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Abstract

Low-cost inertial sensors are characterized by high noise and large uncertainties in

the outputs such as bias, scale factor and non-orthogonality. Consequently, errors

associated with a low-cost INS in terms of position, velocity and attitude grow rapidly

in stand-alone mode. If good performance can be achieved with low-cost inertial

measurement units (IMUs), cost in existing applications can be reduced and the

development of new applications may be made feasible.

As most of the uncertainties exist in the sensor error behaviour, calibration would

improve the accuracy significantly. Intensive calibration, however, would also increase

the cost of using an IMU. Another way to improve the accuracy will be by augmenting

the IMU with many other aiding sensors: for example, odometers or speedometers.

Choosing an appropriate estimation method is a key problem when developing an

aided INS. Currently, there are three approaches: (i) traditional linearized Kalman

filter (LKF) or the extended Kalman filter (EKF); (ii) sampling-based filtering such

as the unscented Kalman filter (UKF) and particle filters; (iii) artificial intelligence
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(AI)-based estimation such as artificial neural networks (ANN) and adaptive neural

fuzzy information systems (ANFIS). Of these approaches,the performance of the UKF

is compared to that of other existing methods. The performance of the unscented

Kalman smoother (UKS) is also compared with that of the Rauch-Tung-Striebel

(RTS) smoother.

Tests have been conducted using micro-electro-mechanical systems (MEMS)-based

IMUs. The most remarkable advantage of the UKF over existing methods is that it

can handle large and small attitude errors seamlessly. Thus, the UKF is preferred

in situations such as those where the heading error approaches the limit of what an

EKF/LKF can deal with efficiently. The EKF/RTS approach would still be chosen

if the attitude errors can be kept small such that the error dynamics are linear. The

UKF can unify INS error models, although it cannot deal with complete uncertainties

in attitude Therefore, the development stage can be simplified by using the UKF.
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Chapter 1

Introduction

1.1 Background and Objectives

The last decade has shown an increasing demand for small-sized and low-cost inertial

navigation systems (INSs) for use in many applications such as personal navigation,

car-navigation, unmanned aerial vehicles (UAVs) and general aviation. Advances in

fiber optic gyroscope (FOG) and micro-electro-mechanical systems (MEMS) technolo-

gies have shown promising signs toward the development of such systems. Compared

to higher-grade systems, a low-cost INS can experience large position and attitude

errors over short time intervals. This is mainly due to large uncertainties in the sen-

sor output and therefore INSs built on these sensors are vulnerable to nonlinear error

behaviour, especially when the attitude errors become very large.

If the accuracy of a low-cost INS can be improved, cost can be reduced in existing

1



CHAPTER 1. INTRODUCTION 2

applications and new applications can emerge. As most of the uncertainties exist

in the sensor error behaviour, calibration would improve the accuracy significantly.

However, intensive calibration would increase the cost significantly. Another way to

improve the accuracy would be aiding the INS with other complementary sensors or

navigation-related information. Choosing an appropriate estimation method is a key

problem in developing an aided INS.

The analysis and prediction of complex dynamic and nonlinear phenomena have

become very important in various fields of research (Kitagawa and Higuchi, 2001).

Navigation is a typical field of nonlinear dynamic systems and in the core of navigation

system development lies the problem of estimating the states of a dynamic system.

When it comes to state estimation for nonlinear systems, however, there is no single

solution available that clearly outperforms all other strategies (Nørgaard et al., 2000).

Currently, three approaches have been identified in the research on estimation

methods for integrated navigation systems:

1. The linearized Kalman filter (LKF) or the extended Kalman filter (EKF);

2. Sampling-based filters, such as the unscented Kalman filter (UKF) (Shin and

El-Sheimy, 2004; Shin, 2004) and particle filters (Bergman, 1999); and

3. Artificial intelligence (AI)-based methods, such as artificial neural networks

(ANN) (Chiang and El-Sheimy, 2002) or adaptive neural fuzzy information

systems (ANFIS) (El-Sheimy et al., 2004).
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The LKF (or EKF) has long been used in designing navigation software; for

instance see Farrell and Barth (1998), Rogers (2000) and Schwarz and Wei (2000).

The EKF simply applies the Taylor series expansion for the nonlinear system along

with observation equations, and takes terms to the first order, where the probability

density function (PDF) is approximated by a Gaussian distribution (Gordon et al.,

1993); for details see Gelb (1974), Maybeck (1994b) and Grewal and Andrews (2001).

In practice, however, the EKF has shown several limitations. First, the derivation

of the Jacobian matrices for both the system and observation equations is nontrivial

in most applications and often leads to significant implementation difficulties (Julier

et al., 1995). Use of distinct error models results in different styles of filter, each

of which has its own application; for example, the phi-angle error model or the psi-

angle error model (Benson Jr., 1975), and the large heading uncertainty (LHU) or

small heading uncertainty (SHU) models (Scherzinger, 1996). Hence, filter designers

should be extremely cautious in choosing an appropriate error model, or else critical

errors can occur during the development of a navigation system. Second, only small

errors are allowed to be delivered to the EKF (Sukkarieh, 2000, p. 21); otherwise, in

the presence of nonlinear error behaviour, the first-order approximations can cause

biased solutions (Maybeck, 1994b, p. 218) and inconsistency of the covariance update

(Lerro and Bar-Shalom, 1993), which can lead to filter instability. Although second-

order filters can correct the bias terms, their computational cost is high because the

calculation of second order derivatives (Hessian) is required.
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In sampling-based filtering methods, computation of derivatives is not required.

Sequential Monte Carlo filters, also known as particle filters, have been developed for

nonlinear/non-Gaussian processes based on Bayesian filtering theory. Basic sequen-

tial Monte Carlo methods were already introduced in the 1950s to solve problems in

physics (Andrieu et al., 2003). These methods were overlooked and forgotten due to

the lack of computing power (Doucet, 1998), and it was only after the early 1990s

that these methods could be used for practical problems such as target tracking for

radar, communications, econometrics and computer vision (Godsill et al., 2000). See,

for instance, Gordon et al. (1993), Kitagawa (1996), Liu and Chen (1995, 1998),

and Doucet (1998). Bergman (1999) used a particle filter in terrain navigation. Since

particle filters do not make any assumption on the PDF, they have shown superior nu-

merical accuracy to other filtering methods. However, particle filters are not suitable

for high-dimensional systems with a high repetition rate, unless parallel processing

is employed. This is mainly because enormous random particles (samples) must be

generated and transformed through the nonlinear function.

The development of the UKF was pioneered by Julier and Uhlmann (1996) and

Julier et al. (1995, 2000). Other researches were, in turn, stimulated by this work.

Nørgaard et al. (2000) derived the second-order divided difference (DD2) filter based

on the central divided difference and showed its similarity to the UKF. Van der

Merwe et al. (2000) used the UKF to improve the performance of the particle filter.

Lefebvre et al. (2002) argued that the UKF is a special case of the linear regression
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Kalman filter. The underlying intuition of the UKF is that, with a fixed number of

parameters, it should be easier to approximate a Gaussian distribution than it is to

approximate an arbitrary nonlinear function or transformation (Julier and Uhlmann,

1996). The state distribution is again represented by a Gaussian random variable,

but is now specified using a minimal set of carefully chosen sample points, called the

sigma points (SPs). SPs capture the true mean and covariance of the PDF and, when

propagated through the true nonlinear system, capture the transformed mean and

covariance accurately up to the second order for any nonlinearity (Wan and van der

Merwe, 2001, p. 228). The difference between the UKF and particle filters is that the

former takes samples deterministically while the latter randomly selects samples.

A fundamental difference between AI-based estimation methods and the other

two types of estimation methods is that AI-based methods do not use any mathe-

matical models in the system dynamics and measurements; for instance, see Chiang

and El-Sheimy (2002) and El-Sheimy et al. (2004). Although AI-based methods are

simpler in terms of design, there are also limitations to this approach. First, they

do not use any statistical information as input, and they do not output the statis-

tics associated with the solution. The statistics of the output play a significant role

in post-processing applications such as surveying. In addition, as will be discussed

in Chapters 3 and 4, for the LKF, EKF, and sampling-based approaches, smooth-

ing can be applied to obtain best estimates superior in performance to the AI-based

methods. Thus, AI-based methods are not suitable for post-processing applications.
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Second, the mathematical models of vehicle motion and measurements are well devel-

oped and AI-based methods developed to date neglect these legacies. Thus, AI-based

methods can show superior performance only when long measurement outages oc-

cur. Measurement outages, however, are not so important an issue in multi-sensor

integrated navigation systems because there almost always exists at least one mea-

surement update option. For instance, in land-vehicle navigation, outages of the

global positioning system (GPS) can be relieved by measurements from odometers

or speedometers. Third, if the vehicle experiences dynamics range not included in

the training set, acceptable performance of the estimator can hardly be expected.

Therefore, the integrity of the system may not be guaranteed. Finally, hardware cost

will be increased for on-line training due to the heavy computational burden.

The topic of this dissertation is unscented estimation techniques for low-cost aided

inertial navigation. AI-based estimation methods are disregarded because smoothers

have not yet been developed. As existing methods, an LKF with a feedback loop,

which can be considered as the EKF, and the Rauch-Tung-Striebel (RTS) smoother

will be developed first. Then, a UKF and an unscented Kalman smoother (UKS) will

be developed as new methods. This dissertation will, in particular, investigate the

following:

1. Design and implement of the UKF for aided INS.

2. Analysis of the UKF performance against a comparable EKF.
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3. Demonstration of performance advantages that the UKF has over the EKF.

Performance of the EKF and UKF will be compared experimentally using MEMS

IMUs.

1.2 Dissertation Outline

In Chapter 2, the essential building blocks for an aided INS are developed. Atti-

tude representations frequently used in an INS will be introduced. Various reference

frames will be defined. Forward and backward digital INS mechanization algorithms

will be presented. Mathematical models for several aiding sources will be discussed.

Alignment methods will be reviewed and evaluated for their pertinence in a low-cost

INS.

In Chapter 3, the EKF and the RTS smoother are developed. Various INS error

models will be introduced. The traditional LKF will be discussed in detail together

with its feedback structure. The relationship between the LKF and the rigorous style

of EKF will be addressed. Finally, the implementation of the RTS smoother for an

aided INS will be discussed.

The development of the UKF and UKS is covered in Chapter 4. Proposals for the

unscented transformations (UT) will be reviewed. Then, the UT will be extended

to the development of a quaternion-based forward and backward UKF. These two

solutions will be combined by the UKS.
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In Chapter 5, the performance of the EKF/RTS and the UKF/UKS will be com-

pared using MEMS IMUs.

Finally, in Chapter 6, the major findings of this research will be summarized.

Conclusions will be drawn and topics warranting further research will be suggested.



Chapter 2

Fundamentals of Aided Inertial

Navigation

In this chapter, background information will be provided that serves as a basis for

the development and analysis in later chapters. Since attitude representations play

a significant role in INS development, Section 2.1 summarizes commonly used atti-

tude parameterizations and describes conversions from one form to another. Section

2.2 defines various reference frames required in the implementation of an INS. The

forward and backward INS mechanization algorithms are developed in Sections 2.3

and 2.4, respectively. The aiding sources for a low-cost INS will be described in Sec-

tion 2.5. Finally, in Section 2.6, current alignment techniques are reviewed and their

problems when applied to development of a low-cost INS are discussed.

9
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2.1 Attitude Parameterizations

Numerous attitude parameterization techniques are surveyed in Shuster (1993). Among

them, the direction cosine matrix (DCM), quaternion, rotation vector, and Euler an-

gles are commonly used in inertial navigation; for example, see Savage (2000). This

section discusses relationships between these parameterizations with the emphasis

on quaternions. Readers interested in a more thorough treatment of rotations and

quaternions are referred to Altmann (1986) and Kuipers (1999). General frames ‘a,’

‘b,’ and ‘c’ will be used throughout this section. The quaternion, rotation vector,

and DCM for the transformation from the ‘b’ frame to the ‘a’ frame are represented

by qa
b, φ, and Ca

b, respectively. The “rotation vector” defines an axis of rotation

and magnitude for a rotation about the rotation vector (Savage, 2000, p. 3-21). As

illustrated in Figure 2.1, the frame ‘b’ is initially aligned with the frame ‘a,’ and then

is rotated about φ to obtain the final attitude of the frame ‘b,’ equivalent to rotating

the frame ‘a’ to obtain the frame ‘b.’

2.1.1 Quaternion Algebra

The quaternion qa
b is a four-dimensional vector composed of a scalar part s and a

three-dimensional vector part v:

qa
b ≡

s
v

 . (2.1)
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za

zb

xb

yb

ya

xa

Figure 2.1: The rotation vector

We will consider only the case s ≥ 0 because qa
b is equivalent to −qa

b, which will be

explained in Section 2.1.3. The inverse (conjugate) of the quaternion is written as

(qa
b)
−1 =

 s

−v

 . (2.2)

The product of the two quaternions

qa
c ≡

s1

v1

 , qc
b ≡

s2

v2


is defined as

qa
b = qa

c ? qc
b ≡

 s1s2 − vT1 v2

s1v2 + s2v1 + v1 × v2

 , (2.3)

where ? denotes the quaternion product (Miller, 1983).
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2.1.2 Rotation Vector Rate

Assume the frame ‘b’ is rotating with respect to the frame ‘a’ with the rate ωb
ab. The

rotation vector rate can then be written as

φ̇ = ωb
ab +

1

2
φ× ωb

ab +
1

‖φ‖2

(
1− ‖φ‖ sin ‖φ‖

2(1− cos ‖φ‖)

)
φ×

(
φ× ωb

ab

)
(2.4)

≈ ωb
ab +

1

2
φ× ωb

ab +
1

12
φ×

(
φ× ωb

ab

)
,

where φ̇ = dφ/dt. Eq. (2.4) was first derived by Bortz (1971) and, hence, referred

to as the Bortz equation. The second and third terms on the right hand side of Eq.

(2.4) are due to non-inertially measurable angular motion (non-commutativity rate

vector) (Bortz, 1971).

2.1.3 Quaternion in Terms of Rotation Vector

The quaternion in Eq. (2.1) can be expressed in terms of the rotation vector φ as

follows (Savage, 2000, p. 3-48):

qa
b =

 cos ‖0.5φ‖

sin ‖0.5φ‖
‖0.5φ‖

0.5φ

 , (2.5)

cos ‖0.5φ‖ = 1− ‖0.5φ‖2

2!
+
‖0.5φ‖4

4!
− · · · ,

sin ‖0.5φ‖
‖0.5φ‖

= 1− ‖0.5φ‖2

3!
+
‖0.5φ‖4

5!
− · · · ,
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where ‖ · ‖ denotes the Euclidean norm. −qa
b can be expressed as follows:

− qa
b =

 − cos ‖0.5φ‖

−sin ‖0.5φ‖
‖0.5φ‖

0.5φ

 =

 cos(π − ‖0.5φ‖)

−sin(π − ‖0.5φ‖)
0.5(2π − ‖φ‖)

0.5(2π − ‖φ‖) φ
‖φ‖

 , (2.6)

which states that −qa
b represents a rotation with the magnitude of 2π−‖φ‖ about the

opposite direction of φ. Figure 2.2 illustrates that both rotating the frame ‘a’ with

the magnitude ‖φ‖ about one direction and rotating the frame ‘a’ with the magnitude

2π − ‖φ‖ about the other direction result in the same frame ‘b.’ Therefore, qa
b and

−qa
b represent the same attitude.

a

b

Figure 2.2: Equivalence of a quaternion to its negative
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2.1.4 Rotation Vector in Terms of Quaternion

Let qa
b =

[
q1 q2 q3 q4

]T
. The rotation vector can then be computed from (Savage,

2000, p. 3-49)

φ =
1

f

[
q2 q3 q4

]T
, (2.7)

f ≡ sin ‖0.5φ‖
‖φ‖

=
1

2

(
1− ‖0.5φ‖2

3!
+
‖0.5φ‖4

5!
− ‖0.5φ‖6

7!
+ · · ·

)
,

‖0.5φ‖ = tan−1 sin ‖0.5φ‖
cos ‖0.5φ‖

=

√
q2
2 + q2

3 + q2
4

q1
.

If q1 = 0, then

φ = π

[
q2 q3 q4

]T
. (2.8)

2.1.5 DCM in Terms of Quaternion

The DCM can be obtained from the corresponding quaternion vector as (Savage,

2000, p. 3-46)

Ca
b =


(q2

1 + q2
2 − q2

3 − q2
4) 2(q2q3 − q1q4) 2(q2q4 + q1q3)

2(q2q3 + q1q4) (q2
1 − q2

2 + q2
3 − q2

4) 2(q3q4 − q1q2)

2(q2q4 − q1q3) 2(q3q4 + q1q2) (q2
1 − q2

2 − q2
3 + q2

4)

 . (2.9)

2.1.6 DCM in Terms of Rotation Vector

The DCM can be written in terms of the rotation vector as (Savage, 2000, p. 3-26)

Ca
b = I +

sin ‖φ‖
‖φ‖

(φ×) +
1− cos ‖φ‖
‖φ‖2

(φ×) (φ×) , (2.10)
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where (φ×) denotes the cross-product (skew-symmetric) form of φ =

[
φx φy φz

]T
,

(φ×) ≡


0 −φz φy

φz 0 −φx

−φy φx 0

 . (2.11)

The derivation of Eq. (2.10) is also found in Bortz (1971). If ‖φ‖ is very small,

sin ‖φ‖/‖φ‖ ≈ 1 and the second-order term can be neglected. Therefore, Eq. (2.10)

can be approximated by

Ca
b ≈ I + (φ×) . (2.12)

2.1.7 Quaternion in Terms of DCM

The best method for extracting the quaternion elements from the DCM was a subject

of considerable interest in the recent past and at the end of this controversy the

algorithm to be introduced here was shown to be the most robust (Shuster, 1993;

Savage, 2000). The algorithm works as follows. First, we compute

P1 = 1 + tr(Ca
b), P2 = 1 + 2c11 − tr(Ca

b),

P3 = 1 + 2c22 − tr(Ca
b), P4 = 1 + 2c33 − tr(Ca

b),

(2.13)

where tr(·) denotes the trace of a matrix and cij’s, 1 ≤ i, j ≤ 3, are ijth elements of

the DCM Ca
b.

If P1 = max(P1, P2, P3, P4), then:

q1 = 0.5
√
P1, q2 =

c32 − c23
4q1

, q3 =
c13 − c31

4q1
, q4 =

c21 − c12
4q1

. (2.14a)
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If P2 = max(P1, P2, P3, P4), then:

q2 = 0.5
√
P2, q3 =

c21 + c12
4q2

, q4 =
c13 + c31

4q2
, q1 =

c32 − c23
4q2

. (2.14b)

If P3 = max(P1, P2, P3, P4), then:

q3 = 0.5
√
P3, q4 =

c32 + c23
4q3

, q1 =
c13 − c31

4q3
, q2 =

c21 + c12
4q3

. (2.14c)

If P4 = max(P1, P2, P3, P4), then:

q4 = 0.5
√
P4, q1 =

c21 − c12
4q4

, q2 =
c13 + c31

4q4
, q3 =

c32 + c23
4q4

. (2.14d)

Finally, if q1 < 0, then q := −q.

2.1.8 DCM in Terms of Euler Angles

A classical method for describing the attitude between two coordinate frames is

through an Euler angle rotation sequence (Savage, 2000, p. 3-31). The DCM can

be computed from the Euler angles, roll (φ), pitch (θ), and heading (ψ), as follows
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(Savage, 2000, p. 3-33):

c11 = cos θ cosψ

c12 =− cosφ sinψ + sinφ sin θ cosψ

c13 = sinφ sinψ + cosφ sin θ cosψ

c21 = cos θ sinψ

c22 = cosφ cosψ + sinφ sin θ sinψ

c23 =− sinφ cosψ + cosφ sin θ sinψ

c31 =− sin θ

c32 = sinφ cos θ

c33 = cosφ cos θ

. (2.15)

2.1.9 Euler Angles in Terms of DCM

The pitch angle can be computed as

θ = tan−1 sin θ

cos θ
= tan−1 −c31√

c232 + c233
, (2.16a)

where |θ| ≤ π/2 because the positive square root is chosen (Savage, 2000, p. 3-34).

When |θ| 6= π/2 (|c31| < 0.999), the roll and heading angles can be computed as

(Savage, 2000, p. 3-34)

φ = tan−1 sinφ

cosφ
= tan−1 c32

c33
, (2.16b)

ψ = tan−1 sinψ

cosψ
= tan−1 c21

c11
. (2.16c)
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If |c31| ≥ 0.999, only linear combinations of the roll and heading can be computed

(Savage, 2000, p. 3-35):
ψ − φ = tan−1 c23 − c12

c13 + c22
: c31 ≤ −0.999,

ψ + φ = π + tan−1 c23 + c12
c13 − c22

: c31 ≥ 0.999.

(2.17)

2.1.10 Quaternion in Terms of Euler Angles

The quaternion can be computed from the Euler angles as follows (McGreevy, 1986):

qa
b =



cos
φ

2
cos

ϑ

2
cos

ψ

2
+ sin

φ

2
sin

ϑ

2
cos

ψ

2

sin
φ

2
cos

ϑ

2
cos

ψ

2
− cos

φ

2
sin

ϑ

2
sin

ψ

2

cos
φ

2
sin

ϑ

2
cos

ψ

2
+ sin

φ

2
cos

ϑ

2
sin

ψ

2

cos
φ

2
cos

ϑ

2
sin

ψ

2
− sin

φ

2
sin

ϑ

2
cos

ψ

2


. (2.18)

2.2 Reference Frames and Transformations

Many reference frames are involved in INS development and analysis because a vector

represented in one frame must frequently be transformed into another. For instance,

the specific force and angular rate are resolved in the body frame of the IMU. To

acquire the navigation states, these measurements have to be transformed into the

navigation frame of interest. This section first defines various reference frames and

then describes the properties pertaining to each and the relationships between them.
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2.2.1 The Inertial Frame

The inertial frame (i-frame) is an ideal frame of reference in which ideal accelerometers

and gyroscopes fixed to the i-frame have zero outputs. However, since it is very hard

to construct a strict i-frame, a quasi-inertial frame is used in practice. This frame has

its origin at the centre of the Earth and axes that are non-rotating with respect to

distant galaxies. Its z-axis is parallel to the spin axis of the Earth, its x-axis points

towards the mean vernal equinox, and its y-axis completes a right-handed orthogonal

frame as shown in Figure 2.3. The vernal equinox is the ascending node between the

celestial equator and the ecliptic. So, the right ascension system is used as the inertial

frame, since it closely approximates an inertial frame (Schwarz, 1999, p. 114).

Celestial
Equator

Vernal equinox

Xi

Zi ||Ze
Ecliptic

Yi

Figure 2.3: The inertial frame
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2.2.2 The Earth Frame

The Earth frame (e-frame) has its origin at the centre of mass of the Earth and axes

that are fixed with respect to the Earth. Its x-axis points toward the mean meridian

of Greenwich, its z-axis is parallel to the mean spin axis of the Earth, and its y-axis

completes a right-handed orthogonal frame.

The rotation rate vector of the e-frame with respect to the i-frame projected to

the e-frame is given as

ωe
ie =

[
0 0 ωe

]T
, (2.19)

where ωe is the magnitude of the rotation rate of the Earth ( 7.2921158×10−5 rad/s).

The position vector in the e-frame can be expressed in terms of the geodetic

latitude (ϕ), longitude (λ) and height (h) as follows (Schwarz and Wei, 2000):

re =


x

y

z

 ≡


(RN + h) cosϕ cosλ

(RN + h) cosϕ sinλ

(RN(1− e2) + h) sinϕ

 , (2.20)

where e is the first eccentricity of the reference ellipsoid, and RN is the radius of

curvature in the prime vertical.

Geodetic coordinates can be computed from the e-frame coordinates using the

geometry shown in Figures 2.4 and 2.5. The longitude can be computed simply by

λ = tan−1
2 (y, x), (2.21)

where tan−1
2 (·) is the four-quadrant inverse tangent function. The latitude and height



CHAPTER 2. FUNDAMENTALS OF AIDED INERTIAL NAVIGATION 21

x,y plane

Figure 2.4: Geometry between the Earth frame and geodetic coordinates

computation is more complicated and a commonly used method will be introduced.

First, the height and latitude are initialized as follows:

h0 = 0 and ϕ0 = tan−1
2 (z, (1− e2)p), (2.22)

and p =
√
x2 + y2. Then, the following computations are repeated until the conver-

gence is achieved:

1. Compute the radius of curvature in the prime vertical, RN.

2. Compute the updated height:

h = p/ cosϕ−RN. (2.23)

3. Compute the updated latitude:

ϕ = tan−1
2

(
z, p

(
1− e2RN

RN + h

))
. (2.24)
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However, Eq. (2.23) is singular in near polar areas and is also sensitive to the

latitude computation error. Therefore, a non-singular computation procedure will be

developed here based on the geometry shown in Figure 2.4. If p is small, then the

position is in near polar areas. Hence,

h = sign(|z| − |z0|)
√

(p− p0)2 + (z − z0)2, (2.25a)

where

p0 = RN cosϕ,

z0 = RN(1− e2) sinϕ,

and sign(·) denotes the sign of the argument. On the other hand, if p is large,

h = sign(p− p0)
√

(p− p0)2 + (z − z0)2. (2.25b)

2.2.3 The Navigation Frame

The navigation frame (n-frame) is a local geodetic frame which has its origin coincid-

ing with that of the sensor frame, with its x-axis pointing toward geodetic north, its

z-axis orthogonal to the reference ellipsoid pointing down, and its y-axis completing

a right-handed orthogonal frame, i.e. the north-east-down (NED) system as shown

in Figure 2.5.

As the n-frame is singular at the poles where the north direction cannot be defined,

the wander frame is used in practice. Although the n-frame is used in the research
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xe

xn
ynzn

λ
φ

ze

ye

Figure 2.5: The Earth frame and the navigation frame

owing to the simplicity in visualization during the analysis, an n-frame navigator can

easily be converted to a wander frame navigator.

The DCM from the n-frame to the e-frame is expressed in terms of the geodetic

latitude and longitude as

Ce
n =


− sinϕ cosλ − sinλ − cosϕ cosλ

− sinϕ sinλ cosλ − cosϕ sinλ

cosϕ 0 − sinϕ

 . (2.26)

The quaternion corresponding to Ce
n is written as

qe
n =



cos(−π/4− ϕ/2) cos(λ/2)

− sin(−π/4− ϕ/2) sin(λ/2)

sin(−π/4− ϕ/2) cos(λ/2)

cos(−π/4− ϕ/2) sin(λ/2)


. (2.27)
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The Earth’s rotation rate can be described in the n-frame using

ωn
ie = Cn

eω
e
ie =

[
ωe cosϕ 0 −ωe sinϕ

]T
. (2.28)

The rotation rate of the n-frame with respect to the e-frame is called the transport

rate, which can be expressed in terms of the rate of change of latitude and longitude

as (Titterton and Weston, 1997, p. 52)

ωn
en =


λ̇ cosϕ

−ϕ̇

−λ̇ sinϕ

 . (2.29)

Substituting ϕ̇ = vN/(RM + h) and λ̇ = vE/(RN + h) cosϕ into Eq. (2.29) yields

ωn
en =


vE/(RN + h)

−vN/(RM + h)

−vE tanϕ/(RN + h)

 , (2.30)

where h is height; vN , vE are velocities in the north and east direction, respectively;

and RM is the meridian radius of curvature.

2.2.4 The Computer Frame

The computer frame (c-frame) is the frame that the INS computer assumes to be the

true navigation frame (Scherzinger, 1996). Hence, as shown in Figure 2.6, there exists

a rotation vector, δθ, describing the misalignment of the c-frame with respect to the
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true n-frame (Benson Jr., 1975):

δθ =


δλ cosϕ

−δϕ

−δλ sinϕ

 , (2.31)

where δϕ and δλ are errors in latitude and longitude, respectively. The DCM from

the n-frame to the c-frame can be written as

Cc
n = I− (δθ×) . (2.32)

c-frame
True n-frame

p-frame

Figure 2.6: Relationship between the true navigation frame, computer frame and

platform frame (Scherzinger, 2004)

The north and east position errors can be written as follows:

δrN = δϕ (RM + h) , (2.33)

δrE = δλ (RN + h) cosϕ. (2.34)
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Substituting Eqs. (2.33) and (2.34) into Eq. (2.31) yields

δθ =


δrE/ (RN + h)

−δrN/ (RM + h)

−δrE tanϕ/ (RN + h)

 . (2.35)

2.2.5 The Body Frame

The body frame (b-frame) is the frame in which the accelerations and angular rates

generated by the strapdown accelerometers and gyroscopes are resolved (Scherzinger,

1996). The b-frame axes will be the same as the IMU’s body axes here.

2.2.6 The Platform Frame

The platform frame (p-frame) is the frame in which the transformed acceleration from

the accelerometers and angular rates from the gyroscopes are resolved (Scherzinger,

1996). Hence, the computed DCM from the b-frame to the n-frame is the same as

the DCM from the b-frame to the p-frame:

Ĉ
n

b = Cp
b = Cp

nC
n
b, (2.36)

where ·̂ denotes the computed quantity. As shown in Figure 2.6, the ψ-angle is the

orientation difference between the p-frame and the c-frame. Hence, for small attitude

errors,

Cp
c = I− (ψ×) . (2.37)
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The difference in the orientation of the p-frame from the true n-frame is referred to

as the φ-angle:

Cp
n = I− (φ×) . (2.38)

Since Cp
n = Cp

cC
c
n, to the first order we can write

φ = ψ + δθ. (2.39)

2.2.7 The Computed Platform Frame

Scherzinger (1996) introduced the computed platform frame (c’-frame) to derive the

large heading uncertainty model. The c’-frame is defined as the coordinate frame

whose x-y plane is coplanar with the c-frame and whose azimuth coincides with the

p-frame azimuth. If only the roll and pitch errors are very small, then Eq. (2.37)

should be rewritten as

Cp
c = Cp

c′C
c′

c =
[
I−

(
ψxy×

)]
Cc′

c , (2.40)

where

ψxy =


ψx

ψy

0

 and Cc′

c =


cosψz sinψz 0

− sinψz cosψz 0

0 0 1

 . (2.41)

In the above equation, ψx, ψy and ψz are the elements of the ψ-angle.
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2.2.8 The Vehicle Frame

The vehicle frame (v-frame) is an orthogonal axis set that is aligned with the roll,

pitch and heading axes of a vehicle; i.e. forward-transversal-down, as shown in Figure

2.7. This frame is required because sometimes the IMU’s b-frame is not parallel to

the v-frame due to space limitations within the vehicle.

xv
zv

yv

Figure 2.7: The vehicle frame

2.3 Forward INS Mechanization

Savage (2000) describes the two-speed INS mechanization algorithms that are the

result of over 20 years of worldwide developments in strapdown inertial navigation

algorithms. The high-speed part (1-4 kHz) computes the coning and sculling motion,

and the medium-speed part (100-400Hz) generates the navigation states; i.e. posi-

tion, velocity, and attitude. However, advances in modern computer technology will

eventually motivate the use of the single-speed algorithm (Savage, 2000, p. 7-4).
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Development of any discrete-time INS mechanization algorithms start from the

continuous-time counterpart:

v̇n = Cn
bf

b + gn − (2ωn
ie + ωn

en)× vn, (2.42a)

Ċ
e

n = Ce
n (ωn

en×) , (2.42b)

ḣ = −vD, (2.42c)

Ċ
n

b = Cn
b

(
ωb

ib×
)
− (ωn

in×)Cn
b, (2.42d)

where vD is the downward velocity. In this section, a single-speed algorithm will be

developed by simplifying Savage (2000) such that the performance of the discrete-

time algorithms should be as close as possible to that of the above continuous-time

dynamics equations. Quaternions will be used extensively in this development.

2.3.1 Sensor Output

To achieve precise digitization of the sensed accelerations and angular rates, high-

grade IMUs typically apply precise analog integration as a part of digitization. Thus,

the outputs from such systems are incremental angles, ∆θ̃k, and incremental velocities

due to the specific force, ∆ṽb
f ,k, where ·̃ denotes values corrupted by sensor errors.

However, most low-cost IMUs usually output the angular rate, ω̃b
ib, and the specific

force, f̃
b
, directly. In these systems, therefore, the following integration procedures
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must be applied initially:

∆ṽb
f ,k =

∫ tk

tk−1

f̃
b
dt, (2.43a)

∆θ̃k =

∫ tk

tk−1

ω̃b
ibdt. (2.43b)

2.3.2 Error Compensation

Let us first define the following operator:

Ξ(a,b) =


a1 b1 b2

b3 a2 b4

b5 b6 a3

 , (2.44)

where a =

[
a1 a2 a3

]T
and b =

[
b1 b2 b3 b4 b5 b6

]T
are arbitrary 3 × 1 and

6 × 1 vectors, respectively. Then, known sensor errors can be compensated for as

follows:

∆θk =
[
I + Ξ(s0

g,γ
0
g)

]−1
[
∆θ̃k − b0

g∆tk

]
≈

[
I−Ξ(s0

g,γ
0
g)

] [
∆θ̃k − b0

g∆tk

]
, (2.45a)

∆vb
f ,k =

[
I + Ξ(s0

a,γ
0
a)

]−1 [
∆ṽb

f ,k − b0
a∆tk

]
≈

[
I−Ξ(s0

a,γ
0
a)

] [
∆ṽb

f ,k − b0
a∆tk

]
, (2.45b)

where ∆tk = tk−tk−1; b and s are 3×1 vectors of biases and scale factors, respectively;

the superscript ‘0’ denotes known quantities; the subscripts ‘a’ and ‘g’ represent the
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accelerometer and gyroscope triads, respectively; and the non-orthogonalities can be

written as

γ =

[
γxy γxz γyx γyz γzx γzy

]T
. (2.46)

2.3.3 Velocity Update

Referring to Eq. (2.42a), the digital algorithm for velocity update can be written

generally as (Savage, 2000, p. 7-30)

vn
k = vn

k−1 + ∆vn
f ,k + ∆vng/cor,k, (2.47)

where ∆vn
g/cor is the velocity increment due to the gravity and Coriolis force; and

∆vn
f ,k is the velocity increment due to the specific force, which can be written as

follows (Savage, 2000, p. 7-33,7-52):

∆vn
f ,k =

1

2

[
C

n(k)
n(k−1) + I

]
C

n(k−1)
b(k−1)∆v

b(k−1)
f ,k , (2.48a)

∆v
b(k−1)
f ,k =

∫ tk

tk−1

C
b(k−1)
b(t) fbdt

≈ ∆vb
f ,k +

1

2
∆θk ×∆vb

f ,k

+
1

12

(
∆θk−1 ×∆vb

f ,k + ∆vb
f ,k−1 ×∆θk

)
, (2.48b)

where the superscript/subscript b(k) and n(k) denote the b-frame and n-frame at

time tk, respectively. The second and third terms on the right hand side of Eq.

(2.48b) correspond to the rotational and sculling motion, respectively, and are re-

quired because we cannot integrate angular rate and linear acceleration concurrently
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in a digital implementation. Substituting C
n(k)
n(k−1) = I− (ζk×) into Eq. (2.48a) yields

∆vn
f ,k = [I− (0.5ζk×)]C

n(k−1)
b(k−1)∆v

b(k−1)
f ,k , (2.49a)

ζk = [ωn
ie + ωn

en]k−1/2 ∆tk, (2.49b)

where ζk is the rotation vector corresponding to the n(k)-frame with respect to the

attitude of the n(k − 1)-frame; the subscript ‘k − 1/2’ denotes values at the midway

in the interval [tk−1, tk]. Since ωn
ie and ωn

en are functions of the position and velocity,

the midway position and velocity have to be computed first. Because the position

and velocity at time tk are not available as yet, extrapolations must be made. First,

the height extrapolation can be computed as follows:

hk−1/2 = hk−1 −
vD,k−1∆tk

2
. (2.50)

The latitude and longitude can be extrapolated as follows:

q
e(k−1)
n(k−1/2) = q

e(k−1)
n(k−1) ? q

n(k−1)
n(k−1/2), (2.51a)

q
e(k−1/2)
n(k−1/2) = q

e(k−1/2)
e(k−1) ? q

e(k−1)
n(k) , (2.51b)

where

q
n(k−1)
n(k−1/2) =

 cos ‖0.5ζk−1/2‖
sin ‖0.5ζk−1/2‖
‖0.5ζk−1/2‖

0.5ζk−1/2

 , (2.51c)

q
e(k−1/2)
e(k−1) =

 cos ‖0.5ξk−1/2‖

−
sin ‖0.5ξk−1/2‖
‖0.5ξk−1/2‖

0.5ξk−1/2

 , (2.51d)
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ζk−1/2 = ωn
in(tk−1)∆tk/2 and ξk−1/2 = ωe

ie∆tk/2.

The velocity extrapolation can be obtained as follows:

vn
k−1/2 = vn

k−1 +
1

2
∆vn

k−1, (2.52a)

∆vn
k−1 = ∆vn

f ,k−1 + ∆vng/cor,k−1, (2.52b)

where ∆vn
k−1 is a value used at the previous epoch and stored. The gravity and

Coriolis correction term in Eq. (2.47) can be computed as follows:

∆vn
g/cor,k = [gn − (2ωn

ie + ωn
en)× vn]k−1/2 ∆tk. (2.53)

2.3.4 Position Update

The quaternion from the n-frame to the e-frame, qe
n, contains information about the

latitude and longitude. Hence, qe
n is updated using the quaternion product chain rule

as follows:

q
e(k−1)
n(k) = q

e(k−1)
n(k−1) ? q

n(k−1)
n(k) , (2.54a)

q
e(k)
n(k) = q

e(k)
e(k−1) ? q

e(k−1)
n(k) , (2.54b)

where the superscript/subscript e(k) represents the e-frame at time tk. The n-frame

rotation is applied in Eq. (2.54a), followed by the e-frame rotation in Eq. (2.54b).
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The quaternions q
n(k−1)
n(k) and q

e(k)
e(k−1) can be written as follows:

q
n(k−1)
n(k) =

 cos ‖0.5ζk‖

sin ‖0.5ζk‖
‖0.5ζk‖

0.5ζk

 , (2.54c)

q
e(k)
e(k−1) =

 cos ‖0.5ξk‖

−sin ‖0.5ξk‖
‖0.5ξk‖

0.5ξk

 , (2.54d)

where ξk = ωe
ie∆tk is the rotation vector corresponding to the attitude of the e(k)-

frame with respect to the e(k − 1)-frame. Since the velocity is updated already, the

midway velocity can be updated by interpolation: vn
k−1/2 = 1

2
(vn

k−1 + vn
k). So, ζk

can first be recomputed using this updated midway velocity and then used in Eq.

(2.54c). The updated ϕ and λ can be extracted from the quaternion. The height can

be updated separately as follows:

hk = hk−1 − vD,k−1/2∆tk. (2.55)

2.3.5 Attitude Update

The attitude quaternion qn
b update algorithm can be described as follows:

q
n(k−1)
b(k) = q

n(k−1)
b(k−1) ? q

b(k−1)
b(k) , (2.56a)

q
n(k)
b(k) = q

n(k)
n(k−1) ? q

n(k−1)
b(k) . (2.56b)

The quaternion for the b-frame update, q
b(k−1)
b(k) , can be written as

q
b(k−1)
b(k) =

 cos ‖0.5φk‖

sin ‖0.5φk‖
‖0.5φk‖

0.5φk

 , (2.57)
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where φk is the b-frame rotation vector. Referring to Eq. (2.4), the rate of the

b-frame rotation vector can be written as (Savage, 2000, p. 7-8)

φ̇ ≈ ωb
ib +

1

2
φ× ωb

ib +
1

12
φ×

(
φ× ωb

ib

)
≈ ωb

ib +
1

2
∆θ(t)× ωb

ib, (2.58)

where

∆θ(t) =

∫ t

tk−1

ωb
ibdτ. (2.59)

Hence, φk can be obtained as (Savage, 2000, p. 7-14)

φk =

∫ tk

tk−1

[
ωb

ib +
1

2
∆θ(t)× ωb

ib

]
dt

≈ ∆θk +
1

12
∆θk−1 ×∆θk, (2.60)

where 1
12

∆θk−1×∆θk is the second-order coning correction term. The quaternion for

the n-frame update, q
n(k)
n(k−1), is written as

q
n(k)
n(k−1) =

 cos ‖0.5ζk‖

−sin ‖0.5ζk‖
‖0.5ζk‖

0.5ζk

 . (2.61)

Because the position was previously updated, the midway position can be recomputed

by interpolation and, therefore, the updated ζk can be used in the above equation.

The height interpolation can be done simply by averaging: hk−1/2 = 1
2
(hk−1 + hk).

The quaternion corresponding to the position change from tk−1 to tk can be obtained

as follows:

qδθ =
(
q

e(k−1)
n(k−1)

)−1

? q
e(k)
n(k), (2.62)
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from which the rotation vector δθ can be computed. Then the position interpolation

can be done as follows:

q
e(k−1/2)
n(k−1/2) = q

e(k−1)
n(k−1) ? q0.5δθ, (2.63)

where q0.5δθ is the quaternion corresponding to 0.5δθ.

Due to numerical errors, the computed qn
b often violates the normalization con-

straint. In this case, the normalization can be applied as follows (Savage, 2000,

p. 7-29):

qn
b := (1− eq)q

n
b, (2.64a)

eq =
1

2

[
(qn

b)
T qn

b − 1
]
, (2.64b)

where eq is the normality error in the quaternion.

2.4 Backward INS Mechanization

Backward INS mechanization can be applied in cases where the final navigation states

are known, but the initial navigation states are not. Also, if there is an independently

processed forward solution, then the combination of the two solutions would yield the

smoothed solution, which will be discussed in Chapters 3 and 4. The role of backward

mechanization is to determine the navigation states (qe
n, h, vn, qn

b) at time tk−1 from

the given navigation states at time tk, given the IMU measurements (∆vk−1, ∆θk−1,

∆vk, ∆θk).
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In the forward INS mechanization, the velocity update is implemented first fol-

lowed by position and attitude updates successively. Referring to Eq. (2.48a), C
n(k−1)
b(k−1)

is required for the velocity update. Therefore, in backward mechanization, the atti-

tude update will be applied first to obtain C
n(k−1)
b(k−1):

q
n(k)
b(k−1) = q

n(k)
b(k) ? q

b(k)
b(k−1), (2.65a)

q
n(k−1)
b(k−1) = q

n(k−1)
n(k) ? q

n(k)
b(k−1), (2.65b)

where

q
b(k)
b(k−1) =

 cos ‖0.5φk‖

−sin ‖0.5φk‖
‖0.5φk‖

0.5φk

 . (2.65c)

Then, the backward velocity and position updates can be applied successively as

follows:

vn
k−1 = vn

k −∆vn
f,k −∆vn

g/cor, (2.66a)

q
e(k)
n(k−1) = q

e(k)
n(k) ? q

n(k)
n(k−1), (2.66b)

q
e(k−1)
n(k−1) = q

e(k−1)
e(k) ? q

e(k)
n(k−1), (2.66c)

hk−1 = hk + vD,k−1/2∆tk, (2.66d)

where

q
e(k−1)
e(k) =

 cos ‖0.5ξk‖

sin ‖0.5ξk‖
‖0.5ξk‖

0.5ξk

 . (2.66e)
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2.5 Aiding Sources

For a high-grade INS, the error behaviour is well described by the Schuler dynamics,

whose period is about 84.4minutes. For the traditional INS error analysis, refer to

Appendix C. However, a low-cost INS cannot run in stand-alone mode for long periods

and, in extreme cases, can even experience computational failures before some part

of the Schuler period can be seen. Therefore, it has to be aided by other external

navigation-related information. This section will investigate aiding options for a low-

cost INS.

2.5.1 The Global Positioning System

Since the GPS antenna and the IMU cannot be installed at the same place in the host

vehicle, the position of the IMU is different from that of the GPS, which is known as

the lever-arm effect. Assuming that several GPS antennas are installed, the lever-arm

effect can be described as

rn
GPS,i = rn

IMU + D−1
R Cn

b`
b
GPS,i, (2.67a)

D−1
R =


1

RM + h
0 0

0
1

(RN + h) cosϕ
0

0 0 −1

 , (2.67b)

where rn
GPS,i and rn

IMU are the positions of the ith GPS antenna centre and the centre

of the IMU in the n-frame, respectively; and `bGPS,i is the lever-arm vector of the ith
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GPS antenna in the b-frame. The lever-arm effect in the velocity measurement is

written as (Shin, 2001, p. 43)

vn
GPS,i = vn

IMU − (ωn
ie ×+ωn

en×)Cn
b`

b
GPS,i −Cn

b

(
`bGPS,i×

)
ωb

ib, (2.68)

where the second term on the right-hand side can be neglected in most cases.

As illustrated in Figure 2.5.1, the range from the the ith antenna to the jth

satellite can be written as

rji =
∥∥re

SV,j − re
GPS,i

∥∥ =
∥∥re

SV,j − re
IMU −Ce

b`
b
GPS,i

∥∥ , (2.69)

where rji is the range; and re
SV,j is the position vector of the jth satellite in the e-frame.

ze

Figure 2.8: INS/GPS measurement

There are two ways to perform integration of the INS and GPS: loosely-coupled

and tightly-coupled integration. In the loosely-coupled integration, the GPS-derived

position and/or velocity are used to aid the INS. On the other hand, in the tightly-

coupled integration scheme, the GPS observables (pseudo ranges and carrier phases)
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are used directly in the measurement update (Scherzinger, 2004). Therefore, Eq.

(2.67a) and (2.68) can be used as the measurement model for loosely-coupled systems

and Eq. (2.69) for tightly-coupled systems.

2.5.2 Vehicle Frame Measurements

The vehicle frame (v-frame) velocity can be obtained from odometers and/or speedome-

ters. Development of a rigorous model for the v-frame velocity would require informa-

tion about the steering angle, front and rear slip angle, tire pressure, angular speed

of the wheels, suspension system, etc. Julier and Durrant-Whyte (2003) tried to use

some of the parameters based on the two-dimensional “fundamental bicycle,” which

assumes that the vehicle consists of front and rear virtual wheels. Since it is very

hard to acquire information about these parameters, a simplified model that has been

widely accepted will be introduced here.

It is assumed that the vehicle has an along-track speed, v, and the cross-track and

vertical speeds are zero, i.e. vv =

[
v 0 0

]T
. To satisfy the condition as closely as

possible, wheel sensors need to be installed on rear wheels if the front wheels are used

for steering. Then, the relationship between the velocity of the vehicle at the centre

of the IMU, vn
IMU, and that at the wheel, vv

wheel, can be expressed as (Scherzinger,

2004)

vv
wheel = Cv

bC
b
nv

n
IMU + Cv

b

(
ωb

nb×
)
`bwheel, (2.70)

where `bwheel is the lever-arm vector of the wheel sensor in the b-frame. Eq. (2.70)
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will be disturbed if significant slips exist. If the along-track speed drops below a

certain predefined threshold, ZUPTs can be applied instead of the v-frame velocity

measurements. The Doppler radar on an aircraft and the sonar sensors on a ship can

also be classified into this category (Scherzinger, 2004).

The vehicle’s heading can be measured by using a GPS compass and Eq. (2.16c)

can be used as the measurement model (Shin, 2001, p. 81). If the vehicle’s heading

does not change while stationary, zero integrated heading rate measurements (ZIHR)

can be applied to fix the heading. The ZIHR measurement model, useful on a wheeled

vehicle such as a van, railway vehicle or aircraft while parked, will be developed in

Section 3.3.2.

2.5.3 Other Aiding Sources

In addition to the aiding sensors mentioned previously, information from the following

sources can also be used:

• Magnetic heading sensors.

• Aiding by database such as map matching or terrain navigation.

• Visual aiding with predefined targets such as the laser scanner (Hirokawa et al.,

2004).
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The research work in this dissertation does not depend on these sensors. Therefore,

measurement models for these sensors will not be considered here.

2.6 Alignment of Low-Cost INS

Alignment is referred to as the procedure to initialize the INS: in particular, the

attitude information between the b-frame and the n-frame. Several algorithms are

available and can be classified in different ways. If the criterion is the amount of

attitude error that the algorithm has to deal with, then these are classified as either

coarse alignment or fine alignment methods. Typically, the threshold of the attitude

errors between the two categories can reach a few degrees. If, on the other hand, the

criterion is the dynamics of the vehicle upon initialization, then alignment methods

can be classified as stationary alignment or in-motion alignment methods.

Typically, coarse alignment of an INS is done in stationary mode using leveling (by

accelerometers) followed by gyro-compassing or, alternatively, an analytical method

solving the two-vector measurement problem using the gravity and the Earth rotation

measurements in one step as follows (Britting, 1971):

Cn
b =



− tanϕ

g

1

ωe cosϕ
0

0 0
−1

gωe cosϕ
−1

g
0 0




(
fb

)T
(
ωb

ib

)T
(
fb × ωb

ib

)T

 , (2.71)

where g is gravity. However, due to their large biases and the low signal-to-noise ratio



CHAPTER 2. FUNDAMENTALS OF AIDED INERTIAL NAVIGATION 43

of low-cost gyroscopes, gyro-compassing and the analytical coarse alignment cannot

be applied in stationary mode. Therefore, only the roll and pitch can be determined

from the accelerometer measurements as follows:

φ = sign(fz) sin−1(fy/g), (2.72a)

θ = −sign(fz) sin−1(fx/g), (2.72b)

where fb =

[
fx fy fz

]T
and sign(·) denotes the sign of a value. For the z-channel,

only the sign is used because the gravity error is smaller than the bias of low-cost

IMUs. The heading has to be determined from other sensors such as multi-antenna

GPS or a magnetic compass.

If the IMU is installed in a consumer vehicle, we cannot expect the user to wait

until the alignment is finished. Hence, in-motion alignment techniques need to be

considered. The GPS-derived velocity can be used for coarse in-motion alignment if

the forward axis is parallel to the velocity vector, which holds approximately for most

land vehicle navigation applications. Within mechanical alignment uncertainty, the

roll can be initialized to zero with a ±5◦ uncertainty, in most cases, on the road. The

pitch and heading can be initialized as follows (see Figure 2.9):

θ = tan−1

(
−vD/

√
v2

N + v2
E

)
, (2.73a)

ψ = tan−1 (vE/vN) , (2.73b)

where vN and vE are north and east velocity, respectively.

For aircrafts or ships, however, lateral or vertical velocity components can exist
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North

EastDown

vψ
θ

Figure 2.9: The GPS velocity and attitude

due to the wind or maneuver. Therefore, Eqs. (2.73a) and (2.73b) cannot be applied

in such cases. If the heading is completely unknown, then the EKF with a large

heading uncertainty (LHU) model must be used for the coarse alignment, which will

be discussed in Chapter 3.

Once the coarse alignment is achieved, the fine alignment is usually applied using

the EKF with a small heading uncertainty (SHU) model. Table 2.1 summarizes the

alignment methods discussed in this section.

Table 2.1: Alignment methods

Static In-motion

Coarse • Leveling/gyro-compassing • GPS velocity

• Analytic • EKF with LHU model

Fine EKF with small heading uncertainty model



Chapter 3

The Extended Kalman Filter and

Smoother for Aided INS

The Kalman filter used in the field of navigation is a minimum variance estimator.

Minimum variance estimation problems can be defined simply through the use of

conditional expectation (Meditch, 1969, p. 162):

x̂k|j = E [xk|z1, z2, . . . , zj] (3.1)

where E[·] is the expectation operator; x is a state vector; and z represents mea-

surements. If k > j, the estimation problem is one of prediction; if k = j, one of

filtering; and, if k < j, it is one of smoothing or interpolation. In this chapter, the

Kalman filter and smoother for multi-sensor integration will be described using these

notations.

45
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Traditionally, the error state Kalman filter, which can be considered as either

the linearized Kalman filter (LKF) or the extended Kalman filter (EKF), has been

used in the field of navigation. If an INS error control loop (feedback) exists, then

the LKF can be considered as an EKF. In the development of the EKF, the system

process model and the measurement model have to be linearized. Sections 3.1 and

3.2 describe the system model linearization. Following this, the EKF and a linear

smoother will be developed successively.

3.1 INS Error Models

Due to the uncertainties in the sensors and the gravity field, the navigation parameters

obtained from the INS mechanization equation contain errors. Many models have

been developed to describe the time-dependent behaviour of these errors, the choice

of which is mainly dependent on the application. This section will summarize several

error models of importance and discuss implications on low-cost inertial navigation.

3.1.1 The Phi-Angle Error Model

A classical approach to INS error analysis is by perturbation analysis, where the nav-

igation parameters are perturbed with respect to the true n-frame. The perturbation

model can be obtained by perturbing all of the navigation parameters appearing in

Eqs. (2.42a) to (2.42d), which is the same as applying the Taylor series expansion and
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retaining only the constant and linear terms (Scherzinger, 2002). Hence, the basic

assumption is that all the errors are small enough, especially the heading error. The

derivation of the perturbation model is described in many studies in the literature; for

instance, see Britting (1971), Farrell and Barth (1998), and Schwarz and Wei (2000).

We first write the position error vector as

δrn =

[
δrN δrE δrD

]T
(3.2a)

where δ denotes errors and δrD = −δh for the NED coordinate system. Perturbations

on other parameters can be written as follows:

f̂
b

= fb + δfb, (3.2b)

ω̂b
ib = ωb

ib + δωb
ib, (3.2c)

v̂n = vn + δvn, (3.2d)

Ĉ
n

b = [I− (φ×)]Cn
b, (3.2e)

ω̂n
ie = ωn

ie + δωn
ie, (3.2f)

ω̂n
in = ωn

in + δωn
in, (3.2g)

ĝn = gn + δgn. (3.2h)

With a simplified inverse gravity model, the gravity computation error can be written

as follows (Rogers, 2000, p. 70):

δgn =

[
0 0 2gδrD/(R + h)

]T
, (3.3)

where R =
√
RMRN is the Gaussian mean Earth radius of curvature. Then, the
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perturbation model can be written as follows (Scherzinger, 2002):

δṙn = −ωn
en × δrn + δθ × vn + δvn, (3.4a)

δv̇n = Cn
bδf

b + Cn
bf

b × φ+ δgn

− (ωn
ie + ωn

in)× δvn − (δωn
ie + δωn

in)× vn, (3.4b)

φ̇ = −ωn
in × φ+ δωn

in −Cn
bδω

b
ib. (3.4c)

Since the attitude errors are expressed in terms of the φ-angle, defined in Eq. (2.39),

this model is also called the φ-angle error model.

3.1.2 The Psi-Angle Error Model

The error analysis can also be done with respect to the c-frame. The computed naviga-

tion parameters may have one of the two representations as listed below (Scherzinger,

2002):

v̂n = vn + δvn
1 = vc + δvc

2, (3.5a)

ĝn = gn + δgn
1 = gc + δgc

2, (3.5b)

ω̂n
ie = ωn

ie + δωn
ie = ωc

ie, (3.5c)

ω̂n
in = ωn

in + δωn
in = ωc

ic. (3.5d)

In c-frame analysis, Ce
c, ω

c
ie, and ωc

ic are known without error because we know

the position and the transport rate of the c-frame from the navigation computer.

Scherzinger (2002) showed that the navigation parameter errors between the two
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representations have the following relationships:

δvn
1 = δvc

2 − δθ × vc, (3.6a)

δgn
1 = δgc

2 − δθ × gc, (3.6b)

δωn
ie = −δθ × ωc

ie. (3.6c)

From Eqs. (3.3), (3.6b) and (2.35), we can write the gravity error in the c-frame as

(Scherzinger, 1996)

δgc
2 =

[
−gδrN
RM + h

−gδrE
RN + h

2gδrD
R + h

]T
≈

[
−ω2

s δrN −ω2
s δrE 2ω2

s δrD

]T
, (3.7)

where ωs is the Schuler frequency. The c-frame analysis resulted in the following error

model (Scherzinger, 2002):

δṙc = −ωc
ec × δrc + δvc, (3.8a)

δv̇c = f c ×ψ − (2ωc
ie + ωc

ec)× δvc + δgc + Cp
bδf

b, (3.8b)

ψ̇ = −(ωc
ie + ωc

ec)×ψ −Cn
bδω

b
ib. (3.8c)

Since the attitude errors are expressed in terms of the ψ-angles, this model is called

the ψ-angle error model.

Benson Jr. (1975) showed the basic equivalence of the φ-angle and ψ-angle er-

ror models. However, Scherzinger (2002) discussed the following distinctions in the

implementation:
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• The ψ-angle dynamics, Eq. (3.8c), is rate-stable, independent of all other INS

errors and driven only by the gyro biases.

• The position and velocity error dynamics, Eqs. (3.8a) and (3.8b), are indepen-

dent of angular rate errors that are due to the Earth rate and transport rate

mis-resolved by the c-frame misalignment.

• If the INS is aided by the GPS, the position errors become small, and the c-

frame misalignment δθ becomes very small. Hence, the φ angle converges to

the ψ angle.

• The ψ-angle error model contains fewer terms and hence is more easily imple-

mented in a Kalman filter.

3.1.3 Modified Error Models

Both the φ-angle and ψ-angle error models contain mis-resolved specific force terms,

fn × φ and f c × ψ, respectively. Therefore, the specific force terms appear in the

transition matrix for a discrete-time Kalman filter. Consequently, a high-speed inte-

gration must be applied in the transition matrix computation if the vehicle is moving

with high dynamics. For low-cost IMUs, the specific force outputs are usually cor-

rupted by large biases and sources of noise, which can lead to composing an erroneous

transition matrix and therefore distorting the estimates. Scherzinger and Reid (1994)

developed modified error models to solve these problems, which cancel the specific
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force terms by introducing the following velocity transformations:

∆vn
1 = δvn

1 − v̂n × φ, (3.9a)

∆vc
2 = δvc

2 − v̂n ×ψ. (3.9b)

For brevity, the modified error models will be presented here without derivations.

Refer to Scherzinger and Reid (1994) for the detailed derivation. The modified φ-

angle error model is written as follows:

δṙn = −ωn
en × δrn + ∆vn

1 + (δθ − φ)× v̂n, (3.10a)

∆v̇n
1 = Cn

bδf
b + δgn

1 − ĝn × φ− (ωc
ie + ωc

ic)×∆vn
1

−v̂n × (ωc
ie × φ) + v̂n × δωn

ie + v̂n ×Cn
bδω

b
ib, (3.10b)

φ̇ = −ωn
in × φ+ δωn

in −Cn
bδω

b
ib. (3.10c)

The modified ψ-angle error model is written as follows:

δṙc = −ωc
ec × δrc + ∆vc + v̂n ×ψ, (3.11a)

∆v̇c
2 = Cp

bδf
b + δgc

2 − ĝn ×ψ − (2ωc
ie + ωc

ec)×∆vc
2

−v̂n × (ωc
ie ×ψ) + v̂n ×Cp

bδω
b
ib, (3.11b)

ψ̇ = −(ωc
ie + ωc

ec)×ψ −Cp
bδω

b
ib. (3.11c)

The attitude error dynamics equations are identical in both modified error models.
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3.1.4 Large Heading Uncertainty Models

The basic assumption about the error models discussed so far is that all of the attitude

errors are small. However, the initial heading may have a large uncertainly or be

completely unknown. For instance, if the heading is obtained from Eq. (2.73b)

while the vehicle is moving backward, then the heading can have an error of ±180◦.

Furthermore, since helicopters can move in any direction in the air, the heading

cannot be derived from the GPS velocity vector as in Eq. (2.73b). Hence, large

heading uncertainty (LHU) models have been developed mainly for in-motion or in-

air alignment until the heading error becomes small enough (typically a few degrees)

for the fine alignment routine to be activated using a small heading uncertainty (SHU)

model. If a low-cost IMU is used, the heading can be completely unknown even in

stationary mode because of large gyro-compassing errors. Therefore, a LHU model

can also be applied for alignment of a low-cost INS.

There are two approaches in the development of LHU models. Rogers (1997)

used errors of trigonometric functions of the wander azimuth angle as a part of the

state vector; similarly, Scherzinger (1996) used trigonometric functions of the heading

error. In the former approach, a totally different error model is required if the heading

uncertainty goes below a certain threshold. However, the latter approach, although

still requiring a switch in the attitude error dynamics model, provides a continuous

transition. If a low-accuracy IMU is used, the heading error can grow fast in a very

short time in the absence of aiding information because uncertainties in z-gyroscope
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drives the heading error and the aided INS cannot estimate and regulate its heading

error. This situation can also happen when the vehicle is driven with a constant

speed due to the poor observability of the heading. In this case, the error model

switch can be done in both directions and, therefore, the latter approach will be more

appropriate. The latter approach resulted in developing the modified geographic

consistent (GC) model and the modified platform consistent (PC) model. The only

limitation of the latter approach is that model selection is dependent upon the type of

the aiding sensors. If the GPS is used, then the modified GC model is indicated. On

the other hand, if a body-referenced velocity sensor is aiding the INS, the modified PC

model must be chosen. Since the modified PC model has implementation difficulties

due to nonlinearity and the GPS is the the main aiding sensor, the modified GC

model will be introduced here.

Scherzinger (1996) first defined the extended misalignment vector ψe as follows:

ψ′ ≡


ψx

ψy

sinψz

 , ψe ≡

 ψ′

cosψz − 1

 , (3.12)

where sinψz and cosψz − 1 are treated as random constants when the heading error

is large (Scherzinger, 2004). For small heading errors ψ′ converges to ψ. The matrix

representation of the “extended cross-product type (+)” operator was defined as
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follows:

(a×)e+ ≡

 (a×)

ax

ay

0

 , (3.13)

where a is an arbitrary 3 × 1 vector: a =

[
ax ay az

]T
. Then, Scherzinger (1996)

derived the GC LHU model based on the ψ-angle error model:

δṙc = −ωc
ec × δrc + δvc, (3.14a)

δv̇c = (f c×)e+ψe + f z (f c,ψ)− (2ωc
ie + ωc

ec)× δvc + δgc + Cp
bδf

b, (3.14b)

ψ̇e =

−(ωc
ic×)e+

01×4

ψe +


02×1

ωxψy − ωyψx

0

−
 Cp

b

01×3

 δωb
ib, (3.14c)

where ωc
ic =

[
ωx ωy ωz

]T
. With f c =

[
fx fy fz

]T
, f z (f c,ψ) in Eq. (3.14b) is

defined as

f z (f c,ψ) ≡


0

0

fx(ψx sinψz + ψy(cosψz − 1)) + fy(ψy sinψz − ψx(cosψz − 1))

 (3.15)

and contains nonlinear terms in the vertical channel, which can be considered as

either negligible or approximately random with respect to larger long-term vertical

acceleration errors (Scherzinger, 1996). If the heading uncertainty becomes small, Eq.
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(3.14c) can be replaced by

ψ̇e =

 −(ωc
ic×)e+

01×4

ψe −

 Cp
b

01×3

 δωb, (3.16)

which is equivalent to the attitude dynamics of the SHU ψ-angle model, Eq. (3.8c).

Finally, with the velocity transformation

∆v = δvc − (vc×)e+ψe, (3.17)

Scherzinger (1996) derived the modified GC LHU model as follows:

δṙc = −ωc
ec × δrc + ∆vc + (vc×)e+ψe, (3.18a)

∆v̇c = −gc ×ψ′ − (2ωc
ie + ωc

ec)×∆vc + δgc + Cp
bδf

b

−vc × (ωc
ie ×ψ′) + (vc×)Cp

bδω
b
ib + f z (f c,ψ) + f c (ψ′,vc)

+


Ωc

Ev
c
D

−Ωc
Nv

c
D

−(3Ωc
N + 2ρc

N)vc
E + (3Ωc

E + 2ρc
E)vc

N

 (cosψz − 1), (3.18b)

ψ̇e =

 −(ωc
ic×)e+

01×4

ψe +


02×1

ωxψy − ωyψx

0

−
 Cp

b

01×3

 δωb
ib, (3.18c)

where vc =

[
vc

N vc
E vc

D

]T
, ωc

ie =

[
Ωc

N Ωc
E Ωc

D

]T
, and ωc

ec =

[
ρc

N ρc
E ρc

D

]T
. In

Eq. (3.18b) f c (ψ,vc) is a correction function to account for the choice of misalignment

error model, Eqs. (3.18c) or (3.16) (Scherzinger, 1996). When the SHU misalignment
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dynamics, Eq. (3.16), is used f c (ψ,vc) = 0. When the LHU misalignment dynamics,

Eq. (3.18c), is used, f c (ψ′,vc) is given as

f c (ψ′,vc) =


(Ωc

E + ρc
E) vc

E − (Ωc
N + ρc

N) vc
E 0

− (Ωc
E + ρc

E) vc
N (Ωc

N + ρc
N) vc

N 0

0 0 0

ψ
′. (3.19)

3.2 Residual Sensor Error Models

Quite large uncertainties exist in the outputs of low-cost inertial sensors. The best

way to handle these uncertainties would be to determine the sensor errors as much

as possible through calibrations. Then, for instance, Eqs. (2.45a) and (2.45b) in

Section 2.3 could be used for the compensation of the biases, scale factors, and non-

orthogonalities. However, since calibration significantly increases the manufacturing

cost, low-cost inertial sensors are rarely calibrated by the manufacturer. Even after

the calibration, there still exist switch-on to switch-on error variations. Therefore,

sensor errors need to be modeled in the state vector of a navigation filter in addition

to the position, velocity and attitude errors. However, it should be remembered that

although a navigation filter can estimate sensor errors, compensation would yield

superior results because the navigation filter can concentrate on estimating small

residual errors and the filter’s actual behaviour is dependent on the dynamics of the

vehicle.

In Section 3.2.1, typical error terms in outputs of a low-cost IMU will be discussed.
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Stochastic process models useful for describing the behaviour of sensor errors will be

defined in Section 3.2.2. For backward filters, backward sensor error models need

to be developed. Hence, in Section 3.2.3, the relationship between the forward and

backward sensor error models will be discussed.

3.2.1 Sensor Error Terms

If only the biases are considered, then the uncertainty of the sensors can be expressed

as

δfb = ba, δωb
ib = bg, (3.20)

where ba and bg are residual biases of the accelerometers and gyroscopes, respectively.

If the scale factors are considered at the same time, then

δfb = ba + diag(fb)sa, δωb
ib = bg + diag(ωb

ib)sg, (3.21)

where diag(a) denotes the diagonal matrix form of a vector a =

[
ax ay az

]T
:

diag(a) ≡


ax 0 0

0 ay 0

0 0 az

 ; (3.22)

and sa and sg are residual scale factors of the accelerometers and gyroscopes, respec-

tively. If the non-orthogonalities of the accelerometer triad, γa, are considered, the
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specific force measurement error can be described by

δfb = ba + diag(fb)sa + Γaγa, (3.23a)

γa =

[
γa,xy γa,xz γa,yx γa,yz γa,zx γa,zy

]T
, (3.23b)

Γa =


fy fz 0 0 0 0

0 0 fx fz 0 0

0 0 0 0 fx fy,

 , (3.23c)

where fb =

[
fx fy fz

]T
. Similarly, for the gyroscope triad,

δωb
ib = bg + diag(ωb

ib)sg + Γgγg, (3.23d)

γg =

[
γg,xy γg,xz γg,yx γg,yz γg,zx γg,zy

]T
, (3.23e)

Γg =


ωy ωz 0 0 0 0

0 0 ωx ωz 0 0

0 0 0 0 ωx ωy,

 , (3.23f)

where ωb
ib =

[
ωx ωy ωz

]T
and γg describes the non-orthogonalities of the gyroscope

triad.

The evolution of the sensor errors can be expressed as follows:

ḃa = diag(cab)ba + wab, (3.24a)

ḃg = diag(cgb)bg + wgb, (3.24b)

ṡa = diag(cas)sa + was, (3.24c)

ṡg = diag(cgs)sg + wgs, (3.24d)
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γ̇a = diag(caγ)γa + waγ, (3.24e)

γ̇g = diag(cgγ)γg + wgγ, (3.24f)

where cgb, cgs, cab, cas, cgγ, caγ, wgb, wgs, wab, was, wgγ, and waγ are continuous-

time sensor error model parameters that can represent the random walk, the random

constant and the first-order Gauss-Markov processes.

3.2.2 Stochastic Processes

To be included in the state vector, the sensor errors must be modeled. The behaviour

of the errors under the operational scenario of the given application need to be in-

vestigated beforehand. The choice of the model is dependent on the operation time,

sensor performance, and working environment. If the operation time is very short,

then the errors can be treated practically as constants. If the IMU should run for a

very long time, then the behaviour of the sensor errors must be carefully investigated.

White Noise

White noise is defined as a stationary random process having a constant spectral

density function (Brown and Hwang, 1997, p. 92), which implies that power is dis-

tributed uniformly over all frequency components in the full infinite range and thus

it is not physically realizable (Gelb, 1974, p. 42). White noise is, however, a very

useful approximation to situations in which a disturbing noise is wideband compared
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with the bandwidth of the system (Gelb, 1974, p. 42) and it can be used to describe

the noise in an inertial sensor. A number of random processes can be generated by

passing white noise through a suitable filter (Gelb, 1974, p. 42).

Random Walk

The random walk process can be obtained when a white noise process is integrated

as shown in Figure 3.1. The continuous-time state equation for the random walk is

given by

ẋ = w, (3.25a)

where E[w(t)w(τ)] = q(t)δ(t−τ) (Gelb, 1974, p. 79). The corresponding discrete-time

precess is

xk+1 = xk + wk, (3.25b)

where the noise covariance is qk = q(t)∆tk+1 (Gelb, 1974, p. 79). The state uncertainty

of the random walk process increases with time (Gelb, 1974, p. 80):

E
[
x2

]
= q(t)t. (3.26)

Therefore, the random walk process is non-stationary.

-White noise ∫
-Random walk

Figure 3.1: White noise and random walk
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Since an INS integrates signals from accelerometers and gyroscopes, the white

noise components are integrated and this will increase the uncertainty of the velocity

and attitude. Velocity random walk (VRW) and angular random walk (ARW) are

the terms used to describe these effects. Values of the VRW and the ARW are usually

determined through the Allan (cluster) variance analysis. The Allan variance analysis

for inertial sensor error modeling is well described in Tehrani (1983) and Hou and

El-Sheimy (2003).

Random Constant

The random constant is a non-dynamic quantity with a fixed, albeit random, ampli-

tude (Gelb, 1974, p. 79). The continuous and discrete processes are described in Eqs.

(3.27a) and (3.27b), respectively:

ẋ = 0, (3.27a)

xk+1 = xk. (3.27b)

Typical usage of the random constant will be the initial states and the extended

heading error states (sinψz and cosψz − 1) of the large heading uncertainty models

described in Section 3.1. Non-orthogonalities of sensor triads can be dealt with by

random constants during calibrations. Biases can also be considered as random con-

stants, if the operation time is very short. If the operation time is very long, even if

the state is constant, it will be preferable to add noise intentionally to prevent the

state covariance from becoming non-positive definite, which results in the random
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walk process.

Gauss-Markov Process

A stationary Gaussian process that has an exponentially decaying autocorrelation

is called a first-order Gauss-Markov process (Brown and Hwang, 1997, p. 94). For

a process with correlation time T and mean squared value σ2 (and zero mean) the

model is described by (Maybeck, 1994a, p. 185)

ẋ = − 1

T
x+ w, (3.28a)

for which q = 2σ2/T . The discrete-time model is written as

xk+1 = e−∆tk+1/Txk + wk, (3.28b)

for which qk = σ2
(
1− e−2∆tk+1/T

)
. Therefore, two parameters (T and σ2) are required

to describe a Gauss-Markov process. The autocorrelation function of the Gauss-

Markov model is (Maybeck, 1994a, p. 185)

r(τ) = E [x(t)x(t+ τ)] = σ2e−|τ |/T , (3.28c)

and is depicted in Figure 3.2.

The Gauss-Markov process is important in applied work because it seems to fit a

large number of physical processes with reasonable accuracy, and it has a relatively

simple mathematical description (Brown and Hwang, 1997, p. 95). The most out-

standing characteristic of the Gauss-Markov process is that it can represent bounded
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Figure 3.2: Autocorrelation function of the Gauss-Markov process

uncertainty. Hence, the Gauss-Markov process is used in INS filters to model slowly

varying sensor errors such as biases and scale factors.

Let us examine the behaviour of the Gauss-Markov process using a single-state

model:

xk = e−0.01/Txk−1 + wk,

zk = xk + ek,

where σ2 = 102, T=10minutes and E[e2k] = 502. Figure 3.3 shows the simulation

result using the Kalman filter. Measurements were available until up to 5minutes and

then the filter worked in prediction mode. The state uncertainty decreased from the

designed value and converged to about 1.7 by incorporating measurements. During

the measurement outage, the state will be forgotten (converge to zero) while the

uncertainty will increase and eventually converge to its designed value. If T → ∞,

then the Gauss-Markov model becomes the random constant model. On the other
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Figure 3.3: A Gauss-Markov process in free inertial navigation

hand, if T → 0, then it approximates white noise.

The parameters of a Gauss-Markov process can be determined through the auto-

correlation function as shown in Figure 3.2. However, as explained by Eq. (3.29a),

reliable determination of autocorrelation requires considerably long-term measure-

ments (Brown and Hwang, 1997, p. 107):

Var[Vx(τ)]

σ4
≤ 2T

tc
, (3.29a)

Vx(τ) =
1

tc − τ

∫ tc−τ

0

x(t)x(t+ τ)dt, (3.29b)

where tc is the total data collection time. For example, a data collection of 200 times

the time constant of the process can yield merely 10% accuracy in determining the

autocorrelation function (Brown and Hwang, 1997, p. 108). Hence, if the sensor’s

correlation time is 4 hours, then 800 hours of continuous data collection are required



CHAPTER 3. THE EXTENDED KALMAN FILTER AND SMOOTHER 65

to achieve 10% accuracy. Therefore, the parameters are empirically chosen based

upon the designer’s understanding of the sensor behaviour under the given operational

senario.

In summary, all of the random processes discussed here can be expressed by the

following general model in discrete form:

xk+1 = axk + wk, (3.30)

where a is a model parameter and wk is the driving noise. Table 3.1 lists the values

of the model parameters for each of the random processes.

Table 3.1: Stochastic processes

a qk = E[w2
k]

Random walk 1 > 0

Random constant 1 0

Gauss-Markov e−∆tk+1/T σ2
(
1− e−2∆tk+1/T

)

3.2.3 Parameters for Backward Filters

Once the parameters of the sensor error models for forward filters are determined,

those for backward filters also need to be specified. In this section, the relationship

between the parameters of the forward filters and those of backward filters will be

discussed based upon the linear prediction theory.
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Eq. (3.30) can also be considered as a forward linear prediction (FLP) filter. The

FLP error fk can be written as

fk = xk − axk−1. (3.31)

Hence, the mean-squared error of the FLP can be written as

P (a) = E
[
f 2
k

]
= E

[
(xk − axk−1)

2]
= E

[
x2
k − 2axkxk−1 + a2x2

k−1

]
= r(0)− 2ar(1) + a2r(0), (3.32)

where r(k) is the autocorrelation of a k-sample lag. Taking partial derivatives of P (a)

with respect to a gives the following condition:

r(0)a = r(1), (3.33)

which is called the Wiener-Hopf equation and is the same as the Yule-Walker equation

in autoregressive (AR) modeling (Haykin, 1996, p. 245). Hence, the filter tap-weight a

can be computed from the ensemble-averaged autocorrelation function. Substituting

Eq. (3.33) into Eq. (3.32) yields

P (a) = r(0)− ar(1). (3.34)

To apply backward filtering, the backward sensor error model has to be developed,

which can generally be written as

xk = abxk+1 + wk+1 (3.35)
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and can be considered as a backward linear prediction (BLP) filter. The BLP error

bk can be written as

bk = xk − abxk+1. (3.36)

The mean-squared error of the BLP filter can be written as

P (ab) = E
[
b2k

]
= E

[
x2
k − 2abxkxk+1 + a2

bx
2
k+1

]
= r(0)− 2abr(1) + a2

br(0). (3.37)

Taking the partial derivatives of P (ab) with respect to ab yields the Wiener-Hopf

equation for the BLP:

r(0)ab = r(1). (3.38)

A comparison of Eqs. (3.33) and (3.38) shows that the parameters of the FLP filter

and the BLP filter are the same: a = ab and P (a) = P (ab). Therefore, a Gauss-

Markov process was used to model sensor errors in forward filters, the same model

can be used for the backward filters.

3.3 The Extended Kalman Filter Design

In this section, the discrete-time extended Kalman filter will be developed. The

discrete-time system model will be developed first. Then, linearized measurement

models for the error state will be described for the aiding sensors discussed in Section
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2.5. The implementation of the error state Kalman filter is described in Section 3.3.3,

and the INS error control using the estimates from the filter is discussed in Section

3.3.4.

3.3.1 Discrete-Time System

Augmentation of an INS error model with the sensor error models can be expressed

in the following linear continuous-time system form:

δẋ(t) = F(t)δx(t) + G(t)w(t), (3.39)

where F is the dynamics matrix; δx is the state vector; G is a noise-input mapping

matrix; and w is a noise vector. The structure of these matrices is given in Appendix

A for the ψ-angle error model with the bias and scale factor error models. The

elements of w(t) are white noises whose covariance matrix is given by

E[w(t)w(τ)T ] = Q(t)δ(t− τ), (3.40)

where the operator δ(·) denotes the Dirac delta function whose unit is 1/time (Gelb,

1974, p. 74–75). Q(t) is called the spectral density matrix.

Because strapdown inertial systems are usually implemented with high-rate sam-

pled data, the continuous-time system equations are to be transformed to their cor-

responding discrete-time form:

δx(tk+1) = Φ(tk+1, tk)δx(tk) +

∫ tk+1

tk

Φ(tk+1, τ)G(τ)w(τ)dτ, (3.41)
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or in abbreviated notation

δxk+1 = Φkδxk + wk, (3.42)

where Φk is the state transition matrix, and wk is the driven response at tk+1 due to

the presence of the input white noise during the time interval (tk, tk+1) (Brown and

Hwang, 1992, p. 220).

If ∆tk+1 = tk+1−tk is very small or F(t) is approximately constant over ∆tk+1, the

following numerical approximation can be applied to calculate the transition matrix:

Φk = exp (F(tk)∆tk+1) ≈ I + F(tk)∆tk+1. (3.43)

Because a white sequence is a sequence of zero-mean random variable that is uncor-

related time-wise, the covariance matrix associated with wk is given by (Brown and

Hwang, 1992, p. 219)

E[wkw
T
i ] =


Qk, i = k

0, i 6= k

. (3.44)

Qk can be expressed as (Brown and Hwang, 1992, p. 220)

Qk = E
[
wkw

T
k

]
= E

{[∫ tk+1

tk

Φ(tk+1, ξ)G(ξ)w(ξ)dξ

] [∫ tk+1

tk

Φ(tk+1, η)G(η)w(η)dη

]T}

=

∫ tk+1

tk

∫ tk+1

tk

Φ(tk+1, ξ)G(ξ)E
[
w(ξ)wT (η)

]
GT (η)ΦT (tk+1, η)dξdη. (3.45)

A trapezoidal integration of the above equation yields (Maybeck, 1994a, p. 358)

Qk ≈
1

2

[
ΦkG(tk)Q(tk)G

T (tk)Φ
T
k + G(tk+1)Q(tk+1)G

T (tk+1)
]
∆tk+1. (3.46)
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If G(t)Q(t)GT (t) can be treated as a constant for the time interval (tk, tk+1), an

approximate solution can be obtained by substituting Eq. (3.43) into the above

equation (Maybeck, 1994a, p. 358):

Qk ≈
1

2

[
ΦkG(tk)Q(tk)G

T (tk) + G(tk)Q(tk)G
T (tk)Φ

T
k

]
∆tk+1. (3.47)

3.3.2 Linearized Measurement Models

The derivation of the Kalman filter – a recursive, unbiased and minimum-variance

estimator – starts from the random process model (i.e. Eq. (3.42)) and the following

observation equations:

δzk = Hkδxk + ek, (3.48)

which expresses the vector measurement, δzk, at time tk as a linear combination of

the state vector, δxk, plus a random measurement error, ek (Gelb, 1974; Brown and

Hwang, 1992). The design matrix Hk is defined as

Hk =
∂h[x]

∂x

∣∣∣∣
x=x̂k|k−1

, (3.49)

where h[x] is the nonlinear vector measurement function of the states. The measure-

ment covariance matrix is written as

E
[
eke

T
i

]
=


Rk, i = k

0, i 6= k

. (3.50)

The system noise wk and measurement noise ek are assumed to be uncorrelated:

E
[
wke

T
i

]
= 0 for all i, k. The rest of this section is devoted to deriving linearized

measurement models for the various aiding sources presented in Section 2.5.
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Linearized GPS Measurement Models

Using the truth model in Eq. (2.67a), the computed position at the centre of the ith

GPS antenna can be written as follows:

r̂n
GPS,i = r̂n

IMU + D−1
R Ĉ

n

b`
b
GPS,i

= rn
IMU + D−1

R δrn
IMU + D−1

R [I− (φ×)]Cn
b`

b
GPS,i

= rn
GPS,i + D−1

R δrn
IMU −D−1

R (φ×)Cn
b`

b
GPS,i

= rn
GPS,i + D−1

R δrn
IMU + D−1

R

(
Cn

b`
b
GPS,i×

)
φ. (3.51)

The measured GPS position can be written as

r̃n
GPS,i = rn

GPS,i + D−1
R er, (3.52)

where er represents the GPS position error in metres. Using Eqs. (3.51) and (3.52),

the following measurement equations can be constructed for the φ-angle error model:

δzr,i = DR

(
r̂n
GPS,i − r̃n

GPS,i

)
= δrn

IMU +
(
Cn

b`
b
GPS,i×

)
φ− er. (3.53)

Substituting φ = ψ+ δθ into the above equation yields a measurement model for

the ψ-angle error model:

δzr,i = DR

(
r̂n
GPS,i − r̃n

GPS,i

)
= Cn

cδr
c
IMU +

(
Cn

b`
b
GPS,i×

)
(ψ + δθ)− er

≈ δrc
IMU +

(
Cn

b`
b
GPS,i×

)
ψ − er, (3.54)

where the term
(
Cn

b`
b
GPS,i×

)
δθ is very small and therefore is neglected.
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Strictly speaking, the position differencing, r̂n
GPS,i − r̃n

GPS,i, in Eqs. (3.53) and

(3.54) is problematic when the vehicle is near the poles or is crossing the line λ =

±180◦. Direct differencing would yield disastrous results in the situation that the

longitude outputs of the INS and the GPS are, for example, 179.999◦ and −179.999◦,

respectively. It is ambiguous whether the position error is in the latitude or in the

longitude direction near the poles. A more stable means of computing the position

difference would be through differencing the e-frame position vectors and transforming

the position error into the navigation frame of interest:

δzr,i = Cn
e

(
r̂e
GPS,i − r̃e

GPS,i

)
= Cn

e

(
r̂e
IMU − r̃e

GPS,i

)
+ Cn

b`
b
GPS,i. (3.55)

Referring to Eq. (2.68), the computed velocity of the ith GPS antenna can be

written as

v̂n
GPS,i = v̂n

IMU − (ωn
ie ×+ω̂n

en×) Ĉ
n

b`
b
GPS,i − Ĉ

n

b

(
`bGPS,i×

)
ω̂b

ib

≈ vn
IMU + δvn

IMU − (ωn
in×)Cn

b`
b
GPS,i + (ωn

in×) (φ×)Cn
b`

b
GPS,i

−Cn
b

(
`bGPS,i×

)
ωb

ib + (φ×)Cn
b

(
`bGPS,i×

)
ωb

ib −Cn
b

(
`bGPS,i×

)
δωb

ib

= vn
GPS,i + δvn

IMU − (ω̂n
in×)Cn

b

(
`bGPS,i×

)
φ

−Cn
b

(
`bGPS,i × ωb

ib

)
× φ−Cn

b

(
`bGPS,i×

)
δωb

ib. (3.56)

The measured GPS velocity can be written as

ṽn
GPS,i = vn

GPS,i + ev, (3.57)

where ev is the velocity error. Hence, the velocity error measurement equation can
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be written as

δzv,i = v̂n
GPS,i − ṽn

GPS,i

= δvn
IMU − (ωn

in×)Cn
b

(
`bGPS,i×

)
φ−Cn

b

(
`bGPS,i × ωb

ib

)
× φ

+Cn
b

(
`bGPS,i×

)
δωb

ib − ev. (3.58)

Using Eq. (2.69), the computed range between the GPS antenna and the satellite

can be linearized as follows:

r̂ji =
∥∥r̂e

SV,j − r̂e
GPS,i

∥∥
≈ rji +

(
r̂e
SV,j − r̂e

GPS,i

)T∥∥r̂e
SV,j − r̂e

GPS,i

∥∥ (
δre

SV,j − δre
GPS,i

)
= rji +

(
r̂e
SV,j − r̂e

GPS,i

)T∥∥r̂e
SV,j − r̂e

GPS,i

∥∥ δre
SV,j −

(
r̂e
SV,j − r̂e

GPS,i

)T
Ce

n∥∥r̂e
SV,j − r̂e

GPS,i

∥∥ δrn
GPS,i

= rji +

(
r̂e
SV,j − r̂e

GPS,i

)T∥∥r̂e
SV,j − r̂e

GPS,i

∥∥ δre
SV,j

−
[
Cn

e

(
r̂e
SV,j − r̂e

GPS,i

)]T∥∥r̂e
SV,j − r̂e

GPS,i

∥∥ [
δrn

IMU +
(
Cn

b`
b
GPS,i×

)
φ

]
. (3.59)

The term
(
r̂e
SV,j − r̂e

GPS,i

)T
δre

SV,j/
∥∥r̂e

SV,j − r̂e
GPS,i

∥∥ is the projection of the satellite

position error onto the line of sight and can be treated as the orbital error δrorbit,j of

the jth satellite. Hence, Eq. (3.59) can be rewritten as

r̂ji = rji −
[
Cn

e

(
r̂e
SV,j − r̂e

GPS,i

)]T∥∥r̂e
SV,j − r̂e

GPS,i

∥∥ [
δrn

IMU +
(
Cn

b`
b
GPS,i×

)
φ

]
+ δrorbit,j. (3.60)

Therefore, the errors in the computed ranges are due to the orbital errors of the

satellites and computed position errors of the GPS antenna.
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The range measurement error in a GPS receiver originates basically in the timing

error. Consequently, the pseudo-range measurement can be written as

ρji = rji + c (δTi − δtj) + δriono + δrtropo + δrmulti + eρ, (3.61)

where c is the speed of light; δTi is the receiver clock offset; δtj is the satellite clock

offset; δriono is the ionospheric delay; δrtropo is the tropospheric delay; δrmulti is the

multipath error; and eρ is the range measurement noise. Several error terms can be

combined into one range bias error term, bρ,j. Therefore, subtracting Eq. (3.61) from

Eq. (3.60) yields the following range error measurement equation:

δzρ = r̂ji − ρji

= −
[
Cn

e

(
re
SV,j − r̂e

GPS,i

)]T∥∥re
SV,j − r̂e

GPS,i

∥∥ [
δrn

IMU +
(
Cn

b`
b
GPS,i×

)
φ

]
−cδTi − bρ,j − eρ. (3.62)

Linearized Vehicle-Frame Velocity Measurement Model

Referring to Eq. (2.70), the computed v-frame velocity at the wheel can be written

as

v̂v
wheel = Cv

bĈ
b

nv̂
n
IMU + Cv

b

(
ω̂b

nb×
)
`bwheel

≈ Cv
bC

b
n [I + (φ×)] (vn

IMU + δvn
IMU) + Cv

b

(
ωb

nb×
)
`bwheel + Cv

b

(
δωb

ib×
)
`bwheel

≈ vv
wheel + Cv

bC
b
nδv

n
IMU −Cv

bC
b
n (vn

IMU×)φ−Cv
b

(
`bwheel×

)
δωb

ib. (3.63)

The v-frame velocity measurement can also be expressed as

ṽv
wheel = vv

wheel + ev, (3.64)
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where ev is the velocity measurement noise. Therefore, the v-frame velocity error

measurement equation can be expressed as

δzv = v̂v
wheel − ṽv

wheel

= Cv
bC

b
nδv

n
IMU −Cv

bC
b
n (vn

IMU×)φ−Cv
b

(
`bwheel×

)
δωb

ib − ev, (3.65)

where the second and third elements inside the vector measurement equation consti-

tute the non-holonomic constraints which state that the lateral and vertical velocities

are zero if the vehicle is not skidding. Substituting φ = ψ + δθ into the above

equation and approximating vn
IMU with vc

IMU yield

δzv = Cv
bC

b
nδv

n
IMU −Cv

bC
b
n (vc

IMU×) (ψ + δθ)−Cv
b

(
`bwheel×

)
δωb

ib − ev

= Cv
bC

b
n (δvn

IMU − vc
IMU × δθ)−Cv

bC
b
n (vc

IMU×)ψ −Cv
b

(
`bwheel×

)
δωb

ib − ev

= Cb
nδv

c
IMU −Cv

bC
b
n (vc

IMU×)ψ −Cv
b

(
`bwheel×

)
δωb

ib − ev. (3.66)

Linearized Heading Measurement Model

The heading of the vehicle is computed from the elements of the following DCM:

Ĉ
n

v = Ĉ
n

b (Cv
b)
T = [I− (φ×)]Cn

b (Cv
b)
T . (3.67)

Let âij, bij, and cij represent the ijth elements of Ĉ
n

v, C
v
b, and Cn

b, respectively. Then,

referring to Eqs. (2.16c), the computed heading can be written as follows:

ψ̂ = tan−1 (â21/â11) , (3.68)
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where

â11 = b11(c11 + c21φz − c31φy) + b12(c12 + c22φz − c32φy)

+b13(c13 + c23φz − c33φy),

â21 = b11(c21 + c31φx − c11φz) + b12(c22 + c32φx − c12φz)

+b13(c23 + c33φx − c13φz).

Therefore, the heading error measurement equation can be written as

δzψ =

[
∂ψ̂

∂φx

∂ψ̂

∂φy

∂ψ̂

∂φz

]
φ+ eψ, (3.69)

where

∂ψ̂

∂φx

=

∂â21

∂φx

â11 − â21
∂â11

∂φx

â2
11 + â2

21

≈ â11(b11ĉ31 + b12ĉ32 + b13ĉ33)

â2
11 + â2

21

,

∂ψ̂

∂φy

=

∂â21

∂φy

â11 − â21
∂â11

∂φy

â2
11 + â2

21

≈ â21(b11ĉ31 + b12ĉ32 + b13ĉ33)

â2
11 + â2

21

,

∂ψ̂

∂φz

=

∂â21

∂φz

â11 − â21
∂â11

∂φz

â2
11 + â2

21

≈ −â11(b11ĉ11 + b12ĉ12 + b13ĉ13)− â21(b11ĉ21 + b12ĉ22 + b13ĉ33)

â2
11 + â2

21

,

and eψ is the heading measurement error.

Zero Integrated Heading Rate Measurement

When the vehicle’s velocity is zero, although the roll and pitch errors can be controlled

by applying ZUPTs, the heading error of a low-cost INS can grow rapidly due to the
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poor observability in heading. In this case, zero integrated heading rate (ZIHR)

measurements can be used to control the heading drift (Scherzinger, 2005; Private

communication).

The true heading rate is written as (Savage, 2000, p. 3-57)

ψ̇ =

[
0 sec θ sinφ sec θ cosφ

]
ωb

ib −
[
tan θ cosψ tan θ sinψ 1

]
ωn

in. (3.70)

The computed heading rate is

ˆ̇ψ =

[
0 sec θ̂ sin φ̂ sec θ̂ cos φ̂

]
ω̃b

ib −
[
tan θ̂ cos ψ̂ tan θ̂ sin ψ̂ 1

]
ωn

in. (3.71)

Because the vehicle is stationary, the transport rate is zero and the remaining is the

Earth’s rotation rate: ωn
in = ωn

ie. The sensed gyro output can be written as

ω̃b
ib = ωb

ib + bg + ng, (3.72)

where bg and ng are gyro bias and noise, respectively. We can assume that the roll

and pitch errors are negligibly small during ZUPTs. However, the same cannot be
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said for the heading error. Hence, the heading rate error is

ˆ̇ψ − ψ̇ = δψ̇

≈
[
0 sec θ sinφ sec θ cosφ

] (
ωb

ib + bg + ng

)
−

[
tan θ cos(ψ + δψ) tan θ sin(ψ + δψ) 1

]
ωn

ie

−
[
0 sec θ sinφ sec θ cosφ

]
ωb

ib

+

[
tan θ cosψ tan θ sinψ 1

]
ωn

ie

≈
[
0 sec θ sinφ sec θ cosφ

]
(bg + ng)

−δψ
[
− tan θ sinψ tan θ cosψ 0

]
ωn

ie

= ΩN tan θ sinψδψ + bnz + µg, (3.73)

where ΩN is the north component of the Earth’s rotation rate. This is a differential

equation in δψ whose dynamics are ΩN tan θ sinψδψ and whose inputs are the gyro

bias and noise projected on the the vertical:

bnz + µg =

[
0 sec θ sinφ sec θ cosφ

]
(bg + ng) . (3.74)

At this point we can compare the misresolved rate of the Earth, ΩN tan θ sinψδψ, with

the gyro errors and decide to simplify the equation by dropping the misresolution of

the Earth’s rate. This allows a straightforward integration as follows:

ψ̂k − ψ̂k−1 = δψk − δψk−1

≈
[
0 sec θ sinφ sec θ cosφ

]
∆tkbg + e, (3.75a)

e =

[
0 sec θ sinφ sec θ cosφ

] ∫ tk

tk−1

ngdt, (3.75b)
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where the roll and pitch are considered as constants over the time interval ∆tk. Due

to the term sec θ, this type of measurement cannot be applied when the pitch is

close to ±90◦. The ZIHR measurement model, Eq. (3.75a), can also be used as a

measurement model in the UKF.

3.3.3 Linearized Kalman Filter

The implementation of the Kalman filter can be divided into three stages: initializa-

tion, measurement update and prediction. The error state vector and its covariance

are initialized as follows:

δx̂0|0 = 0, P0|0 = E
[
δx̂0|0δx̂

T
0|0

]
. (3.76)

In the prediction stage, also called the ‘time update,’ the estimate and its error

covariance are projected ahead as follows (Brown and Hwang, 1997, p. 219):

δx̂k|k−1 = Φk−1δx̂k−1|k−1, (3.77a)

Pk|k−1 = Φk−1Pk−1|k−1Φ
T
k−1 + Qk−1. (3.77b)

In the measurement update, the Kalman gain, Kk, is computed first, then the state

and the error covariance are updated using the predicted estimate, δx̂k|k−1, and its
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covariance, Pk|k−1:

Pνν,k = HkPk|k−1H
T
k + Rk, (3.78a)

Kk = Pk|k−1H
T
kP

−1
νν,k, (3.78b)

δx̂k|k = δx̂k|k−1 + Kk

(
δzk −Hkδx̂k|k−1

)
, (3.78c)

Pk|k = (I−KkHk)Pk|k−1 (I−KkHk)
T + KkRkK

T
k . (3.78d)

Eq. (3.78d) is called the “Joseph form” of the covariance update equation (Grewal

and Andrews, 1993, p. 111), which yields a more stable solution than the conventional

one owing to the guaranteed symmetry and reduced vulnerability to numerical errors

(Maybeck, 1994a, p. 237).

Square-root filters can further improve the covariance update by propagating the

square-root of the state error covariance, S, such that P = SST . The UD-factorization

algorithm was introduced due to the heavy computational burden of the square-root

implementation; it factors the state error covariance P into an upper-triangular ma-

trix U with 1’s along its main diagonal and a diagonal matrix D: P = UDUT

(Haykin, 1996, p. 327). However, with advances in modern computer technology,

computational cost is not as serious a factor as it used to be. Furthermore, a Kalman

filter using the UD-factorization may suffer from overflow/underflow problems (Stew-

art and Chapman, 1990). Therefore, the square-root implementation will be preferred

for utmost quality in the covariance update (Haykin, 1996, p. 328). The square-root

implementations of the Kalman covariance prediction and update are described in
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Eqs. (3.79a) and (3.79b), respectively (Haykin, 1996, p. 594):

[
ΦkSk|k Q

1/2
k

]
Θ1,k =

[
Sk+1|k 0

]
, (3.79a)

R
1/2
k HkSk|k−1

0 Sk|k−1

Θ2,k =

 P
1/2
νν,k 0

Pk|k−1H
T
kP

−T/2
ν,k Sk|k

 , (3.79b)

where Q
1/2
k Q

T/2
k = Qk and P

1/2
νν,kP

T/2
νν,k = Pνν,k; Θ1,k and Θ2,k are orthogonal matrices

that annihilate the right and upper-right block of the pre-array, respectively, which

can be obtained through Givens rotations. For further discussion of the square-

root and UD filters, the readers are advised to consult Grewal and Andrews (1993),

Maybeck (1994a) and Haykin (1996).

3.3.4 INS Error Control

INS errors have to be controlled frequently in a low-cost INS. Otherwise, a low-cost

INS would generate enormously large errors in an extended stand-alone operation,

which could eventually lead to the violation of the small error assumption of the EKF.

For horizontal position error control, q̂e
n = qe

c has to be corrected as follows:

qe
n = qe

c ? qc
n, (3.80a)

qc
n =

 cos ‖0.5δθ‖

−sin ‖0.5δθ‖
‖0.5δθ‖

0.5δθ

 , (3.80b)
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where δθ can be obtained from the estimated north and east position errors using

Eq. (2.35). The height is to be corrected separately as follows:

h = ĥ+ δr̂D. (3.80c)

The velocity correction for the φ-angle error model can be done simply as

vn = v̂n − δv̂n. (3.81a)

Substituting Eq. (3.6a) into the above yields the velocity correction equation for the

ψ-angle error model:

vn = v̂n − δv̂c + δθ × v̂n. (3.81b)

Using Eqs. (3.9a) and (3.9b), the velocity control equations for the modified error

models can be written as follows:

vn = v̂n −∆v̂n
1 − v̂n × φ̂, (3.81c)

= v̂n −∆v̂c
2 − v̂n × ψ̂ + δθ × v̂n. (3.81d)

Since q̂n
b = qp

b, attitude correction can be written as follows:

qn
b = qn

p ? qp
b, (3.82a)

qn
p =

 cos ‖0.5φ̂‖

sin ‖0.5φ̂‖
‖0.5φ̂‖

0.5φ̂

 . (3.82b)

For the ψ-angle error model, φ̂ = ψ̂ + δθ̂ has to be computed first and then Eqs.

(3.82a) and (3.82b) can be applied.
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3.4 Optimal Smoothing

The purpose of smoothing is to find an optimal estimate utilizing all past, current

and future measurements. Meditch (1969, p. 204) classified smoothing problems into

three categories, i.e. fixed-point, fixed-lag, and fixed-interval. Fixed-point smoothing

is used when we are interested in the states at specific points such as orbit injection

time of a satellite or initial condition of the reaction substance in a chemical process

(Meditch, 1969, p. 207). Fixed-lag smoothing can be used when the existence of a

fixed lag of the estimate does not impose intractable problems. Thus, the method

appears attractive primarily in communication and telemetry data reduction problems

(Meditch, 1969, p. 208). Fixed-interval smoothing can be used in most surveying

applications, because surveying is typically amenable to post-processing where best

position information is pursued for all measured points. Hence, only fixed-interval

smoothing will be discussed in more detail.

In general, smoothing can be performed by combining the forward and backward

filter solutions as follows:

Psm =
(
P−1

f + P−1
b

)−1
, (3.83a)

x̂sm = Psm

(
P−1

f x̂f + P−1
b x̂b

)
= Psm

(
P−1

f x̂f + P−1
b x̂f −P−1

b x̂f + P−1
b x̂b

)
= x̂f + PsmP−1

b (x̂b − x̂f) , (3.83b)

where subscripts ‘f,’ ‘b,’ and ‘sm’ denote the forward, backward, and smoothed solu-
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tions, respectively. Eqs. (3.83a) and (3.83b) can be used not only for smoothing but

also for combining information coming from a multi-sensor network. The implemen-

tation of the forward and backward filtering approach will be discussed in detail in

Chapter 4. The inconvenience of the forward and backward filtering approach is that

the full-scale backward filter has to be developed and applied separately.

The Rauch-Tung-Striebel (RTS) algorithm is a well-known fixed-interval smoother

for linear filters. The RTS algorithm does not require the application of the full-scale

backward filter, although it is equivalent to combining the forward and backward

solutions. The algorithm is written as follows (Brown and Hwang, 1992, p. 334):

δx̂k|N = δ̂xk|k + Ak

(
δ̂xk+1|N − δx̂k+1|k

)
, (3.84a)

Pk|N = Pk|k + Ak

(
Pk+1|N −Pk+1|k

)
AT
k , (3.84b)

where the smoothing gain Ak is given as

Ak = Pk|kΦ
T
kP

−1
k+1|k, (3.84c)

for k = N − 1, N − 2, . . . , 0, and N is the total number of measurements. Figure 3.4

illustrates the computation procedure.

Usually, GPS measurement rate is much slower than INS data rate. Further, GPS

measurements are sometimes not available due to signal blockages. The Kalman filter

works in prediction mode between the periodic acquisition of GPS measurements and

therefore the updated solutions (δx̂k|k and Pk|k) are not always generated during the

forward filtering computation sweep. In this case, the predicted states and covariance
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Filtering

Smoothing

Figure 3.4: Fixed-interval smoothing computation

are interpreted as the updated state and covariance, respectively. Once the smoothed

error states are computed, the INS error control equations, discussed in Section 3.3.4,

need to be applied to obtain smoothed position, velocity, and attitude. One incon-

venience in the RTS algorithm is that all information of the forward filter must be

saved at every processing epoch, therefore greatly increasing the storage requirement.



Chapter 4

The Unscented Kalman Filter and

Smoother for Aided INS

The basic concept of the UKF is illustrated in Figure 4.1. The EKF simply trans-

formes the mean through the given nonlinear function and considers it as the trans-

formed mean, which is valid if the given transformation is linear. The UKF, however,

samples several points from the given mean and covariance of the PDF and trans-

forms all of the points through the given nonlinear transformation. The transformed

mean and covariance are constructed from the transformed points.

Shin and El-Sheimy (2004) first applied the UKF to INS/GPS integration and

demonstrated the UKF’s capability of dealing with large and small attitude errors

seamlessly. Unfortunately, it was possible for singularities to occur, since attitude

was expressed in terms of the Euler angles, and the metric required to measure the

86
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Figure 4.1: The concept of the UKF

attitude difference was incomplete.

With the use of quaternion attitude representation, singularities can be resolved.

Quaternion-based UKFs for attitude determination can be found in Kraft (2003) and

Crassidis and Markley (2003). Kraft (2003) used rotation vectors (singular at ±180◦)

to express attitude covariance while Crassidis and Markley (2003) used a generalized

representation, where the singularity can be placed anywhere from 180◦ to 360◦.

Shin (2004) developed a quaternion-based UKF for the integration of GPS and INS

following the former approach. The structure of Shin (2004) will be used here as

rotation vectors have been used extensively in Chapter 2 to support this approach.

Section 4.1 will review proposals for the unscented transformation (UT). Then, in

Section 4.3, a UKF will be developed by extending the UT to the recursive estimation

problem. Finally, Section 4.4 develops a smoother by combining the forward and

backward UKF solutions, which will be referred to as the unscented Kalman smoother
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(UKS).

4.1 Unscented Transformations

The UT refers to the procedure for obtaining a set of weights, wi’s, and sigma points,

X i’s, from the given mean, x̄, and covariance, P, satisfying the following conditions:

p−1∑
i=0

wi = 1

p−1∑
i=0

wiX i = x̄

p−1∑
i=0

wi(X i − x̄)(X i − x̄)T = P

, (4.1)

where p is the number of sigma points. This section contains a review of sigma point

generation schemes and an analysis of how the UT handles nonlinearities.

4.1.1 Proposals for the UT

The first proposal for the UT, introduced in Julier and Uhlmann (1996), generates

p = 2n+ 1 sigma points, where n is the number of the states. The sigma points and

weights are obtained as follows:

X i =



x̄ i = 0

x̄ +
√
n+ κσi i = 1, · · · , n

x̄−
√
n+ κσi−n i = n+ 1, · · · , 2n

, (4.2a)
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wi =


κ

n+ κ
i = 0

1

2(n+ κ)
i = 1, · · · , 2n

, (4.2b)

where κ is a scaling parameter to adjust the effect of the fourth and higher mo-

ments of the probability distribution during given nonlinear transformations (system

process and measurements); and σi is the ith column of the square-root matrix of

the covariance, S, which can be computed through Cholesky factorization:

SST = P. (4.3)

It was discussed in Julier and Uhlmann (1996) that κ = 3 − n is optimal for a

single-state Gaussian distribution and, for multi-dimensional systems, if 0 < n+κ < 3,

then the absolute error in the predicted mean is smaller than that with linearization.

The characteristics in Eq. (4.1) can easily be verified using the following properties:

• The sigma points in Eq. (4.2a) are symmetric about the mean, as there exist

an addition and a subtraction of the same point in Eq. (4.2a).

• P = SST =

[
σ1 σ2 · · · σn

]


σT1

σT2

...

σTn


=

∑n
i=1 σiσ

T
i .

For systems with a very high sampling rate, the large number of sigma points may

entail a significant computational burden. Julier and Uhlmann (2002a) reduced the
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number of sigma points to n+ 2 by choosing points matching the first two moments

and minimizing the third order moments (skew). Hence, the resulting sigma points

are referred to as the minimal skew simplex points. The radius of the bounding hyper-

sphere1 of the minimal skew SPs increases rapidly as the number of states increases:

2n/2 (Julier, 2003), which causes a problem for multi-dimensional systems because

the SPs can be sampled in a region far from the uncertainty level. To overcome this

problem, the spherical simplex SPs were developed by Julier (2003) through imposing

the following constraints on Eq. (4.1):

• The 0th weight is a free parameter that can be chosen by the designer and all

other weights have the same value.

• The 0th point is the same as the mean and all other points lie on a hypersphere

centred at the mean.

In the following, a brief derivation of the spherical simplex SPs will be presented

for a zero-mean and unit-covariance case (i.e., x̄ = 0 and P = I) based on Julier

(2003). Then, SPs for an arbitrary mean and covariance cases will be computed from

the those of zero mean and unit covariance.

Let X j
u,i be the ith spherical simplex SP in a j-dimensional space. Let us first find

three points and weights capturing the mean and variance in one dimension. Using

1A hypersphere is a set of n-dimensional points whose Euclidean norm has the same value:

{x | ‖x‖ = r}, where r is the radius of the hypersphere. For n = 2 and n = 3, it is the same a circle

and a sphere, respectively.
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the aforementioned constraints, the weights and SPs can be written as follows:
w1 = w2 = (1− w0)/2

{X 1
u,0,X 1

u,1,X 1
u,2} = {0,−x, x}

, (4.4)

where x is a value to be determined. Substituting Eq. (4.4) into the covariance

condition in Eq. (4.1) yields 2w1x
2 = 1. Therefore, the distance from X 1

u,0 to X 1
u,1

and X 1
u,2 is 1/

√
2w1 = 1/

√
1− w0 and the spherical simplex SPs are symmetric for

one-dimensional systems:

{X 1
u,0,X 1

u,1,X 1
u,2} = {0,−1/

√
2w1, 1/

√
2w1}.

Let us extend the situation to the two-dimensional case. The weights can be

computed as w1 = w2 = w3 = (1 − w0)/3. Then, as illustrated in Figure 4.2, X 1
u,1

and X 1
u,2 are shifted downward by x1 and become X 2

u,1 and X 2
u,2, respectively. A

new point is added on the vertical axis and let the coordinate be ax1. The mean and

covariance condition in Eq. (4.1) can now be written for the vertical axis as follows:
−2w1x1 + w1ax1 = 0

2w1x
2
1 + w1a

2x2
1 = 1

. (4.5)

Hence, a = 2, x1 = 1/
√

6w1, and

{
X 2

u,0,X 2
u,1,X 2

u,2,X 2
u,3

}
=


0

0

 ,
−1/

√
2w1

−1/
√

6w1

 ,
 1/

√
2w1

−1/
√

6w1

 ,
 0

2/
√

6w1


 .

(4.6)

All of the SPs are contained in a circle of radius 2/
√

6w1 =
√

2/(1− w0). However,
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the sum of the cubes of the coordinates in the vertical axis is not vanishing. Therefore,

the spherical simplex SPs are not symmetric for multi-dimensional systems.

Figure 4.2: The spherical simplex sigma point generation

If the same procedures are repeated, eventually Algorithm 1, generating n + 2

SPs, can be obtained. For the three-dimensional case, the SPs will be contained in

a sphere of radius
√

3/(1− w0). If the dimension is higher than three, the radius of

the bounding hypersphere is
√
n/(1− w0).

Algorithm 1 (The Spherical Simplex UT)

1. Choose 0 ≤ w0 ≤ 1.

2. Compute weight sequence as:

wi = (1− w0)/(n+ 1) for i = 1, . . . , n+ 1.

3. Initialize the vector sequence of the sigma points as follows:

X 1
u,0 = [0], X 1

u,1 =

[
−1√
2w1

]
and X 1

u,2 =

[
1√
2w1

]
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4. Expand the vector sequence of the sigma points for j = 2, . . . , n:

X j
u,i =



 X j−1
u,0

0

 for i = 0

 X j−1
u,i

−1/
√
j(j + 1)w1

 for i = 1, . . . , j

 0j−1

j/
√
j(j + 1)w1

 for i = j + 1

where the superscript j denotes the dimension of the vector and the subscript

i indicates the sequence of the sigma points.

The sigma points for an arbitrary mean and covariance can be obtained as follows:

X i = x̄ + SX u,i, i = 0, . . . , n+ 1. (4.7)

4.1.2 The Scaled UT

Although the radius of the bounding hypersphere of the spherical simplex SPs is much

smaller than that of the minimal skew simplex SPs, the radius expansion nevertheless

results in a problem for high dimensional systems involving attitude estimation. For

instance, if n = 9 and w0 = 0.5, the radius becomes
√
n/(1− w0) ≈ 4.24; in this

case, if the heading uncertainty is about 30◦, then the heading can be sampled in

the range of ±120◦. Thus, nonlinearities outside of the uncertainty region can affect
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the solution. Furthermore, attitude angles do not belong to a vector space (Pennec,

1998) because they repeat themselves as the values of the angles grow. Hence, for

large attitude uncertainties, some angles can be sampled twice. Therefore, the sigma

points must be scaled using the method introduced in Julier and Uhlmann (2002b);

this scaling scheme is reproduced in Algorithm 2.

Algorithm 2 (The Scaled UT)

1. Sigma points from the first proposal for the UT and the spherical simplex UT

can be scaled by using Eqs. (4.8a) and (4.8b), respectively:

X ′
i =



x̄ i = 0

x̄ + α
√
n+ κσi i = 1, · · · , n

x̄− α
√
n+ κσi−n i = n+ 1, · · · , 2n

, (4.8a)

X ′
i = x̄ + αSX u,i, i = 0, . . . , n+ 1, (4.8b)

where α is the scaling parameter, a small positive number (e.g., 10−4 ≤ α ≤ 1)

(Wan and van der Merwe, 2001, p. 229).

2. Adjust the weights for the mean:

wm
i =


(w0 − 1)/α2 + 1 i = 0

wi/α
2 i 6= 0

. (4.8c)
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3. Adjust the weights for the covariance:

wc
i =


(w0 − 1)/α2 + 2 + β − α2 i = 0

wi/α
2 i 6= 0

, (4.8d)

where β is a parameter to reduce higher order effects; β = 2 is optimal for

Gaussian distributions (Julier and Uhlmann, 2002b) and will be discussed in

Section 4.1.3.

Comparing the 0th weight in Eqs. (4.8c) and (4.8d) yields

wc
0 = wm

0 + 1 + β − α2. (4.9)

If scaling is to be applied for the spherical simplex SPs, then the reciprocal of the

radius of the bounding hypersphere can be used as the scaling parameter such that

the SPs can be sampled within a range of ±1σ:

α =
√

(1− w0)/n. (4.10)

The characteristics in Eq. (4.1) hold regardless of the choice of α; for instance, for

the spherical simplex SPs,

p−1∑
i=0

wm
i X ′

i = x̄ +
1

α
S

p−1∑
i=0

wiX u,i +

(
1− 1

α2

)
αSX u,0 = x̄, (4.11a)

p−1∑
i=0

wc
i (X ′

i − x̄) (X ′
i − x̄)

T
=

p−1∑
i=0

wc
iα

2SX u,i (X u,i)
T ST

=

p−1∑
i=0

wiSX u,i (X u,i)
T ST +

(
2 + β − α2 − 1

α2

)
α2SX u,0 (X u,0)

T ST

= P, (4.11b)

where X u,0 = 0 is used.
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4.1.3 Nonlinearities and the UT

In this section, the handling of nonlinearities by the UT will be investigated using

a one-dimensional random variable based on Julier and Uhlmann (1996). Let x be

a normally distributed random variable with mean and variance given as x̄ and σ2
x,

respectively. Then, the true value, xT, can be written as

xT = x̄+ δx, (4.12)

where δx is an error and is assumed to be of zero mean: E[δx] = 0.

Let y be another random variable related to x with the following general nonlinear

transformation:

y = g(x), (4.13)

where g(·) is a continuous function. The transformed value can be written as follows:

yT = g(x̄+ δx)

= g(x̄) +∇gδx+
∇2
g(δx)

2

2!
+
∇3
g(δx)

3

3!
+
∇4
g(δx)

4

4!
+ · · · , (4.14)

where

∇i
g =

∂ig(x)

∂xi

∣∣∣∣
x=x̄

. (4.15)

Since the expected values of all odd-order terms are zero, the true transformed mean

can be written as follows:

ȳT = E[yT] = g(x̄) +
∇2
gσ

2
x

2!
+
∇4
gE[(δx)4]

4!
+ · · · . (4.16)
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In a Gaussian distribution, the fourth-order moment (kurtosis) is equal to three times

the variance squared. Hence, substituting E[(δx)4] = 3σ4
x into Eq. (4.16) yields

ȳT = g(x̄) +
∇2
gσ

2
x

2!
+

3∇4
gσ

4
x

4!
+ · · · . (4.17a)

The error of the transformed variable can be written as

yT − ȳT = ∇gδx+
∇2
g(δx)

2

2!
+
∇3
g(δx)

3

3!
+
∇4
g(δx)

4

4!
+ · · · −

∇2
gσ

2
x

2!
−

3∇4
gσ

4
x

4!
− · · · .

Therefore, the transformed variance can be written as follows:

(σ2
y)T = E[(yT − ȳT)2]

= ∇gσ
2
x∇g +

∇gE[(δx)4]∇3
g

3!
+
∇2
gE[(δx)4]∇2

g

2! · 2!
+
∇3
gE[(δx)4]∇g

3!

−
∇2
gσ

4
x∇2

g

2! · 2!
+ · · ·

= ∇gσ
2
x∇g +

3∇gσ
4
x∇3

g

3!
+

2∇2
gσ

4
x∇2

g

2! · 2!
+

3∇3
gσ

4
x∇g

3!
+ · · · . (4.17b)

Linearization yields the following transformation:

ȳLIN = g(x̄), (4.18a)

(σ2
y)LIN = ∇gσ

2
x∇g, (4.18b)

accurate up to the first and third order for the mean and covariance, respectively.

As ∇g is the same as the Jacobian in multidimensional systems, Eqs. (4.18a) and

(4.18b) also explain the mean and covariance transformation in the EKF if there is

no system precess noise.

Let {wi,Xi} be a set of weights and SPs satisfying the conditions in Eq. (4.1).

There exist three SPs for a one-dimensional system in both the first proposal for
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the UT, Eq. (4.2a), and the spherical simplex UT. The SPs can be interpreted as

perturbed points around the mean and therefore can be written as

Xi = x̄+ σi, i = 0, 1, 2. (4.19)

As the 0th point is equal to the mean, σ0 = 0. For the first proposal,

{w0, w1, w2} =

{
κ

1 + κ
,

1

2(1 + κ)
,

1

2(1 + κ)

}
and

{σ0, σ1, σ2} = {0,
√

1 + κσx,−
√

1 + κσx}. (4.20)

For the spherical simplex UT, w0 can be chosen arbitrarily, w1 = w2 = (1 − w0)/2

and

{σ0, σ1, σ2} = {0,−σx/
√

2w1, σx/
√

2w1}. (4.21)

It can easily be verified that all of these SPs satisfy

2∑
i=0

wiσi = 0 and
2∑
i=0

wiσ
2
i = σ2

x. (4.22)

The transformed SPs can be written as

Yi = g(x̄+ σi) (4.23)

= g(x̄) +∇gσi +
∇2
gσ

2
i

2!
+
∇3
gσ

3
i

3!
+
∇4
gσ

4
i

4!
+ · · · . (4.24)

Hence, the transformed mean through the UT can be written as

ȳUT =
2∑
i=0

wiYi

= g(x̄) +
∇2
gσ

2
x

2!
+

2∑
i=0

wi

[∇3
gσ

3
i

3!
+
∇4
gσ

4
i

4!
+ · · ·

]
. (4.25a)
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For one-dimensional systems, the generated SPs are symmetric for both the first

proposal and the spherical simplex UT because σ0 = 0 and σ1 = −σ2. Furthermore,

as w1 = w2, the third order term vanishes (
∑2

i=0wiσ
3
i = 0) and therefore

ȳUT = g(x̄) +
∇2
gσ

2
x

2!
+

2∑
i=0

wi

[∇4
gσ

4
i

4!
+ · · ·

]
. (4.25b)

Compared with the true mean, Eq. (4.17a), the transformed mean through the UT

is accurate up to the third order for one-dimensional systems. Since

Yi − ȳUT = ∇gσi +
∇2
gσ

2
i

2!
+
∇3
gσ

3
i

3!
+
∇4
gσ

4
i

4!
+ · · ·

−
∇2
gσ

2
x

2!
−

2∑
i=0

wi

[∇3
gσ

3
i

3!
+
∇4
gσ

4
i

4!
+ · · ·

]
,

the transformed variance can be written as

(
σ2
y

)
UT

=
2∑
i=0

wi (Yi − ȳUT)2

= ∇gσ
2
x∇g +

2∑
i=0

wi

[∇gσ
3
i∇2

g

2!
+
∇gσ

4
i∇3

g

3!
+
∇2
gσ

3
i∇g

2!

+
∇2
gσ

4
i∇2

g

2! · 2!
+
∇3
gσ

4
i∇g

3!
+ · · ·

]
−

[∇2
gσ

2
x

2!

]2

. (4.25c)

Again, owing to the symmetry of the SPs, the third order term vanishes. Hence,

comparing Eq. (4.25c) with Eq. (4.17b) shows that the transformed variance through

the UT will be accurate up to the third order.

For multi-dimensional systems, however, as only the first proposal for the UT

generates symmetric points, the third order term will not, in general, be canceled.

Therefore, the transformed mean and covariance will be accurate up the second order.

Table 4.1 summarizes the accuracy of mean and covariance transformation.
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Table 4.1: Accuracy of mean and covariance transformation

Mean Covariance

Linearization First order Third order

First UT Third order Third order

Spherical Simplex UT Second order Second order

The scaled UT generates the following SPs:

X ′
i = x̄+ ασi, i = 0, 1, 2. (4.26)

Based on the definitions of wm
i and wc

i in Section 4.1.2, the following characteristics

hold:

2∑
i=0

wm
i ασi =

1

α

2∑
i=0

wiσi + (1− 1

α2
)ασ0 = 0, (4.27a)

2∑
i=0

wm
i (ασi)

2 =
2∑
i=0

wiσ
2
i + (α2 − 1)σ2

0 = σ2
x, (4.27b)

2∑
i=0

wc
i (ασi)

2 =
2∑
i=0

wiσ
2
i +

(
2 + β − α2 − 1

α2

)
α2σ2

0 = σ2
x, (4.27c)

where σ0 = 0 is used.

Transforming each of the scaled SPs yields

Y ′i = g(x̄+ ασi) (4.28)

= g(x̄) +∇gασi +
∇2
g(ασi)

2

2!
+
∇3
g(ασi)

3

3!
+
∇4
g(ασi)

4

4!
+ · · · . (4.29)
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Hence, the transformed mean through the scaled UT can be written as

ȳSUT =
2∑
i=0

wm
i Y ′i

= g(x̄) +
∇2
gσ

2
x

2!
+

2∑
i=0

wm
i

[∇3
g(ασi)

3

3!
+
∇4
g(ασi)

4

4!
+ · · ·

]
. (4.30)

The transformed mean is accurate up to the second order regardless of the choice of

the value of α. With

Y ′i − ȳSUT = ∇gασi +
∇2
g(ασi)

2

2!
+
∇3
g(ασi)

3

3!
+
∇4
g(ασi)

4

4!
+ · · ·

−
∇2
gσ

2
x

2!
−

2∑
i=0

wm
i

[∇3
g(ασi)

3

3!
+
∇4
g(ασi)

4

4!
+ · · ·

]
, (4.31)

the transformed variance can be written as

(
σ2
y

)
SUT

=
2∑
i=0

wc
i (Y ′i − ȳSUT)

2

= ∇gσ
2
x∇g +

2∑
i=0

wc
i

[∇g(ασi)
3∇2

g

2!
+
∇g(ασi)

4∇3
g

3!
+
∇2
g(ασi)

3∇g

2!

+
∇2
g(ασi)

4∇2
g

2! · 2!
+
∇3
g(ασi)

4∇g

3!
+ · · ·

]
−

[∇2
gσ

2
x

2!

]2

. (4.32)

Hence, the transformed variance is also accurate up to the second order regardless of

the choice of the value α. As the third order term vanishes, the transformed mean

and variance are accurate up to the third order. For multi-dimensional systems, if

the spherical simplex UT is applied, then it is accurate up to the second order.

Substituting i = 0 into Eq. (4.31) yields

Y ′0 − ȳSUT = −
∇2
gσ

2
x

2!
. (4.33)
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Since wc
0 = wm

0 + 1 + β − α2, Eq. (4.32) can be rewritten as

(
σ2
y

)
SUT

=
2∑
i=0

wm
i (Y ′i − ȳSUT)

2
+ (1 + β − α2)

[∇2
gσ

2
x

2!

]2

. (4.34)

Thus, the additional parameter β can be used to adjust the effect of the fourth-order

terms. Substituting

2∑
i=0

wm
i (Y ′0 − ȳSUT)

2
= ∇gσ

2
x∇g +

2∑
i=0

wm
i

[∇g(ασi)
3∇2

g

2!
+
∇g(ασi)

4∇3
g

3!

+
∇2
g(ασi)

3∇g

2!
+
∇2
g(ασi)

4∇2
g

2! · 2!
+
∇3
g(ασi)

4∇g

3!
+ · · ·

]
−

[∇2
gσ

2
x

2!

]2

(4.35)

into Eq. (4.34) yields

(
σ2
y

)
SUT

= ∇gσ
2
x∇g +

2∑
i=0

wm
i

[∇g(ασi)
3∇2

g

2!
+
∇g(ασi)

4∇3
g

3!
+
∇2
g(ασi)

3∇g

2!

+
∇2
g(ασi)

4∇2
g

2! · 2!
+
∇3
g(ασi)

4∇g

3!
+ · · ·

]
+ (β − α2)

[∇2
gσ

2
x

2!

]2

. (4.36)

Hence, subtracting the true variance, Eq. (4.17b), from the above equation yields the

variance error:

(
δσ2

y

)
SUT

=
2∑
i=0

wm
i

[∇g(ασi)
3∇2

g

2!
+
∇g(ασi)

4∇3
g

3!
+
∇2
g(ασi)

3∇g

2!
+
∇2
g(ασi)

4∇2
g

2! · 2!

+
∇3
g(ασi)

4∇g

3!
+ · · ·

]
−

3∇gσ
4
x∇3

g

3!
−

3∇3
gσ

4
x∇g

3!
+ (β − 2− α2)

[∇2
gσ

2
x

2!

]2

.(4.37)

Therefore, β = 2 + α2 will cancel the effect of the fourth-order term (∇2
gσ

2
x/2!)2.

However, other fourth-order terms also exist and the probability distribution needs

to be investigated to find an optimal value of β.

Let us consider a simple example: g(x) = x2. Substituting ∇g = 2x̄, ∇2
g = 2,

and ∇i
g = 0 for i > 2 into Eqs. (4.17a) and (4.17b) yields the true values for the
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transformed mean and variance as follows:

ȳT = x̄2 + σ2
x, (4.38a)(

σ2
y

)
T

= 4x̄2σ2
x + 2σ4

x. (4.38b)

However, algorithms based on linearization transform the mean and variance as fol-

lows:

ȳLIN = x̄2, (4.39a)(
σ2
y

)
LIN

= 4x̄2σ2
x. (4.39b)

Thus, the transformed mean is biased and the variance is distorted. Using Eqs.

(4.25b) and (4.25c), we can write the transformed mean and variance through the

UT as follows:

ȳUT = x̄2 + σ2
x, (4.40a)(

σ2
y

)
UT

= 4x̄2σ2
x + w1σ

4
1 + w2σ

4
2 − σ4

x. (4.40b)

The transformed mean is equal to the true value. If SPs from the first UT written in

Eq. (4.20) are substituted into Eq. (4.40b), then

(
σ2
y

)
UT

= 4x̄2σ2
x + κσ4

x. (4.41)

Hence, if κ = 2 is used, the transformed variance is equal to the true variance. If the

spherical simplex SPs written in Eq. (4.21) are substituted into Eq. (4.40b), then

(
σ2
y

)
UT

= 4x̄2σ2
x +

(
1

1− w0

− 1

)
σ4
x. (4.42)

Therefore, if w0 = 2/3, the transformed variance is equal to the true variance.
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4.2 Generic UKF

The UKF is a straightforward extension of the UT to recursive estimation problems

(Wan and van der Merwe, 2001). In the UKF, if the system model is a nonlinear

function of the state and noise vector (e.g., g[x,w], an arbitrary nonlinear vector

function of the state vector, x, and the system noise vector, w), then the system

noise is generated and has to go through the system process model. Hence, the

system state and noise vector are augmented as follows:

xa =

x

w

 , (4.43)

where the superscript ‘a’ denotes the augmented states. By augmenting the state and

noise vector, the effect of the noise on the covariance propagation can be described

naturally. As the result, the integration in Eq. (3.45), required for the EKF, is not

necessary. On the other hand, for a system model with an additive noise vector (e.g.,

g[x] + w), there is no need to augment the state and noise vector at all.

In this section, the implementation of the UKF for system models with non-

additive noise will be discussed first. Then, as a special case, that for system models

with additive noise will be discussed. Throughout this section, it is assumed that the

system and measurement noise are uncorrelated and the following nonlinear measure-

ment model is given:

zk = h [xk] + ek, Rk = E
[
eke

T
k

]
. (4.44)
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The spherical simplex SPs will be used in the description.

4.2.1 UKF for Systems with Non-Additive Noise

Assume that the following system model is given:

xk+1 = g [xa
k] ≡ g [xk,wk] , Qk = E

[
wkw

T
k

]
. (4.45)

Note that the left-hand side of Eq. (4.45) is not an augmented state vector as apposed

to the right-hand side.

Initialization

1. Initialize the augmented state vector and its covariance:

x̂a
0|0 =

x̂0|0

0

 , Pa
0|0 =

P0|0 0

0 Q0

 , (4.46)

where P0|0 = E
[
(x0|0 − x̂0|0)(x0|0 − x̂0|0)

T
]

and Q0 = E
[
w0w

T
0

]
.

2. Generate the weights and sigma points for the zero mean and unit variance

{wi,X a
u,i} using Algorithm 1. Then, compute the weights for the mean, wm

i ,

and covariance, wc
i , using Eqs. (4.8c) and (4.8d), respectively.

3. Apply Cholesky factorization to obtain the square root matrix Sa
0|0 such that

Sa
0|0

(
Sa

0|0
)T

= Pa
0|0. Then, the scaled SPs are computed as follows:

X a′
i,0|0 = x̂a

0|0 + αSa
0|0X a

u,i. (4.47)
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Prediction

1. Transform the SPs through the system process model:

X ′
i,k|k−1 = g

[
X a′

i,k−1|k−1

]
. (4.48a)

2. Compute the mean and covariance from the transformed SPs:

x̂k|k−1 =

p−1∑
i=0

wm
i X ′

i,k|k−1, (4.48b)

Pk|k−1 =

p−1∑
i=0

wc
i

(
X ′

i,k|k−1 − x̂k|k−1

) (
X ′

i,k|k−1 − x̂k|k−1

)T
. (4.48c)

3. Compose the augmented state vector and covariance:

x̂a
k|k−1 =

x̂k|k−1

0

 , Pa
k|k−1 =

Pk|k−1 0

0 Qk

 . (4.48d)

4. Apply Cholesky factorization to obtain the square root matrix Sa
k|k−1 such that

Sa
k|k−1

(
Sa
k|k−1

)T
= Pa

k|k−1. Then, the scaled SPs are computed as follows:

X a′
i,k|k−1 = x̂a

k|k−1 + αSa
k|k−1X a

u,i. (4.48e)

Measurement Update

1. Transform SPs through the measurement model:

Z i,k|k−1 = h
[
X ′

i,k|k−1

]
. (4.49a)

2. Compute the predicted measurements from the transformed SPs:

ẑk|k−1 =

p−1∑
i=0

wm
i Z i,k|k−1. (4.49b)
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3. Compute the covariance between the states and the measurements:

Pxz,k =

p−1∑
i=0

wc
i

(
X ′

i,k|k−1 − x̂k|k−1

) (
Z i,k|k−1 − ẑk|k−1

)T
, (4.49c)

which can be interpreted as Pk|k−1H
T
k in the EKF described in the previous

chapter.

4. Compute covariance of the innovation sequence:

Pνν,k =

p−1∑
i=0

wc
i

(
Z i,k|k−1 − ẑk|k−1

) (
Z i,k|k−1 − ẑk|k−1

)T
+ Rk, (4.49d)

where the first term on the right-hand side is equivalent to HkPk|k−1H
T
k in the

EKF.

5. The rest of the update equations are written as follows:

Kk = Pxz,kP
−1
νν,k, (4.49e)

x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1), (4.49f)

Pk|k = Pk|k−1 −KkPνν,kK
T
k , (4.49g)

where Kk is the Kalman gain matrix.

6. Compose the augmented state vector and covariance:

x̂a
k|k =

x̂k|k

0

 , Pa
k|k =

Pk|k 0

0 Qk

 . (4.49h)

7. Apply Cholesky factorization to obtain the square root matrix Sa
k|k such that

Sa
k|k

(
Sa
k|k

)T
= Pa

k|k. Then, the scaled SPs are computed as follows:

X a′
i,k|k = x̂a

k|k + αSa
k|kX a

u,i. (4.49i)
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Equivalence of Eq. (4.49g) to the conventional Kalman covariance update can be

shown as follows:

Pk|k = Pk|k−1 −KkPνν,kK
T
k

= Pk|k−1 −KkPνν,kP
−1
νν,kHkPk|k−1

= (I−KkHk)Pk|k−1. (4.50)

4.2.2 UKF for Systems with Additive Noise

Assume that the following nonlinear system process model is given:

xk+1 = g [xk] + wk, Qk = E
[
wkw

T
k

]
. (4.51)

Initialization

1. Initialize the state vector, x̂0|0, and its covariance,

P0|0 = E
[
(x0|0 − x̂0|0)(x0|0 − x̂0|0)

T
]
.

2. Generate the weights and sigma points for the zero mean and unit variance

{wi,X u,i} using Algorithm 1. Then, the weights for the mean, wm
i , and covari-

ance, wc
i , are computed using Eqs. (4.8c) and (4.8d), respectively.

3. Apply Cholesky factorization to obtain the square root matrix S0|0 such that

S0|0S
T
0|0 = P0|0. Then, the scaled SPs are computed as follows:

X ′
i,0|0 = x̂0|0 + αS0|0X u,i. (4.52)
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Prediction

1. Transform the SPs through the system process model:

X ′
i,k|k−1 = g

[
X ′

i,k−1|k−1

]
. (4.53a)

2. Compute the mean and covariance from the transformed SPs:

x̂k|k−1 =

p−1∑
i=0

wm
i X ′

i,k|k−1, (4.53b)

Pk|k−1 =

p−1∑
i=0

wc
i

(
X ′

i,k|k−1 − x̂k|k−1

) (
X ′

i,k|k−1 − x̂k|k−1

)T
+ Qk−1.(4.53c)

3. Apply Cholesky factorization to obtain the square root matrix Sk|k−1 such that

Sk|k−1S
T
k|k−1 = Pk|k−1. Then, the scaled SPs are computed as follows:

X ′
i,k|k−1 = x̂k|k−1 + αSk|k−1X u,i. (4.53d)

Measurement Update

1. Transform SPs through the measurement model:

Z i,k|k−1 = h
[
X ′

i,k|k−1

]
. (4.54a)

2. Compute the predicted measurements from the transformed SPs:

ẑk|k−1 =

p−1∑
i=0

wm
i Z i,k|k−1. (4.54b)

3. Compute the covariance between the states and the measurements:

Pxz,k =

p−1∑
i=0

wc
i

(
X ′

i,k|k−1 − x̂k|k−1

) (
Z i,k|k−1 − ẑk|k−1

)T
. (4.54c)
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4. Compute covariance of the innovation sequence:

Pνν,k =

p−1∑
i=0

wc
i

(
Z i,k|k−1 − ẑk|k−1

) (
Z i,k|k−1 − ẑk|k−1

)T
+ Rk. (4.54d)

5. The rest of the update equations are written as follows:

Kk = Pxz,kP
−1
νν,k, (4.54e)

x̂k|k = x̂k|k−1 + Kk(zk − ẑk|k−1), (4.54f)

Pk|k = Pk|k−1 −KkPνν,kK
T
k . (4.54g)

6. Apply Cholesky factorization to obtain the square root matrix Sk|k such that

Sk|kS
T
k|k = Pk|k. Then, the scaled SPs are computed as follows:

X ′
i,k|k = x̂k|k + αSk|kX u,i. (4.54h)

4.3 UKF for Aided INS

In this section, the UKF for aided INS will be developed. INS mechanization is

used as the basic system model in aided INS; however, it will be modified in Section

4.3.1 to reflect the fact that system noise is generated in the UKF and has to go

through the system process model. The nonlinear measurement functions discussed

in Section 2.5 can be used directly in the measurement update stage; hence, there is

no need to linearize measurement equations as in the EKF. Section 4.3.2 discusses

the implementation of the UKF for aided INS in detail.
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4.3.1 System Process Model for Aided INS

Similar to the EKF design in the previous chapter, biases, scale factors and nonorthog-

onalities are included in the the state vector of the UKF as listed in Table 4.2. Because

the system process model should describe the effect of the sensor error terms on the

navigation terms (position, velocity and attitude), it comprises both the INS mech-

anization and sensor error models. Note that the quaternion qn
b is used in the state

vector to express the attitude without singularity.

Sensor Output

Like in Section 2.3, angle and velocity increments are given as follows, respectively:

∆θ̃k =

∫ tk

tk−1

ω̃b
ibdt, (4.55a)

∆ṽb
f ,k =

∫ tk

tk−1

f̃
b
dt, (4.55b)

where ·̃ denotes quantities corrupted by sensor errors.

Sensor Error Prediction

The discrete-time sensor error prediction can be applied as follows:

bg,k = diag(dgb)bg,k−1 + wgb,k−1, (4.56a)

ba,k = diag(dab)ba,k−1 + wab,k−1, (4.56b)
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Table 4.2: Augmented state vector design

x rn 3 Positions (ϕ, λ, h)

vn 3 Velocities (vN, vE, vD)

qn
b 4 Attitude quaternion

bg 3 Gyroscope biases

ba 3 Accelerometer biases

sg 3 Gyroscope scale factors

sa 3 Accelerometer scale factors

γg 6 Gyro-triad nonorthogonalities

γa 6 Accelerometer-triad nonorthogonalities

w wv 3 Velocity noise

wφ 3 Attitude noise

wgb 3 Gyro bias noise

wab 3 Accelerometer bias noise

wgs 3 Gyro scale factor noise

was 3 Accelerometer scale factor noise

wgγ 6 Gyro non-orthogonality noise

waγ 6 Accelerometer non-orthogonality noise
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sg,k = diag(dgs)sg,k−1 + wgs,k−1, (4.56c)

sa,k = diag(das)sa,k−1 + was,k−1, (4.56d)

γg,k = diag(dgγ)γg,k−1 + wgγ,k−1, (4.56e)

γa,k = diag(daγ)γa,k−1 + waγ,k−1, (4.56f)

where dgb, dab, dgs, das, dgγ, daγ, wgb,k−1, wab,k−1, wgs,k−1, was,k−1, wgγ,k−1, and

waγ,k−1 are discrete-time sensor error model parameters that can represent the random

walk, the random constant and the first-order Gauss-Markov processes.

Error Compensation

The sensor measurement errors are compensated for using the following equations:

∆θk =
[
I + Ξ(s0

g,γ
0
g) + Ξ(sg,k,γg,k)

]−1
[
∆θ̃k − (b0

g + bg,k)∆tk −wφ,k−1

]
≈

[
I−Ξ(s0

g,γ
0
g)−Ξ(sg,k,γg,k)

] [
∆θ̃k − (b0

g + bg,k)∆tk −wφ,k−1

]
,(4.57a)

∆vb
f,k =

[
I + Ξ(s0

a,γ
0
a) + Ξ(sa,k,γa,k)

]−1 [
∆ṽb

f,k − (b0
a + ba,k)∆tk −wv,k−1

]
≈

[
I−Ξ(s0

a,γ
0
a)−Ξ(sa,k,γa,k)

] [
∆ṽb

f,k − (b0
a + ba,k)∆tk −wv,k−1

]
,(4.57b)

where the superscript ‘0’ represents known quantities and the operator Ξ(·, ·) was

defined in Eq. (2.44). ∆θk−1 and ∆vb
f ,k−1 are computed and stored in the previous

cycle.
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Velocity Update

The time update of the velocity can be written as

vn
k = vn

k−1 + ∆vn
f ,k + ∆vng/cor,k. (4.58a)

The velocity increment due to the specific force can be computed as follows:

∆vn
f ,k = [I− (0.5ζk×)]C

n(k−1)
b(k−1)∆v

b(k−1)
f ,k , (4.58b)

ζk = [ωn
ie + ωn

en]k−1/2 ∆tk, (4.58c)

∆v
b(k−1)
f ,k ≈ ∆vb

f ,k +
1

2
∆θk ×∆vb

f ,k

+
1

12

(
∆θk−1 ×∆vb

f ,k + ∆vb
f ,k−1 ×∆θk

)
, (4.58d)

where the DCM C
n(k−1)
b(k−1) is obtained from the corresponding quaternion (qn

b)k−1 ≡

q
n(k−1)
b(k−1) and the subscript ‘k− 1/2’ denote quantities at the midway. The gravity and

Coriolis correction term can be computed as follows:

∆vn
g/cor,k = [gn − (2ωn

ie + ωn
en)× vn]k−1/2 ∆tk. (4.58e)

Position Update

The quaternion q
e(k−1)
n(k−1) is computed from the geodetic coordinates (ϕk−1 and λk−1).

Then, it will be updated as follows:

q
e(k−1)
n(k) = q

e(k−1)
n(k−1) ? q

n(k−1)
n(k) , (4.59a)

q
e(k)
n(k) = q

e(k)
e(k−1) ? q

e(k−1)
n(k) , (4.59b)
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where

q
n(k−1)
n(k) =

 cos ‖0.5ζk‖

sin ‖0.5ζk‖
‖0.5ζk‖

0.5ζk

 , (4.59c)

q
e(k)
e(k−1) =

 cos ‖0.5ξk‖

−sin ‖0.5ξk‖
‖0.5ξk‖

0.5ξk

 , (4.59d)

ξk = ωe
ie∆tk. (4.59e)

The updated geodetic coordinates (ϕk and λk) are computed from the updated quater-

nion q
e(k)
n(k). The height can be updated separately as follows:

hk = hk−1 − vD,k−1/2∆tk, (4.59f)

where vD,k−1/2 is the downward velocity at the midway.

Attitude Update

The attitude quaternion can be updated as follows:

q
n(k−1)
b(k) = q

n(k−1)
b(k−1) ? q

b(k−1)
b(k) , (4.60a)

q
n(k)
b(k) = q

n(k)
n(k−1) ? q

n(k−1)
b(k) , (4.60b)

where q
b(k−1)
b(k) is a quaternion for the b-frame update:

q
b(k−1)
b(k) =

 cos ‖0.5φk‖

sin ‖0.5φk‖
‖0.5φk‖

0.5φk

 , (4.60c)

φk ≈ ∆θk +
1

12
∆θk−1 ×∆θk. (4.60d)
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Finally, the updated quaternion can be normalized as follows:

q
n(k)
b(k) := (1− eq)q

n(k)
b(k), (4.60e)

eq =
1

2

[(
q

n(k)
b(k)

)T
q

n(k)
b(k) − 1

]
, (4.60f)

The overall system process model will be referred to as

xk = mf

[
tk,x

a
k−1, f̃

b
(tk), ω̃

b
ib(tk)

]
. (4.61)

Note that the left-hand side of the above equation is not the augmented state vector,

as opposed to the right-hand side.

4.3.2 Implementation of the UKF for Aided INS

Because quaternions are included, the dimension of the state vector in Table 4.2 is

34×1 excluding the noise part. As there exists a normalization constraint, the number

of degrees of freedom of a quaternion is three. Hence, the dimension of the covariance

matrix for the states will be 33 × 33. Implementation of the UKF will be discussed

considering this dimensional mismatch. The spherical simplex sigma points will be

used throughout this section.
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Initialization

Let δx denote the augmentation of the errors in the navigation states and sensor

errors terms:

δx̂ =

[
(δrn)T (δvn)T φT δbTg δbTa δsTg δsTa δγTg δγTa

]T
, (4.62)

where δrn = r̂n − rn, δvn = v̂n − vn, φ is the rotation vector corresponding to the

quaternion q̂n
b ? (qn

b)
−1, δbg = b̂g − bg, δba = b̂a − ba, δsg = ŝg − sg, δsa = ŝa − sa,

δγg = γ̂g − γg, and δγa = γ̂a − γa. Then, the augmented state vector and its

covariance matrix can be initialized as follows:

x̂a
0|0 =

 x̂0|0

0

 and Pa
0|0 =

 P0|0 0

0 Q0

 , (4.63)

where P0|0 = E[δx̂0|0δx̂
T
0|0] and Q0 = E[w0w

T
0 ]. Algorithm 1 needs to be applied to

generate sigma points for zero mean and unit covariance: {X a
u,i}. Then, the weights

for the mean, wm
i , and covariance, wc

i , are computed using Eqs. (4.8c) and (4.8d),

respectively. The square-root matrix Sa
0|0 can be obtained such that Sa

0|0(S
a
0|0)

T = pa
0|0.
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Finally, the scaled sigma points can be computed as follows:

∆rn
i,0

∆vn
i,0

φi,0

∆(bg)i,0

∆(ba)i,0

∆(sg)i,0

∆(sa)i,0

∆(γg)i,0

∆(γa)i,0

wi,0



= αSa
0|0X a

u,i and X a′
i,0|0 =



r̂n
0|0 + ∆rn

i,0

v̂n
0|0 + ∆vn

i,0

(qφ)i,0 ? (q̂n
b)0|0

b̂g,0|0 + ∆(bg)i,0

b̂a,0|0 + ∆(ba)i,0

ŝg,0|0 + ∆(sg)i,0

ŝa,0|0 + ∆(sa)i,0

γ̂g,0|0 + ∆(γg)i,0

γ̂a,0|0 + ∆(γa)i,0

wi,0



, (4.64)

where

wi,k =

[
(wT

v )i,k (wT
φ )i,k (wT

gb)i,k (wT
ab)i,k (wT

gs)i,k (wT
as)i,k (wT

gγ)i,k (wT
aγ)i,k

]T
and

(qφ)i,0 =

 cos(0.5‖φi,0‖)
sin(0.5‖φi,0‖)

0.5‖φi,0‖
0.5φi,0

 .

Prediction

In the prediction stage, each of the sigma points goes through the system process

model

X ′
i,k|k−1 = mf

[
tk,X a′

i,k−1|k−1, f̃
b
(tk), ω̃

b
ib(tk)

]
. (4.65)
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In the generic UKF, Eqs. (4.48b) and (4.48c) are used to compute the predicted

mean and covariance from the transformed sigma points, respectively:

x̂k|k−1 =

p−1∑
i=0

wm
i X ′

i,k|k−1, (4.66)

Pk|k−1 =

p−1∑
i=0

wc
i

(
X ′

i,k|k−1 − x̂k|k−1

) (
X ′

i,k|k−1 − x̂k|k−1

)T
. (4.67)

However, special treatments are required in averaging positions and attitudes because

they do not belong to a vector space. Therefore, these equations will be modified here.

The position in each of the transformed sigma points, r̂n
i,k|k−1, can be transformed

to the e-frame and the averaging can be done in the e-frame as follows:

r̂e
k|k−1 =

p−1∑
i=0

wm
i r̂e

i,k|k−1, (4.68)

which can then be transformed to the geodetic coordinates using the algorithms in-

troduced in Section 2.2.2.

Averaging the attitude quaternions is more complicated. For instance, direct

averaging DCMs, quaternions and rotation vectors does not yield the same attitude.

Further, the result of direct averaging quaternions is not even a quaternion. Hence,

intrinsic characteristics of rotations need to be considered using Riemannian geometry

(Pennec, 1998). The intrinsic gradient descent algorithm (Kraft, 2003), explained in

Algorithm 3, uses the fact that quaternion algebra provides a unique definition of

the distance between two attitudes (invariant Riemannian distance). Therefore, this

algorithm will be used to compute the weighted mean attitude quaternion. The

number of iterations required is usually very small (in most cases, one).
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Algorithm 3 (Weighted Mean Quaternion)

Given quaternions qi, i = 0, . . . , p − 1, the weighted mean quaternion, q̄, can be

computed as follows:

1. Choose any of the qi’s as the initial mean quaternion, q̄.

2. Calculate the attitude difference, qφ,i = qi ? q̄−1.

3. Convert qφ,i into the corresponding rotation vector, φi.

4. Calculate the weighted mean of the rotation vectors, φ̄ =
∑p−1

i=0 w
m
i φi.

5. Convert φ̄ into the corresponding quaternion, qφ.

6. Update the mean quaternion, q̄ := qφ ? q̄.

7. Repeat Steps 2 to 6 until ‖φ̂‖ falls below a specified threshold.
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Now computation of the predicted covariance will be considered. Let

X ′
i,k|k−1 =



r̂n
i,k|k−1

v̂n
i,k|k−1

(q̂n
b)i,k|k−1

(b̂g)i,k|k−1

(b̂a)i,k|k−1

(̂sg)i,k|k−1

(̂sa)i,k|k−1

(γ̂g)i,k|k−1

(γ̂a)i,k|k−1



, ∆X ′
i,k|k−1 =



r̂n
i,k|k−1 − r̂n

k|k−1

v̂n
i,k|k−1 − v̂n

k|k−1

φ̂i,k|k−1

(b̂g)i,k|k−1 − (b̂g)k|k−1

(b̂a)i,k|k−1 − (b̂a)k|k−1

(̂sg)i,k|k−1 − (̂sg)k|k−1

(̂sa)i,k|k−1 − (̂sa)k|k−1

(γ̂g)i,k|k−1 − (γ̂g)k|k−1

(γ̂a)i,k|k−1 − (γ̂a)k|k−1



, (4.69)

where φ̂i,k|k−1 is the rotation vector corresponding to the quaternion (q̂n
b)i,k|k−1 ?

(q̂n
b)
−1
k|k−1. Then, Eq. (4.48c) also has to be modified as follows:

Pk|k−1 =

p−1∑
i=0

wc
i

[
∆X ′

i,k|k−1

] [
∆X ′

i,k|k−1

]T
. (4.70)

Once the predicted state and covariance are computed, the scaled sigma points

need to be regenerated. First, the square-root matrix Sa
k|k−1 can be obtained such

that Sa
k|k−1(S

a
k|k−1)

T = pa
k|k−1, where

pa
k|k−1 =

Pk|k−1 0

0 Qk

 . (4.71)
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Then, 

∆rn
i,k

∆vn
i,k

φi,k

∆(bg)i,k

∆(ba)i,k

∆(sg)i,k

∆(sa)i,k

∆(γg)i,k

∆(γa)i,k

wi,k



= αSa
k|k−1X a

u,i and X a′
i,k|k−1 =



r̂n
k|k−1 + ∆rn

i,k

v̂n
k|k−1 + ∆vn

i,k

(qφ)i,k ? (q̂n
b)k|k−1

(b̂g)k|k−1 + ∆(bg)i,k

(b̂a)k|k−1 + ∆(ba)i,k

(̂sg)k|k−1 + ∆(sg)i,k

(̂sa)k|k−1 + ∆(sa)i,k

(γ̂g)k|k−1 + ∆(γg)i,k

(γ̂a)k|k−1 + ∆(γa)i,k

wi,k



, (4.72)

where

(qφ)i,k =

 cos(0.5‖φi,k‖)
sin(0.5‖φi,k‖)

0.5‖φi,k‖
0.5φi,k

 .

Measurement Update

During the update stage, the sigma points are transformed through the measurement

model:

Z i,k|k−1 = h
[
X ′

i,k|k−1

]
. (4.73)

The predicted measurement vector is computed as follows:

ẑk|k−1 =

p−1∑
i=0

wm
i Z i,k|k−1. (4.74)
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Then, the covariance matrix for the innovation sequence can be computed as follows:

Pνν,k =

p−1∑
i=0

wc
i

[
∆Z i,k|k−1

] [
∆Z i,k|k−1

]T
+ Rk, (4.75)

∆Z i,k|k−1 = Z i,k|k−1 − ẑk|k−1, (4.76)

where Rk is the measurement noise covariance matrix. The covariance matrix between

the states and measurements is computed as follows:

Pxz,k =

p−1∑
i=0

wc
i

[
∆X ′

i,k|k−1

] [
∆Z i,k|k−1

]T
. (4.77)

Then, the Kalman gain matrix is computed as

Kk = Pxz,kP
−1
νν,k, (4.78)

and the states can be updated by

δr̂n
k

δv̂n
k

φ̂k

δ(b̂g)k

δ(b̂a)k

δ(̂sg)k

δ(̂sa)k

(δγ̂g)k

(δγ̂a)k



= Kk

(
zk − ẑk|k−1

)
and x̂k|k =



r̂n
k|k−1 + δr̂n

k

v̂n
k|k−1 + δv̂n

k

(q̂φ)k ? q̂n
b,k|k−1

(b̂g)k|k−1 + δ(b̂g)k

(b̂a)k|k−1 + δ(b̂a)k

(̂sg)k|k−1 + δ(̂sg)k

(̂sa)k|k−1 + δ(̂sa)k

(γ̂γ)k|k−1 + (δγ̂g)k

(γ̂γ)k|k−1 + (δγ̂a)k



, (4.79)
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where zk is the measurement vector and

(q̂φ)k =

 cos(0.5‖φ̂k‖)

sin(0.5‖φ̂k‖)
0.5‖φ̂k‖

0.5φ̂k

 . (4.80)

The covariance update is the same as Eqs. (4.49g):

Pk|k = Pk|k−1 −KkPνν,kK
T
k . (4.81)

The scaled sigma points need to be regenerated after updating the states and

covariance. The square-root matrix Sa
k|k can be obtained such that Sa

k|k(S
a
k|k)

T = pa
k|k,

where

pa
k|k =

Pk|k 0

0 Qk

 . (4.82)

Then, 

∆rn
i,k

∆vn
i,k

φi,k

∆(bg)i,k

∆(ba)i,k

∆(sg)i,k

∆(sa)i,k

∆(γg)i,k

∆(γa)i,k

wi,k



= αSa
k|kX a

u,i and X a′
i,k|k−1 =



r̂n
k|k + ∆rn

i,k

v̂n
k|k + ∆vn

i,k

(qφ)i,k ? (q̂n
b)k|k

(b̂g)k|k + ∆(bg)i,k

(b̂a)k|k + ∆(ba)i,k

(̂sg)k|k + ∆(sg)i,k

(̂sa)k|k + ∆(sa)i,k

(γ̂g)k|k + ∆(γg)i,k

(γ̂a)k|k + ∆(γa)i,k

wi,k



, (4.83)
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where

(qφ)i,k =

 cos(0.5‖φi,k‖)
sin(0.5‖φi,k‖)

0.5‖φi,k‖
0.5φi,k

 .

4.3.3 GPS Position Measurement

As the position state is expressed in terms of the geodetic latitude and longitude, a

special treatment is required to avoid composing an ill-conditioned covariance matrix

during position updates. Let us define a vector measurement function as follows:

h[x] = diag([ 1 1 −1 ])
[
Cn

e (re
GPS − re

INS)−Cn
b`

b
GPS

]
, (4.84)

where re
GPS is the measured GPS position in the e-frame; re

INS is the INS position in

the e-frame converted from the position state using Eq. (2.20) and `bGPS is the lever

arm of the GPS antenna in the b-frame. Let {Y i,k|k−1} be the transformed sigma

points through Eq. (4.84) at time tk. Then, the innovation sequence can be obtained

by directly averaging the transformed sigma points:

νk = zk − ẑk|k−1 =

p∑
i=0

wm
i Y i,k|k−1. (4.85)

The difference between the transformed sigma points and the predicted measurement

can be computed as follows:

∆Z i,k|k−1 = νk −Y i,k|k−1. (4.86)
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4.4 The Unscented Kalman Smoother

In this section, an unscented Kalman smoother will be developed using the forward

and backward filtering approach. A backward system process model will be developed

in Section 4.4.1 for the backward UKF. Implementation of the backward UKF is

discussed in Section 4.4.2. Combination of the forward and backward solution is

done inside the backward UKF.

4.4.1 Backward System Process Model

The backward system process model is required for the backward prediction, where

backward sensor error prediction models, sensor error compensation and the backward

INS mechanization are to be applied successively.

Sensor Output

Angle and velocity increments are given as follows, respectively:

∆θ̃k−1 =

∫ tk−1

tk−2

ω̃b
ibdt, (4.87a)

∆ṽb
f ,k−1 =

∫ tk−1

tk−2

f̃
b
dt, (4.87b)

where ·̃ denotes quantities corrupted by sensor errors.
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Backward Sensor Error Prediction

Backward sensor error prediction models can be described as follows:

bg,k−1 = diag(dB
gb)bg,k + wgb,k−1, (4.88a)

ba,k−1 = diag(dB
ab)ba,k + wab,k−1, (4.88b)

sg,k−1 = diag(dB
gs)sg,k + wgs,k−1, (4.88c)

sa,k−1 = diag(dB
as)sa,k + was,k−1, (4.88d)

γg,k−1 = diag(dB
gγ)γg,k + wgγ,k−1, (4.88e)

γa,k−1 = diag(dB
aγ)γa,k + waγ,k−1, (4.88f)

where dB
gb, d

B
ab, d

B
gs, d

B
as, d

B
gγ, d

B
aγ, wgb,k, wab,k−1, wgs,k−1, was,k−1, wgγ,k−1 and waγ,k−1

are the parameters of the discrete-time backward sensor error prediction models,

which describe the random constant, random walk, and Gauss-Markov process.

Error Compensation

The sensor error compensation is the the same as in Eqs. (4.57a) and (4.57b):

∆θk−1 ≈
[
I−Ξ(s0

g,γ
0
g)−Ξ(sg,k−1,γg,k−1)

]
[
∆θ̃k−1 − (b0

g + bg,k−1)∆tk−1 −wφ,k−1

]
, (4.89a)

∆vb
f,k−1 ≈

[
I−Ξ(s0

a,γ
0
a)−Ξ(sa,k−1,γa,k−1)

]
[
∆ṽb

f,k−1 − (b0
a + ba,k−1)∆tk−1 −wv,k−1

]
, (4.89b)
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where ∆tk−1 = tk−1 − tk−2. ∆θk and ∆vb
f ,k are computed and stored in the previous

cycle.

The rest of the backward system process model will be the same as the backward

INS mechanization discussed in Eqs. (2.65a) to (2.66e), which will be repeated here

briefly for completeness.

Backward Attitude Update

First, the rotation vectors corresponding to the b-frame and n-frame attitude change

are computed, respectively:

φk ≈ ∆θk +
1

12
∆θk−1 ×∆θk (4.90a)

ζk = [ωn
ie + ωn

en]k−1/2 ∆tk, (4.90b)

where ∆tk = tk − tk−1 and the subscript ‘k − 1/2’ denote quantities at the midway.

Then, the attitude quaternion at time tk−1 can be obtained as follows:

q
n(k)
b(k−1) = q

n(k)
b(k) ? q

b(k)
b(k−1), (4.90c)

q
n(k−1)
b(k−1) = q

n(k−1)
n(k) ? q

n(k)
b(k−1), (4.90d)

where

q
b(k)
b(k−1) =

 cos ‖0.5φk‖

−sin ‖0.5φk‖
‖0.5φk‖

0.5φk

 and q
n(k−1)
n(k) =

 cos ‖0.5ζk‖

sin ‖0.5ζk‖
‖0.5ζk‖

0.5ζk

 .
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Backward Velocity Update

The backward update of the velocity can be written as

vn
k−1 = vn

k −∆vn
f ,k −∆vng/cor,k. (4.91a)

The velocity increment due to the specific force can be computed as follows:

∆vn
f ,k = [I− (0.5ζk×)]C

n(k−1)
b(k−1)∆v

b(k−1)
f ,k , (4.91b)

∆v
b(k−1)
f ,k ≈ ∆vb

f ,k +
1

2
∆θk ×∆vb

f ,k

+
1

12

(
∆θk−1 ×∆vb

f ,k + ∆vb
f ,k−1 ×∆θk

)
, (4.91c)

where the DCM C
n(k−1)
b(k−1) is obtained from the corresponding quaternion q

n(k−1)
b(k−1). The

gravity and Coriolis correction term can be computed as follows:

∆vn
g/cor,k = [gn − (2ωn

ie + ωn
en)× vn]k−1/2 ∆tk. (4.91d)

Backward Position Update

The quaternion q
e(k)
n(k) is computed from the geodetic coordinates (ϕk and λk). Then,

the backward position updates can be written as follows:

q
e(k)
n(k−1) = q

e(k)
n(k) ? q

n(k)
n(k−1), (4.92a)

q
e(k−1)
n(k−1) = q

e(k−1)
e(k) ? q

e(k)
n(k−1), (4.92b)

hk−1 = hk + vD,k−1/2∆tk, (4.92c)
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where

q
n(k)
n(k−1) =

 cos ‖0.5ζk‖

−sin ‖0.5ζk‖
‖0.5ζk‖

0.5ζk

 and q
e(k−1)
e(k) =

 cos ‖0.5ξk‖

sin ‖0.5ξk‖
‖0.5ξk‖

0.5ξk

 .
Finally, ϕk−1 and λk−1 can be obtained from the quaternion q

e(k−1)
n(k−1).

The overall backward system process model will be referred to as

xk−1 = mb

[
tk−1,x

a
k, f̃

b
(tk−1), ω̃

b
ib(tk−1)

]
. (4.93)

4.4.2 Backward UKF and Smoothing for Aided INS

Like the forward UKF, the backward UKF also consists of initialization, backward

prediction and measurement update stages. Hence, there has to be an initialization

period at the end of the dataset. The backward estimates will be denoted as

x̂B,k|j = E [xk|zN , zN−1, · · · , zj] , (4.94)

where N is the total number of measurements.

Backward Initialization

The backward filter can be initialized as follows:

x̂a
B,N |N =

x̂B,N |N

0

 and Pa
B,N |N =

PB,N |N 0

0 QN−1

 , (4.95)

where PB,N |N = E
[
δxB,N |Nδx

T
B,N |N

]
and QN = E

[
wN−1w

T
N−1

]
. δx is defined in

Eq. (4.62). Algorithm 1 needs to be applied to generate sigma points for zero mean
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and unit covariance: {X a
u,i}. Then, the weights for the mean, wm

i , and covariance,

wc
i , are computed using Eqs. (4.8c) and (4.8d), respectively. The square-root matrix

Sa
B,N |N is computed such that Sa

B,N |N
(
Sa

B,N |N
)T

= Pa
B,N |N . Then, the scaled spherical

simplex sigma points can be generated as follows:

∆rn
i,N

∆vn
i,N

φi,N

∆ (bg)i,N

∆ (ba)i,N

∆ (sg)i,N

∆ (sa)i,N

∆
(
γg

)
i,N

∆ (γa)i,N

wi,N−1



= αSa
B,N |NX a

u,i and X a′
i,B,N |N =



r̂n
B,N |N + ∆rn

i,N

v̂n
B,N |N + ∆vn

i,N(
qφ

)
i,N

? (q̂n
b)B,N |N

(bg)B,N |N + ∆ (bg)i,N

(ba)B,N |N + ∆ (ba)i,N

(sg)B,N |N + ∆ (sg)i,N

(sa)B,N |N + ∆ (sa)i,N(
γg

)
B,N |N + ∆

(
γg

)
i,N(

γg

)
B,N |N + ∆ (γa)i,N

wi,N−1



, (4.96)

where

wi,k =

[
(wT

v )i,k (wT
φ )i,k (wT

gb)i,k (wT
ab)i,k (wT

gs)i,k (wT
as)i,k (wT

gγ)i,k (wT
aγ)i,k

]T
and

(
qφ

)
i,N

=

 cos(0.5‖φi,N‖)
sin(0.5‖φi,N‖)

0.5‖φi,N‖
0.5φi,N

 .
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Backward Prediction

In the backward prediction, each of the sigma points goes through the backward

system process:

X ′
i,B,k|k+1 = mb

[
tk,X a′

i,B,k+1|k+1, f
b(tk),ω

b
ib(tk)

]
. (4.97)

The predicted states x̂B,k|k+1 and the covariance PB,k|k+1 can be constructed with

the same procedures as in the forward UKF. The predicted position can be computed

in the e-frame as follows:

r̂e
B,k|k+1 =

p−1∑
i=0

wm
i r̂e

i,B,k|k+1, (4.98)

where r̂e
i,B,k|k+1 is the position vector in the e-frame computed from the geodetic

coordinates in the ith sigma point: r̂n
i,B,k|k+1. Then, the algorithms discussed in

Section 2.2.2 can be used to obtain the geodetic coordinates of the predicted position:

r̂n
i,B,k|k+1. Algorithm 1 is used to obtain the predicted attitude quaternion (q̂n

b)B,k|k+1.

For the other states, 

v̂n
B,k|k+1

(b̂g)B,k|k+1

(b̂a)B,k|k+1

(̂sg)B,k|k+1

(̂sa)B,k|k+1

(γ̂g)B,k|k+1

(γ̂a)B,k|k+1



=

p−1∑
i=0

wm
i



v̂n
i,B,k|k+1

(b̂g)i,B,k|k+1

(b̂a)i,B,k|k+1

(̂sg)i,B,k|k+1

(̂sa)i,B,k|k+1

(γ̂g)i,B,k|k+1

(γ̂a)i,B,k|k+1



. (4.99)
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Thus, the backward predicted state vector, x̂B,k|k+1, is obtained. To obtain the pre-

dicted covariance, let us first compute

∆X ′
i,B,k|k+1 =



(r̂n
i )B,k|k+1 − r̂n

B,k|k+1

(v̂n
i )B,k|k+1 − v̂n

B,k|k+1

φ̂i,B,k|k+1

(b̂g)i,B,k|k+1 − (b̂g)B,k|k+1

(b̂a)i,B,k|k+1 − (b̂a)B,k|k+1

(̂sg)i,B,k|k+1 − (̂sg)B,k|k+1

(̂sa)i,B,k|k+1 − (̂sa)B,k|k+1

(γ̂g)i,B,k|k+1 − (γ̂g)B,k|k+1

(γ̂a)i,B,k|k+1 − (γ̂a)B,k|k+1



, (4.100)

where φ̂i,B,k|k+1 is the rotation vector corresponding to the quaternion (q̂n
b)i,B,k|k+1 ?

(q̂n
b)
−1
B,k|k+1. The predicted covariance can be computed as follows:

PB,k|k+1 =

p−1∑
i=0

wc
i

[
∆X ′

i,B,k|k+1

] [
∆X ′

i,B,k|k+1

]T
. (4.101)

The sigma points need to be regenerated after obtaining predicted states and co-

variance. The square-root matrix Sa
B,k|k+1 is computed such that Sa

B,k|k+1

(
Sa

B,k|k+1

)T
=

Pa
B,k|k+1, where

Pa
B,k|k+1 =

PB,k|k+1 0

0 Qk−1

 . (4.102)
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Then, the scaled spherical simplex sigma points can be generated as follows:
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i,k
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= αSa
B,k|k+1X a

u,i and X a′
i,B,k|k+1 =



r̂n
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i,k
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B,k|k+1 + ∆vn

i,k

(qφ)i,k ? (q̂n
b)B,k|k+1

(b̂g)B,k|k+1 + ∆(bg)i,k
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

, (4.103)

where

(qφ)i,k =

 cos(0.5‖φi,k‖)
sin(0.5‖φi,k‖)

0.5‖φi,k‖
0.5φi,k

 .

Computation of Smoothed Solution

Given the forward solutions (x̂k|k and Pk|k) and the backward solutions (x̂B,k|k+1 and

PB,k|k+1), the smoothed solutions can be constructed as follows. First, we compute

the smoothed covariance:

Pk|N =
(
P−1
k|k + P−1

B,k|k+1

)−1

. (4.104)
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Then, the difference between the two estimates is computed:

∆xk =


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

=



r̂n
B,k|k+1 − r̂n

k|k

v̂n
B,k|k+1 − v̂n

k|k

φk

(b̂g)B,k|k+1 − (b̂g)k|k

(b̂a)B,k|k+1 − (b̂a)k|k

(̂sg)B,k|k+1 − (̂sg)k|k

(̂sa)B,k|k+1 − (̂sa)k|k

(γ̂g)B,k|k+1 − (γ̂g)k|k

(γ̂a)B,k|k+1 − (γ̂a)k|k



, (4.105)

where φk is the rotation vector corresponding to the quaternion (q̂n
b)B,k|k+1 ? (q̂n

b)
−1
k|k.

While the updated solution was used from the forward solution, the predicted solution

is used from the backward solution to maintain the independence between the two

solutions in the combination as shown in Figure 4.3. The white and red circles

represent the backward predicted and updated solutions, respectively.
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Figure 4.3: Combination of the forward and backward solutions

Finally, the smoothed estimates can be computed as follows:
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= Pk|NP−1
B,k|k+1∆xk and x̂k|N =



r̂n
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k

v̂n
k|k + ∆v̂n

k

(q̂φ)k ? (q̂n
b)k|k(
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)
k|k

+ ∆b̂g,k(
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)
k|k

+ ∆b̂a,k

(̂sg)k|k + ∆ŝg,k

(̂sa)k|k + ∆ŝa,k(
γ̂g

)
k|k + ∆γ̂g,k
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

, (4.106)

where

(q̂φ)k =

 cos ‖0.5φ̂k‖

sin ‖0.5φ̂k‖
‖0.5φ̂k‖

0.5φ̂k

 . (4.107)
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Measurement Update

The measurement update procedures of the forward UKF can also be shared. The

sigma points are transformed through the measurement model:

Z i,B,k|k+1 = h
[
X ′

i,B,k|k+1

]
. (4.108)

The predicted measurement vector is computed as follows:

ẑB,k|k+1 =

p−1∑
i=0

wm
i Z i,B,k|k+1. (4.109)

The covariance matrix for the innovations sequence can be computed as follows:

Pνν,B,k =

p−1∑
i=0

wc
i

[
∆Z i,B,k|k+1

] [
∆Z i,B,k|k+1

]T
+ Rk, (4.110)

∆Z i,B,k|k+1 = Z i,B,k|k+1 − ẑB,k|k+1, (4.111)

where Rk is the measurement noise covariance matrix. The covariance matrix between

the states and measurements is computed as follows:

Pxz,B,k =

p−1∑
i=0

wc
i

[
∆X ′

i,B,k|k+1

] [
∆Z i,B,k|k+1

]T
. (4.112)

Then, the Kalman gain matrix is computed as follows:

Kk = Pxz,B,kP
−1
νν,B,k. (4.113)
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The states can be updated as follows:
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

= Kk

(
zk − ẑB,k|k+1

)
and x̂B,k|k =
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

, (4.114)

where zk is the measurement vector and

(q̂φ)B,k =


cos(0.5‖φ̂B,k‖)

sin(0.5‖φ̂B,k‖)
0.5‖φ̂B,k‖

0.5φ̂k

 . (4.115)

The covariance update can be updated as

PB,k|k = PB,k|k+1 −KkPνν,B,kK
T
k . (4.116)

The scaled sigma points need to be regenerated after updating the states and

covariance. The square-root matrix Sa
B,k|k can be obtained such that Sa

B,k|k(S
a
B,k|k)

T =

pa
B,k|k, where

pa
B,k|k =

PB,k|k 0

0 Qk−1

 . (4.117)
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Then, 
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, (4.118)

where

(qφ)i,k =

 cos(0.5‖φi,k‖)
sin(0.5‖φi,k‖)

0.5‖φi,k‖
0.5φi,k

 .



Chapter 5

Tests and Results

In this chapter, the performance of the EKF/RTS approach and the UKF/UKS ap-

proach will be compared using datasets collected from MEMS IMUs mounted in land

vehicles. The DGPS position solutions from Waypoint Consulting, Inc.’s GrafNavTM

software are used as the measurement updates for the EKF and the UKF in all

datasets.

5.1 The First Dataset

A prototype MEMS IMU from Inertial Science, Inc. was used in the first test. Table

B.1 in Appendix B lists some of the specifications for the ‘Rev. C’ model of the IMU.

As the attitude difference between the MEMS IMU and the reference IMU is very

small, this dataset will be used mainly to test the alignment performance of the EKF

140
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and the UKF.

The reference trajectory used in this test was provided by Applanix Corp. This

reference, the smoothed best estimates (SBET), was generated by processing the data

from a tactical-grade IMU (Northrop Grumman LN-200) using Applanix’s POSPacTM

software. The accuracy of the reference attitude is known to be 0.02 ◦ for roll and

pitch and 0.025 ◦ for heading when there are no GPS outages.

The vehicle used in the test was a van driven with low dynamics along the trajec-

tory shown in Figure 5.1. Figure 5.2 shows the accuracy of the DGPS solution. For

most of the time, horizontal and vertical position accuracies of the DGPS solution

were about 2–3 cm and 4–9 cm, respectively.
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Figure 5.1: Trajectory of the first dataset
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Figure 5.2: DGPS position accuracy of the first dataset

The majority of the tests will be done using this dataset. Tuning of the EKF and

the UKF will be investigated in Section 5.1.1. In-motion alignment performance of

the two filters is compared in Section 5.1.2. The effect of ZIHR measurements is tested

in Section 5.1.3. In Section 5.1.4, behaviour of a low-cost INS during GPS outages

will be investigated. Finally, the effect of smoothing is demonstrated in Section 5.1.5.

5.1.1 Filter Tuning

Both filters have 21 states including biases and scale factors. The EKF uses the small

ψ-angle error model described in Section 3.1.2. Table 5.1 lists the parameters used in

the test. For land vehicle applications, using low-cost gyroscopes, stationary outputs

of gyroscopes can be considered as the initial biases. This is because the Earth’s
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rotation rate (≈15 ◦/h) is negligibly small against the large biases of the gyroscopes.

Hence, although the actual gyro biases are about 200–1000 deg/h, the large biases can

be estimated (for instance, by averaging) while the vehicle is stationary and can be

treated as known errors. Therefore, the initial uncertainties of the gyro biases can be

reduced from the start and σ = 100 deg/h is used in the Gauss-Markov model.

Table 5.1: Tuning parameters for the prototype ISIS IMU

VRW 0.6 m/s/
√

h

ARW 3.5 deg/
√

h

Gyro bias Gauss-Markov with σ = 100 deg/h, T = 1hour

Accel. bias Gauss-Markov with σ = 0.1 m/s2, T = 1hour

Gyro scale factor Gauss-Markov with σ = 1000PPM, T = 4hour

Accel. scale factor Gauss-Markov with σ = 1000PPM, T = 4hour

Table 5.2 lists the percentages of the errors included in the 1σ, 2σ and 3σ en-

velopes, for which 68%, 95% and 99% correspond in Gaussian distribution, respec-

tively. A “conservative” Kalman filter has larger σ-bounds than needed, and hence

more than 68% of errors are included inside the σ-bound. Therefore, it can be said

that the parameters in Table 5.1 resulted in a consevative Kalman filter except for

the heading.
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Table 5.2: Error envelope of the EKF

1σ (%) 2σ (%) 3σ (%)

Position North 73.3 95.8 99.5

East 73.2 96.8 98.9

Height 92.6 97.6 99.2

Velocity North 90.0 99.0 99.8

East 88.3 98.9 99.9

Down 93.8 98.8 99.5

Attitude Roll 80.0 99.2 100.0

Pitch 86.3 99.2 99.6

Heading 63.5 93.9 99.2

The tuning parameters in Table 5.1 have been applied to the UKF and additional

parameters specific to the UKF are listed in Table 5.3. The resulting error envelope

of the UKF, listed in Table 5.4, is similar to that of the EKF.
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Table 5.3: Parameters of the UKF

Weight of 0th point w0 = 0.5

Scaling parameters α = 0.05, β = 2

Table 5.4: Error envelope of the UKF

1σ (%) 2σ (%) 3σ (%)

Position North 73.9 95.9 99.5

East 73.2 96.8 98.9

Height 92.7 97.6 99.2

Velocity North 90.1 99.0 99.8

East 88.2 98.8 99.9

Down 94.0 98.8 99.5

Attitude Roll 80.7 99.2 100.0

Pitch 87.4 99.2 99.6

Heading 64.1 94.3 99.2
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5.1.2 In-Motion Alignment

As the INS cannot have a static period upon initialization, the large gyro biases cannot

be estimated as was done in Section 5.1.1. Therefore, a Gauss-Markov model with

σ=1000 deg/h will be used in this section to model the gyro biases. Other parameters

will be the same as those listed in Table 5.1.

To initialize the INS during motion, the position, velocity, attitude, and their

uncertainties have to be obtained from the DGPS solution. If the position is initialized

directly with that of the DGPS solution, then the remaining uncertainty will be the

lever-arm. The velocities can be derived from the position increment as follows:

vN = ∆ϕm(RM + hm−1/2)/∆tm, (5.1a)

vE = ∆λm(RN + hm−1/2) cosϕm−1/2/∆tm, (5.1b)

vD = −∆hm/∆tm, (5.1c)

where the subscript m denotes the GPS measurement epochs, ∆ϕm = ϕm − ϕm−1,

∆λm = λm − λm−1, ∆hm = hm − hm−1, and ∆tm = tm − tm−1. As shown in Figure

5.3, the velocity errors of Eqs. (5.1a)–(5.1c) are, in most cases, within 1.5 m/s and, in

extreme cases, over 2 m/s which also includes the uncompensated lever-arm effects.

Tilt sensors can be used to initialize the roll and pitch. For land vehicles on a

level surface, however, the roll can be initialized with zero. The pitch and heading

can be initialized using the DGPS position-derived velocity with Eqs. (2.73a) and

(2.73b), respectively. Figures 5.4 and 5.5 show that the initial pitch and heading
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Figure 5.3: DGPS position-derived velocity errors

errors computed from the DGPS position-derived velocity can be up to 3◦ and 6◦,

respectively, when speeds are between 10 and 55 km/h. For speeds higher than this,

the pitch and heading errors are smaller than 1◦. Therefore, small error assumption

holds for land vehicles in general.

In airborne or shipborne applications, the velocity may not be parallel to the

longitudinal axis of the vehicle, in which case the initial pitch and heading computed

from Eqs. (2.73a) and (2.73b) can have large errors. Initial roll errors may also be

large if the vehicle is in high-dynamic motion. Therefore, a test was conducted by

intentionally adding large initial attitude errors (40◦) for roll, pitch and heading. The

speed at the start of the in-motion alignment was about 11.5 km/h and the results are

shown in Figure 5.6. In the UKF, the roll and pitch converged within 10 s and the

heading within 50 s. The EKF, however, required a much longer transient period of
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Figure 5.4: DGPS position-derived pitch errors
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Figure 5.5: DGPS position-derived heading errors
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Figure 5.6: Attitude errors during in-motion alignment with 40◦ initial attitude errors

about 200 seconds.

If the vehicle is not accelerating, then the roll and pitch can be determined by

leveling and only the heading may have large uncertainty. Hence, the two algorithms

have been tested with a 60◦ initial heading error and the results are shown in Figure

5.7. Again, the UKF showed faster convergence than the EKF. Therefore, the UKF

performs better than the EKF when large attitude uncertainties exist and this is the

key difference between the two filters.
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Figure 5.7: Heading errors during in-motion alignment with a 60◦ initial heading error

5.1.3 Zero Integrated Heading Rate Measurement

A 2minute ZUPT is applied after 365 seconds from the in-motion alignment using

the EKF with small initial attitude errors. As shown in Figure 5.8, the heading drifts

over 3 degrees during the ZUPT period. Therefore, ZUPTs are not enough for low-

cost INSs and the ZIHR measurements, discussed in Section 3.3.2, can be applied

together to fix the heading during ZUPTs. The benefit of ZIHR measurements is

clearly visible in Figure 5.8.

To apply ZIHR measurements, heading outputs from the INS at two different

time epochs are required. Assume that the heading at time tk−1 is stored and a

ZIHR measurement is scheduled to occur at time tk. The attitude feedback can

happen at time tm: tk−1 < tm < tk. In this case, the heading at time tm can be
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Figure 5.8: Heading fix during a ZUPT

stored after the feedback and the ZIHR measurement must be rescheduled. If the

integration time interval is fixed, then the next ZIHR measurement should occur at

time tm+1 = tm + tk − tk−1.

5.1.4 GPS Outage and Attitude Error

Figures 5.9 and 5.10 show the position and attitude errors, respectively, when an

artificial 60 second GPS outage is introduced in the EKF. The position error reached

about 120 m at the end of the GPS outage. Also, tilt errors reached about 1 degrees,

which causes the projection of gravity onto horizontal channels. Therefore, tilt errors

are dominating error sources during GPS outages in a low-cost INS.
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Figure 5.9: Position errors during a 60s GPS outage
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Figure 5.10: Attitude errors during a 60s GPS outage
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5.1.5 GPS Outages and Smoothing

To examine the performance of the filters and smoothers, 30 second GPS outages

were intentionally introduced and the position errors of the algorithms are listed in

Table 5.5. Although the position errors of both filters reached over 50m, those of the

smoothers remained at the 1m level. The EKF/RTS and the UKF/UKS approaches

yielded similar performance. Therefore, both approaches can be considered to be the

same if the error dynamics are linear.
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Table 5.5: Position errors during 30s GPS outages (ISI IMU)

Outage Direction EKF UKF RTS UKS

1 North (m) Max. 16.922 24.240 0.794 0.759

RMS 8.143 10.933 0.473 0.454

East (m) Max. 1.079 3.382 0.156 0.156

RMS 0.613 2.162 0.070 0.070

Height (m) Max. 1.235 2.328 0.066 0.044

RMS 0.610 1.083 0.032 0.024

2 North (m) Max. 18.108 1.030 1.422 1.257

RMS 7.336 0.475 0.774 0.670

East (m) Max. 84.760 72.983 0.297 0.297

RMS 34.963 30.228 0.186 0.186

Height (m) Max. 3.756 3.672 0.229 0.169

RMS 1.648 1.583 0.124 0.088

3 North (m) Max. 33.509 4.372 0.911 1.442

RMS 13.361 2.548 0.444 0.660

East (m) Max. 69.142 45.326 1.168 1.168

RMS 28.232 17.436 0.632 0.632

Height (m) Max. 1.045 0.244 0.231 0.220

RMS 0.572 0.103 0.113 0.103
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5.2 The Second Dataset

The second dataset used in testing was collected using a prototype MEMS IMU

developed by the mobile multi-sensor research group at the University of Calgary.

This device is shown in Figure 5.11. Since sensors from Analog Devices, Inc. were

used, this IMU will be referred to as the ADI sensor triads (El-Sheimy and Niu, 2004).

The specifications of this IMU are listed in Table B.2 of Appendix B.

y

z

x

y

z

x

Figure 5.11: ADI sensor triads developed by the mobile multi-sensor research group,

the University of Calgary (El-Sheimy and Niu, 2004)

The purpose of testing this dataset is to investigate the effect of odometer aiding

during GPS outages. Figures 5.12 and 5.13 show the test trajectory and the position

accuracy of the DGPS solution, respectively. Smoothed solutions from a navigation-

grade IMU (Honeywell C-IMU) will be used as the reference in this dataset. Again,

the POSPacTM software was used to generate the reference solution.

An odometer was also developed and installed together with the ADI sensor triads
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0 5 10 15 20 25 30 35 40 45
0

2

4

N
or

th
 (m

)

DGPS Position STD

0 5 10 15 20 25 30 35 40 45
0

1

2

3

E
as

t (
m

)

0 5 10 15 20 25 30 35 40 45
0

2

4

6

H
ei

gh
t (

m
)

Time (minute)

Figure 5.13: DGPS accuracy of the second dataset
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on the vehicle (Niu and El-Sheimy, 2004). Figure 5.14 shows the configuration of the

odometer. A magnet was attached on the rim of the left-rear wheel. A Hall sensor

was used to generate pulses whenever the magnet passed it.

MagnetHall Effect 
Sensor

Forward

Figure 5.14: Odometer (Courtesy of Dr. Xiaoji Niu)

Each revolution of the wheel is equivalent to about 2m. The along-track speed

can be obtained by dividing the travel distance by the time interval between adjacent

pulses. Unfortunately, since only one magnet was attached, the resolution of the

odometer was very low; therefore, it had large quantization noise. Furthermore,

pulses were frequently lost and the sensor was not able to sense the direction of

movement. In spite of these limitations, the benefit of odometer aiding in the EKF

during artificial GPS outages can be significant. As shown in Tables 5.6 and 5.7, the

odometer aiding decreased the position error during GPS outages (about 4 metres in

maximum) to a level smaller than 1 meter.
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Table 5.6: Position errors of the EKF during 10 s GPS outages (ADI sensor tri-

ads/Odometer)

INS (m) INS/Odometer (m)

Outage North East Height North East Height

1 Max. 1.463 0.651 0.928 0.132 0.539 0.335

RMS 0.688 0.439 0.578 0.080 0.215 0.219

2 Max. 0.810 0.863 2.033 0.763 0.615 0.166

RMS 0.438 0.462 1.116 0.324 0.260 0.078

3 Max. 4.123 0.410 0.391 0.068 0.094 0.218

RMS 1.887 0.158 0.295 0.046 0.056 0.188

4 Max. 0.282 0.500 0.362 0.125 0.153 0.671

RMS 0.200 0.207 0.283 0.078 0.125 0.377



CHAPTER 5. TESTS AND RESULTS 159

Table 5.7: Position errors of the EKF during 30 s GPS outages (ADI sensor tri-

ads/Odometer)

INS (m) INS/Odometer (m)

Outage North East Height North East Height

1 Max. 1.491 0.660 0.925 0.132 0.542 0.341

RMS 0.699 0.444 0.576 0.080 0.216 0.222

2 Max. 0.789 0.872 2.008 0.761 0.614 0.166

RMS 0.434 0.461 1.106 0.324 0.260 0.078

3 Max. 4.045 0.406 0.392 0.067 0.095 0.216

RMS 1.853 0.156 0.297 0.044 0.057 0.185

4 Max. 0.288 0.509 0.368 0.127 0.154 0.668

RMS 0.206 0.211 0.289 0.081 0.126 0.375



Chapter 6

Conclusions and Recommendations

6.1 Summary

The main objective of this dissertation is to investigate unscented estimation tech-

niques for aided low-cost inertial navigation. Various types of aiding models are inves-

tigated in Section 2.5 to overcome the limitation in the accuracy of a low-cost IMU.

Since choosing an appropriate INS error model is an essential part in an LKF/EKF

design, INS error models are discussed in Section 3.1. Choosing an appropriate esti-

mation method is also important. Hence, the EKF and the RTS smoother, state-of-

the-art estimation techniques, are developed in Chapter 3. A measurement model for

the ZIHR is developed in Section 3.3.2 to fix heading drift of a low-cost INS during

ZUPTs, which is useful for wheeled vehicles. In Section 5.1.3, the ZIHR measure-

ment model is tested successfully and it is discussed that measurement rescheduling

160
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is required if the attitude feedback occurs in between the integration time interval.

In Section 5.2, it is shown that, even with a primitive design, odometer measurement

updates can improve the position accuracy significantly during GPS outages.

The research work contributed the following new developments to the field of

inertial navigation:

1. In Section 4.3, a general system process model is developed for a quaternion-

based UKF for an aided INS. An efficient model to apply GPS position mea-

surement updates is developed in Section 4.3.3. It is demonstrated in Section

5.1.2 that the UKF converges faster than the EKF when the initial attitude

uncertainties are large. Hence, the UKF can recover faster than the EKF from

large attitude errors due to GPS outages.

2. A quaternion-based backward UKF is also developed and the method to com-

bine forward and backward solutions is discussed to yield unscented smoothed

solutions. It is demonstrated in Section 5.1.5 that the performance of the UKS

is as good as that of the RTS smoother.

The following sections contain conclusions drawn from the testing results and

recommendations for further research.
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6.2 Conclusions

The ultimate difference between the UKF and the EKF is in the way they deal with

nonlinearities. Nonlinear error dynamics typically happen in a navigation system

when attitude errors are large. The UKF, however, cannot deal with complete uncer-

tainties in attitude because it works based upon averaging sigma points; for instance,

the average of three directions -120 ◦, 0 ◦, and +120 ◦ cannot be defined.

For land vehicles, roll and pitch errors are usually small but heading errors can

grow quickly if large uncertainties exist in gyro outputs. Thus, the UKF is preferable

if the heading error can be large in an operational scenario. However, the benefit

of the second-order accuracy of the UKF becomes negligibly small when the small

attitude error assumption is valid. Therefore, the EKF/RTS approach should still be

chosen if the attitude errors are guaranteed to be small during the operation.

In the EKF, it is designer’s responsibility to choose or develop an appropriate INS

error model. This is not a trivial task. As discussed in Section 3.1, many INS error

models currently exist and virtually infinite number of error models can be created.

There can be specific difficulties in the implementation for each INS error model

and the implementation is also dependent on the aiding sensors. However, in the

UKF, only the general system process and measurement models need to be defined.

Hence, the UKF is capable of unifying INS error models in a broad range of attitude

uncertainties. Therefore, the system development stage can be simplified by using
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the UKF.

6.3 Recommendations for Further Research

1. Investigation of the change of the PDF during a navigation mission is warranted.

Julier and LaViola (2003) argued that the PDF was not Gaussian but rather it

is a von Mises distribution if the normalization constraint of quaternions was

enforced. Although particle filters may not be practical in navigation due to

the heavy computational load, they can be used in investigating the PDF. The

optimal values of the parameters α and β in the UKF, which control the effect

of higher-order moments, can also be determined through investigation of the

PDF.

2. Although some of the noise statistics can be obtained through the Allan variance

analysis, it only provides statistics at sensor level and not at the overall system

level. Furthermore, the Allan variance analysis does not always work well for

low-cost inertial sensors (Scherzinger, 2004). The system noise statistics can

also vary according to the temperature change. Thus, the system noise statistics

in this dissertation are chosen empirically. Although some studies have been

conducted on the adaptation of system noise intensity, development of efficient

adaptation algorithms is still an open research area. For a recent publication

on this subject, refer to Powell (2002).
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3. If the UKF can handle complete uncertainties in attitude, then it can entirely

unify all the INS error models developed so far. Therefore, more research is re-

quired to extend the UKF to handle complete attitude uncertainties: especially,

uncertainties in the heading.

4. The forward and backward filtering approach has been developed in this dis-

sertation for unscented smoothing. For an efficient computation, however, an

RTS-style implementation of unscented smoother needs to be investigated.

5. Although Reif et al. (1999) showed that the estimation error of the EKF was

bounded when the initial estimation error and disturbing noise were small

enough, stability of nonlinear estimators are largely unknown. Therefore, the

stability of the UKF requires investigation.

6. Covariance formulation of the UKF discussed in Chapter 4 requires a Cholesky

factorization whenever a transformation occurs, which increases the computa-

tional load significantly. Hence, in actual hardware implementation, square-root

formulation will be preferred, which stores and propagates square-root of the

covariance matrix. To implement a square-root UKF, a Cholesky update algo-

rithm (rank 1 update to Cholesky factorization) is required. Wan and van der

Merwe (2001) provides a generic structure of the square-root UKF. Cholesky

update algorithms can be found in Gill et al. (1974).



Appendix A

Matrix Representation of the

Psi-Angle Error Model

The system dynamics for the psi-angle error model can be written in matrix form as

δẋ = Fδx + Gw. (A.1)

For instance, the error state vector can be defined as

δx =

[
(δrc)T (δvc)T ψT bTg bTa sTg sTa γTg γTa

]T
, (A.2)

where δrc and δvc can be written as follows:

δrc =

[
δrN δrE δrD

]T
, (A.3)

δvc =

[
δvc

N δvc
E δvc

D

]T
; (A.4)
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ψ denotes the attitude errors; bg, the gyro biases; ba, the accelerometer biases; sg

represents the gyro scale factors; sa denotes the accelerometer scale factors; and γg

and γa are nonorthogonalities of the gyro and accelerometer triad, respectively. Then,

the system dynamics matrix can be written as

F =



F11 I 0 0 0 0 0 0 0

F21 F22 (f c×) 0 Cp
b 0 F27 0 Cp

bΓa

0 0 F33 −Cp
b 0 F36 0 −Cp

bΓg 0

0 0 0 F44 0 0 0 0 0

0 0 0 0 F55 0 0 0 0

0 0 0 0 0 F66 0 0 0

0 0 0 0 0 0 F77 0 0

0 0 0 0 0 0 0 F88 0

0 0 0 0 0 0 0 0 F99



, (A.5)

where F11 = −(ωc
ec×), F21 = diag(−ω2

s ,−ω2
s , 2ω

2
s ), F22 = −(2ωc

ie × +ωc
ec×), F27 =

Cp
bdiag(fb), F33 = −(ωc

ie × +ωc
ec×), F36 = −Cp

bdiag(ωb
ib), F44 = diag(cgb), F55 =

diag(cab),F66 = diag(cgs), F77 = diag(cas), F88 = diag(cgγ), F99 = diag(caγ),

Γg =


ωy ωz 0 0 0 0

0 0 ωx ωz 0 0

0 0 0 0 ωx ωy

 , Γa =


fy fz 0 0 0 0

0 0 fx fz 0 0

0 0 0 0 fx fy

 ;

cgb, cab, cgs, cas, cgγ, and caγ are the coefficients describing the error models for the

gyro biases, accelerometer biases, gyro scale factors, accelerometer scale factors, gyro
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triad non-orthogonalities and accelerometer triad non-orthogonalities, respectively.

The system noise vector is defined as

w =

[
wT

v wT
ψ wT

gb wT
ab wT

gs wT
as wT

gγ wT
aγ

]T
, (A.6)

where wv and wψ are the velocity and the attitude noise, respectively; wgb and wab

represent the bias noise of the gyros and accelerometers, respectively; wgs and was

are noise of the gyro and accelerometer scale factor, respectively; wgγ and waγ are

noise of the gyro-triad and accelerometer-triad non-orthogonalities . The noise input

mapping matrix can, then, be written as

G =



0 0 0 0 0 0 0 0

Cp
b 0 0 0 0 0 0 0

0 Cp
b 0 0 0 0 0 0

0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

0 0 0 0 I 0 0 0

0 0 0 0 0 I 0 0

0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 I



. (A.7)



Appendix B

Specifications of the IMUs

The specifications of IMUs used in this dissertation are introduced in this section.

Table B.1 lists the specifications of a MEMS IMU made by the Inertial Science, Inc.

(http://www.inertialscience.com).

Table B.2 describes the specifications of the sensor triads built by the mobile multi-

sensor research group at the University of Calgary, that integrates three ADXL105

accelerometers and three ADXRS150 gyroscopes made by Analog Devices, Inc. The

listed biases are the residual values after laboratory calibrations while the other spec-

ifications are obtained from the specification sheets of the sensors provided by Analog

Devices, Inc. (http://www.analog.com).
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Table B.1: Specifications of the Rev. C model of the ISIS-IMU

Accelerometers Gyroscopes

Random walk < 0.1 m/s/
√

h < 0.5 deg/
√

h

Scale factor < 2000 ppm < 2000 ppm

Nonlinearity < 5000 ppm < 2000 ppm

Misalignment < 2 mRad –

Short term bias stability ± 2mg < 0.01 deg/s

Long term bias stability – < 1 deg/s (RMS)

Table B.2: Specifications of the ADI sensor triads

Accelerometers Gyroscopes

Range ±5 g ±150 deg/s

Random walk 0.135–0.195 m/s/
√

h 3 deg/
√

h

Nonlinearity 0.2% 0.1%

Bias 0.05 m/s2 0.5 deg/s



Appendix C

INS Error Analysis

If the vehicle is not accelerating, the east channel error equations can be simplified

as follows:

δv̇E = gφN + δfE, (C.1a)

φ̇N = − 1

R
δvE + δωN, (C.1b)

where δfE and δωN are the east channel accelerometer bias and the north channel gyro

bias, respectively. Here, the biases will be considered as constants. Differentiating

Eq. (C.1a) with respect to time yields

δv̈E = gφ̇N = − g

R
δvE + gδωN, (C.2)

where the gravity is also treated as a constant for simplicity. A Laplace transformation

of the above equation gives

s2δvE(s)− sδvE(0)− δv̇E(0) = − g

R
δvE(s) + gδωN

1

s
. (C.3)
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From Eq. (C.1a) we can write

δv̇E(0) = gφN(0) + δfE. (C.4)

Substituting the above into Eq. (C.3) and rearranging gives

δvE(s) =
1

s2 + ω2
s

(
δvE(0)s+ gφN(0) + δfE +

gδωN

s

)
, (C.5)

where ωs =
√
g/R is the Schuler frequency with a period of about 84.4minutes. Using

the following Laplace transform pairs

δvE(0)
s

s2 + ω2
s

⇐⇒ δvE(0) cosωst, (C.6a)

gφN(0) + δfE

s2 + ω2
s

⇐⇒ (gφN(0) + δfE)
sinωst

ωs

, (C.6b)

gδωN
1

s2 + ω2
s

1

s
⇐⇒ gδωN

∫ ∞

0

sinωsτ

ωs

u(t− τ)dτ

= gδωN

∫ t

0

sinωs(t− τ)

ωs

dτ = gδωN
1− cosωst

ω2
s

, (C.6c)

the inverse Laplace transformation of Eq. (C.5) can be written as

δvE(t) = δvE(0) cosωst+ (gφN(0) + δfE)
sinωst

ωs

+ gδωN
1− cosωst

ω2
s

. (C.7)

In a non-accelerating case, the north channel errors can be written as

δv̇N = −gφE + δfN, (C.8a)

φ̇E = − 1

R
δvN + δωE. (C.8b)

Following similar procedures as applied for the east channel, the north channel error

can be obtained as follows:

δvN(t) = δvN(0) cosωst+ (−gφN(0) + δfN)
sinωst

ωs

− gδωE
1− cosωst

ω2
s

. (C.9)
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SE-581 83 Linköping, Sweden.
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