direction than in the horizontal plane between the 

above ground markers and the passing PIG inside the underground pipeline. On the other 

hand, referring to the velocity and pitch estimations in Section 5.3.1, the PIG experienced 

some sudden jumps, speed excursions and continuous trembling velocity in the up 

direction, which could increase the height uncertainty and jeopardize its estimation 

accuracy. 
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Table 5.3 FKF Positioning Errors 

North East Height 2-D 3-D  

OSB OSA OSB OSA OSB OSA OSB OSA OSB OSA 

#1 -0.081 -0.095 0.782 0.906 -0.045 -0.021 0.787 0.911 0.788 0.911 

#2 186.9 -0.817 206.2 1.334 -35.54 -5.410 278.3 1.565 280.5 5.632 

#3 -13.00 -0.673 -3.392 0.729 -15.67 -5.188 13.44 0.992 20.64 5.282 

#4 -10.54 -0.594 6.647 1.046 -36.62 -5.162 12.46 1.203 38.68 5.301 

#5 -5.514 -0.497 3.825 0.927 -18.13 -3.058 6.711 1.052 19.33 3.234 

#6 -1.113 -0.656 -20.58 -0.083 -35.25 -4.705 20.61 0.662 40.83 4.751 

#7 -5.413 0.437 -1.752 0.577 -16.10 -7.138 5.610 0.724 17.08 7.174 

#8 -3.364 0.704 11.52 0.499 -20.55 -5.608 12.00 0.863 23.80 5.674 

#9 -74.57 -0.269 -11.52 0.651 -47.55 -7.703 75.45 0.704 89.19 7.735 

#10 -48.94 -0.360 -17.05 0.729 -36.60 -4.363 51.83 0.812 63.45 4.438 

#11 -11.25 -0.319 -3.367 0.617 -20.33 -4.293 11.74 0.695 23.48 4.349 

#12 -24.60 -0.416 -2.621 0.190 -38.06 -7.369 24.74 0.458 45.40 7.383 

Mean 32.11 0.486 24.10 0.691 26.70 5.001 42.81 0.887 55.27 5.155 
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Table 5.4 BKF Positioning Errors 

North East Height 2-D 3-D  

OSB OSA OSB OSA OSB OSA OSB OSA OSB OSA 

#1 -54.04 0.212 -79.56 0.546 37.71 6.217 96.18 0.585 103.3 6.244 

#2 3.918 -7.623 -0.175 -5.438 12.44 4.956 3.922 9.364 13.05 10.59 

#3 80.46 -0.247 44.47 0.659 32.71 4.311 91.93 0.704 97.58 4.368 

#4 62.94 0.012 26.67 0.763 18.09 3.036 68.35 0.763 70.70 3.131 

#5 34.42 0.031 31.43 0.782 56.65 7.882 46.61 0.783 73.36 7.921 

#6 12.10 -1.723 13.79 2.223 19.11 24.70 18.34 2.812 26.49 24.86 

#7 -4.714 0.547 12.26 0.949 14.73 7.916 13.13 1.096 19.73 7.991 

#8 222.0 1.214 -13.29 0.177 42.20 8.796 222.4 1.226 226.3 8.881 

#9 -130.7 -0.440 -38.18 1.004 37.91 3.895 136.2 1.096 141.3 4.047 

#10 51.82 -0.070 20.16 1.335 21.89 12.80 55.60 1.337 59.75 12.87 

#11 -9.918 -0.332 -7.797 0.739 30.98 2.750 12.62 0.810 33.45 2.866 

#12 -0.234 -3.378 0.187 -0.794 -7.468 -2.375 0.299 3.471 7.474 4.205 

Mean 55.60 1.319 24.00 1.284 27.66 7.469 63.79 2.004 72.71 8.164 
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Table 5.5 TFS Positioning Errors 

North East Height 2-D 3-D  

OSB OSA OSB OSA OSB OSA OSB OSA OSB OSA 

#1 0.205 0.208 -0.428 -0.444 4.412 4.458 0.475 0.490 4.437 4.485 

#2 -7.489 -0.017 -5.849 0.049 0.374 0.229 9.503 0.052 9.510 0.235 

#3 0.018 0.349 0.190 -0.389 -1.505 -1.624 0.191 0.523 1.517 1.706 

#4 -0.025 0.163 0.275 -0.098 -1.647 -1.679 0.276 0.190 1.670 1.689 

#5 -0.273 -0.083 0.147 -0.227 3.980 3.968 0.310 0.241 3.992 3.975 

#6 -0.422 0.273 2.540 0.020 20.21 6.184 2.575 0.274 20.37 6.190 

#7 -0.355 -0.347 0.378 0.136 -0.301 -2.252 0.519 0.372 0.600 2.282 

#8 0.702 0.094 -0.666 -0.061 1.386 -2.274 0.968 0.112 1.691 2.277 

#9 -0.717 -0.617 -0.106 -0.485 -2.989 -3.006 0.725 0.785 3.076 3.107 

#10 2.096 0.386 1.056 0.033 9.481 1.353 2.347 0.388 9.767 1.408 

#11 -0.403 0.011 -0.349 -0.597 -2.562 0.736 0.534 0.598 2.617 0.946 

#12 -0.953 0.616 -0.023 0.501 -7.280 -7.318 0.953 0.794 7.342 7.361 

Mean 1.138 0.264 1.001 0.253 4.677 2.923 1.615 0.402 5.549 2.972 
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Table 5.6 RTSS Positioning Errors 

North East Height 2-D 3-D  

OSB OSA OSB OSA OSB OSA OSB OSA OSB OSA 

#1 0.202 0.202 -0.400 -0.414 4.524 4.574 0.448 0.461 4.546 4.597 

#2 -11.65 0.204 -9.337 0.186 0.293 0.292 14.93 0.276 14.93 0.402 

#3 -0.333 0.126 -0.062 -0.553 -1.293 -1.331 0.339 0.567 1.337 1.447 

#4 -0.188 -0.003 0.229 -0.145 -1.443 -1.475 0.296 0.145 1.473 1.482 

#5 -0.317 -0.128 0.418 0.044 2.127 2.115 0.525 0.135 2.191 2.119 

#6 -0.276 0.169 -0.380 -0.007 5.413 5.408 0.470 0.169 5.433 5.411 

#7 -1.057 -0.151 -0.379 -0.173 -1.438 -1.426 1.121 0.230 1.823 1.445 

#8 0.350 -0.064 0.008 -0.055 -2.228 -2.229 0.350 0.084 2.255 2.231 

#9 -0.043 0.039 0.208 -0.174 -3.317 -3.334 0.212 0.178 3.323 3.339 

#10 -0.112 0.177 0.205 -0.115 1.275 1.286 0.234 0.211 1.296 1.303 

#11 -0.283 -0.147 -0.281 -0.652 0.767 0.755 0.399 0.668 0.864 1.008 

#12 2.517 0.615 1.161 0.501 -7.317 -7.318 2.772 0.793 7.824 7.361 

Mean 1.444 0.169 1.089 0.252 2.619 2.629 1.841 0.326 3.941 2.679 

 

* The mismatches between the OSB results of TFS and RTSS at certain control points are 

caused by the algorithm numerical stability during implementations. 
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Chapter Six: OPTIMAL SMOOTHING FOR HORIZONTAL/VERTICAL 

BUILDING SURVEYS USING INTEGRATED INS/ZUPT/CUPT SYSTEMS 

 

6.1 Introduction to Building Surveys 

 

Location Based Services (LBS) triggered the growing demands of indoor/outdoor 

navigations in urban areas. Navigation and surveying of public and residential buildings 

can be one of the promising LBS applications with great potentials. The databases 

containing precisely surveyed positioning information are essentially helpful for public 

safety, convenience, emergency route guidance, and personal tracking (Singh, 2006; 

MacGougan, 2003). 

 

However, GPS positioning accuracy suffers from the faded signal power and multipath 

effect in urban or indoor environments. This inadequacy drives the emergence of various 

indoor positioning techniques. Among them, the most significant include high-sensitivity 

GPS (HSGPS) and assisted-GPS (AGPS), which are designed to improve tracking and 

acquisition of low-power GPS signals (Watson, 2005). Another commonly researched 

technique is wireless location such as utilizing WiFi signals by fingerprinting or 

proximity methods (O’Keefe, 2008). This technique is recommended to be applied in 

areas where sufficient wireless access points are deployed reasonably, such as public 

libraries, hospitals, business buildings, research parks and so forth. 
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Gyros and accelerometers can be used in indoor navigation systems as supplements or 

alternatives. The potential success of indoor navigation systems with MEMS inertial 

sensors could contribute to great investment opportunities for mini unmanned vehicles, 

portable navigation devices, and individual guidance devices. The feasibility has partially 

been researched by assessing the performance of INS-based Pedestrian Navigation 

Systems (PNS) (Godha et al., 2006; Syed, 2009). 

 

The absence of GPS updates and the time-dependent error behaviour of INS call for the 

external aiding information. Zero Velocity Updates (ZUPTs) are efficient and feasible for 

indoor navigations, since the carriers would likely experience frequent stops. ZUPTs with 

appropriate time durations and intervals effectively limit the growing velocity errors, 

slowing down the positioning errors and providing the chances to evaluate the sensor bias 

and attitude errors (El-Sheimy, 2007; Huddle, 1998). Moreover, CUPTs are indispensable 

for stand-alone INS to control the fast growing positioning errors. Control points can be 

fixed separately at certain frequently passed locations around buildings by conventional 

surveying techniques. In the sequel, the IMU measurements associated with the 

corresponding aiding information will be post-processed to obtain the navigation 

solutions using both filters and smoothers. 

 

In this Chapter, two building surveying tests conducted by one of the ENGO 500 Project 

Groups at the Department of Geomatics Engineering (UofC) will be utilized to evaluate 

the indoor/outdoor navigation performance of filters and smoothers on integrated 

INS/ZUPT/CUPT systems. Tactical-grade IMU (Litton LN200) was used in both tests. 



124 

 

The objective of the first test was to evaluate the horizontal navigation quality along the 

fixed route around some buildings at U of C with predetermined CUPT points inside and 

outside them. On the other hand, the second test aimed at evaluating the height estimation 

quality in a 7-floor campus elevator with the relative height of each floor measured by a 

total station. The vertical positioning information will be useful for safety monitoring of 

lifts in underground mining operations as well as recreational applications (Martell, 1991; 

Skaloud and Schwarz, 2000). GPS solutions were available while outdoor for both tests 

(where precise initial alignment was achieved). Frequent ZUPTs were added during both 

tests with intentionally chosen time durations and intervals. A cart installed with 

equipment including LN200, NovAtel OEM4 GPS receiver, laptops and other necessary 

hardware were used to collect the data of both tests. More details on these tests can be 

found in Isackson et al (2008). 

 

6.2 Description and Results of the First Test 

6.2.1 Horizontal Test Description 

Before the horizontal test, a conventional traverse survey was performed to place 7 

control points inside the basements of and outside the Engineering Complex at the U of C 

campus (See Figure 6.1 and Figure 6.2). Two Alberta Survey Control Markers (ASCMs), 

263079 and 26252, were used to provide Universal Transverse Mercator (UTM) 

coordinates. The traverse started south from ASCM 263079 where three outside control 

points were placed. The 4
th

 to 7
th

 control points were placed in the basement of the 

Engineering Complex. The coordinate values of the traverse points in both UTM and 
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WGS84 are listed in Table 6.1. Note that height coordinates were not provided in this test 

since it aims to evaluate the horizontal navigation quality only. 

 

Figure 6.1 Points of the Traverse in UTM Coordinates (Zone 11) 

(After Isackson et al., 2008) 

 

The equipment on the cart (See Figure 6.2) was left stationary for more than 10 minutes 

for GPS signal acquisition and INS initial alignment. The procedure of the horizontal 

testing was conducted along the reverse route. The test started from Point #1 to #7. It 

continued along the basement passing Point #6, #5, #4 and exited the Engineering 

building at Point #3. After exiting the building and regaining satellite observations, the 

cart was carried down the stairs and continued north back along the surveyed route from 

Point #3 to Point #2 until reaching the beginning control point (Isackson et al., 2008). 

Note that the GPS signals are intentionally blocked during this time interval while data 

processing to simulate the indoor environment. Also, another 10 minute static 
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observations were recorded at the end of the survey. Twenty one ZUPTs, among which 

six happened at the ground control points from Point #7 to Point #2 (Each lasted for 

about one minute; See the green rows in Table 6.2), were implemented. 

 

 

#7

#6

#5

#4#3

#1

#2

Engineering 

Complex

#7

#6

#5

#4#3

#1

#2

Engineering 

Complex

Figure 6.2 Horizontal Testing Equipment and Route (Courtesy of Google) 
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Table 6.1 Traverse Control Point Coordinates (After: Isackson et al., 2008) 

UTM Zone 11 WGS84 
P

o
in

t 

Northing (m) Easting (m) Latitude (  ° ’ ” ) Longitude (  ° ’ ” ) 

1 5662726.691 700731.313 51 04 51.175 114 08 2.777 

2 5662616.010 700741.973 51 04 47.583 114 08 2.451 

3 5662583.347 700837.085 51 04 46.407 114 07 57.634 

4 5662587.373 700851.430 51 04 46.519 114 07 56.890 

5 5662635.169 700850.177 51 04 48.066 114 07 56.859 

6 5662659.228 700862.281 51 04 48.829 114 07 56.189 

7 5662706.688 700859.918 51 04 50.366 114 07 56.215 

 

Table 6.2 Horizontal Testing ZUPTs (After: Isackson et al., 2008) 

ZUPT(#) 

Start GPS Time 

(s) 

End GPS Time 

(s) 

Duration 

(s) 

1 333876.01 334962.566 1087 
2 334987.116 335002.226 15 
3 335029.487 335042.557 13 
4 335067.957 335082.677 15 
5 335108.928 335123.768 15 
6 335159.109 335214.529 55 
7 335241.48 335257.36 16 
8 335282.11 335337.291 55 
9 335364.382 335416.942 53 

10 335441.993 335496.204 54 
11 335522.874 335577.145 54 
12 335616.916 335676.637 60 
13 335708.617 335731.638 23 
14 335758.528 335772.298 14 
15 335797.189 335814.769 18 
16 335838.689 335856.04 17 
17 335880.52 335894.81 14 
18 335910.08 335966.391 56 
19 335992.092 336007.732 16 
20 336033.912 336052.683 19 
21 336089.653 336108.034 18 
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6.2.2 Horizontal Test Results 

 

The accumulated systematic position errors due to initial value errors and determinant 

accelerometer biases over short time intervals are highly correlated to the velocity errors 

(Skaloud and Schwarz, 2000). Because of this correlation, approximately 75-80% of 

position errors over a short travel period can be removed with the aid by ZUPTs (Huddle, 

1998). The residual errors in navigation-grade INS are mainly caused by white noise and 

will accumulate with the square root of stop number if regular ZUPT time durations and 

intervals are chosen (Huddle, 1998). However, the exclusive use of ZUPTs is limited by 

the inability to estimate the acceleration-dependent errors (e.g. accelerometer scale 

factor), since the integrated acceleration between two stops sums up to zero by a constant 

error (Skaloud and Schwarz, 2000). 

 

The research on INS system observability demonstrated a strong coupling effect exiting 

between tilt errors and horizontal velocities (Bar-Itzhack and Berman, 1988). Hence, the 

observed velocity errors during ZUPTs are capable of providing accurate estimations of 

roll, pitch and the associated horizontal gyro drifts (Grejner-Brzezinska et al., 2001). 

Conversely, the weak observability of heading error by velocities as well as the lack of 

dynamics during static periods leads to the uncontrolled azimuth and the vertical gyro 

drift (Godha et al., 2006). Unfortunately, the azimuth error is one of the primary factors 

contributing to the positioning divergence. As a result, external information, from CUPTs 

in this case, is required to observe and estimate the uncompensated residuals induced by 

acceleration-dependent and azimuth errors when using ZUPTs only. The errors can be 
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further restricted and removed by backward smoothing in post-mission. The horizontal 

indoor navigation dataset will be processed in the order of INS-Only, INS/ZUPT, 

INS/CUPT, and INS/ZUPT/CUPT for performance evaluation under different integration 

strategies. Then, both filtering and smoothing results of FKF, TFS and RTSS will be 

discussed and analyzed. 

 

INS-Only 

The INS-Only trajectories including forward filtering, TFS, and RTSS are shown in 

Figure 6.3. It can be observed that the forward filtering diverged after the GPS 

measurements became unavailable, i.e. near Point #7. Meanwhile, neither TFS nor RTSS 

could improve the filtering performance. Note that the DGPS solutions were only 

available at the beginning part (raw data processed by Waypoint GrafNav/GrafNet™ 

software from NovAtel Inc). Therefore, without the external aiding, the long-term stand-

alone INS results cannot meet the indoor navigation requirements. 

 

Figure 6.3 INS-Only Trajectories 
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INS/CUPT 

Figure 6.4 shows the INS/CUPT trajectories of forward filtering, TFS and RTSS. Similar 

to the discussions in Section 5.3.4, the positioning displacement between the estimation 

results and the corresponding reference coordinates at the control point will be calculated 

in terms of both the time one sample before (OSB) the CUPT and the time one sample 

after (OSA) the CUPT. Table 6.3 lists the OSB position errors of forward filtering TFS 

and RTSS, with respect to north, east, and 2-D. Table 6.4 lists the OSA position errors. 

The 2-D position errors are illustrated in Figure 6.5. 

 

The results indicate that without the ZUPT aiding, the filtering position errors obtained 

by stand-alone INS increased rapidly with time to hundred-meter level before restricted 

by the coordinate updates. Further, TFS and RTSS substantially improved the positioning 

accuracy both during CUPT-free gaps and at control points. 

 

Figure 6.4 INS/CUPT Trajectories 
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Figure 6.5 INS/CUPT 2-D Position Errors 
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Table 6.3 INS/CUPT Position Errors One Sample Before (OSB) Control Points 

North(m) East(m) 2-D (m)  

Control 

Point 

FKF TFS RTSS FKF TFS RTSS FKF TFS RTSS 

#7 3.922 0.0463 0.0463 0.2675 0.0476 0.0475 3.931 0.0664 0.0664 

#6 107.1 -0.0435 -0.0435 151.9 -0.0692 -0.0692 185.9 0.0817 0.0817 

#5 -25.52 -0.0205 -0.0205 -6.085 -0.0356 -0.0356 26.24 0.0411 0.0411 

#4 -43.49 0.0030 0.0030 -89.80 0.0373 0.0373 99.78 0.0374 0.0374 

#3 -1.578 0.0595 0.0595 23.92 0.0858 0.0857 23.98 0.1044 0.1044 

#2 -516.2 0.2058 0.2058 693.7 -0.1143 -0.1143 864.7 0.2354 0.2355 

Abs Mean 116.3 0.0631 0.0631 161.0 0.0650 0.0649 200.8 0.0944 0. 0944 

 

Table 6.4 INS/CUPT Position Errors One Sample After (OSA) Control Points 

North(m) East(m) 2-D (m)  

Control 

Points 

FKF TFS RTSS FKF TFS RTSS FKF TFS RTSS 

#7 0.0256 0.0068 0.0068 0.0101 -0.0066 -0.0066 0.0275 0.0095 0.0095 

#6 -0.0830 -0.0055 -0.0055 -0.0307 -0.0049 -0.0049 0.0885 0.0073 0.0073 

#5 -0.0313 -0.0068 -0.0068 -0.0560 -0.0124 -0.0124 0.0641 0.0141 0.0141 

#4 0.0534 -0.0003 -0.0003 0.1146 0.0072 0.0072 0.1264 0.0072 0.0072 

#3 -0.0492 0.0243 0.0244 0.1109 0.0339 0.0339 0.1213 0.0416 0.0418 

#2 0.1357 0.0826 0.0826 -0.0521 -0.0240 -0.0240 0.1454 0.0860 0.0860 

Abs Mean 0.0630 0.0211 0.0211 0.0624 0.0148 0.0148 0.0955 0.0277 0.0277 
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INS/ZUPT 

The INS/ZUPT trajectories are shown in Figure 6.6. Apparently, frequent ZUPTs helped 

to control the filtering horizontal error drifts around ten-meter level throughout the entire 

surveying process. As discussed previously, without the external aiding like CUPTs, the 

exclusive use of ZUPTs is unable to estimate the acceleration-dependent errors and the 

weak observable heading errors. The visible translational displacement between 

estimated trajectories and control points (as shown in the zoomed figure) shows the 

consequence of these limitations. The position errors in terms of the time “AT” the 

control points (different from the aforementioned OSA since a time interval of ZUPT 

existed at each of the points) are calculated by subtracting the INS/ZUPT estimations 

from the corresponding reference coordinates, which are listed in Table 6.5. The 

comparison between filtering and smoothing manifests that the aiding from velocity 

updates could not help optimal smoothing to provide notable improvement over filtering. 

On the contrary, the filtering performance even outweighs the TFS by checking the 

absolute mean errors. 

 

INS/CUPT/ZUPT 

Figure 6.7 depicted the INS/CUPT/ZUPT trajectories of forward filtering, TFS and 

RTSS. It indicates that this integration gains the merits of the two strategies analyzed 

earlier (i.e. CUPTs & ZUPTs). With frequent ZUPTs, the filtering position errors are 

effectively controlled during the CUPT-free intervals. On the other hand, the CUPTs lead 

the estimation trajectory to converge towards the control points, which mitigates the 

notable translational displacement in Figure 6.6. Table 6.6 and Table 6.7 list the position 
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errors OSB and AT the control points respectively. By checking the mean 2-D position 

errors, the improvement level by TFS is nearly 66.4% while it is 55.7% by RTSS. 

 

  

Figure 6.6 INS/ZUPT Trajectories 

 

Table 6.5 INS/ZUPT Position Errors AT Control Points 

North(m) East(m) 2-D (m)  
Control 

Point 
FKF TFS RTSS FKF TFS RTSS FKF TFS RTSS 

#7 -0.458 -1.030 -0.862 -1.198 -1.581 -1.463 1.283 1.887 1.698 

#6 -1.122 -1.158 -0.724 -2.063 -2.308 -1.610 2.349 2.582 1.765 

#5 -0.206 -0.134 -0.271 -0.265 -0.202 -0.401 0.336 0.242 0.484 

#4 -0.349 -0.223 -0.426 -1.002 -0.949 -1.103 1.061 0.974 1.182 

#3 1.567 1.702 1.095 -1.746 -1.712 -1.723 2.346 2.414 2.041 

#2 1.271 1.241 1.241 -1.976 -2.043 -2.075 2.350 2.310 2.417 

Abs 

Mean 

0.829 0.915 0.770 1.375 1.466 1.396 1.621 1.748 1.598 
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Figure 6.7 INS/CUPT/ZUPT Trajectories 

 

Table 6.6 INS/CUPT/ZUPT Position Errors OSB Control Points 

North(m) East(m) Horizontal(m)  

Control 

Point 
FKF TFS RTS FKF TFS RTS FKF TFS RTS 

#7 -0.3934 0.0543 -0.0424 -1.1696 -0.0391 -0.0847 1.2340 0.0669 0.0948 

#6 0.1418 -0.0079 -0.0016 -0.0827 -0.0143 -0.0037 0.1642 0.0164 0.0040 

#5 0.6957 0.0082 0.0047 1.2651 0.0172 0.0110 1.4438 0.0190 0.0120 

#4 -0.2099 -0.0278 -0.0080 -0.7426 -0.0032 -0.0009 0.7717 0.0280 0.0081 

#3 2.0378 0.0448 0.0107 -0.6014 0.0226 -0.0087 2.1247 0.0502 0.0138 

#2 0.1987 -0.0002 0.0004 -0.1794 -0.0012 -0.0021 0.2677 0.0012 0.0022 

Abs Mean 0.6129 0.0239 0.0113 0.6735 0.0163 0.0185 1.0010 0.0303 0.0225 
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Table 6.7 INS/CUPT/ZUPT Position Errors AT Control Points 

North(m) East(m) Horizontal(m)  

Control 

Point 
FKF TFS RTS FKF TFS RTS FKF TFS RTS 

#7 0.0910 -0.0134 -0.0273 0.0785 -0.0322 -0.0584 0.1202 0.0349 0.0645 

#6 0.0046 -0.0116 -0.0026 0.0346 -0.0075 -0.0097 0.0349 0.0138 0.0100 

#5 -0.017 0.0008 0.0032 -0.0173 0.0075 0.0089 0.0243 0.0076 0.0095 

#4 -0.010 -0.0137 -0.0077 0.0046 0.0018 0.0009 0.0114 0.0138 0.0077 

#3 -0.028 -0.0017 0.0051 0.0093 0.0006 0.0008 0.0299 0.0018 0.0052 

#2 0.0026 -0.0014 -0.0018 0.0031 0.0035 0.0020 0.0041 0.0037 0.0027 

Abs Mean 0.0257 0.0071 0.0079 0.0246 0.0089 0.0135 0.0375 0.0126 0.0166 

 

Comparison between Different Integration Strategies 

The positioning accuracy of the horizontal test under different integration strategies can 

further be explained by the north position covariance information, as shown in Figure 6.8. 

The first plot indicates that the filtering position estimation by stand-alone INS degrades 

rapidly with time before being constrained by coordinate updates. At the same time, 

backward smoothing significantly improves the positioning accuracy over filtering. The 

second plot denotes that frequent ZUPT aiding restricts the position STD within 5 meters 

throughout the process, which is a notable overall improvement compared to the 

INS/CUPT results. However, it can be observed that the position accuracy keeps 

degrading with time and the smoothing cannot efficiently limit or remove this 

divergence. This demonstrates the fact that the residual position errors after the ZUPT 

corrections will remain and accumulate. The last plot shows that INS/CUPT/ZUPT 
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integration can include the merits of both the two aiding sources and achieve a superior 

performance. 

  

 

Figure 6.8 North Position STDs Using Different Integration Strategies 

Roughly speaking, the position states in INS-based integration systems are not driven by 

random noises (Refer to the Q matrix in Section 2.3.4). As discussed in Section 3.4.1, 

only those states which are controllable by the system driving noise are smoothable in 

linear systems. However, the results shown in the previous Chapters proved that 

smoothers provide the position a superior estimation over filtering. This could probably 

be explained by the fact that the measurements from either GPS solutions or CUPTs 

directly improve the observability of the position states, which in turn improve their 

smoothability. Note that, due to the nonlinearity nature, the comprehensive controllability 
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and the observability knowledge in the INS-based integration systems has not yet been 

fully understood. Therefore, it could be reasonable that the position errors are smoothable 

as long as CUPTs are provided; conversely, this performance can hardly be achieved by 

ZUPT, which is a velocity-based aiding technique. 

 

The attitude standard deviations under different integration strategies are illustrated in 

Figure 6.9. These plots indicate that the roll and pitch angles can accurately be estimated 

using each of the three implemented integration strategies. Compared to the results of the 

INS/CUPT scheme, the ZUPT aiding (in both INS/ZUPT and INS/CUPT/ZUPT schemes) 

provides tilt angles with high accuracy due to their tight coupling with horizontal 

velocities. Meanwhile, the implementation of optimal smoothing improves the tilt error 

estimation accuracy. On the other hand, the estimation of heading error is not as accurate 

as the tilt angles and its STD diverges with time. This is mainly because of its poor 

observability from the occasional coordinate updates and frequent velocity updates. 

Further, smoothing can hardly obtain enhancement of heading estimation over filtering 

despite the minor improvement provided by the INS/CUPT/ZUPT scheme. This once 

again implies that the smoothability of a system state is not only related to the driving 

noise controllability but also its observability from measurements. 
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Figure 6.9 Attitude STDs Using Different Integration Strategies 
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Figure 6.10 Gyro Bias STDs Using Different Integration Strategies 

The gyro bias standard deviations are shown in Figure 6.10. The estimations of north and 

east gyro biases achieve high performance by ZUPT aiding and backward smoothing 

because of their strong and direct influence on tilt angles. Unfortunately, vertical gyro 
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bias cannot be estimated accurately due to its coupling with azimuth, despite the little 

improvement of vertical gyro bias estimation provided by optimal smoothing (most 

notable when using INS/CUPT/ZUPT). 

 

6.3 Description and Results of the Second Test 

 

6.3.1 Vertical Test Description 

The vertical test was conducted in an elevator of the ICT building at U of C. The 

transparent windows on the elevator make the laser ranging feasible in this test (Figure 

6.11). The height of each of the building seven floors was measured in advance to 

provide aiding information as well as the reference to evaluate the estimation accuracy. A 

total station (see Figure 6.11) was set up at a long enough distance from the building to 

minimize foresight errors and a target was set up at the top of the north corner of the 

elevator window. This target was observed at each floor to provide the zenith angle 

measurement. Using trigonometric functions, the relative height value to the total station 

horizontal line was calculated for each floor (Isackson et al., 2008), see Figure 6.11. The 

corresponding vertical survey measurements and calculations are listed in Table 6.8. 

 

The equipment cart was left stationary outside the ICT building for over 10 minutes 

before moving into the elevator. While ascending, the elevator was stopped at each floor 

for about 25-40 seconds for a ZUPT. After reaching the top, the cart followed a single 

descent to the bottom floor and was carried outside the building again. Another 10 minute 

static observations were recorded at the end of the survey (Isackson et al., 2008). The 
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vertical test route, the height CUPT interpolation and GPS observations in the vertical 

direction are illustrated in Figure 6.12. The time interval and duration of the ZUPT 

corresponding to each floor are listed in Table 6.9. 
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Figure 6.11 Vertical Height Survey Principle of the ICT Building at U of C 

(After Isackson et al., 2008) 
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Table 6.8 Vertical Survey Measurements and Calculations  

(After Isackson et al., 2008) 

Floor # Zenith Angle 

θ  (degree) 

Relative 

Height h  (m) 

Height Per 

Floor h∆ (m) 

Floor Height 

(m) 

1 90.9892 -0.715 0.000 0.00 

2 81.8842 5.6965 6.411 6.41 

3 76.3083 9.7485 4.052 10.46 

4 70.9178 13.8525 4.104 14.57 

5 65.9486 17.879 4.027 18.59 

6 61.2992 21.936 4.057 22.65 

7 57.0303 25.951 4.015 26.67 

 

 

Figure 6.12 Vertical Testing Route (After Isackson et al., 2008) 

Table 6.9 Vertical Testing ZUPTs (After Isackson et al., 2008) 

Start Time (s) Stop Time (s) Duration (s) 

1395.2 1419.6 24 

1429.1 1472.0 43 

1479.6 1518.6 39 

1526.2 1561.4 35 

1569.0 1608.9 40 

1616.5 1657.0 41 

1664.4 1717.6 53 



144 

 

6.3.2 Vertical Test Results 

The straight vertical nature of the elevator ascending and descending route gains some 

special conditions for error propagation (Skaloud and Schwarz, 2000). The fixed heading 

maintains the balance between the accelerometer biases and the tilt errors after the 

levelling alignment. Moreover, the homogenous and benign acceleration profile along a 

straight trajectory moderates the cross correlations of position errors in the horizontal 

channels induced by the acceleration-dependent terms. This was analytically derived with 

respect to the azimuth misalignment and the gyro drift by Wong (1982). Finally, the 

hardly sensed translational displacement avoids the position errors induced by the 

azimuth uncertainty. 

 

Considering the above factors, the remaining position errors by ZUPTs in a vertical 

surveying are mainly the results of accelerometer bias uncertainty, accelerometer scale 

factor, elevator vibration, cable torsion and so forth (Skaloud and Schwarz, 2000; 

Martell, 1991). Aiding from height coordinate updates and optimal smoothing will be 

implemented to restrict the uncompensated errors and to improve the estimation. Since 

the ascending time between neighbouring floors is normally 7-8 seconds (except for 10s 

to the 2
nd

 floor), the accumulated vertical positioning error during that short time interval 

is roughly within decimetre level based on both the tactical-grade IMU (LN200) 

specification (See Appendix A) and the vertical surveying advantages. Therefore, the 

performance when using height CUPT aiding with INS will be similar to the case of 

INS/CUPT/ZUPT scheme. In this test, only the results of INS-Only, INS/ZUPT and 
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INS/CUPT/ZUPT will be analyzed and compared using filtering and smoothing 

algorithms. 

 

INS-Only 

The height estimation processed by INS-Only is shown in Figure 6.13. It indicates that 

the filtering results degrade downwards to an unacceptable level after entering the ICT 

building. Although the height error is restricted by smoothing, its accuracy cannot meet 

the requirement of indoor navigation. 

 

Figure 6.13 INS-Only Height Estimation 

INS/ZUPT 

The height estimations using INS/ZUPT integration are shown in Figure 6.14 and listed 

in Table 6.10, respectively. Note that the height errors are the averaged vertical 

displacements between the estimations and the corresponding vertical surveyed 
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measurements. It suggests that the ZUPT aiding effectively prevents the filtering height 

estimation from diverging. However, decimetre level bias exists at each floor and 

increases along the ascending direction. Different from the conclusion obtained in the 

horizontal test, optimal smoothing significantly improves the height estimation by 71.8% 

for TFS and 69.2% for RTSS. This is probably granted by the advantages of the fixed-

heading vertical survey stated earlier. 

 

INS/CUPT/ZUPT 

The height estimation results of INS/CUPT/ZUPT are shown in Figure 6.15 and given in 

Table 6.11 respectively. The vertical positioning displacements between the estimation 

results and the corresponding reference coordinate at each floor will be calculated in 

terms of the time one sample before (OSB) the height CUPTs. The figure shows that the 

vertical biases between filtering results and floor height measurements are constrained to 

centimetre level with the aiding from CUPTs. Furthermore, the filtering estimates are 

efficiently improved by backward smoothing. The enhancement level is 61.8% for both 

smoothers according to the OSB-CUPT height errors. 
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Figure 6.14 INS/ZUPT Height Estimation 

 

Table 6.10 INS/ZUPT Height Errors at Each Floor 

 

Floor 

Height Error(m) 

 FKF TFS RTSS 

#1 0.1001 0.0233 0.0838 

#2 0.3206 0.1174 0.1588 

#3 0.3726 0.0325 0.1148 

#4 0.4268 -0.0119 0.0737 

#5 0.4697 -0.0822 0.0401 

#6 0.5472 -0.0963 -0.0410 

#7 0.3026 -0.3507 -0.2688 

Abs Mean 0.3628 0.1020 0.1116 
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Figure 6.15 INS/CUPT/ZUPT Height Estimation 

 

Table 6.11 INS/CUPT/ZUPT Height Errors at Each Floor 

 

Floor 

OSB-CUPT Height Error(m) 

 FKF TFS RTSS 

#1 -0.2811 0.0075 0.0075 

#2 0.1105 0.0327 0.0327 

#3 0.0593 0.0112 0.0112 

#4 0.0648 -0.0042 -0.0042 

#5 0.0398 0.0089 0.0089 

#6 0.0754 0.0110 0.0109 

#7 -0.0963 -0.2027 -0.2027 

Abs Mean 0.1039 0.0397 0.0397 
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The results demonstrate that the advantages of the vertical straightness nature and the low 

acceleration profile substantially suppress the height error accumulation. Moreover, the 

aiding from ZUPT and CUPT at each floor was successfully applied in this inertial 

survey with a tactical-grade IMU. However, rigorous vertical path or frequent 

ZUPT/CUPT might not be available in certain surveying environments like underground 

mining or high-rise building (Martell, 1991; Skaloud and Schwarz, 2000). Although the 

height accuracy in the presented test can hardly be achieved under these conditions, the 

integration strategies and the smoothing methodologies introduced in this Chapter 

provided their suitability and potentials in vertical positioning surveying applications. 
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Chapter Seven: CONCLUSIONS AND RECOMMENDATIONS 

 

7.1 Summary 

 

The main objective of this thesis was to evaluate the performance of filtering and optimal 

smoothing methodologies in different INS-based integrated system applications using 

different strategies, update navigation information and auxiliary sensors. The background 

of the inertial navigation concepts and the estimation/filtering/smoothing techniques were 

introduced and discussed in Chapters 2 and 3. The performance evaluations of Kalman 

Filter (KF) and optimal smoothing algorithms were presented in the Chapters 4, 5 and 6 

for the following INS-based applications: Land-Vehicle Navigation (LVN), pipeline 

surveys, and horizontal/vertical building surveys, respectively. 

 

For the work carried out herein, the major contributions of the thesis can be summarized 

as follows: 

• Development and implementation of Kalman Filter (KF) algorithms and the 

corresponding RTSS schemes for INS/GPS, INS/ODOM/CUPT, and 

INS/ZUPT/CUPT integrated systems, respectively. 

• Derivation, development and implementation of the Two Filter Smoother (TFS) 

algorithms for different INS-based applications including LVN, pipeline surveys, 

and horizontal/vertical building surveys using several integration strategies: 

INS/GPS, INS/ODOM/CUPT, and INS/ZUPT/CUPT systems, respectively. 
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• Performance evaluation and demonstration of the navigation estimation accuracy 

improvement using the developed smoothing techniques over the corresponding 

filtering algorithms for all INS-based applications and integration strategies 

mentioned above. 

• Detailed analyses and comprehensive considerations for the smoothability, 

storage requirement, and measurement update gap filling while applying 

smoothing algorithms. 

• Augmentation of the MMSS Research Group software: Aided Inertial Navigation 

System (AINS™) Toolbox, with the newly developed TFS and horizontal/vertical 

CUPT aiding modules. 

 

7.2 Conclusions 

 

For the results obtained throughout the thesis, the corresponding analyses lead to the 

following conclusions in terms of the used INS-based applications: 

 

A. Land-Vehicle Navigation (LVN) 

1. A tactical-grade IMU and a MEMS IMU were used in the INS/GPS field tests 

with several periods of GPS signal outages. For each IMU, the results showed that 

both the TFS and RTSS substantially improved the position estimation accuracy 

during these GPS outages. For the 60s outages for example, both smoothers 

improved the 3-D position errors by more than 95% in the case of each IMU. 
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2. The estimation efficiency and effectiveness of the developed TFS were 

comparable to the commonly used RTSS. 

3. The efficiency of both smoothers is upgrading with the increasing length of GPS 

outages. The improvement levels in the first test (using the tactical-grade IMU) 

were 56.4%, 89.8%, 95.4% and 96.6% for 10s, 30s, 60s and 90s GPS outages, 

respectively. The corresponding improvement levels in the second test (using the 

MEMS IMU) were 34.6%, 86.8%, 95.7% and 96.4% respectively. 

 

B. Pipeline Surveys 

1. Odometer-derived velocities and non-holonomic constraints were used as 

auxiliary updates for the INS during navigation between control points. It was 

shown that those updates kept the filtering trajectory straight and effectively 

prevented the stand-alone INS error accumulation from growing rapidly with 

time. Then, using Coordinate Updates (CUPTs) as position updates when the INS 

passed by the fixed control points, the divergent position errors were effectively 

restricted. 

2. The positioning errors obtained by filtering in either forward or backward 

directions were substantially reduced by the developed smoothing algorithms. The 

improvement level of TFS and RTSS was above 90.0% in terms of the 3-D OSB 

position errors; the corresponding improvement level was above 42% in terms of 

the 3-D OSA position errors. 

3. The height errors are greater than those in horizontal directions, even if they are 

restricted by the CUPTs and further smoothed by the TFS or RTSS algorithms. It 
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was probably the consequence of the longer lever-arms in the vertical direction 

between the above ground markers and the passing PIG inside the underground 

pipeline. On the other hand, the sudden jumps, speed excursions and continuous 

trembling observed in the up velocity could also increase the height uncertainty 

and jeopardize its estimation accuracy. 

 

C. Horizontal Building Surveys 

1. The stand-alone INS results cannot meet the indoor navigation requirements. 

2. Frequent ZUPTs help to control the horizontal drift of the filtering estimation 

within ten-meter level throughout the entire surveying process; however, 

metre-level translational displacements exist between the estimated 

trajectories and the control points. 

3. Consequently, applying optimal smoothing algorithms using ZUPTs only did 

not provide significant improvement over filtering due to the lack of system 

controllability and observability. 

4. INS/CUPT/ZUPT integration strategy benefits from the virtues of both the 

two aiding sources and achieves a superior performance compared to the other 

two integration schemes (i.e. INS/CUPT and INS/ZUPT). The results showed 

that the smoothing improved the filtering results by 66.4% in case of the TFS 

and by 55.7% in case of the RTSS, respectively. 

5. The roll and pitch angles can accurately be estimated under each of the 

integration strategies. ZUPT aiding provided tilt angles high accuracy due to 

their tight coupling with horizontal velocities. On the other hand, the 
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estimation of heading error is not as accurate as the tilt angles because of its 

poor observability from occasional coordinate updates and frequent velocity 

updates. Meanwhile, the implementation of optimal smoothing improved the 

tilt error estimation accuracy but could hardly obtain notable enhancement of 

heading estimation over filtering. 

 

D. Vertical Building Surveys 

 

1. For height estimation in the elevator of multi-floor building using an INS-

based system, the straight vertical nature of the elevator movement provides 

several special advantages to constrain the accumulation of systematic errors. 

2. ZUPTs aiding effectively controlled the filtering height drift, but decimetre 

level bias existed at each floor and increased along the ascending direction. 

By the virtue of the fixed heading along the vertical direction, optimal 

smoothing significantly improved the height estimation by 71.8% using the 

TFS algorithm and by 69.2% using RTSS. 

3. The filtering vertical errors were reduced to centimetre level under 

INS/CUPT/ZUPT integration strategy. Moreover, the filtering estimates were 

efficiently improved by both of the TFS and RTSS algorithms with 

enhancement levels of more than 61%. 

4. The integration strategies and smoothing methodologies proposed in this 

application have promising potentials in other vertical positioning surveying 

applications. 
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7.3 Recommendations for Future Work 

 

1. In the proposed TFS structure, the implementation of BKF without a backward 

INS mechanization relies on the stored FKF results. Conversely, a completely 

independent BKF is another choice for TFS, in which the backward INS 

mechanization is implemented to provide the INS solutions for both the backward 

nominal trajectory and the backward measurement updates. 

2. The Adaptive Kalman Filter (AKF) aims to attain the optimal parameters in the 

process and measurement noise matrices. This objective has the potential to be 

fulfilled and researched using smoothing methodologies. The criterion to obtain 

the accurate a priori information by observing the smoothing results is 

recommended as a topic to be investigated. 

3. The development and implementation of the RTSS and TFS in tightly-coupled 

and deeply-coupled INS/GPS integrated systems should be considered in future 

work. 

4. Measurement-While-Drilling (MWD) and Wellbore-Mapping (WBM), for both 

vertical and horizontal boreholes, are potential navigation fields for INS and 

aiding sensors. Due to the operation environment, GPS is completely unavailable. 

With the emerging technology of MEMS inertial sensors, and other small-size 

aiding sensors, the design and implementation of the RTSS and TFS for these 

applications are recommended. 



156 

 

APPENDIX A 

 

Summary of Litton LN-200 IMU Specifications (Source from www.littongcs.com) 

 

Physical Characteristics: 

 

• Weight: 1.54 pounds (700 grams) 

• Size: 3.5 inches (8.9cm) diameter by 3.35 inches (8.5cm high) 

• Power: 10 watts steady-state (nominal) 

• Cooling: Conduction to mounting plate 

• Mounting: 4 Mounting bolts - M4 

• Activation Time: 0.8 sec (5 sec to full accuracy) 

 

Performance-Gyroscope: 

 

• Gyro Bias Repeatability: 1 to 10 hour/°  (1 sigma) 

• Random Walk: 0.04 to 0.1 hour/°  Power Spectral Density: (PSD) level 

• Scale Factor Stability: 100 PPM (1sigma) 

• Bias Variation: 0.35 hour/°  (1 sigma) with 100 sec correlation time 

• Non-orthogonality: 20 arcsec (1 sigma) 

• Bandwith: >500 Hz 
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Performance-Accelerometer: 

 

• Bias Repeatability: 200 micro-g to 1 milli-g (1 sigma) 

• Scale Factor Stability: 300 PPM (1 sigma) 

• Vibration Sensitivity: 50 micro-g/g² (1 sigma) 

• Bias Variation: 50 micro-g (1 sigma) with 60 sec correlation time 

• Non-orthogonality: 20 arcsec (1 sigma) 

• White Noise: 50 micro-g/ Hz  PSD Level 

• Bandwidth: 100 Hz 

 

Operation-Range: 

 

• Angular rate: ±1000 °/sec 

• Angular Acceleration: ±100,000 °/sec/sec 

• Acceleration: ±40 g 

• Velocity Quantization: 0.00169 fps 

• Angular Attitude: Unlimited 

• Reliability (predicted): 32,995 hours MTBF 
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APPENDIX B 

B.1 Figures in Section 4.3.3 (2
nd

 dataset) 

 

 

 

Figure B.1 Trajectories of FKF, BKF, and TFS in the 2
nd

 Test 
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Figure B.2 Trajectories of FKF and RTSS in the 2
nd

 Test 
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Figure B.3 MEMS RTSS Position and Velocity Errors 

  

Figure B.4 MEMS RTSS Position and Velocity Error STDs 

  

Figure B.5 MEMS North Position Error and STD Comparison in the 1
st
 60s outage 
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B.2 Figures in Section 4.3.4 (2
nd

 dataset) 

 

Figure B.6 MEMS North Position Errors Comparison with 10s outage length 

 

Figure B.7 MEMS North Position Errors Comparison with 30s outage length 
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Figure B.8 MEMS North Position Errors Comparison with 90s outage length 

 

Figure B.9 Mean values of Maximum Position Errors across five 10s outages 
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Figure B.10 Mean values of Maximum Position Errors across five 30s outages 

 

Figure B.11 Mean values of Maximum Position Errors across five 60s outages 
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Figure B.12 Mean values of Maximum Position Errors across five 90s outages 
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