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Abstract

Over the past few years, the mobile mapping system (MMS) has become one of the most

dominant tools for performing urban road survey. Its captured point cloud has to meet

certain accuracies for geomatics applications such as national mapping and infrastructure

deformation monitoring and the accuracy strictly relies on a rigorous system calibration

scheme. The boresight estimation plays an important role in the overall point cloud

quality. Especially when objects are scanned with multiple drive lines and scanners,

poor boresight estimation will seriously degrade the accuracy of overlapping of point

clouds for the same object . Therefore rigorous, but also cost-effective, boresight calibra-

tion methodologies are always desired.

In this thesis, a rigorous boresight self-calibration approach using planar and catenary

features that naturally appear in road survey scenes is proposed for boresight calibration

of MMSs. Building façades and hanging power cables are two typical examples of the

planar and catenary features, respectively, and they can be found in most the modern city

roads. The planar and catenary features are both used separately and simultaneously

for estimation of the boresights, therefore, the calibration outcome in thesis are classified

into three types of calibration: plane-based calibration, catenary-based calibration and

mixed feature-based calibration.

A detailed analysis of the calibration is given in this thesis. The calibration results

are promising even though they are hindered by lack of some feature geometries. The

results also show that both the plane-based and catenary-based calibration have their

own shortcomings, but they can be improved with the mixed featured-based calibration.
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Chapter 1

Introduction

1.1 Overview of Feature-based Self-calibration for Mobile Mapping Sys-

tems

Rapid developments in terrestrial mobile mapping systems (MMSs) in recent years have

brought road survey into a new era. Multi-scanner MMSs are capable of collecting a huge

amount of directly georeferenced 3D data within a short time frame. The data capture

capacity varies from system to system, but an average MMS can collect up to 10000

data points per second with the platform moving as fast as 100 km/h. The quantity of

data acquired exceeds incomparably that captured with static terrestrial laser scanners

(TLS) or light detection and ranging (LiDAR) systems mounted on tripods. These de-

velopments have enhanced many geomatics applications such as urban 3D mapping (Shi

et al., 2008; Haala et al., 2008; Becker and Haala, 2009), urban planning (Leslar, 2009),

tunnel construction (Ishikawa et al., 2009; Lam, 2010), road and railway construction

(Wildi and Glaus, 2002; Morgan, 2009), topographic mapping (Alho et al., 2011), and

many others. MMSs also enable various geomatics applications, for example, mobile

geospatial technology used in automatic object recognition, real-time highway centerline

mapping, and thematic mapping (Grejner-Brzesinska et al., 2004). These applications

can be also extended from land to rivers/oceans to perform coastal survey (Böder et al.,

2011). More details regarding the application of MMSs will be discussed in the coming

sections.

An MMS is composed of multiple subsystems which have their own individual mea-
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surement errors. Additionally, the assembly of the whole system will incur errors from

positioning and orienting the sensors (boresight and lever-arm). Certainly, the presence

of these errors will degrade the final accuracy of the coordinates of the georeferenced tar-

get point. While the accuracy is system dependent, it is typically at the sub-decimetre

level for both horizontal and vertical directions after calibrations. According to Glennie

(2007b), the error sources of MMSs can be categorized into five major types: (1) IMU

attitude errors, (2) boresight errors, (3) laser scanner errors, (4) lever-arm offset errors,

and (5) GPS positioning errors. These five error sources will be discussed in detail in

Chapter 2. Practically, the boresight errors can critically degrade the quality of the point

clouds. The point cloud of the same object captured with multiple opposite drive lines

will not overlap each other correctly if there are errors found in the boresight. Cross-

sections of houses’ inclined roofs and grounds can be good indicators for inspecting the

boresight errors in airborne laser scanning (ALS) (Skaloud and Lichti, 2006).

MMSs can be made from various subsystems and assemblies with different calibration

methods. As a result, MMSs have a wide range of accuracies. Glennie (2007a) showed

the root mean square (RMS) error of the data captured with the TITAN system, com-

pared with the ground-truth, to be 4.1 cm and 2.8 cm in the horizontal and vertical

directions respectively. Barber et al. (2008) evaluated the accuracy of the StreetMapper

system and got an approximate 3 cm accuracy in the vertical direction and a relatively

lower accuracy (10 cm) in the horizontal direction. The LYNX V100 and V200 systems

from Optech Inc. in Canada claimed an absolute accuracy of 5 cm in their specification

(Optech, 2011). The Mobile Laser Scanning System developed by Wang and Jin (2010)

at Shandong University of Science and Technology in China showed the horizontal and

vertical accuracy of their system to be around 4 cm and 7 cm respectively. Vertical ac-

curacy is generally lower than horizontal accuracy as it is always predominantly limited
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by the GPS accuracy. This is also the reason why when the GPS error is excluded in the

error analysis of Glennie (2007b), the horizontal errors over the range is always less than

the vertical errors.

One of the recent prevalent trends in MMS research is to investigate different methodolo-

gies to calibrate the MMS in order to raise the overall measurement accuracy. Basically,

the calibration of individual sensors (static TLS) and the whole system (ALS and MMS)

can be categorized into two major types: point-based and feature-based (mainly planar-

based).

Although the design and fabrication of TLSs are advanced, they still contain system-

atic errors which can be tracked and modelled (Reshetyuk, 2010; Lichti, 2007, 2010). To

do so, a large a number of artificial control points are required. Moreover, since TLS

captures points discretely, the exact target point centre may not be captured as a data

point, therefore, the pin-point location of this control point needs to be calculated from

surrounding data points with multiple fitting steps (Lichti et al., 2007; Chow et al., 2010).

Apart from this, using discrete points for calibration may introduce errors dependent on

the sampling density and the beamwidth (Skaloud and Lichti, 2006). As a result, some

researchers started to investigate using various features, particularly planar features for

self-calibration of static TLS (Bae and Lichti, 2007; Lichti, 2010; Chow et al., 2011).

Using features for sensor calibration can be traced back to 1970’s. Brown (1971) first

proposed using linear features to calibrate cameras, which later became known as the

plumb-line calibration. Its basic idea is that a straight line in object space should appear

as a straight line in sensor space and any deviation from the straightness in sensor space is

attributed to lens distortion. Although the plumb-line method could not estimate the ex-
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terior orientation parameters (EOP) of cameras, it eliminates the need for control points

as well as the need for multiple images captured in different positions and orientations,

which makes in situ camera calibration more flexible. Linear feature-based calibrations

have also been adapted into self-calibration of cameras (Habib et al., 2002) to make

the calibration process simpler and more cost-effective. The potential problems of using

point-based calibrations in TLS systems, as well as the success of feature-based calibra-

tion with traditional photogrammetry, have encouraged the introduction of feature-based

calibration into static TLS and also ALS and MMS.

Recently, the feature-based calibration has become one of the dominant trends in the

area of calibration research. Feature-based calibration methods can be classified into two

main types based on the calibration adjustment principle:

1. Least squares estimation of calibration parameters with planar features used as

adjustment constraints (Filin, 2003; Skaloud and Lichti, 2006; Glennie and Lichti,

2010, 2011).

2. Iterative Closest Point (ICP) estimation of the parameters or parameter offsets

based on minimization of the discrepancy of points on features (planar or non-

planar) from overlapping strips (Rieger et al., 2010; Kumari et al., 2011).

Filin (2003) was one of the first who used planar features in LiDAR system calibration.

The boresight angles and the range finder offset of the airborne scanner are estimated by

least-squares adjustment based on some fixed plane parameters in different orientations.

It has shown that planes with the same orientation will result in high correlation existed

between the range finder offset and one of the boresight parameters and thus lower the

reliability of the calibration results.
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Skaloud and Lichti (2006) presented their new approach for calibrating ALS boresight

angles using natural planar surfaces appearing in the scene, for example, soccer fields,

flat and inclined roofs of buildings. Extending from the basic form of Airbore LiDAR

equations (Baltsavias, 1999), the LiDAR range measurement in the scanner space under-

went a series of rigid body transformations to the position in the mapping frame, then

the parameters (boresight and range finder offset) were adjusted along with the plane

parameters such that the points were lying on the best fit planes. This method presented

significant improvement in accuracy when data after the calibration was evaluated with

independent plane fitting. However, the range finder offset was shown to have high corre-

lation with the d parameter (the orthogonal distance between the plane and the origin),

and its estimated value was found to be unrealistic with this method.

Glennie and Lichti (2010, 2011) applied a similar planar feature-based concept to carry

out static calibration of a Velodyne HDL-64E S2 scanner, mounted on a MMS. The

Velodyne HDL-64E S2 is neither a hybrid nor panoramic type of scanner - it contains a

compact sensor pod that is built with an array of 64 2D line scanners. Each sensor has a

27◦ field of view(FOV) and the whole sensor can rotate 360◦. Since the structure is dif-

ferent from other scanners, the mathematical model and calibration parameters are also

different from other scanners, and the measurement does not include GPS/IMU position

and thus no boresight angles are considered. The use of planar features was once again

demonstrated to be able to improve the accuracy as the root mean square error (RMSE)

of the planar disclosure is evidently reduced.

Instead of adjusting the boresight angles directly like Skaloud and Lichti (2006), Kumari

et al. (2011) proposed another approach that estimates boresight discrepancies based on

the minimization of the relative position differences of points between overlapping strips
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captured by an airborne system using the ICP algorithm. They displayed encouraging

results that show errors are significantly reduced with almost no correlation between

the estimated parameters after applying this approach. Since the Gauss-Helmert least

squares is used to estimate the minimum differences between points, stochastic models

can be introduced and reliability of the parameter estimation is then examined by investi-

gating the correlation matrices. Similar to the boresight calibration using planar features

(Skaloud and Lichti, 2006), the LiDAR position equation for estimating the final coor-

dinates in the mapping frame is first formulated by calculating the differences between

points iteratively until the final overall differences converge to a specified threshold. As

the ICP method usually requires a high number of iterations and the volume of airborne

data is relatively large, the iterative computation can be very demanding in terms of

computation power. Therefore, specific computation algorithms must be considered with

regard to time and internal memory size.

Meanwhile, Rieger et al. (2010) from Reigl GmbH in Austria have developed a bore-

sight alignment method based on ICP with planar surface point clouds as the input.

The method has been successfully applied to boresight calibration of their self-developed

3D scanning MMS. This MMS utilizes a VZ-400 scanner, which is a 3D scanner that is

different from many alternative MMS that only have 2D scanners. The approach they

developed basically iteratively varies the boresight to minimize the root mean square

value of projected distances onto the normal vectors of point clouds of planes captured

by various scanning runs with different driving and scanning directions. In other words,

this method utilizes the fact that point clouds of the same planes captured with different

runs should overlap with minimal difference if the estimation of the boresight is accurate.

This approach mitigates the problem of using artificial control points and control fea-

tures since plane surfaces can commonly be found from the scene of MMSs. Furthermore,
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on-site calibration can be executed as long as a sufficient number of planar features exist

in the scene. Calibration can also be done with the end product, after data collection

has occurred.

LiDAR is always able to capture the 3D positions along with the reflected intensity.

Some researchers, e.g. Hefford et al. (2009), have attempted to incorporate this addi-

tional information into MMS calibration. They utilized ICP augmented with intensity

to estimate the GPS position discrepancy of overlapping strips of sensors from a multi-

sensor based MMS named TITAN and they showed that the integration of the intensity

into ICP has increased the accuracy. For ALS, Burman (2000) have estimated the orien-

tation errors based on the discrepancies between overlapping strips in terms of the height

and the reflected intensity.

1.2 Research Objective

As mentioned earlier, using features in calibration can reduce the time and cost for setting

up artificial control points, but it also can mitigate problems associated with the discrete

sampling nature of LiDAR. Apart from this, an MMS always comprises more than one

scanner to maximize the scanning coverage. Therefore, this research is dedicated to de-

velop a featured-based multi-scanner boresight calibration technique for MMSs. Building

on the work on the plane-based single-scanner boresight calibration of ALS by Skaloud

and Lichti (2006), this research attempts to incorporate the catenary features from hang-

ing power cables to the calibration, and also extend the estimation of boresight calibration

from a single scanner to multiple scanners (up to ten scanners). In other words, this re-

search aims at developing a multi-feature, multi-scanner boresight calibration technique

for MMSs. Since the plane and catenary features can all be commonly found along many
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highways, this technique is particularly suited for in-situ calibration.

The implementation of catenary-based calibration is motivated by the successful de-

velopment of a new robust 3D equation by the contribution of the author in Chan and

Lichti (2011) in the mid-way of this research.

The accuracies of the independent calibrations using planar features, catenary features

and both the features are compared in terms of RMS of fitting of test features. Also, the

reliabilities of the parameters estimation of the calibration are examined by the analysis

of the correlation matrices. The geometry of the features and the calibration precision

are also discussed.

1.3 New Contribution of this Work

This section summarizes the main contributions of this works as the following:

1. This work successfully calibrates the boresight of multi-scanners MMS (four scan-

ners) using planar features with the least-square approach, which to the author’s

knowledge, no previous work has been reported. The calibration results showed

that an average RMS of independent plane fittings in the vertical and horizontal

directions of approximately 2.5 cm and 3 cm respectively.

2. A new robust 3D mathematical model for catenary curve was developed during the

mid-stage of this research and detailed experimental results were reported in Chan

and Lichti (2011). The model was evaluated with fitting of point cloud of catenary

(hanging power cable) and therefore can be used in feature-based calibration or

road scene object segmentation.

3. The 3D catenary model mentioned above is used for integrating catenary features
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with the calibration of boresight as the planer features. The calibration results

showed that promising accuracy can be achieved, an average RMSz of approxi-

mately 10 cm of independent catenary fittings (the range of the catenaries is ap-

proximately 40 m on average). To the author’s knowledge, the work is the first

publication concerning the use of catenary features in calibration.

4. The final outcome of this research is to calibrate the boresight using both the planar

and the catenary features simultaneously. No previous calibration, either in MMS

or static TLS, has more than one type of geometric features involved.

1.4 Thesis Outline

This thesis is organized as follows. Chapter 2 gives a detailed overview of MMS and

its components. Updated details of some of the current dominant MMSs will be briefly

discussed along with their accuracy. Also, some application examples of the MMS will be

given. The major error sources of the various MMS will also be discussed in this chapter.

Chapter 3 presents the detailed position equation of the MMS and the position equation

of the TITAN system. The background of TITAN will also be discussed.

Chapter 4 gives the geometric models of the planar and cateanry features, and also

the functional models for the calibration. The Gauss-Helmert model implementation of

the functional models in efficient ways will be given.

In Chapter 5, the calibration data set will be first described and the data pre-processing

is addressed. Then, results of the planar-based, catenary-based and a mix of the planar

and catenary feature-based (mixed feature-based) calibration are analysed in terms of
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independent features fitting and correlation matrix. The performance of the stochastic

model is discussed. The geometry of the planes and the boresight accuracy are also dis-

cussed based on some simulated data.

Chapter 6 provides conclusions to the work and future recommendations. The important

outcome of the research is summarized. Some recommendations for the future develop-

ment of this research are briefly elucidated.
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Chapter 2

Introduction to the Mobile Mapping Systems (MMS) and its

Error Sources

2.1 Overview of the MMS

An MMS, is an integration of an imaging system and a near real-time direct-georeferencing

system. The MMS usually refers to such a system that is installed on top of a moving

platform that moves on terrestrial or aquatic surfaces. If its imaging system has the

TLS/LiDAR as the dominant sensor, it can also refered to as mobile laser scanning

(MLS). Sometimes, the MMS is also referred to as kinematic or dynamical laser scan-

ning. For the MMS built upon vehicles, the term vehicle-based laser scanning (VLS) is

used (Boulaassal and Grussenmeyer, 2011). For the LiDAR-based MMS that is developed

along with or mounted on an aircraft, it generally refers to ALS. Strictly speaking, ALSs

share the basic characteristics of MMSs and thus can be classified as MMSs. However,

the term MMS is generally referred to the mapping systems associated with the land-

based applications which exclude the ALS, in most literature (e.g. Grejner-Brzezinska

(2001); Petrie (2010); Vosselman and Mass (2010)). Mostafa and Schwarz (2001) de-

fined MMS as “the product of integrating the concepts of kinematic geodesy and digital

photogrammetry, to acquire, store, and process measurable quantities that sufficiently

describe spatial and/or physical characteristics of a part of the Earth’s surface”. More-

over, as described by the webpage of the Center for Mapping of the Ohio State University

(2011) which built one of the first generations of the MMS, the structure is “a moving

platform, upon which multiple sensor/measurement systems have been integrated, to

provide three-dimensional near-continuous positioning of both the platform and simulta-
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neously collected geo-spatial data”.

A more general definition of the MMS is that a system with an image metrological

system (imaging system) mounted on any moving platform (e.g. vans, trucks, rail cars,

vessels, boats and etc.) that performs measurements as the platform moves. The sys-

tem also consists of a position and attitude measuring device comprising an integrated

Global Positioning System (GPS) receiver and Inertial Measurement Unit (IMU), it is

also known as GPS/INS and sometimes refers to Position and Orientation System (POS).

The position of a measured target point is calculated from the information collected with

the GPS/IMU using the position equation (Equation 2.1) and the measurement of the

imaging system rotated to a common mapping frame. Thus each point measurement can

be direct-georeferenced in almost real-time while the data density point depends on the

overall sampling rate of the whole system. The first generation of the MMS is composed

of cameras and GPS/IMU systems (Grejner-Brzezinska, 2001; Schwarz and El-Sheimy,

2004; El-Sheimy, 2005). See the VISATTM system (El-Sheimy, 1996) as an example. As

the design of the terrestrial laser scanner (TLS) continuously improves and becomes less

costly, TLS has now become the main image metrological component of the MMS. Nev-

ertheless, in most cases, the cameras are still kept in the system mainly for visualization.

More about the MMS and its application can be found on Shan and Toth (2009) and

Vosselman and Mass (2010).

Figure 2.1 illustrates the basic principle of an MMS and the corresponding position-

ing equation is given as Equation 2.1. It can be seen that the measurements of the

GPS/IMU and the scanner are combined for estimating the position of the target . Such

a combination can be only done before both the GPS/IMU and scanner measurements

are transformed to a common frame, also known as the mapping frame. Equation 2.1 is
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a simplified version of the full positioning equation that is extended with several more

rotations and a translation. The full positioning equation will be discussed in Chapter

3. The boresights, or the boresight angles, (α, β and γ in Equation 2.1) are the Euler

angles of rotation between the sensor frame and system body frame. The boresight angle

are the main focuses in this research.

Pm
target(t) = Pm

IMU(t) +Rm
b (t)(abs +Rb

s(α, β, γ)P s
target(t)) (2.1)

where,

Pm
target(t) is the target coordinates in the mapping frame;

Pm
IMU(t) is the GPS/IMU centre coordinates in the mapping frame;

Rm
b (t) is the rotation matrix from body frame to mapping frame;

abs is the lever-arm between the scanner centre and GPS/IMU centre;

Rb
s(α, β, γ) is the rotation matrix from sensor frame to body frame;

α, β and γ are the boresight angles about y, x and z -axes of the sensor frame respectively;

P s
target(t) is the target coordinates in the scanner frame;

t is epoch.

2.1.1 Operation Mode of the MMS

2.1.1.1 Stop-and-go Mode

The MMS can be operated in two modes, one of them is the “stop-and-go”mode as

illustrated in Figure 2.2. In this method, scanning is performed when the platforms stops

at different locations. Note that the INS unit is not used in this mode, instead, only the

GPS records the scan location. The whole dataset comprises a series of point clouds

whose points are captured in a common local coordinate system. The registration of

point clouds after surveys is carried out with the control points having known coordinates.
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Figure 2.1: The simplified positioning equation of the MMS

This operating mode is similar to the situation of when a TLS mounted on a tripod is

repeatedly located to different scan spots to perform scans. Therefore, “stop-and-go”can

provide the accuracy similar to static TLS but with a more time efficient performance.

2.1.1.2 On-the-fly Mode

Another operation mode of MMS is the “on-the-fly”mode as illustrated in Figure 2.2.

Unlike the “stop-and-go”mode, in which each point cloud captured is in the same local

coordinate system, under “on-the-fly”mode is each point cloud has a distinct local coor-

dinate system. The position (3D coordinates in a global frame) and attitudes (roll, pitch

and yaw) of the platform vary point to point, therefore, points are captured at different
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Figure 2.2: Operation modes of the MMS

local coordinate systems at each epoch in respect to a global system (e.g. Earth-Centered,

Earth-Fixed (ECEF) system). All the points captured are eventually transformed into

a common local mapping system as the survey end-product. Most of the applications

of MMS are carried out under the “on-the-fly”mode due to its superior time and cost

efficiency for its almost instantaneous direct capture of huge amount of 3D coordinates,

similar to the ALS. For more about the two operation modes, please see Chapter 9 of

Vosselman and Mass (2010).

2.1.2 Difference between the MMS and ALS

The “on-the-fly”mode MMS is very similar to ALS in terms of the position modelling.

Figure 2.3 depicts an operating MMS and ALS. In general, ALS cannot survey the façades

of building while MMS is capable to do this and therefore, it becomes the major survey-

ing tool for 3D city models. Even though the basic model of MMSs is very similar to that

of ALSs (Baltsavias, 1999), there are some differences between them that are worthwhile

noting. Examples are listed as follows:
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Figure 2.3: Direct-geoferencing principle of MMS and ALS
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(1) Number of sensors: In the ALS, there is usually one laser scanner, while an MMS

usually has more than one scanner (2-4) because more scanners are needed to increase

the coverage of the scans.

(2) Difference in laser measurement and point density: The time-of-flight measurement

of the ALS is based on the pulse method. The idea is to estimate the distance between

the laser and the target based on the time taken for a pulse to bounce back. The strength

of the pulse decreases as the flying height increases while seriously attenuated returning

pulses cannot be detected. Therefore, multiple pulse measurements have been introduced

to increase the point density to allow operating ALS at higher altitudes. See Shan and

Toth (2009) for more about the background of ALS. On the other hand, the time-of-

flight measurement of MMS can be either based on pulse-based or the phase comparison

method, e.g. Zhu et al. (2011). Instead of emitting a series of pulses, a continuous wave-

form from the laser is radiated in the phase comparison method. This method estimates

the distance between the laser and the target by interpreting the phase of the laser wave-

form emitted which bounced back.

Typically, ALS is operated at altitude of 80 − 3500 metres; however, MMS is oper-

ated at a distance no larger than several hundred metres from the target. Due to the

difference in the range and also the laser time-of-flight measurement techniques, ALS

point density is only several points per square metre in general while MMS point density

can reach several thousands per square metre. For ALS being operated at altitude of

1000 − 3000 m, the vertical accuracy varies from 5 − 30 cm and the horizontal accuracy

is approximately 50 − 150 cm (Bang, 2010). On the contrary, the current MMS accuracy

is at the sub-decimetre level.
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(3) GPS signal availability: ALS is always operated at higher altitudes so that it is

always exposed to good satellite geometry. As a result, the GPS signal received by ALS

is relatively accurate and stable compared to MMS. MMS usually travels within urban

areas for surveying. Tall buildings, bridges and other infrastructure are all commonly-

found in urban areas and they potentially block GPS receivers from receiving signals.

This greatly lowers the GPS’s position accuracy and contributes to the overall system

accuracy. See more about GPS accuracy in the Section 2.2.4.

(4) Boresights: The boresight angles of the ALS are usually very small (less than 1◦)

while that of the MMS can be a relative large value (for e.g. 270◦). Therefore, small

angle approximations cannot be used.

(5) IMU requirement: The ALS always requires a higher grade and a more costly INS

that contain a higher grade IMU (navigation-grade IMU). Even through MMS’s IMU is

in a relatively lower grade (tactical-grade), it can be the most expensive component in

the whole system. See Section 2.2.3 for more about different IMU grades.

(6) Scanning geometry: The ALS is usually in nadir-looking while the MMS is able

to scan in other directions (e.g. two sides, upward and downward scanning in TITAN).

Besides, the MMS can only perform scanning in one direction on a lane of a two-way

traffic.

2.1.3 The Main Components of the MMS

There are three principal components of an MMS (Figure 2.4): (1) Imaging System: This

system is primarily comprised of TLSs for collecting spatial measurement, such as range
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and encoder angle, and also the light intensity reflected back from the target. Other

imaging sensors such as digital cameras (DC) or video cameras (VC)) are also often

embedded in the system for auxiliary purposes such as visualization while acting as sup-

plementary information for scene analysis; (2) Positioning and Navigating System: This

consists principally of an integrated GPS/IMU integration system which consistently de-

livers highly accurate positions in the global mapping system and attitudes (roll, pitch,

yaw) during the navigation of the system; (3) Operating System: This system is usually

a high-level computer with specific software packages for coordinating different compo-

nents. Its functionalities include, time synchronization, data communication, processing

and storage. Finally, other components such as an odometer, distance measurement in-

dicator (DMI), and thermometer are sometimes incorporated depending on the system’s

design to provide complementary measurements. Information from some manufacturers’

webpages and datasheets have been summarized in Table 2.1 to give an overview of the

components of the current popular commercial MMS around the world.

Figure 2.4: Three principal components of the MMS
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2.1.3.1 Imaging System

Currently, the TLS is the dominant imaging sensor for the MMS. Two-dimensional line

scanners, i.e. the scanners that deflect their laser beams in just one plane (e.g. Riegl

Q-120 has a scan angle of 80◦ in the x-z plane), are used in various systems. A 360◦

scanner is also available in some MMSs. Examples of 360◦ scanners include the Riegl

VQ 250 and the Optech ILRIS-3D. A hybrid TLS, the Faro Photon 80, is used by Vaaja

et al. (2011) in an MMS for river side surveying. A hybrid scanner has a horizontal

scanning angle of 360◦ and a vertical scanning angle spanning from a minimum value

that is below the horizontal scanning plane, and with a maximum values that can reach

the zenith direction (Lichti et al. (2011)). Moreover, the Velodyne HDL-64H S2 TLS

provides another alternative scanning mechanism. It consists of an array of 64 lasers and

can rotate 360◦ while scanning. Although the TLS is the presently the main surveying

component in the MMS, digital images of scenes are often desired and thus an advanced

digital camera or video camera system is highly demanded. Riegl VMX-250-CS6 is a

good example for this.

2.1.3.2 Positioning and Navigating System

The amalgamation of the GPS and INS compensates for the demerits of each system

to create more accurate and stable positioning and attitude (roll, pitch, yaw) tracking

device that has been widely used in navigation and mapping related applications. The

system is an essential component of most of the MMS. Such an integrated system is

always referred to GPS/INS or in some literatures about the MMS, as the GPS/IMU.

The GPS/INS and the GPS/IMU basically mean the same integrated device as the IMU

is the core functional component for INS. The INS essentially comprises a navigation

computer and the IMU. An the IMU usually contains three gyros and three accelerom-

eters to measure angular velocities and specific force (specific force = acceleration w.r.t.
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the inertial frame − gravitational acceleration) respectively. The IMU can deliver the

attitudes of a moving rigid body by measuring the angular velocities. The angular mea-

surement accuracy of a high-end IMU can be less than 0.03◦/hour (Leyssens, 2009).

The differential GPS (DGPS) is the principal positioning technique used for many survey-

related applications and the accuracy of DGPS can reach several millimetres (Dow et al.,

2009). The kinematic positioning accuracy of DGPS receivers used in MMS is approx-

imately 2 cm + 1 ppm of the baseline length (horizontal and vertical) with less than a

30 km kinematic baseline (Glennie, 2007b).

2.1.3.2.1 Integration of GPS and INS/IMU

The function of the GPS/INS integration in the MMS is to directly geo-referencing every

scanned point by providing the position and attitude of the system body. Instead of

integrating INS with the GPS, the INS’s main component - the IMU can also be inte-

grated with the GPS, and the IMU only provides the raw inertial data (the incremental

velocities and angular rates) instead of the navigation positions and velocities. In ALS,

the aircraft always has an INS installed for basic navigation purposes and thus the terms

GPS/INS are more often used in ALS, while the term GPS/IMU is used in MMS if only

IMU is installed for the navigation. Low-cost IMU/GPS integration techniques for MMS

are the subject of ongoing research (Angrisano et al., 2010; Sun, 2010) since the cost of

the IMU is the main limitation for its popularity. The GPS/IMU will be used through

this thesis.

The two most common GPS/IMU integration strategies are loosely-coupled and tightly-

coupled. For many applications, loosely-coupled integration strategy is mostly used,
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especially in both the ALS and the MMS. The principle is that the GPS output position,

and IMU incremental velocities and angular rates are combined in a separate Kalman

filter (Grewal et al., 2007). The errors sources of the GPS/IMU will be discussed in detail

in the coming sections as they contribute the total errors budget of the MMS measure-

ment.

The GPS and the INS/IMU have complementary error characteristics and thus their

integration possess the advantages from both of them. Much literature regarding the

GPS/INS integration and comparison of their advantages exists, see for example, Skaloud

(1999). Here a brief discussion is given: the GPS has high long-term accuracy but is de-

pendent on external factors and is also subject to loss of lock and cycle slips with a low

update rate. Also, its measurement is insensitive to the gravity. While the INS has only

high short-term accuracy but its measurement is autonomous with a high update rate,

though it is sensitive to the gravity.

The IMU errors degrade with time while the GPS errors do not. Therefore, the time

varying IMU errors are compensated by the GPS measurements through updating the

parameters by the filter state vector which is estimated by the predicted INS measure-

ment and the GPS measurement. The Kalman filtering also allows the integrated system

to track the drifting parameters of the accelerometers and gyros of the IMU based on the

statistical information from both the GPS and the IMU. The integrated system can still

maintain high inertial navigation accuracy even GPS signals are not available due to the

change of the surrounding (Farrell and Barth, 1999).
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2.1.3.3 Operating System

The operating system generally refers to a personal computer (PC) or a computer sys-

tem integrated with more than one PC installed with specific software packages that

coordinate each component with time synchronization signals generated by the pulse-

per-second (PPS) module of GPS. Furthermore, the operating system also manages the

post-processing and the storage of the data. Note that the collected point cloud should

be well organized for storage due to the extremely large data density (Hunter, 2009).

The typical data density of an MMS can be up to ten thousand points per square metre

and the point clouds captured per km can have a file size of over 1 GB.

2.1.4 Applications of the MMS

As mentioned in Chapter 1, there is a large number of different MMS applications which

cover a broad scope. Some examples are detailed in the following four sections:

2.1.4.1 Highway Corridor and Railway Surveys

The MMS is relatively much more cost-effective than traditional road survey approaches

and its usage also relieves the safety issues associated with road surveying crews. There

are many applications derived from mobile road surveys. For instance, road features

such as traffic signs can be segmented automatically (El-Halawany and Lichti, 2011) and

vegetation can be identified (Puttonen et al., 2011). Apart from these, automated road

rehabilitation (Heikkilä et al., 2004) and road snow cover profiling (Kaasalainen et al.,

2011) can be assisted by the MMS. Conventionally, railway track surveys can only be done

by technicians and crews. With the MMS, the track survey can be done automatically

(Wildi and Glaus, 2002). Another example of its usage is the Optech Lynx which was

used intensively in a railway survey project in the US (Morgan, 2009).
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2.1.4.2 Mining and Tunnels

In recent years, the MMS has been widely adopted in coal mining industries for various

purposes to reduce operation costs. For example, the MMS has been used to provide safer

and more efficient mine shaft monitoring, collect spatial data of shafts and tunnels to

facilitate the construction design, and estimate underground volumes. The MMS could

also be mounted on top of a shaft elevator (TITAN, 2011) or on a remote-controlled vehi-

cle. An excellent example of MMS application with remote-controlled vehicles, found in

Hunter (2009), is the 3D-R1 model. The 3D-R1 is a compact MMS, approximately man-

sized and equipped with the Riegl 3D scanner. Moreover, the GPS signal is transferred

from land surface to underground to support the system. For applications in tunnel

construction, see Ishikawa et al. (2009) and Lam (2010).

2.1.4.3 Coastal Mapping

The MMS can be mounted on any platform that moves on aquatic surfaces. This enables

a wide variety of applications related to coastal areas. One example is fluvial geomorpho-

logic mapping has been investigated with MMS by Alho et al. (2011). Another example

is from Böder et al. (2011), who mounted an MMS on a vessel and surveyed the riverside.

This could not be accomplished by vehicle-based MMS.

2.1.4.4 Other Applications

There are still many other applications: (1) Augmented reality (AR) applications. Harrap

and Daniel (2009) discussed mobile AR application with the TITAN. (2) Environmen-

tal monitoring applications, e.g. Kukko et al. (2010) use MMSs to monitor the fluvial

morphology and snow cover. (3) Applications for the oil industry. Pipeline mapping and

pigging with MMSs (El-Sheimy, 2003) became popular in the oil industries.
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2.2 Error Sources of the MMS

Although many similarities exist between ALS and MMS, the error sources of ALS are

not discussed in detail in this section. For more detail about ALS error sources, see

(Baltsavias, 1999; Morin, 2003; Habib et al., 2008). The most significant difference in

their error sources is the GPS positioning error. As mentioned in section 2.1.2, the GPS

error is much higher in the MMS than the ALS since the scenes surveyed with the MMS

will always contain dense architectures or vegetations which limits the GPS receiver’s

exposure to the GPS reference station(s) or GPS satellites. On the contrary, the ALS

usually flies over 80 − 3500 m and so it does not suffer from this problem.

Deriving from Equation 2.1, the position in the local-level frame (see Section 3.1.2 for

definition) is:


X(t)

Y (t)
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
l

target

=


X(t)

Y (t)
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+


lx

ly

lz


b
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)

(2.2)

Glennie (2007) modelled the error sources of MMS by differentiating Equation 2.2 with

respect to the 14 variables:
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
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where,

J =

[
δP ltarget(t)

δr

δP ltarget(t)

δp

δP ltarget(t)

δy

]
K =

[
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δβ

δP ltarget(t)
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]
M =

[
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δP ltarget(t)

δly

δP ltarget(t)
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]
N =

[
δP ltarget(t)

δρ

δP ltarget(t)

δθ

]

Based on the analysis of Glennie (2007b), the contributions of each of the four main error

sources to the overall accuracy varies with the range (GPS positioning error is not in-

cluded in the analysis for the great deal of uncertainty in its magnitude, e.g. atmospheric

situation, satellite signal availabilities and so on). The GPS error can be simply added

back to the estimated error budget as the GPS error is in a linear relation with the error

budget. The error adheres to the sensor and is the most dominant of the error sources in

the MMS as it contributes over 50% of the overall error budget regardless to the range.

In Glennie et al. (2006), the accuracy of an MMS (the TITAN system) is evaluated with a

dense network of ground control points. The RMS of a comparison in a vertical position,

and less than 1 km distance from the GPS reference station is approximately 6 cm (range
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= 10 − 15 m). The corresponding error budget estimated with the Glennie (2007b)’s

error model is about 4 − 5 cm. Therefore, when approximately 2 cm GPS error is added

to the previously mentioned error budget, an approximately 6 − 7 cm of total error is

obtained. This finding has been consistent with the results from the real data estimation

and confirmed.

Barber et al. (2008) evaluated the accuracy of an MMS (the StreetMapper system) with

two different scenes (a peri-urban residential area and a former industrial area). The

reason for selecting the above two scenes was for examining the MMS in situations where

one is to the benefit of the MMS while the other is not due to the latter one always

having tall buildings that hinder the reception of GPS signal. The evaluation results got

an estimation of RMS errors in elevation in about 0.03 m. Moreover, an approximate

positional (planimetric) accuracy of around 0.1 m was reported in the peri-urban area,

which was worse than the value predicted by the pre-analysis.

2.2.1 Boresight Errors

The boresight angles are fixed physically during the assembly of the system with certain

values that should be kept constant throughout the whole scanning process. Miscal-

culations before the scanning or poor stability of the boresights during the scanning

adversely affect the overall accuracy. The boresights cannot be measured by physical

means; therefore, they can only be calculated indirectly (estimated by calibration). Sev-

eral works about calibration of the boresights have already been addressed in Chapter 1.

Before the rigorous calibration of the boresights, their approximate values can be found

with indoor or rather small scale (short range, e.g. less than 5 m) least-squares based

calibration with some overlap strips containing a certain amount of control points and

tie points. Alternatively, boresight angles can be found by repeating manual adjustments
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empirically until the data of opposing passes visually align. Usually edges of buildings are

used during the manual adjustment process. This manual adjustment is rather a time

consuming process and demands skilled operators. Glennie (2007b) pointed out that

such a manual adjustment is always no better than the least squares approach in terms

of accuracy. A routine accuracy level of the boresight angles (α, β and γ) found with the

TITAN system by the least-squares approach is 0.001◦, 0.001◦ and 0.004◦ respectively

(Glennie, 2007b).

If the boresights are not accurately estimated by calibration, the point clouds of the

same object obtained by two runs in opposite directions will not overlap correctly with

each other. Also, the severity of misalignment of point clouds will increase with the range

as the vertical errors produced by angular errors are proportional to the range. Rieger

et al. (2010) has demonstrated the point clouds misalignment effect due to unmodelled

boresights. In the case of a multi-scanner MMS, the point clouds of the same object

from different scanners of the same run will also not overlap if the boresights are not

well estimated. As a result, it is always critical for MMS users to estimate boresights

accurately to guarantee good quality of the point clouds.

The research objective of this thesis is to present an alternative, rigorous boresight cal-

ibration methodology for a multi-scanner MMS, using multiple geometric features. The

methodology developed in this research is especially suited for in-situ calibration.

2.2.2 Lever-arm Errors

Similar to the boresights, the lever-arm error is one of the system assembly errors. The

lever-arm is basically the distance offset between the centres of two sensors and is possible

to be measured directly through tacheometric method. In fact, there are two lever-arms
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Figure 2.5: Lever-arms of the MMS

in an MMS. The first is the lever-arm between the GPS receiver and the IMU centre

(aGPSIMU in Figure 2.5) and it can be as large as several metres. This can be found inde-

pendently in laboratory using a combined method of tacheometry and photogrammetric

bundle adjustment (Vallet and Skaloud, 2004). Since this lever-arm is always determined

before the Kalman filtering process of GPS/IMU integration (i.e. the offset between the

GPS centre and IMU centre has already been compensated during the assembly of the

GPS/IMU system), this lever-arm is usually not considered in the positioning equation of

MMS for sake of simplicity even though the compensation may incur errors (Hong et al.,

2006) mostly in the case of the low-end IMU. Another lever-arm is the distance offset

between the centre of image sensor and centre of IMU (asb in Figure 2.5) and is the only

lever-arm usually being considered in the positioning equation of MMS. This lever-arm

error is generally in the centimetre level. There are basically two alternatives to find out

the lever-arm value. The first approach is using the least squares calibration. However,

this is not always efficient as the lever-arm has high correlation with other calibration

parameters. Consequently, the second method is utilized in most cases to determine the

lever-arm. The method is a semi-manual measurement method that combines the mea-
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surement from regular measuring tapes and values from the engineering drawings (e.g.

AutoCAD drawings) of the GPS/IMU and the imaging sensors. The errors of such a

method can be limited within 2 cm (Glennie, 2007b). The impact of the lever-arm error

is the existence of constant biases on target positions regardless to the range.

2.2.3 Attitude Errors

An IMU is composed of an inertial sensors assembly (ISA) which contains a common

mounting base for the triads of accelerometers and gyros, and the associated electronic

circuits that perform signal digitalization and temperature compensation. The drifting

errors from the sensors of the ISA, the sensors assembly errors and also the errors asso-

ciated with the digital signal processing will contribute the overall IMU errors. Based on

the discussion of Petrie (2010), an IMU can be classified as one of three types based on

the gyros implanted:

1. Ring Laser Gyro (RLG): it is most accurate but also the most costly, mainly for

high accuracy application.

2. Fiber Optic Gyro (FOG): it is the most commonly-used in MMS as the accuracy

is high with medium cost.

3. Micro Electro Mechanical System (MEMS) based Gyro: it is the least accurate but

also has the least cost. Thanks to its lower cost, it is now becoming more popular

in MMS for moderate accuracy applications.

IMUs can also be categorized into four grades (VectorNav, 2011). Among them, the

highest grade (navigation grade) IMU usually consists of the RLG. Some tactical-grade

IMU can also contain RLGs, such as the Honeywell HG1700. Tactical-grade (the sec-

ond highest grade) IMUs typically contain FOGs or MEMSs. A navigation grade IMU

can cost about $100k USD while the tactical-grade IMUs’ costs range from $5k − $30k
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USD. Applanix Inc. is one of the best known GPS/IMU system integrators, and the

accuracy of its IMU products, (e.g. tactical-grade 610 series) have a 0.005◦ accuracy

for roll/pitch, and 0.015◦ for heading respectively (Applanix, 2011). Another navigation

technology company, IGI GmbH, has its AEROcontrol series used by the StreetMapper.

The AEROcontrol-III has accuracies of 0.003◦ for roll/pitch and 0.007◦ for heading re-

spectively (IGI, 2011).

Apart from the errors associated with the ISA mentioned in the beginning of this sec-

tion, the errors of the accelerometers and the gyros caused by electronics sensitivity,

signal background noises, sensors assembly and etc can also be modelled with stochastic

models. More discussion can be found in Grewal et al. (2007).

2.2.4 Positioning Errors

The Global Navigation Satellite System (GNSS) receivers (predominantly, the GPS re-

ceivers) with the dual-frequency survey grade or the geodetic grade are used in mobile

mapping technology, and the GPS receivers are operated in differential mode, i.e. DGPS,

with base stations or global DGPS network services to achieve the sub-decimetre accu-

racy. Another GPS technology that utilizes the Carrier-Phase DGPS (CP-DGPS) in the

real-time is known as Real-Time Kinematic (RTK), and this is also adopted by MMSs.

The ProMark3 RTK from Ashtech Inc.is an example (Ashtech, 2011).

The DGPS and RTK accuracies degrade with the distances from the reference base-

line/station, and typically the sub-decimetre accuracy of the RTK can be achieved only

with limits on the order of 10 km. A large network of dependent reference stations can

be set up to simulate a reference station that is close to the receiver, for maintaining

centimetre-level accuracy within a wider area. This technique is known as Virtual Refer-
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ence Stations (VRS), and it keeps the centimetre-level accuracy with for wider area (up

to several 10 km) compared to traditional DGPS or RTK network. Many commercial

VRSs has been developed, e.g. Trimble (2011). For more information about the VRS, see

Vollath et al. (2000). The GPS errors are not explained in detail here but are classified

and listed as the following three groups (Samama, 2008):

1. Synchronization Errors: satellite and receiver synchronization errors

2. Propagation Errors: errors due to propagation in the ionosphere and the tropo-

sphere; multipath

3. Location Errors: satellite geometry

The current accuracy of relative kinematic DGPS/INS for TITAN can reach 2 cm + 1

ppm of the baseline length in both horizontal and vertical directions (Glennie, 2007b).

2.2.5 Scanner Component Errors

The modelling of the systematic errors of the TLS can be classified into two main groups

Lichti (2007). The first is referred to as the modelling with the basic additional parame-

ters groups inherited from total stations, as the TLS share several common properties in

their architecture. The other group is the empirical parameters which models errors as-

sociated with seemingly unapparent physical causes. Such modelling can be complicated

and involves many parameters. In MMS, the modelling of the TLS systematic error is

usually simplified due to the fact that the architecture of 2D scanners are simpler than

that of 3D scanners. Many imaging systems in MMSs are the 2D line TLSs which con-

tain one scanning angle rotation (encoder angle) and support the model’s simplification.

However, the model of scanner component varies for different TLS systems. For example

the error modelling of Velodyne HDL-64E S2 is totally different from that of the 2D Line
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scanner (Glennie and Lichti, 2010). In general, the rangefinder (ρ) and encoder angle (θ)

errors are modelled as the following:

ρreal(t) = ρobs(t) + ∆ρ (2.4)

θreal(t) = θobs(t) + ∆θ (2.5)

where,

∆ρ and ∆θ are constant biases.

The range error of modern TLSs varies from several millimetres to several centime-

tres, and it is dependent of the range. While the encoder error will usually stay from

sub-minutes to sub-degree level. Accuracies of some common TLS used in MMS are

summarized in Table 2.2.

Table 2.2: Common TLS used in MMSs and their range accuracy (range dependent)
MMS TLS Range Accuracy (mm)

TITAN Riegl MLS-Q120 25
StreetMapper Riegl VQ-180 15

Mitsubishi MMS Series SICK LMS 291 10
Riegl VMX-250 VZ-400 5

The encoder angle errors might include an additional scale factor term (sθ in Equation

2.6) if the mirror in the laser system is subject to positional shift due to the torsions

caused by its high accelerations during the oscillating scanning mechanisms (Katzen-

beisser, 2003).

∆θ = ∆θ0 + sθ θ(t) (2.6)

where, θ0 is the zero-offset constant bias.
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Another error source associated with ρ and θ is the divergence of the laser beam. The

divergence of the laser beam for a static TLS increase as the magnitude of ρobs, and

it can be modelled appropriately under the assumptions that the beam cross-section is

circular and has a definite radius and the probability governing the angular position of

the range measurement is uniform within the beamwidth (Lichti, Gordon, and Tipdecho,

Lichti et al.). For the MMS in on-the-fly mode, the divergence errors might be more

complicated as the effect of the kinematic scanning has to be considered in the models.

In conclusion, the GPS errors are dependent on multiple external factors (e.g. GPS

geometry, atmospheric condition and etc) and thus also location dependent, therefore,

both errors from the position and orientation measurement form the GPS/IMU are ex-

cluded in the calibration of this work. In addition, the lever-arms and the encoder angles

offsets are not usually solved by the least-squares due to the fact that high correlations

exists between them and the input measurements (GPS position and orientation measure-

ment) and thus they are excluded in the calibration of this work. The rangefinder offset

is also excluded as in Skaloud and Lichti (2006) showing that the rangefinder offset(∆ρ)

incurs problems of high correlation with the plane parameter and the estimated values

are not realistic when no control points are used in the calibration. As a result, only

calibration of the three boresight angles will be focused on this thesis. In next Chapter,

the full position equation of the MMS is presented and in Chapter 4, the mathematical

models that combined the full positioning equation of the MMS and also the geometric

features are given and implemented with the least-square algorithm.
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Chapter 3

The Positioning Equation of the MMS

In this Chapter, the full positioning equations for MMS and TITAN are introduced.

The background of TITAN and the orientation of each scanner of TITAN will be also

discussed.

3.1 Introduction to the Full Positioning Equation for the MMS

In Chapter 2, the simplified position equation of the MMS was briefly described. Be-

fore discussing the mathematical models for the calibration, the full position equation

of the MMS will be first thoroughly discussed in this section as it is the main compo-

nent of the calibration models. The position equation is the fundamental equation of

direct geo-referenced measurement and also the core mathematical model for MMS since

the presence of first generation of camera-based MMS. Its principle is derived from that

of ALS (Baltsavias, 1999), which is basically the vector sum of the transformations of

measurements from imaging sensors and also measurements from the GPS/INS into a

common mapping frame. The transformation is straightforward, however, it can be bro-

ken down into multiple transformations which are associated with independent sources

of measurement errors and they have been already been elicited in Chapter 2.

Figure 3.1 depicts the summation of vectors in the mapping frame for the full posi-

tion equation of MMS, which is given as the following:
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Figure 3.1: The full positioning equation of the MMS
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where,

Pm
target(t) is the position vector of the target in the mapping frame;

Pm
GPS(t) is the position vector of the GPS receiver in the mapping frame;

Pm
IMU(t) is the position vector of the IMU centre in the mapping frame;

aIMU
GPS is the lever-arm between the GPS receiver and the IMU centre;

Rm
b (t) is the rotation matrix from the body frame to the mapping frame;
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abs is the lever-arm between the IMU centre and the scanner centre;

Rb
s is the rotation matrix from the sensor frame to the body frame;

P s
target(t) is the position vector of the target in the sensor frame;

Rm
e is the rotation matrix from the ECEF frame to the mapping frame;

Re
l (t) is the rotation matrix from the local-level frame to the ECEF frame;

Rl
b(t) is the rotation matrix from the body frame to the local-level frame;

t is the epoch.

The expanded form of Equation 3.1 shows that the position of the target in the map-

ping frame is actually the sum of following three terms: (1) the measurement from the

scanner, rotated from the sensor frame to the mapping frame; (2) the lever-arm between

the sensor-frame and the body-frame (abs) rotated from the body-frame to the mapping

frame; and (3) the absolute position of the IMU centre calculated by offsetting the lever-

arm (aGPSIMU) between the GPS receiver and the IMU centre. Note that there is no scale

factor for any term of Equation 3.1 because the range measurement determine the scale.

3.1.1 Transformation from the Sensor Frame (s-frame) to the Body Frame (b-frame)

The transformation (Figure 3.2) from the sensor frame to the body frame involves a

rotation (Rb
s) and a translation (abs). The sensor frame or the scanner frame refers to

the right-handed 3D Cartesian space with the sensor’s centre (the position where laser

beams are emitted) as its origin. It is equivalent to the scanner space of static TLSs.

The scanners embedded in MMSs are usually 2D line scanners with their laser beams

deflecting only in one dimension to acquire 2D data. Since the 2D scanning is performed

on moving platforms along a particular direction, 3D scanning of objects can be achieved

and thus point clouds can be collected.The scanners usually involve two measurement

quantities: range (ρ) and encoder angle (θ). The measured position can be given as 3 x 1
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Figure 3.2: Transformation from the Sensor Frame (s-frame) to the Body Frame (b-frame)

column vectors with different combinations of ±ρ sinθ or ±ρ cosθ in either the x−z plane

or the y − z plane depending on different scanners or settings. The following equation

shows an example of the scanner column vector in the x− z plane (Figure 3.3):

P s
target(t) =


ρ(t) cosθ(t)

0

ρ(t) sinθ(t)

 (3.2)

The scanner vector is thereafter rotated into the body frame (Figure 3.2) by the rotation

Figure 3.3: The range and the encoder angle measurements of the 2D-Line scanner
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matrix Rb
s that is a function of the boresight angles (α, β and γ). The body frame refers

to a right-handed 3D Cartesian space with the IMU centre as its origin, and it is the 3D

space with respect to the MMS system body. Rb
s can be broken down into three basic

rotational matrices which rotate the scanner vector about the x, y and z axes of the

sensor space. The sequence of the the three rotations of Rb
s is not unique and an example

is given as the following:

Rb
s = R3(γ)R1(β)R2(α) (3.3)

The body frame for the MMS is commonly defined as in Figure 3.4, e.g. El-Sheimy

(1996) for matching the use of the ENU as the local-level frame. After the rotation, a

Figure 3.4: Commonly-defined body frame (b-frame) of the MMS

translation of the lever-arm offset (abs) is applied which will lead to the coincidence of the

origin of the transformed s-frame with the b-frame that involves the IMU measurement.

3.1.2 Transformation from the Body Frame (b-frame) to the Local-level Frame (l-frame)

The local-level frame generally refers to a local 3D Cartesian coordinate system, usu-

ally either the East-North-Up (ENU) or the North-East-Down (NED) coordinate system

(Figure 3.5). Both the ENU and NED are a local tangent plane (LTP) coordinate system

with an origin which is not unique. The x − y plane of an ENU system is a tangential
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surface of a point which is on or above the ellipsoid with its x, y and z axes pointing

towards east, north and along the ellipsoid normal (upward), respectively. On the con-

trary, the NED system has its x, y and z axes pointing towards north, east and along

the ellipsoid normal (downward) respectively. The ALS usually takes the NED as the

local-level frame as it scanning geometry is nadir-looking while MMSs will mostly take

the ENU. The IMU measures the attitude (roll, pitch and yaw) of the navigating plat-

Figure 3.5: The East-North-Up (ENU) or the North-East-Down (NED) coordinate sys-
tems

form, i.e. the Euler angles between the body frame and the local-level frame. In other

words, Rl
b(t) is a function of the roll, pitch and yaw, for rotation from the body frame to

the local-level frame. For rotating the body-frame to an ENU frame, R
l(ENU)
b (t) can be

defined as the following:

R
l(ENU)
b (t) = R3(y(t))R1(p(t))R2(r(t)) (3.4)

where, r(t), p(t) and y(t) are the roll, pitch and yaw, respectively.

The origin of the ENU system coincides with the origin of the body frame (the IMU

centre). The position and attitude vary as the platform moves and thus the ENU is
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Figure 3.6: The rotation from the body-frame (b-frame) to the local-level frame (l-frame)
- ENU

repeatedly defined with different origins during the movement of the platform (Figure

3.6). However, the x, y and z axes always point to east, north and upward respectively,

regardless of the positions of the origin.

3.1.3 Transformation from the Local-level Frame (l-frame) to the Earth-centred, Earth-

fixed Frame (e-frame)

The Earth-centred, Earth-fixed frame (ECEF) is also known as the Conventional Ter-

restrial System (CTS). The ECEF (Figure 3.7) is a right-handed Cartesian system with

its origin at the centre of mass of the Earth. Its x-axis points to the mean Greenwich

meridian (λ = 0◦) and its z-axis points to the Conventional International Origin (CIO)

which is an average location of the pole of the Earth’s rotation. Unlike the ENU or

the NED systems, the ECEF is a unique system regardless to locations as its origin is

always at the centre of mass of the earth. For more information about ECEF, see Xu
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(2007). Re
l (t) rotates the space vector from the local-level frames (l-frame) at different

Figure 3.7: The Earth-centred, Earth-fixed frame/coordinate system

epochs (t1,t2,t3...) to the ECEF-frame (e-frame) as shown in Figure 3.8 and basically

the rotation is a two-step rotation process. This is illustrated in Figures 3.9 and 3.10 for

ENU and NEU respectively. The latitude and longitude of the IMU centre at epoch (t)

determine the rotation angles of the two rotation matrices. The equation for the rotation

from the ENU to the ECEF frame is given as the following equation:

Re
l(ENU)(t) = R3

(
−π

2
− λ(t)

)
R1

(
−π

2
+ φ(t)

)
(3.5)

The equation for the rotation from the NED to the ECEF frame is given as follows:

Re
l(NED)(t) = R3 (−λ(t))R2

(π
2

+ φ(t)
)

(3.6)

3.1.4 Transformation from the Earth-centred, Earth-fixed Frame (e-frame) to the Map-

ping Frame (m-frame)

The measurements are eventually transformed from the e-frame into a mapping frame

(m-frame) as final survey products (Figure 3.11). The mapping frame can be a national
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Figure 3.8: The rotation from the different local-level frames (ENUs) at different epochs,
t1, t2, t3 to the Earth-centred, Earth-fixed frame (e-frame)
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Figure 3.9: The rotation from the ENU to the ECEF frame

Figure 3.10: The rotation from the NED to the ECEF frame
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Figure 3.11: The rotation from the Earth-centred, Earth-fixed frame (e-frame) to map-
ping frame (m-frame)

coordinate system such as Universal Transverse Mercator (UTM), ENU, NED or others.

To transform from the e-frame to either the ENU or the NED, the centroid of the captured

point clouds in terms of the latitude and longitude (φc, λc) is first computed as the origin.

The equation for rotation from ECEF to ENU is given as below:

Rl(ENU)
e =

[
Re
l(ENU)(φc, λc)

]T
(3.7)

= R1

(π
2
− φc

)
R3

(π
2

+ λc

)
(3.8)

The equation for rotation from ECEF to NED is given as below:

Rl(NED)
e =

[
Re
l(NED)(φc, λc)

]T
(3.9)

= R2

(
−π

2
− φc

)
R3 (λc) (3.10)

3.2 Background of the TITAN and its Full Positioning Equation

The MMS being investigated in this research is called TITAN (Figure 3.12), which is

the acronym of Tactical Infrastructure and Terrain Acquisition Navigator system. It was
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solely developed by the Terrapoint Inc. in 2007. The previous generation of the TITAN

was named SideSwipe and it was built by the same company in 2005 for road surveys

and mapping in Afghanistan. SideSwipe was basically a modified version of an airborne

laser scanning system from the same company with only one scanner and a tactical

grade IMU. The TITAN incorporated four 2D-line TLSs (Riegl LMS-Q120) and also an

upgraded tactical grade IMU (Honeywell HG1700) and thus has overcome the limitation

of the multiple-pass scanning required by the SideSwipe which contained one TLS, the

limited accuracy of the tactical-grade IMU and also the limited field of view (FOV) of

60◦ (Shan and Toth, 2009). The NovAtel OEM-4 GPS receiver is also integrated with the

system. Moreover, the TITAN is built with a transferable compact blackbox that can be

flexibly mounted on different moving platforms(e.g trucks, Figure 3.13), while SideSwipe

and even some other current popular MMSs cannot. Apart from this, up to four digital

cameras/video cameras are also equipped with the system. The TITAN can generate

point clouds with a density of 40 points/m2 when the MMS is moving at 80 km/hr.

The typical measurement range can reach 150 m. For the system assembly, two of the

Figure 3.12: The TITAN System

scanners are mounted on each side of the system blackbox (left and right sides), while

the other two are mounted at their back and the laser beams are set pointing upward

and downward (Figure 3.14). The sensor frames of each of the four scanners and also the

common body frame of the system are shown in Figure 3.15 (the effect of the negative
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Figure 3.13: The TITANs mounted on the hydraulic racks built on trucks

sign of ρ (Equation 3.11) is considered). This configuration can maximize the coverage

Figure 3.14: The TITAN system assembly

of the scan space to 360◦. In this thesis, scanners pointing to the left, right, down and

up sides are defined as Scanners 1, 2, 3 and 4, respectively. There are only small overlap

areas between Scanner 1, 3 and 4 and also between Scanner 2, 3 and 4. Figure 3.16 is

a plot of simulated TITAN scanning coverage of the four scanners. The scanning ranges

are from 4.8 m to 8.75 m, and the FOVs of all four scanners are set to 80◦ (the Riegl

LMS-Q120’s maximum value), and also the boresight angles and lever-arms are provided
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Figure 3.15: Scanner orientation

by Terrapoint. It can be seen that the overlap areas of the scanners are quite limited but

360◦ coverage is guaranteed. More discussion about the overlap of the scanning can be

found in Hefford et al. (2009).

Figure 3.16: Simulated TITAN scanning coverage
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The four scanners share the same positioning equation but with different boresight angles

and lever-arm values. Based on Equation 3.1, the position equation for TITAN is given

as the following:

For scanner sn,


XENU0

YENU0

ZENU0

 =


X(t)

Y (t)

Z(t)


m(ENU0)

= Rm(ENU0)
e
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(3.11)

where,

Ts =


0 0 −1

0 1 0

1 0 0

 is the a-priori known rotation matrix within the s-frame;

Rb
s = R3(γsn)R1(−βsn)R2(−αsn) is the rotation matrix from the s-frame to the b-frame,
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and αsn , βsn , γsn are the boresight angles about the y, x and z -axes respectively;

R
l(ENU)
b (t) = R3(y(t))R1(−p(t))R2(−r(t)) is the rotation matrix from the b-frame to

the l-frame, and r(t), p(t), y(t) are the roll, pitch and yaw about the y, x and z -axes

respectively;

Re
l(ENU)(t) = R3

(
−π

2
− λ(t)

)
R1

(
−π

2
+ φ(t)

)
is the rotation matrix from the l-frame to

the e-frame, and φ(t), λ(t) are the latitude and longitude of XI(t), YI(t), ZI(t);

R
m(ENU0)
e = R1

(
π
2
− φc

)
R3

(
π
2

+ λc
)

is the rotation matrix from the e-frame to the m-

frame, φ(t), λ(t) are the latitude and longitude of Xc, Yc, Zc ;

R1(Θ) =


1 0 0

0 cos(Θ) sin(Θ)

0 −sin(Θ) cos(Θ)

 is the 3D rotation matrix about the x-axis;

R2(Θ) =


cos(Θ) 0 −sin(Θ)

0 1 0

sin(Θ) 0 cos(Θ)

 is the 3D rotation matrix about the y-axis;

R3(Θ) =


cos(Θ) sin(Θ) 0

−sin(Θ) cos(Θ) 0

0 0 1

 is the 3D rotation matrix about the z-axis;

XI(t), YI(t), ZI(t) are GPS positions of the IMU centre of the GPS/IMU;

Xc, Yc, Zc are centroid of all the points of the data set;

lxsn , lysn , lzsn are the lever-arm between the scanner sn and the IMU centre;

ρ(t), θ(t) are the range and the encoder angle respectively;
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t is the epoch.

The TITAN position equation is basically very similar to the general one (Equation

3.1). The significant differences are that the rotation is in negative directions for α and

β, roll (r) and pitch (p), and the mounting matrix Ts exists. The role of the Ts matrix is

equal to a rotation about the y axis with 90◦ and it helps simplifying the system design.

Ts is not unique and is system dependent. Since the positioning equation involves the

translation by the lever-arm, the least-square adjust should be perform in Cartesian co-

ordinates system with a local origin, e.g. ENU. Thus the GPS position of the IMU centre

should be transformed to ENU by using the centroid of the whole data set as given in

the first term of Equation 3.11

Accordingly, the terms, XENU0 , YENU0 , ZENU0 from Equation 3.11 are substituted to

the geometric models of the features presented in the next Chapter to form the func-

tional models for the calibration adjustment.
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Chapter 4

The Calibration Models and the Least-Squares Implementation

4.1 Mathematical Model for Feature-based Self-Calibration

The previous works for the boresight calibration using planar features have been discussed

in detail in Chapter 1. The mathematical model for the feature-based self-calibration is

based on the principle that the 3D equation of each type of geometric feature is augmented

with the x, y and z terms of the full position equation (Equation 3.11). The boresight

angles and also the features’ parameters are then set to be unknowns. Meanwhile, the

GPS/IMU observed values, i.e. the position (XI(t), YI(t), ZI(t)) and the orientation

angles (r(t), p(t), y(t)), as well as the scanners’ observed quantities, range (ρ(t)) and

encoder angle (θ(t)) are set as observation terms for the Gauss-Herlmert (combined)

model least-square adjustment. Through the adjustment process, the boresight angles,

along with the features’ parameters are estimated in a way such that the minimization of

the variation function (the sum of weighted squares of residuals) are achieved. In other

words, a set of optimal boresight angles are estimated in such a way that the feature

models best fits the groups of points lying on the features. Two types of geometric

features are used in this work: planar and catenary features. They are used to calibrate

the boresights separately (plane-based calibration and catenary-based calibration) and

also simultaneously (mixed-feature based calibration). For the latter, the four sets of

boresights, along with the parameters of the planes and the catenries are estiamted such

that all the geometric models best fit the input data points.
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4.1.1 Mathematical Model for Plane-based Calibration

4.1.1.1 Background

Planar features are the most abundant geometric features that appear in most of the

survey sites. Buildings usually contain planar features as their façades and roofs, and

architectures other than buildings such as road and bridge surfaces are also bountiful

with planar features. The good availability of the planar features is one of the reasons

for static TLS self-calibration (Bae and Lichti, 2007; Glennie and Lichti, 2010; Chow

et al., 2011) and also boresight self-calibration works in ALS (Filin, 2003; Skaloud and

Lichti, 2006) and MMS (Rieger et al., 2010).

The 3D equation for a plane is defined by the unit normal vector
(
a b c

)
and d where a,

b, c are the direction cosines of the plane and d is the orthogonal distance of the plane

from the origin. For an arbitrary point (x1, y1, z1) lying on a plane, we have:

(
a b c

)
·


x− x1

y − y1

z − z1

 = 0 (4.1)

ax+ by + cz − (ax1 + by1 + cz1) = 0

Since
(
a b c

)
is the the unit normal vector,


x1

y1

z1

 = d


a

b

c

 (4.2)

then,

ax+ by + cz − (a da+ b db+ c dc) = 0



55

which yields,

ax+ by + cz − d(a2 + b2 + c2) = 0

and since the length of the unit vector is equal to one, we get:

ax+ by + cz − d = 0 (4.3)

where,

a2 + b2 + c2 = 1 (4.4)

4.1.1.2 Functional Model

Augmenting Equation 4.3 with the ENU position vector from Equation 3.11 in Chapter

3 and adding the subscripts p to the plane parameters to distinguish them from the

catenary parameters, we have:

f : fp(~x,~l) = apXENU0 + bpYENU0 + cpZENU0 − dp = 0 (4.5)

and along with the functional model, the plane constraint model is given as the following:

gp(~x) = a2p + b2p + c2p − 1 = 0 (4.6)

4.1.2 Mathematical Model for Catenary-based Calibration

4.1.2.1 Background

Apart from planar surfaces, hanging cables are also very commonly-found structures

that are mathematically well-defined geometric features in modern cities. If a hanging

cable is supported at each end and loaded only by its own weight, its 3D shape can be

classified as a catenary feature. In the realm of ALS and MMS, these features have been

investigated intensively in terms of their 3D point clouds, for examples, the detection

and segmentation of transmission lines with ALS point cloud by McLaughlin (2006), and
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the reconstruction of transmission lines with airborne LiDAR data by Jwa and Sohn

(2009). More examples are power-line scene classification (Kim and Sohn, 2011), the

estimation of the height of hanging cables for road safety purposes with the StreetMapper

system developed by Kremer and Hunter (2007), the assessment of LiDAR accuracy of

the Optech system using transmission wires (Ussyshkin and Smith, 2007) and power line

asset management (Ussyshkin et al., 2011).

4.1.2.2 3D Catenary Model

Among the current publications related to catenary point clouds, none of them use cate-

nary features for sensor or system calibration. In this section, a proposed methodology

for boresight calibration will be discussed based on an 3D equation of catenary that has

been recently proposed by the author in Chan and Lichti (2011). The rotation angle

about the z-axis and also the perpendicular distance between the catenary and the ori-

gin at the xy-plane, have been shown to always have high correlation with the catenary

shape parameters. Therefore, the 3D catenary was explicitly modelled with a new vari-

able, u, which is defined as the distance from the centroid of the xy-coordiantes of the

curve. It is known from regression that the centroid lies on the best-fit straight line for

the catenary. The proposed 3D equation of catenary is given as the following:

z = a+ c

(
cosh

(
u− b
c

)
− 1

)
(4.7)

where,

u = ±
√

(x− xm)2 + (y − ym)2 (4.8)

and

a is the translation parameter from the origin along the z axis;

b is the translation parameter from the origin along the projected u axis;

c is the scaling factor that is governed by the ratio between the tension at the cable’s

vertex and the weight of the cable per unit length;
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(xm, ym) are the centroid co-ordinates of the catenary in x− y plane.

The previous works on the catenary objects mainly adopted a two-step approach to

fit the point clouds first with the 2D line equation and then the 2D catenary equation.

For example, Ussyshkin and Smith (2007) first determine the azimuth of a power line by

first fitting a straight line to the x and y coordinates. Then, the transformed x and z

coordinates are used to solve the conventional 2D equation of the catenary curve. Jwa

and Sohn (2009) first estimate the orientation of the transmission lines using the 2D line

equation augmented in the polar coordinate system, followed by the reconstruction based

on the 2D catenary model. In both cases, the 3D modelling process was broken down

into two 2D processes. This is not sufficient for rigorous calibration since the geometric

contributions of x, y, and z are not considered simultaneously in one equation and there-

fore in one adjustment. Therefore, a 3D equation is essential to rigorous modelling and

this is the motivation behind the development of the 3D catenary model (Equation 4.7).

The equation is proved to be appropriate in terms of fitting accuracy and parameters

correlation with simulated and real catenary data captured by TITAN (Chan and Lichti,

2011).

The motivation of using catenary features is trivial: hanging cables can be easily found in

any modern highway and also catenary features provide unique and strong geometry that

presumably serves as controls for rigorous calibration. Also, the catenary features can be

used when planar features are not always available (e.g. in a rural area). Furthermore,

the catenary features can be used along with planar features in one adjustment process

when the number of planar features are not sufficient.
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4.1.2.3 Symmetry of the Catenary

As shown in Chan and Lichti (2011), fitting the point clouds of highly asymmetric cate-

naries with the 3D equation will result in extremely high parameter correlations between

the b and c parameters. It has been shown that the more asymmetric the catenary, the

higher the correlation between b and c. In order to evaluate the degree of the symmetry,

the term ∆Hn, the normalized height difference between the two ends of the catenary is

defined as the following:

∆Hn =
∆H

L
(4.9)

where,

∆H is the height difference between the two ends of the catenary;

L is the length of the catenary projected onto the horizontal plane.

It was found by simulation that the correlation coefficient between b and c is a func-

tion of both ∆Hn and L (Figure 4.1). For instance, if a 40 m long catenary has ∆Hn

= 0.05 m, the the correlation coefficient between b and cwill be around 0.95 that will

seriously lower the reliability of the adjustment.

4.1.2.4 Functional Model

Equation 4.7 takes the contributions of the x, y and z coordinates into account simulta-

neously to estimate the parameters by first transforming x and y coordinates into u along

the centroid of x− y based on the collinearity of the x and y coordinates of a catenary.

The b parameter of the 2D catenary equations is either the x or the y position of the

vertex of the catenary, thus it varies readily with the position of catenary, and a and

c will vary with b. With the proposed 3D equation, since the x and y coordinates are

reduced to the centroid, the parameters a, b and c vary according to the shapes of the
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Figure 4.1: Correlation between b and c vs the normalized height difference (between the
two ends) of the simulated catenaries (Chan and Lichti, 2011)

catenaries but not the position (while in the case of the 2D catenary, all the parameters

are dependent on the location of the catenary). Therefore, the catenaries with the same

shape but in different locations will have the same a, b, c. This can definitely save com-

putation power for estimating the initial value of a, b, c when the number of catenaries

is getting large.

Augmenting Equation 4.7 with the ENU position vector from Equation 3.11 in Chapter

3 and subscripts c are added to the catenary parameters to distinguish them from the

plane parameters, we have:

f : fc(~x,~l) = ac + cc

(
cosh

(
u− bc
cc

)
− 1

)
− ZENU0 = 0 (4.10)

where,

u = ±
√

(XENU0 − xm)2 + (YENU0 − ym)2 (4.11)
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4.2 Least-Squares Model Implementation

As detailed in Chapter 1, the self-calibration in this work primarily estimates the optimal

boresight angles of each scanner by expressing the observation and unknown terms with

the direct-georeferencing equation, and then conditioning groups of points lying on certain

geometric features (in this work, the planar and catenary features) within a least-square

adjustment. Since the observation and the unknown terms are inseparable in the position

equations, the combined adjustment model (Wells and Krakiwsky, 1971), also known as

the Gauss-Helmert model, is used. The Linearised model for the combined adjustment

model can be expressed as the following:

Aδ̂ +Bv̂ + w = 0 (4.12)

The variation function, ϕ of the combined adjustment model can be expressed as the

following:

ϕ = v̂TP v̂ + 2k̂T(Aδ̂ +Bv̂ + w) (4.13)

where,

A is the design matrix of the partial derivatives of the functional model respect to the

unknowns;

B is the design matrix of the partial derivatives of the functional model respect to the

observations;

P is the weight matrix of the observations;

δ̂ is the correction vector to the unknowns;

v̂ is the residual vector of observations;

k̂ is the Langrange multiplier vector for the condition;

w is the misclosure vector of the observation.
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4.2.1 Normal Equations with the Constraint

For the plane-based calibration, the adjustment will be subject to a constraint that the

sum of the squares of the direction cosines equalling one. Therefore, two extra terms for

the constraint model (constraint residual and the Lagrange multiplier term) are added

to Equation 4.13 as the following:

ϕ = v̂TP v̂ + v̂Tc Pcv̂c + 2k̂T(Aδ̂ +Bv̂ + w) + 2k̂Tc (Gδ̂c + wc − v̂c) (4.14)

where,

Pc is weight matrix of the constraint;

k̂c is the Langrange multiplier vector for the constraint;

G is the design matrix of the plane constraint;

δ̂c is the correction vector to the constraint unknowns;

vc is the residual vector of the plane constraint;

wc is the misclosure vector of the plane constraint;

The unknowns, ~x can be divided into two group: boresight angles and the plane pa-

rameters, and therefore ~x can be broken down into ~x1 and ~x2 for boresights and planes’

parameters respectively, Equation 4.13 becomes:

ϕ = v̂TP v̂ + v̂Tc Pcv̂c + 2k̂T(A1δ̂1 + A2δ̂2 +Bv̂ + w) + 2k̂Tc (Gδ̂2 + w − v̂c) (4.15)

where,

A1, δ̂1 are the design matrix and the correction vector of the boresights (~x1) respectively;

A2, δ̂2 are the design matrix and the correction vector of the plane parameters (~x2) re-

spectively.

In order to minimize ϕ, the partial derivatives of ϕ with respect to the six vectors:

v̂, v̂c, k̂, k̂c, δ̂1 and δ̂2 are all set to zero (null vector) and are listed as the following:
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∂ϕ

∂v̂
= 2v̂TP + 2k̂TB = 0 (4.16)

∂ϕ

∂v̂c
= 2v̂Tc P + 2k̂Tc = 0 (4.17)

∂ϕ

∂k̂
= 2δ̂T1 A

T
1 + 2δ̂T2 A

T
2 + 2v̂TB + 2wT = 0 (4.18)

∂ϕ

∂k̂c
= 2δ̂T2 G

T + 2wT
c + 2v̂Tc = 0 (4.19)

∂ϕ

∂δ̂1
= 2k̂TA1 = 0 (4.20)

∂ϕ

∂δ̂2
= 2k̂TA2 + 2k̂Tc G = 0 (4.21)

Then, the above six equations are divided by two and transposed to form the system of

the six equations: 

PTv̂ +BTk̂ = 0 (4.22)

AT
1 k̂ = 0 (4.23)

AT
2 k̂ +GTk̂c = 0 (4.24)

Pcv̂c − k̂c = 0 (4.25)

A1δ̂1 + A2δ̂2 +Bv̂ + w = 0 (4.26)

Gδ̂2 + wc − v̂c = 0 (4.27)

and then it is arranged in hyper-matrix form as the normal equations:
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

PT 0 BT 0 0 0
0 Pc 0 −I 0 0

B 0 0 0 A1 A2

0 −I 0 0 0 G
0 0 AT

1 0 0 0

0 0 AT
2 GT 0 0





v̂
v̂c

k̂

k̂c

δ̂1

δ̂2


+


0
0
w
wc

0
0

 =


0
0
0
0
0
0

 (4.28)

More than a half of the elements in the coefficient matrix are null matrices and so the

direct inversion of the matrix might not be practical. Also, only the estimation of δ1 and

δ2 are our primary interest. Therefore, the normal equations are necessarily partitioned

and simplified. Prior to this, we first investigate the following equation for solving x and

y with the normal equations augmented with arbitrary matrices D, E, F and vectors u,

v. [
E D
DT F

] [
x
y

]
+
[
u
v

]
=

[
0
0

]
(4.29)

If the Cayley inverse of E exists, then

x = −E−1(Dy + u) (4.30)

which is then substituted into

DTx+ Fy + v = 0 (4.31)

to yield

(F −DTE−1D)y + (v −DTF−1u) = 0 (4.32)

so that the coefficient matrix is simplified by eliminating x. As a result, Equation 4.28

can be simplified by eliminating vc and the simplified equation is given as the following:
Pc 0 I 0 0

0 −BP−1BT 0 A1 A2

−I 0 0 0 G
0 AT

1 0 0 0

0 AT
2 GT 0 0





v̂c

k̂

k̂c

δ̂1

δ̂2


+


0
w
wc

0
0

 =


0
0
0
0
0

 (4.33)
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Eliminations of v̂c and k̂ from Equation 4.33 yield Equation 4.34 and Equation 4.35

respectively: 
−BP−1BT 0 A1 A2

0 −P−1
c 0 G

AT
1 0 0 0

AT
2 GT 0 0



k̂

k̂c

δ̂1

δ̂2

+


w
wc

0
0

 =


0
0
0
0

 (4.34)

−P
−1
c 0 G

0 AT
1 (BP−1BT)−1A1 A

T
1 (BP−1BT)−1A2

GT AT
2 (BP−1BT)−1A1 A

T
2 (BP−1BT)−1A2



k̂c

δ̂1

δ̂2

+

 wc

AT
1 (BP−1BT)−1w

AT
2 (BP−1BT)−1w

 =

0
0
0


(4.35)

And finally, k̂c is eliminated from Equation 4.35 to give Equation 4.36, which is the

normal equation that solves only δ̂1 and δ̂2. One can notice that the contribution of

the constraint linearized model is added to the design matrix terms (A2) of the plane

parameters .

[
AT

1 (BP−1BT)−1A1 AT
1 (BP−1BT)−1A2

AT
2 (BP−1BT)−1A1 A

T
2 (BP−1BT)−1A2 +GTPcG

] δ̂1
δ̂2


+

[
AT

1 (BP−1BT)−1w

AT
2 (BP−1BT)−1w +GTPcwc

]
=

[
0
0

] (4.36)

or it can be written as

Nδ̂ + u = 0 (4.37)

for abbreviation.

If we let M = BP−1BT, Equation 4.36 becomes:

AT
1M

−1A1 AT
1M

−1A2

AT
2M

−1A1 AT
2M

−1A2 +GTPcG


δ̂1
δ̂2

+

 AT
1M

−1w

AT
1M

−1w +GTPcwc

 =

0

0

 (4.38)

Similarly, for the catenary-based calibration, if design matrix for the catenary parameters
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is defined as A3 for solving δ̂3, the normal matrix, N can be expressed as the following

equation:

N =

AT
1M

−1A1 AT
1M

−1A3

AT
3M

−1A1 AT
3M

−1A3

 (4.39)

When both the plane and catenary features are used in the calibration simultaneously,

the normal matrix, N can be expressed as the following equation:

N =


AT

1M
−1A1 AT

1M
−1A2 AT

1M
−1A3

AT
2M

−1A1 AT
2M

−1A2 +GTPcG AT
2M

−1A3

AT
3M

−1A1 AT
3M

−1A2 AT
3M

−1A3

 (4.40)

4.2.2 Residual Computation

After the unknowns are estimated, the residuals for observations (v̂) and constraints (v̂c)

can be computed with the original observation by back-substitution as the following:

From Equation 4.22, we have

v̂ = −P−1BTk̂ (4.41)

Substituting Equation 4.41 into Equation 4.26, we have:

k̂ = (BP−1BT)−1(A1δ̂1 + A2δ̂2 + w) (4.42)

Substituting Equation 4.42 back into Equation 4.41, finally we get:

v̂ = −P−1BT(BP−1BT)−1(A1δ̂1 + A2δ̂2 + w) (4.43)

From Equation 4.25, we have:

v̂c = P−1
c k̂c (4.44)

Substituting Equation 4.44 into Equation 4.27, we have:

k̂c = Pc(Gδ̂2 + wc) (4.45)
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Substituting Equation 4.45 back into Equation 4.44, finally we get:

v̂c = Gδ̂2 + wc (4.46)

Similarly, the residuals of observation for catenary-based and mixed feature-based are

computed by Equation 4.47 and 4.48 respectively:

v̂ = −P−1BT(BP−1BT)−1(A1δ̂1 + A3δ̂3 + w) (4.47)

v̂ = −P−1BT(BP−1BT)−1(A1δ̂1 + A2δ̂2 + A3δ̂3 + w) (4.48)

4.2.3 Stochastic Model

For the sake of simplification of the model formulation, and also due to the fact that

the information of the cross-correlation of the GPS/IMU is not available, all the eight

observational errors are essentially assumed to have zero-mean and be uncorrelated with

each other, as in Skaloud and Lichti (2006) and Kumari et al. (2011). Thus, the weight

matrix for the observations, P is a diagonal matrix and is given as the following:

P = C−1
l =



P1 0 · · · 0

0 P2 · · · 0

...
...

. . .
...

0 0 · · · Pn


(4.49)



67

where,

Pi =



1
σ2
XIi

0 0 0 0 0 0 0

0 1
σ2
YIi

0 0 0 0 0 0

0 0 1
σ2
ZIi

0 0 0 0 0

0 0 0 1
σ2
ri

0 0 0 0

0 0 0 0 1
σ2
pi

0 0 0

0 0 0 0 0 1
σ2
yi

0 0

0 0 0 0 0 0 1
σ2
ρi

0

0 0 0 0 0 0 0 1
σ2
θi



(4.50)

It is also assumed that the constraints for all planes, as well as the parameters of each

plane are equally weighted. Thus, the weight matrix, Pc of the constraint is given as:

Pc =
1

σ2
c

I (4.51)

where, σ2
c is the variance of the constraint, and its value should be set much smaller than

that of any of the eight observations such that

1

σ2
c

� Pi1,2,...,8 (4.52)

4.2.4 Design Matrices of Unknowns and Observations

In the calibration, there are three group of unknowns of our interest: (1) the boresight

parameters, ((α, β, γ)sn=1,2,3,4); (2) the plane parameters, (ap, bp, cp, dp)j=1...qp ; (3) the

catenary parameters, (ac, bc, cc)j=1...qc , where qp and qc denote the numbers of the planes

and catenaries respectively for the calibration. Note that for catenary-based calibration,

only the boresights of Scanner 1 and 2 are solved, therefore, sn = 1, 2.
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The design matrix A is split into two or three matrices as the following:

A =



[
A1 A2

]
for the plane-based calibration[

A1 A3

]
for the catenary-based calibration[

A1 A2 A3

]
for the mixed features-based calibration

(4.53)

The number of rows of A is equal to the number of the observed points, n.

For an observed point i, the ith row of A1, a1i is expressed as the following row vec-

tors depending on which scanner captured the point i:

a1i =



[
∂fp
∂α1

∂fp
∂β1

∂fp
∂γ1

0 0 0 0 0 0 0 0 0

]
i

if point i is captured by Scanner 1;[
0 0 0 ∂fp

∂α2

∂fp
∂β2

∂fp
∂γ2

0 0 0 0 0 0

]
i

if point i is captured by Scanner 2;[
0 0 0 0 0 0 ∂fp

∂α3

∂fp
∂β3

∂fp
∂γ3

0 0 0

]
i

if point i is captured by Scanner 3;[
0 0 0 0 0 0 0 0 0 ∂fp

∂α4

∂fp
∂β4

∂fp
∂γ4

]
i

if point i is captured by Scanner 4;

(4.54)

or for the catenary-based calibration,

a1i =


[
∂fc
∂α1

∂fc
∂β1

∂fc
∂γ1

0 0 0

]
i

if point i is captured by Scanner 1;[
0 0 0 ∂fc

∂α2

∂fc
∂β2

∂fc
∂γ2

]
i

if point i is captured by Scanner 2;

(4.55)

The number of columns of A1 depends the number of scanners involved in the calibration.

For an observed point i, the ith row of A2, a2i is expressed as the following row vectors

with the length equal to the number of the planes, qp x 4:

a2i =

[
0 0 0 0 .... ∂fp

∂apk

∂fp
∂bpk

∂fp
∂cpk

∂fp
∂dpk

.... 0 0 0 0

]
i

(4.56)
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for a point lying on the kth plane.

Similarly, for an observed point i, the ith row of A3, a3i is expressed as the following

row vectors with the length equal to the number of the catenaries, qc x 3:

a3i =

[
0 0 0 .... ∂fc

∂ack

∂fc
∂bck

∂fc
∂cck

.... 0 0 0

]
i

(4.57)

for a point lying on the kth catenary. Note that the centroid of the catenary in the x− y

plane, xm and ym are not solved in the adjustment but their values are updated as the

observation are for each iteration.

Let

bi =

[
∂f
∂XI

∂f
∂YI

∂f
∂ZI

∂f
∂r

∂f
∂p

∂f
∂y

∂f
∂ρ

∂f
∂θ

]
i

(4.58)

where,

f =


fp(~x,~l) if ith point belongs to a plane

fc(~x,~l) if ith point belongs to a catenary

(4.59)

The the ith of design matrix of the observations (B), b́i is given as the following:

b́i =

[
0 0 0 0 0 0 0 0 .... bi .... 0 0 0 0 0 0 0 0

]
i

(4.60)

Let

gi =

[
∂gp
∂apk

∂gp
∂bpk

∂gp
∂cpk

∂gp
∂dpk

]
i

(4.61)

Whenever the point i belongs to a plane, its contribution to the design matrix of the

constraint (G), i.e. the ith row of G, ǵi is computed as the following:

ǵi =

[
0 0 0 0 .... gi .... 0 0 0 0

]
i

(4.62)
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4.2.5 Efficient Computation of the Normal Matrix and the Residuals

4.2.5.1 Efficient Computation of the Normal Matrix - Summation of Normals

It is straightforward to use the summation of normals algorithm (Mikhail and Acker-

man, 1976) for implementing the least-squares when the number of observations are

getting considerably large. The algorithm utilizes the fact that the weight matrix is

block-diagonal, so that the whole normal matrix is block-diagonal, then the unnecessary

multiplication of zero terms can be eliminated and also design matrices with large di-

mensions can be avoided. Instead to form the full design matrices at one time, the design

matrices are broken down into row vectors and the products of vector multiplications are

then summed up to form the normal matrix.

For the plane-based calibration, for the total number of the observed point n, the nor-

mal equation matrix, N is calculated as the following with the constraint term added to

corresponding location of N :

N =
n∑
i=1

aT1i
aT2i

[m−1
ii

] [
a1i a2i

]
+

qp∑
j=1

1

σ2
c

gTj gj (4.63)

Similarly, for the catenary-based calibration, the contribution of each observation can be

added to N sequentially as the following:

N =
n∑
i=1

aT1i
aT3i

[m−1
ii

] [
a1i a3i

]
(4.64)

For the mixed features calibration using both the plane and catenary, the normal matrix

Nm is calculated as the following:

N =

np∑
i=1

aT1i
aT2i

[m−1
ii

] [
a1i a2i

]
+

n∑
i=np+1

aT1i
aT3i

[m−1
ii

] [
a1i a3i

]
+

qp∑
j=1

1

σ2
c

gTj gj (4.65)
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where, mii = biP
−1
i bTi and np is total number of points of the planes.

4.2.5.2 Efficient Computation of the Residuals

The residual vectors, v̂ and v̂c can be expressed as:

v̂ =

[
v̂1 v̂2 .... v̂m

]T
(4.66)

and

v̂c =

[
v̂c1 v̂c2 .... v̂cqp

]T
(4.67)

and thus can be computed point by point. For point i,

v̂i = −P−1
i bi(biP

−1
i bTi )−1(a1iδ̂1 + a2iδ̂2 + wi) (4.68)

and for points lying on the kth plane,

v̂ck = gkδ̂2k + wck (4.69)

The functional models and the least-squares implementation algorithm are already pre-

sented and ready for calibration. However, the data must be converted to an appropriate

coordinate system (the mapping frame, ENU in this work) and the features should be

segmented properly without blunders. The blunder detection is needed for both the

planes and the catenaries before using them for calibration. The degree of symmetry of

the catenaries must also be considered to avoid extremely high correction existing be-

tween the parameters for the adjustment. The details of these precautions and also the

calibration results are given in the next Chapter.



72

Chapter 5

Calibration Input and Results Analysis

5.1 Calibration Input Data Set

5.1.1 Calibration Data Set Description

The data set was captured with TITAN around the riverside of the St Lawrence River in

Montreal, Quebec, Canada at the end of 2008. The data comprised 17 drive lines. The

data mainly comprise the point cloud of an intersection of the bridge (Route Transcandi-

enne) and the Highway Route 132 of Quebec as shown in the Google MapsTM illustrated

in Figure 5.1 and the figure also shows the x− y plane of the captured point cloud. The

point cloud also comprises an ramp with a hotel that provides façades.

The data set was not intentionally captured for the purpose of calibration. It was origi-

nally captured for highway surveying purposes. Nevertheless, the methodology developed

in this thesis can be applied to any data and it is not necessary to collect specific data

for only calibration.

Two zones were selected from this for the calibration input set as they contain most

of the geometric features as illustrated in Figure 5.4: (1) The intersection between the

highway and the bridges (Figure 5.2); (2) The hotel adjacent to the ramp (Figure 5.3).

The four different colors (pale green, red, cyan and blue) indicate the point clouds cap-

tured by scanners 1, 2, 3 and 4 respectively. Scanner 1 and 2 captured the most points

while the Scanner 4 captured the least (Figure 5.5).
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Figure 5.1: The Google MapTM and point cloud of the captured highway scene in Mon-
treal
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Figure 5.2: Calibration zone 1: The intersection of the highway and the bridge

Figure 5.3: Calibration zone 2: The hotel adjacent to the ramp

5.1.2 Initial Approximate Values Estimation for Calibration

5.1.2.1 Initial Approximated Values Estimation of the Boresights

The initial approximate values of the boresights are the nominal values of the correspond-

ing boresights. The initial approximate values of boresights can also be obtained by the

least-squares approach or manual edge alignment approach that has been described in

Chapter 2 - Boresight Errors.

5.1.2.2 Initial Approximate Values Estimation of Features Parameters

5.1.2.2.1 Approximate Values Estimation of the Plane Parameters

The approximate values of the plane parameters (ap, bp, cp and dp) can be calculated

directly from the point clouds with the method of orthogonal regression. The method

minimizes the sum of the squares of the orthogonal distances to a plane by reducing the

least-squares problem to an eigenvalue problem. The detailed proof can be found on

Shakarji (1998) and the essential procedure of the method is summarized as follows:
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Figure 5.4: The Drive Lines

1. Calculate the centroid of the points lying on the plane

2. Calculate the covariance matrix C with all the x, y and z observation of the plane

3. Find the smallest eigenvalue of C and its corresponding normalized eigenvector.

The normalized eigenvector comprises the direction cosines ap, bp and cp

4. Calculate the orthogonal distance dp by the dot product of the centroid row vector

and the normalized eigenvector

5.1.2.2.2 Initial Approximate Values Estimation of the Catenary Parameters

The initial values of the catenary parameter can be found by first fitting the point cloud

with a 2D line and then followed by a 2D catenary fit with the catenary parameters ac,

bc and cc.
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Figure 5.5: The point clouds captured by Scanner 1, 2, 3 and 4 are depicted by pale
green, red, cyan and blue color respectively

5.1.3 Feature Extraction

Since the feature segmentation is out of the scope of this research, all the features were

extracted manually using the point cloud processing software Leica Cyclone 7.0.2. Cy-

clone can only load point clouds with four columns (X, Y , Z and intensity). Therefore,

once the features coordinates are extracted, the raw MMS measurements had to be traced

back from the database created with the whole data set by looking up the exact X, Y ,

and Z coordinates.

5.1.4 Blunder Detections of Calibration Input

To assure the calibration quality, any blunders of the calibration input have to be detected

and removed before the calibration, by computing the standardized residuals when fitting

the features’ point cloud with their geometric models. Let A, B be the design matrices for

the unknowns and observation of the feature fitting respectively; P is the weight matrix

of the feature fitting. Then, the standardized residual, r̂i is computed as the following:

r̂i =
v̂i√
σ2
iRii

(5.1)
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where, v̂i is the residual, σ2
i is the ith diagonal element of the P−1 and Rii is the ith diagonal

element of the reliability matrix, R computed by the following equation (Cothren, 2005):

R = P−1BTM−1(I − AN−1ATM−1)B (5.2)

where N = ATM−1A and M = BP−1BT.

5.2 Results of Plane-based Calibration

5.2.1 Calibration with 56 Planes

Fifty-six planes extracted from the intersection area (Calibration Zone 1 of Figure 5.4)

were used for performing the 4-scanner self-calibration and the results are shown in Ta-

ble 5.1. The 56 planes were captured with the system travelled in parallel drive lines on

the highway. The results are compared with the calibrated values given by Terrapoint,

based on its own dedicated plane-based calibration techniques using 350 planes. The

values were estimated from another independent dataset that was collected specifically

for calibration every two years. It can be seen that there are larger discrepancies between

the estimated values of the two calibrations for the Scanner 3 and 4. The residuals of

the eight observations are shown in Figure 5.6. All the residual distributions are centred

around zero. That implies that the model is appropriate and the overall adjustment esti-

mation is in good condition. Before analysing the parameter precisions and the geometry

of the scanners and planes, an important concept is first explained as follows. As the

2D-line scanner is moving with the whole system, all laser beams hitting a plane must

be parallel to each other. Figure 5.7 (Top) shows the x − y cross-section of a vertical

plane with an arbitrary orientation and Scanner 1 installed with γa; and 5.7 (Bottom)

shows the same vertical plane but with Scanner 1 installed with γb. It can be seen that

if only one plane’s orientation is given, the corresponding γ can be either γa or γb, or

some other values. That means only one plane is not sufficient to solve γ. If we presume
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Figure 5.6: The residuals of plane-based calibration adjustment using 56 planes

there are two planes with different orientations, then an optimal value of γ exists and can

be estimated. As the number of the vertical planes with different orientations increases,

the more precisely γ can be determined. It is noted that planes orientated differently

in the x − y can solve γ effectively (Figure 5.8). As a result, similarly, vertical planes

orientated differently in the x− z can solve α effectively (Figure 5.9). However, vertical

planes orientated differently in the y− z cannot solve β because the vertical planes being

rotated in the y − z (about the x-axis) are basically equivalent in terms of the direction

cosines. So using only vertical planes cannot solve β. This could explain that β is the

most poorly estimated because the input planes for Scanner 1 and 2 are mainly vertical

planes.

Another way to explain the lowest precision of β can be done by analysing Figure 5.10.
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Table 5.1: Calibration results with 56 input planes

DOF 53742
Scanner Boresight (◦) Terrapoint(◦) Estimated (◦) σ(◦)

angle value value

α 90.2388 90.1405 0.0104
1 β 0.0207 0.0623 0.0167

γ 8.7677 8.8078 0.0019
α 270.3228 270.4021 0.0129

2 β 0.0004 -0.5761 0.0196
γ -8.7277 -8.6701 0.0030
α 0.8464 0.9766 0.0551

3 β -69.8769 -69.7423 0.0143
γ -0.9728 -1.5316 0.3776
α 0.2947 -1.5255 0.1979

4 β 129.9668 130.1442 0.0104
γ 180.0676 178.7314 0.1435

σ̂o 0.92079

It shows the geometry of Scanner 1 and a captured vertical plane with an arbitrary ori-

entation. β is defined as the rotational angle about the x-axis of the scanner-frame. If

Scanner 1’s x-axis is orthogonal to the driving direction, any absolute vertical planes

will have unit normal vector in the form of
(
a b 0

)
where a and b are the direction

cosines for the x and y axis. Then, any deviation of β (δβ) will result in deviation of

the y − z plane, i.e. the y − z coordinates of the measurements. Since all the scanners

in TITAN are 2D-line scanners, there is no y coordinate measurement. Therefore, the y

measurement can be omitted. This means that δβ is directly associated with the devi-

ation in the z measurement. The δβ in Figure 5.10 leads to a shift of Point Cloud 1 to

Point Cloud 2 of the captured vertical plane. Only the z coordinates of the points are

shifted. The x and y coordinates, as well as the direction cosines of Point Cloud 1 and

Point Cloud 2 are equivalent. Thus, the δβ has no impact on the direction cosine of the

plane and vice versa. This concept can be further confirmed with fitting of a simulated
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Figure 5.7: Scanner 1 and a vertical plane with γa (Top) and γb (Bottom)

vertical plane with random noise in both x, y and z, it is found that the z-residuals

are always insignificant as the orientation of the vertical planes only depend on x and

y coordinates. To recapitulate, adjusting the direction cosines of vertical planes fails to

adjust β of Scanner 1, and also β of Scanner 2 as they have the similar geometry. In

reality, the x-axis of Scanner 1 is not absolutely orthogonal to the driving direction and

also vertical planes may not be absolutely orthogonal to the ground (the direction cosine,

cp will not equal zero, but a tiny number), thus the z-measurement of the vertical planes

can still contribute to the estimation of β, but insignificantly. Accordingly, the precision

of β is relatively the lowest. Most of the planes used for the calibration are vertical as

they are mainly building façades. They orientate differently in the x− y plane and thus
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Figure 5.8: The geometry of Scanner 1 and five vertical planes with different normal
vectors

the precision of γ is relatively the highest.

The β angle of both Scanner 3 and Scanner 4 have the highest precisions among the

three boresights, which is the opposite to that of Scanners 1 and 2. Again, this can be

accounted for by analyzing the geometry of the scanners and also the orientation of the

input planes. Table 5.2 shows that Scanner 3 has only the input planes with only one ori-

entation (i.e. the ground surfaces with their normal vector pointing upward as illustrated

in Figure 5.11), while Scanner 4 has captured planes with two kinds of orientation (the

bottoms of bridges with their normal vectors pointing upward and also large surfaces of

traffic signs with normal vectors parallel to the x − y plane). Based on the explanation

Table 5.2: The plane types of the 56 planes

Scanner Type of the 56 planes

1 Mainly vertical façades
2 Mainly vertical façades
3 Ground surfaces
4 Large Traffic Signs and Bridge bottoms

for β of Scanner 1, δβ of Scanner 3 is also associated with z-measurements. On the
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Figure 5.9: The geometry of Scanner 1 and five tilted/horizontal planes with different
normal vectors

contrary to vertical planes, z-measurements are significant for defining horizontal planes

while the x and y-measurements are not. Apart from this, the simultaneous estimation

of the four set of boresights leads to more rigorous estimation of the direction cosines of

horizontal planes as the two side edges of horizontal planes can be captured by Scanner

1 and 2 (overlapping point clouds of between Scanner 1 and 3, and also between Scanner

2 and 3). Therefore, β can be precisely estimated. Analogically, δα is associated with

both the x and z measurements and so the estimation of α can also be benefited from

the more rigorous estimation of direction cosine of the overlap. This applied to Scanner

4 as it has overlap regions with Scanner 1 and 2.

5.2.1.1 Accuracy Analysis

5.2.1.1.1 RMS of Test Plane Fitting

The RMSs in all the 3 dimensions of the fittings of 28 test planes extracted outside the
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Figure 5.10: The Scanner 1 and a vertical plane in an arbitrary orientation

calibration zones are plotted versus the plane numbers of the test planes in Figure 5.12.

It can be seen that the RMSs are reduced significantly after the calibration and also the

performance of the calibration are compatible to that of the Terrapoint calibration.

5.2.1.1.2 Profile Analysis

The boresight values before and after the calibration, and also the values from the Ter-

rapoint’s calibration were used to reconstruct a long horizontal profile with the length

approximately equals 340 m (Figure 5.13). It can be seen that the point cloud recon-

structed before calibration contains two apparent layers that after the calibration and

Terrapoint cases do not possess. Figure 5.14 and 5.15 compare the z-measurement of the

profiles explicitly. Figure 5.14 compares the z-measurement of the profile while Figure

5.15 compares the absolute value of the difference of the profile z-measurement between

the Terrapoint, and before and after calibration with the corresponding RMS in the z

direction. The effectiveness of such the long profile reconstruction mainly relies on the
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Figure 5.11: The geometry of Scanner 3 and a horizontal plane

accuracy of boresights of Scanner 3, and the discrepancy (RMSz = 0.019 m) between

the profile reconstructed by the calibrated boresights and Terrapoint boresights might

be due the fact that the reduced number of planes are used in the calibration (only 56

planes compared to the 350 planes used by Terrapoint). Figure 5.16 shows another hor-

izontal profile of a concrete bridge side from the data set with the length about 160 m

reconstructed with the boresight values before and after the calibration, and also from

the values from Terrapoint’s calibration. More explicit comparisons of the x−y positions

of the bridge side are illustrated in Figure 5.17. Both the calibration and Terrapoint’s

boresight define a proper bridge side profile. The distance between the origin and a point

of the profile in the x − y plane, u, is defined as u =
√
x2 + y2 for evaluating the posi-

tioning accuracy of the profile in the x− y plane. The differences in u between the point

cloud reconstructed by Terrapoint boresights and the boresights before the calibration,

as well as that between the Terrapoint boresights and the boresights after the calibration

are compared in Figure, 5.18 along with the corresponding RMS. It can be seen that the

RMSu is greatly reduced from 1.796 m to 0.02 m.
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Figure 5.12: RMS of the test plane fitting with the point cloud of before, Terrapoint and
after calibration

5.2.1.2 Parameter Correlation

Parameters correlation is an important indicator for assessing the reliability of an adjust-

ment. Figure 5.19 shows the correlation matrix with the absolute values taken. There are

no high correlation terms between the boresights and the plane parameters (the highest

correlation coefficient is 0.667), but do exist between the plane parameters themselves.

The high correlation is expected as the direction cosines (ap, bp and cp) are constrained

with the condition that the sum of squares of the direction cosines is equal to one.

5.2.2 Calibration Each Scanner Independently with the 56 Planes

In order to investigate the rigour of solving the four scanners in one adjustment process,

the 56 planes were then divided into four groups to calibrate each scanner independently

and the results are presented in Table 5.3. The estimated boresight values deviate sig-

nificantly from the multi-scanner simultaneous adjustment solved values. As already

explained, the geometry in the above section, the α is a function of x and z, and vertical
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Figure 5.13: Horizontal profile of highway surface reconstructed

planes’s z measurements do not contribute much on estimating α. The larger derivation

of the estimated Scanner 1’s α may be attributed to the relatively poorer variation in the

x direction (direction cosine ap) of Scanner 1’s plane group than Scanner 2’s plane group.

Also, as the overlap regions are not considered, the number of iterations of Scanner 1

and 3 is relatively larger (the 56 planes simultaneous calibration has 16 iterations). The

reason for the smallest number of iterations of Scanner 4 is due to the fact that Scanner 4

captured two type of orthogonal targets (vertical target signs and bridge bottoms), while

the other Scanners do not possess orthogonal targets. Furthermore, the overall precision

of all the boresight estimation are lower as the overlapping of the point clouds are not

considered in the adjustment.

5.2.2.1 Accuracy Analysis

The average RMSs (Figure 5.2.2.1) of fittings of the 28 test planes after the simultaneous

calibration are higher than that of the calibration solving the 4 sets of boresight with

56 planes. This demonstrates that considering the overlapped point clouds captured by
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Figure 5.14: The z-measurement of the horizontal profile reconstructed

Table 5.3: Calibration results for solving the four sets of boresight independently

Scanner 1 Scanner 2 Scanner 3 Scanner 4

No. of
planes 16 21 20 12
No. of
iter. 25 12 20 7
DOF 10945 9255 7847 10809

Boresight Est. Est. Est. Est. Est. Est. Est. Est.
values(◦) σ(◦) values(◦) σ(◦) values(◦) σ(◦) values(◦) σ(◦)

α 87.334 0.092 270.890 0.160 1.017 0.044 0.078 0.180
β -2.489 0.147 -0.704 0.073 -69.786 0.232 130.295 0.013
γ 9.049 0.018 -8.897 0.019 -1.784 0.308 179.819 0.128

different scanners to calibrate all the four scanners in one adjustment process is much

more rigorous than calibrating each scanner independently. From the plot of the RMSz

in Figure 5.2.2.1, it can be seen that the individual estimated values of Scanner 3 actu-

ally fail to reconstruct horizontal surfaces with reasonable heights, and the performance

even worse than that of the nominal values before the calibration. Without accounting

the overlap point clouds from Scanner 1 and 2 in the adjustment, only homogeneous

horizontal ground surfaces indeed fail to estimate realistic values for the boresight of
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Figure 5.15: The difference in z of the horizontal profile

the Scanner 3. This is confirmed by Filin (2003) and Skaloud and Lichti (2006) that

several planes with different orientations are needed for calibrating the boresight of a

single scanner ALS. Scanner 4 has a similar scanning geometry with Scanner 3, however,

the performance individual estimated values of Scanner 4 are compatible with that of

the simultaneous calibration since the its input planes have more than one, and also

orthogonal geometry (vertical traffic signs and horizontal bridge bottoms).

5.2.3 Examination of the Plane-based Calibration Using Groups of Planes in Parallel

and Orthogonal Drive Lines

Since the drive lines on the bridge (Figure 5.4) do not possess plane surfaces captured

with Scanner 1 and 2, the façades of the hotel outside the intersection are used to examine

the impact of using the planar features captured with the system travels in orthogonal

drive lines on the calibration. Nine plane surfaces are divided into three groups and used

to perform nine independent calibration to Scanner 1. The details of the nine planes are

summarized in Table 5.4. The calibration results of the nine calibrations are shown in
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Figure 5.16: Horizontal profile of bridge side reconstructed

Table 5.4: The groups of planes used to examine the impact of using planar features
captured by the system travelling in orthogonal drive lines

Plane(p) drive line location
Group 1 1,2,3 the highway
Group 2 4,5,6 the highway
Group 3 7,8,9 the ramp adjacent to the hotel

Table 5.5. It can be seen that by adding Group 2 (p4, p5 and p6) to calibration using

Group 1 (p1, p2 and p3) does enhance the estimation since all the planes are captured

with parallel drive lines. However, adding Group 3 (p7, p8 and p9) is more beneficial to

the calibration, especially to the estimation of β, as it can be seen that the estimated

values are more compatible with the results of the 56 planes calibration and also the

overall precision is improved. Therefore, orthogonal drive line data are important to

calibrate the Scanner 1 as well as Scanner 2. This motivates the next experiment of

reducing the number of parallel drive line planes but adding orthogonal drive line planes

from the hotel (from 56 planes to 24 planes).
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Figure 5.17: The x− y plane of the bridge side reconstructed

Table 5.5: The results of the plane-based calibration using groups of planes in parallel
and orthogonal drive lines

Group 1 Group 1 and 2 (‖ drive lines)
est. value (◦) σ (◦) est. value (◦) σ (◦)

α 94.7588 0.2020 94.7255 0.2021
β 5.2021 0.7553 5.1104 0.7502
γ 8.0182 0.1309 7.97792 0.1292

Group 1 and 3 (⊥ drive lines)
α 93.6665 0.2398
β -0.9065 0.2624
γ 8.6690 0.0214

5.2.4 Examination of the Plane-based Calibration Using 24 planes

The 56 planes used in calibration for the last section are not captured by the system

travelled in orthogonal drive lines for Scanner 1 and 2. The calibration results (Table

5.6) presented in this section is based on 24 (12 planes were captured with the system

travelled in parallel drive lines while the other 12 planes were captured with the system

travelled in orthogonal drive lines). Reducing the input planes from 56 to 24 should

result in much less rigorous calibration as the redundancy is reduced more than a half.

However, the results shows that the estimation of Scanner 1 and 2 are approximately
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the same and this suggests that the robustness of the estimation of Scanner 1 and 2’s

boresights by the data captured by orthogonal drive lines. The estimation of Scanner 1

and 2 can even have higher overall precisions. However, there are apparent discrepancies

for the estimated boresights of Scanner 3 and 4, this is presumably due to the reduced

overlap regions between Scanner 1, 2 and 3, as well as between Scanner 1, 2 and 4 as the

number of the overall input planes is reduced.

5.2.4.1 Accuracy Analysis

The RMSs of fittings of the 28 test planes reconstructed by the boresight estimated using

the 24 planes are compared with that of using the 56 planes in Figure 5.21. It can be seen

that the RMSs are effectively the same. The same analysis as given in Figure 5.15 and

5.18 are repeated with the boresight solved using the 24 planes, the results are compared

with the boresight of the 56 planes and are shown in Figure 5.22 and 5.23. The RMSz is

further reduced from 0.019 m to 0.014 m. There is only an increment of 6 mm in RMSu

and therefore the performance of the two calibrations are effectively the same.
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Figure 5.19: Correlation Matrix of plane-based calibration adjustment using 56 planes.
The yellow highlights the boresight parameters, the red highlights the plane parameters
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Figure 5.20: RMS of the test plane fitting with the point cloud of before, after calibration
with 56 planes and calibration with 56 planes independently

Table 5.6: Results comparison of the plane-based calibration using 56 and 24 planes

Estimated Values
Scanner Boresight 56 planes(◦) σ56p (◦) 24 planes(◦) σ24p (◦)

α 90.1405 0.0104 90.1684 0.0085
1 β 0.0623 0.0167 -0.0063 0.0187

γ 8.8078 0.0019 8.7536 0.0039
α 270.4021 0.0129 270.3651 0.0099

2 β -0.5761 0.0196 -0.5427 0.0159
γ -8.6701 0.0030 -8.6573 0.0028
α 0.9766 0.0551 1.1814 0.0521

3 β -69.7423 0.0143 -69.7784 0.0129
γ -1.5316 0.3776 -1.9462 0.3462
α -1.5255 0.1979 -0.9392 0.1595

4 β 130.1442 0.0104 130.0864 0.0115
γ 178.7314 0.1435 179.1083 0.1153
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Figure 5.21: RMS of the test plane reconstructed from the boresight of calibration using
56 planes (without ⊥ drive lines) and 24 planes (with ⊥ drive lines)
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u =

√
x2 + y2
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5.3 Results of Catenary-based Calibration

5.3.1 Calibration with 15 Catenaries: Group 1 and 2

Point clouds of eighteen hanging power cables (no. 1-18) were extracted from the dataset

for calibration and their x−y positions are shown in Figure 5.24. All the eighteen cables

were then examined for their degree of symmetry by evaluating the ∆Hn introduced in

Chapter 4 and the results are shown in the Table 5.7. By checking the length and also

the ∆Hn, catenaries no. 1, 8 and 14 were identified as extremely asymmetric catenaries

that will cause high correlations between the parameters (bc and cc) for the calibration or

fitting. Therefore, these three catenaries were then discarded and the rest were further

examined for their RMS in the z direction (RMSz) after the outlier removal. The results

are shown in Table 5.8. It is expected that catenaries which are further away from the

system will incur a higher RMSz as the combined effect of the rangefinder error and the

encoder angle error increase with the range. All the remaining 15 catenaries are further

divided into two groups (Group 1: with average range less than 20 m and with relatively

smaller RMSz; and Group 2: with average range more than 20 m and with relatively

higher RMSz) for the calibration.

Table 5.7: The normalized height difference of the input catenaries

Cable L(m) ∆Hn Cable L(m) ∆Hn

1 44.101 0.046 10 44.802 0.013
2 31.622 0.024 11 28.268 0.019
3 39.239 0.003 12 28.962 0.009
4 45.185 0.024 13 34.149 0.028
5 59.86 0.001 14 30.459 0.053
6 39.748 0.003 15 14.726 0.005
7 60.58 0.005 16 25.498 0.003
8 17.77 0.063 17 33.18 0.001
9 31.067 0.023 18 28.902 0.018
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Figure 5.24: The x− y position of the 18 catenaries

Table 5.8: RMSz of input catenary fitting

Cable Total Pts. Blunder Pts. for Cal. Avg. ρ(m) RMSz(m) σ̂o

2 277 3 274 15.137 0.05 1.049
3 179 3 176 15.224 0.046 0.887
4 453 2 451 8.789 0.044 0.815
5 557 0 557 8.991 0.041 0.689
6 404 0 404 9.239 0.04 0.654
7 629 0 629 9.308 0.04 0.644
9 73 7 66 8.865 0.077 2.526
10 110 42 68 39.685 0.124 6.427
11 66 26 40 39.775 0.095 3.8
12 41 17 24 38.68 0.1 4.306
13 132 43 89 29.038 0.111 5.144
14 184 83 101 32.799 0.124 6.313
16 66 42 24 31.396 0.187 14.858
17 309 18 291 15.444 0.053 1.15
18 158 69 89 40.894 0.109 4.873
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5.3.1.1 Parameter Estimation

Table 5.9 shows the calibration results using Group 1 (8 catenaries with average ρ < 20

m) and also the results using both the Group 1 and Group 2 (7 catenaries with average

ρ > 20 m). The two estimated values of the boresights are very close to each other. As

briefly mentioned in Chapter 3, the hanging cables are mainly captured by Scanner 1 and

2 as the cables are located in the two sides of the trajectory and the heights of the system

and the catenary are compatible (Figure 5.25). Only very few measurements at the two

ends of the catenaries are given by Scanner 4. Scanner 3 points toward the ground and

therefore it cannot scan the hanging cables. As a result, only the boresights of Scanner

1 and 2 will be estimated with the catenary features.

Figure 5.26 shows the residuals of the catenary-based calibration adjustment. As with

the plane-based calibration, the residual distributions are centred around zero. This in-

dicates that the model for the adjustment is appropriate. The overall precision of the

estimation is worse than that of the plane-based. This might be attributed to the fact

that the degrees of freedom (DOF) of the catenary-based (15 catenary with DOF = 3643)

is much smaller than that of the plane-based (56 planes with DOF = 53742).

It can be noted that the estimated β of Scanners 1 and 2 show relatively larger de-

viations compared to that of the plane-based calibration. As already explained in section

5.2.1, the z measurement of the vertical planes do not contribute significantly to the

estimation of β. However, this is opposite in the case of the catenary. Unlike adjusting

the parameters of the vertical planes, adjusting the catenary parameters can affect the

estimation of β. Comparing the RMSs in the x, y and z directions when fitting a 3D

catenary point cloud is performed, the RMSz is much higher than the RMSx and the

RMSy. The uncertainly in the z direction propagates into β and thus β has the lowest
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Figure 5.25: Scanner 1 and 2 scan the catenaries

precision. α is associated with both the x and z measurement and combined effect of the

x and z measurement leads to the highest precision of α. γ is associated only with the

x-measurement, so it has lower precision than α.

Table 5.9: Catenary-based calibration results with Group 1 and 2 catenaries

Catenary Group 1 (8 cat’y) Group 1+2 (15 cat’y)
Scanner Terrapoint Estimated Estimated Estimated Estimated

values(◦) values(◦) σ(◦) values(◦) σ(◦)

α 90.2388 90.2682 0.0131 90.2671 0.0136
1 β 0.0207 -0.4528 0.4063 -0.5002 0.3673

γ 8.7677 8.7491 0.1158 8.7191 0.1016
α 270.3228 270.2894 0.0291 270.2812 0.0223

2 β 0.0004 -0.9261 1.0409 -0.9890 0.6682
γ -8.7277 -8.6632 0.2827 -8.6201 0.1931
σ̂o 0.3582 0.3681
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Figure 5.26: The residuals of catenary-based calibration adjustment using 15 catenaries

5.3.1.2 Accuracy Analysis

5.3.1.2.1 RMS with Test Catenary Fitting

Table 5.10 shows that RMS in the z direction for fitting 10 test catenaries (extracted

outside the calibration zones) with the power cable point clouds reconstructed from the

boresight values from the Terrapoint’s calibration, also the plane-based Group 1 and 2

(15 catenaries). The results show that their RMSz only differ at the millimetre-level and

therefore all the three calibrations perform effectively the same.

5.3.1.2.2 Profile Analysis

The same horizontal profile of the concrete bridge side is used for testing the estimated

boresight values with the catenary-based calibration and Figure 5.18 is duplicated with

the boresights of the calibration using the 15 catenaries and is presented in Figure 5.27. It

can be seen that the x− y position deviates more (RMSu = 0.03 m) from the Terrapoint

compared to the calibration using the 56 planes. The density of the catenary point cloud,
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Table 5.10: RMSz of 10 test catenaries

Terrapoint Plane-based Catenary-based
test cat’y RMSz (m)

1 0.093 0.098 0.093
2 0.094 0.103 0.093
3 0.090 0.098 0.089
4 0.115 0.110 0.115
5 0.114 0.110 0.114
6 0.101 0.097 0.101
7 0.095 0.097 0.093
8 0.102 0.108 0.101
9 0.099 0.104 0.100
10 0.092 0.093 0.092

and thus the DOF of catenary is much smaller than that of planes. This results in less

accurate and precise estimation of the boresights.
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Figure 5.27: The difference of the x− y position of the bridge side in terms of u, where
u =

√
x2 + y2

5.3.1.3 Parameter Correlation

Figure 5.28 shows the correlation matrix (absolute values taken) of the calibration using

the 15 catenaries (Group 1 and Group 2). In this Figure, the correlation coefficients of
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the boresight of Scanners 1 and 2 is highlighted with yellow (α1, β1, γ1, α2, β2, γ2) and

the catenary parameters are highlighted with green (dash line for Group 1 (ac1, bc1, cc1,

..., ac8, bc8, cc8) and the rest for Group 2 (ac9, bc9, cc9, ..., ac15, bc15, cc15)). It can be

seen that the high correlation between α of Scanner 1 and 2 (maximum is 0.81), and also

between both the α and the ac parameters, and also some moderate correlation between

the same parameters for the Group 1. The average range measurement of the Group 2

is about 40 m which is approximately the double of that of the Group 1. Therefore, this

suggests that the the higher correlation exists between α and the ac parameters of Group

2 is due to the larger range. This is because when as the range increases, the effect of

adjusting the α on the z-measurement increases. The geometry of α and ac is shown in

Figure 5.29 and from that it can be seen α and ac are geometrically correlated.

5.3.2 Calibration Results using Two Catenaries with Parallel and Orthogonal Drive

Lines

In order to specifically investigate the correlation between parameters and the geometry

of the catenaries, two pairs of catenaries are selected from Group 1 catenary to solve the

boresights of Scanner 1 and 2: Catenary 2 and 3; and Catenary 2 and 17. Catenary 2 and

Catenary 3 were captured on the same highway and therefore they are almost parallel

while Catenary 17 was captured on the bridge, thus it is rather close to “orthogonal”to

Catenary 2 as illustrated in Figure 5.30. Table 5.11 shows the calibration results using

Catenary 2 and 3 (parallel case), and also that using Catenary 2 and 17 (orthogonal

case).

Compared to the estimated values of the plane-based calibration (Table 5.5), α and γ

seem being well estimated with only using 2 catenaries comparing to using 6 planes. This

can be explained by the fact that the x and y coordinates are in collinearity for the 3D
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Figure 5.28: Correlation Matrix (absolute value taken) of the catenary-based calibration
using the 15 catenaries (Group 1 and Group 2), the yellow highlights the boresight
parameters and the green highlights the catenary parameters

catenary model and thus the x and y-measurements contribute to the rotation of the

catenary (the rotation is about the vertical axis that passes through the x−y centroid of

the catenary). This rotation can solve the γ effectively. Apart from this, α is associated

with both the x and z measurement, therefore, both the rotation and the z-measurement

of the catenary contribute the its estimation. Two catenaries seem able to solve α and γ

quite accurately.

The correlation coefficients of the above two calibration is shown in the correlation ma-

trix in Figure 5.31. It can be seen that the ⊥ case reduced the correlation between α

and ac.
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Figure 5.29: The geometry of α and ac
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Figure 5.30: The x-y position of the catenaries
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Table 5.11: Calibration results of catanary-based calibration using 2 catenaries

Catenary (no. 2 ⊥ 17) (no. 2 ‖ 3)
Scanner Terrapoint Estimated Estimated Estimated Estimated

values(◦) values(◦) σ(◦) values(◦) σ(◦)

α 90.2388 90.2341 0.0261 90.2417 0.0382
1 β 0.0207 2.0668 3.2271 1.8050 2.4259

γ 8.7677 8.5044 0.4725 8.6611 0.3331
α 270.3228 270.3572 0.0427 270.3393 0.0715

2 β 0.0004 -3.6044 2.9533 -2.7424 2.2054
γ -8.7277 -8.9878 0.5318 -8.8491 0.5425
σ̂o 0.4062 0.4018

Figure 5.31: Correlation Matrix of the catenary-based calibration using only Catenary
2 and 17 (⊥ case) and Catenary 2 and 3 (‖ case), the yellow highlights the boresight
parameters and the green highlights the catenary parameters
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5.4 Results of Mixed Feature-based Calibration

In this section, the 56 planes are first combined with the 15 catenaries for the calibration

adjustment (mixed feature-based calibration). The estimated boresights are almost the

same as those from only using the 56 planes because the redundancy of the 56 planes (over

50000) is much larger than that of the 15 catenaries (approximately 3000). The results

of using the 24 planes and the 15 catenaries are analysed instead and the redundancy

of the 24 planes is approximately 18000. The results are compared with the calibration

only using the 24 planes in Table 5.12. Adding the 15 catenaries to the 24 planes brings

the estimated values of Scanners 1, 2, 3 closer to the Terrapoint’s values. However, the

overall precision is slightly reduced.

Table 5.12: Results comparison of the plane-based calibration (24 planes) and the mixed
feature-based calibration (24 planes and 15 catenaries)

Estimated Values
Scanner Boresight Terra- 24 planes(◦) σ24p (◦) 24 planes + σ24p15c(

◦)
point(◦) 15 catenary(◦)

α 90.2388 90.1684 0.0085 90.2441 0.0082
1 β 0.0207 -0.0063 0.0187 0.0202 0.0232

γ 8.7677 8.7536 0.0039 8.7574 0.0047
α 270.3228 270.3651 0.0099 270.3153 0.0111

2 β 0.0004 -0.5427 0.0159 -0.3375 0.0196
γ -8.7277 -8.6573 0.0028 -8.6721 0.0034
α 0.8464 1.1814 0.0521 1.1942 0.0625

3 β -69.8769 -69.7784 0.0129 -69.8381 0.0147
γ -0.9728 -1.9462 0.3462 -2.0292 0.4138
α 0.2947 -0.9392 0.1595 0.4237 0.1990

4 β 129.9668 130.0864 0.0115 129.7753 0.0155
γ 180.0676 179.1083 0.1153 180.1062 0.1439
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5.4.1 Accuracy Analysis

5.4.1.1 RMS of the Test Plane Fitting

The RMSs of fittings of the 28 test planes of the mixed feature-based calibration are

presented in Figure 5.32 along with the previous calibration results. It is shown that

the the mixed feature-based calibration performs slightly better than the 24 plane-based

calibration in terms of plane fitting in a few cases.
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Figure 5.32: RMSs of the test plane fitting

5.4.1.2 Profile Analysis

The relative vertical and horizontal accuracy can be analysed by investigating Figure

5.33 and 5.34 which are reproduced by the profiles from the estimated boresights of the

mixed feature-based calibration. It can be seen that after 15 catenaries are added to the

24 planes for the calibration, the RMSz is reduced to 6 mm while the RMSu is slightly

increased by 1 mm.
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Figure 5.33: The difference in z of the horizontal profile

5.4.2 Parameter Correlation

The correlation matrix of the calibration is shown in Figure 5.35. (The yellow region

is for boresight of Scanners 1 - 4, α1, β1, γ1, ..., α4, β4, γ4; the red region is for the 24

planes’ parameters, ap1, bp1, cp1, dp1, ...., ac24, bc24, cc24, dp24 ; and the green region is for

the 15 catenaries’ parameters, ac1, bc1, cc1, ..., ac15, bc15, cc15). It is found that the high

correlation coefficients 0.81 (the maximum) between α and ac are reduced to 0.44 (the

maximum). The maximum correlation coefficient between the boresights of Scanner 1 −

4 is 0.66.

In conclusion, the mixed feature-based calibration tends to be more rigorous compared

to either plane- or catenary-based calibration as shown by the reduced RMSs of indepen-

dent planes fitting and also the compatible positioning accuracy with the Terrapoint’s



109

150 200 250 300 350 400
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Terrapoint Vs After (24 planes)

x (m)

di
ff.

 u
 (

m
)

150 200 250 300 350 400
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4
Terrapoint Vs After (24 planes + 15 cateneris)

x (m)
di

ff.
 u

 (
m

)

RMSu = 0.026 m RMSu = 0.027 m

Figure 5.34: The difference of the x− y position of the bridge side in terms of u, where
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√
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dedicated calibration. The adjustment is also more reliable than the catenary-based

calibration adjustment as the high correlation between the α and ac is reduced.
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Figure 5.35: Correlation Matrix with calibration solving boresights with 24 planes and 15
catenaries. The yellow highlights the boresight parameters, the red highlights the plane
parameters and the green highlights the catenary parameters
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Chapter 6

Conclusions and Recommendations for Future Works

6.1 Conclusions

This research proposed a new multi-feature, multi-scanner boresight calibration method-

ology for laser scanner-based MMSs. A detailed analysis for calibration results has been

presented and an attempt is made to cover analysis of the geometry of scanners and

input features. The proposed methodology have been thoroughly investigated for its ac-

curacy in term of feature fitting, and vertical and horizontal positioning of a long profile

based on the reference calibration results (Terrapoint developed plane-calibration using

around 350 planes). Using 24 planes captured by the system travelled in orthogonal

drive lines and 15 catenaries for the calibration leads to an average RMS of independent

plane fittings in the vertical and horizontal directions of approximately 2.5 cm and 3 cm

respectively. Moreover, by treating the point cloud reconstructed by the Terrapoint’s cal-

ibration results as the ground truth, the mixed feature-based calibration with 24 planes

and 15 catenaries gives approximate accuracy of 27 mm and 6 mm for horizontal and

vertical positioning respectively. No high correlations were found between the the bore-

sight parameters and the features parameters (maximum correlation coefficient is 0.44)

and also between the boresights of the four scanners (maximum correlation coefficient is

0.66).

The major new contributions of this research have already be presented in section 1.3 of

Chapter 1 and therefore are not repeated here. Some important findings, worth noting

throughout this research are summarized as follows:
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1. Simultaneous estimation of the boresight angles of multiple scanners using planar

features is shown to be more rigorous than individual estimation of the boresights

of a single scanner. Point clouds of the same object captured by multiple scanners

could provide more control to each other during the calibration adjustment.

2. The analysis of the geometry of the scanners and the planar features in this research

showed that a boresight angle can be effectively adjusted if planes are orientated

differently at the same level as the rotation of the boresight angle. That means

adjusting α about the y-axis should be achieved by adjusting or rotating vertical

planes in x − z planes, while for adjusting γ about the z-axis should be achieved

by adjusting or rotating vertical planes in x − y planes. However, it should be

noted that β cannot be adjusted by rotating planes at the same level as β about

the x-axis because such the rotation of the planes will keep the direction cosine

unchanged and the planes are basically the same in terms of the orientation. This

is the reason why the precision of β of Scanner 1 and 2 was the lowest.

3. The analysis of the geometry of the scanners and the planar features in this research

also showed at least two planes in different orientations are needed to adjust one

boresight angle.

4. The boresights of the scanner pointing toward the ground surface (Scanner 3) are

the most difficult to estimate as the input plane features for it are only the ground

surfaces and solving boresights of the Scanner 3 independently is shown to be im-

practical. However, as the ground surfaces had an overlap regions between Scanner

1 and 3, and also between Scanner 2 and 3, the simultaneous multi-scanner cali-

bration using the planar features is shown to be practical and rigorous.

5. With the new 3D model of the catenary proposed by the author in Chan and Lichti
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(2011), asymmetric catenaries should be discarded for calibration or fitting due to

the extremely high parameter correlation (the coefficient can be larger than 0.9).

6. When solving the boresight with catenaries, α about the y-axis (pointing toward the

navigating direction) was found to be highly correlated with ac (the vertical trans-

lation) of the catenary (maximum correlation coefficient = 0.81). This correlation

increases as the range increases (the catenary is further away from the scanner).

The deviation from the parallelity of catenaries will reduce the correlation.

7. Only two catenaries in parallel directions in the catenary-based calibration have

been shown to be necessary to solve α and γ quite accurately.

8. It was found that the accuracy and precision of β for catenary-based catenary

highly depends on the accuracy of the z-measurement of the catenary.

9. It was shown that the mixed feature-based calibration is practical. It includes two

different geometric features and therefore the correlation between the boresights and

the features parameters (planar and catenary feature parameters) was reduced.

6.2 The Advantages of the Developed Calibration Method

The advantages of the calibration developed in this research are summarized as the

following:

1. Planar and catenary features are abundant in many highway scenes. Therefore, the

calibration can be conveniently carried out without setting up control points and

is suitable for in-situ calibration. Therefore, it is cost effective and flexible.

2. This calibration method can be applied to datasets captured in rural areas where

the number of planar features (building façades) is not always sufficient but some

catenary features (hanging power cables) are available.
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3. Simultaneous adjustment reduces the number of planes needed to achieve high

accuracy. Only using 24 planes can produce similar results to the Terrapoint plane-

based calibration (350 planes).

4. Only two parallel catenaries are needed to give a reasonably approximate estimation

of the boresights. This is better than only using planes as only using two planes

is not sufficient to solve three boreisight angles. The catenary-based calibration is

potentially a prompt and efficient way to obtain approximate boresight values.

5. As mentioned earlier, the mixed feature-based calibration includes two different

geometric features that reduces the correlation between the boresights and feature

parameters. The algorithm can be readily extended to include more features such

as cylinders and spheres in order to further reduce the correlation.

6.3 Recommendations for Future Works

Some future works can be associated with this research and are listed as below:

1. The calibration concept developed in this research can be potentially applied to 3D

scanner-based MMSs.

2. Control points or control features might be included to evaluate the absolute posi-

tioning accuracy of the calibration.

3. Investigation of the impact of the moving speed of the system on the calibration

accuracy.

4. Investigation of improving the geometric variety for the scanner pointing to the

ground surface (Scanner 3).
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5. More geometric features can be included from the highway scene in the adjustment.

For example, cylinder features of vertical poles.
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Zhu, L., J. Hyyppä, A. Kukko, H. Kaartinen, and R. Chen (2011). Photorealistic building

reconstruction from mobile laser scanning data. Remote Sensing 3 (7), 1406 – 1426.

http://www.vectornav.com/index.php?option=com_content&view=article&id=21&Itemid=11
http://www.vectornav.com/index.php?option=com_content&view=article&id=21&Itemid=11

	UCGE Rept Cover Page
	ucalgthes1_root_0
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Overview of Feature-based Self-calibration for Mobile Mapping Systems
	Research Objective
	New Contribution of this Work
	Thesis Outline

	Introduction to the Mobile Mapping Systems (MMS) and its Error Sources
	Overview of the MMS
	Operation Mode of the MMS
	Stop-and-go Mode
	On-the-fly Mode

	Difference between the MMS and ALS
	The Main Components of the MMS
	Imaging System
	Positioning and Navigating System
	Integration of GPS and INS/IMU

	Operating System

	Applications of the MMS
	Highway Corridor and Railway Surveys
	Mining and Tunnels
	Coastal Mapping
	Other Applications


	Error Sources of the MMS
	Boresight Errors
	Lever-arm Errors
	Attitude Errors
	Positioning Errors
	Scanner Component Errors


	The Positioning Equation of the MMS
	Introduction to the Full Positioning Equation for the MMS
	Transformation from the Sensor Frame (s-frame) to the Body Frame (b-frame)
	Transformation from the Body Frame (b-frame) to the Local-level Frame (l-frame)
	Transformation from the Local-level Frame (l-frame) to the Earth-centred, Earth-fixed Frame (e-frame)
	Transformation from the Earth-centred, Earth-fixed Frame (e-frame) to the Mapping Frame (m-frame)

	Background of the TITAN and its Full Positioning Equation

	The Calibration Models and the Least-Squares Implementation 
	Mathematical Model for Feature-based Self-Calibration
	Mathematical Model for Plane-based Calibration
	Background
	Functional Model

	Mathematical Model for Catenary-based Calibration
	Background
	3D Catenary Model
	Symmetry of the Catenary
	Functional Model


	Least-Squares Model Implementation
	Normal Equations with the Constraint
	Residual Computation
	Stochastic Model
	Design Matrices of Unknowns and Observations
	Efficient Computation of the Normal Matrix and the Residuals
	Efficient Computation of the Normal Matrix - Summation of Normals
	Efficient Computation of the Residuals



	Calibration Input and Results Analysis
	Calibration Input Data Set
	Calibration Data Set Description
	Initial Approximate Values Estimation for Calibration
	Initial Approximated Values Estimation of the Boresights
	Initial Approximate Values Estimation of Features Parameters
	Approximate Values Estimation of the Plane Parameters
	Initial Approximate Values Estimation of the Catenary Parameters


	Feature Extraction 
	Blunder Detections of Calibration Input

	Results of Plane-based Calibration 
	Calibration with 56 Planes
	Accuracy Analysis
	RMS of Test Plane Fitting
	Profile Analysis

	Parameter Correlation

	Calibration Each Scanner Independently with the 56 Planes
	Accuracy Analysis

	Examination of the Plane-based Calibration Using Groups of Planes in Parallel and Orthogonal Drive Lines
	Examination of the Plane-based Calibration Using 24 planes
	Accuracy Analysis


	Results of Catenary-based Calibration 
	Calibration with 15 Catenaries: Group 1 and 2
	Parameter Estimation
	Accuracy Analysis
	RMS with Test Catenary Fitting
	Profile Analysis

	Parameter Correlation

	Calibration Results using Two Catenaries with Parallel and Orthogonal Drive Lines 

	Results of Mixed Feature-based Calibration 
	Accuracy Analysis
	RMS of the Test Plane Fitting
	Profile Analysis

	Parameter Correlation


	Conclusions and Recommendations for Future Works
	Conclusions
	The Advantages of the Developed Calibration Method
	Recommendations for Future Works

	References


