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Abstract

THE main objective of this research is to present a complete and comprehensive anal-

ysis of the torus-based semi-analytical approach of gravity field determination from

spaceborne gravimetry observations. The focus is placed on the torus-based approach be-

cause it theoretically saves computational time and memory storage as a result of using

both a two-dimensional fast Fourier transform (2D FFT) technique and the block-diagonal

structured normal matrix in least-squares adjustment. However, the full implementation of

this approach for practical applications has never been done.

Starting with an introduction of the theoretical and mathematical backgrounds of sev-

eral state-of-art gravity field determination approaches, namely the direct, space-wise,

time-wise, and torus-based semi-analytical approaches, the strengths and weaknesses of

each approach are discussed. A complete and detailed calculating flow chart of the torus-

based approach is developed. Under the assumption of a nominal orbit, the approach ba-

sically recovers the Earth’s global gravity field in three major steps. In the first step, the

in situ contaminated satellite observations, such as the disturbing potential data from the

CHAMP mission or the gravity gradient tensor components from the GOCE mission, are

reduced and interpolated onto a nominal torus grid. The second step is to calculate the

pseudo-observables, the lumped coefficients Amk, using a 2D FFT technique. In the final

step, spherical harmonic coefficients are estimated separately for the individual orders by

least-squares adjustment. Several critical issues involved in the calculations have to be

investigated. These issues are: filtering observations contaminated by colored noise, re-

ducing height and inclination variations onto a nominal orbit, interpolating a torus grid,

analyzing the aliasing problems in both spatial and spectral domains, calculating a weight

matrix from an error power spectral density (PSD) model, investigating the regularization

techniques in a nearly ill-posed problem of the normal matrix, determining the optimal

weighting factors for the combined solution, and iterating the estimated solution.

Several case studies on the processing of satellite observations using the complete cal-

culating flow are described and analyzed. The comparisons between the direct and torus-

based approach show that the latter achieves the same accuracy level as the former with
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only 1% of the calculating time. Two groups of solutions, namely the stand-alone and the

combined solutions, are obtained. The disturbing potential data from CHAMP and GRACE

are able to recover the gravity field up to L = 70. However, the gravity field determined

from the GRACE-type line-of-sight (LOS) gradiometry data is not successful because the

≈ 220km inter-satellite baseline of GRACE breaks the assumption that the baseline should

be sufficiently small. In addition, the solutions of the gravity gradient tensor data from

GOCE do not provide enough accuracy because the interpolation errors reach 3% of the

original values. It is very easy to combine different types of observations or data sets using

the torus-based approach. The combined (overall) solutions using the optimal weights de-

termined by the variance components approach are better than the individual stand-alone

solutions or equal-weighted overall solutions.

Finally, a summarized and comprehensive calculating procedure for the general appli-

cations of gravity field determination from satellite missions is proposed.
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Ȳlm(φ,λ) complex normalized spherical harmonic

P̄lm(sinφ) normalized associated Legendre function

F̄lmk(I) normalized inclination function

F̄∗
lmk(I) normalized cross-track inclination function

Coefficients

K̄lm normalized complex-valued SH coefficient

C̄lm, S̄lm normalized real-valued SH coefficient

Amk lumped coefficient

Hlmk transfer coefficient, sensitivity coefficient

ψmk,ψn orbital frequency

xix



Chapter 1

Introduction

Absolute space, in its own nature, without regard to any thing external,

remains always similar and immovable... So far I have explained the

phenomena by the force of gravity...

Sir Isaac Newton (1643-1727)

1.1 Background and motivation

AFTER THE first artificial satellite (the SPUTNIK mission in 1957) demonstrated the

value of the Earth’s flatting J2, the way of employing spaceborne technologies has

been widely adopted to improve the knowledge of the Earth’s dynamic processes. The

major technological developments relevant to spaceborne gravity field determination are

the continuous orbit tracking by global navigation satellite systems (GNSS) and the onboard

accelerometers (Rummel, 1986), from which three basic concepts are derived: the satellite-

to-satellite tracking in high-low mode (SST-hl), satellite-to-satellite tracking in low-low

mode (SST-ll), and satellite gravity gradiometry (SGG). These three concepts are realized

by three dedicated gravity field satellite missions: CHAMP, GRACE, and GOCE (ESA,

1999; Balmino, 2001; Rummel et al., 2002), respectively. In general, these three gravity

field satellite missions can be referred to as “spaceborne gravimetry.” However, none of

these missions are able to measure the Earth’s gravity field directly, because an orbiting

spacecraft and all its contents are in free fall. Therefore, the gravity field information in

terms of a series of spherical harmonic coefficients can be derived only indirectly from

the in situ observations by making use of both the onboard GNSS receivers and precise

accelerometers.

Gravity field determination from spaceborne gravimetry has the following characteris-

tics: on the one hand, numerous observations are available in a global and homogeneous

quality as a result of the longer mission duration and denser sampling rate; on the other

hand, the effect of increasing the maximum resolvable degree L of spherical harmonics
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enlarges the number of the spherical harmonic unknowns quadratically, and the size of the

normal matrix is changed correspondingly to (L + 1)2 × (L + 1)2 in least-squares adjust-

ment for coefficient estimation.

Two main approaches are available for gravity field determination. They are the numer-

ical way and the (semi-)analytical way. The former yields the direct (brute-force) approach,

which is based on orbit perturbation theory (Reigber, 1989; Rummel et al., 2004). Theo-

retically, the direct approach is the most robust and accurate solution, and it can be applied

in any projection domain, i.e., a sphere, an orbit, or a torus. However, it is not preferable

for spaceborne gravimetry observations because of its intrinsic limitations in the compu-

tational time and storage memory requirement. Rummel et al. (1993) summarized two

(semi-)analytical approaches: the space-wise and time-wise approaches. The space-wise

approach projects the observations as a function of location on a spherical domain, and the

time-wise approach treats the observations as a time series in an orbital domain. Under cer-

tain approximations and assumptions, a fast numerical algorithm can be applied in both the

space-wise (Colombo, 1981) and time-wise approaches (Colombo, 1984, 1989). In addi-

tion, the normal matrix in least-squares adjustment leads to an m-wise (m order of spherical

harmonics) block-diagonal structure, in which the maximum size is (L + 1)× (L + 1) for

m = 0, and the minimum size is only 1×1 for m = L (Koop, 1993). These two approaches

have been employed widely in gravity field determination from the CHAMP and GRACE

missions, and they are also proposed in the framework of the high level processing facility

to determine the gravity field from the GOCE mission. For the space-wise approach, see

e.g., Albertella et al. (2000), Tscherning et al. (2000), and Migliaccio et al. (2004); and for

the time-wise approach, see e.g., Koop et al. (2000), Klees et al. (2000), Pail and Plank

(2002), and Pail et al. (2005).

As an extended version of the time-wise approach in the frequency (Fourier) domain,

Sneeuw (2000a,b) proposed a torus-based semi-analytical approach for gravity field de-

termination. By making use of two orbital coordinates, argument of latitude u and right

ascension of ascending node Λ, this approach projects naturally the spaceborne gravimetry

observations on a torus domain. It has the following advantages:

� A regular grid on the torus allows the application of a two dimensional (2D) fast

Fourier transform (FFT) technique to obtain the so-called “lumped coefficient” as a
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pseudo-observable (Schrama, 1989, 1990).

� An assumption of a nominal orbit with constant radius and constant height yields a

block-diagonal structured normal matrix in least-squares adjustment for estimating

the spherical harmonic coefficients.

� A weight matrix is able to be derived from the a-priori error information in terms of

the power spectral density (PSD) in the stochastic model.

� A collection of the so-called “transfer coefficients” shows the feasibility of dealing

with any geopotential functional (Rummel et al., 1993).

� In addition, by applying interpolation, this approach is not affected by a repeat orbit

assumption, data gaps, or polar gaps.

Sneeuw (2000b) and Sneeuw et al. (2002) concluded that the torus-based semi-analytical

approach is a flexible and powerful pre-mission error assessment and validation tool based

on the analysis of the simulated observation errors. Karrer (2000) tested this approach in

the presence of the GOCE simulated gravity gradient tensor data, and Sneeuw et al. (2005b)

employed it in the determination of monthly gravity field solutions from the CHAMP dis-

turbing potential data. In addition, from the one-dimensional repeat orbit perspective, Pail

and Plank (2004), and Pail et al. (2007) illustrated that the semi-analytical approach can be

used as a quick-look tool for the purpose of a fast analysis of the GOCE input data. How-

ever, none of the studies mentioned above provided a complete processing flow chart of

the torus-based approach for gravity field determination from satellite observations. There-

fore, the main motivation of this research is to present a complete and detailed analysis

of the torus-based semi-analytical approach in spaceborne gravimetry. This work will be

focused on the implementation, refinement, and investigation of each corresponding pro-

cessing step to achieve a final solution of spherical harmonic coefficients as accurate as

possible, compared to a reference gravity field model.

The general calculating flow of gravity field determination using the torus-based ap-

proach has been discussed in Sneeuw (2000a). However, there are still several open ques-

tions to be investigated:
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� How to filter the satellite observations contaminated by colored noise in the pre-

processing stage.

� How to reduce the measurements onto a nominal torus with constant height and con-

stant inclination.

� How to determinate the partial and cross derivatives of the observations with respect

to height and inclination in a gravity field synthesis procedure.

� How to create a torus grid with a sufficient increment size and estimate the gridding

errors.

� How to incorporate the weight matrix from the error PSD model in the order-wise

least-squares adjustment.

� How to solve the (nearly) singular normal matrix.

� How to combine different types of observations and data sets for a joint solution.

� How to improve the least-squares estimation to compensate for assumptions and ap-

proximations.

1.2 Thesis objectives

The main objective in this thesis is to study in detail the torus-based semi-analytical ap-

proach for gravity field determination from spaceborne gravimetry observations. Specifi-

cally, all the critical issues in the calculating procedure will be discussed in the context of

the processing of the different satellite observations. The objectives can be grouped into

three domains:

From the in situ observations to the lumped coefficients

� Implementation of the design of an ARMA (Auto-Regressive and Moving Average)

filter for the colored noise contaminated observations as a pre-processing stage. Anal-

ysis of the error PSD model before and after filtering.
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� Derivation of a multi-parametric Taylor expansion series for the reductions of the

height and inclination variations.

� Development of the torus-based gravity field synthesis procedure, specifically for the

first and second order partial and cross derivatives of geo-potential observables with

respect to height and inclination.

� Investigation of the deterministic and geo-statistical interpolation methods for both

the isotropic and anisotropic observables. Evaluation of the error budget for the

spherical harmonics estimation.

� Discussion on the aliasing problems in spatial/temporal and frequency domains. In-

vestigation of a re-sampling tool for the aliasing effects caused by the variant ground

track patterns.

Estimation of spherical harmonics from the pseudo-observables

� Development of a weight matrix of the observations for the order-wise least-squares

adjustment from the error PSD model.

� Investigation of regularization techniques in nearly ill-posed problems, including the

analysis of the characteristics of regularization matrices and determination of regu-

larization factors.

� Assessment of the optimal weighting determination methods for distinct orders in the

combined solutions from different types of observations or data sets.

� Development of a torus-based iteration procedure for the corrections of the nominal

orbit assumption and interpolation errors.

Studies of the processing of the CHAMP, GRACE, and GOCE observations

� Comparison between the direct approach and the torus-based approach.

� Evaluation of the stand-alone and combined solutions from disturbing potential, line-

of-sight (LOS) gradiometry, and gravity gradient tensor observables.
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1.3 Thesis outline

THE analysis and results of this research are presented in Chapters 2 through 7. An

outline of the essential structure of this thesis is given below.

Chapter 2 starts with a brief introduction of physical geodesy and dynamic satellite

geodesy. The concepts of the three spaceborne gravimetry technologies are presented, with

their realization in the dedicated gravity field missions. The satellite data in the individual

missions are described. Furthermore, with the high-accuracy and high-resolution gravity

field models derived from spaceborne gravimetry, the corresponding impacts on the geo-

scientific applications are discussed.

Beginning with the representations of disturbing potential on a sphere, Chapter 3 presents

an overview of the state-of-art gravity field determination approaches, namely the direct,

space-wise, time-wise, and torus-based semi-analytical approaches. Their mathematical

derivations, the corresponding projection domains, and the relationship among these ap-

proaches are introduced on the basis of spherical harmonics representation. The strengths

and weaknesses of each approach also are highlighted for the purpose of theoretical com-

parison. In particular, a detailed calculating flow chart of torus-based approach is com-

pleted, and the relevant open questions in the individual steps are pointed out.

The error representations in both the spectral and spatial domains are introduced first in

Chapter 4. Then, the filtering technique is studied as a pre-processing tool for the colored

noise contaminated observations. The in situ observations are reduced to a nominal torus

by a multi-parametric Taylor expansion series. The partial derivatives of the observables

with respect to orbital height and inclination are calculated from a developed torus-based

synthesis procedure. The methodologies of the deterministic and geo-statistical interpo-

lation methods are studied to create a torus grid from the reduced observations. Aliasing

problems are discussed in the spatial/temproal and frequency domains. In particular, the

effects of the ground track patterns caused by the varying orbital heights are presented.

In Chapter 5, the focus is placed on the estimation of spherical harmonic coefficients

from the pseudo-observables, the lumped coefficients, by the order-wise least-squares ad-

justment. Determination of the weight matrix from the error PSD model is studied. The

characteristics of the regularization matrices and the regularization factor determination
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approaches are discussed. The performances of the optimal weighting methods are investi-

gated. Finally, an iteration scheme is sketched to improve the least-squares estimations.

Chapter 6 focuses on the applications of the complete torus-based semi-analytical grav-

ity field recovery in spaceborne gravimetry. The results of numerous case studies are de-

scribed and analyzed. Two groups of solutions are achieved, namely the stand-alone and

the combined solutions. In the former group, the processed satellite data cover disturb-

ing potential from CHAMP and GRACE, GRACE-type line-of-sight (LOS) gradiometry, and

gravity gradient tensor from GOCE. Different combination scenarios are investigated in the

latter group.

Finally, Chapter 7 outlines the main achievements of this research and draws conclu-

sions on the major contributions. It provides several recommendations for using the torus-

based approach in gravity field determination. In addition, future development in this area

is also presented.



Chapter 2

Dedicated satellite gravity field missions and data

description

THE Earth’s gravity field and its variations, which are integrated by various dynamic

processes, reflect the Earth’s mass transport and mass distribution, such as ocean cir-

culation and transport, ice mass balance, and hydrologic cycles. Purely defined by gravity,

the geoid is needed as a reference surface for all topographic features. However, classi-

cal gravity field information does not have a sufficient accuracy and spatial resolution in a

global scale. Employing space techniques, global, regular, and dense data sets with high

and homogeneous quality are achievable. The concept of spaceborne gravimetry is realized

by three actual space methods: satellite-to-satellite tracking in the high-low mode (SST-hl),

satellite-to-satellite tracking in the low-low mode (SST-ll), and satellite gravity gradiom-

etry (SGG) (ESA, 1999; Rummel et al., 2002). These three concepts are implemented by

three dedicated satellite missions: CHAMP, GRACE, and GOCE, respectively. The mission

concepts and characteristics, the transformation from the direct measurements to the corre-

sponding geo-potential functionals, and the description on the different level products of the

data are addressed in Sections 2.2, 2.3, and 2.4 for the three satellite missions, respectively.

Different types of data sets, which will be processed in this thesis, also are described in the

corresponding sections. Section 2.5 lists the impacts on several geo-scientific applications

of the gravity field models derived from the satellite missions.

2.1 From physical geodesy to dynamics satellite geodesy

Geodesy is a discipline that deals with measurements and representation of

the Earth, including its gravity field, in a 3D time varying space.

Vanı́ček and Krakiwsky (1986)

As a sub-branch of geodesy, physical geodesy aims at the determination of the physi-

cal shape of the Earth. It is concerned with the physical properties of the Earth’s gravity

8
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field and their geodetic applications. The Earth’s gravity plays an essential role in under-

standing the interior and exterior mass balances of the Earth, because it is an integrated

signal of Earth’s mass transport and distribution. Changes in gravity over time occur as

a result of ocean circulation, tectonics, earthquakes, ice melting, and so on. The geoid

(i.e., the equipotential surface at mean sea level of a hypothetical ocean surface at rest, in

the absence of tides and currents) serves as the reference surface for all topographic fea-

tures. Figure 2.1 demonstrates the relations among gravity, geoid, and mass balance of the

Earth’s system, which will be discussed in detail in the context of the dedicated gravity

field satellite missions in Section 2.5.
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Figure 2.1: Relationship among the gravity, geoid, and mass balance of the Earth’s system
(ESA, 1999)

Before the dedicated gravity field satellite missions were launched, three types of grav-

ity data were available (Rummel et al., 2002):

� mean gravity anomalies derived from terrestrial gravimetry in combination with pre-

cise height measurements and from ship-borne gravimetry. These data are inhomo-

geneous and inconsistent. A global map of mean gravity anomalies available in 1997

is shown in Figure 2.2.
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� satellite altimetry, which provides the sea surface topography and is regarded as a di-

rect geoid measuring technique in ocean areas only. However, the resulting stationary

sea surface still deviates from the geoid because of ocean dynamics.

� satellite orbit analysis, which yielded geo-potential models in the long wavelength

part of the spectrum from short-arc measurements only, such as the GRIM-4S gravity

field model (Schwintzer et al., 1997).

Figure 2.2: Distribution of available measurements of gravity in 1997, from the database of
the Bureau Gravimétrique International (BGI)

The traditional techniques of gravity field determination have reached their intrinsic

limits in terms of accuracy and spatial resolution from a global perspective. The global

spatial resolution is expressed by the half wavelength:

λ
2

=
20,000km

L
, (2.1)

with L the maximum degree of spherical harmonics; see Equation (3.1).
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An advance has been brought about by space techniques because they provide global,

regular, and dense data sets of high and homogeneous quality (ESA, 1999; Rummel et al.,

2002).

Dynamic satellite geodesy is the application of celestial mechanics to

geodesy. It aims in particular at describing satellite orbits under the influence

of gravitational and non - gravitational forces.

Sneeuw (2000b)

Satellite geodesy is geodesy by means of satellites. The gravitational and non-gravitational

forces lead to motions of flying satellites in a dynamic sense. However, gravity cannot be

measured directly in space, and can be derived only indirectly from enormous spaceborne

observations, such as position, velocity, and acceleration data. With continuous tracking by

global navigation satellite systems (GNSS) and the precise accelerometers on board, space-

borne gravimetry is able to determine the Earth’s gravity field. The concept of spaceborne

gravimetry is implemented by three methods. These are

� satellite-to-satellite tracking in high-low mode (SST-hl),

� satellite-to-satellite tracking in low-low mode (SST-ll), and

� satellite gravity gradiometry (SGG).

2.2 Satellite-to-satellite tracking in high-low mode (SST-hl)

2.2.1 Concept of the SST-hl mode

SST-hl mode means that a low Earth orbiter (LEO) spacecraft is flying at an altitude of a few

hundred kilometers and the onboard GPS receivers are continuously tracking high orbiting

GNSS satellites. Simultaneously, the non-gravitational forces acting on the low orbiter are

measured by on-board accelerometers (Figure 2.3). When the spacecraft is flying over a

mass anomaly on the Earth, changes of gravitational attraction result in a corresponding

disturbance of the satellite orbit. Then, the gravity field can be derived based on the orbital

perturbations (Visser et al., 2002).
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Figure 2.3: Concept of the SST-hl mode (Seeber, 2003)

The basic observables from the SST in the high-low mode are precise positions, ve-

locities, and accelerations, from which the disturbing potential data along the orbit can be

derived. One traditional way is the numerical integration method, which includes all pa-

rameters in a huge system and is not feasible for satellite missions. An alternative way is

applying the energy balance approach, which has been comprehensively discussed in the

literature of gravity field determination from satellite gravity field missions (Jekeli, 1999;

Sneeuw et al., 2003; Weigelt, 2006). Therefore, only the basic idea is introduced here.

The energy balance approach, also referred to as the energy integral approach, is based

on the law of energy conservation. It has been introduced in gravity field determination

since the early stage of the satellite era (O’Keefe, 1975). Derived from the equation of

motion in a rotating frame, the energy integral can be written as follows (Jekeli, 1999):

V + c = Ekin −U −Z −
Z

f ·dr. (2.2)

The quantities at the left side are the disturbing potential and an unknown constant. All

terms at the right are provided from SST-hl data and existing gravity field models:
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c = Jacobi integral; is an integration constant

V = disturbing potential to be determined

Ekin = 1
2 ṙṙ = kinematic energy; requires satellite velocities ṙ

U = normal gravitational potential; requires satellite positions r

and an a-priori gravity field model

Z = centrifugal potential at satellite’s location; requires satellite

positions r
R

f ·dr = dissipative energy integrated along the satellite orbit from

dissipative force f

The derived and validated disturbing potential will be treated as the input observable

and will be processed to determine the Earth’s gravity field model; see gravity field recovery

approaches in Section 3.2.

2.2.2 The CHAMP mission and data description

As a realization for SST high-low tracking, the CHAMP (CHAllenging Mini-satellite Pay-

load) satellite mission exploits for the first time highly precise gravity and magnetic field

measurements simultaneously. It was launched in 2000 into a near polar (I = 87◦), near

circular (e = 0.004), 454km initial altitude orbit (CHAMP website). Since the CHAMP

mission is not an air-drag compensated mission, the satellite orbit decay was considerably

fast over the mission life time. In order to avoid the mission being finished earlier than ex-

pected, two orbit change manoeuvres were performed to boost the orbital altitude in June

and December 2002, respectively (Figure 2.4). The importance of mentioning the orbit

changes is that the satellite passed through a number of repeat cycles more than once. A

repeat orbit mode is a critical issue for gravity field determination because of the ground

track patterns, which will be discussed in Section 4.5.

The CHAMP level-0 data (raw data) are stored in the science operation system at GFZ

Potsdam. The standard science products are tagged from level-1 to level-4 according to the

number of processing steps applied to the level-0 data. Decoding of level-0 data results

in level-1 products. Level-2 data are preprocessed, edited and calibrated experiment data

supplemented with necessary satellite housekeeping data and arranged in daily files. Level-

3 products comprise the operational rapid products and fine processed data. Finally, level-4
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Figure 2.4: Variant and mean orbital heights of the CHAMP mission from April 2002 to
February 2004

data provide geo-scientific models for different fields of research and applications. For the

orbit and gravity field processing system, they are described as follows (CHAMP website):

� level-1: GPS satellite-to-satellite phase and code tracking observations from the CHAMP

satellite and ground stations;

� level-2: preprocessed accelerometer observations annotated with calibration param-

eters, attitude information, and thruster firing time events;

� level-3: rapid science orbits of the CHAMP and GPS satellites;

� level-4: post-processed precise orbits of the CHAMP and GPS satellites, global gravity

field model represented by the adjusted coefficients of a spherical harmonic expan-

sion.

In this thesis, disturbing potential data along the orbit are derived from post-processed

precise orbit information of CHAMP level-4 data. This procedure is done by the energy

balance approach given in Weigelt (2006). The time span is from April 2002 to February

2004. The period includes the two orbit manoeuvres mentioned above (Figure 2.4). The

sampling rate is 30s and the data have interruptions due to missing information. Monthly

solutions will be first determined for individual months and the overall solution will be
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merged using the multi-observable model discussed in Section 5.2. For the processing, this

data set is denoted as “CHAMP data set.”

2.3 Satellite-to-satellite tracking in low-low mode (SST-ll)

2.3.1 Concept of the SST-ll mode

SST-ll mode means two LEOs fly in the same orbit over the Earth. The inter-satellite range

is continuously tracked by an accurate ranging instrument; at the same time, the precise

positions and velocities of these twin orbiters are determined in a SST-hl mode by the

GNSS system (Figure 2.5). As the gravity field changes beneath the satellites because of

changes in mass and topography of the surface beneath, the orbital motion of each satellite

is changed. This change in orbital motion causes the distance between the satellites to

expand or contract and can be measured very precisely using the ranging system. From this

measurement, the fluctuations in the Earth’s gravity field can be determined (Jekeli, 1999;

Balmino, 2003). One advantage of the SST-ll over the pure SST-hl is that differentiation

of observables provides a much higher sensitivity. For instance, the K-band microwave

is able to detect the inter-satellite range changes with a resolution of 10μm (the width

of a human hair). Because of the precise relative relation between the two satellites, this

differentiation observable will be more sensitive to the time-variable gravity field compared

to the observables in the SST-hl mode.

Beside the precise range, range rate, and range acceleration information between the

two satellites, each satellite can be treated individually as a single CHAMP-like satellite

with the SST-hl concept. Therefore, disturbing potential of each satellite can be determined

by the energy balance approach from the satellite position, velocity, and acceleration data

as described above. Other treatments are differential gravimetry and line-of-sight (LOS)

gradiometry, which will be discussed in Section 5.1.

2.3.2 The GRACE mission and data description

The SST-ll concept has been realized by the GRACE (Gravity Recovery And Climate Ex-

periment) mission, which was launched in 2002. The characteristic orbit is almost polar

(I = 89◦) and near circular (e < 0.005) starting with an initial altitude at 485km (GRACE
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Earthmass anomaly
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Figure 2.5: Concept of the SST-ll mode (Seeber, 2003)

website). The twin satellites are separated by approximately 220±50km in the along-track

direction.

Different levels of the data products from GRACE are described as follows (Case et al.,

2004):

� level-0: raw data which are separated into the science instrument and spacecraft

housekeeping data streams;

� level-1A: sensor calibration factors which are applied to convert the data to engineer-

ing units with the quality flags;

� level-1B: scientific data products, such as K-band ranging data and GPS data;

� level-2: the precise orbits for the GRACE satellites and the estimations of spherical

harmonic coefficients.

The K-band range ρ and range acceleration ρ̈ data with a sampling rate of 30s from

level-1B products were collected from September 2003 to October 2003. Under certain

approximations, their ratio ρ̈/ρ is treated as a similar quantity to the gravity gradient tensor

along-track component Vxx (Sharifi, 2004); see Sneeuw (2000b) and Section 5.1. This data

set is labelled “GRACE data set I.”
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Since the in situ range acceleration from the GRACE mission is very noisy, the simu-

lated GRACE data by the Institut für Theoretische Geodäsie, Universität Bonn 1, will be

employed for theoretical validation and various comparisons. Choosing the EGM96 grav-

ity field model as the specified reference model (pseudo-real model), the data set includes

the position, velocity, and acceleration measurements. These simulated data cover a time

span of 30 days with a sampling rate of 5s for both satellites, GRACEA and GRACEB. The

simulation scenarios are simplified by using errorless position, velocity, and acceleration

observations of the GPS satellites and the two GRACE satellites. Therefore, the errorless

inter-satellite range and range acceleration can be easily calculated from the simulated po-

sition, velocity, and acceleration data. Then, the range and range acceleration data will be

used to derive the pseudo LOS gradiometry observations (Section 5.1). The simulated data

set is tagged “GRACE data set II.”

In addition, monthly disturbing potential data for both satellites are calculated from the

position, velocity, and acceleration level-1B products from August 2002 to February 2004

using the energy balance approach done by Weigelt (2006). In this case, the twin satellites

are treated as two CHAMP-like satellites in the SST-hl mode. The collected data are named

“GRACE data set III.”

2.4 Satellite gravity gradiometry (SGG)

2.4.1 Concept of the SGG

A gradiometer is a sensor that can measure the differences of the accelerations in space,

i.e., the gravity gradient tensor, which consists of the second order derivatives of the grav-

itational potential Vi j = ∂2V
∂i∂ j . The tensor Vi j is symmetric. The Laplace condition is

ΔV = Vxx +Vyy +Vzz = 0.

Vi j =

⎡
⎢⎢⎢⎣

Vxx Vxy Vxz

Vyx Vyy Vyz

Vzx Vzy Vzz

⎤
⎥⎥⎥⎦ . (2.3)

1ftp : //geo@atlas.geod.uni−bonn.de/pub/SC7 SimulationScenarios/GRACE/
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Satellite gravity gradiometry consists of three pairs of highly sensitive accelerometers

in a diamond configuration, located in close vicinity to the satellite’s center of mass (See-

ber, 2003). Differences in the acceleration are measured in the Eötvös unit (1Eötvös =

1E � 10−9 s−2). Equipped with the GNSS receivers, the disturbed orbit of the LEO can be

precisely determined by SST-hl mode in a sensor fusion technique (Figure 2.6).

SGG

Earthmass anomaly

GNSS

SST-hl

mass anomaly

-

Figure 2.6: Concept of the SGG mode (Seeber, 2003)

The SGG observable, i.e., the gravity gradient tensor Vi j, is obtained from the accelerom-

eter difference observation Γ after removing centrifugal acceleration ΩΩ (Ω the angular

velocity) and angular acceleration Ω̇ component, which are caused by the measurement in

a moving frame fixed to the satellite (Rummel, 1986):

Vi j = Γ−ΩΩ− Ω̇. (2.4)

2.4.2 The GOCE mission and data description

The GOCE (Gravity field and steady-state Ocean Circulation Explorer) mission is dedicated

to measuring the static gravity field. It is scheduled for launch in spring 2008. The orbit

will be sun-synchronous with an exact inclination of 96◦.6. It is drag-free as low as about

250km (GOCE website). The flight altitude is selected as a compromise between gravity
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attenuation and the influence of the atmosphere (ESA, 1999). The GOCE mission is unique

in meeting four fundamental criteria for high accuracy and high resolution gravity field

determination:

� three dimensional continuous tracking,

� compensation for the effect of non-gravitational forces such as air-drag and solar

radiation pressure,

� sensing a strong gravity signal because of a low flying altitude, and

� employing the satellite gravity gradiometry (SGG) technique to counteract the gravity-

field attenuation at altitude; see the Meissl scheme in Figure 5.1.

Similar to GRACE, the GOCE data products are categorized as follows (ESA, 1999):

� level-0: the time-ordered science and housekeeping raw data;

� level-1A: reformatted data for respective instrument packets;

� level-1B: the time series instrument and satellite data along the orbit, including cali-

brated and corrected gravity gradient tensors, satellite positions and velocities, satel-

lite attitude and angular rates, and so forth;

� level-2: rapid and precise orbits, gravity field solutions and the variance-covariance

matrix.

The GOCE mission is able to provide the gravity gradient tensor observations with a

measuring accuracy of the order of 3×10−3 E/
√

Hz within the gradiometer measurement

bandwidth from 0.005Hz to 0.1Hz. In addition, with the implementation of the SST-hl

concept, the disturbing potential observations of the GOCE mission can be derived from the

position, velocity, and acceleration measurements also using the energy balance approach.

Design studies and simulations concerning the GOCE mission have been taking place

in a consortium called SID. A software tool was designed to build a simulated mission in a

near realistic scenario. For instance, the gradiometric measurement accuracy, the environ-

mental disturbances, the spacecraft dynamics, and the gravity field impact are all consid-

ered in the simulation flow. In this end-to-end simulator (Figure 2.7), the gravity gradient
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Figure 2.7: Flow chart of the GOCE gravity gradient tensor simulator (SID, 2000)

tensor observations are simulated. Starting from an input gravity field model (OSU91A

model), a simulated orbit is integrated. Along the orbit, gravity gradients (forward box) are

calculated as the input to the core of the simulator. The contaminated gravity gradient ten-

sors (backward box) are simulated as measurements from positions (perturbed orbit), input

gravity gradients, orientation (attitude errors), and disturbing forces (SID, 2000). Only the

main diagonal elements of the gravity gradient tensor observables are available for analysis

in this thesis. These components are simulated based on the OSU91A gravity field up to de-

gree L = 180 with the normal field removed. The satellite is in a 10-day, sun-synchronous

orbit (inclination I = 96◦.6) at an altitude of 246.6km. The measurement error spectrum

of the gravity gradient tensor components stays below 3mE/
√

Hz in terms of the power

spectrum density (PSD) inside the measurement bandwidth (MBW), which is the criterion

for the mission expected measurement error spectrum budget in Figure 2.8 (ESA, 1999).

This data set is named “GOCE data set I.”
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Figure 2.8: Spectra of the gravity gradient measurement error budget of GOCE with MBW of
0.005Hz ≤ f ≤ 0.1Hz

The second simulated GOCE data set has been created by a research group at Universität

Bonn 2. The generated measurements are satellite position, velocity, and acceleration in the

inertial frame and the full gravity gradient tensor components in a satellite local frame with

x-axis the along-track, y-axis the cross-track, and z-axis the radial direction (Figure 3.2).

The a-priori gravity field is the EGM96 model up to degree 300. The noise model contains

external noise because of spurious forces acting on the accelerometers and internal noise

caused by the position measurement of the test masses. This data set is called “GOCE data

set II.”

2.5 Impacts of spaceborne gravimetry on geosciences

As demonstrated in Figure 2.1, the Earth’s gravity field plays a special role in geosciences

because it is the only way to monitor the Earth’s mass transport and mass distribution, such

2ftp : //geo@atlas.geod.uni−bonn.de/pub/SC7 SimulationScenarios/GOCE/
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as ocean circulation and transport, and ice mass balance, on a global scale. The quantitative

requirements for the different geo-scientific applications expressed in terms of the geoid

height and gravity anomaly accuracies are shown in Table 2.1 (ESA, 1999; Visser et al.,

2002).

Table 2.1: Gravity field requirement for sciences, expressed in terms of geoid height and grav-
ity anomaly accuracies (Rummel et al., 2002)

Application
Accuracy Resolution

Geoid (cm) Gravity (mGal) (λ/2 in km)

Oceanography
short-scale 1–2 100
basin-scale 0.1–0.2 1000

Ice sheets
rock basement 1–5 50–100
ice vertical movements 2 100–1000

Solid Earth
lithosphere density 1–2 100
tectonic motions 1–2 50–100

Geodesy
levelling by GPS 1 100–1000
height systems 1 100–20000
INS accelerometer 1–5 100–1000
orbit determination 1–3 100–1000

Sea level change many of above applications

As a result of the measurement principles and the mission implementations discussed

above, the CHAMP mission is dedicated to resolving the long wavelength part of the Earth’s

gravity field, the GRACE mission is sensitive to medium to long wavelengths, and the

GOCE mission is able to recover the short wavelengths of the static gravity field. The

characteristics are summarized in Table 2.2. In addition, the extremely accurate K-band

ranging system of the GRACE mission enables, for the first time, the detection of temporal

variations of mass transport and distribution on a global scale with a geoid height accuracy

of 2 ∼ 3mm at a spatial resolution as small as 400km (Tapley et al., 2004). The global,

homogeneous, high-resolution, high-accuracy static gravity field and its variations with

time from spaceborne gravimetry will have significant impacts on several geo-scientific
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objectives, which are highlighted below.

Table 2.2: Gravity field characteristics of the CHAMP, GRACE & GOCE missions

CHAMP GRACE GOCE

gravity field model EIGEN-3P GGM02S N/A

spatial resolution [km] 350 285 < 100
gravity accuracy [mGal] 1 1 1
geoid accuracy [cm] 10 1 1−2
reference resource Reigber et al. (2005) Tapley et al. (2005) Rummel et al. (2002)

Ocean dynamics. Satellite altimetry missions such as the TOPEX/Poseidon and JASON-

1 mission, provide accurate sea surface height (Fu et al., 1994). With the combination of

the high precise geoid model derived from the gravity field missions as a reference surface,

the dynamic sea surface topography can be obtained. Fenoglio-Marc et al. (2006) assessed

the ability of the GRACE mission for recovering the seasonal seawater mass variation in

semi-closed basins of the Mediterranean Sea with the knowledge of the satellite altimetry

measurements and the oceanographic model. Morison et al. (2007) showed that the time

variable gravity field from the GRACE mission is able to reveal a declining trend in the

Arctic Ocean mass distribution.

Ice mass balance and sea level. Changes in the Antarctic and Greenland ice sheet mass

balance have important consequences for global sea level change and climate change. In

order to predict future sea level rising with more confidence, it is necessary to better un-

derstand the current evolution of continental ice masses, and to quantify their present mass

balance. The time-variable gravity field from the GRACE mission is able to determine mass

variations of the Antarctic ice sheet. Velicogna and Wahr (2006) found that the mass of the

ice sheet decreased significantly during 2002 to 2005, at a rate of 152±80 cubic kilometers

of ice per year, which is equivalent to 0.4±0.2 millimeters of global sea-level rise per year.

Similar research was done to estimate the Greenland ice sheet melting using the monthly

gravity field models from spaceborne gravimetry. The results show a consistent agreement

with the estimation from independent remote sensing measurements (Luthcke et al., 2006;
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Chen et al., 2006).

Solid Earth. Mass anomalies at the Earth’s surface, in the crust and in the mantle, are

both the cause and the result of various geodynamic processes such as plate tectonics and

mantle convection. The instantaneous global gravity potential field may be used in com-

bination with seismological and mineral physics data to refine global flow models with

laterally varying viscosity, one of the key parameters of the Earth’s interior (Chao et al.,

2000). Temporal geoid variations may provide a data set that further constrains on mantle

rheology and mantle flows (Swenson and Wahr, 2002).

Geodesy. Finally, geodesy will benefit from an improved global gravity field model in

the following applications:

� GNSS/levelling. Differential GNSS provides precise ellipsoidal heights h at the GNSS

stations. By subtracting precise geoid heights or geoid undulations N derived from

satellite gravity field missions, orthometric heights H can be calculated very pre-

cisely, which are usually measured by the time-consuming spirit levelling (Schwarz

et al., 1987). The principle of GNSS/levelling is illustrated in Figure 2.9.

H = h−N. (2.5)

The Canadian Geodetic Vertical Datum of 1928 does not satisfy needs of current

users for precise height determination in terms of accuracy and accessibility. Dis-

carding the traditional spirit levelling technique, the Geodetic Survey Division (GSD)

of Natural Resources Canada recommended a redefinition of the vertical datum by

adopting a gravimetric geoid model. By applying the principle of the GNSS/levelling,

a new height network will allow users to access an accurate and uniform orthometric

height datum everywhere across the Canadian territory (Véronneau et al., 2006).

� Unification of height systems. There are still a large number of unconnected height

systems in use around the world. With the geoid precision achievable by spaceborne

gravimetry, it will be possible to connect all height systems with cm-precision and

few discontinuities between adjacent islands by one globally consistent height system
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Figure 2.9: Principle of GNSS/levelling, from (GOCE website)

(Xu and Rummel, 1991). Arabelos and Tscherning (2001) assessed the improvement

of the accuracy of vertical datum transfer because of the high accuracy and spatial

resolution gravity field model that can be expected from the GOCE mission.

� Inertial navigation systems (INS). The core sensors of any inertial measuring unit

(IMU) for performing navigation are a set of gyroscopes and accelerometers. The

velocity and position of the vehicle can be obtained by single and double integra-

tions, respectively, with respect to the accelerations measured by the accelerometers.

The accelerometers measure not only the vehicle’s motion, but also the gravity accel-

eration. Precise gravity information will serve to separate the gravimetric from the

kinematic acceleration and reduce the errors significantly (Schwarz, 1981).

� Orbit determination. A high-accuracy gravity field model will provide a dramatic

improvement in orbit computations for Earth orbiting satellites. Improvements in

modelling orbit perturbations will lead to more accurate orbit predictions and enable

near real-time operations.
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Therefore, it is critically important to determine the gravity field from spaceborne

gravimetry observations. The state-of-art approaches for gravity field recovery from space-

borne gravimetry will be addressed in the next chapter.

2.6 Summary

BECAUSE of continuous orbit tracking and spaceborne accelerometers, the dedicated

satellite mission CHAMP, GRACE, and GOCE provide position, velocity, and accel-

eration data with high accuracy and homogeneous quality. These data can be transformed

to geo-potential functionals and then the Earth’s gravity field can be derived. Different

types of geo-potential functionals related data set will be processed in this thesis, and there

characteristics are summarized in Table 2.3.

Table 2.3: Summary of the data sets of satellite observations

characteristic
CHAMP GRACE GOCE

data set data set I data set II data set III data set I data set II

orbit height (km) 454 485 407 485 246.6 257
inclination 87◦ 89◦ 89.5◦ 89◦ 96◦.6 96◦.6
time period (day) 729 607 30 607 10 30
sampling rate (s) 30 30 5 30 30 5
observable V ρ&ρ̈ ρ&ρ̈ V Vi j Vi j

product level level-4 level-1B N/A level-1B level-1B level-1B
reference model GGM02S GGM02S EGM96 GGM02S OSU91A EGM96
comments orbit boosts K-band noiseless GRACEA&B MBW MBW

With the high accuracy and high resolution models of the Earth’s gravity field and its

variations derived from spaceborne gravimetry, the knowledge of gravity related dynamic

processes will be significantly improved.



Chapter 3

Overview of gravity field determination from spaceborne

gravimetry

THE purpose of this chapter is to study different gravity field determination approaches

from spaceborne gravimetry observations and present a review, in particular, of the

torus-based semi-analytical approach. Section 3.1 starts with the spherical harmonic se-

ries of the disturbing potential on a sphere, which is a fundamental domain for the Earth’s

gravity representation. Next, two main branches for the purpose of spherical harmonic

analysis are presented, namely the numerical and (semi-)analytical approaches. In Section

3.2, the theoretical and mathematical backgrounds of several gravity field determination

approaches, which are the direct, space-wise, time-wise, and torus-based approaches, are

introduced. In the different approaches, the spherical harmonic series is also transformed

into different domains, i.e., a sphere, a repeat orbit, or a torus. The relations among these

approaches are sketched in a family tree. The strengths and weaknesses of the different

approaches are compared theoretically. In Section 3.3, a complete and comprehensive cal-

culating flow chart is developed. It particularly provides a detailed insight into the practical

implementation issues and the open questions to be answered in this thesis for the torus-

based approach. A brief discussion on the corresponding solutions is presented before

summarizing this chapter.

3.1 Representation of the Earth’s gravity field on the Earth’s surface

Since the first order shape of the Earth is approximately a sphere, any geo-potential ob-

servables on or above the Earth’s surface can be projected onto this spherical domain with

λ ∈ [0,2π) (longitude) and φ ∈ [−π/2,π/2) (latitude). A spherical harmonic series is a

proper representation of a geo-potential functional because spherical harmonics have the

following properties: orthogonality, global support, and harmonicity. Therefore, they are a

natural base function solution of the Laplace equation.

The Earth’s gravity field is expressed typically by the gravity potential W , which can

27
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be defined as the sum of a normal gravity potential U and a disturbing potential V , namely,

W = U +V . Including the centrifugal potential caused by the Earth’s rotation, the nor-

mal gravity potential U is the potential of a rotating ellipsoid approximating the Earth’s

shape and mass, which can be modelled analytically. Since the disturbing potential V is

harmonic outside the masses and fulfills the Laplace equation, i.e., ΔV = 0, where Δ is the

Laplace operator, it can be represented globally as a series of spherical harmonic coeffi-

cients (Heiskanen and Moritz, 1967):

V (r,φ,λ) =
GM
R

L

∑
l=0

(
R
r

)l+1 l

∑
m=0

(C̄lm cosmλ+ S̄lm sinmλ)P̄lm(sinφ), (3.1a)

=
GM
R

L

∑
l=0

(
R
r

)l+1 l

∑
m=−l

K̄lmȲlm(φ,λ). (3.1b)

in which
r,φ,λ = radius, latitude, longitude

R = the Earth’s equatorial radius

GM = gravitational constant G and the Earth’s mass M

C̄lm, S̄lm = normalized spherical harmonic coefficients of

degree l and order m to the maximum resolvable degree L

P̄lm(sinφ) = normalized Legendre function as a function of latitude φ

The fully normalized quantities denoted by an over bar are defined in the way that the

average square over the sphere for the individual quantity is unity (Heiskanen and Moritz,

1967). The corresponding normalization factor Ξlm is as follows:

Ξlm =

√
(2−δm0)(2l +1)

(l−m)!
(l +m)!

, for C̄lm, S̄lm, (3.2)

= (−1)m

√
(2l +1)

(l−m)!
(l +m)!

, for K̄lm, (3.3)

with δ the Kronecker operator.

The complex-valued quantities Ȳlm(φ,λ) and K̄lm make the expression more concise,
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and they are defined in the following way:

Ȳlm(φ,λ) = P̄lm(sinφ)e jmλ (3.4a)

K̄lm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2(C̄lm− jS̄lm) ,m > 0

C̄lm ,m = 0

1
2(C̄lm + jS̄lm) ,m < 0

(3.4b)

with “ j” the imaginary unit and K̄lm = (−1)mK̄∗
l,−m. The superscript “∗” denotes a complex

conjugate value.

Similar to the disturbing potential V in Equation (3.1b), the related geo-potential func-

tionals also can be expressed by means of spherical harmonic coefficients. For instance,

the second order derivative of the disturbing potential with respect to the radius direction

Vrr can be derived as

Vrr(r,φ,λ) =
GM
R3

L

∑
l=0

(l +1)(l +2)

(
R
r

)l+3 l

∑
m=0

(C̄lm cosmλ+ S̄lm sinmλ)P̄lm(sinφ),

(3.5a)

=
GM
R3

L

∑
l=0

(l +1)(l +2)

(
R
r

)l+3 l

∑
m=0

K̄lmȲlm(φ,λ). (3.5b)

By making use of geographical coordinates λ and φ, this type of spherical harmonic

expression leads to a basic spherical projection (2π× π) domain on the Earth’s surface.

Since spaceborne gravimetry provides continuous and global observations, which can be

treated as a function of time t along the spacecraft’s orbit, the in situ observations can be

expressed as functionals of disturbing potential V both on the temporal sphere as a function

of location and on the orbit trajectory as a time series. The corresponding mathematical

representations for the time series of the disturbing potential on the orbital projection will

be derived in the following sections.

3.2 State-of-art gravity field recovery approaches

Based on Equation (3.1), the forward computation of geo-potential functionals for a given

series of spherical harmonic coefficients is know as synthesis. In contrast, the determination

of the Earth’s gravity field in terms of spherical harmonics form geo-potential observations
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is called gravity field analysis (Gauss, 1839; Colombo, 1981; Rummel et al., 1993). One of

the main purposes of dynamic satellite geodesy is the determination of the Earth’s gravity

field from spaceborne gravimetry observations.

The historical evolution of the gravity field recovery approaches is presented. All cur-

rently available approaches are discussed in detail below.

Any analytical approach solving the problem of gravity field analysis relies only on

explicit equations rather than numerical trial and error. Therefore, it is very detailed and

accurate. Rooted in celestial mechanics, the analytical theories of satellite motion, such as

the Lagrange planetary equations (LPE), were traditionally used in the early days of satel-

lite geodesy when only relatively inaccurate measurements were available (Kaula, 1966).

Special attention was devoted particularly to the resonance effects because only for those

effects could the inaccurate measurements provide a reasonable signal-to-noise ratio (SNR)

(Lelgemann and Cui, 2003). However, the analytical approach was mostly discarded be-

cause of its complicated derivations and limited applications for large data volume and

quadratically increasing number of spherical harmonic coefficients with higher degrees.

With the availability of computer technology around 1970, numerical methods were

widely employed under a good knowledge of initial state vectors. Derived by numeri-

cal integration of the variation equations, the brute-force numerical computation was the

state-of-art approach in modelling satellite-only gravity field at that time (Wagner, 1983;

Reigber, 1989). However, it has intrinsic limitations; for instance, it requires large compu-

tational efforts in terms of processing time and memory.

Therefore, as a compromise between the numerical and analytical approaches, the semi-

analytical techniques got more attention. In literature, the space-wise and time-wise ap-

proaches are two typical methods for gravity field determination. In an analytical sense,

such a semi-analytical approach explicitly links the observations with the geo-potential

functionals in the spherical harmonic domain through the so-called “transfer coefficient”.

In a numerical sense, the Earth’s gravity field can be numerically recovered by least-squares

adjustment for the common over-determined problem. In general, the semi-analytical ap-

proaches have the following advantages:

� under certain assumptions and approximations, they can be formulated in a 1D or a

2D Fourier domain to utilize a fast Fourier transform (FFT) technique.
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� with the same assumptions, the normal matrix in the least-squares adjustment leads to

a block-diagonal structure for an individual spherical harmonic order m. Therefore,

the computational time in the least-squares inversion will be quadratically decreased.

3.2.1 The brute-force approach

Treating the observations as they are, the brute-force approach, also known as the “direct”

approach, makes use of well-determined orbits, an a-priori gravity field model, and obser-

vations from spaceborne gravimetry for setting up the linearized design equation based on

orbit perturbation theory (Reigber, 1989). The spherical harmonic coefficients κ = {K̄lm}
are treated as unknown parameters on one side and the number of unknowns is (L + 1)2

with maximum resolvable degree L. The linear relation between geo-potential observations

and unknown parameters is simply written as follows:

y
n×1

= H
n×(L+1)2

κ
(L+1)2×1

, (3.6)

where n is the number of observations, y is the vector of observations, and H is the lin-

earized design matrix, which contains partial derivatives of the observables with respect to

every spherical harmonic coefficient. Based on this linear/linearized equation, the coeffi-

cients can be optimally estimated by a classical least-squares adjustment with the weight

matrix P determined from a-priori information. The weight matrix is normally a diagonal

matrix and the main diagonal elements are reciprocal to the value of observation variances.

κ̂= (HTPH)−1(HTPy). (3.7)

Thus, the normal matrix is obtained by N = (HTPH) with (L + 1)4 elements, and the

estimated solution provides a fully populated a-posteriori variance-covariance matrix of

Qκ̂ = N−1.

Theoretically, the brute-force approach is a domain independent approach. Therefore,

it can be applied flexibly to any disturbing potential related functionals in any possible

domain, e.g., a sphere, a repeat orbit, or a torus projection, which will be demonstrated in

the relation tree in Figure 3.3.
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3.2.2 The space-wise approach

Based on Equation (3.1), the word “space-wise” means an analytical function of the ge-

ographical location on the sphere. It has the advantage of the spatial correlation of the

observations with a spherical projection on the Earth. Rummel et al. (1993) introduced the

space-wise approach as a boundary value problem approach to physical geodesy. It trans-

forms or interpolates the observations on a reference surface or in a spherical shell at satel-

lite height, after which the spherical harmonic coefficients are retrieved from the disturbing

potential or its derivatives. The computational data are usually given on a grid, which

represents averages over grid cells. By dividing meridians in L equal intervals and paral-

lels in 2L equal intervals, the 2L2 block averaged values of observations can be treated as

quasi-observations to solve (L+1)2 spherical harmonics unknowns in this over-determined

situation (L > 2). The linear equation for a specific order m can be written as

y
n×1

= H
n×(L+1)2

κ
(L+1)2×1

, (3.8)

with n the number of block averaged values, i.e., n = 2L2.

In the subsequent least-squares adjustment, the normal matrix has the same size of

(L+1)2×(L+1)2 as the one in the brute-force approach. For a larger L, the direct inversion

would have difficulties. However, if the normal matrix is summed first along the parallels,

a block-diagonal structure of the normal matrix can be achieved (Figure 3.1, where “e”

means even l and “o” means odd l). The maximum size of the block is 1
2(L+1)× 1

2(L+1)

if m = 0 and the minimum size is only 1× 1 when m = L (Colombo, 1986; Koop, 1993,

Chap. 4). Under this circumstance, the inversion of the block-diagonal normal matrix is

calculated easily by different blocks. Therefore, this simplification procedure leads to a

semi-analytical approach.

3.2.3 The time-wise approach

The principles of the time-wise approach for the error analysis of gradiometer measure-

ments have been developed by Colombo (1984, 1989). In this approach, the observations

are formulated as a time series along the spacecraft trajectories. Subsequently, the spherical

harmonics are rotated and transformed from the sphere to an orbital representation by in-
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Figure 3.1: Block-diagonal structured normal matrix (Koop, 1993)

troducing the normalized complex-valued inclination function F̄lmk(I) (Sneeuw, 1992). For

instance, the gravitational disturbing potential in Equation (3.1b) can be expressed along

the perturbed orbit as a function of the orbital frequency ψ:

V (r, I,ψ) =
GM
R

L

∑
l=0

(
R
r

)l+1 l

∑
m,k=−l

K̄lmF̄lmk(I)e
jψ(t), (3.9)

in which
I = orbital inclination,

k = third index introduced by rotation and transformation,

F̄lmk(I) = normalized inclination function,

ψ = orbital spectrum as a function of time, calculated by Equation (3.16).
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This time series expression is an exact representation, i.e., valid on an osculating orbit;

that is, the spacecraft radius r(t) and the orbital inclination I(t) vary with time because

of the perturbation forces acting on the spacecraft. Since the time series of observations

are linearly related to the spherical harmonic coefficients, the unknown coefficients can

be solved numerically by a least-squares adjustment in a similar way to the “brute-force”

approach. Under a number of simplifying conditions, the normal matrix yields a block-

diagonal structure identical to the one mentioned in the space-wise approach (Preimes-

berger and Pail, 2003). Therefore, the coefficients can be solved for individual order m.

The assumptions are:

� uninterrupted observations are available;

� the sampling rate must be constant;

� the satellite orbit must have an exact repeat cycle, which means the number of nodal

days Ne and the orbital revolutions No have to be relative primes. In other words,

they do not have a common divisor; and

� the maximum solved degree L has to be less than No/2 because of the Nyquist theo-

rem; see Section 4.5.

3.2.4 The time-wise semi-analytical approach in the frequency domain

As an important modification of the time-wise approach, Kaula (1983) and Wagner (1983)

conceived the time-wise concept in the frequency domain for spherical harmonic analysis

of SST data. Thus, the original time series is transformed to the spectral domain by the dis-

crete Fourier transform. Compared to the aforementioned time-wise approach in the time

domain, this approach is known as the time-wise approach in the frequency domain. Rum-

mel et al. (1993) and Bouman (2000) proved that under the assumption of an uninterrupted

data stream the time domain approach can be reduced to the frequency domain approach

for an exact repeat orbit. The Fourier coefficients, which serve as pseudo-observations, rep-

resent linear combinations of spherical harmonic coefficients, and they are usually referred

to as “lumped coefficients” (Gooding, 1971; Wagner and Klosko, 1977; Schrama, 1989).
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Depending on the dimension of the Fourier transform, the lumped coefficients can be ob-

tained by a 1D or a 2D fast Fourier transform (FFT), which will be discussed separately in

detail below.

2D FFT based semi-analytical approach

Sneeuw (2000b) proposed the torus-based semi-analytical approach by identifying the

lumped coefficients as a 2D Fourier spectrum of the gravity functional in the presence

of two orbital parameters: the argument of latitude u and the longitude of ascending node

Λ. Correspondingly, the disturbing potential in Equation (3.1b) can be expressed as follows

(Sneeuw, 2000b):

V (r, I,u,Λ) =
GM
R

L

∑
l=0

(
R
r

)l+1 l

∑
m=−l

l

∑
k=−l

K̄lmF̄lmk(I)e
j(ku+mΛ), (3.10)

in which
u = ω+ν

Λ = Ω−GAST

where ω = argument of perigee

ν = true anomaly

Ω = right ascension of ascending node

GAST = Greenwich apparent sidereal time

The orbital quantities are graphically explained in Figure 3.2, where X , Y , Z are the

axes in the inertial frame, and x, y, z are the axes in the satellite local frame. The two

orbital coordinates, u and Λ, attain values in the range of [0,2π), and both are periodic.

Topologically, the periodic product of [0,2π)× [0,2π) as two circles generates a torus,

which is the proper domain of a two-dimensional Fourier series (Hofmann-Wellenhof and

Moritz, 1986; Sneeuw and Bun, 1996).

In order to represent Equation (3.10) more clearly for a Fourier formulation, the fol-

lowing lumped coefficient Amk and transfer coefficient Hlmk are used:

AV
mk =

L

∑
l=max(|m|,|k|)

HV
lmkK̄lm, (3.11a)

HV
lmk =

GM
R

(
R
r

)l+1

F̄lmk(I). (3.11b)
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Figure 3.2: Orbit configuration (Sneeuw, 2000b)

where the superscript “V ” denotes disturbing potential specified quantities.

The “lumped coefficient” AV
mk in terms of indices m and k are named after the linear

combination of coefficients over degree l. The “transfer coefficient” HV
lmk links the lumped

coefficients in the frequency domain and the coefficients in the spherical harmonic domain.

It is obtained by combining a dimensional factor, an upward continuation term, and an

inclination function; see Section 5.1.

With these quantities (AV
mk and HV

lmk), the expression of the disturbing potential reduces

to the following series:

V (r, I,u,Λ) =
L

∑
m=−L

L

∑
k=−L

AV
mke j(ku+mΛ). (3.12)

Similar to the representation of the disturbing potential in the time-domain in Equation

(3.9), the equations derived above (3.10, 3.11, and 3.12) are valid for any orbit, even in the

case of the osculating orbital variables, e.g., r(t), I(t), as a function of time. However, it is

not a full set of Kepler elements for an osculating orbit (eccentricity e 
= 0). If the orbit is

an eccentric orbit, the expression has to be complemented by introducing the eccentricity
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function Glkq(e) (Kaula, 1966):

V (r, I,u,Λ,e) =
GM
R

L

∑
l=0

(
R
r

)l+1 l

∑
m=−l

l

∑
k=−l

∞

∑
q=−∞

K̄lmF̄lmk(I)Glkq(e)e
j(kω+(k+q)M+mΛ),

(3.13)

with q an additional index and M the mean anomaly.

Although it is an exact expression containing all Kepler elements explicitly, the equa-

tion above becomes very complicated to be implemented, especially for a fast calculating

algorithm. In addition, a 2D Fourier transform requires the observations to be given on a

torus grid with a constant radius (e = 0) and a constant inclination (Figure 3.2). Therefore,

a nominal orbit will be always assumed in the torus-based approach. The errors caused

by this assumption can be corrected by an iteration procedure when variations in orbital

eccentricity and inclination are very small, for example, e < 4 ·10−3 and δI < 0.01◦ (Klees

et al., 2000; Pail and Plank, 2002).

Sneeuw (2000b) discussed the generalized formulations of the torus-based semi-analytical

approach for any geo-potential functionals. Therefore, not only the disturbing potential but

also its functionals can be represented by a 2D Fourier series. Generally speaking, for a

specific observable f , its spectral decomposition up to the maximum resolvable degree L is

expressed in the following equations:

f (u,Λ) =
L

∑
m=−L

L

∑
k=−L

Amke j(ku+mΛ), (3.14a)

Amk =
L

∑
l=max(|m|,|k|)

HlmkK̄lm. (3.14b)

where the corresponding transfer coefficient Hlmk can be derived based on a proper differ-

entiation technique and orbital perturbation theory; see Section 5.1 for more discussion on

the derivations of different transfer coefficients.

If the lumped coefficient Amk is determined, it can be treated as a pseudo-observable in

the linear system of Equation (3.14b). The other components in the linear system are the

transfer coefficient Hlmk as the design matrix and the spherical harmonic coefficients K̄lm as

unknown parameters. Under a nominal orbit assumption, the normal matrix shows a block-

diagonal structure for each order m. The unknowns can be estimated by a least-squares
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adjustment for individual order m, which will be discussed in Section 5.2.

1D FFT based semi-analytical approach

In addition to the conditions listed in the time-wise approach in the time-domain, especially

with a repeat orbit assumption, the 1D-FFT semi-analytical approach is set up based on a

nominal orbit assumption as well. Similar to the lumped coefficient Amk in the 2D Fourier

coefficient expression, the lumped coefficients are reduced in an 1D expression An corre-

sponding to the 1D Fourier transform. In this scenario, the disturbing potential in Equation

(3.12) can be rewritten as a 1D Fourier series:

V (r, I,ψn) =
L

∑
m,k=−L

AV
n e jψn . (3.15)

The orbital frequency ψn can be calculated by the orbital parameters u and Λ:

ψn = ku+mΛ. (3.16)

Again, the pseudo-observable, the lumped coefficient An, can be easily obtained by a

1D FFT technique under a nominal orbit assumption.

Similar to the 2D FFT approach, the only difference of the 1D FFT approach is the

way of obtaining the lumped coefficient. Since the transfer coefficient still linearly links

the lumped coefficient and unknown parameters, the spherical harmonic coefficient can be

determined by a least-squares adjustment in the same way as the method mentioned in the

2D semi-analytical case.

3.2.5 Characteristics of different approaches

Aiming at the same goal for spherical harmonic analysis, the aforementioned gravity field

recovery approaches are categorized into two major branches: numerical and analytical

(semi-analytical). The brute-force, space-wise, time-wise, and frequency domain approaches

as well as their corresponding projection domains are sketched, for the first time, in a family

tree, shown in Figure 3.3.

As indicated in this family tree, the brute-force approach is the numerically direct way

without any approximations and assumptions. It has the following advantages:
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Figure 3.3: Relations among the gravity field recovery approaches

� theoretically, it is the most robust, and accurate solution without any data gap and

data interruption problems, and

� it is the only approach that provides a fully populated a-posteriori variance-covariance

matrix through the least-squares adjustment.

As a drawback, it demands an enormous computational time and very high memory

storage, which are the common problems for all numerical approaches. The computational

effort can be handled only by supercomputers or clusters for large degree L. For instance,

by solving the spherical harmonic coefficients to L = 100 from about 450,000 gravity

gradient tensor data of one month measurements (30s sampling rate), the size of the design

matrix becomes 450000×1012 and the corresponding normal matrix has a size of 1012 ×
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1012. A typical computational time for such a scenario is 48h on a normal computer with

1GB RAM for the brute-force method compared with only several hours for the other semi-

analytical approaches (Wermuth et al., 2004). It is very difficult to solve the maximum

degree up to 300 directly from the GOCE satellite mission by the brute-force approach.

Under the branch of the semi-analytical family, there are the space-wise, time-wise in

time-domain, and time-wise in frequency domain with 1D FFT and 2D FFT approaches.

Since the spherical harmonic coefficients can be transformed in any coordinate system,

these approaches are naturally inter-connected. The domains for different representations

in the semi-analytical approaches are visualized in Figure 3.4 (Sneeuw, 2000b).

Figure 3.4: Different projection domains: sphere, repeat orbit, and torus

Rooted in physical geodesy, no assumptions about the orbit are required in the space-

wise approach (Sneeuw, 2000a), and an immediate practical advantage is that it does not

depend on a continuous data stream. For instance, data gaps, interruptions, and jumps do

not pose a problem as long as the Earth’s surface is covered sufficiently dense with data.

Pail and Plank (2002) simulated missing data in the case of a large data gap of 30%, but the

method still gave accurate results. Although the space-wise approach is independent on the

orbital inclination, data gaps in the polar areas may cause a leakage problem. Migliaccio

et al. (2004) proposed an enhanced space-wise simulation to deal with the polar gap effects,

gridding effects, and noise propagation problem by least-squares collocation (LSC) and

numerical integration. The conclusion is drawn that LSC and numerical integration are

almost equivalent, and the collocation method is more robust. However, the space-wise

approach obviously lacks any connection to the peculiarities of the orbit, its variation in
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heights, its resonance behavior, or its uncertainty (Rummel et al., 1993, Chapter 4). A

further drawback may be the fact that the spectral stochastic model is highly complicated

in terms of the error power spectral density (PSD) (Sneeuw, 2000a), which will be discussed

in Section 5.3.

Apparently, the time-wise approach in the time domain is more closely related to the

physics of a space experiment. All orbit features are naturally built in, therefore, it is able

to incorporate error information in terms of PSD in the stochastic model in Equation (5.25);

See Section 5.3. A practical disadvantage of the time-wise approach is its sensitivity to data

gaps. Data interruptions will result in spectral leakage, i.e., in a smearing of the lumped

coefficients. Additionally, it suffers from some assumptions involved in the fast calculating

strategy. For instance, a repeat orbit is not always a realistic scenario of a mission life

time, and data interruptions will result in a spectral leakage problem under an assumption

of constant radius (Sneeuw, 2000a). Clearly, in addition to a nominal orbit assumption, the

time-wise semi-analytical approach in the frequency domain using 1D FFT has the same

problems mentioned above.

An interesting inter-relationship exists among the brute-force, space-wise, and time-

wise approaches. Shown in Figure 3.3, the brute-force approach actually is inter-connected

with both time-wise and space-wise approaches. When all unknown parameters involved

in either time-wise or space-wise approaches are numerically solved in a whole linearized

system like Equation (3.6) without any assumptions and approximations, it also can be

considered as a direct approach and shares the advantages and disadvantages of the brute-

force approach.

As an alternative approach, the torus-based semi-analytical approach shows the advan-

tages of an interpolation surface with the spherical shell in the space-wise approach. At the

same time, it shares the flexibility of observable type with the time-wise approach. Since

this semi-analytical approach naturally yields lumped coefficients, a spectral error mod-

elling by means of error PSD is allowed. Moreover, the orbit can be chosen freely and is

not restricted to a repeat orbit.

To summarize the pros and cons for different gravity field recovery approaches, Sneeuw

(2003) pointed out that the method of choice depends on practical considerations. These

considerations are:
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� the size of the normal matrix and its inverse in least-squares adjustment for the max-

imum resolvable degree L,

� the assumption of a repeat orbit for simplification,

� the influence of data gaps and polar gaps,

� the characteristics of observation noise in the spatial or in the spectral domain, and

� the ability of the interpolation methods to handle the isotropic (average over all az-

imuths) or anisotropic (non-isotropic) observables.

Under these considerations, the strengths and weaknesses of different approaches are

summarized in Table 3.1.

Table 3.1: Strengths (
√

) and weaknesses (×) of gravity field determination approaches

brute-force space-wise time-wise 1D FFT 2D FFT

data type × × √ √ √
repeat orbit

√ √ × × √
data gaps

√ √ × √ √
interpolation

√ × √ × ×
spectral analysis × × √ √ √

3.3 The torus-based semi-analytical approach

The thesis will focus on the torus-based semi-analytical approach, which combines the

strengths from both space-wise and time-wise approaches. Although Sneeuw (2000b) com-

prehensively discussed the theoretical background of this approach as well as various sim-

ulation scenarios for different kinds of geo-potential functionals, this gravity field analysis

tool has never been implemented completely for real satellite missions, in which the situa-

tions are more complicated and observations are more noisy than the simulated scenarios.

Therefore, the practical implementations of the torus-based semi-analytical approach will

be studied for actual spaceborne gravimetry applications (Xu et al., 2006b).
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3.3.1 Practical implementations

A complete and comprehensive calculating flow chart of the torus-based approach is de-

veloped in Figure 3.5. Under the assumption of a nominal orbit, it recovers the Earth’s

global gravity field in three main steps. In the first step, the observation noise is analyzed

to examine if it processes white noise characteristics in order to achieve periodicity of

the functional. Next, the in situ validated observations from spaceborne gravimetry, such

as the disturbing potential data from the CHAMP mission or the gravity gradient tensor

components from the GOCE mission, are reduced from the orbital variations by applying

corrections with respect to both height and inclination. An a-priori gravity field model is

used to calculate the reference values at the nominal orbit with constant height and constant

inclination. The reduced irregular measurements along the satellite tracks are interpolated

regularly onto a regular nominal torus grid by interpolation methods, such as least-squares

collocation (LSC) or Kriging.

The second step is to calculate the pseudo-observable, the lumped coefficient Amk, using

the 2D FFT algorithm. The maximum resolvable degree L depends on the grid increment

on the nominal torus and the number of mission revolutions for a repeat orbit based on the

Nyquist criterion.

In the final step, spherical harmonic coefficients K̄lm for distinct order m are solved

separately by least-squares adjustment based on the linear system in Equation (3.11a). In

addition, the error information of the estimated coefficients is provided. When an a-priori

noise model provides observation error information in the form of power spectral density

(PSD), this information is treated as stochastic input for least-squares adjustment and is

propagated through the covariance matrix as output.

Several important issues involved in least squares adjustment also have to be included in

the calculating flow chart. Regularization should be considered if an a-priori gravity field

is introduced in the linear system to provide additional information or to avoid an ill-posed

problem in the normal matrix inversion. To fully explore the gravity field information from

several sensors, a sensor fusion concept is used. Observations from SST-hl are sensitive to

the low-frequency part of the geo-potential, whereas SGG measurements will resolve the

high frequencies. A better solution, however, can be achieved by combining both types

of measurements. Optimal weighting methods provide relative weighting factors among
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different types of data sets. In addition, because of the nominal orbit assumption, this

linear system is solved by least-squares adjustment from approximated initial values. This

calculating scheme can be improved by iterating and updating the last estimated values,

and it will stop at a certain convergence criterion.

Power spectral 
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Reduce height & inclination 

variations on nominal torus

Interpolate scattered 

observations to a torus grid
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Figure 3.5: Calculating flow chart of the torus-based semi-analytical approach of gravity
field determination

3.3.2 Open questions

The advantages of the torus-based semi-analytical approach, which are listed in Table 3.1,

make it an alternative for data processing in spaceborne gravimetry. However, there are
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still several open questions to be investigated.

Observations are always contaminated by noise. Sometimes the noise is not a pure

white-noise. Proper filters should be designed to whiten the observations before the obser-

vations are projected to the periodic torus and the least-squares adjustment can be applied

(Section 4.2). The data will have to be corrected for height and inclination variations and to

be reduced onto a nominal torus. A Taylor expansion series will be applied with the infor-

mation from an a-priori gravity field model. The partial derivatives with respect to height

∂n/∂hn and inclination ∂n/∂In have to be studied for a high enough order n. The calculation

of the derivatives is actually a synthesis procedure and also can be implemented easily by

the torus formulation. The height and inclination derivatives can be obtained by an inverse

FFT with the corresponding transfer coefficients for the height and inclination derivatives

(Section 4.3).

Interpolation methods have to be employed to obtain a regular torus on the nominal

orbit (Section 4.4). Ordinary deterministic methods, such as linear and cubic interpola-

tion, and geo-statistical methods, such as, the least-squares collocation (LSC) and Krig-

ing, are investigated to interpolate observations (isotropic or anisotropic) from spaceborne

gravimetry. Essential parameters in LSC and Kriging are the covariance function and the

semi-variogram, respectively. Determining the suitable parameters in the covariance func-

tion or the semi-variogram from the observations is essential for the interpolation results.

Empirical determination from the observation themselves and global analytical covariance

models are two basic ways to reach this goal.

A 2D FFT is applied to obtain the lumped coefficients Amk from regular grids. The

aliasing problem will be investigated and it may be caused by several reasons, e.g., insuffi-

cient sampling in both the temporal and the spatial domains, omission errors in the signal,

and effects of satellite ground track patterns caused by the orbital geometry (Section 4.5).

Although the FFT algorithm is trivial, a real-valued formulation has to be derived before

getting the lumped coefficients into the procedure of least squares adjustment (Section 4.6).

A pocket guide (PG) needs to be established with the transfer coefficients for the geo-

potential functionals in the torus-based semi-analytical approach (Section 5.1). Future

satellite missions will most likely be designed in a special configuration by taking ad-

vantage of the concept of Satellite Formation Flying (SFF). The corresponding transfer
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coefficients for the specific observables should be studied.

Next, an order-wise least-squares adjustment (LSA) will be applied to solve the spher-

ical harmonic coefficients (Section 5.2). Error information will be propagated through the

normal matrix. The error information in terms of power spectrum density (PSD) will be con-

verted to variance-covariance information, which will be implemented as the weight matrix

in the least-squares inversion in Section 5.3. The downward continuation from satellite al-

titude to the surface of the Earth, which amplifies not only the signal but also noise, always

causes instabilities. Therefore, regularization has to be considered for ill-posed problems in

least-squares adjustment. Two aspects involved in regularization have to be studied: regu-

larization matrix and optimal regularization factor determination (Section 5.4). In addition,

the optimal weighting methods compute the relative weighting factors between different

types of observations from SST and SGG. In order to achieve a better solution, the determi-

nation of an optimal weighting factor has to be investigated in Section 5.5.

One of the drawbacks of the torus-based semi-analytical approach is that it only pro-

vides an approximate solution as a result of the assumption of a nominal orbit and the

errors in the interpolation computation. The estimated solution from least-squares adjust-

ment can be improved by means of iteration. The calculating flow of the iterative scheme

will be studied in Section 5.6.

3.4 Summary

GLOBAL spherical harmonic analysis determines the Earth’s gravity field from space-

borne gravimetry. Numerical and (semi-)analytical approaches are the two main

ways to achieve this goal. For the first time, the relations among these inter-connected ap-

proaches in different domains are summarized in a family tree. In the numerical direction,

the direct approach is the most robust and accurate solution, and it is the only approach

providing a fully populated a-posteriori variance-covariance matrix. In the analytical di-

rection, depending on different projection domains, i.e., a sphere, a repeat orbit or a torus,

the space-wise, time-wise, and torus-based approaches are described.

Each approach has strengths and weaknesses. The torus-based semi-analytical ap-

proach is the main one to be investigated in this thesis. A complete and comprehensive
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calculating flow chart is developed. Three major steps are needed in order to solve the

spherical harmonic coefficients:

� in the first step, the in situ observations along the orbit have to be reduced onto a

nominal torus grid;

� in the second step, the lumped coefficients are obtained as pseudo-observables by an

fast numerical algorithm, i.e., the 2D FFT technique; and

� in the final step, the spherical harmonic coefficients are estimated from the lumped

coefficients by an order-wise least-squared adjustment as a result of the block-diagonal

structured normal matrix.

Several critical issues have been outlined and discussed briefly as an overview of the

practical implementation of the torus-based semi-analytical approach for spaceborne gravime-

try observations. These issues include: filtering technique, data reduction, interpolation,

FFT technique, PG of the transfer coefficient, order-wise least-squares adjustment, regular-

ization, optimal weights determination, and iterative solution.



Chapter 4

From in situ observations to pseudo-observables: lumped

coefficients

THE direct input of the torus-based semi-analytical approach are the in situ geo-potential

observations, such as the disturbing potential or its derivatives, along the orbital tra-

jectories. However, these observations can not be used directly by the FFT technique ob-

taining the pseudo-observables, the lumped coefficients. Reduced and interpolated obser-

vations on a torus grid are required instead. The algorithms and methodologies of critical

issues involved in the first two major steps, such as the type of filtering, data reductions,

interpolation methods, and aliasing problems, will be investigated in this section. Section

4.1 starts with the error representations in both the spectral and spatial domains for the

purpose of validation and comparison. As a pre-processing stage, Section 4.2 makes use of

the filtering technique to filter the colored noise in the contaminated observations to get a

white-noise series. A low order ARMA filter is found to work well for this purpose. Next,

the calibrated observations are corrected for the height and inclination variations onto a

nominal orbit in Section 4.3, where two topics will be covered. First, the multi-parametric

Taylor expansion series is derived in Section 4.3.1, where a new expression of the deriva-

tive of inclination function F̄
′
lmk(I) is developed. Second, height and inclination corrections

are calculated by a developed torus-based synthesis procedure, which will be addressed

in Section 4.3.2. In Section 4.4, the mathematical backgrounds of different interpolation

methods are discussed, and their performances for interpolating a grid from isotropic and

anisotropic satellite observations are also evaluated. In addition, the determination of the

essential parameters involved in covariance function and semi-variogram is investigated.

The aliasing problems, caused by the insufficient sampling rate in the spatial/temporal and

frequency domains, omission errors, and the varying ground track patterns, are discussed

in Section 4.5. A real-valued expression of the 2D FFT is presented in Section 4.6.

48
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4.1 Error representations

Before studying the determination procedure from the in situ observations to the pseudo-

observable, lumped coefficient Amk, several error representation measures are defined in

the spectral domain as well as in the spatial domain for the purpose of evaluating and vi-

sualizing the quality of the spherical harmonic solutions by the torus-based semi-analytical

approach. Sometimes the error measures are represented with respect to a reference gravity

field model from a relative perspective. The following error quantities will be employed

extensively in the rest of the thesis.

4.1.1 Spectral error representation

Gravity field determination from spaceborne gravimetry provides the spherical harmonic

coefficients as output. Simultaneously, the corresponding output error information can

be obtained from least-squares adjustment; see Section 5.2. Correspondingly, this error

information can be represented in the spectral domain in terms of spherical harmonics.

Different types of 1D and 2D spectral error measures are derived next.

Two-dimensional (2D) error spectrum. The 2D error spectrum σ2
lm for the spherical

harmonic coefficients K̄lm can be derived directly from the variances of the estimated co-

efficients ˆ̄Klm, which are the main diagonal elements of the estimated cofactor matrix Q ˆ̄Klm

from least-squares adjustment (neglecting the correlations within m-blocks as a result of

the block-diagonality property).

σ2
lm = diag(Q ˆ̄Klm

). (4.1)

Therefore, σ2
lm represents a quality level for the results, i.e., the internal accuracy.

Sometimes, in order to compare to another signal spectrum, e.g., a reference gravity field,

the differences between two spherical harmonic spectra show the quality of the results in

the context of the external accuracy.

Δlm = ˆ̄Klm−Kref
lm . (4.2)
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One-dimensional (1D) error spectrum. Considering the 2D error spectrum as a basic

error measure, the corresponding 1D error spectra can be derived depending on different

interests for either degree l or order m specific components. The error degree variance,

which is used most, denotes the total error power of a certain degree l:

σ2
l =

l

∑
m=−l

σ2
lm. (4.3)

Since the number of the coefficients per degree is 2l + 1 in Equation (4.3), the root-

mean-square per degree (RMSl ) is derived from the error degree variance by taking the

square root of the average value. Thus, it shows the average standard deviation to be ex-

pected for a single coefficient from the cofactor matrix Q ˆ̄Klm
in Equation (4.1).

RMSl =

√
1

2l +1
σ2

l . (4.4)

The relative measure of the degree RMS in terms of the differences between the esti-

mated spectral and the reference spectral is referred to as degree RMS error (RMSE):

RMSE l =

√√√√ 1
2l +1

l

∑
m=−l

(
ˆ̄Klm − K̄ref

lm

)2
. (4.5)

Commission error and omission error. Both error degree variance and degree RMS de-

scribe the error power of certain degree l. If these quantities are summed over a certain

bandwidth, the cumulative error spectrum will be achieved for the total power up to a cer-

tain degree l. This is also called the commission error:

CUMl =

√√√√ l

∑
i=2

σ2
i =

√√√√ l

∑
i=2

i

∑
m=−i

σ2
im. (4.6)

After removing the commission error spectrum from the entire gravity field spectrum,

the remaining part is referred to as the omission error, which is caused by the truncation of

the spectrum or by the unmodelled signal. Theoretically, it can be expressed by

OMIl =

√√√√ +∞

∑
i=l+1

σ2
i . (4.7)
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Signal-to-noise ratio (SNR). Another relative error measure of importance is the ratio of

the signal power to the noise power, which is called signal-to-noise ratio (SNR). The 2D

SNR can be expressed in the following way:

SNRlm =
| ˆ̄Klm|
σlm

. (4.8)

The corresponding 1D degree SNR is denoted as the relative ratio for a certain degree l:

SNRl =

√
(sl)

σl
. (4.9)

The quantity sl in the numerator is the signal degree variance. It can either be ob-

tained from a signal variance model such as Kaula’s rule of thumb in Equation (4.10) or be

computed from the estimated spherical harmonic coefficients, e.g., sl = ∑m( ˆ̄Klm)2.

sl =
1.6×10−10

l3 . (4.10)

In addition, the base 10 logarithm of SNR represents the number of significant digits.

This number is normally used to determine the resolution or the maximum resolvable de-

gree L of a gravity field mission. If the ratio is equal to one, i.e., SNRL = 1, the signal curve

crosses the noise curve and the corresponding degree is the maximum resolvable degree to

be sought. However, this definition is weak because of the ambiguous boundaries between

signal and noise. Sneeuw (2000b) discussed in detail the resolution determination from

different a-priori signal models.

4.1.2 Spatial error representation

Since any geo-potential functional can be expressed in the form of a spherical harmonic

series, the error information in the spherical harmonic spectral domain also can be propa-

gated to the spatial domain. Therefore, complementary to the spectral error measures, the

spatial error measures are of interest in terms of the corresponding physical meaning of the

error information. For instance, the cumulative error in geoid height up to a certain degree

l stands for the accuracy of the geoid determination over the sphere.
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4.2 Noisy data pre-processing and the ARMA filtering technique

White noise is always preferred for a stationary process especially in the context of least-

squares adjustment, because the spectral energy of white noise is independent of frequency

over an infinite bandwidth. Under this circumstance, the noisy observations theoretically

are uncorrelated. In addition, a periodic function with white noise is required to be pro-

jected on the torus for the employment of the Fourier transform. However, observations are

always contaminated by different errors as a result of various noise sources, such as pertur-

bation forces, satellite maneuvers, and measurement interruptions. Therefore, in a realistic

scenario, the noise level is normally not white or is white only for certain bandwidths. In a

word, it is colored noise. Therefore, noise analysis and pre-whitening should be performed

as a pre-processing stage.

In the spatial or temporal domain, the auto-correlation function R(τ) is an efficient

model for correlated observations. Given a time series of a signal or a noise x(t), the

continuous autocorrelation Rxx(τ) is most often defined as the continuous integral of x(t)

with itself, at the time lag τ.

Rxx(τ) =
Z ∞

−∞
x(t)x(t + τ)dt. (4.11)

The relation in the time domain can be transformed to the frequency domain in terms

of the power spectral density (PSD), S( f ), which is the Fourier transform of the autocorre-

lation function if the random process is (weakly) stationary (Papoulis, 1965).

S( f ) =
Z ∞

−∞
R(τ)e− j2π f τdτ⇔ R(τ) =

Z ∞

−∞
S( f )e j2π f τd f , (4.12)

with f the frequency.

S( f ) describes how the power of a signal or a noise is distributed with frequency. Ac-

cording to Parseval’s theorem, the power computed in the spectral domain equals the power

in the time domain. By analyzing the PSD characteristics of a noise process, it is easy to

distinguish if the noise is a white noise or a colored noise. If the noise has a constant power

density over all frequencies, it is white noise. In the torus-based approach, the orbital spec-

tral power for certain m and k can be determined by the corresponding error variance σ2
mk.

The relationship between the variance and the PSD will be discussed in Section 5.3.
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The theoretical background on de-noising and filtering techniques has been discussed

comprehensively in Broersen (2006). The goal in this thesis is to de-correlate the colored

noise in observations to achieve the white noise by using a proper filtering technique. Col-

ored noise can always be interpreted as one realization of an autoregressive moving-average

(ARMA) process, which is a linear invariant discrete system. This ARMA process y(p,q) is

expressed by a white noise process x with the model coefficients {am : m = 1, ..., p} and

{bn : n = 1, ...,q}, and the pair (p,q) describes the order of the ARMA process.

y(k) = −
p

∑
m=1

amyk−m +
q

∑
n=0

bnxk−n. (4.13)

This differential equation can be separated into two special processes: namely, the auto-

regressive (AR) process of order p if q = 0 and the moving-average (MA) process of order q

if p = 0. Schuh (2002) discussed the advantages and disadvantages of these three types of

processes (AR, MA, and ARMA) in the context of the processing of the simulated GOCE SGG

measurements. In general, the procedure of filtering the colored noise relies on an ARMA

representation, which is usually obtained from a noise realization or model identification.

Klees and Broersen (2002) discussed in detail the algorithms for building an optimal filter

to handle colored noise in large least-squares problems. By applying the optimal filtering

technique, Schuh (2003) showed that a low order ARMA filter, e.g., p = 2 and q = 2, is able

to model the non-purely white process of the SGG behavior. Similarly, a simple ARMA(2,1)

model was design to filter the colored noise from contaminated SGG observations in Klees

et al. (2003).

Therefore, a low order ARMA filter is designed and tested to whiten the colored noise

as a pre-processing step in gravity field determination. For the noise model identification,

the model coefficients of the ARMA filter are estimated empirically using the ARMASA

toolbox developed by Broersen (2006). Then, the estimated filtering coefficients will be

used as the reciprocal coefficients to design the decorrelation filter. This filter is called the

inverse filter (Makhoul, 1975). The stability and causality of the inverse system is out of

the scope of this thesis, and more details can be found in Grenier (1983). The following

two examples demonstrate the feasibility and usefulness of the ARMA filtering technique

for spaceborne gravimetry observations.

A one-day colored noise time-series of the gravity gradient tensor observations was
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simulated with a 1s sampling rate. The analytical function of the noise power spectral

density (PSD) is defined as follows (Ditmar et al., 2003b):

S( f ) =
S0

1− e
− f

f0

, (4.14)

where S0 = 3.2mE/
√

Hz and f0 = 0.005Hz. This function is a smooth approximation of

“1/ f ” behavior of the PSD when f < f0 and is almost a constant when f ≥ f0 up to 0.1Hz;

See the PSD of the colored noise is plotted in Figure 4.1 (top). It clearly shows that the

nearly constant measurement bandwidth (MBW) is located in the range of 0.01Hz < f <

0.1Hz. Outside the MBW, the noise is colored noise.

Several lower order ARMA processes are tested, and an ARMA(8,1) process is found

to work well for the purpose of de-noising filtering. The bottom plot of Figure 4.1 shows

that the PSD model of the noise after filtering are almost constant in the entire frequencies,

therefore, the series of de-noised noise is very close to white noise.
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Figure 4.1: Error PSD from the simulated colored noise before and after the ARMA(8,1) fil-
tering

Unfortunately, observation noise is normally unknown for spaceborne gravimetry ob-

servations; for instance, the a-priori noise model is not available. In this thesis, the differ-

ences between the noisy observations and synthesized corresponding values from a refer-
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ence gravity field model are considered as the total observation errors. Spectral analysis of

“ GOCE data set I ” with the sampling rate of 0.2Hz (Section 2.4.2) is carried out in the

second example. As a result of the measurement bandwidth (MBW), the simulated data are

designed towards having colored noise, which is clearly shown in the top plot in Figure 4.2.

The oscillations in the original PSD are caused by the randomness of the noise, and the red

curves are the smoothed PSD. Again, a lower order ARMA(8,1) process is found to work

well to filter out the correlation, and the error power spectral is moving towards a white

noise property with a smoothed red flat line (bottom plot).
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Figure 4.2: Error PSD from the GOCE gravity gradient tensor data before and after
ARMA(8,1) filtering

The filtering examples show that the ARMA technique is able to filter out the colored

noise from the contaminated observations. This technique should be applied to the obser-

vations with measurement bandwidth, e.g., the gravity gradient tensor components, as a

pre-processing step before applying the torus-based approach. However, the assumed er-

rors, which are calculated from the differences between the observations and the reference

values, may not represent the real noise level in an actual satellite mission. Therefore, fil-

tering will not be used in the processing of the disturbing potential data from the CHAMP

and GRACE missions, where the observation noise is supposed to be a white noise.
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4.3 Height and inclination variation reductions

A real satellite orbit is always influenced by disturbing forces, such as the Earth’s oblateness

effect, atmospheric drag, and solar radiation pressure. Figure 4.3 shows the orbital height

and inclination variations of the CHAMP satellite orbit in June 2003. The orbital height

varies in the range of ±10km, and the inclination changes by ±0.006 ◦. Even if an orbit

is not perturbed, e.g., perfect Kepler motion, eccentricity still introduces height variations.

These variations have to be corrected to a nominal orbit with constant height and constant

inclination before interpolating a grid and applying FFT.
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Figure 4.3: Orbital height and inclination variations of the CHAMP mission in June 2003

4.3.1 The multi-parametric Taylor expansion series

A typical Taylor expansion series is employed to reduce the in-situ observations downward

or upward onto the nominal orbit in the presence of the height and inclination variations
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(Figure 4.4). For instance, the Taylor series of disturbing potential V with respect to height

h and inclination I expansions is derived as follows:

V (h, I) = V (h0, I0)+
∂V
∂h

∣∣∣∣
h0,I0

· (h−h0)+
∂V
∂I

∣∣∣∣
h0,I0

· (I− I0)

+
1
2
∂2V
∂h2

∣∣∣∣
h0,I0

· (h−h0)
2 +

1
2
∂2V
∂I2

∣∣∣∣
h0,I0

· (I− I0)
2

+
∂2V
∂h∂I

∣∣∣∣
h0,I0

· (h−h0)(I − I0)... (4.15)

where the subscript “0” means the corresponding values on the nominal torus.

0h
0    0     0
(   ,   )P  h   I

(  ,   ) P  h  I

0h   h−

actual orbit 

nominal orbit 

h
downward /upward 

continuation 

Figure 4.4: Corrections along the radial direction onto a nominal orbit

4.3.2 Development of the torus-based gravity field synthesis

If the gravity field analysis is defined as an inverse problem from observations to spherical

harmonic coefficients, the gravity field synthesis is a simple forward problem determining

the geo-potential observations from the spherical harmonics. The subscript “0” in Equation

(4.15) refers to the values calculated from an a-priori gravity field model. It is actually a

gravity field synthesis procedure to calculate the disturbing potential, and also its first and
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second order derivatives with respect to height and inclination. The torus-based approach

is an efficient and powerful synthesis tool making use of an inverse FFT algorithm (IFFT)

and the transfer coefficient collections of the PG.

The calculating procedure for the gravity field synthesis is demonstrated in Figure 4.5.

Compared to the gravity field analysis procedure in Figure 3.5, the synthesis procedure is

more straightforward. First, the spherical harmonic coefficient solution or the reference

gravity field model is employed to obtain the pseudo-observables, the lumped coefficients,

based on the linear system in Equation (3.14b). In the next step, the observations on a

nominal torus grid can be quickly computed by the IFFT algorithm from Equation (3.14a).

The in situ observations along the nominal orbit can be interpolated from the torus grid

data. This step will introduce the interpolation errors in the on-orbit observations. In order

to avoid the interpolation errors, the time series observations along the nominal orbit can

be directly calculated by the superposition with respect to the indices m and k in Equation

(3.14a). Although it is not as fast as the application of the IFFT algorithm, the superposi-

tion can be handled efficiently by a numerical vector operation without any computational

problems. Computational time is partially saved because no interpolation is needed for the

synthesis. If the observations along the disturbing orbit are needed, the corrections with

respect to the height and the inclination have to be added on the nominal orbit using the

Taylor expansion series in a reverse way.

The torus-based approach is certainly an alternative, useful, and powerful tool for the

purpose of gravity field synthesis, because it is able to deal with any geo-potential func-

tional and its partial derivatives. For instance, it would be very difficult to calculate the

partial derivatives with respect to inclination directly from the direct approach using Equa-

tion (3.1) because the inclination is not an explicit parameter in the expression. Neverthe-

less, the explicit inclination function F̄lmk(I) in Equation (3.10) makes this procedure much

easier, because F̄lmk(I) is the only quantity containing the inclination variable, while the

dimensioning factor, the upward continuation part R/r, and the specific transfer term are

considered constant with respect to inclination.

∂V (r, I,u,Λ)

∂I
=

GM
R

L

∑
l=0

(
R
r

)l+1 l

∑
m=−l

l

∑
k=−l

K̄lmF̄
′

lmk(I)e
j(ku+mΛ), (4.16)
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Figure 4.5: Calculating flow chart of the torus-based gravity field synthesis approach

Balmino et al. (1996) derived a twofold analytical expression of the first order derivative

of the inclination function F̄
′
lmk(I) by making use of the inclination function F̄lmk(I) and the

cross-track derivative of the inclination function with respect to the colatitude coordinate

(θ = 90◦ − φ), denoted as F̄∗
lmk(I) (Sneeuw, 1992). In addition, by definition, the cross-

track inclination function F̄∗
lmk(I) vanishes when l−k is even, while the inclination function

F̄lmk(I) attains a zero value when l − k is odd.

F̄
′
lm,k−1(I) = +

(
(k−1)cos I −m

sin I

)
F̄lm,k−1(I)− F̄∗

lmk(I), (4.17a)

F̄
′
lm,k+1(I) = −

(
(k +1)cos I −m

sin I

)
F̄lm,k+1(I)+ F̄∗

lmk(I). (4.17b)

By replacing the index k− 1 with k in Equation (4.17a) and the index k + 1 with k in

Equation (4.17b), F̄
′
lmk(I) can be re-arranged and represented by the cross-track inclination

function F̄∗
lmk(I) only:

F̄
′

lmk(I) =
F̄∗

lm,k−1(I)− F̄∗
lm,k+1(I)

2
. (4.18)
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In terms of the partial derivatives with respect to height, the inclination function is

a constant term for height. The variant coefficients are the dimensioning term and the

transfer factor, as well as the upward continuation part “R/r”. For instance, in Equation

(3.10), the disturbing potential V has these three terms with values of GM/R, 1, and l +1,

respectively. When taking the partial derivative of the disturbing potential with respect to

height (∂V/∂r), these three terms are derived as GM/R2, −(l +1), and l +2, respectively.

Therefore, the cross-derivative term with respect to inclination and height can be derived

as follows:

∂2V (r, I,u,Λ)

∂I∂r
= −(l +1)

GM
R2

L

∑
l=0

(
R
r

)l+2 l

∑
m=−l

l

∑
k=−l

K̄lmF̄
′
lmk(I)e

j(ku+mΛ), (4.19)

As an example, the in situ disturbing potential data from the CHAMP mission at satellite

altitude in January 2004 are reduced to the nominal orbit by the Taylor expansion series.

The first order (left) and the second order (right) height corrections are plotted in Figure

4.6. The first order inclination corrections (left) and the corrections of the cross-derivative

(right) with respect to both height and inclination are plotted in Figure 4.7.

Figure 4.6: Corrections of height derivatives for the disturbing potential data

The range of the in situ disturbing potential data is ±600m2/s2. The reductions are

calculated as the percentage of the original values for the purpose of comparison. Figure
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Figure 4.7: Corrections of inclination derivatives for the disturbing potential data

4.6 shows that the range of the first order height corrections is ±3m2/s2 (≈ 0.50%), and

the second order height corrections is ±0.03m2/s2 (≈ 0.005%). Figure 4.7 shows that

the first order inclination corrections is in the range of ±0.15m2/s2 (≈ 0.025%), and the

cross-derivative corrections have a maximum value of ±0.0015m2/s2 (≈ 0.00025%).

Taking the percentage value at 0.005% (±0.03m2/s2) as a threshold, the Taylor expan-

sion series can be truncated at the second order of the height corrections and at the first

order for the inclination corrections, and the cross-derivative corrections will be neglected

because of their small values. Therefore, the final Taylor series is used as follows:

V (h0, I0) =V (h, I)− ∂V
∂h

∣∣∣∣
h0,I0

·(h−h0)− ∂V
∂I

∣∣∣∣
h0,I0

·(I−I0)− 1
2
∂2V
∂h2

∣∣∣∣
h0,I0

·(h−h0)
2. (4.20)

Figure 4.8 shows the difference between the in situ disturbing potential data and the ref-

erence values on the nominal torus before (left) and after (right) the height and inclination

corrections. The standard deviations (STD) are 1.55m2/s2 and 1.01m2/s2, respectively.

After the reduction procedure, the differences with respect to the reference gravity field are

more homogeneous.

A similar comparison is carried out for the gravity gradient tensor in the radial direction

Vzz component from “GOCE data set I,” shown in Figure 4.9. The large variations with a
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Figure 4.8: Comparison of disturbing potential before and after data reduction, the GGM02S

model as reference

pattern in the along-track direction are removed by the data reduction. The values of STD

are 7.16E and 0.02E before and after the inclination and height reductions. Since the

magnitude of the disturbing part after removing the normal gravity field is about 1.0E, the

magnitude of the corrections (≈ 15.0E) shows that the reduction procedure is critically

necessary for observations without the normal gravity field removed.

4.4 Evaluation of interpolation methods

The in situ observations from spaceborne gravimetry are obtained along the spacecraft or-

bital trajectories, and they are normally scattered and irregularly distributed when projected

onto either the spherical Earth’s surface or a torus. The situation sometimes becomes even

worse if

� measurements are interrupted by data gaps caused by operating mechanic problems

or calibration failure;

� the LEO flies in an exact repeat orbit mode, which means the number of nodal days

Ne and the orbital revolutions No have to be relative primes. Therefore, the Earth

surface or the torus surface cannot be covered densely by observations; and
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Figure 4.9: Comparison of gravity gradient tensor Vzz before and after data reduction, the
OSU91A model as reference

� the orbital inclination is not always 90◦ for a non-polar orbit, e.g., in the case of a

sun-synchronous orbit. There is no observation coverage in the two polar areas with

|90◦ − I| gaps, which are called polar gaps (Sneeuw and van Gelderen, 1997).

All the problems mentioned above are demonstrated under one circumstance in Figure

4.10. It is an extreme scenario but it can happen in the real world. Note that naturally no

polar gaps are shown in the torus projection Figure 4.10(b).

In addition, regular and dense data distribution is necessary and sometimes mandatory

for geodetic applications when fast processing algorithms are employed; for instance, the

2D FFT technique in the torus-based semi-analytical approach requires the regularly dis-

tributed observations on a nominal torus grid.

As a result, interpolation becomes an essential and powerful tool for creating a regular

grid from the irregular and sparse measurements. Several methods are available and are

usually classified into two classes: deterministic approaches, e.g., the bi-linear method and

spline method, and geo-statistical approaches, e.g., least-squares collocation (LSC) and the

Kriging method.
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Figure 4.10: Satellite observations with an irregular and sparse surface data coverage, and
polar gaps

4.4.1 Deterministic methods

Because there are no height and inclination variations on the nominal orbit after data re-

duction, interpolation deals only with a 2D problem. The deterministic methods attempt to

fit a surface from given measurements without assessing the interpolation errors. The two

typical local interpolators are bi-linear and spline models.

Bi-linear interpolation. It is a 2D extension of linear interpolation. The unknown value

z(x,y) is interpolated by calculating a weighted average from the nearest 2 by 2 neigh-

borhood observations. The idea is to perform a linear interpolation first in one direction,

and then in the other direction. Alternatively, the calculating formula can be written in a

polynomial format:

z(x,y) = a1 +a2x+a3y+a4xy, (4.21)

where the coefficients ai(i = 1...4) are the weighting functions of the known points si(i =

1...4), which depend on the distances between the interpolated point and the known points;

see Figure 4.11(a).
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Figure 4.11: 2D deterministic interpolation: bi-linear (left) and Overhauser spline (right)

Spline interpolation. It is a form of interpolation where the interpolator is a special type

of piece-wise polynomial called a spline. The Overhauser spline, sometimes called the

“Catmull-Rom” spline, is a member of the cubic interpolating splines family (Overhauser,

1968; Catmull and Rom, 1974). In this type of 2D interpolation, the nearest 4 by 4 neigh-

borhood points are used to determine the unknown value z(x,y); see Figure 4.11(b):

z(x,y) =
4

∑
i=1

4

∑
j=1

fi(xi, j − x) f j(yi, j − y)s(xi, j,yi, j), (4.22)

where the weighting functions fi and f j depend on the distance parameters δ along the x

and y direction, respectively. The cubic weighting kernel in either x or y dimension can be

expressed in a matrix format (Hill et al., 1990):

fi(xi, j − x / yi, j − y) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1
2

3
2 −3

2 2

1 −5
2 −2 −1

2

−1
2 0 1

2 0

0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

δ3

δ2

δ

1

⎤
⎥⎥⎥⎥⎥⎥⎦ . (4.23)

By definition, the Overhauser spline has the following characteristics: it is an exact

local interpolation method, and it is a smooth and continuous curve.
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4.4.2 Least-squares collocation (LSC) and covariance function

When measurements are numerous and dense, most interpolation methods give similar re-

sults for interpolated points. When measurements are sparse or only few, however, the

assumptions made about the underlying variation of the data and the choice of method can

be critical (Burrough and McDonnell, 1998, Chapter 6). Incorporating the concept of ran-

domness, geo-statistical methods of interpolation, i.e., least-squares collocation (LSC) and

the Kriging method, attempt to optimize spatial variations by using the statistical properties

of the measurements. Compared to the deterministic methods, geo-statistical interpolations

provide non-unique and flexible output depending on variation assumptions and the choice

of essential parameters, which describe the statistical characteristics of the measurements.

Least-squares collocation

Least-squares collocation (LSC) is widely known as an optimal linear estimation method

in geodetic modelling for discrete data, which usually consist of signal s and noise ε. As

a linear minimum variance unbiased estimation, LSC adjusts parameters, filters noises, and

predicts unknown points. Therefore, LSC plays a combination role of adjustment, filtering,

and prediction. The advantages of LSC are that it is able to deal with non-homogeneous

quantities in its input and output. This method has been comprehensively discussed in

geodetic applications by Moritz (1980). However, in this thesis, it will be used only for the

purpose of interpolation, which also is known as least-squares interpolation.

ẑ = Czs(Css +Cεε)
−1s, (4.24)

where matrix C is the covariance matrix. Therefore, Css and Cεε are the auto-covariance

matrices of s and ε, respectively, and Czs is the cross-covariance matrix between s and the

interpolated signal z.

Least-squares interpolation assumes that signal s and noise ε are uncorrelated. There-

fore, the error variance of ẑ can be propagated from the covariance matrices:

Eẑẑ = Czz −Czs(Css +Cεε)
−1Csz. (4.25)

The prerequisite in least-squares collocation, however, is the availability or the deter-

mination of the covariance function, which will be discussed next.
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Covariance function

The covariance function plays an important role in LSC. The parameters of covariance func-

tion depend on the characteristics of geopotential observables. In geodetic applications, the

covariance function is usually assumed to be homogeneous (average over the whole sphere)

and isotropic (average over all azimuths) (Moritz, 1980). Under these assumptions, the an-

alytical expression for the covariance function will be a function of spherical distance ψ

only. There are two ways to get the covariance function.

The first way is the use of a global analytical covariance model. It is normally expanded

in a series of Legendre polynomials:

C(ψ) =
∞

∑
l=0

ClPl(cosψ), (4.26)

with Cl the degree variance model, and Pl the Legendre polynomial of degree l. One

way to obtain the degree variance coefficients Cl is from existing models, such as the

Tscherning-Rapp model. This model is derived by considering potential coefficients to

degree l = 20, and updated values of the point anomaly variance (1795mGa12), the 1◦

block variance (920mGa12), and the 5◦ block variance (302mGa12) (Tscherning and Rapp,

1974). The corresponding analytical covariance function for the disturbing potential based

on the Tscherning-Rapp model is given as follows:

CVV
2 = 7.6mGal2 · rs rz for l = 2

CVV
l =

(
GM
R

)2( R2

rsrz

)l+1

t l+2 A
(l−1)(l−2)(l +B)

for l ≥ 3,
(4.27)

where t = (RB/R)2 = 0.999617, RB the radius of the Bjerhammar sphere smaller than R,

A = 425.28mGal2, and B = 24.

The covariance function can be propagated from one geo-potential functional to another

one. The covariance propagation law of the degree variance is written in the following

equation:

C f1 f1
l = (β f1

l )2 Cl,and (4.28)

C f1 f2
l = β f1

l β f2
l Cl. (4.29)
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where f1 and f2 are two isotropic geo-potential functionals, and β is a specific coefficient

with the combination of a dimensioning factor “Dim,” an upward continuation term R/r

with a specific power, and the corresponding eigenvalue λl for degree l. As an example,

some β coefficients are listed in Table 4.1.

Based on the transition coefficient β, the degree variance of a specific isotropic geo-

potential functional f can be derived from the given disturbing potential degree variance

CVV
l by

C f f
l =

(
β f

l

βV
l

)2

CVV
l . (4.30)

Table 4.1: Coefficients of geo-potential observables in covariance propagation

Dim
(R

r

)
λl βl

V GM
R l +1 1 GM

R

(R
r

)l+1

Vr
GM
R2 l +3 −(l +1) −(l +1)GM

R2

(
R
r

)l+2

Δg GM
R2 l +2 (l −1) (l−1)GM

R2

(
R
r

)l+2

Vrr
GM
R3 l +3 (l +1)(l +2) (l +1)(l +2)GM

R3

(
R
r

)l+3

In addition to the analytical global covariance model, the variance coefficient Cl can

also be estimated empirically from the observations. After plotting a 1D empirical covari-

ance function as a function of the spherical distances, the analytical covariance function

can be estimated optimally by a least-squares adjustment (Rummel, 1991); see Figure 4.12.

Assuming that the variance model is truncated at degree L, the linear relation is achieved:

⎡
⎢⎢⎢⎢⎢⎢⎣

C(ψ1)

C(ψ2)
...

C(ψn)

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

P1(cosψ1) P2(cosψ1) · · · Pn(cosψ1)

P1(cosψ2) P2(cosψ2) · · · Pn(cosψ2)
...

...
. . .

...

P1(cosψL) P2(cosψL) · · · Pn(cosψL)

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

C1

C2

· · ·
CL

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

with n the number of covariance.

The second group of covariance models are the local analytical models. One example

is the Gaussian covariance function, defined as follows:
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C(ρ) = 2C0e−ρ
2/ξ2

. (4.31)

0C

ξ

ρ

0

1

2
C

(  )C ρ

1
χ

−

Figure 4.12: Essential parameters of covariance function in LSC

There are three essential parameters involved in the local covariance function: the vari-

ance C0, the correlation length ξ, and the curvature parameter χ. C0 is the value of the

covariance function C(ρ) for ρ= 0 and the correlation length ξ is the value of the argument

for which C(ρ) has decreased to half its value at ρ = 0, i.e., C(ξ) = 1
2C0 (Moritz, 1980).

In equation (4.31), the two parameters C0 and ξ have to be empirically estimated from the

variance histogram of the observations using a least-squares adjustment similar to the pro-

cedure mentioned above. The third parameter χ can be determined empirically from the

gradient variance G0 (Moritz, 1980):

χ=
ξ2G0

C0
. (4.32)

The gradient variance G0 is defined as either the variance of any horizontal gradient or

equivalently half of the variance of the vertical gradient:
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G0 =
∂2C
∂x2

∣∣∣∣
ρ=0

=
∂2C
∂y2

∣∣∣∣
ρ=0

=
1
2
∂2C
∂z2

∣∣∣∣
ρ=0

(4.33)

4.4.3 Semi-variogram and Kriging

Semi-variogram

The Kriging method was originally developed as an optimal interpolation method by the

South African mining engineer, D. G. Krige, for usage in the mining industry. It employs

the concept of a regionalized variable, which is defined in a way between a truly random

variable and one that is completely deterministic. The size, shape, orientation, and spatial

arrangement of samples are the supporting factors for regionalized variables. Any changes

in these parameters affect the underlying characteristics of the variables. The basic geo-

statistical measure of the degree of spatial dependence between observations is the semi-

variogram γ(h), which is defined as follows:

γ(h) =
1

2n

n

∑
i=1

[s(xi)− s(xi +h)]2, (4.34)

where n is the number of pairs of samples of the given values s separated by the distance h.

A plot of γ(h) as a function of h is known as the experimental semi-variogram γ̂(h) (Figure

4.13), which provides some useful information for interpolation, optimizing, sampling,

and determining spatial patterns. Three important parameters in the semi-variogram are

the nugget C0, range a, and sill C1. The normally used analytical models include, but are

not limited to, the spherical model, exponential model, Gaussian model, and linear model,

listed below (Burrough and McDonnell, 1998, Chapter 6):

� spherical model

γ(h) =

⎧⎨
⎩ C0 +C1

[(
3h
2a

)− 1
2

(
h
a

)3
]

0 < h < a

C0 +C1 h ≥ a

� exponential model

γ(h) =

⎧⎨
⎩ C0 +C1

[
1− e(−

h
a)
]

0 < h < a

C0 +C1 h ≥ a
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Figure 4.13: Empirical semi-variogram modelling in Kriging

� Gaussian model

γ(h) =

⎧⎪⎨
⎪⎩

C0 +C1

[
1− e

(
− h2

a2

)]
0 < h < a

C0 +C1 h ≥ a

� linear model

γ(h) =

⎧⎨
⎩ C0 +bh 0 < h < a

C0 +C1 h ≥ a

where b is the slope of the line.

For a specific geo-potential data set, the three parameters (nugget C0, range a, and sill

C1) in the analytical models above are normally unknown. Therefore, they have to be

empirically fitted from the experimental semi-variogram cloud by a weighted least-squares

adjustment.

In least-squares adjustment, the design matrix consists of the partial derivatives with

respect to three unknown parameters, and the weights are proportional to the reciprocal of

squares of distances, e.g., ∝ 1
h2 (Cressie, 1985; Jian et al., 1996).

The Akaike information criterion (AIC) is applied to determine which one is the best

fitted semi-variogram model. The estimate of this criterion is defined as follows:
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Figure 4.14: Examples of several semi-variogram models in Kriging

AIC = n ln

(
Rm

n

)
+2p, (4.35)

where n is the number of points in the experimental semi-variogram cloud, p is the number

of parameters in the model and Rm is the sum of the square of the weighted difference. The

one with the smallest AIC value is selected as the best model (Olea, 1999, Chapter 5).

Kriging interpolation

Based on the generalized linear regression algorithm, the Kriging method makes use of

the knowledge of the semi-variogram from regionalized variables to estimate the func-

tional values at unknown locations. The generalized interpolation equation for the Kriging

method is written as follows:

z(x,y) =
n

∑
i=1

ζis(xi,yi), (4.36)

with the weights factor ∑n
i=1ζi = 1 as a constraint.

Depending on the way of estimating the weight factor ζ from the experimental semi-

variogram cloud, the classical types of Kriging are simple Kriging, ordinary Kriging, and
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universal Kriging, to list a few.

Assuming no trend in the observations, the weights in simple Kriging can be estimated

in a matrix form as

⎡
⎢⎢⎢⎢⎢⎢⎣

ζ1

ζ2
...

ζn

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

γ(d11) γ(d12) · · · γ(d1n)

γ(d21) γ(d22) · · · γ(d2n)
...

...
. . .

...

γ(dn1) γ(dn2) · · · γ(dnn)

⎤
⎥⎥⎥⎥⎥⎥⎦

−1⎡⎢⎢⎢⎢⎢⎢⎣

γ(d01)

γ(d02)

· · ·
γ(d0n)

⎤
⎥⎥⎥⎥⎥⎥⎦

Φ = ϒ−1D, (4.37)

where the subscript “0” is the index of the unknown point to be interpolated.

The corresponding interpolation error variance at the estimated point “0” can be calcu-

lated by

σ2
0 = DTϒ−1D. (4.38)

The second one is ordinary Kriging. It assumes that there is a constant trend to be

estimated in the observations:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ1

ζ2
...

ζn

−ϕ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ(d11) γ(d12) · · · γ(d1n) 1

γ(d21) γ(d22) · · · γ(d2n) 1
...

...
. . .

...
...

γ(dn1) γ(dn2) · · · γ(dnn) 1

1 1 1 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ(d01)

γ(d02)

· · ·
γ(d0n)

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Φ = ϒ−1D, (4.39)

where the parameter ϕ is a Lagrange multiplier required for the minimalization of the error

variances at the unknown point “0.” The Lagrange multiplier, an additional unknown, mea-

sures the sensitivity of the solution to the constraint. Correspondingly, the error variances

of the interpolated point can be estimated by Equation (4.38).

The third one is universal Kriging, which tries to find an estimator as a linear trend as

follows:



74

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ1

ζ2
...

ζn

−ϕ0

−ϕ1

−ϕ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ(d11) γ(d12) · · · γ(d1n) 1 x1 y1

γ(d21) γ(d22) · · · γ(d2n) 1 x2 y2
...

...
. . .

...
...

...
...

γ(dn1) γ(dn2) · · · γ(dnn) 1 xn yn

1 1 1 1 0 0 0

x1 x2
... xn 0 0 0

y1 y2
... yn 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ(d01)

γ(d02)

· · ·
γ(d0n)

1

x0

y0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Φ = ϒ−1D, (4.40)

The error variances by universal Kriging also can be estimated by Equation (4.38).

4.4.4 Relation between LSC and Kriging

Kriging and LSC are two geo-statistical interpolation methods. However, they normally

have their particular usefulness in different communities, i.e., geodetic and geological re-

spectively. Dermanis (1984) showed that they are equivalent to each other with an unknown

mean function. Since the covariance function C and the semi-variogram γ are defined in a

lag (h) domain, for a statistically stationary process, the semi-variogram γ(h) is related to

the covariance function, C(h), as follows (Herzfeld, 1992):

γ(h) = C(0)−C(h). (4.41)

4.4.5 Comparison of different interpolation methods

The mathematical backgrounds and derivations of all aforementioned interpolation meth-

ods, i.e., bi-linear, spline, LSC, and Kriging, are not new. However, their applications and

comparisons in the context of processing satellite observations are new. All approaches

have been employed to interpolate a grid on the nominal torus from the filtered and reduced

spaceborne gravimetry observations. In order to compare their performances, several sce-

narios have been studied, which is demonstrated in the flow chart in Figure 4.15. The idea

is to compare the interpolated values with the values calculated from the reference gravity

field model on the same torus grid. The model of LSC with observation errors is used,
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Figure 4.15: Calculating flow chart of the investigation of interpolation methods

where the covariance function is a global covariance model in terms of a series of Legen-

dre polynomials (Equation 4.26). The degree coefficients Cl are estimated empirically by

taking the average values of the degree coefficients of each projected orbital track on the

torus (Figure 4.16). In addition, ordinary Kriging with the analytical spherical model is

chosen to interpolate the grid and remove a constant trend if there is one among observa-

tions. The parameters in the spherical model of semi-variogram are estimated empirically

using the same track-wise determination approach also. Note that all distances involved

in the geo-statistical interpolation methods are determined on the basis of a sphere. The

spherical distance between two points can be calculate dy the cosine law:

d12 = arccos(sinφ1 sinφ2 + cosφ1 cosφ2 cos(λ2 −λ1)); (4.42)

Several aspects, such as interpolation accuracy, requirement of computational time and

memory storage, ability of spatial analysis, error propagation, and practical implementa-
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Figure 4.16: Regional orbital geometry of disturbing potential projected on the torus and the
sphere

tion, are considered as the evaluation factors.

Scenario I. In the first test, taking the spherical harmonic coefficients from the GGM02S

gravity field model as the reference input, one month noiseless disturbing potential data

with a sampling increment of 30s are synthesized along a CHAMP-like nominal orbit with

a constant height (h = 450km) and a constant inclination (I = 87.5◦). A regional orbital

geometry of the disturbing potential data is projected on both the sphere and the torus in

Figure 4.16. Interpolation methods are applied to generate a regular 2◦ × 2◦ grid on the

nominal torus. The essential parameters in the covariance function of least-squares col-

location and parameters in the semi-variogram of Kriging are fitted empirically by least

squares adjustment in Figure 4.17. The coefficients of the Legendre polynomials of the co-

variance model (curve in red) are determined up to l = 20 in Equation (4.26). The variance

C0 is around 5.0×104, and the correlation length ξ is about 0.5. The complementary curve

in green is the corresponding semi-variogram calculated from the empirical covariance by

Equation (4.41). In Figure 4.17(b), the fitted semi-variogram spherical model (curve in
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Figure 4.17: Empirical determination of covariance function and semi-variogram for the dis-
turbing potential data

red) has a nugget C0 = 0.0, a sill C1 = 5.0× 104, and a sill of 1.5. The modelled curve

shows a similar pattern with the one derived from the empirical covariance model (curve

in green). The gridding results by the four interpolation methods are compared with the

synthesized values on the same grid using the GGM02S gravity field model; see the gravity

field synthesis Section 4.3.2.

The differences of the interpolation results on the grid with respect to the synthesized

values can be treated as an external accuracy analysis. Figure 4.18 shows that the spline

method performs better than the linear method and the geo-statistical methods generally

give better results than the deterministic methods. Kriging gives the most homogeneous

output. Figure 4.18 also shows that the interpolated points with bigger values of the dif-

ferences are at the areas with large gravity gradients, e.g., mountain chains, and trenches.

Since there are no polar gaps in the torus domain; See Figure 4.10(b), the interpolated

values on the polar areas do not have large differences. Quantitative numbers of the exter-

nal accuracy for interpolation methods are summarized in Table 4.2. It states that Kriging

provides the smallest STD values. However, the expense of LSC and Kriging is the compu-

tational time because the essential parameters in the covariance function or semi-variogram

have to be empirically estimated, and the point-wise interpolation in LSC and Kriging does

not employ a fast calculating algorithm.
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Figure 4.18: Comparison of interpolation methods for the disturbing potential data, the
GGM02S model as reference

As discussed before, only the geo-statistical interpolation methods, i.e., LSC and Krig-

ing, can provide the error information for the interpolation results by applying the covari-

ance function or semi-variogram propagation law. This accuracy measure can be treated

as an analysis of the internal accuracy. Since LSC and Kriging employ a point by point

interpolating procedure in this thesis, the correlation among the interpolated points can be

neglected. Therefore, the variance for each interpolated point can be plotted in Figure 4.19.

It clearly shows that the internal accuracy is related to the geographical locations of the

interpolated points and the points in the polar areas have more accurate results. Two bands

with smaller interpolating variances in LSC and Kriging are located at the polar areas on



79

LSC

ar
gu

m
en

t o
f l

at
itu

de
 u

60 120 180 240 300 360

60 

120

180

240

300

360

Ordinary Kriging

60 120 180 240 300 360

60 

120

180

240

300

360

0 1 2 3 4 5 6 7 8 9 10

Variances of interpolated points

× 10−3

Figure 4.19: Variances of the interpolated points for the disturbing potential data by LSC

and Kriging

Table 4.2: Comparison of interpolation methods in scenario I: disturbing potential V

method mean std time
m2/s2 m2/s2 s

Linear 3.5×10−4 0.318 3.6
Spline 0.6×10−4 0.120 4.4

LSC 2.0×10−4 0.077 3328
Kriging 0.5×10−4 0.060 3760

the corresponding spherical projection. The reason for the bands is that in the spherical

domain the observations in the polar areas have a much denser data distribution compared

to the ones at the lower latitudes.

Scenario II. Choosing the OSU91A gravity field model as the known input, the Vzz grav-

ity gradient tensor component with a sampling frequency of 0.2Hz has been synthesized

along with a GOCE-like nominal orbit with a constant height (h = 246km) and a constant

inclination (I = 96.6◦). Interpolation methods are employed to create a regular 1◦× 1◦ grid

on the nominal torus. The empirical covariance model in a series of Legendre polynomials
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Figure 4.20: Empirical determination of covariance function and semi-variogram for the Vzz

gravity gradient tensor data

is determined in Figure 4.20(a), where the variance C0 is 0.038, and the correlation length

ξ is about 0.15. The spherical semi-variogram model is fitted empirically in Figure 4.20(b)

with the nugget C0 = 0.0, the sill C1 = 0.06, and the range a = 1.0, and it has the similar

pattern of the one (curve in green) calculated from the covariance model.

Figure 4.21 shows the interpolated results, which are the differences compared with the

synthesized values using the OSU91A gravity field model. The corresponding quantitative

numbers of the external accuracy for each interpolation method are summarized in Table

4.3. Again, the interpolated points with bigger differences are the ones at the areas with

large gradients, and Kriging provides the most homogeneous output with the smallest STD

values among the four results but it uses the longest computational time. In addition, the

differences in the polar areas show a trend along the longitude direction, especially in the

LSC results. These values may consequently cause a nearly ill-conditioned problem in

least-squares adjustment, which will be discussed in Section 5.4.

Neglecting the correlations among the interpolated points, the variance of each point

can be plotted in Figure 4.22. Although the 96.◦6 inclination causes two 6.◦6 gaps in the

polar areas on the spherical domain, the interpolated points these areas still have smaller

variances because of the number of observations.
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Figure 4.21: Comparison of interpolation methods for the Vzz gravity gradient tensor data,
the OSU91A model as reference

Scenario III. The tested geo-potential functionals in the first and second examples are

the disturbing potential V and the Vzz gravity gradient tensor component, respectively.

They are all isotropic quantities over the sphere. In the third example, an anisotropic

geo-potential functional, which is the cross-track gravity gradient tensor component Vyy,

is tested. The observations are simulated along a GOCE-like nominal orbit with a constant

height (h = 246km) and a constant inclination (I = 96.6◦). A 1◦ × 1◦ grid is interpolated

on the nominal torus. The Legendre polynomials coefficients in the covariance model are

determined empirically in Figure 4.23(a) with the variance C0 = 0.018, and the correlation

length ξ = 0.15. The spherical model of semi-variogram is fitted empirically in Figure
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Figure 4.22: Variances of the interpolated points for the Vzz gravity gradient tensor data by
LSC and Kriging

Table 4.3: Comparison of interpolation methods in scenario II: Vzz gravity gradient tensor
component

method mean std time
E E s

Linear 1.3×10−5 0.028 9.5
Spline 0.4×10−5 0.020 11.0

LSC 0.1×10−5 0.022 13280.0
Kriging 0.2×10−5 0.010 14588.6

4.23(b), where the nugget C0 is 0.0, the sill C1 is around 0.02, and the range is about 1.2.

Again, the fitted semi-variogram model has the similar pattern of the one (curve in green)

calculated from the covariance model.

Compared to the reference values on the same grid, the deterministic spline method

achieves the best interpolation results (Figure 4.24). The LSC and Kriging, which make

use of the empirically determined parameters, give worse results. However, the plot by

the LSC using the Tscherning-Rapp model as covariance function gives the worst results.

Therefore, LSC with an analytical covariance function may not be suitable for interpolating



83

0 0.5 1 1.5 2 2.5 3
−0.04

−0.02

0

0.02

0.04

0.06

0.08

Distances:[rad]

C
ov

ar
ia

nc
e

Empirical Covariance Function

Semi−Variogram

Fitted Covariance

(a) Empirical determination of covariance function

0 0.5 1 1.5 2 2.5 3
−0.04

−0.02

0

0.02

0.04

0.06

0.08

Distances:[rad]

Se
m

i−
va

ri
og

ra
m

Empirical Semi−Variogram

 

 

Fitted Semi−Variogram Semi−Variogram from CF

(b) Empirical determination of semi-variogram

Figure 4.23: Empirical determination of covariance function and semi-variogram for the Vyy

gravity gradient tensor data

Table 4.4: Comparison of interpolation methods in scenario III: Vyy gravity gradient tensor
component

method mean std time
E E s

Spline 1.5×10−4 0.027 49.2.0
Empirical LSC 1.0×10−4 0.055 15387.9

Global LSC 0.01 0.902 17263.2
Kriging 2.5×10−4 0.044 16752.6

the anisotropic observables because of the isotropic assumption in the covariance function.

As an alternative solution, the spline method should be employed in the interpolations of

the anisotropic observations.

In addition, similar to the Vzz results in the second scenario, the trend along the longitude

direction in the polar areas are more clear in this example. An oscillation in the lower

orders of the spherical harmonics solution is expected and regularization has to be applied;

see Sections 5.4 and 6.2.4.

The characteristics of the interpolation methods are summarized in Table (4.5) by con-

sidering the comparison aspects.
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Figure 4.24: Comparison of interpolation methods for anisotropic observable Vyy, the
OSU91A model as reference

Based on the three interpolation tests carried out above, the following conclusions can

be drawn on the suitability of different interpolation methods:

� In general, geo-statistical approaches, i.e., LSC and Kriging, provide a better results

in terms of mean and STD of differences than the deterministic approaches of the

bi-linear and spline interpolation.

� Geo-statistical approaches are able to propagate error information by covariance

functions or semi-variogram information, while deterministic approaches cannot.

� However, their excessive computational time and storage requirements will be a con-
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siderable problem when dealing with observations in a huge data set.

� Another characteristic is that both the covariance function and the semi-variogram

are data dependent, therefore, statistical approaches have to empirically determine

either the covariance function or the semi-variogram model from the actual sampled

data set before interpolation.

� LSC is not suitable for interpolating anisotropic observables because the covariance

models are always derived on the basis of an isotropic operator assumption. The

spline method is therefore an alternative solution.

Table 4.5: Characteristics of different interpolation methods

Method isotropic anisotropic time spatial isotropic error
analysis assumption information

Bi-linear worst worse fast no no no
Spline worse best fast no no no
LSC better worst slow covariance function yes yes
Kriging best better slow semi-variogram no yes

4.5 Aliasing problems

The word “aliasing” comes from signal processing. Aliasing is actually a type of distortion

that occurs when recording high frequency signals with a low sampling rate. Therefore,

the Nyquist theorem states that the maximum resolvable frequency fmax in the signal is

one-half of the sampling rate fs

fmax ≤ fs

2
, (4.43)

where fs/2 is the Nyquist frequency.

Gravity field spherical harmonic determination from spaceborne gravimetry is affected

by aliasing. In the geodetic application, the Nyquist theorem can be expressed in a temporal
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or spatial domain (Sections 4.5.1 and 4.5.2). Aliasing problems also can be caused by the

following reasons (Weigelt, 2006):

� omission errors because of missing information (Section 4.5.3),

� overlaps of signal sampling in different domains (Section 4.5.4), and

� special ground track geometry caused by the satellite orbital decays (Section 4.5.5).

4.5.1 Nyquist theorem in the spatial domain

Equation (4.43) shows the Nyquist theorem from a frequency perspective. By taking the

reciprocal value of the frequency, the Nyquist theorem can be expressed in a spatial domain.

For a specific repeat orbit with Ne (number of nodal days) and No (number of revolutions)

in the spatial domain, the equatorial distance between two neighboring tracks is treated

as a measure of the spatial resolution. Around the equator, the highest wave-number is

the maximum resolvable degree L. The Nyquist theorem is met in the spatial domain, if

L ≤ No/2 (Sneeuw, 2000b; Pail and Plank, 2003). Therefore, when one tries to recover the

gravity field beyond the maximum degree L, the information in the higher wave-number

part might be aliased because of missing information, and the lower wave-number part

might be contaminated by the aliasing effect.

Interpolation is required in the torus-based semi-analytical approach because of the

application of the FFT technique on the grid. The interpolation gridding on the nominal

torus is actually a re-sampling procedure in the spatial domain. The maximum grid size

dmax on the torus (360◦ × 360◦) is dependent on the maximum resolvable degree L (the

maximum frequency) and can be determined by the spatial Nyquist theorem as follows:

L ≤ 360◦

2dmax

⇒ dmax ≤ 360◦

2L
(4.44)

For instance, if the maximum resolvable degree L = 90, the size of the grids should be at

most 2◦ ×2◦. Otherwise, it is impossible to recover the corresponding spherical harmonic

coefficients up to L = 90.
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4.5.2 Aliasing and de-aliasing in the temporal domain

Gravity field satellite missions sense not only static gravitational fields but also tides and

other temporal gravity field signals, including gravitational perturbations as a result of mass

redistributions of the ground water, atmosphere, ocean, and the solid Earth. These high

frequency signals (hourly to monthly) cannot be recovered and will alias into the low fre-

quency signals. The way of solving this problem is to treat these temporal gravity changes

as systematic effects and remove them from the observations by a de-aliasing step using

currently available models before determining the Earth’s gravity field (Wahr et al., 1998;

Knudsen, 2003).

Thompson et al. (2004) studied the impact of short period, non-tidal temporal mass

variability in the atmosphere, ocean, and continental hydrology on gravity field determi-

nation from the GRACE mission. They showed that de-aliasing done with approximate

models gave a significant reduction in the aliasing errors for the mid-degrees and higher.

Abrikosov et al. (2006) recommended using the data from geophysical models and from

monthly GRACE gravity field solutions to diminish the aliasing effects in GOCE measure-

ments. However, the errors in the de-aliasing models produce mismodelling and also have

an aliasing effect on the monthly gravity field. This was studied for GRACE by Han et al.

(2004) and for GOCE by Han et al. (2006). In this thesis, a monthly gravity field solution

from both the CHAMP and GRACE missions is the basic unit for the observations to be

recovered. By taking an average of multiple monthly solutions in a period of almost two

years (Table 2.3), it is hoped that the mismodelling effects will be reduced.

4.5.3 Omission errors

As explained in Section 4.1.1, omission errors are caused by the truncation of the spherical

harmonics. This truncation may lead to an aliasing problem in the gravity field recovery.

If the maximum resolvable degree is truncated at L, the omitted higher degrees might be

aliased in the truncated solution. Therefore, the signals at low degrees are contaminated.

As an example, the noiseless gravity gradient tensor data along the radial direction Vzz are

synthesized on a regular torus (u×Λ domain) at the orbital height. The input gravity field

model is EGM96 and the maximum degree used is L = 150. The torus-based approach

is employed to recover the gravity field for the maximum resolvable degree L = 120 and
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L = 150, respectively. Taking the original EGM96 model as a reference, the corresponding

error representation, degree RMSE in Equation (4.5), is plotted in Figure 4.25.
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Figure 4.25: Degree RMSE in the aliasing problems caused by omission errors

Theoretically, since the synthesized values on the torus grid are noiseless in this exam-

ple, gravity field determination should be affected only by the numerical round-off errors.

Compared with the input gravity field, the degree RMSE should be very small, which is

shown as the degree RMSE curve of the L = 150 solution (black). However, as a result of

the truncation of the high frequencies beyond degree 120 in the L = 120 solution (gray), the

omission error causes an aliasing problem and the accuracy is several orders of magnitude

worse than the full recovery in the L = 150 solution. The degree RMSE curve exceeds the

boundary signal curve calculated by Kaula’s rule of thumb.

In this research, in order to avoid the aliasing problems caused by omission errors, the

high frequency components beyond the maximum resolvable degree L are removed from a

reference gravity field before solving the spherical harmonics. Jekeli (1996) discussed the
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aliasing problems caused by the omission errors for the case of gridded data and suggested

applying a spherical cap average as a de-aliasing filter to make a function band-limited.

This type of de-aliasing filter might be an interesting topic for future work.

4.5.4 Effects of the satellite ground track patterns caused by the orbital geometry

Another possible cause of aliasing problems is the geometric distribution of the observa-

tions on the Earth’s (or torus) surface. During the mission lifetime, the satellite orbital

height will decay because of the non-gravitational perturbation forces, such as air drag and

solar radiation pressure. Consequently the ground track pattern will change and with it the

data coverage in the projection domain. Figure 4.26 shows different monthly ground track

patterns for January 2004 and June 2003 from the CHAMP mission. The satellite occasion-

ally even went through a repeat orbit mode several times at a certain height because of the

boosting. The orbit decay and boosting of the CHAMP satellite is shown in Figure 2.4, in

which the ground track pattern in June 2003 was going through a near periodic repeat orbit

with Ne/No = 31/2.

Figure 4.26: Two typical ground track patterns projected on the torus, January 2004 (left),
June 2003 (right)

Time-variable ground track patterns on the projection domain result in different geo-

metric distributions of observations. Interpolation is mandatory for creating a grid on the
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Figure 4.27: Interpolation difference of January 2004 and June 2003 using LSC with the
Tscherning-Rapp covariance model

nominal torus. Least-squares collocation (LSC) with the same covariance function from the

Tscherning-Rapp model for the disturbing potential is used to interpolate the same 2◦ ×2◦

grid for two individual months. The reason of using the Tscherning-Rapp model for both

two months is to avoid the differences of the covariance function parameters calculated

from the empirical determination. The interpolation differences between the gridding re-

sults and the synthesized reference values are plotted in Figure 4.27.

Although two individual months employ the same LSC interpolation method with a

same type of covariance function, the interpolation differences compared to the reference

values are not at the same level. With a good ground track coverage, the month of January

2004 has an interpolation error of 0.38m2/s2 in STD, while with a repeat orbit pattern, the

month of June 2003 degrades with an interpolation error of 0.96m2/s2 in STD. Different

interpolated grids result in different gravity field determination results. Applying the torus-

based semi-analytical approach, the monthly solutions can be determined for January 2004

and June 2003. Their corresponding degree RMSE curves compared to a reference field,

e.g., the GGSM02S model, are plotted in Figure 4.28. The dashed and solid curves in gray

indicate the signal and noise, respectively, of June 2003. The dashed and solid curves in

black are for the signal and noise of January 2004, respectively. The cross-over point be-
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tween the signal and noise curves, where SNR = 1, shows the maximum resolvable degree

for individual monthly solutions. January 2004 is able to recover the gravity field even up

to degree L = 70. June 2003 has the cross-over point around degree l = 50, and the overall

solution is about one order of magnitude worse than the monthly solution from January

2004.
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Figure 4.28: Degree RMSE of January 2004 and June 2003 from the CHAMP mission, com-
pared to the GGM02S model

Another perspective to show the aliasing effects caused by the ground track patterns is

from the spectral point of view. Choosing the GGM02S gravity field model as reference,

differences between the resolved spherical harmonic coefficients and the reference can be

plotted in a 2D spectrum Δlm (Equation 4.2) in Figure 4.29. Compared to the solution from

January 2004, the solution from June 2003 has a less accurate spectrum. The accuracy

decreases dramatically for the degrees and orders above 30 because the effect of the bad

performance in the higher degrees and orders (l > 50) aliases into the neighboring lower

degrees and orders (30 < l < 50).

Similarly, the GRACE mission also suffers from the aliasing problem as a result of the
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Figure 4.29: Spherical harmonic error spectrum of January 2004 and June 2003 from the
CHAMP mission, compared to the GGM02S reference model

orbit decaying. Using a simulated four-weekly disturbing potential data for several re-

peat orbit scenarios, Yamamoto et al. (2005) investigated the effect of different simulated

GRACE orbit decays on the gravity field recovery. In the study, the global standard devia-

tions of the geoid height increases by one order of magnitude and the ground track recovery

provides insufficient spatial resolution. Therefore, the gravity field recovery is only up to

degree 30 for some specific orbit heights.

Wagner et al. (2006) investigated the same degradation problem of gravity field recov-

ery for one particular monthly solution from real GRACE disturbing potential data. The

same conclusion is drawn on the spatial Nyquist theorem, namely that gravity field deter-

mination from a repeat orbit scenario with resolution of degree L requires the number of

orbit revolutions to be greater than 2L. They recommended that one should avoid the sparse

ground tracks for spherical harmonics estimation by changing the repeat patterns of the ob-

servations. Figure 4.29 shows that the torus-based approach is therefore an alternative and

available choice because interpolation works as a re-sampling tool for the sparse ground

track patterns.

4.5.5 Sampling overlaps in different domains

This type of aliasing problem occurs when the orbital frequency in a 2D torus domain ψ̇mk

is transformed to a 1D repeat orbit domain ψ̇n, and vice-versa. Sneeuw (2000b) discussed
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the reasons causing the overlap aliasing problem. The minimum condition avoiding this

situation must hold for a repeat orbit with Ne (number of nodal days) and No (number of

revolutions):

L ≤ No +Ne

2
−1. (4.45)

This requirement is equivalent to L ≤ No/2 for a low Earth orbiter (LEO) as discussed

before. For instance, in June 2003, the CHAMP satellite was in a repeat orbit scenario with

No = 31 revolutions in Ne = 2 nodal days. Theoretically, aliasing will occur for the degrees

and orders above 15. In one revolution, a point on a torus is sampled twice, which are as

much as the samples on a sphere because of ascending and descending arcs on the same

point (Figure 4.10). Therefore, the revolutions should be doubled, i.e., No × 2 = 62. An

indication of this aliasing phenomenon can be shown in the degree RMSE curve, where

the error curve is supposed to cross Kaula’s curve around l = 31. However, Figure 4.28

demonstrates that the monthly solution from June 2003 is able to resolve the spherical

harmonic degrees higher than 31. The reason again is that the interpolation on the torus

re-samples the observations and the spatial resolution is therefore changed according to the

size of the torus grid.

4.6 Practical implementation of the real-valued FFT technique

The derivations of the FFT technique in Section 3.2.4 are all based on complex-valued

expressions for the purpose of compact expression. However, for practical computer pro-

gramming, real-valued numbers are required. Under this situation, the indices m and k in

a Fourier series, e.g., in Equation (3.14a), have to be converted to positive integers. This

practical issue should be implemented for the real-valued FFT technique application.

Taking the maximum resolvable degree as L, Equation (3.14a) can be re-written in a

real-valued expression avoiding the imaginary unit “ j”:

f (u,Λ) =
L

∑
m=0

L

∑
k=−L

Amk cos(ku+mΛ)+Bmk sin(ku+mΛ). (4.46)

The equation above is still in an implicit format of a 2D Fourier series. Since the indices

of vectors are always positive integers in the numerical calculation, the index k has to be
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converted to positive integers. Assuming 0 ≤ k ≤ L, Equation (4.46) can be rearranged as

a 2D Fourier series:

f (u,Λ) =
L

∑
m=0

L

∑
k=0

(Am,+k +Am,−k)︸ ︷︷ ︸
F1

coskucosmΛ,

+ (−Am,+k +Am,−k)︸ ︷︷ ︸
F2

sinkusinmΛ,

+ (Bm,+k −Bm,−k)︸ ︷︷ ︸
F3

sinkucosmΛ,

+ (Bm,+k +Bm,−k)︸ ︷︷ ︸
F4

coskusinmΛ. (4.47)

The real-valued lumped coefficients Amk and Bmk in Equation (4.46) are the combined

vectors of Am,±k and Bm,±k, respectively, which can be calculated through the Fourier co-

efficients F1,F2,F3,F4 in Equation (4.47) (Karrer, 2000):

Am,k∈[−L,L] =

⎡
⎢⎢⎢⎣

Am,−k = F1+F2
2

Am,+k = F1−F2
2

k ∈ [0,L]

⎤
⎥⎥⎥⎦ ,

Bm,k∈[−L,L] =

⎡
⎢⎢⎢⎣

Bm,−k = F3+F4
2

Bm,+k = F4−F3
2

k ∈ [0,L]

⎤
⎥⎥⎥⎦ . (4.48)

Equation (4.47) and (4.48) can be applied in both the forward analysis procedure and

the backward synthesis procedure when dealing with the real-valued Fourier coefficients.

4.7 Summary

THIS chapter has discussed comprehensively the issues involved in the first two major

steps of the gravity field recovery procedure, i.e., from the in-situ observations to the

2D lumped coefficients.

A low order ARMA(8,1) filter is designed and tested as a de-nosing tool for the obser-

vations contaminated by colored noise, especially for the gravity gradient tensor data. The

power spectrum of the noise after filtering is close enough to white noise.
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Data reduction uses a multi-parametric Taylor expansion series to correct the height

and inclination variations. This reduction is essentially important especially for the observ-

ables without the normal gravity field removed, because the variation corrections can be

over 15 times larger than the disturbing part. The partial derivatives of the observables with

respect to height and inclination are presented. By comparing the magnitude of the partial

derivatives with the original observation, truncation at the second order is sufficient. The

downward/upward corrections along the orbit are calculated by the developed torus-based

gravity field synthesis procedure with the corresponding transfer coefficients. A new ex-

pression of the first order inclination derivative is derived. The synthesized values can be

obtained quickly and easily by making use of the inverse fast Fourier transform (IFFT) for

the grid data or the numerical vector operation for the scattered data on the nominal torus.

Two groups of interpolation methods, namely the deterministic and geo-statistical ap-

proaches, are investigated for creating a grid on the torus. The LSC with observation errors

is used and the ordinary Kriging is chosen to determine and remove a constant trend if

there is one among observations. All the essential parameters are estimated empirically

using the track-wise determination. The interpolation results show that for isotropic ob-

servables, the geo-statistical approaches, i.e., LSC and Kriging, create a more accurate grid

than the deterministic approaches of bi-linear and spline interpolation. In addition, the

geo-statistical approaches are able to propagate the data errors while the deterministic ones

cannot. However, for anisotropic observables, the LSC does not work well because of its

intrinsic isotropic assumption. The computational time and the determination of the covari-

ance function or semi-variogram are the limiting factors of LSC and Kriging when dealing

with a huge date set. Compared to the references values, the interpolation errors (STD val-

ues) from the best interpolation results are less than 0.01% for the disturbing potential, 1%

for the Vzz gravity gradient tensor component, and 3% for the anisotropic Vyy component.

A better interpolation technique for the anisotropic observables should be investigated in

future work.

According to the Nyquist theorem in the spatial domain, a rule is discovered that the

increment of the torus grid has to be smaller than 180◦/L. In the temporal domain, oceano-

graphic and hydrologic models can be employed as a de-aliasing tool to remove the high

frequency signals in the observations. The aliasing problem also occurs because of the
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omission errors in the spherical harmonics domain. Therefore, it is recommended that the

high frequency components beyond the maximum resolvable degree L are removed from

a reference gravity field. In addition, since different ground track patterns yield different

data distributions, the high degrees and orders may be aliased in the monthly solution with

a repeat orbit mode. Fortunately, this situation is improved in the torus-based approach

because interpolation re-samples the spatial resolution when creating a grid with a denser

data distribution. The monthly solution from June 2003, which was in a repeat mode of 31

revolutions in 2 nodal days, can reach the maximum degree up to L = 50, but this solution

is only half an order of magnitude worse than the January 2004 monthly solution with a

very dense ground coverage.

The real-valued expression of the 2D FFT technique has been derived for the purpose of

programming implementation.



Chapter 5

Determination of spherical harmonic coefficients from

lumped coefficients using least-squares adjustment

THIS chapter will focus on the estimation of the spherical harmonic coefficients from

the pseudo-observables, the lumped coefficients, using least-squares adjustment. The

pocket guide representation (Section 5.1) is a collection of different types of transfer co-

efficients for different observables from spaceborne gravimetry. With these transfer coef-

ficients, the torus-based approach is able to build a linear mapping function between the

spherical harmonic coefficients and any geo-potential functional. Therefore, a typical least-

squares adjustment can be applied for this normally over-determined problem. Under the

nominal torus assumption, a block-diagonal system for each order m is achieved, and the

real-valued expression for the order-wise least-squares adjustment is derived in Section 5.2.

The multi-observable model is also introduced in order to obtain an overall solution from

the individual monthly solutions. A model of the weight matrix will be developed based on

the error PSD model, and the error propagation will be discussed in Section 5.3. Section 5.4

will present the regularization techniques for a nearly ill-conditioned problem of the normal

matrix. In addition, the performance of the regularization matrices and the determination

of the regularization factors are evaluated in the order-wise least squares adjustment. The

determination of the optimal weighting factor in the combined solutions from SST and SGG

will be addressed in Section 5.5. A torus-based iteration scheme is developed to improve

the estimation by compensating for various approximations and assumptions (Section 5.6).

5.1 Pocket guide – transfer coefficient representations

After completing the first two steps of gravity field determination using the torus-based ap-

proach, which have been extensively discussed in Chapter 4, the lumped-coefficients Amk

are obtained as the pseudo-observables from an interpolated regular grid on the nominal

torus by the FFT technique. The next step is to estimate the spherical harmonic coefficients

from the lumped coefficients. The linear mapping factor between these two domains is the

97
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transfer coefficient, H f
lmk. Spatially, it is a representation between a sphere and a torus (Fig-

ure 3.4). As discussed in Section 3.2.4, the torus-based semi-analytical approach is a very

handy and flexible tool for dealing with any geo-potential functional, if the corresponding

transfer coefficient is available. Without any additional derivation and computation, the

only item that needs to be changed in the flow chart of Figure 3.5 is the design matrix of

the linear system, which consists of the transfer coefficient.
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Figure 5.1: The Meissl Scheme

The purpose of PG is to establish a complete collection of corresponding transfer co-

efficients for all relevant geo-potential functionals. The phrase “pocket guide” in physical

geodesy came from Rummel (1991). Sneeuw (2000b) extended its meaning and denoted

H f
lmk as the collection of different types of the transfer coefficients to dynamic satellite

geodesy. The traditional way to connect different observables is using the Meissl scheme as

shown in Figure 5.1 (Meissl, 1971; Rummel, 1979) and the extended Meissl scheme (Rum-

mel and van Gelderen, 1995). However, PG is different from the traditional Meissl scheme.

The latter scheme presents the spectral characteristics of the first and second order deriva-

tives of a geo-potential functional as eigenvalues of a linear operator. The Meissl scheme

and the extended Meissl scheme stay in only one spectral domain, i.e., either the spherical

harmonic or the Fourier domain, and they make use only of the spherical harmonic degree

l information. Conversely, a transfer coefficient in PG links these two domains (Sneeuw,

2000b). Consequently, it is not only a function of the degree l, but also a function of the

order m and the third index k. Therefore, the transfer coefficient cannot be considered as
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an eigenvalue of a linear operator as in the case of the Meissl scheme.

There are two ways to derive the transfer coefficient: the differentiation technique and

the orbital perturbation theory. The linearized homogeneous Hill equations with no pertur-

bation forces on the right hand side of Equation (5.1) should be employed to establish a

dynamical model of the satellite motion (Hill, 1878). In addition, Xu et al. (2004) derived

a non-trivial analytical solution for a set of non-homogeneous Hill equations in the context

of the J2 perturbation force.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẍ + 2nż = 0

ÿ + n2y = 0

z̈ − 2nẋ − 3n2z = 0

(5.1)

with x the along-track, y the cross-track, and z the radial direction in the local satellite

coordinate system (Figure 3.2). The mean motion of the orbit n comes from Kepler’s third

law:

n =
GM
r3 . (5.2)

GRACE-type line-of-sight (LOS) gradiometry. The technique of satellite-to-satellite track-

ing in low-low mode (SST-ll) from the GRACE satellite mission provides very precise inter-

satellite range measurements with the K-band ranging system (Section 2.2). The transfer

coefficient Hρ
lmk for the range observable between the two satellites can be expressed as a

combination of the orbit perturbation transfer coefficients HΔx
lmk and HΔz

lmk in the local system

(Sneeuw, 2000b):

Hρ
lmk = 2 j cosηsin(ηβmkHΔx

lmk)+2 j sinηcos(ηβmkHΔz
lmk), (5.3a)

HΔx
lmk = R

(
R
r

)l−1[
j
2(l +1)βmk − k(β2

mk +3)

β2
mk(β

2
mk −1)

]
F̄lmk(I), (5.3b)

HΔz
lmk = R

(
R
r

)l−1[(l +1)βmk −2k

βmk(β2
mk −1)

]
F̄lmk(I), (5.3c)

where η is the half angle of the separation between the two satellites connecting to the

center of the Earth (for a baseline of 220km like the GRACE, η ≈ 1◦), and βmk is the

normalized orbital frequency with the unit of cycles per revolutions (CPR), i.e., βmk =

ψ̇mk/n.
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The transfer coefficient of the range observable Hρ
lmk is independent of the cross-track

component HΔy
lmk, but it carries on the resonances from both HΔx

lmk and HΔz
lmk when βmk =

0,±1. A resonance with an infinite value will destroy the linear system between the lumped

coefficients and the spherical harmonic coefficients. The LOS gradiometry can avoid this

problem by making use of the ratio between the range and range acceleration in some

approximations.

In the GRACE-type SST-ll mission, the twin satellites fly along the same orbit with dif-

ferent mean anomalies. The relation among the inter-satellite range, range rate, and range

acceleration is demonstrated in Figure 5.2, and the mathematical equations are derived as

follows (Rummel et al., 1978):

ρ= ρ · e, (5.4a)

ρ̇= ρ̇ · e, (5.4b)

ρ̈= ρ · e+
1
ρ
(ρ̇ · ρ̇− ρ̇2), (5.4c)

where e is the unit vector, which can be calculated from the baseline:

e =
ρ
|ρ| . (5.5)
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Figure 5.2: Concept of the GRACE-type LOS gradiometry (Rummel et al., 1978)
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Under a small angle approximation and some numerical simplifications, Sneeuw (2000b)

verified theoretically that the ratio between inter-satellite range and range acceleration ρ̈
ρ

could be interpreted as LOS gravity gradiometry. This combined observable resembles the

Vxx gravity gradient tensor along-track component with a different scale. Therefore, the

approximated transfer coefficient for this GRACE-type LOS gradiometry is very similar to

the transfer coefficient of Vxx in Equation (5.7a), namely.

H ρ̈
lmk

ρ
≈ GM

R3

(
R
r

)l+3

[l−1− k2]F̄lmk(I). (5.6)

Gravity gradient tensors. Since gravity field determination from the GOCE mission

comes from processing the gravity gradient tensor data, the corresponding transfer co-

efficients describing all components of the gravity gradient tensor are given by Sneeuw

(2000b) as follows:

Vxx : Hxx
lmk =

GM
R3

(
R
r

)l+3

[−(k2 + l +1)]F̄lmk(I), (5.7a)

Vyy : Hyy
lmk =

GM
R3

(
R
r

)l+3

[k2 − (l +1)2]F̄lmk(I), (5.7b)

Vzz : Hzz
lmk =

GM
R3

(
R
r

)l+3

[(l +1)(l +2)]F̄lmk(I), (5.7c)

Vxy : Hxy
lmk =

GM
R3

(
R
r

)l+3

[ jk]F̄∗
lmk(I), (5.7d)

Vxz : Hxz
lmk =

GM
R3

(
R
r

)l+3

[− jk(l +2)]F̄lmk(I), (5.7e)

Vyz : Hyz
lmk =

GM
R3

(
R
r

)l+3

[−(l +2)]F̄∗
lmk(I), (5.7f)

The orientations of x, y, and z axes in the local satellite system are as defined above.

Satellite formation flying (SFF). Serving as a reliable, low cost alternative to the “one

satellite does all” approach, the satellite formation flying technology is primarily concerned

with the maintenance of the relative location among many satellites (Hughes and Norris,

2002). Simultaneous and redundant measurements from multiple formation flying vehi-

cles provide substantial benefits, such as configuration, resolution, and robustness (Leitner

et al., 2002). The GRACE satellite mission is designed as a type of formation flying. For
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the relative orbit, the two identical satellites were placed in the same orbit with different

mean anomalies. Such a configuration is referred to as a leader-follower flying forma-

tion. However, this leader-follower configuration is sensitive only along the line-of-sight

direction. The weakness in the cross-track direction may cause an aliasing problem in the

inter-satellite range observable because of mismodelling. A multiple-formation configura-

tion can provide a cross-track motion and help in de-aliasing signals because it introduces a

seperate information in the cross-track direction (Sneeuw and Schaub, 2005; Sneeuw et al.,

2005a).

(a) Cartwheel configuration in SAR

( )tα

x

z

(b) New observable from a cartwheel formation

Figure 5.3: Concept of cartwheel configuration in satellite formation flying

Therefore, the concept of satellite formation flying will probably be employed in future

satellite missions, e.g., the SWARM mission (the Earth’s magnetic field and environment

explorers). It consists of a constellation of three satellites in three different polar orbits

(ESA, 2004). Another possible formation is the so-called cartwheel configuration (Fig-

ure 5.3(a)), which originated in the synthetic aperture radar (SAR) community (Massonnet,

1999). If such a cartwheel formation of three satellites is designed, a time-variable rota-

tion angle α(t) about the y-axis will be introduced (Sneeuw and Schaub, 2005). Any two

satellites are always on the new x′-axis along the triangle edges of the wheel, and the new

observable Vx′x′ can be expressed as follows (Figure 5.3(b)):

Vx′x′ = cos2αVxx +2cosαsinαVxz + sin2αVzz. (5.8)
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Since the corresponding transfer coefficient Hx′x′
lmk for the time-variable along-track com-

ponent is determined by the combination of the transfer coefficients Hxx
lmk, Hxz

lmk, and Hzz
lmk,

this new kind of observable can be used to recover the gravity field by employing the cal-

culating flow chart in Figure 3.5.

5.2 Block-diagonal structured linear system and order-wise least-squares

estimation

The transfer coefficients provide a linear relationship between the Fourier coefficients

(lumped coefficients Amk) and the spherical harmonic coefficients. In addition, this linear

system has a block-diagonal structure as a result of the nominal torus assumption (Figure

3.1). Therefore, the spherical harmonic unknowns can be estimated separately by a typical

least-squares adjustment for individual orders m.

5.2.1 Block-diagonal system

Under the assumption of a nominal orbit, the transfer coefficients are independent or un-

correlated for the individual orders m ∈ [−L,L]. Thus, for each order m, a corresponding

linear system a = Hκ is yielded in a matrix format, where a is the vector of the lumped-

coefficients Amk, H is the design matrix consisting of the transfer coefficients Hlmk, and κ

is the vector of spherical harmonic coefficients. Because −L ≤ k ≤ L and −L ≤ m ≤ L, the

dimensions of the linear system for a specific order m are demonstrated as follows:

am
(2L+1)×1

= Hm
(2L+1)×(L−|m|+1)

κm
(L−|m|+1)×1

. (5.9)

In the design matrix H, the left upper and lower triangular corners are all zeros when

|k| > l, because the third index k is in the range of −l ≤ k ≤ l by definition. In addition,

alternating elements are filled with zeros depending on the usage of the inclination function

F̄lmk(I) or the cross-track inclination function F̄∗
lmk(I). For instance, those using F̄lmk(I) are

zero for l − k odd, whereas those with F̄∗
lmk(I) are zero for l − k even. Therefore, a proper

even or odd permutation of columns and rows yields two sub-blocks for each order m with

a size of (L+1)× 1
2(L−|m|+1). Figure 5.4 shows the structure of the design matrix using
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an inclination function F̄lmk(I) with L = 20, m = 0 and m = 10, respectively, (a black square

means having a value and a white spot means zero).

H
lmk
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Figure 5.4: The structure of the H matrix for m = 0 and m = 10, L = 20

5.2.2 Order-wise least-squares adjustment

Normally, estimating the spherical harmonic coefficients with (L+1)2 unknowns from the

lumped coefficients of (360/dmax)
2 pseudo observables is an over-determined problem.

Since measurements always contain noise, the noise will propagate in the lumped coeffi-

cients. The linear system is modified by adding an error vector e:

a = Hκ+ e. (5.10)

The corresponding stochastic model for the linear system can be written as a standard
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Gauss-Markov model:

E{e} = 0, D{e} = Q0, (5.11)

The operators E{...} and D{...} are the first moment (expectation value) and second

moment (variance-covariance matrix or dispersion matrix), respectively. Q0 is the a-priori

variance-covariance matrix of the measurements, which comes from observation informa-

tion, such as the accuracy of the measurements. The best linear unbiased estimation of

the unknowns κ with respect to the quadratic minimum of e, i.e., min{eTPe}, yields the

least-squares estimator:

κ̂ = (HTPH)−1(HTPa), (5.12)

with the weight matrix P = Q−1
0 . The matrix HTPH is known as the normal matrix “N”

and the a-posteriori variance-covariance matrix is the inverse of the normal matrix:

Qκ̂ = (HTPH)
−1

= N−1. (5.13)

Since the linear relationship is established under a block-diagonal structure for each

order m, the least-squares estimation will also be applied order-wise. Consequently, all

related critical issues discussed below in the context of least-squares estimation, such as the

regularization technique and optimal weighting methods, also are implemented separately

for individual orders.

5.2.3 Real-valued linear representation

The complex-valued expression of the block-diagonal linear system is very concise for the

purpose of derivation. However, a real-valued expression is always preferred for practical

numerical implementation. The real-valued coefficients need to take into the considera-

tion the distinction between even or odd l −m and the proper selection of either C̄lm or

S̄lm. Therefore, the Fourier coefficients in the linear system of Equation (3.14b) can be

represented by (Schrama, 1989):

Amk

Bmk

⎫⎬
⎭ =

L

∑
l=0

HV
lmk

⎧⎨
⎩ αlm

βlm

(5.14)
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in which

αlm =

⎡
⎣ C̄lm

−S̄lm

⎤
⎦ l −m = even

l −m = odd
(5.15a)

βlm =

⎡
⎣ S̄lm

C̄lm

⎤
⎦ l −m = even

l −m = odd
(5.15b)

If the transfer coefficient makes use of the cross-track inclination function F̄∗
lmk(I), there

is a phase shift of 90◦ in both αlm and βlm, which means that αlm has to be replaced by

βlm, and βlm has to be replaced by −αlm. If there is an imaginary unit j involved in the

transfer coefficient, the same phase changes and substitutions have to be applied to αlm and

βlm. If both the cross-track inclination function F̄∗
lmk(I) and the imaginary unit j are used

in the transfer coefficient, a total phase-shift of 180◦ occurs. Under this circumstance, αlm

is changed to −αlm, and βlm is substituted by −βlm. According to this criterion, the real-

valued expressions for gravity gradient tensor components in Equations (5.7d), (5.7e), and

(5.7f) have to be changed correspondingly as follows (Rummel et al., 1993; Karrer, 2000):

For the Vxy component,

Amk

Bmk

⎫⎬
⎭ =

L

∑
l=0

Hxy
lmk

⎧⎨
⎩ −αlm

−βlm

. (5.16)

For the Vxz component,

Amk

Bmk

⎫⎬
⎭ =

L

∑
l=0

Hxz
lmk

⎧⎨
⎩ βlm

−αlm

. (5.17)

For the Vyz component,

Amk

Bmk

⎫⎬
⎭ =

L

∑
l=0

Hyz
lmk

⎧⎨
⎩ βlm

−αlm

. (5.18)

5.2.4 Multi-observable model

In this thesis, the basic unit for gravity field determination from spaceborne gravimetry is

a monthly solution. Because of the linearity property, the combined overall solution for
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several months can easily be obtained by a multi-observable model without repeating the

previous steps mentioned in Chapter 4, such as data reduction, interpolation, and the FFT.

Based on the superposition principle of the normal matrix in least-squares adjustment, this

multi-observable model can be employed also for different geo-potential functionals from

different satellite missions. For a specific design matrix an from either different epochs or

different geo-potential functionals, the linear stochastic model in Equation (5.11) can be

extended as follows:

E{ei} = 0, D{ei} = Qi, i = 1,2...#months/types. (5.19)

For each set of observables, the corresponding normal matrix N1 and observation vector

Ci can be formed:

Ni = Hi
TPiHi, (5.20)

Ci = Hi
TPiai. (5.21)

The overall least squares adjustment can be achieved as a superposition of the individual

solutions by the multi-observable model with the overall normal matrix N = ∑i Ni and

observation vector C = ∑iCi, and the overall a-posteriori variance-covariance matrix Qκ̂ =

N−1:

κ̄ =

(
#months/types

∑
i=1

(Hi
TPiHi)

)−1(#months/types

∑
i=1

(Hi
TPiai)

)
, (5.22)

= N−1C. (5.23)

Since the a-priori information in the regularization technique can be treated as one of

the data sets in Equation (5.19) in the form of a pseudo-observable, the regularized solution

can be incorporated naturally into the multi-observable model (Section 5.4).

The contribution from each observable is considered to have an equal weight in the

combined solution of Equation (5.22). As an extended version of the multi-observable

model with corresponding relative weighting contributions, the optimal weighting method
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determines the different weights for different observables to get a better overall solution.

This method will be discussed in detail in Section 5.5.

5.3 Development of spectral analysis and error propagation

The in situ consecutive measurements can be treated as a time series along an 1D orbit or

a 2D torus trajectory. The a-priori noise information of the observations should be pro-

jected to the pseudo-observable in least-squares adjustment. The error information can be

obtained in two ways: the variances of the in situ observations and the manufactured instru-

mental errors. The propagation of the the error information from the in situ observations to

the pseudo-observable, lumped coefficients, is demonstrated in Figure 5.5.

Variances of the in situ observations. The Variances of the in situ observations can be

expressed in a diagonal matrix format Q0, which can be used for the analysis of the noise

characteristics in Section 4.2. After filtering, a new variance matrix Q0
′

can be obtained.

Since the corrections in data reduction are very small, compared to the original magnitude,

the variance matrix Q1 is considered as same as Q0 or Q0
′
. After employing geo-statistical

interpolation, i.e., least-squares collocation or Kriging, the variance-covariance matrix Q2

can be propagated through covariance function by Equation (4.25) or semi-variogram by

Equation (4.38), respectively. The Fourier transform converts the covariance function Q2

to the PSD error model S( f ) by Equation 4.12. Then, the error PSD model can be used

as an a-priori information Qmk for the lumped coefficients in least-squares adjustment.

The calculating procedure from S( f ) to Qmk will be explained in the second way of error

propagation below, because the manufactured instrumental PSD will have exactly the same

steps.

Manufactured instrumental error PSD. The second error information is given directly

from the manufactured instrumental errors in terms of PSD model S( f ). For instance, the

onboard sensitive gravity gradiometer of the GOCE mission requires a maximum error PSD

level of S( f ) = 3×10−3 E/
√

Hz in the measurement bandwidth (MBW) of 0.005Hz ≤ f ≤
0.1Hz. Outside the MBW, the PSD is specified as a function of the frequency with higher

error level (ESA, 1999). The expected spectra of the gravity gradient measurements error
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Figure 5.5: Error propagation from the in situ observations to estimated spherical harmonic
coefficients

budget for the GOCE mission has been shown in Figure 2.8.

In this thesis, spectral analysis in least-squares adjustment makes use of the PSD model

from the instrumental errors directly, because the implementation is straightforward on

the one hand, and on the other hand the error variances of the in situ observations are not

available for our calculations. Although filtering, reduction, and interpolation will influence

the PSD model from instrumental errors (shown in Figure 2.8 with dashed lines), the effects
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are very small to be neglected because all the calculating procedures are manipulated in a

control system with a controlled error budget.

A simplified PSD model for all gravity gradient tensor components is developed under

the GOCE error budget, shown in Figure 5.6. The gravity gradient measurements in the

MBW of 0.005Hz ≤ f ≤ 0.1Hz have an error spectrum of 3× 10−3 E/
√

Hz. Outside the

MBW, the PSD model is defined as follows:

S( f ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3×10−3 ×0.005/ f f < 0.005Hz,

3×10−3 0.005Hz ≤ f ≤ 0.1Hz,

3×10−3 × ( f/0.1)2 f > 0.1Hz.

(5.24)
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Figure 5.6: A simplified PSD model for the simulated GOCE observations with MBW of
0.005Hz ≤ f ≤ 0.1Hz

For a certain spectral line fmk defined by the indices m and k, the corresponding or-

bital frequency can be expressed by the changes in the orbital coordinates u̇ and Λ̇ in the

following equation:
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fmk = ψ̇mk = ku̇+mΛ̇, −L ≤ m,k ≤ L. (5.25)

The precession of the argument of latitude u̇ is the sum of the changes of the argument

of perigee ω̇ and the mean anomaly Ṁ (Figure 3.2), because the true anomaly and mean

anomaly are the same for a circular orbit (eccentricity e = 0). Under the secular pertur-

bation caused by the Earth’s oblateness (J2 = −C2,0), the precession u̇ can be derived as

follows (Kaula, 1966):

u̇ = ω̇+ Ṁ = n+
3
2

nJ2

(
R
r

)2

[4cos2 I −1]. (5.26)

As expressed in Equation (3.10), the other orbital frequency argument Λ̇ is the angular

change of the right ascension of the ascending node Ω̇ minus the daily rotation rate ˙GAST =

2π/day. The J2 perturbed Λ̇ can be derived analytically (Kaula, 1966):

Λ̇ = Ω̇− ˙GAST = −3
2

nJ2

(
R
r

)2

cos I − 2π
day

. (5.27)

A periodic (repeat) orbit is therefore defined by the orbital frequencies u̇ and Λ̇ when

they meet the repeat ratio with a negative sign because Λ̇ always yields a negative value:

− u̇

Λ̇
=

No

Ne
, (5.28)

where the number of nodal days Ne and the orbital revolutions No have been discussed in

Section 3.2.3.

For the specific spectrum fmk = ψ̇mk, the corresponding error variance can be obtained

by the integration over a tiny frequency band (spectral resolution d f ), resulting in the rela-

tion between the error variance and the PSD:

σ2
mk = S( fmk)d f =

S( fmk)

T
, (5.29)

where T is the repeat period for a periodic orbit or the mission duration for a non-periodic

orbit (Sneeuw, 2000b).

The error variance σ2
mk calculated from the PSD with the indices of m and k can be

treated as an a-priori information for the relevant pseudo-observable with the same indices

m and k, the lumped coefficient Amk. Therefore, the error variance goes into the main
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diagonal element of the weight matrix Pmk = (σ2
mk)

−1 as a weighting factor for m order-

wise least-squares adjustment in Equation (5.12).

P = Q0
−1 =

⎛
⎜⎜⎜⎝

σ2
m,−L 0

. . .

0 σ2
m,L

⎞
⎟⎟⎟⎠

−1

. (5.30)

Based on the simplified PSD model in Figure 5.6, the main diagonal elements in the

weight matrix P for the lumped coefficients with m = 0 and −120≤ k ≤ 120 can be derived

in Figure 5.7.
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Figure 5.7: The main diagonal elements of the weighting matrix calculated from the simpli-
fied PSD model for m = 0, −120 ≤ k ≤ 120

By applying the weighted least squares adjustment for the individual orders, the un-

known spherical harmonic coefficients can be estimated. The a-posteriori error variances

and covariances of the coefficients are obtained from the co-factor matrix Qκ̂ in Equation
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(5.13). Since the least squares solution is applied for individual order m, the error variance-

covariance matrix cannot be estimated as a fully-populated matrix, and it also shows a

block-diagonal structure. This error variance-covariance matrix Qκ̂ is a basic internal ac-

curacy measure of the least-squares adjustment. In particular, the square root of the main

diagonal elements represent the standard deviation σlm for single coefficients. The full

set of σlm represents the spherical harmonic error spectrum, which can be used to create

different error representation measures; see Section 4.1.

As mentioned in the spatial error representations, the expected errors of derived prod-

ucts, e.g., geoid height or gravity anomaly, are of importance for gaining a better under-

standing of the data quality in the spatial domain. This spatial error information can be

obtained by the error propagation law from the a-posteriori variance-covariance matrix Qκ̂

in Equation (5.13) after least-squares adjustment.

5.4 Regularization Techniques

Global gravity field recovery from satellite observations by least-squares adjustment is an

inverse problem. For various reasons, such as the polar gaps problem and non-continuous

data distribution, the normal matrix in the least-squares inversion is typically ill-conditioned.

Sometimes, the observable itself, e.g., a certain single component from the gravity gradi-

ent tensor, may contain insufficient information to be inverted to obtain the gravity field

(Sneeuw, 2000b). Most importantly, the downward continuation from satellite altitude to

the surface of the Earth, which amplifies not only the signal but also the noise, causes in-

stabilities of the normal matrix. Therefore, the traditional gravity field recovery approaches

normally have difficulties inverting an unstable normal matrix to estimate the unknown co-

efficients. The torus-based semi-analytical approach naturally solves some of the problems

causing the instability. For instance, the normal matrix in the least-squares adjustment

becomes stable, because the polar gaps on the sphere are filled by interpolation, and the

irregular data are gridded regularly on a nominal torus surface. However, the interpolation

errors and the insufficient information about the observable itself may cause some oscil-

lations in the lower degrees from the spherical harmonics solution. Therefore, it is still

important to evaluate regularization methods to solve the numerical ill-conditioned prob-
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lems in the torus-based semi-analytical approach.

There exist several methods for numerically stabilizing the normal matrix inversion,

such as the Tikhonov regularization (Tikhonov and Arsenin, 1977), the generalized ridge

regression (Xu and Rummel, 1994), the conjugate gradient method (Hansen, 1992), and

truncated singular value decomposition (TSVD) (Xu, 1998). An overview of these regular-

ization methods applied to gravity field determination from satellite observations has been

presented in Bouman and Koop (1998) and Ditmar et al. (2003b). Theoretically, these reg-

ularization methods lead to the same regularized normal equations, and they differ only

in how the results are interpreted (Kusche and Klees, 2002). The Tikhonov regularization

method will be applied in this thesis because the a-priori knowledge is normally provided

in gravity field determination, which can be incorporated as one additional set of observa-

tions in the normal matrix.

5.4.1 Tikhonov regularization

The Tikhonov regularization minimizes the weighted norm of the errors and weighted norm

of the unknowns simultaneously in a hybrid norm:

min{eTPe+ακTℜκ}, (5.31)

where α is the regularization factor and ℜ is a covariance matrix as a constraint.

Based on the minimization criterion, the Tikhonov regularization leads to a biased esti-

mator κ̂α:

κ̂α = (HTPH +αℜ)−1(HTPa) = N−1
α (HTPa), (5.32)

with Nα the regularized normal matrix.

Therefore, the a-posteriori variance-covariance matrix can be obtained as the inverse

of the regularized normal matrix:

Qκ̂,α = Nα
−1. (5.33)
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5.4.2 Overview of the regularization matrices

Apparently, there are two aspects involved in the Tikhonov regularization evaluation. The

first aspect is the determination of an appropriate regularization matrix ℜ as an a-priori

knowledge. An overview of a set of regularization matrices and their corresponding physi-

cal meanings has been given in Ditmar et al. (2003b).

The unit matrix. The simplest case is using the unit matrix I as the regularization matrix,

which is also known as the zero-order Tikhonov regularization. This choice leads to a

minimization of the disturbing potential near the Earth’s surface.

First order and second order Tikhonov matrix. By analogy to the zero order Tikhonov

regularization, the first order Tikhonov regularization minimizes the first order derivative of

disturbing potential. The corresponding Tikhonov matrix is achieved as follows:

ℜii = l(l +1), (5.34)

where the off-diagonal elements in the regularization matrix ℜ are all zeros.

Similar to the first order Tikhonov matrix, the second order Tikhonov matrix can be

written as

ℜii = l2(l +1)2. (5.35)

Kaula’s rule of thumb. In gravity field determination, it is common practice to use the

a-priori knowledge of degree variance models or an existing gravity field model. If the

elements of the regularization matrix correspond to the inversion of Kaula’s rule of thumb

in Equation (4.10), the regularization approach is called Kaula regularization:

ℜii = l4. (5.36)

The constant factor of 1010 is omitted in the matrix above and it will be incorporated

in the regularization parameter α. Because both the second order Tikhonov matrix and

Kaula regularization matrix contain a factor of l4, these two matrices should have a similar

behavior for the purpose of regularization.
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5.4.3 Regularization factor determination

The second issue in regularization methods is the optimal determination of the regulariza-

tion parameter α, which is a trade-off between the accuracy of the estimated parameters

and the regularization constraints. A small regularization parameter (equivalent to a small

amount of regularization) favors a good approximation to the least-squares solution, but the

instability problem may still be not sufficiently reduced. A large regularization parameter

constrains the observation noise but makes the solution more biased towards an a-priori

knowledge. As far as Tikhonov regularization is concerned, there exists an estimate for the

theoretically optimal value of α based on an a-posteriori selection criteria. The optimal

factor can be determined by the L-curve criterion, the generalized cross-validation (GCV)

method, and the minimum mean square error (MSE) approach, respectively.

Minimum mean square error (MSE). The MSE approach determines the regularization

parameter α as the minimized solution of the expected squared norm of the difference

between the regularized estimate κ̂α and the true value of κ:

αmse : minE(‖κ̂α−κ‖2). (5.37)

Xu (1992) derived the MSE as an estimate of the combination of a variance-covariance

matrix Qκ̂α and a squared norm of a bias vector dκα = κ̂α −κ:

E(‖κ̂α −κ‖2) = trace(Qκ̂α)+dκT
αdκα. (5.38)

In practice, it is impossible to compute the bias vector dκα compared to the true solution

κ, which is unknown. However, it can be obtained approximately by using the following

equation:

dκT
αdκα = ‖(VH − I)κα‖2 (5.39)

with V = (HTPH +αℜ)−1HTP.

The L-curve criterion. The most convenient graphic tool for the regularization factor

determination is the so-called L-curve, which is a plot of the residual norm ‖Hκα − a‖
versus the norm of the regularized solution ‖κ̂α‖ for all possible values of the regularization
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parameters. In this way, it clearly displays the compromise between minimizing these two

quantities. The L-curve is normally plotted in log-log scale showing a characteristic L-

shaped appearance with a distinct corner.

Figure 5.8: A general L-curve in log-log scale (Hansen, 1994)

The corner in the L-curve, which has the maximum curvature of the plot, separates

the horizontal and vertical parts of the curve. The corner value is a balance between the

residual norm and the norm of the regularized solution. Therefore, it can be used as the

approximation of the optimal regularization parameter (Hansen and O’Leary, 1993). The

L-curve criterion has been investigated by Kusche and Klees (2002) in the context of grav-

ity field determination from satellite data. In their simulations, the L-curve criterion yields

over-smoothed solutions. It should be used with care because of its sensitivity with respect

to the choice of the norm of the residuals (Kusche and Klees, 2002).

Generalized cross validation (GCV). The GCV method is based on the statistical con-

sideration that a good value of the regularization parameter should predict well missing

data values. It is called the leave-out-one idea. More precisely, if an arbitrary element ai

of the observation vector a is left out, then the corresponding regularized solution should

be able to predict this missing observation well (Golub and von Matt, 1997). The regu-

larization factor minimizes the weighted sum of the squares of the residuals divided by a
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quantity containing the trace of the inversion of the normal matrix. Under this definition,

the parameter αgcv is the minimization solution of the GCV function:

αgcv : min
n‖Hκα −a‖2

(trace(E −Qα))2 , (5.40)

with n the number of unknowns, E the unit matrix and Qα the inversion of regularized

normal matrix Nα.

By comparing the performance of regularization parameter determination by the L-

curve criterion and the GCV method in the context of satellite gravity gradient observations,

Kusche and Klees (2002) concluded that the GCV method outperforms the L-curve crite-

rion, because the GCV method provides a good approximation for the optimal regularization

parameter, and the L-curve criterion leads to over-smoothed solutions.

5.4.4 Examples of regularization techniques

The application of regularization techniques in the order-wise least-squares adjustment of

the torus-based approach has not been done before. Tests should be done to find the best

regularization techniques for this adjustment, including choice of regularization matrix and

determination of regularization factor. Therefore, the first example compares the perfor-

mance of different regularization matrices, i.e., the unit matrix, the first and second order

Tikhonov matrix, and the Kaula matrix. Simulated observations of the Vzz gravity gradient

tensor radial component on the nominal orbit from “GOCE data set I” were processed. The

pseudo-observables (the lumped coefficients) were obtained through the first and second

steps of the recovery approach (Figure 3.5). Then, the next step is to solve the spherical

harmonic coefficients up to degree L = 120 of the linear system by weighted least-squares

inversion (Section 5.3).

The optimal regularization factors in this example are determined by the MSE method

for each individual regularization matrix. The reference gravity field is the OSU91A model.

Without regularization (curve in red), the estimated coefficients at low degrees (l < 60) have

a very large oscillation as shown in Figure 5.9. The oscillation can be caused by either the

observable Vzz itself having insufficient gravity information or the errors, e.g., observation

errors or interpolation errors, in the polar areas; See 4.4.5. This oscillation should be

corrected by a proper regularization procedure. The situation is demonstrated also in Figure



119

0 20 40 60 80 100 120
10

−10

10
−9

10
−8

SH Degree RMSE

spherical harmonic degree

Kaula’s curve None Unit First Second Kaula

Figure 5.9: Degree RMSE of the regularized solutions by different regularization matrices up
to L = 120, compared to the OSU91A model

5.10, where the condition numbers of the normal matrix for individual orders are calculated.

For orders m < 8, the condition numbers before regularization are very big leading to an

unstable inversion. By applying regularization, the condition numbers are reduced and the

inversion becomes stable. Although the condition numbers of orders m > 8 are smaller,

regularization still is necessarily applied to reduce the oscillations in the non-regularized

solution.

Another demonstration to show the regularization effects is from the spectral perspec-

tive. Compared to the OSU91A reference field, the 2D spherical harmonic error spectrum

can be calculated by Equation (4.2) and plotted in Figure 5.11. It shows also that the low

order coefficients are affected by the instability problem of the order-wise normal matrices.

The first order Tikhonov matrix regularized solution still has large error spectra in the very

low orders, e.g., m < 8, however, the regularized solutions by the Tikhonov matrix and the

Kaula regularization matrix reduce the errors in these orders.

In Figure 5.9, the unit regularization matrix (curve in green) gives a worse degree RMSE
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Figure 5.10: Condition numbers of the normal matrix for individual orders m before and
after regularization

curve, while the first order Tikhonov matrix (curve in Magenta) and the Kaula regularization

matrix (curve in black) decrease the oscillation in the low degrees. This indicates that the

regularization matrix with information related to the degree l works better for the order-

wise estimation. However, none of them provide better results than the non-regularized

solution in the high degrees 80 < l < 120 because the normal matrices are very stable for the

orders 80 < m < 120 (Figure 5.10(a)). Although the second order Tikhonov matrix (curve

in blue) does not perform better than the non-regularized solution in the low odd degrees

(20 < l < 30), it significantly reduces the oscillation and overall gives a better overall result.

The RMS values in terms of the geoid height differences for the regularization matrices are

compared to the reference model, and summarized in Table 5.1.

Table 5.1: The STD values of the regularized solutions in the evaluation of the regularization
matrices up to L = 120, compared to the OSU91A model

method non-regularized unit first order Tikhonov second order Tikhonov Kaula

STD (m) 3.00 9.50 2.96 0.38 2.17

Since the spherical harmonic coefficients are estimated by the order-wise least-squares
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Figure 5.11: Spherical harmonic error spectrum of the regularized solutions by different reg-
ularization matrices, compared to the OSU91A reference model

adjustment, the regularization factors are correspondingly calculated for individual orders.

Figure 5.12 shows the regularization factor as a function of the order for the second order

Tikhonov matrix (curve in blue) and the Kaula matrix (curve in black). Note that the scales

are different on the left for the Tikhonov matrix with 105 and on the right for the Kaula

matrix with 107. The values of the regularization factor in the second order Tikhonov

matrix are two order of magnitude smaller than the values in the Kaula matrix, which

means the Kaula matrix regularized solution is more constrained and the choice of the

Kaula is more sensitive to the nearly ill-conditioned matrix. However, both matrices show

a similar pattern of the regularization factor, which is larger at the low degrees and smaller

at the high degrees.

The second example compares the performance of the regularization factors computed

by different ways, i.e., the MSE approach, the L-curve criterion, and the GCV method,

using the same data set mentioned in the first example. Because the second order Tikhonov

matrix works better than the other regularization constraints (Figure 5.9), it is selected as
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solutions for individual orders

the regularization matrix for all determination factor approaches in this example. After

applying the regularized least-squares adjustment, the degree RMSE curves estimated by

different regularization factors are plotted in Figure 5.13.

The regularized solutions all reduce the oscillations of the non-regularized solution in

the low degrees. The degree RMSE calculated from the L-curve criterion (curve in ma-

genta), and the GCV method (curve in green) improve the accuracy of every degree, espe-

cially for the degrees 20 < l < 50. However, both solutions still have small oscillations

for degrees lower than l = 10. Therefore, these two methods do not provide the best over-

all solution in terms of the STD values, shown in Table 5.2. The MSE solution (curve in

blue) shows a smoother degree RMSE curve and provides the best overall solution with the

smallest STD value. The curve in black is the solution by fixing the regularization factor as

1× 104. It is an empirical value from several trial-and-error tests, and it also reduces the

oscillation in the non-regularized solution.

Again, the 2D spherical harmonic error spectrum of the regularized solutions from dif-

ferent factor determination methods are calculated by the comparison of the OSU91A ref-
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Figure 5.13: Degree RMSE of the regularized solutions by different regularization factor de-
termination methods, compared to the OSU91A model

erence field using Equation (4.2) and plotted in Figure 5.14. The regularized solutions from

the MSE approach, the L-curve criterion, and the GCV method have smaller error spectra,

compared to the non-regularized solution. The MSE approach regularized solution leads to

the smoothest 2D error spectrum.

Therefore, for the processing of the gravity gradient tensor data in Chapter 6, the MSE

approach will be preferred to determine the regularization factor in the regularized solution

to obtain a better overall solution. The L-curve criterion and GCV method will be the

alternative choices for the solutions focusing on 20 < l < L.

Table 5.2: The STD values of the regularized solutions in the determination of the regulariza-
tion factor up to L = 120, compared to the OSU91A model

method non-regularized 1×104 L-curve GCV MSE

STD (m) 3.00 0.57 0.61 0.49 0.38
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Figure 5.14: Spherical harmonic error spectrum of the regularized solutions by different reg-
ularization factor determination methods, compared to the OSU91A reference
model

The corresponding regularization factors, which are dependent on the spherical har-

monic orders, are plotted in Figure 5.15. The factors determined by the MSE method be-

come smaller for bigger orders. However, these factors are almost two orders of magnitude

bigger than the ones from GCV and L-CURVE in the low orders, where the normal matrices

need to be regularized. Therefore, the MSE method are more sensitive to the choice of the

regularization factors and the corresponding regularized solutions are more constrained.

The factors calculated from the L-curve criterion are almost constant except for the very

low orders. From 20 < l < 40, the factors from the GCV method have almost the same

values of the L-curve criterion, while in the range of 50 < l < L, the GCV factors are iden-

tical to the MSE approach. The performance of the GCV method explains why it can be the

alternative choice for 20 < l < L.

The final example is studying the regularization techniques on disturbing potential. The

data used are the disturbing potential observations in June 2003 from the CHAMP mission;

see Section 2.2.2. The CHAMP satellite went through a repeat orbit mode in this month,



125

0 20 40 60 80 100 120
10

0

10
1

10
2

10
3

10
4

10
5

spherical harmonic order

Regularization factor

MSE L−Curve GCV 1E4

L−Curve

GCV

MSE

1E4

Figure 5.15: Regularization factors of different regularization factor determination methods
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and the non-regularized solution has a very low accuracy; see Section 4.5.4. Therefore,

the example tries to test how much the regularized solution can improve the estimation.

The spherical harmonic coefficients are estimated up to L = 70. Figure 5.16(a) shows the

comparisons of the estimated results from the non-regularized (thin black solid line) and

regularized solutions (thick gray dashed line). There are almost no differences between

these two solutions, which indicates that the normal matrix in this least-squares adjustment

is stable. This situation is also demonstrated in Figure 5.10(b), where the condition num-

bers are almost identical except before and after regularization for orders m ≤ 6. Figure

5.16(b) is the corresponding regularization factor for the individual degrees. The value of

the factor decreases quickly as the degree increases and becomes relatively small for de-

grees l > 6. This example demonstrates that regularization of the disturbing potential data

processing is not necessary. There are two reasons for this: on the one hand, the observation

errors and interpolation errors are homogeneously distributed (no polar gap problems); on

the other hand, the maximum resolvable degree is only around 70 from the CHAMP mission

(Weigelt, 2006); see Section 6.2.1.
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Figure 5.16: Example of regularization technique in the processing of the disturbing poten-
tial data

The regularization examples show that proper selection of the regularization matrix and

optimal determination of the regularization factor can cope with a near ill-conditioned prob-

lem of the normal matrix in least-squares adjustment, especially for the gravity gradient

tensor observations. The first example illustrates that a degree-dependent constraint, such

as the second order Tikhonov matrix or the Kaula matrix, works as a better regularization

matrix, because it provides constraint information related to spherical harmonic degrees.

In the second example, the MSE method, the L-curve criterion, and the GCV approach have

been employed to determine the regularization factor. For the particular scenario in the

second example, the MSE method and the GCV approach outperform the L-curve criterion

and yield better regularized solutions in terms of STD values of geoid height error. This

statement is in agreement with the conclusion drawn by Kusche and Klees (2002) on the

regularization of gravity field determination from satellite gravity gradients. The last ex-

ample shows that regularization technique is not necessary for the processing of disturbing

potential.

5.5 Optimal weighting methods

Individual gravity field missions cover only certain spatial resolutions because of their

practical implementations and prospective target goals. Therefore, the stand-alone solu-
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tion from SST disturbing potential observations is more sensitive to the low degrees, e.g.,

l < 50, while the SGG tensor better resolves the high frequencies of the Earth’s gravity.

In order to cover the whole gravity field spectrum, a combined solution is preferred. To

achieve this goal, the normal matrices from SST and SGG data are merged in a combined

least-squares adjustment.

The multi-observable model in least-squares adjustment is the simplest way to make

the combination by adding up the normal matrix from each data set; see Section 5.2.4.

However, this merged matrix does not necessarily provide a better solution because the

combination does not take the accuracies of different observations into account, especially

for the individual orders. Therefore, it is better to determine an optimal weighting factor

wi for each data set based on the observation accuracies. Optimum weighting means to

apply the proper weights for the SST and SGG components to get a better solution. Because

the normal matrix has an order-wise block diagonal structure, the optimal weighting factor

wi has to be estimated correspondingly for each order m in the least-squares adjustment as

well.

The combined SST and SGG least-squares solution with assumed optimal weighting

factors wSST and wSGG for a specific order m is given in a general formula as follows:

κ̂opt =

(
∑

i
wiHi

TPiHi

)−1(
∑

i
wiHi

TPiai

)
i = SST, SGG (5.41)

Since the optimal weight factors wSST and wSGG are unknown in general, they have to be

estimated from the pseudo-observable (the lumped coefficient), in the linear system illus-

trated in Equation (3.14b). The estimation depends on the a-priori accuracies of the given

observations. The more accurate a group of observations, the higher the particular weight,

and the higher the influence of this group on the parameter estimation. Two approaches for

the optimal weight estimation, i.e., the parametric covariance approach and variance com-

ponents approach, have been studied in the combination of the SST and SGG data by Koch

and Kusche (2002) and Pail and Plank (2002), respectively. These two weighting methods

are investigated in the following sections.
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5.5.1 Parametric covariance approach

The parametric covariance approach originally was developed by Lerch (1989). It is based

on a comparison of the parameter differences between the individual solutions and the joint

solution, leading to a calibration factor qi:

qi =
(κ̂i − κ̂opt)

T(κ̂i − κ̂opt)

trace[(Nopt)−1 − (Ni)−1]
, (5.42)

in which the normal matrices from the combined and from each stand-alone solution are

calculated as follows:

Nopt = ∑
i

wiHi
TPiHi;

Ni = wiHi
TPiHi. (5.43)

Starting with the initial values of wi = 1 for both SST and SGG, the updated weights w∗
i

can be obtained iteratively by re-scaling the variances with the calibration factor qi for each

observation group:

w∗
i =

wi

qi
. (5.44)

Compared with the previous weighting factor wi, under a threshold criterion, e.g., the

relative accuracy between old and updated weights |w∗
i −wi|
wi

≤ 10−8, the calculation will

normally converge after a couple of iterations. After the convergence, the final values of

the weights wSST and wSGG are introduced into Equation (5.41) to get the optimal joint

solution.

5.5.2 Variance components estimation approach

Koch and Kusche (2002) determined the optimal weights by introducing reciprocal values

of the estimated variance components, i.e., wi = 1
σ̂i

2 in Equation (5.41). Starting with

the initial value of σi
2 = 1 for each group, the a-posteriori variance components can be

iteratively estimated by

σ̂∗
i

2 =
ε̂i

Tε̂i

τi
. (5.45)
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The residual vector εi can be determined by a linear observation system with approxi-

mate values of the combined solution κ̂opt as

ε̂i = Hiκ̂opt −ai. (5.46)

The partial redundancies τi for different types of observations can be calculated by

τi = (2L+1)− trace

(
Ni

Nopt

)
, (5.47)

where 2L+1 represents the number of observations a for each order m in the linear system

Equation (5.10). The normal matrices Ni and Nopt can be computed in the same way as

Equation (5.43).

After calculating the posterior variance components σ̂∗
i

2, the updated weighting factors

are determined by

w∗
i =

wi

σ̂∗
i

2 . (5.48)

Similar to the procedure in the parametric variance approach, the calculating scheme of

the variance component estimation approach also works iteratively. Starting from an initial

value of one, the weighting factor for each observation group will normally converge after

several iterations to fulfill a certain threshold criterion.

Note that regularization can be employed also in the stand-alone solutions when de-

termining the optimal weights, which will be demonstrated in the complete calculating

flow chart in Figure 6.21. Consequently, the combined solution in equation (5.41) can be

modified as follows:

κ̂opt =

(
∑

i
wi(Hi

TPiHi +αiℜi)

)−1(
∑

i
wiHi

TPiai

)
. (5.49)

with the regularized normal matrices from the combined and from each stand-alone solu-

tion:

Nopt = ∑
i

wi (Hi
TPiHi +αiℜi

)
;

Nα
i = wi

(
Hi

TPiHi +αiℜi
)
. (5.50)
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5.5.3 Examples of the combined solutions from SST and SGG

To compare the determination of the optimal weighting factor by the two aforementioned

approaches, two stand-alone solutions from the SST disturbing potential data of the CHAMP

mission in January 2003 and the simulated in situ gravity gradient tensor Vzz data (SGG)

from the “GOCE data set I” are merged to obtain a combined solution. Although, in a

way, these two data sets are un-combinable because the SST data are measured in the “real

world,” while the SGG data are generated from a “simulated world.” The purpose here is

to demonstrate the principles of the two weighting approaches for combining the SST and

SGG data (Xu et al., 2006a).
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Figure 5.17: Degree RMSE of the stand-alone and combined solution from SST and SGG up
to L = 90 compared to the GGM02S model

Figure 5.17 shows the degree RMSE cures from two stand-alone solutions and two joint

solutions up to degree L = 90, where “VC” stands for the variance components approach

and “PC” stands for the parametric covariance approach. The reference gravity field for

comparison is the GGM02S model. As discussed before, the SST solution (green) better

resolves the low degrees and is crossing the Kaula curve (black) around l = 60 while the

SGG solution (magenta) is oscillating in the low degrees, e.g., l < 40, and performs better
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in high degrees. By determining the relative weighting factors for each order m, both

joint solutions from PC (red) and VC (blue) merge two stand-alone solutions with better

accuracies. In general, PC is very close to the SST-only solution and is influenced by the

SGG-only solution only a little. VC yields a better solution. It reduces the oscillations from

the SGG-alone solution in the low degrees by adding the information from the SST-only

solution, and it moves close to the SGG-alone solution in the high degrees.

For the purpose of reducing the oscillation effect, the optimal weighting methods can

therefore be treated as a way of regularization by adding additional information into the

normal matrix (Kusche and Klees, 2002).

In order to examine how much each of the SST and SGG sets contributes to the combined

solution, the relative weights between these two data sets, i.e., the ratios of wSST/wSGG, for

the individual orders m are calculated in a scale of log10 ( Figure 5.18). By comparing these

two plots, most of the relative weights in PC are contributed by the SST data, while in the

estimation by VC, SST dominates the long wavelength parts (l < 60), and SGG takes the

leading role in the high frequency parts (l > 60).
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Figure 5.18: Relative weight ratios of individual orders between SST and SGG by PC and VC

up to L = 90

The quantitative analysis of the standard deviations and the accumulative geoid height
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RMS values is summarized in Table (5.3). Together with Figure 5.18, it shows that the

estimation by VC works better than PC in terms of the degree RMSE, the relative weight

ratios between SST and SGG, and the RMS values of the geoid height differences. The

reason is that the denominator qi in Equation (5.44) is close to zero sometimes, leading the

updated weight w∗
i towards infinite and hardly reaching the threshold values. It is consistent

with the statement that the PC technique is not designed for calibration of distinct data types

where they do not overlap in signal bandwidth by Lemoine et al. (1998).

Table 5.3: Characteristics of the stand-alone and combined solutions from SST and SGG,
compared to the GGM02S model

L = 90 RMS in [m] RMS of geoid in [m]

SST 0.739 0.653
SGG 2.365 0.749
PC 0.760 0.634
VC 0.642 0.558

5.6 Updated solutions by an iteration scheme

The fast numerical algorithm of the Fourier transform is built under a nominal orbit as-

sumption. In addition, the interpolation on a torus grid introduces interpolation errors.

Therefore, the estimated spherical harmonic coefficients certainly do not provide an exact

solution from the in situ observations. Since the transfer coefficients linearly connect the

lumped coefficients and the spherical harmonics, the estimated solution from the initial

approximations can be improved and corrected by iteration (Klees et al., 2000).

5.6.1 A developed iteration scheme

A torus-based iteration scheme is developed in Figure 5.19. The key point in the iterative

calculations is to update the observations, on the same nominal torus grid, which are now

determined by the ith latest estimated spherical harmonic coefficients in a synthesis way.

There are two ways to reach this goal. The first way is synthesizing a time series of obser-

vations along the orbital trajectory; see Section 4.3.2. Then, the interpolation method has
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to be applied to compute the grid values. The second choice is gravity field synthesis on

the torus grid directly. Both orbit synthesis and torus synthesis have their advantages and

drawbacks. The former is closer to the original orbit, but interpolation will introduce errors

again. Although the latter avoids the additional errors, the direct synthesized grid may not

improve the updated solutions because the changes of the grid values are very small.

After the updated grid is available, the difference between these newly computed ob-

servations and the old grid observations δgridi is used as a new input for the FFT technique

to get the corrections of the lumped coefficient, δai. The small corrections are treated as

a new observation for the order-wise least-squares adjustment, where the design matrix H

and the weight matrix P in Equation (5.10) are the same as what they are in the ith solution,

and only the observation vector is changed to the new pseudo-observable δai.

δκ̂i = (HTPH)−1(HTPδai), (5.51)

After least-squares adjustment, the newly solved spherical harmonics corrections δκ̂i in

a matrix format, are added to the coefficients that were calculated in the previous solution:

κ̄i+1 = κ̄i +δκ̄i. (5.52)

The updated estimated spherical harmonic coefficients κ̄i+1 will yield an improvement

of the Earth’s gravity field. This procedure is stopped when the gravity field solution con-

verges to insignificant improvement from δκ̄i.

5.6.2 Examples of iterative solutions

One example to demonstrate the iteration scheme is the iterative monthly solutions of June

2003 from the CHAMP mission. Since the ground track pattern is close to a repeat orbit

scenario (Section 4.5.4), the interpolation error is the dominant factor for the spherical

harmonic solutions. Iteration is expected to reduce the interpolation error and increase the

accuracy of the solution. Particularly with the orbital synthesis in each iteration, the degree

RMSE curves for each iterative result are plotted in Figure 5.20. The curve in blue is the

RMSE of the original estimated solution. The iterative solutions (dot curve in green) bring

the error curves down slowly, especially in the high degrees. The fourth iteration (curve in

red) is getting very close to the third one, and the solution is considered convergent.
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Figure 5.19: Calculating flow chart of the torus-based iteration scheme

5.7 Summary

IN THIS chapter, the final spherical harmonic solutions ˆ̄Klm have been estimated from

the lumped coefficients Amk by the order-wise least-squares adjustment.

The linear mapping factor is the transfer coefficient, whose collections build up the
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Figure 5.20: Degree RMSE of the four iterative solutions from the CHAMP mission in June
2003, compared to the GGM02S model

PG. The transfer coefficients for gravity gradient tensor components, the GRACE-type LOS

gradiometry, and even the future satellite flying formation observables are discussed.

The maximum size of the normal matrix in the order-wise least-squares adjustment is

1
2(L−|m|+1)× 1

2(L−|m|+1), which dramatically decreases the computational time and

memory requirement. The overall solution is obtained from the monthly solutions by the

multi-observable model.

A simplified PSD model is designed based on the GOCE error budget. A weight matrix

for a specific observation Amk is developed by calculating the variance from the error PSD

according to the corresponding orbital frequency fmk. After least-squares adjustment, the

error information of the estimated coefficients can be propagated to spectral and spatial

representations by the variance propagation law.

Since an a-priori gravity field model is always available, the Tikhonov regularization

technique is employed for the ill-conditioned problem in gravity field determination. For

the first time, the application of regularization techniques in the order-wise least-squares
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adjustment has been investigated. The regularized solutions from the observable Vzz show

that a degree-dependent constraint works better as a regularization matrix. In the example

of the regularization factor determination, the MSE method and the GCV approach outper-

form the L-curve criterion and yield better regularized solutions in terms of geoid height

error STD values. The MSE method provides the best overall solution, while the GCV ap-

proach gives a significant improvement for degrees 20 < l < 40. The test examples also

show that there is no difference between non-regularized and regularized solutions for the

disturbing potential data processing, which means the regularization technique is not nec-

essary in this case.

A combined solution with assigned weights for individual SST and SGG solutions has

been studied. Both the PC and VC approaches are employed to determine the optimal

weighting factors. For the particular example, the latter performs better than the former in

terms of the degree RMSE values and the relative weight ratios.

The development of the torus-based iteration scheme focuses on the updated values of

the torus grid. The estimated solutions can be improved slightly in the high degrees by the

iterative scheme for the compensation of interpolation errors and theoretical approxima-

tions, and the estimation will converge after 4−5 iterations.



Chapter 6

Case studies with simulated and real data from spaceborne

gravimetry

THE previous chapters covered the necessary knowledge in sufficient detail for the

torus-based semi-analytical approach of gravity field determination. For instance,

Chapter 3 presented the mathematical theory and the calculating flow chart, Chapter 4

addressed the critical issues in deriving the lumped coefficients from the in situ observa-

tions, and Chapter 5 discussed the spherical harmonic coefficients estimation using least-

squares adjustment. By means of numerous case studies, this chapter will focus on applying

this complete processing procedure to determine the Earth’s gravity field from spaceborne

gravimetry observations. It is organized into three main sections. For the purpose of as-

sessing the feasibility, flexibility, and efficiency of the torus-based approach, Section 6.1

compares this approach with the direct approach in the context of disturbing potential V

and gravity gradient Vzz data processing. Several geo-potential observables, i.e., disturbing

potential from CHAMP and GRACE, GRACE-type LOS gradiometry, and gravity gradient

tensor from GOCE, are processed individually as stand-alone solutions in Section 6.2. Sec-

tion 6.3 will investigate the combined solutions from different combination scenarios using

optimal weighting methods. A complete and comprehensive calculating procedure, includ-

ing practical considerations at each step, is recommended for gravity field determination.

6.1 Comparison of the direct approach and the torus-based approach

As discussed in the theoretical comparison of different gravity field determination ap-

proaches (Section 3.2.5), the direct (brute-force) approach is theoretically the most robust

and accurate solution because no assumptions and no approximations are involved. In ad-

dition, it is the only method providing a fully populated a-posteriori variance-covariance

matrix. However, it demands enormous computational time and very high memory stor-

age. The performance comparison between the direct approach and the torus-based semi-

analytical approach is carried out in order to show that the latter is an alternative, feasible,

137
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and efficient tool for gravity field recovery from spaceborne gravimetry observations.

6.1.1 Disturbing potential V from SST-hl

The first comparison is the processing of the disturbing potential data, which were collected

in June 2003 and January 2004 from the CHAMP mission (sampling rate 30s). The number

of measurements is less than 86400 because of missing data. The maximum resolvable

degree is taken as L = 70.

0 10 20 30 40 50 60 70
10

−10

10
−9

10
−8

10
−7

SH Degree RMSE

spherical harmonic degree

Kaula direct torus

Jan 04 by torus

Jan 04 by direct

Kaula

Jun 03 by direct
Jun 03 by torus

Figure 6.1: Comparison with the direct approach in the processing of the disturbing potential
data up to L = 70

The direct approach is applied in a torus domain (u×Λ) using the spherical harmonic

expression in Equation (3.10). Therefore, the design matrix of the linear system consists

of the partial derivatives with respect to K̄lm as a function of the orbital parameters u and

Λ. The normal matrix is fully populated with a size of 712 ×712. The calculation is pro-

cessed by a grid computing technique on the “Westgrid” system, which combines computer

clusters to act as one massive computer. The “Westgrid” system operates with a high per-

formance computing, collaboration, and visualization infrastructure (WestGrid website).
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4GB RAM was allocated on the clusters system, and the computational time takes about 72

hours. In contrast, the torus-based semi-analytical approach can run on a standard personal

computer (Pentium duo core 2.66GHz) with a 2GB RAM memory. The computational

time was only about 1 hour because of the point-wise interpolation by the LSC method on a

2◦×2◦ torus grid. For a consistent comparison, no iterations are applied in the torus-based

approach for both months.

The degree RMSE curves of both the direct and the torus-based approaches for June

2003 and January 2004 are plotted in Figure 6.1. The reference gravity field is taken to

be the GGM02S gravity field model. For the solution from January 2004 with a good

ground track pattern, the torus-based semi-analytical approach is very close to the direct

approach. The former even outperforms the latter in the higher degrees, l > 50. For the

monthly solution from June 2003 with a sparse surface coverage, the torus-based approach

had overall an half order of magnitude better performance than the direct approach (l > 8).

The latter has a problem with a near ill-conditioned normal matrix because of the sparse

data distribution, while the former solves this problem by making use of interpolation as a

re-sampling tool.

6.1.2 Vzz gravity gradient tensor component from SGG

The second example compares the processing of the Vzz gravity gradient tensor component

data from “GOCE data set I” using the aforementioned two approaches. The number of

Vzz observations is about 172,800 as a result of the 30s sampling rate, and the maximum

resolvable degree is chosen as L = 100. The normal matrix is fully populated with a size

of 1012 × 1012; therefore, the inversion of the normal matrix requires the full storage of

1018 elements for the direct approach. Since it is a point-wise calculation, it took about one

week (168 hours) on the “Westgrid” system to get the complete solution of the spherical

harmonic coefficients. By using the torus-based approach, only 4 hours were needed on

the personal computer with the specifications mentioned above. The degree RMSE curves

compared to the reference OSU91A model are plotted in Figure 6.2. Neither the direct nor

the torus-based semi-analytical solutions recovers the Earth’s gravity field up to L = 100

with a good accuracy. As discussed in Section 5.4, the reason for the lack of accuracy

is that one single component from the gravity gradient tensor may contain insufficient in-
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Figure 6.2: Comparison with the direct approach in the processing of the gravity gradient
tensor Vzz data up to L = 100

formation. Therefore, a regularization technique should be applied. However, compared

with the non-regularized direct approach, the torus-based approach without regularization

achieves almost the same accuracy in the low degrees with some oscillation effects, and it

definitely outperforms the direct approach for the higher degrees, e.g., l > 50.

Both comparison examples show that gravity field solutions from the torus-based semi-

analytical approach are very close to the ones from the direct approach in terms of the

level of accuracy. To some extent, the former outperforms the latter, especially in higher

degrees. In addition, the torus-based approach takes advantage of smaller memory storage

requirement and shorter computational time. Therefore, it is an efficient alternative tool for

gravity field determination from spaceborne gravimetry.



141

6.2 Stand-alone solutions

In this section, different types of observables, i.e., disturbing potential, LOS GRACE-type

gradiometry, and gravity gradient tensor components from spaceborne gravimetry will be

processed using the torus-based semi-analytical approach. All these data sets have been

described in the context of the dedicated satellite missions in Chapter 2.

6.2.1 Processing of the disturbing potential data from the CHAMP mission

Table 6.1: Description of the calculating steps of gravity field determination from the CHAMP

and GRACEA&B disturbing potential data

step
disturbing potential disturbing potential

from CHAMP GRACE A&B

maximum degree L 70 70
reference gravity field GGM02S GGM02S

normal gravity field removed removed
noise filtering no no
reduction of h and I up to 2nd order up to 2nd order
grid size 2◦ ×2◦ 2◦ ×2◦
interpolation method Kriging Kriging
PSD model no no
regularization no no
optimal weighting no no
iteration no no

The almost two years of disturbing potential data (from April 2002 to February 2004)

in the “CHAMP data set” are divided into groups by a month unit, which contains the first

day and the last day of each month. Therefore, a monthly spherical harmonic solution is the

basic unit for gravity field determination using the torus-based semi-analytical approach.

The data processing for every set of monthly observations follows the same routine illus-

trated in the calculating flow chart (Figure 3.5), and the corresponding description for each

step is shown in the left column of Table 6.1.

The two-year overall solution can be obtained by the multi-observable model without

the repetitive processing from the first step because of the linear relationship between the

lumped coefficient and the spherical harmonic coefficients (Section 5.2). The combined
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normal matrix is obtained by making use of equal weights for all monthly normal matrices

in Equation (5.22). Figure 6.3 shows the RMS values of geoid height differences compared

to the GGM02S reference field for the monthly solutions and the overall solution in the

spatial domain.

Apr02 Jun02 Aug02 Oct02 Dec02 Feb03 Apr03 Jun03 Aug03 Oct03 Dec03 Feb04
0

0.5

1

1.5
Monthly CHAMP Solution vs. GRACE GGM02S L= 70

Month

R
M

S
 g

eo
id

 d
iff

er
en

ce
 [m

]

Overall Solution

Figure 6.3: RMS in geoid height differences of monthly solutions form the CHAMP mission
up to L = 70, compared to the GGM02S model

The monthly RMS values in geoid heights vary for different months. Sneeuw et al.

(2005b) showed that the CHAMP monthly solutions are not sufficiently accurate to detect

monthly time variations in the Earth’s gravity field. In addition, Han et al. (2005) concluded

that the CHAMP data are able to model only the semi-annual and annual time variable grav-

ity signal in the very low degrees (l < 3). Therefore, the variable ground track patterns,

which are caused by the changes of the satellite height, may contribute mostly to the accu-

racy in monthly differences. Consistent with the discussion about the aliasing problems in

Section 4.5.4, the month with a good ground coverage has a smaller RMS value (0.56m for

January 2004), while the month with a sparse data distribution as the result of the repeat

orbit mode has almost three times worse RMS value (1.50m for June 2003). Similarly, the

monthly solutions from May 2002 and October 2002 have larger RMS values because the

satellite orbit is in a near-repeat mode. In addition to the ground track patterns, the quality
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of the monthly solutions naturally improve with the satellite decay (except for the repeat

orbit scenarios) since the sensors onboard are getting closer to the Earth’s mass.

The last RMS value bar along the x-axis in Figure 6.3 is the two-year overall solution.

Its RMS value is only 0.38m, and it is more accurate than any monthly solutions because

the more observations available, the more homogeneous and dense the data distribution.

However, the accuracy is not improved dramatically. The reason is that, on the one hand,

the CHAMP mission is limited to solving the gravity field up to L = 70 (Weigelt, 2006). On

the other hand, the overall solution is based on an equal contribution from the individual

monthly solutions. The latter problem can be improved by optimal weighting approaches,

which will be discussed in the combined solutions in Section 6.3.

Choosing the GGM02S model as reference, the other two relative error representations

of the monthly solutions and the overall solution are the degree RMSE curves and the cumu-

lative geoid height curves, which are shown in Figure 6.4(a) and Figure 6.4(b), respectively.
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Figure 6.4: Error representations of the CHAMP monthly and overall solutions

The spread areas in the figures are bounded by the best and the worst monthly solutions,

and the (solid) curve in black is the two-year overall solution. Figure 6.4(a) shows that in

the low degrees l < 31, the overall solution is a half order of magnitude better than the best

monthly solution and one order of magnitude better than the worst monthly solution. In the

higher degrees, it is close to the best monthly solution but it is still better than the worst
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monthly solution by one order of magnitude. Figure 6.4(b) shows that the differences in

geoid height errors accumulate very slowly below degree 31. The level of 3cm accuracy

can be reached at degree 31 with a corresponding spatial resolution of 600km half wave-

length; see Equation (2.1). Overall, a decimeter accuracy can be achieved at degree 45 with

a half wavelength spatial resolution of 450km.

In general, the error representations in both the spatial and the spectral domains show

that the two-year overall solution from the CHAMP mission improves the accuracy of the

spherical harmonics from the monthly solutions up to one order of magnitude in the low

degrees up to 70, and it has its most significant impact around degree 31.

6.2.2 Processing of the disturbing potential data from the GRACE mission

Equipped with the GPS receivers onboard, each GRACE satellite combines the concept

of the SST-hl technology. Therefore, the two satellites can be treated separately as two

CHAMP-like satellites flying in the same orbit. The “GRACE data set III” contains one

and half years of disturbing potential data calculated by the energy balance approach for

GRACE satellites A & B (Weigelt, 2006). First, the monthly gravity field solutions up to

degree L = 70 are estimated. Then, the overall solution is obtained by the multi-observables

model in Equation (5.20), similar to the procedure in the CHAMP data processing. The

right column in Table (6.1) explains how each processing step is considered in gravity

field determination. These steps are the same as in the CHAMP disturbing potential data

processing.

The RMS values of geoid height differences for GRACEA (in red) and GRACEB (in

blue) monthly solutions compared to the GGM02S reference field are shown in Figure 6.5.

The corresponding monthly solutions from the CHAMP mission (in green) are plotted in

the same figure for the purpose of comparison. Some values are zeros for the GRACEA and

GRACEB satellites because of missing measurements in the particular months.

Generally speaking, the GRACEA and GRACEB monthly solutions reach a similar ac-

curacy. The small differences might be caused by the calibration procedure in the energy

balance approach when calculating the disturbing potential data (Weigelt, 2006). In par-

ticular, the monthly solutions of both satellites in September 2002 have the worst results.

The RMS values are 2.75m and 2.28m, because both satellites were in a 76/5 repeat orbit
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Figure 6.5: RMS in geoid height differences of monthly solutions from the GRACE A&B satel-
lites up to L = 70, compared to the GGM02S model

mode with a sparse data distribution on the Earth’s surface (van den Ameele, 2005). The

overall solutions (last bar group) from these two single CHAMP-like satellites are dramati-

cally improved with an accuracy of 0.5m. However, almost all the GRACEA and GRACEB

solutions (monthly and overall) are worse than the CHAMP solutions, because the GRACE

satellites are flying in an orbit with a higher altitude. Therefore, they are less sensitive to

the gravity field signal as a result of the upward attenuation effect.

Figure 6.6 shows the degree RMSE curves and cumulative geoid height curves of the

GRACEA satellite. Similar error representations for the GRACEB satellite are shown in

Figure 6.7. In all plots, the areas are bounded by the best and worst monthly solutions,

and the black curves show the performance of the overall solutions. The two GRACE

satellites achieve a very similar accuracy in both the degree RMSE and the cumulative geoid

height. The overall solution combines the monthly solutions with one order of magnitude

improvement through the gravity spectrum until the maximum resolvable degree L = 70.

The cumulative geoid height differences from the overall solution have a stable level of

4cm below degree l = 30. Again, both GRACE satellites have an accuracy degradation

compared with the CHAMP satellite as a result of the higher flying altitude.
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Figure 6.6: Error representations of the GRACEA monthly and overall solutions
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Figure 6.7: Error representations of the GRACEB monthly and overall solutions

6.2.3 Processing of LOS gradiometry data from the GRACE mission

The most important observable from the GRACE mission with the SST-ll technology is

the inter-satellite K-band range. Although it is very precise, the corresponding transfer

coefficient Hρ
lmk has one practical difficulty of the normalized frequency βmk because the

resonance occurs at β = 0,±1 CPR. The resonance will yield an infinite coefficient and

destroy the linear relation between the lumped coefficient and the spherical harmonic co-



147

Table 6.2: Description of the calculating steps of gravity field determination from the GRACE

LOS gradiometry data

step GRACE data set I GRACE data set II

maximum degree L 120 120
reference gravity field GGM02S EGM96
normal gravity field not removed not-removed
noise filtering ARMA(8,1) no
reduction of h and I up to 2nd order up to 2nd order
grid size 1◦ ×1◦ 1◦ ×1◦
interpolation method Kriging Kriging
PSD model yes no
regularization matrix second-order Tikhonov second-order Tikhonov
regularization factor MSE MSE

optimal weighting no no
iteration no no

(a) In situ observations at satellite altitude
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Figure 6.8: In situ LOS gradiometry data derived form the ”GRACE data set I”

efficient; see Equation (5.3a). However, the transfer coefficient of the ratio between the

range acceleration and range H
ρ̈
ρ

lmk is derived in a similar form as the transfer coefficient of

the along-track gradiometry observable Hxx
lmk; see Equation (5.6). The following examples

try to study the practical possibility of processing the GRACE-type LOS gradiometry data.

The first example is using the ρ and ρ̈ observations in the “GRACE data set I,” which

were collected from September 2003 to October 2003. Without removing the normal grav-
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Figure 6.9: Error PSD of the LOS gradiometry observable before (top) and after (bottom) the
ARMA filtering

ity field, the in situ observations are projected on the torus in Figure 6.8(a). It clearly shows

a pattern of striping in the along-track direction, because this GRACE-type gradiometry is

sensitive only to the line-of-sight direction.

The error power spectral density (PSD) is plotted in Figure 6.9 top panel for the data

pre-processing stage. It shows that there is a slightly decreasing trend in the spectrum.

Therefore, an ARMA(8,1) process is employed to filter the trend. The filtered error PSD is

flatter among the frequencies (Figure 6.9 bottom panel).

The disturbed Kepler elements of height and inclination are plotted in Figure 6.8(b).

For the observations without the normal field removed (the even degrees up to l = 8), the

height and inclination variations have to be reduced to a nominal orbit with constant height

and constant inclination by applying a Taylor expansion series. As discussed in Section

4.3.2, the height and inclination variation reductions are based on a gravity field synthe-

sis procedure. Taking the OSU91A gravity field model as the input field, the corrections

caused by the partial and cross derivatives with respect to height and inclination are easily

determined. All corrections are projected on the torus domain in Figure 6.10. It shows that

the height corrections are very significant and the patterns are correlated with the locations
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Figure 6.10: Orbital height and inclination corrections for LOS gradiometry

and the ascending/descending arcs. The magnitude of the inclination corrections is very

small.

The reduced observations after height and inclination corrections are plotted in the left

panel of Figure 6.11. Taking the synthesized orbital values from the GGM02S model as a

reference, the right panel of Figure 6.11 shows the difference between the reduced values

and the reference on the nominal orbit. After employing the torus-based semi-analytical

approach, the accuracy of the gravity field solution in terms of the degree RMSE is shown

in Figure 6.12, which is not as good as expected, because even the worst monthly solution

from the GRACE disturbing potential data has a relative error of the level of 10−9 in the

low degrees l < 30. On the one hand, the degree RMSE curve is very close to the curve of

the signal RMS. Therefore, the maximum resolvable degree is ambiguous, although the two

curves cross around degree 70. Compared to the EGM96 gravity field model, on the other

hand, the solution from the GRACE-type gradiometry observable is worse than the EGM96

model with an overall degradation of half an order of magnitude. In the low degrees l < 20,

this degradation even reaches one order of magnitude.

In the first example, the spherical harmonic solution from the real LOS gradiometry data

has an unexpectedly low accuracy. The errors in the observations may be responsible for
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Figure 6.11: LOS gradiometry observations after data reductions and the differences com-
pared to the reference values
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Figure 6.12: Degree RMSE from the LOS gradiometry solutions, compared to the GGM02S

model
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(a) Differences compared to reference data
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Figure 6.13: Processing of the LOS gradiometry observations from the “GRACE data set II”

this. The second example is trying to validate the GRACE-type LOS gradiometry observ-

able from the simulated and noiseless data using the “GRACE data set II.” The inter-satellite

range and range acceleration data are not directly provided in this data set, but they can be

derived from the simulated errorless measurements, which are position, velocity, and ac-

celeration data without introducing any errors; see Section 5.1. Compared to the reference

values synthesized by the input “pseudo-real” gravity field, the EGM96 model, the differ-

ences of the GRACE-type LOS gradiometry observable on the nominal orbit are shown in

Figure 6.13(a). The spherical harmonic coefficients are estimated by the torus-based semi-

analytical approach, and the corresponding degree RMSE compared to the EGM96 model

is plotted in Figure 6.13(b).

The degree RMSE curve shows that the errorless observable has a better performance

than the real data. However, the error level is still worse than expected.

Both examples demonstrate that the GRACE-type gradiometry observable, which is the

ratio between the inter-satellite range and range acceleration, does not provide an accu-

rate enough solution using the torus-based semi-analytical solution. The reason is not the

measurement noise but the model itself. The corresponding transfer coefficient H
ρ̈
ρ

lmk is de-

rived under certain approximations and excluding resonance. Sneeuw (2000b) showed that

Equation (5.6) is valid only under the assumption that the baseline is sufficiently small, and

βmk in Equation (5.3a) may not be too close to zero. Therefore, a new observable by means
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of the precise K-band range information has to be found for gravity field determination. Its

corresponding transfer coefficient should also be investigated in future work.

6.2.4 Processing of the simulated gravity gradient tensor data from the GOCE mis-

sion

Table 6.3: Description of the calculating steps of gravity field determination from the GOCE

gravity gradient tensor data

step GOCE data set I GOCE data set II

maximum degree L 120 120
reference gravity field OSU91A EGM96
normal gravity field removed not-removed
noise filtering ARMA(8,1) ARMA(8,1)
reduction of h and I up to 2nd order up to 2nd order
grid size 1◦ ×1◦ 1◦ ×1◦
interpolation method spline spline
PSD model yes yes
regularization matrix second-order Tikhonov second-order Tikhonov
regularization factor MSE MSE

optimal weighting no no
iteration no no

The input processing observations for the torus-based semi-analytical approach from

the GOCE mission are the gravity gradient tensor components Vi j. Since the mission is

scheduled for launch in spring 2008, only simulated SGG data will be processed in this

thesis. The descriptions of both the “GOCE data set I” and “GOCE data set II” have been

presented in Chapter 2.

There are only the main-diagonal elements available in the “GOCE data set I.” The

original in situ simulated observations are corrected by employing the filtering technique

and data reductions onto the nominal torus. Compared to the magnitude of the original

measurements (1.5E), where the normal gravity field components are removed, these cor-

rections (0.15E) reach 10% of the magnitude. Kriging is employed to interpolate the torus

grid for Vzz component. While the spline interpolation is used for Vxx and Vyy compo-

nents. In the weighted order-wise least-squares adjustment, the weight for the specific

lumped coefficient Amk is calculated based on the simplified PSD model given in Section
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5.3. The regularization technique is applied, in which the second-order Tikhonov matrix

and the MSE method are the selected regularization matrix and optimal factor determination

method, respectively. After least-squares adjustment, the degree RMSE curves compared to

the OSU91A reference model are plotted in Figure 6.14. Although regularization was ap-

plied, all three main diagonal components have high errors at the low degrees l < 20, which

means that the gravity gradient data have less sensitivity to these degrees. In addition, the

Vyy component is the worst one with a half order of magnitude degradation compared with

the Vxx and Vzz components because the interpolation errors for the Vyy component are larger

than the other two components; see Section 4.4.
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Figure 6.14: Degree RMSE of the gravity gradient tensors from “GOCE data set I,” compared
to the OSU91A model

A similar procedure is applied to the “GOCE data set II” in the second example. In

this case, the reference gravity field is the EGM96 model. The degree RMSE curves for the

main diagonal elements are plotted in Figure 6.15. Clearly, the Vzz component (bold green)

outperforms the other two components, Vxx (bold red) and Vyy (bold blue), by one order of

magnitude. However, all components still have troubles in the low degrees l < 20.

The solutions from the simulated gravity gradient tensor data do not give enough accu-

racy in terms of degree RMSE. One possible reason would be the big interpolation errors;
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Figure 6.15: Degree RMSE of the gravity gradient tensors from “GOCE data set II,” com-
pared to the EGM96 model

for instance, interpolation introduces the errors in Vyy component reaching a 3% (STD)

level of the original values; see Section 4.4.5. Bouman (2000) used a 3D cubic spline

method to achieve the interpolation errors of 1×10−5 E (0.01%) with the absolute maxima

of 1×10−4 E (0.1%). Assuming an error level of 1×10−4 E (0.1%) can be achieved for the

torus grid, which is one order of magnitude worse than the interpolation errors in Bouman

(2000), the solutions of spherical harmonics are plotted in thin curves in Figure 6.15. The

new degree RMSE curves show that the accuracies are improved by one or more orders of

magnitude better than the solutions estimated from the second example, especially for the

degrees l > 40.

The two examples of the gravity gradient tensor data processing demonstrate that the

Vyy component is the weakest component among the main diagonal elements. In addition,

interpolation contributes most errors in the estimated solutions. The bigger errors from

interpolation, the lower accuracy of the degree RMSE of the spherical harmonics solution.

Therefore, a better interpolation method should be investigated.
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6.3 Combined solutions

Spaceborne gravimetry provides different types of observables, e.g., disturbing potential

from the CHAMP mission (SST data) and gravity gradient tensor from the GOCE mission

(SGG data). In addition, the three satellite missions provide the disturbing potential data

by the implementation of the SST-hl technique. Currently, both CHAMP and GRACE have

the same type of observations for the same period of time. Generally speaking, a solution

that combines data from different missions might yield a better solution. In the torus-based

semi-analytical approach, the merging can be done by employing a combined model sim-

ilar to the multi-observable model (Section 5.2.4), where the normal matrices from each

observable are merged directly with proper weights. In addition, an optimal weighting fac-

tor should be determined based on the observable accuracies. The optimal combination of

the same observables from the different satellite missions and the combination of different

observables from the same missions are studied next.

6.3.1 Combined solutions by processing the disturbing potential data from the CHAMP

and GRACE mission

As demonstrated in the stand-alone examples, a LEO with a lower altitude is more sensitive

to the gravity field signal, and the ground track coverage with a denser data distribution has

a smaller interpolation error resulting in a better solution. Therefore, the orbital character-

istics are the critical aspects for the relative contributing weights among each satellite in

the combined solution.

Weighted solutions from the CHAMP mission only

The first scenario is testing the weighted overall solution from the monthly solutions of

the CHAMP mission. Two optimal weighting methods discussed in Section 5.5, i.e., the

parametric covariance approach (PC) and the variance components approach (VC), are em-

ployed to determine the relative weights among different months. These two optimal-

weighting solutions are compared to the equal-weighting overall solution achieved by the

multi-observable model.

Since different monthly solutions have different accuracies in terms of geoid height

differences (Figure 6.3), a better monthly solution should contribute more to the combined
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Figure 6.16: RMS in geoid height differences of the combined solution, and relative weights
calculated by the PC and VC approaches from the CHAMP mission

solution, while a worse one should contribute less. The results of the contributing relative

weights are shown in Figure 6.16, where the bar in blue is the weight (no unit) calculated

by PC, the bar in red is calculated from VC, and the bar in green is the RMS values of geoid

height differences (in m). As expected, the worst monthly solution from June 2003 has a

very small weight in both the PC and VC approaches because of its repeat orbit mode, while

a better monthly solution, such as February 2004, has a larger weight and contributes more

to the combined solution.

The degree RMSE curves of the estimated spherical harmonic coefficients up to L = 70

are plotted in Figure 6.17. It shows that both combined solutions from both the PC and

VC approaches are slightly better than the equal-weighting solution. Studying the RMS

values in terms of geoid height compared to the GGM02S reference field, we see that the

accuracies are improved by 8% for PC (RMS=0.41 m) and 9% for VC (RMS= 0.40m). The

equal-weighting solution has an RMS value of 0.44m.
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Figure 6.17: Degree RMSE of the combined solution up to L = 70 from the CHAMP mission,
compared to the GGM02S model

Weighted solutions from both the CHAMP and GRACE missions

The CHAMP, GRACEA, and GRACEB satellites are able to derive the disturbing potential

data from the SST position, velocity, and acceleration data for the same period of time;

see the principle of the energy balance approach in Chapter 2. These disturbing potential

data are combinable and can be merged into a larger data set to achieve a joint spherical

harmonic solution in the second testing scenario. Again, both PC and VC approaches are

used to determine the weighting factors of the combined solutions.

In the first step, the relative weights are determined among these three satellites to

get the weighted monthly solution for each individual month, in which all three satellites

have observations available. Next, the overall spherical harmonic solution is achieved by

applying the multi-observable model in least-squares adjustment, which means that each

weighted monthly solution contributes equally to the overall solution. Figure 6.18 shows

the degree RMSE of this combined solution up to L = 70. Compared to the equal-weighting

overall solution, the combined solution from VC is slightly better. This improvement is

expected as a result of more available observation and better data distribution. However,
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the combined solution from PC is getting worse, which may be caused by improper weights

among the three satellites.
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Figure 6.18: Degree RMSE of the combined solutions up to L = 70 from the CHAMP,
GRACEA, and GRACEB satellites, compared to the GGM02S model

It is also important to study the relative contributions from the CHAMP and GRACE

mission. The normalized weights among the three satellites are plotted in Figure 6.19. The

weights from the VC approach, which are shown in the right panel, are well distributed.

The CHAMP satellite takes a dominant role (relative weights of 0.5 ∼ 0.7 out of 1) for most

months. For June 2003, when the CHAMP satellite was in a repeat orbit mode, the GRACE

satellites dominated the solution. However, the weights determined by the PC have been

contributed more from the GRACE data. Therefore, the weighted solution by PC is closer

to the GRACE solution. Compared to the weights calculated by the VC approaches, the PC

does not assign the weights correctly for several months, because the calibration factor qi

can be very close to zero in the calculation.

In general, the combined solutions from the processing of the disturbing potential data

from both the CHAMP and GRACE missions show that the optimally weighted solutions

are slightly better than the equal-weighting solution in most cases. The weights, deter-
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Figure 6.19: Relative weights by the PC and VC methods in the combined solutions from
CHAMP, GRACEA, and GRACEB satellites

mined by two optimal weighting approaches (PC and VC), are affected by the individual

monthly solutions. However, the PC method may lead to a worse solution as a result of

an improper weight distribution. Therefore, the VC approach is preferred to determine the

weights among different data sets.

6.3.2 Combined solutions by processing the disturbing potential and gravity gradi-

ent tensor data from the GOCE mission

Since the “GOCE data set II” provides the on-board observations in terms of position, ve-

locity, and acceleration data, the disturbing potential data can be derived from these ob-

servations using the energy balance approach. Both the SST disturbing potential data and

SGG gradient tensor data are calculated and simulated from the same reference field, the

EGM96 model. Therefore, they can be combined to determine the gravity field, in which

the relative weights are determined by the VC approach (Section 5.5).

The degree RMSE curves of the individual and combined solutions up to L = 90 are plot-

ted in Figure 6.20. It shows that the accuracy of the combined solution using the weights

takes the advantages of both the stand-alone solutions. The error curve of the combined

solution is close to the SST solution in the low degrees and it is dominated by the SGG

solution in the high degrees. It also shows that the SST data can be used as a regularization
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Figure 6.20: Degree RMSE of the stand-alone and combined solutions up to L = 90 from SST

and SGG of the “GOCE data set II”, compared to the EGM96 model

constraint for the stand-alone solution from the SGG data because the combined solution

with the SST data decreases the oscillations and improves the accuracies in the low degrees

(l < 10) of the SGG solution.

6.4 Summary

AFTER PROCESSING the disturbing potential data and gravity gradient tensor Vzz

data using both the direct and the torus-based semi-analytical approaches, it was

shown that the latter can reach the same accuracy level as the former. To some extent, the

latter even outperforms the former, especially for higher degrees, e.g., l > 60.

Making use of the torus-based semi-analytical approach, several spherical harmonics

solutions have been estimated from different types of spaceborne gravimetry observations

and their combinations. These solutions are categorized into two groups: stand-alone solu-

tions and combined solutions.
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Stand-alone solutions

� Disturbing potential from the CHAMP satellite. A monthly solution is the basic

estimation unit. The accuracies for monthly solutions are different by a half order of

magnitude because of the orbital characteristics. The overall solution that is achieved

by the multi-observable model outperforms any monthly solutions. For the overall

solution, the SNR is equal to one (SNR = 1) around l = 70, and a decimeter accuracy

can be achieved at degree 45 (spatial resolution of 450km).

� Disturbing potential from the GRACEA&B satellites. The GRACEA&B satellites

are treated here as two individual CHAMP-like satellites. A similar procedure in the

CHAMP data processing is carried out for the disturbing potential data from both

GRACE satellites. The monthly solutions from two GRACE satellites also have vary-

ing accuracies. The month (September 2002) with a 76/5 repeat orbit gave the worst

solution. However, the two GRACE overall solutions dramatically improve the accu-

racies of the spherical harmonics up to L = 70 by almost a half order of magnitude,

compared to the best monthly solution. In general, the GRACEA&B satellites have an

accuracy degradation compared with the CHAMP satellite because the higher flying

altitude yields lower sensitivity to the gravity field signal.

� LOS gradiometry from the GRACE satellite. The ratio between the inter-satellite

range and range-rate observations from the GRACE mission is treated as a LOS gra-

diometry observable. Both real data (noisy) and simulate data (noiseless) are pro-

cessed. Both spherical harmonic estimations have low accuracies. Since the corre-

sponding transfer coefficient is derived under a very short baseline assumption, the

observable ρ/ρ̈ from the GRACE mission (ρ ≈ 220km) may not be suitable for grav-

ity field determination using the torus-based approach. A new observable containing

very precise range information should be investigated.

� Gravity gradient tensor from the GOCE satellite. The three main diagonal ele-

ments of the gravity gradient tensor data were processed to estimate the spherical

harmonic coefficients up to L = 120. All three solutions had difficulties in the low

degrees l < 20. The Vzz component outperforms the other two components, and the

Vyy component gave the worst solution as a result of large interpolation errors with
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3% of the original values. Better solution can be achieved if the interpolation errors

are reduced, for instance, to a 0.1% level.

Combined solutions

� Weighted solutions from the CHAMP satellite only. As an extended version of the

multi-observable model, the monthly solutions are merged by different weighting

contributions into the overall solution. Both the PC and VC approaches were used

to determine the relative weights among the months optimally. The values of the

weights are proportional to the accuracies of the monthly solutions. Therefore, the

overall solution is slightly better than the equal-weighted one.

� Weighted solutions from both the CHAMP and GRACE satellites. Both the PC and

VC were used to determine the relative weights among the CHAMP and two GRACE

satellites for each individual month with common observations. The overall solution

was achieved by the multi-observable model. The weighted solution by VC was

slightly better than the weighted CHAMP solution. However, the PC solution provides

a worse solution because it introduces improper weights among the satellites.

� Combined solutions from SST and SGG of the GOCE satellite. The simulated

SST and SGG data were combined through the optimal weights determined by the VC

approach. The combined solution decreases the oscillations and improves the accura-

cies in the low degrees (l < 10) of the SGG stand-alone solution by incorporating the

SST information. Therefore, the SST data can be used as a regularization constraint

for the SGG data.

Recommended calculating procedure

As a summary of all the aforementioned case studies on gravity field determination by the

torus-based semi-analytical approach, a comprehensive calculating flow chart is drawn in

Figure 6.21. The purpose of the detailed flow chart is to achieve the best possible estimation

of spherical harmonics from satellite observations. Therefore, the determination of the

model and essential parameters used in each calculating step is recommended and described

in the corresponding block.
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Chapter 7

Concluding Remarks

IN THIS final chapter, the major conclusions that can be drawn from this research are

presented. The recommendations for future development in this area also are addressed.

The major contribution of this thesis is to establish a comprehensive and detailed process-

ing procedure for the torus-based semi-analytical approach in gravity field determination

from the spaceborne gravimetry observations. Specifically, the critical issues which are

involved in the three main recovery steps have been investigated. Several stand-alone and

combined solutions from numerous case studies have been achieved. Many minor improve-

ments and developments have been discussed in the previous chapters, and only the major

achievements are addressed in the following conclusions.

7.1 Conclusions

The first part of the conclusions are listed here regarding the contributions of the investiga-

tion of the individual calculating steps.

� An ARMA process has been employed to analyze the noise characteristics of the

contaminated observations. A specific low order ARMA(8,1) filter has been designed

from the ARMASA toolbox and tested for the gravity gradient tensor data with MBW.

� A multi-parametric Taylor expansion series has been derived to reduce the height

and inclination variations of the in situ observations. This reduction is required to

obtain the observations on a nominal orbit, especially for those observations without

the normal gravity field removed. The expansion series is truncated at the order of

two with sufficient accuracy for any observable.

� The torus-based gravity field synthesis procedure is developed as a useful and pow-

erful tool to determine the values of the partial and cross derivatives with respect to

height and inclination in the data reductions. A new expression of the inclination

derivatives is derived by making use of the cross inclination function only.

164
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� For the isotropic observables, geo-statistical approaches, such as LSC and Kriging,

create a more accuracy torus grid than deterministic bi-linear and spline interpola-

tions. In addition, the former approaches are able to propagate error information as

an internal accuracy assessment through covariance functions or semi-variograms,

while the latter approaches cannot. However, the spline interpolation might be a

better choice for an anisotropic observable, such as the Vyy gravity gradient tensor

component.

� Aliasing problems may occur in the spatial/temporal and orbital frequency domains

because of the insufficient sampling rate. In particular, the changes of the ground

track patterns, which are caused by the orbital height changes, are the major con-

tribution to the different accuracies of the CHAMP monthly solutions. For a repeat

orbit, interpolation works as a spatial re-sampling tool by creating a denser grid and

improves the sparse distribution situation.

� The collection of transfer coefficients (Hlmk) in the PG provides linear relations be-

tween the spherical harmonic coefficients (K̄lm) and the corresponding lumped coef-

ficients (Amk) for any geo-potential functional.

� Under the assumption of a nominal torus, a block-diagonal structured normal ma-

trix is yielded. Spherical harmonics can therefore be estimated by the order-wise

least-squares adjustment. A weight matrix for a specific observation Amk is devel-

oped by calculating the variance from the error PSD model. The error information is

propagated in both frequency and spatial domains through the error propagation law.

� The Tikhonov regularization method is employed in a nearly ill-conditioned problem

in the least-squares inversion. A degree-dependent constraint, such as the second

order Tikhonov matrix, works as a better regularization matrix in the order-wise es-

timation. In the regularization factor determination, the MSE method and the GCV

approach outperform the L-curve criterion, and yield better regularized solutions in

terms of geoid height error STD. However, the solutions from the disturbing potential

data do not need to be regularized because of the stability of the normal matrix.

� Two optimal weighting determination methods, i.e., PC and VC, have been investi-
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gated in the context of combing the SST and SGG data. The combined solution from

VC performs better than the one from PC in terms of the degree RMSE and the relative

weight ratios.

� A torus-based iteration scheme is developed to compensate the errors introduced

by the nominal orbit assumption and interpolation. The iterated solutions slightly

improve the high degrees of spherical harmonics.

In addition to the conclusions on the individual steps, the second set of conclusions are

drawn based on the numerous case studies.

� The solutions estimated by the torus-based semi-analytical approach can reach the

same level of accuracy as the solutions calculated from the direct approach and even

outperforms the latter in the high degrees l > 60.

� A two-year overall solution from the CHAMP disturbing potential data is achieved by

combining the monthly solutions using the multi-observable model. The maximum

resolvable degree can reach l = 70, and a decimeter geoid accuracy can be achieved

at degree 45 (spatial resolution of 450km).

� The overall solutions from both the GRACEA&B disturbing potential data are ob-

tained by the similar procedure to the one mentioned above. The results are also

similar to the CHAMP results. However, the GRACEA&B satellites have an accu-

racy degradation compared with the CHAMP satellite because of their higher flying

altitudes.

� The GRACE-type LOS gradiometry data has been processed from both the real and

simulated observations. However, the estimated solutions are not as good as ex-

pected. The reason is that the LOS gradiometry observable is derived on the basis of

a sufficiently short baseline assumption, while the inter-satellite baseline of GRACE

is too long to keep the assumption valid.

� Three main diagonal elements of the gravity gradient tensor data have been used

to estimate the spherical harmonic coefficients up to L = 120. The Vzz component

outperforms the other two components, and the Vyy component has the worst solution
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because of its larger interpolation errors. Compared to the reference values, the STD

of the interpolation error in Vyy reaches 3% of the original values, while it is 1% for

the Vzz component and 2% for Vxx.

� Two types of combined solutions have been investigated. The optimal weights for

different observables or data sets are determined by the PC and VC approaches. A so-

lution with a better accuracy has a larger weight. One example is the combination of

the disturbing potential data from both CHAMP and GRACE. The solutions estimated

by VC outperform the PC and equal-weighted solutions. The example combines the

simulated SST and SGG GOCE data shows that the combined solution decreases the

oscillations and improves the accuracies in the low degrees (l < 10) of the SGG stand-

alone solution by incorporating the SST information.

7.2 Recommendations

Considering the advantages of the torus-based approach and the case studies done in this

thesis, it can be recommended to employ this method for gravity field in the following

scenarios:

� If one is concerned about computation time and memory storage; for instance, solv-

ing on a desktop computer up to maximum degree L > 200, e.g., the GOCE mission.

� If one wants to get a quick-look solution to analyze the partial SST and SGG data.

� If one thinks that data interruptions or sparse data distributions might cause a problem

with the estimation.

� If one determines the gravity field using the disturbing potential data from CHAMP

or GRACE.

� If one wants to combine different observables or data sets to achieve a joint solution.

Naturally, this approach is not an all-purpose gravity field determination approach. It

has its intrinsic weaknesses and limitations; for instance, the disturbed orbit is approxi-

mated by a nominal orbit and interpolation introduces additional errors. The testing sce-

narios show that the torus-based approach does not process the GRACE-type LOS data and
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gravity gradient tensor data with sufficient accuracy. Therefore, the alternative approaches

for analyzing the gravity field from satellite observations are recommended.

� The space-wise approach is not influenced by orbit variations, especially the long

period errors. Migliaccio et al. (2004) studied an enhanced space-wise simulation

dealing with polar gaps effects, gridding effects, and noise propagation for the com-

bined SST and SGG data.

� Ditmar et al. (2003a) developed a modified time-wise approach by “treating the ob-

servations as they are.” The normal matrix is inverted by a Preconditioned Conju-

gated Gradient Multiple Adjustment (PCGMA) algorithm (Schuh, 1996). The joint

inversion of the simulated SST and SGG GOCE data leads to a geoid model with an

RMS error of about 12cm up to L = 230.

� Sharifi (2004) formulated the GRACE-type LOS gradiometry data using the direct

approach and solved the spherical harmonics up to degree L = 120.

� Despite the problem of computational time, the direct inversion of the full normal ma-

trix is preferred because it provides a full variance-covariance information of the es-

timated parameters. Pail and Plank (2002) proposed a distributed non-approximative

adjustment feasible for simulated GOCE data.

7.3 Future work

ALTHOUGH THE torus-based semi-analytical approach has proven to be an efficient

alternative tool for gravity field determination from spaceborne gravimetry, some

improvements can still be made. The recommendations for future work are listed as fol-

lows:

� The observation errors in the demonstration of the filtering techniques are calculated

by taking the differences between the in situ observations and the corresponding

reference values. In reality, the observation errors are provided in the form of error

variances or manufactured instrumental error PSD. Further testing of filtering with

these more realistic errors should be carried out.
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� The interpolation errors for the anisotropic observables are 3% (STD) of the original

values. A better interpolation, such as a 3D cubic spline method (Bouman, 2000),

has to be investigated.

� The implementation of the torus-based approach should be investigated for the pre-

cise inter-satellite range and range acceleration data. Thereafter, the time-variable

signals from the Earth’s gravity field can be detected for geodynamic interpretations.

� The GOCE mission is able to provide a gravity field model up to L = 300. The

application of the torus-based approach on all the GOCE components should be in-

vestigated because it will dramatically save computational time and memory storage

of the solutions with such a high degree.

� SFF (satellite formation flying) will provide new observables with their specific or-

biting configurations. The investigation of the corresponding transfer coefficients for

data processing should be done.
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