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Abstract 

 

Synthetic Aperture Radar (SAR) systems are effective tools for monitoring 

different land cover types. Radar systems are weather and sun illumination independent, 

two factors which usually inhibit the use of optical satellite imagery. This thesis 

investigates new segmentation methodologies for polarimetric SAR data. Two divisive 

segmentation methodologies are discussed, one for full polarimetric SAR data and a 

second one for dual polarized SAR data. The proposed methodologies for both cases, full 

and dual polarimetric SAR data, are nonparametric in terms of applying a nonparametric 

histogram thresholding algorithm. The proposed methodology for the full polarimetric 

case has the characteristic of preserving the information of the scattering mechanisms that 

the different land cover types represent.  

A new agglomerative methodology is presented for full polarimetric SAR data 

segmentation. A new probabilistic distance is proposed for the agglomerative hierarchical 

merging of small clusters into an appropriate number of larger clusters. The proposed 

probabilistic distance measures the distance between two complex Wishart distributions, 

independently of the number of samples in each distribution.    

The proposed methodologies, divisive and agglomerative, are developed so that 

they overcome drawbacks of existing segmentation approaches. The proposed 

methodologies are applied to SAR data from three spaceborne SAR systems, ALOS, 

TerraSAR-X and RADARSAT-2. For validation purposes, the segmentation results of the 

proposed methodologies are compared with results obtained by a number of recognized 

segmentation approaches.  The comparison of results from the developed methods 

demonstrates significant improvements over conventional methods and overcome the 

drawbacks identified.  

  

 



iv 

 Acknowledgements 

 

This research work would not be possible without the invaluable help and 

guidance of a number of great people. I am indebted to my supervisors Prof. Dr. Michael 

Collins and Prof. Dr. Alexander Braun. Sincere and special thanks go to Prof. Dr. 

Vassilia Karathanassi from the Laboratory of Remote Sensing at the National Technical 

University of Athens, where important parts of this thesis were done during research 

visits there. All gave their best in providing me with a stimulating and relaxed 

environment. I deeply appreciate their support which was much more than scientific!  

Many thanks go to Prof. Dr. Demetrius Rokos, Prof. Dr. Demetre Argialas, Dr. 

Polychronis Kolokousis, Christos Iossifides and Angelos Tzotzos from the Laboratory of 

Remote Sensing at the National Technical University of Athens for their useful help and 

discussions. Thanks to my examiners Dr. Michael Sideris, Dr. John Yackel and Dr. 

Samuel Foucher.  

I wish to thank the Japanese Space Agency (JAXA) for providing the PALSAR 

ALOS SAR data, the German Space Agency (DLR) for providing the TerraSAR-X SAR 

data and the Canadian Space Agency (CSA) for providing the RADARSAT-2 SAR data. 

Furthermore, I gratefully acknowledge the financial support from the Natural Sciences 

and Engineering Research Council of Canada (NSERC) and the University of Texas at 

Dallas.   

I do not want to forget to thank all the people in Greece and Canada who simply 

offered me their friendship and did not make me feel alone during my long academic trip 

(12 years!) far away from my family and my home country Palestine! Many thanks go to 

my friend Mohannad for the useful discussions we used to have. All my love goes to my 

father Darwish (the best mathematician ever!), my mother Nadia, my brothers and my 

darling Nehal.   

 



v 

 

 

 

It's not that I'm so smart, it's just that I stay with problems longer.  

Albert Einstein (1879-1955) 

 

To my parents,  

Darwish and Nadia 

 



vi 

Table of Contents 

 

Approval Page..................................................................................................................... ii 
Abstract .............................................................................................................................. iii 
Acknowledgements............................................................................................................ iv 
Table of Contents............................................................................................................... vi 
List of Tables ................................................................................................................... viii 
List of Figures and Illustrations ......................................................................................... ix 
Symbols and Abbreviations .............................................................................................. xii 

CHAPTER ONE: INTRODUCTION..................................................................................1 
1.1 Literature review........................................................................................................1 

1.1.1 Approaches Based on Divisive Clustering ........................................................2 
1.1.2 Approaches Based on Agglomerative Clustering..............................................4 

1.2 Motivation and Problem Statement ...........................................................................5 
1.3 Research Objectives...................................................................................................6 
1.4 Thesis Structure .........................................................................................................7 

CHAPTER TWO: BASIC POLARIMETRIC SAR CONCEPTS ......................................8 
2.1 Radar Polarimetry Historical Background.................................................................8 
2.2 Polarimetric Scattering Vector...................................................................................9 
2.3 Deterministic and Non-deterministic Scatterers ......................................................11 
2.4 Polarimetric Scattering Mechanisms .......................................................................12 
2.5 Polarimetric Decomposition Methods .....................................................................15 

2.5.1 The Pauli Decomposition method ...................................................................17 
2.5.2 The Cloude-Pottier Decomposition Method ...................................................18 
2.5.3 The Freeman-Durden Decomposition Method................................................22 

CHAPTER THREE: POLARIMETRIC SAR DATA AND STUDY AREAS.................25 
3.1 ALOS Full Polarimetric SAR Data .........................................................................25 
3.2 RADARSAT-2 Full Polarimetric SAR Data ...........................................................28 
3.3 TerraSAR-X Dual Polarized SAR Data...................................................................32 

CHAPTER FOUR: POLARIMETRIC SAR DIVISIVE CLUSTERING.........................34 
4.1 Introduction..............................................................................................................34 
4.2 Delon’s Histogram Thresholding Algorithm...........................................................35 
4.3 Divisive Hierarchical Full Polarimetric SAR Segmentation ...................................38 

4.3.1 Methodology....................................................................................................38 
4.3.2 Implementation................................................................................................41 

4.3.2.1 Pre-processing........................................................................................41 
4.3.2.2 First Segmentation Level .......................................................................44 
4.3.2.3 Second Segmentation Level...................................................................46 
4.3.2.4 Third Segmentation Level .....................................................................48 

4.3.3 Comparison with the k-means Algorithm .......................................................49 
4.4 Divisive Hierarchical Dual Polarimetric Segmentation...........................................52 

4.4.1 Methodology....................................................................................................52 



vii 

4.4.2 Implementation................................................................................................55 
4.4.2.1 Preprocessing .........................................................................................55 
4.4.2.2 Segmentation Results.............................................................................56 
4.4.2.3 Discussion..............................................................................................65 

4.5 Summary..................................................................................................................68 

CHAPTER FIVE: POLARIMETRIC SAR AGGLOMERATIVE CLUSTERING .........70 
5.1 Introduction..............................................................................................................70 
5.2 Wishart Chernoff Probabilistic Distance .................................................................70 

5.2.1 The Complex Wishart Distribution .................................................................70 
5.2.2 Chernoff Error Bound......................................................................................71 

5.3 Agglomerative Clustering........................................................................................78 
5.3.1 Methodology....................................................................................................78 
5.3.2 Implementation and Discussion ......................................................................80 

5.4 Application to RADARSAT-2 Full Polarimetric SAR Images ...............................90 
5.5 Summary..................................................................................................................99 

CHAPTER SIX: CONCLUSIONS AND FUTURE PERSPECTIVES ..........................101 
6.1 Conclusions............................................................................................................101 
6.2 Future Perspectives ................................................................................................104 

REFERENCES ................................................................................................................105 
 



viii 

List of Tables 

 

Table 2.1: Notable SAR missions....................................................................................... 9 

Table 2.2: Pauli matrices and their interpretation. ............................................................ 17 

Table 3.1: System parameters of ALOS polarimetric mode............................................. 25 

Table 3.2: System parameters of the quad-polarized mode of RADARSAT-2................ 28 

Table 3.3: System parameters of TerraSAR-X polarimetric mode................................... 32 

Table 4.1: Number of segments for each segmentation case............................................ 50 

Table 5.1: Error in classification in percent for selected land cover regions of the 
POLSAR image. ....................................................................................................... 89 

Table 5.2: Number of classes, temperature and weather condition for each 
RADARSAT-2 image and acquisition time. Data source for temperature and 
weather condition data is the National Climate Data and Information Archive of 
Canada....................................................................................................................... 90 

 



ix 

List of Figures and Illustrations 

 

Figure 2.1: a) Scattering from smooth surface, b) Scattering from rough surface, c) 
Double bounce scattering, d) Volume scattering. ..................................................... 13 

Figure 2.2: Radar signal penetration for different bands. ................................................. 15 

Figure 2.3: Backscattering decomposition into trihedral and two dihedrals with 
different tilt angles. ................................................................................................... 18 

Figure 2.4: The α angle values and the corresponding scattering mechanisms. ............... 20 

Figure 2.5: Segmentation of the polarimetric SAR data based on the entropy and 
alpha angle. ............................................................................................................... 21 

Figure 2.6: Segmentation of the polarimetric SAR data based on the entropy, alpha 
angle and anisotropy. ................................................................................................ 22 

Figure 3.1: a) RGB of the ALOS polarimetric SAR data (red = 22T , green = 33T , blue 

= 11T ), b) AVNIR-2 RGB optical image of the study area (the study area is 83km 

N-S and 12km W-E), c) A map of the study area. .................................................... 27 

Figure 3.2: Full polarimetric RADARSAT-2 data of Churchill acquired in: a) October 
31, 2009, b) December 18, 2009, c) January 24, 2010, d) April 3, 2010, e) May 
21, 2010, and f) July 22, 2010. ................................................................................. 29 

Figure 3.3: a) SPOT image of the Churchill area, b) Map of Churchill. .......................... 31 

Figure 3.4: a) The TerraSAR-X HH image before speckle filtering, b) The VV image 
in the same area, c) Optical image of the study area (Source: Google Earth aerial 
image 31 May 2006). ................................................................................................ 33 

Figure 4.1: Three-mode scheme divided into three intervals. .......................................... 36 

Figure 4.2: Flowchart of the proposed multilevel segmentation methodology based on 
input data from Pauli or Freeman-Durden analysis. ................................................. 41 

Figure 4.3: Image segmentation by speckle filtering using the refined Lee filter. ........... 42 

Figure 4.4: a) Polarimetric SAR image: Red = HH, Green = HV, Blue = VV, b) Data 
after removing speckle noise using the refined Lee filter three times, c) Pauli 
analysis images in RGB (Red = double bounce, Green = 45o tilted double 
bounce, Blue = surface), d) Freeman-Durden analysis images in RGB (Red = 
double bounce, Green = volume, Blue = surface). ................................................... 43 

Figure 4.5: a) First segmentation level of Pauli data, b) First segmentation level of 
Freeman-Durden data, c) Second segmentation level of Pauli data, d) Second 



x 

segmentation level of Freeman-Durden data, e) Third segmentation level of Pauli 
data, f) Third segmentation level of Freeman-Durden data. ..................................... 46 

Figure 4.6: Variations of the amplitude values of the Surface scattering mechanism 

(dominant) for the subarea FD
SVS of the Freeman-Durden images............................... 47 

Figure 4.7: Segmentation based on the k-mean clustering algorithm. a) Segments 
produced based on Wishart k-means H/α clustering, b) Segments produced based 
on Wishart k-means SPAN/H/α/A clustering. .......................................................... 51 

Figure 4.8: Sample region selected from the Southern end of the study area. a) Pauli 
case, b) Freeman-Durden case, c) Wishart k-means H/α, d) Wishart k-means 
span/H/α/A. ............................................................................................................... 52 

Figure 4.9: Scheme shows the concept of the proposed segmentation methodology 
that creates subspaces based on the thresholded histograms. ................................... 54 

Figure 4.10: a) The HH+VV after speckle filtering using a refined Lee filter, b) The 
HH-VV after speckle filtering using a refined Lee filter. ......................................... 56 

Figure 4.11: Flowchart of the segmentation approach for dual polarized SAR data........ 57 

Figure 4.12: The HH+VV and HH-VV thresholded histograms and the sub-spaces 
produced by combing them in a two dimensional histogram-based space. .............. 58 

Figure 4.13: The extracted borders (red colour) of the resulting segments overlain on 
a composited image (Green = HH+VV, Blue = HH-VV) for a) First 
segmentation level, b) Second segmentation level, c) Third segmentation level, 
d) Fourth segmentation level, (e) Fourth segmentation level produced by the 
eCognition................................................................................................................. 64 

Figure 4.14: a), c) and e) Sample areas from the final (fourth) segmentation level 
produced by histogram thresholding. b), d) and f) Sample areas from the final 
(fourth) segmentation level produced by eCognition. .............................................. 67 

Figure 5.1: a) The graph of f(β) for two statistically: identical distributions (solid 
line), similar distributions (dashed line), and dissimilar distributions (dot-dashed 
line), b) The graph of g(β) for two statistically: identical distributions (solid 
line), similar distributions (dashed line), and dissimilar distributions (dot-dashed 
line). .......................................................................................................................... 77 

Figure 5.2: a) Plot of the data log-likelihood calculated using the Wishart Chernoff 
distance to merge clusters, b) Plot of the data log-likelihood calculated using the 
Wishart test statistic distance to merge clusters........................................................ 81 

Figure 5.3: a) POLSAR data classification based on the Wishart Chernoff distance, b) 
POLSAR data classification based on the Wishart test statistic distance. ................ 84 



xi 

Figure 5.4: a1) Urban blocks as shown in a map of the study area, a2) Urban areas 
captured based on Wishart Chernoff distance, a3) Urban areas captured based on 
Wishart test statistic distance. ................................................................................... 85 

Figure 5.5: b1) Forests as shown in the map of the study area, b2) Forests as appear in 
the AVNIR-2 optical image of the study area, b3) Forest areas captured based on 
the Wishart Chernoff distance, b4) Forest areas captured based on the Wishart 
test statistic distance.................................................................................................. 86 

Figure 5.6: c1) Optical image of the study area for reference, c2) Classified 
agricultural fields and croplands using Wishart Chernoff distance, (c3) Classified 
agricultural fields and croplands using Wishart test statistic distance...................... 87 

Figure 5.7: d1) Streams as shown in the map of the study area, d2) Streams captured 
based on the Wishart Chernoff distance, d3) Streams captured based on the 
Wishart test statistic distance. ................................................................................... 88 

Figure 5.8: Plot of the number of classes as a function of the acquisition time for each 
SAR image. ............................................................................................................... 91 

Figure 5.9: Segmentation results on top the SRTM 90m DEM of the Churchill area 
for the RADARSAT-2 images of: a) October 31, 2009, b) December 81, 2009, c) 
January 24, 2010, d) April 3, 2010, e) May 21, 2010 and July 22, 2010. ................ 94 

Figure 5.10: Three selected regions (R1, R2 and R3) in the study area for further 
investigation. ............................................................................................................. 95 

Figure 5.11: Sea ice extent of the Arctic, including Hudson Bay for: a) December 
2009, b) January 2010, c) March 2010, d) May 2010, e) July 2010, and October 
2010. Source: National Snow and Ice Data Center (NSIDC). .................................. 97 

Figure 5.12: Pictures of Churchill show: a) Churchill River weir, b) Muskeg covered 
lake, c) Partially overgrown lake. ............................................................................. 99 

 



xii 

 Symbols and Abbreviations 

  

HH Horizontal transmit, horizontal receive  
HV Horizontal transmit, vertical receive  
VH Vertical transmit, horizontal receive  
VV Vertical transmit, vertical receive  
H Entropy 
α Alpha angle 
Α Anisotropy 
S Scattering matrix 
Sij Complex scattering amplitude 

k
r

 Scattering vector 

Bk
r

 Scattering vector in lexicological basis 

Pk
r

 Scattering vector in Pauli basis 

Ψ Basis matrices 
C Covariance matrix 

.....  Spatial ensemble averaging 
* Complex conjugate  
T Coherency matrix 
Λ Diagonal eigenvalue matrix 
λ eigenvalue 
U Unitary matrix  
Rh, Rv Reflection coefficients 
Rgh, Rgv Fresnel reflection coefficients 
γ Phase change 
B(n, k, p) Binomial tail  
h Histogram 
L Number of bins in a histogram 
N Number of samples  
D Grenander operator 
σ Standard deviation  
n Number of looks 
p(T) Probability density function for complex Wishart distribution 
Γ(…) Gamma function  
E[T] Expected value of T 
V Cluster center coherency matrix 
P A priori probability  
β Chernoff parameter 
f(β) Wishart Chernoff distance 
ν, u Polarization bases 
+ Complex conjugate transpose 
Lm Data log-likelihood  
m Number of clusters 
d(Vi, Vj) Wishart test statistic distance 



xiii 

SAR Synthetic Aperture Radar 
InSAR Synthetic Aperture Radar Interferometer 
POLSAR Polarimetric Synthetic Aperture Radar 
POLSEGANN Polarimetric Segmentation Annealing 
POL MUM Polarimetric Merge Using Moments 
ML Maximum Likelihood 
MIRGS Multivariate Iterative Region Growing with Semantics 
SPAN Total backscattering power 
JPL Jet Propulsion Laboratory 
ESA European Space Agency 
JAXA Japanese space agency 
DLR German space agency 
CSA Canadian Space Agency 
NASA National Aeronautics and Space Administration   
ALOS Advanced Land Observation Satellite 
PRISM Panchromatic Remote-sensing Instrument for Stereo Mapping 
AVNIR-2 Advanced Visible and Near Infrared Radiometer type 2 
PALSAR Phased Array type L-band Synthetic Aperture Radar 
DEM Digital Elevation Model 
ENL Equivalent Number of Looks 
Tr Trace of a matrix 
DRA Dual Receive Antenna  
MRF Markov Random Field 
SSC Single look Slant range Complex 
SLC Single Look Complex 
SRTM Shuttle Radar Topographic Mission 
 



xiv 

  



1 

 

Chapter One: Introduction 

 

Segmentation is the subdivision of an image into homogeneous segments (Acton 

et al., 1994). A single segment can either correspond to a semantic object in the image or 

its union with the surrounding segments can lead to such an object. Thus, a segment-

based classification approach pre-requires the appropriate segmentation of the image 

data. For each segment, classification rules based on physical or geometrical parameters 

are defined and applied in order to assign a segment to a specific thematic class. 

Consequently, segmentation is the first major step in any object-oriented feature 

extraction approach and plays an essential role for the accuracy of any segment-based 

classification process (Dabboor and Karathanassi, 2005). 

One of the main applications of Polarimetric Synthetic Aperture Radar 

(POLSAR) is the segmentation of different land cover types. However, segmentation of 

SAR data was always a difficult task due to the presence of speckle noise (Lee and 

Pottier, 2009).  

Polarimetric SAR segmentation approaches should be able to exploit the 

additional scattering information that this data contain, in comparison with conventional 

optical or single-channel SAR data. First segmentation methods failed to utilize complete 

polarimetric information (Lee et al., 2004). These methods used only the intensities of 

HH, HV, and VV, the phase difference between HH and VV, the ratio of |HH| and |VV| 

(Kwok et al., 1991; Du et al., 1992), or the coefficient of variation (van Zyl et al., 1987), 

where H and V stand for horizontally and vertically polarized radar pulses, respectively. 

One exception was the use of the multivariate complex Gaussian distribution for the three 

complex polarimetric components, HH, HV and VV, for Bayes classification by Kong et 

al. (1988) and Lim et al. (1989).  

 

1.1 Literature review 

 

Different approaches have been proposed in the international literature for dual 

and full polarimetric SAR data. These approaches can be grouped into two major 
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categories: 1) Approaches based on divisive clustering and 2) Approaches based on 

agglomerative clustering. Divisive segmentation can be defined as top-down 

segmentation which splits the image into homogeneous regions/segments while 

agglomerative segmentation can be defined as a bottom-up approach of merging small 

clusters/segments of an image into an appropriate number of large clusters/segments 

(Agarwal et al., 2010). In divisive clustering, the final segmentation results can be 

obtained by dividing the image hierarchically or directly into final segments. Different 

criteria, such as the number of pixels in a cluster  (Savaresi et al., 2002), cluster variance 

with respect to its centroid (Liang et al., 2010), etc., are used in divisive clustering as a 

selection criteria for further segmentation of clusters. In agglomerative clustering, data 

are initially segmented into small clusters/segments. Small clusters are merged 

hierarchically into an appropriate number of large clusters. Merging is performed based 

on a similarity criterion. Different types of distances, such as the Manhattan distance 

(Kersten et al., 2005), the Mahalannobis distance (Du et al., 2002), the Wishart test 

statistic distance (Cao et al., 2007), etc., are used to measure similarity, where clusters 

with the shortest distance are merged.   

 

1.1.1 Approaches Based on Divisive Clustering 

 

Many studies have been presented for full polarimetric SAR segmentation using 

the divisive clustering scheme. Lombardo and Oliver (2002) and Pellizzeri et al. (2003) 

discussed a segmentation approach, called Polarimetric Segmentation Annealing or 

POLSEGANN, based on the maximum generalised likelihood approach and the Wishart 

distribution model. A joint logarithmic likelihood function for the whole image, assuming 

that it composites a predefined number of homogeneous regions, is derived and used as 

objective function in the simulated annealing maximization technique. The 

POLSEGANN was found to be appropriate for small region identification (Pellizzeri et 

al., 2003). A drawback of the discussed segmentation technique is that it requires the 

predefinition of the number of homogeneous regions in the image, which is not always a 

simple task. In addition, the previously mentioned studies assume the absence of texture 



3 

 

(assume that areas are homogeneous), which is not always valid. Based on this 

assumption, the complex Wishart distribution is used. However, in the case where texture 

exists, the k-distribution is a better fit (Beaulieu and Touzi, 2004). In addition, it is not 

guaranteed that the resulting segments are homogeneous with regard to the scattering 

information. Thus, pixels of a single segment might exhibit different scattering 

mechanisms.  

De Grandi et al. (2001) proposed a segmentation and labelling method of 

polarimetric SAR data based on a wavelet frame that works as a differential operator and  

generates piece-wise smooth approximations of the covariance matrix power term 

images.  Segmentation of polarimetric SAR data into eight classes based on the entropy 

and alpha angle (H/α) plane was proposed in Cloude and Pottier (1997) and extended to 

sixteen classes by involving the anisotropy parameter (A) by Pottier and Lee (1999). 

Herein, the two-dimensional space of H and α, which becomes three-dimensional by 

including the anisotropy A, is divided into eight and sixteen zones, respectively, based on 

arbitrary fixed zone boundaries. This sometimes leads to noisy segmentation results. In 

addition, the total backscattering power information is not considered in the segmentation 

process. An attempt to improve the segmentation results was presented in Lee et al. 

(1999) by applying the k-means complex Wishart classifier and Park and Moon (2007) 

by applying the fuzzy concept.  

It is important to mention that the previously discussed studies lack the concept of 

selective segmentation in the divisive clustering. Thus, segmentation of the polarimetric 

data is not performed hierarchically in a multilevel scheme where the user can choose the 

desired segmentation scale and has the choice of selecting segments of interest for further 

segmentation.  

Segmentation approaches using divisive clustering were also applied on dual 

polarized data. Scheuchl et al. (2004) proposed an unsupervised segmentation algorithm 

for dual polarized data and tested its ability to distinguish sea ice types. The proposed 

algorithm uses the k-means Wishart classifier and a distance measure for pixel 

assignment. Segmentation performance using the proposed algorithm was found to be 

limited in the separation of different sea ice types. Another study tested dual polarized 
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SAR data of different ice types with a multivariate Gaussian maximum likelihood 

classifier and two neural network classifiers (Orlando et al., 1990). The Gaussian 

assumption was not always reasonable, especially for the case of icebergs. Neural 

networks classifiers were found to have a similar performance as the Gaussian classifier. 

Again, the user does not have the advantage of a multi-scaling approach which can be 

achieved by the multilevel segmentation of the data. Users can not select specific 

segments, which can be of interest for the case study, for further segmentation.  

 

1.1.2 Approaches Based on Agglomerative Clustering 

 

Different approaches for polarimetric SAR segmentation using the agglomerative 

clustering technique were also presented. Pellizzeri et al. (2003) discussed a segmentation 

approach, named Polarimetric Merge Using Moments (POL MUM), based on a 

Maximum Likelihood (ML) Split-Merge test between adjacent regions and a region 

growing scheme. A likelihood ratio test is used as merging criterion for segments. The 

POL MUM was found to be appropriate for homogeneous large region identification 

(Pellizzeri et al., 2003).  

A hierarchical optimization process using small sets of pixels as segments was 

implemented (Beaulieu and Touzi, 2002). Segment pairs that minimize a stepwise 

criterion are merged. The proposed criterion is based upon the testing of the equality of 

covariance matrices of adjacent regions, by calculating their difference of determinant 

logarithms. An agglomerative clustering scheme using the H/A/α and the additional 

information of the total backscattering power (SPAN) was discussed in Cao et al. (2007). 

Herein, the Wishart test statistic distance is used in order to merge clusters into an 

appropriate number of classes. The drawback of the used merging criteria in the 

previously discussed studies is that the used similarity criteria depend on the number of 

pixels in the tested clusters/segments. Thus, these criteria are reasonable when the tested 

segments have comparable number of pixels. A merging criterion independent of the 

number of pixels in each segment was used in Lee et al. (2001). Herein, the used criterion 

is based on the dispersion of the classes and the between-class distance. A hierarchical 
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stepwise optimization process was developed for polarimetric SAR segmentation based 

on a likelihood approximation approach (Beaulieu and Touzi, 2004). A stepwise 

optimization algorithm merges hierarchically the two segments that produce the smallest 

decrease in a defined log-likelihood function. 

An agglomerative segmentation approach for dual polarized data, using the 

Mahalanobis distance was presented in  Du et al. (2002). This approach is based on the 

statistics of both the amplitude variations and the textural characteristics of the dual 

polarized SAR data. Yu (2009) used the Multivariate Iterative Region Growing with 

Semantics (MIRGS) algorithm for dual polarized SAR data segmentation of sea ice. This 

algorithm is based on the Markov Random Field (MRF). A watershed over-segmentation 

is applied on the data to initialize the agglomerative clustering. A drawback of the 

MIRGS algorithm is that it is highly sensitive to the initial conditions (Qin and Clausi, 

2010). 

 

1.2 Motivation and Problem Statement 

 

It is stated clearly in the previous section that new segmentation methodologies 

are required to fill some of the existing gaps in the field of polarimetric SAR 

segmentation and overcome part of the drawbacks of the existing segmentation 

approaches.  In the case of polarimetric SAR segmentation using the divisive clustering 

technique, a nonparametric segmentation approach can overcome the need to assume a 

statistical distribution for the data. Furthermore, the produced segments in the case of full 

polarimetric SAR should not only be homogeneous with regard to the amplitude values, 

but also with regard to the scattering information of the segment pixels. Continually, this 

scattering information can be used as additional polarimetric information for the later 

classification approach of segments into semantic objects. Multi-leveling in the 

segmentation approach will help the user to select the desired segmentation scale and 

choose segments of interest for further segmentation. Criteria can be defined to control 

the additional segmentation.  
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In the case of polarimetric SAR segmentation using the agglomerative clustering 

technique, a place still exists for a new distance criterion for merging segments. This 

criterion should be independent of the number of pixels in segments. Furthermore, it 

should better address the similarity of two clusters/segments. This can be achieved by a 

distance criterion which is based on the statistical characteristics of the distributions of 

clusters under investigation.  

 

1.3 Research Objectives 

 

This research study has two main objectives:  

1) The development of new divisive segmentation methodologies, for full and dual 

polarimetric SAR data, that go beyond the traditional segmentation methods and 

overcome the pre-mentioned drawbacks.  

 

The following secondary objectives are defined to reach the first main objective: 

� Establish new divisive segmentation methodologies without a priori 

assumption about the underling density function. 

� Establish new divisive segmentation methodologies that work 

hierarchically in a multilevel scheme.   

� For the case of full polarimetric SAR, develop a divisive segmentation 

approach which includes the analysis images produced by polarimetric 

decomposition methods in order to consider and maintain the information 

of the scattering mechanisms in the segmentation process.  

  

2) The proposal of a new probabilistic distance for polarimetric SAR segmentation 

using agglomerative clustering, which can better quantify the similarity between 

clusters. 

 

The following secondary objectives are defined to reach the second main objective: 
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� Derive a probabilistic distance criterion that measures statistically the 

similarity between two complex Wishart distributions. 

� Derive a probabilistic distance criterion that is independent of the number 

of samples (pixels) in each distribution. 

   

1.4 Thesis Structure 

 

Besides to this introduction chapter, this thesis contains five additional chapters. 

Chapter 2 explores the basic polarimetric SAR concepts, including the polarimetric SAR 

decomposition methods which were involved in this research. Chapter 3 presents the full 

and dual polarimetric SAR data used. Also, the study areas are discussed. Chapter 4 deals 

with the development of two divisive segmentation methodologies for full and dual 

polarimetric SAR data. In Chapter 5, a new probabilistic distance, the Wishart Chernoff 

distance, is derived and included in an agglomerative clustering approach for the 

unsupervised segmentation of full polarimetric SAR data. A final chapter is dedicated to 

the presentation of the main findings and conclusions of this research, with an assessment 

of the aimed objectives and some recommendations for future work.   
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Chapter Two: Basic Polarimetric SAR Concepts 

 

In this chapter, a brief background about radar polarimetry is provided. 

Fundamental concepts related to polarimetric scattering matrix and vector are discussed. 

Moreover, the basic polarimetric decomposition methods are presented.   

 

2.1 Radar Polarimetry Historical Background 

 

The earliest studies on polarimetric radar firstly appeared at the end of the forties. 

The concept of radar polarimetry initiated by the important work of Sinclair (1950) who 

introduced the scattering matrix (also known Sinclair matrix). Later pioneering work was 

done by Kennaugh (1952), who defined the concept of optimal polarization for a target in 

the monostatic case and whose ideas were the basis of further advances throughout the 

fifties and sixties, and by Huynen (1970), who introduced the concept of target 

decomposition and generated the first decomposition techniques. Their work was taken 

up by Boerner (1981), who theoretically demonstrated the importance of polarization in 

various inverse problems at different frequency bands.       

The availability of the first polarimetric SAR data acquired by the NASA/JPL 

AIRSAR imaging polarimetric system (van Zyl et al., 1992) was a fundamental turning 

point in radar polarimetry. Since the launch of the Seasat satellite in 1978, several SAR 

missions have been operating. Notable missions are summarized in Table 2.1. 

When two or more coherent SAR images of the same scene are formed from 

slightly different look directions, the complex correlation between pairs of images can be 

evaluated and the system is said to operate as a SAR interferometer (InSAR) (Lavalle, 

2009). Graham (1974) presented firstly the basic principles of InSAR. The first attempt 

of single-pass interferometry is attributed to Zebker and Goldstein (1986). The twin ESA 

satellites ERS-1/2 allowed the demonstration of repeat-pass interferometry.   
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Satellite Band Agency Year launched 

Seasat L Jet Propulsion Laboratory (JPL) 1978 

SIR-C C National Aeronautics and Space 

Administration (NASA) 

1994 

ERS-1/2 C European Space Agency (ESA) 1991 and 1995 

J-ERS L Japanese Space Agency (JAXA) 1992 

RADARSAT-1/2 C Canadian Space Agency (CSA) 1995 and 2007 

ENVISAT/ASAR C ESA 2002 

ALOS/PALSAR L JAXA 2006 

TerraSAR-X X German Aerospace Center (DLR) 2009 

TanDEM-X X DLR 2010 

Table 2.1: Notable SAR missions 

 

2.2 Polarimetric Scattering Vector 

 

A scattering matrix S is an array of four complex elements that describes the 

transformation of the polarization of a wave pulse incident upon a reflective medium to 

the polarization of the backscattered wave. The scattering matrix S contains information 

about the radar target (Hellmann, 1999). 

 









=

VVVH

HVHH

SS

SS
S      

(2-1) 

 

where Sij are the complex scattering amplitude (the first subscript represents the 

polarization of the incident wave, and the second the polarization of the scattered wave). 

Its elements are, in general, complicated and sensitive function of frequency, target 

orientation and shape, relative orientation of the polarization planes in the bistatic case, 

etc. (Alberga, 2004). The diagonal elements SHH and SVV are called co-polarized elements, 

while the off-diagonal elements SHV and SVH are called cross-polarized elements.  
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Polarimetric scattering can be alternatively addressed in a vectorial formulation. 

Thus, instead of the matrix notation, one may use a four-element-complex vector k
r

 

which contains the complete information of the scattering matrix S, (Hellmann, 1999; 

Papathanassiou, 1999) 

 

[ ] )(Tr
2

1
Ψ= Sk

r
    (2-2) 

         

where Tr denotes the trace of a matrix (the sum of its diagonal elements), and Ψ is a 

complete set of 2 x 2 complex basis matrices under a hermitian inner product. Two bases 

are widely used in the literature. The first one is the lexicographical basis which contains 

the following four basis matrices (Papathanassiou, 1999) 

 































=Ψ 10

002 ,01
002 ,00

102 ,00
012B .  

(2-3) 

 

The corresponding scattering vector Bk
r

, obtained using the lexicological basis is 

 

[ ]TVVVHHVHHB SSSSk ,,,=
r

   (2-4) 

 

where T denotes the transpose of the vector. This scattering vector contains the complex 

amplitudes of the scattering matrix. Thus, it is related directly to the system measurable 

(Hellmann, 1999).   

The second important basis is the Pauli, which is formed by the Pauli spin 

matrices (Cloude and Pottier, 1996) 

 













 −













−



=Ψ 0

02,01
102,10

012,10
012

i
i

P .  
(2-5) 

 

The corresponding scattering vector Pk
r

, obtained using the Pauli basis, is  
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[ ]THVVHVHHVVVHHVVHHP SSiSSSSSSk )(,,,
2

1
−+−+=

r
.  

(2-6) 

 

The advantage of the Pauli basis is that the obtained scattering vector is closely related to 

the physics of the wave scattering.  

In the case of backscattering in a reciprocal medium, the scattering matrix is 

symmetric, i.e., VHHV SS = . Consequently, the four-dimensional scattering vector in its 

representation in lexicological basis can be reduced to a three-dimensional vector 

 

[ ]TVVHVHHB SSSk ,2,=
r

.   (2-7) 

 

For the Pauli basis, the scattering vector takes the explicit form 

 

[ ]THVVVHHVVHHP SSSSSk 2 , ,
2

1
−+=

r
. 

(2-8) 

 

Both scattering vectors contain the same information only in different representations. 

 

2.3 Deterministic and Non-deterministic Scatterers 

 

Deterministic scatterers can be described completely by a single scattering matrix 

or vector. For remote sensing SAR applications, the assumption of pure deterministic 

scatterers is not valid. Thus, scatterers are non-deterministic and can not be described 

with a single scattering matrix or vector. This is because the resolution cell is bigger than 

the wavelength of the incident wave. Non-deterministic scatterers are spatially 

distributed. Therefore, each resolution cell is assumed to contain many deterministic 

scatterers, where each of these scatterers can be described by a single scattering matrix Si. 

Therefore, the measured scattering matrix S for one resolution cell consists of the 

coherent superposition of the individual scattering matrices Si of all the deterministic 

scatterers located within the resolution cell (Papathanassiou, 1999). 
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An ensemble average of the complex product between the lexicological scattering 

vector Bk
r

 and T

Bk *
r

 leads to the so-called polarimetric covariance matrix C, (Touzi et al., 

2004). 
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where .....  denotes a spatial ensemble averaging assuming homogeneity of the random 

scattering medium and * the complex conjugate. Analogously, the so-called polarimetric 

coherency matrix T is formed using the outer product of the Pauli scattering vector Pk
r

 

 





















−+

−−+−

+−++

=⋅=

2**

*2*

**2

*

4)((2)((2

)((2))((

)((2))((

HVVVHHHVVVHHHV

VVHHVVHHVVHHVVHH

VVHHVVHHVVHHVVHH

T
PP

SSSSSSS

SSSSSSSSS

SSSSSSSSS

kkT
HV

HV

rr  

(2-10) 

 

The relationship between the covariance matrix C and the coherency matrix T is 

linear. Both matrices are full rank, hermitian positive semidefinite and have the same real 

non-negative eigenvalues but different eigenvectors. Moreover, both matrices contain the 

complete information about variance and correlation for all the complex elements of the 

scattering matrix S, (Hellmann, 1999).      

 

2.4 Polarimetric Scattering Mechanisms  

 

In a radar image, each pixel represents an estimate of the radar backscattering 

from the corresponding area in the ground. Brighter areas in a radar image represent high 

backscattering due to the fact that larger fraction of the radar energy is reflected back to 

the radar while darker areas indicate that less energy is reflected. Backscattering recorded 

on the image is a function of the surface roughness. In the scale of most remote sensing 
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wavelengths, vegetation is treated as a rough surface and appears grey or light grey in a 

radar image. In urban areas, where the transmitted radar waves are able to bounce off the 

streets and then again bounce off the buildings (double bounce) and return back to the 

radar, they appear very bright in the radar image. Smooth surface, e.g., non wavy ocean, 

appears dark because of the reflection of the incident waves away from the radar. Four 

types of scattering mechanisms are discussed below, the smooth surface, rough surface, 

double bounce and volume scattering mechanisms; see Figure 2.1. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.1: a) Scattering from smooth surface, b) Scattering from rough surface, c) 

Double bounce scattering, d) Volume scattering. 

 

• Smooth Surface Scattering 

 

The incident waves on a smooth surface are reflected in the forward direction 

away from the radar, Figure 2.1a. Only a small fraction of the radar energy is returned 

back to the radar antenna. Thus, smooth surfaces appear dark in the radar images. 

However, when a smooth surface is tilted towards the radar, almost all the energy is 

returned back to the radar and the backscattering will be very high. Smooth rocks, water 

and bare soil are the types of surfaces that would show smooth surface scattering.     

 

• Rough Surface Scattering 

 

As shown in Figure 2.1b, the incident waves on a rough surface are scattered in 

all directions. Part of the incident waves is reflected back to the radar antenna. The 

rougher the surface is, the higher the backscattered signals. Thus, rough surfaces appear 
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bright in a radar image. Surfaces, such as wavy ocean and soil with clumps, behave as 

rough surfaces.  

 

• Double Bounce Scattering 

    

In this case, the incident waves hits two surfaces, horizontal and adjacent vertical, 

and almost all of incident waves return back to the radar antenna, Figure 2.1c. Thus, the 

backscattering from areas with double bounce scattering is very high. Double bounce 

scattering occurs commonly in urban areas where roads and buildings, representing 

horizontal and adjacent vertical surfaces, are existed.  

 

• Volume Scattering 

 

Volume scattering is caused by randomly oriented scatterers, such as vegetations 

and forest canopy. As shown in Figure 2.1d, the incident waves penetrate the vegetation 

layer or forest canopy, where scatterers are randomly oriented in all directions, and get 

scattered partially back to the radar antenna. Volume scattering gives rise to the cross 

polarization (HV or VH). 

In general, the penetration capabilities and the attenuation depth of a radar signal 

in a medium, such as soil or forest canopy, increase with the increasing of the signal 

wavelength (Grandjean et al., 2001). Figure 2.2 presents the penetration of radar signals 

for different bands. As shown in Figure 2.2, a forest area exhibits volume scattering in the 

case of C-band signals due to the fact that signal penetration is limited, and thus the 

scattering process takes place in the forest canopy. In the case of L-band signals, the 

penetration capabilities are high. Herein, the scattering process is from trunk-ground 

interaction (double bounce). Very rough surfaces exhibit volume scattering in the case of 

short wavelength signals, X-band.    
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Figure 2.2: Radar signal penetration for different bands. 

 

2.5 Polarimetric Decomposition Methods 

 

The main characteristic of SAR polarimetry is that it allows the discrimination of 

different types of scattering mechanisms (Zhang et al., 2010). This becomes possible 

because the observed polarimetric signatures depend mainly on the actual scattering 

process. In comparison to conventional single-channel SAR, the inclusion of SAR 

polarimetry consequently can lead to a significant improvement in the quality of 

classification and segmentation results (Reigber, 2001). Certain polarimetric scattering 

models (Cloude and Pottier, 1996) even provide a direct physical interpretation of the 

scattering process, allowing an estimation of physical ground parameters like soil 

moisture and surface roughness (Cloude et al., 1999), as well as unsupervised 

classification methods with automatic identification of different scatterer characteristics 

and target types. 

The objective of target decomposition theory is to express the average scattering 

mechanism as the sum of independent elements to associate a physical mechanism with 

each component (Touzi et al., 2004).  Therefore, the polarimetric decomposition 

techniques split the backscattered signal into a sum of scattering contributions with 

orthogonal polarimetric signatures (Cloude and Pottier, 1996). This can be used for 
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extracting the corresponding target types in the SAR image. Thus, different 

decomposition approaches have been proposed in order to analyze and interpret SAR 

polarimetric images. They are based either on the complex voltage reflection matrix, like 

Pauli, or on power reflection matrix, like the covariance or coherency matrix. They 

produce polarimetric parameters which are appropriate to retrieve information on the 

scattering process of the target (Cloude and Pottier, 1996) 

Target decomposition theories can be distinguished into coherent and incoherent 

(Lee and Pottier, 2009). Coherent target decomposition is applicable when the scattered 

wave is completely polarized. Consequently, coherent decomposition techniques, such as 

the Pauli (Cloude and Pottier, 1996), the sphere/deplane/helix (Krogager and Czyz, 1995) 

and the Cameron decomposition (Cameron et al., 1996), can be applied in the case where 

the radar target is deterministic. On the other hand, incoherent target decomposition is 

applicable when the scattered wave is partially polarized. Consequently, incoherent 

decomposition techniques, such as the Cloude-Pottier (Cloude and Pottier, 1997), the 

Freeman-Durden (Freeman and Durdan, 1998), the Moriyama decomposition (Moriyama 

et al., 2005), can be applied in the case where the radar target is non-deterministic.  

The Cameron decomposition is applicable to bright discrete targets in a scene 

where speckle is not a problem (Cameron et al., 1996). In the case of 

sphere/deplane/helix decomposition, speckle filtering can not be applied. The Moriyama 

decomposition method is fit for urban areas and can be used for urban structure extraction 

(Moriyama et al., 2005). Thus, in this research, the Pauli, Freeman-Durden, and Cloude-

Pottier decomposition methods are considered in the proposed segmentation 

methodologies. The analysis images of Pauli and Freeman-Durden are used as input in a 

multilevel segmentation approach (Chapter 4). The three polarimetric parameters of 

Cloude-Pottier decomposition are involved in an agglomerative clustering approach for 

unsupervised segmentation of polarimetric SAR data. Below, the three decomposition 

methods considered in this research are discussed. 
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2.5.1 The Pauli Decomposition method 

   

The Pauli decomposition method is one of the basic SAR polarimetric data 

analysis methods. It is a coherent decomposition method where the target scattering 

matrix is expressed in terms of the Pauli matrices (Cloude and Pottier, 1996). These 

matrices correspond to elementary scattering mechanisms that lead to a physical 

interpretation of the scattering process. This method interprets the surface, double bounce 

and 45o tilted double bounce scattering mechanisms, Table 2.2. 

 

Pauli matrix Scattering mechanism Interpretation 







10
01  

surface Surface, sphere, trihedral 







−10
01  

double bounce dihedral 







01
10  

45o tilted double bounce 45o tilted dihedral 

Table 2.2: Pauli matrices and their interpretation. 

 

The Pauli components are computed as follows: 

 

Pauli1 (double bounce) = VVHH SS −    

Pauli2 (45o tilted double bounce) = HVS2       

Pauli3 (surface) = VVHH SS +  

 

Thus, the backscattering from a general target can be seen as the sum of backscatter from 

a trihedral and two dihedrals with different tilt angles, Figure 2.3. 
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Figure 2.3: Backscattering decomposition into trihedral and two dihedrals with 

different tilt angles. 

 

Although the Pauli decomposition method is coherent, it is used in the case of 

non-deterministic targets. Herein, the Pauli decomposition is called Pauli representation 

and the resulting analysis images can be used for polarimetric SAR segmentation 

(Karathanassi and Dabboor, 2004; Dabboor and Karathanassi, 2005; Lee et al., 2001; 

Dabboor et al., 2010a; Duquenoy et al., 2009; Kourgli et al., 2010). The advantage of the 

Pauli decomposition is that it is simple and yields a lot of information about the data 

(Hellmann, 1999). The practical disadvantage of the Pauli decomposition is that the 

double bounce scattering mechanism shows up in two different components, one that 

represents an unrotated dihedral and another represents a 45o tilted dihedral (Hellmann, 

1999).  

 

2.5.2 The Cloude-Pottier Decomposition Method 

 

The Cloude-Pottier decomposition method is incoherent decomposition method 

based on the eigenvector/eigenvalue analysis of the coherency matrix T and was 

presented by Cloude and Pottier (1997). Due to the fact that the coherency matrix T is 
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hermitian positive semidefinite matrix, it can always be diagonalized using unitary 

similarity transformations. That is, the coherency matrix can be given as 

 

TUUTUUT *

300
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001
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(2-11) 

 

where Λ is the diagonal eigenvalue matrix of T, 0321 ≥≥≥ λλλ  are the real eigenvalues 

and U is a unitary matrix whose columns correspond to the orthogonal eigenvectors of T.  
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where β  and α represents the orientation of the radar target about the radar line of sight 

and the alpha angle, respectively.  

Important parameters can be derived based on the Cloude-Pottier decomposition. 

The entropy (H) is defined by the logarithmic sum of the eigenvalues (Cloude and 

Pottier, 1997): 

 

333232131 logloglog PPPPPP −−−=Η         where 

∑
=

=
3

1j

j

i
iP

λ

λ
   

(2-13)  

 

This parameter is an indicator of the number of effective scattering mechanisms that take 

place in the scattering process, whereby H = 0 belongs to deterministic scattering and H = 

1 to totally random scattering (Lee and Pottier, 2009). 

The anisotropy (A), the second physical feature, describes the proportions 

between the secondary scattering mechanisms (Pottier and Pottier, 1999):  
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The anisotropy A yields additional information only for medium values of H. A high 

anisotropy signifies that besides the first scattering mechanism only one secondary 

process contributes to the radar signal. A low anisotropy signifies that both secondary 

scattering processes play an important role. 

Another polarimetric parameter is the alpha angle (α), which represents the type 

of the scattering mechanism and ranges between 0 and 90o. It is evaluated as (Cloude and 

Pottier, 1997):  

 

332211 αααα PPP ++= .    (2-15) 

 

α = 0 indicates surface scattering, Figure 2.4. As the α angle increases, the surface 

becomes anisotropic. An α-value of 45o represents a dipole scattering. If α reaches 90o, 

the scattering process is characterized by double bounce interactions.  

 

 

Figure 2.4: The α angle values and the corresponding scattering mechanisms. 

 

The three parameters of the Cloude-Pottier decomposition are widely used in the 

unsupervised segmentation of polarimetric SAR data (Hellmann, 1999; Cloude and 

Pottier, 1997; Dabboor and Karathanassi, 2005; Park and Moon, 2007; Lee et al., 1999a; 

Cao et al., 2007; Pottier and Lee, 1999).  

 



21 

 

 

Figure 2.5: Segmentation of the polarimetric SAR data based on the entropy and 

alpha angle. 

 

The entropy and alpha parameter can be combined together in a two-dimensional space. 

The two-dimensional space can be divided into eight zones (Cloude and Pottier, 1997) 

providing an unsupervised classification of the polarimetric SAR data into eight classes, 

Figure 2.5. The eight zones become sixteen by involving the anisotropy parameter and 

producing a three-dimensional space of the entropy, alpha angle and anisotropy (Pottier 

and Pottier, 1999). In this case, the polarimetric SAR data can be segmented into sixteen 

classes, Figure 2.6. Zone boundaries in the two/three-dimensional space are arbitrary 

fixed, resulting in noisy segmentation results (Lee et al., 1999a). However, the resulting 

segmentation is usually used as initial segmentation in different Polarimetric SAR 

segmentation algorithms (Lee et al., 1999a; Park and Moon, 2007; Cao et al., 2007; 

Dabboor et al., 2010c). 
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Figure 2.6: Segmentation of the polarimetric SAR data based on the entropy, alpha 

angle and anisotropy. 

 

2.5.3 The Freeman-Durden Decomposition Method 

 

This decomposition method is particularly well adapted to the study of vegetated 

areas and relies on the conversion of a covariance matrix to a three-component model. 

The results of this decomposition are three coefficients corresponding to the weights of 

different model components. A 3x3 covariance matrix C can be decomposed to a sum of 

three components, corresponding to volume scattering, surface scattering and double 

bounce scattering, (Freeman and Durdan, 1998) 

 

[ ] [ ] [ ]ddssvv CfCfCfC ++= .  (2-16) 

 

The volume scattering component is obtained by averaging an oriented dipole canonical 

covariance matrix )(φU  over a constant distribution of the azimuthal orientation angle 

between -180o and 180o.  
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The surface scattering term is directly parameterized using the first order Sinclair matrix 

of a horizontal rough surface (Freeman and Durdan, 1998) 
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Rh and Rv are the reflection coefficients for horizontal and vertical polarization, 

respectively. ℜ  denotes the set of all real numbers. The double bounce scattering term is 

built from the Sinclair matrix of a Fresnel double bounce reflection (Freeman and 

Durdan, 1998) 
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where )/()(2
tvgvthgh

i
RRRRe vh γγα −= . 

 

Rth and Rtv are the reflection coefficients of the vertical surface (e.g., the trunk) for 

horizontal and vertical polarization, respectively; Rgh and Rgv are the Fresnel reflection 

coefficients of the horizontal surface (the ground) and γ are complex numbers, which 

represent any attenuation and phase change of the vertically and horizontally polarized 

waves as they propagate from the radar to the ground and back again. 

The advantage of the Freeman-Durden decomposition method is that it is a 

model-fitting approach based on the physics of radar scattering, not a purely 

mathematical construct (Pottier and Ferro-Famil, 2009). However, this decomposition 

method was developed under the assumption of reflection symmetry that makes its results 



24 

 

not roll invariant. Variations of targets’ orientations with respect to the radar look 

direction may cause misclassification (Lee et al., 2004). For example, buildings not 

aligned facing the radar look direction do not induce double bounce scattering, and they 

are categorized as volume scattering because of the higher cross-polarization returns.    
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Chapter Three: Polarimetric SAR Data and Study areas 

 

In this chapter, the polarimetric SAR data used in this research are presented. In 

addition, the study areas considered in this thesis are introduced. Three polarimetric data 

sets are used herein. Two sets of full polarimetric SAR data acquired by the Japanese 

Advanced Land Observation Satellite (ALOS) and the Canadian RADARSAT-2 satellite 

and a third set of dual polarized SAR data acquired by the German satellite TerraSAR-X. 

The TerraSAR-X satellite includes a full polarimetric SAR mode. However, this mode is 

still in an experimental stage.    

 

3.1 ALOS Full Polarimetric SAR Data 

 

The ALOS satellite carries a spaceborne polarimetric SAR sensor and was 

successfully launched in January 2006. It has three remote-sensing instruments: the 

Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) for Digital 

Elevation Models (DEMs), the Advanced Visible and Near Infrared Radiometer type 2 

(AVNIR-2) for precise land coverage observation, and the Phased Array type L-band 

(wavelength: 15-30 cm, frequency: 2.000-1.000 MHz) Synthetic Aperture Radar 

(PALSAR) for day-and-night and all-weather Earth surface observation. Since the ALOS 

full polarimetric SAR data will be used in this thesis, the polarimetric mode of the 

satellite is reviewed here. Table 3.1 summarizes the system parameters of the 

polarimetric mode (Shimada et al., 2005).   

 

System Parameters Values 

Off nadir angles 7.9o – 30.1o 
Swath Width 30.6 km at off nadir 21.5 
Range Resolution 30.2 m (ground range) 
Azimuth Resolution 20 m (4 look) 

 

Noise Equivalent Sigma-Zero 

(NESZ) 

better than -30 dB 

Table 3.1: System parameters of ALOS polarimetric mode.  
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In this research, ALOS full polarimetric SAR data (Level 1.1 Quad Polarimetric 

Mode), acquired in May 2007 with slant range resolution 9.5m and azimuth resolution 

4.5m, are used (Sato et al., 2007). The original data have dimensions of 1248x18432 

pixels, Figure 3.1a. The study area center coordinates are: 3o 49' 34'' W, 51o 22' 56'' N, 

which is located in the southern United Kingdom as shown in Figure 3.1c. In Figure 3.1b, 

an AVNIR-2 RGB optical image (acquired in June 2006 with 10m resolution) of the 

study area is presented. Based on an investigation of both the available map of the study 

area and the optical image, the selected study area is characterized by different land cover 

types, such as agricultural fields and croplands, two forest types (continuous and 

deciduous forests), urban areas, natural grassland and ocean. Unfortunately, a legend for 

the map of the study area is not available. However, the main land cover types of the area 

can be easily understood by comparing the map with the optical image. 

 

 

(a) 

 

(b) 
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(c) 

Figure 3.1: a) RGB of the ALOS polarimetric SAR data (red = 22T , green = 33T , blue 

= 11T ), b) AVNIR-2 RGB optical image of the study area (the study area is 83km N-

S and 12km W-E), c) A map of the study area. 
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3.2 RADARSAT-2 Full Polarimetric SAR Data 

 

RADARSAT-2 is an Earth observation satellite that was launched in December 

2007. It is a Synthetic Aperture Radar (SAR) that acquires data at horizontal (HH), 

Vertical (VV) and cross (HV and VH) polarizations over a range of resolutions from 100 

to 3 meters and operates at C-band (wavelength: 3.8-7.5 cm, frequency: 8.000-4.000 

MHz). Thus, three polarimetric modes are offered by this satellite: selectable linear 

polarization, selectable dual polarization and quad polarimetric. One of the particular 

characteristics of RADARSAT-2 is the capability of right- and left-looking. Table 3.2 

summarizes the system parameters of the quad-polarized mode (MDA, 2006). 

 

System Parameters Values 

Incident Angle 20 – 49 degree 
Swath Width 25 km 
Range Resolution 11 m 
Azimuth Resolution 9 m 

 

Noise Equivalent Sigma-Zero 

(NESZ) 

better than -30 dB 

     Table 3.2: System parameters of the quad-polarized mode of RADARSAT-2. 

 

RADARSAT-2 full polarimetric SAR data (Fine Quad Polarization) are also 

included in our research. Specifically, six images of the Churchill area in Manitoba are 

available. The town of Churchill is located on the shore of Hudson Bay. The climate of 

Hudson Bay is anomalously cold in comparison with other regions at similar latitudes 

because of the presence of a seasonally varying ice cover. However, the melting season 

became longer in the last few years and led to significant changes in the sea ice dynamics 

with associated changes in the ecosystem, including polar bear migration and permafrost. 

The RADARSAT-2 data were acquired between October 2009 and July 2010, see Figure 

3.2. A SPOT image (Figure 3.3a), acquired in the 3rd of September 2006 with a ground 

resolution of 20 meters, is also available. Additional map of the area, indicating the 

different land cover types, can be seen in Figure 3.3b.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 3.2: Full polarimetric RADARSAT-2 data of Churchill acquired in: a) 

October 31, 2009, b) December 18, 2009, c) January 24, 2010, d) April 3, 2010, e) 

May 21, 2010, and f) July 22, 2010.  
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(a) 
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(b) 

Figure 3.3: a) SPOT image of the Churchill area, b) Map of Churchill.   

 

Investigating the available SPOT image and map of the area, different land cover types 

can be identified. The area characterized by a large number of lakes of various sizes. 

These lakes freeze during winter. Muskeg or swamps also exists in forested (boreal 

forest) and non-forested (tundra) areas. The Churchill River downstream which empties 

into Hudson Bay can be seen as well. Furthermore, the area contains urban blocks, 

Churchill town and airport.  
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3.3 TerraSAR-X Dual Polarized SAR Data 

 

The TerraSAR-X satellite was launched successfully in June 2007. It is a new 

generation of high resolution satellite operating with an X-band (wavelength: 2.4-3.8 cm, 

frequency: 12.500-8.000 MHz) and is an advanced and operational SAR satellite system 

for both scientific and commercial applications. TerraSAR-X uses a dual receive antenna 

mode (DRA) to measure the full scattering matrix. This is done by the alternating 

transmission H and V polarization pulses and receiving simultaneously H and V by the 

two receiving antennas. The small wavelength and the slant range resolution of one meter 

and better for stripmap and spotlight mode allows the monitoring of small man-made 

structures. Right now, only dual polarized SAR data are available. The full polarimetric 

mode is still in an experimental stage. Table 3.3 summarizes the system parameters of the 

polarimetric mode (Hajnsek and Eineder, 2005).  

 

System Parameters Values 

Incident Angle 20o – 45o 
Swath Width 15 km 
Slant Range Resolution 1.9 m 
Ground Range Resolution 1 look 7 m and 6 look 15 m 

 

Noise Equivalent Sigma-Zero 

(NESZ) 

better than -16 dB 

Table 3.3: System parameters of TerraSAR-X polarimetric mode.  

 

In our research, dual co-polarized SAR data (HH and VV) are also included, 

Figure 3.4a and b. The data consist of single look slant range complex (SSC) with a 

ground range resolution of 2.2m and an azimuth resolution of 6m (strip-map mode), 

acquired in November 2007. The study area (701x701 pixels) is located in the southwest 

of the United Kingdom (centre coordinates: 50o 46' 23.8'' N and 3o 48' 0.4'' W), very close 

to the area where the ALOS data were acquired. This study area mostly exhibits various 

agricultural fields. Trees are used as fences, surrounding the agricultural fields. Man-

made objects, such as roads and buildings, exist as well. Figure 3.4c shows an optical 

image of the study area. 
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(a) 

 

(b) 

 

(c) 

Figure 3.4: a) The TerraSAR-X HH image before speckle filtering, b) The VV image 

in the same area, c) Optical image of the study area (Source: Google Earth aerial 

image 31 May 2006). 
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Chapter Four: Polarimetric SAR Divisive Clustering 

 

In this chapter, two segmentation methodologies for polarimetric SAR data using 

the divisive clustering technique are discussed. The first one is for full polarimetric SAR 

data while the second is for dual polarized SAR data. Segmentation results of the full 

polarimetric SAR data are compared with the results obtained based on the k-means 

complex Wishart algorithm. For the dual polarized SAR data, segmentation results are 

compared with the resulting segments by the segmentation algorithm of the eCognition 

software package.   

 

4.1 Introduction 

 

The purpose of this chapter is to present two multilevel divisive segmentation 

methodologies for full and dual polarized SAR data. Both methodologies are 

nonparametric in the sense of overcoming the need for the a priori assumption about the 

underlying density function of the data, which is not always valid (Beaulieu and Touzi, 

2004).   

In the case of full polarimetric SAR data, segmentation is performed using the 

analysis images of polarimetric decomposition methods, such as Pauli (Cloude and 

Pottier, 1996) and Freeman-Durden (Freeman and Durdan, 1998), as input data. The 

proposed methodology (Dabboor et al., 2010a) goes beyond the previously discussed 

studies by segmenting the input data based on: 1) the hierarchicalization of the scattering 

mechanisms and 2) the thresholding of the amplitude histograms of the dominant 

scattering mechanisms using a nonparametric histogram thresholding algorithm. Thus, 

homogeneous segments with regard to the amplitude of the dominant scattering 

mechanism, in which the scattering information is preserved, are produced. 

Consequently, the proposed methodology is adaptable to the cases where the assumption 

of a single statistical distribution, complex Wishart distribution when spatial texture is 

absent and k-distribution when spatial texture exists (Beaulieu and Touzi, 2004), is not 

enough. In other words, the proposed segmentation methodology is applicable when both 
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textured and/or non-textured regions are contained in a study area. Furthermore, the 

pixels which constitute the resulting segments, in contrast to the resulting segments of the 

traditional segmentation methodologies, have the same dominant and second most 

significant scattering mechanisms.    

In the case of dual polarized SAR data, the proposed methodology (Dabboor et 

al., 2010b) entails the thresholding of the histograms of the two SAR channels using the 

nonparametric histogram thresholding algorithm. Consequently, assumptions about the 

underlying statistical distribution are not needed in this methodology. This methodology 

combines the thresholded histograms of the two SAR channels in a two dimensional 

histogram-based space, and produces subspaces responsible for the data segmentation. 

 

The two developed methodologies have in common: 

• The use of a nonparametric histogram thresholding algorithm. 

• Both involve the multi-levelling/multi-scaling concept. The user has the 

advantage of choosing the desired segmentation scale and selecting specific 

segments for further segmentation as opposed to continue segmentation on a 

global scale.   

 

Before discussing the two segmentation methodologies, the used nonparametric 

histogram thresholding algorithm is presented in the following section.    

 

4.2 Delon’s Histogram Thresholding Algorithm 

 

Histograms have been extensively used in image analysis, and more generally in 

data analysis, mainly for two reasons (Delon et al., 2007): 1) they provide a compact 

representation of large amounts of data, and 2) it is often possible to infer global 

properties of the data from the behaviour of their histogram. In image processing, many 

approaches have been proposed for image segmentation (e.g., Haralick and Shapiro, 

1985; Pal and Pal, 1993). Among the proposed approaches are those based on histogram 

thresholding. A proper segmentation of the image can be achieved by finding the 
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appropriate thresholds or intervals that separate the modes in the histogram (Figure 4.1), 

which is not a simple task. This is because a miscalculation of the appropriate thresholds 

or intervals leads to an over- or under-segmentation of the image.  

 

 

Figure 4.1: Three-mode scheme divided into three intervals. 

 

Image segmentation algorithms based on histogram thresholding are distinguished 

into parametric and nonparametric. Among the algorithms proposed for 1D histograms 

are the parametric algorithms, which assume the set of data as samples of mixtures of k 

random variables of a given distribution, as in the Gaussian mixture models; see Duda et 

al. (2000). In the parametric algorithms, a statistical distribution should be assumed for 

the data. However, a statistical distribution might not be enough to accurately describe 

the data content. For example, an image that contains textured and non-textured areas 

cannot be described by a single statistical distribution (Beaulieu and Touzi, 2004).  
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Nonparametric algorithms which give up any assumption on the underlying data 

density, such as bi-level and multilevel thresholding methods, are presented in Cheng and 

Sun (2000). The nonparametric algorithms usually require the number of modes to be 

predefined for histogram thresholding. The selection of this parameter is crucial since an 

incorrect choice leads to an over- or under-segmentation of the data. In case that this 

parameter is not required, too many modes in the histograms are detected. Delon et al. 

(2007) developed a nonparametric histogram thresholding algorithm which overcomes all 

of the above mentioned disadvantages. This algorithm can automatically determine the 

number of modes in a histogram to be thresholded.  

A histogram h is considered to be unimodal on an interval [a, b] if there is a point 

],[ bac ∈  such that h follows the increasing hypothesis on [a, c] (histogram has positive 

slope from a to c) and the decreasing hypothesis on [c, b] (histogram has negative slope 

from c to b). The algorithm starts by finding all local minima of the histogram plus the 

endpoints, producing the finest possible thresholding S = [s1, …, sn] where s1 = 1 and sn 

= L (the number of bins). The pair of intervals on both sides of si can be merged into a 

single interval [si-1, si+1] if the histogram in this interval follows the unimodal hypothesis. 

A discrete histogram h = (hi)i=1….L, with N samples in L bins, follows the increasing (or 

decreasing) hypothesis in an interval [a, c] (or [c, b] for the decreasing hypothesis) if: 
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Herein, r(a, c) is the proportion of points in [a, c] and p(a, c) is the probability for a point 

to fall into the interval [a, c]. B(N, Nr(a, c), p(a, c)) is a binomial tail: 
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The probability p can be estimated from r based on the Pool Adjacent Violators 

algorithm, using the Grenander estimator (Grenander, 1981). Assuming an interval [a, c] 

in which the increasing hypothesis is to be tested (Figure 4.1), and considering a sub-

interval [i, j] in [a, c], in which ri ≥ ri+1 ≥ … rj, the Grenander increasing hypothesis of [a, 

c] is calculated as follows: 
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where rk = hk / N and hk is the number of samples that fall in the bin k. The Grenander 

operator D replaces each decreasing part of the interval [a, c] by a constant value equal to 

the mean value of the interval [i, j]. The same approach is applied to test the decreasing 

hypothesis of the interval [c, b]. 

 

4.3 Divisive Hierarchical Full Polarimetric SAR Segmentation  

4.3.1 Methodology 

 

A new divisive segmentation methodology for polarimetric SAR data is presented 

in this section. As mentioned previously, the proposed methodology goes beyond the 

traditional segmentation methods by exploiting: 1) the scattering information obtained 

from the polarimetric SAR decomposition methods, and 2) the inherent variations within 

the dominant scattering mechanism. Input data for segmentation are the analysis images 

produced by the polarimetric decomposition methods, such as the Pauli and the Freeman-

Durden methods.  

The first and the second segmentation levels in the proposed methodology exploit 

object preferences to specific scattering mechanisms, while the following additional 

levels are based on histogram thresholding. In the first level, the scattering mechanism 

space produced by the input data, i.e., the Pauli or Freeman-Durden images, is segmented 
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based on the dominant scattering mechanism that objects present. Three not obligatory 

coherent areas Si (i=3) are initially produced, where S1, S2, and S3 are assigned to the 

three scattering mechanisms provided by the analysis images. In the second level, 

accepting that objects due to their shape complexity can show preference to more than 

one scattering mechanism, areas are further segmented based on the second scattering 

mechanism that objects present. For example, areas where the scattering mechanism S1 is 

dominant are further segmented into subareas where: 1) the scattering mechanism S1 is 

the only significant mechanism and the other two mechanisms S2 and S3 are insignificant 

(S1S1), 2) the scattering mechanism S1 is dominant and the scattering mechanism S2 is 

significant (S1S2), and 3) the scattering mechanism S1 is dominant and the scattering 

mechanism S3 is significant (S1S3). A formula is experimentally established to define the 

significance of a scattering mechanism. An area labeled as S1 is further segmented into 

three subareas S1S1, S1S2 and S1S3, based on the following relations:  
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k represents a pixel which belong to the area S1, P1 is the normalized amplitude of the 

dominant scattering mechanism, P2 and P3 are the normalized amplitudes of the 

remaining two mechanisms. C is a threshold parameter calculated from the contribution 

percentage of the dominant scattering with regard to the total scattering for each area and 

defined as follows: 
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ni is the number of pixels in the area Si with dominant scattering mechanism Pi. The 

dominant scattering mechanism, as well as the second most significant scattering 

mechanism is considered due to the fact that they possess the major portion of the value 

of the total amplitude. For example, for the data set used in this research they possess 

approximately 82% of the total amplitude in the Pauli case and 92% of the total 

amplitude in the Freeman-Durden case. Thus, the third scattering mechanism can be 

neglected in the segmentation scheme.   

Once the segmentation based on the hierarchicalization of the scattering 

mechanisms is accomplished, further segmentation levels are produced in order to exploit 

inherent variations within the dominant scattering mechanism. Thus, in the third 

segmentation level, each subarea of the second level is further segmented based on the 

histogram of the dominant scattering component. Herein, the dominant scattering 

mechanism is used only because it represents the largest portion of the total 

backscattering. For example, for the data set used in this research, the dominant scattering 

mechanism possesses approximately 52% of the total backscattering amplitude for the 

Pauli case and 62% for the Freeman-Durden case. The user can define the subareas to be 

further segmented or allow the execution of the algorithm for the entire image. For each 

subarea the procedure entails the calculation of the histogram of the dominant scattering 

mechanism only and its thresholding into homogeneous regions using the nonparametric 

histogram thresholding algorithm proposed by Delon et al. (2007). Segments provided by 

the third segmentation level serve as input for a following level which exploits more 

inherent variations within the dominant scattering mechanism. The segmentation 

procedure terminates when the desired segmentation scale is achieved. A flowchart of the 

proposed segmentation methodology limited to three segmentation levels is shown in 

Figure 4.2. 
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Figure 4.2: Flowchart of the proposed multilevel segmentation methodology based 

on input data from Pauli or Freeman-Durden analysis. 

 

The proposed methodology can produce many levels depending on the desired 

segmentation scale. Hence it can be adapted to user needs and existing knowledge about 

the targets. Only three segmentation levels are presented and discussed herein, however, 

the method is not limited to three levels. Criteria, such as the number of pixels within a 

segment or the standard deviation of the amplitude value of dominant scattering 

mechanism of pixels in the segment, can be used to select segments for further 

segmentation. The amplitude histograms of the selected segments can be calculated and 

thresholded using the nonparametric histogram thresholding algorithm.  

 

4.3.2 Implementation 

 

4.3.2.1 Pre-processing 

 

The proposed segmentation methodology is applied to the available ALOS 

PALSAR polarimetric SAR data. An area of 333x329 pixels is selected with centre 

coordinates: 51o 12' 17.77'' N and 3o 28' 39.81'' W. Various land cover categories exist in 
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the selected area, e.g., forest, cropland, urban area (town of Minehead), and sea (Bristol 

Channel), each one including subcategories, e.g., the settlements include urban and 

suburban areas. Categories and subcategory presents a different microwave scattering 

behavior, resulting in a specific color in the RGB polarimetric images, Figure 4.4a.   

Before segmentation, speckle reduction is a required step for the elimination of 

noise and smoothing of the SAR images. Lee’s speckle filter which uses a multiplicative 

noise model, refined Lee filter (Lee et al., 1999b), and additive noise model (normal 

distribution with mean zero and standard deviation σ) was applied (Lee et al., 1991), and 

the Equivalent Number of Looks (ENL) (Anfinsen et al., 2008) were calculated in order 

to find the most appropriate filter and performance. Better noise despeckling was 

obtained using the multiplicative-noise-model Lee filter (mean ENL is 8, instead of 4 for 

the additive noise model). Thus, the Lee speckle filter with the multiplicative noise model 

is used in this study. Lee et al. (2001) has shown that the application of the refined Lee 

filter three times on simulated SAR data can better distinguish the different surface types 

(Figure 4.3).  

 

 

Figure 4.3: Image segmentation by speckle filtering using the refined Lee filter. 
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As a better discrimination between different surface types can be achieved by applying a 

Lee filter three times (Lee et al. (2001); Du et al. (2002)), the filter was applied three 

times. Figure 4.4b shows the results of applying a Lee filter with a window size of 7x7 

pixels to the polarimetric SAR data. This window size favors speckle reduction without 

producing over-smoothing, (Du et al., 2002; Park and Moon, 2007; Gao and Ban, 2008).  

Experiments with larger and smaller window sizes did not give the desired results.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.4: a) Polarimetric SAR image: Red = HH, Green = HV, Blue = VV, b) Data 

after removing speckle noise using the refined Lee filter three times, c) Pauli 

analysis images in RGB (Red = double bounce, Green = 45
o
 tilted double bounce, 

Blue = surface), d) Freeman-Durden analysis images in RGB (Red = double bounce, 

Green = volume, Blue = surface). 



44 

 

4.3.2.2 First Segmentation Level 

 

The Pauli analysis images and the Freeman-Durden analysis images are calculated 

from the polarimetric SAR image (Figures 4.4c and d). Each decomposition set of images 

is separately used as input data in the segmentation process. Using the Pauli analysis 

images, data are segmented based on the dominant scattering mechanism into: a) areas 

where the surface scattering mechanism is dominant ( P
SS ), b) areas where the double 

bounce scattering mechanism is dominant ( P
DS ), and c) areas where the 45o tilted double 

bounce scattering mechanism is dominant ( P
DS45 ). On the other hand, using the Freeman-

Durden analysis images, data are segmented based on the dominant scattering mechanism 

into: a) areas where the surface scattering mechanism is dominant ( FD
SS ), b) areas where 

the double bounce scattering mechanism is dominant ( FD
DS ), c) areas where the volume 

scattering mechanism is dominant ( FD
VS ). The first segmentation level results for the 

Pauli analysis images and the Freeman-Durden analysis images are shown in Figures 4.5a 

and b, respectively. Comparing the produced segments with the available optical image 

of the study area (Figure 3.1b) allows for the identification of correlations between land 

cover type and scattering mechanism: 1) For the case of Pauli analysis image (Figure 

4.5a), urban areas (pink color) appear to exhibit double bounce scattering mechanism, sea 

(blue) appears to exhibit surface scattering mechanism, and forest and cropland (green 

and black areas) show 45o tilted double bounce scattering. 2) For the case of Freeman-

Durdan image (Figure 4.5b), sea, urban and suburban areas exhibit the surface scattering 

mechanism as the dominant one. Only a few segments in the urban area show double 

bounce scattering. Cropland and forest (dark areas surrounded by green areas) exhibit the 

volume scattering mechanism.  
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(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

Figure 4.5: a) First segmentation level of Pauli data, b) First segmentation level of 

Freeman-Durden data, c) Second segmentation level of Pauli data, d) Second 

segmentation level of Freeman-Durden data, e) Third segmentation level of Pauli 

data, f) Third segmentation level of Freeman-Durden data. 

 

4.3.2.3 Second Segmentation Level 

 

Further segmentation can be obtained through a second segmentation level. In this 

level, except for the dominant scattering mechanism that appears in each area, the 

scattering mechanism with the second most significant value is taken into consideration. 

In this study, the value of the thresholding parameter C in (4-4) was found to be equal to 

0.51 and 0.61 for the case of Pauli and Freeman-Durden images, respectively. Thus, in 

the case of Pauli data, areas which are labeled as surface scattering  are further segmented 

into: a) subareas where surface scattering is dominant and the remaining scattering 

mechanisms (double bounce and 45o tilted double bounce) are insignificant ( P
SSS ), b) 

subareas where the surface mechanism is dominant and the double bounce mechanism is 

significant ( P
SDS ), and c) subareas where the surface mechanism is dominant and the 45o 

tilted double bounce mechanism is significant ( P
DSS 45 ). Areas in which double bounce 

scattering or 45o tilted double bounce scattering is dominant are divided in an analog 
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fashion. In the case of Freeman-Durden data, areas which are labeled as surface 

scattering  are further segmented into: a) subareas where surface scattering is dominant 

and the remaining scattering mechanisms (double bounce and volume) are insignificant 

( FD
SSS ), b) subareas where surface scattering is dominant and the double bounce 

mechanism is significant ( FD
SDS ), and c) subareas where surface scattering is dominant and 

the volume mechanism is significant ( FD
SVS ). Areas in which double bounce scattering or 

volume scattering is dominant are divided in an analog way. 

The results of the second segmentation level are shown in Figures 4.5c and d. It is 

obvious that more detailed segmentation was obtained for both Pauli and Freeman-

Durden images. Significant improvements can be seen in the Freeman-Durden 

decomposition image. Sea, urban and sub-urban areas (blue and pink areas) are clearly 

separated. However, since the second segmentation level is based on the scattering 

hierarchicalization only, variations of the amplitude values of scattering mechanisms 

even if these are considerably high are not considered yet. Thus, some segments do not fit 

to the RGB composite color variations. This issue will be faced in a third segmentation 

level.   

 

 

Figure 4.6: Variations of the amplitude values of the Surface scattering mechanism 

(dominant) for the subarea 
FD
SVS of the Freeman-Durden images. 
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Figure 4.6 presents an example of the variation in amplitudes of the scattering 

mechanisms. Herein, the variations of the amplitude values of the surface scattering 

mechanism (dominant) in the subarea FD
SVS  of the Freeman-Durden are plotted. 

 

4.3.2.4 Third Segmentation Level 

 

Further segmentation of the subareas is performed by computing and thresholding 

the amplitude histogram of the dominant scattering mechanism (P1) using the 

nonparametric histogram thresholding algorithm. Each histogram is divided into 

homogeneous regions. Thus, the histogram of each subarea, i.e., S1S2, where S1 is the 

dominant scattering mechanism and S2 is the second most significant mechanism, is 

thresholded into homogeneous regions S1S21…. S1S2k, where k is the number of regions 

which result from the division of the histogram of the dominant scattering mechanism 

(Figure 4.2).  

The histogram thresholding algorithm can be applied on all resulting subareas or 

selected ones. A simple criterion, such as the number of pixels in a subarea, can be used 

in order to select subareas for further segmentation. In our case study, subareas with a 

number of pixels higher than 10% of the total number of pixels in the image were 

selected for further segmentation. In the Pauli case, the nonparametric histogram 

thresholding algorithm was implemented for the subareas P
SSS , P

DDS 4545  and P
DDS45 , which 

are characterized as large subareas in the second segmentation level. In the Freeman-

Durden case, the histogram segmentation algorithm was implemented for the subareas 

FD
SSS , FD

SVS  and FD
VSS , which are characterized as large subareas in the second segmentation 

level. Figures 4.5e and f show the results of the third segmentation level for Pauli and 

Freeman-Durden, respectively. The segments of the third level for the Pauli case 

correspond to a total of 17 classes; a total of 3 classes in the first level, 9 in the second 

and 17 in the third level, respectively. For the Freeman-Durden case, the produced 

segments correspond to a total of 16 classes; a total of 3 classes of the first level, 9 in the 
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second, and 16 in the third level, respectively. It is clear that a much more detailed 

segmentation has been obtained in this level, although only large subareas were selected 

(> 10% of total number of pixels).  

In the third level (Figures 4.5e and f), segments fit effectively to the RGB colour 

variations. Superfluous boundaries might be noted between some regions of the study 

area in this level. This is not entirely true because the study area is mainly an agricultural 

area where trees are located along the roads and in some cases used as barriers between 

agricultural fields (Figure 3.1b). Thus, very thin linear segments for these areas are 

produced giving the impression of superfluous boundaries. In principle, all the resulting 

segments from the third level or part of them can be segmented even further by using a 

fourth segmentation level based on histograms. However, as in the study area used 

herein, the third segmentation level already achieves the segmentation scale which nicely 

fits the semantic objects in the image as shown by the coherent fit between contour lines 

and homogeneous colored areas, no further segmentation level was applied. 

 

4.3.3 Comparison with the k-means Algorithm 

 

From the first and the second segmentation levels, it is obvious that the 

information of the dominant and the second most significant scattering mechanisms alone 

is not enough for obtaining the desired segmentation results. It is possible to separate 

objects which correspond to the main surface types, such as ocean, urban areas, 

vegetation, etc. However, information related to the scattering mechanisms is preserved 

in the first and second segmentation levels and in the lower levels. Thus, in contrary with 

classical segmentation techniques, pixels of a single segment have similar scattering 

mechanisms. For more detailed segmentation results, the information related to the 

inherent variations within the dominant scattering mechanism is necessary and used in 

lower levels. The preserved information of the scattering mechanisms of the segments 

down to the lowest level can be exploited in a classification approach. 

The segmentation levels of the proposed segmentation method are compared with 

the results produced by approaches based on the k-mean clustering algorithm. Herein, the 
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segmentation approach proposed in Lee et al. (1999a) is applied to the data. Initial 

segmentation based on the entropy (H) and alpha (a) plane is implemented and the 

Wishart k-means clustering algorithm is applied in order to extract the final segments, 

which correspond to eight initial classes. Only one refined 7x7 Lee filter is applied on the 

data for despeckling, as it was done in the Lee et al. (1999a) study. Figure 4.7a shows the 

boundaries of the produced segments superimposed over the initial data. Furthermore, the 

segmentation approach proposed in Cao et al. (2007) is applied on the initial data. Herein 

the initial data are segmented into 48 initial classes based on the span, entropy (H), alpha 

(α) and anisotropy (A) parameters. One refined 7x7 Lee filter was applied to the data for 

despeckling, as it was done in the Cao et al. (2007) study. Figure 4.7b shows the 

boundaries of the produced segments superimposed over the initial data.   

A more detailed segmentation is produced by the Wishart k-means H/α approach in 

comparison with the first and second segmentation levels for Pauli and Freeman-Durden. 

In comparison to the third-level segments, segments produced by the Wishart k-means 

Η/α and the Wishart k-means span/H/α/A approaches are characterized by irregular 

boundaries. In our proposed method, although the segments in the third level correspond 

to 17 and 16 classes for Pauli and Freeman-Durden, respectively, data are not over-

segmented. Over-segmentation is observed in the case of the Wishart k-means 

span/H/a/A segmentation approach (arrows in Figure 4.7b). Table 4.1 presents the 

number of the produced segments for Pauli (third level), Freeman-Durden (third level), 

Wishart k-means H/α and Wishart k-means span/H/α/A.  

 

Segmentation Number of segments 

Pauli (this study) 2641 

Freeman-Durden (this study) 2336 

Wishart k-means H/α 3164 

Wishart k-means span/H/α/A 8988 

Table 4.1: Number of segments for each segmentation case.  
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(a) 

 

(b) 

Figure 4.7: Segmentation based on the k-mean clustering algorithm. a) Segments 

produced based on Wishart k-means H/α clustering, b) Segments produced based 

on Wishart k-means SPAN/H/α/A clustering. 

 

A zoom into a selected region at the Southern end of the study area is shown in 

Figure 4.8 for cases of Pauli (Figure 4.8a), Freeman-Durden case (Figure 4.8b), Wishart 

k-means H/a (Figure 4.8c), and Wishart k-means span/H/α/A (Figure 4.8d).  It is clear in 

Figure 4.8 that segments produced by the proposed methods (Figures 4.8a and b) have 

smooth boundaries. Agricultural fields (dark regions) are well divided in all four cases. 

However, in the Pauli and Freeman-Durden cases, these dark regions present a more 

detailed segmentation than that produced by the Wishart k-means H/a and Wishart k-

means span/H/α/A approaches. For the forest (green regions), regular-shape polygons 

satisfactorily segment the area in the Pauli and Freeman-Durden cases in contrast to the 

Wishart k-means H/α case that creates insufficient segments and Wishart k-means 

span/H/α/A case that over-segments the forest areas.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 4.8: Sample region selected from the Southern end of the study area. a) Pauli 

case, b) Freeman-Durden case, c) Wishart k-means H/α, d) Wishart k-means 

span/H/α/A. 

 

4.4 Divisive Hierarchical Dual Polarimetric Segmentation 

4.4.1 Methodology 

 

Dual polarized SAR data provide more information about the radar target, in 

comparison to the SAR data from a single channel SAR system. However, a lack of the 

target information still exists due to the fact that only two channels of the four are 

available. In this section, a new segmentation methodology is presented for dual 

polarized SAR data. The proposed methodology is based on: 1) the thresholding of the 

histograms of two SAR channels (images) using the nonparametric histogram 

thresholding algorithm discussed previously, 2) the combination of thresholded 

histograms in a two dimensional histogram-based space, where subspaces responsible for 

the resulting image segments are produced. The proposed methodology is multilevel 

where data are segmented hierarchically. Two derived criteria are established to control 
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the sequence to following segmentation levels. Below, the proposed methodology is 

discussed in detail.     

An image with two channels c1 and c2 has histograms h1 and h2, respectively. 

Each histogram can be thresholded into regions R = [r1,…., rm] by identifying histogram 

intervals, where m is the number of the resulting regions of the thresholded histogram h. 

The two thresholded 1D histograms can be combined in order to form a two dimensional 

histogram-based space, as shown in Figure 4.9. Final segmentation of the image can be 

obtained by dividing the two dimensional histogram-based space into subspaces, based 

on the resulting regions by histogram thresholding. The number of the produced 

subspaces is equal to m1xm2,where m1 and m2 are the numbers of resulting regions from 

the first and second histograms, respectively. Thus, homogeneous segments of the image 

can be calculated by assigning each pixel to one of the defined subspaces based of the 

following relation: 
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(4-6) 

 

p is an image pixel,   and 21
pp xx are the amplitude values of the pixel p in the channels c1 

and c2, respectively, and sij is a subspace of the two dimensional histogram-based space. 

Figure 4.9 shows the concept of the proposed segmentation methodology. The calculated 

histograms in the first segmentation level are for the whole channels c1 and c2. In the next 

segmentation levels, the calculated histograms are for image subsets, which correspond to 

the subspaces that are selected to be further divided. 
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Figure 4.9: Scheme shows the concept of the proposed segmentation methodology 

that creates subspaces based on the thresholded histograms. 

 

In order to proceed to the next level, each sij should satisfy the following criteria: 

 













≥≥

>

 
2

or  
2

and if dividedfurther  is 
2

2
1

1

ij

µµ σ
σ

σ
σ ijij

ij

aNN

s  

(4-7) 

 

where Nij is the number of pixels that belong to subspace sij and N is the total number of 

the pixels. 1
ijσ  is the standard deviation of the subspace sij and 1

µσ  is the standard 

deviation of the mother subspace in channel c1 while 2
ijσ  and 2

µσ  are the standard 

deviation of the subspace sij and the mother subspace in channel c2. In the first criterion, a 
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is a parameter (1 > a > 0) that controls the number of subspaces to be tested for further 

division by using the second criterion. Thus, the lower the value of the parameter a the 

higher the number of subspaces to be tested and vice versa. In this case study, the value 

of a = 0.03 is selected. This value of α was selected after testing different values. The 

second criterion tests if a subspace should be further divided or not. A subspace should be 

further divided if the standard deviation of the values for the pixels that fall in the 

subspace is greater or equal to half of the standard deviation of pixel values in the mother 

subspace. The mother subspace is defined as the subspace of the previous segmentation 

level which generates the sij subspace. The mother subspace of the first level of subspaces 

is channels c1 and c2. A subspace that satisfies the second criterion in at least one of the 

two channels should be further divided. This is because pixels which belong to a 

subspace can be homogenous with low standard deviation in one channel but 

inhomogeneous with high standard deviation in the other channel. Such pixels were 

presented in some cropland regions in our study area (e.g., bright regions in the following 

section).  

For each subspace which satisfies the criteria defined in (4-7), the procedure 

entails the recalculation of histograms of the subspace in the two channels and a new 

thresholding of these histograms using the nonparametric histogram thresholding 

algorithm. Consequently, subspaces of each segmentation level serve as input for the 

following level in which the inherent histogram variations are further exploited. The 

segmentation procedure terminates when no subspace satisfies (4-7). The topology 

between segmentation levels is preserved, leading to the hierarchicalization of the 

produced subspaces. The latter is very important when segmentation results are 

introduced in a classification procedure (Dabboor and Karathanassi, 2005). 

 

4.4.2 Implementation 

4.4.2.1 Preprocessing 

 

TerraSAR-X dual co-polarized data (HH and VV), acquired in the southwest of 

the United Kingdom, are used in this test case (see Chapter 3). The Lee filter (Lee, 1981) 
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and the refined Lee filter (Lee et al., 1991) were applied to the available data and the 

Equivalent Number of Looks (ENL) was calculated (Anfinsen et al., 2008). The Lee filter 

gave a mean ENL = 7 while the refined Lee filter gave a mean ENL = 30. Thus, the 

refined Lee filter is used for the purpose of this study, since it gives higher ENL. As 

mentioned before, experiments showed that better segmentation results are produced 

when a refined 7x7 Lee is applied three times (Lee et al., 2001; De Grandi et al., 2004). 

This 7x7 size is the commonly used size in the different segmentation and classification 

approaches of SAR data that favours speckle reduction without leading to over-

smoothing (De Grandi et al., 2004; Park and Moon, 2007; Gao and Ban, 2008).  

 

4.4.2.2 Segmentation Results 

 

The segmentation methodology was applied on the first two components of the 

Pauli scattering vector, HH+VV and HH-VV images (Figures 4.10a and b, respectively), 

instead of the initial image channels HH and VV. 

 

 

(a) 

 

(b) 

Figure 4.10: a) The HH+VV after speckle filtering using a refined Lee filter, b) The 

HH-VV after speckle filtering using a refined Lee filter. 
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This is because a better representation of the different land cover types is achieved with 

these images (Lee et al. (2001); Dabboor et al. (2008); Trouve et al. (2008)). A flowchart 

of the segmentation approach is shown in Figure 4.11. 

 

 

Figure 4.11: Flowchart of the segmentation approach for dual polarized SAR data.  

 

Four segmentation levels are calculated in this study. In the first level, the 

histograms of the HH+VV and HH-VV images are calculated and the histogram 

thresholding algorithm is applied. The first segmentation level is produced after the 

histogram of the HH+VV image is automatically thresholded into three regions while the 

histogram of the HH-VV image is automatically thresholded into two regions, i.e., the 

two dimensional histogram-based space produced by combining two thresholded 

histograms is divided into six subspaces. Figure 4.12 shows the thresholded histograms of 

the HH+VV and HH-VV images and the six subspaces produced by the combination of 

the two thresholded histograms. Each subspace corresponds to a number of segments in 
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the first segmentation level. The borders (red colour) of the segments are extracted and 

overlain on a composite image (Green = HH+VV, Blue = HH-VV) for improved 

visualization, Figure 4.13a. 

 

 

Figure 4.12: The HH+VV and HH-VV thresholded histograms and the sub-spaces 

produced by combing them in a two dimensional histogram-based space. 

 

The output of the first segmentation level serves as input for the next 

segmentation level. According to equation (4-7), only the subspaces 1
11s  and 1

12s  served as 

input for the next segmentation level. Herein, the mother subspace for the 1
11s  and 1

12s  

child subspaces are the whole HH+VV and HH-VV images. For the 1
11s  subspace, the 
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HH+VV histogram is automatically thresholded by the histogram thresholding algorithm 

into three regions while the HH-VV histogram is thresholded into two regions. Thus, the 

combination of the two histograms divides the two dimensional histogram-based space of 

the 1
11s  subspace into six new subspaces. For the 1

12s  subspace, the HH+VV and HH-VV 

histograms are automatically thresholded into three and two regions, respectively. 

Consequently, six new subspaces are produced. The borders of the resulting segments are 

extracted and shown in, Figure 4.13b.  

In the third segmentation level, the child subspace 2
12s  produced from the mother 

subspace 1
12s  and the child subspace 2

11s  produced from the mother subspace 1
11s  are 

further divided. The HH+VV and HH-VV histograms of the 2
12s  subspace are divided into 

three and two regions, respectively. The two dimensional space is divided into six 

subspaces. For the subspace 2
11s , the HH+VV and HH-VV histograms are thresholded 

into three and four regions, respectively. Consequently, the two dimensional histogram-

based space is divided into twelve subspaces. The results of the third segmentation level 

are shown in Figure 4.13c.   

More detailed segmentation is obtained through a fourth segmentation level. 

Based on relations defined in equation (4-7), the subspace 3
11s  of the third segmentation 

level should be further divided. The child subspace 3
11s  has 2

12s  as a mother subspace from 

the second segmentation level. Thus, the HH+VV and HH-VV histograms of the 

subspace 3
11s  are thresholded into four and two regions, respectively. Thus, the two 

dimensional histogram-based space is divided into eight subspaces. The output of the 

fourth segmentation level is shown in Figure 4.13d.  
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(a) 
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(b) 



62 

 

 

(c) 
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(d) 
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(e) 

Figure 4.13: The extracted borders (red colour) of the resulting segments overlain 

on a composited image (Green = HH+VV, Blue = HH-VV) for a) First segmentation 

level, b) Second segmentation level, c) Third segmentation level, d) Fourth 

segmentation level, (e) Fourth segmentation level produced by the eCognition. 

 

For comparison purposes, the segmentation task is implemented using the 

segmentation algorithm of the eCognition software package (Baatz and Schäpe, 2000). 

The latter performs multilevel segmentation based on the split-merge concept. The 

algorithm is based on both homogeneity and shape criteria. Furthermore, a scale 

parameter that controls the average size of the resulting segments in each segmentation 
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level is defined (Tzotsos and Argialas, 2006). The same input data set is used by the 

eCognition segmentation algorithm. Four segmentation levels (top-down) are produced. 

Giving emphasis on the colour criteria, the following parameter values have been 

introduced: first level: scale = 300, colour = 0.9, shape = 0.1, second level: scale = 150, 

colour = 0.9, shape = 0.1, third level: scale = 70, color = 0.8, shape = 0.2, fourth level: 

scale = 32, colour = 0.9, shape = 0.1. Figure 4.13e shows the final segmentation results 

(fourth segmentation level) produced based on the eCognition segmentation algorithm. 

 

4.4.2.3 Discussion 

 

In the first segmentation level an adequate separation between image objects that 

appear dark and those which appear bright in the composite image is obtained (Figure 

4.13a). Segments present various sizes without any limitation in size. Small size 

segments are contained within big contiguous ones. This is because the histogram based 

segmentation approach acts globally. Segments are obtained from subspaces that are 

produced by the division of the two dimensional histogram-based space. The small 

segments correspond to strong "anomalies" that exist in homogeneous land covers. 

Example of "anomalies" could be areas of a field that has better drainage due to the local 

micro-relief, variable soil type or geological faults/fractures.  

In the second segmentation level (Figure 4.13b), a more detailed segmentation is 

achieved for the segments which are associated with the subspaces that satisfy the two 

criteria established in equation (4-7). According to the first criterion, small segments 

which would be produced by the filtered subspaces are avoided. Moreover, colour 

heterogeneity in the produced segments is adjusted by the second criterion.   

In the third and fourth segmentation levels (Figures 4.13c and d, respectively) an 

even more detailed segmentation is achieved. The image is completely segmented into 

almost homogeneous segments with regard to the colours apparent in the composite 

image. Many segments are observed within others. However, due to their density, many 

of the segments are contiguous. The level of heterogeneity within segments is always 

controlled by the second criterion (Figure 4.14e, yellow arrows).   
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The concept of the proposed segmentation is different from the segmentation 

concept implemented in the eCognition software package. The proposed segmentation 

algorithm is histogram-based and acts globally, whereas the eCognition algorithm is 

image-based, acts locally, and produces only contiguous segments. Thus, the two 

approaches perform the segmentation process from different points of view. The scale 

parameter used by the eCognition algorithm controls the average size of the segments, 

leading to a relation between segment size and segmentation level. Thus, this parameter 

prohibits the production of various size segments within a segmentation level. Anomalies 

inside homogeneous land covers are not observed in the first segmentation levels.  These 

"anomalies" can be separated into individual segments only in the detailed segmentation 

levels, i.e. in the third and fourth level.  

The fourth segmentation level of the two approaches is shown in Figures 4.13d 

and e, respectively. The different segmentation concepts are obvious in the results. 

Extremely small segments corresponding to high changes in colour values give the 

impression of over-segmentation in case of the proposed algorithm (yellow arrows in 

Figure 4.14a). These segments are not produced by the eCognition algorithm which is 

controlled by the scale parameter (Figure 4.14b). However, this parameter affects the 

quality of the results (Figures 4.14b, d, and f). Details of the fourth segmentation level in 

Figures 4.14a-d show that the histogram based methodology produces more reliable 

results in terms of homogeneity within the produced segments. Black and white arrows 

indicate such areas.               

Both segmentation approaches preserve the topology information, which is 

important for building rules in a knowledge-based classification approach. However, 

because of the different concepts the two segmentation approaches follow, the topology 

information of the segments is produced in different spaces. In the proposed 

segmentation approach, the topological relationship mother-child of the segments is in 

the two dimensional histogram-based space. This leads to a strong relationship between 

subspaces and scattering behaviour of land covers. Each subspace, as well as its place in 

the mother-child tree fits to a specific scattering behaviour. This may be used for 

classifying the generated segments by this subspace. Other attributes of the segments, 
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such as spatial, can also be used. In eCognition, the topological relationship mother-child 

of the segments is in the two-dimensional space of the image.     

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 4.14: a), c) and e) Sample areas from the final (fourth) segmentation level 

produced by histogram thresholding. b), d) and f) Sample areas from the final 

(fourth) segmentation level produced by eCognition. 

 



68 

 

4.5 Summary 

 

This research presents two multilevel divisive segmentation methodologies for 

full and dual polarimetric SAR data. Both methodologies have in common the use of a 

nonparametric histogram thresholding algorithm.    

The first methodology proposes a hierarchical segmentation approach for full 

polarimetric SAR data which exploits the scattering information obtained from the 

polarimetric SAR analysis methods and goes beyond the traditional segmentation 

methods. The first two segmentation levels are based on the hierarchicalization of 

scattering mechanisms. Having accomplished the information of the scattering behavior, 

further segmentation levels were obtained by dividing the histogram of the dominant 

scattering mechanism for the subareas defined by the second segmentation level into 

homogeneous regions. Thus, the inherent variations within the dominant scattering 

mechanism are exploited in order to get a more detailed segmentation. The proposed 

methodology accepts the complexity of real objects by evaluating the two most important 

scattering mechanisms that characterize their scattering behavior. The methodology 

produces comparable segmentation results for both Pauli and Freeman-Durden 

decomposition images. Different RGB colours are well outlined and attributed to 

different segments and edges are quite smooth. The user can select segments of interest 

and further segment them through additional segmentation levels according to the study 

requirements. In any case, further segmentation creates smaller independent segments. 

Selective segmentation avoids over splitting for segments adequately delimited and well 

associated to a classification class. In comparison to the k-means clustering algorithm, 

better segmentation results can be achieved by the proposed method as it prohibits the 

over-segmentation of the SAR data, preserving at the same time the polarimetric 

scattering information.     

The second methodology proposes a hierarchical segmentation approach for dual 

polarized SAR data that acts globally, by exploiting the scattering information of the two 

channels through the combination of their thresholded histograms in a two dimensional 

histogram-based space. Two criteria, the first based on the number of pixels in each 



69 

 

subspace and the second based on the standard deviation of the pixel values included in 

the subspaces, are established, which control the generation of the segmentation levels. In 

each segmentation level, segments present various sizes without any limitation in size.  

Thus, large segments can include smaller ones which denote "anomalies" inside the large 

homogeneous segments, helping in recognition of small radar targets. Segmentation 

results were compared with those obtained using the eCognition segmentation algorithm. 

It was clear based on the segmentation results of both approaches that the differences in 

segmentation concept, in which the proposed methodology acts globally and produces 

segments based on subspaces of a two dimensional histogram-based space, and in which 

the eCognition segmentation algorithm acts locally in the two dimensional space of the 

image, are conceptual differences. However, the range of applications which need to 

consider different segment sizes likely exceeds the ones which focus on one scale only.   
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Chapter Five: Polarimetric SAR Agglomerative Clustering 

 

In this chapter, a new probabilistic distance, called Wishart Chernoff distance, is 

discussed (Dabboor et al., 2010c). The proposed distance is used in an agglomerative 

clustering approach for polarimetric SAR data segmentation. Results are compared with 

those obtained based on the Wishart test statistic distance.     

 

5.1 Introduction 

 

Agglomerative clustering can be used as a technique for unsupervised 

polarimetric SAR data segmentation. Data are initially segmented into small clusters. 

Later, initial clusters are merged hierarchically into an appropriate number of larger 

clusters (classes). Similarity criteria are used for merging of clusters. In this chapter, a 

new probabilistic distance is proposed as a similarity criterion. The Chernoff distance 

which measures the distance between two distributions is derived for the Complex 

Wishart distribution. The proposed criterion overcomes the drawbacks of the existing 

criteria by: 1) measuring the similarity of two clusters independently of the number of 

samples (pixels) in each cluster, 2) measuring the similarity of two clusters by 

statistically measuring the similarity of their distributions. The following section 

discusses analytically the derivation of the new criterion, called Wishart Chernoff 

distance.   

 

5.2 Wishart Chernoff Probabilistic Distance  

5.2.1 The Complex Wishart Distribution 

 

Assuming that the target scattering vector Pk
r

 is a complex normal vector follows 

a complex Gaussian (or Normal) distribution, the probability density function of the 

look−n  sample coherency matrix T  is given by Lee et al. (1994) as 
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where iN  is the number of samples within the thi  cluster.  

 

5.2.2 Chernoff Error Bound 

 

Assume that a data vector x  belongs to one of two possible classes 1ω  or 2ω . It is 

required to determine which one of the following two hypotheses is more likely to occur 

(El Ayadi et al., 2008): 
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It is usually assumed that data vectors belonging to each class iω , 2 ,1=i , follow a 

certain distribution )( ixp ω .  According to the Bayesian decision theory (Duda et al., 

2000), the optimal decision rule is given by  
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where ( )iP ω  is the a priori probability. A classification error occurs if a data vector x  

belongs to one class but falls in the decision region of the other class. The calculation of 

the error probability is quite difficult, especially for higher dimensions (Duda et al., 

2000). However, in the two-category case, the Chernoff bound gives an upper bound of 

the error. For the complex Wishart distribution, the Chernoff bound is given by 

 

dTVTpVTpVPVPerrorP  )2(1)1()2(1)1()( ∫
−−

≤
ββββ  (5-4) 

 

where β is a parameter, 10 ≤≤ β , and T is the sample coherency matrix. The integral in 

(5-4) can be evaluated analytically, yielding 
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where )(βf  is a function of the parameter β, called the Wishart Chernoff distance. The 

Wishart Chernoff distance )(βf  measures the similarity between two Wishart complex 

distributions. It can be calculated by assuming L so that 
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Taking into account (5-1), (5-6) can be rewritten as follows: 
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Letting 1
2

1
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1
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So, the integral in (5-5) according to Khatri (1966), is equal to 
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Thus, the Wishart Chernoff distance can be defined as 
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In (5-10), n  (number of looks) is a scale parameter which does not affect the distance 

between two clusters and can be omitted for simplification. Hence, the Wishart Chernoff 

distance becomes 
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The Chernoff distance is a probabilistic distance between two distributions and 

can be used as a criterion for estimating the similarity between the respective probability 

densities. Since the Wishart Chernoff distance in (5-11) is independent of the number of 

looks, it can be applied to multilook processed or speckle filtered POLSAR data. In 

addition, the Wishart Chernoff distance is symmetric: the distance between two complex 

Wishart distributions 21  and VV  respectively for 1ββ =  is equal to the distance between 

12  and VV  for 2ββ = , where 12 1 ββ −= . Moreover, the Wishart Chernoff distance is 

independent of the polarization basis, e.g. linear or circular polarization basis. The data in 

covariance matrices, coherency matrices, circular polarization matrices, would produce 

identical classification result.  

Proof: Assume an alternative polarization base ν  which is related to the current 

base u  by (Dabboor et al., 2010c) 

 

Pu=ν ,      (5-12) 
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where P  is a constant matrix. Then, a multilook coherency matrix can be formed as,  

 

∑
=

++ =⋅=
n

k

PTPkk
n

Z

1

)()(
1

νν   
(5-13) 

 

where + denotes the complex conjugate transpose. So, the thi  cluster center coherency 

matrix can be calculated by  
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Thus, the Wishart Chernoff distance between two clusters ++ == PPVMPPVM 2211  and  
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Since BAAB = , the Wishart Chernoff distance becomes 
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However, there is an apparent limitation in the matrix P . The matrix Z  is a function of 

P  and it has to be Hermitian and positive semidefinite to obey the complex Wishart 

distribution (Duda et al., 2000). 

The optimum Wishart Chernoff distance f(β) which best describes the similarity 

between two distributions is calculated by finding the value optβ  that minimizes  
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The key benefit here is that this optimization is in the one-dimensional β  space (Duda et 

al., 2000). The value optβ  corresponds to the value of β  that minimizes the classification 

error probability. Simulated data can be used to empirically study the behavior of the 

)(βg  function. The parameter β  is calculated randomly using a Monte Carlo simulation 

technique. Given that two distributions are identical, the Wishart Chernoff distance f(β) is 

expected to be zero, Figure 5.1a (solid line). In this case, )(βg  is a constant, independent 

of β  with 1)( =βg , Figure 5.1b (solid line).  
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(a) 

 

(b) 

Figure 5.1: a) The graph of f(β) for two statistically identical distributions (solid 

line), similar distributions (dashed line), and dissimilar distributions (dot-dashed 

line), b) The graph of g(β) for two statistically identical distributions (solid line), 

similar distributions (dashed line), and dissimilar distributions (dot-dashed line).  
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Two distributions are assumed similar if they have same scale parameter (have identical 

scale) but different mean locations. In this case, the optβ  is expected to be 0.5. In this 

case, the Wishart Chernoff distance depends on the difference of the distribution mean 

locations. For the two distributions in Figure 5.1a (dashed line), for example, the Wishart 

Chernoff distance is small, thus the graph of )(βg  has a slight curvature, with  )( optg β  

close to one for optβ  equal to 0.5, Figure 5.1b (dashed line). Higher difference between 

the mean locations of the two distributions will result in higher curvature of the graph of 

)(βg . The higher the curvature of )(βg  the lower the value of )( optg β , which results in 

higher Wishart Chernoff distance values.  

Two dissimilar distributions are assumed if they have different scale parameter and 

different or equal mean locations. In this case, the optβ  is expected to differ from 0.5. The 

more different the scale parameter of the two distributions, the closer the values of  optβ  

are to the bounds of the interval [0, 1]. In Figure 5.1b (dot-dashed line), optβ  is 0.25 and 

)( optg β  is close to zero, i.e., the Wishart Chernoff distance between the two distributions 

is larger, Figure 5.1a (dot-dashed line).  

In the next section, the derived Wishart Chernoff distance is used in an 

agglomerative clustering approach for the unsupervised segmentation of full polarimetric 

SAR data. The robustness of the Wishart Chernoff distance to measure similarity 

between clusters will be shown, leading to better information captured from full 

polarimetric SAR data.     

 

5.3 Agglomerative Clustering 

5.3.1 Methodology  

 

The initialization for the agglomerative hierarchical clustering can be obtained by 

dividing the polarimetric SAR data into clusters based on the SPAN/H/A/α space (Cao et 

al., 2007). The SPAN can be defined as the total backscattering power and is equal to the 

trace of the coherency matrix T  
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332211SPAN TTT ++= ,   (5-18) 

 

where 11T , 22T  and 33T  are the diagonal elements of the coherency matrix. As suggested 

in Cao et al. (2007), a maximum of 48 optimal initial clusters can be obtained by 

performing the following three steps: 1) dividing the SPAN histogram into three clusters: 

low density, medium density, and high density, 2) further division into 24 clusters based 

on the H/α plane, and 3) using the anisotropy A to divide the 24 clusters into 48. After 

each step, the complex Wishart clustering is performed to optimize the initialization. 

Optimized initial clusters are merged hierarchically into an appropriate number of 

classes. Clusters are merged iteratively based on a probabilistic distance, such as the 

derived Wishart Chernoff distance. For each iteration, the distances of all possible pairs 

of clusters are calculated, and the two clusters with the minimum distance are merged to 

decrease the number of clusters by one. Merging continues until the appropriate number 

of classes is obtained. 

The appropriate number of classes is estimated based on the data log-likelihood 

algorithm (Cao et al., 2007). The thm  data log-likelihood is defined as  
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where m  is the number of clusters, iN  is the number of samples within the thi  cluster, 

N  is the number of samples within the whole data set and ),( ilm VTd  measures the 

distance between the thl sample coherency matrix lT  and the thi  cluster center coherency 

matrix iV  
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The data log-likelihood algorithm has the potential ability to reveal the inner structure of 

POLSAR data (Cao et al., 2007). This is because it quantitatively measures the fitness 
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between the number of clusters and the polarimetric SAR data inner structure. A log-

likelihood value is calculated for each number of clusters m , starting from m  equal to 

the number of clusters produced by the SPAN/H/A/α initialization until m  = 1. 

 

5.3.2 Implementation and Discussion  

 

The proposed Wishart Chernoff distance is used in an agglomerative clustering 

approach for the unsupervised segmentation of the available ALOS polarimetric SAR 

data. In order to reduce speckle noise, Lee’s polarimetric SAR speckle filter (Lee et al., 

1999b), which uses a multiplicative noise model and 7x7 directional windows, was 

applied on the initial polarimetric SAR image. The application of the Lee speckle filter 

does not interfere with the estimation of the similarity between clusters. 

The proposed unsupervised segmentation approach using the Wishart Chernoff 

distance is applied to the L-band ALOS polarimetric SAR data acquired in UK. In this 

case study, the initial division of the data based on the SPAN/HA/α produces 40 clusters. 

The appropriate number of classes is calculated based on the data log-likelihood 

algorithm. As discussed in Tibshirani et al. (2001), as m  decreases the data log-

likelihood initially flattens until a certain point, called "elbow", from which the data log-

likelihood monotonically decreases. This point indicates that the appropriate number of 

clusters has been reached. Figure 5.2a gives the data log-likelihood, if the Wishart 

Chernoff distance is used to merge clusters. 
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(a) 

 

(b) 

Figure 5.2: a) Plot of the data log-likelihood calculated using the Wishart Chernoff 

distance to merge clusters, b) Plot of the data log-likelihood calculated using the 

Wishart test statistic distance to merge clusters. 



82 

 

As shown in Figure 5.2a, the point in the graph where the flattening stops and the 

decreasing starts is found for 18=m , which corresponds to the appropriate number of 

classes.  

For comparison, the same initial clusters produced based on the SPAN/H/A/α are 

used as input data for a segmentation using the Wishart test statistic distance (Cao et al., 

2007) 
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. The appropriate number of classes is calculated based 

on the data log-likelihood algorithm and using the Wishart test statistic distance as a 

criterion for cluster merging. The data log-likelihood results are shown in Figure 5.2b. 

Here, the appropriate number of classes is determined as 8=m .  

Although the data log-likelihood algorithm depends on the number of clusters m , 

the used distance criterion plays an important role in the estimated appropriate number of 

clusters. In the case of Wishart Chernoff distance, the estimated number of classes is 

much higher than the estimated number based on the Wishart test statistic distance. This 

is because the Wishart Chernoff distance is independent of the number of samples in the 

clusters. This has the advantage of preserving detailed information which corresponds to 

small discriminated thematic land cover types, e.g., small separate farm houses would 

still be preserved, although it has fewer samples, so it will not be clustered as no other 

buildings lie around.   

As shown in Figure 5.3a, the segmentation results based on the Wishart Chernoff 

distance produce compact noiseless classes. From Figure 5.3a, different regions are 

selected and classes are compared with classes resulting from the unsupervised 

segmentation based on the Wishart test statistic distance (Figure 5.3b). Furthermore, the 

resulting classes from the two methods are compared with the corresponding surface 

types apparent in the study area. 
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(a) 
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(b) 

Figure 5.3: a) POLSAR data classification based on the Wishart Chernoff distance, 

b) POLSAR data classification based on the Wishart test statistic distance.  
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Comparing the segmentation results based on the Wishart Chernoff distance and 

the Wishart test statistic distance with map of the study area, more classes can be seen in 

the high-energy returns associated with urban and forest areas for the case of Wishart 

Chernoff distance. Two main classes are obtained for the urban areas based on the 

Wishart Chernoff distance, as shown in Figure 5.4a2. On the other hand, one class is 

obtained based on the Wishart test statistic distance (Figure 5.4a3). Comparing the two 

results with the urban blocks in the map (Figure 5.4a1), it is obvious that urban areas are 

better captured using the Wishart Chernoff distance.   

 

 

  

 

  

 

(a1) 

 

(a2) 

 

(a3) 

Figure 5.4: a1) Urban blocks as shown in a map of the study area, a2) Urban areas 

captured based on Wishart Chernoff distance, a3) Urban areas captured based on 

Wishart test statistic distance.     
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Two classes (dark green and sea green) which correspond to forest areas are identified in 

the segmentation based on the Wishart Chernoff distance, Figure 5.5b3. This agrees with 

the fact that two forest types exist in the study area, Figure 5.5b1 and b2. Only one forest 

class is obtained based on the Wishart test statistic distance, Figure 5.5b4. 

 

 

(b1) 

 

(b2) 

 

(b3) 

 

(b4) 

Figure 5.5: b1) Forests as shown in the map of the study area, b2) Forests as appear 

in the AVNIR-2 optical image of the study area, b3) Forest areas captured based on 

the Wishart Chernoff distance, b4) Forest areas captured based on the Wishart test 

statistic distance.   
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The study area contains various agricultural fields and cropland with different 

types of crops. Assigning the resulting classes to thematic types of crops was not possible 

for two reasons. First, agricultural fields and croplands are not mapped in the available 

study area map. Second, the optical image of the study area was taken one year before the 

polarimetric data collection, Figure 5.6c1. Thus, the comparison is not reasonable 

because the type of crops might have changed. Four main classes (yellow, orange, light 

green and green) correspond to agricultural fields and croplands are obtained using the 

Wishart Chernoff distance, Figure 5.6c2. Using the Wishart test statistic distance, three 

classes (yellow, light green and green) are extracted, Figure 5.6c3. Different areas are 

misclassified as natural grassland (cyan), Figure 5.6c3. These areas appear as noise with 

approximately linear shapes.  

 

 

(c1) 

 

(c2) 

 

(c3) 

Figure 5.6: c1) Optical image of the study area for reference, c2) Classified 

agricultural fields and croplands using Wishart Chernoff distance, (c3) Classified 

agricultural fields and croplands using Wishart test statistic distance. 
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A small class (brown) which corresponds to streams in the study area (Figure 

5.7d1) is extracted using the Wishart Chernoff distance, Figure 5.7d2. However, streams 

are misclassified as forest and urban areas using the Wishart test statistic distance, Figure 

5.7d3. The results obtained from the Wishart test statistic distance suggest that rivers are 

covered by trees and canopy as they are classified as forest. However, our method shows 

that this argument, while reasonable in principle, is not valid as the rivers are detectable 

using the Wishart Chernoff distance clustering. This is another argument for not using the 

number of samples in a class as a parameter in the clustering method (as used in Wishart 

test statistic distance), as it can lead to loss of significant information.   

 

 
  

 

(d1) 

 

(d2) 

 

(d3) 

Figure 5.7: d1) Streams as shown in the map of the study area, d2) Streams 

captured based on the Wishart Chernoff distance, d3) Streams captured based on 

the Wishart test statistic distance.   

 

Classifying POLSAR data into eight classes based on the Wishart Chernoff 

distance produces classification results where the main information is preserved, some 

detailed information is lost, e.g., streams and parts of the urban areas. Even noisier 
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classification results are obtained when the POLSAR data are classified based on the 

Wishart test statistic into eighteen classes.   

An accuracy assessment of the performance of the two classification algorithms 

can be performed using test samples. These test samples can be selected for the main 

surface types by labeling pixels of the polarimetric SAR data using the available optical 

image and map of the study area as a guide. Thus, test samples for ocean, two types of 

forest, natural grassland, and urban areas are chosen. The percentage of the classification 

error for the selected test samples is calculated for each classification (Kersten et al., 

2005). Table 5.1 presents the relative classification errors for the Wishart Chernoff 

distance and the Wishart test statistic distance.    

 

 Number of pixels Error in % for 

Wishart                 

Chernoff distance 

Error in % for 

Wishart                          

test statistic distance 

Ocean 983 0 0 

Urban  680 47.25 83.93 

Forest1 515 7.25 0 

Forest2 316 3.80 100 

Natural  

grassland 

515 0 1.75 

Table 5.1: Error in classification in percent for selected land cover regions of the 

POLSAR image. 

 

The classification error for both methods on the ocean is zero. The classification 

error of the urban areas is significantly higher using the Wishart test statistic distance, in 

comparison to the Wishart Chernoff distance. The Wishart test statistic distance appears 

to have better classification results (zero classification error) than the Wishart Chernoff 

distance (7.25% classification error) for the first forest type (forest1). However, this is not 

true because in the case of Wishart test statistic distance the two types of the forest are 

merged in one class. This is why the classification error for the second forest type 

(forest2) is 100% in the case of Wishart test statistic distance. The overall classification 



90 

 

accuracy using the Wishart Chernoff distance is 82.6%, while for the case of Wishart test 

statistic distance is 54.6%. 

 

5.4 Application to RADARSAT-2 Full Polarimetric SAR Images  

 

Segmentation using the proposed Wishart Chernoff distance was also performed 

using six RADARSAT-2 full polarimetric SAR images of Churchill, Manitoba, Hudson 

Bay. The six images were taken every two months for one full year starting October 31, 

2009. Table 5.2 reports the calculated appropriate number of classes, obtained using the 

log-likelihood algorithm for each image.  

 

Image 

(Churchill_YYYYMMDD) 

Number of 

classes 

Temperature 

(C
o
) 

Weather 

condition during 

acquisition day 

Churchill_20091031 6 -6.2 snow 

Churchill_20091218 7 -21.5 6 hours snow 

Churchill_20100124 11 -14.0 12 hours snow 

Churchill_20100403 10 -5.9 14 hours snow 

Churchill_20100521 7 -1.5 10 hours snow + 5 

hours freezing rain 

Churchill_20100722 8 16.3 - 

Table 5.2: Number of classes, temperature and weather condition for each 

RADARSAT-2 image and acquisition time. Data source for temperature and 

weather condition data is the National Climate Data and Information Archive of 

Canada.  

 

A plot indicating the change in the number of classes against the acquisition date of each 

image is presented in Figure 5.8.   
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Figure 5.8: Plot of the number of classes as a function of the acquisition time for 

each SAR image. 

 

As shown in Figure 5.8, the number of classes for the study area increases through the 

fall season and reaches its maximum value in January (winter). The number of classes 

decreases from January to May (spring). From May to July (summer) the number of 

classes increases by one class. Segmentation results for the six images plotted over a 

Shuttle Radar Topographic Mission (SRTM) DEM with a resolution of 90 meters are 

presented in Figure 5.9.  
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

 

(f) 

Figure 5.9: Segmentation results on top the SRTM 90m DEM of the Churchill area 

for the RADARSAT-2 images of: a) October 31, 2009, b) December 18, 2009, c) 

January 24, 2010, d) April 3, 2010, e) May 21, 2010 and July 22, 2010.   
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The study area undergoes significant seasonal changes in land cover as the 

dominant climate controls both vegetation and snow/ice conditions. Churchill is 

especially of interest as the transition between boreal forest and arctic tundra can be 

observed. In addition, sea ice cover, lakes and lake ice, the Churchill River, the town of 

Churchill and the airport, rock outcrops, muskeg and wetlands can be found. Hence, the 

area is prone to significant change in land cover which this case study is aiming to 

monitor. 

 

 

Figure 5.10: Three selected regions (R1, R2 and R3) in the study area for further 

investigation.  

 

Three regions are selected for the investigation of landscape changes, Figure 5.10. 

The first region (R1) is selected in Hudson Bay (Figure 5.10). In Oct. 2009, the selected 

region R1 presents only one class. This class corresponds most probably to water as this 

time is shortly after the end of the summer season with a temperature of -6.2 Co. Sea ice 

formations did not occur yet or the area would be covered by very thin smooth ice.  
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(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

 

(f) 

Figure 5.11: Sea ice extent of the Arctic, including Hudson Bay for: a) December 

2009, b) January 2010, c) March 2010, d) May 2010, e) July 2010, and October 2010. 

Source: National Snow and Ice Data Center (NSIDC).   

 

Figure 5.11indicates the sea ice extent of Arctic, including the Hudson Bay, between 

December 2009 and October 2010. The sea ice extent data times are close to the 

acquisition times of the RADARSAT-2 SAR data. Figure 5.11f shows that October is a 

sea ice free month in Hudson Bay. The number of classes increased to four in Dec. 2009, 

which corresponds to the highest number of classes obtained for the selected area. The 

acquisition day temperature was the lowest (-21.5 Co) among the six temperature 

measurements. There is still open water in the Churchill River estuary, but also 

significant areas of sea ice, partially snow covered. The number of classes decreased to 

three in Jan. 2010, which indicates that the sea ice has formed and changes are not 

expected at the peak of winter. April still shows a similar picture with two classes and 

similar sea ice status, but in May the two classes have switched to open water and 

remaining sea ice fractions. In the summer acquisition of July, the classified SAR image 

presents three classes in R1 which indicate that there is still sea ice around, but on a 
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declined level. The temperature of the acquisition day was positive (16.3 Co) and enough 

to continue melting the ice.  

A second region (R2 in Figure 5.10) is selected in the Churchill River 

downstream from the weir (Figure 5.12a) as seen in Figure 5.9a and e. The selected 

region R2 presents one class in Oct. 2009 which is open water. The number of classes 

increases dramatically into six classes in Dec. 2009 and Jan. 2010, where the 

temperatures are the lowest (-21.5 Co and -14.0 Co, respectively). This could be related to 

the fact that the Churchill River appears to have moved river ice blocks on top of each 

other which creates a new surface type indicated by dark pink color. High-energy returns 

are observed for this region in the SAR images of Dec. 2009 and Jan. 2010. The number 

of classes decreases to four, four and one main class with three very small classes for 

Apr. 2010, May 2010 and Jul. 2010, respectively. As with sea ice the time series shows 

the melting process of river ice.   

The third selected region R3 (Figure 5.10) contains the twin lakes of Churchill. 

The twin lakes present three classes in Oct. 2009. These three classes become two, one 

main class and another secondary one, in Dec. 2009. In Jan. 2010 and Apr. 2010, these 

lakes contain three classes. The discrimination of the lakes from the surrounding areas 

becomes difficult in Jan. 2010. In spring (May 2010), the twin lakes appear to have two 

classes, one dominant and another secondary one. These two classes become one in 

summer, Jul. 2010. While the lakes freeze about the same time as the river ice forms, the 

identification of lake ice is difficult as it is covered by snow throughout the winter. As the 

lake ice melts in summer, open water can be seen (Figure 5.9e). When the growing 

season starts, muskeg covers most of the water surfaces and creates one class. Figure 

5.12b and c indicates muskeg covered and partially overgrown lakes in Churchill.   

It is obvious that full polarimetric SAR data can detect and monitor landscape 

changes; however, it is not trivial to identify the surface type based on the classification 

without additional knowledge of climate and landscape processes. The fusion of the SAR 

data with data such as DEMs, temperature measurements, snow depths, etc., could be 

useful in analyzing and explaining the resulting classes in more detail. Future research 

must be directed to achieve this goal.    
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(a) 

 

(b) 

 

(c) 

Figure 5.12: Pictures of Churchill show: a) Churchill River weir, b) Muskeg covered 

lake, c) Partially overgrown lake.   

 

Another potential application is the identification of permafrost and degraded permafrost 

or active layers. The classification may be sufficiently accurate to separate frozen and 

water filled soil, but this application cannot be achieved without having accurate ground 

data for validation of the classification.                 

 

5.5 Summary 

 

In this chapter, a new probabilistic distance, the Wishart Chernoff distance, based 

on the probability densities of the complex Wishart distribution, is derived. The Wishart 

Chernoff distance is always non-negative, with zero distance occurring only if the 



100 

 

probability distributions are identical. An unsupervised agglomerative approach for 

ALOS PALSAR data segmentation is discussed. Data are divided into clusters based on 

the SPAN/H/A/α space. The Wishart Chernoff distance is used to merge clusters 

hierarchically into an appropriate number of classes, which is calculated using the data 

log-likelihood algorithm. Although the data log-likelihood algorithm estimates the 

appropriate number of classes taking into account the inner data structure, the obtained 

appropriate number differs according to the distance criterion used to merge the clusters. 

The Wishart Chernoff distance tends to provide a higher number of classes than the 

Wishart test statistic distance, preserving more detailed information of the polarimetric 

SAR data, which corresponds to more detailed land cover types. This is mainly because 

the Wishart Chernoff distance, in comparison with the Wishart test statistic distance, uses 

the statistical characteristics of the two Wishart distributions in order to estimate their 

similarity. Moreover, the fact that the Wishart Chernoff distance is independent of the 

number of samples makes it a much more robust distance criterion. Promising 

segmentation results are obtained using the Wishart Chernoff distance, including details 

as well as uniform areas and a relative large number of classes. Thus, the proposed 

Wishart Chernoff distance can be applied when detailed information is required. 
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Chapter Six: Conclusions and Future Perspectives 

 

6.1 Conclusions 

 

The main purpose of this research was the development of new segmentation 

methodologies for polarimetric SAR data which overcome some of the limitations of 

contemporary methods. To achieve this, we have developed new segmentation 

methodologies which can be grouped into: 1) methodologies using a divisive clustering 

technique and 2) methodologies using an agglomerative clustering technique.  

For the divisive case, two new segmentation approaches were discussed for full 

and dual polarimetric SAR data. In order to overcome the drawbacks of already existing 

divisive segmentation approaches, both divisive approaches were nonparametric, i.e., 

assumptions about the underlying distributions were avoided. This was accomplished by 

involving a nonparametric histogram thresholding algorithm in both segmentation 

approaches. This algorithm has the advantage of being able to automatically determine 

the number of modes in a histogram. The proposed segmentation methodology for the 

full polarimetric case was applied to the analysis images of Pauli and Freeman-Durden, in 

separate cases. Segmentation started by dividing the input data based on the dominant 

and the second most significant scattering mechanisms in the first and second 

segmentation levels, respectively. Afterwards, the nonparametric histogram thresholding 

algorithm was applied on the histograms of the dominant scattering mechanism for 

further segmentation, exploiting the inherent variations within the dominant scattering 

mechanism. Scattering information alone was found not sufficient to split data into 

segments that correlate well with the different RGB colors. Hence, amplitude information 

of the dominant scattering mechanism was necessary to obtain the required segmentation. 

The proposed segmentation methodology goes beyond the existing methodologies from 

two points of view. Firstly, the resulting segments are homogeneous with regard to the 

amplitude values of the dominant scattering mechanism. Secondly, these segments 

preserve the polarimetric scattering information. Preserving the scattering mechanism 

information is very important as this information exploits the advantage that full 
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polarimetric SAR systems provide, in comparison to single-channel SAR or optical 

systems. This additional polarimetric information can also be used in a later classification 

approach of segments into semantic objects. The performance of the proposed 

methodology was tested against segmentation results from the k-means algorithm. 

Segments of our methodology were compared with the resulting segments based on the 

Wishart k-means H/α and Wishart k-means H/α/A/SPAN. It was clear that our 

methodology attains better segmentation results in terms of 1) smooth segment 

boundaries that nicely fit the RGB composite color variations and 2) non over-

segmenting the polarimetric SAR data. It was shown that fewer numbers of segments are 

obtained in comparison to the numbers obtained by the Wishart k-means H/α and Wishart 

k-means H/α/A/SPAN approaches. The proposed methodology for the dual polarized 

case uses the nonparametric histogram thresholding algorithm to divide the two 

histograms of the two SAR channels into unimodal regions. Next, the information of the 

two channels were used together in order to produce image segments. In this context, the 

two thresholded histograms were combined together to form a two dimensional 

histogram-based space divided into subspaces responsible for the segmentation. As in the 

full polarimetric case, the proposed methodology for dual polarized data segmentation 

was multilevel. Two criteria were defined, one based on the number of pixels which 

belong to a subspace and another one based on the standard deviation of these pixels. 

Both were intended to control the subsequent segmentation levels. These two criteria 

were successfully able to select those subspaces which need to be considered in the next 

segmentation levels. This was clear from the final resulting segments, where different 

variations of the grayscale color were well outlined. The comparison of the concept of the 

proposed methodology with the segmentation concept implemented by the eCognition 

segmentation algorithm revealed in important feature. As the proposed segmentation 

approach creates segments of various sizes, it allows for segmentation of small or large 

regions without discriminating the number of pixels in a region. This feature is a result of 

using segmentation based on the defined subspaces in each previous segmentation level. 

Thus, small size segments were found to be contained within large contiguous ones. This 

was not the case with the eCognition segmentation algorithm, which is image-based and 
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which acts locally, producing contiguous segments only. The difference in the two 

concepts leads to topological relationships in different spaces. In our case, the mother-

child topological relationships were formed in the two dimensional histogram-based 

space while for the eCognition case, these relationships were formed in the two 

dimensional space of the image. 

For the agglomerative segmentation, a new methodology for the unsupervised 

segmentation of full polarimetric SAR data was presented. The proposed methodology is 

new in terms of proposing a new probabilistic distance as a similarity criterion for 

merging clusters. Concerning the drawbacks of the existing criteria, we proposed a new 

criterion independent of the number of samples (pixels) in each cluster which evaluates 

the similarity of clusters by measuring the Chernoff distance between their complex 

Wishart probability density functions. The Wishart Chernoff distance is always positive 

symmetric. Two identical distributions have a zero Wishart Chernoff distance. The 

robustness of the Wishart Chernoff distance results from its independence of the 

polarization basis which was mathematically proven. In this context, data in covariance 

matrices, coherency matrices or circular polarization matrices would produce identical 

segmentation results. In an agglomerative clustering approach, the estimation of the 

appropriate number of clusters using the data log-likelihood algorithm differs depending 

on the distance criterion used in the algorithm. In particular, the Wishart Chernoff 

distance tends to provide higher appropriate number of clusters than the Wishart test 

statistic distance. This is because the Wishart Chernoff distance preserves detailed data 

information which corresponds to small classes, e.g., streams in our case study. 

Moreover, the Wishart Chernoff distance provides more classes in areas with high-energy 

returns, e.g., forests and urban areas. The Wishart Chernoff distance was further 

investigated for landscape dynamics monitoring through the agglomerative clustering of a 

series of full polarimetric SAR data of Churchill, Manitoba. Changes in land cover 

surface types were successfully determined. The fusion of the classified radar images 

with data, such as elevations, temperatures, etc., could help in better understanding 

landscape dynamics.   
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6.2 Future Perspectives  

 

Assessing the results of this research has shown that useful improvements in 

POLSAR segmentation have been made. Comparisons with contemporary methods were 

positive. Several lines of future work can be identified. The segmentation results can be 

directly used as input data for classifying segments into semantic thematic objects. It is 

important for the classification approach that transferring segments into thematic classes 

to exploit the advantages of the previously applied segmentation methodologies, e.g., 

maintaining the scattering information. Subject of future work could also be a 

comparison study of the proposed Wishart Chernoff distance with other distances, such 

as Manhattan distance and the Bartlett distance. Interesting would be to point out the 

effect of each distance on the calculated appropriate number of clusters using the data 

log-likelihood algorithm. Further investigation to extend the Wishart Chernoff distance to 

be applicable to dual polarized case is also necessary in light of having much more dual 

polarized data available even in the new polarimetric SAR missions, e.g., TanDEM-X. 

Based on the findings in this study, any information about the targets should be included 

in the segmentation algorithm. Consequently, an optimal segmentation algorithm for 

particular applications must ultimately be based on a target oriented method. Future 

methods should therefore strive to include target area information which is not directly 

accessible from POLSAR, e.g., DEM, slope, soil moisture, surface temperature, or rock 

type. More research is still needed in the field of radar data fusion with landscape and 

physical parameters of terrain. This can lead to valuable information about the 

mechanisms of the landscape dynamics and the effects of the climate change and shed 

light on the driving forces of dynamic changes.        
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