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ABSTRACT 

 

Most of the positioning technologies for modern land vehicular navigation systems have 

been available for 25 years. Virtually all of the systems augment two or more of these 

technologies. Typical candidates for an integrated navigation system are the Global 

Position System (GPS) and Inertial Navigation Systems (INS). The Kalman filter has 

been widely adopted as an optimal estimation tool for the INS/GPS integration, however, 

several limitations of such multi-sensor integration methodology have been reported; 

such as the impact of INS short term errors, model dependency, prior knowledge 

dependency, sensor dependency, and linearization dependency. 

 

To reduce the impact of short term INS sensor errors, the bandwidth of true motion 

dynamics were identified by spectrum analysis and the first generation denoising 

algorithm that used the Discrete Wavelet Transform (DWT) was applied to identify the 

limitations of the existing denoising algorithm. Consequently, this research proposed the 

cascade denoising algorithm to overcome the limitations of existing denoising 

algorithms. It was then evaluated using several INS/GPS integrated land vehicular 

systems and the results demonstrated superior performance to existing denoising 

algorithms in both the positioning and spectrum domains. In addition, the impact of 

proposed algorithms on different integrated systems was investigated extensively.  

 

Furthermore, an alternative INS/GPS integration methodology, the conceptual intelligent 

navigator incorporating artificial intelligence techniques, was proposed to reduce the 

remaining limitations of traditional navigators that use the Kalman filter approach. The 

proposed conceptual intelligent navigator consisted of several different INS/GPS 

integration architectures that were developed using artificial neural networks to acquire 

the navigation knowledge. In addition, the “brain”, a navigation information database, 

and a window based weight updating scheme were implemented to store and accumulate 

navigation knowledge. The conceptual intelligent navigator was evaluated using several 

INS/GPS integrated land vehicular systems and the results demonstrated superior 

 iii



performance to traditional navigator in the position domain. Finally, a low cost INS/GPS 

integrated system was considered to verify the advantages gained by incorporating the 

conceptual intelligent navigator as an alternative method toward developing next 

generation land vehicular navigation systems. 
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NOTATION 

 

1. Conventions 

 

1.1 Vectors are represented by lower-case letters 

1.2 Matrices are represented by upper-case letters 

1.3 Functions are represented by either upper-case or lower-case letters. 

1.4 A dot above a vector; a matrix or a quantity indicates a time differentiation. 

1.5 A “vector” is always considered as three-dimensional. A superscript indicates the 

particular coordinate frame in which the vector is represented. For example: 

 represents the components of the vector a in the i-frame. ( , , )i i i
x y za a a a= i

1.6 Rotation (transformation) matrices between two coordinate frames are denoted by 

R. The two coordinate frames are indicated by a superscript and a subscript. For 

example: j
iR represents a transformation matrix from the i-frame to the j-frame. 

1.7 Angular velocity between two coordinate frames represented in a specific 

coordinate frame can be expressed either by a vector ω or by the corresponding 

skew-symmetric matrix Ω. A superscript and two subscripts will be used to 

indicate the corresponding coordinate frames. For example:  or 

 describes the angular velocity between the i-frame and 

the j-frame represented in the k-frame. 
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2. Acronyms 

 

2-D  Two dimensional 

3-D  Three dimensional  

ADAS  Advanced Driver Assistance Systems 

AIAs  Artificial Intelligent Algorithms  

AITS  Artificial Intelligent Transport System  

AIVHS  Artificial Intelligent Vehicle Highway System  
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CHAPTER 1 
 

INTRODUCTION 
 

Navigation comprises the methods and technologies to determine the time varying 

position and attitude of a moving object by measurement. Position, velocity and attitude, 

when presented as time variable functions, are called navigation states because they 

contain all necessary navigation information to georeference a moving object at any 

moment of time. In those cases where only the position of the moving object is required, 

the term ‘kinematic positioning’, instead of navigation, is usually used [Schwarz and El-

Sheimy, 1999].  

 

Land vehicular navigation has a surprisingly long history. Some of its principles follow 

the analogous precepts of animal survival mechanisms. For instance, dead reckoning is 

the same approach used by honey bees to report the exact position of nectar as a bearing 

and distance through a complicated dance pattern. Some experiments have revealed that 

pigeons are capable of detecting the Earth's magnetic field and can use it to orient and 

possibly to navigate [French, 1986]. The earliest vehicular navigation systems, the range 

finder chariot and Chinese south-pointing chariot, date back to at least two thousands 

years ago (see chapter 2 for details). 

 

During the last two decades, the rapid growth in the use of land vehicles and the 

dependence on roads for a significant proportion of freight movement has led to 

increasingly high levels of congestion, and with all the associated problems of economic 

loss, environment damage and safety concern [Drane and Rizos, 1998].. In this area, an 

enhanced land vehicular navigation system will offer great potential for improvements.  

According to Zhao [1997], the benefits of land vehicular navigation systems can be 

categorized as Table 1.1: 

 

In fact, Navigation systems are becoming standard in-vehicle equipments. Based on the 

positioning capability of the vehicle, location-based information for the driver could be 

provided.  On the other hand, with the advanced development of computer technologies 
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in hardware and software, the incorporation of Artificial Intelligent Algorithms (AIAs) 

with the next generation navigation system is receiving more attention. AIAs include 

artificial neural networks (ANNs), fuzzy logic, evolutionary computing, probabilistic 

computing, expert systems, and genetic algorithms. The trend toward the incorporation of 

AIAs and navigation algorithm is fueled by the need for intelligent systems and the 

limitations with the current navigation algorithms, such as the extended Kalman filter, 

which have been reported by several researchers [Gelb, 1974; Brown and Hwang, 1992 

Vanicek and Omerbasic, 1999]. As the extended Kalman filters usually serve as the 

multi-sensors integration scheme for the current land vehicular navigation; therefore, 

investigating new integration techniques using AIAs for general land vehicular 

navigation become the motivation of this research.  

 

Table 1.1: Benefits of Land vehicular navigation system 

Society Commercial applications: Single user 

o Economic efficiency: It 
makes the best use of 
vehicle fleets and in 
minimizing  journey time 
or distance 

o Road safety: It can 
significantly enhance 
road safety by presenting 
the route guidance 
information 

 

o Road and load 
optimization: It reduces 
costs and improves 
efficiencies. 

o Crisis alarm and 
response: It addresses 
the safety issues affecting 
the vehicle. 

o “Just in time” 
operation: It requires 
accurate prediction of 
arrivals and precise 
timing. 

o Schedule adherence: it 
is more applicable to 
transit vehicles, such as 
buses and trains. 

o En route driving 
information: It assists 
avoidance of incidents. 

o Safety readiness: It alerts 
driver regarding safety 
issues. 

o Automatic vehicle 
operation: It facilitates 
driverless operation. 

o Traveler services: It 
provides information on 
destinations for travelers 
en route. 

 

 

 

1.1 Background 
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The last two decades have shown an increasing trend in the use of positioning and 

navigation (POS/NAV) technologies in land vehicle applications; primarily in land 

vehicular navigation systems. Figure (1.1) shows the major sections of the current 

POS/NAV market in terms of a dollar value. Currently, the land vehicle market section 

has a 32% share (about $4 billion US) of the total market. By 2005, this will grow to over 

$12 billion US reaching almost 50% of the total POS/NAV market [Schwarz and El-

Sheimy, 1999]. 

 

     

0
2

4
6

8
10

12
14

Avia
tio

n

Mari
tim

e

Surv
ey

ing
 &

 S
cie

nti
fic

La
nd

 Tran
sp

ort
ati

on

Rec
rea

tio
n

Tim
ing

U
S 

$ 
B

ill
io

n

1995
2000
2005

 

Figure 1.1: Current and Future POS/NAV Market Shares by Applications                               
(After Schwarz and El-Sheimy, 1999) 

 

Application areas of POS/NAV technologies in land transportation are numerous 

including automated car navigation, emergency assistance, fleet management, person 

finding, asset tracking, collision avoidance, environment monitoring, and automotive 

assistance [Czerniak et al, 1998]. More important, the convergence of location, 

information management and communication technologies have created a rapidly 

emerging market known as location-based service (LBS). LBS is a critical enabling 

technology using location as a filter or magnet to extract relevant information to provide 

value-added service such as location-aware billing, automated advertising services and 

other location-based information sought by the user based on his or her location. Because 

of the importance of location information, the market in turn has pushed hard for the 
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development of next generation low-cost/small-size in-vehicle navigation and guidance 

systems, providing not only location information but also route-guidance and location-

sensitive services [El-Sheimy, 2000a]  

 

Modern land vehicular navigation systems have been thought of as a very recent 

development, however, most of their positioning technologies have been available for 25 

years. Virtually all modern land vehicle navigation systems integrate two or more of 

these technologies. Typical candidates for such an integrated navigation system are the 

Global Position System (GPS) and Inertial Navigation Systems (INS); more details will 

be given in chapters 2 and 3. 

 

GPS has become the primary positioning technology for land vehicular navigation 

applications. However, while an increasing number of user communities accept that GPS 

can easily achieve the level of performance required under ideal conditions, it also widely 

acknowledges that the system becomes highly unreliable in certain environments. Thus, 

although GPS has been recognized as an all-weather available positioning technology, the 

line of sight signal requirements prevent its use as an all-environment positioning 

technology.  

 

On the contrary, an INS is a self-contained positioning and attitude device. In other 

words, it meets the all-environment requirement. The primary advantage of using an INS 

for land vehicle navigation applications is that velocity and position of the vehicle can be 

provided with abundant dynamic information and excellent short term performance. 

However, an INS if used as stand-alone system (i.e. without external aiding) is only 

accurate for a limited time as its errors grow with time. Thus, an integrated system 

provides an enhanced navigation system that has superior performance in comparison 

with either a stand-alone GPS or INS as it can overcome each of their limitations. 

Although the Kalman filter has been widely adopted as a standard optimal estimation tool 

for the integration of INS and GPS, it does have limitations. These limitations will be 

briefly discussed below with further details given in section 3.3.2. 
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According to Skaloud [1999], the benefits of INS/GPS integration are band-limited as the 

lower boarder of the INS/DGPS error spectrum is mainly determined by the biases in 

GPS observations while the upper boarder is mainly determined by short term inertial 

sensor errors. Since the long term errors usually include accelerometer bias, gyro drifts 

that are usually modeled as error states are limited with the external aiding for long 

period of time, thus, the remaining short term errors are responsible for a certain amount 

of the error accumulation during the GPS outage period. 

 

Skaloud [1999], Burton et al., [1999], and Nassar [2004] successfully used the wavelet 

transform as a denoising tool to reduce the impact of INS short term errors and to 

improve the positioning accuracy during GPS outages for land vehicular and airborne 

applications. The main concern in denoising the INS data is how to remove short term 

errors without jeopardizing the true motion dynamic component of the vehicle. It requires 

the prior knowledge of the bandwidth of the true motion dynamic of typical land vehicles 

and the spectrum characteristic of the wavelet denoising algorithm. However, the 

research activity mentioned above did not provide such information. In addition, they did 

not suggest any proper criteria that can be applied to decide upon the optimal 

decomposition level required by the wavelet denoising algorithm.  

 

On the other hand, the Kalman filter depends on a set of measurements and a proper 

dynamics model for the navigation parameters error states and stochastic model of sensor 

errors to provide optimally estimated states [Skaloud, 1999]. Thus, besides the quality of 

the measurements, the final quality of the filter states relies on the quality of the dynamic 

model. If the filter is exposed to input data that does not fit the model, it will not result in 

reliable estimates. Obviously, the model presentation has to depend on the initial 

knowledge and on the real process taking place in the system.  

 

As mentioned in Vanicek and Omerbasic [1999], the Kalman filter is system or sensor 

dependent as the parameters of the Kalman filter vary from one system to another (i.e., 

IMUs with different accuracy level), or even between similar sensors (IMUs with similar 

accuracy level). In fact, it requires an expert to spend enormous amounts of time and 
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effort to come up with a set of optimal parameters. Such a tuning process can be regarded 

as the learning process of the Kalman filter. In contrast, the AIAs have been verified as 

successful and effective for providing solutions to certain engineering and scientific 

problems that could not be solved using conventional estimation techniques.  

 

ANNs have been extensively studied with the aim of achieving human-like performance, 

especially in the field of pattern recognition and robot control and navigation [Mandic 

and Chambers, 2001].  These networks are composed of a number of nonlinear 

computation elements which operate in parallel and are arranged in a manner reminiscent 

of biological neural interconnections. ANNs are designed to mimic the human brain and 

duplicate its intelligence by utilizing adaptive models that can learn from the existing 

data and then generalize what has been learnt [Ham and Kostanic, 2001]. This research 

work attempts to investigate the incorporation of ANNs methodologies toward 

developing alternative INS/GPS integration methodology for general land vehicular 

navigation applications.  

 

1.2 Research Objectives and Contributions 
 

The main objective of this research is to develop a novel wavelet denoising algorithm, 

cascade denoising algorithm, and develop a conceptual intelligent navigator that consists 

of ANNs based INS/GPS integration architectures for next generation land vehicular 

navigation systems. Ultimately, the conceptual intelligent navigator is expected to 

overcome or, at least, reduce the limitations of the conventional Kalman filter based 

INS/GPS integration algorithms. As each of these limitations contributes to certain 

amount of positional error accumulation during GPS outage, therefore, the proposed new 

algorithms including cascade denoising algorithm and the conceptual intelligent 

navigator are expected to reduce the impact of these limitations by reducing the 

positional error accumulation during GPS outage.   

 

The first objective is to develop a cascade denoising algorithm to remove short term INS 

sensor errors including high frequency noises, vibrations and other disturbances to 
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improve the positioning accuracy during GPS outages. In addition, it is implemented to 

overcome the limitations of existing denoising algorithms. Thus the steps toward 

developing the cascade denoising algorithm can be summarized in Table 1.2. 

 

Table 1.2: The steps toward developing cascade denoising algorithm 

Spectrum analysis of Continuous and Discrete Wavelet Transform (CWT and 
DWT) 

Task The spectrum characteristics can be applied as an index to decide the optimal 
decomposition level required for the denoising algorithm.  

Spectrum analysis of raw measurements of Inertial Measurements Units (IMU) 
Task The bandwidths of true motion dynamics that are monitored by each sensor (i.e., 

X-Gyro/Accel, Y-Gyro/Accel and Z-Gyro/Accel) can be applied to determine the 
optimal decomposition level without jeopardizing the true motion dynamic 
components. 

Spectrum analysis of existing denoising algorithm 
Task The limitations of the existing denoising algorithm in the spectrum domain can 

be identified by investigating its spectrum characteristics.  
 

After removing the short term errors, the next objective is to review and investigate the 

proper ANNs’ architectures for developing the INS/GPS integration algorithm and to 

build the foundation toward investigating of a conceptual intelligent navigator. The 

investigation for the proper ANNs’ architectures is given in Table 1.3.  

 

Table 1.3: The investigation for proper ANNs’ architecture 

Performance analysis of different types of ANNs’ architectures 
Task 1. A supervised static neural network (i.e., Multi-layered feed-forward neural 

networks, MFNNs) and a supervised dynamic neural network (i.e., recurrent 
neural networks), are investigated.  

2. The performance analysis of the two algorithms in terms of positioning 
accuracy and learning speed  

3. The investigation will recommend the ANN architecture that will be the core 
algorithm toward the development of an ANNs based INS/GPS integration 
architecture. 

Performance analysis of different learning algorithms 
Task 1. Standard backpropagation algorithm, second order learning algorithms and 

extended Kalman filter based learning algorithms will be compared in terms 
of their learning speed and prediction accuracy.  
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After the proper ANNs’ architecture and associated learning algorithms are decided, the 

final objective is to develop the core components of the conceptual intelligent navigator 

for INS/GPS integration at the software level. Three functional schemes are required for 

developing the conceptual intelligent navigator, as shown in Table 1.4.  

 

Table 1.4: The core functional schemes of conceptual intelligent navigator  

Acquisition of the navigation knowledge 
Task 1. The navigator is expected to acquire necessary knowledge during the learning 

process 
2. Several INS/GPS integration architectures using Multi-layer Feedforward 

Neural Networks (MFNNs) are developed to provide the navigation 
knowledge to the navigator. 

Storage of the navigation knowledge 
Task 1. The navigator will include a navigation knowledge database for storing the 

acquired and learned navigation knowledge. The database will act as the 
“brain” of the navigator.  

Accumulation of the navigation knowledge 
Task 1. The navigator is expected to have the ability to accumulate the navigation 

knowledge and store it in the “brain” to provide up-to-date navigation 
knowledge if required.  

2. Consequently, a window based weight updating strategy will be developed to 
accumulate acquired navigation knowledge. 

 

Finally, several INS/GPS integrated land vehicular navigation systems are applied to 

evaluate the performance of the developed conceptual intelligent navigator in terms of 

positioning accuracy during GPS outage. The major contributions of this research work 

are given as Table 1.5. In addition, some of the material presented in Chapters 4, 5, and 6 

has been previously published or submitted for publication in papers (see Table 1.5 for 

details). In those cases where the candidate has been the author or a co-author of these 

papers, quotations are not indicated as such, but are simply referenced. 
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Table 1.5: The major contributions of this research work  

Development of the cascade denoising algorithm 
Contributions 1. The spectrum analysis of the Continuous Wavelet Transform (CWT), 

Discrete Wavelet Transform (DWT) and existing denoising 
algorithms;  

2.  The spectrum analysis of raw IMU dynamics signals and  
3. The comparison and performance analysis between the existing 

denoising algorithm and the developed cascade denoising algorithm 
in the spectrum and position domains.  

Publications Chiang et al., [2004b] 

Development of  the conceptual intelligent navigator 
Contributions 1. The performance analysis of a static and a dynamic neural network 

using an INS/GPS integrated land vehicular navigation system;  
2. The development of several ANNs based INS/GPS integration 

architectures to generate navigation knowledge; 
3. The development of the window based weights updating strategy to 

accumulate navigation knowledge;  
4. The incorporation of the navigation information database as the 

“brain” of the navigator to store navigation knowledge. 
Publications Chaing and El-Sheimy [2002], Chiang et al., [2003], El-Sheimy et al., 

[2003], Chiang [2003], Chiang [2004],Chiang and El-Sheimy 
[2004a], Chiang et al., [2004a] ,Chiang and El-Sheimy [2004b] 
,Chiang and El-Sheimy [2004c],El-Sheimy et al., [2004] 

 

 

1.3 Thesis Outline 
 

The thesis contains eight chapters and three appendices that are organized as described 

below: 

 

Chapter 1 presents the motivation, objectives, and contributions of this research work. 

 

Chapter 2 reviews several aspects of land vehicular navigation systems, such as various 

coordinate frames, the historical perspective of land vehicular positioning technologies, 

the role of land vehicular navigation systems, and the modern positioning technologies of 

land vehicular navigation systems. 
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Chapter 3 presents the fundamentals of GPS and INS to review the advantages and the 

disadvantages of each system and the benefits of an INS/GPS integrated system. The 

chapter also includes the future development of the satellite based and INS based 

positioning technologies. Finally, the fundamentals of Kalman filtering and associated 

INS/GPS integration architectures are reviewed. Before ending, the limitations of the 

Kalman filter based INS/GPS integration algorithm are identified.   

 

Chapter 4 presents the Continuous Wavelet Transform (CWT) to gain some appreciation 

regarding the benefits of the technique. Following that, the Discrete Wavelet Transform 

(DWT) and Multiresolution Analysis (MRA) are given to provide the spectrum 

perspective of MRA. The bandwidth of true motion dynamic signal is investigated 

through the spectrum perspective of kinematic IMU signals. In addition, the limitations of 

existing wavelet denoising algorithms are given through a spectrum analysis. Finally, the 

idea of the cascade denoising algorithm is implemented and its performance is analyzed 

by using kinematic IMU measurements. 

 

Chapter 5 demonstrates the fundamentals of ANNs.  Background information is given, 

followed by several aspects associated with static neural networks and dynamic neural 

networks, such as topologies of different neural network architectures, standard 

backpropagation learning algorithms, second order learning algorithms and linearized 

recursive estimation learning algorithms. The chapter addresses the performance 

evaluation of a dynamic and static neural network using real data obtained through 

INS/GPS integrated land vehicular systems. The conclusions are then applied to decide 

whether dynamic neural networks or static neural networks are to be used as the core 

algorithm for developing the conceptual intelligent navigator.  

 

Chapter 6 introduces several ANNs based INS/GPS integration architectures to generate 

navigation knowledge for the conceptual intelligent navigator. After that, the concept of a 

navigation information database is discussed to provide storage space for the navigation 

knowledge.  A window based weights updating strategy is then given to accumulate 
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navigation knowledge. The chapter concludes with a performance analysis of the 

proposed intelligent navigator. 

 

Chapter 7 presents the detailed performance analysis of the cascade denoising algorithm 

and the conceptual intelligent navigator using several INS/GPS integrated land vehicular 

navigation systems that include navigation grade, tactical grade, and micro 

electromechanical system (MEMS) IMUs. In addition, several issues regarding the 

cascade denoising algorithm on these different IMU systems as well as the performance 

of the conceptual intelligent navigator on different INS/GPS integrated systems (i.e., 

different IMU systems combined with Differential GPS (DGPS) mode or Single Point 

Positioning (SPP) mode) is investigated. 

 

Chapter 8 draws the major conclusions from the research work and provides 

recommendations for future investigation. 
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CHAPTER 2 
 

LAND VEHICULAR NAVIGATION SYSTEMS 
 
Land vehicular navigation has a surprisingly long history. In fact, most of the basic 

principles of modern land vehicular navigation date back approximately 2000 years 

[French, 1986]. The earliest land vehicular navigation systems are thought to be the 

Chinese range finder chariot (ancient odometer); a distance measuring device and 

Chinese south-pointing chariot which acted as an automatic direction-keeping system. 

With the recent development of computer technologies during the past two decades, the 

evolution of positioning technologies of land vehicular navigation systems have been 

accelerated with the fastest speed ever in human history. As a result, the role of land 

vehicular navigation systems has become more significant and critical in several aspects 

of daily life, such as economic efficiency and road safety issues.  

 

In this chapter, several aspects of land vehicular navigation systems are reviewed. This 

includes the various coordinate frames that are usually used, the historical perspective, 

the role of these systems and the modern positioning technologies adopted. 

 

2.1      Coordinate Frames 

 

The navigation result is expressed relative to a known reference, which is usually defined 

by a specific coordinate system. The measurements of different navigation sensors are also 

resolved relative to a particular coordinate system. When the sensor coordinate system and 

navigation frame of reference do not match, the sensor measurement must be transformed 

from the sensor coordinate system to the navigation frame. According to El-Sheimy 

[2004a], several different reference frames that are applied for navigation systems are:  

 

 Inertial Frame ( i-frame) 

 
The origin of the i-frame coincides with the Earth’s centre of mass.  The axes are non-

rotating with respect to the fixed stars, its z-axis parallel to the spin axis of the Earth, its 
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x-axis pointing towards the mean vernal equinox, and its y-axis completing a right-

handed orthogonal frame, as shown in Figure (2.1). The vernal equinox is the ascending 

node between the celestial equator and the ecliptic. Thus, the right ascension system is 

used as the inertial frame in practice, since it closely approximates an inertial frame. 
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Figure 2.1: Inertial frame (i-frame) 

 

 Earth-Fixed Frame (e-frame) 

 

The origin of the e-frame coincides with the Earth’s centre of mass and the axes are fixed 

with respect to the Earth. Its x-axis points towards the mean meridian of Greenwich, its z-

axis is parallel to the mean spin axis of the Earth, and its y-axis completes the right-

handed orthogonal frame, as shown in the Figure (2.2). In this definition, the i-frame and 

e-frame differ by a constant angular rotation which equals the mean rotation rate of the 

Earth, , about the common z-axis. The small variations in orientation and 

the speed between the actual rotation axis of the earth and the mean rotation axis can be 

neglected for practical purposes. The relationship going from the e-frame to the i-frame 

is: 
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Figure 2.2: Earth-Fixed frame (e-frame) 

 

 Navigation Frame( n-frame) 

 
The navigation frame is usually defined as the local level frame (l-frame) which is a local 

geodetic frame whose origin coincides with the origin of the sensor frame. Its x-axis 

points towards geodetic north, its z-axis is orthogonal to the reference ellipsoid pointing 

down, and its y-axis completes a right-handed orthogonal frame.  This is the north-east-

down (NED) system which is shown in Figure (2.3). The rotation between the e-frame 

and the l-frame is described by the following Direct Cosine Matrix (DCM): 

 

sin cos sin sin cos
( ) ( ) sin cos 0

2
cos cos cos sin sin

l
e y zC R R

ϕ λ ϕ λ
πϕ λ λ λ

ϕ

ϕ λ ϕ λ

− −⎡ ⎤
⎢ ⎥= − − = −⎢ ⎥
⎢ ⎥− − −⎣ ⎦ϕ

                              (2.2) 

Where λ is the longitude, φ is the latitude, and ,y zR R  describe the rotation of the 

coordinate systems about the y and z-axis respectively. Using the orthogonality 

characteristics of the DCM, the DCM from the l-frame (NED) to the e-frame is obtained 

as follows: 
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Figure 2.3: Local Level frame (l-frame) 

 

 Body Frame (b-frame) 

 

The body frame is an orthogonal frame attached to the vehicle. Its axes coincide with the 

input axes of the sensor block; thus, the raw outputs of the IMU are the components of 

the rotation rate and the acceleration experienced by the sensor block along the body 

axes.  This forward-across-down body frame is shown in the Figure (2.4). The DCM 

between the l-frame and b-frame is: 

 

( ) ( ) ( )b
l x y zC R R Rφ θ ψ=                                                                                                   (2.4) 

 

Where , , andφ θ ψ are the three components of the Euler rotation angles roll, pitch, and 

azimuth, respectively, between the l-frame and the b-frame. Similarly, the DCM from the 

b-frame to the l-frame can be obtained via the orthogonality criteria of DCM: 
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Figure 2.4: Body frame (b-frame) 

 

2.2     Historical perspective of Land Vehicular Positioning Technologies 
 

Before reviewing the modern positioning technologies, which are given in section 2.4, 

the historical perspective about the evolution of those positioning technologies is given as 

follows: 

 

 Odometer 

 

In general, almost all land vehicular navigation systems include an odometer as part of a 

dead-reckoning system [French, 1987]. The odometer is a device that measures distance 

traveled and its name comes from the Greek word hodos (way) and metron (measure). 

The first odometer was used in China during the Later Han Dynasty (25-220 AD). Chang 

Heng, the inventor of the known seismograph, also invented an odometer, also known as 
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the range finder chariot, as shown in the Figure (2.5). A set of gears connected the wheels 

of the carriage with the wooden drummer, on the same principle as that of the modern 

automobile odometer. The gear mechanism was driven by the wheels of a cart operated 

by two automatons. One struck a drum as each li (0.5 km) went by to measure distance, 

and the second rang a bell at the end of every 10 li (5km) [French, 1986]. 

 

Modern mechanical odometers for land vehicles use similar principles to rotate 

numerical-faced cylinders to indicate distance traveled. However, mechanical odometers 

are now being replaced by electronic odometers which use a computer to add an 

increment of distance to the displayed value for each electronic pulse received from a 

sensor monitoring the rotation of a wheel. Signals from electronic odometers are used as 

dead reckoning inputs for all modern land vehicular navigation systems. 

 

 
 

Figure 2.5: Ancient odometers (computer graphic) 

(Courtesy of the National Science & Technology Museum, Taiwan] 

 

 Differential Odometer 

 

The differential odometer is essentially a pair of odometers; one for a wheel on each side 

of the vehicle, as illustrated in Figure (2.6). As the vehicle turns, the outer wheel travels 

farther than the inner wheel by a distance that is equal to the product of the change in 

heading and the width of the vehicle. Thus continuous comparison of the difference in 

travel by the two wheels indicates the occurrence and degree of turns.  
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Figure 2.6 Ancient differential odometres: (computer graphic) 

(Courtesy of the Ancient Chinese Machinery Research Center, Taiwan) 
 

According to a legend, the chariot was invented by the first emperor, Huang Di, in 

ancient China around 2600 B.C.  However, the differential odometer was invented in 

China about 2000 years ago according to true historic literatures. It was the technological 

basis for the “south-pointing chariot’. An ancient Chinese mechanical engineer, Ma 

Chuin, was credited for the invention of the south pointing chariot. When changing 

heading, a gear train driven by the chariot’s outer wheel engaged and rotated a horizontal 

turntable to exactly offset the change in heading. Thus, a figure with an outstretched arm 

mounted on the table always pointed in its original direction regardless of which way the 

chariot turned, as indicated in Figure (2.6) [French, 1986].  

 
 Magnetic Compass 

A compass is an instrument containing a freely suspended magnetic element which 

displays the direction of the horizontal component of the Earth's magnetic field at the 

point of observation. The magnetic compass is an old Chinese invention, probably first 

made in China during the Qin dynasty (221-206 B.C.). The Chinese designed the 

compass on a square slab which had markings for the cardinal points and the 

constellations. The pointing needle was a lodestone spoon-shaped device, with a handle 

that would always point south, as shown in Figure (2-7). Magnetized needles used as 

direction pointers instead of the spoon-shaped lodestones appeared in the 8th century AD, 

again in China, and between 850 and 1050 they seem to have become common 
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navigational devices on ships. The first person recorded to have used the compass as a 

navigational aid was Zheng He (1371-1435), who made seven ocean voyages between 

1405 and 1433 [Zhao,1997].  

 

Figure 2.7: Ancient magnetic compass 

(Courtesy of the National Science & Technology Museum, Taiwan) 
 

 Gyroscope 

In the mid-19th century, the spinning top acquired the name, "gyroscope," though it was 

not invented as a navigation tool at that time. The French scientist Leon Foucault had 

experimented with a long, heavy pendulum in an attempt to observe the rotation of the 

Earth. The pendulum was set swinging back and forth along the north-south plane, while 

the Earth turned beneath it. 

Foucault corroborated the observation by using a spinning top in a similar manner. He 

placed a wheel, rotating at high-speed, in a supporting ring in such a way that the axis of 

the spinning wheel could move independently of the ring. In fact, the supporting ring 

moved over the course of a day, as it was connected to the surface of the rotating Earth. 

The axis of the wheel remained pointing in its original direction, confirming that the 

Earth was rotating in a twenty-four hour period. Foucault named his spinning wheel a 

"gyroscope," from the Greek words "gyros" (revolution) and "skopein" (to see) [Titterton,  

and Weston, 1997]. 

 Early Electronic Land Vehicular Navigation System 
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One of the earliest land vehicular navigation systems to incorporate electronic 

components was the vehicular odograph developed for jeeps and other military vehicles 

during World War II by the U.S Army Corps of Engineers [French, 1986]. The main 

components included a magnetic compass whose needle position was read by a photocell. 

The compass output drove a servomechanism to rotate a mechanical shaft corresponding 

to vehicle heading. The compass shaft was coupled to a mechanical computer in a 

plotting unit that resolved travel distance from an odometer shaft into x, y components, 

and drove a stylus to plot the vehicle’s course automatically on a map of corresponding 

scale. 

 

 Radio-based Navigation System 

The first radio-based navigation technique amounted to determining the direction of a 

known transmitter by rotating a direction-sensitive antenna. Much higher precision was 

offered by a series of systems known as OMEGA, DECCA, and Long Rang Navigation 

(LORAN-C), see Kayton and Fried [1996] for details. These were developed around the 

time of World War II. By timing the difference in arrivals of radio signals from a 'master' 

and a 'slave' transmitter (which re-transmitted the master signal the moment it received 

it), a ship could locate itself along a specific curve (in the 2-D plane case, a hyperbola) 

[French, 1995]. 

The Global Positioning System (GPS) is the only system that is able to provide the user’s 

position on the Earth anytime, in any weather, anywhere at present time. 28 (24+4spares) 

GPS satellites orbit the Earth at an altitude of 20,000 km.  They are continuously 

monitored by numerous worldwide ground stations. The satellites transmit signals that 

can be detected by anyone with a GPS receiver. Section 3.1 contains more detailed 

information about the fundamentals of GPS.  

 Micro-Electro-Mechanical Systems Inertial Measurement Units 

Inertial Navigation Systems (INS) have become an important component of aircraft, ship 

and submarine navigation and guidance since World War II. Although the latest 
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development of INS and computer technologies have reduced the size and improved the 

accuracy and stability of INS, the high cost and government regulations limit the wider 

inclusion of high quality IMUs as part of commercialized land vehicular navigation 

systems. The recent development of Micro-Electro-Mechanical Systems (MEMS) 

technology have shown promising light towards the development of IMUs. MEMS are 

integrated micro devices or systems combining electrical and mechanical components 

whose size ranges from micrometres to millimetres. MEMS, an enabling technology 

combined with the miniaturization of electronics, have made it possible to produce chip-

based inertial sensors for use in measuring angular velocity and acceleration. These chips 

are small, lightweight, consume very little power, and are extremely reliable. They have 

therefore found a wide spectrum of applications in the automotive and other industrial 

applications [Schwarz and El-Sheimy, 1999]. The detailed content of the INS 

fundamentals will be described in section 3.2. 

2.3    The Role of Land Vehicular Navigation Systems 

According to Krakiwsky [1993] and Zhao [1997], the roles of land vehicular navigation 

systems can be grouped into four types: autonomous, fleet management, advisory and 

inventory. Among these systems, the autonomous systems are usually implemented as in-

vehicle navigation system, therefore, the configuration of such system is given in brief 

below; see Krakiwsky [1993] and Zhao [1997] for more details about the system 

configuration of fleet management, advisory and inventory systems. 

Autonomous systems usually operate in stand-alone vehicles, require continuous route 

guidance and navigation information and include on-board navigation devices. Figure 

(2.8) illustrates an example of an on-board navigation computer, a GPS receiver with a 

communication link for positioning correction from nearby base station (i.e., Differential 

GPS, DGPS) and auxiliary sensors such as Inertial Measurement Units (IMU). These 

systems do not require a dispatch or control center. Autonomous systems may or may not 

include communication links if the DGPS mode is replaced by the kinematic single point 

positioning (SPP) mode, depending upon the positioning accuracy required. In fact, with 

the GPS modernization plan, the positioning accuracy of SPP can be improved to 1~5 
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metres level [Chiang, 2003].  Meanwhile, the latest development of MEMS IMU makes 

itself an appropriate candidate as part of an autonomous system in the near future. As a 

result, SPP and MEMS IMUs can be used to develop for next generation land vehicular 

navigation systems that are inexpensive, small, and consume low power. 
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Figure 2.8:  Autonomous land vehicular navigation system 

 

The land vehicular navigation systems have different requirements in terms of 

positioning accuracy and continuity. A fundamental factor affecting the positioning 

accuracy is the environment that the system is operating in, for example, rural or urban 

areas. French [1990] reports the diversity of the applications and the different accuracies 

required for different user requirements. Table 2.1 illustrates the examples of land 

vehicular navigation user requirements in urban areas, see Krakiwsky [1994] and 

Hofmann-Wellenhof et al.,[2003] for details.  

 

According to Hofmann-Wellenhof et al.,[2003], Autonomous systems in urban areas 

require continuous positioning information accurate to within 2~5 metres (2D-95%) in 

order to always know exactly which street and street lane is being traveled and which 

intersection is being approached. In rural areas, the required positioning accuracy for the 

same type of system deteriorates to within 5~10 metres as it is adequate to simply know 

the highway that is being traveled on.  
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Table 2.1: Land vehicular navigation systems user requirements in urban areas                      

(After Krakiwsky, 1994 and Hofmann-Wellenhof et al., 2003) 

Application Vehicle Type Accuracy(m)
2D-95% 

Purpose and benefits 

Autonomous Car 2-5 Continuous positioning 
Taxi Taxi Car 10-200 Efficient dispatching 
Urban Transit Bus 20-50 Maintain schedule 
Inter-city buses Bus 50-200 Scheduling user connection 
Ambulances Ambulance 10-20 Fast response to emergencies 
Police Car 10-20 Improved fleet management,       

response time, safety  
Utilities Truck 20-50 Fast response to repairs 

 

 
2.4     Positioning Technologies for Land Vehicular Navigation Systems 
 
2.4.1    Modern Positioning Technologies 
 
The core component of any land vehicular navigation system is the positioning 

technology. Positioning technologies, which include the development of positioning 

sensors and navigation algorithms, have undergone a major evolution over the past few 

decades to meet a wide range of applications. According to El-Sheimy [2004a], the 

information that is required in every land vehicular navigation system on a continuous 

basis is: 

 

• Position and velocity of the vehicle with respect to a reference frame, 

• Distance traveled and orientation of the vehicle, comprising the vehicle azimuth 

(heading) and tilt angle (pitch and roll). 

 

The principle of modern positioning technologies that are applied in land vehicular 

navigation systems are: 

 

 Dead Reckoning (DR) Systems  
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The principle of a DR system is based on the relative position fixing method, which 

requires knowledge of the starting point of the vehicle and its subsequent speed and 

direction in order to calculate its present position. A DR system consists of odometres 

which may be set up singly or in pairs onto either the wheel or the transmission of the 

vehicle, a compass or single axis gyroscope that measures the azimuth (heading), and 

quite often a tilt sensor that gives information about the pitch or roll angles of the vehicle. 

DR systems are relatively cheap but errors in the system increase with distance traveled, 

mainly in the azimuth (heading) component, as a result, the augmentation of DR systems 

with absolute sensors, for example GPS sensors, have become the practical solution to 

avoiding accumulation of errors over long periods of operation. 

 

 Inertial Navigation Systems (INS) 

 

An inertial navigation system (INS) contains two core components: an inertial 

measurement unit (IMU) and a navigation computer. The IMU consists of three 

accelerometers and three gyros, whose respective input axes form an orthogonal triad, 

plus digitization and digital interface electronics. The accelerometres measure the 

specific forces that the IMU experiences, comprising accelerations and gravity with 

respect to the inertial reference frame. The gyros measure the angular rate that the IMU 

experiences comprising its angular rate with respect to the earth, along with the Earth’s 

angular rate with respect to the inertial reference frame. The navigation computer 

receives the inertial data and performs two functions. First it performs an alignment, 

during which it establishes an initial orientation using the local gravity vector as the 

vertical reference and North component of the earth rate vector as the heading reference. 

After establishing a navigation frame of reference that is locally leveled and having a 

known azimuth (heading) with respect to North, the navigation computer then switches to 

its free-inertial navigation mode. The key advantage of an INS is that, once aligned, it 

navigates as a self-contained navigation without the need for external signals or 

communications. As a special type of DR system its position error grows with time due to 

alignment errors and inertial sensor errors. A detailed description of INS fundamentals is 

given in section 3.2.  
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 Map Matching (MM) 

 

MM allows the determination of the vehicle’s position information by correlating 

information about features in its immediate vicinity with stored knowledge of the area, in 

the form of digital maps. MM uses the navigation solutions generated by various 

positioning systems, such as terrestrial or satellite systems. MM functions serve to 

increase or maintain the positioning accuracy as the vehicle already knows its position by 

the utilization of other positioning sensors [Zhao, 1997]. A ‘local’ map is formed and 

correlated with the stored digital map database of the area to provide the best possible 

estimate of the vehicle’s position. Thus, such technology is usually incorporated with a 

Geographic Information System (GIS) and other positioning technologies, such as GPS 

and INS.  

 

 Sign Post Systems (SPS) 

 

These systems usually utilize radio and induction coil infrastructure mounted on the sides 

of the streets, usually on traffic signal sites or bus stations. These sign posts or beacons 

are capable of communicating with vehicles, when the transceiver-equipped vehicle 

approaches to the proximity. The transmitted data can include various types of 

information, such as traffic information, segments of a map database required for route 

guidance, or coordinates for illustration. The main disadvantage is that it can only 

provide positioning information to the vehicle driving along those routes that include 

such an infrastructure. The density of the signal posts and the high cost maintenance are 

the main factors that define the limitation of such a system. For these reasons, it is 

generally only applied for bus service. 

 

 Terrestrial Radio- Navigation Systems (TRNS)  

 

As the name implies, this system utilizes the radio-frequency (RF) signals from a number 

of beacons scattered around the operation area. The exact position of the vehicle is 

determined from the intersection of the incoming signals from several TRF beacons. 
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Solving the trilateration problems, the positioning information is then obtained. Examples 

of such systems include Omega and Loran-C. Omega provides an absolute accuracy of 4 

to 8 km which makes it inapplicable for land vehicular navigation applications. Loran-C 

is a pulsed system but those pulses are subject to interference resulting in a low accuracy 

of 500 metres, especially in urban areas [Enge et al., 1995]. 

 

 Global Navigation Satellite Systems (GNSS) 

 
Satellite based positioning and navigation systems have been used successfully over the 

last two decades. The first system was the U.S. navy navigation satellite system known as 

TRANSIT which utilized the Doppler Effect to locate a moving vehicle. The two most 

sophisticated satellite systems, developed by the U.S.A and U.S.S.R., are GPS and 

GLONASS, respectively, which are both based on ranging from a number of satellites at 

known positions in orbits. In addition, a new European GNSS system, known as Galileo 

is being developed as well. In fact, GPS is the principal positioning system used in most 

of the land vehicular navigation systems at the present time. GPS is capable of providing 

reliable position and velocity information as well as keeping its accuracy levels for the 

entire mission.  However, satellite signal blockage in urban areas (or by buildings, 

bridges or even trees) may deteriorate the overall performance of GPS.  Moreover, it 

usually takes several minutes to evaluate the position following signal blockages.  

Detailed descriptions of GPS fundamentals are given in section 3.1. 

 

2.4.2    Multi-sensor Augmented Positioning Technologies 

 

It is very common that an individual navigation system may not meet the requirements of 

the positioning accuracy of a specific application.  In such a situation, a multi-sensor 

augmented system that meets the requirements is preferred. One of the significant 

benefits of an integrated system is that it can augment relatively low cost sensors, which 

can alleviate their individual performance limitations.  Furthermore, an augmented 

system can be implemented in a single high precision sophisticated system that 

incorporates a high degree of redundancy and a lower cost than a stand-alone system. A 

26 



 

good integrated system needs to fulfill the following characteristics that are shown in 

Table 2.2. Figure (2.9) illustrates the accuracy comparisons of various augmented 

positioning technologies previously mentioned.   

 

Table 2.2: The requirements of an integrated navigation system 

Requirement Functional description 

Continuous positioning The ability of the system to provide continuous and 

accurate positioning information (i.e., all 

environments). 

World-wide function It is essential for a navigation system to provide wide 

area applicability in order to operate everywhere. 

Robust-resist sensor failure The ability of the system to be reliable all the time. 

Cost effective The in-vehicular navigation components comprising the 

integrated system have to be the best compromise 

between cost and performance. 
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Figure 2.9: Performance comparisons of various augmented positioning technologies                         

(Adapted from El-Sheimy, 2000a) 

As indicated in Figure (2.9), good candidates for such an integrated land vehicular 

navigation system are INS and GPS. Each system has its own limitations, thus the 
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integration of these two systems provides a system that has superior performance in 

comparison with either GPS, or INS stand-alone systems. For instance, GPS derived positional 

errors have approximately white noise characteristics over the whole frequency range. The 

GPS derived position and velocity information are therefore excellent external 

measurements for updating the INS, thus improving its long term accuracy. Similarly, the 

INS can provide precise position and velocity data for GPS signal acquisition and 

reacquisition after outages. The detailed benefits of INS/GPS integration are given in 

Chapter 3.  

 

According to El-Sheimy [2000a], the trend towards integrated systems in positioning and 

navigation is fuelled by the demand for high accuracy, lightweight, low cost, and by 

technological developments which satisfy this demand. Three developments are especially 

important in this context: future enhancement to GPS with its modernization plan, the 

development of the new European GNSS system, known as Galileo and the progress in 

MEMS based INS systems. These issues are discussed in sections 3.1 and 3.2, 

respectively. Furthermore, the core components of any integrated system are the multi-

sensor data fusion techniques, which are briefly discussed below: 

 

 Kalman filter  

 

INS/GPS integrated systems have been common in civilian and military aeronautics 

applications where GPS position fixes update the accumulated error of inertial 

measurement sensors. When two measurements of a state, for instance position and 

velocity, are available where the random noise in each measurement has known distinct 

frequency content, a filtering technique called the complementary filter allows an optimal 

filter to be designed to minimize the effect of the noise on the signal estimates. The 

Kalman filter estimates the instantaneous state of a linear system perturbed by Gaussian 

white noise and provides a means of inferring information by the uses of direct and 

indirect measurements [Gelb, 1974; Brown and Hwang, 1992]. The Kalman filter does 

not have to read the required states; it can read an indirect measurement including 

associated noise and then estimates the required states. For example, in the INS/GPS 
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integrated system, the Kalman filter, using GPS measurements and INS states model, has 

been used to determine the error in the INS states (e.g. positions, velocities, attitudes, …etc). 

 

In fact, it has become a standard integration scheme of INS and GPS systems.  Most of the 

navigation methods found in literatures use the Kalman filter approach to integrate GPS 

and INS. A brief description of INS/GPS integration utilizing the KF is given in section 

3.3. However, as mentioned previously, several limitations of Kalman filter have been 

reported, and are given in section 3.3.2. Therefore, several alternative filtering based 

algorithms for INS/GPS integration have been investigated.  

 

 Alternative filters 

 

Xu [1995] suggested a new self-learning navigation filter associated with probability 

space and non-Newtonian dynamics. This new filter relied basically on the information 

contained in measurements on the vehicle: position fixes, velocities and their error 

statistics. Salychev [1998] suggested scalar adaptive estimation and wave estimation 

algorithms. Mohamed [1999] suggested adaptive Kalman filter based INS/GPS 

integration architecture. Fredrik et al., [2002] proposed a framework for positioning, 

navigation and tracking problems using particle filters (sequential Monte Carlo methods). 

It consisted of a class of motion models and a general non-linear measurement equation 

in position. How and Deyst [2004] demonstrated the possibility utilizing the Unscented 

Kalman filter (UKF) as an estimation tool for solving navigation problems. Frykman 

[2003] suggested particle filters based aircraft integrated navigation with the utilization of 

INS and GPS. Shin and El-Sheimy [2004] suggested an UKF based INS/GPS integration 

scheme. 

 

 AIAs 
 

Recently, with the advances in AIAs, such as ANNs, fuzzy logic, evolutionary 

computing, probabilistic computing, expert systems, and genetic algorithms, such 

techniques are expected to have great potential for next generation navigation algorithms. 
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AIA algorithms have been successfully applied in solving many engineering problems 

and have demonstrated their superiority over traditional methods. 

 

Meng and Kok [1993] suggested a neural network-based navigation algorithm for a 

mobile robot. Cerepakhin and Greenwood [1994] proposed a neural network based 

method to integrate GPS and Loran-C for marine use. Townsend et al., [1994] proposed a 

Radial Basis Function (RBF) Networks approach for mobile robot positioning. Dumville 

and Tsakiri [1994], Ashkenazi et al. [1995] and Tsakiri [1996] utilized a neural network 

to integrate DR and GPS for land vehicle navigation. Kim and Mohan [1998] suggested a 

neural–fuzzy controller for mobile robot navigation. Leyden et al., [1999] proposed a 

fuzzy logic based navigation algorithm for a mobile robot. Chansarkar [1999] utilized 

RBF networks for GPS positioning and navigation. Forrest et al., [2000] suggested an 

inertial navigation data fusion system employing an unsupervised neural network as the 

data integrator to estimate INS errors. Ojeda and Borenstein [2002] and Ojeda et al., 

[2004] proposed a fuzzy logic rule-based position estimation algorithm for mobile robots 

as one of the prototypes of marsian rovers. Aguilar et al., [2003] utilized Elman recurrent 

neural networks to predict the yaw and pitch head movement using MEMS IMUs.  

 

As for INS/GPS integration, Chiang and El-Sheimy[2002] and Chiang et al., [2003] first 

suggested an INS/GPS integration architecture utilizing Multi-Layer Feed-Forward 

Neural Networks (MFNNs) for fusing data from DGPS and either navigation grade IMUs 

or tactical grade IMUs. Chiang [2003] proposed an MFNN based INS/GPS architecture 

for integrating IMUs with Single Point Positioning (SPP). Chiang [2004] proposed an 

optimal GPS/MEMS integration architecture for land vehicle navigation utilizing neural 

network. In addition; Chiang and El-Sheimy [2004s] proposed the idea of developing the 

conceptual intelligent navigator that used ANNs approach. The preliminary results 

demonstrated the possibility and the potential of utilizing such algorithms as the multi-

sensors data fusion algorithm for next generation land vehicular navigation. Figure (2.10) 

illustrates the components of a modern land vehicular navigation system. 
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Figure 2.10: Core components of a modern land vehicular navigation system 
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CHAPTER 3 
 

FUNDAMENTALS OF INS/GPS INTEGRATION 
 
Today, most vehicular navigation systems rely mainly on the Global Positioning System 

(GPS) receivers as their primary source of information to provide the position of the 

vehicle. The system is able to provide precise positioning information to an unlimited 

number of users anywhere on the planet. As a result, the number of applications using 

GPS has increased dramatically beyond most people’s imagination and the applications 

include tracking of where people, a fleet of trucks, trains, ships or planes are and how fast 

they are moving.  Other applications include directing emergency vehicles to the scene of 

an accident, mapping where a city’s assets are located, and providing precise timing for 

endeavors that require large-scale co-ordination. GPS, however, can provide these types 

of information only under ideal conditions which require an open environment (i.e. open 

space areas). In other words, the system doesn’t work very well in urban, canopy areas 

due to signal blockage and attenuation deteriorating the obtainable positioning accuracy 

[El-Sheimy, 2000b]. Therefore, GPS has to be integrated with other sensors to bridge 

periods of GPS signal blockage in order to provide continuous navigation solutions. 

 

An INS is a self-contained positioning and attitude device that continuously measures 

three orthogonal linear accelerations and three angular rates to calculate the required 

position [Jekeli, 2001]. The primary advantage of using a stand-alone INS for navigation 

applications is that velocity and position of the vehicle can be provided with abundant 

dynamic information and excellent short term performance since acceleration, angular 

rotation and attitude data are provided at high update rates. There are, however, 

disadvantages in using an INS. The position errors of an INS accumulate with time as the 

errors of accelerometers are double integrated; In addition, the errors of gyros result in 

attitude errors (i.e. the horizontal platform misalignments), which project the impact of 

gravity into the horizontal axes and disturb the acceleration measurement to the vehicle. 

Both errors grow as a function of time; therefore, an INS is only accurate for a limited 

time without external aiding. 
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An integrated system provides an enhanced navigation system that has superior 

performance in comparison with either a stand-alone GPS or INS as it can overcome each 

of their limitations. For example, The GPS derived position and velocity is excellent 

external aid for updating the INS, thus improving its long-term accuracy. In contrast, INS 

can provide precise position and velocity data to bridge the gap during GPS signal 

blockages. Table 3.1 illustrates the comparison of the performance between the INS, GPS 

and integrated system.  

 

Table 3.1: Comparison between INS, GPS and INS/GPS 

 INS GPS INS/GPS 

Advantages  High position, 
velocity accuracy 
over short term 
 Accurate attitude  

    information 
 High measurement 

    output  rate 
 Autonomous  
 No signal outage 

 

 High position, 
velocity accuracy 
over long term 
 Uniform accuracy,  

     independent of time 
 Not sensitive to gravity 

 
 

 

Disadvantages  Accuracy deteriorates 

with time 

 Affected by gravity 

 Required Initial and 
In-flight calibration 
and alignment 

 

 Noisy attitude   
    information 

 Low measurement 
    output  rate 

 Non autonomous 
 Cycle slip and loss of 
lock 

 

 High position and 

velocity accuracy 

 Precise attitude 

determination 

 High data rate 

 Navigation output 

during GPS outage 

 Cycle slip detection 

 Reduction of GPS 

signal search time 

 Gravity vector 

determination 

 Jamming resistance  
 

 
 
In this chapter, the fundamentals of GPS and INS are presented to review the advantages 

and disadvantages of each system and the benefits of an INS/GPS integrated system. The 

future development of the satellite and INS based positioning technologies are discussed. 

After that, the fundamentals of Kalman filtering and associated INS/GPS integration 

architectures are reviewed. Finally, the limitations of the Kalman filter based INS/GPS 

integration algorithm are identified.   
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3.1     Fundamentals of GPS  
 

The Navigation System with Timing and Ranging (NASTAR) GPS is a satellite based 

radio-navigation system developed and maintained by the Joint Program Office (JPO), 

which is directed by the U.S Department of Defense (DoD).The system consists of the 

space segment consisting of satellites that broadcasts signals, the control segment steering 

the world wide system, and the user segment including the many types of GPS receivers 

available [Hofmann-Wellenhof et al., 2001]. The current space segment consists of 28 

Block II/IIA/IIR satellites (www.navcen.uscg.gov/Ftp/gps/status.txt) occupying six 

orbital planes inclined at a 55-degree angle with respect to the equator.  GPS satellites 

broadcast navigation messages and provide a global, 24-hour and all-weather navigation 

service [Misra and Enge, 2001]. 

 

The orbit of GPS satellites is 20200 km about the Earth’s surface with a period of about 

12 hours. The transmitted signals contain two frequencies; L1 at 1575.42 MHz and L2 at 

1227.6 MHz. At the present time, these signals are bi-phase modulated by one or two 

PRN codes; the Coarse/Acquisition, C/A code, and the precise code, P code. The L1 

carrier is modulated by both C/A and P codes while the L2 carrier is only modulated by P 

code. The C/A code is transmitted at 1/10 of the fundamental GPS frequency (10.23 

MHz) and is repeated every one millisecond. On the contrary, the P code is transmitted at 

the fundamental frequency and is only repeated every 267 days. The navigation message 

that contains the broadcast ephemeris and health information is modulated on both 

frequencies at 50 bits per second [Parkinson et al., 1996]. 

 

The C/A code is unrestricted and is designated for the Standard Positioning Service 

(SPS), where Single Point Positioning (SPP) accuracies of 13 metres horizontally and 22 

metres vertically can be achieved at a 95% confidence interval [NSTB/WASS T&E 

Team, 2003].The accurate P code provides Precise Positioning Services (PPS) to 

authorized user. The restriction is accomplished utilizing Anti-Spoofing (A-S), where the 

P code is translated to obtain the encrypted Y code except for authorized users [Parkinson 

et al., 1996].    
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The control segment comprises the operational control system that consists of a Master 

Control Station (MCS), five monitor stations and four ground antenna upload stations. 

The main operational task of this segment is to maintain the satellite in its orbit through 

commanded maneuvers, and generate satellite clock and orbit corrections. It uploads the 

corrections to the satellites thus they can be broadcasted to user through the navigation 

data [Hofmann-Wellenhof et al., 2001]. 

 

The user segment is basically different types of GPS receivers, which use direct line of 

sight GPS satellite signals to determine the user’s position, velocity and time with 

accuracies specified by various receivers. A GPS receiver measures the apparent transit 

time of the satellite signal from the satellite to the user, known as pseudorange; it consists 

of the propagation delay and receiver clock bias. By using at least four such 

measurements and knowing the satellite position from the ephemeris data, the problem is 

reduced to determining four unknown parameters, the receiver’s three position 

components and the clock bias, from known measurements(i.e., pseudoranges) which are 

expressed as follows [Misra and Enge, 2001]:  

 
2 2( ) ( ) ( )i i u i u i u

2P x x y y z z b= − + − + − −                                                                        (3.1)  

i i i

u u u

where,
            i               is the satellite index ,
            P              is the pseudorange (m),
            x ,y ,z      are the coordinates of ith satellite (m, m, m),
            x ,y ,z    are the coordinates of user (m, m, m),
            b               is the receiver clock bias (s)

 

The user position vectors and clock bias can be determined by linearizing the above 

equation with respect to some initial values and using least squares or Kalman filtering 

algorithms. In general, the solution becomes over-determined and the redundant 

measurements improve the accuracy and integrity as measurements are available from 

more than four satellites.  

 

3.1.1    GPS Observables and Positioning Principles 
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 Single point positioning and observables 

 

The essential GPS observables are pseudorange, carrier phase and the instantaneous 

Doppler frequency. As mentioned briefly in the previous section, the pseudorange is 

measured by comparing the replica of C/A code generated in the receiver with the code 

transmitted from the satellite to determine the time shift through an autocorrelation 

process. The carrier phase measurement is the accumulated phase offset between the 

receiver reference signal and the received satellite signal. As a result, the initial number 

of integer cycles in the carrier phase is unknown [Hofmann-Wellenhof et al., 2001]. The 

unknown integers are known as ambiguities. The basic pseudorange measurement that 

contains various error components is given as follows [Lachapelle, 2001]: 

 

( ) ion trop Mp pP d c dt dT d dρ ρ= + + − + + + +ε ε                                                   (3.2)  

,
          P             is the pseudorange measurement (m),
                       is the geometric range between the satellite and receiver antennas (m),
          d            is the orbital er

where

ρ
ρ

ion

ror (m),
          c              is the speed of light (m/s),
          dt             is the satellite clock error (s),
          dT            is the receiver clock error (s),
          d            

trop

Mp

p

is the ionospheric error (m),
          d           is the tropospheric error (m),

                     is the code range multipath error (m) , and

                       is the receiver code noi

ε

ε se error (m).

         

 

Similar to the code measurement, the carrier phase measurement contains many error 

components and is given as follows [Lachapelle, 2001]: 

 

( ) ion trop Md c dt dT N d d φ φφ ρ ρ λ ε ε= + + − + − + + +                                         (3.3)  
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M

,
                       is the measured carrier phase (m),
                       is the carrier wavelength(m),
          N             is the integer cycle ambiguity (cycles),
                

where

φ

φ
λ

ε     is the carrier phase multipath error (m) , and

                      is the receiver carrier noise error (m).φε

 

The difference between code range and carrier phase measurements can be seen from 

Equation 3.2 and 3.3 and are described as follows: 

 

• The ionospheric delay error has an opposite sign in the two expressions, due to 

the impact of group delay and phase advance on the code and phase measurement, 

respectively 

• The code multipath error and code noise out of Equation 3.2 are replaced by 

carrier multipath error and  carrier noise error in Equation 3.3,and 

•  Equation 3.3 contains one additional term corresponding to the integer 

ambiguity. 

 

 Differenced Positioning and observables  

 

Single Point Positioning (SPP) is inaccurate due to various error sources, as indicated in 

Equation (3.2) and (3.3). However, some of these errors are spatially correlated. The 

degree of correlation between errors at two receivers is a function of the baseline length. 

As a result, correlated error sources can be reduced by differencing the observation 

equations (Equation (3.2) or (3.3)) of the two receivers. One of the differencing 

techniques is single differencing, known as between-receiver single difference, which 

reduces the orbit and atmospheric error terms. The positioning equation for both 

pseudorange and carrier phase with the between-receiver single differenced observation 

can be formed as follows [Lachapelle, 2001]:     

 

ion trop Mp pP d c dT d dρ ρ∆ = ∆ + ∆ − ∆ + ∆ + ∆ + ∆ + ∆ε ε                                        (3.4)  
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ion trop Md c dT N d d φ φφ ρ ρ λ ε∆ = ∆ + ∆ − ∆ + ∆ − ∆ + ∆ + ∆ + ∆ε                           (3.5) 

where   represents a between-receiver single difference ∆  

 

Satellite clock error terms have vanished in Equation (3.4) and (3.5), as it is the same for 

the two receivers at a particular time epoch. Other error terms have now become the 

difference of errors between the two receivers. As a result, a high degree of correlation of 

errors between receivers results in the cancellation of the error in the differenced 

equation. For a short baseline, the orbital error, ionospheric delay error and the 

tropospheric delay error are highly correlated, thus the residual error can be assumed to 

be very small. The receiver clock bias, integer ambiguity, multipath and receiver noise 

still remain. Consequently, multipath error is perhaps the most dominant source of error 

in the single differenced measurements in the short baseline. On the contrary, the residual 

orbital, ionospheric and tropospheric error terms become significant compared to 

multipath error for a long baseline. 

 

The difference in the true range term ( ρ∆ ) now refers to the difference in distances, 

where the first distance is between receiver A and the satellite, and the second distance is 

between receiver B and the satellite. If the satellite position and one of the receiver’s 

positions are known (i.e., reference station), the position of the other receiver can be 

determined. This is the concept of differential positioning. By further differencing the 

between-receiver single difference across two different satellites, a between-receiver-

between-satellite double difference can be obtained as follows [Lachapelle, 2001]: 

 

ion trop Mp pP d d dρ ρ∆∇ = ∆∇ + ∆∇ + ∆∇ + ∆∇ + ∆∇ + ∆∇ε ε                                   (3.6)  

ion trop Md N d d φ φφ ρ ρ λ∆∇ = ∆∇ +∆∇ + ∆∇ −∆∇ +∆∇ +∆∇ +∆∇ε ε

∇

                            (3.7) 

where   represents a between-satellite single difference thus is the double
difference operator

∇ ∆
 

 

The receiver clock error term,  has vanished in both Equation (3.6) and (3.7), as it is 

the same for the two satellites observed at the same time. The residual orbital, 

cdT
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ionospheric and tropospheric errors are very small, causing multipath to be the dominant 

source of error in the double differenced measurements for a short baseline. However, for 

a long baseline, the residual orbital, ionospheric and tropospheric error terms become 

significant over the multipath error term. There is statistically twice as much receiver 

noise in the case of a single measurement [Raquet, 1998].    

 

The benefit of the double differenced observable is that the receiver clock error term is 

eliminated. Consequently, if the residual errors are small, the double differenced 

ambiguity term can be resolved to an integer value. While forming double differenced 

measurements between satellite pairs, one of the satellites is kept common in all the pairs. 

That satellite is called the base satellite, which is generally the satellite with highest 

elevation, as the highest elevation satellite is likely to have least amount of multipath, 

atmospheric delay errors and phase noise.  

 

In general, pseudorange measurements are used in single differenced form, while carrier 

phase measurements are used in double differenced form where a high positioning 

accuracy is required [Hofmann-Wellenhof et al., 2001]. However, double differenced 

ambiguity term  needs to be solved. According to the characteristics of differential 

positioning, the main errors that affect the ambiguity resolution for a short base line (<10 

km) are carrier phase multipath and receiver noise.  

N∆∇

 

However, ionospheric and tropospheric errors become more significant for long 

baselines. Positioning accuracy with the fixed ambiguities has positioning accuracy at the 

centimeter level [Hofmann-Wellenhof et al., 2001]. Table 3.2 gives a brief summary of 

these errors mentioned above and their mitigation in differential mode. Where the 

estimates for DGPS are based on the premise that the user’s distance from the base 

station is tens of kilometers and signal latency is tens of seconds [Misra and Enge, 2001]. 

See Raquet [1998], Misra and Enge[2001], and Lachapelle [2001] for details about GPS 

errors and their mitigation. 
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Table 3.2: A Summery of GPS errors source (After Misra and Enge, 2001 ) 

Source Potential Error Size Residual Error and Mitigation 
Satellite clock 
error 

Clock modeling error:2m (rms) DGPS:0.0m,completely removed 
via DGPS 

Satellite 
ephemeris 
prediction 

Component of the ephemeris 
prediction error along the line: 
2m (rms) 

DGPS: 0.5ppm (rms), The post- 
DGPS-corrected residual error is 
spatial correlated, thus can only be 
reduced via DGPS. 

Ionospheric 
delay 

Effect upon the code and the 
carrier is equal but opposite 
sign: The code is delay while the 
carrier is advanced by the same 
amount. 
 
Delay in zenith direction: 2~10 
m, depending on user latitude, 
time of delay, and solar activity. 
 
Delay for a satellite at elevation    
angle  E=zenith delay * oblique 
factor (E),oblique factor: 1 at 
zenith, 1.8 at 30  elevation 
angle; and 3 at 5  

o

o

Single-frequency receiver using 
broadcast model:< 10m 
 
Dual-frequency receiver 
(compensate for the ionospheric 
delay but magnifies noise): 1m 
(rms) 
 
DGPS: 0.2-20 ppm (rms), The 
post- DGPS-corrected residual 
error is spatial correlated, thus 
can only be reduced via DGPS. 

Tropospheric 
delay 

Code and the carrier are both 
delayed by the same amount. 
 
Delay in zenith direction at sea 
level: 2.3~2.5 m, lower at higher 
altitude 
 
Delay for a satellite at elevation    
angle  E=zenith delay * oblique 
factor (E),oblique factor: 1 at 
zenith, 2 at 30  elevation angle; o

4 at 15 ;and 10 at 5  o o

Model based on average 
meteorological conditions:0.1~1m 
 
DGPS: 0.2-0.4ppm (rms) plus 
altitude effect; The post- DGPS-
corrected residual error is spatial 
correlated, thus can only be 
reduced via DGPS. 

Multipath In a ‘clean’ environment: 
Code:0.5-1m 
Phase:0.5~1cm 

Uncorrelated between antennas. 
Mitigation through antenna design 
and sitting, receiver design, and 
carrier-smoothing of code 
measurements 

Reviver noise Code:0.25-0.5m(rms) 
Phase:1~2mm(rms) 

Uncorrelated between receivers. 
Mitigation through antenna design 

 

 

40 



 

3.1.2    Future Development of GNSS Positioning Technologies  

 

As mentioned in chapter 2, the future development of GNSS based positioning 

technologies include 1) the modernization of GPS and 2) the deployment of the European 

GNSS system, known as Galileo. Indeed, the modernization of GPS and the advance of 

Galileo will lead to a truly multi-frequency civil GNSS. Undoubtedly, both systems will 

be highly beneficial to land vehicular navigation applications. A brief introduction of 

GPS modernization and Galileo and their impacts on land vehicular navigation are given 

in this and the next section, respectively. 

 

According to Misra and Enge [2001], current constellation of GPS Block II and IIA 

satellites has some limitations. First of all, for stand-alone operations in real time civilian 

users (i.e., land vehicles) have only access to the C/A code on L1. As a result, a dual-

frequency ionospheric delay correction can not be applied for these users. Further, L1 and 

L2 signals are very weak; therefore, they can not penetrate into concrete and steel 

buildings or underground and are susceptible to interference and jamming. GPS 

modernization plans were first announced in 1998. The detail content of the plans is 

beyond the scope of this research and can be found in McDonald [2002].. The evolution 

of GPS positioning capability in autonomous mode after GPS modernization is given in 

Table 3.3. 

 
Table 3.3: GPS positioning capability in autonomous mode (After Misra and Enge, 2001) 

Year Signal Status Horizontal Position
Accuracy (95%) 

1999 C/A-coded signal on L1,SA active 20-100 m 
2000 C/A-coded signal on L1,SA off 10-20 m 
2010 C/A-coded signal on L1and L2C 5-10 m 
2015 C/A-coded signal on L1,L2C on  L2, new civil signal on L5 1-5 m 
 

The impacts of GPS modernization on land vehicular navigation are given as follows: 

 

• Improving positioning accuracy in autonomous mode 
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Since the SA (Selective Availability) turn off on May 2000, the remaining dominate error 

source is the ionospheric delay error. However, with two modernized civilian signals, 

civilian users are able to estimate the ionospheric delay correction to improve the 

positioning accuracy of better than ten meters autonomously. According to Table 3.4 and 

Table 2.1, the positioning accuracy of SPP can be improved to 1 metre level which is 

accurate enough for most of the land vehicle navigation applications. 

 

• Replacing DGPS with SPP for land vehicular navigation applications 

 

DGPS is the only option for providing sub-meter level positioning accuracy for land 

vehicular navigation at the present time as it can reduce the impact of spatially correlated 

error sources (i.e., ionospheric delay, tropospheric delay and orbital error). However, 

such a technique is not suitable for general users as additional communication links needs 

to be established between the rover vehicle and the base station for receiving and 

transmitting differential correction data.  

 

As mentioned previously, the distribution density of such a base station is a critical factor 

for providing consistent positioning accuracy. For making such a system available, users 

might have to purchase the service. Fortunately, with modernized GPS signals, providing 

meter level positioning accuracy in SPP mode (autonomous mode) becomes possible, as 

indicated in Table 3.3. Consequently, the additional cost of purchasing telematics 

services can be eliminated, as cost is always the major concern for the general user. In 

other words, SPP can provide a cost effective solution for land vehicles with modernized 

GPS signals.   

 

On the other hand, Galileo is the European global navigation satellite system, providing a 

highly accurate, guaranteed global positioning service under civilian control. It will be 

compatible with GPS. Galileo will deliver real-time positioning accuracy down to the 

meters range by offering dual frequencies as standard service for civilian users, which is 

unprecedented for current GPS.  However, the modernized GPS will eventually provide 

three frequencies for civilian users. The space segment of Galileo is intended to consist of a 
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total 30 Mean Earth Orbiting (MEO) satellites configured as a Walker constellation, 

distributed over three orbital planes. The altitude is 23616 km, and the inclination is 56o, 

see Hein et al [2002] for the details about Galileo.     

       

Table 3.4 illustrates the significant advantages of having modernized GPS and Galileo 

available to users worldwide. According to O’Keefe [2001] and McDonald [2002], the 

benefits of the future multi-frequency GNSS include improvements in system accuracy 

and reliability, satellite availability, autonomous integrity, interference mitigation, urban 

canyon operation and in kinematic precision measurements.  

 

Table 3.4: The GPS-Galileo GNSS characteristics (After McDonald, 2002) 

Characteristic 
GPS 

+ WAAS 
Galileo 

+ EGNOS  
Combined
Capability

Spacecraft in Orbit 28 + 3 30 + 3 58 + 6 
Spacecraft Availability (aver.) 8 – 9 8 – 9+ 16 – 18 

Integrity (autonomous) Fair Fair Excellent 

Coverage (worldwide) Good Good Excellent 
(nominal HDOP-VDOP) 
Dilution of Precision 1 – 3 1 – 3 0.7 – 2 

Interference Susceptibility Low Low Very Low 
Safety Services Protection 2 signal s 4+ signals 6+ signals 

Frequencies Available (civil) 1 - 3 1 – 5 2 – 8 

E911, Related Capabilities Fair Fair Very Good 

Accuracy (Autonomous, code)* 1-2 m. 1-2 m. 0.6-1.3 m. 
 

3.2     Fundamentals of INS 
 

As mentioned in the previous chapter, most of the current INS technologies were 

developed within the last three decades [Greenspan, 1995]. The basic principle of inertial 

navigation is based on Newton’s first and second laws of motion. The basic principle is 

based on double integration of the observed acceleration obtained by accelerometers that 

are mounted on the body of the vehicle. The first integration of the vehicle acceleration 

generates velocity and the second integration yields distances (which leads to position). 
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However, the initial navigation conditions of the system (position, velocity, and 

orientation) have to be available for the integration process. Therefore, this requirement 

makes INS a relative positioning system (i.e. DR system). On the contrary, GNSS are 

absolute positioning systems. To determine the position and velocity in the desired 

navigation frame (i.e., l-frame), the accelerations have to be projected from the body 

frame (b-frame) to the navigation frame of interest before integration. A cluster of 

gyroscopes that are orthogonally mounted and placed along the same axes with the 

accelerometers are applied to measure the angular velocity of the accelerometers and to 

update its orientation with respect to the navigation frame. An INS consists of the 

following components: 

 

• An IMU that contains two orthogonal sensor triads: 

 The accelerometers which measure the vehicle’s acceleration and its linear 

motion in three mutually orthogonal directions. 

 The gyroscopes which measure the vehicle’s angular velocity and its angular 

motion in three mutually orthogonal directions 

 The sensors are fixed in the body of the IMU and are therefore called the  

body axes 

• Navigation computers : 

 For the implementation of the alignment process (Section 3.2.2) and the 

mechanization equation (Section 3.2.3)   

 

It should be noted here that the raw accelerometer output must be corrected for the 

gravitational acceleration, , before the actual acceleration of the vehicle, a , can be 

obtained. Therefore, the output of an accelerometer is called a specific force, f, and is 

given as follows [Savant Jr. et al., 1961]; 

g

 

f a g= −                                                                                                                         (3.8) 

 

There are many different designs of the inertial sensors with different performance 

characteristics and there are two ways to implement the IMU: 1) gimbaled (stable 
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platform) implementation 2) strapdown implementation. These two implementations are 

described in the next section.  

 

3.2.1    Physical Implementations of IMU 

 

1. Gimbaled (stable platform) implementation: The accelerometers are mounted on a 

gimbaled platform which is kept aligned to the navigation frame (i.e., local level frame) 

by gyro feedback. This is done by torquing the gimbals based on the changes of the 

navigation frame [Savant Jr. et al., 1961]. As a result, the accelerometer outputs after 

applying the gravity corrections can be integrated to provide velocity and position in the 

navigation frame. The advantage of a gimbaled system is that no coordinate 

transformation is required, thus the navigation computation is made simple. However, 

such systems encounter problems when the local level frame (l-frame) is applied as the 

navigation frame, and the system works in the polar region as the control torque becomes 

very large. Consequently, the wandering mode is applied instead of local level mode in a 

high latitude area [Salchev, 1998]. Figure (3.1) illustrates the operation of a gimbaled 

system utilizing the local level frame as the navigation frame. When the gimbaled system 

moves from point A to point B, the local level frame rotates an angle with respect to the 

inertial space, and the gimbal platform tracks the rotation of the local level frame. 

Consequently, the gimbal platform axes still coincide with the local level frame.  

 

 

 

 

 

 

 

 

 

Figure 3.1: Gimbaled platform and local level frame implementation 
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2. Strapdown implementation: The accelerometer and gyros are mounted directly on to 

the body of the vehicle to form a body frame, as shown in the Figure (3.2). The rotation 

rates measured by the gyros are used to constantly update the transformation matrix 

between the body frame (b-frame) and the navigation frame (i.e., l-frame). The observed 

acceleration is passed through the transformation to obtain the acceleration in the 

navigation frame after applying the gravity correction. 

 

The reasons for the rapid advance of strapdown systems are their advantages in power 

consumption, weight, cost, flexibility and stability. Undoubtedly, the recent development 

of the computer-related technologies and optical gyros has been accelerating the rapid 

development of strapdown systems [Titterton and Weston, 1997]. The essential 

difference between the strapdown and the gimbaled system concerns the transformation 

from the body frame (b-frame) to navigation frame (l-frame). With the gimbaled system, 

the transformation is done mechanically with torque commands to the servos of the 

platform gimbals and to the gyros. These torque-induced rotations stabilize the platform 

so that it is always parallel to the desired frame. On the other hand, the transformation is 

accomplished computationally in the strapdown implementation. Table 3.5 illustrates the 

comparison between the two implementations. 

 

 

 

 

 

 

 

 

 

Figure 3.2: Strapdown frame implementation 
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Table 3.5: Comparison between gimbaled/strapdown implementation (After El-Sheimy, 

2004a) 

Characteristics Strapdown Implementation Gimbaled Implementation 

Weight Light Heavy 

Size Small/compact Relatively big 

Performance Navigation-grade accuracy Navigation-grade accuracy or 

better 

Environment High reliability with immunity to 

shock and vibrations forces 

High reliability with less immunity 

to shock and vibrations forces 

 

3.2.2    Initialization of Strapdown INS 

 

Certain initialization procedures are required prior to computing the navigation 

parameters.  The strapdown INS initialization process contains the following two stages: 

 

1. Calibration: In most of the high-end or navigation grade INS, the gyroscope and 

accelerometer bias and scale factors are usually calibrated by the manufacturer and 

therefore no separate calibration is required every time the sensor is used. However, 

periodical calibration every few months is recommended. For low cost sensors, however, 

the bias and the drift stability of the gyros are much poorer and frequent calibration is very 

important. For instance, the calibration of a gyro is performed by averaging the raw 

angular velocities measured from the gyros over 10~20 minutes in static mode and comparing 

with the true value to estimate the drift. For more details, see Chatfield [1997] and Jekeli 

[2001]. 

To start the INS calculations, the initial parameters of the transformation matrix, , 

(rotation matrix from the body frame to the local level frame, roll, pitch and azimuth) are 

required. The process of computing the initial parameters of the transformation matrix is 

called the INS alignment procedure. There are two alignment modes, namely the 

Accelerometer Leveling (roll and pitch) and the Gyro Compassing (azimuth).  

l
bC
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I) Alignment_ Accelerometer Leveling: Aligns the bZ to lZ  by forcing the two 

planimeteric accelerometers, b bX and Y , measurements to zero. Consequently, the true 

vertical is established and these two accelerometers can be considered being located in a 

level plane. In strapdown systems, the accelerometer leveling is conducted 

mathematically using the following equations which assume the measurements 
b

x
b
yf and f  are tilted with respect to the vertical direction defined by the gravity vector 

[Rogers, 2003]: 

 

Roll = 1sin ( )
b b

x xf f
g g

φ −= ≅                                                                                            (3.9) 

Pitch = 1sin ( )
b b

y yf f
g g

θ −= ≅                                                                                         (3.10) 

Where andφ θ are assumed to be very small angles. 

 

The above equations illustrate the accelerometer leveling errors. Hence, the accuracy of 

the accelerometer leveling procedure is limited by the accelerometer biases, and as such 

the errors in the computed roll and pitch angles can be computed as follows: 

 

fxb
g

δφ =                                                                                                                        (3.11) 

fyb
g

δθ =                                                                                                                        (3.12)  

 

II) Alignment_ Gyro Compassing: The gyro compassing is realized by using the gyro 

measurements. It assumes that the accelerometer leveling has been accomplished. 

However, the b bX and Y accelerometers can be arbitrary rotated with respect to the l-

frame with an angle, called the azimuth angle (ψ). According to the definition of the 

body-frame which has been given in section 2.1 and Figure (3.2), the X-gyro and Y-gyro 

measurements in this situation are given by the following equations [Rogers, 2003]: 
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cos cosb
x ew w ϕ ψ=                                                                                                 (3.13) 

cos sinb
y ew w ϕ ψ= −                                                                                                  (3.14) 

 

Consequently, the azimuth angle is obtained as follows: 

 

 1tan ( )
b
y
b
x

w
w

ψ −= −                                                                                                            (3.15) 

, ( 0)
cos

b
yw

e

b

w
δψ ψ

ϕ
= ≅                                                                                                    (3.16) 

The gyro compassing is also dependent on the gyro drift and can be on the order of a 

few arcminutes for a good quality IMU to a few degrees for a low cost IMU. The Earth 

rotation rate is 15°/hour (0.004167 °/second) whereas the gyro bias variations can be as 

large as 1.0°/second in the case of low cost IMUs. This means that the gyros can not be 

used to perform a self contained azimuth alignment. Consequently, Gyro Compassing 

cannot be accomplished as the gyro drift exceeds the Earth rotation rate. Hence for gyros 

with drift rates larger that the Earth rotation rate, Gyro Compassing is usually 

accomplished via external aid (e.g. a magnetic compass). For more details about other 

azimuth aiding techniques, see Titterton and Weston [1997] and Farrell and Barth [1998]. 

b
yw

b

 

3.2.3    INS Mechanization Equations 

 

The raw measurements from accelerometers and gyros are specific forces and angular 

velocities which are measured along the body frame (b-frame).The navigation frame is 

where the data integration is performed. The choice of the navigation is application 

dependent. The local level frame is often selected as the navigation frame for the 

following reasons [El-Sheimy, 2004a]: 
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• The definition of the local level frame is based on the normal to the reference 

ellipsoid; as a result, the geodetic coordinate difference { }, , hϕ λ∆ ∆ ∆ can be 

applied as the output of the system. 

• The axes of the local level frame (NED) are aligned with the local north, east and 

down directions. Therefore, the attitude angles (roll, pitch and azimuth) can be 

obtained directly as an output of the mechanization equations. 

• Due to the Schuller’s effect, the computational errors in the navigation parameters 

on the horizontal plane are bounded. 

• Computation efficiency  

 

 Equation of Motions 

 

According to Newton’s second law of motion, the fundamental equation for the motion of 

a particle in the field of the earth, expressed in an inertial frame, is of the form  

 
i ir f g= + i                                                                                                               (3.17) 

i

i

i

,
          r                is the acceleration vector
          f                is the specific force vector
          g                is the gravitational vector

where

 

The above equation of motion can be transformed into the local level frame (l-frame, 

NED) and can be expressed as a set of first order differential equations. For more details, 

see Shin [2001]. 

 
1

(2 )
( )

l l

l l b l l l
b ie el

l l b b
b b ib il

r D v
v C f w w v g
C C

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= − + × +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥Ω −Ω⎣ ⎦ ⎣ ⎦

l                                                                           (3.18) 
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D
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−

⎡ ⎤
⎢ +⎢
⎢ ⎥= ⎢ ⎥+
⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

1

⎥
⎥                                                                                            (3.19)  

The specific force bf  is the raw output measured by the accelerometer and is defined as 

the difference between the true acceleration in space and the gravitational acceleration. 

The transformation matrix from the b-frame to l-frame ,   is given previously in 

Equation 2.4. 

,l
bC

 

M and N are radii of curvature in the meridian and prime vertical, respectively and can be 

expressed as follows [Schwarz and Wei, 2000]. 

 

1
2 2 2(1 sin )

aN
e ϕ

=
−

                                                                                                         (3.20) 

2

3
2 2 2

(1 )

(1 sin )

a eM
e ϕ

−
=

−

                                                                                                          (3.21) 

 

Where  and e are the semi-major axis and linear eccentricity of the reference ellipsoid, 

respectively.  

a

 

The position vector in the l-frame is given by curvilinear coordinates that contain 

latitude , ,ϕ  longitude , ,λ and ellipsoidal height : , h

 

[ ]Tlr ϕ λ= h                                                                                                        (3.22) 

 

The velocity vector in the l-frame is given as follows: 

 

( ) 0 0
0 ( )cos 0
0 0 1

N
n

E

D

v M h
v v N h

v h

ϕ
ϕ λ

+⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

                                                           (3.23) 
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Where ,N Ev v and ,Dv are north, east and downward velocity components. The gravity 

vector in the local level frame , is expressed as the normal gravity at the geodetic 

latitude 

,lg

ϕ  and ellipsoidal height h [Schwarz and Wei, 2000] 

 

[ ] 2 4 2
1 2 3 4 5 60 0 , (1 sin sin ) ( sin )Tlg a a a a aγ γ ϕ ϕ ϕ= = + + + + 2h a h+

T

                  (3.24) 

Where  to   are constant values and are listed in the Table 3.6 1a 6a

 

The rotation rate vector of the e-frame with respect to the i-frame projected into the e-

frame is expressed as follows: 

 

[0,0, ]e
ie ew w=                                                                                                           (3.25) 

 

Table 3.6: Constant coefficients for normal gravity 

2
1( / sec )a m  9.7803267715 2

4 ( / sec )a m -0.0000030876910891 

2
2 ( / sec )a m  0.0052790414 2

5 ( / sec )a m 0.0000000043977311 

2
3( / sec )a m  0.0000232718 2

6 ( / sec )a m 0.0000000000007211 

 

Projecting the vector to the l-frame utilizing  Equation 2.2 gives 

 

[ cos 0 sin Tl l e
ie e ie e ew C w w w ]ϕ ϕ= = −                                                                        (3.26) 

  

The transport rate represents the turn rate of the l-frame with respect to the e-frame and is 

given using the rate of change of latitude and longitude which are given as follows: 

 

tancos sin ( ) ( ) ( )
TTl NE E

el
vv vw N h M h N h

ϕλ ϕ ϕ λ ϕ − −⎡ ⎤⎡ ⎤= − − =⎣ ⎦ + + +⎢ ⎥⎣ ⎦
                                   (3.27) 
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l
ie andΩ l

el areΩ  the skew symmetric matrices corresponding to and  , respectively. 

The angular velocity , is the raw output measured by the gyros and  is its skew-

symmetric matrix.  

l
iew l

elw

,

⎤⎦

b
ibw b

ibΩ

 
Tb

ib x y zw w w w⎡= ⎣                                                                                                       (3.28) 

 

The angular velocity  is subtracted from  
b
ilΩ b

ibΩ  to remove 1) earth rotation rate and 2) 

orientation change of the local level frame. As a result, 
b
ilΩ is expressed as follows: 

 
b b
il ie elΩ =Ω +Ωb                                                                                                           (3.29) 

 

Thus,   can be obtained as follows 
b
ilw

 

tan( ) cos sin
( ) ( ) ( )

T
b b l l b l b NE
il l ie el l il l e e

vvw C w w C w C w w
N h M h N h

Ev ϕϕ
⎡ ⎤−

= + = = + − −⎢ ⎥+ + +⎣ ⎦
ϕ

)

                 (3.30) 

 

Consequently, the can be obtained through . 
b
ilΩ b

ilw

 

  Mechanization Equations 

 

The mechanization equations are applied to solve the equations of motion in order to 

obtain the position, velocity and attitude increment. In reality, strapdown IMUs work in 

discrete form and provide velocity and angle increments ( ,  

over the time interval  to 

b
f ibv and respectivelyθ∆ ∆

kt 1kt + in the body frame. Combining these increments with the 

initial condition of the system, the navigation information can be obtained. According to 

Schwarz and Wei [2000], the mechanization equations consist of four basic steps: 
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  Error Compensation  

 

The accelerometer and gyros outputs are corrected utilizing the following equations 

 

1 0 0
(1 )

10 0 (
(1 )

10 0
(1 )

fx

f f
fy

fz

S

v v
S

S

⎡ ⎤
⎢ ⎥

+⎢
⎢
⎢ ⎥∆ = ∆ − ∆

+⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+⎣ ⎦

)fb t

⎥
⎥                                                                    (3.31) 

b b
ib ib wb tθ θ∆ = ∆ − ∆                                                                                                         (3.32) 

 

Where ,fx fy fzS S and S are the scale factors of the accelerometers. f wb and b are the biases 

of the accelerometer and gyro, respectively. b
f ibv and θ∆ ∆ are raw outputs of 

accelerometers and gyros, respectively. b
f ibv and θ∆ ∆ are compensated outputs of 

accelerometers and gyros, respectively. 1k kt t t+∆ = − . 

 

  

]

Attitude Integration 

 

The body frame angular increment with respect to the navigation frame (l-frame) is given 

by the following equation: 

 

[

( )

b
lb x y z

b b l l
ib l ie elC w w t

θ θ θ θ

θ

∆ = ∆ ∆ ∆

= ∆ − + ∆
                                                                                           (3.33) 

 

The magnitude of the angular increment is given by the following equation: 
2 2 2
x y zθ θ θ θ∆ = ∆ + ∆ + ∆                                                                                                  (3.34) 

 

The above two equations are applied to update the quaternion, see Rogers [2003] for the 

detailed definition and properties of the quaternion for attitude computation. 
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2 1 2 2

3 1 3 3

4 1 4 4

( ) ( ) ( )
( ) ( ) ( )

0.5
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s s s cq t q t q t

θ θ θ
θ θ θ
θ θ θ
θ θ θ
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+
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⎢ ⎥∆ − ∆ ∆⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢− ∆ − ∆ − ∆⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣⎣ ⎦

⎤
⎥

⎥ ⎥
⎥
⎥
⎦

                                  (3.35)    

 

The parameters s and c are given as follows: 

 
2 4

2 4

1 ........
24 1920

......
4 192

s

c

θ θ

θ θ

∆ ∆
= − + +

∆ ∆
= − + +

                                                                                                     (3.36) 

 

The initial value of the quaternion is obtained after determining the initial DCM using 

Equation 2.4 with the computed initial attitudes during alignment process. 

32 23 11 22 331

13 31 11 22 332

3 21 12 11 22 33

4
11 22 33

0.25( ) / 0.5 1

0.25( ) / 0.5 1

0.25( ) / 0.5 1

0.5 1

C C C C Cq
C C C C Cq

q C C C C C
q C C C

⎡ ⎤− + + +⎡ ⎤ ⎢ ⎥⎢ ⎥ − + + +⎢⎢ ⎥ = ⎢ ⎥⎢ ⎥ − + + +⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ + + +⎣ ⎦

⎥

)

+

                                                                     (3.37) 

 

The DCM is updated as follows: 

 
2 2 2 2

1 2 3 4 1 2 3 4 1 3 2 4
2 2 2 2

1 2 3 4 2 1 3 4 2 3 1 4
2 2 2 2

1 3 2 4 2 3 1 4 3 1 2 4

( ) 2( ) 2(
2( ) ( ) 2( )
2( ) 2( ) ( )

l
b

q q q q q q q q q q q q
C q q q q q q q q q q q q

q q q q q q q q q q q q

⎡ ⎤− − + − −
⎢ ⎥= + − − + −⎢ ⎥
⎢ ⎥− + − −⎣ ⎦

                                     (3.38) 

 

The Euler angle of the attitudes, roll, pitch, and azimuth, are then given as follows 

 

1 31
2
31

tan ( )
1
C

C
θ −= −

−
                                                                                                   (3.39) 

32 33tan 2( , )a C Cφ =                                                                                                      (3.40) 

21 11tan 2( , )a C Cψ =                                                                                                      (3.41)    
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Where , ' ,1 , 3i jC s i j≤ ≤ are the  elements of the DCM matrix and atan2 is a four 

quadrant inverse tangent function. 

( , )thi j

 

  

b

Velocity and Position Integration 

 

The body frame velocity increment due to the specific force is transformed to the 

navigation frame using the following equation [Schwarz and Wei, 2000]: 

 

1 0.5 0.5
0.5 1 0.5

0.5 0.5 1

z y
l l
f b z x

y x

v C v
θ θ

θ
θ θ

⎡ ⎤∆ − ∆
⎢∆ = − ∆ ∆ ∆⎢
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fθ ⎥
⎥

t

1+

                                                           (3.42) 

 

The first order sculling correction is applied utilizing Equation 3.42. The velocity 

increment is obtained by applying the gravity and the Coriolis correction: 

 

(2 )l l l l l l
f ie elv v w w v t g∆ = ∆ − + × ∆ + ∆                                                                        (3.43) 

 

The velocity integration is then given as 

 

1
l l l
k k kv v v+ = + ∆                                                                                                  (3.44) 

 

The position integration is obtained using second order Runge-Kutta method: 

 

1 1

1 0 0
( )

10.5 0 0 ( )
( ) cos

0 0 1

l l l l
k k k k

M h

r r v v
N h ϕ+ +

⎡ ⎤
⎢ ⎥+⎢
⎢= + + ∆⎢ ⎥+⎢ ⎥

−⎢ ⎥
⎢ ⎥⎣ ⎦

t
⎥
⎥                                                         (3.45)  
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Figure (3.3) shows a schematic diagram for the implementation of the Local Level Frame 

(l-frame) INS mechanization. 

 

3.2.4    INS Error Equations 

 

The INS mechanization equations provide no information about the error of the system as 

they process the raw data from the IMU to estimate the navigation parameters. In order to 

improve the performance of INS, it is necessary to incorporate the sensor errors in the 

estimation process using one of the optimal estimation methods. This is commonly done 

through the utilization of the Kalman filter. However, given the non-linear nature of the 

INS mechanization, the perturbation analysis is applied to linearize the system 

differential equation for the error analysis. Given the complexity of the system at hand, 

the full derivation of the perturbed system is not given here. However the reader is 

advised to consult Savage [2000], Shin [2001], and  El-Sheimy [2004a] for complete 

derivation of these equations. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Local level frame mechanization  

 

bf

+

b
ilw

Accels

Gyros

b
ibw

−

b
lbw

l
bC

∫

b
lC

Gravity 
Computation

lf
∫ ∫+ + lv

−

lv lr

(2 )l l l
ie elw w v+ ×

l
elw

,l l
el eCompute w C

l
eC

e
iew

l
iew+

+

l
ilw

lg

bf

+

b
ilw

Accels

Gyros

b
ibw

−

b
lbw

l
bC

∫

b
lC

Gravity 
Computation

lf
∫ ∫+ + lv

−

lv lr

(2 )l l l
ie elw w v+ ×

l
elw

,l l
el eCompute w C

l
eC

e
iew

l
iew+

+

l
ilw

lg

  Position error equations 
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The position error equations are function of position and velocity; therefore, the position 

error equations are obtained using the partial derivatives: 

 

N
l

rr rv E

D

v
r F F

h h

δϕ δϕ δ
δ δλ δλ δ

δ δ δ
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⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

v
v

                                                                             (3.46) 
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For analysis purposes, the first term of Equation 3.46 can be neglected as the velocity 

components are divided by the earth radius which results in small quantities.  A 

simplified equation is given as follows [El-Sheimy, 2004a]: 

 

  

1 0 0
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N
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δϕ δ
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                                                             (3.49) 

 

Velocity error equations 

 

The velocity error equations are given as follows: 
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N
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D
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δ

⎥
⎥                (3.50) 

 

The gravity vector in the local level frame , is approximated by the normal gravity 

vector, 

,lg

[ ]0 0 ,Tlg γ= and γ varies with altitude.  A spherical Earth model is assumed 

and the simplified inverse square gravity model is given as [Rogers, 2003], 

 

2
0 ( R )

R h
γ γ=

+
                                                                                                              (3.51) 

 

Where 0γ is the normal gravity at h=0, and (R MN= ) .Perturbing Equation 3.51 yields 
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δ                                                                                                           (3.52) 
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                                        (3.54) 

 

Similarly, the first two terms of the velocity error equations are the major components of 

the velocity errors as the velocity components are divided by the earth radius which result 
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in small quantities. The simplified velocity error equation is given as follows [El-Sheimy, 

2004a]: 
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                                                   (3.55) 

 

In general, Df  is usually larger than Nf   and Ef  as it is close to the gravity value 

( ) thus the coupling relationships between  29.8 / secm NVδ  and δθ  and between EVδ  and 

δφ  are strong. In contrast, the coupling relationship between either NVδ  or EVδ  and δψ  is 

weak. The advantage of the strong coupling relationship between two errors is that if one 

of them is accurately estimated, then the other can be estimated accurately as well [El-

Sheimy, 2004a]. 

 

 

  Attitude error equations 
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Similarly, the first two terms of the attitude error equations are the major components, as 

a result, the simplified attitude error equations are given as follows: 
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As a result, NVδ  is coupled with δθ  and  EVδ  is coupled withδφ . 

 

  Accelerometer bias and gyro drift error equations 

 

After removing the deterministic parts of the accelerometer bias (b) and gyro drift (d) 

before sending them as the inputs for INS mechanization, the remaining stochastic parts 

of the sensor errors are usually modeled as first order Gauss-Markov processes 

[Rogers,2003]: 
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Where α and β are the correlation times and 2σ  is the variance of the process. 

 

See Rogers [2003] for the determination of correlation time. Consequently, a continuous 

1st order differential equation with 15 error states can be obtained by augmenting 

Equations 3.46, 3.50, 3.56, 3.60 and 3.61 

 

x Fx Gw= +                                                                                                                  (3.62) 

 

Where F is the dynamics matrix, x is the error state vector, G is a noise coefficient matrix 

and w is system noise: 
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                       (3.63) 

 

3.2.5    INS Error Characteristics 

 

 East channel error model 

 

According to El-Sheimy [2004a], the east channel error characteristics can be obtained by 

differentiating the velocity/attitude Equations 3.55 and 3.59 and by substituting into the 

new equation by the values of / Evδφ δ  from Equations 3.59 and 3.55. Two non-

homogenous linear second order differential equations are then obtained as follows: 

 

E E
gv v g

N h Nwδ δ δ+ =
+

                                                                                               (3.64) 
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1
E

g f
N h N h

δφ δφ+ =
+ +

δ                                                                                               (3.65) 

 

The solution of these two 2nd order differential equations yields the Evδ  and δφ  that are 

oscillating over time with a frequency (1/5000Hz), sf , called the Schuler frequency, with 

a period of 84.4 minutes, and is given as follows: 

 

1
2s

gf
N h Rπ

=
+

g
≅                                                                                                 (3.66) 

 

As a result,  Evδ  and δφ  becomes bounded over time.  

 

 North channel error model 

 

Similarly, the north channel error model can be obtained by differentiating the velocity 

component /Nvδ δθ  from Equation 3.55/3.59 and by substituting / Nvδθ δ  from 

Equation 3.59/3.55. Two non-homogenous linear second order differential equations are 

obtained: 

 

N N
gv v g

M h Ewδ δ δ+ = −
+

                                                                                              (3.67) 

1
N

g f
M h M h

δθ δθ −
+ =

+ +
δ                                                                                             (3.68) 

 

Similarly, the solution of the above two 2nd order differential equation yields Nvδ  and 

δθ  that are oscillating over time with a Schuler frequency as well. Consequently, Nvδ  

and δθ  becomes bounded over time. However, It can be observed from Equation 3.50 

that Nvδ  and Evδ  also contain non-stationary components that depend on the azimuth 

error ( Ef and fNδψ− δψ ). In fact, the major part of the horizontal velocity error is 

bounded in time due to the Schuler effect. However, the non-stationary components 
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change with time dependent azimuth drift and the velocity of the vehicle. Consequently, 

the azimuth error δψ  plays an important role in determining the long term positioning 

accuracy ( Ef and fNδψ−∫∫ ∫∫ δψ ). In fact, the effect of  δψ  becomes critical at high 

velocities [El-Sheimy, 2004a and Noureldin, 2002]. 

 

According to Titterton and Weston [1997], various error sources including the sensor 

errors (accelerometer bias and gyro drift), initial navigation errors (initial position, 

velocity and misalignment), and vehicle dynamics contribute to the characteristics of the 

errors in the derived navigation parameters. In the horizontal channels, position, velocity 

and attitude errors grow systematically but are bounded by the Schuler effect. 

 

On the contrary, position error is quadratically dependent on time while the velocity is 

linearly dependent on time in the vertical channel.  Also, they both drift away as the 

observation time elapses. Because of interaction between the azimuth misalignments 

(vertical attitude error) with the horizontal velocity, the azimuth error grows with time 

but is bounded by the Schuler effect. Its linear dependence on time causes it to drift. 

 

Table 3.7 illustrates the different error sources of a nav-grade IMU and their magnitudes. 

In addition, Figure 3.4 simulates the impact of those errors on the position error, velocity 

error, and attitude error in a horizontal and vertical channel respectively. The equations 

applied for the simulation can be found in Britting [1971].  

 

Table 3.7: Error sources and parameters of nav-grade IMU 

Initial Position error 0p  0 .1(m) Gyro Drift D 0 .001 / h

Initial Velocity error 0v  0 .001(m/s) Gyro Drift (vertical) Aud  0 .001 / h

Initial Altitude error 0h  0.25 Accelerometer Bias B 1 0 0 gµ  

Initial azimuth error 0Aε 0.1(deg) Misalignment error 0ε  0.01(deg) 
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Figure 3.4: Simulation results of a navigation grade IMU  

 

3.2.6    Future Development of INS Based Positioning Technology-MEMS IMU 

 

Inertial technology has evolved over the last fifty years from mechanical gyros using zero 

velocity updates and star trackers for error control to ring laser and fiberoptic gyros 

updated with GPS observations of various types. Nowadays, IMUs are maturing to the 

state that low-cost commercialization is becoming feasible. At the same time, computer 

processor power is sufficient to allow both GPS and inertial data to be integrated on a 

single board. Micro-Electro-Mechanical Systems (MEMS) is a process technology used 

to create tiny integrated devices or systems that combine mechanical and electrical 

components [Sukkarieh, 2000]. They are fabricated using integrated circuit (IC) batch 

processing techniques and can range in size from a few micrometers to millimeters. 

These devices (or systems) have the ability to sense, control and actuate on the micro 

scale, and generate effects on the macro scale. In the most general form, MEMS consist 

of mechanical microstructures, microsensors, micro actuators and microelectronics, all 

integrated onto the same silicon chip [Gad El-Hok, 2001].  
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MEMS technology provides significant reductions in terms of cost, size, weight, and 

volume and power consumption [Schwarz and El-Sheimy, 1999]. In the near future, 

MEMS will be able to offer tactical grade and navigation grade performance sensors for a 

variety of applications. For land vehicular navigation applications, the integration of 

GNSS and tactical MEMS IMUs would be a reasonable option when the cost of MEMS 

tactical grade IMU becomes reasonable for general user. The accuracy and the stability of 

current MEMS sensors do not meet the specification of tactical grade IMU.  However, 

with the latest development of MEMS technologies, it is anticipated to reach tactical 

grade MEMS based IMUs by the year 2010[El-Sheimy, 2000a]. Consequently, with the 

full constellation of GPS and Galileo, the positioning of autonomous mode can be 

expected to reach the 1 meter level. Such positioning accuracy is good enough for most 

of the land vehicular navigation applications.  Meanwhile, the low cost MEMS tactical 

grade IMUs can be applied to bridge the system during GPS outages. In other words, an 

affordable, accurate, safety oriented and GNSS/MEMS augmented land vehicular 

navigation system can be expected to be available in the near future. 

 

3.3    INS/GPS Integration and Kalman Filter 
 

The Kalman filter has been widely adapted as a standard optimal estimation tool for 

INS/GPS integration applications. The derivation of an error model to be applied in the 

Kalman filter starts with the construction of full scale true error models, whose order is 

decided based on the complexity of the problem [Bar-Shalom, et al., 2001]. In general, the 

dynamical model is based on an error model that includes three position errors, three 

velocity errors and three attitude errors, augmented by some dominant sensor errors, such 

as accelerometer bias and gyro drifts. In general, models containing 15~21 states are often 

applied for high quality strapdown INS. The integration with GPS data reduces only the 

long term errors. Therefore, the remaining error budget is mainly affected by short-term 

error sources [Skaloud, 1999]. 

 

3.3.1    Fundamentals of the Kalman Filter  
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The Kalman filter is named after Rudolph E. Kalman, who in 1960 published his famous 

paper describing a recursive solution to the discrete-data linear filtering problem [Kalman, 

1960]. The Kalman Filter is essentially a set of mathematical equations that implement a 

predictor-corrector type estimator that is optimal in the sense that it minimizes the 

estimated error covariance—when some presumed conditions are met. Since the time of its 

introduction, the Kalman Filter has been the subject of extensive research and application, 

particularly in the area of autonomous or assisted navigation. 

 

  Discrete Kalman Filter   

 

The Kalman Filter addresses the general problem of trying to estimate the state of a discrete-

time controlled process that is governed by the linear dynamic model [Brown and Huang, 

1992]: 

 
, 1 1 1 1k k k k k kx F x G w− − − −= +                                                                                                         (3.69) 

 
With a measurement that is 
 

k k kz H x v= + k                                                                                                                         (3.70) 

 

k,k-1 

k-1 

k

,
         F               is the state transition matrix
         G               is the system noise coefficient matrix
         H                  is the design matrix
         z          

where

          is the measurement vector
         x                   is the error state vector

 

Three assumptions are made to define the Kalman filter. The random variables  and   

represent the system and measurement noise, respectively [Brown and Huang, 1992].  
kw kv

 
1. The system noise and measurement noise are uncorrelated and zero mean random 

processes. That is: 
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[ ]T
k jE w v = 0

k

 for all j and k                                                                                       (3.71) 
~ (0, )kw N Q                                                                                                                    
~ (0, )k kv N R  

 
and the covariance matrices are 
 

,
[ ]

0,
kT

k j

Q j k
E w w

j k
=⎧

= ⎨ ≠⎩
                                                                     (3.72) 

,
[ ]

0,
kT

k j

R j k
E v v

j k
=⎧

= ⎨ ≠⎩
                                                                                                (3.73) 

 

In reality, the system noise covariance Q, and measurement noise covariance R matrices might 

change with each time step. However, they are assumed to be constant [Mohamed, 1999]. 

 
2. The initial system state vector  0x  is uncorrelated to both system noise and 

measurement noise 

 

0 0[ ] 0; [ ]T
kE x w E x v= 0T

k =                                                                                    (3.74) 

 

3. The initial mean value of the system state and the covariance matrix of the initial 

system state are known 

 
( ) ( )0 0 0 0 0 0 0[ ]; Tx E x P E x x x x⎡= = − −⎣

⎤
⎦

ˆ

                                                         (3.75) 

 

There are two steps in Kalman filtering. The first step is the prediction by the system model 

[Mohamed, 1999], 

 

, 1 1ˆk k k kx F x−
− −=                                                                                                            (3.76) 

, 1 1 , 1 1 1 1
T

k K K K k k k k kP F P F G Q G−
− − − − − −= + T                                                                              (3.77) 

 

and the second step is the measurement update of the system model 
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Kalman gain matrix: 1(T T
k k k k k k kK P H H P H R )− −= −+

) k

                                                  (3.78) 

Error covariance update: (k k kP I K H P−= −                                                               (3.79) 

State prediction update: ˆ ˆ ˆ(k k k k k )x x K z Hx− −= + −                                                          (3.80) 

 

In the previous equation, ˆ( k kz Hx )−−  is known as the measurement innovation or the 

residual.  

 

  Kalman filter for INS/GPS Integration 

 

The detailed implementation of the Kalman filter can be found in [Schwarz and Wei, 

2000]. An example of a 15 states Kalman filter is given as follows:  The error states include 

three position parameters, three velocity parameters, three attitude parameters, three 

accelerometer bias parameters and three gyro drift parameters. 

 

[ ]N E D x y z x y zX h v v v f f f w w wδϕ δλ δ δ δ δ δϕ δθ δψ δ δ δ δ δ δ=
                                                                                                                                           (3.81)                       

 

The state transition matrix , 1k kF −  can be obtained using the dynamics matrix, F, as follows: 

 

, 1 exp( )k kF F t I F t− = ∆ ≈ + ∆                                                                                          (3.82) 

 

The measurement equation that uses GPS velocity and position as measurements update 

is given as follows [El-Sheimy, 2004a]: 

 

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

0 0 0 0

0 0 0 0

INS GPSl l
INS GPS

k INS GPS kl l
INS GPS

INS GPS
l l
INS GPS

Ir rz H
v v Ih h

v v

ϕ ϕ
λ λ

× × × × ×

× × × × ×

⎡ ⎤
⎢ ⎥− ⎡ ⎤⎢ ⎥⎡ ⎤− ⎢ ⎥= = − =⎢ ⎥⎢ ⎥− ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦−⎢ ⎥
⎢ ⎥−⎣ ⎦

            (3.83) 
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The measurement equation that uses zero velocity update (ZUPT) as measurements is 

given as follows [El-Sheimy, 2004a]: 

 

3 3 3 3 3 3 3 3 3 3

0
0 0 0 0 0 0

0

N
l

k INS E k

D

V
z v V H I

V
× × × × ×

−⎡ ⎤
⎢ ⎥ ⎡ ⎤⎡ ⎤= − = − =⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥−⎣ ⎦

                         (3.84) 

 

The degree of the complexity of the INS/GPS integration approach is purely application 

dependent [Kayton and Fried 1996]. In general, the INS/GPS integration architectures 

can be implemented in different ways. The main distinction is made according to the 

coupling status between INS and GPS (uncoupled, loosely coupled, tightly coupled, and 

ultra-tightly coupled), and whether the estimated sensor errors are fed back to correct the 

measurements (feedforward and feedback).  

 

A brief comparison of commonly used INS/GPS integration architectures is given in 

Table 3.10, which is modified from Skaloud [1999]. See Jekeli ,[2001], Kreye, et 

al.,[2002], Shin [2001], Alban et al., [2003], Petovello [2003], and  Scherzinger [2004] 

for a completed review. 

 

3.3.2     Limitations of INS/GPS Integration Using the Kalman Filter 

 

As mentioned previously, the Kalman filter depends on a set of measurements and a 

proper dynamics model to provide optimal estimates of the states [Skaloud, 1999]. 

Besides the quality of the measurements, the final quality of the filter states relies on the 

quality of the dynamic model. If the filter is exposed to input data that does not fit the 

model, it will not result in reliable estimates. Obviously, the model presentation depends 

on the initial knowledge and on the real process taking place in the system. The limiting 

factors of the Kalman filter based INS/GPS integration are described below in more 

details: 
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Table 3.10: A brief comparison of commonly used INS/GPS integration architectures 

(Modified from Skaloud, 1999) 

Implementation Advantages Disadvantages 

Uncoupled • Integration algorithm is a 
simple decision algorithm 

• System accuracy decrease 
rapidly in the absence of GPS 

Loosely coupled 
(decentralized) 

• INS and GPS Kalman are 
implemented separately 

• The size of individual 
Kalman filter is small 

• Flexible, modular  
combination 

• Suitable for parallel 
processing, reliability 

• Less computation 
complexity 

• Sub-optimal performance 
• Four satellite required for a 

stable solution 
• INS data is not used for 

ambiguity estimation 

Tightly coupled 
(centralized) 

• One error state model 
• Optimal solution, accuracy 
• GPS measurements can be 

used with less than 4 
satellites 

• Faster ambiguity 
estimation 

• Large size of error state model 
• More complex processing 

 

Ultra-tightly 
coupled 
(deep) 

• INS information (velocity) 
is added into tracking loops 
of the reviver 

• Reduce the dynamic stress 
of the receiver,  the thermal 
noise influence, and  the 
loop bandwidth of the 
receiver 

• Anti-jamming 
• Faster lost GPS signal re-

acquisition 

• Realization of such coupling 
principle requires special 
hardware component and 
accesses to the firmware of 
receiver 

• Implementation can only be 
conducted by hardware 
manufactures 

 

Feedforward 
(open loop) 

• Kalman filter may be run 
external to INS, suitable for 
platform INS 

• Used when only navigation 
solution from INS available 

• The INS mechanization is 
unaware of the existence of the 
external data 

• The INS mechanization can 
experience unbounded error 
growth, 

• Non-linear error model due to 
large second-order effect 

• Extended Kalman filter needed 
Feedback 

(closed loop) 
• Inertial system errors, 

linear model is sufficient 
• Suitable for software level 

• More complex processing 
• Blunder in GPS may affect INS 

performance 
  
  The impact of INS short term error 
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Figure (3.5) illustrates a conceptual plot of the frequency spectrum of the errors in the 

measurements of inertial sensors. Notice the division into long term errors (low 

frequency) and short-term errors (high frequency). Figure (3.6) shows how each of these 

errors is reduced by the integration process. The long term errors are reduced by updating 

the filter with external measurements (e.g. the GPS position and velocity). The short term 

errors are reduced by the smoothing that is done by the numerical integration process of 

the INS mechanization. However, Figure (3.6) shows the benefits of the integration are 

band-limited as the lower boarder of the INS/DGPS error spectrum is mainly determined 

by the biases in GPS observations while the upper boarder is mainly determined by short 

term inertial sensor errors.  

 

Consequently, the remaining GPS biases in the GPS navigation solution, such as 

ionospheric delay, tropospheric delay and multipath are responsible for the very long 

term errors in Figures (3.5 and 3.6). Due to the consequence of sampling theory, the 

utilization of DGPS data to reduce the short term INS error is not effective as the 

sampling rate of DGPS measurement (1Hz) is much lower than that of INS. 

Consequently, the long term INS errors that are reduced by the integration process with 

GPS are usually more significant than the short term errors. 

 

In general, the long term errors usually include accelerometer bias and gyro drifts that are 

usually modeled as error states. Therefore, the impact of these long term errors for long 

periods of time can be limited with the external aiding. On the contrary, the remaining 

short term error in inertial sensors remains and is responsible for a certain amount of the 

error accumulation during GPS outage periods. As a result, this research presents a novel 

denoising technique, named the Cascade Denoising, which is developed utilizing a 

second generation wavelet denoising algorithm. The ultimate goal is to improve the 

quality of INS raw measurements by reducing the impact of INS short term errors; thus 

the positioning accuracy for an INS/GPS integrated vehicular navigation during GPS 

outages can be improved. 
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Figure 3.5: Conceptual plot of the spectrum of INS sensor errors (After Skaloud, 1999) 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Conceptual plot of the spectrum of INS sensor errors (After INS/DGPS) 

(After Skaloud, 1999) 

 

To give an example of the impact of noise on the derived navigation parameters, Figure 

(3.7) illustrates the impact of X-Gyro noise on these parameters for a vehicle in static 

mode. Considering X-Gyro noise is the only error source of this IMU attached to a 

vehicle pointed to the north and assuming three IMU measurements with different noise 

levels (i.e. standard deviation is 0.01, 0.05 and 0.5 deg/ hr , respectively). The values 

represent the noise level of the gyro of navigation, tactical and MEMS IMUs, 

respectively. The position errors, velocity errors and attitude errors can be obtained by 

comparing the results generated by INS mechanization with the true value. Figure (3.7) 
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clearly indicates that the smaller the level of noise the better the accuracy of the 

navigation solutions.  

 

0 0.5 1 1.5 2 2.5 3 3.5 4
-5000

0
5000 Latitude error

time in hours

0 0.5 1 1.5 2 2.5 3 3.5 4
-2000

0
2000  Longitude error

(a
rc

-s
ec

on
ds

)

time in hours

0 0.5 1 1.5 2 2.5 3 3.5 4
-50

0
50  VE error

  (
m

/s
)

time in hours

0 0.5 1 1.5 2 2.5 3 3.5 4
-100

0
100  VN error

time in hours

0 0.5 1 1.5 2 2.5 3 3.5 4
-1000

0
1000  Roll error

time in hours

0 0.5 1 1.5 2 2.5 3 3.5 4
-5000

0
5000 Pitch error

(a
rc

-s
ec

on
ds

)

time in hours

0 0.5 1 1.5 2 2.5 3 3.5 4
-5000

0
5000 Azimuth error

time in hours

The impact of X-Gyro noise 

0.01 deg/root-hr
0.05 deg/root-hr
0.5   deg/root-hr

 

 
Figure 3.7: The impact of X-Gyro noise  

 

Therefore, the denoising algorithm developed in the next chapter is expected to improve 

the overall accuracy of the navigation solutions during GPS outages. 

 

  Model dependency 

 

Generally speaking, the development a model to be used in the Kalman filter starts with 

the construction of a full scaled “true-error model”, whose order is then reduced based on 

the prior knowledge and the insight gained into the physics of the problem, covariance 

analysis, and simulation [Salychev et al, 2000]. 

 

Typically, the dynamics model is based on an error model for three position errors, three 

velocity errors, and three attitude errors in an INS (the system error states). These errors 

are also augmented by some sensor error states such as accelerometer biases and 

gyroscope drifts, which are modeled as stochastic processes (i.e., 1st Gauss Markov 
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process or random walk) [Rogers,2003].  In fact, there are several random errors 

associated with each inertial sensor. For instance, noise contributions in typical optical 

gyroscope systems may include white noise, correlated random noise, bias instability and 

angle random walk (IEEE Std. # 647-1995). Therefore, it is usually difficult to set a 

certain stochastic model for each inertial sensor that works efficiently at all environments 

and reflects the long term behavior of the sensor errors. Hence a model-less navigation 

algorithm that can perform the self-following of the vehicle under all-conditions is 

required. 

 

  Prior knowledge dependency 

 

As mentioned previously, some initial knowledge is required to start a Kalman filter, 

such as the state transition matrix ( , 1k kF − ), the measurements design matrix ( kH ), the 

noise coefficient matrix ( 1kG − ), the system noise covariance matrix (Q) and the 

measurements noise covariance matrix (R). Among them, the Q and R matrices are the 

most important factors for the quality of the Kalman filter estimation for an INS/GPS 

integrated system. Theoretically, the optimal Q and R matrices can guarantee the 

optimality of the estimation; however, it is not easy to obtain such information. In fact, 

tuning the Q and R matrices can be time consuming and it requires experience and 

background in both systems. Consequently, the requirement of human intervention for 

Q/R tuning is very high. In other words, the tuning process can be regarded as a special 

form of learning as it is usually done by an expert and needs time to obtain the optimal 

solution. Consequently, a new navigation algorithm that can reduce the level of human 

intervention and is capable of learning by itself to adapt the latest dynamic model is 

preferred.      

 

Sensor dependency   

   

The need to re-design algorithms based on the Kalman filter (i.e., states) to operate 

adequately and efficiently on every new platform (application) or different systems (e.g. 

switch from navigation grade IMU to tactical grade IMUs) can be very costly. In 
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addition, the Q and R matrices tuning is heavily system dependent. For example, it is 

impossible to use the sets of parameters that are designated for navigation grade IMUs for 

estimation utilizing tactical grade IMUs. This is known as IMU-grade dependence. 

Further more, it has been shown that even with the same accuracy grade, the Q and R 

matrices required for different IMUs that are provided by different manufacturers might 

be different. This is known as sensor dependence. As a result, a new navigation algorithm 

that is adaptable and can reduce the level of sensor and IMU-grade dependence is highly 

desirable 

 
  Linearization dependency  

 

INS/GPS integration for land vehicular navigation is non-linear in nature. However, since the 

principle of Kalman filtering is to estimate a linear dynamical model using a recursive algorithm 

along with certain stochastic information, the linearization of INS or GPS dynamics model is 

required [Brown and Huang, 1992]. However, the linearization process is usually a 1st order 

approximation process that results in deviations between the assumed “true error model” and the 

real “true error model”. As a result, a new navigation algorithm that is nonlinear in nature and 

can reduce the impact of linearization is preferred. 

 

Consequently, alternative algorithms for INS/GPS integration in land vehicular 

navigation are presented in Chapters 5 and 6. The ultimate goal of this research is to 

develop a conceptual intelligent navigator that can overcome most of previous stated 

limitations. The core component of such a navigator are: 1) the development of various 

AIAs based INS/GPS integration architectures that utilize neural networks as the data 

fusion algorithm for INS and GPS to generate navigation knowledge, 2) the 

implementation of Navigation Information database as the “brain” of the intelligent 

navigator to store navigation knowledge and 3) the development of an efficient learning 

scheme that enables the learning ability and accumulates navigation knowledge of such 

an intelligent navigator. 
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CHAPTER 4 
 

CASCADE DENOISING OF IMU SIGNALS 
 
As mentioned in the previous chapter, the INS errors can be divided into long term errors 

(low frequency) and short term errors (high frequency). The long term errors usually 

include accelerometer bias and gyro drifts that are usually modeled stochastically as state 

variables inside the INS error model. Therefore, the impact of those long term errors for 

long periods of time can be limited with external aiding. On the contrary, the remaining 

short term errors (including white noise) in inertial sensors are responsible for a certain 

amount of the error accumulation during GPS outage periods. Therefore, if these short 

term errors can be reduced or removed from the kinematic IMU raw measurements to 

improve the quality of the measurements, the overall positioning accuracy of INS 

navigation can be improved. 

 

The wavelet denoising algorithm can be applied to separate the low frequency and high 

frequency error components of IMU signals [Skaloud, 1999, Burton et al., 1999, and 

Nassar, 2004]. However, for land vehicular navigation applications, the concern is how to 

remove INS short term errors including high frequency noises, vibrations and other 

disturbances and improve the accuracy of INS navigation without jeopardizing the true 

motion dynamic component of the vehicle. It requires the prior knowledge of the 

bandwidth of true motion dynamic of typical land vehicles and the spectrum 

characteristic of the wavelet denoising algorithm. Thus, the positioning errors after 

applying denoised kinematic IMU measurements can be expected to be improved if the 

true motion dynamic content can be well preserved and the short term INS sensor error 

can be reduced during the denoising operation. 

 

In this chapter, the continuous wavelet transform (CWT) is presented first to gain some 

appreciation regarding the benefits of utilizing such a technique. Consequently, the 

Discrete Wavelet Transform (DWT) and the Multiresolution Analysis (MRA) are given 

to provide the spectrum perspective of MRA. The bandwidth of true motion dynamic is 

then investigated through the spectrum perspective of kinematic IMU signals. In addition, 
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the limitations of existing wavelet denoising are given through the spectrum analysis. 

Finally, the cascade denoising algorithm is implemented. Discussion of the cascade 

denoising implementation and its performance is tested using kinematic IMU 

measurements. 

 

4.1     The Continuous Wavelet Transform 
 
A Fourier analysis of a signal, , extracts information in the frequencies contained in 

(t). The standard Fourier transform is given [Mallat, 2001]: 

( )f t

f

 

( ) ( ) iwtF w f t e dt
+∞ −

−∞
= ∫                                                                                                     (4.1) 

 

Where w is frequency and t is time. Fourier analysis is capable of providing frequency 

information; however, it is unable to provide information concerning time-localization. 

Therefore, windowing the signal f (t) is a step towards obtaining such information. The 

signal is first restricted to an interval (with smooth edges) by multiplying it by a fixed 

window function, prior to carrying out a Fourier analysis of the product. Repeating the 

process with shifted versions of the window function allows localized frequency 

information throughout the signal to be obtained. Since the window-width is the same for 

all frequencies, the amount of localization remains constant for different frequencies. 

Mathematically, the windowed Fourier transform, also known as short time Fourier 

transform (STFT), can be written as [Mallat, 2001]: 

 

( , ) ( ) ( )STFT iwtT u t f t g t u e d
+∞ −

−∞
= −∫ t                                                                                 (4.2) 

 

Where g(t) is the windowing function and the u is the translation factor(window size). 

The Wavelet transform can be defined for different classes of functions. The intention in 

this transformation is to address some of the shortcomings of the STFT. Instead of fixing 

the time and the frequency resolutions t∆  and f∆ , one can let both resolutions vary in the 

time-frequency plane in order to obtain a multiresolution analysis. This variation can be 
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carried out without violating the Heisenberg inequality [Strang, 1993]. In this case, the 

time resolution must increase as frequency increases and the frequency resolution must 

increase as frequency decreases. This can be obtained by fixing the ratio of  over  to 

be equal to a constant c [Mallat, 2001]: 

f∆ f

 
1

4
Time Bandwidth product t f

π
− = ∆ ∗∆ ≥                                                                  (4.3) 

   f c
f
∆

=                                                                                                                         (4.4)       

 

In terms of the filter bank terminology, the analysis filter bank consists of band-pass 

filters with constant relative bandwidth (so-called constant-Q analysis). The frequency 

responses of the analysis filters in the filter bank are regularly spaced in a logarithmic 

scale [Strang, 1993]. These filters are naturally distributed into octaves. Consequently, 

the time resolution becomes arbitrarily good at high frequencies, while the frequency 

resolution becomes arbitrarily good at low frequencies [Olivier and Vetterli, 1991]. Two 

very close short bursts can eventually be separated if one goes to higher analysis 

frequencies in order to increase time resolution. The wavelet analysis, as explained, 

works best if the signal is composed of high frequency components of short duration plus 

low frequency components of long duration. The continuous wavelet transform (CWT) is 

based on such ideas. In this case, all impulse responses of the analysis filters in the filter 

bank are defined as scaled (i.e., stretched or compressed) versions of the same 

prototypeψ , known as the mother wavelet [Daubechies 1992]. For example, for a scale 

factor of a, the filter impulse response becomes 

 

1( ) ( )a
tt
aa

ψ ψ=                                                                                                           (4.5) 

The function is normalized by the constant 1
a

 [Daubechies 1992]. In the case of the 

continuous wavelet transform, the translation parameter b and the dilation parameter a 

change continuously. In other words, the transformation utilizes the following equation 
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;
1( ) ( ) , , 0a b

t bt with a b R a
aa

ψ ψ −
= ∈ ≠                                                                   (4.6) 

 
Consequently, the continuous wavelet transform of a function f is defined by  
 

;( , ) , a bw a b f ψ=                                                                                                           (4.7) 
 
Suppose that the wavelet  ψ  satisfies the admissibility condition, where ˆ ( )wψ is its 
Fourier Transform [Daubechies 1992]; 
 

2ˆ ( )w
C

wψ

ψ+∞

−∞
= ∫ dw < ∞                                                                                              (4.8) 

 
 
Then the CWT is invertible on its range, and an inverse transform is given by the 
relation 

( , )w a b

 

; 2

1( ) ( , ) ( )a b
dadbf t w a b t

C aψ

ψ
+∞ +∞

−∞ −∞
= ∫ ∫                                                                           (4.9) 

 

From the admissibility condition, ˆ (0)ψ has to be 0 [Daubechies 1996], and in particular, 

ψ  has to oscillate. This, together with decay property, has given the name wavelet or 

“small wave” (French: ondelette) [Daubechies 1996]. In applications, it is of interest to 

find that the inverse transform does not make use of over the whole range of a and 

b. Transforms exist that only use positive values of a or even only discrete values for a. 

The common choice is to use a dyadic grid. In general, the fewer values of a and b one 

wants to use, the more restrictive the condition on the wavelet becomes. The CWT results 

in a very general wavelet. The transform that only uses the dyadic values of a and b is 

called Discrete Wavelet Transform (DWT) which is given in section 4.2. 

( , )w a b

 

4.1.1   Spectrum Perspective of CWT 
 

In order to compare the performance of the Fourier Transform (FT), the STFT and the 

CWT, sine waves with three sampling rates (Fs) (200Hz, 100Hz and 50Hz) that contain 

various simulated dynamic frequency ranging from 1Hz to 90 Hz with 2Hz gap were 
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generated. The reason for choosing these sampling rates is that they represent the 

common sampling rate of IMUs. A hamming window function was assigned for the 

STFT. “DB5” of Daubechies wavelet family with scale ranging from 1 to 6 was utilized. 

The results are given in Figure (4.1). 

 

As shown in the Figure (4.1), the FT transforms the signal into the frequency domain, but 

losses time information. When looking into a FT of a signal, it is impossible to tell when 

or where a particular event took place. The lack of time-localization information makes 

the FT unsuitable for analyzing non-stationary signals which have breakdown points or 

discontinuities in time domain [Aboufadel and Schlicker, 1999]. On the contrary, the 

STFT represents a compromise between the time- and frequency-based views of a signal. 

It provides some information about both when and at what frequencies a signal event 

occurred. The precision of such information is determined by the size of the window. 
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Figure 4.1: Comparisons between FT, STFT and CWT 
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While the STFT compromises between time and frequency information, the drawback is 

that once a particular size for the time window is chosen, that window is the same for all 

frequencies. It can be seen for Figure (4.1) that the narrow window results in good time 

resolution but poor frequency resolution. On the contrary, the wide window results in 

poor time resolution but good frequency resolution. Many signals require a more flexible 

approach, one where the window size can be varied to determine more accurately either 

time or frequency. 

 

As illustrated in Figure (4.1), the CWT provides multiresolution analysis (MRA) to 

overcome the limitations of the FT and STFT. Unlike the STFT which has a constant 

resolution at all times and frequencies, the WT has a good time and poor frequency 

resolution at high frequencies, and good frequency and poor time resolution at low 

frequencies. The lower scales (higher frequencies) have better scale resolution, narrower 

in scale, which means that it is less ambiguous what the exact value of the scale is, which 

corresponds to poorer frequency resolution [Strang, 1993]. Similarly, higher scales have 

poorer scale frequency resolution, wider support in scale, which means it is more 

ambiguous what the exact value of the scale is, which corresponds to better frequency 

resolution of lower frequencies [Strang, 1993]. Consequently, MRA provides a superior 

way to analyze non-stationary signals in comparison to FT and STFT. Figure (4.2) 

illustrates two wavelets with different scales.  

 

 
Figure 4.2: Wavelets with different scales (After Misiti et al., 1997) 

 

Figure (4.3) illustrates the spectrum of the CWT coefficients on a dyadic grid with 

respect to different sampling rates.  
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Figure 4.3: Spectrum of CWT 

 

The CWT can be regarded as a series of band bass filter (highpass filters) whose centre 

frequency varies with the scale and sampling rates, as indicated in Figure (4.3). There is a 

correspondence between wavelet scales and frequency as revealed by wavelet analysis. 

Low scale corresponds to a compressed wavelet, which can retrieve rapidly changing 

details (high frequency components). On the other hand, high scale corresponds to a 

stretched wavelet that can retrieve slowly changing parts, approximations, of the signal 

(low frequency components) [Olivier and Vetterli, 1991]. 

 

4.1.2   The linkage between FFT and CWT 
 

For developing the cascading denoising algorithm, investigating the relationship between 

the scale of the CWT and its corresponding frequency content in the spectrum domain 

was necessary. The traditional way to solve this mystery is through the use of pseudo-

frequency corresponding to a scale. A way to do it is to compute the centre frequency Fc 

of the wavelet and use the following relationship [Misiti et al., 1997]. 

 

c
p

s

FF
F a

=
×

                                                                                                                   (4.10) 
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Where a is a scale, sF   is the sampling frequency.  is the centre frequency of a wavelet 

in Hz.  is the pseudo-frequency corresponding to the scale a, in Hz. According to 

Sparto et al, [1999], the centre frequency is obtained through associating a given wavelet 

with a purely periodic signal of frequency . In other word, the frequency maximizing 

the FFT of the wavelet modulus is [Misiti et al., 1997].   

cF

pF

cF

cF

 

Figure (4.4) illustrates the example of Daubechies wavelets of order 2 to 7. The centre 

frequency of the wavelet is decided by varying the centre frequency of the periodic signal 

until the correlation between the peak of the wavelet function and the wave form of the 

periodic signal reach maximum [Sparto et al,1999]. Extracting the centre frequencies of 

those bandpass filters at dyadic decomposition levels ( )(2 , 1, 2....n n =
CWTcF ) that are 

generated through the Fourier transform of the CWT coefficients, as shown in the Figure 

(4.3), and comparing with the pseudo frequency ( pF ) that are obtained through Equation 

4.10 and Table 4.1 using scale as an index, the relationship between 
CWTcF and  pF , named 

as associated coefficient, ω , is given as: 

 

(' ')
(' ')

(' ')
CWTC

P

F wavelet name
wavelet name

F wavelet name
ϖ =                                                                 (4.11) 

 
Table 4.1 illustrates the ω  of the Daubechies wavelet family with order 1 to 10 obtained. 

The proposed associated coefficients are independent of the sampling rates chosen in this 

analysis (i.e., 200 Hz, 100 Hz and 50 Hz), but are related to the choice of wavelets. Thus, 

the associated frequency  related to certain choice of wavelet and scale is given: AF

 

(' ') (' ') (' ')A PF wavelet name F wavelet name wavelet nameω= ∗                                    (4.12) 

 

The examples of associated frequency with the utilization of ‘DB3’ and ‘DB5’ are given 

in Appendix A.1. Associated frequency can be regarded as the centre frequency of the 

CWT at each scale. As a result, it provides the frequency information of the 

corresponding scale. In fact, associated frequency can be applied as an explicit index of 
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the frequency content when using the CWT to analyze kinematic IMU signals. Table A.1 

and Table A.2 also confirm that the CWT has poor frequency resolution at high 

frequencies, and good frequency resolution at low frequencies. 
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Figure 4.4: Examples of the centre frequencies of Daubechies wavelet family 

 

Table 4.1: Associated coefficients of Daubechies wavelet family 

Wavelet DB1 DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10
cF  0.996 0.67 0.8 0.71 0.67 0.73 0.69 0.67 0.71 0.68 
ω 0.64 0.96 0.8 0.90 0.96 0.88 0.93 0.96 0.91 0.94 

  
 

4.2     Discrete Wavelet Transform  
 

The key difference in a discrete wavelet analysis is that the scale parameter a and 

translation parameter b in Equation 4.6 are no longer continuous, but are instead integers. 

Indeed, in the majority of cases, the choice of a and b is limited to the following discrete 

set [Daubechies 1992]: 

 

2 , 2j ja b k= = = ka                                                                                                   (4.13) 
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Where j and k are integers. The indices a and b in ;a bψ are replaced by j and k, 

respectively. Thus Equation 4.6 can be expressed as follows [Daubechies 1992]: 

 
/ 2

; ( ) 2 (2 )j j
j k t t kψ ψ− −= −                                                                                              (4.14) 

 

Reconstruction of a signal from its DWT is possible provided the wavelet satisfies certain 

conditions (these are discussed in the Appendix A). The reconstruction formula is 

analogous to Equation 4.9 [Daubechies 1992]: 

 

, ,
,

( ) , ( )j k j k
j k

f t f ψ ψ=∑ t

3

                                                                                           (4.15) 

 

The most common and general approach to constructing a wavelet basis is to use a 

Multiresolution Analysis (MRA) [Mallat, 1989a and 1989b]. For an overview see 

Appendix A. In signal processing, such ideas are implemented as subband filtering, or 

quadrature mirror filtering. The decomposition step consists of a lowpass (  and a 

highpass  filter followed by downsampling ( (i.e., retaining only the even index 

samples) [Strang and Nguyen, 1997]. Figure (4.5) illustrates an example of a three level 

decomposition and the conceptual spectrums of the approximation coefficients 

( ) and the detail coefficients (

)h

( )g 2)↓

, 1, 2,icA i = , 1, 2,3icD i = ). 

 

In contrast, the reconstruction consists of upsampling ( 2)↑  (i.e., putting a zero between 

every two samples) followed by filtering ( h  and  ) and addition, as shown in Figure (4-

6).  More detail can be found in [Strang and Nguyen, 1997].  

g
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Figure 4.5: Three level wavelet decomposition and their conceptual spectrums 
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Figure 4.6: Three levels wavelet reconstruction  

 

4.2.1    Spectrum Perspective of DWT 

 

Figure (4.7) depicts the relationships between decomposition level and frequency content 
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using the simulated signal  applied in Figure (4.1), where blue solid circles and red 

dashed squares represent the spectrums of the approximation and detail signals 

respectively. The distinction between the approximation signals/coefficients and detail 

signals is given in Appendix A. The approximation signals obtained through MRA at 

each decomposition level can be regarded as the signals generated by a series of wavelet 

based lowpass filters that are corresponding to different decomposition levels [Sparto, 

1999], therefore, the stop bands of those lowpass filters can be extracted from Figure 

(4.7).  

 

Consequently, Table 4.2 illustrates the relationship between the decomposition level and 

the residual frequency content in the approximation signal (i.e., red solid circle). It 

provides extremely important information for denoising IMU kinematic signals, which is 

given in detail in subsequent sections. Similar relationships between the sampling rate, 

decomposition level and stop bands can be founded in [Sparto, 1999]. 

 

 
 

Figure 4.7: Spectrum of DWT (Approximation/Detail signals) 
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Table 4.2: Relationship between stop bands and decomposition level 

 Fs=200 Hz Fs=100 Hz Fs=50 Hz 
 Stop band (Hz) Stop band (Hz) Stop band (Hz) 
DL=1 64 32 16 
DL=2 32 16 8 
DL=3 16 8 4 
DL=4 8 4 2 
DL=5 4 2 1 
DL=6 2 1 0.5 

  

4.3     Spectrum Analysis of IMU Raw Measurements  
 

According to Czompo [1990], the spectrum domain of raw kinematic IMU signals 

contains the impact of the following factors: 1) true motion dynamic, 2) dither 

disturbances, 3) vibration disturbance and 4) white noise. Consequently, the ultimate goal 

of any pre-filtering development is to remove the impact of vibration disturbance and 

noise without jeopardizing the content of the true motion dynamic. The spectrum analysis 

of IMU raw measurements under different scenarios, such as alignment (engine off), 

ZUPT (engine on), short dynamic (engine on) and general navigation condition (motion 

dynamic + alignment + ZUPT), is very complicated.  

 

It is desirable to evaluate the impact of these factors individually; thus the bandwidth of 

true motion dynamics that are monitored by each of the inertial sensors can be isolated 

from the massive spectrum plots. Figure (4.8) to Figure (4.10) illustrate the spectrum of 

the IMU raw measurements that were collected from three different IMUs, CIMU® 

(Honeywell, navigation grade, Fs=200Hz), LN200® (Litton, tactical grade, Fs=200Hz) 

and Crossbow® AHRS400-CC (Crossbow, MEMS, Fs=110 Hz). See chapter 7 for the 

details of this field test. Be aware that these IMUs were operated at the same time on the 

same vehicle with the same trajectory. Consequently, they experienced the same motion 

dynamic and vibration disturbance. The detail specifications of those IMUs are given in 

Appendix C. 

 

The Y axis of Figure (4.8), Figure (4.9) and Figure (4.10) represents the normalized 

amplitude of the spectrum generated by each sensor in different scenarios. Be aware that 
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the scale of the Y-axis might have been adjusted in some scenarios to provide better 

visualization. Since the data length in each scenario is different and its maximum 

amplitude in the spectrum domain varies with the data length, consequently, comparing 

those normalized amplitudes directly between different scenarios cannot provide much 

useful information.  
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Figure 4.8: Spectrum of CIMU 

 

The impact of dither disturbances, vibration disturbance, and noise are discussed as Table 

4.3. The alignment period in Figure (4.8) to Figure (4.10) was carried out in static mode 

with the engine off. As a result, the impact of other vibrations can be reduced. The peaks, 

known as dither spikes, are illustrated in Figure (4.8) during alignment corresponding to 

several aliased frequencies as CIMU has three ring laser gyros. Furthermore, the engine 

vibration disturbance can be identified clearly by comparing the spectrum between 

alignment (engine off) and ZUPT (engine on) in Figure (4.8), Figure (4.9) and Figure 

(4.10). 
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Figure 4.9: Spectrum of LN200 
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Figure 4.10: Spectrum of Crossbow AHRS400-CC 

 

By conceptually removing the impact of dither spike and engine vibration in Figure (4.8), 

Figure (4.9) and Figure (4.10), all the IMUs indicate similar characteristics of true motion 

dynamic. Therefore, the true motion dynamic is IMU independent regardless of the 
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quality of the IMUs used. General speaking, the bandwidths of the true motion dynamic 

sensed by different sensors can be grouped into two clusters, as indicated in Table 4.3. 

The spectrum characteristics of X- Accelerometer, Y- Accelerometer and Z-Gyro meet 

the nature of land vehicle motion. Table 4.4 illustrates the bandwidths of true motion 

dynamic sensed by different sensors. 

 

Table 4.3: The impact of different factors 

Source Characteristics 

Dither 
spike 

• Dithering motion of ring-laser gyros causes vibrations in the whole 
sensor block 

• The dither spike can be removed through the use of special frequency 
filtering  [Czompo, 1990] 

Engine 
Vibration 

• The engine vibration disturbance can be identified in the 10-25 Hz 
frequency range. Similar results concerning the engine vibration of an 
airplane can be found in [Czompo, 1990]. 

White noise • As indicated in Figure (4.8) to Figure (4.10), the noise level increased 
when the accuracy level of IMU decreased, 

• In principle, noise can be reduced by applying proper denoising 
algorithm which is given in later sections 

True 
motion 
dynamic 

• X-Gyro, Y-Gyro and Z-Accelerometer; due to the road irregularities 
(i.e., bumps); the motion frequencies for those sensor mainly appear in 
the 0-6 Hz band. Thus, the upper bound is set at 8 Hz for denoising 
purpose. 

 
• X- Accelerometer, Y- Accelerometer and Z-Gyro; very low frequency 

components are dominant. The frequency band of acceleration and 
deceleration motion in X or Y direction mainly appear in the 0-1Hz 
band. This indicates a much smoother translation motion along the 
trajectory, similarly, the frequency band of azimuth or heading change 
mainly appear in the 0-1Hz band as well. This indicates a much 
smoother rotation about the vertical body axis. Thus, the upper bound 
is set at 2 Hz for denoising purposes. 

 

Table 4.4: Bandwidth of true motion dynamic 

 Gyro Accelerometer 
Sensor W_x W_y W_z A_x A_y A_z 
Bandwidth <8Hz <8Hz <2Hz <2Hz <2Hz <8Hz 
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4.4     Existing Denoising Algorithms  

In general, a denoising filter is designed to suppress or remove the noise component and 

other disturbances; thus, the quality of the signals can be improved for further analysis. 

The denoising process may take place in the time domain or in a transform domain. The 

transform domain can be the time-frequency domain via the Fourier transform or the 

time-scale domain via the wavelet transform. 

 
4.4.1    First Generation Denoising Algorithm 
 

The DWT often has a “concentrating” effect on a signal. That is, signals with 

characteristic time frequency behavior are succinctly represented in the DWT domain. 

The DWT of a coherent signal contains a small amount of large amplitude coefficients 

[Jansen, 2001]. This suggests two similar applications at which the DWT excels; 

compression and denoising. Data compression can be archived by assuming that only the 

large amplitude coefficients are necessary for characterizing the signal, and hence the 

others are discarded. Denoising uses a similar strategy, wavelet shrinkage, although the 

philosophy is that small coefficients are not only unnecessary but undesirable [Jansen, 

2001].   

 

Just as a coherent signal is represented by a small number of large amplitude coefficients, 

an incoherent signal is represented by a large amount of small coefficients. Additive 

white noise is, by definition, incoherent. By keeping only large coefficients, thresholding 

the DWT, a white-noise corrupted signal can be largely recovered [Jansen, 2001]. 

Classical linear filtering in the frequency domain relies on a frequency separation 

between desired signal and unwanted noise. In some cases, the signal and the noise are 

overlapped on certain frequency ranges. Thus, this method of denoising is ineffective 

[Donoho, 1992]. Thresholding in the DWT domain relies on an amplitude separation 

between the coefficients of the desired signal and the unwanted signal. As long as the 

desired signal is relatively coherent in the DWT domain and the noise is incoherent, 

thresholding can effectively denoise the signal [Donoho, 1992]. It is worth noting that 

thresholding in the DWT domain is a nonlinear operation. 
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The basic principle of first generation denoising is to perform thresholding on the DWT 

of the noisy signal, and then take the inverse DWT of the thresholded coefficients to 

obtain the denoised signal.  

 

Donoho [1992] proposed the wavelet shrinkage schemes of denoising: 

 

(1) Suppose is the original signal of length N,)(nx ( ) ( ) ( )y n x n e n= + , where is 

corrupted by . Find the DWT of which is called  

)(ny

)1,0(~)( Nne )(ny )(, nY kj

(2) Perform hard thresholding on ,which can be described with,                                                )(, nY kj
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             Or soft thresholding, 
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Where δ can be decided empirically using static IMU data or utilizing a more 

sophisticated algorithm, Stein’s Unbiased Risk Estimation of Risk (SURE), which is 

applied in this research, See Donoho and Johnstone [1995] and Jansen [2001] for more 

details about various strategies that can be applied to decide δ. The original idea of 

denoising using wavelet shrinkage is to remove white noise, , however, it 

has been reported that it is capable of removing non-white noise using level-dependent δ 

[Jansen, 2001] 

)1,0(~)( Nne

 

(3) Take the inverse DWT of to recover the noised signalkjX ,
ˆ ˆ ( )X L . 

 
The denoising procedure for IMU raw measurements is shown in Figure (4.11).  
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Figure 4.11: IMU signals denoising 

 

Table 4.5: Optimal decomposition level for kinematic IMU measurements 

 Fs=200 Hz Fs=100 Hz Fs=50 Hz
 BW/L BW/L BW/L 
Wx 8/4 8/3 8/2 
Wy 8/4 8/3 8/2 
Wz 2/6 2/5 2/4 
Ax 2/6 2/5 2/4 
Ay 2/6 2/5 2/4 
Az 8/4 8/3 8/2 

  
The optimal decomposition level (L) varies with the bandwidth of true motion dynamic 

in each sensor. Comparing Table 4.2 and Table 4.4, an optimal decomposition level (L) 

can be decided for each sensor, as shown in Table 4.5..The characteristics of hard and 

soft thresholding is given as follows 

 

• Hard-thresholding is a “keep or kill” procedure in which small amplitude 

coefficients are removed while the others are left unchanged. 

 

• Soft-thresholding is a continuous procedure in which coefficients above the 

threshold are shrunk in absolute value. The amount of shrinking equals the 

threshold values, hence the input –output plot becomes continuous. 
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In this research, a new thresholding technique, universal thresholding, is developed. The 

proposed thresholding technique is expected to be able to preserve the advantages of soft 

and hard thresholding. It can be determined from Equation 4.18 shown below that when 

n=1, the universal thresholding is equivalent to soft thresholding and when n=∞, it 

becomes equivalent to hard thresholding.  

 

, ,

,,

,

(1 ),
ˆ ,

0,

n

j k j kn

j kj k

j k

Y if Y
YX

if Y

δ
δ

δ

⎧
− ≥⎪⎪= ⎨

⎪
<⎪⎩

3n =                                                                   (4.18) 

 

Figure (4.12) compares the difference between those thresholding algorithms. While at 

first sight hard thresholding may seem a more natural approach, the continuity of the soft 

thresholding operation has important advantages.  
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Figure 4.12: Comparison between thresholding algorithms 

 

However, soft thresholding generates biased outputs, which might result in additional 

error sources in certain conditions while reconstructing denoised signals using soft 

thresholding high frequency components [Jansen, 2001]. A compromise is a more 

continuous approach which preserves the highest amplitude coefficients and has a smooth 

transition from noisy to important coefficients. Therefore, the advantage of the universal 
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thresholding (red line) is that it can keep the continuity and reduce the impact of a biased 

signal (n=3). A performance analysis of different thresholding algorithms is given in 

Appendix A.3. It can be seen from Appendix A.3 that the universal thresholding 

algorithm is capable of providing superior performance than soft, hard and no 

thresholding operations.  

        

4.4.2    Limitations of the First Generation Denoising Algorithm 
 

The DWT is not translation invariant (shift invariant), meaning that, if a DWT is applied 

to a shifted version of a signal x, it is not able to get the shifted version of the DWT. Due 

to this drawback, denoising with the traditional DWT suffers from additional artifacts 

that can deteriorate its overall performance [Coifman and Donoho, 1995]. 

 

The non-translation invariance is the side effect of the downsampling in the filter bank 

algorithm of the DWT. However, if the shift is a multiple of  , with n being the number 

of the decomposition level, the DWT will be a shifted version of the original DWT 

[Coifman and Donoho,1995], as shown in the left side of Figure (4.13). The figure 

contains an original signal, two shifted version of the original signals by one sample and 

 (n=1) sample, respectively.  

2n

12

 

The DWT was performed using ‘DB3’ with one level (n=1) decomposition. The DWT of 

the original signal (solid) and shifted signal (dash) are clearly not shifted versions of one 

another when shift=1. However, as the shift becomes  (dot), the corresponding DWT is 

the shift version of the original DWT. In contrast, the results obtained by a translation 

invariant wavelet, Undecimated Wavelet Transform (UDWT) [Guo, 1995], which is 

given in a later section, is shown to the right side of Figure (4.13). 

12
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Figure 4.13: Example of non-translation invariance 

 

The lack of translation invariance introduces artifacts when using transform domain 

thresholding depending on the kind of transform domain one is working in. For wavelet 

de-noising, the artifacts have to do with behavior near singularities [Guo et al, 1995]. In 

the neighborhood of discontinuities, wavelet denoising can exhibit pseudo-Gibbs 

phenomena, which is shown in Figure (4.14), alternating undershoots and overshoots of a 

specific target level [Coifman and Donoho, 1995]. The red line and blue line represent 

the original and denoised signal.  

 

While these phenomena are much better than in the case of Fourier-based denoising, in 

which Gibbs phenomena are global rather than local, and of large amplitude, [Coifman 

and Donoho, 1995], as shown in Figure (4.15), it seems reasonable to try to do better still. 

An important observation about such artifacts is that their size is connected intimately 

with the actual location of the discontinuity. The treatment of reducing the impact of 

pseudo-Gibbs phenomena for denoising operation is given in the next section. 
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Figure 4.14: Examples of Pseudo Gibbs Phenomena  
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Figure 4.15: Gibbs Phenomena  

 

4.4.3    Second Generation Denoising Algorithm 
 

To reduce the impact of pseudo-Gibbs phenomena, the Undecimated wavelet transform 

(UDWT) [Guo, 1995], which has been independently discovered under several names, 

e.g., shift/translation invariant wavelet transform (TIW) [Coifman and Donoho,1995], 

stationary wavelet transform (SWT) [ Nason and Silverman ,1995] or redundant wavelet 

transform[Percival et al., 1999], can be applied. The key point is that UDWT is 

redundant, shift invariant, and it fills in the gap in the DWT and gives a denser 

approximation to the continuous wavelet transform (CWT) than the approximation 
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provided by the DWT. The advantage of the UDWT is in signal denoising [Guo et al, 

1995]. Generally speaking, the denoising algorithm that utilizes the UDWT is known as a 

second generation denoising algorithm [Coifman and Donoho, 1995]. A 2 level UDWT 

decomposition and reconstruction example is given as Figure (4.16) and (4.17) 
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Figure 4.16: UDWT decomposition 
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Figure 4.17: UDWT reconstruction 
 

From s signal processing point view, the key of UDWT is that both even and odd 

decimations are used and the results from both are kept at each stage. As indicated in 

Figure (4.16). For a given data set, UDWT contains the discrete wavelet transform for 

every possible origin in the data. Coifman and Donoho [1995] studied extensively the 

similar characteristics of UDWT and implemented a so called “Translation Invariant 

Wavelet Transform” (TIW) based on the idea of Cycle-Spinning, or denoising all 

possible shifts of a signal and then averaging. The idea was originally explored to reduce 
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pseudo-Gibbs phenomena. Let represent the circular shift operator. For a signal hS X  

with length N,  [Coifman and Donoho 1995]. Let L represent 

the DWT operator, T represent the thresholding operator, and 

( ) (( ) mod )hS X k X k h N= +

1
hS −  and 1L−  are un-shift 

and IDWT operators respectively. The denoised signal is then given by the following 

Equation: 

 
1

1 1

0

1ˆ
N

h
h

X S L T L S
N

−
− −

=

= ∑ h X                                                                                 (4.19)       

 

An example of TIW denoising is given in Appendix A.3. It can be seen from Figure (A.6) 

and Table A.5 that TIW reduces the impact of pseudo Gibb’s phenomena and improves 

the denoising results in terms of visualization, SNR and RMS. Similar to the first 

generation denoising algorithm, the universal thresholding algorithm is capable of 

providing superior performance than other thresholding algorithms with the utilization of 

the second generation denoising algorithm.  

 

4.4.4    Spectrum Perspective of Existing Denoising Algorithms   
 

To apply existing denoising algorithms for reducing the impact of noise and disturbances, 

gaining the knowledge of their characteristics in the spectrum domain is essential. Figure 

(4.18) illustrates the simulated signal with three sampling rates, 200Hz, 100 Hz and 50 

Hz, respectively. The red line and blue line represent the original signal/spectrum and 

noised signal/spectrum, respectively. Figure (4.19) and Figure (4.20) illustrates the 

spectrum of the DWT denoising and TIW denoising using those signals in Figure (4.18), 

respectively. Figure (4.19) demonstrates the DWT denoising with decomposition levels 

from 1 to 6. It is obvious that the denoised results contain two components, which are 

given as follow; 

 

 Low frequency component 
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The frequency of the low frequency content is smaller than the stop bands corresponding 

to each decomposition level. It can be regarded as the result obtained through the lowpass 

filter; see Table 4.2 for detailed information regarding the relationship between the 

decomposition level and stop band. 

 

 High frequency component  

 

The frequency of the high frequency content is higher than the stop bands corresponding 

to each decomposition level. It can be regarded as the result obtained through the high 

pass filter plus the denoising algorithm. In general, the thresholding algorithm is applied 

to remove those components that are identified as noise. As a result, some of the high 

frequency component can be preserved as they pass through the high pass filter and 

thresholding algorithm. Such a characteristic might be to the advantage of certain 

applications; however, it might not be appropriate for kinematic IMU signal denoising. 

As the general bandwidth of true motion dynamics of land vehicle is very low, see Table 

4.4, it is undesirable to keep these high frequency components.  

 

  
Figure 4.18: Simulated signals 

 

 It can be seen from Figure (4.19) that the bandwidth of the preserved high frequency 
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components range from 20Hz to a maximum dynamic frequency (i.e., 80Hz in this 

simulation) with a peak that is located between 40 Hz to 50 Hz. Consequently, due to the 

limitations of the nyquist frequency, such undesirable high frequency components appear 

only when the sampling rate is higher than 100Hz. In other words, it vanishes when the 

sampling rate is lower than 50 Hz. Similar to Figure (4.19), Figure (4.20) illustrates TIW 

denoising with decomposition levels from 1 to 6. The denoising results also contain low 

and high frequency components. It can be seen from Figure (4.20) that the TIW 

suppressed those undesirable high frequency components, whose bandwidth range is 

from 20 Hz to the maximum dynamic frequency (i.e., 80Hz in this simulation) with peaks 

that are located between 40 Hz to 50 Hz, significantly in comparison with DWT 

denoising. However, those remaining high frequency components should be further 

reduced for IMU signals denoising applications as the impact of such remaining high 

frequency components appear when the sampling rate of the IMU is higher than 100 Hz.  

 

 
Figure 4.19: Spectrum of DWT denoising 

 
 

In spite of these limitations, both Figure (4.19) and Figure (4.20) demonstrate an 

important fact that the existing denoising algorithm can preserve information that is 

smaller than the pass band. This characteristic is very important for IMU signal denoising 

as losing any true motion dynamic information degrades the navigation accuracy 
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significantly. Consequently, Tables 4.2 and Table 4.4 can be applied to set up the optimal 

decomposition level required for the denoising operation without losing true motion 

dynamic information, as indicated in Table 4.5.Recalling Figure (3.12) and Figure (3.13), 

a conceptual plot of the frequency spectrum of the errors in the measurements made by 

the inertial sensors in an INS/GPS integrated system with the utilization of a perfect 

denoising algorithm is shown in Figure (4.21). The goal is to remove all the short term 

errors and disturbances. 

 

 
Figure 4.20: Spectrum of TIW denoising 
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Figure 4.21: Conceptual plot of the spectrum of INS sensor errors  

(After INS/DGPS+ perfect denoising algorithm) 
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In addition, Lin [1993] and Skaloud [1999] suggested the utilization of a lowpass filter to 

band limit the IMU signals and remove part of the short term errors and disturbances, as 

shown in Figure (4.22). It can remove those short term errors whose frequencies are 

higher than the stop band of the lowpass filter; however, it has cannot remove those short 

term errors whose frequencies are lower than the stop band. 

 

Figure (4.19) and (4.20) depict the major limitation of applying either the 1st or the 2nd 

generation denoising algorithms in the remaining high frequency component, as shown in 

Figure (4.23).  They are capable of suppressing the short term errors whose frequencies 

are lower than the stop band and reducing part of those short term errors whose 

frequencies are higher than the stop band. The remaining question is how to remove those 

remaining short term errors whose frequencies are higher than the stop band and reduce 

those short term errors whose frequencies are lower than the stop band when the existing 

wavelet denoising algorithm is applied to denoise the IMU signals? Therefore, a cascade 

denoising that can achieve this goal is given in next section. 
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Figure 4.22: Conceptual plot of the spectrum of INS sensor errors  

(After INS/DGPS+ lowpass filter) 
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Figure 4.23: Conceptual plot of the spectrum of INS sensor errors  

(After INS/DGPS+ existing denoising algorithm) 

 

4.5     Cascade Denoising Algorithms  
 

Through the spectrum analysis of DWT/TIW and kinematics IMU signals, it is possible 

to determine the bandwidth of true motion dynamics that are sensed by each inertial 

sensor and the stop band of wavelet based lowpass filters, see Table 4.2 and 4.4 for 

details. As a result, an optimal decomposition level of the wavelet based lowpass filter 

can be determined. Since the signals whose frequency ranges out of the bandwidth of true 

motion dynamic are undesirable, the wavelet based lowpass filter with an optimal 

decomposition level (L) for each sensor can be applied first to remove the undesirable 

high frequency components whose frequencies are higher than the stop bands of the 

lowpass filters. Then a denoising algorithm can be applied to remove the remaining short 

term errors whose frequencies are lower than the stop bands of the lowpass filters. This 

algorithm is named the cascade denoising algorithm [Chiang, et al., 2004b], as shown in 

the Figure (4.24). 

 

Figure (4.25) and Figure (4.26) illustrates the spectrum of the cascade denoising 

algorithm using DWT and TIW with decomposition levels from 1 to 6 respectively. The 

red line and blue represent the original spectrum and noised spectrum. These figures 

demonstrate that cascade denoising can remove the undesirable high frequency 
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components completely in comparison with existing denoising algorithms that were 

discussed in the previous section. In addition, Figure (4.26) shows that the cascade 

denoising algorithm with TIW can provide better performance for reducing the noise 

components contained in the low frequency components with frequencies lower than the 

stop band without losing any of the true motion dynamic information. 
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Figure 4.24: Cascade denoising algorithm  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.25: Spectrum of cascade DWT denoising 
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Figure 4.26: Spectrum of Cascade TIW denoising 
 

Figure (4.27) and Figure (4.28) illustrate the spectrums of the raw X-Gyro measurements 

of the CIMU (sampling rate = 200Hz) after applying the DWT denoising and cascade 

TIW denoising, respectively. Only the high frequency components whose frequencies are 

higher than the stop bands at each decomposition level are presented. The decomposition 

levels range from 1 to 6. 

 

 
 

Figure 4.27: Spectrum of CIMU X-Gyro after DWT denoising (>stop band) 
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Similar to Figure (4.25), it can be seen from Figure (4.27) that the remaining high 

frequency noise components appear, as indicated by the arrow, at each decomposition 

level after applying DWT denoising. In contrast, these high frequency components are 

removed completely when the cascade denoising algorithm is applied, as indicated in 

Figure (4.28). Consequently, the cascade denoising algorithm is superior to existing 

denoising algorithms in the spectrum domain as it can remove the remaining high 

frequency noise components. 

 
Consequently, the utilization of the cascade denoising algorithm can remove those 

remaining high frequency components in Figure (4.23) completely. In addition, it is 

capable of removing more short term errors whose frequencies are lower than the stop 

band, as illustrated in Figure (4.29). Comparing Figure (4.29) with Figures (4.22) and 

(4.23), it is clear that the developed cascade denoising algorithm is superior to traditional 

denoising algorithms or lowpass filters in the spectrum domain when it is applied to 

remove short term INS sensor errors.  

 
 

 
Figure 4.28: Spectrum of CIMU X-Gyro after cascade TIW denoising (>stop band) 
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Figure 4.29: Conceptual plot of the spectrum of INS sensor errors  

(After INS/DGPS+ cascade denoising algorithm) 

 

4.6      Performance Analysis of Cascade Denoising Algorithm 
 

To evaluate the performance of the cascade denoising algorithm in the position domain, a 

field test in a land-vehicle was collected on March 5, 2003. The used IMU is a prototype 

from Inertial Science INC. (ISI), and contains Analog Devices MEMS gyros and 

Colibrys MEMS accelerometers.  The reference system is an Applanix POS LV 320 that 

uses a LN200 IMU (see appendix C for detailed specifications of these IMUs). The 

vehicle drove two standard circles (large rectangle circle) and then drove three times 

around a small round circle.  

 

To assess the performance of the cascade denoising algorithm, GPS signal blockages 

were simulated, by removing GPS data, along various portions of the test trajectory. Ten 

simulated GPS signal blockages that contain several dynamic variations were introduced. 

As shown in Figure (4.30), the red line represents the reference trajectory and the blue 

line segments indicate the trajectories during simulated GPS signal blockages. 

 

Figure (4.31) and Table 4.6 illustrate the performance of existing denoising algorithms 

using the DWT. The sampling rate of the ISI IMU is 200 Hz thus the optimal 

decomposition levels (L) for each sensor can be obtained using Table 4.5. 
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Figure 4.30: The reference trajectory and simulated GPS blockages 
 

It should be mentioned here that the maximum of the absolute position error (MAX_N 

and MAX_E) always happens at the end of the blockage periods. It can be seen from 

Table 4.12 that the Root Mean Square error (RMS) of seven GPS blockages were 

improved up to 13% (4.47m) and the maximum position errors in both directions were 

successfully reduced in these improved cases. In contrast, the RMS errors of the 

remaining three GPS blockages were degraded up to 0.6 metres. Consequently, the rate of 

improvement reached 70% (7/10). 

 

Figure (4.32) and Table 4.7 illustrate the performance of the cascade denoising algorithm 

using TIW.  Similarly, the optimal decomposition levels (L) for wavelet lowpass filters 

were decided using Table 4.5 and the decomposition level (d), as indicated in Figure 

(4.30) for the denoising operation was given empirically. In general, d=2 or 3 is 

recommended for IMU signals denoising based on empirical trials. The results indicated 

that the true motion dynamic signal might be deteriorated when d is larger than 3.   It can 

be seen from Figure (4.32) that the improvements with the utilization of the cascade 

denoising algorithm during several GPS blockage periods were significant enough to be 

visualized.  
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Figure 4.31: Position errors during GPS blockages 

 

Table 4.6: Performance of DWT denoising 

  RAW Denoising (DWT) 
Blockage no. Blockage 

Length(S) 
MAX_ N 

(m) 
MAX_ E

(m) 
RMS 
Total 

MAX_ N 
(m) 

MAX_E 
(m) 

RMS 
Total 

1 30 3.43 1.12 1.18 3.41 1.20 1.19 
2 30 1.23 25.82 9.89 1.08 26.02 10.65
3 60 37.07 68.27 33.86 36.95 64.78 29.39
4 30 1.45 3.50 1.84 1.67 3.91 2.08 
5 60 18.90 179.30 70.58 18.87 180.52 70.11
6 30 5.16 25.53 10.92 5.06 25.45 10.68
7 70 37.04 36.97 25.23 36.64 36.45 24.50
8 30 14.39 27.27 15.26 14.55 26.53 14.83
9 44 20.39 50.52 18.43 20.28 50.12 13.77
10 60 13.50 47.48 23.69 13.70 47.21 22.43

  
As indicated in Table 4.13, the rate of improvement was 80% (8/10). The improvement in 

terms of the RMS errors ranged from 20 centimetres to 10 metres and the improvement in 

terms of the percentage ranged from 5% to 25%. Consequently, the cascade denoising 

algorithm is superior to the DWT denoising in both the position domain and spectrum 

domain.  For comparison, the performance of the lowpass filter denoising is given in 

Appendix A.4. As indicated in Figure (A.7) and Table A.6, the overall performance was 

similar to the DWT denoising algorithm. 
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Figure 4.32: Position errors during GPS blockages 

 

Table 4.7: Performance of cascade TIW denoising 

  Denoising (DWT) Cascade  Denoising (TIW) 
Blockage no. Blockage 

Length(S) 
MAX_ N 

(m) 
MAX_ E

(m) 
RMS 
Total 

MAX_ N 
(m) 

MAX_E 
(m) 

RMS 
Total 

1 30 3.41 1.20 1.19 3.56 1.65  1.19 
2 30 1.08 26.02 10.65 2.87  19.54     7.47 
3 60 36.95 64.78 29.39 36.46   67.77    32.10
4 30 1.67 3.91 2.08 1.78     3.28    1.89 
5 60 18.87 180.52 70.11 19.66    155.72   60.36
6 30 5.06 25.45 10.68 5.82   24.10    10.63
7 70 36.64 36.45 24.50 34.37    30.29    21.80
8 30 14.55 26.53 14.83 14.19   29.07    14.32
9 44 20.28 50.12 13.77 20.12    36.50   14.01
10 60 13.70 47.21 22.43 13.22    44.67    22.42

  
The cascade denoising algorithm has been shown to be capable of providing superior 

performance than existing 1st generation (DWT) and 2nd generation (TIW) denoising 

algorithms in the spectrum and position domains. However, the impact of the cascade 

denoising algorithm on different IMUs with different accuracy levels remains unknown; 

consequently, an investigation of this issue is given in Chapter 7. 
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CHAPTER 5 
 

ARTIFICIAL NEURAL NETWORKS METHODOLOGY 
 

With the evolution of modern computer technology in hardware and software, the field of 

artificial intelligence has been receiving more attention in the development of future 

technology. Artificial intelligence has been verified as a successful and effective tool for 

providing solutions to certain engineering and science problems that can not be solved 

properly using conventional techniques [Cawsey.1998]. The intelligence can be defined 

as the ability to learn, understand and adapt [Honavar and Uhr, 1994]. Humans possess 

some robust attributes of learning and adaptation abilities, and that’s what makes them so 

intelligent. Thus the goal of artificial intelligent technologies, which include artificial 

neural networks (ANNs), fuzzy logic, evolutionary computing, probabilistic computing, 

expert systems, and genetic algorithms, is to provide some intelligence and robustness in 

the complex and uncertain systems similar to those seen in natural biological species 

[Honavar and Uhr,1994]. 

 

Among these artificial intelligent techniques, ANNs was chosen in this research for 

building the foundation for developing the conceptual intelligent navigator that has an 

artificial intelligent based INS/GPS data fusion and navigation algorithm. The 

requirement of such an algorithm is to overcome the limitations of current INS/GPS data 

fusion which is based solely on the Kalman filter. Kalman filter approach has limitations, 

which have already been discussed in Chapter 3. Chiang [2003] summarized the 

comparison between the Kalman filter and ANNs based INS/GPS data fusion and 

navigation algorithm as in Table 5.1. 

 

ANNs have been extensively studied with the aim of achieving human-like performance, 

especially in the field of pattern recognition and robot control and navigation [Mandic 

and Chambers, 2001]. ANNs are composed of a number of nonlinear computation 

elements which operate in parallel and are arranged in a manner reminiscent of biological 

neural interconnections. In addition, ANNs are designed to mimic the human brain and 
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duplicate its intelligence by utilizing adaptive models that can learn from the existing 

data and then generalize what it has learnt [Ham and Kostanic, 2001]. 

 

Table 5.1: Comparison between KF and NN for INS/GPS data fusion and navigation            

(After Chiang, 2003)            

 KF NN 
Model 
Dependency: 

States (Mathematical model; 
deterministic model+ stochastic 
model).  

Empirical and adaptive 
model 

Prior Knowledge  
Dependency: 

Required (Mainly Q and R matrix), 
provided by human experts 

Not required 

Sensor 
Dependency: 

Re-design or re-tuning  parameters of 
Kalman filter are needed for different 
sensor  

An adaptable, sensor 
independent algorithm  

Linearity 
dependency:  

Linear Processing Nonlinear Processing 

 

ANNs have shown promise in offering alternative solutions to a lot of engineering 

problems, where traditional models have failed or are too complicated to build. Due to 

their nonlinear nature, ANNs are capable of expressing much more complex phenomena 

than some linear modeling techniques. They extract the essential characteristics from the 

numerical data as opposed to memorizing all of it [Abhijit and Robert 1996]. ANNs offer 

a convenient way to form an implicit model without establishing a traditional, physical 

mathematical model of the underlying phenomenon. In contrast to traditional models, 

ANNs work in a way that little, or no, a priori knowledge of the mathematical process is 

required. ANNs can be applied for the construction of mapping functions that transform 

inputs to outputs via a “black box” [Bender, 1996]. As indicated in section 3.3.1, Kalman 

filter requires certain assumptions to make it work properly, on the contrary, ANNs build 

its model based on empirical learning thus it does not require certain statistical 

assumption. However, such empirical and adaptive model requires the existence of the 

implicit nonlinear function relationships between inputs and outputs. Wu [1995] 

summarized the main reason for using neural networks for prediction rather than classical 

time series algorithms as 
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• Self monitoring , self learning 

• Iterative forecast 

• Capability to cope with non-stationary and non-linear processes 

• Parametric and nonparametric prediction  

• Fast and accurate (at least as fast/accurate as current algorithms)   

 

Thus, the fundamentals of ANNs are given first in this chapter followed by several 

aspects regarding static versus dynamic neural networks. Topologies of different neural 

network architectures, standard backpropagation learning algorithms, second order 

learning algorithms and linearized recursive estimation learning algorithms will also be 

discussed. The performance evaluation of a dynamic neural network and a static neural 

network in terms of the position and time domains is given using real data obtained 

through INS/GPS integrated land vehicular systems. The conclusions will be the decisive 

factor in which ANN (static or dynamic) to use as the core algorithm for developing the 

conceptual intelligent navigator, which is given in the next chapter.  

 

5.1    Fundamentals of Artificial Neural Networks 

The history of neural networks comes from attempts of modeling a system by simulating 

the most basic functions of human brains. In fact, the motivation of studies in neural 

networks comes from the flexibility and power of information processing that 

conventional computing machines do not have. Although most computers can process 

faster and more precisely than human brains, human beings have the ability to obtain 

experience then make more sensible decisions [Honavar and Uhr, 1994]. Similar to the 

fact that the human brain generalizes the rules, the neural network system can ``learn by 

examples and experience" and perform a variety of nonlinear functions that are difficult 

to describe mathematically [Haykin, 1999].  

ANNs are a narrow-sensed abstraction of the human brain, thus the organization of the 

artificial neural system is very similar to that of biological neurons. The fundamental 

element, an artificial neuron, is a model based on the behavior of biological neurons that 

exhibit most of the characteristics of human brains. This is the most significant difference 

116 



from conventional computers, which have internal fixed instructions to perform specific 

functions.  

ANNs can also be described as highly parallel distributed computing models [Kohonen, 

2001]. The neurons are highly connected with strengths which are dynamically changed 

during learning process. Though ANNs are not an exact duplication of the biological 

human brain, it is important to begin with understanding fundamental concepts of 

biological neurons and the human brain.  A brief review of the fundamental concepts of 

biological neurons and the human brain is given as Appendix B.1.  

5.1.1    Artificial Neurons and Neural Networks   
 
To gain more appreciation to NNs, a simplified neuron model is presented in Figure 

(5.1a). The function schemes of this multiple input and signal output neuron are 

illustrated in Table 5.2 [Ham and Kostanic, 2001]. As illustrated in Figure (5.1a), two key 

elements in a biological neuron can be identified: the synapse and soma. They are 

responsible for providing learning adaptation knowledge (storage of knowledge or 

memory of past experience) and nonlinear mapping operations on neural information. 

From a mathematical perspective, the processing of information within a neuron involves 

two distinct mathematical operations, which are given in Table 5.3 [Anderson and 

McNeill, 1992]: 

 

 
  
 

 

 

 

Figure 5.1a: A simplified neuron model 

 

           

 

 

Figure 5.1b: An artificial neuron model 
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Table 5.2: The function scheme of a neuron 

Element Function Scheme 
Dendrites: They are made of a highly branching tree of fibers, and function as input 

points to the main body of the neuron. 
Synapse: It provides the storage space for the past experience or knowledge. In other 

words, It withholds long term memory to the past accumulated knowledge 
or experience. It receives information from sensors and other neurons and 
provides outputs through the axons. 

Soma: The neural cell body is called soma. It receives synaptic information and 
performs further processing of the information 

Axon: The neuron output line is called the axon.      
 
 

Table 5.3: Mathematical operations of an artificial neuron 

Element Function 
Synaptic 
operation: 

It assigns a weight to each incoming signal according to the knowledge or 
past experience that was stored in the synapse. In fact, the strength 
(weight) of the synapse is the key representation of the storage of 
knowledge and the memory for pervious knowledge. 

Somatic 
operation: 

It provides various mathematical operations such as aggregation 
(summation), thresholding, nonlinear activation, and dynamic processing 
to the synaptic inputs. If the weighted aggregation of the neuron inputs 
exceeds a certain threshold, the soma will produce an output signal to its 
axon 

 

Being inspired by the biological neuron, an artificial neuron model is illustrated in Figure 

(5.1b). From a mathematical perspective, three basic elements of an artificial neuron are 

identified as follows [Haykin, 1999]: 

• Synapses links (weights links, synaptic): Each of the links is labeled by a weight 

of its own. A signal ix  at the input of the synapse i connected to a neuron is 

multiplied by the synaptic weight . The synaptic weight of an artificial neuron 

can be a negative or positive value. 

iw

• An adder (somatic): It adds up the weighted input signals. Such a summation is 

expressed as Equation 5.1. As shown in Figure (5.1b), an artificial neuron model 

also includes an external bias, denoted by 0x . The bias 0x  is applied to increase or 
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lower the input of the activation function. The synaptic weight of the bias, , is 

usually assigned to be equal to 1. 

0w

                                                                                           (5.1) 
0

n

i i
i

v w
=

= ∑ x

• An activation function (somatic) (ϕ ): It limits the amplitude of the neuron 

output when ϕ  is nonlinear. In general, ϕ  can be a continuous, binary, bipolar, or 

linear function in certain cases. When ϕ  is nonlinear, its finite limits are typically 

normalized in the range of either [0, 1] (binary) or [-1, 1] (bipolar). It is 

recommended that the nonlinearities can serve to enhance the networks abilities 

for function approximation and noise-immunity [Ham and Kostanic, 2001]. In 

some literatures, an activation function is named as a transfer function as well.  

           ( )y vϕ=                                                                                   (5.2) 

The activation function can be a linear or nonlinear function. In fact, there are many 

different types of activation functions. The choice of one type over another is application 

dependent.  Four of the most common types of activation functions are: 

1. Hard limiter: This is a binary function (or bipolar) that hard-limits the input to the 

function to either a 0 or 1 for the binary type and either -1 or 1 for the bipolar type. 

The binary hard limiter ( hlϕ ) is sometimes referred to as the threshold function and 

the bipolar hard limiter is referred as the symmetric hard limiter ( shlϕ ).The outputs 

can be expressed as  

 

1 0
0 0

( ) ( ) 0 0
1 0

1 0
h l sh l

v
v

y v an d y v v
v

v
ϕ ϕ

− <⎧
<⎧ ⎪= = = = =⎨ ⎨≥⎩ ⎪ >⎩

                      (5.3) 

2. Linear function ( linϕ ):  It is a continuous function. Mathematically, the output of the 

linear activation function is written as ( )liny v vϕ= = .  
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3. Saturating linear function or piecewise linear function: This type of function can be 

binary or bipolar for the saturation limits of the output. The bipolar saturating linear 

function will be referred to as a symmetric saturating linear function. The output for the 

saturating linear function ( slϕ ) (i.e., binary outputs) and the symmetric saturating linear 

function ( sslϕ ) are given by  

 
10
2

1 1
1 1 1( ) ( ) 1 1
2 2 2

1 1
11
2

sl ssl

v

v
y v v v and y v v v

v

v

ϕ ϕ

⎧ < −⎪
⎪

− < −⎧⎪
⎪ ⎪= = + − ≤ ≤ = = − ≤ ≤⎨ ⎨
⎪ ⎪ >⎩⎪
⎪

>⎪⎩

                                  (5.4) 

 

4. Sigmoid function (s-shaped) function: The nonlinear sigmoid function is the most 

common type of activation function applied to construct artificial neural networks. The 

first type of sigmoid function is the binary sigmoid function ( bsϕ ). The output has a 

binary range and is expressed as   

 

1( )
1bs vy v

e αϕ −= =
+

                                                                                                    (5.5) 

 

Where α is the slope parameter of the binary sigmoid function. The binary sigmoid is a 

continuous and differentiable function. The differentiability of an activation function 

plays an important role in neuron computing. Equation 5.6 illustrates the derivative of the 

binary sigmoid function. 

 

2

( ) ( )[1 ( )]
(1 )

v
bs

bs bsv

d vdy e v
dv dv e

α

α

ϕ α αϕ ϕ
−

−= = = −
+

v                                                           (5.6) 
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The bipolar type of the sigmoid function is called the hyperbolic tangent sigmoid ( htsϕ ). 

The output has a bipolar range and is expressed as   

 

( ) tanh( )htsy v vϕ α= =                                                                                                  (5.7) 

 

Equation 5.8 illustrates the derivative of the hyperbolic tangent sigmoid 

 

( ) [1 tanh( )][1 tanh( )]htsd vdy v
dv dv

vϕ α α α= = + −                                                        (5.8) 

 

Figure (5.2) shows the shape of these activation functions and the derivatives of binary 

and bipolar sigmoid activation functions. The slop parameter α is set to be 1. 
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Figure 5.2: Shapes of activation functions 

5.1.2    ANNs Architecture 

Prior to looking into the general ANNs architectures, two fundamental elements of 

constructing any ANN architecture are given first:  
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• Layers: Neurons are organized in layers. In general, the architecture of ANNs 

might consist of one input layer, one or more hidden layers and one output layer, 

as shown in Figure (5.3). The function scheme of each layer is given in Table 5.4. 

 

Figure 5.3: Layer organization 

Table 5.4: Function scheme of each layer 

Layers Function 
Input 
layer: 

The input neurons receive the input data from the outside environment (e.g. 
sensor) and pass it to the hidden layer for further processing. It is simply an 
interface between the network and the sensors. 

Hidden 
layers: 

The hidden neurons are placed between the input layer and output layer. 
They are the real processing units of the network. For nonlinear input/output 
mapping or function approximation applications it is recommended that the 
activation function of hidden neuron to be nonlinear (e.g. sigmoid). 

Output 
layer: 

The output neurons transform the data from the input layer or the hidden 
layer to the outputs of the network. The output neuron can be linear or 
nonlinear.    

 

• Connections: Neurons are connected via a network of paths carrying the output 

of one neuron as input to another neuron. These connection can be divided into 

two major categories, as shown in Table 5.5 [Anderson and McNeill, 1992]:  

Using the above elements, the general architectures of ANNs can be given as follows: 

• Single-Layer Feed-Forward Neural Networks (SFNNs): A layered NN is a 

network of neurons organized in the form of layers. The simplest layered NN is 
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the single layered NN that consists of an input layer and an output layer, as shown 

in the Figure (5.4). Weight connections are shown emanating from a layer of 

certain index to a layer of higher index. No weight connections are allowed 

amongst the neurons belonging to the same layer; thus, they are denoted as feed-

forward NNs. 

 
 

Figure 5.4: A single layered and a multi-layered feed forward architectures 

• Multi-Layer Feed-Forward Neural Networks (MFNNs): The second type of a 

feed-forward neural network distinguishes itself by one or more hidden layers. 

The function of a hidden layer is to intervene between the external input and the 

network output in some useful manner. The source nodes in the input layer of the 

network supply respective elements of the input vector, which constitute the input 

signals applied to the neurons in the first layer (i.e., the first hidden layer). The 

output signals of the first layer are used as inputs to the second layer, and so on 

for the rest of the network. Figure (5.4) shows a fully connected multi-layer feed-

forward neural network with a single hidden layer. Such architecture is known as 

static network architecture and is discussed in more details in section 5.2. 

• Recurrent Neural Networks (RNNs): The difference between the feed-forward 

architecture and the recurrent architecture is that the latter has at least one 

feedback loop.   A recurrent architecture might consist of inter-layer feedback 

(i.e., from output layer to input layer) and an intra-layer feedback or self-feedback 

loops [Anderson and McNeill, 1992]. Self-feedback loops refer to a situation 
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where the output of a neuron is fed back into its own input.  Figure (5.5) 

illustrates a single layer recurrent architecture with inter-layer feed back loops and 

a simple recurrent network (SRN), also known as Elman network [Elman, 

1990].Such architecture is know as dynamic network architecture and is discussed 

in more detail in section 5.3. 

 

Figure 5.5: Recurrent network architectures 

Table 5.5: Types of connection 

Connection Function 
Inter-layer 
connection: 

• Fully connected: Each neuron on the first layer is connected to 
every neuron on the second layer.  

• Partially connected: A neuron of the first layer does not have to be 
connected to all neurons on the second layer.  

• Feed forward: The neurons on the first layer send their output to the 
neurons on the second layer, but they do not receive any input back 
form the neurons of the second layer.  

• Bi-directional: There is another set of connections carrying the 
output of the neurons of the second layer into the neurons of the first 
layer. 

Intra-layer 
connection: 

• Recurrent: The neurons within a layer are fully- or partially 
connected to one another or fed back to themselves. After these 
neurons receive input form another layer, they communicate their 
outputs with one another a number of times before they are allowed 
to send their outputs to another layer  

• On-center/off surround: A neuron within a layer has excitatory 
connections to itself and its immediate neighbors, and has inhibitory 
connections to other neurons.  
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5.1.3    Learning Procedures 
 
The common learning procedures in NN can be grouped as follows [Anthony and 

Bartlett, 1999]; 

 

• Supervised learning: An essential ingredient of supervised learning is the 

availability of an expert, see Figure (5.6). The expert has full knowledge of the 

model or the problem that is represented by a set of nonlinear input-output 

mapping relationships. However, the model is unknown to the NN. Suppose that 

the teacher and the NN are exposed to a training vector (i.e., example) drawn 

from the unknown model. By virtue of built-in knowledge, the teacher is able to 

provide the NN with a desired or target response for the training vector. Indeed, 

the desired response represents the optimal action to be performed by the NN. The 

network parameters (i.e., synaptic weights and biases) are adjusted under the 

combined influence of the training vector and the error signal that is defined as 

the difference between the actual response of the network and the desired 

response. This adjustment or tuning procedure is carried out iteratively in a step 

by step fashion with the aim of eventually having the NN emulate the teacher. 

 

• Unsupervised learning: In contrast, there is no expert in unsupervised or self-

organized learning, as shown in the Figure (5.6). Suppose the NN is exposed to a 

training vector drawn from the model. Since the teacher is absent in this 

procedure, it is not possible to provide the NN with a desired response for that 

training vector. Instead, a provision that is made to identify a measure of the 

quality of the representation is required to learn and the free parameters are 

optimized with respect to that measure [Kohonen, 2001]. After training is over, a 

grouping of the training inputs presented to the network is achieved, based on the 

similarity measure imposed by the network. 

 

• Reinforcement learning: This is another training procedure that is conducted 

without an external expert. The learning of an input-output relationship is 

performed through continued interaction with the environment in order to 

125 

http://btobsearch.barnesandnoble.com/booksearch/results.asp?userid=f57gJet9mr&sourceid=00395996645644787198&btob=Y&ath=Martin+M%2E+Anthony
http://btobsearch.barnesandnoble.com/booksearch/results.asp?userid=f57gJet9mr&sourceid=00395996645644787198&btob=Y&ath=Peter+L%2E+Bartlett


minimize a scalar index of performance. In general, a reinforcement learning 

system is built around a critic that converts a primary reinforcement signal to a 

heuristic reinforcement signal [Barto et al., 1983]. The goal of such a learning 

procedure is to minimize a cost function, which is defined as the expectation of 

the cumulative cost of actions taken over a sequence of steps instead of simply 

immediate cost. See Haykin [1999] for more detail. 

• Hybrid learning: Sometimes a purely supervised learning procedure is not very 

efficient and the incorporation of supervised learning with unsupervised learning 

to solve certain questions is required. For example, an appropriate unsupervised 

NN can be applied first to reduce the training data set for a classification problem 

by clustering original data and a supervised learning NN architecture can be 

applied to categorize the clustered data. As a result, the training time of the 

supervised learning can be reduced significantly.  
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Figure 5.6: Learning procedures 

5.2     Multi-Layered Feed-Forward Neural Networks 
 

A supervised neural network that has either a static or dynamic network architecture can 

be applied for nonlinear input-output mapping applications, such as pattern recognition, 

function approximation and estimation. A dynamic network architecture is given in 

section 5.3. According to Ham and Kostanic [2001], four of the most common static 
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neural networks are: (1) associate memory networks, (2) radial basis function networks, 

(3) counter-propagation networks, and (4) multi-layered feed-forward networks. The 

scope of this research is limited to multi-layered feed-forward networks. Therefore, see 

Ham and Kostanic [2001] for more details associated with other networks.  

The multi-layered feed-forward neural network (MFNN) trained by the backpropagation 

algorithm is the most well-known and most common used neural network today. The 

standard backpropagation algorithm is based on the gradient descent algorithm and the 

synaptic weights are updated proportionally to the computed error between the actual 

response and the desired response. The result after training is a specific nonlinear 

mapping from input to output. The advantages of the backpropagation learning algorithm 

include its parallel computation structure and its ability to acquire a complex nonlinear 

mapping. As it is the most widely applied static neural network, the following section is 

given to present more detail information about static MFNN and associated learning 

algorithms.   

5.2.1    Nonlinear Mapping and MFNNs  
 
As previously stated, the topology of a MFNN consists of an input layer, at least one 

hidden layer and an output layer. In general, an individual neuron aggregates its weighted 

inputs (synaptic operation) and yields outputs through a linear or nonlinear activation 

function (somatic operation). As these neurons form layered network configurations 

through only feedforward interlayered synaptic connections in terms of the neural signal 

flow, it has only feedforward information from the lower to the higher neural layers. As a 

result, a MFNN is a static neural model in the sense that its input-output relationship can 

be described by a nonlinear mapping function. In other words, MFNN has the capability 

of implementing a nonlinear mapping from many inputs to many outputs. Indeed, 

MFNNs have been widely applied to provide alternative solutions to various engineering 

and science applications that can not be solved by conventional methods.  

Since the complexity of the problem varies from one application to another, the 

complexity of the applied MFNNs varies according to the complexity of the application. 

In general, the complexity of MFNN depends on its topology which consists of the 
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number of the hidden neurons and the number of the hidden layers. In other words, the 

complexity also implies a computation burden. As a result, a MFNN with optimal 

topology should be able to provide the best approximation accuracy to the unknown 

model using the most appropriate number of hidden neurons and hidden layers [Golden, 

1996]. 

There are many ways to decide the most appropriate number of hidden neurons, see 

Bishop [1995] and Haykin [1999] for details. In general, the common principle indicates 

that the most appropriate number of hidden neurons is application dependent and can 

only be decided empirically during the early stages of topology design. It is very common 

in the design phase of neural networks to train many different candidate networks that 

have different numbers of hidden neurons and then to select the best, in terms of the 

performance on an independent validation set. The disadvantages include, first, all of the 

effort involved in training the remaining networks is wasted.  Second, the generalization 

of performance on the validation set has a random component due to the noise on the 

data, thus the network that has the best performance on the validation set might not be 

able to provide the best performance on a new test set.  See Bishop [1995] for details. 

The problems can be solved by combining the networks together to form a committee. It 

can be done by taking the output of the committee to be the average of the outputs of the 

L candidate networks which have different numbers of hidden neurons and comprise the 

committee. The importance of this approach can lead to significant improvements in the 

predictions of new data. See Bishop [1995] for more details. Similarly, the most 

appropriate number of hidden layers can also be decided empirically. However, 

according to Principe et al., [2000], theoretically, an MFNN is a universal approximator, 

which can be applied to approximate the unknown model to any degree of accuracy, and 

that one or two hidden layers are all it takes to reach this arbitrary mapping capability. 

Consequently, a two layered neural network and the derivation of its associated standard 

backpropagation learning algorithm is given in this section. Figure (5.7) illustrates a 

general structure of a two-layered feed-forward neural network [Anderson and McNeill, 

1992]. The input layer has n inputs,the hidden layer has p neurons and the output layer 
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has m neurons. Figure (5.7) also indicates the detailed structure of the hidden and output 

neurons.  
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Figure 5.7: A two layered feed-forward network 

The hidden neurons, neuron (h, i), (i=1, 2….p), receive n input signals (x), and generate p 

temporary output signals (z), where 

1 2 1 2[ , ,........... ] [ , ,........... ]T
n

T
px x x x and z z z z= =                                           (5.9)    

The temporary output signals are fed forward to the output neurons. As a result, output 

neurons, neuron (o, j), (j=1, 2 …m) generate m output signals (y) thus the network has an 

output vector  

1 2[ , ,........... ]T
my y y y=                                                                                            (5.10) 

The synaptic weights associated with the hidden neurons and output neurons are defined 

as ,  …, , (i=1…p) and ,  …, , (j=1…m). The vector 

expressions can be given as  

( )
1
h

iw ( )
2
h

iw ( )h
inw ( )

1
o

jw ( )
2
o

jw ( )o
jpw

129 



( ) ( ) ( )
1[ ... ] , 1, 2...,h h h T

i i inw w w i= p=

m=

n

⎥
⎥

p

⎥
⎥

,

                                                                          (5.11) 

( ) ( ) ( )
1[ ... ] , 1, 2...,o o o T

j j jpw w w j=                                                                (5.12) 

Consequently, the weight matrices can be given as 

( ) ( )
11 1

( ) ( ) ( )
1
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1
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h h
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h h h T
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p p

w w
W w w
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w w

⎡ ⎤
⎢= = ⎢
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Where the ith row element of  are obviously associated with neuron (h, i) in the 

hidden layer, whereas the jth row element of  corresponds to neuron (o, j) in the 

output layer. The input-output equations can be written as:  

( )hW
( )oW

( ) ( )

1
( )

, 1 ~

( )

n
h h

i ik k
k

h
i i

s w x i p
hidden

z sϕ
=

⎧ = =⎪
⎨
⎪ =⎩

∑                                               (5.15) 

( ) ( )

1
( )

, 1 ~

( )

p
o o

j jq q
q

o
j j

s w z j m
output

y sϕ
=

⎧
= =⎪

⎨
⎪ =⎩

∑                                                                      (5.16) 

According to Ham and Kostanic [1999] and Haykin [1999], the augmented expressions 

of the neural inputs and weights including the bias and its associated weights can be 

given as follows: 

( )
0 0

( )
0 0

, 1

, 1

h
i
o

j

x w

z w

=

=
                                                                                                                 (5.17) 
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As a result, the augmented version of the input and weight vectors of neuron (h, i) and 

neuron (o, j) can be given as: 

0 1

( ) ( ) ( ) ( )
0 1

0 1

( ) ( ) ( ) ( )
0 1

[ ]
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                                            (5.18) 

Similarly, the augmented weights matrices can be written as: 
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For an input signal nx R∈ , the MFNN produces a response signal  through 

complex nonlinear operations. In fact, the MFNN generates a nonlinear mapping process 

from the n-dimensional input signal space to the m-dimensional output signal space. The 

analytical expression of this can be given as follows: 

my R∈

                                                                                        (5.21) 
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The augmented version of the input-output equations can be obtained  
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The φ ( ) is a nonlinear activation function. Thus, the nonlinear mapping function is given 

as  

( ) ( )( (o h
a a ay W W xϕ ϕ= ) )

d k d k d k= …

                                                                                          (5.24) 

Figure (5.8) illustrates the nonlinear input/output mapping using a two layered feed-

forward network. 
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Figure 5.8: Nonlinear mapping  

 
5.2.2    Standard Backpropagation Learning Algorithm  
 
 
In the following derivation, the network inputs and outputs are considered in a discrete 

time domain. Given a desired response vector d k , 

Rumerhart and MaClelland [1986] proposed an adaptive weight learning algorithm that is 

characterized by the generalized delta rule. It performs an optimal tuning process of 

synaptic weights thus each output error vector, defined as the difference between the 

desired response, d k , and the actual network output , , is minimized. As indicated 

in Equation 5.25, an instantaneous error function for the network output is given as the 

sum of the squares of the errors (SSE) for all the output neurons [Haykin, 1999]. 

1 2( ) [ ( ) ( ) ( )]m

( ) ( )y k

2
2

1 1

1 ( ) ( ) ( )
2 2

m m

SSE j j j
j j

E d k y k e
= =

= − =∑ 1 k∑                                                                    (5.25) 
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Such an error function can also be defined using the mean of the squares of the errors 

(MSE), which is given as follows [Anderson and McNeill, 1992]. 

2
2

1 1

1 ( ) ( ) ( )
2 2

m m

MSE j j j
j j

E d k y k
m m= =

= − =∑ 1 e k∑

)

                                                             (5.26) 

The factor ½ is used for convenience in calculating the derivatives. The error  indicates 

the error between the jth desired response and the jth output response at the neuron (o, j), 

and is given as 

je

(j j je d y= −                                                                                                              (5.27) 

In fact, E can be regarded as the cost function and the index of the learning performance 

of the network. It is a function of all the synaptic weights and activation functions. 

Applying the gradient descent (steepest descent) algorithm for minimizing the cost 

function [Ham and Kostanic, 2001], the correction  of the synaptic weights are made in 

the direction of decreasing error functions and are proportional to the negative gradients 

of the error function with respect to the weights; 

( ) ( )
( )( ) , 1, 2, ,h h

ai ai h
ai

Ew w E i
w

η η p∂
∆ = − ∇ = − =

∂
"                                                          (5.28) 

( ) ( )
( )( ) , 1, 2, ,o o

aj aj o
aj

Ew w E j
w

η η ∂
∆ = − ∇ = − =

∂
" m                                                            (5.29) 

Where 1>η>0 is a learning rate parameter and the choice of such a parameter will affect 

the convergence speed of the updating process. Equations 5.28 and 5.29 indicate the 

magnitude, and the directions to the change of the synaptic weights are determined by the 

gradient of E. The partial derivatives of E with respect to the synaptic operation, sδ , are 

defined as  
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Applying Equation 5.31, the delta variable of the output neuron, ( )o
jδ , can be obtained by 

expanding the right hand side of Equation 5.31 by Equations 5.25 and 5.16 
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Equation 5.33 indicates that the delta associated with the output neuron, ( )o
jδ , can be 

regarded as the product of the error at the output neuron and the differential signal of the 

nonlinear activation. The gradient of the cost function E with respect to the synaptic 

weight  is then evaluated to obtain the weight updating algorithm for output neurons. ( )o
ajw

( )
( )( )o

aj o
aj

Ew W
w
∂

∇ =
∂

                                                                                                        (5.34) 

Applying the chain rule 
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Since  is independent of , thus  ( ) (o
ls l j≠ ( )o

ajw
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Since  ( ) ( )( )o o T
j aj as w z=  , and taking the partial derivatives of     with respect to  

yields 
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Applying Equations 5.31, 5.33, 5.35 and 5.36 yields 

( ) ( ) ( )( ) '( )o o
aj j a j j aw E z e s zδ ϕ∇ = − = − o

j≡

)

                                                                          (5.38) 

Applying the gradient descent algorithm, the weight updating algorithm for the nonlinear 

output neurons can be given as follows [Haykin, 1999] 

( ) ( ) ( )
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= +

                                                        (5.39) 

Sometimes the linear activation function can be applied for the output neurons for 

nonlinear mappings as well, thus Equation 5.33 can be rewritten as   

( ) ' ( )( )o o
j j je s eδ ϕ=                                                                                                       (5.40) 

As a result, the weight updating algorithm for the linear output neuron is given by 

simplifying Equation 5.39 

( ) ( )( 1) ( ) ( ) (o o
aj aj j aw k w k e k z kη+ = +                                                                            (5.41) 
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Similarly, to obtain the weight updating algorithm for the hidden neurons, the delta 

associated with the hidden neuron, ( )h
jδ  can be given using chain rule as well as Equations 

5.30 and 5.31 

( ) ( )
( ) ( )

( ) ( ) ( )
1 1

o om m
h l

i o h h
l ll i i

sE
s s s

δ
= =

∂ ∂∂
= − =

∂ ∂ ∂∑ ∑ o l
l

sδ                                                                             (5.42) 

Applying Equations 5.15 and 5.16 
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                                                                         (5.43) 

Applying Equations 5.42 and 5.43 yields  

( ) ( ) ( ) ' ( )

1

(
m

h o o
i l li

l

w sδ δ ϕ
=

=∑                                                                               (5.44) 

The propagation error that represents the error in the hidden layer due to the all the output 

error can be defined as 

( ) ( ) ( )

1

m
h o

i l
l

e δ
=

= ∑                                                                                                         (5.45) 

Thus 

( ) ( ) ( )'( )h h h
i i ie sδ ϕ=                                                                                                       (5.46) 

Equations 5.45 and 5.46 indicate that each output error generated at the output neurons 

has its influence on the ( )h
iδ . In fact, the way that error signal propagates backward from 

the output neurons to the hidden neurons is similar to the way the input signal transmits 

forward from hidden neurons to the output neurons. Applying the chain rule, the gradient 

of E with respect to the hidden synaptic weights can be obtained 
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Applying Equation 5.30 yields 
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Applying Equation 5.15, ( ) (h
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Consequently,  

( ) ( )h h
ai i aw δ∇ = − x

x

                                                                                     (5.50) 

Applying Equations 5.46 and 5.50 yields 

( ) ( ) ' ( )( )h h h
ai i i aw e sϕ∇ = −                                                                                      (5.51) 

Again, using the gradient descent algorithm to obtain the weight updating algorithm for 

the hidden neurons [Haykin, 1999], 
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                                              (5.52) 

Both Equations 5.39 and 5.52 are called the generalized delta rule [Haykin, 1999 and 

Ham and Kostanic, 2001].  However, from the error signal propagation perspective, it is 

also known as the standard backpropagation algorithm. Figure (5.9) illustrates the 

learning flow of the backpropagation algorithm for a two layered feed-forward network. 
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The popularity of using gradient descent algorithms as the standard weight updating 

algorithm for backpropagation algorithm is based on its simplicity instead of its search 

power. In fact, the gradient descent algorithm is an inefficient procedure as it is sensitive 

to the selection of the learning rate parameter η. If η is too large, the algorithm may 

overshoot leading to divergent oscillations and result in a complete breakdown of the 

algorithm. On the contrary, if η is too small, the search for the minimum can be 

extremely slow [Bishop, 1995].  

Furthermore, since the search of gradient descent is based only on the local gradient 

information it can become trapped in local minima as the goal is to search global minima. 

In terms of local curvature, a local minima and global minima are identical, thus the 

gradient descent will be trapped in any local concavity of the error surface. It will move 

very slowly, when the search traverses a flat region of the error surface because the 

weights are modified proportionally to the gradient. If the gradient is small, the weight 

updates will be small thus many iteration steps are required to move through the flat spot. 
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Figure 5.9: Learning flow of standard backpropagation algorithm 

Consequently, the slow convergence speed of the standard backpropagation algorithm 

has encouraged research in faster algorithms for MFNN training [Anderson and McNeill, 

1992]. In general, research on faster learning algorithms roughly fall into two categories. 

The first category consists of introducing the improvement to the standard 

backpropagation algorithm, such as the introduction of momentum to the gradient 

descent, which is given in this section. The second category involves the use of standard 
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numerical optimization techniques, such as second order optimization learning 

algorithms, which are given briefly in Appendix B.2. 

In order to avoid oscillations due to large η for rapid learning and the acceleration of the 

learning speed, a modified version of the standard backpropagation is obtained by 

introducing an additional parameter α, 0 1α≤ ≤ , called the momentum constant, in the 

second term on the right side of Equations 5.39 and 5.52 [Haykin, 1999]. 

( ) ( ) ( ) (0)( 1) ( ) ( ) ( ) ( 1o o o
aj aj j a ajw k w k k z k w kηδ α+ = + + ∆ − )

)

)

                                              (5.53) 

( ) ( ) ( ) ( )( 1) ( ) ( ) ( ) ( 1h h h h
ai ai i a aiw k w k k x k w kηδ α+ = + + ∆ −                                           (5.54) 

Equations 5.53 and 5.54 are derived for a two layered feed-forward network. Combing 

both of these equations, a general gradient descent plus momentum algorithm can be 

obtained 

                                                 (5.55) 
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Where M is the number of the hidden layers plus one output layer and the n is the total 

number of neuron in the ith layer. Thus, if the network is operating in the flat area of the 

error surface, the value of the gradient does not change substantially from each step.  The 

second term of Equation 5.55 can be approximated as 
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As α is always smaller than unity, thus updating with momentum increases the effective 

learning rate to
1
η
α−

.  Equation 5.55 indicates that the weights are updated proportionally 

to how much they were updated in the last iteration. Thus, if the search is going down the 

hill and finds a flat region, the weights are still changed, not because of the gradient 

(which is practically zero in the flat region) but because of the rate of the change in the 

weights. Likewise in a narrow valley, where the gradient tends to bounce back and fourth 

between hillsides, the momentum stabilizes the search as it tends to make the weights 

follow a smoother path, as shown in Figure (5.10). 

As illustrated in Figure (5.10), imagining a ball (weight vector position) rolling down a 

hill (error surface), if the ball reaches a small flat part of the hill it will continue past this 

local minima because of its momentum. In contrast, a ball without momentum, however, 

will get stuck in this valley. As a result, momentum learning can provide faster and more 

stable performance than the basic gradient descent algorithm. 
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Figure 5.10: The impact of momentum learning (After Principe et al., 1999) 

As mentioned previously, the standard backpropagation algorithm (gradient descent 

algorithm) and the modified standard backpropagation algorithm (gradient descent 

algorithm plus momentum algorithm) employ only the first order partial derivatives of 

the error function (gradient). Such first order learning algorithms have weaknesses when 

dealing with most of the classification and approximation problems. They usually require 

large numbers of iterations to optimally tune the synaptic weights thus it is not possible to 
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adapt them for on-line application, such as adaptive control. As a result, recent 

development of backpropagation algorithms utilizes the high order optimization 

algorithms to speed up the learning speed. Appendix B.2 provides more details on the 

advantages and disadvantages of different second order optimization algorithms. In 

addition, a simple example is given in Appendix B.2 to compare the performance of the 

gradient descent algorithm (1st order), Quasi-Newton algorithm (2nd order), conjugate 

gradient algorithm (2nd order), and Levenberg-Marquardt algorithm (2nd order).  

As indicated in Appendix B.2, the Levenberg-Marquardt algorithm is the fastest 

algorithm among those candidates. However, it requires large storage space. Thus, the 

choice between the conjugate gradient algorithm and Levenberg-Marquardt algorithm is 

application dependent. If the computation storage space is a critical issue, then the 

conjugate gradient algorithm is an appropriate option, otherwise, the Levenberg-

Marquardt algorithm is the best choice in terms of the speed of convergence.  

In addition, the least square (LS) learning algorithm proposed by Douglas and Meng 

[1991] and an extended Kalman filter (EKF) based learning algorithm proposed by 

Singhal and Wu [1989] are given briefly in Appendix B.3. As indicated in Douglas and 

Meng [1991] and Rivals and personnaz [1998], Both LRLSL and EKF learning 

algorithms are able to provide better performance in terms of convergence speed. 

However, it comes with the price as the complexity of the computation model is more 

complicated and storage requirements are higher than any of those 1st and 2nd order 

learning algorithms mentioned in Appendix B.2. The weight updating requires a 

centralized computing facility, thus the advantage of the parallel computation provided 

by ANNs is not exploited. Practically, the EKF and LRLSL learning algorithms are not 

recommended due to their computation complexity and storage requirement [Haykin, 

2001]. However, if the requirement of the computation speed is critical and the limitation 

of the storage space is not an issue, the EKF is then suggested. 

 

To overcome the difficulties associated with the computation complexity and storage 

space, some decoupled versions of  the EKF learning algorithms , known as the 

decoupled extended Kalman filter (DEKF) can be applied [Haykin,2001]. Since the 
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dimension of the synaptic weights is very high, the DEKF learning algorithm can be 

applied to reduce the computational complexity and storage requirement by decomposing 

the weight vector into several sub vectors. There are also more sophisticated algorithms 

such as the neuron-decoupled EKF (NDEKF) and weight decoupled EKF (WDEKF). The 

detailed description of the DEKF, NDEKF, and WDEKF is far beyond the scope of this 

research but can be obtained from Haykin [2001]. 

 

To give an example about the performance between the second order learning algorithms 

(i.e., conjugate gradient and Levenberg-Marquardt algorithms) and linearized recursive 

estimation learning algorithms (i.e., EKF learning algorithm), a simple linear regression 

problem is applied. The true function (f) is given as 

 

sin(2* * ), 0 ~ 1, 1/( 1), 1000;f x x x n nπ= = ∆ = − =

noise

                               (5.57) 

 

Where n is the total number of points. The desired output (t) for the training is generated 

by adding the random noise to the function, 

 

sin(2* * )t xπ= +                                                                                    (5.58) 

 

The objective is to evaluate the accuracy of the regression by comparing the prediction 

output of the trained MFNN (y) and ideal function output (f) and the required training 

time for the conjugate gradient (CG) learning algorithm, Levenberg-Marquardt (LM) 

learning algorithm and EKF learning algorithm. The training procedure for each 

algorithm was repeated for five trails. Figure (5.11) illustrates the function output, desired 

output and MFNN outputs through the use of different learning algorithms during one of 

the five trails. A two layered feedforward network with 10 hidden neurons was designed 

to solve the regression problem.   

 

The desired output (t) for each trail was generated independently by adding different 

random noise to the function. Thus, the RMS errors that can be obtained by comparing 

the actual MFNN prediction output and the function output and required training time for 
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each learning algorithm during five different trails are listed in Table 5.6. As indicated in 

Table 5.6, the EKF learning algorithm was able to provide the best performance in the 

time domain. It converged 10 times and 100 times faster than the LM and CG algorithms, 

respectively. However, the performance of the EKF learning algorithm in the prediction 

accuracy domain was 5 times worse than the LM and CG learning algorithms. 
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Figure 5.11: Regression problem solved by MFNN with different learning algorithms 

Generally speaking, the choice between these learning algorithms is made based on the 

balance between the computation complexity, storage space requirement, accuracy and 

training speed. Indeed, the EKF learning algorithm is the fastest algorithm among those 

candidates, however, the prediction accuracy of the EKF trained MFNN is not as good as 

other learning algorithms. Thus the EKF learning is not recommended for the 

development of the conceptual intelligent navigator, On the contrary, the LM algorithm, 

although possessing the disadvantage of storage space requirement, is recommended due 

to its reasonable training speed and prediction accuracy. 
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Table 5.6: Performance summary 

Learning algorithm Index 1 2 3 4 5 
Time(second) 10.16 10.45 9.42 9.45 10.19MFNN-CG 

RMS 0.046 0.045 0.046 0.044 0.046
Time(second) 3.95 3.93 3.91 3.89 3.84 MFNN-LM RMS 0.049 0.047 0.048 0.048 0.047

0.27 0.25 0.23 0.20 0.20 MFNN-EKF Time(second)
RMS 0.19 0.18 0.17 0.18 0.18 

 
 
5.3     Recurrent Neural Networks 

As mentioned previously, a dynamic neural network can be defined as a neural network 

that consists of inter-layer feedback loops (i.e., from output layer to input layer) and 

intra-layer feedback loops (i.e., between different neurons within the same layer) or self-

feedback loops. Recurrent neural networks can be characterized as dynamic neural 

networks as they usually have at least one of those feedback loops mentioned above 

[Principe et al., 1999]. 

From the computational perspective, a dynamic neural network that contains a feedback 

loop may provide more computational advantages than a static neural network, which 

only contains feed-forward architecture [Mandic and Chambers, 2001]. In fact, 

applications of ANNs in forecasting, signal processing, and control require the treatment 

of dynamics associated with the unknown model. Feed-forward networks for processing 

of dynamical system tend to capture the dynamics by including past input in the input 

vector. However, for dynamical modeling of complex systems, there is a need to involve 

feedback, to use recurrent networks. Thus, the nonlinear dynamic recurrent neural 

network architecture is particularly appropriate for system identification, control and 

filtering application because of its distributed information processing ability as in 

biological neural systems. In fact, various recurrent neural network architectures have 

been introduced for learning, information storing and using knowledge that might be 

found widely in the brain [Norgarrd, et al., 2001].  

One of the earliest recurrent networks reported in the literature is the auto-associator 

independently described by Anderson et al., [1977] and Kohonen [1977]. It contains a 
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pool of neurons with connections between each unit i and j, i j≠ , as shown in Figure 

(5.12). Hopfield [1982] suggested the famous Hopfield networks that are a special kind 

of recurrent neural networks that can be used as associative memory. Associative 

memory is memory that is addressed through its contents. That is, if a pattern is presented 

to an associative memory, it returns whether this pattern coincides with a stored pattern. 

An associative memory may also return a stored pattern that is similar to the presented 

one, so that noisy input can also be recognized. 

 

Auto-associator
network                                 

(6 neurons)

1z −

1z −

1z −

Hopfield network            
(3 neurons)

Auto-associator
network                                 

(6 neurons)

1z −

1z −

1z −

Hopfield network            
(3 neurons)

 

Figure 5.12: Auto-associator and Hopfield network 

The Hopfield network consists of a set of neurons and a corresponding set of unit delays, 

forming a multi-loop feedback system, as shown in Figure (5.12). The number of 

feedback loops is equal to the number of neurons. Basically, the output of each neuron is 

fed back; via a unit delay, to each of the other neurons in the network. In other words, 

there is self feedback in the network. Hopfield networks are used as associative memory 

by exploiting the property that they possess stable states, one of which is reached by 

carrying out the normal computations of a Hopfield network. If the connection weights of 

the network are determined in such a way that the patterns to be stored become the stable 

states of the network, a Hopfield network produces for any input pattern a similar stored 

pattern. Thus noisy patterns can be corrected or distorted patterns can still be recognized. 

Jordan [1986] suggested a recurrent network architecture, known as the Jordan network, 

for control of robots, as shown in the Figure (5.13). In the Jordan network, the network 

outputs are fed back into the input layer through a set of extra input units called the 
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context layer. There are as many units as the output neurons. The connections between 

output neuron and context units have a fixed weight of +1; learning takes place in the 

connection between the input and hidden neurons as well as hidden and output neurons. 

Elman [1990] proposed a Simple Recurrent Network (SRN), also known as Elman 

network, for problems in linguistics.In addition,  Aguilar et al., [2003] applied Elman 

network for the prediction of pitch and head movements using a MEMS IMU and  it 

concluded that the Elman network can do a very good job of learning the head motion, 

thus only the topology and associated learning algorithm of Elman networks is given in 

the next section. 

Similar to a Jordan network, the Elman network also has a context layer, which contains 

extra input units that receive the outputs from the hidden neurons, as shown in the Figure 

(5.13).  This is the main difference between Jordan and Elman networks. All the learning 

algorithms derived for the MFNN can be applied to train both Jordan and Elman 

networks [Principe et. al., 1999]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.13: Jordan and Elman network 
 
 
5.3.1    Elman Networks  

As indicated in Figure (5.14), the architecture of the Elman network is very similar to the 

architecture of the MFNN with a single hidden layer. It consists of input nodes where the 

inputs from the environment are applied, hidden neurons where internal representations 

of the nonlinear input-output relationship are formed and the output neurons where the 
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outputs of the network are produced. In addition, the Elman network also consists of 

another layer of neurons, called context neurons that receive the output of hidden neurons 

at previous time instants. The input neurons and the context neurons are connected with 

feed-forward connections to the hidden neurons.  

Hence, the hidden neurons of the Elman network do not only learn useful representations 

of the current input to the network; they also develop representations that are useful for 

encoding the temporal properties of the input patterns. Since the feedback synaptic 

weight links from the hidden neurons to the context neurons are fixed (normally taken to 

be equal to 1), the only adaptive weight links are feed-forward type. Hence, the three 

phases of the backpropagation learning algorithm (feed-forward phase, backpropagation 

phase and synaptic weights updating phase) can also be applied to the Elman network to 

teach the network to learn the optimal synaptic weights required to perform a desired task 

[Christodoulou and Georgiopoulos, 2001]. 

5.3.2    Standard Backpropagation Learning algorithm. 
 
For illustrating the standard backpropagation learning algorithm for the Elman network, a 

detailed architecture of the Elman network that contains n input neurons, p nonlinear 

hidden and context neurons and m linear output neurons is given as Figure (5.14).  
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Figure 5.14: Elman network 
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The synaptic weight links between context layer and hidden layer, , is a p*p+1 

matrix. Similarly, the synaptic weight between hidden layer and input layer, , and the 

synaptic weight between hidden layer and output layer, , are p*n+1 and m*p+1 

matrices , respectively. Since the standard backpropagation algorithm developed for 

MFNN can be applied with only minor modification, the detailed derivation can be found 

at section 5.2.2 or See Shi et al., [2001] for a similar derivation of the backpropagation 

algorithm for the Elman network. The associated equations are given in brief according to 

the three phases of the standard backpropagation algorithm. 
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Similar to the augmented version of the expression used in the previous section, the 

augmented expression for the feed-forward can be given as   
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( ) ( ) ( )( ) ( ) ( ) ( ) ( )h c h
a c a as k W k x k W k x k= +                                                               (5.60) 

( )( ) ( ( )), ( )h
az k s k hidden layerϕ=                                                                      (5.61) 

( ) ( 1), ( )c ax k z k context layer= −                                                                  (5.62) 

( )( ) ( ) ( ), ( )o
a ay k W k z k output layer=                                                              (5.63) 

The activation functions φ of hidden neurons and output neurons are nonlinear (i.e., 

sigmoid function) and linear, respectively. 

 Backpropagation phase 
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Applying Equation 5.25, and taking the partial derivatives of E with respect to the 

augmented synaptic weights, , and  thus the delta for the output and hidden 

neurons can be given as 

( )c
aW ( )h

aW ( )o
aW

( ) ( )( ) , 1, 2,...o o
i i i i id y e e i mδ = − = = =                                                                 (5.64) 

( ) ( ) ( ) ' ( ) ( ) ' ( )

1

( ) ( ) ( ), 1, 2...,
m

h o o h h h
j i ij j j j

i

w s e s jδ δ ϕ ϕ
=

= =∑ p=

p

                                            (5.65) 

 Synaptic weights updating phase 

Applying the gradient descent algorithm yields the synaptic weights updating algorithm 

for the Elman network. 

For output neurons: 

( ) ( )( 1) ( ) ( ) ( ), 1, 2..., ; 0,1, ...,o o
ij ij i a jw k w k e k z k i m jη+ = + = =                          (5.66) 

For hidden neurons: 

( ) ( ) ( ) ' ( )( 1) ( ) ( ) ( ( )) ( ), 1, 2,..., ; 0,1,...,h h h h
jq jq j j qw k w k e k s k x k j p q nη ϕ+ = + = =

          (5.67) 

For context neurons: 

( ) ( ) ( ) ' ( )( 1) ( ) ( ) ( ( )) ( 1), 1,2,..., ; 0,1,...c c h h
jl jq j j alw k w k e k s k z k j p l pη ϕ+ = + − = =                       (5.68) 

Equations 5.66, 5.67 and 5.68 represent the gradient descent learning algorithm for the 

Elman network. In fact, the learning algorithms that were developed for MFNN in the 

B.2 and B.3 can be applied for Elman networks [Principe et al., 1999 and Christodoulou 

and Georgiopoulos, 2001]. Similar to MFNN, the choice between these learning 

algorithms depends on the accuracy requirement, computation complexity, storage space 

requirement, and training speed. 
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5.4     Performance Analysis of a MFNN and SRN 

To evaluate the difference in performance between the MFNN and SRN for INS/GPS 

integrated land vehicular navigation systems, two simple position update architectures 

(SPUA) that consisted of a two layered MFNN and a two layered SRN, respectively, 

were designed . The topologies of both architectures are shown in Figure (5.15) and 

Figure (5.16). The input vectors and output vectors of both architectures are exactly the 

same. The input vectors are the north position, east position, and current time epoch 

while the output vectors include the positioning errors of INS in the north and east 

directions. Figure (5.17) illustrates the learning strategy of the SPUA.  
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Figure 5.15: Topology of SPUA_MFNN 
 
SPUA receives the position and time information from the INS mechanization and 

applies the position errors that are generated by comparing the INS position vectors and 

DGPS position vectors as the desired outputs. Thus, during the availability of DGPS, 

SPUA continues the training procedure to update the synaptic weights and adapt the 

dynamical model of the moving vehicle carrying both sensors. In contrast, it can then 

predict the vehicle’s position errors generated by INS during a GPS signal blockage.  

Two field test data were applied for the evaluation. The first field test was conducted by 

the Mobile Multi-sensor Systems (MMSS) research Group of the University of Calgary. 

The test was conducted in a land vehicle environment using the MMSS DGPS/INS 

integrated system utilizing a Litton LN 90-100 system, a strapdown navigation grade 
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IMU and two Ashtech Z12 receivers. The specifications of LN 90-100 system is given in 

Appendix C. The duration of the test was about 2500 seconds and no GPS signal outage 

periods were intentionally introduced as the purpose of this trajectory was to obtain the 

initial weights or stored weights for the estimation of a second field test. The first 

trajectory is shown in the Figure (5.18). 
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Figure 5.16: Topology of SPUA_SRN 
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Figure 5.17: Learning strategy of SPUAs 
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Figure 5.18: Trajectory of the first field test  

 

The second field test was made available by the Institut fuer Astronomische und 

Physikalische Geodaesie, Technische Universitaet Muenchen. The test was conducted in 

a land vehicle environment using an integrated iMAR® iNAV-RQH system, a strapdown 

navigation grade IMU and two Trimble-4000SSI receivers. The specifications of iMAR® 

iNAV-RQH is given in Appendix C. The duration of the test was about 2100 seconds and 

six GPS signal outage periods were intentionally introduced with different motion 

dynamic variation, as shown in Figure (5.19). The durations of these outages were 30 

seconds, 60 seconds, 30 seconds, 300 seconds 60 seconds and 120 seconds, respectively. 
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Figure 5.19: Trajectory of the second field test 
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During the availability of the DGPS signal, the stored weights of the SPUA obtained by 

the first field test data were updated using the window based weights updating strategy 

that is given in the next chapter. Thus, the latest updated weights were applied to predict 

the INS position errors and correct them to fill the gap between DGPS signal outages. In 

order to compare the SPUA performance against conventional integration techniques, the 

results obtained from the SPUA and Kalman filter were compared with a reference 

trajectory which was generated by DGPS with positioning error less than 10cm. The 

results of the Kalman filter were obtained from the University of Calgary Kalman filter 

DGPS/INS integration (KINGSPADTM - KINematic Geodetic System for Positions and 

Attitude Determination software, [Schwarz and El-Sheimy, 1999]). 

 

Table 5.7 lists the RMS errors of each outage. The results demonstrated that SPUAs were 

able to provide 1~2 metre level positioning accuracy with navigation grade IMU during a 

5 minutes GPS outage, and in contrast, the positioning accuracy of the Kalman Filter 

during the 5 minutes GPS outage was about 7 metres. The result clearly indicates that the 

SPUAs are capable of integrating navigation grade IMU measurements with DGPS 

measurements and providing positioning accuracy with 60~75% improvement in 

comparison with the results obtained from a conventional DGPS/INS integration 

technique with a Kalman filter.  

 

Figure (5.20) and (5.21) show the position error of each outage. It can be seen from both 

figures that the performance of the Kalman filter was mainly related to the length of the 

GPS outage; in other words, it grew with time. The Kalman filter was capable of 

providing superior performance over SPUAs when the length of GPS outage was less 

than one minute; on the contrary, SPUAs outperformed the Kalman Filter when the 

length of the GPS outage was longer than one minute. The results demonstrated the 

positioning accuracy of SPUAs was mainly affected by the vehicle’s motion dynamics, 

instead of time. It is a significant difference and improvement in comparison with time 

growing errors characteristic of the Kalman filter. 
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Table 5.7: RMS Errors 

 KF (m) SPUA_MFNN(m) SPUA_SRN(m) Vehicle motion  
Outage_1 (30s) 0.08 0.39 0.51 Straight line 
Outage_2 (60s) 0.09 2.48 5.2 Circle 
Outage_3 (30s) 0.13 0.26 0.95 Curve 
Outage_4 (300s) 6.32 1.45 2.65 Straight line + Curve+ 

Sharp turn 
Outage_5 (60s) 0.06 0.04 0.29 Static 
Outage_6 (120s) 0.12 0.07 0.14 Static 

 

There is no strong indication in this case that the utilization of a dynamic neural network 

(Elman network) can provide any superior performance than a static neural network 

(MFNN) in the position domain. To evaluate the performance in the time domain, a 

segment of the first field test trajectory with a time period of 500 seconds was extracted 

as the training materials for both SPUAs. Both SPUAs had the same number of hidden 

neurons and utilized the same learning algorithm (i.e., Levenberg-Marquardt Algorithm). 

The weights were initialized randomly first then trained using the training materials for 

10 independent trails with the same training goal (i.e, 810− ). The required convergent time 

of SPUAs was then given as in Table 5.8. 
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Figure 5.20: Position errors for the SPUA and KF during different GPS outages  
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Figure 5.21: Position errors for the SPUA and KF during different GPS outages 

Table 5.8: Training time required for 500 seconds data 

Trails 1(epoch/time) 2(epoch/time) 3(epoch/time) 4(epoch/time) 5(epoch/time) 
MFNN 6/2s 5/1s 8/3s 6/2s 8/3s 
SRN 416/>5m 328/>5m 655>5m 320/>5m 471/>5m 

Trails 6(epoch/time) 7(epoch/time) 8(epoch/time) 9(epoch/time) 10(epoch/time)
MFNN 12/6s 7/2.5s 8/3s 8/3s 8/3s 
SRN 627/>5m 385/>5m 848/>5m 803>5m 534>5m 

Unit (s): second, (m):minute  

It can be seen from the above table that the learning speed of a dynamic neural network 

(Elman network) is much slower than that of a static neural network (MFNN). In other 

words, dynamic neural networks can not provide superior performance than a static 

neural network in terms of accuracy and learning speed in this INS/GPS integration case. 

Thus, a MFNN is recommended as the core algorithm for the development of the 

conceptual intelligent navigator, which is given in the next chapter, due to its reasonable 

accuracy, storage requirement, learning speed and computation complexity. 

 

155 



CHAPTER 6 
 

DEVELOPMENT OF THE CONCEPTUAL INTELLIGENT 
NAVIGATOR 

 
As mentioned in previous chapters, Kalman filter approach has been widely applied as 

the core algorithm for INS/GPS integrated systems for many navigation applications. 

Although it represents one of the best estimation algorithms for INS/GPS integration 

applications, it has limitations in terms of model dependency, priori knowledge 

dependency, sensor dependency, and linearization dependency for general INS/GPS 

integrated navigation applications, see section 3.3.2 for more details. Consequently, in 

order to overcome or reduce the impact of these limitations, several research works have 

been conducted to investigate possible alternative algorithms for INS/GPS integrated 

navigation systems, see section 2.4.2.  

 

Among these efforts, Chiang and El-Sheimy [2002], Chiang et al., [2003], El-Sheimy et al., 

[2003] Chiang [2003], and Chiang [2004] developed several INS/GPS integration 

architectures using ANNs technology. The preliminary results demonstrated that ANNs 

based INS/GPS integration algorithm could overcome or, at least reduce the impact of the 

limitations of the conventional Kalman filter. Thus, the optimal goal of this chapter is to 

propose a conceptual intelligent navigator that uses ANNs as the core algorithm for 

INS/GPS integration.  

 

Based on the knowledge gained in the previous chapter, two layered feed-forward neural 

networks will be applied to build the proposed INS/GPS integration architectures. Such a 

conceptual intelligent navigator is expected to provide positioning information (N, E), 

velocity information  and azimuth information (( , )N EV V ϕ ) and to be able to overcome the 

limitations of the Kalman filtering algorithm for INS/GPS integrated land vehicular 

navigation applications in terms of positioning accuracy during GPS signal outages. Figure 

(6.1) illustrates a comparison between the system architecture of the conventional navigator 

and conceptual intelligent navigator for land vehicular applications. 
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The human brain has the ability to learn adaptively in response to knowledge, experience 

and environments by a network of interconnected adaptive information processing 

elements that transform inputs to desired outputs [Principe et al, 2000]. Thus, the 

conceptual intelligent navigator is expected to have the ability to learn and adapt. 
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Figure 6.1: Comparison between conventional and conceptual intelligent navigator 

 

Learning is defined as a process of acquiring and memorizing new information, 

knowledge and experience [Callatay, 1992]. The adaptation can be regarded as the ability 

of the information processing elements to change in a systematic manner and alter the 

nonlinear transformation between inputs and outputs. Thus, three function schemes of the 

conceptual navigator that fulfill the requirements of self-learning or adaptive learning are 

given as follows:  

 

• Generate navigation knowledge: An intelligent navigator should be able to 

generate or acquire necessary navigation knowledge by itself from the 

information provided by the navigation sensors (i.e., INS, GPS, DR, CCD...etc). 
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Thus, the navigation knowledge can be applied to provide necessary navigation 

solutions. 

 

• Store navigation knowledge: Humans have the ability to learn, memorize, and 

store enormous amounts of information. Furthermore, humans also have the 

ability to generalize what they have learnt based on the information stored in their 

memory [Callatay, 1992]. In addition, memory consists of time dependent 

processing of encoding and retrieval of the information stored in the brain as a 

result of sensory knowledge or experience. Therefore, an intelligent navigator 

should be able to store and generalize the navigation knowledge generated by 

previous function schemes.  

 

• Accumulate navigation knowledge: The real learning process of humans is 

conducted through continuous accumulation of knowledge or experience then 

transforming such information in the form of long term memory. In other words, 

long term memory refers to the more or less permanent form of information in the 

brain. In general, it might take many repetitions or activations of sensory 

information to establish long-term memory by the process of continuous learning, 

memorizing and generalizing [Vidyasagar, 2002]. Thus, an intelligent navigator 

should possess a strategy to accumulate the navigation knowledge to mimic the 

way humans learn and accumulate knowledge. 

 

Figure (6.2) illustrates the core components of the conceptual intelligent navigator. 

Several ANNs based INS/GPS integration architectures are given first in this chapter to 

generate the necessary navigation knowledge for the conceptual intelligent navigator. 

After that, the concept of a navigation information database is discussed to provide 

storage space of the navigation knowledge, and then a window based weights updating 

strategy is given as a tool for accumulating the navigation knowledge. Before leaving this 

chapter, the conceptual intelligent navigator is implemented and evaluated. 
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Figure 6.2: Core components of the conceptual intelligent navigator 

 

6.1    ANNs Based INS/GPS Integration Architecture 
 

Being inspired by Figure (6.2), the first step toward building the conceptual intelligent 

navigator is to provide the INS/GPS integration architectures that can be applied to 

generate and acquire necessary navigation knowledge. Consequently, three ANNs based 

INS/GPS integration architectures are designed and discussed in the following sections. 

 

6.1.1   Position Update Architecture 

 

The first INS/GPS integration architecture is called the Position Update Architecture 

(PUA) which consists of a two layered feed-forward neural network. It integrates the data 

from INS and DGPS and mimics the dynamical model of the vehicle to generate 

navigation knowledge. Thus the latest acquired navigation knowledge can be applied to 

predict the vehicle’s position during GPS outages in real time [Chiang and El-Sheimy, 

2002]. 

 

The topology of the first generation PUA is illustrated on the left side of Figure (6.3). The 

input neurons receive the velocity at current epoch ( ), azimuth at current epoch ( )INSV t
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( ( )INS tφ ) from INS mechanization, and the two dimensional coordinates in the local level 

frame at previous epoch ( ( 1)GPSN t − , (GPSE t 1)− ) from GPS solutions. The number of 

hidden neurons is decided empirically; see Chiang et al., [2003] for more details. The 

output neurons generate two dimensional coordinates in the local level frame at the 

current epoch ( , ( ). However, according to Chiang and El-Sheimy [2002], 

the 1st generation PUA can be further simplified, thus a 2nd generation PUA is given in 

Figure (6.3). The input neurons receive only the velocity at the current epoch ( ), 

azimuth at the current epoch (

( )PUAN t )PUAE t

( )INSV t

( )INS tφ ) and the output neurons generate the two 

dimensional coordinates difference between two consecutive epochs in the local level 

frame ( ( )N tδ , ( )E tδ ). 

 

The purpose of using the coordinate differences instead of the position component itself 

is to simplify the learning process. In fact, the differences can reduce the complexity of 

the input/output function relationship thus they provide a more efficient NN training and 

reduce the time required for the training procedure [Chiang and El-Sheimy, 2002]. 
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Figure 6.3: Topology of PUA 
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Figure 6.4: System configuration and learning strategy of PUA 

 

Figure (6.4) illustrates the system configuration and learning strategy of the PUA. The 

system receives the outputs from INS mechanization at t epoch ( , (( )INSV t )INS tφ ) and is 

expected to generate the coordinate differences between two consecutive epochs 

( ( )PUAN tδ , ( )PUAE tδ ). The desired outputs ( ( )GPSN tδ , ( )GPS E tδ ) are provided by GPS 

during signal availability in either DGPS or SPP mode of operation. As long as the GPS 

signals are available for more than 4 satellites, the learning process continues to reduce 

the estimation error in order to obtain optimal values of the NN parameters. In this case, 

the desired outputs ( ( )GPSN tδ , ( )GPS E tδ ) are applied as the system output. Thus, the 

navigation knowledge can be learnt, stored and accumulated during the availability of the 

GPS signal. On the other hand, during GPS signal outages, the latest acquired navigation 

knowledge can be retrieved from the “brain” (navigation information database, see 

section 6.2 for more details) of the intelligent navigator to predict the position 

( , ( ) in real time. ( )PUAN t )PUAE t

 

6.1.2    Position and Velocity Update Architecture 

 

The second INS/GPS integration architecture is named the Position and Velocity Update 

Architecture (PVUA) [El-Sheimy et al, 2003]. It consists of two different two layered 
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feed-forward neural networks that work in parallel. Similar to PUA, PVUA is applied to 

generate navigation knowledge which can be used to provide, in real time, the vehicle’s 

position and velocity during GPS signal outages. The topologies of PVUA are illustrated 

in Figure (6.5). In fact, PVUA is the combination of a Velocity Update Architecture 

(VUA) with a modified version of the PUA.  
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Figure 6.5: Topologies of PVUA 

 

The input neurons of the VUA receive the velocity from the INS mechanization ( ) 

and time epoch (t). The output neuron generates VUA estimated velocity ( ) as the 

velocity input for the modified PUA. Thus, instead of using velocity information from 

INS mechanization directly in the original PUA, the modified PUA receives the velocity 

from the VUA and combines it with the azimuth obtained from the INS (

( )INSV t

( )VUAV t

( )INS tφ ), The 

final results are the two dimensional coordinates difference between two consecutive 

epochs in the local level frame ( ( )PVUAN tδ , ( )PVUAE tδ ). Figure (6.6) illustrates the system 

configuration and learning strategy of the PVUA. The system utilizes the outputs from 

INS mechanization at t epoch ( , (( )INSV t )INS tφ  ) along with the time information (t) and is 

expected to generate the coordinate differences between two consecutive epochs 

( ( )PUAN tδ , ( )PUAE tδ ). The desired outputs for the VUA and modified PUA are ( ) ( )DGPSV t
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and ( ( )DGPSN tδ , ( )tDGPSEδ ), respectively. They are provided by GPS as long as the GPS 

signals are available from at least 4 satellites.  

 

During GPS outage, the modified PUA receives the VUA predicted velocity ( ) 

and the azimuth (

( )VUAV t

( )INS tφ ) obtained from INS to generate coordinate differences between 

two consecutive epochs ( ( )PVUAN tδ , ( )PVUAE tδ ). Thus, similar to PUA, the latest acquired 

navigation knowledge obtained through use of the PVUA can be retrieved from the 

“brain” of the intelligent navigator to predict the positions ( , ( ) in real 

time to fill the gaps during GPS outages. 
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Figure 6.6: System configuration and learning strategy of PVUA 

 

6.1.3    Position, Velocity, and Azimuth Update Architecture 

 

The third INS/GPS integration architecture is called the Position, Velocity and Azimuth 

Update Architecture (PVAUA) [Chiang, 2004 and Chaing and El-Sheimy, 2004b]. It 

consists of three different two layered feed-forward neural networks that work in parallel. 

Similarly, the PVAUA can be applied to generate navigation knowledge which can be 

used to provide the vehicle’s position, velocity and azimuth to fill the gap between GPS 

outages in real time. In fact, it can be regarded as the combination of an Azimuth Update 
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Architecture (AUA) with a modified PUA. Instead of receiving the velocity and azimuth 

obtained from INS mechanization at time epoch t ( , (( )INSV t )INS tφ ), the modified PUA 

receives the velocity ( ) and azimuth (( )VUAV t ( )AUA tφ ) generated by the VUA and AUA, 

respectively. Thus the modified PUA generates two dimensional coordinate differences 

between two consecutive epochs in the local level frame ( ( )PVAUAN tδ , ( )PVAUAE tδ ). 

 

Similarly, the desired outputs required for training the VUA and the modified PUA 

networks can be obtained directly from DGPS solutions (i.e. , (( )DGPSV t )tDGPSNδ  and 

( )DGPSE tδ ). As for the AUA, the desired output can be provided by a “physical” 

measurement (i.e., magnetic compass) or a “pseudo” measurement (i.e., DGPS derived 

azimuth or multi-antenna derived azimuth). Considering its simplicity, cost, and integrity, 

raw DGPS derived azimuth ( ( , ) ( )DGPS V P tφ − ) is preferred as the “pseudo” measurement to 

provide the desired output for training AUA. Mathematically, the DGPS derived azimuth 

at t epoch ( ( , ) ( )DGPS V P tφ − ) can be calculated as follows:  

 

 1
( ) ( )

( ) ( )( ) tan ( ) tan
( ) ( )

E
DGPS V DGPS P

N

V t 1 E tt or t
V t N t

δφ φ
δ

−
− −= −=                                        (6.1) 

 

However, the azimuth derived from DGPS velocities ( ( ) ( )DGPS V tφ − ) or DGPS position 

( ( ) ( )DGPS P tφ − ) becomes unstable when the denominator approaches zero (e.g. during 

ZUPT or for low  and small NV ( )N tδ  ), as shown in Figure (6.7). In other words, they 

suffer a numerical problem during low dynamics (low  and small NV ( )N tδ ) or ZUPT due 

to the nature of the inverse tangent algorithm. Therefore, an azimuth constraint algorithm 

that can be applied to reduce such limitation and provide stable DGPS derived azimuth 

for the utilization of PVAUA is given as follows [Chiang, 2004 and Chaing and El-

Sheimy, 2004b]; 

 

(1) Calculate GPS derived azimuth , ( , ) ( )DGPS V P tφ − , using Equation 6.1 

(2) Using Equation 6.2 to obtain constrained GPS derived azimuth , ( , )DGPS V Pφ − , 
during ZUPT, where t is the beginning time epoch of ZUPT   
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( , ) ( , )( ) ( 1)DGPS V P DGPS V Ptφ φ− −= t −                                                                    (6.2) 
 
(3) Using Equation 6.3 to obtain ( , )DGPS V Pφ − ,during low  or small NV ( )N tδ , where t 

is the beginning time epoch of low dynamics along the north direction and INSφ  is 
the azimuth provided by the INS mechanization  

 

       ( , ) ( , )( ) ( 1) ( ) ( 1),DGPS V P DGPS V P INS INSt t tφ φ φ φ− −= − + − t −                                         (6.3) 

(4) The whole process can be summarized as shown in Figure (6.8) 
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Figure 6.7: Instability of ( )DGPS V tφ −  

 

To gain more appreciation to the azimuth constrain algorithm, the field test data applied 

in chapter 4 is used to evaluate the performance of constrained GPS derived azimuth. 

Figure (6.9) illustrates the outputs of raw DGPS velocity derived azimuth, IMU azimuth, 

constrained DGPS velocity derived azimuth and reference azimuth during several ZUPTs 

and low dynamics (i.e., low  and smallNV ( )N tδ ). As mentioned previously, raw DGPS 

velocity derived azimuth demonstrated oscillatory behavior during ZUPTs and low 

dynamics scenarios while IMU azimuth drifted with time. In contrast, constrained DGPS 

velocity derived azimuth demonstrated its stability and reduced the impact of the 

numerical issue. Table 6.1 lists the RMS error of different azimuth outputs. More results 
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about the performance of constrained DGPS velocity and position derived azimuths are 

given in Chapter 7. 
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Figure 6.8: Azimuth constrain algorithm 
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Figure 6.9: Comparison between different azimuth outputs 

 

The results demonstrated that the raw GPS velocity derived azimuth was unreliable; 

therefore, it could not be applied directly with the utilization of the AUA. On the other 

hand, although IMU azimuth drifted with time in stand alone mode, the azimuth change 

between two consecutive epochs was quite accurate during short periods.   Therefore, it 

can be applied to improve the quality of raw DGPS velocity derived azimuth. As a result, 
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constrained DGPS velocity derived azimuth ( ( )DGPS Vφ − ) demonstrated its superior 

performance than raw DGPS velocity derived ( ( )DGPS Vφ − ) and IMU azimuth. The 

topologies of PVAUA are given in Figure (6.10).  The PVAUA consists of an AUA, a 

VUA and a modified PUA. The topology of VUA used by PVAUA can be found in 

Figure (6.5).  

  

Table 6.1: Performance Summary (RMSE) 

 1 2 3 4 5 6 
Raw DGPS 

derived 
Azimuth (deg) 

136.41 132.38 70.62 120.60 130.80 55.17 

IMU  Azimuth 
(deg) 4.80 1.95 4.63 17.01 21.91 23.71 

Constrained 
DGPS derived 
Azimuth (deg) 

4.80 1.02 0.66 1.59 0.27 0.60 

GPSTime-
150000 (sec) 410:550 640:690 990:1020 1490:1520 1600:1630 1690:1705
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Figure 6.10: Topologies of PVAUA 

 

The input neurons of the AUA receive the azimuth from the INS mechanization ( ( )INS tφ ) 

along with the time epoch (t). The output neuron generate AUA estimated azimuth 

( ( )AUA tφ ) as the input azimuth for the modified PVA. Thus, instead of using velocity and 
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azimuth information from the INS mechanization directly in the original PUA, the 

modified PVA receives the velocity ( ) from VUA and combines it with the 

azimuth obtained from AUA (

( )VUAV t

( )AUA tφ ) to generate two dimensional coordinate 

differences between two consecutive epochs in the local level frame 

( ( )PVUAN tδ , ( )PVUAE tδ ). Figure (6.11) illustrates the system configuration and learning 

strategy of the PVAUA.  
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Figure 6.11: System configuration and learning strategy of PAVUA 

 

The system utilizes the outputs from the INS mechanization at t epoch ( , (( )INSV t )INS tφ  ) 

along with the time information (t) and is expected to generate the coordinate differences 

between two consecutive epochs ( ( )PUAN tδ , ( )PUAE tδ ). The desired outputs for the AUA, 

VUA and modified PUA are ( ( )DGPS tφ ), ( ) and (( )DGPSV t ( )DGPSN tδ , ( )DGPSE tδ ), 

respectively. They are provided by GPS during signal availability in DGPS mode. During 

GPS outages, the modified PUA receives the VUA predicted velocity ( ) and the 

AUA predicted azimuth (

( )VUAV t

( )AUA tφ ) to generate coordinate differences between two 

consecutive epochs ( ( )PVAUAN tδ , ( )tPVAUAEδ ). Thus, similar to PUA and PVUA, the latest 

acquired navigation knowledge obtained through the use of PVAUA can be retrieved 
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from the “brain” of the intelligent navigator to predict the positions ( , ) 

in real time. 

( )PVAUAN t ( )PVAUAE t

 

Using the above presented INS/GPS integration architectures, the navigation knowledge 

can be acquired and learnt, however, a “brain” is required for the intelligent navigator to 

store, accumulate and generalize what it has learnt. Although the architecture that can be 

applied to predict the height of the vehicle is not implemented in research because the 

scope of this research is limited to the horizontal navigation solutions, It is worth 

mentioning that such architecture can be implemented easily by replacing the velocity 

with height in Figure (6.5) and uses GPS information to provide navigation knowledge 

associated with the height.  

 

6.2     Navigation Information Database 
 

As mentioned previously, learning can be defined as the acquisition of new knowledge, 

experience and information. Thus, learning is a process of memorizing the learnt 

knowledge or experience in the human brain. Thus, the second step towards building the 

conceptual intelligent navigator is to store the learnt navigation knowledge provided by 

INS/GPS integration architectures presented in the previous section. As a result, a 

navigation information database (NAVi) that contains the acquired and learnt navigation 

knowledge can serve as the “brain” of the conceptual intelligent navigator. Therefore, 

several issues regarding the NAVi are addressed as follows [Chiang and El-Sheimy, 

2004c]; 

 

• Content of NAVi: The database consists of the training samples (input vectors 

and desired output vectors) and estimated synaptic weights during the availability 

of the GPS signal. Thus, these components can be regarded as the navigation 

knowledge. In other words, the content of the database varies with the topologies 

of different INS/GPS integration architectures. Figure (6.12) illustrates the NAVi 

of the PUA.  It can be modified to fit the requirement of PVUA and PVAUA 

using Figure (6.5) and Figure (6.10), respectively. 
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Figure 6.12: NAVi of PUA 

 

• Distributed navigation knowledge storage: The content of NAVi becomes more 

complicated with complicated INS/GPS integration architectures, such as 

PVAUA. Therefore, considering the efficiency of database maintenance and 

retrieval, the navigation knowledge learnt by each sub-component should be 

stored individually in a distributed way, as shown in Figure (6.13). 
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Figure 6.13: Distributed navigation knowledge storage  

 

• Off-line database maintenance: As the goal of NAVi is to store the learnt and 

acquired navigation knowledge to provide long term memory to the conceptual 

intelligent navigator, therefore, the capacity of long term memory increases when 

the learning process increases (i.e. .more demand for storage space). Since the 
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goal of such an intelligent navigator is to mimic the way humans learn, 

accumulate, memorize, and generalize new knowledge or experience, the storage 

space requirement is the price to pay. However, the storage space is not unlimited 

thus it is necessary to employ either on-line (during navigation) or off-line (before 

or after) database maintenance methods to reduce the impact of storage 

requirement. As on-line maintenance might cause delay in providing navigation in 

real time, thus off-line database maintenance methods are recommended. The 

simplest way to reduce the storage requirement is to remove any redundant 

training samples that include inputs and their corresponding desired outputs. As 

for the synaptic weights, they should be kept without any change as they are the 

core component of the navigation knowledge. Using PUA as an example, a simple 

procedure that can be applied prior to navigation (i.e., during alignment, 

ZUPT…etc) or after navigation before shutting down the system, is given below. 

 

o Regroup the training samples: Using one of the training inputs (i.e.,  or ( )INSV t

( )INS tφ ) as the index; the training inputs can be regrouped to increase the 

efficiency for maintenance. 

o Locate redundant navigation knowledge: Although it is difficult to locate a 

pair of training samples that are exactly the same, searching the most similar 

pairs of training samples using threshold values then deciding if they are 

redundant or not is possible, as shown in Figure (6.14). , ,V N and Eφ δ δε ε ε ε  

are the threshold values of the velocity, azimuth and coordinate differences, 

respectively. 

o Remove the redundant navigation knowledge. 
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Figure 6.14: Locate redundant navigation knowledge 

 

Up to now, the conceptual intelligent navigator has been given the ability to generate, and 

learn navigation knowledge and it also has been given the “space” to store navigation 

knowledge. However, there is still one thing missing. It requires a way to accumulate the 

acquired and learnt navigation knowledge and store them for further retrieving or 

generalization. 

 

6.3     Window Based Weights Updating Strategy 
 

As the synaptic weights are the core components of the navigation knowledge, the final 

step towards building the conceptual intelligent navigator is to develop a strategy to 

accumulate the acquired navigation knowledge by updating the synaptic weights 

whenever the GPS signal is available. 

 

In most of their applications, ANNs are trained using some known training data set 

(input/desired output) to obtain the optimal values of the synaptic weights via off-line 

training. For any other set of inputs, different from those used in training, the synaptic 

weights can then be applied to provide prediction of the network outputs.  It is worth 

mentioning that ANNs weights are frozen after completing the training procedure and no 
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further modification will be made during the prediction process [Ham and Kostanic, 

2001]. 

 

In fact, off-line training can work well in case of slowly changing time sequences (e.g.., 

weather forecasting, stock market prediction, robot trajectory control…etc.) [Saad, 1998]. 

In the case of INS/GPS integration for navigation applications, it is required to track 

direction changes and mimic the motion dynamics utilizing the latest available INS and 

GPS data. In other words, the synaptic weights should be updated during the navigation 

process to adapt the network to the latest INS sensor errors and the latest dynamics 

condition whenever the GPS signal is available.  

 

To implement such criterion, a window-based weights updating strategy, which utilizes 

the synaptic weights obtained during the conventional off-line training procedure (or 

probably from previous navigation missions) is stored in the NAVi and is developed in 

this research [Chiang et al., 2004a]. This criterion utilizes the latest available navigation 

information provided by the GPS signal window to adapt the stored synaptic weights so 

that they can be applied to mimic the latest motion dynamic. The window-updated 

synaptic weights are stored after each training stage.  They are then used as initial values 

for the weights to be estimated during the next training window or for prediction during 

GPS outages. Prior to looking into the details of the window based weights updating 

strategy, several aspects of traditional weights updating strategies are given in the next 

session. 

 

6.3.1   Limitations of Traditional Weights Updating Methods 

 

Traditional synaptic weights updating methods can be classified as: (1) sample-by-sample 

training, also known as on-line or sequential training, that  modifies the weights for each 

input record after computing the weights updates; (2) batch training, which computes the 

synaptic weight updates for each sample and stores these values (without changing the 

weights). At the end of the whole training procedure, all the synaptic weight updates are 

added together and then the weights are modified with the accumulated synaptic weight 
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updates [Saad, 1998]. One major difference between sequential training and batch 

training is that batch mode keeps the synaptic weights constant while computing the error 

associated with each input sample. On the contrary, sequential mode is constantly 

updating its synaptic weights.  

 

From an online operational point of view, the sequential mode of training is preferred 

over the batch mode since less local storage is required. In addition, the random 

presentation of the pattern makes it less likely for the standard backpropagation algorithm 

to be trapped in a local minimum if the sequential mode of training is utilized [Fine, 

1999]. In contrast, the use of batch mode provides a more accurate estimate of the 

gradient vector, thus giving more accurate estimation of the weights. 

 

Another major advantage of sequential training over batch training arises if there is a high 

degree of redundancy in the data [Fine, 1999]. For example, suppose that a vehicle is 

moving along a circular trajectory with constant velocity under an ideal condition for ten 

runs. As a result, the whole training data is ten times larger than a single run but contains 

a high level of redundancy. As a result, batch training takes ten times longer than 

sequential training to get the optimal values of the network weights [Haykin, 1999].   

 

On the other hand, the sequential training updates the weights after receiving each record 

of the input samples. Therefore, it will not be affected by such highly redundant data 

[Fine, 1999]. However, during batch training, the network can learn more general 

relationships as it utilizes most of the available training data at the same time instead of 

sample by sample. Both generalization and training efficiency are very critical for 

INS/GPS integration applications, therefore, developing a special weights updating 

strategy that can preserve the generalization ability without losing too much training 

efficiency is very important. 

 

6.3.2    Development of Window Based Weights Updating Strategy 
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The window-based weights updating strategy considers the previously stored weights as 

“long term memory”. Although the stored weights might not be able to provide accurate 

prediction during all GPS outages, it can be applied as the initial weights at the beginning 

of a new navigation mission. The GPS window signal concept is then applied to 

introduce new navigation knowledge to modify stored synaptic weights during 

navigation. In fact, this method combines the advantages of both sequential mode and 

batch mode of training in order to make the training procedure suitable for real-time 

processes. The proposed method tries to enlarge the sample size of sequential training to 

fit certain window lengths.  In addition, the weights of each window are then updated via 

batch training mode. In other words, the weights of each window are updated 

sequentially. As depicted in Figure (6.15), the procedure of the window-based weights 

updating method is given [Chiang et al., 2004a]:   

   

• Weights initialization: The initial weights can be obtained using previously 

stored weights that are stored in NAVi or random initialization. In this research, 

the initial weights were obtained using random initialization. After that, the 

weights were stored in NAVi after each navigation mission and could be applied 

as the initial weights for the next mission. Accurate initial weights may 

significantly reduce training time. 

 

• GPS signal reception:  Within the first GPS window (i=1), GPS (i), the synaptic 

weights are not updated, thus the stored synaptic weights are still the initial 

synaptic weights W (i-1) (i.e., W (0)). 

 

• GPS signal reception: At the next GPS window, GPS (i+1), the stored weights, 

W (i-1), are updated utilizing the previous available GPS information (GPS (i)). 

These weights are stored as W (i) after training is completed. Steps 2 and 3 are 

repeated until GPS signal blockage is detected. 

 

• GPS Outage:  As depicted in Figure (6.15), in case of a GPS outage (after GPS 

(i)), W(i-1) is first applied for real time prediction and then W(i) is utilized to 

175 



replace W(i-1) and carry on  real time prediction during the GPS outage.  

 

The prediction using W (i-1) and the training of W (i) can be operated in parallel as the 

NAVi contains an exact duplication of the NN applied for the training of W (i) with 

initial weight W (i-1). In other words, one NN updates W (i-1) using the latest acquired 

GPS (i) to acquire W (i) and the duplicated one provides prediction using W (i-1).For 

simplification, the update procedure during GPS outage can be paused thus W (i-1) is 

applied to provide prediction during entire GPS outages and it can be updated after the 

reception of next available GPS signal window.   
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Figure 6.15: Window based weights updating strategy (After Chiang et al., 2004a) 

 

Since the ANNs training procedure takes time, updating the synaptic weights 

immediately at the latest available sample of a GPS signal before outage is difficult. 

However, the utilization of the proposed method can still provide reasonable prediction 

accuracy during GPS outages since it provides the latest updated weights instead of real 

time updated weights for real time prediction. Therefore, failure in providing real time 

updated synaptic weights doesn’t mean the intelligent navigator is not able to provide real 
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time prediction. On the contrary, it can utilize the latest acquired and learnt navigation 

knowledge to provide real time solutions. Combining the latest GPS window signals, 

stored weights can be adaptively updated to follow the latest motion dynamics and INS 

errors, thus improving the prediction accuracy during GPS outages.  

 

The training samples acquired for the window based weights updating strategy can be 

arranged through using the following procedure: 

 

• One step training procedure: As shown in Figure (6.16), the training samples 

acquired for each GPS window during navigation are the combination of stored 

training samples (T (Navi)) and available training samples obtained at the end of 

each GPS window ( , n is the nth window). In other words, as the size of 

training samples increases during navigation, the size of NAVi grows during 

navigation as well.  
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Figure 6.16: One step training procedure 

 

            The advantage of the one step training is that it can provide better generalization 

of the navigation knowledge by incorporating stored and previous training 

samples during navigation. The one step training procedure is recommended at 
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the early stage for building the intelligent navigator as the navigation knowledge 

acquired by the navigator at this moment might not be enough to provide 

acceptable accuracy during GPS outages. As the size of NAVi is quite small, the 

incorporation of stored training samples doesn’t slow down the learning process 

during each window; actually, it can provide better generalization of the 

navigation knowledge. 

 

• Two steps training procedure: As shown in Figure (6.17), the training samples 

acquired for each GPS window during navigation are obtained at the end of each 

GPS window (TW (i)). After navigation, all the training samples acquired during 

the navigation are recalled and combined with the stored training samples (T 

(Navi)) then fed into the navigator to improve the generalization of navigation 

knowledge using a conventional off-line batch training method. This procedure is 

recommended for the regular operational stage for building the intelligent 

navigator. After several field tests, the navigator might accumulate enough 

navigation knowledge to provide navigation solutions during navigation without 

incorporating stored training samples. In other words, the size of training samples 

is the same as the GPS window. Therefore, the training speed during each 

window is expected to be faster than the previous procedure. 
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Figure 6.17: Two steps training procedure 
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           After navigation, all the training samples acquired during the current navigation 

are recalled and combined with the stored training samples first to remove 

redundant navigation knowledge, and are then re-trained to improve the 

generalization of the navigation knowledge for future navigation missions. 

 

As mentioned earlier, the development of the conceptual intelligent navigator is inspired 

by the learning process of human beings. The key factor that can accelerate the learning 

is the generalization of navigation knowledge. The perfect solution is to obtain the most 

generalized navigation knowledge that can then be fed into the navigator in one field test. 

However, that is not the case for real life applications. Therefore, the navigator must have 

the ability to evolve during each navigation mission to provide generalized navigation 

knowledge for future missions. Thus, using the proposed INS/GPS integration 

architectures, NAVi database, and window based weights updating strategy, the 

conceptual intelligent navigator has the ability to generate and accumulate the navigation 

knowledge which can be stored in its “brain”. In other words, it can learn and evolve 

continually to provide updated navigation knowledge and fill the gap between GPS 

outages. 

 

6.4     Performance Analysis of the Conceptual Intelligent Navigator 

In order to evaluate the performance of the conceptual intelligent navigator, two field 

tests were conducted in August 2002 using a land vehicle and the NovAtel BDS® 

GPS/IMU system (IMU-Honeywell HG1700, tactical grade IMU). The specifications of 

HG1700 are given in Appendix C. GPS signals with a minimum of 7 satellites were 

available throughout the test periods. The objective was to evaluate the performance of 

ANN based INS/GPS integration architectures, NAVi, and the window based weight 

updating strategy, as they are the core components of the conceptual intelligent navigator. 

 Prediction by NAVi 

The duration of the first test was about 5800 seconds and no GPS signal outage periods 

were intentionally introduced for the purpose of using trajectory to obtain the stored 
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weights for the estimation of the second field test. The first trajectory is shown in the 

Figure (6.18). The duration of the second test was about 2500 seconds and a long GPS 

signal outage period was intentionally introduced for the whole navigation period (i.e., 

2500 second). The second trajectory is shown in Figure (6.19). 

PUA and PVUA were implemented as the INS/GPS integration architectures for the 

intelligent navigator. Both IMU and GPS measurements obtained during the 1st field test 

were fed into the PUA and PVUA to obtain navigation knowledge (stored synaptic 

weights) for the 2nd field test. Thus, the NAVi was applied to fill the gap between DGPS 

signal outages during the second field test. In order to compare the performance of the 

conceptual intelligent navigator against conventional integration techniques, the results 

obtained from the PUA, PVUA and Kalman filter were compared with a reference 

trajectory generated by DGPS (with accuracy ≈ 10cm). The results of the Kalman filter 

were obtained from the University of Calgary Kalman filter DGPS/INS integration 

software (KINGSPADTM - KINematic Geodetic System for Positions and Attitude 

Determination). GPS outages with only the last 900 seconds were introduced for the 

Kalman filter INS/DGPS integration scheme which meant that the DGPS signal was 

available during the first 2000 seconds for the Kalman filter computation. 

It can be noticed from Figure (6.20) that the position errors in a single direction (either 

North or East) at the output of the Kalman filter INS/DGPS integration scheme 

accumulated up to 400 metres within 900 seconds of GPS outage. In contrast, both PUA 

and PVUA provided stable solutions along the whole test of 2900 seconds with RMS 

errors of 31 metres and 21 metres, respectively, as shown in Table 6.2.  

PUA showed adequate performance for the first 2000 seconds and then the position 

errors increased with time during the last 900 seconds. Uncompensated gyroscopes and 

accelerometer measurements dominated the time growing position errors along both the 

North and East directions. Although the vehicle maneuvering or dynamic conditions 

resulted in several error peaks or oscillations, both PUA and PVUA demonstrated the 

ability to reduce the impact of time growing errors in the long term. Table 6.2 also shows 

that PVUA demonstrated a 35% improvement in terms of RMS position errors when 
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compared to PUA. The above results demonstrated the prediction ability of proposed 

architectures. Similar to the conclusion obtained in section 5.4, the performance of the 

Kalman filter was mainly related to the length of the GPS outage. On the other hand, the 

results demonstrated the positioning accuracy of the conceptual intelligent navigator was 

mainly affected by the vehicle’s motion dynamics and not on time from the beginning of 

the GPS outage. It is a significant difference and improvement in comparison with time 

growing error characteristics of the Kalman filter. 
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Figure 6.18: Trajectory of 1st field test 
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Figure 6.19: Trajectory of 2nd   field test 
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Figure 6.20: Position Error of 2nd   field test 

 
Table 6.2: RMSE (2nd field test) 

 
 North(m) East(m) Overall(m) 

PUA 25.10 18.77 31.33 
PVUA 12.14 16.46 20.45 

KF 300.10 102.09 316.99 
 

 Performance of the window based weight updating strategy 

To evaluate the performance of the window based weight updating strategy, four 

different window sizes were considered (10s, 20s, 40s and 60s).  In addition, 10 windows 

were implemented with stored weights obtained via the 1st field test.  Data were then 

updated utilizing the proposed method and 2nd field test data with the availability of a 

GPS signal. In case of a GPS outage, the latest updated weights were applied to provide 

real time prediction, as shown in Figure (6.21). Since there were four different sizes of 

windows, the simulated GPS outage for each scenario was different, as shown in Table 

6.3. One and two step training procedures were applied for the PUA and PVUA, 

respectively. The results demonstrated that the utilization of the proposed method to 

update the previously stored weights can improve the prediction accuracy of the 2nd field 
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test by 60% for PUA and 50% for PVUA. In general, the positioning accuracy improved 

with longer GPS signal windows (e.g. 20% between 10s and 60s using PVUA).  
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NAVi
1st Field test

2nd Field test

GPS1 GPS2 GPS3 GPS9 GPS10 Outage……GPS1 GPS2 GPS3 GPS9 GPS10 Outage……

NAVi
1st Field test

2nd Field test
 

 
Figure 6.21: Window-based weights updating strategy 

 
Table.6.3: RMSE (2nd field test) 

 
 North(m) East(m) Overall(m) GPS 

outage 
KF 300.10 102.09 316.99 900s 

PUA 25.10 18.77 31.33 2886s 
PVUA 12.14 16.46 20.45 2886s 

10s/PUA 5.56 9.32 10.85 2786s 
20s/PUA 5.40 5.94 8.02 2686s 
40s/PUA 10.46 3.60 11.07 2486s 
60s/PUA 3.17 8.04 8.67 2286s 

10s/PVUA 4.35 6.22 7.64 2786s 
20s/PVUA 3.38 6.93 7.71 2686s 
40s/PVUA 3.59 5.26 6.36 2486s 
60s/PVUA 3.35 5.13 6.12 2286s 

 

In order to evaluate the relationship between training time and window size, training time 

required in each of the previous groups is illustrated in Figure (6.22) for PUA and Figure 

(6.23) for PVUA. As shown in these two figures, the worst-case scenario consumed half 

the window size. In fact, most of the training time was much smaller than the window 

size. In addition, the training time required by one and two step training procedures was 

similar as the size of NAVi was small.  
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Figure 6.22:  Training time for each window (PUA) 
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Figure 6.23:  Training time for each window (PVUA) 

 

Thus, the window based weights updating strategy with stored weights can provide 

alternative weight updating algorithms for INS/GPS integration and can improve the 

position accuracy during GPS outages. The preliminarily results demonstrated the 

potential to incorporate the conceptual intelligent navigator as the alternative navigation 

algorithm for next generation land vehicular navigation systems as it can overcome or 

reduce the limitations of conventional Kalman filtering.. Several issues such as the 

impact of IMU quality on the conceptual intelligent navigator and the performance of the 

conceptual intelligent navigator that uses INS/SPP integrated system will also be 

investigated in Chapter 7. 
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CHAPTER 7 
 

RESULTS AND DISCUSSIONS 
 

7.1     Introduction 
 

This chapter describes the tests and analysis of the methods proposed in the previous 

chapters. Three field tests were conducted on October 2003 by the Mobile Multi-sensor 

Systems (MMSS) research Group of the University of Calgary. The tests were conducted 

in land vehicle environments using three different INS/GPS integrated systems consisting 

of a navigation grade IMU (Honeywell CIMU), a tactical grade IMU (Litton LN-200), a 

MEMS IMU (Crossbow AHRS-400 CC, XBOW) and two NovATel OEM-4 receivers. 

The performance of the cascade denoising algorithm and conceptual intelligent navigator 

were evaluated in terms of IMUs’ quality (i.e., accuracy level). The specifications of 

those IMUs are given in appendix C. Figure (7.1) shows the test van provided by Novatel 

Inc. and the set up of these IMU systems. Table 7.1 summarizes the different tests in 

terms of shape of trajectory, dynamics, and satellite availability.  

 

 

 
 

Figure 7.1: Picture of test van 
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Table 7.1: The Summary of different field tests 

Field 
test 

Trajectory Motion dynamic Satellite availability 

1 • Shape: L-shape 
• The duration: 

3800 seconds 
• Baseline:4km 
• Travel distance: 

32km 
• Data rate:1 Hz 

• Acceleration and 
deceleration along north-
south and west-east 
directions and several U-
turns. 

• Rich information about  
   velocity variation 

No natural GPS signal 
blockage or obstruction 

2 • Shape: Circle / 
Rectangular    

• The duration: 
1900 seconds 

• Baseline:3km 
• Travel distance:  

8.5km 
•  Data rate:1 Hz 
 

 

• Acceleration and 
deceleration along a 
rectangle in clockwise 
and counterclockwise 
direction 

• Several straight line 
segments, a big U-turn 
and two circles in 
clockwise and 
counterclockwise 
direction.  

• Significant information 
associated with velocity 
variation and  azimuth 
variation 

No natural GPS signal 
blockage or obstruction 

3 • Shape: Complex 
trajectory 

• The duration: 
1200 seconds 

• Baseline:15km 
• Distance 

traveled: 15kn 
• Data rate:1Hz 

 

• The motion dynamic 
variation of the vehicle 
was not complicated in 
comparison with 
previous field test 

• Real life scenario  

• Six natural GPS outages 
that includes the impact 
from intermittent signal 
reception (urban canyon) 
or no signal reception 
(underground)   

• The length of those GPS 
outages was four seconds, 
six seconds, five seconds, 
nine seconds, ten seconds 
and fourteen seconds, 
respectively.    

 

The detailed spatial relationship (lever-arm) between the IMUs and GPS antenna is 

illustrated in Figure (7.2a). In addition, Figure (7.2b), Figure (7.2c) and Figure (7.2d) 

illustrate the trajectories of these field tests. The blue solid lines in these figures illustrate 

the trajectory generated by CIMU/DGPS integrated solutions and the red dot lines show 
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the trajectory generated by the DGPS solutions using carrier phase measurements.The 

GPS measurements were processed using an independent GPS post-processing software 

GrafNavTM 7.0 (Waypoint Consulting Inc.) in DGPS and SPP mode.  After that, the GPS 

navigation solutions were then fed into a decentralized Kalman filter (INS filter) 

implemented in the INS Toolbox [Shin and El-Sheimy, 2004] or KINGSPADTM 

[Schwarz and El-Sheimy, 1999] developed by the MMSS research group to obtain 

INS/GPS integrated solutions for further analysis. In the mean time, the IMU 

measurements were processed in INS/GPS integrated mode and stand-alone mode for 

further analysis. The reference trajectories were generated by the CIMU/DGPS integrated 

system.  
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Figure 7.2: The trajectories of different field tests 

 

In this chapter, the performance and impact of the proposed cascade denoising algorithm 

(Chapter 4) on the different INS/GPS integrated systems are evaluated in terms of the 
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conceptual intelligent navigator is evaluated using the denoised INS data and the 

integrated systems in terms of the position errors during GPS outages. Before leaving this 

chapter, an additional low cost MEMS IMU/GPS integrated system that includes a 

MEMS IMU sensor triad developed by the MMSS research group is applied to enhance 

the potential of implementing the proposed conceptual intelligent navigator as an 

alternate to the tradition Kalman filter solutions for developing next generation land 

vehicular navigation systems.   

 

7.2     Performance Analysis of the Cascade Denoising Algorithm 
 

To evaluate the performance of the cascade denoising algorithm in terms of the position 

errors during GPS outages, the first field test was applied. As mentioned previously, there 

was no natural GPS outage in this trajectory; thus, eight simulated GPS outages were 

generated by removing the GPS solutions being fed into the INS Kalman filter during the 

simulated GPS outages, as shown in Table 7.2 and Figure (7.3). This meant the INS 

Kalman filter operated in prediction mode during simulated GPS outages. Table 7.2 also 

summarizes the length and the motion dynamic variation of the simulated GPS outages. 
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Figure 7.3: Simulated GPS outages 
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Table 7.2: Background information of simulated GPS outages 

 1 2 3 4 5 6 7 8 
Length 

(second) 
30 30 60 60 60 30 60 120 

Motion Straight 
line (north) 

U-
turn 

Straight 
line (north) 

Straight 
line  (west) 

static Sharp 
turn 

Straight 
line (east) 

Sharp 
turn  and 

static 
Distance 

(m) 
612 123 1225 1230 0 352 1212 25 

 

The navigation solutions obtained using the raw IMU measurements and denoised IMU 

measurements were then compared with the reference trajectories. In addition, the 

INS/DGPS and INS/SPP integrated mode were also investigated for each INS/GPS 

integrated system, respectively.  

 

7.2.1 Performance Summary of Different Integrated Systems 

 

Figure (7.4) and Table 7.3 illustrate the performance summary of the positional errors 

generated by comparing the raw and denoised INS (Honeywell CIMU)/DGPS integrated 

navigation solutions with the reference trajectory during each GPS outage period. It 

should be mentioned here that the maximum of the absolute position error along the 

North and East directions (MAX_N and MAX_E) always happen at the end of the 

blockage periods. 

 

Table 7.3:  Performance summary of positional errors (CIMU/DGPS)  

  RAW Cascade  Denoising _DGPS 
Blockage no. Blockage 

Length(s) 
MAX_ N 

(m) 
MAX_ E 

(m) 
RMSE 

Total(m) 
MAX_ N 

(m) 
MAX_E 

(m) 
RMSE 

Total(m)
1 30 0.1 1.13 0.43 0.02 0.05 0.03 
2 30 1.30 0.12 0.44 0.28 0.02 0.17 
3 60 0.45 1.06 0.55 0.37 1.34 0.68 
4 60 2.39 0.85 1.18 0.67 0.75 0.48 
5 60 0.84 0.59 0.50 0.56 0.10 0.37 
6 30 0.24 0.15 0.14 0.38 0.06 0.19 
7 60 1.72 1.48 1.06 0.52 0.39 0.44 
8 120 2.28 3.08 1.62 1.07 0.41 0.48 
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Figure 7.4:  Position errors (CIMU/DGPS) 

 

It can be seen from Figure (7.4) that the utilization of the cascade denoising algorithm 

provided visible improvements during several simulated GPS outage periods. As 

indicated in Table 7.3, the position errors of six GPS outage periods were successfully 

reduced using denoised CIMU measurements. The rate of improvement was 75% (6/8) 

which is similar to the results presented in the chapter 4.   

 

In addition, the magnitude of improvement ranged from 20 centimetres to 1 metre and the 

percentage of improvement ranged from 20% to 90%.  In contrast, the remaining two 

GPS outage periods that were not improved by the cascade denoising algorithm, were not 

degraded significantly. The magnitude of degradation ranged from 5 centimetres to 20 

centimetres and the percentage of degradation ranged from 20% to 35%.  

 

Figure (7.5) and Table 7.4 illustrate the performance summary of the positional errors 

generated by comparing the raw and denoised INS (Honeywell CIMU)/SPP integrated 

navigation solutions with the reference trajectory during each GPS outage period 

respectively, where MAX_N and MAX_E represent the maximum of absolute position 

error along North and East directions, respectively. Being limited by positioning accuracy 
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of SPP, the positional errors generated by the INS/SPP integrated navigation solution 

ranged from 1 to 7 metres, as indicated in Figure (7.5).  

 

Table 7.4: Performance summary of positional errors (CIMU/SPP)  

  RAW Cascade  Denoising _SPP 
Blockage no. Blockage 

Length(s) 
MAX_ N 

(m) 
MAX_ E 

(m) 
RMSE 

Total(m) 
MAX_ N 

(m) 
MAX_E 

(m) 
RMSE 

Total(m)
1 30 5.21 1.84 5.20 4.95 2.28 5.12 
2 30 6.04 2.37 5.50 5.61 2.02 5.69 
3 60 20.14 3.99 13.08 6.74 2.95 7.32 
4 60 7.09 5.06 7.42 5.45 2.98 6.03 
5 60 2.27 2.17 2.64 1.55 2.11 2.22 
6 30 1.16 1.28 1.8 2.20 1.60 1.88 
7 60 3.73 2.99 3.89 2.68 2.59 3.37 
8 120 5.33 5.07 4.69 3.30 2.02 3.50 

 

Figure (7.5) indicates that the improvements introduced by using the cascade denoising 

algorithm during several GPS outage periods were significant enough to be visualized. 

Similarly, Table 7.4 indicates that the positional errors of six GPS outage periods were 

successfully reduced by denoising the CIMU measurements. The rate of improvement 

was 75% (6/8).  
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Figure 7.5:  Position errors (CIMU/SPP) 
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In addition, the magnitude of improvement ranged from 8 centimetres to 7 metres and the 

percentage of improvement ranged from 20% to 90%. In contrast, the magnitude of 

degradation associated with the remaining two GPS outage periods ranged from 19 

centimetres to 60 centimetres and the percentage of degradation ranged from 20% to 

35%. Similar analyses were conducted to investigate the impact of the cascade denoising 

algorithm on positional errors for the LN200 and XBOW IMUs for the two cases GPS 

operations (i.e., DGPS and SPP). For more details about the results, see Appendix A.5 

and A.6, respectively. Tables 7.5 and Table 7.6 summarize the performance summary of 

the positional errors for the four cases for each system respectively (IMU Raw with 

DGPS and SPP; IMU denoised with DGPS and SPP).  

 

Figure (7.6) compares the impact of the proposed cascade denoising algorithm on the 

INS/DGPS and INS/SPP integrated systems in terms of the percentage of improvement or 

degradation during each GPS outage period using a CIMU/GPS integrated system. In 

general, the INS/DGPS integrated system provided more accurate prediction accuracy 

than the INS/SPP integrated system. Similar impact of the proposed cascade denoising 

algorithm on the LN200/GPS and XBOW/GPS integrated systems are given in Figure 

(A.10) and Figure (A.13), respectively. 
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Figure 7.6: The impact of denoising on the integrated systems (CIMU/GPS) 
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Table 7.5: Performance summary of positional errors (LN200/GPS) 

LN200  
 

 RMSE (m) 
DGPS 

 

RMSE (m) 
SPP 

Blockage no. Blockage 
Length(s) 

Raw IMU denoised IMU Raw IMU  denoised IMU

1 30 6.12 6.85 15.96 15.08 
2 30 4.83 4.90 5.51 7.32 
3 60 2.84 1.92 27.01 18.10 
4 60 12.95 13.56 24.23 20.97 
5 60 2.99 2.77 22.78 7.10 
6 30 2.20 1.68 5.58 7.04 
7 60 14.28 3.92 13.42 10.52 
8 120 18.28 8.91 45.39 31.64 

 

Table 7.6: Performance summary positional errors (XBOW/GPS) 

XBOW  
 

 RMSE (m) 
DGPS 

 

RMSE (m) 
SPP 

Blockage no. Blockage 
Length(s) 

Raw IMU denoised IMU Raw IMU  denoised IMU

1 30 12.44 15.12 22.78 23.35 
2 30 19.06 8.31 18.53 6.81 
3 60 86.90 15.50 103.70 28.21 
4 60 15.36 19.24 61.63 62.84 
5 60 45.64 44.33 128.87 65.93 
6 30 11.62 8.13 64.03 8.36 
7 60 42.59 21.49 27.11 27.13 
8 120 172.47 137.28 220.08 163.18 

 

7.2.2     Performance Analysis Index (PAI) for Different IMUs 

 

To provide more specific descriptions associated with the performance of the cascade 

denoising algorithm, a performance analysis index (PAI) was defined as 
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Where TP is the total number of accumulated point during all GPS outages (t is the total 

length of all GPS outage and Fs is the sampling rate of IMU), ,iN Eiδ δ and ,iN Eiδ δ are 

the accumulated absolute magnitude of position errors along North and East directions 

during each GPS outage period after and before applying the cascade denoising 

algorithm, respectively. Table 7.7 illustrates the PAIs for both CIMU/DGPS and 

CIMU/SPP integrated systems. 

 

As indicated in Table 7.7, the PAIs of both integrated systems demonstrated 

improvements after using the proposed algorithm. In addition, the absolute position error 

accumulations in both cases were reduced after applying the cascade denoising algorithm. 

Thus, despite the minor degradation during some outages, the cascade denoising 

algorithm was effective in improving the positioning accuracy of an INS/GPS integrated 

system for a navigational grade IMU in both DGPS mode and SPP mode during several 

GPS outages of different lengths and motion dynamics.  

 

Table 7.7: PAIs (CIMU/GPS) 

CIMU RAW Cascade denoising   
 Eδ∑ (m) Nδ∑ (m) Eδ∑ (m) Nδ∑ (m) PAI(E) PAI(N)

INS/DGPS 7.5410E4 6.2211E4 2.9063E4 2.8992E4 62% 54% 
INS/SPP 5.3149E5 5.2345E5 1.728E5 3.4422E5 67% 34% 

 

Similarly, Tables 7.8 and 7.9 list the PAIs for the LN200 and XBOW cases, respectively. 

Both tables demonstrate the improvements after using the proposed algorithm. In 

addition, the absolute position error accumulations in both cases were reduced after 

applying the cascade denoising algorithm. Thus, despite the minor degradation during 

some outages, the cascade denoising algorithm was effective at improving the positioning 

accuracy of an INS/GPS integrated system for a tactical grade or a MEMS IMU in both 

DGPS mode and SPP mode during several GPS outages of different lengths and motion 

dynamics.  
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Table 7.8: PAIs (LN200/GPS) 

LN200 RAW Cascade denoising   
 Eδ∑ (m) Nδ∑ (m) Eδ∑ (m) Nδ∑ (m) PAI(E) PAI(N)

INS/DGPS 3.3596E5 5.7804E5 2.7863E5 3.1698E5 17% 45% 
INS/SPP 1.1984E6 1.7095E6 7.8848E5 1.0514E6 34% 38% 

 

Table 7.9: PAIs (XBOW/GPS) 

XBOW RAW Cascade denoising   
 Eδ∑ (m) Nδ∑ (m) Eδ∑ (m) Nδ∑ (m) PAI(E) PAI(N)

INS/DGPS 1.6997E6 1.9663E6 7.3049E5 1.7197E6 57% 13% 
INS/SPP 1.7821E6 3.0888E6 7.4292E5 2.4271E6 58% 21% 

 

To evaluate the impact of the cascade denoising algorithm on different INS/GPS 

integrated systems, the two dimensional accumulated positional errors for the three IMU 

systems are illustrated in Figure (7.7). It compares the two dimensional accumulated 

position errors obtained through the use of raw and denoised IMU measurements 

generated by different INS/GPS integrated systems. The cascade denoising algorithm 

provided the most significant improvement for the CIMU/GPS integrated system in 

DGPS and SPP mode. The LN200/GPS integrated system provided lesser improvement; 

however, the percentage of improvement approached 40% in DGPS and SPP mode. The 

XBOW/GPS integrated system provided the least amount of improvement among these 

the three systems; however, the percentage of improvement reached 30% in DGPS and 

SPP mode.        

 

The percentage of improvement indices shown in Figure (7.7) can be transformed to a 

common scale (e.g. for the CIMU 0.47 = 0.58/ (0.58+0.37+0.28) for the DGPS and 

0.42=0.48/ (0.48+0.37+0.29) for the SPP).  Thus, the impact of the cascade denoising 

algorithm on different INS/GPS integrated systems can be quantized, as shown Figure 

(7.8). This describes the portion or the percentage of position error that can be reduced by 

the cascade denoising algorithm. For example, given a 1 metre positional error for raw 

IMU data, the cascade denoising algorithm will be able to remove 47 centimetres, 30 

centimetres and 23 centimetres with respect to CIMU/DGPS, LN200/DGPS and 
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XBOW/DGPS integrated systems. In other words, the benefit of the cascade denoising 

algorithm decreases with an increasing quality of IMU.  
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Figure 7.7: The impact of cascade denoising algorithm 
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Figure 7.8: The quantized impact of cascade denoising algorithm  

 

For a navigation grade IMU (e.g., CIMU), the long term errors (i.e., bias, drifts) are 

stable and well behaved, thus the remaining short term errors of the IMU account for 

most of the residual position error during a GPS outage. However, for a MEMS IMU, due 

to its poor stability of long term errors, the impact of short term errors is not as 

significant. In addition, most of the low cost MEMS IMUs have analogous low pass 

filters whose cutoff frequencies range from 30 Hz to 40 Hz to limit the bandwidth of their 

raw outputs and reduce the impact of unwanted high frequency noise. Consequently, the 
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improvement of the cascade denoising algorithm is limited. The long term errors 

dominate the residual position errors for current MEMS IMUs, however, the use of the 

cascade denoising algorithm is still able to improve the positioning accuracy during GPS 

outages by reducing the impact of short term errors. 

 

7.3 Performance Analysis of the Conceptual Intelligent Navigator 
 

Having the quality of IMU measurements improved by using the cascade denoising 

algorithm, the next step is to evaluate the performance of the conceptual intelligent 

navigator that consists of different INS/GPS integration architectures. The IMU and GPS 

measurements obtained through the first and second field tests using the above mentioned 

INS/GPS integrated systems were applied to generate the stored navigation knowledge. 

After that, the third field test was used as the test trajectory. To enhance the difference 

between the conceptual intelligent navigator and the traditional navigator that consisted 

of a 15 state extended Kalman filter, a long GPS signal outage of 20 minutes was 

simulated during the third filed test. In other words, both navigators received the IMU 

measurements and operated in prediction mode without any GPS information updates 

during the test trajectory. Then, the results predicted by both navigators were compared 

with the reference trajectory for further analysis. 

 

To integrate IMU and DGPS measurements, a PVAUA and PVUA were implemented as 

the INS/DGPS architecture of the conceptual intelligent navigator for each INS/GPS 

integrated system, respectively. In contrast, a PUA was implemented to integrate IMU 

measurements and GPS measurements in either DGPS or SPP mode. In other words, the 

conceptual intelligent navigator and traditional navigator were evaluated using different 

INS/GPS integrated systems. The performance analysis associated with each navigator is 

presented in subsequent sections.  

 

7.3.1   CIMU/GPS Integrated System 
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Table 7.10, Figure (7.9a) and Figure (7.9b) compare the accuracy of different azimuth 

measurements obtained through the first and second field test. Where V, P, INS, CV and 

CP represent raw DGPS velocity derived azimuth, raw DGPS position derived azimuth, 

INS generated azimuth in stand-alone mode, constrained DGPS velocity derived azimuth, 

and constrained DGPS position derived azimuth, respectively. Due to the superior quality 

of the CIMU, it was capable of providing the most accurate azimuth measurements even 

when it was operated in INS stand-alone mode for 1 hour (1st field test) and half an hour 

(2nd field test). 

 

Table 7.10: RMSE of different azimuth measurements (CIMU/DGPS) 

 V (deg) P (deg) INS (deg) CV(deg) CP(deg) 
1st 80.67 74.72 0.13 5.36 3.96 
2nd  59.78 57.70 0.33 5.93 2.24 
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Figure 7.9: Performance of CP, VUA and AUA (CIMU/DGPS)  

 

198 



Comparing the raw DGPS derived azimuth measurements with constrained DGPS 

derived azimuth measurements, the constrained DGPS position derived azimuth 

measurements (CP) were the most accurate among the different azimuths generated by a 

“pseudo” azimuth sensor. Thus, it was applied as the desired outputs for the AUA. 

However, as indicated in Table 7.10, the constrained DGPS position derived azimuth 

measurements obtained during the 1st and 2nd field test were less accurate than the inputs 

of the AUA, the INS generated azimuth. Thus, the conceptual intelligent navigator using 

a PVAUA with a navigation grade IMU might not be able to provide superior 

performance than the intelligent navigator using a PVUA or a PUA. The impact of 

PVAUA using less accurate azimuth measurements on position error is presented later in 

this section.        

 

After being trained using the IMU and GPS measurements obtained during the 1st and 2nd 

field tests, the conceptual intelligent navigators were then applied to provide real time 

prediction using the stored navigation knowledge without retrieving newly updated 

navigation knowledge during the 3rd field test. Table 7.11, Figure (7.9c) and Figure (7.9d) 

demonstrate the performance summary of the VUA and AUA outputs. In general, VUA 

was capable of providing 0.17 m/s and 0.18 m/s velocity RMS error along East and North 

directions for 20 minutes in prediction mode. In contrast, the velocity RMS errors 

generated by INS were 0.29 m/s and 0.23 m/s, respectively. As shown in Figure (7.9c), 

the stored navigation knowledge in the PVAUA was capable of compensating the time 

growing velocity errors and providing stable velocity outputs using a navigation grade 

IMU. In addition, the AUA was capable of providing 3.88 degrees azimuth RMS error in 

real time prediction mode for 20 minutes. In contrast, the RMS error of the INS generated 

azimuth measurement was 0.3 degrees. Therefore, the PVAUA was not capable of 

providing superior azimuth output using a navigation grade IMU operated in stand-alone 

mode due to the limitations of the constrained DGPS position derived azimuth. However, 

it was able to provide more accurate velocity outputs than a navigation grade IMU 

operated in stand-alone mode for 20 minutes.  
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Table 7.11: Performance summary of VUA and AUA (test trajectory, CIMU/DGPS) 

 ER_VE_VUA ER_VN_VUA ER_Azimuth_AUA 
RMS 0.17 m/s 0.18 m/s 3.88 deg 
Max 0.52 m/s 0.41 m/s 9.98 deg 

 

Table 7.12 and Figure (7.10) illustrate the performance summary of the positional errors 

generated by each navigator. Based on the field test data applied in this research, the 

traditional Kalman Filter navigator that used a navigation grade IMU was capable of 

providing 138 metres total position error in real time prediction mode for 20 minutes. In 

addition, it was capable of providing superior performance than some of the intelligent 

navigators when the GPS outage period was less than 5 minutes. As illustrated in Figure 

(7.10), the major characteristic of the traditional navigator was that its positional errors 

grew with time. 
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Figure 7.10: Position errors (CIMU/GPS) 
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Table 7.12: Performance summary of different navigators (test trajectory, CIMU/GPS) 

 Length Max_E RMS_E Max_N RMS_N Total 
IN_PUA 1172s 17.65 3.87 46.20 10.17 10.88 
IN_PVUA 1172s 16.88 3.20 17.35 2.96 4.40 
IN_PVAUA 1172s 16.11 2.94 46.72 8.33 8.83 
IN_PUA_SPP 1172s 41.88 12.57 75.10 24.75 27.76 
KF 1172s 271.85 134.36 70.55 29.21 137.50

 

Figures (7.10a), (7.10b) and (7.10c) illustrate the positional errors generated by the 

conceptual intelligent navigators using a PUA, PVUA and PVAUA as INS/DGPS 

integration architectures, respectively. Based on the field test data applied in this 

research, the conceptual intelligent navigators were capable of providing 5, 9 and 11 

metres total position error in real time prediction mode for 20 minutes, respectively. As 

mentioned previously, due to the accuracy limitation of the constrained DGPS position 

derived azimuth measurements, the conceptual intelligent navigator using a PVAUA was 

unable to provide superior positioning accuracy in comparison with the conceptual 

intelligent navigator using a PVUA. Recalling Chapter 6, the constrained DGPS position 

derived azimuth measurements and INS generated azimuth measurements were applied 

as the input for the PUA implemented in a PVAUA and PVUA, respectively. Given the 

fact that the accuracy of the INS generated azimuth measurements using a navigation 

grade IMU were superior to that of the constrained DGPS position derived azimuth 

measurements, the AUA degraded the accuracy of the INS generated azimuth by using 

constrained DGPS derived azimuth measurements as the desired output to generate stored 

navigation knowledge. However, the conceptual intelligent navigator using a PVAUA 

was capable of providing superior performance to the conceptual intelligent navigator 

using a PUA and traditional navigator. 

 

Thus, a PVUA is recommended as the INS/DGPS integration architecture to achieve 5 

metres level positioning accuracy requirement using a navigation grade IMU for real time 

prediction that lasts more than 15 minutes. In contrast, a PUA is recommended in terms 

of the system complexity with the degraded position accuracy requirement (10 metres). 

In general, the conceptual intelligent navigators discussed so far were able to provide 
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superior long term positioning accuracy based on the field test data applied in this 

research (i.e., GPS outage period >5 minutes). 

 

Figure (7.10d) illustrates the position errors generated by the conceptual intelligent 

navigator using a PUA as the INS/SPP integration architecture. As illustrated in Table 

(7.12), the conceptual intelligent navigator was capable of providing 30 metres total 

position error in real time prediction mode for 20 minutes. The difference between Figure 

(7.10a) and (7.10d) is that the former used DGPS measurements and the later used SPP 

measurements to obtain the stored navigation knowledge. Thus, being limited by the 

positioning accuracy of GPS measurements in SPP mode (i.e., 10 metres), the position 

error generated by the conceptual intelligent navigator using SPP was 3 times larger than 

that of the conceptual intelligent navigator using the same INS/GPS integration 

architecture with DGPS measurements. However, it was capable of providing superior 

long term positioning accuracy in comparison with the traditional navigator (i.e., GPS 

outage period>5 minutes). Figure (7.11) illustrates the trajectories generated by different 

navigators.  

 

The trajectory generated by the traditional navigator drifted gradually from the reference 

trajectory toward the end of the navigation. In contrast, all the trajectories generated by 

the conceptual intelligent navigators were almost overlapped with the reference trajectory 

except for some discrepancy segments that were indicated by arrows. In general, those 

discrepancy segments took place during significant motion dynamic variations (i.e., U-

turns or sharp turns). As indicated in Figure (7.11), the number of arrows increased when 

the positioning accuracy provided by the conceptual intelligent navigator decreased. 

 

Thus, the conceptual intelligent navigators using the stored navigation knowledge 

obtained by the 1st and 2nd field tests were able to provide real time prediction with 

superior long term positioning accuracy in comparison with the traditional navigators. In 

addition, the position errors generated by the conceptual intelligent navigator were 

mainly affected by the motion dynamic variations in comparison to the time growing 

error of traditional navigators during GPS outages. 
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Figure 7.11: Trajectories generated by different navigators (CIMU/GPS) 

 

7.3.2    LN200/GPS Integrated System  

 

Similar analysis, about the accuracy of different azimuth measurements obtained during 

the first and second field test using a LN200/GPS integrated system, is given as 

Appendix B.4. As indicated in Appendix B.4, the constrained DGPS position derived 

azimuth measurements obtained by the 1st and 2nd field tests were more accurate than the 

input of the AUA, the INS generated azimuth. In fact, the stored navigation knowledge 

was capable of compensating time growing velocity errors generated by a tactical grade 

IMU operated in stand-alone mode to provide stable velocity outputs. Consequently, the 

PVAUA was capable of providing superior velocity and azimuth outputs in comparison 

with a tactical grade IMU (LN200) operated in stand-alone mode for test trajectory, 

Therefore, the conceptual intelligent navigator that uses a PVAUA with a tactical grade 

IMU is expected to be able to provide superior performance than the navigator that uses 

either a PVUA or a PUA. 
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Table 7.13 and Figure (7.12) illustrate the performance summary associated with the 

position errors generated by each navigator. The traditional Kalman Filter navigator that 

used a tactical grade IMU was capable of providing 2.6 kilometres total position error in 

real time prediction mode for 20 minutes. Similar to the previous section, it was capable 

of providing superior performance than some of the intelligent navigators when the GPS 

outage period was less than 3 minutes. As illustrated in Figure (7.12), the position errors 

generated by the traditional navigator grew with time. 

 

Table 7.13: Performance summary of different navigator (test trajectory, LN200/GPS) 

 Length Max_E RMS_E Max_N RMS_N Total 
IN_PUA 1178s 75.20 15.02 108.60 28.58 32.29 
IN_PVUA 1178s 65.57 21.00 59.81 16.23 26.70 
IN_PVAUA 1178s 30.71 8.75 42.13 13.88 16.41 
IN_PUA_SPP 1178s 196.23 53.71 374.45 73.12 90.73 
KF 1178s 2527.8 1246.2 6181.1 2352.8 2662.43

 

Figure (7.12a), Figure (7.12b) and Figure (7.12c) illustrate the position errors generated 

by the conceptual intelligent navigators using a PUA, PVUA and PVAUA as INS/DGPS 

integration architectures, respectively. As indicated in Table (7.13), the conceptual 

intelligent navigators were capable of providing 36, 27 and 16 metres total position error 

in real time prediction mode for 20 minutes, respectively. Unlike the performance 

observed in the previous section, the conceptual intelligent navigator that used a PVAUA 

was able to provide the most accurate positioning accuracy in comparison with the 

conceptual intelligent navigator using a PVUA or a PUA since the constrained DGPS 

position derived azimuth measurements were more accurate than the INS generated 

azimuth measurements during the test trajectory.  

 

Consequently, a PVAUA is recommended as the INS/DGPS integration architecture to 

achieve the 10~15 metre level positioning accuracy requirement using a tactical grade 

IMU for real time prediction that lasts longer than 15 minutes. In contrast, a PUA is 

recommended in terms of system simplicity and with a degraded positioning accuracy 

requirement (30~40 metres). In general, the conceptual intelligent navigators discussed so 

far were able to provide superior long term positioning accuracy (i.e., GPS outage 
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period>3 minutes) based on the field test data applied in this research. Figure (7.12d) 

depicts the position errors generated by the conceptual intelligent navigator using a PUA 

as the INS/SPP integration architecture.  
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Figure 7.12: Position error (LN200/GPS) 

 

As illustrated in Table 7.13, the conceptual intelligent navigator was capable of providing 

90 metres total positioning error in terms of the RMS error for real time prediction that 

lasted for 20 minutes. Similar to the performance observed in the previous section, the 

position error generated by the conceptual intelligent navigator that used SPP was 3 times 

larger than that of the conceptual intelligent navigator that used the same INS/GPS 

integration architecture with DGPS measurements due to the limitation of the positional 

accuracy of SPP (i.e., 10 metres). However, it was capable of providing superior long 

term positioning accuracy in comparison with the traditional navigator (i.e. GPS outage 

period>3 minutes). Figure (7.13) illustrates the trajectories generated by different 

navigators.  
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Figure 7.13: Trajectories generated by different navigators (LN200/GPS) 

 

The trajectory generated by the traditional navigator drifted away from the reference 

trajectory after 3 minutes since the beginning of navigation. In contrast, all the 

trajectories generated by conceptual intelligent navigator were almost overlapped to the 

reference trajectory except for some discrepancy segments which are indicated by arrows. 

In general, those discrepancy segments with visible position errors took place during 

significant motion dynamic variation (i.e. U-turns or sharp turns). Thus, the conceptual 

intelligent navigators using the stored navigation knowledge obtained by the 1st and 2nd 

field tests were able to provide real time prediction with superior long term positioning 

accuracy compared to the traditional navigator. In addition, the position errors generated 

by the conceptual intelligent navigator were mainly affected by the motion dynamic 

variation in comparison to the time growing errors of the traditional navigators during 

GPS signal blockages. 
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7.3.3 XBOW/GPS Integrated System 

 

Similar analysis about the accuracy of different azimuth measurements obtained during 

the first and second field test using an XBOW/GPS integrated system is given as 

Appendix B.5. As indicated in Appendix B.5, the constrained DGPS derived azimuth 

measurements were more accurate than the INS generated azimuth measurements when it 

was operated in INS stand-alone mode for 15 minutes (1st field test) and 8 minutes (2nd 

field test). The XBOW is a low cost MEMS IMU ($1500 USD), thus the constrained 

DGPS velocity derived azimuth measurements and the constrained DGPS position 

derived azimuth measurements were able to provide improvements in comparison with 

the INS generated azimuth measurements.  

 

As indicated in Appendix B.5, the constrained DGPS position derived azimuth 

measurements were the most accurate among those azimuth measurements generated by 

“pseudo” azimuth sensor and “physical” azimuth sensor (XBOW). Therefore, it was 

applied as the desired output for the AUA. The conceptual intelligent navigator that used 

a PVAUA with a MEMS IMU is expected to be able to provide superior performance 

than other intelligent navigators as it was capable of compensating the error of INS 

generated azimuth and velocity measurements and providing superior azimuth and 

velocity outputs in comparison with a stand-alone INS using a MEMS IMU (XBOW). 

 

Table 7.14 and Figure (7.14) illustrate the performance summary associated with the 

position errors generated by each navigator. The scale of Y-axis in Figure (7.14) was 

adjusted to provide better visualized comparison between the position errors generated by 

the conceptual intelligent navigators and traditional navigator. The traditional Kalman 

Filter navigator provided 100 kilometres total position error in terms of RMS error in real 

time prediction for 20 minutes. Its position errors along the North and East directions 

grew beyond the scope of the adjusted scale after 5~8 minutes from the start of 

navigation. It was, however, capable of providing superior performance than some of the 

intelligent navigators when the GPS outage period was less than 1 minute. As illustrated 

in Figure (7.14), the time growing impact on the position errors generated by the 
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traditional navigator using a MEMS IMU was far more significant than the position 

errors generated by the traditional navigator using a tactical grade IMU. Due to its poor 

sensor error stability (i.e., large gyro drifts and accelerometer biases) and noisy behavior, 

a MEMS IMU was only able to provide accurate navigation solutions within 1 minute of 

starting navigation without acquiring any updated information from GPS.   

 

Table 7.14: Performance summary of different navigator (test trajectory, XBOW/GPS) 

 Length Max_E RMS_E Max_N RMS_N Total 
IN_PUA 1170s 1438.01 434.78 2817.7 796.86 907.75 
IN_PVUA 1170s 1226.7 378.81 466.80 117.56 396.63 
IN_PVAUA 1170s 887.24 202.02 588.82 148.29 250.60 
IN_PUA_SPP 1170s 3411.4 1352.1 2042.5 700.91 1522.89 
KF 1170s 268680.3 85070.5 117420.3 51376.2 99380.17
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Figure 7.14: Position errors (XBOW/GPS)  

 

Figure (7.14a), Figure (7.14b) and Figure (7.14c) illustrate the position errors generated 

by the conceptual intelligent navigators using a PUA, PVUA and PVAUA as the 
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INS/DGPS integration architectures, respectively. As indicated in Table 7.14, the 

conceptual intelligent navigators were capable of providing 900, 400 and 250 metres total 

position error in real time mode for 20 minutes, respectively. Similar to the previous 

section, the conceptual intelligent navigator using a PVAUA was able to provide the most 

accurate position accuracy compared to the conceptual intelligent navigator using a 

PVUA or a PUA since the constrained DGPS position derived azimuth measurements 

and VUA predicted velocity measurements were more accurate than the INS generated 

azimuth and velocity measurements in stand-alone mode.  

 

Thus, a PVAUA is recommended as the INS/DGPS integration architecture to achieve 

the 200~300 metres level positioning accuracy requirement using a low cost MEMS IMU 

for real time prediction that lasts more than 15 minutes. In contrast, a PUA is 

recommended for system simplicity and if degraded positioning accuracy is acceptable (1 

kilometre). In general, the conceptual intelligent navigators discussed so far were able to 

provide superior long term positioning accuracy (i.e., GPS outage period>1 minutes) 

based on the field test data applied in this research. 

 

Figure (7.14d) depicts the position errors generated by the conceptual intelligent 

navigator that used a PUA as the INS/SPP integration architecture. As illustrated in Table 

7.14, the conceptual intelligent navigator was capable of providing 1.5 kilometres total 

position error for real time prediction that lasted 20 minutes. Similar to the performance 

observed in the previous section, the position error generated by the conceptual 

intelligent navigator that used SPP was 1.5 times larger than that of the conceptual 

intelligent navigator that used the same INS/GPS integration architecture with DGPS due 

to the limitation of the position accuracy of SPP (i.e., 10 metres). However, it was 

capable of providing superior long term positioning accuracy in comparison with the 

traditional navigator. 

 

Figure (7.15) illustrates the trajectories generated by different navigators. The trajectory 

generated by the traditional navigator drifted away from the reference trajectory soon 

after navigation start (i.e., 1 minute). Thus, only small portion of the KF generated 
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trajectory was displayed in Figure (7.15) to provide a better visualized effect. All the 

trajectories generated by the conceptual intelligent navigator using a MEMS IMU were 

not as good as the trajectories obtained in the previous sections. In fact, visible position 

errors were observed along each of the trajectories generated by the conceptual intelligent 

navigators. However, the conceptual navigators were able to maintain the course of the 

vehicle’s maneuvering well in comparison with the traditional navigator, with their 

trajectories resembling those of the reference trajectory. In fact, the trajectories generated 

by the conceptual intelligent navigators were accurate during the first 8~10 minutes after 

the beginning of navigation. During the first 10 minutes, the test vehicle moved westward 

along a straight line segment then turned south smoothly and moved southward along 

another straight line segment., Thus, the conceptual intelligent navigators that used a 

MEMS IMU/GPS integrated system were able to provide acceptable positioning accuracy 

during the first 8~10 minutes.   
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Figure 7.15: Trajectories generated by different navigators (XBOW/GPS) 
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Using a low cost MEMS IMU/GPS integrated system, the conceptual intelligent 

navigators was able to provide real time prediction with superior long term positioning 

accuracy during the first 8~10 minutes using the 3rd field test as the test trajectory.  

Considering the quality of the IMU, the improvements provided by the conceptual 

intelligent navigator were significant. In addition, the position errors generated by the 

conceptual intelligent navigators were mainly affected by the motion dynamic variation 

in comparison with the time growing errors generated by the traditional navigator during 

GPS outages. 

 

7.4 Performance Analysis of a Low Cost MEMS/GPS Integrated 

System  

To gain more appreciation of the performance of the conceptual intelligent navigator and 

traditional navigator, a low cost MEMS IMU/GPS integrated system developed by the 

MMSS research group will be used in this section. Three additional field tests were 

conducted on March, 2004 using a navigation grade IMU (CIMU, Honeywell), a MEMS 

Sensor Triad (MST) IMU (MST sensor triad, MMSS research group) and two NovATel 

OEM 4 receivers. The MST sensor triad [El-Sheimy, 2004b] consists of three ADI single 

chip accelerometers (ADXL105, Analog Device) and three ADI single chip gyros 

(ADXRS150, Analog Device). Figure (7.16a) shows the spatial relationship (lever-arm) 

between these IMUs and the GPS receiver. The specifications of the ADI sensor triad are 

given in Appendix C. Similar to section 7.1, the reference trajectories were generated by 

the INS/DGPS integrated navigation solutions using a navigation grade IMU (CIMU) and 

a 15 state extended Kalman filter. The data rate of the GPS navigation solutions was 1 

Hz. 

 

As illustrated in Figure (7.16b), the first field test was composed of a large loop. The 

duration of this field test was 1200 seconds and the baseline was 5 kilometres. The 

second field test consisted of a straight line segment and a large loop, as illustrated in 

Figure (7.16c).  The duration of this field test was 1000 seconds and the baseline was 5 

kilometres. As indicated in Figure (7.16d), the third field test consisted of six straight line 
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segments and eight sharp turns. The duration of this field test was 1800 seconds and the 

baseline was 15 kilometres. For these tests, the DGPS navigation solutions were not able 

to provide continuous position and velocity update due to the influence of several GPS 

signal outages. In the third test, the van drove through residential areas, short tunnels, 

overpasses and forested areas; thus, eight natural GPS outages were recorded along this 

trajectory.  

 

The length of these natural GPS outages and the motion dynamic variations experienced 

by the vehicle are described in Table 7.15. This field test was selected as the test 

trajectory to evaluate the performance of the conceptual intelligent navigators and 

traditional navigators using the MST/GPS integrated system.  
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Figure 7.16: System setup and field test trajectories 

 

 

 

212 



Table 7.15: Background information of GPS outages 

 1 2 3 4 5 6 7 8 
Length 

(second) 
30 60 30 120 60 120 120 60 

Motion Straight 
line 

(south) 

Straight 
line 

(south)  

Straight 
line 

(south) 

Sharp 
turn and 
Straight 

line  
(west) 

Smooth 
turn 

Straight 
line 

(south) 
and sharp 

turn 

Straight 
line and 
sharp 
turn 

(west) 

Straight 
line 

(south-
west) 

Distance 
(m) 

612  1260 585 1800 720 1750 1835 1220 

 

7.4.1    Frequent GPS Outages Test  

 

To evaluate the performance of the conceptual intelligent navigator in a more realistic 

environment, the 3rd field test that contained 8 GPS outage periods was applied. A PUA 

was implemented as the INS/SPP integration architecture for the conceptual intelligent 

navigator. Similarly, the traditional navigator was implemented in INS/SPP integration 

mode. Thus, the prediction results acquired by both navigators during GPS outages were 

then compared with the reference trajectory for further analysis, respectively. 

 

The stored navigation knowledge was acquired using the IMU and GPS measurements 

obtained from the XBOW/GPS integrated system (3 field tests, see section 7.1) and 

MST/GPS integrated system (2 field tests, see Figure (7.16b) and Figure (7.16c)). In 

addition, the window based weights updating strategy was applied to update the 

navigation knowledge during the availability of the GPS signal. The window size was set 

to 60 seconds; however, the conceptual intelligent navigator could be switched to 

prediction mode using the latest updated navigation knowledge acquired using pervious 

GPS window information whenever a GPS outage took place. In addition, a two steps 

training procedure was implemented to update the navigation knowledge acquired during 

each GPS window. See section 6.3.2 for more details about the implementation of the 

window based weights updating strategy. During the test trajectory, the stored navigation 

knowledge obtained through the previous 5 field tests was updated during the availability 

of the GPS signal.  Thus, the conceptual intelligent navigator could be adapted to the 

latest sensor error characteristic and vehicle’s motion dynamic variation. The latest 
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updated navigation knowledge was applied to provide real time prediction whenever a 

GPS outage took place. 

 

Table 7.16 and Figure (7.17) illustrate the performance of the conceptual intelligent 

navigator and traditional navigator. In general, the traditional navigator (KF) was able to 

provide superior performance to the conceptual intelligent navigator when the length of 

the GPS outage was less than 1 minute. However, its position errors grew with time. 

Given the same length of GPS outage (i.e., blockage no. 2 and 5), the motion dynamic 

variations (i.e., azimuth change priori to blockage no.5) helped to reduce the position 

error in comparison with stable motion dynamic (i.e., straight line priori to blockage 

no.2). 

  

Table 7.16: Performance summary (MST/GPS) 

  KF IN_PUA_SPP 
Blockage 

no. 
Blockage 
Length(s) 

MAX_ N 
(m) 

MAX_ E 
(m) 

RMSE 
Total(m) 

MAX_ N 
(m) 

MAX_E 
(m) 

RMSE 
Total(m)

1 30 6.34 25.48 13.76 58.89 10.19 39.96 
2* 60 246.85 25.83 110.54 139.88 19.59 84.01 
3 30 53.48 14.26 22.23 126.31 19.60 98.55 
4* 120 511.57 1016.6 490.80 68.23 80.95 61.13 
5 60 85.66 102.17 57.08 148.73 27.06 118.33 
6* 120 1406.6 597.60 559.43 75.62 47.31 44.45 
7* 120 1491.3 1698.1 878.02 19.80 46.47 19.95 
8* 60 39.15 247.66 106.08 31.97 13.78 15.85 

 

In contrast, the conceptual intelligent navigator was able to provide superior performance 

to the traditional navigator when the length of the GPS outage was longer than 1 minute. 

Its position errors did not significantly grow with time. Given the same length of GPS 

outage (i.e., blockage no. 2 and 5), the motion dynamic variation (i.e., azimuth change, 

blockage no.5) degraded the performance of the conceptual intelligent navigator in 

comparison with a relatively stable motion dynamic (i.e., straight line, blockage no.2). In 

other words, the conceptual intelligent navigator was sensitive to the motion dynamic 

variation of the vehicle. As indicated in section 7.3.3, the impact of dynamic variation 

could be reduced by using a PVAUA as the INS/DGPS integration architecture when a 

low cost MEMS IMU/GPS integrated system was applied. However, it requires DGPS 

214 



measurements and more sophisticated INS/GPS integration architecture. Thus, only PUA 

was implemented to integrate the measurements generated by a low cost IMU and GPS in 

SPP mode due to its simplicity. The trajectories generated by different navigators are 

shown in Figure (7.18).  
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Figure 7.17: Position errors (MST/GPS) 

 

The traditional way of evaluating the performance of different INS/GPS integration 

methods is usually through examining the positional errors. However, the use of 

positional errors as the only performance analysis index may not provide any information 

about the variation of position errors with respect to motion dynamic variations, or time. 

In fact, it is very crucial to analyze the impact of these variables on the accuracy of 

MEMS-based navigation systems. This is mainly due to the poor stability of the sensor 

biases, poor signal to noise ratio and the lack of knowledge about the error characteristics 

of MEMS IMUs. Therefore, the motivation behind developing the performance analysis 

index is to provide a way to look into the sources of position errors through post-mission 
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analysis. As a result, the characteristics of different MEMS IMU/GPS data fusion 

methods can be further studied.  
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Figure 7.18: Trajectories generated by different navigator (MST/GPS) 

 

Although being simple in theory and implementation, the proposed performance analysis 

index has potential practical considerations and can be applied in real-time. It treats 

position errors along different directions and all the candidate variables (velocity, 

attitude, time, temperature … etc.) provided by the reference system as different time 

series and then calculates the correlation coefficients between the position error time 

series with each of those candidate variables. Thus, the impact of different variables on 

position error can be quantified. The whole procedure starts by normalizing all candidate 

time series before calculating the correlation coefficient, ( ), ( )Q i P jρ  as follows: 

 

( ) ( ) ( )
)()(

,
)()()()(

jPiQ
ji

jPEiQEjPiQE
σσ

ρ −
=     

 

where  is a time series of one of the variables affecting the position error and the 

variable  takes values from 1 to n, where n is the number of variables affecting the 

position errors.  is the position error along the North position component if j=1 and 

along the East position component if j=2.   The absolute values of the correlation 

)(iQ

i

)( jP
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coefficient, ,i jρ , can be regarded as the impact of one of the candidate variables on either 

the North or East position error component. However, in order to standardize the impact 

of the different candidate variables affecting the position errors, the correlation 

coefficient, ,i jρ , has to be transformed to a common scale by normalizing ,i jρ  with 

∑
=

n

i
ji

1
,ρ , thus obtaining the performance analysis index, ,i jR , as follows: 

 

∑
=

= n

i
ji

ji
jiR

1
,

,
,

ρ

ρ
  

  

Therefore,  ,i jR  is the transformed version of ,i jρ  using a common scale. In addition, the 

magnitude of ,i jR  can reflect the quantized impact of certain variables on position errors. 

In other words, it can be applied to interpret the most dominant error sources producing 

the position errors. Table 7.17 illustrates the performance analysis indices of the position 

errors generated by the traditional navigator and conceptual intelligent navigator, 

respectively. In the following tables and figures, the N/EPE represent the normalized 

position errors time series along North and East directions generated by the traditional 

navigator and conceptual intelligent navigator, respectively, as shown in Figure (7.19) 

and Figure (7.20). In addition VN, VE, AZ, R, P and T represent the normalized time 

series of the velocity in the North direction, velocity in East direction, azimuth, roll, pitch 

and time provided by the reference system, respectively, as shown in Figures (7.19) and 

(7.20).    

 

As shown in Figures (7.19) and (7.20), the pie charts were given to display the 

performance analysis indices illustrated in Table 7.17 to provide better appreciation to the 

quantized impact of candidate variables on position errors. It can be seen from Figures 

(7.19) and (7.20) that the position errors generated by the traditional navigator (KF) were 

mainly related to the time impact (the square of time). The averaged performance 

217 



analysis index of time impact was 45%. In fact, it was the only significant factor that 

affected the position errors generated by the traditional navigator in comparison with the 

other factors. 

 

In contrast, the performance analysis index indicated that the position errors generated by 

the conceptual intelligent navigator were mainly affected by the motion dynamic 

variations. Recalling Table 7.15, the vehicle drove southward during the 1st GPS outage, 

thus the velocity variation in the North direction contributed 47% to the position errors 

along the North direction. Similar impact could be found during the 5th GPS outage. As 

the vehicle drove south-west during this outage, the velocity variation in the North 

direction contributed 47% to the position errors along the North direction. 

 

During the 2nd GPS outage, the vehicle first drove southward, then experienced a sharp 

turn toward East, then turned southward again. Thus, the velocity variation in the North 

direction contributed 30% to the position errors along the North direction. In addition, the 

azimuth variation contributed 19% and 30 % to the position errors along the North and 

East directions. It reflected the true motion dynamic variations of the test vehicle. 

Another interesting example is the performance analysis indices acquired during the 6th 

GPS outage. The vehicle experienced a sharp turn during this GPS outage, thus the 

azimuth variation contributed 56% and 46% to the position errors along the North and 

East directions, respectively. 

 

In addition, the performance analysis indices of roll and pitch obtained by the traditional 

navigator and conceptual intelligent navigator indicated that the variations in roll and 

pitch had minor effect on the position errors along the North and East directions, 

respectively. In general, the variations in roll and pitch contributed 8% and 10% in 

average to the position errors along the North and East directions generated by the 

traditional navigator, respectively.  Similarly, the variations in roll and pitch contributed 

12% and 8% in average to the position errors along the North and East direction 

generated by the conceptual intelligent navigator, respectively. Therefore, the 
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performance analysis index can be applied to provide the quantized impact of the 

vehicle’s motion dynamic variation on the positional errors.    

 

Table 7.17: Performance analysis index  

Blockage  
No. 

KF VN 
(i=1)

VE 
(i=2)

AZ 
(i=3)

R 
(i=4) 

P 
(i=5) 

T*T
(i=6)

0.43 0.25 0.39 0.04 0.11 0.78 NPE(j=1) ,1iρ  , ,1iR   
0.22 0.13 0.20 0.02 0.05 0.38 
0.32 0.20 0.24 0.20 0.21 0.99 

1 

EPE(j=2) ,2iρ  ,2, iR
0.15 0.09 0.11 0.09 0.10 0.46 
0.39 0.38 0.44 0.14 0.11 1.0 NPE(j=1) ,1iρ  , ,1iR   
0.16 0.15 0.18 0.06 0.04 0.41 
0.51 0.36 0.43 0.1 0.12 0.98 

2 

EPE(j=2) ,2iρ  , ,2iR
0.20 0.14 0.17 0.04 0.05 0.40 
0.36 0.26 0.21 0.14 0.03 0.98 NPE(j=1) ,1iρ  , ,1iR   
0.18 0.13 0.10 0.07 0.02 0.50 
0.52 0.32 0.22 0.1 0.02 1 

5 

EPE(j=2) ,2iρ  ,2, iR
0.23 0.15 0.1 0.05 0.01 0.46 
0.48 0.31 0.03 0.17 0.1 0.97 NPE(j=1) ,1iρ  , ,1iR   
0.23 0.15 0.01 0.08 0.05 0.48 
0.57 0.23 0.20 0.13 0.06 1 

6 

EPE(j=2) ,2iρ  , ,2iR
0.26 0.10 0.09 0.06 0.03 0.46 

Blockage  
No. 

IN_PUA_SPP VN 
(i=1)

VE 
(i=2)

AZ 
(i=3)

R 
(i=4) 

P 
(i=5) 

T*T 
(i=6)

0.71 0.11 0.07 0.20 0.21 0.21 NPE(j=1) ,1iρ  , ,1iR   
0.47 0.07 0.05 0.13 0.14 0.14 
0.64 0.32 0.17 0.06 0.08 0.04 

1 

EPE(j=2) ,2iρ  ,2, iR
0.49 0.24 0.13 0.05 0.06 0.03 
0.79 0.70 0.50 0.18 0.12 0.32 NPE(j=1) ,1iρ  , ,1iR   
0.30 0.27 0.19 0.07 0.05 0.12 
0.08 0.21 0.19 0.11 0.01 0.02 

2 

EPE(j=2) ,2iρ  , ,2iR
0.13 0.34 0.30 0.18 0.02 0.03 
0.43 0.02 0.26 0.10 0.03 0.08 NPE(j=1) ,1iρ  , ,1iR   
0.47 0.02 0.28 0.11 0.03 0.09 
0.31 0.09 0.24 0.03 0.02 0.1 

5 

EPE(j=2) ,2iρ  ,2, iR
0.39 0.11 0.30 0.04 0.03 0.13 
0.05 0.40 0.78 0.05 0.04 0.05 NPE(j=1) ,1iρ  , ,1iR   
0.04 0.29 0.56 0.04 0.03 0.04 
0.14 0.65 0.87 0.05 0.12 0.06 

6 

EPE(j=2) ,2iρ  , ,2iR
0.07 0.35 0.46 0.03 0.06 0.03 
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Figure 7.19: Performance analysis index (Outage No.1 and No.2) 
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Figure 7.20: Performance analysis index (Outage No.5 and No.6) 
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7.5     Summary 

 
The results presented in this chapter strongly indicate the potential of including the 

conceptual intelligent navigator as the core navigation algorithm for the next generation 

land vehicular navigation system that uses a low cost MEMS IMU integrated with a GPS 

receiver operating in SPP mode. The most important factor that affects the performance 

of the conceptual intelligent navigator is the accumulation of navigation knowledge. 

Theoretically, if enough navigation knowledge can be acquired in one or fewer field tests, 

the conceptual intelligence might be able to operate in full prediction mode for every new 

navigation mission. However, the knowledge accumulation should be conducted 

whenever new navigation knowledge is acquired as the true motion dynamics of the 

vehicle operating in real life is far more complicated. Thus, the challenge is to acquire 

large amounts of navigation knowledge and develop an efficient database management 

facility to accelerate the knowledge retrieval and accumulation process.   

 

With the presence of the conceptual intelligent navigator, the traditional navigator that 

uses a Kalman filter should be regarded as an optimal estimator, instead of a navigator, as 

it doesn’t have any ability to store and generalize the navigation knowledge that it has 

learned. In contrast, the conceptual intelligent navigator has the ability to generate, store 

and generalize the navigation knowledge it has learned. As indicated in previous sections, 

both navigators have their advantages and limitations when they are applied as the core 

navigation algorithm for low cost MEMS IMU/GPS integrated land vehicular navigation 

system. According to the results presented in this chapter, the advantages and the 

limitations of both navigators are concluded as follows; 

 

 The advantages of  the traditional navigator (KF) 

 

• It is a mature and widely applied navigation algorithm for an INS/GPS 

integrated system. 
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• It is capable of providing superior positioning accuracy during short GPS 

outages (< 1 minute) using a low cost MEMS IMU/GPS integrated system 

based on the field test data applied in this research. 

• It can estimate sensor bias explicitly. In addition, it is able to provide more 

states than the conceptual intelligent navigator (i.e., roll and pitch).   

 

 The limitations of traditional navigator (KF) 

 

• Its position error grows with time. Thus, it can not provide acceptable 

navigation solutions during long GPS outages (>2 minutes). 

• It requires a human expert to tune the optimal parameters of the Kalman filter 

(i.e., Q and R matrices). In addition, these parameters are sensor dependent. 

• The parameters are not adaptive once the Kalman filter starts navigation. In 

other words, unless its parameters are optimal, the Kalman filter might not be 

able to provide reasonable positioning accuracy during certain GPS outages. 

This issue might not be critical for a navigation grade IMU due to its superior 

quality; however, it is an important factor that affects the performance of low 

cost MEMS IMUs due to their poor stability. 

• A Kalman filter generates navigation solutions by receiving information from 

INS and GPS as it is an optimal estimator in nature. However, it can not recall 

the experience and the navigation knowledge which are important to a real 

“navigator”.   

 

 The advantages of the conceptual intelligent navigator 

 

• It can be adapted to the latest sensor error characteristics and vehicle motion 

dynamic variations by self-learning. 

• It is capable of providing superior positioning accuracy during long GPS 

outages (>1 minute) using a low cost MEMS IMU/GPS integrated system 

based on the field test data applied in this research. 
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• It is a sensor independent INS/GPS integration architecture if the accuracy of 

the system applied for providing the navigation solutions has a similar 

accuracy level as the system applied to acquire the stored navigation 

knowledge. 

• The importance of synaptic weights which are stored as part of the navigation 

knowledge to the conceptual intelligent navigator is equivalent to that of the Q 

and R matrices to the traditional navigator. However, the optimal synaptic 

weights are acquired adaptively through a continuous self-learning process 

and the optimal Q and R matrices are given by a human expert through 

extensive trial and error. In other words, both navigators require a learning 

process. The learning process of the conceptual intelligent navigator is done 

by self-learning while the learning process of the traditional navigator is done 

by a human expert.   

• The navigation knowledge can be learned and accumulated continuously. In 

other words, the up-to-date navigation knowledge is always available for the 

conceptual intelligent navigator as long as the learning process continues. 

• The stored navigation knowledge is an important factor for a conceptual 

intelligent navigator to provide superior positioning accuracy during long GPS 

outages even with a low cost IMU/GPS integrated system. 

 

 The limitations of the conceptual intelligent navigator 

 

• As the training target information is provided by GPS, the navigation states 

that can be provided by the conceptual intelligent navigator are limited. For 

example, it can not estimate sensor errors explicitly and it can not provide roll 

and pitch information as a single GPS receiver can not provide such 

information for training.  

• Currently, the optimal ANN architecture (i.e., number of hidden neurons) of 

the conceptual intelligent navigator is decided empirically. This is the 

fundamental problem of a MFNN. In other words, the number of hidden 

neurons is fixed during data processing. For application like INS/GPS 
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integration, it might require a more flexible approach to adjust the number of 

the hidden neurons as the navigation knowledge accumulates continuously.  

• It requires more storage space to store the navigation knowledge. As the 

accumulation of the navigation knowledge makes the conceptual intelligent 

navigator different from the traditional navigator, it is the price to pay. 

 

Given the fact that the incorporation of artificial intelligence to the navigation algorithm 

is new to the navigation community, it needs more extensive research to accelerate wider 

inclusion of such an idea to commercial products. In fact, using artificial intelligence for 

mobile robot navigation has been studied extensively in robotic engineering related 

research works since the field of artificial intelligence started. Therefore, developing a 

new artificial intelligent INS/GPS integration architecture that can overcome some of the 

limitations of the traditional navigator in a land vehicle environment is a huge challenge. 

   

Unlike other applications in signal processing and control, the INS/GPS integration 

application requires that synaptic weights stored as part of the navigation knowledge to 

be adaptive, so that the conceptual intelligent navigator can be adapted to the latest sensor 

error characteristic and vehicle motion dynamic variations. In other words, the stored 

navigation knowledge is expected to be adjustable during navigation to ensure the 

learning process can be conducted continuously. 

   

Although the results presented in this research work are still far from producing a 

commercial product, the overall achievement presented in this chapter demonstrates the 

advantages of implementing the conceptual intelligent navigator as the alternate 

navigation algorithm for the next generation land vehicular navigation system in 

comparison with the traditional navigator from a software aspect. It is worth mentioning 

that some of the conclusions draw from this chapter might not be able to be generalized 

yet due to the limited number of the field test data applied in this research. 
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CHAPTER 8 
 

CONCLUSIONS AND RECOMMENDATIONS 
 
The first part of this research presented a novel cascade denoising algorithm to improve 

the positioning accuracy using a traditional INS/GPS integration methodology, Kalman 

filtering, during GPS outages. The results demonstrated that the proposed algorithm was 

able to overcome the limitations of existing denoising algorithm in frequency domain and 

improve the positioning accuracy of the INS system during GPS outages. 

 

The second part of this research presented an alternative INS/GPS integration 

methodology, the conceptual intelligent navigator, to overcome the limitations of 

traditional navigator that use a Kalman filter as INS/GPS integration architecture. The 

conceptual intelligent navigator was developed using artificial neural networks. The 

major distinction between the traditional navigator and the conceptual intelligent 

navigator is that the latter has the ability to mimic a human navigator as it can generate, 

accumulate and generalize the navigation knowledge it has learned over time (i.e. from 

the different data sets it process). By retrieving the navigation knowledge stored in the 

navigation information database, the developed navigator is capable of providing real 

time prediction. The overall performance presented in this research demonstrated its 

advantage and potential for being applied as an alternative INS/GPS integration 

architecture for the development of the next generation land vehicular navigation 

software. 

 

The conclusions drawn from the results presented in this research work are given first to 

conclude the overall achievement of this thesis. It is worth mentioned that some of the 

conclusion might not yet to be generalized due to the limited number of field test data set. 

In addition, some topics that could not be investigated in this thesis are given as 

recommendations for future work.  

 

8.1      Conclusions 
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(1) The universal thresholding algorithm developed in this research is able to 

preserve the advantage of soft and hard thresholding algorithm. It is capable of 

providing superior denoising performance in terms of signal-to-noise-ratio and 

RMS error. 

(2) The second generation denoising algorithm using a translation invariant wavelet 

transform can overcome the pseudo Gibb’s phenomenon generated by the first 

generation denoising algorithm to provide superior denoising performance in 

terms of signal-to-noise-ratio and RMS error. 

(3) The spectrum of true motion dynamics is band limited in land vehicle 

environment. Due to the road irregularities (i.e., bumps); the motion frequencies 

for X-gyro, Y-gyro and Z-accelerometer mainly appear in the 0-6 Hz band.  

(4) The frequency band of acceleration and deceleration motion in X or Y direction 

mainly appear in the 0-1Hz band. This indicates a much smoother translation 

motion along the trajectory. Similarly, the frequency band of the azimuth or 

heading change mainly appears in the 0-1Hz band. This indicates a much 

smoother rotation about the vertical body axis. The spectrum characteristics of X-

accelerometer, Y-accelerometer and Z-gyro meet the nature of a land vehicle 

motion. 

(5) The cascade denoising algorithm developed in this research can overcome the 

limitations of existing denoising algorithm in frequency domain; in addition, it is 

capable of providing superior performance in position domain. 

(6) The benefit of denoising operation decreases with the quality of IMU. The results 

demonstrated that the cascade denoising algorithm provided the most significant 

percentage of improvement using a CIMU/GPS integrated system in DGPS and 

SPP mode. The percentage of improvement reached 58% and 48%, respectively. 

For a LN200/GPS integrated system; the percentage of improvement approached 

40% in DGPS and SPP mode. For a XBOW/GPS integrated system; it provided 

the least improvement among these tested systems; however, the percentage of 

improvement reached 30% in DGPS or SPP mode.        

(7) For a navigation grade IMU (i.e., CIMU) , the long term errors of IMU (i.e., bias, 

drifts) are stable and well behaved relatively, thus the remaining short term errors 
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of IMU account for most of the residual position error during GPS outage. 

However, for a MEMS IMU, due to its poor stability of long term errors, the 

impact of short term errors is less significant than long term errors. Thus, the long 

term errors dominate the residual position errors for current MEMS IMUs, 

however, the use of cascade denoising algorithm is still able to improve the 

positioning accuracy during GPS outages by reducing the impact of short term 

errors. 

(8) The results demonstrated that the INS/GPS integration architecture using an 

Elman network demanded more computation resources, more training time in 

comparison with the INS/GPS integration architecture using a MFNN. In 

addition, the former did not demonstrate any improvement in term of the 

positioning accuracy during GPS outages, thus, the MFNNs were applied to 

develop the INS/GPS integration architecture required by the conceptual 

intelligent navigator.  

(9) The azimuth constrained algorithm developed in this research provides a 

“pseudo” azimuth sensor that can overcome the numerical instability of raw 

DGPS velocity or position derived azimuth. In addition, such measurements allow 

the implementation of PVAUA. Based on the field test data applied in this 

research ,the results demonstrated that the constrained DGPS velocity or position 

derived azimuth was able to provide more accurate azimuth measurements in 

comparison with the azimuth measurements generated by a tactical grade IMU 

and MEMS IMU operating in stand-alone mode for 30 minutes.  

(10) The length of GPS outage is the most dominated factor to the position errors 

generated by the traditional navigator. In contrast, the motion dynamic variation is 

the most dominated factor to the position errors generated by the conceptual 

intelligent navigator. However, the impact of motion dynamic variation can be 

reduced incorporating with more sophisticated INS/GPS integration architectures, 

such as a PVUA or a PVAUA.  

(11) The optimal parameters of the traditional navigator are provided by a human 

expert through an extensive tuning process before the actual use of the system. In 

contrast, the parameters of the conceptual intelligent navigator are included in the 
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navigation knowledge. Thus, they can be updated without a human expert during 

navigation whenever newly updated navigation knowledge is acquired. 

(12) The most important factor that affects the performance of the conceptual 

intelligent navigator is the accumulation of navigation knowledge. Given the fact 

that the true motion dynamic of vehicle operating in real life is far more 

complicated thus the knowledge accumulation should be conducted whenever 

new navigation knowledge is acquired.   

(13) Based on the field test data applied in this research, the PVUA architecture is 

recommended as the INS/DGPS integration architecture for systems using a 

navigation grade IMU. It can achieve 5 metres level positioning accuracy 

requirement for real time prediction that lasts more than 15 minutes without GPS. 

In contrast, the positioning accuracy provided by the conceptual intelligent 

navigator using a PUA as INS/SPP integration architecture can reach 30 metres 

during the same period.  

(14) Based on the field test data applied in this research, the PVAUA architecture is 

recommended as the INS/DGPS integration architecture for systems using a 

tactical grade IMU. It can achieve 15 metres level positioning accuracy 

requirement for real time prediction that lasts more than 15 minutes without GPS. 

In contrast, the positioning accuracy provided by the conceptual intelligent 

navigator using a PUA as INS/SPP integration architecture can reach 90 metres 

during the same period.  

(15) Based on the field test data applied in this research , the PVAUA architecture is 

recommended as the INS/DGPS integration architecture for systems using a low 

cost MEMS IMU, It can achieve 200~300 metres level positioning accuracy 

requirement using for real time prediction that lasts more than 15 minutes without 

GPS. In contrast, the positioning accuracy provided by the conceptual intelligent 

navigator using a PUA as INS/SPP integration architecture can reach 1.5 

kilometres during the same period. 

(16) The continuous learning process can be regarded as the evolution process of 

conceptual intelligent navigator. It ensures the conceptual intelligent navigator 

can be adapted to the latest sensor error characteristic and vehicle’s motion 
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dynamic variation. Therefore, the latest updated navigation knowledge can be 

applied to provide real time prediction during GPS outages.  

(17) The performance analysis index that makes use of the correlation coefficients 

between the position errors generated by the navigator and motion dynamics 

information provided by the reference system can be applied to interpret the 

quantized impact of the vehicle’s motion dynamic variation on the position errors 

for post-mission analysis. 

(18) For developing the next generation land vehicular navigation system, a low cost 

IMU and a GPS receiver that operates in SPP mode are preferred due to the cost 

and the simplicity of system integration in hardware and software aspect. The 

results presented in this thesis strongly indicate the potential of including the 

conceptual intelligent navigator as the core navigation algorithm for the next 

generation land vehicular navigation system. 

 

8.2      Recommendations 
 

Based on the work done in this research, the following recommendations for future 
research are proposed: 
 
(1) The research works associated with the development of cascade denoising 

algorithm can be extended to incorporate either unsupervised neural networks 

(i.e., Self-organizing map, SOM) or supervised neural networks (i.e., static neural 

networks or dynamic neural networks). For example, the denoising unit using 

wavelet decomposition can be integrated into the neurons in a MFNN. The cost 

function used in neural network learning is also applied as the denoising criterion 

and hence denoising itself is treated as a part of the integrated model.  

(2) The correlation between motion dynamic variation and the degradation of the 

positioning accuracy during GPS outage after applying cascade denoising 

algorithm should be further analyzed, thus, the cause of such inconsistent 

performance can be investigated. 
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(3) The alignment procedure applied in this research relies on Kalman filter , 

therefore, to develop a true ANN based INS/GPS scheme without using the 

Kalman filter, an ANNs based alignment procedure should be investigated. 

(4) Unlike the traditional navigator, the conceptual intelligent navigator developed in 

this research can not estimate INS sensor biases or drifts explicitly. This is mainly 

due to the limitations of desired information provided by the GPS navigation 

solutions. In other words, it doesn’t have the ability to feedback estimated biases 

and drifts to compensate the raw IMU measurements as those parameters are 

estimated implicitly within the parameters of conceptual intelligent navigator 

during navigation. This is the major limitation of supervised neural networks. 

Therefore, an unsupervised neural network (i.e., SOM) can be implemented as 

part of the intelligent navigator to estimate INS sensor biases or drifts explicitly 

and continuously during navigation then feedback to compensate the raw IMU 

measurements since SOM doesn’t require desired information during learning or 

training procedure. 

(5) The critical parameters of MFNN can only be decided empirically, such as the 

number of hidden neurons. Thus a modified version of MFNN, cascade 

correlation networks, is recommended. It begins with a minimal network, then 

automatically trains and adds new hidden units one by one creating a multi-layer 

feed-forward structure. In other words, the number of hidden neurons can be 

decided based on the complexity of the problem automatically during the 

accumulation of the knowledge.   

(6) The conceptual intelligent navigator developed in this research uses artificial 

neural networks. In fact, the incorporation of other artificial intelligent algorithms 

with navigation applications should be investigated with more efforts. Such as 

Fuzzy logic, expert system and genetic algorithms. 

(7) Like the traditional navigator, the conceptual intelligent navigator developed in 

this research relays on the traditional INS mechanization as the source of the INS 

navigation solution. Theoretically, the conceptual intelligent navigator can be 

modified to mimic the INS mechanization. In other words, it can receive the raw 
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measurements provided by an IMU and generate navigation solutions to bridge 

the gap between GPS outages. 

(8) Most of the GPS outages applied in this research were simulated in an ideal way 

by simply removing GPS solutions completely; however, the GPS outages 

happened in urban area usually degrade gradually. Although the conceptual 

intelligent navigator developed in this research has the ability to detect the 

degraded performance of GPS, it should be evaluated using more realistic GPS 

outages as well.    

(9) As the ANN model is implemented based on empirical and adaptive model, it is 

not possible to provide proper stochastic model for further analysis, on the 

contrary, the traditional navigator using a Kalman filter is an optimal estimator in 

nature. On the other hand, the conceptual intelligent navigator using artificial 

intelligent algorithms has the ability to accumulate and generalize navigation 

knowledge as a real “navigator”. Therefore, a hybrid intelligent navigator 

incorporating a Kalman filter with the conceptual intelligent navigator that has a 

proper stochastic model can be expected to enhance the advantage in terms of 

estimation optimality; in addition, it can accumulate navigation knowledge 

continuously.  
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APPENDIX A 
 
 
 

A.1    Examples of Associated Frequency 
 

Table.A.1: Digested associated frequency of DB3 (ω=0.8) 

 Fs=200 Hz Fs=100 Hz Fs=50 Hz 
scale pF (Hz) AF  (Hz) pF (Hz) AF  (Hz) pF (Hz) AF  (Hz) 

1 160 128 80 64 40 32 
2 80.0000 64.0000 40.0000 32.0000 20.0000 16.0000 
3 53.3333 42.6667 26.6667 21.3333 13.3333 10.6667 
4 40.0000 32.0000 20.0000 16.0000 10.0000 8.0000 
5 32.0000 25.6000 16.0000 12.8000 8.0000 6.4000 
6 26.6667 21.3333 13.3333 10.6667 6.6667 5.3333 
7 22.8571 18.2857 11.4286 9.1429 5.7143 4.5714 
8 20.0000 16.0000 10.0000 8.0000 5.0000 4.0000 
9 17.7778 14.2222 8.8889 7.1111 4.4444 3.5556 
… … … … … … … 
15 10.6667 8.5333 5.3333 4.2667 2.6667 2.1333 
16 10.0000 8.0000 5.0000 4.0000 2.5000 2.0000 
.. … … … … … … 
31 5.1613 4.1290 2.5806 2.0645 1.2903 1.0323 
32 5.0000 4.0000 2.5000 2.0000 1.2500 1.0000 
… … … … … … … 
64 2.5 2.00 1.25 1.00 0.625 0.5 
… … … … … … … 
128 1.25 1.00 0.625 0.5 0.3125 0.25 
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Table A.2: Digested associated frequency of DB5 (ω=0.96) 

 Fs=200 Hz Fs=100 Hz Fs=50 Hz 
scale pF (Hz) AF  (Hz) pF (Hz) AF  (Hz) pF (Hz) AF  (Hz) 

1 133.3333 128.000 66.6667 64.0000 33.333 32.0000 
2 66.6667 64.0000 33.3333 32.0000 16.6667 16.0000 
3 44.4444 42.6667 22.2222 21.3333 11.1111 10.6667 
4 33.3333 32.0000 16.6667 16.0000 8.3333 8.0000 
… … … … … … … 
7 19.0476 18.2857 9.5238 9.1429 4.7619 4.5714 
8 16.6667 16.0000 8.3333 8.0000 4.1667 4.0000 
9 14.8148 14.2222 7.4074 7.1111 3.7037 3.5556 
… … … … … … … 
15 8.8889 8.5333 4.4444 4.2667 2.2222 2.1333 
16 8.3333 8.0000 4.1667 4.0000 2.0833 2.0000 
32 4.1667 4.0000 2.0833 2.0000 1.0417 1.0000 
.. … … … … … … 
64 2.08 2.00 1.04 1.00 0.52 0.5 
… … … … … … … 
128 1.04 1.00 0.52 0.50 0.26 0.25 

 
 
A.2    Multiresolution Analysis 
 
A MRA of  is defined as a sequence of closed space 2 ( )L R jV  of  satisfying the 

following properties [Mallat, 1989a and 1989b]: 

2 ( )L R

 

• 1j jV V+ ⊂ , 

• 1( ) (2 )j jv t V v t V +∈ ⇔ = , 

• , 0 0( ) ( 1)v t V v t V∈ ⇔ + =

•  { }2 ( ) 0 ,j j
j j

V is dense in L R and V
∞ ∞

=−∞ =−∞

=∪ ∩

• A scaling function 0Vϕ∈  with non-vanishing integral exists such that 

{ }( )t l lϕ − ∈Z is a Riesz basis of . 0V

 

Where  is Hilbert space and Z is integer. The following terminology will be used: 2 ( )L R
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a level of a MRA is one of the  jV  subspaces and one level is coarser (respectively finer) 

with respect to another whenever the index of the corresponding space is bigger 

(respectively smaller). The last property states that a basis must exist follows for the 

space .It follows from the definition of the MRA that there exists a sequence ( ) such 

that the scaling function 

0V kh

( )tϕ satisfies [Mallat, 1989a and 1989b].  

 

( ) 2 (2 )k
k

t h tϕ ϕ= ∑ k−                                                                                                 (A.1) 

 

This is known as the refinement equation, dilation equation, or scaling function. The 

wavelet or detail spaces jW  are spaces complementing jV  in 1jV −  i.e. a space that 

satisfies 

 

 1j jV V W− = ⊕ j                                                                                                            (A.2) 

 

This says that every element of 1jV − can be written as a sum of an element in jV  and jW  

in a unique way. The detail spaces jW contains the detail information needed to go from 

an approximation at resolution j-1 to approximation at resolution j , consequently, 

 
2 ( )jW L R⊕ =                                                                                                              (A.3) 

 

The wavelet function ψ exists if the collection of functions { }( )t l lψ − ∈Z is a Riesz 

basis of .The collection of wavelet functions 0W { }. ,j l l jψ ∈Z is then a Riesz basis 

of .Since the wavelet 2 ( )L R ψ  is an element of , a  sequence ( ) such that the wavelet 

function 

1V kg

( )tψ satisfies [Mallat, 1989a and 1989b] 

 

( ) 2 (2 )k
k

t g t kψ ϕ= ∑ −                                                                                                (A.4) 
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Consequently, 

 

, , 1 1 1, 1, 1, 1,( ) ( ) ( ) ( ) ( )j j k j k j j j l j l j l j
k l l

v t v t w t t tλ ϕ λ ϕ γ ψ+ + + + + += = + = +∑ ∑ ∑ l                        (A.5) 

 

Figure (A.1) also illustrates the examples of scaling and wavelet function.  
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Figure A.1: Examples of wavelet and scaling functions 

 

In other words, there are two representations of the function jv , one as an element in jV  

and associated with the sequence{ },j kλ , and another as a sum of elements in 1jV +  and 

1jW +  and associated with the sequences { }1,j kλ +  (approximation sequence) 

and{ }1,j kγ + (detail sequence) that are given as follow: 

 

1, 1, 2 , 2 ,, 2 , 2j l j j l j k l j k k l j k
k k

v v h hλ ϕ ϕ+ + − −= = =∑ ∑� � λ                                            (A.6) 

1, 2 ,2j l k
k

g l j kγ λ+ −= ∑                                                                                                 (A.7) 

 

The opposite direction from,  { }1,j lλ +  and{ }1,j lγ + to{ },j kλ , is given as follow: 
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, 2 1, 22 2 1,j k k l j l k l
l

h gλ λ− + − += +∑ � � j lγ                                                                              (A.8) 

 

When applied recursively, these formulates define the Fast Wavelet Transform (FWT); 

the equation A.6 and A.7 define the forward transform, while Equation A.8 defines the 

inverse transform [Cody, 1992], as shown in the Figure (A.2).  

 

 

 

 

 

  

 

 

 

Figure A.2: Schemes of FWT 

 

Prior to analyzing the spectrum of DWT, the distinction between approximation/detail 

signal (A/D) and approximation /detail coefficients (cA/cD) is given. For many signals, 

the low frequency content is the most important part. It is what gives the signal its 

identity. The high-frequency content, on the other hand, imparts flavor or nuance. For 

example, removing the high-frequency components of human voice, the voice sounds 

different, but it is possible for a person to tell what’s being said. However, removing 

enough of the low-frequency components, only gibberish can be heard. In MRA, 

approximations and details terms are used. The approximations are the high-scale, low-

frequency components of the signal. The details are the low-scale, high-frequency 

components [Vetterli and Herley, 1992].  

 

Figure (A.3) illustrates the distinction between approximation/detail signal (A/D) and 

approximation /detail coefficients (cA/cD). The original signal, S, passes through two 
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complementary filters and emerges as two signals. Unfortunately, if this operation on a 

real digital signal is performed, it results in with twice as much data as the beginning. 

Suppose, for instance, that the original signal S consists of 1000 samples of data. Then 

the resulting signals will each have 1000 samples, for a total of 2000. These signals A 

and D are interesting, but it gets 2000 values instead of the 1000. As mentioned 

previously, there exists a more subtle way to perform the decomposition using wavelets. 

By looking carefully at the computation, we may keep only one point out of two in each 

of the two 2000-length samples to get the complete information. This is the notion of 

downsampling which produces two sequences called cA and cD. 

 

 
S (1000)

A (1000) D(1000)

S (1000)

cA (500) cD(500)

2↓ 2↓

S (1000)

A (1000) D(1000)

S (1000)

cA (500) cD(500)

2↓ 2↓

 
 

 

 

 

 

Figure A.3: Distinctions between (A/D) and (cA/cD) 

 

To illustrate this process, Figure (A.4) depicts the distinctions between 

approximate/detail signal and DWT coefficients. The decomposition is three and the 

result shows an important fact that the length (sampling rate) of approximation (A) and 

detail signals is identical to that of original signal. On the contrary, the length (sampling 

rate) of DWT coefficients at each decomposition level decreases at rate of , k is the 

decomposition level. It is a well known fact that the bandwidth, Nyquist frequency, , 

(maximum detectable frequency) of Fourier analysis is mainly related to the sampling 

rate 

2k

nF

sF .In fact, the relationship between  and nF sF  can be described as followed. 

 

                                                              
2

s
n

FF =                                                              (A.9) 
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Figure A.4: Example of the distinction between (A/D) and a (cA/cD) 

 
Consequently, the relationship between decomposition level, maximum detectable 
frequency  and sampling rate nF sF (i.e., 200Hz, 100Hz and 50 Hz) is given in Table A.3. 

 
Table A.3: Frequencies and decomposition level 

 
 A/D cA/cD 
 nF (Hz) sF  (Hz) nF  (Hz) sF  (Hz)

DL=0 100 200 100 200 
DL=1 100 200 50 100 
DL=2 100 200 25 50 
DL=3 100 200 12.5 25 
DL=4 100 200 6.25 12.5 
 nF  (Hz) sF  (Hz) nF  (Hz) sF  (Hz)

DL=0 50 100 50 100 
DL=1 50 100 25 50 
DL=2 50 100 12.5 25 
DL=3 50 100 6.25 12.5 
DL=4 50 100 3.125 6.25 
 nF  (Hz) sF  (Hz) nF  (Hz) sF  (Hz)

DL=0 25 50 25 50 
DL=1 25 50 12.5 25 
DL=2 25 50 6.25 12.5 
DL=3 25 50 3.125 6.25 
DL=4 25 50 1.5625 3.125 
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A.3    Performance Analysis of Different Thresholding Algorithm 
 

Figure (A.5), and Table A.4 illustrates the performance using different thresholding 

algorithm and the 1st generation denoising algorithm. A clean signal ( )X n  was generated 

the noise with certain SNR was added. In addition, the denoised signal is donated 

as ˆ ( )X n . The evaluations of denoising performance can be carried out according to 

[Dohono, 1992]: 

 

• Root Mean Square Error (RMSE) 
 

 

      
1

2

0

1 ˆ[ ( ) ( )]
N

n
RMSE X n X n

N

−

=
= −∑                                                                       (A.10) 

 
 

• Signal to noise ratio (SNR) in decibels. 
 

      
21

0
10 1 2

0

( )ˆ( , ) 10 log
ˆ ( ) ( )

N
n

N

n

X n
SNR X X

X n X n

−
=

−

=

=
−

∑

∑
                                                          (A.11) 

 
 

Table A.4: Performance Comparison (DWT) 
 

 SNR (Original =7) RMS
Soft  30.13 0.23 
Hard 30.28 0.22 
Universal 31.02 0.18 
No 28.44 0.28 

 
Be aware that the no thresholding operation was conducted by extracting the 

approximation signal (A) at designated decomposition level. Figure (A.6), and Table A.5 

illustrates the performance using different thresholding algorithm and the 1st generation 

denoising algorithm. 
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Figure A.5: DWT Denoising Examples 
 

Table A.5: Performance Comparison (TIW) 
 

 SNR (Original =7) RMS
Soft  30.25 0.22 
Hard 31.07 0.17 
Universal 31.53 0.15 
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Figure A.6: TIW Denoising Examples 

 

A.4     Performance Analysis of TIW Lowpass Filter Denoising 
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For comparison, Figure (A.7) and Table A.6 illustrate the performance of the wavelet 

based low pass filters using TIW. The stop bands of those low pass filters were decided 

using Table 4.5.  
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Figure A.7: Position errors during GPS blockages 

 

Table A.6: Performance summary of wavelet low pass filter (TIW) 

  RAW Low Pass Filter (TIW) 
Blockage no. Blockage 

Length(S) 
MAX_ N 

(m) 
MAX_ E 

(m) 
RMS 
Total 

MAX_ N 
(m) 

MAX_E 
(m) 

RMS 
Total 

1 30 3.43 1.12 1.18 3.28 1.25  2.09 
2 30 1.23 25.82 9.89 2.95  23.54     9.08 
3 60 37.07 68.27 33.86 37.08   69.16    34.02
4 30 1.45 3.50 1.84 2.03     2.25    1.64 
5 60 18.90 179.30 70.58 19.90    158.72   63.36
6 30 5.16 25.53 10.92 5.54   24.70    10.68
7 70 37.04 36.97 25.23 36.41    31.09    22.80
8 30 14.39 27.27 15.26 14.45   28.91    15.62
10 44 20.39 50.52 18.43 20.93    43.50   15.76
11 60 13.50 47.48 23.69 16.83    44.01    22.75

 

A.5   Performance Analysis of Cascade Denoising Algorithm (LN200)  
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Figure (A.8) and Table A.7 indicate the performance summary of the positional errors 

generated by comparing the raw and denoised INS (LN200)/DGPS integrated navigation 

solutions with the reference trajectory during each GPS outage, respectively.  

 

 

Table A.7: Performance summary of positional errors (LN200/DGPS) 

  RAW Cascade  Denoising _DGPS 
Blockage no. Blockage 

Length(s) 
MAX_ N 

(m) 
MAX_ E 

(m) 
RMSE 

Total(m) 
MAX_ N 

(m) 
MAX_E 

(m) 
RMSE 

Total(m)
1 30 4.16 19.56 6.12 4.79 21.45 6.85 
2 30 9.48 8.11 4.83 10.46 9.28 4.90 
3* 60 5.03 1.66 2.84 2.16 2.99 1.92 
4 60 25.50 11.04 12.95 26.40 12.67 13.56 
5* 60 2.86 7.70 2.99 2.51 7.38 2.77 
6* 30 3.59 3.06 2.20 3.37 0.20 1.68 
7* 60 28.56 9.15 14.28 7.08 3.03 3.92 
8* 120 42.77 19.67 18.28 22.32 12.48 8.91 

 

0 200 400 600 800 1000 1200
-50

0

50

Po
si

tio
n 

Er
ro

r (
m

)

North

0 200 400 600 800 1000 1200
-50

0

50 East

0 200 400 600 800 1000 1200
0

20

40

60

GPS Time-499000 (second)

TotalRaw
Cascade denoised

 
Figure A.8:  Position errors (LN200/DGPS) 

 

Figure (A.9) and Table A.8 illustrate the performance summary associated the position 

errors generated by comparing the denoised INS/SPP integrated navigation solutions, the 

raw INS/SPP integrated navigation solutions with the reference trajectory during each 

GPS outage respectively.  
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Figure (A.10) compares the impact of proposed cascade denoising algorithm on the 

INS/DGPS and INS/SPP integrated systems in terms of the percentage of improvement or 

degradation during each GPS outage period, respectively.  

 

Table A.8: Performance summary of positional errors (LN200/SPP) 

  RAW Cascade  Denoising _SPP 
Blockage no. Blockage 

Length(s) 
MAX_ N 

(m) 
MAX_ E 

(m) 
RMSE 

Total(m) 
MAX_ N 

(m) 
MAX_E 

(m) 
RMSE 

Total(m)
1 30 5.02 31.18 15.96 5.31 39.70 15.08 
2 30 5.85 3.78 5.51 6.38 7.45 7.32 
3* 60 17.01 44.84 27.01 24.21 27.66 18.10 
4* 60 29.46 42.64 24.23 29.52 9.49 20.97 
5* 60 53.61 9.35 22.78 10.87 4.65 7.10 
6 30 2.35 10.16 5.58 12.24 6.29 7.04 
7* 60 23.37 21.19 13.42 4.39 17.31 10.52 
8* 120 105.56 66.55 45.39 65.77 21.76 31.64 
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Figure A.9:  Position errors (LN200/SPP) 
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Figure A.10: The impact of denoising on the integrated systems (LN200/GPS) 

 

A.6    Performance Analysis of Cascade Denoising Algorithm (XBOW) 
 

Figure (A.11) and Table A.9 indicate the performance summary associated the position 

errors generated by comparing the denoised INS/DGPS integrated navigation solutions, 

the raw INS/DGPS integrated navigation solutions using a MEMS IMU, Crossbow DMU 

AHRS-400CC (XBOW), with the reference trajectory during each GPS outage 

respectively. 

 

Table A.9: Performance summary positional errors (XBOW/DGPS) 

  RAW Cascade  Denoising _DGPS 
Blockage no. Blockage 

Length(s) 
MAX_ N 

(m) 
MAX_ E 

(m) 
RMSE 

Total(m) 
MAX_ N 

(m) 
MAX_E 

(m) 
RMSE 

Total(m)
1 30 5.09 25.51 12.44 5.09 28.36 15.12 
2 30 3.35 42.79 19.06 3.41 18.18 8.31 
3 60 57.30 196.42 86.90 27.24 29.01 15.50 
4 60 7.84 22.51 15.36 13.42 33.48 19.24 
5 60 74.86 74.97 45.64 91.59 43.19 44.33 
6 30 15.34 25.28 11.62 17.12 11.47 8.13 
7 60 83.50 53.05 42.59 53.01 12.89 21.49 
8 120 355.01 163.66 172.47 269.10 63.47 137.28 
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Figure A.11:  Position errors (XBOW/DGPS) 

 

Figure (A.12) and Table 7.9 depict the performance summary associated the position 

errors generated by comparing the denoised INS/SPP integrated navigation solutions, the 

raw INS/SPP integrated navigation solutions with the reference trajectory during each 

GPS outage period respectively. Figure (A.13) compares the impact of proposed cascade 

denoising algorithm on the INS/DGPS and INS/SPP integrated systems in terms of the 

percentage of improvement or degradation during each GPS outage period.  

 

Table A.10: Performance summary of positional errors (XBOW/SPP) 

  RAW Cascade  Denoising _SPP 
Blockage no. Blockage 

Length(s) 
MAX_ N 

(m) 
MAX_ E 

(m) 
RMSE 

Total(m) 
MAX_ N 

(m) 
MAX_E 

(m) 
RMSE 

Total(m)
1 30 13.02 28.56 22.78 4.75 44.78 23.35 
2 30 6.80 48.64 18.53 7.56 4.15 6.81 
3 60 36.62 236.26 103.70 39.89 54.36 28.21 
4 60 23.97 130.85 61.63 132.21 3.61 62.84 
5 60 271.55 118.25 128.87 116.14 93.01 65.93 
6 30 61.97 150.98 64.03 20.46 2.52 8.36 
7 60 29.33 45.49 27.11 11.52 58.57 27.13 
8 120 486.07 63.90 220.08 364.72 26.69 163.18 
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Figure A.12:  Position errors (XBOW/SPP) 
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Figure A.13: The impact of denoising on the integrated systems (XBOW/GPS) 
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APPENDIX B 
 
 
 

B.1      Biological Neurons and Neural Networks 
  
The neural system of the human body consists of three components: receptors, a neural 

network, and effectors. The receptors receive the stimuli either internally or from the 

external world, and then transmit the information into the neurons via the form of 

electrical impulses. The neural network then processes the inputs then makes proper 

decision of outputs. Finally, the effectors translate electrical impulses from the neural 

network into responses to the outside environment. Figure (B.1) shows the bidirectional 

communication between components for feedback [Arbib, 1987]. 

 
 
 
 
 
 

 
Figure B.1: Three stages of biological neural networks 

 
The fundamental processing element of the neural network is called a neuron. As shown 

in figure (B.2). This biological cell receives and processes information and communicates 

with various part of the human body. The nerve cell body is called the soma and is 

surrounded by a thin plasma membrane filled with cytoplasm. The soma is approximately 

30 µm in diameter. Within the soma is a cell nucleus. Every nerve cell receives many 

inputs through the dendrites, and after some processing generates a single output along it 

axon. The junction point of an axon with a dendrite is called the synapse. The 

information generated by a neuron is transmitted along its axon. 

 In fact, the human brain has more than 10 billion neurons, which have complicated 

interconnections, and these neuron architectures provide a large-scale signal processing 

and memory neural networks. Therefore, the mathematical study of a single neuron 

model and its various extensions is the first step in the design of a complex neural 
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network for application such as neural signal processing, pattern recognition, control of 

complex system and other sophisticated decision-making processes.  
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Figure B.2: A biological neuron 

B.2    Second Order Optimization Learning Algorithms  

As mentioned previously, the standard backpropagation algorithm (gradient descent 

algorithm) and the modified standard backpropagation algorithm (gradient descent 

algorithm plus momentum algorithm) employ only the first order partial derivatives of 

the error function (gradient). Such first order learning algorithms have weakness in 

dealing with a large number of classification and function approximation problems 

[Master, 1995]. They usually required large number of iterations to optimally tune the 

synaptic weights thus it is not possible to adapt them for on-line application, such as 

adaptive control. As a result, recent development of backpropagation algorithm utilizes 

the high order optimization algorithms to speed up the learning speed [Battiti, 1992]. 

In terms of numerical analysis, not only the local gradient but also the second derivatives 

are usually applied to solve nonlinear problems. The first order optimization algorithm 

uses the linear terms that include the first order derivatives in the Taylor series expansion 

to approximate a function. On the contrary, the second order optimization algorithm 

applies up to the second order derivatives in the Taylor series thus a more precise 

function approximation can be obtained [Anderson and McNeill, 1992]. 
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Given a vector  in the weight space, a second order Taylor series approximation of the 

error function around this vector is expressed as [Fine, 1999]; 

0w
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TE w E w g w w H w= + ∆ + ∆ ∆                                                                                (B.1) 
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Applying equation B.1 yields 
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Where g is the gradient and H is the Hessian matrix. Thus the minimum of the function E 

are located where the gradient of E is Zero 

0E g H w
w
∂

= + ∆ =
∂

                                                                                                         (B.5) 

Thus the optimal value of w is given by 
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1
0 0w w w w H g−= + ∆ = −                                                                                        (B.6) 

Equation B.6 is known as the Newton’s method. As indicated in the above equation, the 

computation of the inversion of the Hessian matrix is the key issue for the second order 

optimization. However, the inversion of the H might not exist as H might not be positive 

definitive in some cases. Furthermore, the direct evaluation of the true H and its inversion 

is computationally too expensive if H is positive definitive. In general, second order 

optimization learning algorithm fall into two categories: 

• Direct second order learning algorithm 

Such algorithm involves the computation of the second order derivatives (Hessian H) or 

their alternatives directly; two of the most popular direct second order learning 

algorithms are given as follow. 

 Quasi-Newton algorithm 

Alternative algorithm, known as quasi-Newton methods is based on equation (B.6).But 

instead of calculating H directly, and then calculating its inversion they build up an 

approximation to the inversion of H over a number of steps. It first generates the iterative 

algorithm to the form 

( 1) ( ) ( ) (w k w k M k g k+ = − )                                                                                  (B.7) 

Thus the objective of the quasi-Newton methods is to iteratively compute matrices ( )M k  

such that  

1lim ( )
k

M k H −

→∞
=                                                                                                       (B.8) 

Two most commonly used update algorithm are the Davidson-Fletcher-Powell (DFP) and 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) procedures. Only the BFGS is given here 

since it is generally regarded as being superior [Fine, 1995] 
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,

 

A significant advantage of quasi-Newton methods is to accelerate the learning speed of 

MFNN about one order magnitude compared to the backpropagation algorithm [Battiti 

and Masulli, 1990]. However, its potential disadvantage is the storage requirement of M 

is quadratic in the number of weights of the network. For small networks this is not 

critical, however, for the networks with more than a few thousands weights it could lead 

to large memory requirements.   

 Levenberg-Marquardt Algorithm  

The Levenberg-Marquardt algorithm exploits the fact the error is a sum of squares, as 

indicated in Equation (5.25). Applying Equation B.3, The Jacobian matrices can be 

obtained 
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An expression for H is given as follow 
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Applying equation B.10 

2

1

( ) ,
M

T 2
p p

P

E w J J S S e e
=

∇ = + = ∇∑                                                        (B.12) 

Approaching the minimum of E, the elements of matrix S become small thus the H can 

be closely approximated by  

TH J J≈                                                                               (B.13) 

Applying equation B.3 and B.6 yields 

1( 1) ( ) [ ]T T
k k k kw k w k J J J e−+ = −                                                                            (B.14) 

The problem associated with iterative update using the above equation is the requirement 

of the inversion of matrix TH J J= which might be ill conditioned or singular. Thus a 

modification of equation B.13 is given 

TH J J Iµ≈ +                                                                                                          (B.15) 

Where µ is a small number and I is the identity matrix. As a result, the Levenberg-

Marquardt algorithm for synaptic weights updating is given 

1( 1) ( ) [ ]T
k k k k kw k w k J J I J eµ −+ = − + T                                         (B.16) 

Similar to quasi-Newton algorithm, the storage requirement is the main challenge of 

Levenberg-Marquardt algorithm [Ham and Kaotansic, 2001]. 

• Indirect second order learning algorithm 

Such algorithm doesn’t not require the direct calculation of the second order derivatives 

as it works in an iterative manner. The conjugate gradient algorithm is generally 

considered the most powerful all purpose minimization algorithms [Ham and Kaotansic, 
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2001].  The synaptic weights updating algorithm that is similar to gradient descent 

algorithm is given as 

( 1) ( ) ( ) (w k w k k w k)η+ = + ∆                                                         (B.17) 

As indicated in the above equation, the conjugate gradient learning algorithm includes 

two parameters, the time varying learning rate parameter ( )kη  and the increment weight 

vector . ( )w k∆

The time varying learning rate parameter ( )kη is updated through the following line 

search method 

{( ) min ( ( ) ( )) : 0k E w k w k
η

η η= + ∆ }η >                                                     (B.18) 

Instead of keeping the learning rate parameter η  fixed as gradient descent algorithm, 

conjugate gradient algorithm can seek the learning rate parameter ( )kη automatically at 

each step.  

According to Smagt [1994], the conjugate condition for ( )w k∆ is given 

( ( )) ( ) ( 1)Tw k H k w k∆ ∆ + 0=                                                                             (B.19) 

The Hessian ( )H k is calculated at the point w (k).Thus the ( )w k∆ is updated as [Smagt, 

1994] 

( ) ( ) ( 1) ( 1)w k g k k w kα∆ = − + − ∆ −                                                                (B.20) 

The expression for the time varying updating parameter ( 1k )α −  that satisfies the 

conjugate condition between ( )w k∆  and ( 1w k )∆ + is given as [Fine, 1995]; 

I. The Fletcher-Reeves formulation: 
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II. The Hestenes-Stiefel formulation: 
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III. The Polak-Ribiere formulation 

                ( ( 1)) [ ( 1) ( )]( )
( ( )) ( )

T

T

g k g k g kk
g k g k

α + + −
=                                                         (B.23) 

The best choice of ( )kα formulation is highly application dependent. Some investigations 

indicate that the Hestenes-Stiefel formulation and the Polak-Ribiere formulation can 

provide better performance in many cases [Bishop, 1995]. Comparing equation 5.55 and 

B.20, it is clear that increment weight vector ( )w k∆ updating equation introduce the 

momentum with a time varying updating parameter ( )kα that meets the conjugate 

condition. 

Equations 5.55, B.17, B.18 and B.20 indicate that the conjugate gradient learning 

algorithm is a special type of backpropagation algorithm. The second derivatives 

information is applied to update the time varying learning rate parameter ( )kη and time 

varying momentum updating parameter ( )kα . In fact, instead of using negative gradient 

direction information for updating ( )w k∆ , the conjugate gradient learning algorithm 

utilizes the information about the direction search about ( )w k∆  from the previous 

iteration to accelerate the convergence. Each direction is conjugate if the objective 

function is quadratic [Bishop, 1995].  

The problem of gradient descent algorithm plus momentum is how to determine the 

learning rate parameterη  and momentum constant α  since the optimal value of those 

parameters varies from one step to another. The conjugate gradient learning algorithm 
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provides an effective solution to this problem as the effective learning parameter ( )kη is 

determined automatically by line minimization and the momentum is determined by time 

varying momentum updating parameter ( )kα at each step [Moller, 1993]. 

Comparing to direct second order learning algorithms, the conjugate gradient algorithm 

requires relatively accurate line searches, while the quasi-Newton algorithm remains 

robust even if the line searches are performed to relatively low accuracy  [Johansson et 

al., 1990].Therefore, significant computational effort needs to be expended on each line 

search for conjugate gradient algorithm[Moller, 1993]. 

However, the conjugate gradient algorithm requires less storage space than either quasi-

Newton or Levenberg-Marquardt Algorithm. In fact, the conjugate gradient algorithm 

been widely applied and has been demonstrated as a powerful industrial tool [Sunkel, 

2002]. To gain more appreciation about the performance of first and second order 

learning algorithm in terms of the minimization, the Rosenbrock’s function is applied 

2 2 2
2 1 1100*( ) (1 )y x x x= − + −                                                                     (B.24) 

The Rosenbrock’s function has long been applied as a standard problem for evaluating 

nonlinear optimization algorithm, as shown in the Figure (B.3). The gradient descent 

algorithm, quasi-Newton algorithm, Levenberg-Marquardt algorithm and conjugate 

gradient algorithm are evaluated in term of their efficacy. The initial point of the 

approximation is set at (-1, 1) and the objective is to track the iteration step and 

computation time required for each algorithm until the global minimum point (1, 1) or the 

maximum iteration step is reached. The search path for each algorithm is shown in Figure 

(B.4) and the performance parameter is listed in Table B.1. 
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Figure B.3: Shape and contour plot of Rosenbrock’s function 
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Figure B.4: Search path of the minimum 

As shown in the Figure (B.4) and Table B.1, the gradient descent algorithm descended 

along the path very slowly and had not moved a quarter distances within the full 100 

iteration steps. All other algorithms followed the curved path to the minimum reasonable 
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well. Conjugate gradient algorithm required the smallest amount of iteration steps to 

reach the global minimum; however, it spent more time than quasi-Newton and 

Levenberg-Marquardt since it required accurate line search procedure.  

Table B.1: Performance summary 
 GD QN LM CG 
Iteration step >100 30 23 16 
Computer time (second) 1.828 0.188 0.113 0.781 

 
 

B.3     Linearized Recursive Estimation Learning Algorithms   
 

As mentioned previously, the structure of MFNNs can be considered as a nonlinear input-

output mapping, which is the heart of many problems in system identification problems, 

pattern recognition and nonlinear dynamic control. In fact, the weight learning problem 

can be regarded as the parameter identification problem of a nonlinear system with a 

known structure. For example, Douglas and Meng [1991] suggested a least square (LS) 

learning algorithm and Singhal and Wu [1989] proposed an extended Kalman filter (EKF) 

based learning algorithm. 

According to Douglas and Meng [1991], Linearized recursive least square learning 

(LRLSL) can simply represent an inexplicit input and output function relationship of a 

MFNN by following equation 

( ) ( , ( )), ,l my k f w x k x R y R and w R= = = n=                                                  (B.25) 

Where x and y are the input and the output of the MFNN, respectively and w is the 

synaptic weights. The purpose of the weight learning for a MFNN is to estimate the 

optimal synaptic weights thus the error between actual response y (k) and the desired 

response d (k) can be minimized to zero as k approaches infinity. Therefore, the synaptic 

weight learning process can be regarded as a parameter identification problem as the 

weights of a MFNN can be viewed as the parameters of a nonlinear input-output 

nonlinear problem. 
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The desired response can be modeled as 

( ) ( , ( )) ( )d k f w x k v k= +                                                                                      (B.26) 

Where v (k) is a zero mean stationary white noise disturbance. For a nonlinear mapping 

function f (w, x), the traditional recursive estimation techniques for linear system can not 

be applied to the problem. The idea is to linearize the function about the current estimate 

of the synaptic weight w (k) to obtain a first order approximated version of the f.    

( )

( , ( )) ( , ( )) ( ( )) ( ( ))
( , ( ))( )

T

w w k

f w x k f w x k G k w w k
f w x kG k

w =

≈ + −

∂
=

∂

                                                             (B.27) 

Where G is the Jacobian matrix dependent on the current estimate of the synaptic weight 

w (k). Define 

ˆ( ) ( ) ( ( ), ( )) ( ( )) ( ) (( )) ( ) ( )T Td k d k f w k x k G k w k G k w k v k= − + = +                                  (B.28) 

Then, , which is linear in the unknown parameter w vector and can be calculated at 

time k using the given weight vector estimate w(k). Consequently, a least square 

minimization to w using the new “observed” . The cost function is given as 

ˆ( )d k

ˆ( )d k

2

1

1 ˆ( ( )) ( ) ( ( ))
k

T
l

l

E w k d l G l w
k

α
=

⎡= −⎣∑ ⎤
⎦

                                                                                  (B.29) 

Where  lα  are appropriate weighting factors. Minimizing the above equation with respect 

to w yields 

1

1 1

ˆ( 1) ( )( ( )) ( ) (
k k

T
l l

l l
w k G l G l G l d lα α

−

= =
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∑ ∑ )

T

                                                                             (B.30) 

Defines a conditional covariance matrix as 

1

( ) ( ) (( )) ( 1) ( )( ( ))
k

T
l k

l

R k G l G l R k G k G kα α
=

= = − +∑                                (B.31) 
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Applying Equations B.28, B.30 and B.31 yields 

1( 1) ( )[ ( 1) ( ) ( )( ( )) ( ) ( ) ( )]T
k kw k R k R k w k G k G k w k G k v kα α−+ = − + +  

              1 ˆ( )[ ( 1) ( ) ( ) ( )]kR k R k w k G k d kα−= − +                                                                   (B.32)         

Applying Equations B.31 and B.32 yields 

1( 1) ( )[ ( ) ( ) ( ) ( ) ( )

( )( ( ) ( ( ), ( )) ( ) ( ))]

T
k

T
k

w k R k R k w k G k G k w k

G k d k f w k x k G k w k

α

α

−+ = −

+ − +
                               (B.33) 

Canceling terms yields 

1( 1) ( ) ( ) ( )( ( ) ( ( ), ( ))]kw k w k R k G k d k f w k x kα −+ = + −                                                     (B.34) 

Define  

( ) ( ) ( ( ), ( ))e k d k f w k x k= −                                                                                   (B.35) 

Thus, the linearized recursive least square learning algorithm is given [Douglas and 

Meng, 1991]; 

1( 1) ( ) ( ) ( ) (kw k w k R k G k e kα −+ = + )                                                        (B.36) 

( ) ( 1) ( )( ( ))T
kR k R k G k G kα= − +                                                                                    (B.37) 

Indeed, the Equation B.36 has a similar form to the weights updating mentioned above. 

The element if the product of G (k) e (k) do in fact correspondent to the update term of 

Equation 5.39 and 5.52. However, the difficulty is the computation of 1( )R k − .Since the 

number of weight is usually very large; this calculation introduces a significant amount of 

computation burden. 

However, the matrix inversion lemma can be applied to simplify the computation 

described above by reducing the order of the matrix involved in the inverse computation. 

An example of the matrix inversion lemma is given [Singhal and Wu, 1989]; 
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If A satisfies  

 
1 1 TA B C DC− −= +                                                                                       (B.38) 

1 ( )TA B BC D C BC C B− = − + 1 T−

≤

)

                                                                    (B.39) 

 

Defining the matrix  and the gain sequence , the 

following weights updating algorithm can be obtained [Singhal and Wu, 1989] 

1( ) ( )P k R k−= 1,0 1k
lα λ λ−= <

 

( 1) ( ) ( ) (w k w k K k e k+ = +                                                                                          (B.40) 

( ) ( 1) ( ) ( )K k P k G k A k= −                                                                                            (B.41) 
1( ) [ ( ( )) ( 1) ( )]TA k I G k P k G kλ −= + −                                                                           (B.42) 

1( ) [ ( 1) ( )( ( )) ( 1)]TP k P k K k G k P k
λ

= − − −                                                                  (B.43) 

 

Where A (k) is a (m*m) matrix and K (k) is an (n*m) matrix of the filter gain. Thus, the 

Equations B.40 to B.43 are called extended Kalman filter (EKF) based learning 

algorithm. Again, Equation B.40 is similar to the weight updating Equations mentioned 

with the error terms e (k) measured at the output layer of the network. The error is 

propagated to the weight through the filter gain K (k), which updates each weight through 

the gradient matrix G (k) and the conditional covariance matrix P (k).  

 

B.4      Performance Analysis of Conceptual Intelligent Navigator 

(LN200) 
 

Table B.2 illustrates the accuracy of different azimuth measurements obtained during the 

first and second field test. Figure (B.5a) and Figure (B.5b) depicts different azimuth 

measurements obtained during second part of the 1st and the 2nd field test, respectively. 

Table B.3, Figure (B.5c) and Figure (B.5d) illustrates the performance summary of VUA 

and AUA outputs.  
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Table B.2: RMSE of different azimuth measurements (LN200/DGPS) 

 V (deg) P (deg) INS (deg) CV(deg) CP(deg) 
1st 69.20 68.34 5.82 5.71 5.36 
2nd  46.66 41.96 7.56 6.60 6.40 
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Figure B.5: Performance of CP, VUA and AUA (LN200/DGPS) 

 

Table B.3: Performance summary of VUA and AUA (test trajectory, LN200/DGPS) 

 ER_VE_VUA ER_VN_VUA ER_Azimuth_AUA 
RMS 6.11 m/s 4.70 m/s 10.41 deg 
Max 15.45 m/s 22.37 m/s 61.23 deg 

 

B.5    Performance Analysis of Conceptual Intelligent Navigator 

(XBOW) 
 

E
rro

r (
de

g)

0 500 1000 1500 2000
-10

0

10

Time (second)

V
CV

P
CP

INS

0 200 400 600 800 1000 1200-20

0

20 VE

0 200 400 600 800 1000 1200-50

0

50

E
rro

r (
m

/s
)

VN

0 200 400 600 800 1000 1200-100

0

100

E
rro

r (
de

g)

Time (second)

Azimuth

0 200 400 600 800 1000 1200-50

0

50 East

0 200 400 600 800 1000 1200-50

0

50

V
el

oc
ity

 (m
/s

)

North

0 200 400 600 800 1000 12000

20

40 2D

0 200 400 600 800 1000 1200-200

0

200

A
zi

m
ut

h 
(d

eg
)

Time(second)

V/AUA
Ref

(a) (b)

(c) (d)

0 50 100 150 200 250 300 350 400 450
-200

0

200
Azimuth (2nd field test)

0 50 100 150 200 250 300 350 400 450
-200

0

200

E
rro

r (
de

g)

0 50 100 150 200 250 300 350 400 450
-10

0

10

Time (second)

V
CV

P
CP

INS

0 500 1000 1500 2000
-200

0

200
Azimuth (1st field test)

0 500 1000 1500 2000
-200

0

200

0 500 1000 1500 2000
-10

0

10

Time (second)

V
CV

P
CP

INS

rro
r (

de
g)

E

274 



Table B.4 illustrates the accuracy of different azimuth measurements obtained during the 

first and second field test. Figure (B.6a) and Figure (B.6b) illustrates different azimuth 

measurements obtained during the first part of the 1st and the second part of the 2nd field 

test, respectively. Table B.5, Figure (B.6c) and Figure (B.6d) illustrates the performance 

summary of VUA and AUA outputs.  

 

Table B.4: RMSE of different azimuth measurements (XBOW/DGPS) 

 V (deg) P (deg) INS (deg) CV(deg) CP(deg) 
1st 45.26 47.46 27.11 16.84 14.83 
2nd  51.22 44.21 13.64 10.65 10.22 
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Figure B.6: CP, VUA and AUA (XBOW/DGPS) 

 

Table B.5: Performance summary of VUA and AUA (test trajectory, XBOW/DGPS) 

 ER_VE_VUA ER_VN_VUA ER_Azimuth_AUA 
RMS 12.99 m/s 16.81 m/s 13.54 deg 
Max 44.90m/s 55.95 m/s 87.86 deg 
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APPENDIX C 
 
 
 

The accuracy level of an IMU can be categorized as high (strategic grade), medium 
(navigation grade) and low (tactical grade) in terms of the positional error, as indicated in 
Table C.1. 
 

Table C.1: The category of IMUs (After El-Sheimy, 2004) 
 Strategic grade  Navigation grade Tactical grade 
Positional error <30m/hr 1-4 km/hr 20-40 km/hr 
Accelerometer bias (µg)  1 50-100 100-1000 
Gyro drift rate (deg/hr) 0.0001 0.015 1-10 
Price Very expensive >50k USD 10k~30k USD 
Application Military platform;

Submarine, 
Intercontinental 
Ballistic missiles 

(ICBM) 

General navigation 
Application and 
High accuracy 

Mobile mapping 
system 

Short time 
Application, 

 

 
 
C.1    Specifications of Navigation Grade IMUs 
 
The specifications of those commercial navigation grade IMUs being applied in this 

research are illustrated in Figure (C.1) and Figure (C.2) respectively. 

 

 

N/A0.0025FPSNoise

0.0022 (               )N/ARandom Walk
N/AN/ANon-linearity 
0.0022 (deg/h)+/- 25(µg)Bias 
N/AN/ARange
Gyro (RLG)AccelerometerParameter

N/A0.0025FPSNoise

0.0022 (               )N/ARandom Walk
N/AN/ANon-linearity 
0.0022 (deg/h)+/- 25(µg)Bias 
N/AN/ARange
Gyro (RLG)AccelerometerParameter

1/ 2deg/ h

Technical Specification 

CIMU
•Honeywell International Inc. (www.honeywell.com)
•Size :[193x 169 x 134 mm]
•Weight (nominal weight is less than 8 kg)
•Cost : $ 90,000 USD~$ 100,000 USD
•Sampling rate: 200 Hz

1/ 2/ h

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure C.1:  The specifications of CIMU 
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N/A8 µgNoise

0.0018~0.05           
(               )

N/ARandom Walk
<0.1%<1%Non-linearity 
0.003~0.05 (deg/h)+/- 15~100(µg)Bias 
+/- 500(deg/s)+/- 10 (g)Range
Gyro (RLG)AccelerometerParameter

N/A8 µgNoise

0.0018~0.05           
(               )

N/ARandom Walk
<0.1%<1%Non-linearity 
0.003~0.05 (deg/h)+/- 15~100(µg)Bias 
+/- 500(deg/s)+/- 10 (g)Range
Gyro (RLG)AccelerometerParameter

1/ 2deg/ h

Technical Specification 

iNAV-RQH
•iMAR gmbH.(www.imar-navigation.de)
•Size :[350x 213 x 180 mm]
•Weight (nominal weight is less than 8.9 kg)
•Cost : $ 150,000 USD~$ 200,000 USD
•Sampling rate: 200 Hz

/ Hz

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure C.2:  The specifications of iNAV-RQH 

 
 
 

0.002 (               )5 (µg)Random Walk
1 arcsec5 arcsecMisalignment 
0.01 (deg/h)+/- 50(µg)Bias 
N/AN/ARange
Gyro (RLG)AccelerometerParameter

1/ 2deg/ h

Technical Specification 

LN 90-100
•Northup Grumman Inc. (www.nsd.es.northropgrumman.com)
•Sampling rate: 64 Hz

0.002 (               )5 (µg)Random Walk
1 arcsec5 arcsecMisalignment 
0.01 (deg/h)+/- 50(µg)Bias 
N/AN/ARange
Gyro (RLG)AccelerometerParameter

1/ 2deg/ h

Technical Specification 

LN 90-100
•Northup Grumman Inc. (www.nsd.es.northropgrumman.com)
•Sampling rate: 64 Hz

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C.3:  The specifications of LN 90-100 
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C.2    Specifications of Tactical Grade IMUs 
 
The specifications of those commercial tactical grade IMUs being applied in this research 

are illustrated in Figure (C.4) and Figure (C.5) respectively.  

 

 

0.15%0.5%Scale factor accuracy

0.15~0.3(             )N/ARandom Walk
N/A0.5% full scaleNon-linearity 

2 (deg/h)+/- 1(mg)Bias 
+/- 1000(deg/s)+/- 50 (g)Range
Gyro (RLG)AccelerometerParameter

0.15%0.5%Scale factor accuracy

0.15~0.3(             )N/ARandom Walk
N/A0.5% full scaleNon-linearity 

2 (deg/h)+/- 1(mg)Bias 
+/- 1000(deg/s)+/- 50 (g)Range
Gyro (RLG)AccelerometerParameter

1/ 2deg/ h

Technical Specification 

HG-1700
•Honeywell International Inc. (www.honeywell.com)
•Size :[94 (dia) * 74 (ht) mm ]
•Weight (nominal weight is less than 0.9kg)
•Cost : $ 20,000 USD~$ 40,000 USD
•Sampling rate: 100 Hz

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure C.4: The specifications of HG-1700 
 

 

N/A50 µgNoise

0.1%0.3%Scale factor accuracy

0.04~0.1(             )N/ARandom Walk
25 arcsec25 arcsecNon-linearity 

1 ~10 (deg/h)+/- 1(mg)Bias 
+/- 1000(deg/s)+/- 40 (g)Range
Gyro (FOGs)AccelerometerParameter

N/A50 µgNoise

0.1%0.3%Scale factor accuracy

0.04~0.1(             )N/ARandom Walk
25 arcsec25 arcsecNon-linearity 

1 ~10 (deg/h)+/- 1(mg)Bias 
+/- 1000(deg/s)+/- 40 (g)Range
Gyro (FOGs)AccelerometerParameter

1/ 2deg/ h

Technical Specification 

LN-200
•Northup Grumman Inc. (www.nsd.es.northropgrumman.com)
•Size :[89 (dia) * 85 (ht) mm ]
•Weight (nominal weight is less than 0.7 kg)
•Cost : $ 20,000 USD~$ 40,000 USD
•Sampling rate: 200 Hz

/ Hz

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure C.5: The specifications of LN-200 
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C.3    Specifications of MEMS IMUs 
 
The specifications of those three low cost IMUs being applied in this research are 

illustrated in Figure (C.6), Figure (C.7), and Figure (C.8), respectively. 

 
 

12.5mV/(deg/s)250mV/gScale factor 

40 Hz32 HzBandwidth
0.1% full scale0.2% full scaleNon-linearity 
0.05 0.225mgNoise

+2.5V    0.3V+2.5V    0.625VBias 
+/- 150(deg/s)+/- 5 (g)Range
GyroAccelerometerParameter

12.5mV/(deg/s)250mV/gScale factor 

40 Hz32 HzBandwidth
0.1% full scale0.2% full scaleNon-linearity 
0.05 0.225mgNoise

+2.5V    0.3V+2.5V    0.625VBias 
+/- 150(deg/s)+/- 5 (g)Range
GyroAccelerometerParameter

Technical Specification 

MEMS Sensor Triad (MST) 
•MMSS Research Group 
•Size (100x100x50 mm)
•Weight (nominal weight is less than 0.5kg)
•Cost : $ 300 USD
•Sampling rate: 100 Hz

± ±

/ Hz deg/ /s Hz

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure C.6: The specifications of MST  

 
 

 
 
 
 
 
 
 
 
 8.5 (mg

 
 
 
 
 

<1%<1%Scale factor accuracy

2(arcsec/sec)0.25 (mg)Data resolution
>25 Hz>75 HzBandwidth
<0.1 (                )<0.1 (                 )Random Walk
0.3% full scale1% full scaleNon-linearity 

<+/- 1.0 (deg/s)<+/- )Bias 
+/- 100(deg/s)+/- 2 (g)Range
GyroAccelerometerParameter

<1%<1%Scale factor accuracy

2(arcsec/sec)0.25 (mg)Data resolution
>25 Hz>75 HzBandwidth
<0.1 (                )<0.1 (                 )Random Walk
0.3% full scale1% full scaleNon-linearity 

<+/- 1.0 (deg/s)<+/- )Bias 
+/- 100(deg/s)+/- 2 (g)Range
GyroAccelerometerParameter

8.5 (mg

1/ 2/ /m s h 1/ 2deg/ h

IMU400CC-100
•Crossbow technology Inc.( www.xbow.com)
•Size (76.2x 95.3 x 81.3 mm), 
•Weight (nominal weight is less than 0.6 kg)
•Cost : $ 3,000 USD~$ 5,000 USD
•Sampling rate: >100 Hz

Technical Specification 

 
 

Figure C.7: The specifications of IMU400CC-100 
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0.2%0.2%Scale factor accuracy

2(arcsec/sec)1 (mg)Data resolution
>=30 Hz>= 30 HzBandwidth
<0.5 (                )<0.1 (                 )Random Walk
0.2% full scale0.5% full scaleNon-linearity 
< 1 (deg/s)N/ALong-Term bias stability

<0.01 (deg/s)+/- 2 (mg)Short-term bias stability
+/- 90(deg/s)+/- 20 (g)Range
GyroAccelerometerParameter

0.2%0.2%Scale factor accuracy

2(arcsec/sec)1 (mg)Data resolution
>=30 Hz>= 30 HzBandwidth
<0.5 (                )<0.1 (                 )Random Walk
0.2% full scale0.5% full scaleNon-linearity 
< 1 (deg/s)N/ALong-Term bias stability

<0.01 (deg/s)+/- 2 (mg)Short-term bias stability
+/- 90(deg/s)+/- 20 (g)Range
GyroAccelerometerParameter

1/ 2/ /m s h 1/ 2deg/ h

Technical Specification 

ISI IMU
•Inertial Science Inc. (www.inertialscience.com)
•Size (72x76x58 mm )
•Weight (nominal weight is less than 0.36kg
•Cost : $ 3,000 USD~$ 5,000 USD
•Sampling rate: 200 Hz

 
Figure C.8: The specifications of ISI IMU 
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