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Abstract 
 

This thesis is an investigation of the performance that can be expected from future global 

navigation satellite systems (GNSS).  The next decade promises drastic improvements 

and additions to existing satellite navigation infrastructure.  Plans for GPS modernization 

include a civilian code measurement on the L2 frequency and a new L5 signal at 1176.45 

MHz.  Current speculations indicate that a fully operational constellation with these 

improvements could be available by 2013 (Hothem, 2004).  Simultaneously, the Galileo 

Joint Undertaking is in the development and validation stages of introducing a parallel 

GNSS called Galileo.  Galileo will also transmit freely available satellite navigation 

signals on three frequencies and is scheduled to be fully operational as early as 2008 

(Wibberley, 2004). 

 

In response to these momentous changes, this research investigates the impact that the 

new signals will have on precise kinematic positioning.  Effective techniques for 

processing future GNSS measurements are presented and a thorough treatment of the 

measurement correlations and processing strategies is given.  These strategies have been 

implemented in a newly developed software simulation package that both simulates 

future GNSS signals and processes these simulated measurements. 

 

The simulation software is used to analyze and demonstrate the ability to estimate 

ionospheric delays using future GNSS measurements.  It is found that the more precise 

Galileo code measurements and the enhanced geometry of a combined GPS/Galileo 
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system greatly improve the ability to estimate ionospheric delays quickly and precisely.  

The improved ability to estimate ionospheric delays is then propagated into an evaluation 

of ambiguity resolution performance with future GNSS signals.  A combined 

GPS/Galileo system was found to perform significantly better than currently available 

systems in terms of speed of ambiguity resolution and the ability to successfully validate 

the correct ambiguity set. 

 

Finally, a survey of the various linear combinations of carrier phase data that will be 

available with future GNSS signals is carried out.  After developing the fundamental 

theory behind combining GNSS measurements, several combinations are shown to 

enable superior ambiguity resolution and reduce the effects of thermal noise, multipath 

and ionospheric errors.  It is also demonstrated that an optimal choice of linear 

combinations is highly dependent on the baseline length, observational time span, and 

requirements of a given mission. 
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Chapter One: Introduction 
 

Satellite navigation has become commonplace in many aspects of everyday life.  It is 

used for navigation in cellular telephones, cars, boats, and airplanes, for precise 

positioning in surveying, monitoring structures and the crust of the Earth, and for 

transferring precise time for banking transactions and a myriad of other scientific 

applications.  The applications seem to be limited only by our imaginations. 

 

The two currently available global navigation satellite systems (GNSS) are the Russian 

Federation Global Navigation Satellite System (GLONASS) and the United States 

system, NAVSTAR (Navigation System with Timing and Ranging) Global Positioning 

System (GPS).  GLONASS has been plagued with financial hardships that have 

prevented it from emerging into a reliable stand-alone system.  GPS on the other hand has 

blossomed into a reliable system for free worldwide navigation and positioning. 

 

The US NAVSTAR Global Positioning System (GPS) was first conceived when the US 

Department of Defence approved its basic architecture in 1973.  The system was declared 

fully operational in 1995 (Global Positioning System, 2001) and since that time, only 

minor improvements and maintenance have kept the system in excellent reliable working 

condition.  GPS was originally designed as a military system to give the US an advantage 

over its adversaries in a theatre of war by enabling only authorized military personnel to 
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access the full capacity of its services.  With the turn of the 21st century, satellite 

positioning capabilities have become a crucial part of civilian industry and commercial 

users were apprehensive about relying heavily on a predominantly military system.  In 

response to commercial industrial pressure, GPS has committed to cater more to its 

growing population of civilian users as evidenced by the recent US presidential directive 

on satellite-based positioning, navigation and timing policy (OSTP, 2004).  

 

In the meantime, the European satellite navigation system Galileo has also been spawned 

to reduce the reliance of European industry on a US military system.  The next decade 

promises momentous and exciting changes for developers and users of global navigation 

satellite system (GNSS) technology. 

  

1.1 Future Plans for GNSS 

 

The NAVSTAR GPS Joint Program Office is modernizing the currently available GPS 

by launching the first of the Block IIR-M satellites in 2005.  This block of satellites will 

attain full operational capacity by 2010 and will broadcast the new civilian code on the 

L2 frequency band.  In addition, the first of the Block IIF satellites will be launched in 

2006 and full operational capacity for this block of satellites is expected by 2013 

(Hothem, 2004).  The Block IIF satellites will transmit on three frequencies providing 
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civil users with access to three pseudorange measurements and three distinct carrier 

signals. 

 

The two new civilian pseudorange measurements will be the L2C code, which is 

modulated on the L2 carrier signal and the L5 civil code, which will be modulated on the 

new L5 carrier signal.  These two modernized signals will have superior capabilities to 

the currently available GPS L1 and L2 signals.  The primary advantage of the L2C code 

is that it will enable high precision users to acquire the L2 signal directly rather than 

performing fragile semi-codeless tracking techniques (Fontana, 2001).  This will enable 

very robust L2 tracking capabilities with a significant improvement in the strength of the 

acquired signal.  In addition, the longer code length of the L2C code will greatly mitigate 

signal cross-correlation, which will benefit applications in suboptimal environmental 

conditions such as indoors, under forest canopies, and in urban canyons (Cross, 2003).  

The civil L5 code will also exhibit these advantages, but will also be within the reserved 

Aeronautical Radio Navigation Service (ARNS) bandwidth which is advantageous for 

aeronautical users since it will not be subject to unacceptable interference from other 

radiolocation services like radar (McDonald, 2002).   

 

In addition to future GPS modernization plans, the Galileo Joint Undertaking, which is a 

cooperative effort of public and private European investors, has committed to developing 

a parallel global positioning system called Galileo.  Like modernized GPS, Galileo will 
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also transmit freely available signals on three frequencies with pseudorange codes 

modulated on each frequency.  Galileo will offer five different services to accommodate 

the needs of various users (Ehm, 2004): 

 

1. Open Service (OS) for mass market users such as cellular telephone, personal 

digital assistants (PDA�s) and vehicle and pedestrian navigation 

2. Safety of Life (SoL) for users requiring guaranteed integrity such as CAT-1 

aircraft landing, train guiding and marine applications 

3. Commercial Service (CS) for professional users who are willing to pay a user 

fee for access to additional encrypted ranging codes and data 

4. Search and Rescue Service (SAR) with a capability to relay distress messages to 

a central processing center 

5. Public Regulated Service (PRS) for authorized public or strategic applications 

requiring a high level of continuity such as police, telecommunications networks 

and emergency services 

 

The signals and services offered by Galileo are shown in Figure 1.1. 
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Figure 1.1: Galileo Signal Structure and Services (after Hein et al. 2002) 

 

The Galileo project is currently in the development and in-orbit validation stage and the 

first launches for in-orbit validation are scheduled for 2005.  The deployment stage is 

expected to commence in 2006 with full operational capacity scheduled for 2008 

(Wibberley, 2004). 

 

In light of the plans to modernize GPS and to deploy the Galileo system, there is great 

interest in using the two systems in an integrated manner.  Upon extensive talks and 

deliberation, developers of GPS and Galileo have made certain strategic decisions that 

will allow the systems to be used together, but still maintain autonomy (European 
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Commission, 2004).  For example, it was decided that the L1/E1 (1575.42 MHz) and 

L5/E5a (1176.45 MHz) frequency bands will be shared.  This will allow the systems to 

be used together because receiver manufacturers will be able to use the same receiver 

front-ends for multiple signals.  This will keep the cost of future dual-system receivers 

economically viable.  However, the systems will remain autonomous by keeping the GPS 

and Galileo control segments completely separate. 

 

Because of the separate system control segments, the coordinate reference frames for 

GPS and Galileo will be different.  GPS uses the WGS-84 (World Geodetic System, 

1984) coordinate reference frame and Galileo will use the Galileo Terrestrial Reference 

Frame (GTRF).  While these reference frames are different in practice, they are both 

realizations of the International Terrestrial Reference System (ITRS) defined by the 

International Earth Rotation Service (IERS) and are expected to agree at the centimetre 

level.  Consequently, these systems can be used interchangeably for most applications 

(Hein et al. 2002). 

 

The designers of GPS and Galileo have also adopted different system timing schemes.  

GPS Time is steered to Universal Time Coordinated as maintained by the US Naval 

Observatory (UTC(USNO)) and offset by whole seconds; while Galileo System Time 

(GST) is steered to International Atomic Time (TAI).  There will be an offset between 

these two time scales, which has to be considered when integrating GPS and Galileo.  
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This offset will be computed in the Galileo ground reference system and broadcast to 

the user in near real-time.  Alternatively, the time offset could be solved for or eliminated 

by spending one satellite in a dual-system processor (Hein et al. 2002).  These techniques 

will be discussed in further detail in Chapter Two. 

 

For users of GNSS positioning technology, the implications of GPS modernization and 

the new Galileo system are substantial.  Using a combination of the future systems will 

provide both improved satellite geometry and additional carrier phase measurements. 

 

With full constellations of GPS and Galileo satellites, the total number of navigation 

satellites orbiting the Earth will effectively double causing enormous geometry 

improvements for any application.  This impact will be most appreciated in those 

applications where sufficient visible satellites are often lacking such as in pedestrian and 

vehicle navigation in urban canyons and surveying under tree canopies or near large 

obstacles.  O�Keefe (2001), Lachapelle (2001), and Verhagen (2002) are among some of 

the researchers that have conducted studies to quantify and simulate the benefits in 

reliability and availability of these additional satellites. 

 

For precise GNSS positioning applications, there will be significant benefits to having six 

freely available carrier phase measurements.  When used properly, these additional 
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signals have the potential to improve the speed and reliability of ambiguity resolution 

(Tiberius, 2002 and Alves, 2001).   

 

The future of satellite navigation is changing rapidly and developers of GNSS equipment 

and software must keep up with the current changes in infrastructure.  Satellite 

positioning technology is becoming more widespread and indispensable with each 

passing year.  In 2001, the satellite navigation industry had a global turnover of 15 billion 

Euros (20 billion USD) and it has been predicted that this number will rise to 140 billion 

Euros (186 billion USD) by 2014 (Directorate-General for Energy and Transport, 2003).  

These momentous changes in GNSS infrastructure and industry have motivated the 

development of this thesis. 

 

1.2 Problem Statement 

 

Considering the upcoming major changes in GNSS infrastructure, the stakeholders in the 

precise GNSS positioning market do not know how reliable or how accurate future 

satellite-based positioning will be.  In addition, developers are unsure of the optimal way 

to exploit the new signals that will become available in the next several years. 
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1.3 Major Objectives of the Thesis 

 

The major objective of this thesis is to provide developers of future precise kinematic 

GNSS positioning systems with a quantitative and realistic analysis of the performance 

that can be expected when using both modernized GPS and Galileo. 

 

In order to achieve this major objective, the following minor objectives will be 

accomplished: 

1. To describe and demonstrate effective processing techniques for GNSS data from 

multiple systems and on multiple frequencies; 

2. To show the impact that future GNSS signals will have on the ability to estimate 

ionospheric delays;  

3. To provide a realistic and quantitative analysis of the reliability of ambiguity 

resolution with future GNSS signals; 

4. To elucidate the benefits of using linear combinations of GNSS data and to test 

various optimally chosen combinations; 

5. To develop simulation software for generating and processing future GNSS 

measurements. 
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1.4 Outline of Thesis 

 

This thesis began with a review of the status of the currently existing global navigation 

satellite systems and the plans for future development.  The background information 

given in Chapter One provides the foundation upon which the remainder of the thesis has 

been built. 

 

Chapter Two accomplishes the first minor objective of the thesis by describing the 

functional and stochastic components of the measurement model and the dynamic model 

that have been implemented to process future GNSS signals.  The observation equations 

are introduced and the technique used to estimate the unknown parameters is described.  

In addition, a thorough treatment of the inherent correlations between future GNSS 

measurements is presented. 

 

Chapter Three describes the simulator and processing software that has been used in this 

research to generate and process futuristic GNSS measurements.  The simulator is shown 

to generate realistic levels of all relevant error sources and to capture the performance of 

GNSS pseudorange and carrier phase measurements that will be available under GPS 

modernization and the development of Galileo.  The accomplishment of the fifth minor 

objective of the thesis is described in Chapter Three. 
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Chapter Four discusses the effect of ionospheric errors on future GNSS positioning.  

Estimating the ionospheric errors as states is shown to be an effective technique to 

mitigate the effect of ionospheric errors.  The improvement in the accuracy and 

convergence time of ionospheric estimation using future measurements is explained and 

demonstrated.  The second minor objective of the thesis is accomplished in Chapter Four. 

 

Chapter Five uses the simulated measurements described in Chapter Two, the 

mathematical models portrayed in Chapter Three, and the ionospheric estimation 

techniques of Chapter Four to provide quantitative results of ambiguity resolution with 

future GNSS signals.  The expected success of integer ambiguity searching and 

ambiguity validation using simulated future GNSS measurements is demonstrated.  The 

third minor objective of the thesis is accomplished in Chapter Five. 

 

Chapter Six describes the mathematical theory involved in using linear combinations of 

carrier phase data.  Linear combinations that mitigate or eliminate the effects of the 

individual GNSS error sources are explained.  Finally, using the simulated measurements 

described in Chapter Three and the processing techniques of Chapter Two, some 

optimally chosen combinations of future GNSS signals are tested and analyzed.  The 

fourth minor objective of the thesis is accomplished in Chapter Six. 
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Chapter Seven draws important conclusions from the preceding chapters and 

summarizes the findings of the research.  Chapter Seven recaps how the objectives of the 

thesis have been met and gives recommendations for future research in this field. 

 

1.5 Future GNSS Positioning Scenarios 

 

In order to accomplish the objectives of this thesis, it is necessary to establish some 

assumptions about how the future signals will be used in the future.  To this end, four 

different processing scenarios have been chosen as the most likely scenarios that users of 

future GNSS technology will have access to.  These scenarios, which will be compared 

throughout the remainder of this research, are described in this section.   

 

While it is difficult to determine which scenarios will gain the most widespread use, the 

scenarios described below have been chosen because they are the most likely scenarios 

that will be used for precise kinematic applications in the future (according to Fontana et 

al., 2001).  The first scenario, coined GPS2 is the current dual-frequency GPS case and 

will be used as a baseline against which the other scenarios will be compared.  GPS3 is 

the processing scenario of modernized GPS where all three carrier phase measurements 

will be used along with the L2C and L5 civilian pseudorange codes.  This scenario will 

likely be the first commercially available scenario since there are already functioning L5 

capable receivers in existence (e.g. the NovAtel WAAS Reference Receiver G-II).  
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GPS/GAL2 is a scenario using both GPS and Galileo measurements, but only the two 

shared frequencies of each system (L1/E1 and L5/E5a) are used.  This scenario is likely 

to have applications in the aviation industry because both the L1/E1 and L5/E5a bands lie 

in the reserved Aeronautical Radio Navigation Service frequency band.  Finally, 

GPS/GAL3 is a dual-system scenario using triple-frequency GPS and triple-frequency 

Galileo measurements together.  Receivers that output all six freely available carrier 

phase measurements will probably be more expensive due to the complicated RF front-

end and the number of correlators required, but they will provide the most redundancy 

and best accuracy of all the scenarios.  The four scenarios are summarized in Table 1.1. 

Table 1.1: Positioning Scenarios 

Measurements Used Scenario Scheduled Full 

Operational 

Capacity 

GNSS 

Type Carrier Phase  Code 

GPS L1,L2 C/A, P2 GPS 2 Present 

Galileo - - 

GPS L1, L2, L5 L2C, L5 GPS 3 2013 

Galileo - - 

GPS L1, L5 C/A, L5 GPS / GAL 2 2013 

Galileo E1, E5a E1, E5a 

GPS L1, L2, L5 L2C, L5 GPS / GAL 3 2013 

Galileo E1, E5a, E5b E1, E5a 

 



 

 

14

Chapter Two: Functional and Stochastic Positioning Models for Future GNSS 
 

The basic mathematical models that are commonly used with single or dual-frequency 

GPS processors will also be valid when processing multi-system (GPS and Galileo) 

and/or triple frequency GNSS measurements.  However, there are some implications 

when combining measurements of GPS of Galileo that must be considered.  This chapter 

will describe the mathematical models used for processing measurements from multiple 

systems that have been used for the analysis in this thesis.  First the functional and 

stochastic components of the measurement model will be described with an emphasis on 

the differences that come with future GNSS signals.  Next the dynamic model that has 

been used to describe the time variation of the simulated parameters is explained.  

Finally, the Kalman filter estimation technique that combines the measurement model 

and the dynamic model to sequentially estimate the final position solution is shown.  

Emphasis has been placed on those elements of the mathematical models that will be 

affected by the inclusion of future GNSS measurements. 

 

2.1 Measurement Model for Future GNSS Positioning 

 

The measurement model is the mathematical model that relates the measurements to the 

unknown parameters.  The measurement model consists of a functional component that 

deals with the deterministic values, and a stochastic component that describes the 
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uncertainty of the random variables.  The functional part of a generic linear 

measurement model is given by, 

vHxz +=  ( 2.1 ) 

 

where z is the vector of observations, x is the vector of unknown parameters, v is the 

vector of measurement residuals and H is the design matrix that relates the unknown 

parameters to the measurements.  The stochastic part of the model is expressed by the 

variance-covariance matrices of the observations, R , and the parameters, P .  The 

remainder of section 2.1 will discuss the definitions of these vectors and matrices. 

 

2.1.1 Functional Component 

 

The basic observation equations for satellite positioning are well-known and are given in 

Equations ( 2.2 ) through ( 2.5 ).  Equations ( 2.2 ) and ( 2.3 ) are the pseudorange and 

carrier phase measurements from a receiver A, to a GPS satellite i, and Equations ( 2.4 ) 

and ( 2.5 ) are the pseudorange and carrier phase measurements from a receiver A to a 

Galileo satellite m. 

 

( ) ερρ ++++−+= i
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i
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i
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i
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i
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( ) ερρ ++++−+= m
A

m
A

m
A

m
GAL

GAL
A

m
A

m
A ddTrdIdtdTcP  ( 2.4 ) 

( ) ελρρ +++++−+=Φ m
A

m
A

m
A

m
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m
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m
A

m
A NddTrdIdtdTc  ( 2.5 ) 

 

The terms in these equations are described in the following list: 

Term Description Units 

i
AP  Pseudorange measurement received at receiver A 

from satellite i 

Metres 

i
AΦ  Carrier phase measurement received at receiver A 

from satellite i 

Metres 

i
Aρ  Geometric range from receiver A to satellite i Metres 

c  Speed of light in a vacuum Metres per second 

GPS
AdT , GAL

AdT  Clock offset between receiver clock A and GPS 

Time and GST, respectively 

Seconds 

i
GPSdt , i

GALdt  Clock offset between satellite clock, i and GPS 

Time and GST, respectively 

Seconds 

i
AdI  Transmission delay or advance due to the effect of 

the ionosphere 

Metres 

i
AdTr  Transmission delay due to the effect of the neutral 

atmosphere 

Metres 

i
Adρ  Orbital error projected onto the line of sight Metres 
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between the receiver and satellite 

λ  Wavelength of the carrier signal Metres 

i
AN  Initial carrier phase ambiguity Cycles 

ε  Random noise and multipath Metres 

 

2.1.1.1 Double Differencing Measurements in a Combined GPS/Galileo Processor 
 

For precise applications the observation equations are differenced between satellites and 

between receivers in order to eliminate and/or reduce some of the unknown parameters.  

In traditional differential GPS positioning, measurements of the same carrier frequency 

are differenced between satellites in order to eliminate the receiver clock offset and 

differenced between receivers in order to eliminate the satellite clock offset and reduce 

the effect of spatially correlated error sources.  Using the same double differencing 

procedure is desirable for combined GPS and Galileo measurements.  However, in order 

to use heterogeneous double differences (double differences between satellites from 

different systems), three considerations must be addressed: the carrier frequency of the 

measurements, the coordinate reference frame, and the time system. 

 

To allow for integer ambiguity resolution, it is desirable for the double differencing 

operation to retain the integer nature of the ambiguity term.  This condition demands that 

the underlying carrier frequency be the same between the measurements of the two 
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systems.  To demonstrate this condition, consider a double difference between two 

receivers, A and B, and the GPS L1 measurement from satellite i and the GPS L2 

measurement from satellite j.  The resulting carrier phase double difference in units of L1 

cycles is given by: 
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( 2.6 ) 

 

where ∆  is the single difference between receivers operator, ∇  is the single difference 

between satellites operator, and ∆∇  is the double differencing operator.  Clearly, the 

integer nature of the ambiguity has been lost, making it difficult to take advantage of the 

integer ambiguity constraint.  This is one of the obstacles making integer ambiguity 

fixing more difficult for systems that use Frequency Division Multiple Access (FDMA) 

like the Russian Global Navigation Satellite System, GLONASS.  When the observations 

of such systems are double differenced, the initial carrier phase ambiguity consists of 

both an integer component and a non-integer component (Habrich, 1999). 

 

Another condition for double differencing to be beneficial is that the reference coordinate 

frames must be the same or the transformation between the systems must be known.  This 

condition is necessary because the satellite coordinates are usually considered to be 
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known in the adjustment.  A common reference frame - or a known transformation 

between frames - is necessary in order for the locations of both satellites to be used.  

Fortunately, since the coordinate reference frames for GPS and Galileo (WGS-84 and 

GTRF respectively) are expected to agree at the centimetre level, they can be considered 

interchangeable.  Hence, for precise kinematic applications, the different coordinate 

reference frames should not affect the double-differencing process when using GPS and 

Galileo measurements together (Hein et al. 2002). 

 

The last consideration when forming heterogeneous double differences is the time system 

of the two measurements.  In order to better understand the satellite and receiver clock 

offset terms in Equations ( 2.2 ) through ( 2.5 ), Figure 2.1 illustrates the GPS and Galileo 

pseudorange measurements in the absence of all other sources of error. 
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Figure 2.1: Time Scale Illustration 

 

Since the offset between the receiver time and GPS Time and the offset between the 

receiver time and GST are different, these terms are not eliminated through double 
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differencing with a GPS and a Galileo satellite.  As a result any double differences 

between GPS and Galileo measurements will have a residual clock offset: the GPS 

Galileo Time Offset (GGTO).  This is shown in the following double difference on the 

L1/E1 frequency between receivers A and B and GPS satellite i and Galileo satellite m. 
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( 2.7 ) 

 

The GGTO can be dealt with in one of three ways: 

 

1. Removal using the broadcast value that will be available in the Galileo navigation 

message 

2. Estimation as an additional state in the processor 

3. Elimination by using both a GPS and a Galileo reference satellite and forming 

double differences only between measurements from the same system 

 

According to the most recent version of the Galileo Mission Requirements Document 

(Galileo Mission Requirements Document Issue 5.0 � Draft, 2002), the broadcast value 

of the GGTO will have an accuracy of five nanoseconds at the two-sigma confidence 

level.  This translates into about 1.5 metres and is clearly not accurate enough for precise 

applications.  Therefore, developers of precise GNSS equipment and software will have 
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to choose between using heterogeneous double differences (see Figure 2.2) and 

estimating the GGTO or using only homogeneous double differences (see Figure 2.3) 

which eliminates the GGTO.  Of these two options, the latter is superior because if there 

are any other unforeseen system biases, these will also be eliminated by using only 

homogenous double differences.  Therefore, using two reference satellites (one for GPS 

and one for Galileo) can be seen as the safer option for future developers and has been 

adopted for the remainder of this thesis. 

 

 

Figure 2.2: Heterogeneous Double Differences 

Galileo Satellite

Galileo Satellite 

GPS Satellite 

GPS Satellite 

m

n i

j

Receiver A Receiver B

( ) ( )[ ]
( ) ( )[ ]
( ) ( )[ ]j

B
j

A
m

B
m

A

i
B

i
A

m
B

m
A

n
B

n
A

m
B

m
A

PPPPP
PPPPP

PPPPP

−−−=∆∇

−−−=∆∇

−−−=∆∇

3

2

1

Reference 



 

 

23

 

Figure 2.3: Homogeneous Double Differences 
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where i and m represent the GPS and Galileo reference satellites and j and n 

represent other GPS and Galileo satellites and ∆∇ε  is the random noise of a double 

differenced observation. 

 

It should be noted that the tropospheric delay term, dTr  and the orbital error term ρd  

have been neglected.  The tropospheric delay can be ignored because it is assumed that 

when the tropospheric delay is modeled using an appropriate model and mapping 

function and then double differenced, the residual error is negligible.  According to 

Parkinson et al. (1995), simple tropospheric models remove about 90% of the 

tropospheric error on an undifferenced measurement.  Of course, the assumption that the 

residual tropospheric effects can be neglected breaks down when the baseline distance 

increases, when small scale variations in the tropospheric conditions exist, and especially 

when the height difference between the two receivers is substantial.  Some examples of 

effective tropospheric models include the Saastamoinen model (Saastamoinen, 1972), the 

UNB3 model (Collins et al. 1996) and the Modified Hopfield Model (Goad et al. 1974), 

while mapping function can be found in Neill (1996), Lanyi (1984), and Ifadis (2000) to 

name a few.  

 

It is commonly assumed that the double differenced orbital errors can be neglected.  The 

positions of the satellites are computed from the broadcast ephemeris, which have a 

nominal accuracy of about 2.3 metres at the 1σ level (Cannon, 2002).  When the 
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observations are double differenced, the error propagated onto the estimated baseline 

is approximately 0.125 parts per million.  For example, the errors in satellite position 

projected onto a 50 km baseline would cause 6.25 millimetres of error.  An error of this 

magnitude can safely be neglected as it is well below the level of other dominant error 

sources like the atmospheric delays, and multipath. 

 

One last step is necessary to make the observation equations (Equations ( 2.8 ) and ( 2.9 

)) fit the generic functional measurement model from Equation ( 2.1 ).  Since the desired 

result is the three dimensional position of the rover receiver, the geometric range term 

must be linearized through a Taylor series expansion.  Equation ( 2.10 ) below shows an 

example of the linearization of the range from satellite i to receiver B.  
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( 2.10 ) 

 

where X,Y, and Z are the Cartesian coordinates in the appropriate coordinate reference 

frame and the o  symbol indicates an initial approximate.  The higher order terms can be 

ignored assuming that the initial approximate of the rover receiver position is close to the 

estimated position.   
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Given the above definitions, and following the structure of equation ( 2.1 ), the final 

linearized double differenced functional component of the measurement model is 

summarized in the following example of double differenced pseudorange and carrier 

phase measurements from receivers A (reference station) and B (rover station) to GPS 

satellites i and j and Galileo satellites m and n. 
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Vector of Unknown Parameters: 
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Design Matrix: 
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It should be noted that the state vector shown in Equation ( 2.12 ) contains corrections to 

the position, corrections to the ionospheric delays, and corrections to the ambiguity 

values.  This mechanization has been adopted for the processing throughout this thesis. 

 

2.1.1.2 Ionospheric Errors 
 

As shown in Section 2.1.1.1, the ionospheric delay is treated as a state to be estimated.  

Since the ionospheric delay is highly correlated with the initial carrier phase ambiguity, a 

pseudo-observation is used to enable the ionospheric delay state to converge.  The 

ionospheric pseudo-observation equation is given by, 

 

estimatednobservatiopseudo dIdIdI ∆∇=∆∇−∆∇ − δ
o

 
( 2.14 ) 
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where nobservatiopseudodI −∆∇  is an externally determined value of the expected 

ionospheric delay and estimateddI∆∇δ  is the ionospheric delay state to be estimated.  The 

pseudo-observation could come from the GPS broadcast ionospheric model, global 

ionosphere maps, such as those provided by the CODE analysis center (�The AIUB IGS 

Page�: http://www.cx.unibe.ch/aiub/igs.html) or it could simply be set to zero.  The 

weighting of this pseudo-observation in the measurement covariance matrix has a 

significant impact on ambiguity resolution and the accuracy of the final baseline solution.  

In Chapter Four, the weighting of the ionospheric pseudo-observable is discussed further 

and some experimental results showing the impact that future signals will have on the 

ability to estimate the ionospheric delay are given. 

 

2.1.2 Stochastic Component 

 

In order to capture the correlations between double differenced GNSS observations, the 

measurement covariance matrix must be derived from the original undifferenced 

observations and then transformed to the double differenced covariance matrix via the 

double differencing matrix, B  through the equation, 

 

T
undiff BRBR ⋅⋅=∆∇  ( 2.15 ) 
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where ∆∇R  denotes the double differenced measurement covariance matrix and 

undiffR  is the undifferenced measurement covariance matrix.  The double differencing 

matrix is populated with 0�s, 1�s and -1�s and simply forms the double differences from 

the undifferenced observations.  When Equation ( 2.15 ) is applied to an undifferenced 

covariance matrix, three different forms of covariance result.  In the following equations, 

( )2i
Aσ  is the variance of a single undifferenced observation from receiver A to satellite i; 

i
ABσ  is the covariance between observations from receivers A and B to satellite i; ij

Aσ  is 

the covariance between two observations from the same receiver, A, to different satellites, 

i and j; and ij
ABσ  is the covariance between two observations from different receivers to 

different satellites.  The different forms of covariance are: 

 

1. The covariance between two observations with two common satellites.  This is 

actually the variance of a single double difference observation and is given by: 

( ) ( ) ( ) ( ) ( )
ji
AB

ij
AB

j
AB

i
AB

ij
B

ij
A

j
B

j
A

i
B

i
A

ij
AB

σσσσσσ
σσσσσ

222222                     

22222

++−−−−

+++=∆∇  
( 2.16 ) 

 

2. The covariance between two observations with one common satellite.  This form 

of covariance describes the correlations between two double differenced 

observations of the same type (i.e. two GPS observations or two Galileo 

observations), since they would share the same reference satellite.  The equation 

is: 
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3. The covariance between two observations with no common satellites.  This form 

of covariance describes the correlation between two double differenced 

observations that are from different systems (i.e. the correlation between GPS 

and Galileo double difference observations).  The equation is: 
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( 2.18 ) 

 

 

Consider an example with six satellites: three GPS (i,j,k) and three Galileo (m,n,o).  The 

double differenced measurement covariance matrix for single frequency carrier phase 

observations would contain four observations: two GPS double differences and two 

Galileo double differences.  The resulting symmetric covariance matrix is shown below 

where SYM indicates symmetry in the lower left half of the matrix.  The diagonal terms 

follow the first type of covariance (two common satellites), the four terms in the upper 

right corner follow the third type of covariance (no common satellites) and the remaining 

terms follow the second type of covariance (one common satellite). 



 

 

31

 

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( )
( ) 




















∆∇
∆∇∆∇∆∇
∆∇∆∇∆∇∆∇∆∇
∆∇∆∇∆∇∆∇∆∇∆∇∆∇

=∆∇

mo
AB

mo
AB

mn
AB

mn
AB

mo
AB

ik
AB

mn
AB

ik
AB

ik
AB

mo
AB

ij
AB

mn
AB

ij
AB

ik
AB

ij
AB

ij
AB

SYM

R

2

2

2

2

,
,,
,,,

σ
σσ
σσσ
σσσσ

 

 ( 2.19 ) 

 

In order to implement this covariance model, the undifferenced covariance terms found 

on the right hand sides of Equations ( 2.16 ), ( 2.17 ), and ( 2.18 ) must be defined.  

According to the law of propagation of errors, the individual error sources can be 

separated and summed to arrive at the final covariance terms.  Therefore, the necessary 

task is to create undifferenced covariance matrices corresponding to each individual error 

source (ionosphere, troposphere, multipath, thermal noise, orbital, receiver clock, satellite 

clock, etc.) and sum them as in Equation ( 2.20 ). 

 

( ) Tundiff
clksat

undiff
clkrec

undiff
orbit

undiff
noise

undiff
mult

undiff
tropo

undiff
iono BRRRRRRRBR ⋅+++++++⋅=∆∇ L..   ( 2.20 ) 

  

Defining these matrices is a topic of research that has received increasing attention in the 

past several years.  This task is beyond the scope of this thesis, but the reader is referred 

to Radovanovic (2002) and El-Rabbany (1994) for a thorough treatment of the physical 

and temporal correlations between undifferenced observations.  The model used in this 

research is the one described by Radovanovic (2002).  This model represents each error 
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source with a constant zenith delay and an elevation angle dependent mapping 

function.  The general form is 

 

22 )( zenithm σεσ ⋅=   ( 2.21 ) 

 

where 2σ  is the final variance, ( )εm  is the elevation dependent mapping function, and 

2
zenithσ  is the measurement variance for a satellite at zenith.  In order to model the 

decorrelation of error sources as distance between the receivers and/or satellites 

increases, exponential decay functions are used.  The details and derivation of this error 

model are beyond the scope of this thesis, but the relevant equations that were used for 

the subsequent experiments can be found in Radovanovic (2002).  

 

While all of the error sources listed in Equation ( 2.20 ) exist to some extent, the 

remainder of this thesis will focus only on the ionospheric, tropospheric and the lumped 

thermal noise/multipath errors because these are the dominant error sources.  The other 

sources of error are either eliminated (receiver and satellite clock errors) or mitigated 

enough to be ignored (orbital errors) through the double differencing process. 
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2.1.2.1 Correlations between Observation Types 
 

The total observation vector contains three distinct types of observations: pseudorange 

observations, ionospheric pseudo-observations, and carrier phase observations.  By 

definition, there are no correlations between the ionospheric pseudo-observable and any 

other type of observation since it comes from an external source.   

 

Liu (2001) conducted zero-baseline tests on a network of ASHTECH Z-XII dual-

frequency GPS receivers and found that all the correlations between different 

observations types (C1, reconstructed P1, reconstructed P2, L1, and L2) were 

insignificant except for the correlation between the L1 and L2 carrier phase observations.  

These findings have been applied in this work so that the elements in the total double 

differenced design matrix corresponding to correlations between pseudorange 

observations and any other type of observation were set to zero.  Correlations between 

carrier phase observations are not neglected and are discussed in Section 2.1.2.2.  How to 

treat correlations between ionospheric pseudo-observations depends on where the 

ionospheric pseudo-observations come from.  If the GPS broadcast ionospheric model or 

a global ionospheric map is used to generate the external ionospheric pseudo-

observations, then the observations would be correlated because all the pseudo-

observations are derived from the same model.  However, in this research, the external 
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ionospheric observation is simply set to zero.  Consequently, there are no 

correlations between the ionospheric pseudo-observations themselves or between 

ionospheric pseudo-observations and any other type of data and the covariance matrix of 

ionospheric pseudo-observations is diagonal.   

 

A symbolic representation of a typical double differenced measurement covariance 

matrix is shown below: 
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( 2.22 ) 

 

where, ( )[ ]P2σ  is the covariance matrix corresponding to the code observations, ( )[ ]dI2σ  

is the covariance matrix corresponding to the ionospheric pseudo-observations, and 

( )[ ]Φ2σ  is the covariance matrix corresponding to the carrier phase observations.  Each 

of these covariance matrices is defined in the following equations where the subscripts, 1 

and 2 refer to different frequencies. 
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2.1.2.2 Inter-Frequency Correlations 
 

The ionosphere is a dispersive medium so it affects each carrier frequency differently; 

resulting in highly correlated ionospheric errors between the carrier frequencies.  These 

correlations must be incorporated into the GNSS stochastic model. 

 

The ionospheric effects (in metres) on the three future GPS signals are given by the well-

known equation (Hofmann-Wellenhof, 2000): 
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 ( 2.26 ) 

where LiIδ  are the ionospheric errors in metres for each carrier frequency, 2
Lif  are the 

squares of the carrier frequencies in Hz, and TEC  is the total electron content along the 

path between the receiver and the satellite in TECU (1016 electrons per square meter).  
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This error has the same magnitude, but opposite sign for pseudorange measurements 

and the corresponding carrier phase measurements; it delays the pseudorange and 

advances the carrier phase.  It is not intuitive to work with quantities of TECU, so 

Equation ( 2.26 ) is often reparameterized in terms of the ionospheric error in units of 

metres on the L1 frequency.  This different parameterization results in, 

 

1
2
5

2
1

2
2

2
1

5

2

1

/
/
1

L

LL

LL

L

L

L

I
ff
ff

I
I
I

δ
δ
δ
δ

⋅















=
















 

 ( 2.27 ) 

 

Applying the law of propagation of errors to Equation ( 2.27 ), we get, 
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where 2
Liσ  represents the variance in square metres. 

 

The tropospheric delay is completely correlated because the troposphere is a non-

dispersive medium affecting all L-Band frequencies in the same way.  Mathematically, 

we have,  
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where Tδ  is the tropospheric delay in metres.  Again, applying the law of propagation of 

errors, we get, 
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The thermal noise and multipath are lumped together because they are uncorrelated 

between signals of different frequencies.  The functional model is simply, 
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where Linδ  is the error due to noise and/or multipath in metres.   

 

Since the noise and multipath errors are uncorrelated between measurements of different 

frequencies, applying the law of error propagation of errors yields, 
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where 2
Linσ  is the variance due to noise and multipath in units of metres.  The precision of 

the thermal noise and multipath is often assumed to be the same for each frequency when 

expressed in units of cycles of the respective signal.  Therefore, Equation ( 2.32 )  can be 

reparameterized to, 
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Given the preceding definitions of the individual correlations between carrier 

frequencies, the total covariance matrix describing the correlations among the carrier 

frequencies in square metres is: 
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 where 2
1LIσ , 2

Tσ , 2
1Lnσ  are the variances of the ionosphere, troposphere, and 

noise/multipath on the L1 frequency in units of metres2. 

 

To relate these inter-frequency correlations back to the development of Section 2.1.2, let 

us rewrite Equation ( 2.34 ) as, 
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where SF refers to the scale factors of the ionospheric, tropospheric and noise/multipath 

error source variances, respectively.  Referring back to Equation ( 2.20 ), we can write a 

final expression for the entire double differenced measurement covariance matrix using 

the Kroneker product as follows: 
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 ( 2.36 ) 

  

An example of a total covariance matrix is given below for a scenario with triple 

frequency GPS and Galileo data over a five kilometre baseline.  In this example, the 

following data types were used: 
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• GPS L2C and L5 codes 

• Galileo E5a and E5b codes 

• GPS L1, L2, and L5 carriers 

• Galileo E1, E5a and E5b carriers 

 

Figure 2.4 and Figure 2.5 show the pseudorange and carrier phase blocks of the 

measurement covariance matrix.  In these two figures, the brightness value of the pixel 

indicates the magnitude of the variance or covariance.  The lighter coloured pixels 

represent larger magnitude covariances and the darker pixels represent smaller magnitude 

covariances.  The ionospheric pseudo-observation block is not shown because it is simply 

a diagonal matrix.   
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Figure 2.4: Pseudorange Measurement Covariance Matrix for GPS/Galileo Triple-

Frequency Data 
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Figure 2.5: Carrier Phase Measurement Covariance Matrix for GPS/Galileo Triple-

Frequency Data 

 

Visual inspection of the covariance matrices pictured above reveal that the diagonal 

contains the largest values and the correlations between satellites have the second largest 
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values.  The correlations between frequencies are less significant and the 

correlations between GPS and Galileo measurements are the least significant.  This is 

why these latter two types of correlations are often ignored in commercial GNSS 

processing software. 

 

2.1.2.3 Temporal Correlations 
 

An unresolved problem in GNSS processing is how to model the temporal correlation of 

the measurements.  One of the basic assumptions in using a Kalman filter is that the 

measurements should not be correlated in time (Brown et al. 1992).  As a result, the 

temporal correlations are commonly ignored, which is why the state covariance matrix 

becomes grossly optimistic in most commercial GPS processing software systems.  

Several researchers have proposed approaches for dealing with the temporal correlations 

in static GPS positioning including Wang et al. (2002), El-Rabbany (1994), and 

Radovanovic (2002).  However, in kinematic applications using a Kalman filter, the 

temporal correlations must be removed from the measurements by including time varying 

parameters in the functional model.  This is rarely done in practice because the 

disadvantages (the increase in dimension of the state vector and the decrease in the speed 

of convergence) outweigh the advantages (a more accurate state covariance matrix).  As a 

result the temporal correlations are generally neglected.  El-Rabbany (1994) found that 

the effect of temporal correlations is essentially a scaling of the state covariance matrix 
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and according to Han et al. (1995), the state estimation results are not significantly 

affected by the scale of the covariance matrix.  Based on these studies, the temporal 

correlations of the GNSS observations have been neglected in this thesis, which is 

consistent with most other academic and commercial GNSS processing algorithms. 

 

2.2 Dynamic Model for Simulated GNSS Positioning 

 

The dynamic model is the model that propagates the unknown parameters and the 

associated covariance matrices from one epoch to the next.  The generic functional part 

of the dynamic model is given by, 

 

kkkkkk xx ω+Φ=+ //1     ( 2.37 ) 

 

where kkx /1+  is the predicted state vector at epoch k+1, kkx /  is the updated state vector 

from epoch k, kΦ  is the state transition matrix that relates these two vectors, and kω  is a 

random white noise sequence whose mean is zero and is approximated with a Gaussian 

distribution. 

 

The stochastic part of the dynamic model is derived by applying the error propagation 

law to Equation ( 2.37 ) to produce, 
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k
T
kkkkkk QPP +ΦΦ=+ //1   ( 2.38 ) 

 

where 1/ +kkP  is the covariance matrix of the predicted state vector, kkP /  is the covariance 

matrix of the updated state vector from epoch k, and kQ  is the process noise covariance 

matrix that describes the uncertainty in the dynamic model. For further details, the reader 

is referred to Brown et al., 1992. 

 

2.2.1 State Transition for Simulated Measurements 

 

The state transition employed for the mechanization that is used in this thesis is 

somewhat trivial.  Since the state vector contains corrections to the position, ionospheric 

delays and ambiguities, rather than the actual position, ionospheric delays and 

ambiguities, and since a zero velocity model is assumed, the predicted state vector is 

simply the appropriately dimensioned null vector.  At the end of each cycle of the 

Kalman filter, the corrections contained in the state vector are applied to the positions, 

ionospheric delays, and ambiguities.  Since the velocity of each of the states is assumed 

to be zero, the predicted corrections for the next epoch are simply zero.  Mathematically, 

this is represented by: 
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The difference between kinematic and static positioning is expressed in the variance of 

the white noise sequence, kω , which is discussed in Section 2.2.2.1. 

 

2.2.2 Process Noise 

 

The uncertainty of the state propagation is described by the process noise matrix, which 

will be discussed in the following sections for each type of state. 

 

2.2.2.1 Position States   
 

The focus of this research is on kinematic positioning, so the simulated data used in the 

experiments is treated as if it were from a kinematic user.  This is done by adding 

uncertainty to the predicted position states, which is the same as increasing the variance 

of the random noise sequence, kω .  A process noise of 0.5 metres/second (1σ) is used 

because this is the approximate position accuracy that could be obtained from a typical 

differential code solution.  In other words, at each epoch, the estimate of the position 

resembles the accuracy that would be obtained using only the code observations for that 
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epoch.  This is a good approximation of a real system that uses a fast code-based 

solution as an initial approximate for the carrier phase processing. 

 

2.2.2.2 Ambiguity States 
 

The carrier phase ambiguities are constant with time, so no process noise is added to the 

dynamic model for these states.  The uncertainty in the ambiguity states originates from 

the measurement noise. 

 

2.2.2.3 Ionospheric Delay States 
 

The ionospheric delay states change slowly over time so there is some uncertainty in the 

dynamic model.  In this research, the ionospheric states have been modeled as random 

walk processes after Odijk (2001) and Julien (2004).  Julien (2004) suggests a process 

noise variance of ( ) ( )[ ] IngthBaselineLeQiono ⊗⋅⋅= − 27102  metres2 where I is an 

appropriately dimensioned identity matrix.  In this research, the same strategy has been 

used to model the ionospheric delays. 

 

2.3 Estimation Technique  
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A Kalman filter estimation algorithm has been used to estimate the unknown states 

in a sequential fashion.  This technique combines the measurement model of Section 2.1 

with the dynamic model of Section 2.2 to generate optimal estimates of the state vector at 

each epoch.  Like standard least squares estimation, the Kalman filter is based on an 

optimality criterion of minimizing the squared estimation residuals.  The state vector for 

the current epoch is predicted based on the dynamic model and the previously estimated 

state vector.  It is then updated using the measurement model and the satellite 

measurements.  As time and data accumulates, the covariance of the estimated state 

vector converges to the steady state precision of the system.  For a more detailed 

discussion of Kalman filtering, the reader is referred to Brown et al. 1992.  The basic 

Kalman filter equations are well known and are included below in Figure 2.6 for 

completeness. 

 

 

Figure 2.6: Kalman Filter Equations (from Brown et al. 1992) 
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The Kalman filter estimation technique considers all the unknown parameters in the state 

vector to be real numbers and is useful for solving the float-valued solution.  With carrier 

phase GNSS data, the initial ambiguity biases are integers by definition and this 

information can be used to constrain the ambiguities, which improves the precision of the 

remaining parameters.  The process of determining the correct integer values for the 

ambiguity parameters is called ambiguity resolution and is the topic of Chapter Five. 

 

2.4 Summary 

 

This chapter has described the details of the functional and stochastic components of the 

measurement and dynamic math models to be used with future global navigation satellite 

systems, which is a fulfillment of the first minor objective of the thesis.  The 

heterogeneous and homogeneous double differencing schemes for GPS and Galileo 

measurements were explained and the treatment of ionospheric delays as estimable states 

was described.  In addition, the correlations between future observation types, between 

future frequencies, and between epochs in time were addressed.  The equations and 

algorithms developed in this chapter have been implemented in newly developed 

software and will be used in the remainder of the thesis to process simulated future 

measurements. 
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Chapter Three:  GNSS Simulation and Processing Software 
 

This chapter endeavours to describe the software that was developed to generate and 

process simulated future GNSS measurements.  The software consists of two major 

components as shown in Figure 3.1.   

 

 

Figure 3.1: General Schematic of Developed Software 

 

First is the simulation module, which is based on a commercially available software 

simulator.  The simulation module is described in detail in Section 3.1.  The second major 

component is the processing module.  The mathematical theory behind the processing 

module was explained in Chapter Two and a schematic diagram and description of the 

processing module is given in Section 3.2.  Both of these modules are controlled by a 

configuration file in which the user specifies the details of the simulated positioning 

campaign.  The configuration file includes commands to control: 
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• the location of the base and rover receivers 

• the start and end times of the campaign 

• the levels of the error sources (low, moderate, high) 

• the dynamics mode of the receivers (static or kinematic) 

• standard deviations and correlation lengths for the measurement covariance model 

• the type of tropospheric model 

• the types of observations to use 

• the combination coefficients for creating linear combinations of carrier phase data 

• the standard deviation of the ionospheric pseudo-observation 

• the measurement sampling interval  

• the critical value for the ambiguity discrimination test 

• the types of output to be recorded in the output files 

 

3.1 Future GNSS Measurement Simulation 

 

The simulator used for the tests described in this research is derived from the Satellite 

Navigation TOOLBOX 3.0 For MATLAB® developed by GPSoft®.  The simulator is 

able to emulate both GPS and the predicted Galileo orbits.  For GPS satellites, there are 

six orbital planes with four satellites on each plane; for Galileo, there are three orbital 

planes with 10 satellites equally spaced on each plane, three of which act as spares.  The 

measurements from GPS and Galileo are transmitted on a total of four frequencies as 
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summarized in Table 3.1.  This corresponds to the current plans for the Galileo 

constellation according to the Galileo Mission High Level Document (2002).  

 

Table 3.1: Carrier Frequencies used for Future Global Navigation Satellite Systems 

Carrier Signal Frequency (MHz) 

GPS L1 1575.45 

GPS L2 1227.60 

GPS L5 1176.45 

Galileo E1 1575.42 

Galileo E5a 1176.45 

Galileo E5b 1207.14 

 

As shown in Figure 3.2, the satellite signals are simulated as perfect geometric ranges 

corrupted by the ionospheric delay, tropospheric delay, multipath, thermal noise, and an 

integer number of cycles for the carrier phase measurements.  All other sources of error 

that exist in the GNSS positioning environment have been neglected because the 

magnitudes of these error sources after double differencing are insignificant.  Each of the 

included error sources are described in more detail in the following sections. 
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Figure 3.2: Measurement Simulation Diagram 

3.1.1 Ionosphere 

 

The ionosphere is modeled using �the traditional raised half-cosine profile for zenith 

delay� and �scaled by the FAA [Federal Aviation Administration] Wide Area 

Augmentation System obliquity factor.�  (Satellite Navigation TOOLBOX User�s 

Guide).  The raised half-cosine profile for zenith delay is described in Klobuchar (1996) 

and is the same model that is used for the broadcast ionospheric correction transmitted by 

GPS satellites.  The obliquity factor scales the ionospheric errors according to elevation 

angle and is described in Kaplan (1996).  The resulting ionospheric delay over the period 

of one day for a medium level of ionosphere is shown in Figure 3.3.  In this figure, each 

curve represents a satellite pass. 
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Figure 3.3: Medium Level Ionospheric Delay for 24 Hour Period 

 

The ionospheric delay also varies with elevation angle between the user and satellite.  

This variation is shown in Figure 3.4 where the magnitude of the ionospheric correction 

is plotted against elevation angle for a variety of times of the day. 
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Figure 3.4: Medium Level Ionospheric Delay versus Elevation Angle 

 

The errors shown in Figure 3.3 and Figure 3.4 are the errors applied to a single range 

measurement.  For the experiments conducted in this investigation, the double 

differencing process was employed.  Therefore, the effect of the error sources on the 

double-differenced measurement is of prime importance.  Figure 3.5 shows the resulting 

double-differenced ionospheric error versus baseline length for a north-south oriented 

baseline.  Since the zenith ionospheric delay has a high degree of spatial correlation, the 

main effect of the double-difference ionospheric error comes from the difference in 

mapping function between the two receivers. 
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Figure 3.5: Medium Level of Double-Differenced Ionospheric Delay versus Baseline 

Length 

 

3.1.2 Troposphere 

 

The tropospheric error model uses the modified Hopfield model which is given in Goad 

et al. 1974.  This error is not dependent on time of day, but rather on the percent humidity 

in the atmosphere and the elevation angle of the satellite.  Figure 3.6 shows the resulting 

tropospheric delay versus humidity for a low elevation and a high elevation angle 

satellite. 
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Figure 3.6: Tropospheric Delay versus Humidity for Satellites with 5 and 80 Degree 

Elevation Angles 

According to Parkinson et al. (1995) simple tropospheric models can typically remove 

90% of the undifferenced tropospheric delay.  Therefore, in this research, the applied 

tropospheric delay is scaled by a factor of 0.1 and no tropospheric correction is applied.  

This technique simulates a typical residual tropospheric delay that would remain after 

applying a standard tropospheric correction model. 

 

For the experiments performed in this research, the humidity was fixed at the typical 

value of 50%.  Similar to the ionospheric error, the double-differenced tropospheric error 
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is mostly dependent on elevation mapping function.  The double-differenced 

tropospheric error for a north-south oriented baseline is shown in Figure 5. 

 

 

Figure 3.7: Medium Level of Double-Differenced Tropospheric Delay versus 

Baseline Length (Elevation angle shown in legend box) 

 

3.1.3 Thermal Noise 

 

The thermal noise component of the ranging error is modeled a random white noise 

sequence with mean zero and standard deviation depending on the type of measurement 

being simulated.  In reality, the precision of the measurements depends on the bandwidth 

and quality of the receiver used; however, in this simulation, a high quality receiver has 
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been assumed because the focus of this research is on precise carrier phase 

positioning.  The following table describes the thermal noise characteristics of the various 

signals used.  The values chosen are in the same range as other simulations and 

predictions of future receiver noise precision (e.g. Alves 2001 and Hein et al. 2002). 

 

Table 3.2: Thermal Noise Standard Deviations for Various Measurement Types 

Measurement Type Standard Deviation (m) 

GPS C/A code 0.40 

GPS L2C code 0.10 

GPS L5 code 0.10 

Galileo E5a code 0.08 

Galileo E5b code 0.10 

All Carrier Phase 

Measurements 

0.01*Wavelength 

 

3.1.4 Multipath 

 

The effect of multipath signals is modeled by adding random time correlated noise.  The 

zero-elevation angle multipath error is generated using a digital filter described by 

Equation ( 3.1 ).  This multipath error is then scaled according to the elevation angle of 

the satellite so that lower elevation angle satellites have a greater multipath effect. 
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( 3.1 ) 

 

where y  is the output sequence, x  is an input Gaussian white noise sequence (mean zero 

and standard deviation eσ ) and a  and b  are the feed-forward and feed-back filter 

coefficients respectively.  Two different filter models were chosen to represent different 

multipath signals: a short-time constant model and a long time constant model.  Given the 

representation in Equation ( 3.1 ), the two models are implemented with the coefficients 

outlined in Table 3.3. 

Table 3.3: Multipath short and long time constant coefficients 

 N eσ  (m) b(0) b(1) a(0) a(1) 

Short-time 

constant 

1 2 1.0000 -0.9244 0.0378 0.0378 

Long-time 

constant 

1 15 1.0000 -0.9782 0.0109 0.0109 

 

For both models, the order of the filter is one, which means that the multipath errors are 

correlated in time.  A different uncorrelated multipath error is generated for each 

measurement to ensure that the multipath errors will not cancel in the double differencing 

process.  The multipath error for carrier phase observations was generated in the same 

way as the code multipath and then multiplied by a factor of λ⋅005.0 , where λ  is the 
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wavelength of the signal.  The filter coefficients shown in Table 3.3 come from the 

Satellite Navigation TOOLBOX 3.0 For MATLAB® where they were chosen 

empirically according to realistic levels of resultant multipath errors.  Figure 3.8 and 

Figure 3.9 show the pseudorange multipath error for a low elevation angle satellite and a 

high elevation angle satellite respectively. 

 

 

Figure 3.8: Pseudorange Multipath Error for a Low Elevation Satellite 
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Figure 3.9: Pseudorange Multipath Error for a High Elevation Satellite 

 

3.2 Processing Software 

 

The mathematical theory used in processing future GNSS measurements was described in 

Chapter Two.  This section describes the architecture of the processing software that is 

used to process the simulated futuristic measurements.  A general schematic diagram of 

the processing module is provided in Figure 3.10. 
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Figure 3.10: GNSS Simulation and Processing Software 
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Figure 3.10 shows that there is a storage container that holds the estimated values.  

These values are initialized by the �initial estimates� task, and then updated at each epoch 

with one of two state vectors from the Kalman filter.  If the user desires to fix the 

ambiguities to integer values, the fixed state vector ( x( ) is applied to the estimated values; 

otherwise, the float state vector ( x� ) is applied to the estimated values.  Each of the 

specific tasks illustrated in the figure are described in more detail below. 

 

Initial Estimates 

This task is performed only once at the beginning of a data set.  The initial estimates of 

the rover�s position are provided by the user.  The initial estimates for the carrier phase 

ambiguities and the ionospheric delays are simply set to zero. 

 

Simulate Measurements 

This task uses the simulated orbital parameters and the locations of the receivers to 

compute simulated pseudorange and carrier phase measurements and the coordinates of 

the satellites in the WGS-84 reference frame.  The user has control over the level of the 

various error sources that are applied to the measurements and the measurement sampling 

rate.  The details of this process are given in Section 3.1. 

 

Create Linear Combinations 
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This task takes the raw measurements from the simulator module and forms user 

specified linear combinations of the original observations.  The linear combinations are 

formed with the following equation: 

 

φφ B=∗  ( 3.2 ) 

 

where ∗φ  is the vector of transformed observations, φ  is the original vector of 

observations, and B is the transformation matrix.  The user defines the transformation 

matrix, B, in the configuration file.  A detailed discussion of linear combinations of 

signals is given in Chapter Six. 

 

Choose Reference Satellite 

Since the quality of the measurements from the reference satellite contributes to the 

overall quality of each double difference, it is desirable to select a reference satellite with 

measurements that are the least corrupted by errors.  To this end, the satellite with the 

highest elevation is selected as the reference satellite since its transmission path through 

the ionosphere and troposphere will be a minimum of all the satellites.  

 

Compute H, R, and z 

In this task, the matrices required in the Kalman filter algorithm are computed.  The 

design matrix, H, is shown in Equation ( 2.13 ), the measurement covariance matrix, R, is 
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shown in Equation ( 2.36 ), and the measurement or misclosure vector, z, is shown in 

Equation ( 2.11 ).  These matrices are computed using the most current estimates of the 

estimated values.  This technique is called extended Kalman filtering since the point of 

linearization for each epoch is the most recent estimate of the estimated values.  Because 

of this mechanization, the state vector of corrections is set to the null vector at the 

beginning of each epoch. 

 

Update State Covariance 

This task implements the time propagation of the state covariance matrix.  The equation 

that is computed is given as Equation ( 2.38 ) and is repeated here for clarity: 

 

k
T
kkkkkk QPP +ΦΦ=+ //1  

 

( 2.38 ) 

The user is able to control whether the processing should be done in static or kinematic 

mode.  In static mode, there is no process noise for the position states; whereas, in 

kinematic mode, the process noise for the position states are set to 0.5 metres/second as 

explained in Section 2.2.2.1.  Regardless of the mode selected for the user dynamics, the 

process noise for the ambiguities is set to zero and the process noise for the ionospheric 

delay states are set to ( ) ( )[ ] IngthBaselineLeQiono ⊗⋅⋅= − 27102  as described in Sections 

2.2.2.2 and 2.2.2.3. 
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Compute Kalman Gain 

In this task, the updated state covariance matrix, the current measurement covariance 

matrix, and the current design matrix are used to compute the Kalman gain.  This is 

accomplished using the standard Kalman gain equation, which is found in Figure 2.6 and 

repeated here for clarity: 

 

[ ] 1
1/1/

−
−− += k

T
kkkk

T
kkkk RHPHHPK  ( 3.3 ) 

 

where the subscript k refers to the epoch. 

 

Compute State Vector 

In this task, the state vector of corrections is computed using the misclosure (or 

measurement vector), the Kalman gain matrix, and the design matrix.  Again, the 

equation is found in Figure 2.6 and repeated here for clarity: 

 

[ ]1/1// −− −+= kkkkkkkkk xHzKxx  ( 3.4 ) 

 

However, since the extended Kalman filter algorithm is used, the state vector of 

corrections is reset to the null vector at the beginning of every epoch.  Therefore, 1/ −kkx  is 

null and Equation ( 3.4 ) is simplified to 
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kkkk zKx ⋅=/  ( 3.5 ) 

 

At this point, there is no consideration of the integer nature of the ambiguity states and 

the state vector contains corrections for real-valued carrier phase ambiguities. 

 

Resolve Ambiguities 

This task attempts to apply an integer constraint to the carrier phase ambiguities.  The 

float valued state vector and its associated covariance matrix are passed into the task 

along with the most recent estimated values.  If integer ambiguities can be found and 

validated with a user-defined level of confidence, the state vector is modified to reflect 

the integer nature of the ambiguities.  The details of finding and validating integer 

ambiguities are provided in extensive detail in Chapter Five.  

 

Update Estimated Values 

 In this task, the estimated values are updated with the new state vector.  If integer 

ambiguities were found, the estimated values are updated with the fixed state vector; 

otherwise, the float state vector is used.  This is described by the following equation 

where subscript, ni ...1= , indicates the satellite pair. 
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( 3.6 ) 

 

Output Results 

This task handles the output of various user-requested results.  Each requested type of 

output is stored in a different file with the same prefix, but different file extensions.  The 

available output files are listed in Table 3.4. 

 

Table 3.4: Output File Types 

File Extension File Description 

.fwd Rover position and the associated variance in the WGS-84 reference 

frame. 

.fml Any output messages for the user.  For example, notifications when the 

reference satellite is changed, details of the ambiguity resolution 

process, warnings when filter resets occur, etc. 

.amb The estimated double differenced ambiguities for each satellite pair. 

.ion The estimated double differenced ionospheric delays for each satellite 

pair. 
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.res The measurement residuals. 

.kmo The Kalman matrices computed at each epoch. 
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3.3 Summary 

 

Chapter Three has described the commercially available simulator that has been used in 

this thesis to generate simulated future GNSS measurements.  The theory used in 

generating the error sources has been explained and examples of the error sources under 

typical conditions have been given.  In addition, the software that has been developed for 

processing the future GNSS signals was explained.  This chapter has described the 

accomplishment of the fifth objective of the thesis and the software portrayed herein has 

been used to fulfil the remaining objectives of the thesis. 
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Chapter Four: The Effect of Future Signals on Ionospheric Delay Estimation 
 

One of the major obstacles in resolving ambiguities for longer baselines is the presence of 

unmodeled ionospheric delays.  With baselines that are longer than 10 kilometres, the 

ionospheric transmission delays become a major source of error that will prevent reliable 

ambiguity resolution, which ultimately results in poorer baseline precision. 

 

Traditionally, the ionosphere has been dealt with in one of three ways: it can be ignored, 

it can be eliminated using dual-frequency measurements, and it can be modeled as a state.   

 

When the ionospheric delay is ignored, the double difference carrier phase observation 

becomes 

 

LiLiLi N∆∇+∆∇=∆Φ∇ λρ  ( 4.1 ) 

 

where the notation of Chapter Two has been used and subscript Li refers to the carrier 

frequency.  Ignoring the ionospheric delay is a reasonable assumption for short baselines 

where the effect of the ionosphere is effectively eliminated through the process of double 

differencing.  In this case, even when the ionospheric activity is high, the impact of this 

unmodeled error can be compensated for by increasing the noise in the measurement 

covariance matrix.  However, the ionosphere can only be ignored to an extent.  For 
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baselines longer than a few kilometres, this source of error causes too much 

disturbance to be ignored.   

 

The second technique that is commonly used with longer baselines is to eliminate the 

ionosphere through ionosphere-free combinations of data.  It is known that the effect of 

the ionosphere is inversely proportional to the square of the carrier frequency (Hofmann-

Wellenhof et al. 2000) as shown in Equation ( 2.26 ).  Therefore there are linear 

combinations of data that can completely eliminate the ionospheric delay.  The 

observation equation for an ionosphere-free combination of dual-frequency GPS carrier 

phase data is given by (Collins, 1999): 
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Unfortunately, when ionosphere-free combinations of data are used, the measurement 

noise is greatly increased, which can degrade the baseline precision.  In addition, the 

wavelength of the resulting carrier beat signal is so short that resolving integer 

ambiguities becomes all but impossible for short observation time spans.  Ionosphere-free 

combinations are discussed in further detail in Chapter Six. 
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The third way to deal with the ionosphere is to model the ionospheric delay as an 

estimable state as shown in the mathematical models of Chapter Two.  This third 

technique is more versatile in the sense that it works well for both short and long 

baselines and it improves the ability to resolve integer ambiguities.  Ionospheric 

modeling in light of future GNSS signals is the topic of this chapter. 

 

Section 4.1 will explain the three available weighting schemes when using the ionosphere 

weighted model.  In order to emphasize the effects of the various weighting schemes, the 

type of measurements used is kept constant.  Simulated triple frequency GPS data is used 

to provide test results using the different weighting schemes.  After demonstrating the 

nuances of ionospheric weighting on the triple frequency GPS case, the discussion can be 

generalized to include other positioning scenarios.  Section 4.2 shows how future GNSS 

measurements will impact the ability to estimate the ionospheric delay states. 

 

4.1 Weighting of the Ionospheric Pseudo-Observation 

 

There are generally three choices of how to weight the ionospheric pseudo-observation: 

ionosphere-fixed, ionosphere-weighted and ionosphere float (Odijk, 2002).  These three 

categories are summarized in Table 4.1. 
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Table 4.1: Weighting Schemes for the Ionospheric Pseudo-Observable 

Variance of Ionospheric 

Pseudo-Observable  

Model Description 

02 =−observablepseudoσ   Ionosphere-Fixed 

∞<< −
20 observablepseudoσ  Ionosphere-Weighted 

 ∞→−
2

observablepseudoσ  Ionosphere-Float 

 

According to the ranges of the ionospheric pseudo-observation variances shown in Table 

4.1, the fixed and float ionosphere models are special cases of the more general 

ionosphere weighted model.  The ionosphere-fixed model constrains the ionospheric state 

to a constant value.  In many dual-frequency GPS applications, particularly short baseline 

applications, the ionospheric delay is not estimated as a state, but is neglected.  In these 

cases, the ionosphere-fixed model is used implicitly.  The advantages of the ionosphere-

fixed model are that it is simple to implement, the dimension of the state vector is 

reduced, and there is no risk of the ionospheric state diverging.  The disadvantage is that 

the model will not fit the observations for long baselines and/or high levels of ionospheric 

activity.  The ionosphere-float model performs well when long observational time spans 

are used, but without an external observation, the ionospheric state is highly correlated 

with the carrier phase ambiguities causing slow convergence or in some cases divergence 
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of the state vector.  The ionosphere-weighted model converges more quickly than 

the float model because it is initially constrained by the ionospheric pseudo-observation.  

After convergence, the ionospheric states are allowed to change with the changing level 

of ionospheric activity, which allows the model to fit the observations more accurately.  

However, the weighted model has the disadvantage of requiring a suitable variance for 

the pseudo-observable.  Alves (2002) found that choosing a suitable value for the 

variance of the pseudo-observation in the ionosphere-weighted model is crucial for 

reliable ambiguity resolution.   

 

For a more thorough explanation of the treatment of ionospheric delays in GPS 

processing, the reader is referred to Odijk (2002).  The remainder of this section 

demonstrates the difference between the float, fixed and weighted ionosphere models for 

a short and a long baseline using triple frequency GPS data. 

 

4.1.1 Ionospheric Weighting Schemes for Short Baselines 

 

One hour of triple frequency simulated GPS data from a one kilometre baseline was 

processed with a sampling interval of five seconds.  The same baseline was processed 

using the float, fixed and weighted ionosphere models.  For the weighted model, a zenith 

standard deviation of 0.7 metres was used for the ionospheric pseudo-observation, while 

the code observations (L2C and the L5 civil code) were given standard deviations of 0.1 
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metres.  Figure 4.1 shows the resulting carrier phase residual RMS when using the 

three ionosphere models.  For a short baseline, there is little difference in the resulting 

carrier phase residuals because the spatial correlation of the ionosphere at this baseline 

length is high.  Consequently, the effect of the ionosphere is mostly eliminated through 

the process of double differencing. 

 

 

Figure 4.1: Carrier Phase Residual RMS Using the Fixed (top), Float (middle), and 

Weighted (bottom) Ionosphere Models for a 1 km Baseline 

 

Figure 4.2 presents the root-mean-square estimation error for the ionospheric states.  The 

float ionosphere model has large estimation errors at the beginning of the data set because 
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there is no prior information about the ionospheric states.  Therefore, about 10 

minutes of data is required before the ionospheric states are able to converge to an 

accurate value of the true ionospheric delay.  A small spike is seen in the float model 

ionosphere estimation error at 13:47.  This is an epoch where a new satellite came into 

view.  Since the new satellite has no prior information about the ionospheric delay, the 

ionospheric estimation for that satellite will be poor until enough data has been 

accumulated to allow the state to converge. 

  

The fixed and weighted ionosphere models both produce very accurate estimates for the 

ionospheric states because both of these models rely on the ionospheric constraint to 

estimate the ionospheric state.  Since the ionospheric effect is spatially correlated, double 

differencing over a short baseline almost completely eliminates the ionospheric effect.  

As a result, the true value of the ionospheric delay state is close to zero.  Since the 

ionospheric constraint equation constrains the ionospheric delay states to zero, the models 

that rely on this constraint will produce better results than the float model which relies 

more heavily on the noisy pseudorange measurements to estimate the ionospheric delays. 
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Figure 4.2: Ionospheric Estimation Error RMS for the Fixed, Float, and Weighted 

Ionospheric Models for a 1 km Baseline 

 

Figure 4.3 shows the baseline errors when processing the short baseline with the three 

different ionosphere models.  Clearly, the float ionosphere model is least precise at the 

beginning of the data set.  Once again, this is because there is no prior information about 

the ionospheric states in the float model and a certain amount of data must be 

accumulated before they are able to converge.  After convergence, all three of the models 

have comparable precision for the short baseline.  The small spike seen in the ionospheric 

estimation RMS plot (Figure 4.2) is not seen in the position estimates (Figure 4.3) 

because the new satellite that became visible and caused the spike is sufficiently 
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deweighted in the parameter estimation procedure so that it does not negatively 

affect the state estimation. 

 

 

 

Figure 4.3: Baseline Error Using the Float (top), Fixed (middle), and Weighted 

(bottom) Ionosphere Models for a 1 km Baseline 

 

In summary, for a short baseline where the ionospheric delay is mostly eliminated 

through double differencing, the best weighting scheme to use is the ionosphere fixed 

model.  As the standard deviation of the ionospheric pseudo-observation increases, the 

ability to estimate the ionospheric delay worsens.  In the next section, a similar analysis is 

performed for a longer baseline. 
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4.1.2 Ionospheric Weighting Schemes for Long Baselines 

 

Using the same processing parameters as those used for the short baseline, a 30 kilometre 

baseline was processed.  Unlike the short baseline results, the fixed model does not 

provide the best ionospheric estimation.  Instead, the ionospheric estimation converges 

more accurately and quickly with an ionospheric pseudo-observation standard deviation 

that is greater than zero.  Of course, this situation begs the question of what value to 

assign to the ionospheric pseudo-observation standard deviation.  The smaller the value 

of the standard deviation, the more tightly the ionospheric states will be constrained to 

zero.  The larger the standard deviation, the less the ionospheric states will rely on the 

constraint. 

 

To demonstrate the effect of the standard deviation of the ionospheric pseudo-observable, 

the simulated 30 km baseline was processed using different values for the zenith standard 

deviation of the ionospheric pseudo-observation.  Figure 4.4 shows the ionospheric 

estimation error root-mean-square results for various values of the ionospheric pseudo-

observation standard deviation. 
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Figure 4.4: Ionospheric Estimation Error RMS Using Various Pseudo-Observation 

Standard Deviations for a 30 km Baseline (GPS3 Scenario) 

 

The preceding plot clearly shows how the choice of weighting parameter for the 

ionospheric constraint affects the ionospheric estimation.  The line with the largest 

standard deviation (darkest blue), which is very close to the float ionosphere model, 

achieves very poor ionospheric estimation at the beginning of the data set because it is 

relying solely on the noisy pseudorange measurements to observe the ionospheric delay.  

As more data is accumulated, the noisy code measurements are filtered and the satellite 
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geometry changes, which allows the ionospheric delays to decorrelate from the 

carrier phase ambiguities.  Consequently, after a period of convergence, the float model 

relies almost exclusively on the more precise carrier phase data to observe the 

ionospheric delays, which results in very good ionospheric estimation.  On the other end 

of the spectrum, the bright green line represents the ionosphere-fixed model.  In this 

model, the initial ionosphere estimates are better than the initial ionosphere estimates of 

the float model because the estimates are constrained to zero, which is closer to the true 

value than the estimate from the noisy code data.  However, as more data is accumulated, 

the ionospheric estimates are not allowed to converge according to the carrier phase data 

because of the constraint.  This results in the poorest ionospheric estimation at the end of 

the hour-long data set.  The lines that represent ionospheric standard deviations in 

between zero and 10 encapsulate the advantages of the fixed and float models to varying 

degrees.  

 

The distinctive step seen in Figure 4.4 at 13:42 is the result of switching the reference 

satellite from a lower to a higher elevation satellite.  The ionospheric delay in 

measurements from a satellite with a lower elevation angle is greater than the ionospheric 

delay in measurements from a satellite with a higher elevation angle.  Since the 

measurements from the reference satellite are used in each of the double differences, the 

true values of the double differenced ionospheric delays are all larger when the reference 

satellite has a low elevation angle.  As a result, constraining the ionospheric delays to 
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zero impairs the ionospheric delay estimation.  When the reference satellite is 

switched to a satellite with a higher elevation angle, all the double differenced 

ionospheric delays are reduced in magnitude and the ionospheric constraint is more 

appropriate.  This produces a marked improvement in the ionospheric delay estimation.  

 

There is also an anomaly at 13:47 that is particularly accentuated for the lines with larger 

ionospheric pseudo-observation standard deviations.  This event is the result of a new 

satellite coming into view.  For the cases with the larger standard deviations, the new 

satellite has more erratic initial estimates; whereas, with the fixed and tightly constrained 

weighted ionosphere model, the initial ionospheric estimation for the new satellite is 

better. 

 

Figure 4.5 shows the carrier phase measurement residual RMS for the 30 kilometre 

baseline.  For this plot, the standard deviation of the ionospheric pseudo-observation was 

chosen to be 0.7.  Unlike the short baseline, with a longer baseline, there is a significant 

difference in the measurement residual RMS when using the fixed ionosphere model 

versus the float and weighted models.  With the fixed ionosphere model, the 

measurement residuals grow with time because the ionospheric states are tightly 

constrained to zero.  As a result, the error in estimating the ionospheric states is 

propagated into the ambiguity estimation.  Initially, this does not negatively affect the 

measurement residuals because the error in ionosphere and ambiguity estimates 
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compensate for one another to produce reasonable measurement residuals.  

However, as the ionospheric states change with time, they decorrelate from the 

ambiguities, which are constant over time.  Therefore the errors in the ionosphere and 

ambiguity estimation cease to compensate for each other and the measurement residuals 

grow. 

 

 

Figure 4.5: Carrier Phase Residuals Using the Float (top), Fixed (middle), and 

Weighted (bottom) Ionosphere Models for a 30 km Baseline 

 

Figure 4.6 shows the position error using the fixed, float and weighted ionosphere 

models.  Again, the standard deviation of the ionospheric pseudo-observation was set to 
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0.7.  Neither the step at 13:41 from the reference satellite switch nor the step at 

13:47 from the newly visible satellite is seen in the position estimates.  This is because 

the stochastic component of the measurement model applies an appropriately reduced 

weight for lower elevation satellites so that the baseline estimates are not negatively 

affected by poorer quality measurements.  Once again, in the position error plots, similar 

trends to the ones already discussed are apparent; namely, the erratic behaviour of the 

float model at the beginning of the data set, the poor estimation of the fixed model at the 

end of the data set, and the compromise of the weighted model.  

  

 

Figure 4.6: Baseline Error Using the Float (top), Fixed (middle), and Weighted 

(bottom) Ionosphere Models for a 30 km Baseline 
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The effect of using the fixed, float, and weighted ionospheric weighting schemes 

have been illustrated for a short and long baseline using simulated triple frequency GPS 

data.  The next section will expand this analysis to investigate the impact that future 

GNSS measurements will have on the ability to estimate the ionosphere. 

 

4.2 The Impact of Future GNSS Measurements on Ionosphere Estimation 

 

Future GNSS signals will allow improved ionospheric estimation in three ways.  First, 

there will be three frequencies transmitted from each satellite.  This will cause the 

ionospheric delay to be more observable.  Second, the future code measurements will be 

more precise and resilient to multipath errors than the current C/A code and the 

reconstructed P2 code.  Third, when a combined GPS and Galileo system used, the 

number of satellites is increased which greatly improves the positioning geometry.  These 

three factors enable faster convergence of the ionospheric states. 

 

4.2.1 Ionosphere Estimation Results with Future GNSS Measurements 

 

Figure 4.7, Figure 4.8, and Figure 4.9 show the root-mean-square error of ionospheric 

delay estimation for the various processing scenarios using the fixed, float, and weighted 

ionosphere models.  For all the positioning scenarios, a simulated 30 kilometre baseline 

in Calgary was processed in kinematic mode with float ambiguities.  The observational 
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time span was one hour and the data sampling rate was five seconds.  For the 

weighted ionosphere model, a sampling of values for the ionospheric pseudo-observation 

standard deviation was used, but in all cases, the actual pseudo-observation was set to 

zero.     

 

 

Figure 4.7: Ionospheric Delay Estimation Error with Various Processing Scenarios 

Using the Fixed Ionosphere Model 

 

With the fixed ionosphere model, the error in ionospheric estimation is merely a function 

of the ionospheric error that has been applied to the simulated measurements.  Thus, the 

error in ionospheric estimation depends only on the visible satellites.  That is why the 
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GPS2 and GPS3 scenarios have exactly the same ionospheric estimation error and 

the GPS/GAL2 and GPS/GAL3 scenarios have exactly the same ionospheric estimation 

error.  Therefore, Figure 4.7 does not convey anything about the ability of the future 

signals to estimate the ionospheric delay; it simply shows how the ionospheric delay 

deviates from zero. 

 

 

Figure 4.8: Ionospheric Delay Estimation Error with Various Processing Scenarios 

Using the Float Ionosphere Model 

 

The float ionospheric estimation error shown in Figure 4.8 illustrates some important 

benefits of using future GNSS signals.  It can be seen that the convergence of the dual 

and triple frequency GPS only scenarios (GPS2 and GPS3) is slower than that of the 
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combined GPS and Galileo scenarios.  This is due to the improved geometry and the 

precise Galileo E5a code that is used in the GPS/GAL2 and GPS/GAL3 cases, but not in 

the GPS2 or GPS3 cases.  This code is more precise than any of the GPS pseudorange 

codes and enables faster convergence of the ionospheric states.  Another important 

observation from this plot is that after the 10 minute convergence period, the GPS2 

scenario still has some significant variability in the ionospheric estimation error.  The 

GPS2 scenario has the fewest carrier phase measurements and the least redundancy.  This 

causes the ionospheric estimation to be less precise than in the other positioning 

scenarios.  After complete convergence, all four of the scenarios appear to perform at the 

same level, indicating that the future signals will be of most benefit to those applications 

that demand fast convergence or fast ambiguity resolution. 
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Figure 4.9: Ionospheric Delay Estimation Error with Various Processing Scenarios 

Using the Weighted Ionosphere Model 
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The weighted ionosphere model shows a marked difference in the positioning scenarios 

that do and the positioning scenarios that do not use Galileo measurements.  This 

difference is most pronounced when the ionospheric pseudo-observation is more tightly 

constrained.  Clearly, the increased number of satellites and the precise Galileo E5a code 

will have a significant impact in the ability to estimate the ionospheric delay quickly.  As 

mentioned in the discussion in section 4.1.2, the steps at 13:41 are the result of a 

reference satellite switch and the small discontinuities seen at 13:47 are from an 

additional satellite becoming visible. 

 

4.2.2 Ambiguity Estimation Results with Future GNSS Measurements 

 

The primary reason for desiring precise estimates of the ionosphere is so that the float 

ambiguity values will also be precise.  Intuitively, the more precise the float ambiguities 

are, the more reliable the integer ambiguity estimation will be.  Reliable integer 

ambiguity estimation can provide precise estimates of the baseline components, which is 

ultimately the goal of any GNSS positioning application.  Ionospheric estimation and 

ambiguity estimation are highly correlated, especially when short observation time spans 

are used.  Figure 4.10, Figure 4.11, and Figure 4.12 show the root-mean-square error of 

the float ambiguity estimation for the same 30 km baseline as described above using the 

fixed, float and weighted ionosphere model. 



 

 

93

 

 

Figure 4.10: Ambiguity Estimation Error with Various Processing Scenarios Using 

the Fixed Ionosphere Model 

 



 

 

94

 

Figure 4.11: Ambiguity Estimation Error with Various Processing Scenarios Using 

the Float Ionosphere Model 
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Figure 4.12: Ambiguity Estimation Error with Various Processing Scenarios Using 

the Weighted Ionosphere Model 
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The same trends that were seen in the plots of the ionospheric estimation error 

(Figure 4.7, Figure 4.8, and Figure 4.9) can also be seen in the preceding three plots of 

ambiguity estimation error.  This is understandable because the ionosphere and ambiguity 

states are highly correlated.  The more precisely the ionospheric delays can be estimated, 

the more precisely the ambiguities can be estimated.  Once again, it is shown that the 

positioning scenarios that include Galileo satellites perform better than the scenarios 

using only GPS measurements. 

 

4.2.3 Position Domain Results with Future GNSS Measurements 

 

After showing how future GNSS measurements will affect the ionosphere and ambiguity 

state estimation, this section will illustrate how the future signals will impact the final 

baseline coordinate precision.  Figure 4.13, Figure 4.14, and Figure 4.15 show the 

baseline coordinate errors for each positioning scenario using the fixed, float and 

weighted ionosphere model with a 30 kilometre baseline. 
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Figure 4.13: Position Errors with Various Processing Scenarios Using the Fixed 

Ionosphere Model 
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Figure 4.14: Position Errors with Various Processing Scenarios Using the Float 

Ionosphere Model 
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Figure 4.15: Position Errors with Various Processing Scenarios Using the Weighted 

Ionosphere Model 
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The preceding three plots again show similar trends that have been seen in the 

ionosphere and ambiguity states estimation error plots.  For the fixed ionosphere model, 

all three positioning scenarios show significant biases resulting from the ionospheric 

errors.  In all cases, the bias converges slightly at the beginning of the data set while the 

float ambiguities are converging, but the bias remains even after an hour of processing.  

The GPS/GAL2 and GPS/GAL3 scenarios perform marginally better than the GPS only 

scenarios because the ambiguity states are more precise as seen in Figure 4.10.  Using the 

float ionosphere model, it can be seen that the scenarios using Galileo measurements 

converge much faster than the scenarios that do not employ the Galileo measurements.  

Again, this is due in large part to the more precise pseudorange code measurement and 

the increased number of visible satellites available when using Galileo satellites.  The 

distinction between the GPS only scenarios and the combined GPS/Galileo scenarios is 

also seen in the plot of the position error using the weighted ionosphere model.   

 

4.3 Summary 

 

The underlying theory in estimating ionospheric delays as stochastic states has been 

introduced and the fixed, float, and weighted models for weighting the ionospheric delays 

have been described.  Furthermore, tests were conducted to evaluate the impact of future 

signals on the ability to estimate ionospheric delays.  It was found that the long-term 

accuracy (after convergence) of the baseline coordinates is improved only marginally 
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when using future GNSS signals.  However, the speed with which this high accuracy 

can be achieved will be greatly improved.  The most significant improvements in using 

future GNSS signals are the more precise pseudorange code measurements and the 

increased number of satellites when GPS and Galileo are used together.  These 

improvements will enable faster ionospheric convergence when using the loosely 

weighted or float ionosphere models.  This advantage allows the ambiguity states to 

converge faster and will greatly improve the ability to resolve integer ambiguities quickly 

over longer baselines.   

 

It was also observed that there is very little difference between the GPS2 and GPS3 

scenarios and between the GPS/GAL2 and GPS/GAL3 scenarios.  This suggests that an 

additional third frequency will not greatly improve ionospheric estimation compared to 

dual-frequency systems when using the fixed, float or weighted ionosphere models.  It 

will be seen in later chapters that the third frequency provides other benefits like 

improved ambiguity validation and additional choices for linear combinations of data. 

 

This Chapter has scrutinized the impact of the future GNSS measurements on the ability 

to estimate ionospheric states.  As a result, the second minor objective of the thesis has 

been accomplished.  The ionospheric estimation techniques described in this chapter will 

be revisited again in the next chapter as it pertains to ambiguity resolution using future 
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GNSS signals.  In Chapter Six, an alternative technique for dealing with ionospheric 

delays using linear combinations of data will be presented. 
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Chapter Five:  The Effect of Future Signals on Ambiguity Resolution 
 

In order to exploit the best accuracy possible from carrier phase measurements, the 

ambiguity parameters must be constrained to the correct integer value.  This task has 

been widely discussed in the literature by numerous authors and has become standard 

practice in high-accuracy commercial GPS systems.  There are two tasks involved in 

ambiguity resolution: integer searching, and ambiguity validation.  Integer searching is 

the task of determining a set of integers that is most likely the correct one.  Ambiguity 

validation is the procedure of determining whether or not the candidate set of integer 

values is actually the correct one.  In principle, these two tasks are the same now as they 

will be when future GNSS signals become available.  However, with future GNSS 

signals, the size of the ambiguity set will be increased and the quality of future 

pseudorange code measurements will be improved when compared to current GPS.  

These two factors will have an impact on the performance of ambiguity resolution and 

the techniques that will be employed for future GPS and Galileo systems. 

 

While there is a common assumption that the future signals will improve the speed and 

reliability of ambiguity resolution, several researchers have noted that there are major 

difficulties when processing all three carrier phase measurements from both GPS and 

Galileo.  Alves (2001) found that it was actually more difficult to correctly fix an 

ambiguity set with a triple-frequency combined GPS/Galileo system than with the GPS or 
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Galileo systems alone.  This counterintuitive result is attributed to the large number 

of ambiguities to be estimated.  A related problem was observed by Julien et al. (2004) 

who noted that the commonly used test for validating ambiguity sets is weakened as the 

number of ambiguities increases.  In other words, it is more difficult to be sure about the 

correctness of a chosen ambiguity set when the dimension of the set increases.  Using the 

mathematical concept of ambiguity success rate, Verhagen et al. (2003) shows that the 

probability of fixing all the ambiguities correctly decreases as the number of ambiguities 

to be fixed increases.  This may or may not offset the improvement in ambiguity success 

rate that comes with the geometrical benefits of additional satellites.   

 

This chapter will first give a review of some of the work that has already been done in the 

field of ambiguity resolution and then provide simulated test results using simulated 

future GNSS measurements. 

 

5.1 Integer Ambiguity Search 

 

Integer searching is the process of determining the best possible set of integer ambiguity 

values.  The best set of ambiguities is generally defined as the set of integers that 

achieves the minimum sum of squared residuals.  Numerous techniques have been 

developed for integer searching with currently available GPS data, and there have also 

been some developed for use with future GNSS data.  The three most widespread 
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techniques for integer searching in the presence of future GNSS signals are the 

Cascade Integer Resolution (CIR) technique (Jung, 1999), the Triple Carrier Ambiguity 

Resolution (TCAR) technique (Vollath et al., 1998) and the Least-squares Ambiguity 

Decorrelation Adjustment (LAMBDA) technique (Teunissen, 1998).   

 

Martin-Neira et al. (2003) and Teunissen et al. (2002) have published comparison studies 

that have evaluated the CIR, TCAR and LAMBDA methods for ambiguity resolution of 

future GNSS systems.  These studies concluded that the LAMBDA method is superior to 

the other two and that in fact CIR and TCAR are special (usually suboptimal) cases of the 

more general LAMBDA technique.  For this reason, the LAMBDA method has been 

chosen for implementation in this thesis.  All three methods are discussed further in the 

next sections. 

 

5.1.1 CIR and TCAR  

 

CIR and TCAR are two techniques based on the same principles, but used for different 

systems; CIR was developed for triple frequency GPS ambiguity resolution and TCAR 

was developed for triple frequency Galileo ambiguity resolution.  They both employ the 

concept of resolving ambiguities with successively smaller wavelengths until the 

ambiguity of the base frequency can be determined.  First the extra widelane combination 

is solved using pseudorange data in a geometry-free model. 
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EWL
EWLEWL

PN
λ

φ −=�  
( 5.1 ) 

 

where EWLN�  is the estimated extra widelane ambiguity, EWLφ  is the extra widelane carrier 

phase measurement in cycles, P  is a pseudorange measurement in metres, and EWLλ  is 

the wavelength of the extra widelane carrier signal.  For GPS, the extra widelane 

combination is composed of the difference between the L2 and L5 carriers and has a 

wavelength of 5.86 metres; whereas, for Galileo, the extra widelane is composed of the 

difference between the E5a and E5b carriers and has a wavelength of 9.77 metres.  There 

are different variations with regard to which pseudorange to use in Equation ( 5.1 ), but in 

general, the most precise pseudorange or blend of pseudoranges is chosen. 

 

Presuming that the extra widelane ambiguity has been resolved with sufficient 

confidence, it is rounded to the nearest integer and used to resolve the next largest 

wavelength: the widelane (Jung, 1999). 

 

( )EWLEWL
WL

EWL
WLWL NN

(
−−= φ

λ
λφ�  

( 5.2 ) 
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where WL stands for widelane and EWLN
(

 is the resolved integer valued ambiguity for 

the extra widelane observable.  For GPS, the widelane measurement is the difference of 

the L1 and L2 carrier phase measurements and has a wavelength of 0.86 metres; for 

Galileo, the widelane measurement is the difference between the E1 and E5b carrier 

phase measurements and has a wavelength of 0.81 metres.  If the widelane ambiguity can 

be estimated with sufficient confidence, it can be rounded to the nearest integer and used 

to determine the next largest wavelength.  This procedure is continued until the base 

frequency ambiguity is resolved.  If one of the ambiguities cannot be resolved with 

sufficient confidence, more data is collected and averaged in order to improve the 

likelihood of finding the correct ambiguity.  Table 5.1 summarizes the CIR and TCAR 

integer searching steps where the subscript, ML, stands for medium lane. 

 

Table 5.1: CIR and TCAR Integer Searching Steps 

 System Carrier phase 
combination 

Wavelength 
(metres) 

GPS 52 LLEWL φφφ −=  86.5=EWLλ  
EWL

EWLEWL
PN

λ
φ −=�  

Galileo aEbEEWL 55 φφφ −=  77.9=EWLλ  

GPS 21 LLWL φφφ −=  86.0=WLλ  ( )EWLEWL
WL

EWL
WLWL NN

(
−−= φ

λ
λφ�

Galileo bEEWL 51 φφφ −=  81.0=WLλ  

( )WLWL
ML

WL
MLML NN

(
−−= φ

λ
λφ�  

GPS 51 LLML φφφ −=  75.0=MLλ  
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 Galileo aEEML 51 φφφ −=  75.0=MLλ  

GPS 1Li φφ =  19.0=iλ  ( )MLML
i

ML
ii NN

(
−−= φ

λ
λφ�  

Galileo 1Ei φφ =  19.0=iλ  

 

There can be many variations on this basic method with respect to which carrier phase 

measurements are used, what decision criterion is used before moving on to the next step 

and which type(s) of pseudoranges to use in the initial step.  For more information on 

these methods, the reader is referred to Jung (1999), and Vollath et al. (1998) for original 

sources and to Jung et al. (2000), Liu et al. (2002), and Hatch et al. (2000) for variations 

and test results. 

 

5.1.2 LAMBDA 

 

The Least Squares AMBiguity Decorrelation Adjustment technique was originally 

developed by P. J. G. Teunissen (Delft University of Technology) for currently available 

single or dual-frequency GPS ambiguity resolution, but it has a flexible design that 

allows it to be used with future GNSS signals on numerous frequencies (Teunissen, 

1998).  This section will give a brief outline of the LAMBDA technique.   

 

The basic premise of the LAMBDA technique is that the original set of ambiguities is 

transformed into a different set of ambiguities that are less correlated and more precise 
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than the original ambiguities.  These transformed ambiguities are then fixed to 

integer values and the constraint is used to improve the precision of the other unknown 

parameters like the baseline components and ionospheric delay parameters. 

 

The ambiguity vector and its associated covariance matrix are transformed with the 

decorrelating Z  matrix through the following equations. 

 

aZz �� =                   Raz ∈�,�  ( 5.3 ) 

and 

ZQZQ a
T

z �� =  ( 5.4 ) 

 

where z�  is the vector of transformed ambiguities, a�  is the vector of original ambiguities 

and *Q  are the associated variance covariance matrices. 

 

The integer constraint is then applied through the following constraint equations: 

( )zzQQxx zzx
(( −−= �� ���  ( 5.5 ) 

and 

xzzzxxx QQQQQ ��
1

����
−−=(  ( 5.6 ) 

 

where z(  is the vector of transformed integer constrained ambiguities and x(  is the state 

vector conditioned on integer constrained ambiguities. 
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The transformation matrix, Z, is chosen as a matrix that will decorrelate the ambiguities.  

Ideally, one would like the ambiguities to be completely decorrelated, resulting in a 

diagonal covariance matrix.  In this case, the real-valued ambiguities could simply be 

rounded to the nearest integer to obtain the most likely set of integer ambiguities.  A 

perfect decorrelation transformation would be straightforward using well established 

eigen-value (or similar) decomposition techniques.  However, when dealing with integer 

ambiguity estimation, there are restrictions on the set of possible decorrelating 

transformation matrices.  The elements of the transformation matrix must be integer 

valued in order to retain the integer nature of the ambiguity states.  In addition, the 

inverse of the matrix must also be composed of integer values to ensure that the 

constraint in the transformed domain corresponds to an integer constraint in the 

untransformed domain.  In general, a perfect transformation matrix will contain non-

integer values; consequently, a full decorrelation of the ambiguities is not possible.  Even 

so, a partial decorrelation is still possible which drastically reduces the integer search 

space. 

 

After decorrelating the ambiguities, the most likely set of integer values are obtained 

through an integer bootstrapping procedure.  Integer bootstrapping is a sequential search 

technique that minimizes the number of potential integer ambiguity sets using the 

covariance information of the ambiguities.  In the integer bootstrapping algorithm, each 
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ambiguity is given a search width based on its predicted variance.  The first 

ambiguity in the vector of ambiguities is fixed to an integer value that is within the search 

width for that ambiguity.  The fixing of this first ambiguity affects the float estimates and 

covariance information of all the remaining ambiguities.  Consequently, the new 

covariance information can be computed assuming that the first ambiguity was fixed to 

the correct value.  All the remaining ambiguities will have a slightly smaller search width 

on account of the first fixed ambiguity.  Next, the second ambiguity is fixed to an integer 

value within its search width and the float estimates and covariance information of the 

remaining ambiguities are again recomputed.  This procedure continues until one of two 

outcomes is reached:  

 

1. There are no integers within the search width for the next ambiguity.  In this 

case, an ambiguity must have been fixed to an incorrect integer in a prior step 

so the search will start over again or more data will have to be collected. 

2. One or more complete set of integers is found. 

 

More information on integer bootstrapping can be obtained in Teunissen (2001). 

 

Upon completion of the integer bootstrapping procedure, there will be several potential 

integer ambiguity sets that will be subjected to a variety of validation tests before being 

chosen as the correct one.  There is no specific validation procedure associated with the 
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LAMBDA technique, but various discrimination tests will be discussed in Section 

5.2.  For further details about LAMBDA including implementation issues, the reader is 

referred to Teunissen (1998), De Jonge et al. (1998), Teunissen et al. (1997), and Joosten 

et al. (2000). 

 

5.2 Ambiguity Validation 

 

The second task in integer ambiguity resolution is validation.  Once a potential ambiguity 

set has been selected, this ambiguity set must be either accepted as the correct one, or 

rejected.  In order to accept an ambiguity set with a reasonable degree of confidence, two 

criteria must be satisfied.  First of all, a potential ambiguity set must fit the model and 

observations; and secondly, it must be shown that the best ambiguity set is significantly 

better than all other potential ambiguity sets.  These two tasks are accomplished through 

an acceptance test and a discrimination test respectively. 
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5.2.1 Acceptance Test 

 

To ensure that the best ambiguity set fits the model and observations with a sufficient 

degree of significance, a statistical acceptance test is performed.  The hypothesis to be 

tested is 

 

( ) iKaEH =�:0  and ( ) iKaEH ≠�:1  ( 5.7 ) 

 

where ( )⋅E  is the mathematical expectation operator, a�  is the vector of estimated real-

valued ambiguities and iK  is the ith potential set of integer ambiguities. 

 

Assuming that the real valued ambiguities have a Gaussian distribution, the following test 

statistic can be used.  

 

0Ω
⋅−−= i

i
R

m
tmnT  

( 5.8 ) 

where 

n  is the number of observations; 

m  is the number of ambiguities; 

t  is the number of other parameters (position states, ionosphere states, 
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etc.); 

0Ω  is the weighted sum of squared residuals from the float ambiguities; 

and iR  is given by, 

 

( ) ( )ia
T

ii KaQKaR −−= − �� 1
�  ( 5.9 ) 

 

where aQ �  is the cofactor matrix of the float ambiguities. 

 

The test statistic given by Equation ( 5.8 ) is compared to the Fisher distribution with the 

following inequality: 

 

( )tmnmFT −−> ,α  ( 5.10 ) 

 

Therefore, if the ambiguity set, i, satisfies the above inequality, that set of integer 

ambiguity values ( iK ) should be rejected because it does not fit the model or the 

observations with the significance level, α .  This test is described in more detail in most 

statistics text books (e.g. Walpole et al., 1998) and is applied to the GPS ambiguity 

resolution application in Wang et al. (1998). 
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5.2.2 Discrimination Test 

 

After determining that the best potential ambiguity set fits the observations, it must be 

compared to the other potential ambiguity sets.  A comparison is necessary because it is 

likely and even probable that two (or more) distinct ambiguity sets may fit the model and 

the observations with a high degree of confidence. 

 

The standard practice is to compare the best ambiguity set to the second best ambiguity 

set.  If the best ambiguity set is significantly �better� than the second best ambiguity set, 

it follows that the best set is significantly �better� than all other potential ambiguity sets 

and the best set can be accepted as the correct one.  There are many different definitions 

and techniques for discriminating between correct and incorrect ambiguity sets.  

Verhagen (2004) gives a summary of many of the available ambiguity validation 

techniques and concludes that none of the proposed methods can be singled out as 

significantly better than the others.  The reason is that none of the ambiguity validation 

procedures are based on correct statistical theory and different techniques are better 

suited to different applications. 

 

The most common procedure for making a comparison between the two ambiguity sets is 

by considering a ratio test.  Landau et al. (1992) proposed to compare the ratio of the 

weighted sum of squared residuals of the best ambiguity set to the weighted sum of 

squared residuals of the second best ambiguity set.  If the ratio is above a certain 
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threshold, the best ambiguity set is accepted as the correct one.  While there is no 

statistically quantifiable confidence associated with this test, it has been shown to 

perform well (Landau et al. 1992, Richert et al. 2004) and has gathered much widespread 

use in both commercial and academic applications.  Symbolically, the ratio test is 

described by 

 

k>
Ω
Ω

1

2  
( 5.11 ) 

 

where k  is an empirically chosen constant, and iΩ  are the weighted sum of squared 

residual values of the best ( 1=i ) and second best ( 2=i ) ambiguity sets. 

 

Equation ( 5.11 ) has often been mistaken to follow a Fisher distribution, which is 

commonly used to test between the variances of two independent random variables.  In 

the case of this application, the Fisher distribution cannot be used because the best and 

second best solutions are not independent.  The choice of an optimal value for the 

threshold, k , depends on the degrees of freedom of the problem and the confidence level 

desired.  A value of 2.0 has been suggested by Landau et al. and has been shown to work 

well in a variety of applications. 
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The test described by Equation ( 5.11 ) compares the two fixed solutions with one 

another.  There is a more powerful test that can be used if there is already sufficient 

confidence in the float solution.  This test is another ratio test but it is described as: 

 

( ) ( )
( ) ( )
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 ( 5.12 ) 

  

Once again, there is a problem in choosing an appropriate value for the constant, k, 

because, like the aforementioned ratio test, this test is not based on sound statistical 

theories.  The advantage of using the test described by Equation ( 5.12 ) over the test 

described by Equation ( 5.11 ) is that the variance in the float solution is removed so that 

the comparison is based on the distance between the float and the fixed solutions.  This 

test has been found to perform better when estimating the ionospheric delays as states 

because the impact of the ionospheric states is removed, which causes the differences in 

the ambiguity sets to be emphasized.  In other words, with Equation ( 5.12 ), it is 

assumed that the float ionosphere estimates are acceptable and the test focuses only on 

the ambiguity states; whereas, with Equation ( 5.11 ), the test attempts to test the 

ambiguities and the ionosphere states together, which often prevents the ratio from 

deviating sufficiently from 1.0.  Therefore, Equation ( 5.12 ) has been chosen for 

implementation in this thesis. 
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5.3 Test Results Using Future GNSS Measurements 

 

The following section provides some experimental ambiguity resolution test results using 

simulated future GNSS measurements.  First, the ability to find the correct ambiguity set 

will be demonstrated.  Clearly, the ability to find the correct ambiguity set will depend on 

numerous factors including the length of the baseline, the time of day, the positioning 

scenario used (i.e. GPS2, GPS3, GPS/GAL2, or GPS/GAL3), and the choice of 

ionospheric model.  These factors will be discussed and tested in Section 5.3.1. 

 

After quantifying the ability to find the correct ambiguity set, Section 5.3.2 will examine 

the degree to which the correct ambiguity set can be validated.  The ratio values resulting 

from instantaneous ambiguity resolution tests will be shown for both short and long 

baselines using fixed and weighted ionosphere models for the four positioning scenarios.  

In addition, the impact of baseline length on ambiguity validation will be illustrated for 

each of the four positioning scenarios. 

 

Finally, since the speed with which integer ambiguities can be resolved is of utmost 

importance in many precise kinematic applications, this performance measure will be 

compared for the four positioning scenarios.  Results that describe the improvement in 

the time to fix ambiguities are shown in Section 5.3.3. 
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5.3.1 Integer Ambiguity Search Results with Future GNSS Signals 

 

In order to evaluate the ability of each positioning scenario to find the correct set of 

integer ambiguities, instantaneous ambiguity resolution was attempted every 200 seconds 

between 7:00 and 22:00 local time in Calgary, Canada.  In the context of this study, 

instantaneous ambiguity resolution is defined as ambiguity resolution after only two 

epochs of 1 Hertz data.  Before each attempt at ambiguity resolution, the filter was 

completely reset so that no a priori information was used.  Referring back to Figure 3.3 it 

can be seen that the time period for which this test was conducted is during the peak of 

the diurnal ionosphere cycle.  Further discussion on the effect of the diurnal cycle of the 

ionosphere will be presented in Section 5.3.2.  The baseline length was varied from 10 to 

80 kilometres and was processed using all four of the positioning scenarios described in 

Table 1.1.  The weighted ionosphere model was used to estimate the ionospheric delay 

states and the standard deviation of the ionospheric pseudo-observation was varied from 

0.3 to 2.5 metres.  As in all the tests in this thesis, the roving receiver was assumed 

kinematic and a medium level of ionospheric activity was applied to the simulated 

observations.  Since simulated data was used, the correct integer values of the 

ambiguities are known and the percentage of trials that found this correct ambiguity set 

are plotted below in Figure 5.1. 
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Figure 5.1: Percentage of Correct Ambiguity Sets Versus Ionospheric Pseudo-

Observation Standard Deviation 

 

The first deduction from Figure 5.1 is that the scenarios that include Galileo 

measurements find the correct ambiguity set more often than the GPS only scenarios 
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regardless of the value of the ionospheric pseudo-observation or the baseline length.  

This result corresponds to the findings of Chapter Four where it was found that the 

scenarios using combined GPS and Galileo signals provided more precise estimates of 

the ionospheric delays due to the higher precision of the Galileo E5a code measurement 

and the improved satellite geometry. 

 

A second observation from Figure 5.1 is that the GPS2 and GPS3 scenarios appear to 

exhibit a distinct maximum in percent of correct ambiguity sets.  The maximum is most 

pronounced for baseline lengths of 10, 20, and 30 kilometres where the maximum values 

occur at ionospheric pseudo-observation standard deviations of 0, 0.5, and 0.9 for GPS2 

and 0, 0.7, and 0.9 for GPS3.  A similar phenomenon was found using real dual-

frequency GPS data in a study done by Alves et al. (2002).  Interestingly, a distinct 

maximum value is not seen in the cases of GPS/GAL2 or GPS/GAL3.  In these 

positioning scenarios, the percentage of correct ambiguity sets remains fairly constant for 

a wide range of ionospheric constraint standard deviations.  This can be explained by 

discussing three categories of baseline lengths: short, long, and medium. 

 

For short baselines (10 kilometres or less), the fixed ionosphere model performs best for 

all four positioning scenarios.  This is expected because the ionospheric delays are tightly 

constrained to zero, which is very close to the true value.  For long baselines (80 

kilometres or more), the float ionosphere model performs best for all four positioning 
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scenarios.  This is also expected because the true ionospheric values deviate from 

zero so much that the code measurements are able to provide a better estimate of the 

ionospheric delays than the zero value constraint.  However, for the medium baselines 

(20 to 50 kilometres), the positioning scenarios that use Galileo measurements behave 

differently from the positioning scenarios that use only GPS measurements.  The 

maximum in the plots for the GPS2 and GPS3 scenarios demonstrate the advantage of 

using the weighted model.  Using an appropriately weighted ionospheric constraint gives 

a higher percentage of correct ambiguity sets than either the fixed or float models.  This 

has been documented in previous studies on the benefits of using the ionosphere 

weighted model (Julien et. al., 2004; Odijk 2001).  However, for the GPS/GAL2 and 

GPS/GAL3 scenarios with medium baselines, a clearly defined optimal standard 

deviation does not exist. 

  

The reason for this is that in the GPS/GAL2 and GPS/GAL3 scenarios, the ionospheric 

delay states are estimated very well by the code observations.  In fact, the ionospheric 

delay states are estimated so well, that the error in the ionospheric estimation is no longer 

the factor that limits the ability to find the correct ambiguity set.  Consequently, any 

improvement in the ability to find the correct ambiguity set resulting from the 

ionospheric constraint is almost imperceptible.  For the 80 kilometre baseline, when the 

percentage of correct ambiguity sets decreases, the cause is not the error in estimating the 

ionosphere, but rather, the other unmodeled error sources (i.e. residual tropospheric 
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effects).  Therefore, the choice of ionospheric pseudo-observation standard deviation 

is inconsequential as long it does not constrain the ionospheric delays to an incorrect 

value too tightly. 

 

With the GPS2 and GPS3 scenarios, the ionospheric delay states are not estimated as well 

by the code observations so the impact of the ionosphere constraints is far more 

noticeable and the choice of standard deviation for the constraint is more crucial for 

successful integer ambiguity searching. 

 

The preceding test examined the ability to find the correct integer ambiguity set.  

However, the major issue in real GNSS positioning systems is not only whether or not the 

correct ambiguity set can be found, but also, whether or not a potential ambiguity set can 

be successfully validated as correct or incorrect.  The next section examines ambiguity 

validation using future GNSS signals.  

 

5.3.2 Ambiguity Validation Results Using Future GNSS Signals 

 

Two of the most dominant factors affecting the ability to successfully validate integer 

ambiguity sets are the time of day, which is related to the level of ionospheric activity, 

and the baseline length, which is related to the decorrelation of spatially correlated error 
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sources.  The impact of these two factors on instantaneous ambiguity validation 

using future GNSS signals is investigated in the following two sections. 

 

5.3.2.1 Test Results for Varying Times of Day 
 

In order to portray the impact that future GNSS signals will have on the ability to 

successfully validate integer ambiguity sets, instantaneous ambiguity resolution was 

performed every 10 minutes on a 5 kilometre baseline in Calgary, Canada using the four 

processing scenarios outlined in Table 1.1.  The ionosphere fixed model was used 

because it has already been established that this is the optimal ionospheric model for 

short baselines.  This test was used to demonstrate instantaneous ambiguity validation 

over the course of an entire day. 

 

In Figure 5.2, the ratio test value is plotted - that is, the ratio of the distance between the 

float and the second best set of fixed ambiguities to the distance between the float and the 

best set of fixed ambiguities (Equation ( 5.12 )).  Since a discrimination threshold of 2.0 

is typically chosen, any data points below 2.0 (shown in blue) would be rejected. 
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Figure 5.2: Ratio Test Values for a Five km Baseline 

 

There is very little difference between the four scenarios for a short baseline.  For all four 

scenarios, ambiguity resolution was successful at every epoch.  Consequently, there are 

no cases where an incorrect solution was accepted.  However, there were two cases in the 

GPS2 and GPS3 scenarios where a correct solution would have been rejected due to a 

ratio test value below the threshold of 2.0.  In the GPS/GAL2 and GPS/GAL3 scenarios, 

none of the correct ambiguity sets were rejected, resulting in 100% successful ambiguity 

validation.  The effect of the varying ionospheric delay over the course of the day can be 

clearly seen.  Those time periods with low ionospheric activity (22:00 until 7:00 local 

time) have a higher ratio value, which indicates more confidence in the fixed ambiguity 
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solution.  Since ambiguity resolution is already quite reliable for short baselines with 

the currently available GPS signals, the inclusion of future measurements does not 

significantly improve the situation. 

 

The same instantaneous ambiguity resolution test was conducted again, but this time, the 

baseline length was 30 kilometres.  Figure 5.3 shows the ratio test results for the four 

positioning scenarios when using the ionosphere fixed model.  In the following plots, the 

red points indicate epochs where the best ambiguity set was incorrect and the green 

points represent those cases where the best ambiguity set was indeed the correct one.   
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Figure 5.3: Ratio Test Values for a 30 km Baseline Using the Ionosphere Fixed 

Model 

 

When using the ionosphere fixed model, the ionospheric interference clearly affects all 

four scenarios.  For each positioning scenario, instantaneous ambiguity resolution was 

impossible between 7:00 and 22:00 local time, which is when the ionosphere was most 

active.  The correct ambiguity sets occurring during periods of low ionospheric activity 

have a higher ratio value for the scenarios using Galileo measurements, which means that 

the confidence in the correct solution is higher.  In addition, there are fewer incorrect 

ambiguity sets that have ratio values above the 2.0 threshold.  This implies that 
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instantaneous ambiguity resolution with the fixed ionosphere model using combined 

GPS and Galileo measurements will be more reliable than using either dual or triple 

frequency GPS measurements alone.  With reference back to Chapter Four, the reasons 

for this improvement are the improved geometry and the higher precision E5a 

pseudorange measurements that allow more precise initial estimation of the ionosphere 

and ambiguity states. 

 

The same 30 kilometre baseline was again processed, but using the ionosphere weighted 

model instead of the ionosphere fixed model.  For the standard deviations of the 

ionospheric pseudo-observation in the ionosphere weighted model, the optimal values 

according to Figure 5.1 were used.  It should be noted, that the optimal values from 

Figure 5.1 were derived using only data from 7:00 till 22:00 local time.  This is the period 

of peak ionospheric activity in the day and the optimal values of the ionospheric 

constraints can only be assumed relevant for the same time period. 
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Figure 5.4: Ratio Test Values for a 30 km Baseline Using the Ionosphere Weighted 

Model 

When using the ionosphere weighted model with ionospheric pseudo-observation 

standard deviations that are optimized for peak ionosphere times, the ambiguity 

resolution performance in times of peak ionospheric activity (7:00 till 22:00 local time) is 

greatly improved when compared to the ionosphere fixed model.  The numerical 

ambiguity validation results for periods of peak ionospheric activity are shown in Table 

5.2.  In the table, the percentage of ambiguity resolution attempts from 7:00 till 22:00 that 

produced the desired result and the undesired result are shown.  The desired result is a 

correct ambiguity set with a ratio value above 2.0; the undesired result is an incorrect 
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ambiguity set with a ratio value above 2.0.  The improvement in using the weighted 

ionosphere model is most pronounced in the GPS/GAL2 and GPS/GAL3 scenarios where 

the number of correct ambiguity sets that would be accepted is greatly increased, while 

the number of incorrect ambiguity sets that would be accepted remains zero. 

 

Table 5.2: Ambiguity Validation Results during Periods of Peak Ionospheric 

Activity 

% of Correct Ambiguity 
Sets 

Accepted 

% of Incorrect 
Ambiguity Sets 

Accepted 

 

Fixed 
Ionosphere

Weighted 
Ionosphere

Fixed 
Ionosphere

Weighted 
Ionosphere 

GPS2 3 2 9 0 

GPS3 3 1 10 0 

GPS/GAL2 2 24 0 0 

GPS/GAL3 0 39 0 0 

 

Unfortunately, since the standard deviations of the ionosphere constraints are optimized 

for the peak ionosphere times, the ambiguity validation performance deteriorates for 

periods of low ionospheric activity when using the ionosphere weighted model with the 

same weights on the constraints.  Table 5.3 shows the numerical ambiguity validation 

results for periods of low ionospheric activity.   
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  Table 5.3: Ambiguity Validation Results during Periods of Low Ionospheric 

Activity 

% of Correct Ambiguity 
Sets 

Accepted 

% of Incorrect 
Ambiguity Sets 

Accepted 

 

Fixed 
Ionosphere

Weighted 
Ionosphere

Fixed 
Ionosphere

Weighted 
Ionosphere 

GPS2 88 2 0 0 

GPS3 87 6 0 0 

GPS/GAL2 78 35 0 0 

GPS/GAL3 81 52 0 0 

 

The important conclusion from the above analysis is that when using the fixed ionosphere 

model, all the positioning scenarios perform similarly with the GPS/GAL2 and 

GPS/GAL3 scenarios giving marginally better ambiguity validation results.  However, 

with the ionosphere weighted model, the scenarios with Galileo measurements perform 

notably better.  Once again, this is due in large part to the more precise Galileo E5a code 

measurements and the improved geometry with the combined GPS and Galileo 

constellation.  These advantages provide more accurate estimates of the ionospheric 

states almost instantaneously which enable more reliable ambiguity resolution.  Only in 

the weighted (or float) ionosphere model are these precise ionosphere estimates fully 

exploited. 
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5.3.2.2 Test Results for Varying Baseline Length 
 

In the previous section it was established that the time of day (or the level of ionospheric 

activity) drastically affects the ability to successfully validate ambiguity sets for all four 

positioning scenarios.  The preceding analysis examined a 5 kilometre and a 30 kilometre 

baseline.  This section examines the performance of ambiguity validation for the four 

different positioning scenarios as the baseline length is varied from short (5 km) to long 

(80 km) baselines. 

 

A test was conducted in which instantaneous ambiguity resolution was performed every 

200 seconds during the periods of the day that experienced peak ionospheric activity 

(7:00 till 22:00).  For this test, the ionosphere weighted model was used to estimate the 

ionospheric states and the optimal ionospheric pseudo-observation standard deviations 

from Figure 5.1 were used.  Figure 5.5 shows the percentage of trials that found the 

correct ambiguity set (dark blue bars), the percentage of trials that found the correct 

ambiguity set and generated a ratio value above the threshold of 2.0 (light green bars), 

and the percentage of trials that did not find the correct ambiguity set, but still had a ratio 

value above the threshold of 2.0 (burgundy bars).   
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Figure 5.5: Instantaneous Ambiguity Validation as a Function of Baseline Length 

 

The preceding figure shows an important feature of using triple frequency data versus 

dual frequency data.  When looking at 10 kilometre baseline in the GPS2 and GPS3 

scenarios, it can be seen that the percentage of correct ambiguity sets that were found is 

slightly more for the triple frequency case than for the dual frequency case.  For the 

GPS3 scenario, 100% of the ambiguity sets were correct; whereas, for the GPS2 scenario, 

95% of the ambiguity sets were correct.  However, the percentage of correct ambiguity 

sets that were successfully validated in the triple frequency case is substantially more 

than in the dual frequency case.  Only 17% of the correct ambiguity sets in the GPS2 

scenario were successfully validated; whereas, 58% of the correct ambiguity sets in the 
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GPS3 scenario were successfully validated.  The same phenomenon is witnessed 

when looking at the GPS/GAL2 and GPS/GAL3 scenarios.  The triple frequency case 

provides more successful ambiguity validation despite having similar integer ambiguity 

search performance.  The reason for this improvement in ambiguity validation is because 

the triple frequency scenarios have a higher redundancy than the dual-frequency cases.  

As a result, the correct ambiguity set stands out more clearly as the vector with the 

smallest distance between the float and fixed ambiguities. 

 

5.3.3 The Impact of Future GNSS Measurements on the Speed of Ambiguity 
Resolution 

 

In many applications, particularly real-time kinematic applications, the speed with which 

the integer ambiguity vector can be resolved is of utmost importance.  A common 

performance measure for the speed of fixing ambiguities is the mean time to first fix or 

MTTF, which is the amount of time required before the correct ambiguity set is found 

and validated.  In this section, the mean time to first fix will be tested for the four 

positioning scenarios.   

 

When investigating the mean time to first fix performance, the treatment of the 

ionospheric delays cannot be ignored because it has a large impact on the results.  

Referring back to Figure 4.12, it is clear that the standard deviation of the ionospheric 

pseudo-observation has a significant affect on the speed with which the ambiguities 
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converge.  The speed of convergence of the ambiguities, in turn, has a direct impact 

on the mean time to first fix. 

 

For the tests in this section, the filter was reset and ambiguity resolution was attempted 

every 200 seconds from 7:00 until 22:00 local time, which is the time of peak ionosphere 

activity.  More data was accumulated until either an integer ambiguity set was found and 

validated, or more than 200 seconds had elapsed.  The length of time required to obtain 

an ambiguity fix was then recorded.  While it might be useful to vary the validation 

threshold, in the following tests, the threshold was kept at 2.0 to enable a meaningful 

comparison of the positioning scenarios and baseline lengths.  The first test shows the 

time to first fix for a 10 kilometre baseline using the ionosphere weighted model.  The 

standard deviations used for the ionospheric pseudo-observation are the optimal values 

determined from Figure 5.1.  In the following figures, the green dots represent trials 

where the ambiguity set was fixed correctly, the blue dots represent trials that were 

unable fix to integer ambiguities within the 200 second trial period, and the red dots 

represent trials that fixed to an incorrect set of integer ambiguities. 
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Figure 5.6: Time to First Fix for a 10 km Baseline Using the Ionosphere Weighted 

Model 

The numerical results pertaining to Figure 5.6 are shown below in Table 5.4.  The trials 

that were unable to fix the ambiguities to integer values were omitted from the 

calculation of the mean time to fix. 
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Table 5.4: Mean Time To First Fix Results for a 10 km Baseline Using the 

Ionosphere Weighted Model 

 Mean Time To Fix 
(s) 

Percentage of Failed 
Trials (%) 

Percentage of 
Incorrectly Fixed 

Trials (%) 
GPS2 7.7 3 0 

GPS3 3.5 2 0 

GPS/GAL2 3.8 0 0 

GPS/GAL3 3.0 0 0 

 

It is interesting to note that for the GPS2 scenario, there were no trials that fixed to 

integer ambiguities between 80 and 200 seconds and only 4 trials that fixed to integers 

after 30 seconds, but still, there were several trials that did not fix to integers at all.  This 

implies that the filter either fixed to ambiguities very quickly, or not at all.  This is 

understandable when one considers that the weights on the ionospheric constraints were 

optimized for instantaneous ambiguity resolution.  In other words, the optimal values 

maximize the ability to find the correct ambiguity set instantaneously.  As was noted in 

Chapter Four, a tightly constrained ionospheric model produces superior initial estimates 

of the ionospheric delays, but the tradeoff with a tight constraint is that the ionospheric 

estimate does not improve as much as time progresses.  Of course, since the ionosphere 

and ambiguity states are highly correlated, the same behaviour is experienced by the 
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ambiguity states.  This is why using an ionosphere weighted model that was 

optimized for instantaneous ambiguity resolution allows the ambiguities to be fixed either 

very quickly or not at all.   

 

The fact that all the tests in this thesis assume a kinematic roving receiver also 

contributes to the issue of fixing ambiguities quickly or not at all.  In a static surveying 

applications, the baseline states themselves are held fixed, which provides more 

information to the converging ambiguity states.  This in turn improves the speed with 

which the ambiguities converge.  However, in kinematic applications, the baseline states 

at each epoch are assumed to be largely unknown, which decreases the redundancy of the 

filter and slows the convergence of the ambiguity states. 

 

With the above discussion in mind, it would be helpful to conduct the same test but using 

the ionosphere float model instead of the ionosphere weighted model.  In this case, the 

accumulation of time will play a larger role in the ability to fix to integer ambiguities.  

Figure 5.7 and Table 5.5 show the time to first fix results for a 10 kilometre baseline 

using the ionosphere float model. 
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Figure 5.7: Time to First Fix for a 10 km Baseline Using the Ionosphere Float Model 

Table 5.5: Mean Time To First Fix Results for a 10 km Baseline Using the 

Ionosphere Float Model 

 Mean Time To Fix 
(s) 

Percentage of Failed 
Trials (%) 

Percentage of 
Incorrectly Fixed 

Trials (%) 
GPS2 63.7 2 1 

GPS3 16.0 0 0 

GPS/GAL2 4.4 0 0 

GPS/GAL3 3.6 0 0 
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When using the ionosphere float model, the advantage of including Galileo 

measurements becomes more evident.  The more precise code measurements on the 

Galileo E5a band allow a faster and more precise convergence of the ionosphere and 

ambiguity states.  Certainly, the GPS2 scenario, which must rely on the noisier GPS C/A 

code for initial estimation of the ionosphere and ambiguity states, performs the poorest 

with a mean time to fix of 64 seconds.  Another observation from Figure 5.7 is that the 

inclusion of a third frequency appears to provide a significant improvement from the 

GPS2 to the GPS3 scenario.  As mentioned in the discussion in Section 5.3.2.2, the 

inclusion of the third frequency improves the redundancy of the positioning problem, 

which predominantly assists in discriminating between correct and incorrect ambiguity 

sets.  Since the ambiguity validation is improved, it follows that the mean time to first fix 

performance measure, which is dependent on the ambiguity validation, should also be 

improved.  The improvement borne from adding a third frequency is not as noticeable 

with the GPS/GAL2 and GPS/GAL3 scenarios because both of these scenarios are 

already generating perfect ambiguity resolution nearly instantaneously for the 10 

kilometre baseline. 

 

Another test was conducted to illustrate the time to first fix results for a longer baseline.  

An 80 kilometre baseline was processed in the same manner as the 10 kilometre baseline.  

The ionosphere float model was used because it has already been established that the 
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float model is optimal for long baselines.  Figure 5.8 and Table 5.6 show the results 

for the GPS/GAL2 and GPS/GAL3 positioning scenarios. 

 

 

Figure 5.8: Time to First Fix for an 80 km Baseline Using the Ionosphere Float 

Model 
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Table 5.6: Mean Time To First Fix for an 80 km Baseline Using the Ionosphere 

Float Model 

 Mean Time To Fix 
(s) 

Percentage of Failed 
Trials (%) 

Percentage of 
Incorrectly Fixed 

Trials (%) 
GPS2 71.7 75 97 

GPS3 80.3 95 100 

GPS/GAL2 29.4 24 0 

GPS/GAL3 23.8 25 0 

 

For the 80 kilometre baseline the GPS2 and GPS3 scenarios are completely inadequate 

for resolving the integer vector of ambiguities.  The GPS2 scenario finds the correct 

ambiguity set once; whereas the GPS3 scenario never finds the correct ambiguity set.  

Despite the absence of a single correct ambiguity set being found, it is still reasonable to 

conclude that the GPS3 scenario performs better than the GPS2 scenario in terms of 

ambiguity validation because of the fewer number of incorrect ambiguity sets that were 

accepted.  Similarly, the GPS/GAL3 scenario performs better than the GPS/GAL2 

scenario as seen in the improved mean time to first fix when the third frequency is 

included.  It is also made clear that the GPS/GAL2 and GPS/GAL3 scenarios are far 

more successful than the GPS2 and GPS3 scenarios at finding and validating the correct 

ambiguity set.  This is largely due to the increased number of visible satellites and the 
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more precise Galileo E5a pseudorange measurements which enables faster and more 

precise estimation of the ionospheric states. 

 

5.4 Summary 

 

After explaining the theory and current trends in integer ambiguity searching and 

ambiguity validation, experimental test results have been shown in both of these topics.  

It was found that the ability to find the correct integer set with the GPS2 and GPS3 

scenarios was very sensitive to the choice of standard deviation of the ionospheric 

pseudo-observation.  This dependence was less crucial for the GPS/GAL2 and 

GPS/GAL3 scenarios because the code precision and satellite geometry improvements 

associated with these scenarios enable very fast and precise estimates of the ionospheric 

delays, which makes an ionospheric constraint somewhat superfluous.  Nevertheless, for 

the GPS2 and GPS3 scenarios, optimal values of the standard deviation of the 

ionospheric pseudo-observation were determined through trial-and-error.  The optimal 

values displayed in Figure 5.1 are specific to periods of the diurnal ionosphere cycle 

where peak ionospheric activity is experienced.  These optimal values are optimal in the 

context of instantaneous ambiguity resolution and are not necessarily optimal if longer 

observational time spans are available. 
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The ability to validate ambiguity sets for each positioning scenario was also 

scrutinized.  It was found that the ability to successfully validate ambiguity sets was 

greatly affected by the level of ionospheric activity.  In this analysis, the benefit of using 

triple frequency over dual frequency data was witnessed.  Even though, the inclusion of a 

third frequency does not seem to significantly affect the ability to find the correct 

ambiguity set, the increased redundancy generated by the third frequency improves the 

ability to validate correct ambiguity sets. 

 

Finally the speed with which integer ambiguity resolution could be accomplished was 

tested for a 10 kilometre baseline and an 80 km baseline.  It was found that the 

GPS/GAL2 and GPS/GAL3 scenarios performed significantly better than the GPS2 or 

the GPS3 scenarios.  This is largely due to the increased number of satellites and the 

presence of the more precise Galileo E5a pseudorange measurement which enable faster 

and more precise ionospheric estimation.  In addition, the benefits of the third frequency 

were once again witnessed as the triple frequency scenarios both performed better than 

their dual frequency counterparts in terms of being able to successfully validate potential 

ambiguity sets. 

 

This chapter has accomplished the third minor objective of this thesis which was to 

provide a realistic and quantitative analysis of the reliability of ambiguity resolution with 

future GNSS signals.  The next chapter will draw on the conclusions of this chapter and 
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the preceding chapter to explore an alternative technique for processing future GNSS 

measurements. 
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Chapter Six: Linear Combinations of Future GNSS Signals 
 

Linear combinations of GPS observations have been used for a variety of different 

reasons since the inception of GPS.  A generic linear combination of data is described by  

 

φφ B=∗  ( 3.2 ) 

 

where ∗φ  is the m-by-1 vector of transformed observations, φ  is the n-by-1 original 

vector of observations, and B is the transformation matrix.  While linear combinations of 

data are already in widespread use today, the introduction of the third GPS frequency and 

Galileo will increase the number of choices of combination matrices that may be useful.  

This chapter discusses the motivation in using linear combinations of data and explains 

the characteristics of different categories of linear combinations.  In addition, the criteria 

for choosing an optimal combination of data are explored and test results using some 

useful linear combinations of future data are shown.  

 

6.1 Motivation for Using Linear Combinations of GNSS Data 

 

There are three main motivations for using linear combinations of data.  The first 

motivation is that linear combinations can eliminate or mitigate unwanted terms in the 

mathematical model that are correlated among the observations.  If the functional model 
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was completely known and the stochastic model was perfectly accurate, using linear 

combinations of data would have no effect on the parameter estimation.  Needless to say, 

this is not usually the case and using linear combinations of data allows one to ignore 

nuisance parameters without sacrificing the accuracy of the parameters of interest.  For 

example, the double difference, which is a simple linear combination of the original 

undifferenced observations, eliminates the receiver and satellite clock biases and greatly 

mitigates spatially correlated error sources.  Another example that will be discussed in 

more detail in this chapter is the ionosphere-free combination which combines double 

differences from different frequencies in order to eliminate any unmodeled ionospheric 

delays.  From this perspective, linear combinations of data can be seen as an alternative 

processing strategy to the technique discussed so far in this thesis.  In Chapter Two, 

Chapter Four and Chapter Five, the ionospheric delays were included in the state vector 

as additional states to be estimated.  In this chapter, the ionospheric delays will not be 

included in the state vector because the effect of the ionospheric errors is reduced using 

an appropriately chosen linear combinations.  This enables one to ignore the ionospheric 

delays as negligible sources of Gaussian random error that can be included in the 

measurement covariance model.  

 

A second motivation for using linear combinations of data is to alleviate the 

computational burden of processing multi-frequency GNSS data.  The LAMBDA 

technique for integer ambiguity searching (Teunissen, 1998) employs a linear 
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combination of the carrier phase ambiguities to transform the original correlated 

ambiguity set into a set of less correlated ambiguities.  This reduces the integer search 

space, making the search process faster.  Another example of using linear combinations 

of data to alleviate the computational burden is found in using the widelane combination 

of L1 and L2 GPS carrier phase observations.  By combining the L1 and L2 observations 

into a single widelane observation, the computational load is improved because there is 

only one ambiguity to search for, rather than two, and only half the number of 

observations.  The widelane combination also helps to decorrelate the ambiguities and 

reduce the necessary integer ambiguity search space. 

 

The third motivation for using linear combinations of data is to reduce the 

communication bandwidth needed for the transmission of GNSS observations.  This 

motivation is most applicable to GPS networks used for real-time positioning and cellular 

phone applications.  By combining the observations from different frequencies into a 

single observation before transmission, dual-frequency information can be transmitted 

between sites using the same bandwidth that would be required for a single-frequency 

observation. 

 

Using a linear combination of the carrier phase data effectively changes the measurement 

model from a model with the original measurements to one with the combined 

measurements.  As a result, it is important to understand how linear combinations affect 
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the measurement model and how this in turn affects the final precision of the 

estimated states.  The next section explains how the measurement covariance matrix is 

affected by linear combinations. 

 

6.2 Transformation of the Measurement Covariance Matrix 

 

In the case of modernized triple frequency GPS, there will be carrier phase measurements 

available on three frequencies: L1, L2, and L5.  The following development also applies 

directly to triple frequency Galileo where the L1 subscripts are replaced with E1, the L2 

subscripts are replaced with E5a, and the L5 subscripts are replaced with E5b. 

 

The dominant source of correlation between GNSS observations is found between 

observations to the same satellite on different frequencies.  Consequently, the most 

benefit will be realized when creating linear combinations out of signals from the same 

satellite on different frequencies.  A single linear combination of the three carrier signals 

from one satellite is given as, 
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where a, b, and c, are the combination coefficients, ∗φ  is the combined measurement 

in cycles and 1Lφ , 2Lφ , and 5Lφ  are the original measurements in cycles.  The linear 

transformation described in Equation ( 6.1 ) differs from the transformations used in the 

LAMBDA technique because the LAMBDA transformation matrix transforms an n-

dimensional vector of ambiguities into a different, less correlated set of n ambiguities.  In 

that way, the ambiguities referring to the original observations can be resolved to integer 

values by reversing the transformation.  In this analysis, however, all three of the 

observations from one satellite are combined into a single pseudo-observation.  This 

technique prevents the resolution of the original L1, L2, and L5 ambiguities, but 

reparameterizes the problem so that the ambiguities of the combined observation can be 

fixed instead. 

 

Applying the law of error propagation to Equation ( 6.1 ) yields the accuracy of the 

combined signal in units of cycles squared. 
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where 2
∗σ  is the variance of the combined observation in squared cycles, and 2

Liσ  and 

LjLi,σ  are the variances and covariances of the original measurements in squared cycles.  
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The middle term on the right hand side of Equation ( 6.2 ) is the measurement 

covariance matrix in units of cycles.  This measurement covariance matrix was developed 

in units of metres in Chapter Two as Equation ( 2.34 ).  Scaling Equation ( 2.34 ) to 

cycles yields, 
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( 6.3 ) 

 

where 2
1LIσ , 2

Tσ , 2
1Lnσ  are the variances of the ionosphere, troposphere, and 

noise/multipath on the L1 frequency in units of square metres and 3I  is a three-

dimensional identity matrix.  Substituting Equation ( 6.3 ) into Equation ( 6.2 ) gives the 

variance of the combined signal in units of squared cycles. 
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where Lif  is the frequency in Hz and [ ]2cyc  has been added to clarify the units of 

squared cycles.  To scale this to the measurement error in units of metres squared, it is 

multiplied by the squared wavelength of the combined signal. 

 

[ ] [ ] [ ]

[ ]22
2

525152

521

22
2

521

22222

    cyc
cba

cyc
cfbfaf

ccycm

LLLLLL

LLL

LLL

∗

∗∗∗∗









++

=









++

==

σ
λλλλλλ

λλλ

σσλσ
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Therefore the variance of the combined signal in units of meters squared is given by: 

 

[ ] [ ]
( )























++









++

=
∗

∗

∗

222
2

1

2

2

521
2

4
1

22222 1
11

cba

f
c

f
b

f
a

f
f

m

L

LLL

L

nTI LL

λ
λ

σσσσ  

( 6.6 ) 

 

These equations show that the accuracy of the combined signal is essentially a weighted 

sum of the ionospheric, tropospheric, and noise/multipath errors.  The individual error 

components, [ ]222
11 LL nTI σσσ , are very difficult to model well because they depend on 

many factors in the physical environment.  For example, the ionospheric error variance 

depends on the existing ionospheric activity and the baseline length; the tropospheric 

error variance depends on the accuracy of the tropospheric model, the height difference 
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between the receivers, and the baseline length; and the noise/multipath error 

variance depends on the quality and bandwidth of the receivers, the location and angle of 

any nearby reflectors, and the gain pattern of the antenna.  And all the error variances are 

a function of the elevation angle to the satellites.  Not only are these terms difficult to 

model for a single epoch in time, but they also change with time as the satellite geometry, 

the atmospheric conditions, and the receiver location changes.  

 

The weights applied to these error sources depend only on the choice of coefficients (a, b, 

and c) used in creating the combination and the constant nominal frequencies of the 

carrier signals, which are given in Table 6.1.  These weights are often referred to as 

amplification factors since they amplify (or reduce) the errors that would apply to an 

untransformed signal.  For a given GPS positioning campaign, different choices of a, b, 

and c will yield vastly different accuracies.  The next three sections discuss combination 

coefficients that cause the greatest reduction of the three categories of error sources.  
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Table 6.1: GPS and Galileo Nominal Frequencies (from Navstar GPS Space 

Segment / Navigation User Interfaces (ICD) (1997) and Galileo Mission 

Requirements Document Issue 5.0 � Draft (2000)) 

GNSS Type Frequency Fundamental 

Frequency (MHz) 

Integer 

Multiplier 

Nominal 

Frequency (MHz) 

L1 10.23 154 1575.42 

L2 10.23 120 1227.60 

GPS 

L5 10.23 115 1176.45 

E1 10.23 154 1575.42 

E5a 10.23 115 1176.45 

Galileo 

E5b 10.23 118 1207.14 

 

 

6.3 Combinations that Eliminate the Effect of the Ionosphere 

 

Since the ionosphere is a dispersive medium, the ionospheric delays experienced by each 

carrier phase measurement have a known relationship between them, which was given in 

Equation ( 2.26 ).  Therefore, it is possible to choose combination coefficients that 

completely eliminate the effect of the ionosphere.  Only two frequencies are needed to 

eliminate the ionospheric error to the first order, so any two of three frequencies in a 
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given satellite system can be used to generate an ionosphere-free combination.  For 

an example, the ionosphere-free combination of Galileo E1 and E5a frequencies will be 

developed.  Starting with Equation ( 6.1 ), the carrier phase measurement can be 

expanded into 
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where ∗φ  is the carrier phase observation in cycles, ρ  is the geometric range, cyc
EI 1δ  is the 

residual ionospheric delay on the E1 frequency in units of cycles, 

bEaEE cNbNaNN 551 ++=∗  is the combined integer ambiguity term and the remaining 

sources of error are considered negligible.  In order to eliminate the effect of the 

ionosphere, the following condition must be satisfied. 
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This equation describes a plane so it has infinite solutions.  Any values of a, b, and c that 

lie on this plane represent an ionosphere-free combination and the closer a combination is 

to the plane, the smaller the ionosphere amplification factor will be.  Only two 

frequencies are required to eliminate the effect of the ionosphere so one of the 

coefficients can be set to zero.  For the example using only the Galileo E1 and E5a 
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frequencies, c is set to zero and the solution lies along the line 

115
154

5

1 b
f
fba

aE

E −=−= .  In order to maintain the integer nature of the combination 

coefficients and an effective wavelength greater than zero, the solution with the lowest 

values of b and c is [ ] [ ]0115154 −=cba .  It is desirable to use the smallest 

possible coefficients (in an absolute sense) because larger coefficients amplify the noise 

and multipath errors.  This will be discussed further in Section 6.4.  Substituting the 

values for a, b, and c into Equation ( 6.4 ) or Equation ( 6.6 ) reveals that the ionospheric 

amplification factor becomes equal to zero, which proves that this combination removes 

the effect of the ionosphere.  Table 6.2 shows all the dual-frequency ionosphere-free 

combinations for modernized GPS and Galileo signals along with the associated effective 

wavelengths.  These coefficients were found in the same manner as just outlined for the 

case of the E1 and E5a frequencies. 
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Table 6.2: Modernized GPS and Galileo Ionosphere-Free Combinations 

 a b c λ (m) Noise Amplification 
Factor (length units) 

77 -60 0 0.0063 10.4 

154 0 -115 0.0028 8.0 

GPS 
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0 24 -23 0.1247 474.5 

154 -115 0 0.0028 8.0 

77 0 -59 0.0060 9.3 

Galileo 
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Even though each of the ionosphere-free combinations will completely eliminate the 

effects of the ionosphere, it is clear that they will not all provide the same results.  The 

ionosphere-free combinations using L2 and L5 frequencies for GPS and E5a and E5b for 

Galileo have larger wavelengths, which makes integer ambiguity resolution easier with 

these combined signals.  However, these same ionosphere-free combinations will provide 

the worst final position results because of the amplification of the noise and multipath.  

To demonstrate this phenomenon with simulated processing results, five minutes of data 

from a 50 kilometre baseline was processed using the software described in Chapter 

Three.  First, the data was processed in float ambiguity mode and the ambiguity 

estimation error and three-dimensional position error of the float solution are plotted in 
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the upper two panes of Figure 6.1 for GPS and Figure 6.2 for Galileo.  Next, the 

same data was processed again, but fixing the ambiguities to the correct integer values.  

In this case, the three dimensional position errors are plotted in the lower panes of the 

same figures.  The standard deviation of the position errors are also shown for the fixed 

position error plots. 

 

 

Figure 6.1: Ambiguity Estimation Error and Fixed Position Error for GPS 

Ionosphere-Free Combinations 
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Figure 6.2: Ambiguity Estimation Error and Fixed Position Error for Galileo 

Ionosphere-Free Combinations 

 

From the processing results, it is clear that the L2/L5 and E5a/E5b ionosphere-free 

combinations provide the best float ambiguity estimation error, which would make fixing 

integer ambiguities easier with these combinations.  However, the same combinations 

also display far worse final position accuracy when they are used in fixed ambiguity 

mode as evidenced by the significantly worse fixed position error standard deviations. 
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6.4 Combinations that Reduce the Effect of Thermal Noise and Multipath 

 

According to Equation ( 6.4 ), any combination of data will amplify the effect of thermal 

noise and multipath in units of cycles since the following inequality is always true for any 

set of integer combination coefficients (except the null set). 
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( 6.9 ) 

 

The only way to minimize the amplification of noise in units of cycles is to use the 

original untransformed observations.  However, there are some combinations of data that 

greatly reduce the effect of noise and multipath when parameterized in length units.  The 

following equation shows the amplification factor in length units for the noise and 

multipath components for a combined signal. 
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Many commercial dual-frequency GPS processing software packages use the narrowlane 

combination ( [ ] [ ]11=ba ) to provide an observable that is less affected by noise and 

multipath.  The wavelength of the narrowlane combination is only 10.7 cm so in order to 
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use a fixed integer narrowlane observable, long observation time spans, short 

baselines or previously fixed L1 and L2 ambiguities are required.  The noise and 

multipath amplification factor for the narrowlane combined observation is 0.63, which 

means that the noise and multipath error is improved by 37% over the L1 only carrier 

phase observation.  In addition to the short wavelength, another one of the tradeoffs for 

having improved noise and multipath characteristics is that the narrowlane observation 

amplifies the ionospheric error in length units by a factor of 1.65.  For this reason, the 

narrowlane observation should only be used on short baselines where the ionospheric 

delay is mostly eliminated through double differencing. 

 

There are many other combinations that reduce the effect of the noise and 

multipath as much as the narrowlane combination and also amplify the effect of the 

ionosphere less than the narrowlane observable.  Table 6.3 shows the GPS 

combinations with the largest wavelengths that reduce the effects of noise and 

multipath at least as much as the GPS narrowlane combination.  To find these 

combinations, the noise amplification factors of all the combinations with integer 

coefficients in the set, [ ]20,20,, −∈cba , were computed and compared to the noise 

amplification factor of the traditional narrowlane observable.  Those combinations 

that had a noise amplification factor less than or equal to the traditional narrowlane 

observation were sorted according to wavelength and the combinations with the five 

longest wavelengths are listed in Table 6.3.   
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Table 6.4 shows the same thing for Galileo combinations, but instead of comparing 

to the GPS narrowlane combination, the Galileo narrowlane combination 

( aEE 51 φφφ +=∗ ) has been used. 

 

Table 6.3: Noise and Multipath Reducing Combinations for Triple Frequency GPS 

a b c Noise Amplification 
Factor (length units) 

Ionosphere 
Amplification Factor 

(length units) 

Wavelength (m) 

1 1 0 0.63 1.65 0.107 

1 1 1 0.47 2.06 0.075 

1 1 2 0.56 2.30 0.058 

1 2 1 0.55 2.20 0.058 

2 1 1 0.48 1.72 0.054 
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Table 6.4: Noise and Multipath Reducing Combinations for Triple Frequency 

Galileo 

a b c Noise Amplification 
Factor (length units) 

Ionosphere 
Amplification Factor 

(length units) 

Wavelength (m) 

1 1 0 0.66 1.79 0.109 

1 0 1 0.64 1.70 0.108 

1 1 1 0.48 2.10 0.076 

2 0 1 0.65 1.43 0.069 

1 2 1 0.56 2.34 0.058 

 

To test these combinations in a processing scenario, five minutes of data over a five 

kilometre baseline was processed in kinematic mode with fixed integers using the 

software described in Chapter Three.  To emphasize the reduction of the thermal noise 

and multipath errors, these error sources were increased to simulate a lower quality 

receiver and a slightly higher multipath environment.  The resulting variance and mean of 

the three-dimensional position errors are plotted in Figure 6.3 for each GPS and Galileo 

combination.  The x-axis labels on the figure represent the combination where each 

integer is a combination coefficient; for example [211] means that a, b, and c were set to 

2, 1, and 1 respectively). 

 



 

 

165

 

Figure 6.3: Variance and Mean of the Three-Dimensional Position Error Using 

Noise and Multipath Reducing Combinations 

 

As expected from the calculated amplification factors, each of the noise reducing 

combinations produce position errors with variances around half the magnitude of the L1 

only position error variance.  It is also interesting to notice that the L1 only processing 

results have a mean that is closer to zero than any of the combinations of data.  This is 

because each of the noise reducing combinations has the disadvantage of amplifying the 

effect of the ionosphere, which causes a greater bias than if L1 only data were used.  

None of the combinations listed in the preceding tables stands out as being appreciably 

more useful than the traditional narrowlane combination.  This implies that in situations 

where dual-frequency ambiguities could already be resolved to integer values, the 



 

 

166

additional third frequency will not significantly help in improving the final 

positioning accuracy. 

 

6.4.1 The Noise Reduction Limit 

 

It is nearly impossible to directly resolve integer ambiguities for any of the noise and 

multipath reducing combinations.  The primary use of noise and multipath reducing 

combinations is when the untransformed ambiguities (e.g. L1, L2, and L5) have already 

been resolved to integer values.  If the untransformed ambiguities are already known, it is 

not necessary to constrain the choice of combinations to those combinations that have the 

largest wavelengths.  Instead, one can focus on combinations that provide the largest 

reduction in the noise and multipath errors.   

 

The noise and multipath errors cannot be completely eliminated like the ionospheric 

effect can, but there is an absolute minimum for the noise and multipath amplification 

factor in length units.  The remainder of this section proves that there is a limit and shows 

the combination coefficients that generate this limit.  The following proof begins by using 

only GPS frequencies, but will be generalized for GPS or Galileo in the ensuing 

discussion. 
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Starting with Equation ( 2.33 ), we first apply the assumption that the variance of 

each carrier signal is equal in units of cycles. 
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( 2.33 ) 

 

where 2
1Lnσ  is the variance due to noise and multipath on the L1 signal in units of metres. 

 

Next the linear combination coefficients are applied vis-à-vis Equation ( 6.1 ), but with 

length units instead of units of cycles. 
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where Φ  is the carrier phase measurement scaled to metres and  
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5L

c
λ
λγ ∗=  ( 6.14 ) 

 

Based on these equations, it is true that, 

 

1=++ γβα  ( 6.15 ) 

 

Applying the law of propagation of variance to Equation ( 6.11 ) and only including the 

noise and multipath components of the error model, yields 
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The term in curly brackets is the amplification factor to be minimized.  Therefore, the 

problem is to find values of α , β , and γ  subject to the following conditions: 
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This problem can be understood geometrically as finding the point on an ellipsoid 

described by Equation ( 6.17 ) that is tangent to the plane described by Equation ( 6.15 ).  

A two-dimensional representation of this situation is illustrated in Figure 6.4. 

 

 

Figure 6.4: Geometrical Representation of a Plane and Ellipsoid (Not to Scale) 

 

One solution to this problem is to find the point on the surface of the ellipsoid where the 

unit normal vector is parallel to the unit normal vector of the plane.  The problem is 

complicated by the fact that the exact dimensions of the ellipsoid are unknown.  The 

shape of the ellipsoid is known, but the scale of the axes is not.  To begin the solution, the 

n�

plane: 1=++ γβα  

ellipsoid: 
mLLL =++ 2

5
22

2
22

1
2 λγλβλα  

semi-major 
axis 

semi-minor 
axis

α

β



 

 

170

scale of the ellipsoid is set to an unknown variable, m, giving the following equation 

for the ellipsoid. 
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The unit normal vector can then be found by computing the gradient of Equation ( 6.18 ) 

and dividing by the magnitude of the gradient. 
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where n�  is the unit normal vector and the ∇  symbolizes the gradient operation. 

 

Substituting Equation ( 6.18 ) into Equation ( 6.19 ) yields, 
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It should be noted that the unknown scale of the ellipsoid, m, is not present in Equation ( 

6.20 ).  This is understandable intuitively because the unit normal at a given point on the 

surface of an ellipsoid is constant regardless of the scale of the ellipsoid.  This is pictured 
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in Figure 6.5 for the case of a two-dimensional ellipse.  The same principle applies 

to a three dimensional ellipsoid. 

 

Figure 6.5: Equivalent Unit Normal Vectors for a Family of Ellipses (Not to Scale) 

 

At the point where the ellipsoid is tangent to the plane, the unit normal vector of the 

ellipsoid is equal to the unit normal vector of the plane.  The unit normal vector at any 

point on the plane is given by: 
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Equating the unit normal vectors of the plane and the ellipsoid yields a system of 

three equations and three unknowns: 
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Rearranging the system of equations yields 
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The solution to this system is given by: 
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where t is an arbitrary scalar.  Equation ( 6.26 ) is the equation of the line in Figure 

6.5.  Therefore, the final task is to find the point at which this line intersects the plane of 

Equation ( 6.15 ).  The point is: 
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( 6.27 ) 

 

Geometrically, this point describes the point where the ellipsoid with a minimum size is 

tangent to the plane, 1=++ γβα .  In terms of noise and multipath reduction, these 

combination coefficients (in length units) provide the absolute minimum amplification 

factor for noise and multipath variance that is possible.  In order to convert these 

combination coefficients in length units into cyclic combination coefficients a, b, and c, 

Equations ( 6.12 ) to ( 6.14 ) can be used as a system of three equations with three 

unknowns.  The solution to this system is given by: 
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( 6.28 ) 

where t is an arbitrary scalar. 

 

Therefore, the closer a given combination is to the lines described Equation ( 6.28 ), the 

better the noise and multipath reducing properties would be.  Substituting the solution for 

α , β , and γ  into Equation ( 6.16 ), or equivalently, substituting the solution for a, b, 

and c into Equation ( 6.10 ), yields the minimum amplification factor of 0.462 for GPS, 

which corresponds to a reduction in the noise and multipath error variance of 54% 

relative the original L1 signal.  For Galileo combinations, the minimum amplification 

factor is 0.466, which corresponds to a reduction in the noise and multipath error variance 

of 53% relative to the E1 signal.   

 

Using exactly the same methodology to find the minimum amplification factor that is 

possible with combinations of only two frequencies reveals that the minimum noise and 

amplification factor with two frequencies is 0.622 for GPS L1/L2 and 0.642 for Galileo 

E1/E5a. 
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The results of this proof are summarized in Table 6.5 where the Richert Limit of 

Noise Reduction is the absolute greatest reduction in noise and multipath variance relative 

to the L1 (GPS) or E1 (Galileo) signal that is possible using linear combinations of data.   

 

Table 6.5: Richert Limit of Noise Reduction 
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It should be reiterated that the results in Table 6.5 rely on the assumption that the noise 

and multipath variances are equivalent in units of cycles for each carrier signal.  For most 
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GNSS receivers, this assumption is valid.  However, for a unique receiver for which 

this assumption is may not be true, the  proof is still applicable, but the shape of the 

ellipsoid would be different to reflect the different covariance matrix of the observations.   

 

The interesting conclusion from this section is that the availability of a third frequency 

will allow for combinations that can reduce the effect of noise and multipath better than 

the reduction that is currently available with only two frequencies; albeit, this 

improvement is marginal. 

 

6.5 Combinations that Reduce the Effect of the Troposphere 

 

In units of length, the choice of combination coefficients does not affect how the 

combined signal is delayed due to the troposphere.  This is understandable intuitively 

because the troposphere is not a dispersive medium for signals in the L-band, which 

means that it biases all GNSS signals by the same amount.  Mathematically, the 

amplification factor for the tropospheric variance in metres is equal to one as shown in 

the following proof. 
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However, in units of cycles, the choice of combination coefficients does impact the 

effect of the tropospheric error on the combined observation.  Simply put, the longer the 

effective wavelength of the combined signal, the less the tropospheric error will bias the 

measurement in units of cycles.  This same rule of thumb also applies for orbital errors or 

any other error source that changes all carrier phase measurements by the same amount in 

length units.  As a matter of interest, it is possible to have a troposphere-free combination 

when the wavelength of the combined signal approaches infinity.  However, such 

combinations have no use in practice since the wavelength is undefined.  Combinations 

that eliminate the effect of the troposphere cause the denominator of Equation ( 6.5 ) to 

be equal to zero. 
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( 6.30 ) 

 

Like Equation ( 6.8 ), which describes the plane of ionosphere-free combinations, 

Equation ( 6.30 ) describes a plane of troposphere-free combinations.  Some of the 

choices of a, b, and c that satisfy Equation ( 6.30 ) are listed in Table 6.6.   
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Table 6.6: Theoretical Troposphere-Free Combinations 

 a b c λ (m) Noise Amplification 
Factor (length units) 

60 -77 0 ∞ ∞ 

115 0 -154 ∞ ∞ 
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It is interesting to note that the plane of troposphere-free combinations given by Equation 

( 6.30 ) is orthogonal to the line of maximum noise reduction given by Equation ( 6.28 ).  

This geometrical fact confirms the well established notion that combinations with larger 

wavelengths cause greater amplification of the noise and multipath in units of metres.  

 

6.6 Optimal Combinations of Future GNSS Data 

 

The previous three sections have outlined how the negative effects of individual error 

sources can be mitigated based on the choice of the combination coefficients used.  It was 
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found that no error source could be eliminated without surrendering a degradation of 

the other error sources.  Table 6.7 summarizes the advantages and disadvantages of the 

combinations that were detailed in Sections 6.3 through 6.5. 

 

Table 6.7: Advantages and Disadvantages of Various Types of Linear Combinations 

Combination Type Advantages Disadvantages 

Ionosphere-free • Ionospheric error is 

eliminated 

• Difficult or impossible to 

resolve integer ambiguities in 

most applications due to short 

wavelengths 

• Effect of noise and 

multipath is amplified 

Noise and Multipath 

reducing 

• Effects of noise and 

multipath are reduced 

• Difficult to resolve integer 

ambiguities due to short 

wavelength 

• Effect of ionosphere is 

amplified 

Troposphere reducing  • Effect of the troposphere 

errors are mitigated 

• Easier to resolve integer 

ambiguities due to long 

wavelength 

• Effects of noise and 

multipath are amplified 

 

In real GNSS positioning scenarios, all the individual sources of error exist to some 

extent so it is conceivable that there is an optimal set of combination coefficients for each 
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positioning campaign.  The ultimate goal is to choose a combination that allows for 

successful integer ambiguity resolution and gives the best possible position accuracy.  A 

definition of optimality was given in Radovanovic et al. (2001) where it was stated that 

�an optimal combination is one that minimizes the total error variance in meters², while 

maintaining an error variance in cycles² that is at least equal to that of the L1 

observable.�  According to this definition, the optimal choice of combination coefficients 

will be different for different baseline lengths, different proportions of the various error 

sources, and different user requirements.   

 

Referring back to Section 6.2, the variance of a triple frequency GPS combined signal in 

units of cycles is given by Equation ( 6.4 ).  In units of cycles, the variance will be 

minimized if the combination coefficients represent a point in integer space that is close 

to: 

1. the plane of ionosphere-free combinations, 0
5

1

2

1 =++
L

L

L

L

f
fc

f
fba  

2. the plane of troposphere-free combinations, 0521 =++ LLL cfbfaf  

3. the origin (0,0,0)  

 

This minimization problem is illustrated in Figure 6.6. 
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Figure 6.6: Equations Minimizing the Combined Signal Variance in Units of Cycles 

 

The angle between the troposphere-free plane and the ionosphere-free plane is given by: 
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( 6.31 ) 

 

where tropon  and ionon  are the normal vectors of the two planes. 
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An optimal combination in terms of minimizing the variance in units of cycles 

depends on the magnitude of each individual error source.  For example, for a long 

baseline, the ionosphere and troposphere might be the dominant error sources.  In this 

case, it is more important that the optimal combination be close to the ionosphere-free 

and troposphere-free planes than to the origin.  However, for a short baseline, the 

ionosphere and troposphere would be almost completely eliminated through double 

differencing.  In this case, the dominant source of error would likely be the thermal noise 

and multipath, hence, the optimal combination would be very close to the origin. 

 

In length units, the variance of the combined signal is given by Equation ( 6.6 ).  The 

variance will be minimized for a triple frequency combined GPS signal if the 

combination coefficients represent a point in integer space that is close to 
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This minimization problem is illustrated in Figure 6.7. 
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Figure 6.7: Equations Minimizing the Combined Signal Variance in Units of Metres 

 

The angle between the line and the plane for GPS and Galileo frequencies is   
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( 6.32 ) 

 

where noisev  is the noise reduction line.  Since the angle between the ionosphere-free 

plane and the noise reduction line is large, the two conditions given above are rather 

contradictory.  If a combination is very close to the ionosphere-free plane, it will be far 
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away from the line of maximum noise reduction.  Alternatively, if a combination is 

close to the line of maximum noise reduction, it will be further away from the 

ionosphere-free plane.  This is supported by the well known fact that ionosphere-free 

combinations are characterized by increased noise. 

 

6.7 Test Results using Optimal Combinations of Future GNSS Data 

 

A test was conducted to find combinations that were optimal for varying baseline lengths.  

The average root-mean-square float ambiguity estimation error was computed for all 

combinations with positive effective wavelengths using integer coefficients in the range 

of [ ]20,20,, −∈cba .  Combination coefficients with an absolute value greater than 20 

were not considered because combinations using such large magnitude coefficients result 

in large noise amplification factors in units of cycles, causing integer ambiguity 

resolution to become impossible.  Of all the combinations that were tested, the subset of 

combinations with a float ambiguity estimation error equal to or less than that of the L1 

(or E1) untransformed signal were selected.  Each combination in the subset was then 

used to process 100 seconds of kinematic data for baseline lengths of 10, 30 and 60 

kilometres in fixed integer mode.  The processing was accomplished using the software 

described in Chapter Three.  The combinations that provided the best average position 

accuracy in fixed ambiguity mode are shown below in Table 6.8 for GPS and Table 6.9 
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for Galileo.  The corresponding noise and ionosphere amplification factors are also 

shown in the tables. 
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Table 6.8: Optimal Combinations for GPS 

Baseline Length Combination Wavelength Noise 

Amplification 

Factor (length 

units) 

Ionosphere 

Amplification 

Factor (length 

units) 

[4 -3 0] 0.1145 9.0469 0.0081 

[4 -2 -1] 0.1123 7.3110 0.0031 

[3 1 -3] 0.1237 8.0223 0.0299 

[4 0 -3] 0.1081 8.0731 0.0001 

10 

[5 -2 -2] 0.0977 8.6959 0.0158 

[3 4 -6] 0.1163 22.7809 0.0036 

[5 -8 4] 0.1085 34.1588 0.0026 

[3 5 -7] 0.1140 29.8025 0.0007 

[4 3 -6] 0.1025 17.6864 0.0099 

30 

[3 2 -4] 0.1211 11.7438 0.0179 

[4 -1 -2] 0.1102 7.0388 0.0005 

[3 6 -8] 0.1119 37.6587 0.0001 

[4 1 -4] 0.1062 10.2739 0.0017 

[2 11 -12] 0.1182 103.7267 0.0009 

60 

[1 16 -16] 0.1252 222.1913 0.0050 
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Table 6.9: Optimal Combinations for Galileo 

Baseline Length Combination Wavelength Noise 

Amplification 

Factor (length 

units) 

Ionosphere 

Amplification 

Factor (length 

units) 

[4 -2 -1] 0.1093 6.9341 0.0001 

[4 0 -3] 0.1119 8.6373 0.0025 

[4 -3 0] 0.1081 8.0731 0.0001 

[7 -7 2] 0.0576 9.3370 0.0051 

10 

[3 -3 1] 0.1247 8.1594 0.0355 

[4 -1 -2] 0.1106 7.0920 0.0009 

[4 -4 1] 0.1070 10.4245 0.0008 

[4 -3 0] 0.1081 8.0731 0.0001 

[4 -5 2] 0.1058 13.9090 0.0023 

30 

[5 6 -10] 0.1047 48.7025 0.0001 

[4 0 -3] 0.1119 8.6373 0.0025 

[4 -2 -1] 0.1093 6.9341 0.0001 

[4 -3 0] 0.1081 8.0731 0.0001 

[4 1 -4] 0.1131 11.6669 0.0050 

60 

[4 -4 1] 0.1070 10.4245 0.0008 
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From the tables it is revealed that the optimal choice of combinations changes as the 

baseline length varies.  However, despite the changing combination coefficients, the 

optimal combinations in the above tables have similar performance in terms of ambiguity 

estimation accuracy and position estimation accuracy.  Figure 6.8 shows the ambiguity 

estimation accuracy for the optimal combinations that provide the best position accuracy 

for each baseline length.  The data shown in the following figure corresponds to the 

shaded rows in Table 6.8 and Table 6.9. 

 

 

Figure 6.8: Ambiguity Estimation Accuracy Using Optimal Combinations 

 

Figure 6.8 demonstrates that the combined float ambiguities can be estimated with 

approximately the same precision as the single frequency L1 (or E1) ambiguities, which 
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are shown as burgundy bars.  The benefit of using the combined signals is seen in 

Figure 6.9 and Figure 6.11 where the fixed position accuracy of the combined signals is 

shown along with the single frequency precision for both GPS and Galileo.  Below each 

of the position accuracy figures is a set of bar charts illustrating the mean and standard 

deviation of the position errors.  Figure 6.10 gives the mean and standard deviation of the 

data in Figure 6.9 and Figure 6.12 gives the mean and standard deviation of the data in 

Figure 6.11. 

 

 

Figure 6.9: Position Error for Optimal GPS Combinations for 10, 30, and 60 km 

Baseline Lengths 
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Figure 6.10: Position Error Statistics for Optimal GPS Combinations 

 

 

Figure 6.11: Position Error for Optimal Galileo Combinations for 10, 30, and 60 km 

Baseline Lengths 
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Figure 6.12: Position Error Statistics for Optimal Galileo Combinations 

 

Clearly, the optimally combined signals provide far better position accuracy than the pure 

L1 and E1 signals � especially for longer baselines.  This is because the ionospheric 

amplification factors for the combined signals are all significantly less than one (see 

Table 6.8 and Table 6.9).  As a result, the impact of the ionosphere is largely eliminated.  

For the L1 and E1 single frequency measurements, the ionospheric errors directly affect 

the position solution and cause a bias that increases with increased baseline length.  This 

bias is evident in the mean of the position errors for GPS (Figure 6.10) and Galileo 

(Figure 6.12).  On the other hand, each of the combined signals has a noise amplification 

factor greater than one.  Consequently, the pure L1 and E1 measurements provide the 

most precise position results in the sense that the standard deviation of the position errors 

is smaller. 
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The preceding analysis shows that there are indeed certain combinations of carrier phase 

measurements that fit the definition of optimality; that is, the combined signals provide 

better position results when the ambiguities are fixed and the ambiguities are no more 

difficult to fix than the L1 (or E1) observable.  Unfortunately, for longer baselines, 

successful ambiguity resolution with the optimally combined signals will still be 

impossible without longer observational time spans.  Referring back to Figure 6.8, it is 

seen that the RMS ambiguity estimation error is approximately one cycle for a 30 km 

baseline and even greater for a 60 km baseline.  This imprecision will prevent successful 

ambiguity resolution. 

 

6.8 Summary 

 

In this chapter, the mathematical background in using linear combinations was provided 

and it was shown how to choose combination coefficients in order to mitigate the effects 

of each individual error source.  The concept of optimal linear combinations of carrier 

phase measurements was introduced and it was established that the choice of an optimal 

combination depends on the baseline length, the physical error environment and the 

requirements of the given mission.  Test results using optimal combinations were 

presented and it was shown that combinations exist that allow for ambiguity estimation 

that is at least as precise as the pure L1 or E1 signals, but that give far better accuracy in 
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the position domain.  However, despite enabling ambiguity estimation that is as 

precise as the single frequency signals, ambiguity resolution with these optimal 

combinations is still impossible for long baselines and short observational time spans.  

This chapter has fulfilled the last minor objective of this thesis which was to explore the 

benefits of using linear combinations of GNSS data and to test various optimally chosen 

combinations  
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Chapter Seven: Conclusions and Recommendations for Future Work 
 

The objectives of this thesis have been met.  The techniques and mathematical 

background for processing GNSS data from multiple systems and on multiple frequencies 

were explained.  The impact that future GNSS measurements will have on the ability to 

estimate ionospheric delays was shown.  A realistic and quantitative analysis of the 

reliability of ambiguity resolution with future GNSS signals was provided.  And the 

benefits of using linear combinations of GNSS data were elucidated through 

mathematical theory and experimental testing. 

 

7.1 Key Findings by Chapter 

 

In Chapter One, the current status of the existing Global Navigation Satellite Systems 

was conveyed.  The future plans for GPS modernization and Galileo were explained and 

some of the integration issues that will arise from using independent systems in an 

integrated manner were elucidated.  A description of the coordinate and time reference 

frames for GPS and Galileo was provided along with a summary of some research that 

has already been undertaken to study the benefits of using GPS and Galileo together.  

Finally, the objectives of the thesis were outlined. 
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Chapter Two presented mathematical formulae and techniques for processing future 

GNSS measurements.  It was found that there are various ways to deal with the 

GPS/Galileo Time Offset in the mathematical model and that using homogeneous double 

differences is a viable option when processing GPS and Galileo measurements together.  

It was also shown how the stochastic component of the measurement model can be 

developed when combining different types of measurements from GPS and Galileo 

together in a single filter.  The complete measurement model and dynamic model used 

throughout this thesis was developed and the Kalman filtering technique was identified as 

the optimal estimation tool. 

 

Chapter Three presented the GNSS simulation and processing software that has been 

used to generate and process realistic measurements from modernized GPS and Galileo.  

The commercially available simulator was explained and the various error sources 

applied to the simulated measurements were illustrated.  The simulator and processor 

were shown to provide the level of realism required to make experimental tests 

meaningful. 

 

In Chapter Four, the impact of future signals on ionospheric delay estimation was 

evaluated.  It was found that the ionospheric delays converged more quickly when GPS 

and Galileo measurements were used together than when GPS was used alone.  This 

result is owing to the fact that the number of visible satellites is increased and the code 
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pseudorange measurement on the Galileo E5a frequency is more precise than the 

other code measurements.  The faster ionospheric estimation translated directly into faster 

float ambiguity convergence and faster position state convergence.  After convergence, 

the final position accuracy was approximately the same for all the scenarios tested.  This 

led to the conclusion that the use of triple frequency data will not significantly improve 

long-term position accuracy when compared with dual-frequency results.  

 

In Chapter Five, the effect of future GNSS signals on ambiguity resolution was assessed.  

First, it was found that the scenarios that included Galileo measurements were more 

likely to find the correct ambiguity set.  This is again attributed to the more precise 

Galileo E5a code and the improved satellite geometry which provides fast convergence of 

the states.  Next, the ability to successfully validate potential ambiguity sets was 

considered.  It was discovered that triple frequency scenarios performed better than the 

corresponding dual frequency scenarios due to the improved redundancy.  Finally, the 

speed of ambiguity resolution was analysed by comparing the various scenarios on a 10 

kilometre and an 80 kilometre baseline.  It was again observed that the increased number 

of satellites and the precise Galileo E5a code pseudorange measurement had a great 

impact and that the scenarios that included Galileo satellites had improved �time to first 

fix� results. 
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Chapter Six explored the use of linear combinations of future GNSS data.  The 

benefits and drawbacks of using linear combinations of data were explained from a 

mathematical standpoint.  It was shown that the ionospheric delays could be completely 

eliminated; whereas, the tropospheric and noise/multipath errors could only be reduced 

through the use of linear combinations of data.  It was also shown that when the effect of 

one source of error is reduced, the other sources of error are generally amplified.  Finally, 

test results were shown using optimally chosen combinations of future GNSS data.  The 

optimal choice of combination coefficients is highly dependent on the baseline length and 

the proportion of the various error sources.  Selected linear combinations of carrier phase 

data were shown to provide similar ambiguity estimation precision as the pure L1 or E1 

measurements.  These same combinations produced far better results in the position 

domain.  However, despite having a similar ambiguity precision as the L1 or E1 signals, 

the ambiguities of the optimally chosen combinations cannot be reliably fixed to integers 

for long baselines with short observational time spans.  

 

7.2 Recommendations for Future Work 

 

While this thesis has shed considerable light on what one should expect when future 

GNSS measurements become available, there are still many unanswered questions 

around this issue.  The following is a list of several topics that the author considers to be 

of great importance and will require further investigation. 
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• At the time of writing, the future of the Russian Global Navigation Satellite System 

(GLONASS) was uncertain.  However, recent events have demonstrated that the Russian 

Federation may be devoting more resources to the afflicted system in an effort to remain 

in the satellite navigation market.  In December 2004, three new satellites were launched 

to augment the existing constellation.  Unfortunately, two of these three satellites have 

since become unusable leaving a total of 11 operating satellites (GLONASS Website: 

http://www.glonass-center.ru/frame_e.html).  Even with only 11 active satellites, studies 

have shown that the augmentation of GPS with GLONASS satellites can improve the 

speed and reliability of ambiguity resolution (Habrich, 1999 and Dai, 2000).  If the trend 

of adding more satellites to the GLONASS constellation continues, there may be 

motivation to develop systems that integrate GPS, Galileo, and GLONASS.  An 

investigation into the benefits of such a combined system would be very beneficial to 

developers and users of future GNSS. 

 

• There has been no mention made of the impact that the future GNSS measurements 

will have on the volume of the integer search space.  Particularly when triple frequency 

measurements from both GPS and Galileo are used, the search volume � or the number of 

potential ambiguity sets that must be searched � can become very large.  This is of 

particular concern in real-time systems that are limited by processing speed and 

communication bandwidth.  An investigation into the increase of the search space must 
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be undertaken and innovative strategies to mitigate the processing time should be 

proposed. 

 

• As a corollary to the first recommendation, the impact of future GNSS signals on 

partial fixing of the ambiguity set could be investigated.  It is likely that the increased 

size of the ambiguity set when using triple frequency data from both GPS and Galileo 

will enhance the usefulness of partial fixing.  Future work should include an investigation 

into how the baseline estimates are improved by fixing only a subset of ambiguities with 

future signals. 

 

• The work undertaken in this thesis is applicable for the new age of GNSS: when GPS 

has been modernized and Galileo is fully operational.  There will be a large period of 

time in between now and when these systems are fully operational.  This transitional 

phase will be characterized by an incomplete constellation of Galileo satellites and a 

mixed constellation of GPS satellites that will include satellite vehicles from Blocks II-R, 

II-RM, and IIF.  The length of this transitional time period could extend for over a decade 

and therefore it merits a focussed investigation to show the transition in performance that 

will be available as the constellations grow and change.  A study of this nature would 

shed light on when it might become worthwhile investing in receivers that are able to 

exploit all the future measurements. 
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• With regard to linear combinations of data, there is an open problem relating to 

how to choose an optimal combination in a simple and automated way.  In general, users 

of GNSS technology do not know and do not want to be burdened with knowledge about 

the error environment in which they are receiving signals.  Therefore, a major challenge 

is to determine with a minimum of effort what error sources are affecting the range 

measurements in a given positioning campaign.  This information can then be used to 

choose an optimal combination of data that will provide the highest accuracy and utmost 

reliability in any situation.  

 

• Because of the prognostic nature of the work contained in this thesis, future studies 

should aim to validate the results and provide a more accurate prediction of what the 

future of GNSS processing will entail.  The next step in validation would be to use 

simulated data that has been generated in a hardware simulator and actually received by a 

functioning multiple GNSS receiver.  This type of investigation is already within reach as 

commercial receivers that are capable of receiving GPS L5 and Galileo signals have 

already been developed by NovAtel Inc.  Of course the final step in the evolution of this 

research will be a validation study using signals in space in real positioning 

environments. 
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