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Abstract 
 

The main objective of this research is to develop a methodology that can be used to 

optimally combine geodetic data for empirical modelling of the temporal variations of the 

geoid caused by the slow dynamic process of glacial isostatic adjustment of the Earth. A 

dynamic geoid model is needed for establishing a modern dynamic geoid-based vertical 

datum for Canada. By correcting the geoid for the secular temporal variations, a reference 

surface for orthometric heights free from systematic effects due to geodynamics will be 

maintained. To provide a centimetre level of accuracy for precise surveying activities, 

corrections should be applied generally at a ten-year time interval. Models of the temporal 

variations of orthometric heights are another important outcome required for ensuring 

consistency between the dynamic vertical reference surface and gravity related heights. 

The sub-objectives of this research are (i) developing a general framework for combining 

terrestrial and space-borne data including GRACE, GPS, tide gauge/altimetry, and absolute 

gravimetry data, (ii) implementing data-driven statistical approaches for modelling 

temporal variations of the geoid and heights, and (iii) delineating practical considerations 

for implementing the dynamic geoid model as a dynamic vertical reference surface. 

The developed methodology is applied, for the first time, to combine GRACE-observed 

rates of vertical deformation with terrestrial data. The modeled temporal variations of the 

geoid agree within 0.1 - 0.2 mm/yr with glacial isostatic model predictions based on the 

ICE-4G model in the areas with a peak geodynamic signal. Making use of robust least-

squares procedures combined with variance component estimation, reliable constraints for 

geodynamic modelling free from the influence of erroneous observations and reliably 

estimated error bounds of the empirical rates of crustal displacement are provided. An 

important outcome of this research is the use of the developed statistical tools as a 

necessary step towards combining geodynamic modelling of glacial isostatic adjustment 

with the empirical statistical approach in a rigorous dynamic-based procedure. 
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Chapter One: Introduction 

 

 

1.1 Background 

Canada’s official vertical datum is the Canadian Geodetic Vertical Datum of 1928 

(CGVD28) accessible at a control network of more than 80,000 benchmarks over 150,000 

km (Véronneau, 2002). The vertical reference surface (datum) is constrained to the mean 

sea level of five tide gauges on the Pacific and Atlantic coasts. As a result, large east-west 

tilting in the orthometric heights across the country is observed. In addition to the large 

distortion of the reference surface, the height system is outdated and with limited coverage. 

Also, large regional systematic errors of up to 1 m, a consequence of the piece-wise manner 

of developing the network over the last 100 years, exist. Moreover, the significant vertical 

displacements caused by glacial isostatic adjustment of the crust, the local motion of 

benchmarks, the high cost, and the harsh environmental conditions for maintenance of the 

network have urged the need for a modernized vertical datum (Véronneau et al., 2006). 

This new datum should be compatible with the GNSS positioning technique and easily 

accessible even in the northern parts of Canada, where a vertical control network does not 

exist. This opens the problem of re-definition of the vertical datum in terms of an accurate 

model for the regional geoid, which would allow one to replace the conventional spirit 

levelling by GNSS/levelling in order to determine the orthometric height at any point of the 

topographic surface.  

An accurate model for the geoid will be based on the new geopotential models provided by 

the GRACE (Gravity Recovery and Climate Experiment) satellite mission. These models 

have two orders of magnitude smaller errors of the long wavelengths compared to the best 

geopotential models before GRACE. For example, the satellite only models GGM02S 

(Tapley et al., 2005) and EIGEN-GRACE02S (Reigber et al., 2005) have a cumulative 
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error of 1 cm for the spatial half-wavelength of 280 km. A significant improvement in the 

accuracy of the medium and short wavelengths is expected after the completion of the 

GOCE satellite mission. According to Visser et al. (2002), the static gravity field will be 

recovered with accuracy of 1 cm in terms of the geoid height for half-wavelengths of 75 

km. Thus, the computational one-centimetre accuracy of the geoid will become realizable 

in the very near future (Tscherning et al., 2000). The present-day theory for computing the 

regional geoid for Canada also assures the one-centimetre error (Vaníček et al., 1999). 

Therefore, the problem of accounting for the secular temporal changes in the geoid height 

in Canada emerges. Over a time period of 5 to 10 years, the temporal changes in the geoid 

height become comparable with the desirable accuracy of the regional geoid model. 

Geodynamic processes, such as land subduction, plate tectonics, mantle convection, 

orogeny, and episodic seismic events cause temporal variations of the Earth’s gravity field 

and heights. However, their contribution to the temporal variations of the future geoid-

based vertical datum is much smaller than the effect of glacial isostatic adjustment (GIA), 

also called postglacial rebound (PGR). While the latter is responsible for secular changes in 

the geoid at a rate of approximately 1 mm/yr, the former can contribute by as much as 210−  

mm/yr (Dickey et al., 1997). Therefore, only GIA will be of importance for the 

modernization of the vertical datum in Canada. 

With the ice de-loading at the end of the last ice age approximately 21 000 years before 

present, the Earth has been experiencing continuous viscous adjustment driven by the 

disequilibrium caused by the mass imbalance in the previously ice-covered areas (e.g., 

Cathles, 1975). While the Earth’s crust under the ice load is rebounding, the area in the 

periphery of the ice load is now subsiding and moving towards the centre of rebound. 

Consequently, the shape of the Earth and its potential are changing with time until a new 

equilibrium state is reached. The process of GIA is identified by geological observations 

and geodetic data such as observations of relative sea levels during the Late Pleistocene and 

Holocene, tilts of ancient strandlines, postglacial faults, moments of rebound-induced 

earthquakes, the polar wander, secular trends in tide gauge records of sea/lake level 

changes, changes in levelled heights, changes in the relative and absolute gravity, and free-
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air anomalies over the de-glaciated areas. These constraints comprise the “truth” for the 

numerical GIA model outputs. 

When the nontidal acceleration of the Earth’s rotation became observable from the J2 

perturbation of the LAGEOS orbit three decades ago (Wu and Peltier, 1984; Peltier, 1985), 

opportunities for using the space techniques in the GIA modelling arose. The glacial 

isostatic adjustment, characterized by significant redistributions of masses, perturbs the 

moment of inertia tensor and induces anomalies in the Earth’s rotation. After subtracting 

the contribution of the tidal friction from the observed J2 harmonic time series, a strong 

negative rate corresponding to an acceleration of the Earth’s rotation is estimated. This 

secular rate is superimposed by a climate signal associated with the present-day melting of 

the polar ice sheets and sub-polar glaciers. The latter induces an increase in the J2 harmonic 

through the sea level rise and counteracts the negative GIA trend. The 2J&  signal is an 

important constraint on the Earth’s viscosity profile, but the contribution of the melting of 

the present-day polar ice sheets in Antarctica and Greenland needs to be corrected for. 

Inverse procedures have been developed that allow for inferences about the mantle 

viscosity profile and a separation of the polar areas signal at the same time (Tosi et al., 

2005). 

Historically, very long baseline interferometry (VLBI) and satellite laser ranging (SLR) 

enabled studies of the Earth crustal dynamics including the GIA process on a global scale. 

VLBI data were used for constraining ice history and Earth rheology in a number of works 

including Mitrovica et al. (1993), James and Lambert (1993), and Peltier (1995). Today, 

GPS provides the opportunity to create and maintain denser networks (compared to VLBI 

and SLR) over de-glaciated regions for constraining the GIA process. GPS compensates for 

the technique’s lower precision by the large amount of data collected at permanent and 

campaign stations. The reported achievable accuracy of the vertical velocities reaches 

1mm/yr after five years of continuous measurements (e.g., Larson and van Dam, 2000).  

For the first time, the dedicated gravity missions CHAMP and GRACE have determined a 

homogeneous and accurate gravity field and its temporal variations (Reigber et al., 2003; 

Tapley et al., 2004a); see Figure 1.1. Thus, they have provided new constraints for the GIA 
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studies. The GRACE mission provides time series of monthly gravity field solutions from 

which the mass redistribution in the Earth’s interior and exterior can be computed (Tapley 

et al., 2004b). Velicogna and Wahr (2002) have showed that, in principle, the GIA signal 

can be resolved from the GRACE data after 5 years of the mission’s lifetime. This is 

particularly important for constraining the largest in magnitude and spatial scale signal in 

North America because the accurately GPS-derived crustal displacements are sparsely 

distributed. 

 

Figure 1.1: GRACE-observed rates of change of the geoid height derived in this thesis 

from the Center for Space Research (CSR) RL-01 data. 

 

The rates of change of the geoid height and the absolute vertical displacement have been 

provided by the numerical GIA models since Peltier’s development of the normal mode 

theory (1974). These models are subject to uncertainties of the input in terms of an Earth 

body model and an ice de-loading model. In parallel with the GIA modelling, empirical 

models based on geodetic observations have also been developed. A list of recent models 

would include the following: 
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• Fennoscandia: Ekman (1996), Kakkuri (1997), Mäkinen and Saaranen (1998), 

Mäkinen et al. (2000), Danielsen (2001), and Vestøl (2006); 

• North America: Carrera et al. (1991), Pagiatakis and Salib (2003), Mainville and 

Craymer (2005). 

Traditionally, the empirical models for the crustal uplift in Fennoscandia have been based 

on precise re-levelling data and tide gauge records with longer than one century history. 

Because of the excellent data coverage and the long time span of the measurements, the 

empirical models have provided valuable constraints on the Fennoscandian uplift for 

decades. The permanent GPS observations (e.g., Scherneck et al., 1998) have provided an 

absolute datum for the tide gauges and the re-levelling data and made possible the direct 

comparison of the measured rates of the absolute vertical displacement with the radial 

displacement outputs from the GIA model simulations. 

In North America, scattered (in space and time) re-levelling data and tide gauge records 

provided the sole spatial information for the crustal uplift and subduction until the first 

GPS-based constraints were published (Henton et al., 2006; Sella et al., 2007). The latter, 

combined with the rates of the absolute terrestrial gravity, which virtually cover all of 

Canada (Pagiatakis and Salib, 2003), provide a means for estimating the geoid change as an 

alternative to the GRACE observations. Alternatively, gravity rates estimated from GRACE 

data can be converted to uplift rates and compared to GPS velocities (see Chapter 2).  

1.2 Thesis Objectives 

The purpose of this thesis is to contribute to the definition and realization of a dynamic 

geoid-based vertical datum for Canada through modelling temporal variations of the 

gravimetric geoid and heights. The dynamic geoid model will serve as a reference surface 

for orthometric heights that also change with time. The main objective of this research is to 

develop and test a methodology for optimally combining the available geodetic constraints 

for modelling the temporal variations of the geoid and heights. The data include, but are not 

limited to, the GRACE-observed rates of change of the geoid height and absolute vertical 

displacement, rates of the absolute terrestrial gravity, GPS vertical velocities, and combined 
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tide gauge and satellite altimetry data. For the first time, terrestrial gravity and vertical 

displacement data are combined in empirical models to provide homogeneous in space 

temporal variations of the geoid height as a result of the glacial isostatic adjustment of the 

Earth and its geopotential.  

To accomplish the objectives of this research, the following key issues should be resolved: 

• To assess the available methods for an optimal combination of deformation data 

with regard to the spatial scales of the modelled temporal changes, the 

possibility for heterogeneous input, error propagation, and updating the 

empirical models whenever new data are available. 

• To select appropriate base functions for modelling the spatial trend of the 

vertical crustal deformation field and to ensure the existence of a physically 

meaningful relationship between the rates of the vertical displacement and the 

rates of change of the geoid. 

• To apply appropriate stochastic models and to resolve the relative weighting 

between the heterogeneous data.   

1.3 Thesis Outline 

Chapter 2 introduces the vertical datum problem in the context of the time-variable gravity 

field and heights. Theoretical relationships among the temporal variations of the ellipsoidal, 

orthometric, and geoid heights are established. A critical review of the geodetic data 

constraints and their accuracy and the existing methods for modelling the temporal 

variations of the geoid and heights is presented. GIA modelling is reviewed briefly as the 

outputs are used for validation of the empirical models. 

Chapter 3 deals with the approximation of vertical displacement rates by means of radial 

base functions. Critical issues including the optimal number, location, and shape of the base 

functions are resolved. In addition, an analytical relationship between the rates of the 

absolute vertical displacement and the rates of change of the geoid height is established in 

terms of inverse multiquadric base functions. 
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A methodology for empirical modelling of heterogeneous data is developed in Chapter 4. 

The methodology is based on the least-squares collocation with parameters approach 

combining the analytical representation of the smooth spatial trend surfaces in terms of 

radial base functions and a signal stochastic model with analytical signal covariance 

functions. Special attention is paid to the statistical testing and the proper relative weighting 

of the heterogeneous data input. 

Chapter 5 is devoted to modelling the GRACE-observed rates of change of the geoid 

height. In particular, the capabilities of the principal component method for analysing the 

spatio-temporal variability of the geoid height are studied in depth. It is shown that the 

principal component analysis and the least-squares fitting of the time series give identical 

results, but the advantages of applying the former are emphasized. Furthermore, the 

GRACE-observed rates of vertical displacement are combined with the GPS and terrestrial 

gravity data for estimating the rates of change of the geoid height. 

Chapter 6 deals with some practical aspects of the vertical displacement modelling using 

radial base functions. The emphasis is on the developed robust procedure for detecting 

erroneous observations in the heterogeneous data and the proper relative weighting of data. 

In Chapter 7, the possibilities for implementing the dynamic geoid as a reference surface 

for orthometric heights in Canada are studied. 

Finally, in Chapter 8, the achievements of this research are summarized together with the 

conclusions and outlook for future research. Recommendations and practical consideration 

for establishing the geoid-based dynamic vertical datum are given. 

1.4 Assumptions and Limitations 

The following assumptions and limitations have been adopted for this research: 

• The developed methodology assumes slow deformation processes related to the 

viscoelastic response of the Earth to surface unloading. These processes are 

associated with secular rates of crustal displacement and mass redistribution.  
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• The testing areas are confined to the continental scale GIA deformation. This 

research does not focus on areas with tectonically driven deformations or areas 

affected by present-day glacier melting. 

• The value of the gravity-to-height ratio, which defines the relative contributions 

of the mass redistribution and vertical crustal displacement to the change in 

gravity, is assumed constant over the whole of Canada. Although no 

justification for a laterally varying gravity-to-height ratio has been provided by 

glacial isostatic models, modelling with lateral heterogeneities is capable of 

predicting such variations. However, the present-day data quality and the 

accuracy of the estimated rates of the terrestrial gravity and the GPS vertical 

velocities impose certain limitations on such inferences. 

• The developed methodology is limited to local and regional applications. Global 

implementations are not visible because of the lack of globally distributed 

terrestrial gravity and GPS data.  

• The procedure deals only with the vertical component of the crustal deformation 

and does not include estimation of horizontal crustal displacements and 

velocities. Horizontal velocities comprise about 30% of the magnitude of 

vertical crustal velocities. Predicted horizontal velocities in Laurentide using a 

spherically symmetric self-gravitating and rotating Earth range from 0.5 mm/yr 

to 2 mm/yr (Mitrovica et al., 2001). Neglected horizontal displacement 

introduces a maximum error of 0.1 mm in the empirically modelled vertical 

crustal displacement at distances of 100 km.  

• A homogeneous and isotropic residual deformation field is assumed, while, in 

fact, it could be inhomogeneous and anisotropic, especially in tectonic areas. 

While this issue deserves a future investigation, results in this research are not 

affected by this assumption because the residual signal (1.5 - 2.0 mm/yr at most) 

is a small fraction of the observed vertical rates of 12 mm/yr. 
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Chapter Two: Vertical datum problem and 

dynamic geoid 

 

 

 

This chapter introduces and discusses the vertical datum problem in the context of the time-

dependent gravity field and heights. Because glacial isostatic adjustment (GIA) is the 

dominant signal in the temporal variations of the geoid and heights in North America (see 

e.g., Sella et al., 2007), the forward and inverse GIA modelling is presented briefly. It is 

shown that depending on the variations of the mantle viscosity profile, a wide range of 

geoid rates can be predicted. The significant deviations of the model predictions have 

further strengthened the idea to optimally combine the available geodetic constraints for 

empirical modelling of the rates of change of the geoid. For this purpose, the necessary 

theoretical relationships among the temporal variations of the ellipsoidal, orthometric, and 

geoid heights are established. In addition, a critical review of the available geodetic data in 

North America, data accuracy, and modelling approaches is presented. 

2.1 Geoid as a vertical datum for orthometric heights 

This section deals with the geoid as a vertical datum for orthometric heights. Two 

definitions for vertical datum are presented namely, the geodetic “Gauss-Listing” and the 

boundary value problem definitions, together with various options for realization of the 

vertical datum. The inconsistencies among ellipsoidal, orthometric, and geoid heights are 

discussed briefly. The contribution of the geodynamic phenomena to the vertical datum 

problem is discussed at the end of this section. 
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2.1.1 Definition and realization of the vertical datum 

The vertical (height) datum is defined as “the coordinate surface to which heights, taken as 

vertical coordinates of points, are referred” (Vaníček, 1991). There exist three different 

types of vertical datum: 

1. the geoid, an equipotential surface of the Earth gravity field, is a reference surface 

for orthometric heights; 

2. the quasi-geoid, not an equipotential surface (except over the oceans), is a local 

reference surface for normal heights; and  

3. the reference ellipsoid, a simple mathematical surface, is a reference surface for 

ellipsoidal (geodetic) heights. 

The vertical datum (vertical reference surface) and the gravity related heights adopted for a 

country or a region form the height system. 

The geoid can be defined by means of different approaches extensively described by Heck 

and Rummel (1989). Two of the definitions related to the objectives of this thesis are 

introduced in the following section. 

Geodetic “Gauss-Listing” definition 

The geodetic “Gauss-Listing” definition of the geoid leads to a levelling-based vertical 

datum. The geoid is the particular equipotential surface of the gravity field that coincides 

with the mean sea level (MSL). Traditionally, MSL is computed by averaging tide gauge 

records of sea level variations over a sufficiently long time period to define a conventional 

“zero” (origin at the geoid). Orthometric heights are then determined and propagated by 

spirit levelling starting at the datum origin(s) to establish a vertical control network through 

which the vertical datum is accessible (Vaníček and Krakiwsky, 1986). 

This definition of the vertical datum disregards the fact that the MSL is not an equipotential 

surface of the gravity field. Besides the short-period variations that can be filtered out from 

the measurements of the instantaneous sea level, there exist water variations originating 

from density changes, currents, and low frequency changes from atmospheric forcing and 

wind. In addition, large scale water oscillations due to seasonal solar heating, deviations of 
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the long-period tides from the equilibrium state, and sea level rise are present. All these 

effects characterize MSL as a quasi-stationary surface that is in departure from the geoid by 

values of 1 to 2 m. The difference between MSL and the geoid is called mean dynamic sea 

surface topography (MSST), which is determined by oceanographic methods and/or 

combining satellite altimetry sea level data, tide gauge records, and geoid models. If the 

geopotential of MSST at the datum origin is not accounted for, the orthometric heights will 

be biased with respect to the geoid. For countries of a continental scale, the vertical datum 

was traditionally realized by fixing the height of the mean sea level at several tide gauges to 

zero. For example, the CGVD28 is constrained to the mean sea level at five tide gauges on 

the Atlantic and Pacific coasts (e.g., Véronneau, 2001). As a consequence, the vertical 

reference surface is not an equipotential surface and may be subject to large distortions 

(Kearsley et al., 1993).  

Boundary value problem (BVP) definition  

The boundary value problem provides the theoretical framework for computing the geoid, 

and, as a result, a geoid-based vertical datum can be defined. The geoid is found from the 

solution of the global, single boundary value problem (BVP), which, in spherical 

approximation, is defined as follows (Heiskanen and Moritz, 1967): 
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The anomalous potential T is defined as the difference between the geopotential W and the 

normal gravity potential U of a reference ellipsoid, i.e., T W U= − . The anomalous 

potential is a harmonic function outside the boundary surface (geoid). On the geoid, gravity 

anomalies g g γ∆ = −  (g is the gravity at the geoid and γ  is the normal gravity at the 

ellipsoid) are corrected for the vertical datum parameter o oW W U∆ = − , where oW  is the 

potential of the geoid and oU  is the potential at the ellipsoid. In Eq. (2.1), R is a mean 

radius of the Earth and / r∂ ∂  is the radial derivative at the sphere with a radius R. 

The geoid height (undulation), N, is computed using the Stokes integral as follows: 
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where ( )S ψ  is the Stokes kernel, ψ  is the spherical distance, and dσ  is the surface 

element of the sphere. oN  is the shift of the geoid with respect to the level surface for 

which o oW U=  and is expressed as follows: 
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where G is the gravitational constant, and Mδ  is the difference of the masses of the geoid 

and ellipsoid. Usually 0M =δ  is assumed. This condition reads as follows: the zero degree 

harmonic of the anomalous potential has a vanishing at infinity zero degree harmonic, i.e., 

oo 0T → , when ∞→r . Under this condition, the vertical datum parameter W∆  is 

expressed as 
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∆ = ∆ = ∆∫∫ ,                (2.4) 

where oog∆  is the zero degree gravity anomaly.  

The global single BVP is classified as a single vertical (height) datum problem (Sansó and 

Venuti, 2002). Because the integral in Eq. (2.4)  cannot be evaluated, W∆  is assumed zero. 

Vertical datum realization  

Several options for vertical datum realization exist (see e.g., Vaníček, 1991 and Kearsley et 

al., 1993) and are summarized as follows:  

1. The vertical datum that is constrained to (i) one tide gauge for which an accurate model 

for MSST is available. The reference surface will be equipotential and biased with 

respect to the geoid, however, unification in a global vertical datum is possible; (ii) 

several tide gauges with modelled MSST. The reference surface will be distorted by 

possible errors of MSST models; (iii) a weighted mean of a set of tide gauges, but MSL 

at the different tide gauges will have orthometric heights different from zero. 
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2. The vertical datum that is constrained to an independent GPS station or a SLR site with 

an accurately estimated orthometric height as a difference between the ellipsoidal and 

geoid heights. At that fundamental benchmark, the vertical reference surface will 

coincide with the geoid. The orthometric heights can be propagated by GNSS levelling; 

however, due to errors in the geoid model and limitations in the accuracy of ellipsoidal 

heights, the orthometric heights will deviate from their true values. For large countries, 

such a realization is impossible and the vertical datum can be constrained to several 

fundamental benchmarks by a combined adjustment of ellipsoidal, orthometric, and 

geoid heights. This approach is followed by Fotopoulos (2003 and 2004) who also 

includes sea surface topography at tide gauges in the adjustment model. 

3. The vertical datum is defined as a world height system by assuming that o oW U=  and 

realized by the potential of one tide gauge as in option 1. An example of such a 

realization is EVRS2000 (Ihde and Augath, 2001). 

2.1.2 Definition of orthometric and ellipsoidal heights 

Orthometric height is defined as the distance along the plumb line between the point P on 

the topographic surface of the Earth and the geoid; it is computed as follows: 

P
P

P

C
H

g
= ,                 (2.5) 

where CP is the geopotential number and Pg  is the mean gravity along the plumb line at the 

point P. Since the crustal density is known only approximately, the computation of the 

mean gravity is based on assumptions. Therefore, orthometric heights are also 

approximately known. The geopotential number is defined as the difference between the 

constant potential of the geoid and the potential at the point P as follows: 

P o PC W W= − .                 (2.6) 

The geopotential number can be computed by means of the integral  
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o

P

P

P

C gdH= ∫ ,                   (2.7) 

where dH  is the distance between every two equipotential surfaces measured along the 

plumb line between the point P on the topographic surface and oP  on the geoid, and g is 

gravity for that increment. The integral is evaluated by the sum of the products of the 

differential height in∆  and gravity ig  for small sections (between two rods) i along the 

levelling line as follows:  

P
1

n

i i
i

C g n
=

= ∆∑ .                 (2.8) 

Ellipsoidal height, h, is defined as the distance between the point P and the surface of the 

reference ellipsoid measured along the outer normal to the ellipsoid. The ellipsoidal height 

can be obtained by space-borne positioning techniques, including satellite laser ranging 

(SLR), very long baseline interferometry (VLBI), and GNSS (Seeber, 2003). 

2.1.3 Relationship of ellipsoidal, orthometric, and geoid heights 

The geometric relation of the ellipsoidal, geoid, and orthometric heights is illustrated in 

Figure 2.1. The small angle between the normal to the ellipsoid and the plumb line (the 

deflection of the vertical) at the point P is ignored and the following relationship along the 

normal to the ellipsoid holds (Heiskanen and Moritz, 1967): 

0h N H− − = .               (2.9a) 

The relationship  

H h N= −                (2.9b) 

represents the basic idea of GNSS/levelling. The orthometric height can be computed by 

differencing the ellipsoidal height and the geoid height at any point at the topographic 

surface. For practical purposes, this relationship is given as follows: 

H h N∆ = ∆ − ∆ ,              (2.9c) 
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where h∆  is the ellipsoidal height difference, H∆  is the orthometric height difference, and 

N∆  is the geoid height difference. 
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Figure 2.1: Relation between ellipsoidal, orthometric, and geoid heights. 

 

The link between the traditional levelling-based vertical datum and the geoid is realized by 

means of GNSS positioning at the benchmarks of the vertical control network. 

Discrepancies among ellipsoidal, orthometric, and geoid heights are usually greater than the 

measurement and computational accuracy imply. Apart from the conceptually different 

definitions of the geoid given in Section 2.1.1, other important factors (see Figure 2.2) are 

horizontal datum inconsistencies of the geoid and ellipsoidal heights, systematic errors in 

the levelling network, and limitations in the measurement accuracy of the vertical 

component by GNSS (Kotsakis and Sideris, 1999). The geoid model may contain long-

wavelength errors inherited from the geopotential model as well as short-wavelength errors 

from the digital terrain models employed (see Section 7.2). Also, biases present in gravity 
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anomalies as a result of gravity, vertical, and horizontal datum inconsistencies in addition 

to systematic distortions and short-wavelength errors caused by theoretical assumptions in 

the computation of the vertical gravity gradient may affect the geoid (Heck, 1990; 

Featherstone, 1995). 
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Figure 2.2: Factors contributing to the discrepancies among ellipsoidal, orthometric, and 

geoid heights. 

 

Due to the combined effect of all of the factors, Eq. (2.9a)  can be rewritten as follows: 

P P P Ph N H l− − = ,               (2.10) 

where Pl  is the height misclosure at the benchmark P of the levelling network. 

As shown in Figure 2.2, the geodynamic phenomena comprise one of the causes of height 

misclosures through the temporal changes of ellipsoidal, orthometric, and geoid heights. 

The secular glacial isostatic adjustment of the Earth’s potential and crust dominates the 

temporal changes of the geoid and heights in North America. Therefore, GIA modelling is 

presented in the following section. 
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2.2 Glacial isostatic adjustment 

This section starts with a description of the sea level equation that explains the interaction 

of the solid Earth and its gravitational potential with the ice and water load throughout the 

ice accumulation and melting during the ice age cycles. The section continues with an 

overview of the ice models in use and inferences of mantle viscosity in the studies that 

involve inversion of geological and geodetic data in the Hudson Bay region. This is 

followed by a description of the GIA simulation outputs used for validation of the empirical 

models developed in this thesis by means of an optimal combination of geodetic data. 

2.2.1 Forward problem 

The theory of glacial isostatic adjustment, or postglacial rebound (PGR), predicts the 

gravitational response of a viscoelastic Earth body to the surface ice load. Usually, the 

Earth’s rheology is assumed Maxwell for which a linear relation between stress and strain 

exists. According to the normal mode theory (Peltier, 1974; Wu and Peltier, 1982), the 

solution of the field equations of Newton’s law of momentum conservation and the Poisson 

equation is obtained by the “correspondence principle” (Cathles, 1975) from the solution of 

the equivalent elastic problem in the Laplace transform domain. Spherical harmonic 

expansions of the field equations and boundary conditions lead to a system of first order 

differential equations, from the solution of which the impulse response Green functions are 

obtained. Multiplication with the ice load spectrum results in a spectral solution that is 

transformed to the space-time domain. The outputs of the described “forward modelling” 

are relative sea level changes, radial and horizontal displacements, geoid and gravity 

changes and their rates. 

The geoid changes are caused by change in ice/water load and internal mass redistributions 

from the viscoelastic response of the Earth body to the change in the load. Therefore, the 

relationship among changes in the sea level, the geoid, and the solid Earth is treated in a 

“gravitationally self-consistent” manner by solving the so-called “sea level equation” 

(Farrell and Clark, 1976; Peltier et al., 1978). The “gravitational self-consistency” implies 

that the calculated ocean surface (which is an equipotential surface of the perturbed gravity 
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field, i.e., the geoid) is consistent with the internal and external mass redistributions. The 

basic form of the sea level equation is as follows: 

( , , ) ( , , )[ ( , , ) ( , , )]S t O t G t R tθ λ θ λ θ λ θ λ= −% % ,           (2.11) 

where S is the relative sea level (RSL) with respect to the perturbed geoid, G%  and R%  are 

the perturbations of the geoid and radius of the solid Earth, respectively, and O  is the ocean 

function; andθ λ  are the geocentric co-latitude and longitude, respectively, and t is the 

time epoch. To the first order perturbation, the sea level equation is the space-time 

convolution (see, e.g., Mitrovica and Peltier, 1991): 

( , ) ( )
( , , ) ( , , ) ( , , )[ ( , )]

Lt
L

a a

t t t
S t O t dt d L t t t

g gσ

ψ
δ θ λ θ λ σ θ λ ψ

−∞

 ′Φ − ∆Φ 
′ ′ ′ ′ ′= − Γ − +∫ ∫∫ 

  

% ,   (2.12) 

where L%  is the time-dependent load convolved with the viscoelastic surface load Green 

functions for the potential perturbation ( , )L
tψΦ  and the radial displacement ( , )L

tψΓ . The 

last term ( ) / at g∆Φ  in Eq. (2.12)  is the time-dependent mass conservation term. It includes 

the contribution of the eustatic sea level rise from the disintegration of the ice sheets.  

Since the unknown sea level is a part of the load 

( , , ) ( , , ) ( , , )I WL t I t S tϕ λ ρ δ ϕ λ ρ δ ϕ λ= +% ,           (2.13) 

the sea level equation is solved iteratively. In this equation, Iδ  and Sδ  are changes in the 

ice thickness and relative sea level, and Iρ  and Wρ  are the densities of the ice and water, 

respectively.  

The so-called “pseudo-spectral algorithm” (Mitrovica and Peltier, 1991) is currently widely 

applied to solve the sea level equation. The improvements of the original Farrell and Clark 

theory include (i) the effect of the changing rotational potential due to GIA on the sea level 

(e.g., Milne and Mitrovica, 1998), (ii) the “near-field hydro-isostasy” (Milne et al., 1999), 

and (iii) a time-dependent coast line (Peltier, 1994). 
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2.2.2 Inverse problem 

The pattern and amplitude of the GIA model outputs depend on the radially and laterally 

stratified viscoelastic model of the Earth and the ice model adopted. The two model inputs 

are interrelated; in principle, this requires iterative inferences based on geological and 

geodetic constraints. In the so-called “inverse modelling”, one model is assumed to 

represent the truth while inferring either the ice model or the viscosity structure of the 

mantle (e.g., Peltier, 1998). For example, if the ice de-glaciation history is to be modelled, 

the assumed viscosity profile is kept unchanged while the ice history is modified until the 

required fit with the data is found. Then, based on the inferred ice model, the viscosity 

profile can be improved. In the following section, a short review of the ice models and the 

inferred viscosity profiles is presented with an emphasis on those obtained from data 

constraints in North America. The Earth is assumed radially symmetric, self-gravitating and 

viscoelastic, with density stratification and elastic parameters according to PREM 

(Dziewonski and Anderson, 1981).  

Ice models  

The ICE-3G model of Tushingam and Peltier (1991) has been widely used in postglacial 

rebound studies. It is constrained by RSL histories and is accepted to be independent of 

geodetic constraints. The following assumptions hold: (i) the last glacial maximum (LGM) 

was 18,000 years before present; (ii) the Laurentide ice sheet was melting fastest 9,000 

years before present; (iii) a time discretization of 1,000 years is assumed; and (iv) a 

constant ocean function is used. The ICE-3G model was constructed based on the following 

viscosity profile: a lithosphere thickness of 120 km, an upper mantle viscosity of 1×1021 

Pa s⋅ , and a lower mantle viscosity of 2×1021 Pa s⋅ , which is inferred by the ICE2 model of 

Wu and Peltier (1983). 

The ice thickness of Peltier’s ICE-4G model (1994, 1996) also is derived by inverting 

postglacial RSL histories with new 14C calibration. A simple viscosity profile was used as 

follows: a lithosphere thickness of 120.6 km, an upper mantle, a transition zone with 
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viscosity of 1021 Pa s⋅ , and a lower mantle viscosity of 2×1021 Pa s⋅ . In difference with the 

ICE-3G model, a time- dependent ocean function was used.  

The ICE-5G model (ibid.) is the latest ice sheet model in use. The main difference in 

geometry from its predecessors is the multi-dome structure of the Laurentide ice sheet 

complex, which has been debatable for a long time. The early reconstructions of the ice 

sheet complex account for a multidome structure with ice domes located over Keewatin and 

northern Quebec (Tushingam and Peltier, 1991). These are replaced by a one-dome ice 

sheet in the ICE-3G and ICE-4G models. The newest ICE-5G model returns to the 

multidome structure and includes a very thick and large dome over Keewatin, centered 

close to Yellowknife, a smaller dome in southeastern Hudson Bay, and a third dome in the 

Foxe basin (Peltier, 2004). Another important difference is the much smaller ice thickness 

over Hudson Bay compared to the ICE-4G model due to the fast flow of ice through the 

Hudson Bay Strait. The ICE-5G (VM2) model simultaneously fits a large set of RSL 

histories, a VLBI vertical displacement rate over Yellowknife, and the gravity rates along 

the traverse of the North American Mid-continental tilt project (Section 2.4.2). 

Inferences of mantle viscosity 

Traditionally, the inferencies of the mantle viscosity are based on an inversion of RSL 

histories. The optimal viscosity values are obtained from the best fit to the RSL time 

curves. In North America, the negative free-air gravity anomaly, believed to indicate the 

remaining isostatic compensation of the Earth (Peltier and Wu, 1982), was also used to 

constrain the longer wavelengths of the GIA deformation. Using the conventional two-layer  

parameterization of the mantle with a discontinuity at the 670 km depth, Peltier and 

Andrews (1983) inferred upper and lower mantle viscosities of 1×1021 and (1-3)×1021 Pa s⋅ , 

respectively. Using only RSL histories, Nakada and Lambeck (1991) obtained estimates of 

(0.4-0.6)×1021 Pa s⋅  and (20-50)×1021 Pa s⋅ , respectively. In the Han and Wahr (1995) 

study, the best fit to both RSL histories and gravity anomaly is obtained for an upper 

mantle viscosity of (0.6-1.0) ×1021 Pa s⋅  and a lower mantle viscosity of (30-50)×1021 Pa s⋅ . 

As Mitrovica (1997) and Simons and Hager (1997) argued, the gravity low is partially 
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related to the mantle convection. From the joint inversion of mantle convection and GIA 

data (including the RSL histories in Hudson Bay), Mitrovica and Forte (2004) showed that 

the mantle profile exhibits a three orders of magnitude increase from the upper mantle with 

a mean viscosity value of 4×1020 Pa s⋅  to a high viscosity peak of 1023 Pa s⋅  located at the 

2000 km depth. Further studies showed that the postglacial RSL data in North America 

cannot be fitted simultaneously by a single Earth model within their uncertanties; see, e.g., 

(Mitrovica and Peltier, 1995) and (Cianetti et al., 2002). Recently, from a joint inversion of 

RSL data in the Hudson Bay region, the present-day relative sea level from the tide gauge 

record at Churchill, the absolute vertical displacement, and the rate of change of the 

terrestrial gravity at the same site, and using the ICE-3G model, Wolf  et al. (2006) 

obtained estimates of 3.2×1020 Pa s⋅  for the upper mantle viscosity and 1.6×1022 Pa s⋅  for 

the lower mantle viscosity. The authors pointed out that lower mantle viscosities larger than 

5×1021 Pa s⋅  are also supported by the data constraints. 

The review of the ice models and mantle viscosity profiles demonstrates that large 

variations in the input models exist, which presupposes large variations in the spatial 

pattern and amplitude of the simulation outputs. Figure 2.3 shows the range of the predicted 

rates of change of the geoid height in Laurentide using different viscosity profiles and the 

ICE-4G model (van der Wal et al., 2006). The geoid rate varies significantly with the 

mantle viscosity profile adopted. The highest amplitudes are obtained for an upper mantle 

viscosity of 0.7×1021 Pa s⋅  and a lower mantle viscosity of 20×1021 Pa s⋅ , while the lowest 

geoid rate is predicted by 0.4×1021 Pa s⋅  and 2-4×1021 Pa s⋅  (close to the VM2 values of 

Peltier (2004)), respectively. The rates of the geoid height will be used for validation of the 

empirical models in Chapter 4 computed by means of terrestrial geodetic data. 

The outputs from postglacial rebound simulations used in this thesis are obtained with a 

radially symmetric, incompressible Earth model using the pseudo-spectral algorithm to 

solve the sea level equation. Recent advances in GIA modelling account for lithospheric 

and upper mantle lateral variations; see, e.g., Latychev et al. (2005), Spada et al. (2006), 

and Wang and Wu (2006). 
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Figure 2.3: Rate of change of the geoid height as a function of viscosity for a spherically 

symmetric incompressible Earth and the ICE-4G model (see text).    

2.3 Relationship of temporal changes of ellipsoidal, orthometric, and geoid heights 

In this section, the basic concepts of the temporal changes of the geoid and heights are 

introduced. No assumptions regarding the spatial scale (global, regional, or local) and the 

processes (elastic or viscoelastic) responsible for the temporal changes in the gravity field 

and vertical crustal displacement are made. 

In Figure 2.4, a point P on the topographic surface of the Earth is positioned in an Earth 

fixed coordinate system through a vector Pr  (Biró, 1983 and Biró et al., 1986). The point P 

can be a collocated GPS station and an absolute gravity site. It is assumed that the GPS 

positions and gravity are corrected for ocean loading, solid Earth tides, pole tide, rotational 

deformation due to polar motion, as well as atmospheric loading (IERS conventions 2003; 

Boedecker, 1991). In addition, gravity is corrected for soil moisture and variations of the 

local ground water table. The soil moisture correction applies to the GPS positions also. 

The permanent tidal component will be discussed later in this section; for now it is assumed 

that there is consistency between the geoid and the crust, being a zero tidal geoid and crust. 

It is assumed that secular geodynamic, tectonic, and episodic processes are superimposed 

and affect the gravity field and crust.  
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Figure 2.4: Temporal changes of the gravity field and heights at a point P of the 

topographic surface (adopted after Biró et al., 1986). 

 

The equipotential surface through the point P at the time epoch t is given by PW W= . It is 

assumed that at epoch t t tδ′ = +  the geopotential changes by the constant value Wδ  so that 

the equipotential surfaces of the new gravity field are defined by the equation 

W W Wδ′ = + . The surface PW W=  is displaced to its new position through the point Po, 

for which the change in geopotential can be expressed by a Taylor expansion including 

only linear terms as follows (Moritz, 1980, p. 340): 

o oo oP P P P( grad )W W W W W Wδ δ δ′= − = − + = −r g r ,          (2.14) 

where T ( , , )x y zW W W=g  and T
o o o o( , , )

x y z
r r r=r  in a topocentric coordinate system xyz at 

the point P. 

From Eq. (2.14) , with o0, , and
zx y zW W W g r Nδ δ= = = − = , it follows that the 

displacement of the equipotential surface is the change in the geoid height 
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a

W
N

g

δ
δ = ,               (2.15) 

where, without loss of accuracy, g is substituted by the average gravity ag . 

Let T ( , , )x y zr r rδ δ δδ =r  define the new position of the station at the point P′ in the 

topocentric coordinate system of the point P. The difference 

P P

a a

W W W
H

g g

δ
δ ′′ ′ ′−

= =              (2.16) 

is the relative (levelled) change in the position of P with respect to the displaced geoid and 

represents the change in the orthometric height. 

The change in the gravity vector at P′ can be expressed as follows: 

P P grad Wδ′ ′′ = +g g .              (2.17) 

At epoch t, the gravity vector at the point P′ can be obtained from the gravity vector at the 

point P as 

P P P(grad ) δ′ = +g g g r ,                 (2.18) 

with the tensor of the second order derivatives of the gravity potential (Moritz, 1980, p.235) 

xx xy xz

yx yy yz

zx zy zz

W W W

grad W W W

W W W

 
 

=  
 
  

g .             (2.19) 

With Eqs. (2.17), (2.18), and (2.19) , the change in the gravity vector, 

T ( , , )x y zg g gδ δ δ δ=g , is expressed as follows: 

P P grad grad Wδ δ δ′′= − = +g g g g r .            (2.20) 

An absolute gravimeter located at P measures the vertical component of gravity. Therefore, 

the change in gravity in the vicinity of the point P is 



 
 

 

25 

z zx x zy y zz z

W
g g W r W r W r

z

δ
δ δ δ δ δ

∂
= = + + +

∂
.          (2.21) 

If the horizontal gravity gradients are assumed equal to zero, i.e., 0zx zyW W= = , Eq. (2.21)  

is further simplified to 

z

g W
g r

z z

δ
δ δ

∂ ∂
= +

∂ ∂
.                  (2.22) 

Eq. (2.22)  shows that the change in gravity at the point P is a sum of two components, 

namely, a change due to the absolute vertical displacement of the point and a change due to 

the redistributed masses. In this thesis, the measured change in gravity on the topographic 

surface will be called change in the terrestrial gravity, while the mass component will be 

called change in gravity. 

From Figure 2.4, the absolute vertical displacement of the point P, hδ , is determined as 

follows: 

h N Hδ δ δ= + .            (2.23a) 

Provided that the change in the geoid height is modelled, the levelled vertical displacement 

can be determined by measuring the absolute vertical displacement by means of GPS and 

using Eq. (2.23a)  as follows: 

H h Nδ δ δ= − .            (2.23b) 

Analogously, the following relation can be written for the rates of change of the ellipsoidal, 

orthometric, and geoid heights: 

H h N= −&& & .             (2.23c) 

As in Section 2.1.3, the deflection of the vertical at the point P has been neglected. 

In the discussion above, it has been assumed that the terrestrial gravity, geoid, and absolute 

and levelled crustal displacement refer to a zero tidal system. Under the luni-solar tidal 

forces, an elastic Earth’s body experiences a change in potential that consists of a direct 

attraction component, a deformation part, and change in potential due to the vertical shift of 

the crust (Torge, 2001). The tidal potential contains a time dependent (periodic) component 
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and a time independent (permanent) component called a permanent tidal potential. A point 

P on the topographic surface undergoes permanent displacement (called permanent crustal 

deformation) as a result of the permanent tide. Three different concepts exist regarding the 

tidal components removed from the geodetic measurements (e.g., Ekman, 1989; Poutanen 

et al., 1996; Sun and Sjöberg, 2001). The measurements refer to a non-tidal geoid and crust 

if they are corrected for the total tidal potential and displacement including the periodic and 

permanent tide; the measurements refer to a mean tidal geoid and crust if the permanent 

tidal potential and deformation are restored; and the measurements refer to a zero tidal 

geoid if the permanent tidal potential is removed but the permanent tidal deformation is 

included. The zero and mean crusts are identical because the Earth’s crust is not affected by 

the permanent tidal potential. 

The consistency with respect to the permanent tidal correction is important when secular 

vertical displacements are estimated from measurements of different time epochs. A typical 

example is the levelled postglacial uplift/subsidence derived from precise levellings with 

different epochs (Ekman, 1989). Also, if different data sets are combined in a least-squares 

adjustment procedure, the consistency of the tidal corrections should be ensured. If this is 

not the case, systematic errors larger than the standard error of the vertical crustal 

displacement can introduce distortions (of a north-south orientation) in the estimated 

displacements (ibid.). However, if rates of change derived independently from different 

data sets are compared, provided that the permanent tide is treated consistently within each 

data set, the rates are free from distortions. 

Inconsistencies among the tidal corrections for gravity, geoid height, and orthometric 

height can introduce large systematic distortions in the vertical datum. The local oW  value 

is affected both by the change in the potential of the geoid and the crustal displacement of 

the fundamental benchmark of the vertical datum. Practical aspects of this problem are 

discussed by Jekeli (2000). Using an example for the Nordic countries, Ekman (1989) has 

shown that the permanent tide can introduce a decimetre error in the orthometric height 

differences obtained by means of GPS positioning and a geoid model. In addition, the 

systematic errors in gravity and heights due to the inconsistencies of the tidal corrections 

may propagate into the geoid model through the gravity corrections. Therefore, if the 
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vertical datum is defined by means of a geoid model and accessed at the fundamental 

benchmarks, it is important that the ellipsoidal, orthometric, and geoid heights refer to the 

same tidal system. 

2.4 Geodetic constraints on geodynamic, tectonic, and other processes in North 

America 

This section presents a review of the existing geodetic data constraints on the GIA signal 

and other local processes in North America. It starts with the rates of change of the geoid 

height estimated from an analysis of GRACE time series of geopotential and proceeds with 

terrestrial measurements including rates of the terrestrial gravity from absolute gravimetry, 

absolute vertical displacement from GPS measurements and from combining tide gauge 

records and satellite altimetry sea level data, relative vertical displacements and tilts from 

precise re-levelling data, and estimates of the gravity-to-height ratio. The emphasis is on 

the accuracy with which different geodetic techniques provide measurements of the time-

dependent heights, gravity, and geoid. This is a necessary step towards the optimal 

combination of the heterogeneous geodetic observations in Chapters 4, 5, and 6.    

2.4.1 GRACE-observed temporal changes of the gravity field  

GRACE provides maps of large scale gravity field variations that are homogeneous both in 

space and time and are independent of crustal displacements. “Static” gravity field 

solutions averaged over approximately one month are used to construct time series of the 

change in the geoid height analyzed subsequently in order to estimate seasonal, annual, 

inter-annual, and long-term variability. Each GRACE solution is relative to the background 

models of the mean gravity field and the de-aliasing models of short-term variability of the 

atmosphere and oceans employed in the processing of the GRACE measurements (see, 

Tapley et al., 2005). Thus, the time series of the monthly gravity field solutions contain (i) 

unmodelled geophysical signals over the continents and oceans and mass variations in the 

Earth’s interior, (ii) aliased errors in the long-period variations of the atmosphere and ocean 

models, and (iii) errors of the GRACE measurements and data processing strategies. 
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Estimates of the GRACE gravity field errors are provided in the form of calibrated standard 

deviations of the geopotential coefficients for every month. 

GRACE observes changes in gravity that are integrated in a vertical column and spatially 

averaged at distances of hundreds to thousands of kilometres. A separation of the gravity 

signal from different sources is impossible without a priori information available in terms 

of models of mass variability (see, e.g., Ramillien et al., 2004 and 2005). As shown by 

Rangelova et al. (2007a), in the previously glaciated areas in North America, the GIA 

signal can interfere with the hydrology model variability, which, over the duration of the 

GRACE time series, appears as a trend. Thus, to estimate the GIA geoid rate, the hydrology 

signal from the available continental water storage models should be removed. Conversely, 

the improvement of the same models relies on the knowledge gained from GRACE to 

constrain the GIA models. 

The true temporal change of the geoid height can be represented as follows: 

true GRACE commission

omission leakage

( , , ) ( , , ) ( , , ) ...

( , , ) ( , , )

N t N t N t

N t N t

δ ϕ λ δ ϕ λ δ ϕ λ

δ ϕ λ δ ϕ λ

= + +

+ +
.            (2.24) 

The first term on the right hand side, i.e., GRACE( , , )N tδ ϕ λ , is the change in the geoid 

height with respect to the long-term mean (or the first epoch of the time series) computed 

with GRACE geopotential spherical harmonic (SH) coefficients lmC ( t )δ  and lmS ( t )δ  of 

maximum degree and order lmax as follows: 

maxGRACE

2 0
( , , ) (sin ) ( ) cos( ) ( )sin( )

l l

lm lm lm
l m

N t R P C t m S t mδ ϕ λ ϕ δ λ δ λ
= =

 = +∑ ∑   ,      (2.25)     

where R stands for the mean radius of the Earth, ϕ and λ are the latitude and longitude, 

respectively, and (sin )lmP ϕ  are the fully normalized Legendre functions. The second term 

in Eq. (2.24)  is the commission error commission( , , )N tδ ϕ λ  that is due to the noise present 

in the GRACE SH coefficients. The omission error omission( , , )N tδ ϕ λ  is due to the 

truncation of the geoid changes at the maximum spherical degree maxl .  
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The accuracy of the GRACE SH coefficients becomes worse with increasing the spherical 

degree. One way to decrease the effect of the GRACE error is to truncate the series in 

Eq. (2.25)  at a lower degree, which increases the omission error. Instead, the SH 

coefficients are weighted according to  

max

2 0
( , , ) (sin ) ( ) cos( ) ( )sin( )

l l

l lm lm lm
l m

N t R W P C t m S t mδ ϕ λ ϕ δ λ δ λ
= =

 = +∑ ∑   ,           (2.26) 

where lW  are the coefficients of an isotropic smoothing filter per degree. In fact, the geoid 

change is averaged within an area with a certain radius and the random errors cancel out. 

The geoid changes computed from the GRACE gravity field solutions exhibit significant 

spatial correlation evident as a north-south striping effect as shown by Chen et al. (2005a). 

This effect is attributable to the correlations of the even and odd order coefficients (taken as 

a function of degree) and is observed for the coefficients above degrees 5-8 (Swenson and 

Wahr, 2006). Different filtering techniques and their effect on the rate of change of the 

geoid height are discussed in Chapter 5. 

The last term leakage( , , )N tδ ϕ λ  in Eq. (2.24)  is the contribution of the signals outside of 

the area of interest that leak into the area because of the smoothing filter applied (e.g., 

Swenson and Wahr, 2002). The leakage error increases with the increase in the radius of 

the smoothing filter. For the Hudson Bay region, the signals of interest are the present-day 

melting of the Greenland ice sheet and Alaska glaciers as well as the ocean signal in 

Hudson Bay. According to van der Wal et al. (2007), the leakage of Greenland and Alaska 

signals is between -0.4 and -0.2 mm/yr for the northern areas of Hudson Bay for various 

decreasing smoothing radii. Another source of uncertainty is the sea level rise due to recent 

melting of polar ice sheets and mountain glaciers, which in Hudson Bay has a similar 

pattern to the GIA signal. According to Wahr and Davis (2002), in the presence of sea level 

rise, the GIA signal can be recovered with an error of approximately 5%. For rate of change 

of the geoid height of 1.5 mm/yr, the sea level error is less than 0.1 mm/yr.  
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2.4.2 Absolute and relative terrestrial gravimetry 

According to Groten and Becker (1995), the basic benefit from the terrestrial gravimetry, in 

combination with satellite or traditional surveying techniques, is “… in its “integrating 

effect”, which means that height and gravity changes together enable, at least in principle, 

the solution of a four-dimensional boundary value problem,…”. The “integrating” effect 

contains the local uplift or subsidence together with a local and/or regional potential change 

caused by mass redistributions in the Earth’s interior. 

The accuracy of the absolute gravity (AG) measurements is defined as the level of certainty 

with which measurements can be considered representative of the true (unknown) value of 

absolute gravity at the site (CIRES, 1993). According to Faller (2002), the present day level 

of accuracy approaches 1 µGal, which corresponds to accuracy of 3 mm of the measured 

height if there is no redistribution of masses. If a vertical crustal displacement and a mass 

redistribution are of interest, the absolute gravity measurements have to be corrected for all 

known geophysical signals and environmental noise including tides, periodic and non-

periodic ocean loading, atmospheric effects, ground water table, microseism. These 

corrections are based on models whose uncertainties can introduce in a single absolute 

gravity measurement errors of several µGal. For example, the uncertainty in the modelled 

ground water table can reach 10 µGal (CIRES, 1993). 

North American Mid-continent tilt project 

For the purpose of postglacial rebound studies, a traverse of absolute gravity stations 

collocated with continuously-operating GPS receivers has been established (e.g., Larson 

and van Dam, 2000; Lambert et al., 2001 and 2006). The traverse starts from an area of 

significant uplift on the west coast of the Hudson Bay and continues southward to the 

subsiding area southwest of the Great Lakes (see Figure 2.6). The reported accuracy of the 

estimated rate of change of the terrestrial gravity from 20 measurements within one decade 

at Churchill is approximately 0.1 µGal/yr (Lambert et al., 2006). A gravity-to-height ratio 

of 0.18 0.03− ±  µGal/mm has been obtained from a weighted least-squares fit to the ratio 

values computed for the four sites. The estimates of gravity rates and vertical crustal 
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displacements have been used in local improvements of the postglacial rebound models in 

the Nelson drainage basin (Lambert et al., 2005). 

Canadian Gravity Standardization Network 

The Canadian Gravity Standardization Network (CGSN) is designed to provide gravimetric 

control and to support geophysical exploration in Canada (Pagiatakis and Salib, 2003). The 

network is not optimally designed for geodynamics monitoring; nor are gravity 

observations regularly repeated in time. As a consequence, the relative gravity observations 

are not consistent in space and time; however, they span more than four decades, which 

allows for estimating the temporal changes in gravity. Five absolute gravity stations re-

observed at least three times provide constraints for the adjustment of the observed gravity 

differences. The covariance matrix of observations is obtained from a detailed analysis of 

the observation procedures assessing factors that include experience of the observer, means 

of transportation, vibrations (seismicity, traffic, transportation, etc.), atmosphere conditions 

(wind and temperature), quality of calibration, magnetic fields, and instrumental levelling 

biases (ibid.). CGSN consists of about 1500 primary and secondary gravity reference 

stations; 64 of them are classified as “primary gravity control” sites with rates of change of 

the terrestrial gravity parameterized in the least-squares adjustment model. The epoch of 

the adjustment is 2000.0. The estimated standard deviations of the rates vary from 0.06 to 

0.9 µGal /yr. 

2.4.3 Continuous and episodic GPS measurements 

GPS measurements have been used in postglacial rebound studies for approximately one 

decade. One of the earliest published results was obtained from the Permanent Finnish GPS 

Network for the time span of 1995 to 1999 (Mäkinen et al., 2000). The computed rates of 

change of the ellipsoidal height from weekly solutions relative to one station were 

compared to the levelled uplift computed from three levelling campaigns in Finland and 

corrected for the rates of change of the geoid. The derived slopes agreed at the 95% 

confidence level. In the BIFROST-related study, Johansson et al. (2002) provided 1.3 

mm/yr as a conservative estimate of the uncertainty in the vertical velocity component. A 
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large part of this value is due to correlated errors related to systematic errors in the satellite 

orbits and/or terrestrial reference frames. Other sources of errors include regionally 

correlated errors due to errors in the atmosphere and the ocean loading models and site-

specific errors (multipath, antenna phase center variations, and rapid snow accumulation). 

Stable North American Reference Frame (SNARF) 

GPS vertical velocities in North America have been provided in the Stable North American 

Reference Frame (SNARF) since 2005. SNARF is a selection of “datum sites” representing 

the tectonically stable interior of the North American plate that facilitates the derivation and 

geophysical interpretation of the relative crustal displacements along the North American-

Pacific plate boundary and the GIA signal (Blewitt et al., 2005). 

The North American Reference Frame (NAREF) is a densification of the ITRF using 

continuously operating GPS stations in Canada and the US. The station coordinates and 

their velocities are obtained from combining weekly solutions in a single multi-epoch 

solution. Accuracy of better than 1 mm/yr of the rate of the absolute vertical displacement 

is expected after accumulation of several years of data (ibid.). 

Canadian Base Network (CBN) 

The Canadian Base Network (CBN) provides velocity estimates by combining more than 

10 years of permanent and episodic GPS measurements and 36 individual solutions for the 

time period of 1994 to 2004 (Henton et al., 2006; personal communication Henton, 2006). 

The CBN is connected to ITRF2000.0 by aligning all regional solutions to the IGS stations. 

The vertical GPS velocities are obtained from a cumulative solution of the weighted 

regional solutions with single station constraints. The preliminary velocities have a spatial 

pattern and magnitude consistent with GIA model predictions for North America. The 

formal standard deviations of the CBN vertical velocities are between 0.1 and 5 mm/yr. 
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2.4.4 Combination of tide gauge records and satellite altimetry data 

Long-term tide gauge records of sea level (more than 60 years continuous recording is 

required; see Douglas, 2001) provide estimates of the vertical crustal displacement (with 

respect to the sea level) in the de-glaciated areas of Fennoscandia and North America. 

Using water levels of 55 tide gauges, Mainville and Craymer (2005) have determined the 

postglacial rebound tilting of the crust in the Great Lakes region. Being attached to the 

deformable crust, tide gauges measure the sea/water level relative to the crust. As shown by 

Kuo (2006), the change in sea level is characterized by significant geographical variations 

caused by the steric (salinity and heat) component, the water mass redistribution of the 

present-day glaciers and polar ice sheets melting as a result of the self-gravitation of the 

ocean, and the change in the geoid due to GIA. In the following, the rate of change of sea 

level from both steric and mass redistribution signals is denoted by Pζ& , while the rate of 

change of geoid is PN& .  

The negative of the change in the relative sea level is a measure for the so-called apparent 

vertical crustal displacement (Ekman, 1989). The rate of the apparent displacement at point 

P, a
PH& , corrected for the rate of change of sea level gives the rate of the levelled 

displacement PH&  with respect to the geoid, i.e., 

a
P P PH H ζ= + && & .              (2.27) 

The rate of the absolute vertical displacement Ph&  is obtained after the rate of change of the 

geoid is added in Eq. (2.27)  as follows: 

 a
P P P Ph H Nζ= + +& && & .              (2.28) 

In order to estimate the absolute vertical displacement, the height of the sea level at (at 

least) one tide gauge must be accurately determined in a geocentric reference frame by GPS 

measurements. Then, using precise re-levelling data and the rate of change of the geoid, the 

absolute vertical displacement can be obtained at all tide gauges. An alternative approach 

involves extrapolation of the absolute sea surface level measured by satellite altimetry to 
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the tide gauge locations. Under the assumption that the altimeter and tide gauge measure 

the same sea level signal, the absolute vertical crustal displacement is obtained by 

differencing the rate of change of the absolute sea level, Ps& , and the rate of change of the 

relative sea level, a
P( )H− & , at the tide gauge location as follows (see Figure 2.5): 

a a
P P P P P P( )h s H N Hζ= − − = + +& && & && .            (2.29) 

For implementations of this approach, the reader can refer to Cazenave et al., (1999), Clark 

et al., (2000), Lin (2000), Nerem and Mitchum (2002), Shum et al., (2002), Kuo et al., 

(2004), and Jekeli and Dumrongchai (2003). Kuo (2006) has developed algorithms based 

on a Gauss-Markov model with stochastic constraints for estimating rates of postglacial 

uplift/subsidence in the Baltic Sea and Great Lakes regions as well as a post-seismic non-

linear vertical deformation in the tectonically active regions such as the Alaska region.   
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Figure 2.5: Relationship between the apparent and levelled crustal displacement and the 

changes in the geoid and sea level. 
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The uncertainties of the estimated vertical displacement rates depend mainly on the 

accuracy with which tide gauges and satellite altimetry measure the sea level, the errors 

with which the sea level is extrapolated, and the presence of sea level currents along the 

coast and river discharge that can affect the tide gauge records. Factors responsible for 

systematic effects in tide gauge sea level records are the instrumental drift, atmospheric 

pressure variations, temporal variations of sea currents, long-period components of wind 

stress, thermohaline changes, river discharge fluctuations, bathymetry configuration, 

glacio-eustasy (generally defined by the loss and gain of water related to glaciers), and 

shelf subsidence due to oceanic lithosphere cooling and sediment/water loading. The 

accuracy of the altimetric measurements depends on orbital errors, altimeter drift and lag, 

sea state bias, troposphere refraction, ionosphere effects, and atmosphere pressure loading. 

2.4.5 Precise re-levelling 

Repeated precise levelling provides relative vertical displacement rates and tilts from re-

levelled primary control networks in the territories experiencing crustal uplift or 

subsidence. Examples exist in a series of maps of the contemporary postglacial uplift in 

Fennoscandia, including Ekman (1996), Kakkuri (1997), Mäkinen and Saaranen (1998), 

Danielsen (2001), and Vestøl (2006), among others. In contrast to Fennoscandia, where re-

levelled lines cover the whole uplifting territory, in North America, the territories with the 

largest uplift in the Hudson Bay region are not covered by a vertical control network. In the 

populated areas south of the Hudson Bay region, scattered in space and time re-levelling 

segments exist. Traditionally, vertical displacement rates are approximated by low degree 

bi-variate polynomials fitted to the re-levelled height differences and differences in the 

relative sea level at a set of tide gauges (Vaníček and Christodulidis, 1974; Vaníček and 

Nagy, 1981; Carrera et al., 1991). This approach has been adopted because of the poor 

quality of the levelling data for geodynamics studies in Canada as shown by Devaraju 

(2006). The accuracy of the vertical displacement rates modelled in these studies remains 

unknown. Based on the quality of the re-levelling data, it could be accepted that the errors 

are larger than the errors of the vertical displacement rates computed from the 

Fennoscandian primary levelling networks. According to Mäkinen and Saaranen (1998), 
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the accuracy of the relative vertical displacement rates is 0.15 mm/yr over distances of 50 

km (the distance of 1mm/yr tilt). 

2.4.6 Collocation of geodetic techniques 

Refinements of GIA models rely considerably on the geodetic constraints in North America 

since the Laurentide signal is the largest in magnitude and spatial scale. Sites that are 

spatially well distributed across Canada and the northern parts of the US are required to 

accurately sample the complex (due to the multi-dome structure of the North American ice 

sheet) GIA signal. In principle, collocated permanent GPS stations and absolute gravity 

sites can provide the required information in terms of rates of the absolute vertical 

displacement and rates of change of the terrestrial gravity. In addition, these sites can 

provide “ground-truth” for validation of the GRACE-observed geoid rates. 

The first step towards providing consistent in space and time information for constraining 

GIA models and validating GRACE-observed mass changes is undertaken in Fennoscandia. 

Across Norway, Sweden, Denmark, and Finland, thirty absolute gravity sites observed 

periodically by FG5 instruments are collocated with permanent GPS stations (Timmen et 

al., 2005). Currently, in North America, no information of this kind is available on a 

regional scale. Figure 2.6 shows the CGSN primary control sites, the CBN stations, and the 

primary control network in Canada. The figure depicts the irregularly distributed data 

mostly concentrated in the populated areas to the south of the Hudson Bay region. The 

CGSN sites are sparse, but as it will be demonstrated in Chapter 3, they are able to sample 

the characteristic wavelengths of the postglacial rebound signal. The GPS sites are 

clustered in the southern Canada with few exceptions to the north of the degree 60 parallel. 

The CGSN sites and the CBN stations are not collocated. In addition to the different 

topology, the measurements of the two networks have different time spans. Despite these 

deficiencies, the methodology proposed in Chapter 4 is tested based on the available rates 

of the terrestrial gravity and GPS velocities as the only alternative for Canada at present. 

The requirements for integrated in space and time gravity and vertical crustal displacement 

information has led to proposals for modernizing the CGSN. Absolute gravity 



 
 

 

37 

measurements will be collocated with CBN stations, thus providing not only data 

constraints for GIA modelling but also a basis for a new “gravity-based height system” 

(Henton et al., 2005). Preliminary results exist for northern Quebec, where absolute gravity 

sites collocated with a set of permanent CBN stations are established for the purpose of 

local studies of postglacial rebound (Henton et al., 2004). For the sake of completeness, the 

collocated networks for local geodynamic and tectonic studies in Canada are described, as 

well. In the northern Cascadia subduction zone, the “episodic tremor and slip” 

superimposed on the trends related to the convergence of North American and Juan de Fuca 

plates are studied by means of repeat gravity and permanent GPS measurements (Lambert 

et al., 2006). In southeastern Alaska, collocated absolute gravity and continuous GPS 

measurements (Miura et al., 2006) provide geodetic data for a refinement of the 

viscoelastic models of the “world’s fastest” isostatic uplifting of approximately 30 mm/yr 

as a response to the glacial retreat after the Little Ice Age (Larsen et al., 2004). 

 

CGSN sites

CBN stations

Mid-continent tilt project data

Levelling data
 

Figure 2.6: CGSN gravity rates, CBN vertical velocities, levelling data, and Mid-continent 

tilt project data. 
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Figure 2.7 summarizes the contemporary geodetic techniques that can serve the time- 

variable vertical datum through measuring the changes in ellipsoidal, orthometric, and 

geoid heights. Permanent and episodic GPS measurements, SLR and VLBI (Argus et al., 

1999), a combination of tide gauges and satellite altimetry (TGA) sea level measurements, 

as well as InSAR/DInSAR (e.g., Bürgmann et al., 2006) data provide rates of absolute 

vertical crustal displacements. Precise re-levelling data and tide gauge records provide 

levelled uplift/subsidence relative to the geoid. Changes in the latter are obtained from an 

analysis of GRACE time series of the geopotential. Both absolute and levelled crustal 

displacements in combination with gravity rates from absolute and relative gravimetry 

provide rates of change of the geoid. The link between the mass change component, i.e., the 

change in the geoid height, and the geometrical component is provided by the gravity-to-

height ratio defined in the next section. 
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Figure 2.7: A general framework for combining geodetic data constraints. 
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2.4.7 Gravity-to-height ratio 

Estimates of gravity-to-height ratio, /g h&& , have been used to infer the upper mantle mass 

inflow accompanying the postglacial rebound process (see, e.g., Ekman and Mäkinen, 

1996). Two simple models were used to set limits for the gravity-to-height ratio obtained 

from gravity and height measurements. The “free-air” ratio 

2

2/
0.31µGal/mm

/
agg dg dt dg d GM

dh dt dh dR Rh R

− 
= = ≈ = = − 

 

&

&
          (2.30) 

accounts for a vertical motion without mass redistribution, while the “Bouguer” ratio  

2
2 0.17 µGal/mma

m

gg
G

Rh
π ρ

−
= + = −

&

&
           (2.31) 

accounts for a viscous inflow of masses from the upper mantle into the rebounding crust 

(Honkasalo and Kukkamäki, 1964). In Eqs. (2.30) and (2.31) , ag  is the average gravity 

value of 981 Gal, R is the mean radius of the Earth, and mρ  is the density of the upper 

mantle assumed to be -33.30 g cm⋅ . It is believed that the gravity-to-height ratio that 

characterizes postglacial rebound is close to the Bouguer ratio. Some physical processes 

have a gravity-to-height ratio quite different from the free-air and Bouguer values. For 

example, the elastic compression or extension induces values of approximately 0 3.0÷  

µGal/mm (Tanner and Lambert, 1987). The magma injection can be characterized by 

values of 3.0 0.5− ÷  µGal/mm (ibid.). Exploitation of natural resources (oil, gas and 

geothermal fields) can lead to decrease in gravity due to fluid extraction, but rapid 

subsidence is also observed (see e.g., Allis and Hunt, 1986; Fielding et al., 1998). Table 2.1 

summarizes some empirically-derived and theoretically-predicted /g h&&  values for 

postglacial rebound. 

Since the CGSN sites and the CBN stations are not collocated, the gravity-to-height ratio 

cannot be estimated rigorously. Nevertheless, the /g h&&  value can be computed by means of 

a simple procedure. Thirteen GPS stations and gravity sites (five repeated absolute gravity 
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sites) located within a radius of 100 km are assumed to be “collocated” (Figure 2.8). By 

means of weighted least-squares adjustment of the gravity-to-height ratios computed at 

these sites, a value of 0.18 0.02− ±  µGal/mm is estimated (Figure 2.9). This value matches 

the result of Lambert et al. (2006) estimated from the Mid-continent tilt project data and is 

close to the theoretical values in Table 2.1. 

 

Table 2.1: Estimates and predictions of gravity-to-height ratio  

Source Region/Earth model 
g

h

&

&
, µGal/mm 

Ekman and Mäkinen (1996) Fennoscandia (relative gravity and levelling) 0.20 0.06− ±  

Lambert et al. (2006) Laurentide (absolute gravity and GPS) 0.18 0.03− ±  

Wahr et al. (1995) 
empirical for a large range of viscosity 

profiles and lithosphere thicknesses 
0.154−  

James and Ivins (1998) 
elastic response 

viscoelastic response 

≈ 0.27−  

≈ 0.16−  

Fang and Hager (2001) 1
2 / 2ag R Gπ ρ− + % (an incompressible Earth) 0.16−  

 1 -33.50 g cmρ ≈ ⋅%  is the average of the pseudo surface density for PREM. 

 

 

Figure 2.8: “Collocated” CGSN gravity sites and CBN GPS stations for estimating the 

gravity-to-height ratio. 
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Figure 2.9: Gravity-to-height ratio estimated from the “collocated” CGSN absolute gravity 

rates and the CBN GPS vertical velocities. 

 

Table 2.2 summarizes the formal errors of the rates of the geoid height, terrestrial gravity, 

and absolute vertical displacement. All rates are expressed in mm/yr. A gravity-to-height 

ratio of -0.18 µGal/mm is used to convert the error of the terrestrial gravity rates to an error 

of the vertical displacement rates. As it can be observed, GRACE and absolute gravimetry 

can provide vertical displacement rates with an accuracy level of 1 mm/yr, which is 

identical to the accuracy of the rates obtained by means of GPS measurements and by 

combining tide gauge and satellite altimetry.  

 

Table 2.2: Summary of the formal errors of the rates of change of gravity and heights  

Technique Formal error Source 

GRACE 1.4 mm/yr Chapter 5 of this thesis 

AG 0.2 µGal/yr → 1.1 mm/yr* (Lambert et al., 2006) 

CBN 0.1 ÷ 5 mm/yr  (Henton, personal communication) 

CGSN 0.06 ÷ 0.9 µGal/yr → 0.3 ÷ 5.0 mm/yr* (Pagiatakis and Salib, 2003) 

TGA 0.5 ÷ 1.6 mm/yr (Kuo, 2006) 

*a gravity-to-height ratio of -0.18 µGal/mm is assumed. 
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2.5 Geodetic approaches for modelling temporal variations of geoid and heights 

Global gravity field models in the form of geopotential spherical harmonic (SH) 

coefficients are conventionally used for estimating GRACE-observed mass changes (e.g., 

Tapley et al., 2004a). The main disadvantages of this approach include the limited spatial 

resolution due to the truncation of the spherical harmonics to a certain degree and the 

required smoothing of random errors. The temporal resolution is limited to one month 

required for providing global gravity field solutions from GRACE inter-satellite 

measurements. To improve the spatial and temporal resolution of mass change estimates 

several approaches have been implemented: the use of GRACE satellite-to-satellite tracking 

data (Han et al., 2005a), the mascons technique (Rowlands et al., 2005; Luthcke et al., 

2006), and the wavelet representation of the geopotential (Schmidt et al., 2007; Fengler et 

al., 2007). These techniques have been applied for estimating semi-annual and annual 

continental water mass redistributions. The rates of change of the geoid height in this thesis 

are obtained using the conventional spherical harmonic representation of the geopotential. 

2.5.1 Analysis of GRACE time series  

The rate of change of any gravity functional ( , , )LT tθ λ  can be computed by means of the 

time derivatives of the geopotential coefficients ( )lmC t
&  and ( )lmS t

&  as follows: 

2 0
( , , ) (cos ) ( ) cos( ) ( )sin( )

l

l lm lm lm
l m

LT t P C t m S t mθ λ β θ λ λ
∞

= =

 = +∑ ∑
 
& && ,        (2.32) 

where lβ  are the specific transfer coefficients for the gravity functional. The transfer 

coefficients for the rates of the geoid height and gravity are N
l Rβ =  and 

2
( 1)g

l

GM
l

R
β = − , 

respectively, provided that the geopotential is assumed to be downward continued to the 

geoid. A complete list of transfer coefficients can be found in Sneeuw (2000). 

The time derivatives (rates) are estimated by least-squares fitting to the time series of the 

coefficients as follows. Let a SH coefficient { , }lm lm lmK C S=  at epoch tj is represented as 
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1 2 3 4 5( ) cos( ) sin( ) cos( / 2) sin( / 2) ( )lm j j j j j j jK t k t k t k t k t k t v tω ω ω ω= + + + + + ,    (2.33) 

where the mean has been subtracted. 1k  is the trend, 2 3 and k k  are the annual cosine and 

sine amplitudes, respectively, and 4 5 and k k  are the amplitudes of the semi-annual 

components; ( )jv t  is the random error, and year1,/2 =π=ω TT  is the frequency of one 

cycle per year. The unknown parameters , 1,...,5jk j =  are determined by solving the over-

determined system of Eq. (2.33) . 

According to Wahr et al. (2000), rates of the absolute vertical crustal displacement due to 

postglacial rebound can be computed by 

2 0

2 1
( , , ) (sin ) ( ) cos( ) ( )sin( )

2

l

lm lm lm
l m

l
h t R P C t m S t mϕ λ ϕ λ λ

∞

= =

+  = +∑ ∑
 
& && .       (2.34) 

Eq. (2.34)  uses an approximate relation between the geopotential and absolute vertical 

displacement given by Wahr et al. (1995). This relation is based on the fact that the 

postglacial rebound geoid change is mainly a result of the mass anomalies associated with 

the deformation of the lithosphere which results in vertical crustal displacements. Because 

of this approximate relation, the factor (2 1) / 2R l +  is not a transfer coefficient. 

2.5.2 Time-variable boundary value problem. Geodetic integrals 

In the presence of interior mass redistributions and crustal deformation, the topographic 

surface of the Earth, geopotential, and data are time-variable. To account for these temporal 

effects, a boundary value problem has been formulated as a geodynamic BVP (Sansò and 

Dermanis, 1982), a Molodensky-like BVP (Heck, 1982), a time-dependent geodetic BVP 

(Heck and Mälzer, 1983, 1986; Biró et al., 1986), and gradiometric-geodynamic BVP 

(Tóth, 2004). The boundary surface is the deformable solid Earth surface and the boundary 

data comprise the time-variable gravity and heights. Formulated in this way, the boundary 

value problem is free from assumptions related to the driving mechanisms of the internal 

mass redistributions. 
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In spherical approximation, the time-dependent geodetic BVP is defined as (Biró et al., 

1986): 

o

o
o

( ) 0

( ) 2 2
( )

W W

W W
W W g W

r R R

δ δ

δ δ
δ δ δ δ

∆ − =

∂ −
′− − − = −

∂

 ,            (2.35) 

where Wδ  is the temporal change in the geopotential, P Po o o( ) ( )W W Wδ ′= −  is the change 

in geopotential at the displaced vertical datum point, and gδ  and Wδ ′  are the temporal 

changes in the terrestrial gravity and geopotential at the deformed Earth’s surface as 

defined in Section 2.3 and Figure 2.4.  

If the total mass of the Earth is not time dependent, the solution of Eq. (2.35)  is given by 

(Heck, 1982) as follows: 

1 2
( ) ( )

4
o

a a a a

W WW R W
h g S d

g g g g Rσ

δ δδ δ
δ δ ψ σ

π

′ ′
= − − + + −∫∫ ,              (2.36) 

where / aH W gδ δ ′= −  is the change in the orthometric height, o o / aH W gδ δ= −  is the 

change in the orthometric height of the fundamental datum point, and 1 / aW gδ  is the 

change in the position of the geocenter in a global orthogonal Cartesian coordinates system 

with origin at the centre of gravity at the initial epoch. The integral term is the change in the 

geoid height computed with two types of boundary data, i.e., gδ  and .Wδ ′  If the geocenter 

motion is assumed zero, Eq. (2.36)  can be written as 

oh H H Nδ δ δ δ= + + ,             (2.37) 

where  

2
( ) ( )

4 a

R W
N g S d

g Rσ

δ
δ δ ψ σ

π

′
= −∫∫                (2.38) 

The same relationship can be written for the rates of change as follows: 

oh H H N= + +& & & & .              (2.39) 
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oH&  is the rate of the vertical displacement (with respect to the geoid) of the fundamental 

benchmark of the vertical control network if a single global vertical datum is assumed. 

The linear relationship between the rates of change of the terrestrial gravity g&  and 

orthometric height H&  can be used to evaluate the Stokes integral with only one type of 

boundary data. Using the Stokes integral, g& , and /g H&& , the rate of the geoid height can be 

computed as follows: 

12
[1 ( ) ] ( )

4
a

a

gR g
N g S d

g R Hσ

ψ σ
π

−= +∫∫
&

& &
&

,            (2.40) 

where / /g H g h≈ &&& &  can be used. Because / /( ) /( 0.1 ) 1.11 /g H g h N g h h g h= − ≈ − =& & & && && & & & , the 

error introduced in Eq. (2.40) , being 10% of the gravity-to-height ratio, is at the level of the 

error with which the later is obtained (Ekman and Mäkinen, 1996).  

The BVP approach benefits from a regular data distribution; however, in the case of local 

surface measurements with irregular data spacing and coverage, data-driven approaches 

like least-squares collocation are preferred. 

2.5.3 Least-squares collocation approach 

Generally, different modelling approaches can be used to describe a surface of vertical 

displacement using irregularly distributed (scattered) data in space and time. These 

approaches include functional modelling, stochastic signal modelling, hybrid modelling, 

and dynamic Kalman filtering with variance component estimation (Dermanis, 1985; Liu 

and Chen, 1998). 

In the functional approach, a trend surface is parameterized by simple analytical functions, 

such as bi-variate polynomials (e.g., Carrera et al., 1991), Chebishev polynomials (e.g., 

Ishii et al., 1981), and radial base functions (Holdahl and Hardy, 1979). Usually, it is 

assumed that the functional model describes an area with an identical deformation pattern. 

In an active tectonic area with faulting or in large areas with different vertical deformation 

characteristics, a set of blocks can be used with a different functional model assigned to 
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each block. Such an approach may require imposing continuity conditions along the 

borders of the blocks (e.g., Koohzare et al., 2006). The advantage of the functional 

approach is the ease of its implementation. The disadvantage consists in the fact that the 

modelled vertical displacement surface depends largely on the displacement of a single 

point as well as on data point density and locations. To a large extent, this applies to bi-

variate polynomial surfaces. In Chapter 3, it will be shown that radial base functions exhibit 

a superior behaviour in comparison with bi-variate polynomials. 

In the stochastic signal approach, the rate of the vertical crustal displacement is a zero mean 

signal defined by a covariance matrix computed from the local empirical signal covariance 

function. The deformation field is assumed homogeneous and isotropic. The deformation 

rates at the new point locations are obtained by a simple least-squares prediction (Moritz, 

1980). Despite the simplicity of the description of the vertical displacement rates, this 

approach has a limited implementation in the crustal deformation modelling. The ground 

for this is the assumption for an isotropic and homogeneous displacement field, which, in 

reality, may not be fulfilled. In addition, usually the stochastic information is estimated 

from a small number of data points and is transferred to other areas with similar tectonic 

characteristics. Nevertheless, the stochastic approach has been successfully implemented in 

earthquake studies for modelling migrating vertical displacements near convergent plate 

boundaries (Fujii and Xia, 1993), detecting temporal changes in vertical displacement rates 

(El-Fiky et al., 1997), and creating common continuous models for temporal changes in 

gravity and vertical crustal displacements (Kanngieser, 1983). 

Often, the stochastic signal modelling is combined with functional modelling in a hybrid 

approach which is identical with the least-squares collocation with parameters approach 

(Moritz, 1980). The functional model is assumed to describe a smooth regional 

displacement field, while the signal component may describe, for example, local vertical 

displacements or correlated errors in levelling or GPS measurements; see Danielsen (2001) 

and Vestøl (2006) for modelling the Fennoscandian uplift. Another example is found in the 

study of Hein and Kistermann (1981) who treat local groundwater table variations as a 

stochastic signal superimposed on the regional tectonic vertical displacements. One 

important advantage of the use of stochastic information in the description of the vertical 
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velocity field is in the introduced regularization. It is well known that the functional 

approach may lead to numerical instabilities that manifest themselves as oscillations of the 

smooth displacement surfaces. This effect can be minimized by using stochastic 

information in terms of signal and noise covariance matrices. Recently, Egli et al. (2007) 

have developed an adaptive least-squares collocation procedure, which accounts for 

inhomogeneity and anisotropy of the vertical crustal displacements. The proposed approach 

is stable in abrupt spatial variations in the displacement field, in which case the 

conventional least-squares collocation usually fails. 

The approach applied in this research to model the rate of change of the geoid height, the 

rate of the vertical crustal displacements and the terrestrial gravity is least-squares 

collocation with parameters. In addition to the local solutions, this approach provides a 

means for error propagation and stepwise computations. The most important characteristic, 

however, from which this research benefits, is the heterogeneous data input and output. In 

Chapter 4, a procedure for estimation of rates of change of the geoid height using terrestrial 

gravity rates and GPS vertical velocities is developed and tested. 

2.6 Summary 

This chapter has discussed the vertical datum problem in the context of the time-dependent 

gravity field and vertical crustal displacements. A relation among the temporal change in 

ellipsoidal, orthometric, and geoid heights has been established. This relationship is the 

basis for the procedures developed and tested in this research. Since the postglacial rebound 

induces the dominant temporal change in the geoid and heights at a regional scale, it is 

assumed that it can be modelled as a smooth spatial trend by means of radial base 

functions. For the purpose of modelling of the postglacial rebound signal, the geodetic 

constraints in North America have been reviewed at length and compared in terms of the 

accuracy of the estimated rates. 
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Chapter Three: Approximation of vertical 

displacement data using radial base functions 

 

 

 

In postglacial rebound studies, rates of vertical crustal displacement can be represented by a 

smooth surface estimated from repeated precise absolute and/or relative height 

measurements. For this purpose, least-squares approximators are constructed by means of 

selected base functions. For example, recently, Vestøl (2006) has used a fifth degree bi-

variate polynomial to model the postglacial rebound uplift in Fennoscandia from GPS and 

tide gauge point vertical velocities and re-levelling data. In contrast with the Fennoscandian 

signal, the viscoelastic response of the Earth to the multidome North American ice sheet 

complex is characterized by a vertical displacement surface that cannot be modelled using 

low-degree bi-variate polynomials. 

Another factor that precludes the use of the polynomials in the approximation of the 

vertical velocities in North America is the fact that the base functions have uniform 

approximation properties over the domain of data. This can lead to numerical instabilities 

and oscillating surfaces for irregularly distributed data and large data-free areas if the 

degree of the polynomial is increased in order to accurately approximate the complex 

surface. This problem may arise, for example, when the vertical displacement surface is 

sampled by re-levelling data confined to the levelling lines of the vertical control network 

in Canada. In addition, as shown in Chapter 2, GPS stations and gravity sites are very 

irregularly distributed across Canada. Therefore, a need exists to define an approximator 

that adapts to the varying data density. 

Accurate approximators for scattered data can be constructed by means of radial base 

functions (RBF), which can be located at the data points. Thus, automatically, changes in 

the density of the data locations are taken into account. Since the RBFs have global support 
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(Franke, 1982), and the coefficient matrices are fully populated, the use of the RBF 

approximator is limited to data sets of a small or moderate size. Here global implies that the 

approximator depends on all data points, and changes in the number, locations, and data 

point values affect all base functions. 

The main problems that need to be resolved when constructing RBF approximators are 

1. scaling of the base functions for a given data set, 

2. determining the optimal locations of the base functions, and  

3. varying the scale with the base function locations. 

In this research, the problems are resolved in the context of interpolation and approximation 

of vertical crustal displacement surfaces. Although the interpolation case is rarely 

encountered in practice, its implementation in this thesis demonstrates the excellent fitting 

properties of radial base functions, particularly, in describing the line of zero vertical 

displacement. A recent example of the application of RBF models in gravity field 

approximation can be found in the work of Mautz et al. (2003). 

This chapter starts with a definition and properties of the radial base functions and proceeds 

with the definitions of the RBF interpolator and approximator. The scaling of the base 

functions is resolved first in the interpolation case. Next, algorithms for determining the 

optimal locations of the base functions in the approximation case are developed, and an 

empirically-based rule for scaling the radial base functions is outlined. Moreover, a 

relationship between the absolute vertical crustal displacement and the change in the geoid 

height is established by means of inverse multiquadric base functions. 

3.1 Definition and properties of radial base functions 

In two-dimensional interpolation and approximation problems, the radial base function 

(kernel), ( )
j

ρΦ , is defined as a function of the Euclidean distance 

1 1 2 2 2 2( ) ( )
j j j

y y y yρ = − + −                (3.1) 
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between the knot 1 2( , )j jy y , also called a node or center, and the current point 1 2( , )y y . The 

base function ( )
j

ρΦ  is continuously differentiable, symmetric around the knot, and 

translation-invariant. Three types of radial base functions are implemented in this study: the 

thin-plate spline, multiquadric, and inverse multiquadric functions. 

The thin-plate spline (TPS) is defined as follows (e.g., Wood, 2003): 

2( ) log( ), 1n

j j j nρ ρ ρΦ = ≥ .               (3.2) 

The multiquadric (MQ) base function (Hardy, 1971) is 

2 2( )
j j

cρ ρΦ = + ,                (3.3) 

and the inverse (reciprocal) multiquadric (IMQ) (Hardy, 1990) is 

2 2( ) 1/
j j

cρ ρΦ = + .                 (3.4) 

The MQ and IMQ base functions are right and inverse hyperboloids, respectively. The 

parameter c is interpreted as the perpendicular distance from the Y1Y2 plane to the 

hyperboloid’s maximum/minimum; the parameter c determines the shape of the base 

function. As 0c → , the hyperboloid turns into a cone, and as c  increases, bowl- and sheet-

like surfaces are generated. For the sake of convenience, 2
c  will be called the shape 

parameter.  

Figure 3.1 shows two examples of an IMQ base function. The shape parameter 2
c

 is given 

in unit distance. By varying 2
c , the shape of the base functions is adapted for the particular 

interpolation/approximation problem. 

The list of the commonly used RBF can be extended to include Gaussian and exponential 

functions, truncated parabolic functions, Sobolev splines, and cubic functions (see, e.g., 

Györfi et al., 2002 and Chen et al., 2003). 
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Figure 3.1: IMQ base functions: (a) a cone-like function and (b) a bowl-like function. 

 

3.2 Radial base function interpolator. Scaling of base functions  

3.2.1 Definition and properties 

Let Ξ denotes a finite set of distinct points in 2ℜ . Then the RBF interpolator is defined by 

a linear combination of translated base functions, ( )j j
j

x rΦ∑ , where ,jx j
Ξ∈ℜ ∈Ξ  are the 

coefficients (weights) to be determined from the given finite data set i ∈Ξ  by solving a 

linear system of equations (whose number equals the number of the data points n) as 

follows: 

1 2

1
( , ) ( ), ,

n

i i j ij
j

h y y x i jρ
=

= Φ ∈Ξ∑ .                   (3.5) 

1 2( , )
i i

h y y  is the vertical displacement at the location 1 2( , ), 1,...,
i i

y y i n= .  

If the base function is strictly positive definite, the coefficient matrix [ ( )]
ij

ρΦ  is invertible 

and the linear system has a unique solution that guarantees the existence of the interpolator 

(Lodha and Franke, 1997). Examples for positive definite functions are the Gaussian and 

IMQ functions. According to Micchelli (1986), MQ and TPS are conditionally positive 

(a) (b) 



 
 

 

52 

definite functions of degree M. The polynomial 1 2 1 2( , ) ( , )Mp y y P y y∈  is appended in 

Eq. (3.5)  in order to guarantee the invertibility of the coefficient matrix (Buhmann, 2000). 

The linear system to be solved is 

1 2 1 2

1 1

1 2

1

( ) ( , ) ( , ), 1, 2, ,

( , ) 0, 1, 2, ,

n m

j ij l l i i i i
j l

n

j l j j
j

x p y y h y y i n

x p y y l m

ρ α
= =

=

Φ + = =∑ ∑

= =∑

K

K

          (3.6) 

where ( 1) / 2m M M= +  is the number of the base functions 1 2( , ), 1,...,lp y y l m=  in the 

polynomial space ( )MP Ξ . The extra degrees of freedom gained by adding the polynomial 

term are removed by the second set of equations which imposes orthogonality of the vector 

T
1 2[ ... ]jx x x=x  and the polynomial space ( )M

nP Ξ  , i.e., ( )M

nP⊥ Ξx . 

The TPS base function is conditionally positive definite of degree M = 2 and requires a 

linear term to be added. The MQ base function is conditionally positive definite of degree 

M = 1 and a constant term is included in the system of equations. The IMQ interpolator can 

be constructed without appending a polynomial term (Micchelli, 1986). In principle, the 

minimum degree M that guarantees the existence of the interpolator should be used (Lodha 

and Franke, 1997). 

The matrix form of Eqs. (3.6)  is as follows: 

T

α

α

     
=     

    

A P x h

P 0 α 0
,                (3.7) 

where ( )
ij

ρ = Φ A , , 1,...,i j n=  is the coefficient matrix; αP  is a ( n m× ) matrix with 

elements 1 2( , ), 1,...,
l i i

p y y l m= , where m is the number of the polynomial base functions; 

and x and αααα are ( 1n × ) and ( 1m × ) vectors of the RBF weights and polynomial 

coefficients, respectively. 

According to Billings et al. (2002), Eqs. (3.7)  can be solved by means of QR factorization 

of the matrix αP  as follows. If αP = QR , then the first m columns of αQ , which span the 
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column space of αP , form 1Q  so that 1αP = Q R . The ( )n m−  columns span the null space 

of T
αP  and form the matrix 2Q . The polynomial constraints are satisfied if 

2 , n m−∈ℜx = Q x x% % . Then, Eqs. (3.7)  can be rewritten as follows: 

Cx = h%% ,                  (3.8) 

where T
2 2C = Q AQ  and T

2h = Q h% .  

Franke (1982) compares the performance of the TPS, MQ, and IMQ interpolators to other 

scattered data interpolation methods according to the following key criteria: accuracy, 

stability, efficiency, and ease of implementation. He rates TPS, MQ and IMQ among the 

best methods, which exhibit excellent fitting abilities and accuracy. Although the MQ base 

function is unbounded, i.e., ( ) ,
j j

ρ ρΦ → ∞ → ∞ , the interpolator can outperform the 

bounded base functions such as IMQ ( ( ) 0,
j j

Φ ρ ρ→ → ∞ ), which intuitively are accepted 

as more accurate. A physical explanation of this fact is given by Hardy and Nelson (1986) 

in terms of the multiquadric-biharmonic representation of the disturbing potential. They 

show that the potential function vanishes in infinity provided that 0
j

j

x →∑ . This is 

achieved by appending a constant term in Eqs. (3.6) . 

Another important criterion for assessing the performance of the base functions is the 

sensitivity to the parameter. According to Franke (1982), sensitivity to the parameter 

involves two aspects: stability of the interpolator with respect to small changes in the 

parameter value and independence of the parameter with respect to the approximated 

function. The numerical experiments in Section 3.4 show that both MQ and IMQ methods 

satisfy the first requirement. It is shown that the shape parameter can be varied around its 

optimal value, and the base functions still provide an accurately interpolated velocity 

surface. The MQ and IMQ functions do not satisfy the second requirement. In fact, the base 

functions need to be scaled for each data set. Various empirical relations for c
2 are 

investigated in the following sections. An empirically-based rule for scaling of the IMQ 

function is given at the end of Section 3.4. 
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3.2.2 Optimal scale of base functions 

There is no strict analytical theory developed for the choice of the shape parameter c2. The 

optimal value is defined as the value that minimizes the interpolation error. In practice, 

values for the shape parameter can be chosen such that interpolated surfaces satisfy certain 

accuracy requirements. However, care must be taken since the coefficient matrix can easily 

become ill-conditioned for values of the shape parameter larger than the squared distances 

between the data point locations because the matrix elements become nearly equal. 

Different approaches for computing the shape parameter have been suggested, such as an 

average of distances between data points (Hardy, 1990), a linear function of the number of 

the knot, i.e., 10 , 1,...,jc b b j j n= + =  (Hon and Mao, 1997), and a function of the local 

radius of the curvature of the interpolated surface (Kansa and Hon, 2000). Recently, Sharifi 

(2006) has implemented genetic algorithms for resolving the scale of radial base functions 

in gravity field approximation problems. 

In the following, two frequently used approaches in the interpolation of smooth surfaces are 

described. Carlson and Foley (1991) provide the following formula: 

2 21/(1 120 )c = + σ ,                (3.9) 

where σ2 is the variance of the fit of the data to a quadratic bi-variate polynomial. Scaling 

data to a unit cube is recommended before interpolation to make the results independent of 

the spatial distances and function values. 

The flexibility with respect to the shape of the MQ function has been used by Kansa (1990) 

to improve the interpolation by decreasing the condition number of the coefficient matrix. 

The shape parameter is allowed to vary exponentially with the base function number j as 

follows: 

2 2 2 2 [( 1) /( 1)]
min max min( / ) j n

c c c c
− −= ,                (3.10) 

where n is the number of the base functions. Thus, distinct matrix elements are obtained, 

which improves the condition number of the coefficient matrix. It is shown that the MQ 

interpolator provides very accurate interpolation for surfaces with moderate to steep 
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gradients, but it is not so accurate for flat surfaces. Multistage schemes for interpolation, 

e.g., the Foley-Carlson scheme (see, Carlson and Foley, 1991), in which MQ is the starting 

interpolator, are developed to successively decrease the error at every stage by using 

monotonic cubic splines. 

3.3 Radial base function approximator. Selecting base functions locations  

3.3.1 Definition 

The least-squares approximation problem is defined as follows: 

2 Tmin subject to: 0α α− − =h Ax P α P x .            (3.11) 

[ ( )], 1,..., , 1,...,
ij

i n j kΦ ρ= = =A , where n is the number of data points and k is the number 

of knots (base functions); αP  is a ( n m× ) matrix with elements 1 2( , ), 1,...,
l i i

p y y l m= ; αP  

is a ( k m× ) matrix with elements 1 2( , )l j jp y y ; and x and αααα are ( 1k × ) and ( 1m × ) vectors of 

the RBF weights and polynomial coefficients, respectively, determined from the solution of 

Eq. (3.11) . 

Analogously to the interpolation case, and using matrices 1Q  and 2Q  obtained by means of 

QR factorization of αP , the constrained least-squares problem is transformed to an 

unconstrained one as follows: 

2
min −h Cx%% % ,                (3.12) 

where T
2 2C = Q AQ%  and 2h = Q h% . 

For small-size problems (as in this research), x%  is estimated by solving the normal 

equations 

T T=C Cx C h% % % %% ,               (3.13) 
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where TC C% %  is a positive definite matrix. The weights of the RBF are determined from the 

following equation:  

2x = Q x% ,               (3.14) 

and the polynomial coefficients are found from the solution of  

T
1Rα = Q (h - Ax) .              (3.15) 

Determination of the optimal locations of the base functions is a non-linear problem and 

can be solved rigorously by non-linear optimization. The scale of the base functions should 

be parameterized together with the unknown locations. The main problem consists in the 

fact that the initial guess for the shape of the base functions should guarantee convergence 

of the solution to the global minimum. 

Franke et al. (1994) have experimented with an adaptive “greedy” algorithm for selection 

of the knot locations based on the residuals at the data points obtained at every stage of 

iterated least-squares approximation. They state that the suggested algorithm is “potentially 

useful for many problems where data subject to error is available and the surface must be 

approximated using an approximation that is computationally as efficient as possible.” 

Furthermore, they applied non-linear optimization schemes to determine the optimal 

locations of the knots and the shape parameter. It is found that variable knot locations can 

significantly reduce the RMS error and even greater improvement is achieved when the 

shape parameter is allowed to vary with different knots. 

In this research, the base functions are located either on a grid or at a subset of data point 

locations. The first option is appropriate when the data cover the region of interest 

homogeneously. The second option is chosen in the case of irregularly distributed data. 

Thus, not only do the base functions adapt to the data density, but also the characteristics of 

the vertical displacement surface, i.e., the hinge line, surface gradient, and location of the 

peak signal, can be modelled accurately. Methods for selection of locations of base 

functions are designed and presented in the following section. 
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3.3.2 Algorithms for selecting optimal locations of base functions 

Backward and forward selection algorithms based on the cross-validation technique 

Generally, the knots in the approximation problem in Eq. (3.13)  are correlated. This 

property can be used to select a subset of knots from the set of data point locations. One 

efficient statistical tool is the cross-validation (CV) technique (Breiman, 1993; Fotopoulos, 

2003), which is based on the RMS error computed as follows: 

2
( )

1

1 ˆRMS ( )
n

i k i
i

h h
n =

= −∑ ,             (3.16) 

where ( )
ˆ
k ih  is the approximation of the data value 

i
h  obtained by solving Eq. (3.12)  with a 

subsets of base functions k. The cross-validation algorithm consists of removing one knot at 

a time from the set of candidate knots and approximating the surface with the knot subset. 

Next, residuals at the data points are computed, and, using Eq. (3.16) , the significance of 

the removed knot is assessed. The knot that leads to the least RMS error among all of the 

candidate knots has the least significance and can be deleted. The procedure is repeated to 

determine the least significant knot from the new subset of knots. This describes the basic 

algorithm for backward elimination of knots. It starts with all data locations taken as 

candidate knots and is iterated until the RMS error becomes larger than a defined threshold 

value. The same procedure can be applied in a forward manner by adding the most 

significant knots, one at a time, to the subset of knots that initially contained zero knots. 

The described algorithms use a constant shape parameter, e.g., the optimal value taken from 

the interpolation case. The algorithms can be modified so that after a knot has been 

deleted/added, the optimal shape parameter for the particular knot subset is determined and 

this value is used in the next iteration. 

Orthogonal least-squares algorithm  

Despite the simple logic behind the algorithms based on the cross-validation technique, 

they are computationally intensive and, more importantly, the contribution of each base 

function/knot to the output is not known. The orthogonal least-squares approach offers a 
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simple tool for estimating the contribution and number of base functions to assure the 

desired approximation accuracy. Examples of using orthogonal least-squares in both 

forward and backward selection procedures can be found in the optimization of the RBF 

neural networks (see, e.g., Chen et al., 1989 and 1991; Gomm and Yu, 2000). In the 

following, the forward selection algorithm is presented. The notations are kept consistent 

with the interpolation case. 

Data are represented by the observation equation 

h = Ax + e ,               (3.17) 

where 1 2[ ]
k

=A a a aL  is the coefficient matrix that contains a set of k base vectors 

(regressors), 
i

a , of dimension ( 1n × ); T
1 2[ ]

k
x x x=x L  is a vector of unknown coefficients, 

and e is the vector of errors. 

Because ˆAx  is a projection of the data vector h onto the space spanned by the regressors 

i
a , 2ˆ[ ]Ax  is the part of the output variance explained by them. The individual contributions 

of the regressors are estimated after applying orthogonal least-squares with the coefficient 

matrix decomposed as follows: 

A = QR% %                (3.18) 

where R%  is a ( k k× ) upper triangular matrix with ones on the main diagonal; Q%  is an 

( n k× ) matrix with orthogonal columns , 1,...,
i

i k=q%  such that T=H Q Q% %  is a diagonal 

matrix. 

By means of Eq. (3.18) , Eq. (3.17)  can be rewritten as follows: 

′h = Qx + e% ,               (3.19) 

where ′x = Rx%  is a vector of the new coefficients. The orthogonal least-squares solution is 

found from 

ˆ ′ -1 Tx = H Q h% .               (3.20) 

and x̂  is computed from the linear system 
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ˆ ˆ ′Rx = x%                (3.21) 

by means of backward substitution.  

The coefficient matrix A can be decomposed by different methods, such as the Gram-

Schmidt, modified Gram-Schmidt, or Householder transformation methods (Golub and van 

Loan, 1996). In this work, the Gram-Schmidt method is implemented.  

Because of orthogonality of the base vectors 
i

q% , the output variance is expressed as 

2 T
TT

1

ˆ
k

i i i
i

n n n

=

′∑
= +

x q q
e eh h

% %

.             (3.22) 

The contribution of the i
th regressor to the output variance is  

2 Tˆ
i i i

n

′x q q% %
.               (3.23) 

Reduction in the error from this regressor is given by 

2 T

T

ˆ
, 1 .

( )
i i i

ierr i k
′

= ≤ ≤
x q q

h h

% %
                  (3.24) 

Based on Eq. (3.24) , the Gram-Schmidt algorithm can be modified so that the regressor 

with the maximum reduction ratio (i.e., the maximum contribution to the output variance 

among all regressors) is selected at every step of the orthogonalization procedure (Chen et 

al., 1991); see the flowchart in Figure 3.2. The algorithm can be terminated at the k%  step if  

1
(1 ) ,

k

i
i

err
=

− < ε∑
%

               (3.25) 

where 0 1< ε <  is the predefined threshold value being the level of the unexplained output 

variance. The threshold is an important tool that can be used to control the balance between 

the accuracy of approximation and the number of selected knots. Also, the threshold can be 

used to effectively filter out frequencies from the spectrum of the output. 

The methods based on the cross-validation technique and orthogonal least-squares are 

tested and compared in Section 3.4 using the IMQ base functions. 
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Figure 3.2: Modified Gram-Schmidt algorithm. 

3.4 Numerical case studies 

The RBF method will be investigated given a surface of vertical displacement rates over 

Canada obtained by postglacial rebound modelling. Therefore, the conclusions based on the 

numerical experiments in this section are valid for PGR surfaces. However, it is 

demonstrated that the RBF method can be applied also for velocity surfaces related to other 

processes, e.g., tectonics, or man-made activities, such as fluid extraction. Examples are 

given in Section 3.4.4. 

The surface is assumed not to be discontinuous from faulting, for instance. The simulated 

rates are given on a grid with resolution 1 1×o o . The geographical coordinates of the data 

points are transformed into conformal conic (Lambert) coordinates. To obtain results 
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independent of the scale of the coordinate axes and data, a scaling to a unit cube is 

performed. This scaling also allows one to control the shape of the base functions. 

Roughness of the surface is expressed by the parameter (Franke et al., 1994)  

1 1 1 2 2 2

1 2

2 2 2 1 2( 2 )
h y y y y y y

y y

r h h h dy dy= + +∫ ,            (3.26) 

where finite differences are used to compute the derivatives and to evaluate the integral. 

The following criteria are used to assess the performance of the RBF 

interpolator/approximator: 

1. the RMS error computed by Eq. (3.16) ; the target accuracy is 1mm/yr.  

2. the condition numbers of the matrix C, Eq. (3.8) , and the matrix  T
C C% % , Eq. (3.13) . 

3. the roughness parameter hr  of the interpolated/approximated surface; hr  = 0.037 for 

the reference surface. 

3.4.1 Interpolation of noise-free vertical displacement data 

Two cases are investigated: data given on a regular grid and irregularly distributed data. 

The first case is not encountered in practice; however, the result of the study demonstrates 

the excellent fitting properties of the base functions if they are properly scaled. The result 

obtained in the second case demonstrates the capability of the base functions to adapt to the 

variations of the density of the data point locations. 

Study case 1: Data on a grid  

The performance of the interpolators is investigated using data on a 5 5×o o  grid constructed 

through re-sampling the original 1 1×o o  grid. The total number of data points is 105; the 

coefficient matrix is of relatively small size and with a moderate condition number.  

Table 3.1 summarizes the results for the TPS, MQ, and IMQ interpolators. The optimal 

shape parameter for the MQ and IMQ interpolators is 0.035 and 0.047, respectively, 

expressed in terms of unit distance. The optimal shape parameter is determined by 
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searching in the subinterval from 10-4 to 1 in the parameter space. The value for which the 

minimum RMS error is obtained is taken as optimal (Figure 3.3). An important observation 

is that both interpolators give identical results when the base functions are optimally scaled. 

The area of overlap extends approximately from -2 to -1.3log10. For cone-like surfaces, the 

MQ interpolator outperforms the IMQ interpolator. In contrast, for larger shape parameters, 

the RMS error of the MQ interpolator increases much faster. In the area of overlap, the 

results are identical with those obtained by the TPS interpolator. However, the coefficient 

matrix of the latter has a much smaller condition number (see Table 3.1 and Figure 3.4). In 

fact, the condition number for MQ and IMQ coefficient matrices is very large as a result of 

the equal distances between the data points given on a grid. The large condition number 

leads to numerical instabilities and worsens the interpolation accuracy. 

The RBF interpolators are compared also to low degree bi-variate polynomial interpolators. 

Although the condition numbers are small, the RMS errors are far above 1 mm/yr. In 

particular, the 3rd degree polynomial leads to under-parameterization of the surface, which 

is evident from the large RMS error and very small roughness parameter. In contrast, the 5th 

degree polynomial provides better interpolation, which indicates that if data are distributed 

regularly over the area of interest, the degree of the bi-variate polynomial can be increased. 

 

Table 3.1: Comparison of the interpolators for noise free data on a 5 5×o o  grid  

Method RMS error, mm/yr Roughness, hr  Condition number 

TPS 0.41 0.048 6.3×104 

MQ,  c2 = 0.035 ~ -1.5log10 0.38 0.051 1.0×1011 

IMQ, c2 = 0.047 ~ -1.3log10 0.38 0.050 1.3×1010 

3rd degree polynomial 1.78 0.006 8.5×103 

4th degree polynomial 1.32 0.011 2.2×105 

5th degree polynomial 1.13 0.037 6.1×106 
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Figure 3.3: RMS error as a function of the shape parameter for noise-free  

data given on a 5 5×o o  grid. 
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Figure 3.4: Condition number of the coefficient matrix as a function of the shape 

parameter for noise-free data given on a 5 5×o o  grid. 
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Study case 2: Irregularly distributed data 

The second investigated case comprises noise-free irregularly distributed velocity data at 48 

point locations from which a 1 1×o o  surface is interpolated by means of the RBF 

interpolators including TPS, MQ, and IMQ functions. The data point locations correspond 

to real data sites with the majority of the sites located south of the 60 degree parallel. Only 

a few sites are found north. This makes the interpolation of the underlying vertical 

displacement surface particularly challenging. Larger errors could be expected in the areas 

where no data are available. 

The performance of the RBF interpolators is compared in Table 3.2. The RMS error is 

computed by differencing the interpolated velocities on the 1 1×o o  grid and the reference 

velocities on the same grid. The first important observation is that the TPS interpolator is 

less accurate than the MQ and IMQ interpolators. Significant reduction in the roughness 

parameter is observed, which means that the TPS interpolator gives a very smooth surface. 

As in Case 1, the MQ and IMQ interpolators perform equally well; the RMS error is 0.6 

mm/yr if the optimal parameter value is reached. Since the coefficient matrices are 

computed with largely varying distances, which decreases the condition number, the shape 

of the base functions can be widely varied and the best interpolation results are obtained 

with c2 = 0.16 and c2 = 0.23 in unit distance for MQ and IMQ, respectively. Also, the area 

of overlap of the two interpolators increases (see Figure 3.5). This implies that, for a wide 

range of shapes, both MQ and IMQ provide a better than 1 mm/yr accuracy. The RMS error 

significantly increases as the parameter value goes beyond 0.5 (which corresponds to -0.3 

in the log10 scale). The explanation is that the elements of the coefficient matrix become 

nearly equal when the shape parameter value starts to dominate the distances between the 

data points and as a result the condition number increases (see Figure 3.6). 
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Table 3.2: Comparison of the performance of the interpolators for interpolating noise-free 

irregularly distributed data 

Method RMS error, mm/yr Roughness, hr  Condition number 

TPS 1.1 0.029 6.2×103 

MQ, c2 = 0.161 ~ -0.8log10 0.6 0.037 3.3×107 

MQ (Kansa’s method) 

2
min
2
max

0.001~ 3log10

0.200 ~ 0.7log10

c

c

= −

= −
 0.9 0.040 4.0×105 

MQ (Foley-Carlson method) 

c
2 = 0.003 ~ -2.5log10 

0.9 0.036 5.5×103 

IMQ, c2 = 0.230 ~ -0.6log10 0.6 0.037 9.2×106 

3rd degree polynomial 2.5 0.019 1.1×104 

4th degree polynomial 2.1 0.012 2.4×105 

5th degree polynomial 2.6 0.078 7.1×106 
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Figure 3.5: RMS error as a function of the shape parameter for noise-free 

irregularly distributed data. 
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Figure 3.6: Condition number of the coefficient matrix as a function of  

the shape parameter for noise-free irregularly distributed data. 

 

To assess the performance of the bi-variate polynomials, the RMS error and the condition 

number are shown in Figures 3.5 and 3.6, respectively, and in Table 3.2. The RMS error is 

far above the threshold of 1 mm/yr. The 5th degree polynomial again comprises an 

interesting case, in which the interpolated surface is over-parameterized. This illustrates the 

limited abilities of the bi-variate polynomial to adapt to the varying data density. 

Another objective of the experiment is to investigate whether the variable value of the 

shape parameter for the multiquadric base function, according to Eq. (3.10) , improves the 

interpolation accuracy. The maximum and minimum values for the shape parameter are 

varied to cover different subintervals from the parameter space. The best results are given 

in Table 3.2. Although the condition number decreases, the RMS error does not drop to the 

value obtained with the optimal c2. The explanation could be that Kansa’s approach works 

well with surfaces with significant variations in the gradient, while the vertical 

displacement surface in this case study has small gradients, and thus limits the use of the 

Kansa’s approach in this case. Finally, the Foley-Carlson approach is tested. As seen from 

Table 3.2, the shape parameter is very small and does not lead to an improvement of the 
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interpolation accuracy (the RMS error is 0.9 mm/yr). The reason is that the underlying 

surface cannot be accurately represented by a quadratic surface. 

 

  

 

Figure 3.7: (a) Reference surface; (b) interpolated surface from noise-free irregularly 

distributed data with IMQ base functions and c2 = 0.230; and (c) differences between the 

interpolated and reference surfaces. 

 

In Figure 3.7, the interpolated surface from the irregularly distributed data using the IMQ 

interpolator is compared with the reference surface. The differences vary spatially from -2 

mm/yr to 2 mm/yr, and the largest errors are observed in the areas not constrained by the 

observations. In contrast, accurate interpolation is obtained in the areas with concentration 

of data points, including the hinge line. By placing the IMQ base functions at the data point 

locations, the surface gradient is accurately represented. 

(b) 

(c) 

(a) 
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The results in this sub-section show that the MQ and IMQ base functions can provide very 

accurate interpolation of rates of vertical displacement from irregularly distributed 

observations if the shape of the base functions is adjusted accordingly. The experiments 

with vertical displacement rates obtained from postglacial rebound simulations with 

different viscosity profiles and/or ice de-glaciation histories lead to the same results and 

conclusions. More examples related to the implementation of the inverse multiquadrics in 

vertical crustal motion studies are given in Section 3.4.4. 

3.4.2 Approximation of noise-free vertical displacement data 

This case study offers an understanding of the role of the number and locations of the base 

functions on the accuracy of the approximated surface. For this purpose, different 

algorithms are applied: backward elimination and forward addition cross-validation (CV) 

algorithms with constant and adaptive shape parameters, and the modified Gram-Schmidt 

algorithm (GS). The number of the base functions in all of the cases is 24; see Figure 3.8. 

In case (a), the forward addition CV algorithm with a constant shape parameter c2 = 0.230 

leads to the largest RMS error of 1.2 mm/yr among all methods. This algorithm selects 

closely spaced knots, which worsens the condition number of the normal matrix because 

near equal matrix elements exist. If an informative knot (e.g., with a peak vertical 

displacement value) is disregarded by the algorithm, a large approximation error can be 

triggered in the vicinity of this location. Note the correlation between the magnitude of the 

approximation error over the north part of Hudson Bay and the knot with the maximum 

vertical displacement (circled in blue) on all plots. 

In case (b), the forward addition CV algorithm with an adaptive shape parameter selects a 

different subset of knots. The order in which the knots are selected depends on the shape 

parameter value, with which the cross-validation algorithm is carried out. This algorithm 

locates the base functions in the areas with more significant changes of the surface gradient. 

The knot subset determined by the modified GS algorithm in case (c) locates the base 

functions in the area with a very small gradient. Also, large errors (-3.5 mm/yr) along the 
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southwest edge of the studied region are observed. The RMS error, however, is as in case 

(b), i.e., 0.9 mm/yr. In addition, a small approximation error over Hudson Bay is observed. 

 

a b

c d

 

Figure 3.8 : Differences between the reference and approximated (with 24 base functions) 

surfaces: (a) forward CV with c2 = 0.230 and RMS error of 1.2 mm/yr, (b) forward CV with 

adaptive c2 and RMS error of 0.9 mm/yr; (c) modified GS with c2 = 0.230, and RMS error 

of 0.9 mm/yr; (d) backward CV with adaptive c2 and RMS error of 0.8 mm/yr. 

 

The last case (d) with a backward CV algorithm with an adaptive shape parameter 

distributes the base functions well over the territory and locates more base functions along 

the hinge line. This algorithm provides the least approximation error, i.e. 0.8 mm/yr, but 

removes the knot with the maximum vertical displacement value (at a very early stage of 

the elimination); consequently, the error in its vicinity increases in magnitude, though it is 

not as large as in the case (a). 
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From the results discussed above, it becomes clear that the forward algorithms depend on 

the value of the shape parameter with which the algorithms start and run. However, as 

shown in the interpolation case, a wide range of shape parameter values can provide 

acceptable results if the optimal shape parameter belongs to this range. Therefore, the 

optimal parameter value is important but not crucial for the performance of the IMQ 

approximator. The fact that the approximated surface is not known in reality as well as the 

presence of measurement noise forces the use of approximate shape parameter values. 

Based on the results in this study case, it can be stated that the modified Gram-Schmidt 

algorithm can be as accurate as the algorithms based on the cross-validation technique. The 

Gram-Schmidt algorithm does not outperform the backward elimination algorithm; 

however, its main advantage, that is, controlling the balance between the accuracy of the 

approximation and the number of base functions through the threshold value, is used as an 

argument to utilize this method in the optimal combination of heterogeneous vertical 

displacement data in Chapter 4. 

3.4.3 Approximation of noisy vertical displacement data 

Gaussian noise with variances 2σ  = 0, 0.01, 0.25, and 1.00 mm2/yr2 has been generated by 

the routines available in Matlab and added to the irregularly distributed noise-free vertical 

displacement data. Different threshold (tolerance) values are adopted as follows: ε = 0.001, 

0.01, and 0.10. Each threshold defines the amount of the filtered data variance. For 

example, if the threshold is 0.001, then 0.1% of the data variance is filtered out. The 

forward GS selection algorithm is run with all different noise levels and threshold values 

1000 times, and the average results are presented in the following. 

The different cases are compared in terms of the size of the selected knot subset, the RMS 

error, and the condition number of the normal matrix. For ε = 0.1 and 2σ  = 0 mm2/yr2, a 

large RMS error of 2.4 mm/yr, along with a small number of selected base functions 

(Figure 3.9), is observed. This accounts for under-fitting of the displacement surface. For 

the same threshold and 2σ  = 1.00 mm2/yr2, the RMS error decreases to 1.8 mm/yr because 

part of the noise is filtered out. For smaller thresholds, the number of base functions 
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increases steadily with the increase in the noise variance because the larger the noise 

variance, the more base functions are required to fit the data. The approximation becomes 

very inaccurate since the approximator attempts to fit the noise; see the large RMS errors in 

Figure 3.10 and the condition numbers in Figure 3.11. 

 

 

Figure 3.9: Number of base functions as a function of noise variance for different 

thresholds (tolerances). 

 

Figure 3.10: RMS error as a function of noise variance for different thresholds 

(tolerances).  
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Figure 3.11: Condition number as a function of noise variance for different thresholds 

(tolerances). 

 

In the case of noisy data ( 2σ  = 1.00 mm2/yr2), it is observed that a wide range of 

parameters (from 0.01 to 1.00) provides reasonable approximation accuracy. A thorough 

search in the subinterval from 0.01 to 0.10 shows that the minimum RMS error of 1.4 

mm/yr is estimated with c
2 = 0.06 and 10 base functions (about 20% of the data point 

locations). Figure 3.12 represents the spatial variation of the differences between the 

approximated and reference surfaces. The largest errors of -2.5 mm/yr are observed in the 

northeast and southwest corners, where the IMQ approximator extrapolates the vertical 

displacement rates. 

In summary, it is possible to reconstruct a smooth vertical displacement surface from noisy 

scattered data ( 2σ  = 1.00 mm2/yr2) with only about 20% of the data point locations 

selected as base function knots, and the approximation error is 1.4 mm/yr. Although the 

results are obtained for a realistic noise level, the fact that the noise was treated as 

stationary can alter the conclusions drawn in this study. Nonetheless, it can be stated that an 

accurate approximation of smooth postglacial rebound vertical displacement surfaces from 

scattered data can be obtained with IMQ base functions with a shape parameter of 

approximately 0.1 of unit distance. 
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Figure 3.12: Differences between the approximated and reference surfaces by the modified 

GS selection algorithm (σ2 = 1.00 mm2/yr2 and c2 = 0.06). The RMS error is 1.4 mm/yr. 

3.4.4 Applications of the inverse multiquadric approximator 

The examples studied in this section illustrate the excellent fitting abilities of the IMQ 

approximator and the effectiveness of the Gram-Schmidt selection algorithm. Two opposite 

cases of vertical displacement surfaces, namely a smooth bowl-shaped surface and a 

discontinuous surface, are studied. The former is characteristic for land subsidence 

processes related to fluid extraction (e.g., Odijk, 2005). The latter is encountered in 

tectonically active areas, such as southeastern Canada, where the abundance of geological 

faulting is related to postglacial rebound processes (Wu and Hasegawa, 1996). In such 

cases, observed vertical crustal displacement shows abrupt changes across faulting lines. 

Smooth bowl-shaped surfaces 

The simulated surface in Figure 3.13a is approximated using 40 IMQ base functions (c2 = 

0.1 and ε = 0.001) selected by the GS algorithm (see Figure 3.15b) and the RMS error is 

0.1 mm/yr. When Gaussian noise with a variance of 1 mm2/yr2 (Figure 3.13c) is added, the 
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algorithm selects 23 base functions provided that ε = 0.40, and the RMS error increases to 1 

mm/yr; see Figure 3.13d. 

 

  

 
 

 

Figure 3.13: (a) Simulated bowl-like surface, (b) approximated surface, (c) simulated 

surface plus noise (note the different scale of the z-axis), and (d) smoothed surface. 

 

Discontinuous surfaces  

Although there exist algorithms based on the RBF method that allow interpolation of 

scattered data across surface discontinuities (see, e.g., Arge and Floater (1994)), this 

example does not aim to argue in favour of such an approach. Instead, it illustrates the 

universal properties of the IMQ method for approximation of scattered data. The 

(a) (b) 

(c) (d) 
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approximated surface (c2 = 0.01) is shown in Figure 3.14a. Apparently, the base functions 

tend to group along the discontinuity of the underlying surface. In contrast with the smooth 

surface approximation in the first example, the modified GS algorithm does not succeed in 

filtering the noise present in the data (Figure 3.14b). In fact, the presence of noise requires a 

reduction of the number of the base functions and/or a larger shape parameter, which 

contradicts the need of many and more peaked base functions to properly represent 

discontinuities in the data (Figure 3.14c). 

 

  

 
 

Figure 3.14: (a) Approximated surface – base functions tend to group along the 

discontinuity present in the data, (b) simulated surface plus noise (note the different scale of 

the z-axis), and (c) smoothed surface. 

 

(a) (b) 

(c) 
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3.5 Relation between inverse multiquadric base functions and a mass flow model 

In the preceding sections, the IMQ method has been studied from the perspective of the 

interpolation and approximation of scattered vertical displacement data; that is, only the 

mathematical aspects of the implementation have been addressed. The physical 

interpretation of the IMQ base functions stems from the harmonic theory of the potential. In 

particular, Eq. (3.4)  can be rewritten as follows: 

1 1 2 2 2 2 3 3 2

1 1
( )

( ) ( ) ( )
j

jj j j
y y y y y y

Φ = =
− + − + −

l
l

.          (3.27) 

Being the inverse distance between the base function and the running point, ( )
j

Φ l  is a 

harmonic function and is the kernel of the point mass method in the gravity field 

approximation (Barthelmes and Dietrich, 1991). The point mass method was used by Hardy 

(1977) for interpreting mass redistributions related to vertical crustal motion. 

As explained in Chapter 2, an approximate relation between the rate of change of the 

absolute vertical displacement and the time derivatives of the geopotential coefficients can 

be used to compute the former. The fact that the postglacial rebound geoid change is mainly 

a result of mass anomalies associated with the deformation of the lithosphere can be used to 

link the vertical crustal displacement and the effect of the mass redistribution on the 

equipotential surface in the local case. The vertical crustal displacement, hδ , is 

accompanied by a viscous flow of masses from below the lithosphere. Therefore, the 

change 
i i

h dδ σ  of an infinitesimal mass volume located at a certain depth induces a change 

in the geoid height at point j as follows: 

m i i i
j

a ij a ij

G h d G
N

g g

ρ δ σ δµ
δ = =

l l
,              (3.28) 

where G is the gravitation constant, mρ  is the mean density of the mantle ranging between 

3.00 – 3.50 -3g cm⋅  (Wahr et al., 1995), ag  is the average gravity, dσ  is the surface 

element, and m hdδµ ρ δ σ=  is the mass element. Eq. (3.28)  was used by Sjöberg (1982) to 

model the geoid rate in Fennoscandia using levelled uplift. By means of the same equation, 
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the effect of the errors of the approximation of the scattered vertical displacement data 

(Figure 3.12) on the geoid is computed and presented in Figure 3.15. The depth of the mass 

element δµ  is assumed to be 120 km. The mismodelling of the rates of the vertical 

displacement would introduce in the rate of change of the geoid height an error of less than 

0.1 mm/yr. 

 

 

 

Figure 3.15: Effect of the approximation errors on the rate of change of geoid height,  

in mm/yr.  

 

3.6 Summary  

In this chapter, radial base functions have been studied in the context of the approximation 

of scattered vertical displacement data. By means of simulated postglacial rebound rates of 

vertical displacement, it has been shown that the IMQ and MQ methods can provide an 

accurate approximation of irregularly distributed observations if the base functions are 
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optimally scaled. This conclusion confirms the observations of Mautz et al. (2003). An 

empirical rule for scaling of the base functions has been developed and tested extensively. 

Two classes of algorithms for determining the optimal number of the base functions have 

been implemented and tested including the backward elimination/forward addition of base 

functions based on the cross-validation technique and the modified Gram-Schmidt 

algorithm based on orthogonal least-squares. In spite of the simple logic of the cross-

validation algorithms, they are computationally intensive (even for small-size problems) 

and, more importantly, the contribution of each base function to the output is not known. 

The modified Gram-Schmidt algorithm is computationally efficient, and its main advantage 

is that the output variance can be easily controlled by varying the threshold value. This 

makes the algorithm particularly useful for smoothing measurement errors in the vertical 

crustal displacement observations. Therefore, based on the results obtained in this chapter, 

the use of algorithms based on orthogonal least-squares for the purpose of approximating 

vertical displacement rates is recommended. The modified Gram-Schmidt algorithm will be 

employed in the optimal combination of heterogeneous data in Chapter 4. 

It has been shown that the rates of change of the geoid height and the rates of the absolute 

vertical displacement can be linked by a physically meaningful relationship in terms of the 

inverse multiquadric base functions. This relationship is the basis for modelling the rates of 

the geoid height from terrestrial data in terms of GPS vertical velocities and rates of the 

terrestrial gravity in Chapters 4 and 5 of this thesis. 
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Chapter Four: Rates of change of geoid and heights 

obtained from terrestrial data 

 

 

 

The objective of this chapter is to develop, test, and validate a methodology for an optimal 

combination of heterogeneous data for prediction of rates of change of geoid and 

orthometric heights. This combination procedure uses least-squares collocation with 

parameters and allows for stepwise computations. The data include rates of change of the 

terrestrial gravity and GPS vertical velocities and comprise the minimum information 

required to estimate the mass redistribution component in the temporal variations of the 

gravity field (see Section 2.4.2 in Chapter 2). This requirement, however, does not limit the 

type of the data that can be inputted. Re-levelled segments of the primary vertical control 

network in Canada, tilts from tide gauges sea/water level recording, GRACE-observed rates 

of change of gravity and absolute displacement comprise other possible data input. In 

addition to the rates of change of the geoid and orthometric heights, rates of the terrestrial 

gravity and absolute vertical displacement can be estimated. 

4.1 General least-squares collocation with parameters approach 

The following key steps of the procedure are described: 

• Least-squares collocation with parameters solution and error estimation; 

• Statistical testing including a test on the compatibility of the data with the 

mathematical model, data snooping for outlier detection, and variance 

component estimation; 

• Validation of the predicted rates. 



 
 

 

80 

4.1.1 Mathematical model 

The observation equation in least-squares collocation with parameters is (Moritz, 1980) 

+l = Ax + s v ,                (4.1) 

where [ ]
T

1 2 nl l l=l L  is a vector of observations, 1 2
T[ ]

k
x x x=x L  is a vector of unknown 

parameters, A is the (n × k) coefficient matrix, and T
1 2[ ]nv v v=v L  is a vector of normally 

distributed errors (noise) with ( , )vN 0 C  and T{ }v E=C vv .  

The vector  [ ]1 2

T
n

s s s=s L   contains signal components of the observations. In this 

research, signals are linear functionals of the rate of change of the potential and are 

represented as follows: 

, 1, 2,...,i is BW i n= =& ,               (4.2) 

where B is a linear operator. The functionals of the rate of change of the potential include 

rates of change of the terrestrial gravity and its mass component and rates of change of the 

ellipsoidal, geoid, and orthometric heights. Eq. (4.1)  was originally used in the prediction 

of absolute vertical displacements from absolute gravity and levelling data in local tectonic 

areas (Heck, 1984). For Canada, the terrestrial gravity data and GPS vertical velocities 

comprise the terrestrial data that can be used for modelling the rates of the geoid and 

orthometric heights in the areas not covered by a vertical control network.  

The vector s is assumed normally distributed, i.e., ~ ( , )sNs 0 C  with T{ }s M=C ss , where 

M is a homogeneous and isotropic averaging operator on the sphere (Moritz, 1980). The 

normal distribution of the local anomalous gravity field is justified by Wei (1987). 

According to Koch (1999), the observations , 1,...,il i n=  are considered also normally 

distributed variables with ( , )l s vN = +Ax C C C . 

Let the zero mean signal vector s  contains the vector s of the given signals and the vector 

ps  of predicted signals at new locations, i.e., T T T
p[ ]=s s s . Then, the cross-covariance 

matrix of the predicted and given signals is defined as follows: 
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p

T
p{ }s s M=C s s .                      (4.3) 

The estimates of the vector of parameters x  and the signal vector s  are obtained by 

minimizing the norm 

T T mins v+ =s C s v C v                (4.4) 

under the condition given by Eq. (4.1) , where it is assumed that the signal and noise vectors 

are not correlated; that is, sv =C 0 . The signal covariance matrix is given as  

p

p p

s ss

s
s s s

 
 =
  

C C
C

C C
.                (4.5) 

The estimated vector of parameters is found by 

T T1 1 1ˆ ( )l l
− − −=x A C A A C l .               (4.6) 

The vector of predicted signals at the new locations is 

pp
1ˆ ˆ( )s s l

−= −s C C l Ax ,                (4.7) 

and the vector of estimated signals of the observations is 

1ˆ ˆ( )s l
−= −s C C l Ax .                (4.8) 

The estimated residuals are given by 

1ˆ ˆ( )v l
−= −v C C l Ax .                (4.9) 

The estimation errors are obtained from the covariance matrices  

T 1 1
ˆ ( )l

− −=x CC A A ,              (4.10) 

p p p

T T1 1
ˆ ˆ( )

p
s s s l l s s

− −= − −s xC C C C I AC A C C ,                  (4.11) 

p p

T T1
ˆˆ ˆ l s s

−= −xs xC C A C C ,             (4.12) 

T T1 1
ˆ ˆ( )s s l l s

− −= − −s xC C C C I AC A C C ,                 (4.13) 
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and 

-1 T -1
ˆ ˆ( )v v l l v= − −v xC C C C I AC A C C .                (4.14) 

The covariance matrix of the predicted vector p p p
ˆ ˆˆ= +l A x s  is defined as  

p p pp

T T
p p p pˆ ˆ ˆ ˆˆ ˆ ˆ( )= + + +x xs xs sl

C A C A A C A C C            (4.15) 

with the coefficient matrix pA . 

4.1.2 Statistical testing 

The statistical testing related to the model of least-squares collocation with parameters 

involves the following tests: 

1. Test on the compatibility of the data with the mathematical model 

A test on the variance of unit weight (a congruency test) indicating the validity of the 

adopted model for the given data is performed. According to Dermanis and Rossikopoulos 

(1991), test failure indicates a problematic mathematical model without revealing the actual 

cause. The possible causes may include an incorrectly formulated mathematical model, 

incorrect signal and noise covariance matrices, or outliers present in the observations 

(Krakiwsky and Biacs, 1990). 

The stochastic model used is  

2
o~ , s

v

N σ
     
     

      

Q 0s 0

0 Qv 0
,            (4.16) 

where a common variance of unit weight 2
oσ  is assumed. ands vQ Q  are signal and error 

cofactor matrices, respectively. The estimate of 2
oσ  is defined as follows: 

2
oˆ

n k f
σ

Ω Ω
= =

−
,              (4.17) 

where f stands for the degrees of freedom of the model. The quadratic form Ω is defined as  
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T T1 1ˆ ˆ ˆs v
− −Ω = +s C s v C v                   (4.18) 

and can be computed as follows (Wei, 1987): 

T T T1 1 1 11( ( ) )l l l l
− − − −−Ω = −l C C A A C A A C l .           (4.19)  

The test on the variance of unit weight is defined (Vaníček and Krakiwsky, 1986; Dermanis 

and Rossikopoulos, 1991) as 

2 2
o o o

2 2
a o o

ˆ:

ˆ:

H

H

σ σ

σ σ

=

≠
,               (4.20) 

where 2
o 1σ =  is assumed, with a test statistic  

2
2 o

2 2
o o

ˆf σ
χ

σ σ

Ω
= =% .              (4.21) 

The null hypothesis is accepted if  

2 2 2
1 / 2 / 2( ) ( )f fα αχ χ χ− ≤ ≤% ,             (4.22) 

where α  is the adopted level of significance.   

2. Outlier detection 

One of the possible reasons for the failure of the congruency test is the presence of 

erroneous observations (outliers). Testing for outliers is based on testing the null hypothesis  

 o

a

: 0

: 0
i

i

H

H

∇ =

∇ ≠
,               (4.23) 

where i∇  is the magnitude of the outlier present in the ith observation. The Baarda’s data-

snooping method (Baarda, 1967; Teunissen, 2000) is used to test the individual residuals by 

means of the statistic 

ˆ

ˆ
~ (0,1)

i

i

v

v
N N

σ
=% ,              (4.24) 
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where ˆ ˆdiag( )
i

v iσ = vC , if the scale of the error covariance matrix is known. An outlier is 

present in the ith observation if  

1 / 2N N α−>% .               (4.25) 

If the scale of the error covariance matrix is estimated, the statistic 

( )
i

i

v̂

v̂
~ f

ˆ
τ τ

σ
=%               (4.26) 

has a τ-distribution and is computed with ˆ ˆ
ˆˆ diag( )

i
v iσ = vC  (Vaníček and Krakiwsky, 

1986). The null hypothesis is not accepted if 

1 / 2ατ τ −>% .               (4.27) 

The τ-distribution is related to the t-distribution by 

2

( 1)

1 ( 1)

f t f

f t f
τ

−
=

− + −
.              (4.28) 

3. Test on the model parameters  

The statistical test on the model parameters allows one to leave out the insignificant 

components of the vector x̂  and to increase the degrees of freedom of the model. For a 

definition of the test and a description of the appropriate statistics applied in the least-

squares collocation method, Wei (1987) can be consulted. The developed procedure in this 

research does not incorporate the test on the model parameters. The modified Gram-

Schmidt algorithm determines the location of the base functions (and their number) by 

ordering the regressors in terms of their contribution to the data variance (Section 3.3.2). 

Thus, the significance of each base function is assessed automatically. 

4. Variance component estimation  

When two or more heterogeneous groups of observations are included in the mathematical 

model in Eq. (4.1) , variance component estimation is carried out. Proper weighting of the 

observations is required in order to estimate correctly the unknown parameters and to avoid 
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systematic distortions of results. The method applied in this thesis is the iterative BIQUE 

(Best Invariant Quadratic Unbiased Estimate); see, e.g., Koch (1999). Some examples for 

the implementation of this method include an analysis of terrestrial geodetic networks 

(Crocetto et al., 2000), regularization of geopotential determined from gradiometric and 

satellite-to-satellite tracking data (Koch and Kusche, 2002), and optimal weighting of 

different groups of levelling data, GPS vertical velocities, and tide gauge data in the least-

squares collocation modelling of the Fennoscandian uplift (Vestøl, 2006).  

The vector of m heterogeneous and uncorrelated groups of observations is represented as 

TT T T
1 2 … m

 =  l l l l  with a vector of normally distributed errors, 
TT T T

1 2 … m
 =  v v v v . In this 

thesis, the observations in each vector are assumed uncorrelated. Thus, the error covariance 

matrix, vC , has a block-diagonal structure as follows: 

2
1 11

2
2 2 2

2
m

m m

v

σ

σ

σ

  
  
  = =   
  
    

Q 0 0C 0 0

0 C 0 0 Q 0
C

0 0 C 0 0 Q

LL

L L

M M O M M M O M

L L

          (4.29) 

with diagonal covariance matrices , 1,...,i i m=C  and variance components 2 , 1,...,i i mσ = . 

The variance components are collected in the vector 2 2 2 T
1 2[ , ,..., ]mσ σ σ=θ , which is 

estimated by solving the system (see, e.g., Crocetto et al., 2000) 

ˆ =Sθ q .               (4.30) 

The matrix S  is defined as follows: 

[tr( )], , 1,...,i j i j m= =S VQ VQ ,            (4.31) 

where tr( )⋅  is the trace operator, and iQ  is a positive definite cofactor matrix for the ith 

group of observations. Because S  may not be of full rank, it has a pseudo inverse +
S . 

The symmetric matrix V  is defined as follows: 
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T T1( ( ) )−= −V P I A A PA A P ,                    (4.32) 

where A  is a coefficient matrix and P  is a block-diagonal matrix 

1

2

1

1
1

1

1

( )

m

m

i
i

−

−
−

=

−

 
 
 

= = ∑ 
 
 
 

Q 0 0

0 Q 0
P Q

0 0 Q

L

L

M M O M

L

.           (4.33) 

The vector q contains the quadratic forms 

Tˆ ˆ[ ], 1,...,i i i i m= =q v PQ Pv ,             (4.34) 

where ˆ , 1,...,i i m=v  are estimated vectors of residuals.  

The vector of the unknown variance components is estimated iteratively using the re-scaled 

cofactor matrices. For example, at the r%
th iteration, the cofactor matrices are computed as  

( ) ( ) (o)ˆ ˆ... , 1,...,r r
ii i i i mθ θ= =Q Q

% % ,            (4.35) 

and the updated P matrix used in the next iteration is  

1( ) ( )

1
( )

m
r r

i
i

−

=
= ∑P Q

% % .              (4.36) 

The criterion for termination of the iterations is T( )ˆ [1,...,1]r →θ . The estimated variance 

components are computed as follows: 

( )

1

ˆ ˆ , 1,...,
r

r
i i

r

i mθ θ
=

= =∏
%

%

.               (4.37) 

4.2 Optimal combination of heterogeneous terrestrial data 

The observation vector is defined as T T T[ ]=l g h&& , where 
1

T
1 2[ ]ng g ... g=g& & & &  and 

2

T
1 2[ ]nh h ... h=h & & &&  are the vectors of the rates of the terrestrial gravity (given at n1 point 
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locations) and the rates of the ellipsoidal height, i.e., the GPS vertical velocities, at n2 point 

locations. The data covariance matrix is the fully-populated matrix  

( )

( )

g v g gh

l

vhg h h

 +
 =
 +
 

C C C
C

C C C

&& & &

& & &&

,            (4.38) 

where  and g h
C C &&  are the signal auto-covariance matrices of the rates of change of the 

terrestrial gravity and ellipsoidal height, respectively; the matrix T
gh hg

=C C& && &
 contains the 

signal cross-covariances; and ( )  and ( )v g v h
C C &&  are the error covariance matrices. The 

vector of the predicted functionals at p point locations, T T T T T
p p p p p[ ]=s g H N h& & && , includes the 

rates of change of the terrestrial gravity, T
1 2p p[ ... ]g g g=g& & & & , orthometric height, 

T
1 2p p[ ... ]H H H=H& & & & , geoid height, T

1 2p p[ ... ]N N N=N& & & & , and ellipsoidal height, 

T
1 2p p[ ... ]h h h=h & & && . 

The covariance matrix of the predicted functionals and signal components is defined as 

follows: 

1 2

1 2

1 2

1 2

1 2

p n n

p n n

p n n

p n n

p n n

g s

H s

s s
N s

h s

+

+

+

+

+

 
 
 
 =
 
 
 
  

C

C

C
C

C

&

&

&

&

,              (4.39) 

where 

1

1 2

2

p n

p n n

p n

g g

g s
g h

+

 
 =
 
 

C
C

C

& &

&
&&

, 1

1 2

2

p n

p n n

p n

H g

H s
H h

+

 
 =
 
 

C

C
C

& &

&

&&

, 1

1 2

2

p n

p n n

p n

N g

N s
N h

+

 
 =
 
 

C

C
C

& &

&

&&

, and 1

1 2

2

p n

p n n

p n

h g

h s
h h

+

 
 =
 
 

C

C
C

& &

&

& &

. 
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4.2.1 Modelling the trend component 

The trend of the surface is modelled using the inverse multiquadric base functions defined 

by Eq. (3.4) . Because the inverse multiquadric is a strictly positive definite function, no 

polynomial term needs to be added in Eq. (4.1) ; see Section 3.3. To scale the base 

functions, a shape parameter of 0.1 of unit distance (the data are scaled to a unit cube) can 

be used a priori and subsequently improved in the least-squares collocation solution. 

The coefficient matrix A is structured as 

g

h

 
=  
  

A
A

A

&

&

,               (4.40) 

where 

1[ ], 1,..., , 1,...,g ijh

g g
i n j k

h h
= = Φ = =A A &&

& &

& &
            (4.41) 

is the ( 1n k× ) coefficient matrix of the rates of change of the terrestrial gravity and 

2[ ], 1,..., , 1,...,ijh
i n j k= Φ = =A &             (4.42) 

is the ( 2n k× ) coefficient matrix of the rates of change of the ellipsoidal height. The base 

functions ijΦ  are computed by means of Eq. (3.4) . The coefficient matrix for the rates of 

change of the orthometric height, 
H

A & , can be obtained from gA &  and 
h

A &  as follows: 

/

/
gH h

H H g

g h g
= =A A A& &&

& & &

&& &
.             (4.43) 

When the rate of change of the geoid height is predicted, the coefficient matrix is computed 

by means of Eq. (3.27) . 

4.2.2 Modelling the signal component  

If the displacement of the fundamental benchmark in Eq. (2.37)  is assumed zero, the rate of 

change of the potential is computed as (see Eq. (2.38) ):  
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2
( ), ( ) ( ) ( )

4
ag R

W St g H St S d
R σ

ψ σ
π

= + ⋅ = ⋅∫∫& && .          (4.44) 

W&  is a sum of two components as follows: 

1 2

2
( ) ( )ag

W W W St g St H
R

= + = +& & & && .             (4.45) 

g&  and H&  are linear functionals of the rate of change of the geopotential. With the inverse 

Stokes operator 1 ( ) 2( )
( )St

r R

− ∂ ⋅ ⋅
⋅ = − −

∂
, they are represented as (Heck, 1984) 

1
1 1 1( )g St W L W

−= =& &&                (4.46) 

and 

2 2 2
1( )

2 a

R
H St W L W

g

−= =& & & .             (4.47) 

The covariances between the rates of the two components of the potential, , 1,2iW i =& , at 

points P and Q on the sphere with a radius R are defined as 

(P,Q) ( ( ), ( )) cov{ (P), (Q)}, , 1, 2ij ij i jC C W P W Q W W i j= = =& & & &         (4.48) 

and are propagated as follows (Moritz, 1980): 

cov{ (P), (Q)} cov{ (P), (Q)} (P,Q), , 1,2Q Q QP P P
i i j i i j i ijj j jL W L W L L W W L L C i j= = =& & & & .      (4.49) 

In gravity field approximation, various local covariance function models exist that are 

homogeneous, isotropic, and symmetric (with respect to the points P and Q) analytical 

functions (see, e.g., Jordan 1972; Moritz, 1980 and Meier, 1981). However, only functions 

that allow a harmonic expansion of the potential in the outer space can be used to 

approximate the covariance function of the components of the potential and its functionals 

as well as their temporal variations. According to Reilly (1979), such a function is the 

Gaussian model 

2 2
2

/ 21(P,Q)
2

D
C C e

ρ ττ −= = ,                       (4.50) 
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where ρ  denotes the planar distance between the points P and Q, 2 / 2Dτ  stands for the 

variance, and τ  is a parameter related to the correlation length of the Gaussian model. For 

points not on a plane, the model in Eq. (4.50)  is generalized to (ibid.) 

2 2
4

( )1 / 2

0

(P,Q) ( )
2

P Q
z z

o

D
C C e e J d

φ φ ρ

φ

τ
φ φρ φ

∞
− + −

=

= = ∫ ,         (4.51) 

from which the covariance function of the vertical derivative of the rate of change of the 

potential is found as follows: 

2 2
4

( )3 / 2

0P Q

( , ) ( , ) ( )
2

P Q
z z

o

W W D
C C W W e e J d

z z z z

φ φ τ

φ

τ
φ φρ φ

∞
− + −

=

∂ ∂ ∂ ∂
= = ∫

∂ ∂ ∂ ∂

& &
& & .       (4.52) 

In Eqs. (4.51) and (4.52) , ( )oJ φρ  is the zero order Bessel function (e.g., Korn and Korn, 

1968). If P Q 0z z= = , Eq. (4.52)  reduces to  

2 2
2

3 / 2
2

( , ) 1
2

W W
C C D e

z z

ρ τρ

τ

− ∂ ∂
= = −  ∂ ∂  

& &
.                  (4.53) 

The covariance function ( / , )C W z W∂ ∂& &  is computed by 

2 2

1 1

2
2 / 2

2

1
( , ) ( ,1; )

2 2 2 2

W
C W C D e F

z

ρ ττ π ρ

τ

−∂
= − = −

∂

&
& ,         (4.54) 

where 1 1
2 2( 1/ 2,1; / 2 )F ρ τ−  is the confluent hypergeometric function of the first kind 

(Abad and Sesma, 1995).  

Using Eqs. (4.50), (4.53), and (4.54) , the auto- and cross-covariance matrices of the rates of 

the terrestrial gravity, geoid, orthometric, and ellipsoidal heights are computed as shown by 

Heck (1984). The derivations are given in Appendix A, and the final expressions for the 

covariance functions are presented in the following. 

1 1 1 1
11 12 21 222

1
cov( (P), (Q)) ( )

a

N N C C C C
g

= + + +& &              (4.55) 
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3 2 1
11 11 112

4 4
cov( (P), (Q))g g C C C

R R
= − +& &              (4.56) 

2
3 2 1
22 22 222 2 2

1
cov( (P), (Q))

4 a a a

R R
H H C C C

g g g
= − +& &              (4.57) 

2
3 2 2 1
22 12 21 112 2 2

1 1 1
cov( (P), (Q)) ( )

4 2
a a a

R R
h h C C C C

g g g
= + + +& &              (4.58) 

2 2 1 1
11 21 11 21

1 2
cov( (P), (Q)) cov( (P), (Q)) ( ) ( )

a a

N g g N C C C C
g g R

= = + − +& && &              (4.59) 

2 2 1 1
12 22 12 222 2

1
cov( (P), (Q)) cov( (P), (Q)) ( ) ( )

2 a a

R
N H H N C C C C

g g
= = + − +& & & &              (4.60) 

3 2 1
12 12 12

2 2
cov( (P), (Q)) cov( (P), (Q))

2 a a a

R
g H H g C C C

g g g R
= = − +& && &              (4.61) 

2 2 1 3
11 12 11 12

1 2
cov( (P), (Q)) cov( (P), (Q)) ( )

2a

R
g h h g C C C C

g R
= = − − +& && &              (4.62) 

1 1 2 2
11 12 12 222

1
cov( (P), (Q)) cov( (P), (Q)) ( )

2 2
a

R R
N h h N C C C C

g
= = + + +& && &              (4.63) 

2
3 2 2 1
22 21 22 212

1
cov( (P), (Q)) cov( (P), (Q)) ( )

4 2 2
a

R R R
H h h H C C C C

g
= = + − −& && &              (4.64) 

4.2.3 Description of the computational algorithm 

The computational algorithm, outlined by Rangelova et al. (2006a), is presented 

schematically by the flowchart in Figure 4.1. The input consists of rates of the terrestrial 

gravity and ellipsoidal height and the gravity-to-height ratio estimated from these data. The 

modified Gram-Schmidt algorithm is applied to determine the optimal number and 

locations of the base functions. To compute the signal auto- and cross-covariance matrices, 

first, the parameters of the Gaussian model,  and , , 1,2ij ijD i jτ = , are estimated by a 

least-squares fit to the empirical covariances of the rates of change of the potential 

components defined by Eq. (4.45) . 
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Input

( ) ( )v g v h
g, , h, ,g / hC C &&

& && &

Modified GS algorithm
Eqs. (3.17 ÷ 3.25)

g,ε&

=[ ( )], 1ijr j ,...,kΦ =A

1

2
(o)

( )

(2 ) ( )a

W St g

W g / R St H

H h

=

=

=

& &
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&&

H&

1 2ij ijD & ,i, j ,τ =

Signal covariance matrices 
Eqs. (4.38 ÷ 4.39)

Solution (1) Solution (2) Solution (3)

Modify
1.Threshold 
2.Shape parameter
3.Stokes kernel

no yes
ε 2χ - test

Output
ˆˆ ˆ ˆN , H , h, g&& & &

Coefficient matrices
Eqs. (4.40 ÷ 4.43)

Least-squares collocation
Eqs. (4.6 ÷ 4.15)

VCE-BIQUE 
Eqs. (4.29 ÷ 4.37)

( ) ( )v g v h
ˆ ˆ,C C &&

( ) ( )v g v h
ˆ ˆ,C C &&

Stepwise solution

 

 

Figure 4.1: Flowchart of the computational procedure. 
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For this purpose, the rates of the terrestrial gravity and the GPS velocities are integrated 

using a spheroidal Stokes kernel of degree L (see, e.g., Vaníček and Featherstone, 1998) 

2 1

2 1 2 1
( ) ( ) (cos ) (cos )

1 1

L
L

l l
l l L

l l
S S P P

l l
ψ ψ ψ ψ

∞

= = +

+ +
= − =∑ ∑

− −
,         (4.65) 

where (cos )lP ψ  are the Legendre polynomials. The first L spherical harmonic degrees, 

assumed to represent the spectrum of the postglacial rebound signal, are filtered out. The 

degrees higher than L are assumed to represent isotropic geopotential changes 1 2 and W W& &  

with covariance functions computed by the Gaussian model in Eq. (4.50) . 1 2 and W W& &  can 

contain a residual postglacial rebound signal, a local tectonic signal, and local gravity field 

changes with an anthropogenic origin.  

The computational algorithm is iterative with the number of iterations being two. The 

Stokes integral should be evaluated with the rates of the orthometric height, which are 

substituted with the GPS velocities at the first iteration. This is allowed because the rate of 

change of the orthometric height comprises approximately 90% of the rate of change of the 

ellipsoidal height. In the second iteration, the Stokes integral is evaluated using the 

predicted rates of the orthometric height and the computational algorithm is repeated. 

In principle, three different least-squares collocation solutions can be obtained using the 

following data:  

1. terrestrial gravity rates and gravity-to-height ratio,  

2. GPS velocities and gravity-to-height ratio, and 

3. terrestrial gravity rates and GPS velocities. 

The first two options allow one type of data to be used with a gravity-to-height ratio 

computed from geophysical models or estimated from previous studies in the region or a 

different region with similar geodynamics. The flowchart in Figure 4.1 includes three 

solutions that compare to the three listed options as follows. Solution (1) is a realization of 

option (1) with the gravity-to-height ratio estimated from the terrestrial gravity rates and 

GPS vertical velocities. The /g h&&  value is used to compute both the trend surface and the 
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signal covariance matrices. As shown in Section 2.4.7, the estimated /g h&&  is close to the 

theoretical value for postglacial rebound and to the empirical values obtained in the recent 

studies for North America. Thus, the predicted rates of change of the geoid and orthometric 

heights will be interpreted entirely in terms of postglacial rebound. Solution (2) is a 

modification of options (1) and (3). The trend surface is computed using the terrestrial 

gravity rates and the /g h&&  value, but the signal covariance matrices in Eqs. (4.55) (4.64)−  

are computed with both terrestrial gravity and GPS data. This allows one to alleviate the 

stringent assumption related to postglacial rebound in Solution (1), and to account for the 

existence of local processes. Solution (3) is a realization of option (3) in a stepwise manner 

(Moritz, 1980, pp. 144 ÷ 156). In fact, the trend component estimated in Solution (2) is 

improved by adding the GPS vertical velocities. The signal covariance matrices are again 

computed with both types of data. 

Different models can be obtained by varying the threshold value ε in the modified Gram-

Schmidt algorithm, the shape parameter of the inverse multiquadric base functions, and the 

degree L of the spheroidal kernel. This is a nonlinear problem which is solved by fixing the 

shape parameter and varying the threshold value and the degree L. The scale of the 

multiquadric base functions has been resolved in Chapter 2. The degree of the spheroidal 

kernel is varied between degrees 10 and 20, which account for 92% and 98% of the total 

power of the GIA geoid rate signal. The mathematical models in Solutions (1) and (2) are 

tested by the congruency test described in Section 4.1.2. If the null hypothesis is accepted, 

the threshold value and the degree of the spheroidal kernel are used to obtain Solution (3). 

The failure of the congruency test is an indication for an inadequate model, which can be 

improved by changing either one of the above parameters. Although the procedure allows 

for changing the scale of the inverse multiquadrics, the a priori value of 0.1 in unit distance 

remains constant throughout all computations. 

If two types of data (terrestrial gravity rates and GPS velocities) are combined as in 

Solution (3), the scale factors of the error covariance matrices are determined by variance 

component estimation described in Section 4.1.2. The rescaled covariance matrices are used 

in the second iteration of the computational procedure as shown in Figure 4.1. It should be 
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noted that the signal auto- and cross-covariance matrices in all three solutions are assumed 

to be properly scaled. According to Dermanis and Rossikopoulos (1991), the scale of the 

signal covariance matrices should be determined together with the scale of the error 

covariance matrices in a variance component estimation procedure. The estimated vector of 

variance components can also include the parameters  and , , 1,2ij ijD i jτ =  of the 

Gaussian covariance kernels. This rigorous statistical procedure can be applied if a four-

dimensional (three spatial coordinates and time) integrated network is realized. However, if 

the signal component in Eq. (4.1)  represents mass redistribution accompanying the vertical 

crustal displacement, the variance component estimation can be applied only to models that 

treat the gravity signals as deterministic parameters (ibid., 1991). 

4.2.4 Validation of predicted rates 

Hypothesis testing in stepwise least-squares collocation can be used to validate the 

predicted rates of change using independent data. According to Wei (1987), the observation 

vector tl  can be considered as a general linear hypothesis   

t t t t
o

t t t t
a

:

:

H

H

= + +

≠ + +

l A x s v

l A x s v
             (4.66) 

by means of which the compatibility of the predicted signal t
s  with the observation vector 

tl  can be tested. The test statistic is defined as 

t t
t/

~ ( , )
/

f
F F f f

f

Ω
=

Ω
% ,             (4.67) 

where the quadratic form tΩ  is computed with the error covariance matrix 

t t t t
T Tt t t t t

ˆ ˆ ˆ ˆ ˆˆ ˆ( ) ( )
v

+= + + +x xs xs sl
C A C A A C A C C C               (4.68) 

of the estimates tl̂  as follows: 

Tt t t t t t
ˆ

ˆ ˆ( ) ( )Ω = − −
l

l l C l l .             (4.69) 
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The quadratic form Ω has been defined in Eqs. (4.18) and (4.19) . The null hypothesis is 

accepted if t( , )F F f fα<% , where t
f  is the number of observations tl . When a single 

observation is tested, the test statistic defined by Eq. (4.67)  reduces to 

t t tˆ( ) /
~ ( )

/

i i iil l N
t t f

f
α

−
=

Ω
% .               (4.70) 

The null hypothesis is accepted if ( )t t fα<% . 

4.3 Models of the rates of change of the terrestrial gravity, geoid, and heights  

This section presents the estimated rates of the terrestrial gravity and height components 

using the data from the two basic networks in Canada; that is, the Canadian Gravity 

Standardization Network (CGSN) and the Canadian Base Network (CBN) both described 

in Chapter 2. CGSN and CBN have different network topologies, number of sites, and time 

spans of the measurements. Nevertheless, the rates from the two networks are in general 

agreement and also agree with postglacial rebound model predictions (see Pagiatakis and 

Salib, 2003; Henton et al., 2006). 

4.3.1 Description of the terrestrial gravity and GPS velocity data  

The CGSN and CBN data are interpolated by means of the inverse multiquadric base 

functions with a shape parameter of 0.1 of unit distance (Figures 4.2 a and b). Despite the 

very weak constraints on the vertical displacement surface provided by the CBN data in the 

northern areas, the smooth interpolation ensured by the inverse multiquadrics leads to some 

similarities in the patterns in Figures 4.2 a and b. 

The largest uplift for both data sets is observed on the east coast of Hudson Bay. The 

estimated terrestrial gravity rate of -2.35 µGal/yr corresponds to an uplift of 13.1 mm/yr 

when a gravity-to-height ratio of -0.18 µGal/mm is used. GPS observes an uplift of 12.5 

mm/yr that transforms into a negative rate of terrestrial gravity of -2.25 µGal/yr. Although 

the terrestrial gravity decreases at a higher rate compared to that observed by the GPS 
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measurements, the data agree generally well with the postglacial model predictions based 

on the ICE-3G and ICE-4G models (see Pagiatakis and Salib, 2003; Henton et al., 2006). 

The lack of observations west of Hudson Bay does not allow for constraining the model 

predictions and the Keewatin dome of ice present in the ICE-5G model. The terrestrial 

gravity decrease and the crustal uplift in the Yellowknife area, believed to account for the 

Keewatin signal, do not agree well. Larger vertical displacement rates than that observed by 

GPS are required to match the observed decrease in the terrestrial gravity. An important 

difference between the gravity and GPS data is the line of zero motion, which for the 

gravity sites follows the large Canadian lakes west and northwest of the Hudson Bay region 

but for the GPS stations lies south to the lakes. In eastern Canada, the GPS hinge line is 

also south of the gravity hinge line. The Great Lakes region is not included in the modelling 

because the gravity sites do not sample that region. 

Characteristic for the gravity rates is the subsidence corridor starting west of the Great 

Lakes area, continuing northwest of Hudson Bay and to the north including the Mackenzie 

River Delta. In the latter, subsidence from natural gas extraction is superimposed on the 

postglacial rebound signal, but geodetic measurements are taken under the conditions of 

active permafrost. This area is not sampled by the CBN stations. Another difference 

between the rates of the terrestrial gravity and GPS velocities is the strong decrease in the 

terrestrial gravity in the western prairies, whose origin is unclear (Pagiatakis and Salib, 

2003). One possible reason could be the mass decrease following the extraction of oil in 

this area. However, rapid subsidence which usually accompanies fluid extraction (see 

Section 2.4.7) is not confirmed by the very small (close to zero) GPS velocities. Both 

terrestrial gravity and GPS data account for crustal uplift in the northern Cascadia 

subduction zone. 

Table 4.1 summarizes the standard deviations of the gravity and GPS data obtained from 

the error covariance matrices of the least-squares adjustment of CGSN and CBN. The mean 

standard deviation of the gravity rates, i.e., 0.43 µGal/yr, corresponds to the mean standard 

deviation of the GPS velocities, i.e., 2.4 mm/yr, computed with / 0.18 µGal/mmg h = −&& . 

This accounts for equivalent average accuracy of both data sets. 
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Figure 4.2: (a) Rates of the terrestrial gravity (the CGSN sites are plotted in red) and (b) 

GPS velocities (the CBN stations are plotted in blue). 

 

Table 4.1: Standard deviations of the terrestrial gravity rates and GPS velocities 

Observations Min Max Mean 

gσ & , µGal/yr 0.06 0.90 0.43 

h
σ & , mm/yr 0.1 5.0 2.4 

 

(b) 

(a) 
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4.3.2 Signal auto- and cross- covariance functions 

Table 4.2 contains the parameters of the covariance functions of , 1, 2iW i =&  obtained by 

integration with a spheroidal kernel of degree L = 15. For the purpose of computing the 

empirical covariances, the integrated GPS velocities are interpolated at the gravity sites. As 

seen from Table 4.2, the rates of the ellipsoidal height lead to a larger variance 2
22 22 / 2D τ  

and correlation length ξ22 of the covariance kernel C22(P,Q) compared to C11(P,Q), which 

accounts for the gravity data only. The larger correlation length suggests that GPS data may 

sample crustal deformation processes with larger spatial wavelengths than the gravity data. 

In general, the signal auto- and cross-covariance functions given by Eqs. (4.55) (4.64)−  

consist of terms that account for the effect of the vertical crustal displacement and the mass 

redistribution. The contribution of the different terms is illustrated by means of the cross-

covariance function of the rates of the ellipsoidal and orthometric heights defined by 

Eq. (4.64)  and plotted in Figure 4.3. The cross-covariance function is dominated by the 

term 2 3 2
22 /(4 )aR C g , where 3

22C  is the covariance function of the vertical derivative of 2W&  

defined by Eq. (4.53) . Consequently, the main contribution comes from the vertical 

displacement of the crust. This is counteracted by the terms 2 2
22 / aRC g− , 

2 2 2
12 21[ ] /(2 )aR C C g+ , and 1 2

11 / aC g . The last term accounts for the small contribution of the 

mass redistribution, i.e., the contribution of the change in the geoid height.  

Figure 4.4 shows all of the covariance functions used in the combined procedure. 

 

Table 4.2: Parameters of the covariance kernels defined by Eq. (4.50)  

Cij(P,Q), i,j=1,2 Dij, µGal2/yr2 τij ×102, km 
2 / 2ij ijD τ , µGal2mm2/yr2 ξij, km 

C11(P,Q) 0.2069 4.072 1.715 232.3 

C12(P,Q) -0.1174 5.144 -1.553 408.4 

C21(P,Q) -0.1174 5.144 -1.553 408.4 

C22(P,Q) 0.3032 4.774 3.455 379.1 
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Figure 4.3: Signal cross-covariance function of h&  and H& . 
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Figure 4.4: Signal auto- and cross-covariance functions. 
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4.3.3 A priori threshold value for selecting optimal locations of base functions 

An a priori value of the threshold for the modified Gram-Schmidt algorithm, which is 

applied to determine the number and locations of the base function for modelling the trend 

component of the predicted rates, is required. To determine this a priori threshold, a test 

gravity network including fourteen sites from CGSN is constructed using the original 

gravity ties to simulate the measured gravity differences between the sites. The 

measurements are simulated for 25 epochs from 1980 to 2004.  

The observation equation for a gravity difference reads: 

o o
o o( ( )) ( ( ))ij i i ij j j ij ijg g g t t g g t t v∆ = − − − + − − +& & ,          (4.71) 

where the absolute gravity value go and the rate g&  at the gravity sites i and j are unknown 

parameters, ijt  is the epoch of the measured gravity difference between the sites i and j, and 

ot  is the reference epoch of 2000.0; vij comprises Gaussian noise. The drift and scale 

factors of the instruments are assumed to be known.  

The gravity rates over Canada result from a superposition of many factors. In general, the 

signal from postglacial rebound can be superimposed by a local signal of a tectonic or 

anthropogenic origin. Thus, the smooth postglacial rebound pattern can be corrupted by 

local vertical crustal displacements. The simulated sparse gravimetric network cannot 

provide sufficient spatial sampling of the local processes, but the characteristic wavelengths 

of the postglacial rebound signal can be modelled.  

It is assumed that a vector of the rates of the terrestrial gravity is represented by the sum  

PGR local= +g g g& & & ,              (4.72) 

where localg&  is a vector of independent variables uniformly distributed 
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where local local local
1{( ,..., ) : , 1,..., }n i i iD g g a g b i n= ≤ ≤ =& & & . The vector localg&  could represent 

the effect of a variety of factors, such as tectonic coseismic displacements, anthropogenic 

subsidence due to gas and oil extraction, erosion, and subsidence due to melting of the 

permafrost. The temporal behaviour of the instabilities of the gravity sites can be modelled 

by a random-walk process in which the instabilities are allowed to increase with time but 

are assumed uncorrelated in space (e.g., Odijk, 2005).  In this simulation, the gravity sites 

are assumed stable. 

The unknown absolute gravity values and their rates are estimated by means of least-

squares adjustment with a minimal constraint of the absolute gravity and its rate at the 

Churchill site. A set of five postglacial rebound models, selected among the models 

described in Section 2.2, are used to obtain the vector PGR
g& . The vector localg&  is computed 

using a Monte Carlo simulation of 108 runs with uniformly distributed random velocities 

with a = -0.5 µGal and b = 0.5 µGal and Gaussian noise with 2 10µGalvσ = . The average of 

the data variance of the adjusted rates from all runs is used to compute the ratio of the data 

variances in Table 4.3. The postglacial rebound models could explain from 70 to 86 percent 

of the data variance of the simulated and adjusted gravity rates. Further investigation of the 

effect of the threshold value on the modelled trend surface is given in the following section. 

 

Table 4.3: Variance ratio computed for the PGR models by the Monte Carlo simulation 

Variance ratio Model 1 Model 2 Model 3 Model 4 Model 5 

PGRVar( ) / Var( )g g& &  0.70    0.80    0.83     0.85     0.86 

 

4.3.4 Effect of the threshold value on the trend surface 

In the following, the effect of the varying threshold value (or the number of base functions) 

on the trend component of the modelled surfaces is studied. In Chapter 3, the threshold 

value has been used to filter out stationary noise from a simulated vertical displacement 

surface. It has been shown that a threshold value of 0.1 of unit distance ensures the accurate 
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approximation of the displacement surface. Based on the simulations in the previous 

section, it could be expected that the threshold values can be varied from 0.15 (for 

PGRVar( ) / Var( )g g& &  = 0.85) to 0.3 (for PGRVar( ) / Var( )g g& &  = 0.70). Therefore, it is 

instructive to provide an assessment of the quality of the approximated velocity surface for 

these threshold values. This analysis also facilitates understanding of the interaction 

between the trend, signal and noise components in the model of least-squares collocation 

with parameters defined by Eq. (4.1) . For this purpose, two criteria will be employed: 

namely, the adjusted coefficient of determination (see, e.g., Fotopoulos, 2003) and the 

condition number of the normal matrix. The latter indicates instabilities in the model. The 

former indicates the goodness-of-fit of the model and has the form 

2 ' 2 2

1 1
ˆ1 ( ) /( ) / ( ) /( 1)

n n

i i
i i

R v n k l l nα
= =

   
= − − − −∑ ∑   

   
,          (4.74) 

where ˆ ′v  is obtained by means of  

ˆˆ ˆ ˆ′ = + = −v v s l Ax .              (4.75) 

Theoretically, the adjusted coefficient of determination takes on values between zero and 

one, i.e., 20 1Rα≤ ≤ , thus indicating a poor or excellent fit as the value of 2
Rα  approaches 

the two limits.  

The adjusted coefficient of determination and the condition number are plotted in Figures 

4.5a and b against the threshold value and for different degrees of the spheroidal kernel. For 

the extremely large threshold values of 0.35 and 0.4, the trend component of the velocity 

surface will be under-fitted. This is indicated by the smaller values of the adjusted 

coefficient of determination observed in Figure 4.5a. In the case of a larger signal variance 

obtained by integration with a ten-degree spheroidal kernel (see Section 4.2.3), the 

estimated signal component accounts entirely for the residual velocities, thus leaving small 

residuals estimated by Eq. (4.9) . For a twenty-degree spheroidal kernel, small signals and 

large biased residuals are estimated when using large threshold values. A negative adjusted 

coefficient of determination is observed in Figure 4.5a, which could be due to the under-

fitting of the surface. In the other extreme case, i.e., small threshold values, the trend 
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velocity surface is over-fitted which is indicated by the large condition number of the 

normal matrix in Figure 4.5b. As in the first case, it is observed that the variance of the 

estimated residuals increases with the decrease of the variance of the estimated signal 

component. The coefficient of determination improves, but also effects of numerical 

instabilities in the predicted rates are observed. For the fifteen-degree kernel, the adjusted 

coefficient of determination increases steadily over the analyzed range of threshold values. 

For thresholds smaller than 0.25, i.e., a variance ratio larger than 0.75, the model with a 

fifteen-degree kernel outperforms the models for the other two cases.  
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Figure 4.5: (a) Adjusted coefficient of determination and (b) condition number of the 

normal matrix as a function of the threshold value.  

 

Figures 4.5a and b also include the adjusted coefficient of determination and the condition 

number when the signal component is disregarded thus adopting the functional modelling 

approach and applying least-squares adjustment. As observed, the least-squares adjustment 

model is characterised by a smaller coefficient of determination and a larger condition 

number compared to the least-squares collocation models. Clearly, the addition of the 

signal component improves the condition number approximately by one order of 

magnitude. Thus, the inclusion of the signal component has a regularization role in the 

least-squares collocation model, which results in reduced numerical instabilities. 

(b) (a) 
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As in the least-squares collocation case, a negative adjusted coefficient of determination is 

observed for the larger threshold values in the least-squares adjustment case. The same 

effect has been observed by Fotopoulos (2003) in least-squares fitting of low degree 

polynomial surfaces to height misclosures computed by means of Eq. (2.10) . In both cases, 

the negative 2
Rα -values indicate severe under-fitting, which can be improved by either 

increasing the number of the estimated parameters or including a signal component in the 

observations. 

4.3.5 Empirical models of the rates of the terrestrial gravity, geoid, and heights 

In this section, results of the least-squares collocation modelling of the rates of the 

terrestrial gravity and the height components (the ellipsoidal, orthometric, and geoid 

heights) are presented and discussed. The solutions presented in the following are obtained 

with a spheroidal kernel of degree 15 and 13 inverse multiquadric base functions. No 

modification of the a priori threshold value of 0.3 in the modified Gram-Schmidt selection 

algorithm is applied. The standard deviations of the predicted rates are computed with the 

re-scaled error covariance matrices after variance component estimation has been applied. 

The discussion starts with the rates of the ellipsoidal height followed by the rates of the 

terrestrial gravity. This allows for assessing the performance of the adopted approach and 

clearly demonstrates the improvement of the accuracy of the predicted rates when more 

data are available in the areas above the degree 60 parallel. 

Rates of change of the ellipsoidal height (rates of the absolute vertical displacement) 

Figure 4.6 shows the computed rates, the predicted signals, and the standard errors for the 

three solutions. Solution (1) recovers the pattern of the rate of the terrestrial gravity and 

predicts a postglacial uplift maximum of 13.1 1.1±  mm/yr located on the east coast of 

Hudson Bay. It should be noted that the rates of the ellipsoidal height from Solution (1) are 

interpreted entirely in terms of postglacial rebound. Obviously, the predicted signals (with 

maximum and minimum values of 2.5 and -2.5 mm/yr in Figure 4.6b) are correlated with 

the gravity site locations. This correlation is reduced in Solution (2) as a result of using the 
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signal covariance information obtained from the GPS velocities. The predicted uplift in the 

Yellowknife area and western prairies is also decreased. The latter effect is more 

pronounced in Solution (3), in which the local uplift in the western prairies diminishes. As 

discussed in Section 4.3.1 of Chapter 2, the strong gravity decrease translated to uplift in 

Solution (1) is of unknown origin. The CBN GPS vertical velocities do not support this 

uplift. In fact, very small (close to zero) vertical displacements are observed in this area. 

This strongly suggests that the value of -0.18 µGal/mm for the gravity-to-height ratio is not 

valid for the western prairies, which is mitigated by the addition of the GPS velocities in 

Solution (3). 

The maximum rate predicted on the east coast of Hudson Bay decreases to 11.2 0.8±  

mm/yr in Solution (3). Clearly, the combined solution with the terrestrial gravity rates and 

the GPS vertical velocities restores the vertical velocity pattern in the areas where more 

CBN stations are available and retains the terrestrial gravity data pattern in the areas above 

degree 60 latitude. It also shows a less pronounced single dome pattern observed for 

Solution (1) that is partly a result of the insufficient density of the gravity data compared to 

the CBN data. The standard error for the computed rates in Solution (1) ranges from 1.0 

mm/yr for the gravity site locations to the maximum of 6.1 mm/yr for the northwest corner, 

where no data points are available and the ellipsoidal heights are extrapolated (Table 4.4). 

The average standard deviation of 2.6 mm/yr corresponds to the average standard deviation 

of the GPS velocity data. When both data sets are combined in Solution (3), the average 

accuracy improves to 1.8 mm/yr and the maximum error decreases to 4.8 mm/yr. Also, a 

significant decrease exists in the standard deviation of the rates in the northern areas of 

Hudson Bay (Figure 4.6c) due to the addition of the GPS data. 

 

Table 4.4: Standard deviations of the predicted rates of the ellipsoidal height, in mm/yr 

Solution Min Max Mean 

(1) 1.0 6.1 2.6 

(2) 1.4 5.4 2.2 

(3) 0.7 4.8 1.8 
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Solution (1) 

  

 

Solution (2) 

 

 

 

(a) (c) (b) 

(a) (b) (c) 
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Solution (3) 

  

Figure 4.6: Predicted rates of change of ellipsoidal height for the three solutions: (a) total rate, (b) predicted signal, and (c) accuracy of 

prediction. Red and yellow stars denote the CGSN sites and CBN stations, respectively. 

(a) (b) (c) 



 
 

 

109 

Rates of change of terrestrial gravity 

Two empirical models can be obtained for the rates of the terrestrial gravity (Figure 4.7). 

Solution (1) involves the use of the gravity data only, and the computed gravity rates 

should restore the data if no filtering of the noise is performed. The minimum terrestrial 

gravity rate of 2.36 0.07− ±  µGal/yr is located on the east coast of Hudson Bay, and the 

maximum rate of 1.70 1.09±  µGal/yr is observed for the Arctic areas, where rates are 

extrapolated. The average error of the predicted rates is 0.43 µGal/yr (see Table 4.5) and 

matches the average error of the terrestrial gravity rates data. Solution (3) shows that the 

addition of GPS data can change the terrestrial gravity rates by as much as ±0.5 µGal/yr. 

However, the prediction accuracy improves to 0.38 µGal/yr on average. For the absolute 

gravity sites “collocated” with CBN stations, the error decreases to 0.04 µGal/yr. 

 

Table 4.5: Standard deviations of the predicted rates of the terrestrial gravity, in µGal/yr 

Solution Min Max  Mean 

(1) 0.07 1.09 0.43 

(3) 0.04 0.90 0.38 
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Solution (1) 

  

Solution (3) 

  

Figure 4.7: Rates of change of the terrestrial gravity from the three solutions: (a) total rate, (b) predicted signal, and  

(c) accuracy of prediction. Red and yellow stars denote the CGSN sites and CBN stations, respectively.

(a) (c) 

(a) (b) (c) 

(b) 
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Rates of change of the geoid and orthometric height 

Predicted rates of the geoid height by means of the procedure outlined in Figure 4.1 are 

positive across Canada and have a peak value located on the east coast of Hudson Bay 

(Figure 4.8a). The gravity data in Solution (1) predicts a peak rate of 1.2 mm/yr, but the 

use of the stochastic signal information from the GPS velocities leads to a decrease by 0.1-

0.2 mm/yr in Solution (2); see also Figure 4.9. Solution (3) systematically shows larger 

rates compared to Solution (2). The prediction accuracy is at the level of 0.1-0.2 mm/yr 

(Table 4.6), which corresponds to the accuracy of 1.0-2.0 mm/yr for the predicted rates of 

the ellipsoidal height. 

Figure 4.8c depicts the rates of change of the orthometric height. The LSC-predicted rates 

repeat the pattern of the rates of the ellipsoidal height, but the amplitude decreases by an 

amount that accounts for the rates of the geoid height. 

The geoid rates do not solely account for postglacial rebound. However, because the local 

processes can have a much smaller contribution to the rate of the geoid height, a 

comparison with the PGR simulation outputs can serve as validation of the predicted rates. 

As shown in Figure 4.9, in the Hudson Bay region, the predicted geoid rates agree 

relatively well with the model rates based on the ICE-4G de-glaciation history and a 

viscosity profile with an upper mantle viscosity of 0.4×1021 Pa s⋅  and a lower mantle 

viscosity of 2 - 4×1021 Pa s⋅  (close to the VM2 values). In the areas north of the degree 65 

parallel, where few gravity sites and GPS stations are available, the LSC-predicted rates are 

lower than the model-based rates. The geoid rates obtained with a higher lower mantle 

viscosity of 20×1021 Pa s⋅  are far higher than the rates predicted by the least-squares 

collocation approach. Because of the insufficient data coverage west and north of Hudson 

Bay, the predicted rates of change of the geoid height provide very weak constraints on the 

postglacial rebound models in these areas.  
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Solution (1) 

   

 

Solution (2) 

   

 

(a) (b) (c) 

(b) (a) (c) 
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Solution (3) 

   

Figure 4.8: (a) Predicted total rates of change of the geoid height (b) predicted signal of the rate of geoid height, and (c) predicted rate 

of the orthometric height. Red and yellow stars denote the CGSN sites and CBN stations, respectively. 

 

Table 4.6: Standard deviations of the predicted rates of the geoid height, in mm/yr 

Solution Min Max Mean 

(1) 0.08 0.12 0.10 

(2) 0.14 0.16 0.15 

(3) 0.08 0.11 0.10 

(c) (b) (a) 
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Figure 4.9: Comparison of the geoid rates along north-south and west-east profiles: outputs 

from the PGR model simulations are plotted in blue, Solution (1) is plotted in dotted red 

line, Solution (2) is plotted in dashed red line, and Solution (3) is in solid red line.  

 

4.3.6 Validation of predicted rates of change of terrestrial gravity and ellipsoidal 

height 

The predicted rates of change of the terrestrial gravity and ellipsoidal height are validated 

by means of a comparison with data provided by the North American mid-continent tilt 

project (see Section 2.4.2). The rates and their 1σ error bars are plotted in Figure 4.10. As 

seen from Figure 4.10a, the LSC-predicted terrestrial gravity rates are systematically higher 

than the mid-continent tilt project rates. Systematic differences are observed also for the 

GPS velocities in Figure 4.10b. The rates of the ellipsoidal height predicted in Solutions (2) 

and (3) (except for CHUR) are smaller than the validation GPS velocities. One possible 

reason could be a bias present in the CGSN gravity rates due to, for example, systematic 

errors in the instruments with which absolute gravity and gravity differences were 

measured. This is supported by the fact that the rates of the terrestrial gravity and 

ellipsoidal height in Solution (3) predicted with the addition of the GPS data are closer to 

the validation rates.  
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Using the F-statistic in Eq. (4.67) , the compatibility of the predicted signal with the 

validation data is tested with a null hypothesis postulated in Eq. (4.66) . This is done 

separately for the terrestrial gravity rates and GPS velocities at significance level α = 0.05. 

The null hypothesis is not accepted for both rates of the terrestrial gravity and the 

ellipsoidal height in Solution (3). This fact requires closer examination of the predicted 

rates tested individually by means of the t-statistic given by Eq. (4.70) . For two of the 

gravity sites, namely CHUR and PINA/DUBO, the LSC-predicted rate of terrestrial gravity 

are not compatible with the mid-continent tilt project rates. While for CHUR the alternative 

hypothesis aH  cannot be firmly accepted ( 1.74t =%  > 0.05(186) 1.65t = ), for the 

PINA/DUBO site, aH  is strongly accepted ( 3.59 1.65t = >% ). This is also valid for the 

predicted rate of the ellipsoidal height at the DUBO station with 2.33 1.65t = >% . Moreover, 

a change in the sign of the predicted rate at this station is observed.  
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Figure 4.10: Predicted rates of change of (a) the terrestrial gravity and (b) the ellipsoidal 

height (absolute vertical displacement) compared with the Mid-continent tilt project data. 

 

The validation of the predicted rates with the independent data has shown that the least-

squares collocation with parameters approach has been successfully implemented to predict 

the rates of change of the terrestrial gravity at FLINF and INTF sites and the rates of 

change of the ellipsoidal height (absolute vertical displacement) at CHUR and FLINF 

(a) (b) 
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stations. It is expected that with the addition of vertical velocities obtained from GPS 

measurements with a longer time span and improved accuracy, the agreement of the 

predicted rates and the Mid-continent tilt project data will improve. Additional validation is 

required for the rates of the geoid and orthometric heights. 

4.4 Summary 

In this chapter, a methodology based on the least-squares collocation with parameters 

approach for predicting rates of change of the terrestrial gravity and ellipsoidal, geoid, and 

orthometric heights has been developed and presented. Least-squares collocation allows 

heterogeneous data input; thus, different types of terrestrial data can be combined in the 

optimal estimation procedure. This is particularly important for Canada, where the 

available observations are complementary to each other. It has been demonstrated that the 

GPS velocities improve the rates predicted solely from the gravity data. Although the re-

levelling data in Canada are scattered in space and time and thus of low quality, it could be 

expected that the re-levelled segments of the primary vertical control network would 

improve the results in the southern areas of Canada by increasing the data density of the 

CBN GPS stations. 

The developed computational procedure in this chapter uses inverse multiquadric base 

functions for modelling the spatial trend of the predicted rates. By extensive testing with 

simulated vertical displacement rates in Chapter 3, it has been shown that the inverse 

multiquadrics provide accurate approximation from irregularly distributed data if the base 

functions are appropriately scaled. The empirical rule for a priori scaling of the base 

functions established in Chapter 3 has been tested with real data. Modifications of the shape 

of the multiquadrics do not introduce significant changes in the modelled spatial trend 

provided that the shape parameter varies within 0.05 and 0.2 of unit distance.  

Another parameter that has been tested at length in this chapter is the threshold value in the 

modified Gram-Schmidt algorithm, through which the number and locations of the base 

functions are determined. The threshold values have been obtained by means of Monte 

Carlo simulations using model-based data. Although these values are valid only for the 
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empirical models developed in this research, the methodology is general and can be applied 

in other similar problems.  

The results of the least-squares collocation procedure have been validated with postglacial 

rebound model-based rates and independent data from the Mid-continent tilt project data. It 

has been shown that the empirically predicted geoid rates are in agreement (within 0.1-0.2 

mm/yr in the areas with peak signal) with the model-based rates obtained with the ICE-4G 

de-glaciation history and a viscosity profile that is an approximation of the VM2 model. 

Also, it has been shown that the predicted rates of change of the terrestrial gravity and the 

absolute vertical displacement agree within the prediction accuracy with the data from the 

Mid-continent profile at most of the gravity and GPS sites. An important observation for 

the validation of the proposed methodology is the fact that the addition of the GPS 

velocities improves the agreement with the validation data sets. It can be expected that the 

methodology developed in this chapter will provide better predictions with the longer time 

span of the GPS measurements. 

Although a general agreement exists between the empirical and the model-based geoid 

rates, it should be noted that the empirical models can be subject to erroneous data. This 

problem can be significant if the data sets are sparse and the vertical displacement surface 

is weakly constrained. As a consequence, the amplitude and slope of the predicted rates can 

deviate in the different empirical models. Of particular interest is the hinge line, which is an 

important constraint in the postglacial rebound modelling. More studies on this subject are 

included in Chapter 6, where the problem with outliers present in the data sets is dealt with 

by means of robust least-squares procedures. 

Finally, it should be emphasized that the combined procedure allows for stepwise 

computations, which makes possible the improvement of the predicted rates by correcting 

them for new data when available. 
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Chapter Five: GRACE-observed rates of change of 

the geoid height and absolute vertical displacement 

 

 

 

In this chapter, the GRACE-observed rates of the geoid height and absolute vertical 

displacement are modelled. For this purpose, the principal component (empirical 

orthogonal functions) analysis is studied extensively. The estimated rates are validated by 

the traditional least-squares fitting to the time series of the spherical harmonic (SH) 

coefficients by means of Eq. (2.33) , and the advantages of using principal components are 

emphasized. Moreover, the effects of the GRACE measurement errors, different filtering 

techniques, and the uncertainties in the hydrology corrections on the estimated GRACE 

rates are quantified. It will be shown that the trend-like hydrology signal (over the analyzed 

four years) introduces the largest uncertainty in the estimated rates. Of particular interest is 

the optimal combination of the GRACE and Earth surface data including terrestrial gravity 

rates and GPS vertical velocities. The proposed method is the least-squares collocation 

approach. 

Forty-four CSR RL-01 gravity field solutions (Bettadpur, 2004) that span four complete 

years (from April/May 2002 to March 2006) are used to estimate the GRACE-observed 

rates of change of the geoid height and the rates of the absolute vertical displacement. The 

GRACE 20C  spherical harmonic coefficient is replaced with the SLR-determined values as 

in Chen et al. (2005b). The ocean pole tide correction is applied according to the IERS 

conventions (IERS 2003), and no correction is applied for the S2 tide. 
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5.1 Error propagation 

Errors of the SH coefficients can be propagated into the errors of the change in the geoid 

height NδC  as follows (Becker, 2004): 

T
Nδ =C A CA ,                (5.1) 

where 

C CS

SC S

 
=  
 

C C
C

C C
 is the error covariance matrix of the residual (with respect to the long 

term mean) SH coefficients and   

(sin )cos

(sin )sin
lm lm

lm lm

W P m

W P m

ϕ λ

ϕ λ

 
=  
 

A .                (5.2) 

The values lmW  are the weighting coefficients of the smoothing filter applied. Generally, 

the weighting coefficients can depend both on the spatial wavelength (degree l) and the 

orientation (order m). Eq. (5.1)  can be further simplified if CS SC= =C C 0  and 

0 and
lmpq lmpq

C S , l p m qσ σ= = ≠ ≠ . With these assumptions, the standard deviation of the 

change of the geoid height at the location ( , )ϕ λ  is computed as follows: 

max
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R P W m W mδσ ϕ λ ϕ λ σ λ σ
= =

 
= +∑ ∑ 

 
.    (5.3) 

The error for a particular spherical degree is represented by the error degree amplitude, i.e., 

the square-root error degree variance, (Wahr et al., 1998): 

2 2

0
( ) ( )

lm lm
C S

l

N l
m

Rδσ σ σ
=

= +∑ ,                    (5.4) 

where 
lm

Cσ  and 
lm

Sσ  are the standard deviations of the fully normalized SH coefficients.  
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5.2 Methodology of post-processing of GRACE data and error analysis 

The GRACE monthly gravity solutions exhibit increased errors in high frequencies that 

obscure the derivation of geophysical signals. Truncating the gravity spectrum at a lower 

degree is not desirable because part of the geophysical signal remains in the truncated SH 

coefficients apart from the leakage effect introduced in the spatial field. Numerous filters 

have been designed to mitigate the effect of the errors starting with the simplest isotropic 

Gaussian kernel (Wahr et al., 1998), Wiener-Kolmogorov filter (Sasgen et al., 2007), 

optimal filters minimizing leakage effects, GRACE error, or both (Swenson and Wahr, 

2002; Becker, 2004; Seo et al., 2006), and non-isotropic kernels (Han et al., 2005b). 

Furthermore, sophisticated filters based on varying signal-to-noise ratios for SH 

coefficients of different degrees and orders (Chen et al., 2006c) as well as filters based on 

regularization of the SH coefficients are developed (Kusche, 2007). The latter uses a non-

isotropic smoothing kernel that is position-dependent. Because the filter uses the full 

GRACE error covariance matrix, the errors related to the orbital characteristics and the data 

processing strategies, which appear in the monthly geoid change spatial maps as stripes 

with north-south orientation, are also accounted for. In contrast with the stochastic-based 

filtering methods, Swenson and Wahr (2006) follow a more empirical approach in 

designing an efficient non-isotropic filter, which deals with the correlated errors. This filter 

is based on fitting one-dimensional spline polynomials to the SH series of the same order as 

a function of spherical degree and removing the trend through which the SH coefficients in 

the series are correlated; see also Chambers (2006a). Because the GRACE errors are not 

accounted for, subsequent smoothing with a Gaussian filter is applied. In the post-

processing of the GRACE monthly gravity fields for the purpose of estimating the rate of 

change of the geoid height in this study, a hybrid approach is followed. It includes a de-

correlation filter followed by either isotropic smoothing or stochastic-based smoothing. 

5.2.1 De-correlation filter 

In this thesis, a filter based on a wavelet decomposition of the series of the even and odd 

coefficients is constructed. The first level of approximation represents the trend in the 
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series. The residuals are not correlated and are used to synthesize back the geoid changes 

for each month. After applying the filter, a significantly smaller correlation of the monthly 

geoid changes in high latitudes, where previously glaciated areas are located, is observed. 

The filter is less efficient in the polar and equatorial areas. 

As shown by Swenson and Wahr (2006), the de-correlation filter can remove real 

geophysical variability together with correlated errors. Figure 5.1a depicts the effect of the 

de-correlation on simulated GIA geoid rates. As evident from the figure, the filter alters the 

peak (by approximately 0.05 mm/yr) and the pattern of the geoid rate in Laurentide. The 

introduced error depends on the amplitude of the PGR signal but does not exceed 0.1 

mm/yr. It should be noted, however, that in reality the effect of the de-correlation of the SH 

coefficients on the geoid rate could be smaller. Moreover, the isotropic smoothing applied 

afterwards decreases the effect of the de-correlation as shown in Figure 5.1b. Because most 

of the power of the Laurentide postglacial rebound signal is below spherical degree 10 with 

a peak of the spectrum at degree 5, the coefficients below degree 10 should not be de-

correlated to avoid possible distortions in the geoid rate pattern. 

Assessment of the errors of the SH coefficients after applying the de-correlation filter can 

be based on the residuals estimated by fitting and removing a trend and periodic variability 

from the time series of the coefficients as shown in Section 2.5.1 of Chapter 2. The 

residuals are assumed to sample the true GRACE errors (Wahr et al., 2006). However, it is 

imperative to point out that the residuals can contain inter-annual and non-periodic 

geophysical signals, and, in this case, they are overestimated. The error degree amplitudes 

of the change of the geoid height is computed by means of Eq. (5.4)  using the RMS values 

of the residuals of the SH coefficients (Figure 5.2). It is compared with the calibrated error 

degree amplitudes. The latter exceeds significantly the RMS of the residuals for degrees 

below 5, while for the rest of the spectrum the RMS spectrum and the calibrated errors 

spectrum are close. Exceptions are the higher RMS values for degrees 15 and 30 explained 

by deficiencies in the GRACE background models propagated into the monthly geoid 

solutions (Gunter et al., 2006). The figure makes it evident that the power of the RMS 

values decreases significantly after de-correlating the SH coefficients. 
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Figure 5.1: Distortions in the rate of change of the geoid height: (a) after a de-correlation 

filter is applied and (b) smoothed with a Gaussian filter. 
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Figure 5.2: Error degree amplitudes in mm of the geoid height. 

 

5.2.2 Smoothing filters 

The isotropic Gaussian filter, which is introduced in the gravity field approximation by 

Jekeli (1981) and adopted for time-variable gravity field by Wahr et al. (1998), is 

characterized by the ease of implementation and interpretation of the filter’s parameter. 

However, the Gaussian filter is not an optimal filter in the sense that it does not minimize 

any error. In addition, the choice of the parameter of the filter is somehow arbitrary and is 

usually governed by the specific problem analyzed. For the purpose of estimating the rate 

of change of the geoid height, the isotropic Gaussian filter is tested and compared with a 

stochastic-based filter.  

Isotropic filtering 

An isotropic averaging filter on the sphere is defined by means of the function 

0

2 1
( ) (cos )

2 l l
l

l
W W Pψ ψ

∞

=

+
= ∑               (5.5) 
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that depends only on the spherical distance ψ between the points 1 1 2 2( , ) and ( , )θ λ θ λ  

computed by means of 1 2 1 2 1 2 )cos cos cos sin sin cos(ψ θ θ θ θ λ λ= + − . 

The spectrum of the function ( )W ψ , which consists of the weighting coefficients lW , is 

defined by the one dimensional Legendre transform (Jekeli, 1981) 

0

( ) (cos )sinl lW W P d
π

ψ ψ ψ ψ= ∫ .              (5.6) 

In Eqs. (5.5) and (5.6) , (cos )lP ψ  are the Legendre polynomials.   

The isotropic Gaussian filter is constructed by means of the averaging function 

2

exp[ (1 cos )]
( )

2 1 b

b b
W

e

ψ
ψ

π −

− −
=

−
              (5.7) 

with a parameter 
ln(2)

[1 cos( / )]
b

r R
=

−
, where the averaging radius r Rψ=  is the distance at 

which ( ) ( 0) / 2W r W ψ= = . It is also called a half-width of the filter. The coefficients lW  

are computed by means of recursive relations (see, e.g, Wahr et al., 1998). Alternatively, 

lW  can be computed by numerical integration using Eq. (5.6) .  

Multiplication of the SH coefficients with the degree-dependent weighting coefficients 

corresponds to a convolution of the isotropic function in Eq. (5.5)  with the monthly maps 

of changes in the geoid height. As a result, a decrease in the amplitude of the geophysical 

signals of interest is observed. Usually, the GRACE-observed amplitudes can be rescaled to 

match the model-based signal. The approach followed in this study is to smooth the 

simulated postglacial rebound signal with the same filter. 

The decrease in amplitude of simulated geoid rates for a different half-width of the 

Gaussian filter is depicted in Figure 5.3. Gaussian noise with a variance obtained from the 

residual RMS values (after de-correlation has been applied) in Section 5.2.1 has been added 

to the SH coefficients of a simulated GIA geoid trend using the ICE-4G model and a four-

layer approximation of the VM2 model. Next, the SH coefficients are multiplied by the 

coefficients of a Gaussian filter with a half-width of 400, 600, 750 and 1000 km. The 
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smoothed GIA geoid rates are obtained by means of Eq. (2.32) , and differences with the 

original rates are computed. For the Laurentide signal, the maximum difference in 

amplitude increases from 0.15 mm/yr for r = 400 km to 0.65 mm/yr for r = 1000 km. This 

demonstrates that even for smaller values of r, the geoid rates can be significantly 

smoothed. This effect compares with the differences of the GIA model predictions with 

different viscosity profiles (Figure 2.3 in Chapter 2). The same smoothing effect is 

computed for the GRACE-observed geoid rates (Table 5.1). A difference of 0.2 mm/yr for 

the peak geoid rates obtained with the different half-widths exists. This shows that the level 

of smoothing is an important factor to consider in inferences of the mantle viscosity from 

an inversion of the GRACE-observed geoid and gravity rates. 

 

Table 5.1: Effect of the radius of the Gaussian filter on the geoid rate* 

Half-width r, in km 400 600 750 1000 

Geoid rate, in mm/yr 1.8 1.6 1.4 1.2 

*The hydrology signal is not removed from the GRACE-observed geoid height change. 

 

Based on the quality of the RL-01 gravity field solutions, a Gaussian filter with a half-width 

of 400 km is used to obtain the GRACE-observed rates of change of the geoid height. 

Frequencies higher than degree 20, which account for only 2% of the power of the GIA 

geoid change, are down-weighted significantly. For a half-width of 400 km, the combined 

leakage effect of the Greenland and Alaska signals over Hudson Bay is -0.2 mm/yr at most. 

Stochastic-based filtering 

According to Chen et al. (2006c), the weighting coefficient (of degree l and order m) of the 

stochastic-based filter is defined as follows: 

2

var( , )

var( , )
lm

lm lm
lm

lm lm K

K K
W

K K σ
=

+
,               (5.8) 

where { , }lm lm lmK C S= ; 2
lm

Kσ  is the error variance for the coefficient lmK .  
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Figure 5.3: Effect of the Gaussian smoothing on the simulated GIA geoid rate. A filter with half-width r of (a) 400 km, (b) 600 km,  

(c) 750 km, and (d) 1000 km is used. Differences are plotted in mm/yr.  
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An equivalent form of Eq. (5.8)  is 

2

1

1 / var( , )
lm

lm

K lm lm

W
K Kσ

=
+

.              (5.9) 

If 2 var( , )
lm

K lm lmK Kσ << , the weighting coefficient 1lmW → . If 2 var( , )
lm

K lm lmK Kσ >> , 

then 0lmW → . Thus, the filter adapts to the varying noise in the SH coefficients and 

suppresses the coefficients with larger errors. If the signal and error degree variances, i.e., 

2 2 2

0
( )

l

l lm lm
m

s C S
=

= +∑  and 2 2 2

0
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lm lm

l

l C S
m

σ σ σ
=

= +∑ , are substituted in Eq. (5.8) , the filter is 
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l

l

l l

s
W

s σ
=

+
,                    (5.10) 

which is the isotropic Wiener-Kolmogorov filter (Rummel, 1996). 

The stochastic-based filter is tested with the same simulated geoid rates and noise as the 

Gaussian filter. The signal variances are the squared SH coefficients of the simulated GIA 

geoid rate while the error variances are the squared residual RMS values from Section 

5.2.1. The differences of the reference (Figure 5.4a) and smoothed geoid rates depict a 

maximum value of 0.2 mm/yr in Laurentide (Figure 5.4b). This value compares with the 

result obtained with a Gaussian filter with a half-width of 400 km. It should be noted, 

however, that the stochastic smoothing is able to filter out much more noise from the 

simulated geoid rates. This result is expected since the stochastic filter is based on the 

optimal least-squares criterion. 

Figure 5.5 displays the standard deviation of the GRACE-observed geoid rate obtained by 

error propagation according to Eq. (5.3) . Evident from Figure 5.5a, is the good 

performance of the de-correlation filter for 30 - 80 degree in latitude, where the formal 

error of the estimated geoid rate is 0.2 - 0.3 mm/yr.  In a small polar spherical cap and in 

the equatorial areas, the error reaches 0.6 - 0.7 mm/yr. After smoothing with a 400 km 

Gaussian filter, the formal error of the rate of change of the geoid height decreases to 0.14 - 

0.18 mm/yr (Figure 5.5b). 
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Figure 5.4: Effect of the stochastic-based smoothing on the GIA-induced geoid rates: (a) reference geoid rates; 

 (b) differences between the reference and filtered rates. 
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Figure 5.5: Formal errors of the geoid rates from least-squares fitting to the four-year time series of GRACE SH coefficients 

 smoothed with: (a) a de-correlation filter and (b) a de-correlation filter and Gaussian filter with r = 400 km. 
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5.2.3 Uncertainties in the secular geoid rate from the continental hydrology correction 

In order to obtain the GIA-induced rates of change of the geoid height, the continental 

hydrology signal should be removed from the GRACE-observed geoid changes. This is 

achieved by correcting the GRACE SH coefficients with the SH coefficients obtained from 

a harmonic analysis of water mass anomalies from global hydrology models. It should be 

noted that uncertainties in the hydrology models will project into the GIA signal. 

Generally, the continental water storage models provide gridded water equivalent outputs 

of predicted soil moisture, groundwater, rootzone, and snow water equivalent data. The 

input can consist of satellite, ground-based, and merged observations of precipitation and 

outputs from atmosphere data assimilation systems as well as other parameters, such as 

vegetation, soils, and elevation. According to Gottschalck et al. (2005), precipitation is the 

critical forcing factor for the model simulations and the accuracy of the precipitation input 

governs the simulation outputs. 

One of the most accurate global hydrology models is the Global Land Data Assimilation 

System (GLDAS); see Rodell et al. (2004). The GLDAS model provides soil moisture in 

four layers, snow water equivalent, and canopy water storage. The model output used in 

this thesis is based on the Noah land surface model (Chen et al., 1996) and is averaged 

from the original 3-hourly data. 

In order to transform the water equivalent data in terms of geopotential, first the mass 

anomalies are computed by subtracting the mean for the time period of the GRACE data. 

The transformation procedure consists of the following steps:  

1. Performing spherical harmonic analysis of the mass anomalies; de-correlation and 

Gaussian filters are applied. The degree one coefficients have been ignored because 

GRACE gravity field models do not include degree one spherical harmonics. 

2. Multiplying each spherical harmonic coefficient of the surface mass anomalies with a 

degree-dependent factor using the relationship between a thin layer of equivalent water 

thickness and the geoid height (Wahr et al., 1998): 
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,            (5.11) 

where ˆ ˆ,lm lmC Sδ δ  are the SH coefficients for the surface load, Wρ  is the water density of 

1000 -3kg m⋅ , aρ  is the average density of the Earth, i.e., 5517 -3kg m⋅ , and lk  is the 

elastic Love number of degree l. 

 

 

Figure 5.6: Pattern of the water mass increase that interferes with postglacial rebound 

signal. Least-squares fitting to the time series of the SH coefficients of the GLDAS model 

is applied. 

 

3. Correcting GRACE SH coefficients for hydrology signal. 

The continental hydrology models contribute to the error of the GRACE-observed geoid 

rate through uncertainties in the pattern and amplitude of the trend-like water mass changes.  

The GLDAS pattern in Figure 5.6 depicts a geoid rate of 0.1 - 0.6 mm/yr (over the analyzed 

four-year period) across most of North America and negative rates in non-glaciated areas of 

Alaska. It is not clear if this trend-like variability represents real hydrology signals, a 

deficiency of the model, or aliased higher frequency signals as a result of the time 
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averaging of the original 3-hourly data. Clearly, the peak of 0.6 mm/yr located southwest of 

Hudson Bay will interact with the postglacial rebound signal and will determine the 

location of the secular geoid rate peak.  

One limitation of the global hydrology models is that the model errors remain unknown. 

For the purpose of the studies of the secular geoid rate, the error introduced by the 

hydrology correction can be assumed to be equal to the modelled signal. Thus, 0.6 mm/yr 

can be considered to be a pessimistic estimate of the uncertainty of the GRACE-observed 

postglacial rebound geoid rate as a result of the applied hydrology correction. This value is 

relevant for the time interval of the GRACE time series used in this research, and it will 

change for a different time interval. The trend-like water mass changes over the analyzed 

time period is less likely to affect the secular geoid rate with the increase of the time span 

of the GRACE mission. The effect of disregarding the contribution of the degree one 

coefficients in the hydrology model is not studied and is subject to future research. 

Figure 5.7 depicts the GRACE-observed geoid rate obtained with (a) a Gaussian filter with 

r = 400 km and (b) stochastic-based smoothing. The GIA-induced geoid rates after 

correcting the SH coefficients for hydrology and smoothing with the Gaussian filter and the 

stochastic-based filter are given in Figures 5.7c and d, respectively. Approximately the 

same amplitude of the geoid rate is observed in both figures. The use of the weighting 

coefficient for each degree and order, however, enhances the east-west features in the geoid 

rate pattern. These include possible distortions due to errors in the GLDAS model. 

Therefore, the Gaussian filter is preferred in this thesis. Table 5.2 summarizes the 

uncertainties in the rate of change of the geoid height estimated in this study from a four-

year GRACE time series. The GRACE error contributes 20% to the total error estimate of 

the GIA geoid rate; see also Chen et al. (2006b). It should be noted that the time span of the 

GRACE time series also introduces uncertainties in the estimated geoid rate. For example, 

the differences of the geoid rate in the Hudson Bay region estimated from a three- and four- 

year time series is approximately 0.2 - 0.3 mm/yr, which is still above the formal error 

estimate from the least-squares fitting of the trend. 
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Figure 5.7 GRACE-observed rates of change of the geoid height obtained with (a) a Gaussian filter with r = 400 km, (b) 

stochastic smoothing, (c) and (d) the same, but a correction for the hydrology signal is applied.  

 

(a) 

(b) (d) 

(c) 
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Table 5.2: Uncertainties in the GRACE-observed postglacial rebound geoid rate  

Source Error, mm/yr 

GRACE measurement errors 0.1 - 0.2 (Figure 5.5) 

Decrease in amplitude due to smoothing of 

errors  
0.2 (Figure 5.3, Figure 5.4, and Table 5.1) 

Hydrology correction 0.6 (Figure 5.6) 

Total 0.6 - 0.7 

 

5.3 PC/EOF analysis of GRACE-observed geoid changes 

Principal component (PC) analysis is based on the idea that variations of correlated 

variables (data) can be described by uncorrelated variables (principal components) obtained 

by means of a linear transformation of the data. The principal components are found from 

the solution of the eigenvalue-eigenvector problem for a positive definite matrix that 

contains data variances and covariances (Jolliffe, 2002). 

In oceanographic and meteorological studies, PC analysis is known as empirical orthogonal 

function (EOF) analysis that is applied for modelling spatio-temporal variability of a single 

scalar field. This method provides EOF spatial loading patterns and their temporal 

variations given by the principal component time series. In addition to the periodic 

variability of the scalar field, the PC/EOF analysis has been applied for modelling inter-

annual changes and long-term trends, for example, in sea level (Nerem et al., 1997 and 

Woolf et al., 2003), upper air-circulation fields (Shin and Deng, 2000), global sea surface 

temperature (Robertson and Mechoso, 1998), and in coupled patterns of sea surface 

temperature and radar satellite altimetry sea surface heights (Leuliette and Wahr, 1999). In 

relation to the GRACE-observed mass variations, the PC/EOF analysis has been applied by 

Wiehl et al. (2005) and Viron et al. (2006). In the first work, the low frequency sea water 

mass variability in the Baltic Sea is studied with relation to possible masking of the PGR 

geoid signal. The second study deals with global climate signals extracted from the 
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GRACE-observed mass changes. The PC/EOF analysis has been implemented also for 

studying the main signals of the seasonal steric sea level variations by Chambers (2006b).  

In this thesis, the PC/EOF analysis is applied to the time series of the GRACE-observed 

changes in the geoid height to extract a trend, periodic, and non-periodic variations. A 

comparison with the traditional approach of least-squares fitting as well as the advantages 

and disadvantages of the proposed PC/EOF approach are given in Section 5.3.5.  

5.3.1 Mathematical background 

In the spatio-temporal analysis of a single scalar field, data are organized in a (n × p) matrix 

[ ], 1,..., , 1,...,ijd i n j p= = =D , where n is the number of observations and p is the number 

of variables. In the analysis of GRACE time series, the variables are the grid values of the 

analysed gravity field functional (a grid of resolution 1 1×o o  can be taken) and the 

observations are the monthly values. The data covariance matrix is defined as  

T1

1n
=

−
S D D               (5.12) 

with zero mean observations, i.e., { } 0, 1, 2,...,jE d j p= = . This is fulfilled by the GRACE 

time series computed with respect to the long-term mean; see Section 2.5.1. 

The data matrix D is decomposed by singular value decomposition (SVD) as follows (see, 

e.g., Jolliffe, 2002): 

T=D ULV ,              (5.13) 

where U and V are ( n n× ) and ( p p× ) orthonormal matrices such that T =U U I  and 

T =V V I . V contains the eigenvectors of the matrix TD D  and provides the EOF patterns. L 

is a diagonal matrix of rank min( , )r n p≤  with a diagonal , 1,...,ij ij iL i rδ λ= = , where 

, 1,...,i i rλ =  are the eigenvalues of the covariance matrix S. The squared diagonal elements 

of the matrix L are the variances explained by each principal component. The eigenvalues 
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are ordered in decreasing significance, i.e., with respect to the fraction of the data variance 

explained. 

The principal component time series are obtained from the column vectors of the following 

matrix T  of rank r: 

=T UL .               (5.14)  

The SVD method for computing the EOF loading patterns and their principal component 

time series has a number of advantages. In addition to its ease of implementation, the SVD 

method provides the means for a graphical representation and interpretation of the results of 

the PC/EOF analysis. Thus, the EOF patterns represent the amplitudes of the modes of the 

spatio-temporal variability of the analyzed scalar field, while the PC time series represent 

the weights of these amplitudes at the different time epochs. In addition, the SVD method is 

related to the principal component regression, in which the data matrix is approximated by 

the first m principal components.    

According to Jolliffe (2002), the matrix  

( )T
m m

ˆ =D ULV               (5.15) 

computed with the first m principal components minimizes the Euclidian norm  

m 2
ˆ−D D                 (5.16) 

over all ( n p× ) matrices m D  of rank m. The equivalent form of Eq. (5.15)  is 

2
m

1 1

ˆ( ) min .
pn

ij ij
i j

d d
= =

− =∑ ∑              (5.17) 

A note on missing data. The PC/EOF method requires data that are continuous in space and 

time. In general, missing data can include observations of one or more variables for one or 

more epochs. If a GRACE time series is analyzed, the missing data will include the 

observations for all variables (grid values) at one or more epochs. In such a case, the data 

gaps can be filled by least-squares predicted observations using the estimated amplitudes 

and phases of the annual and semi-annul signals and possibly a trend. Alternatively, the 
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missing observations can be filled with zeros. In both cases, the data covariance matrix has 

a rank deficiency that equals the number of the missing epochs. The significant eigenvalues 

of the data covariance matrix can differ by approximately 1% if the missing data comprise 

10% of the size of the data matrix. 

5.3.2 Selecting a subset of principal components 

The number of principal components retained is often based on a subjective decision and 

experience rather than on an objective criterion. Often, simple but efficient rules of thumb 

are preferred. Generally, there exist three groups of methods for selecting the significant 

principal components. The first group includes methods based on the amount of the data 

variance explained. The usually applied ad hoc rule of thumb is to retain enough principal 

components so that at least 70% of the variance of the analyzed data set is explained. This 

selection criterion is based on the cumulative percent variance computed as 

1 1
( ) 100 / %

m n

i i
i i

CPV m λ λ
= =

 
= ∑ ∑ 

 
,            (5.18) 

where m is the number of the principal components retained (Valle et al., 1999).  

A powerful testing method is North’s rule of thumb. According to North et al. (1982), the 

95% confidence error of the estimated eigenvalues is computed by the approximate 

relationship 

2 / fλ λ∆ ≈ ,              (5.19) 

where f denotes the degrees of freedom, i.e., the number of the independent observations. 

To compute the degrees of freedom, the autocorrelation of the data should be known. The 

rule of thumb states that if the error of the eigenvalue is larger than or comparable with the 

difference between two adjacent eigenvalues then it is unlikely that these eigenvalues 

represent separate modes. Another simple and efficient method is an inspection of the 

levering point of the eigenvalue spectrum that marks the transition from the more rapid 

decline of the signal modes to the more gradually decreasing spectrum of the noise 

components. 
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The second group includes the time history methods that test the principal component time 

series for being random samples of a white noise process. One such method is the 

Kolmogorov-Smirnov (KS2) rule given by Preisendorfer (1988). If the postulated null 

hypothesis (the principal component represents white noise) is not accepted at the chosen 

significance level, the principal component is accepted to represent a signal mode. 

The third group includes space-map methods that are based on the examination of the EOF 

patterns that should resemble some predefined signal mode patterns. Though heuristic, the 

space-map method is an effective approach in the PC/EOF analysis of the GRACE signal 

over the continents for identifying the main signal modes. For example, in North America, 

the main modes of variability are expected to account for continental water mass changes 

and the interior Earth mass redistribution due to postglacial rebound. 

The eigenspectrum of the data covariance matrix of the GRACE-observed geoid changes in 

North America contains signal modes explaining the continental water mass variability and 

the postglacial rebound mass redistribution, and very likely errors in the de-aliasing models 

of athmospheric variability, tides and ocean signal, leakage of the ocean signal over the 

continent, and residual correlated errors (not removed by the de-correlation filter). The 

residual correlated errors are additionally smoothed by the isotropic filter applied and may 

appear as signals. Because of the complexity of the GRACE errors, in this thesis, it is found 

that the ad hoc rule of thumb complemented with the space-map methods is the most 

efficient technique for selecting the number of the retained principal components. 

5.3.3 Rotation of principal components 

PC/EOF analysis decomposes the data matrix in orthogonal modes, which do not 

necessarily correspond to physical modes; see, e.g., Benzi et al. (1997). Because of the 

orthogonal constraints imposed on the loading patterns, some undesirable effects may exist. 

The most important effect is the dependence of the patterns on the size and shape of the 

area, which is the so-called “data domain dependence”. In this case, the interpretation of the 

extracted modes as geophysical signals is meaningless. According to Richman (1985), 

rotation of principal components allows for detecting the unwanted effects. Essentially, the 

purpose of rotation is to find a new basis in the m–dimensional space, in which the rotated 
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modes are linear combinations of the original modes. One of the commonly applied 

algorithms is the varimax rotation of either the EOF patterns or principal component time 

series (see, e.g., Preisendorfer, 1988). The varimax rotation of the latter maximizes the 

variance of the squared covariances between each rotated principal component and each of 

the original principal component time series. Maximizing the variance leads to few large 

loading patterns and many close to zero patterns. Hence, the rotation helps to discriminate 

among the modes and facilitates their interpretation. Because the rotated EOF (REOF) 

patterns are not orthogonally constrained, they are less dependent on the data domain 

(Horel, 1981). Moreover, for simple signals, the varimax rotated principal components are 

independent of the data domain (ibid.). A matrix form code for the iterative algorithm for 

varimax rotation of the principal component time series is given by Björnsonn and Venegas 

(1997) as follows: 
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,           (5.20) 

where the matrix m T  contains m principal component time series. The new rotated 

principal component time series are given in m T% , and the new EOF patterns are given in 

the column vectors of V% . 

For the sake of visualization, the principal component time series are normalized by their 

maximum values. Therefore, the EOF patterns are multiplied by the respective 

normalization factor to obtain the spatial amplitudes of the extracted signal modes. 
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5.3.4 GRACE-observed geoid changes in North America 

The selected region for this study spans 30°N to 75°N and 170°W to 50°W and covers most 

of North America. The study area is characterized by complex spatio-temporal mass 

changes including ice/snow and liquid water variations, postglacial rebound, and melting of 

the Canadian ice cap and Alaska glaciers. The polar areas of Canada are excluded because 

of uncertainties in the estimates of the melt rates of the polar ice caps, but the Alaska 

glaciers are retained. The study area also includes the Canadian and US Cordillera and the 

Québec-Labrador region, both of which exhibit a large amplitude annual signal predicted 

by the continental water storage models. 

Essentially, two cases that use the PC/EOF analysis can be outlined. First, the GRACE-

observed water mass variations can be analyzed and compared with hydrology model 

outputs. For this purpose, the GRACE time series should be corrected for the postglacial 

rebound signal. Second, the GRACE-observed geoid change signal can be analyzed in 

terms of the Earth interior mass redistribution associated with postglacial rebound. In this 

case, the hydrology signal should be removed from the GRACE time series before the 

PC/EOF analysis. In both cases, it should be ensured that 

• the extracted modes of variability are not subject to distortions as a result from 

the imposed orthogonality constraints; 

• the significant modes represent geophysical phenomena validated by means of a 

comparison with geophysical models.  

The capabilities of the PC/EOF analysis for extracting water mass variations in North 

America have been studied by Rangelova et al. (2007a). In this thesis, the total GRACE-

observed change in the geoid height (Case 1), including postglacial rebound and hydrology, 

is analyzed. This allows, without contaminating the GRACE signal with errors in the 

hydrology model correction, for studying the effect of rotation of principal components and 

mitigating the possible distortion in the analyzed signal due to the imposed orthogonality 

constraints. Subsequently, the GRACE-observed change in the geoid height corrected for 

hydrology is analyzed in Case 2. 
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Case 1- total GRACE-observed change in the geoid height  

Figure 5.8a shows the first twelve principal components ordered in percentage of the total 

data variance explained. Based on an inspection of the eigenspectrum, it can be expected 

that the first four principal components represent signal modes, which is confirmed with 

95% confidence by the KS2 selection rule. The first and second principal components 

explaining approximately 80% of the data variance (see Table 5.3) are clearly 

distinguishable in the spectrum. The third and fourth principal components account for 

approximately 12% of the data variance. Only the first four principal components are 

rotated. Experiments in this study have shown that the rotated principal components are 

insensitive to the dimension of the space in which the rotation is performed. This has been 

verified by rotating a different number of the principal components.  
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Figure 5.8: Principal components for (a) Case 1 and (b) Case 2. 
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Table 5.3: Data variance (in percentage) explained by the principal components 

Case study 1 PC 2 PC 3 PC 4 PC 

Case 1 53.5 26.0 7.2 4.3 

Case 2  38.5 28.7 13.9 5.6 

 

The first mode represents the annual cycle of the snow mass changes in the Cordillera and 

the Québec-Labrador regions (Figure 5.9). The first principal component time series in 

Figure 5.10 accounts for a maximum (positive change) in April and a minimum (negative 

change) in September/October. This time evolution is clearly visible from the fall of 2003 

until the spring of 2006. Because the first mode has a positive EOF pattern over the 

analyzed region, according to Horel (1981), the second mode could then be bi-polar (one 

negative and one positive loading over the data domain) with a zero line passing close to 

the maximum of the first mode. This, in fact, is observed for the second EOF pattern. The 

varimax rotation of the principal components should be able to eliminate this effect if it was 

a result of the imposed orthogonality on the eigenvectors. The first rotated EOF (REOF) in 

Figure 5.9 contains the pattern originally seen in the second EOF, which rejects possible 

distortions of the signal mode. In fact, the patterns observed in the second EOF are 

associated with geophysical signals. The negative EOF values and the positive slope of the 

second principal component time series in Figure 5.10 account for negative geoid changes 

in southeastern Alaska due to glaciers melting (see Tamisiea et al., 2005 and Chen et al., 

2006a). The positive pattern southwest of Hudson Bay accounts for positive geoid changes 

as a result of a water mass increase in the prairie region observed also in the water storage 

models. The third and forth modes have small amplitudes and do not account for significant 

geoid changes, neither do they change upon rotation. The examination of their principal 

component time series does not reveal structured signals. 
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Case 2- GRACE-observed change in geoid height corrected for hydrology 

One disadvantage of the PC/EOF analysis consists in the fact that if a periodic signal and a 

trend have a common geographical footprint, then the method cannot separate them. The 

principal component time series will show both signals. An example is the principal 

component time series in Figure 5.10 of a negative trend with a superimposed annual cycle. 

This is also observed for the secular GIA geoid rate superimposed by the annual snow 

variations in the Québec-Labrador region and by the long-term hydrology geoid changes 

southwest of Hudson Bay; see the second REOF in Figure 5.9. Therefore, additional 

information is necessary to separate the geophysical signals. The GLDAS hydrology model 

is used to correct the GRACE SH coefficients. 

The first principal component time series shows annual periodic variations with a broad late 

spring-early summer maximum and a sharp fall minimum (Figure 5.10). This signal could 

be associated with a hydrology signal observed by GRACE but not accounted for in the 

GLDAS model (Figure 5.11). The second EOF and the principal component time series 

show a geoid rise west of Hudson Bay and in the Québec region. According to Table 5.3, 

the removal of the hydrology signal decreases significantly the amount of the variance 

explained by the first mode, while the amount of the variance associated with the second 

mode increases. This suggests that the two modes may not be separated and, in fact, 

represent one signal. This is supported by the first REOF which represents positive geoid 

changes in the Hudson Bay region that resembles well the pattern of the postglacial 

rebound signal but still exhibits annual variations.  

The role of the rotation in the PC/EOF analysis should not be overestimated since this is 

one of the infinitely many solutions that can be obtained from the original principal 

components. Thus, it is always possible that a better method exists. For example, the 

oblique methods of rotation could also provide acceptable results in the studied case. In 

addition, there is no guarantee that a physically meaningful explanation can be attached to 

the rotated principal components. Therefore, validation with geophysical models must rule 

any decision whether the principal components represent real signals. 
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Figure 5.9: EOF and REOF loading patterns for Case 1. 
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Figure 5.10: PC and rotated PC time series for Case 1 (a and b) and Case 2 (c and d). 
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Figure 5.11: EOF and REOF loading patterns for Case 2.  
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5.3.5 Validation of the PC/EOF geoid rate and summary 

Figure 5.12a depicts the geoid rate derived from the first three rotated principal components 

by weighting the EOF patterns with the trend component estimated by means of a least-

squares fit to the principal component time series. The PC/EOF geoid rate is compared with 

the rate estimated by least-squares fitting of the time series of the SH coefficients (Figure 

5.12b). Small differences that result from the filtered principal components are observed. 

The PC/EOF geoid rate is compared with the GIA-induced geoid rate predicted by the ICE-

5G (VM2) model of Peltier (2004) of spherical degree and order 70 and smoothed with a 

Gaussian filter of 400 km half-width (Figure 5.12c). Evident from the comparison is the 

similar geoid rate peak located west of Hudson Bay. The differences in the geoid rate 

pattern are possibly due to a long-term hydrology variability not removed by the GLDAS 

correction, the spatial leakage of the Greenland and Alaska ice melting, and propagated 

GRACE measurement and data processing errors in the observed geoid trend. 

In this section, by means of the two studied cases, it has been shown that the PC/EOF 

analysis is an efficient method for modelling the temporal geoid variations on a continental 

scale. For the purpose of future applications, the main advantages and shortcomings of the 

method are summarized in the context of estimating the GRACE-observed geoid rates.  

Advantages 

• A non-parametric method, whose base functions are data-dependent and adapt 

to the particular data set.  

• It allows for assessing the effect of the inter-annual and long-term geoid 

variability on the estimated trend.  

• By appropriate rotation of the base functions and data variance redistribution, it 

could be possible to separate two spatial trends (with different geographical 

footprint) in different principal components. This opens possibilities for 

studying leakage of different signals over the continental land masses. 
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Figure 5.12: Rate of change of the geoid height derived from (a) the first three principal components in Case 2,  

(b) a least-squares fit of the GRACE SH time series, and (c) the smoothed ICE-5G (VM2) model. 

(a) 

(c) 

(b) 



 
 

 

150 

Disadvantages 

• Distortions in the extracted spatial patterns due to the imposed orthogonality of 

the base functions are possible. 

• The method does not allow error propagation. 

• Requires continuous data both in space and time. 

5.4 Optimal combination of GRACE, terrestrial gravity, and GPS data 

In the context of the velocity surface approximation, the optimal combination of GRACE-

observed rates of the absolute vertical displacement, terrestrial gravity rates, and GPS 

vertical velocities requires appropriate base functions. Rangelova and Sideris (2006b) have 

suggested combining the GRACE-observed geoid rates and the geoid rates estimated from 

the Earth’s surface data in a spherical cap using spherical cap harmonic functions and least-

squares adjustment. One limitation of the proposed approach is the low degree of the base 

functions used to approximate the surface. Because of the small radius of the spherical cap, 

higher degree harmonics are unstable, which leads to ill-conditioned matrices in the least-

squares adjustment. Another limitation stems from the fact that the terrestrial gravity rates 

and GPS velocities do not cover the entire spherical cap, causing loss of orthogonality of 

the base functions. To avoid these shortcomings, a least-squares collocation approach for 

combining GRACE and Earth surface data is studied in the following section. 

5.4.1 Mathematical model 

The mathematical model is given by Eq. (4.1) . Here, the observation vector 

T T T
GRACE AG GPS

T
 =  l l l l  includes the GRACE-observed rates of the absolute vertical 

displacement, 
1

T
GRACE 1 2[ ]nh h h=l & & &K ; the rates of change of the terrestrial gravity, 

2

T
1 2AG [ ]ng g g=l & & &K ; and the GPS vertical velocities, 

3

T
1 2GPS [ ]nh h h=l & & &K . 
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The ( n k× ) coefficient matrix A, where 1 2 3n n n n= + +  and k is the number of the base 

functions, is defined as  

GRACE

AG

GPS

 
 
 =
 
 
  

1 0 A

g
A 0 A

h

0 0 A

&

&
.            (5.21) 

The vector 1 2
T[ ]

k
x x x=x L  contains two bias terms of the GRACE and terrestrial gravity 

data with respect to the GPS velocities and the unknown weights of the base functions. The 

error covariance matrix is defined as 

GRACE

AG

GPS

GRACE

AG

GPS

2 1

2 1

2 1

( )

( )

( )

v

v v

v

σ

σ

σ

−

−

−

  
  
 = = 
  
     

P 0 0C 0 0

C 0 C 0 0 P 0

0 0 C 0 0 P

.     (5.22) 

Similar to Section 4.2 in Chapter 4, the data covariance matrix lC  is defined as 

GRACE

AG

GPS

v

l g v gh

vhg h

 
 
 = +
 
 

+  

C 0 0

C 0 C C C

0 C C C

&& &

& &&

,          (5.23) 

where and g h
C C &&  are the signal auto-covariance matrices of the terrestrial gravity rates and 

GPS velocities, respectively, and T( )
gh hg

=C C& && &
 is their cross-covariance matrix. It is 

assumed that the GRACE-observed rates do not contain a signal component. The 

covariance matrices of the predicted rates and the signal components of the terrestrial 

gravity and GPS observations are given by Eq. (4.39)  and are not repeated here. 
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5.4.2 Combined models for rates of the vertical displacement and the geoid height 

Upon solving the minimization problem given by Eq. (4.4) , the rates of the vertical 

displacement, terrestrial gravity, and the geoid height are predicted. The GRACE-observed 

rates of the vertical displacement are computed by means of Eq. (2.34) . The error 

covariance matrices are taken to be diagonal; for the GRACE-observed rates of the vertical 

displacement, a standard deviation GRACE 1.4 mm/yrσ =  is assumed. This implies that if the 

error of the GRACE-observed vertical displacement is 1 mm/yr, the covariance matrix is 

scaled by 2
GRACE 2.0σ = . The scale factors of the error covariance matrices of the terrestrial 

gravity rates and GPS velocities are unknown. Therefore, 2 2
AG GPS1.0 and 1.0σ σ= =  are 

assumed. Variance component estimation (VCE) using the BIQUE technique (Section 

4.2.1) is applied to resolve the relative weighting among the three data types (Figure 5.13). 

Because the estimated variance components depend on outliers in the data, the procedure 

includes Baarda’s data-snooping outlier detection (Section 4.2.1). The outliers are removed 

before estimating the variance components and scaling the error covariance matrices. 

Different strategies to deal with outliers are studied extensively in Chapter 6 of this thesis. 

The estimated rates of the terrestrial gravity and GPS velocities (Figure 5.14) at the data 

point locations allow to assess the capabilities of the least-squares collocation approach for 

combining the longer wavelength GRACE data (Figure 5.15a) with the local gravity and 

GPS data. Clearly, the trend component does not describe correctly the rates at the majority 

of the gravity sites and GPS stations. One logical question is whether the pure functional 

approach can provide satisfactory approximation by increasing the number of the base 

functions. As shown in Chapter 3, the approximation of the smooth postglacial rebound 

surface requires (inverse) multiquadrics with a large shape parameter, which increases the 

condition number of the normal matrix. This imposes restrictions on the number of the base 

functions used. Decreasing the shape parameter (and the condition number at the same 

time) leads to over-fitting the noise in the gravity and GPS data. As in Chapter 4, in this 

section, it is found that the “multistage” approximation provided by the least-squares 

collocation approach is more accurate than the functional approach. 
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Figure 5.13: An iterative estimation procedure including VCE and outlier detection. 

 

 

 

Figure 5.14: Estimated rates of the terrestrial gravity and GPS velocities. 
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Figure 5.15c shows the trend in the vertical displacement rates, which is dominated by the 

GRACE data. By adding the predicted signal, which varies between -0.6 and 0.6 mm/yr, 

the total rates of the vertical displacement are predicted (Figure 5.15e). The maximum 

predicted rate of 12.2 ± 0.5 mm/yr is located on the southeast coast of Hudson Bay as in the 

model in Figure 4.6. Both models have a similar pattern for the southern areas of Canada. 

Rates from the combined model, however, do not show the pattern in the northern areas 

inherited from the terrestrial gravity rates in the model in Figure 4.6. The formal accuracy 

of the predicted vertical displacement rates is given in Table 5.4. As seen from the 

comparison with the formal errors in Table 4.4, the accuracy of prediction improves 

significantly with the addition of the GRACE data. 

The signal component in the combined model contains mainly unmodelled rates but may 

contain also correlated measurement and data processing errors in the terrestrial gravity and 

GPS velocities. Although it is assumed that the latter contribution is smaller than the 

unmodelled geophysical signal, it is likely that such correlated errors contribute to the 

signal covariance functions, and therefore can be wrongly interpreted as a real vertical 

displacement signal. At the same time, these errors can be significantly underestimated if 

diagonal error covariance matrices are used. Therefore, caution is advised if the predicted 

signal is interpreted in terms of geophysical or other processes related to vertical crustal 

displacement and/or mass redistribution. 

Figures 5.15b, d, and f display the GRACE-observed rate of change of the geoid height, the 

trend component, and the total geoid rate. The modelled trend closely resembles the pattern 

of the GRACE-observed rates with an exception of the peak west of Hudson Bay. The 

maximum predicted rate is 1.5 ± 0.04 mm/yr over Hudson Bay. 

 

Table 5.4: Accuracy of predicted rates of vertical displacement and geoid height, mm/yr 

Rate Min Max Mean 

h&  0.3 0.4 0.6 

N&  0.03 0.04 0.06  
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Figure 5.15: Predicted rates of the vertical displacement and the rate of change of the geoid 

height for Canada: (a) and (b) GRACE-observed rates, (c) and (d) modelled trend 

component, and (e) and (f) the trend plus the signal components. The gravity sites and GPS 

stations are plotted with red and yellow stars, respectively. 
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Table 5.5 includes estimated variance components after two iterations. At the first iteration, 

three outliers in the terrestrial gravity rates are detected. At the second iteration, outliers are 

found at six GPS stations. As seen from the estimated variance components, all three error 

covariance matrices need to be down-scaled after removing the outliers. As a consequence, 

the mean standard deviations (the last column in Table 5.5) also decrease. Referring to the 

discussion above, the residuals are likely to be underestimated if the signal covariance 

matrices absorb correlated measurement and data processing errors as a result of the 

isotropic spatial averaging used to compute the empirical covariance functions. In this case, 

the estimated variance factors would provide optimistic error covariance matrices. This 

problem can be overcome only if full error covariance matrices are available together with 

estimating covariance factors as well as signal variances. Such a rigorous approach would 

require collocated GPS and gravity data, which, at present, are not available. 

 

Table 5.5: Estimated variance factors and a posteriori standard deviations, in mm/yr 

Data set 2σ̂  Min Max Mean 

GRACE 0.25 0.5 0.5 0.5  

AG (in µGal/yr) 0.64 0.05 0.72 0.33  

GPS 0.50 0.04 5.3 1.7  

 

5.5 Summary 

In this chapter, the GRACE-observed rates of the geoid height and the absolute vertical 

displacement have been modelled. For this purpose, the PC/EOF analysis and the 

traditional least-squares (LS) fitting have been used. By means of two studied cases (Figure 

5.9, Figure 5.10, and Figure 5.11), the capabilities of the PC/EOF analysis of extracting the 

GRACE-observed rates are definitely demonstrated. The results of the two methods are 

compared in Figure 5.12 and Figure 5.16. Evidently, the differences in the geoid rates do 

not exceed 0.2 mm/yr along the north-south profile. Much smaller differences are observed 

along the west-east profile.  
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Perhaps the most interesting outcomes of the studies performed in this chapter are the 

combined empirical models of the rates of the geoid height and the absolute vertical 

displacement (Section 5.4 and Figure 5.15). It has been shown that the least-squares 

collocation approach can be applied to combine the GRACE and terrestrial data. The 

combined model is compared with the GRACE-observed rates of change of the geoid 

height and the smoothed ICE-5G (VM2) model in Figure 5.16. An interesting observation 

is the significant deviation of the combined geoid rates from the ICE-5G (VM2) model and 

the GRACE-observed rates west of Hudson Bay. The combined solution in that area is 

dominated by few terrestrial gravity rates and GPS velocities that are more accurate than 

the GRACE-observed rates. In fact, the terrestrial gravity and GPS data do not indicate the 

large geoid rise signal predicted by the ICE-5G (VM2) model. This demonstrates the 

importance of the availability of well distributed terrestrial data for validating the secular 

rates of change of the geoid height. 

 

  

 

Figure 5.16: Comparison of the geoid rates computed by least-squares (LS) fitting and 

PC/EOF analysis of the GRACE-observed geoid changes and a combination of terrestrial 

and GRACE data along north-south and west-east profiles. The smoothed with a Gaussian 

filter (400 km) ICE-5G (VM2) model is also given. 
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By means of applying iterated outlier detection (Baarda’s data snooping method) and 

variance component estimation (BIQUE method) in the combined solution, it has been 

shown that the estimated variance factors of the error covariance matrices of the terrestrial 

gravity and GPS data decrease after removing the erroneous observations. In Chapter 6, the 

problem with outliers in combining heterogeneous data will be dealt using a robust least-

squares adjustment procedure. 
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Chapter Six: Practical aspects of modelling rates of 

vertical displacement and geoid height 

 

 

 

As the measurements from geodetic observations become more accurate, they are 

implemented to not only empirically derive velocity surfaces (e.g., Sella et al., 2007) but 

also to infer mantle viscosity (e.g., Park et al., 2002). Accurate empirical models for 

vertical crustal displacement are of particular interest in the Great Lakes region, where the 

line of zero motion (hinge line) is an important constraint for postglacial rebound modelling 

(Tushingham, 1992; Mainville and Craymer, 2005). With the abundance of geodetic 

observations in this region, the gradient of the velocity surface (tilting) can be described 

relatively well; however, the hinge line can deviate from one data set to another due to 

datum inconsistencies, different time span and accuracy of measurements, different spatial 

resolution and presence of erroneous data (outliers), as well as the underlying mathematical 

model. Outliers can also have a large influence on estimated relative errors of the data sets. 

Reliably estimated error bounds of the empirical rates of crustal displacement are required 

to define the uncertainty with which the mantle viscosity profile can be inferred in the 

inversion of the empirical rates (e.g., Paulson et al., 2007).  

The objectives of the study in this chapter involve  

• studying the influence of outliers on the hinge line and gradient of the vertical 

velocity surface; 

• studying the capabilities of different approaches to handle outliers including the 

conventional methods for outlier detection, such as the data snooping technique, 

and robust methods, such as the iterative re-weighting least-squares approach. 
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6.1 Problem statement 

Different approaches to deal with outliers have been outlined by Kern et al. (2005). The 

most intuitive way is to remove the outliers from the data set at the expense of losing 

information about the approximated surface. This can be an important consequence if the 

data points are very irregularly distributed and large areas have minimal data constraints. 

Alternatively, the outliers can be kept, but their influence can be reduced. This latter 

approach appears to be more suitable in North America because, as discussed in Chapter 2, 

crustal displacement is not well constrained in the Hudson Bay region, where the largest 

PGR signal is observed. Therefore, the iterative re-weighting least-squares (IRLS) approach 

is implemented and investigated in this study. 

In order to properly treat the erroneous data in the empirical models for the vertical 

displacement rates, an iterative procedure is designed which consists of the following:   

• identifying and removing the outliers by data snooping or minimizing their 

effect by means of IRLS. 

• estimating the relative errors of the data sets using variance component 

estimation (VCE). 

Usually, an outlier is defined as an observation that is inconsistent with the rest of the 

observations due to a grossly falsified measurement (Koch, 1999). Outliers can be 

classified as (i) additive outliers that appear to be erroneous values isolated from the other 

values, (ii) innovative outliers that have an effect on the neighbouring values through 

existing correlations and local patterns, and (iii) bulk of outliers that appear as a group of 

erroneous values (e.g., Kern et al., 2005). In this study, a classification more relevant to 

crustal deformation studies is adopted. According to Hekimoğlu (1997), outliers can be 

classified as random scattered, random adjacent and jointly influential outliers. Random 

outliers occur accidentally. It is believed that random outliers are normally distributed, but 

their distribution is different from the distribution of the random errors. In this study, the 

geometrical distribution of the random outliers in the data domain determines if they are 

scattered or adjacent. Jointly influential outliers appear as a group of observations affected 

by an unknown disturbing source. For example, jointly influential outliers could be a few 
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data points in a GPS network displaced along the vertical due to a measurement fault or a 

post-processing error. In agreement with Hekimoğlu (1997), it is assumed that the jointly 

influential outliers have a uniform distribution.  

Also, outliers can be classified with respect to their magnitude. Small outliers have a 

magnitude within 3σ and 6σ , where σ is the standard deviation of observations, while large 

outliers have a magnitude between 6σ and 9σ . Large outliers in a data set likely explain a 

large portion of data variation. As a consequence, the modified Gram-Schmidt (GS) 

algorithm (see Chapter 3) would place a base function at that point locations. Therefore, 

large outliers must be removed from the data set or significantly down-weighted relatively 

to the good observations. 

The problem with outliers is tightly related to the type of base functions employed for 

approximation of the underlying surface. Inverse multiquadric base functions used 

extensively in this thesis possess certain robustness with respect to erroneous data. By 

decreasing the shape parameter of the base functions, the effect of outliers can be localized 

and vice versa. The larger shape parameter, required for approximation of a smoother 

vertical displacement surface, allows for spreading the effect of the outliers. In the well 

constrained areas, this effect can be partly compensated by averaging more data; however, 

as it will be shown latter, the effect of outliers could be significant in the areas with lack of 

data constraints. Moreover, because the larger shape parameter increases the condition 

number of coefficient and normal matrices in least-squares adjustment, numerical 

instabilities can occur. As a consequence, in the weakly constrained areas, the underlying 

mathematical surface may oscillate resulting in increased possibility that the observations 

in those areas appear to be erroneous. 

Two study cases are investigated: (i) least-squares approximation of vertical displacement 

rates from a single data set and (ii) an optimal least-squares combination of different data 

sets. The first case includes simulated outliers and allows for assessing effectiveness of 

each of the investigated approaches. The output of the second case is a combined model of 

the rates of vertical displacement in the Great Lakes region based on the most recent 

GRACE, GPS, and joint tide gauge and satellite altimetry data.  
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6.2 Combined least-squares adjustment model 

In this section, the combined least-squares adjustment model given by Rangelova et al. 

(2007b) is presented. The model for a single data set follows directly from the equations 

below by deleting the matrices related to the second and third data sets.  

The observation vector l of dimension ( 1)n × , where 1 2 3n n n n= + + , is expressed as 

follows: 

T T T T
GRACE GPS TGA[ ]=l l l l                (6.1) 

with 

1

T
GRACE 1 2[ ... ]nh h h=l & & & , 1( 1)n × ,              (6.2) 

2

T
GPS 1 2[ ... ]nh h h=l & & & , 2( 1)n × ,              (6.3) 

3

T
TGA 1 2[ ... ]nh h h=l & & & , 3( 1)n × .              (6.4) 

The error covariance matrix is the block-diagonal matrix  

2 1
GRACE

2 1
GPS

2 1
TGA

( )

( )

( )

l

σ

σ

σ

−

−

−

 
 
 =
 
  

P 0 0

C 0 P 0

0 0 P

.             (6.5) 

Observations in each data set are assumed to be not correlated. 

The coefficient matrix is defined as 

GRACE

GPS

TGA

o 
 =  
  

A 0 A

A 0 0 A

0 1 A

,               (6.6) 

where the matrix oA  consists of the row-vectors o( ) [1 ]i i iϕ ϕ λ λ= − −a , 11,...,i n= , 

with andϕ λ  denoting the mean latitude and longitude for the region. Through 

parameterization of a plane, the bias and tilt (with respect to the GPS data) of the GRACE-
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observed rates of vertical displacement are modelled. The TGA data are assumed to be 

biased with respect to the GPS velocities. 

The coefficient matrices GRACE 1( ),n k×A  GPS 2( ),n k×A  and TGA 3( )n k×A  are 

computed by Eq. (4.42)  with k inverse multiquadric base functions. 

The velocity of a new point p is computed as 

1
ˆ ˆ

k

p p pj j
j

h x
=

′= = Φ∑a x& ,               (6.7) 

where ˆ ′x  is a sub-vector of the vector of estimated parameters x̂  and includes the estimates 

ˆ , 1,...,
j

x j k=  of the weights of the inverse multiquadric base functions. The first four 

elements of x̂  are the estimated bias and the north-south and east-west tilts for the GRACE 

data and the TGA data bias. 

According to Rousseeuw and Leroy (1987), an IRLS solution for the vector of parameters x 

is given by the equation 

T T1ˆ ( )−=x A WA A Wl .                (6.8) 

where the weight matrix W  is diagonal and depends on the estimated residuals v̂ . 

Therefore, W  is computed iteratively. If diagonal error covariance matrices for the 

GRACE, GPS, and TGA data are given, the so-called equivalent weight matrix W  (see 

e.g., Hekimoğlu and Berber, 2003) is computed as in Eq. (6.9)  and used in Eq. (6.8) . 

1 1
2
1

1
2

2

( )
0 0

0

( )
0 0

( )
0 0

i i
l

i

n n

n

w v

w v

w v

σ

σ

σ

−

 
 
 
 
 
 = =  
 
 
 
 
  

W WC

L L

M O M M

L L

M M M O M

L L

.                   (6.9) 
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The vector of residuals v̂  in the IRLS algorithm is expressed as follows: 

T 1 Tˆ ( ( ) )−= −v I A A WA A W l .            (6.10) 

To ensure scale invariance, standardized residuals are computed from the estimated 

residuals ( Eq. (4.9) ) as (Vaníček and Krakiwsky, 1986): 

ˆˆ , 1,...,i
i

i

v
v i n

s
= = .              (6.11) 

If the variance factors GRACE GPS TGA
2 2 2, , andσ σ σ  are known, the scale estimator is  is 

computed as follows: 

ˆ ˆdiag( )
i

i v is σ= = vC .            (6.12a) 

with 1 T 1 1 T
ˆ ( )l l

− − −= −vC W C A A WC A A . Otherwise, if the variance factors are estimated, 

the scale estimator is 

ˆ ˆ
ˆˆ diag( )

i
i v is σ= = vC .           (6.12b) 

with 1 T 1 1 T
ˆ

ˆ ˆ ˆ( )l l
− − −= −vC W C A A WC A A . 

According to Rousseeuw and Croux (1993), the median absolute deviation (MAD) of the 

residuals about the median is a more robust scale estimator than the standard deviation in 

Eqs. (6.12a) and (6.12b) . The MAD estimator is computed as follows: 

ˆ ˆmed{| med{ }|}.s = −v v                   (6.13) 

The weights for each data point, , 1,...,iw i n= , are computed as: 

ˆ( )
ˆ

i
i

i

v
w

v

Ψ
= ,               (6.14) 

where Ψ  is the influence function. The Fair influence function defined in Eq. (6.15)  below 

is implemented because the function increases monotonically and provides convergence to 

the global minimum of IRLS (e.g., Basu and Paliwal, 1989).  
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ˆ
ˆ( )

ˆ1 | | /
i

i
i

v
v

v F
Ψ =

+
,                   (6.15) 

where a value of 1.4 is chosen for F, but it can be varied to tune the weights. 

Different estimators are obtained by combining the scale estimators given by 

Eqs. (6.12a,b) and (6.13)  with the Fair influence function. For example, the Fair-MAD 

estimator uses the Fair influence function with the MAD scale estimator, and the Fair-

sigma estimator combines the influence function with the scale estimators given by 

Eqs. (6.12a) and (6.12b) .  

A flowchart that summarizes the IRLS adjustment algorithm is given in Figure 6.1. The 

algorithm starts with the estimated parameters x̂  and standard deviations of the residuals 

v̂σ  (assuming known variance factor) from the ordinary least-squares adjustment with 

1
l
−=W C  and terminates at the mth iteration when ( ) ( 1)ˆ ˆ| |m m−− < εx x  with 410−ε = . 

6.3 Approximation of a single velocity data set 

This case study includes approximation of a single data set of rates of vertical displacement 

given on a grid with resolution 2 2×o o  (Figure 6.2a). The base functions (with a shape 

parameter of 0.5 in unit distance) are also chosen on a grid to homogeneously cover the 

entire region, but the grid resolution is decided upon the condition number of the 

coefficient matrix (see Chapter 3). For all observations, a standard deviation 1.0 mm/yrσ =  

is assumed. Outliers are simulated according to the definitions in Section 6.1 as follows: 

random scattered (Figure 6.2b) and adjacent (Figure 6.2c) outliers with magnitudes of 3σ  

(small outliers) and 6σ  (large outliers) are added to the observed velocities at two data 

points. The randomness of the outliers is defined by their opposite signs. 

jointly influential outliers (Figure 6.2d), uniformly distributed between 0.5 and 2 mm/yr, 

are added to five point velocities. 
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Figure 6.1: Iterative re-weighting least-squares (IRLS) adjustment.  
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Figure 6.2: (a) Test surface sampled by means of 50 point velocity observations (red stars) and 12 base functions (black squares), (b) 

approximated surface with two random scattered outliers, (c) approximated surface with two random adjacent outliers, and (d) 

approximated surface with five jointly influential outliers. 

(a) (b) 

(d) (c) 
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Quantitative and qualitative assessment of the effect of the outliers on the approximated 

vertical displacement rates is given in Table 6.1 On the one hand, because the base 

functions have good localising properties, the maximum effect is observed in the proximity 

of the outliers. On the other hand, because the base functions are global, the effect of the 

large outliers can spread out. From Figure 6.2d and Table 6.1, it is evident that the largest 

effect on the hinge line is observed if the data set contains jointly influential outliers.  

Outliers can have large influence on the approximated surface in the weakly constrained 

areas. Figures 6.3a and b show the effect of a large single outlier and joint influence 

outliers, respectively, on the velocity surface if the observations do not cover 

homogeneously the entire area but contain a data gap. For this purpose, two of the data 

points in the northwest corner are deleted. The largest effect of approximately 0.5 and 0.9 

mm/yr depending on the type of outliers is observed in the proximity of the deleted 

observations. These values also include the small difference of 0.1 mm/yr between the 

approximated surface with all of the observations and with the data gap. The presence of a 

single erroneous observation in such peripheral areas can skew the vertical displacement 

surface significantly. 

 

Table 6.1: Effect of outliers on the approximated surface 

Type of outliers Maximum effect, in mm/yr Effect on the hinge line and  gradient 

small single  0.6 very small 

large single  1.2 large, skews the hinge line 

small scattered  < 1 can cancel out 

large scattered  > 1 can skew the hinge line 

small adjacent  < 0.5 cancels out 

large adjacent  < 1 skews the hinge line 

jointly influential  1.2 large, skews the hinge line 
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Figure 6.3: Effect of (a) a single random and (b) jointly influential outliers on the 

approximated velocity surface with a data gap. 

 

(a) 

(b) 
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Baarda’s data snooping with the τ-statistic given by Eq. (4.26)  is applied iteratively at a 

significance level 0.05α =  deleting the outlier with the largest statistic according to 

Eq. (4.27) . Data snooping does not detect the simulated small scattered outliers; however, 

it succeeds in detecting the large random outliers. Swamping effects (good data are tested 

to be outliers) are observed in the area with lack of data constraints. Another interesting 

observation is related to the test of the small adjacent outliers. At the first step of the 

procedure, data snooping detects the two simulated adjacent outliers; however, at the 

second step, the second outlier is tested to be a good observation after the first outlier is 

removed. As a result, a large distortion of the vertical displacement surface is observed. In 

addition, data snooping fails in detecting the simulated jointly influential outliers and a 

single outlier in the weakly constrained areas. 

In contrast with the conventional statistical testing, the robust Fair-MAD estimator detects 

and down-weights all simulated outliers. The assigned weights for the case with random 

scattered and joint influential outliers are given in Figures 6.4a and b, respectively. 

However, the estimator down-weights significantly even the good observations adjacent to 

the outliers. Therefore, by increasing the tuning constant F from 1.4 to 6.0, the weights of 

the good observations are increased to match the weights assigned by the Fair-sigma 

estimator in Figures 6.4c and d while keeping the weights for the erroneous observations 

below 0.1. In contrast with the Fair-MAD estimator, the Fair-sigma estimator does not 

down-weight significantly the outliers relatively to the good observations. This is observed 

for all of the cases. Thus, the approximated surface is still influenced by the outliers. 

To summarize, the conventional data snooping technique can be applied to detect and 

remove large random scattered and adjacent outliers but is not appropriate for small and 

jointly influential outliers. Also, the use of the Fair-sigma estimator for the case of the 

small random and joint influential outliers is not recommended. In contrast, the Fair-MAD 

estimator is able to treat properly all kinds of outliers investigated in this study. 
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Figure 6.4: Weights of the observations for the cases of random scattered outliers and jointly influential outliers computed  

by the Fair-MAD estimator, (a) and (b), and by the Fair-sigma estimator, (c) and (d). 

(a) (b) 

(d) (c) 
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6.4 Combined model for vertical displacement rates 

The GRACE-observed rates of vertical displacement are given in Figure 6.5a. For the 

purpose of this study, they are interpolated at the GPS stations. Evident is the northeast-

southwest surface slope resembling the pattern of the postglacial rebound signal obtained 

with the ICE-4G de-glaciation history and a four-layer approximation of the VM2 viscosity 

model (Figure 6.5b and Chapter 2). A positive bias with respect to the GPS vertical 

velocities in Figure 6.5c (Sella et al., 2007) is also observed. Generally, the interpolated 

GPS velocities show a larger slope, which sharply decreases from 7-8 mm/yr northeast to 

the hinge line veering off through the lakes. Also, evident is the correlation of the 

interpolated velocities with the locations of the GPS stations in the lake areas. Figure 6.5d 

depicts the rate of vertical displacement obtained from combined tide gauge and satellite 

altimetry water surface heights (TGA) according to Kuo (2006). The TGA data repeat the 

general pattern of the GPS velocities, but the hinge line is located south of the GPS hinge 

line. It should be noted that the local vertical displacements (if any) could have been largely 

filtered out in the optimal combination of the tide gauges and altimetry data.  

The different data sets are derived from different time spans of measurements and have 

different datums. It is reasonable to assume that the latter results in a long wavelength 

signal that can be parameterized as a bias or a plane in the combined least-squares 

adjustment model. In addition, GRACE-observed rates of vertical displacement would be 

subject to leakage of geophysical signals from outside the area of interest. Any errors in the 

hydrology correction would also contribute to the inconsistencies between the GRACE-

observed rates and the GPS and TGA rates. The data sets also differ in terms of the a priori 

accuracy with which they are provided. The error covariance matrices are available in a 

diagonal form; thus, the correlation between the rates within each data set is assumed to be 

negligible. Table 6.2 includes the a priori accuracy of the three data sets. The formal errors 

of the GRACE and TGA data are significantly smaller than the formal errors of the GPS 

velocities. Therefore, the error covariance matrices of the TGA and GRACE-observed rates 

of vertical displacement are re-scaled by factors of 7.0 and 2.0, respectively. 
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Figure 6.5: Rates of vertical displacement from (a): GRACE, (b) PGR model with a four-layer approximation of the VM2 model and 

the ICE-4G de-glaciation history, (c) GPS measurements (red stars), and (d) an optimal combination of water tide gauge records and 

TOPEX/Poseidon altimetry water surface heights (yellow stars). 

(a) (b) 

(d) (c) 
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Table 6.2: Statistics of the a priori (not scaled) standard deviations 

Data set Number of points Min, mm/yr Max, mm/yr Mean, mm/yr 

GRACE 71 1.4 1.4 1.4 

GPS 71 0.5 5.3 2.0 

TGA 51 0.1 0.3 0.2 

 

Four combined models of the rates of vertical displacement are obtained. Figure 6.6 

represents the least-squares adjustment model without taking care of outliers. Figure 6.7 

shows the approximated surface by least-squares adjustment with data snooping. The 

combined models obtained by means of IRLS adjustment and different estimators are given 

in Figure 6.8 (the Fair-sigma estimator) and Figure 6.9 (the Fair-MAD estimator). The 

approximated surface is very well constrained in the lakes area, where all of the models 

have almost the same surface gradient and a hinge line that deviates slightly. The largest 

differences among the models are observed in the peripheral areas.  

It should be noted that the outlier detection and the VCE are interrelated and are applied in 

an iterative procedure as explained in Section 6.1. However, for the sake of clarity, the 

following discussion presents outlier detection and VCE for this case study separately.  

6.4.1 Outlier detection 

Baarda’s data snooping given by Eqs. (4.24) and (4.25)  is applied at significance level 

0.05α = . Outliers are removed sequentially as the data point value with the largest test 

statistic is removed at each step. After all of the outliers are removed, VCE is applied to 

obtain new scales for the error covariance matrices. The data snooping procedure is 

repeated using the rescaled matrices in the new least-squares adjustment. Four iterations are 

necessary to obtain “clean” data sets of GPS and TGA observations; see Table B.1. It 

should be noted that the outliers in the combined case are examined together. This is 

necessary because swamping and masking effects are observed between the GPS and TGA 

data as shown in the table. Nine outliers are detected and removed from the GPS velocities 

(Table B.2). Evident from Figure 6.7 is that the data snooping procedure removes mostly 
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GPS data points from the periphery of the region. As a result, significant differences of the 

approximated surface are observed southwest from the lakes. Another nine TGA data 

points are tested to be outliers and removed (Table B.3). 

6.4.2 Variance component estimation and a posteriori accuracy  

The variance factors of the error covariance matrices are estimated using the BIQUE 

method described in detail in Section 4.1.2 of Chapter 4. Table 6.3 provides statistics of the 

variance factors and standard deviations of the observations estimated in the four least-

squares adjustment models. In the least-squares adjustment case without outlier detection, 

the error covariance matrices for the GRACE-observed vertical displacement rates and GPS 

vertical velocities should be re-scaled by 0.06 and 0.9, respectively. In contrast, the 

estimated variance factor of 10.0 for the TGA error covariance matrix justifies that the a 

priori accuracy of the data set is too optimistic. If data snooping is applied, the variance 

factors for the GPS and TGA error covariance matrices drop to 0.41 and 4.61, respectively. 

The large differences in the estimated variance factors show that outliers in the two data 

sets have a significant influence on the estimated scales of the error covariance matrices. 

Because the equivalent weight matrix W  replaces the data weight matrix P in the IRLS 

adjustment, the estimated variance components are the scale factors for the cofactor 

matrices ( ) ( ) 1 ( ) ( ) 1( ) ( )m m m m− −= =Q W W P  with ( ) ( 1)m m−=P W . Variance factors of one 

(Table 6.3) are obtained at the fifth iteration of the procedure. 

More insight into the a posteriori accuracy of the data sets can be obtained by examining 

the statistic of the a posteriori standard deviations in Table 6.3. The comparison with the a 

priori accuracy in Table 6.2 reveals that the error of the GRACE-observed rates of vertical 

displacement, on average, decreases from 1.4 to 0.2 - 0.4 mm/yr. The mean standard 

deviation for the GPS vertical velocities decreases from 2.0 to 1.3 mm/yr, while the 

standard deviation of the TG/Alt rates increases from 0.2 to 1.1 mm/yr on average. The 

least-squares adjustment with data snooping tends to provide significantly smaller a 

posteriori errors compared to the IRLS adjustment. The IRLS adjustment with the Fair-

MAD estimator provides the largest maximum errors among all methods. 
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The a priori and a posteriori standard deviations for all GPS and TGA observations are 

compared in Figures 6.6, 6.7, 6.8, and 6.9 and Tables B.2 and B.3. A decrease in the a 

posteriori GPS errors is evident, but also a significant reduction of the largest errors is 

observed. The a posteriori errors of the TGA rates have an apparent geographical pattern 

with maximum values of 0.8 – 1.1 mm/yr estimated for Lake Michigan. 

 

Table 6.3: Estimated variance factors and a posteriori standard deviations in mm/yr 

Data set 2σ̂  Min Max Mean 

Least-squares adjustment  

GRACE 0.06 0.2 0.2 0.2 

GPS 0.90 0.5 5.0 1.9 

TGA 10.0 0.3 1.0 0.6 

Least-squares adjustment with data snooping 

GRACE 0.04 0.2 0.2 0.2 

GPS 0.41 0.5 3.4 1.3 

TGA 4.61 0.2 0.6 0.4 

IRLS adjustment with Fair-sigma estimator 

GRACE 0.88 0.3 0.4 0.7 

GPS 1.03 0.5 4.1 1.7 

TGA 1.07 0.2 0.8 0.4 

IRLS adjustment with Fair-MAD estimator 

GRACE 0.95 0.2 0.4 0.3 

GPS 1.01 0.3 6.4 1.8 

TGA 1.03 0.2 1.1 0.5 
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Figure 6.6: Combined model using least-squares adjustment (no outliers removed). A 

priori (black) and a posteriori (red) standard deviations of the GPS vertical velocities and 

TGA vertical displacement rates are given in the upper and lower plots, respectively.  

1 mm/yr a priori standard error 

1 mm/yr a posteriori standard error 
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Figure 6.7: Combined model using least-squares adjustment with Baarda’s data snooping. 

A priori (black) and a posteriori (red) standard deviations of the GPS vertical velocities and 

TGA vertical displacement rates are given in the upper and lower plots, respectively.  

 

1 mm/yr a priori standard error 

1 mm/yr a posteriori standard error 
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Figure 6.8: Combined model using IRLS adjustment with the Fair-sigma estimator. A 

priori (black) and a posteriori (red) standard deviations of the GPS vertical velocities and 

TGA vertical displacement rates are given in the upper and lower plots, respectively.  

1 mm/yr a priori standard error 

1 mm/yr a posteriori standard error 
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Figure 6.9: Combined model using IRLS adjustment with the Fair-MAD estimator. A 

priori (black) and a posteriori (red) standard deviations of the GPS vertical velocities and 

TGA vertical displacement rates are given in the upper and lower plots, respectively.  

 

1 mm/yr a priori standard error 

1 mm/yr a posteriori standard error 
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6.5 Summary 

As demonstrated in this chapter, the outlier detection is an important issue when inverse 

multiquadrics are used in the mathematical model because the robustness of the base 

functions decreases with the increase in the shape parameter. This results in spreading the 

effect of the outliers in the areas weakly constrained by the data. In those areas, even good 

observations may appear to be erroneous. Therefore, based on the results of this study, it is 

recommended that robust least-squares procedures, such as the one designed in this chapter, 

be applied when optimally combining different displacement data sets. Since the procedure 

is not a priori based on the use of inverse multiquadrics, it can be applied with other types 

of base functions. 

It has been demonstrated that different data sets of vertical displacement rates (GRACE, 

GPS, and joint tide gauges and altimetry data in the studied example) can be optimally 

combined using the iterative re-weighting least-squares adjustment approach. By 

significantly down-weighting the erroneous observations, their effect on the approximated 

surface is minimized. The estimated scales of the error variance matrices are free from the 

effect of the outliers. Thus, more reliable empirical constraints for postglacial rebound 

modelling are provided. 
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Chapter Seven: Implementing the dynamic geoid 

model as a vertical datum 

 

 

 

The objective of this chapter is to provide a feasibility study on incorporating the temporal 

changes in the geoid height into the vertical datum in Canada. For this purpose, the most 

accurate GPS ellipsoidal heights from CBN, orthometric heights from the most recent 

minimally constraint adjustment of the primary vertical control network, and the most 

recent geoid model for Canada are used.  

The chapter begins with a definition of the dynamic geoid, followed by a discussion of the 

propagated effect of geodynamics in Canada in the geoid model computed by means of the 

traditional remove-compute-restore procedure. Finally, an analysis on the effect of the 

temporal changes in the geoid height on the contemporary vertical datum in Canada is 

presented and discussed. 

7.1 Definition of the dynamic geoid  

The geoid height can be represented as a function of the location ( , )ϕ λ  and time epoch t as 

stat( , , ) ( , ) ( , ) ( , , )N t N N t N tϕ λ ϕ λ ϕ λ ϕ λ= + +& % .            (7.1) 

stat ( , )N ϕ λ  is the static geoid that also can be the mean geoid over a sufficiently long 

period of time so that all periodic variations average out. ( , )N ϕ λ&  is the estimated trend 

(rate of change) of the geoid height from the empirical models developed in Chapters 4 and 

5. The last term in Eq. (7.1) , i.e., ( , , )N tϕ λ% , could represent semi-annual, annual, inter-

annual, non-periodic, and episodic changes in the geoid height over the time period of 
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interest. As shown in Chapter 5, the main periodic signal in the geoid height in North 

America is the annual cycle of snow mass accumulation and melting. Other temporal 

variations of interest are the trend-like hydrology changes over the analyzed time period, 

which might be a part of a long-period signal that could average out with the increase of the 

time span of the GRACE mission. 

The geoid model used in the GNSS/levelling can be computed using the remove-compute- 

restore technique. The simple Helmert condensation method (Sideris, 1994a; 1994b), 

which will be described in the following, allows one to easily propagate the temporal 

effects into the computed geoid height. 

The geoid height is computed as follows: 

GM g I
N N N N

∆= + + ,               (7.2) 

where    

maxGM

2 0
( , ) (sin )[ cos( ) sin( )]

l l

lm lm lm
l m

N R P C m S mϕ λ ϕ λ λ
= =

= +∑ ∑            (7.3) 

is the contribution of a global geopotential model of maximum degree lmax, lmP  are the 

fully normalized Legendre functions, andlm lmC S  are the fully normalized coefficients of 

the anomalous potential, R is the mean radius of the Earth, and  andϕ λ  are the latitude 

and longitude of the computation point. The contribution of the gravity anomalies is 

computed as follows: 

g F GM( ) ( )
4

o

R
N g g S d

σ

ψ σ
πγ

∆ = ∆ − ∆∫∫ ,             (7.4) 

where the integration is performed locally over the part of the sphere with a size determined 

by the shortest wavelength present in the geopotential model; GM
g∆  is the contribution of 

the geopotential model; and F
g∆  is the Faye gravity anomaly 

TF
g g H c

h

γ∂
∆ = ∆ − +

∂
,               (7.5) 
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where g∆  is the Free-air gravity anomaly computed at the topographic surface, / hγ∂ ∂  is 

the normal gravity gradient, H is the orthometric height, and ( )S ψ  is the Stokes kernel; T
c  

is the terrain correction computed by the equation 

T
22

P Q
Q3

PQ

( )

2

H hG R
c d

lσ

ρ
σ

−
= ∫∫ ,               (7.6) 

where P and Q are points at the Earth’s surface (Heiskanen and Moritz, 1967).  

The last term in Eq. (7.2)  is the indirect effect on the geoid due to the condensation of the 

topography on the geoid, which, to the first order approximation, is computed as 

2I G
N H

π ρ

γ
= − .                (7.7) 

Table 7.1 summarizes the maximum values of the rates of change of each term used in the 

remove-compute restore procedure. It is assumed that the gravity and levelling 

measurements are corrected for the inconsistencies of the measurement epochs. The rate of 

change of the geoid height is simply obtained by differentiating each term in Eq. (7.2)  with 

respect to time as follows: 

GM g I
N N N N

∆= + +& & & & .               (7.8) 

The term GM
N&  can be thought of as the estimated (in Chapter 5) GRACE-observed rates of 

change of the geoid height. The term g
N

∆&  is the time derivative of Eq. (7.4) , i.e.,  

g F GM( ) ( )
4

o

R
N g g S d

σ

ψ σ
πγ

∆ = ∆ − ∆∫∫& & & ,             (7.9) 

TF
g g H c

h

γ∂
∆ = − +

∂
&& & & ,              (7.10) 

and GM
g∆ &  is the GRACE-observed rate of change of gravity. Eq. (7.9)  shows that the rate 

of change of the free-air gravity correction compensates for the effect of the vertical crustal 

displacement in the rate of the terrestrial gravity. Thus, the rate of change of the Faye 
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anomaly can be written as TF
g g cδ∆ = +& & & , where gδ &  is the contribution of the redistributed 

masses and T
c&  is the time derivative of the terrain correction. The latter has a negligibly 

small value of 2×10-4 µGal/yr. The former is observed by GRACE with a peak value of 1.5 

µGal/yr for the Hudson Bay region, and is equal to the GM
g∆ &  term; therefore, g

N
∆&  can be 

assumed zero. The rate of the indirect effect term I
N&  in Eq. (7.8)  is 1×10-4 mm/yr at most. 

From the discussion above, it is clear that the geoid rate can be represented by the GRACE-

observed rate. The contribution of local mass redistributions can be modeled by the least-

squares collocation approach as in Chapters 4 and 5. Thus, the dynamic geoid is given by 

stat( , , ) ( , ) ( , )N t N N tϕ λ ϕ λ ϕ λ= + & .          (7.11a) 

For the purpose of a dynamic geoid-based vertical datum, this equation can be rewritten as 

follows: 

o o( , , ) ( , , ) ( , )( )N t N t N t tϕ λ ϕ λ ϕ λ= + −& ,          (7.11b) 

where o( , , )N tϕ λ  is the geoid model for the reference epoch ot . 

 

Table 7.1: Temporal effects in the geoid model 

Term  Value 

Rate of change of the geoid height, Eqs. (7.1) and (7.8)  1.5 mm/yr 

Free-air gravity correction in *Eq. (7.5)  3 µGal/yr 

Faye gravity anomaly, Eq. (7.5)  1.5 µGal/yr 

Terrain correction, Eq. (7.6)  2×10-4 µGal/yr 

Indirect effect on the geoid, Eq. (7.7)  1×10-4 mm/yr 

* 10 mm/yrH =&  is assumed. 



 
 

 

186 

In view of the vertical datum modernization in Canada, the secular rate in the geoid height 

is the sole temporal effect of interest. However, the secular changes in gravity and heights 

propagate into the geoid height through all terms in the remove-compute-restore procedure. 

The most significant of these effects originates from the inconsistencies of the measurement 

epochs of the terrestrial gravity used to create the Canadian Gravity Anomaly Data Base 

(CGADB). Ali (2006) quantified this effect and showed that the geoid changes are negative 

over eastern Canada and the Hudson Bay region with a peak of -0.13 m and positive over 

western Canada with a peak of 0.14 m centered in Yukon (Ali, 2006, Figure 5.4). It should 

be noted that the computed change in the geoid height includes both the effect of the mass 

redistribution and the vertical crustal displacement on the terrestrial gravity values. The 

geoid changes are of long to medium wavelength and resemble the map of the rates of 

change of the terrestrial gravity (Figure 4.2a in this thesis). 

The postglacial rebound signal is present also in the global gravity anomaly, i.e., the GM
g∆  

term. In the pre-CHAMP and GRACE geopotential models, e.g., EGM96 (Lemoine et al., 

1998), postglacial rebound possibly affects the long wavelength spectrum of the 

geopotential through the different epochs of the satellite arcs used in recovering the 

geopotential from satellite tracking data. Through homogenization (both in space and time) 

of the global gravity field by observations from GRACE and the future GOCE satellite 

mission, the global geoid models will be free from the described effects. For example, the 

recent Canadian geoid model CGG05 (Huang et al., 2006) is based on the GRACE 

GGM02C geopotential model, and, therefore, it can be assumed that wavelengths up to 

degree 90 are free from the postglacial rebound effect. However, corrections in the gravity 

anomaly data base for Canada are still necessary because the medium and short-wavelength 

gravity anomalies can contain biases and systematic distortions from the inconsistencies of 

the gravity measurement epochs. 

7.2 Role of the dynamic geoid in the vertical datum problem 

According to Véronneau et al. (2006), the new geoid-based datum for Canada will be 

constrained to a “framework” of fundamental points that includes the most accurate GPS 
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stations linked to the existing primary vertical control network. At those fundamental 

points, by differencing the measured ellipsoidal height and the geoid height from the 

contemporary regional geoid model, the orthometric height (referenced to the geoid-based 

vertical datum) will be computed. This approach is an implementation of option 2 for 

vertical datum realization explained in Section 2.1.1 of Chapter 2. In this scenario, the re-

adjusted primary vertical control network links the geoid-based and levelling-based vertical 

datum. In addition to providing a connection to the local mean sea level, the levelling-based 

vertical datum assists the validation of recent global and regional geoid models as well as 

the studies of levelled vertical crustal displacement. Because the latter is present in the 

levelled height differences, the vertical control network is subject to systematic effects that 

need to be taken into account if validation of the contemporary accurate geoid models is 

undertaken. Conversely, the geoid-based vertical datum will not contain these systematic 

effects, but the vertical reference surface will change with time.    

In the approach adopted in this research, the dynamic geoid is treated in the context of the 

combined adjustment of the ellipsoidal, orthometric, and geoid heights. This approach 

provides a means for studying the effect of the dynamic component of the geoid height and 

weighting this effect against the errors of the three height components. Therefore, this study 

should be accepted as a feasibility study with results indicating the importance of 

integrating the temporal component in the vertical datum. In addition, the effect of the 

levelled crustal displacement on the vertical datum is assessed.   

7.2.1 Combined adjustment of ellipsoidal, geoid, and orthometric heights  

The basic observation equation for a combined adjustment of ellipsoidal, orthometric, and 

geoid heights is given by Eq. (2.10)  in Chapter 2, Section 2.1. From the discussion in this 

section, it follows that the height misclosure consists of a systematic component and three 

noise components attributed to the three height types. The former can be represented by a 

smooth parametric surface that absorbs all distortions, long wavelength geoid errors, and 

datum inconsistencies among the ellipsoidal, orthometric, and geoid heights (Schwarz et 

al., 1987). In the areas with a maximum rebound signal, the parametric surface will also 
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absorb the distortions caused by the different epochs of the levelling measurements in the 

different parts of the vertical control network and the temporal changes of the geoid height. 

The parametric surface allows the orthometric height to be obtained by differencing the 

GPS-determined ellipsoidal height and the geoid height at new points for establishing a 

vertical control in the territory of interest. The combined least-squares adjustment model 

for the height misclosure Pl  at the GPS-on-benchmark point P, 

P P P Pl h N H= − − ,              (7.12) 

is defined as follows. Let [ ]
T

1 2 n
l l l=l K  be a vector of height misclosures (observations) at 

n benchmarks of the vertical control network, T
1 2[ ]

k
x x x=x K  is a vector of k unknown 

parameters; A  is the coefficient matrix with vector rows 1 2[ ], 1,...,
i k

a a a i n= =a K  and of 

full column rank, i.e., rank k=A ; and T
1 2[ ]

n
v v v=v K  is a vector of zero-mean residuals, 

i.e., { } 0E =v .  

The observation equation of the combined least-squares adjustment model is  

l = Ax + v , with { }T
v

E =vv C .             (7.13) 

The covariance matrix 
v

C  is defined as 

v h H N= + +C C C C ,                  (7.14) 

where , , and h H NC C C  are the error covariance matrices for the ellipsoidal, orthometric, 

and geoid heights, respectively.  

The systematic component Ax  can be parameterized using low degree bi-variate 

polynomials or other simple mathematical surfaces. As found in previous studies, the 

classic four-parameter model given by Heiskanen and Moritz (1967) provides the best 

representation of the systematic errors among the GPS, orthometric, and geoid heights in 

Canada (Fotopoulos, 2003). The systematic component at the GNSS/levelling point ( , )i iϕ λ  

is represented as 
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T
1 2 43cos cos cos sin sini i i i i ix x x xϕ λ ϕ λ ϕ= + + +a x  .         (7.15) 

The standard deviation of the parametric surface computed at point i is   

T
ˆˆ a

i i iσ = xa C a ,              (7.16) 

where the covariance matrix of the estimated parameters x̂C  is computed as 

T 1 1
ˆ ( )v

− −=xC A C A .              (7.17) 

Two cases for the error covariance matrix 
v

C  can be considered in the combined 

adjustment. In the first case, correlations between the observations in each height 

component can be disregarded; thus, diagonal error covariance matrices , , and h H NC C C  

are assumed. In the second case, the correlations are taken into account through the fully-

populated error covariance matrices. As shown by Fotopoulos (2003) in a case study for 

Canada, “overly-optimistic” (with small variance factors) covariance matrices are estimated 

when the first case is chosen. This effect has been observed for the ellipsoidal heights 

which are highly correlated. Conversely, it has been found that if the fully-populated 

covariance matrices are included in the adjustment model, then more realistic error 

estimates are obtained. 

7.2.2 Effect of geodynamics on the parametric surface 

In this section, the effect of the dynamic geoid and orthometric heights on the parametric 

surface is studied. For this purpose, it is assumed that a levelling-based vertical datum is 

established at epoch ot . For the same epoch, a geoid model o( , , )N tϕ λ  is computed. At 

epoch t, the orthometric height is computed as  

T
o ˆ( , , ) ( , , ) ( , , ) ( )tH t h t N tϕ λ ϕ λ ϕ λ= − − a x ,           (7.18) 

where the parametric surface component  T ˆ( )ta x  should include the effect of the temporal 

change in the geoid height, o( )N t t Nδ = − & , and the change in the orthometric height, 

o( )H t t Hδ = − & , for the time interval o( )t t−  for all GPS-on-benchmark points in the area 
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of interest. Ideally, it is assumed that the “fundamental point” of the vertical datum is not 

subject to vertical crustal motion, nor does the equipotential surface through the 

fundamental point change with time. If the temporal effects were corrected for, the 

parametric surface would account for all “static” discrepancies among the ellipsoidal, 

orthometric, and geoid heights discussed in Section 2.1 of Chapter 2. Therefore, the 

following representation for the parametric surface is assumed: 

T T
oˆ ˆ( ) ( )t N Hδ δ= + +a x a x .              (7.19) 

In order to quantify the effect of the dynamic geoid and orthometric heights on the 

parametric surface, a set of 430 of the most accurate GPS-on-benchmark points in Canada 

is used. The ellipsoidal heights were determined from the campaign GPS surveys after 

1994. The orthometric heights were computed from the geopotential numbers obtained 

from the minimally constrained least-squares adjustment of the levelling measurements 

after 1981. The geoid heights are computed from the CGG05 model based on the GGM02C 

GRACE geoid model. This set of GPS-on-benchmark points has been used in the latest 

calibration of the errors of the CGG05 geoid model (Huang et al., 2006). For all points, the 

height misclosures have been made available together with the fully-populated cofactor 

matrices and the scale factors for the ellipsoidal, orthometric, and geoid heights 

(Fotopoulos, 2007, personal communication). The data set is divided into three regions 

(Figure 7.1): namely, region A (206 points), region B (76 points), and region C (148 

points). Region A is characterized by densely distributed points along the levelling lines, 

but large areas are not covered by data. Region B is relatively homogeneously covered, but 

the data points are sparsely distributed. Region C has a mixed type of data coverage. 

Table 2.1 contains statistics of the standard deviations of the three data sets. Clearly, the 

accuracy of the orthometric heights degrades from region A to region C as a result of 

increasing the systematic errors in the vertical control network. The errors of the ellipsoidal 

heights range from a sub-centimetre level to two decimetres with mean values of 37 and 47 

mm. The average error of the geoid height increases from 28 mm for region B (flat terrain) 

to 53 mm for region C (rocky terrain).   
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The rates of change of the geoid and orthometric heights are interpolated at the GPS-on-

benchmarks points using the empirical models developed in Section 5.4.2 of Chapter 5. As 

seen in Figure 7.1, the GPS-on-benchmarks points do not cover the areas around Hudson 

Bay, where the maximum changes in the geoid and orthometric heights are observed. The 

parametric surfaces for the three regions are shown in Figure 7.2. A significant east-west 

slope is observed in all three of them. This slope is attributed mainly to the systematic 

errors present in the levelling data and accumulated over the levelling lines between the 

east and west coasts. Figure 7.2 also shows the total effect of the dynamic components Nδ  

and Hδ  on the parametric surface for each region and for a ten-year time period. The 

effect of the Nδ  component comprises approximately 10% of the total effect. Thus, if the 

maximum change in the parametric surface is 100 mm, 10 mm are due to the change in the 

geoid height. 

 

C

A

B

 

Figure 7.1: GPS on first order levelling benchmarks for the three regions and modelled 

rates of change of the geoid height. 
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Table 7.2: Statistics of the errors of the ellipsoidal, geoid, and orthometric heights, in mm 

Region A Region B Region C 
σ  

Min Mean Max Min Mean Max Min Mean Max 

h 6 37 162 9 37 80 5 47 230 

H 31 83 142 143 158 169 161 181 208 

N 28 34 59 25 28 32 22 53 169 

 

 

The effect of the dynamic component of the geoid and orthometric heights on the 

parametric surface will be compared with the errors of the ellipsoidal, geoid, and 

orthometric heights for each of the three regions. For this purpose, the following relative 

variables are defined: 

( )
max

ˆ
i

a
i

Nδ

σ

 
  
 

                      (7.20a) 

and 

( )
max

ˆ
i

a
i

N Hδ δ

σ

 +
  
 

                      (7.20b) 

are the maximum ratios of the temporal effect and the estimated error of the parametric 

surface and have a meaning of a signal-to-noise ratio. Values larger than 1.0 (above the 

noise level) indicate that the dynamic effect should be accounted for. 

max , , ,
ˆ a
i

h H Nϑσ
ϑ

σ

 
=  

 
             (7.21) 

is the maximum ratio of the average standard deviation ϑσ  for each of the three height 

components and the estimated error of the parametric surface. 
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Figure 7.2: Left: parametric surfaces for the three regions; right: total dynamic effect on 

the parametric surfaces. 
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Figure 7.3: Effect of dynamic components and relative errors from diagonal error 

covariance matrices: (a) change in geoid height and (b) change in geoid and orthometric 

heights. The vertical axis shows relative variables. 

(a) 

(b) 
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Figure 7.4: Effect of the dynamic components and relative errors from fully-populated 

error covariance matrices: (a) change in geoid height and (b) change in geoid and 

orthometric heights. The vertical axis shows relative variables. 

 

 

 

 

(a) 

(b) 
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7.2.3 Analysis of results 

First, the combined least-squares adjustment of the ellipsoidal, orthometric, and geoid 

heights is performed with the diagonal error covariance matrices. The effect of the temporal 

changes in the geoid height (Figure 7.3a) and in the geoid and orthometric heights (Figure 

7.3b) are computed by means of Eqs. (7.20a) and (7.20b)  and plotted as a linear increase 

for a ten-year time interval. Evidently, the change in the geoid height becomes significant 

(above the signal-to-noise ratio of 1.0) after 4 years for region A and after 6 years for 

regions B and C. As shown in Figure 7.2 and Table 7.2, Region A is characterized by 

densely distributed GPS-on-benchmarks points and more accurate orthometric heights, and, 

as a consequence, the parametric surface is determined more accurately. However, the 

effect of the dynamic geoid component is far bellow the mean error of the geoid heights, 

computed by means of Eq. (7.21) . When both the temporal changes in the geoid and 

orthometric heights are taken into account, the total dynamic effect far exceeds the signal-

to-noise ratio after the first year; however, it needs to be accounted for after the ninth year 

when the mean error of the geoid heights is exceeded. 

As pointed out in Subsection 7.2.1, the ellipsoidal and orthometric heights could have 

rather optimistic errors if the errors are obtained from calibrated diagonal error covariance 

matrices. If this is the case, the parametric surface may be unrealistically accurate and, as a 

result, the computed dynamic effect may be overestimated. Another consequence from the 

up-weighting of the ellipsoidal and orthometric heights is that the geoid errors may appear 

unrealistically large. Thus, the lower accuracy of the geoid heights appears to be the 

limiting factor for incorporating the dynamic component of the geoid and orthometric 

heights into the vertical datum. 

If the fully-populated error covariance matrices are used in the combined adjustment of the 

ellipsoidal, orthometric, and geoid heights, an increase is observed for the errors of the 

parametric surfaces for the three regions. As a result, much smaller ratios are computed by 

means of Eqs. (7.20a) and (7.20b) ; see Figures 7.4a and b. For all of the regions, the 

contribution of the dynamic geoid component is far below the estimated errors of the 

parametric surfaces. The total dynamic component becomes significant after 5 years for 
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region A and after 10 years for region B. However, the dynamic effect is much less than the 

mean error of the orthometric heights, which is the least accurate among the three height 

components; see Table 7.2. For comparison, the mean errors of the ellipsoidal and geoid 

heights are approximately equal for all of the regions. 

Based on the results obtained in this study using the most recent and accurate height data 

available in Canada, some important conclusions can be drawn. First, the contemporary 

accuracy of the three height components precludes the incorporation of a dynamic geoid 

and orthometric heights in the vertical datum of Canada. Second, the assessment of the 

contribution of the dynamic components clearly depends on the proper relative weighting 

of the ellipsoidal, orthometric, and geoid heights. As evident from the discussion above, the 

accuracy of the orthometric heights appears to be a limiting factor for incorporating the 

dynamic geoid in the vertical datum. This issue is investigated further by means of a 

simulated study. 

For the test area denoted by a red square in Figure 7.2, the significance of the temporal 

changes in the geoid and orthometric heights for a 10-year time interval is assessed for 

different mean variances of the ellipsoidal, orthometric, and geoid heights. From the GPS-

on-benchmarks points in the area, a subset of points with a mean distance of 80 - 100 km, at 

which the ellipsoidal heights are not correlated, is chosen. These GPS-on-benchmarks 

points provide a datum for GNSS/levelling in the test area, through which the orthometric 

heights can be obtained with respect to the mean sea level in Rimouski. The mean variances 

are used to scale the three cofactor matrices of the data. 

In Figure 7.5, the maximum ratio of the temporal effect of the geoid height and the 

estimated error of the parametric surface is plotted for different mean standard deviations of 

the three height components. Ellipsoidal heights should be known with accuracy of at least 

10 mm in order to incorporate the dynamic geoid height in the vertical datum. The 

maximum errors of the geoid and orthometric heights are 11 and 12 mm, respectively. At 

present, the orthometric heights, computed from the latest adjustment of the primary 

vertical control network of Canada, have an order of magnitude lower accuracy. It is 

accepted that the orthometric heights are accurate at decimetre level with respect to the 
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equipotential surface through the fundamental datum point in Rimouski (Véronneau, 2006; 

see Table 7.2). The main difficulty for improving the accuracy of the orthometric heights is 

the accumulation of systematic errors along the levelling lines of magnitude of 0.1 mm/km 

as well as undetected erroneous observations (ibid.). The computational accuracy of the 

geoid height can be improved further until it reaches the expected 1-cm level of after-

GOCE geoid models (Chapter 1). Provided that the errors of the three height components 

reach 10 - 15 mm, the geoid heights should be corrected for the dynamic effect every 10 

years (Figure 7.6), and the levelled vertical crustal motion should be accounted for every 2 

years. 

 

 

Figure 7.5: Effect of the temporal change in the geoid height for a 10-year time period as a 

function of the mean standard deviation of the three height data components.  

7.3 Summary 

The dynamic geoid has been considered as a vertical datum for orthometric heights in the 

context of the combined adjustment of ellipsoidal, orthometric, and geoid heights in 

Canada. Using the most recent and accurate height data at GPS-on-benchmark points, the 
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effect of incorporating the dynamic vertical reference surface for orthometric heights has 

been assessed. It has been shown that the present-day accuracy of the three height 

components precludes the implementation of the dynamic vertical datum, and the accuracy 

of the orthometric heights appears to be the limiting factor. By means of a simulated 

example, it has been shown that the dynamic vertical datum requires accuracy of 10 - 15 

mm for the three height components. If this level of accuracy is reached, the vertical 

reference surface needs to be corrected for the secular geodynamic effect after 8 - 10 years 

elapsed from the reference epoch. For comparison, vertical crustal motion causes 

significant systematic discrepancies among the ellipsoidal, orthometric, and geoid heights 

over a two-year time interval. 

 

 

Figure 7.6: Effect of the temporal changes in the geoid and orthometric heights over 10 

years. Vertical axis shows relative variables. 
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Chapter Eight: Concluding Remarks 

 

 

 

In this chapter, the major conclusions and outlook for future research that can be drawn 

from the results in this thesis are outlined. The main objective was to develop a 

methodology for optimally combining the available geodetic data to model the temporal 

variations of the geoid and orthometric heights in Canada. These models can contribute to 

the definition and realization of a dynamic geoid-based vertical datum for Canada, but they 

also comprise independent constraints for postglacial rebound modelling. An excellent 

example is the study in the Great Lakes area (Chapter 6), in which GRACE data were 

combined with GPS vertical velocities and joint tide gauge/altimetry data. 

8.1 Conclusions 

The proposed methodology is based on the general least-squares collocation approach for 

predicting rates of change of the geoid and orthometric heights. It combines the functional 

approach for modelling a velocity surface by means of analytical functions and the 

stochastic approach for modelling the residual velocity signal by means of covariance 

functions. The methodology is efficient with respect to the available terrestrial data in 

Canada. In particular, it accounts for the sparse and very irregular distribution of the 

terrestrial gravity and GPS data over the Canadian landmasses. However, this does not 

preclude the application of the developed methodology and the designed procedures in 

other regions with a similar geodynamic signal, such as Fennoscandia.  

The main advantage of the least-squares collocation with parameters approach, from which 

this research benefited, is the ability to handle heterogeneous data input and output. 

Essentially, all kinds of data that account for vertical crustal displacement and/or the 

Earth’s interior mass redistribution (terrestrial gravity rates, GPS vertical velocities, re-
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levelling data, combined tide gauge/altimetry data, GPS-observed rates of change of the 

geoid height, and estimates of gravity-to-height ratio) can be inputted in the computational 

procedures and can be predicted as well. Several important issues related to the optimal 

combination of heterogeneous data were resolved: the choice of the base functions and their 

optimal location and scaling, modelling the stochastic signal component, outlier detection, 

and proper weighting of error covariance matrices of the different data types using variance 

component estimation. 

With regard to the developed methodology, a list of the main achievements and conclusions 

follows: 

• A critical review of the available data in North America, and Canada, in 

particular, was undertaken in Chapter 2. A general framework (not limited to 

postglacial rebound) for combining heterogeneous data for empirical modelling 

of the rates of change of the geoid and heights was developed (Figure 2.7). The 

input data and the desired output can change accordingly to the nature of the 

process causing the temporal variations and the availability of the data for the 

areas of interest. 

• An extensive study of the application of the radial base functions for 

approximating vertical displacement rates was undertaken. The results of these 

simulation studies showed that the (inverse) multiquadrics base functions 

provide excellent approximation for irregularly distributed data if the base 

functions are scaled appropriately. An empirical rule for scaling the base 

functions was determined and tested. By means of several examples, it was 

shown that the inverse multiquadric functions could model a wide range of 

vertical displacement surfaces in addition to postglacial rebound signal. 

• Algorithms for selecting the optimal location of the base functions were 

constructed using the statistical cross-validation and (Gram-Schmidt) orthogonal 

least-squares techniques. An implementation of these two methods for 

parametric surface modelling in the GNSS/levelling can be found in 

(Fotopoulos, 2003). The main difference, however, consists in the fact that the 
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modified Gram-Schmidt algorithm implemented in this thesis orders the base 

functions in terms of their significance to the approximated vertical 

displacement surface. Therefore, there is no need of applying statistical testing 

to assess the significance of each base function. This approach could be 

implemented even in the case of approximating vertical displacement rates by 

polynomial surfaces. 

• The predicted rates of change of the geoid height from the combined terrestrial 

gravity rates and GPS vertical velocities agree within 0.1-0.2 mm/yr in the areas 

with a peak signal with the postglacial rebound model predictions using an 

approximation of the VM2 model and the ICE-4G de-glaciation history.   

• It was shown that the predicted rates of change of the terrestrial gravity and the 

absolute vertical displacement agree within the prediction accuracy with the data 

from the Mid-continent profile at most of the sites. It was observed that the 

addition of the GPS velocities improves the agreement with the validation data 

sets. Therefore, it can be expected that the methodology developed in this 

research is capable of improving the predicted rates with a longer time span of 

GPS measurements. 

• The proposed methodology was successfully applied for the first time 

(according to the author’s knowledge) to combine terrestrial data with GRACE-

observed vertical displacement rates. The homogeneous GRACE data coverage 

compensates for the rather irregular distribution of the terrestrial data, while the 

effect of the large scale uncertainties in the former can be corrected for by the 

use of the precise terrestrial observations. 

• The capabilities of the PC/EOF analysis to extract the geoid rate from the time 

series of GRACE-observed geoid changes in North America were investigated. 

It was found that the PC/EOF analysis provides identical results with the 

traditional least-squares fitting of time series. However, the main advantage of 

applying the PC/EOF analysis is that it allows for assessing the effect of the 

inter-annual and long-term geoid variability on the estimated trend. 
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• In order to provide reliable constraints for GIA models in terms of a line of zero 

motion, tilting, and a peak signal that are free from the influence of erroneous 

observations, a robust method for combined least-squares adjustment was 

presented. This method includes variance component estimation in order to 

ensure reliably estimated error bounds of the empirical rates of crustal 

displacement required for inverse GIA modelling. 

• For the purpose of definition of a dynamic geoid-based vertical datum, the effect 

of temporal variations of the terrestrial gravity, orthometric, and geoid heights 

was assessed using the remove-compute-restore procedure and Helmert 

condensation method. For vertical datum modernization only the rate of change 

of the geoid height obtained by the methodology and procedures developed in 

this study is found to be sufficient.  

• The current accuracy of the GPS-determined ellipsoidal, orthometric, and geoid 

heights does not allow incorporation of the geodynamic effect in the levelling-

based vertical datum. One limiting factor is the orthometric height component, 

which exhibits large systematic errors across the vertical control network. It has 

been shown that the dynamic vertical datum requires accuracy of 10-15 mm for 

the three height components that, at present, is not achieved.  

8.2 Outlook for future research 

A list of recommendations for future research is presented in the following: 

• The methodology developed in this research could be tested with other types of 

data in areas with similar deformation characteristics. Ultimately, another 

suitable test region is Fennoscandia, where the historic re-levelling data, tide 

gauge recording, and collocated absolute gravimetry and GPS sites can provide 

further validation of the proposed methodology. Another area of interest is 

southeastern Alaska with dominating viscoelastic crustal deformation (Larsen et 

al., 2004). 
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• The proposed methodology allows for combining the geodynamic model 

predictions of postglacial rebound rates with the empirical approach in a 

rigorous dynamic-based procedure. In such a hybrid approach, the spatial trend 

of the geoid and vertical displacement rates could be predicted by postglacial 

rebound simulations, while the empirical modelling could focus on the 

stochastic component accounting for local vertical displacement and mass 

redistribution processes or correlated measurement errors. First results from 

applying a dynamic Kalman filtering and assimilation of GPS velocities have 

been demonstrated by Blewitt et al. (2005).  

• A non-linear optimization least-squares procedure can be developed to 

determine both the shape and location of the multiquadric base functions. This 

could be combined with iterative outlier detection and variance component 

estimation.    

• A better gravity-to-height ratio needs to be determined and incorporated in the 

combined procedure provided that a network of collocated terrestrial gravity 

sites and permanent GPS stations is realized across Canada and long records of 

measurements are available. Such integral networks exist in Fennoscandia and 

in the eastern areas of Canada. This will open the possibility for studying the 

lateral variations of the gravity-to-height ratio.   

• The combined least-squares collocation procedure could be modified to predict 

rates of horizontal crustal displacements in addition to the vertical component of 

the crustal deformation. An example for predicting shear strain rates in 

tectonically active areas from GPS velocities using least-squares collocation is 

found in the work of Li et al. (1999).  

• Different methods for rotation of principal components in the PC/EOF analysis 

of time series of GRACE-observed geoid change can be investigated. In 

particular, the oblique rotation might be more suitable than the orthogonal 

varimax rotation because neither the spatial patterns, nor the principal 

component time series of geoid changes are expected to be orthogonal. 
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Moreover, by appropriate rotation of base functions and data variance 

redistribution, it could be possible to separate two spatial trends (with a different 

geographical footprint) in different principal components. Thus, the PC/EOF 

analysis can be helpful in studying spatial leakage of different signals over the 

continental landmasses of North America. 

8.3 Recommendations for establishing a geoid-based, dynamic vertical datum for 

Canada 

Given that a geoid-based datum will be established in Canada by the end of the decade, 

several practical considerations and recommendations are outlined in the following. 

8.3.1 A dynamic geoid model  

• For the purpose of modernizing the vertical datum in Canada, the dynamic geoid 

consists of a static geoid model computed for one reference epoch and a model 

for the rates of change of the geoid height provided that a slow deformation of 

the Earth and its gravity field is assumed. 

• The reference epoch can be the epoch of 2010. The geoid height for any other 

epoch is computed by correcting the static geoid height with the change for the 

time interval elapsed from the reference epoch to the required epoch. 

• A model for the rates of change of the geoid height can be obtained by means of 

the methods used in this research and summarized in Figure 8.1. However, it is 

recommended that GRACE data are combined with terrestrial data using the 

method of least-squares collocation with parameters. The available terrestrial 

data provide constraints for the GRACE-observed rates of deformation in 

southern areas of Canada.   

• The gravity-to-height ratio used in the combined procedure of the GRACE and 

terrestrial data should be computed from measurements at collocated absolute 

gravity sites and GPS stations well distributed across Canada. To provide better 
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data constraints for the GRACE-observed deformation field and glacial isostatic 

adjustment modelling, collocated sites west and north of Hudson Bay are 

required. 
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Figure 8.1: A general scheme for computing a dynamic geoid model. 

  

8.3.2 A dynamic vertical datum 

In view of the required one centimetre accuracy of the three height components (Chapter 

7), a dynamic vertical datum based on the dynamic geoid can be established as follows (see 

also Figure 8.2): 
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1.   The vertical reference surface is defined by the static geoid model computed for the 

reference epoch. 

2.   Calibrated errors of the geoid model are computed by means of combined 

adjustment of ellipsoidal, orthometric, and geoid heights of the GPS-on-benchmarks 

points in Canada (Fotopoulos, 2005). The geoid heights should be computed from 

the geoid model for the reference epoch, and the ellipsoidal and orthometric heights 

should be corrected for the vertical crustal displacement and referenced to the epoch 

of the geoid model. For a recent study on the rectification of the epoch of GPS-

derived ellipsoidal heights in Canada, Fotopoulos et al. (2007) can be consulted. To 

obtain temporally homogeneous height data, consistent models of the rates of 

change of the geoid, orthometric, and ellipsoidal heights, as the models developed in 

this research, should be used. 

3.    A criterion for “stability” of the vertical reference surface can be introduced in 

terms of the mean calibrated error of the static geoid model. The vertical reference 

surface can be assumed “stable” if the temporal changes in the geoid height for the 

time elapsed from the reference epoch remain below the mean calibrated geoid 

error. The vertical reference surface should be corrected for the temporal changes in 

the geoid height if the stability requirement is not longer fulfilled. 

4.    A new reference surface should be defined when errors of the modelled rates of 

change of the geoid height become comparable with the magnitude of the rates. For 

example, if the models developed in this research are used, and the model error 

obtained from the validation with glacial isostatic model outputs is 0.1 – 0.2 mm/yr, 

10 to 15 years can be considered as a limit for the existence of the established 

dynamic datum. Also, a new reference surface should be defined if a more accurate 

geoid model is available. 
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Figure 8.2: Steps for establishing a dynamic geoid-based vertical datum.
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APPENDIX A: SIGNAL AUTO- AND CROSS-COVARIANCE FUNCTIONS 

 

 

A.1. Auto-covariance functions  

Rate of change of the geoid height 

1 2 1 22

11 12 21 222

1 1
cov( (P), (Q)) cov( (P), (Q))

1
cov([ (P) (P)],[ (Q) (Q)])

1
[ (P,Q) (P,Q) (P,Q) (P,Q)]

a a

a

a

N N W W
g g

W W W W
g

C C C C
g

=

= + +

= + + +

& & & &

& & & &         (A.1) 

1 1 1 1
11 12 21 222

1
cov( (P), (Q)) ( )

a

N N C C C C
g

= + + +& &                (A.2) 

 

Rate of change of the terrestrial gravity 

1 1
1 1

2
1 1 1 1

1 12 2

2

11 11 112 2

cov( (P), (Q)) cov( [ (P)], [ (Q)])

cov( (P), (Q)) cov( (P), (Q))4 4
cov( (P), (Q))

4 4
(P,Q) (P,Q) (P,Q)

P Qg g St W St W

W W W W
W W

R rr R

C C C
R rr R

− −=

∂ ∂
= + +

∂∂

∂ ∂
= + +

∂∂

& && &

& & & &
& &        (A.3) 

3 2 1
11 11 112

4 4
cov( (P), (Q))g g C C C

R R
= − +& &                 (A.4) 

 

 

 

 

 

 

 



 
 

 

234 

Rate of change of orthometric height 

1 1
2 2

22
2 2 2 2 2 2

2 2 2 2

2 2

22 22 222 2 2 2

cov( (P), (Q)) cov( [ (P)], [ (Q)])
2 2

cov( (P), (Q)) cov( (P), (Q)) cov( (P), (Q))

4

1
(P,Q) (P,Q) (P,Q)

4

P Q
a a

a a

a a a

R R
H H St W St W

g g

W W W W W WR R

rg r g g

R R
C C C

rg r g g

− −=

∂ ∂
= + +

∂∂

∂ ∂
= + +

∂∂

& & & &

& & & & & &       (A.5) 

2
3 2 1
22 22 222 2 2

1
cov( (P), (Q))

4 a a a

R R
H H C C C

g g g
= − +& &                 (A.6) 

 

Rate of change of ellipsoidal height 

cov( (P), (Q)) cov( (P) (P), (Q) (Q))

cov( (P), (Q)) cov( (P), (Q)) cov (P), (Q)) cov( (P), (Q))

h h N H N H

N N N H H N H H

= + +

= + + +

& & & & & &

& & & & & & & &
  (A.7) 

2
3 2 2 1
22 12 21 112 2 2

1 1 1
cov( (P), (Q)) ( )

4 2
a a a

R R
h h C C C C

g g g
= + + +& &              (A.8) 

A.2. Cross-covariance functions  
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APPENDIX B: OUTLIERS AND CALIBRATED ERRORS OF GPS AND TIDE 

GAUGE/ALTIMETRY DATA 

 

 

B.1. Results from Baarda’s data snooping in the combined case 

GPS TGA 
Steps 

 Data points              N%  statistic Data points              N%  statistic 

First iteration 

1  4, 29 2.27, -2.39 3*, 25, 39 -2.60*, 2.18, -2.54 

2  4, 29 2.23, -2.36 25, 39 2.00, -2.67 

3  4, 29 2.19, -2.36 - - 

4  4 2.16 - - 

Second iteration 

1  1, 6, 43, 61 2.28, 3.01, -2.03, 2.32 23, 24, 47 -2.22, 2.15, 2.16 

2  1, 43, 61 2.65, -2.00, 2.27 23, 24, 47 -2.22, 2.15, 2.15 

3  43, 61 -1.97, 2.18 23, 24, 47 -2.16, 2.21, 2.12 

4  61 2.16 23, 47 -1.99, 2.10 

5  - - 23, 47 -1.98, 2.18 

6  56 1.97 23 -2.03 

7  56 1.98 - - 

Third iteration 

1  41 -1.98 24, 41, 45 -2.07, -2.11, 1.99 

2  8 -1.97 24 -2.12 
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3  8 -1.97 - - 

4  41 -1.98 45 -1.98 

Fourth iteration 

1  63 -1.98 34 -2.02 

* Outliers removed at each step are printed in bold.  

 

B.2. Calibrated errors for GPS vertical  velocities 

ϕ,° λ,° 
h& , 

mm/yr 

σ, 

mm/yr 

DSσ̂ *, 

mm/yr 

FMADσ̂ **, 

mm/yr 

FSσ̂ ***, 

 mm/yr 

266.30 41.90 -2.2 1.3 - 1.1 1.3 

267.98 46.70 -2.0 0.8 0.5 0.5 0.6 

268.10 44.30 -2.6 0.9 0.6 0.6 0.9 

268.42 41.77 -1.2 0.6 - 0.5 0.7 

269.47 43.23 -4.3 1.3 0.8 1.1 1.2 

269.66 47.75 -1.0 1.9 1.2 1.6 1.6 

269.77 42.01 -0.5 1.2 - 1.2 1.2 

270.62 43.05 -5.0 2.4 1.6 2.8 2.2 

270.78 48.47 3.8 2.4 1.6 2.3 2.2 

271.38 47.23 0.6 0.8 0.5 0.3 0.6 

271.56 46.75 -2.4 1.9 - 2.0 1.8 

272.04 42.30 -1.9 1.6 1.0 0.8 1.2 

272.11 43.00 -2.7 0.8 0.5 0.6 0.7 

272.46 41.73 -3.5 2.1 1.4 1.9 1.8 

272.48 48.83 3.8 1.9 1.2 1.6 1.7 

272.69 44.8 -0.1 0.8 0.5 0.5 0.7 

272.93 45.75 -0.4 1.6 1.0 1.1 1.3 

274.33 42.99 -0.4 1.6 1.0 1.0 1.3 
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274.47 42.23 -1.2 1.5 1.0 0.7 1.1 

274.49 46.3 0.8 1.6 1.0 1.1 1.3 

274.56 44.26 -0.8 1.6 1.0 1.1 1.3 

275.04 46.77 2.6 1.8 1.2 1.1 1.4 

275.23 48.07 5.4 3.1 2.0 3.1 2.7 

275.24 43.62 -0.6 1.7 1.1 1.0 1.3 

275.32 44.99 -1.5 1.6 1.0 1.6 1.5 

275.41 46.53 2.7 4.2 2.7 2.6 3.2 

275.53 45.65 0.4 0.8 0.5 0.6 0.8 

275.61 42.29 0.2 1.6 1.0 1.3 1.4 

275.64 46.06 -1.6 1.3 - 1.6 1.4 

275.87 44.65 -1.8 2.2 1.4 2.3 2.0 

275.98 41.92 0.2 1.7 1.1 1.4 1.5 

276.11 43.45 -0.2 1.6 1.0 0.8 1.2 

276.24 42.52 -1.3 1.6 1.0 1.0 1.3 

276.43 45.07 0.5 1.6 1.0 1.1 1.3 

276.53 41.61 -2.0 2.2 1.4 1.7 1.8 

276.66 42.28 -1.5 2.2 1.4 1.5 1.7 

276.76 42.69 -0.7 1.6 1.0 0.8 1.2 

276.76 42.17 0.9 1.9 1.2 1.7 1.7 

276.84 43.60 -2.1 2.0 1.3 1.9 1.8 

276.85 41.08 -0.9 1.6 1.0 0.9 1.2 

276.91 42.30 -1.8 0.9 0.6 0.7 0.8 

277.31 43.06 -2.0 2.1 1.3 1.9 1.8 

277.36 43.85 -2.7 2.2 1.4 2.4 2.1 

277.40 42.72 -2.0 2.4 1.5 2.1 2.0 

277.41 42.91 -3.8 2.1 - 2.5 2.0 

277.51 43.04 -2.5 2.1 1.4 2.1 1.9 

278.39 41.42 -2.8 2.1 1.4 2.0 1.9 
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278.46 48.52 5.6 2.7 1.7 2.2 2.2 

278.75 42.88 -0.4 4.3 2.8 2.3 3.1 

278.81 46.45 3.9 4.5 2.9 3.1 3.5 

279.28 41.46 -1.7 1.8 1.2 1.3 1.5 

279.96 45.34 0.6 1.9 1.2 1.7 1.6 

279.98 45.37 3.1 2.9 1.9 2.1 2.4 

280.78 43.24 -1.7 1.9 1.2 1.7 1.7 

280.84 48.78 6.6 1.8 1.2 1.7 1.6 

280.91 46.72 4.5 2.2 1.4 1.6 1.8 

281.03 43.23 0.3 0.9 0.6 0.5 0.7 

281.11 42.88 -1.0 2.0 1.3 1.4 1.6 

281.70 44.31 -2.6 4.7 3.0 6.4 4.1 

281.93 45.96 3.1 0.5 - 0.3 0.5 

282.11 45.04 -0.5 3.8 - 3.9 3.2 

282.39 43.11 -1.3 2.3 1.5 1.9 1.9 

282.44 48.10 7.8 1.7 - 2.0 1.7 

282.75 45.84 3.4 5.3 3.4 3.6 4.1 

282.81 44.23 -1.3 3.2 2.1 3.2 2.8 

283.00 41.24 -1.3 2.3 1.5 1.5 1.8 

283.48 44.22 0.7 1.9 1.2 1.1 1.4 

283.49 43.47 -0.2 1.7 1.1 1.1 1.3 

283.83 44.35 2.9 3.4 2.2 3.1 2.9 

283.91 43.12 0.6 1.3 0.8 0.8 1.1 

283.98 41.30 -2.3 1.1 - 1.0 1.1 

* DSσ̂  - calibrated standard deviation from the IRLS with the data snooping procedure 

** FMADσ̂ - calibrated standard deviation from the IRLS with the Fair-MAD estimator 

*** FSσ̂  - calibrated standard deviation from the IRLS with the Fair-sigma estimator 
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B.3. Calibrated errors for tide gauge/altimetry data 

ϕ,° λ,° 
h& , 

mm/yr 

σ, 

mm/yr 

DSσ̂ , 

mm/yr 

FMADσ̂ , 

mm/yr 

FSσ̂ ,  

mm/yr 

281.11 42.88 0.4 0.2 0.4 0.4 0.5 

279.92 42.15 -0.5 0.2 0.4 0.5 0.5 

278.72 41.75 -1.4 0.2 - 0.6 0.6 

278.36 41.54 0.1 0.2 0.4 0.4 0.5 

277.27 41.54 0.1 0.2 0.4 0.4 0.5 

276.53 41.69 -0.3 0.2 0.4 0.4 0.4 

276.74 41.96 -0.1 0.2 0.4 0.4 0.5 

276.88 42.15 0.2 0.2 0.4 0.4 0.5 

276.88 42.05 -1.0 0.2 0.4 0.5 0.6 

277.27 42.03 -0.3 0.2 0.4 0.4 0.5 

278.08 42.27 -0.1 0.2 0.4 0.4 0.5 

278.78 42.67 -0.3 0.2 0.4 0.5 0.5 

279.80 42.78 0.3 0.2 0.4 0.4 0.4 

280.75 42.87 0.2 0.2 0.3 0.4 0.5 

277.36 43.85 1.2 0.1 0.2 0.3 0.3 

276.15 43.64 0.6 0.1 0.3 0.3 0.2 

275.28 45.78 2.1 0.1 0.2 0.3 0.2 

276.10 45.99 2.7 0.1 0.2 0.3 0.2 

276.45 46.25 3.2 0.1 0.2 0.3 0.3 

278.07 45.98 3.1 0.1 0.2 0.3 0.2 

279.97 45.33 3.1 0.1 0.2 0.3 0.3 

279.74 44.50 2.0 0.1 0.2 0.2 0.3 

278.33 45.27 2.8 0.1 0.2 0.3 0.3 

278.27 43.75 0.4 0.1 - 0.3 0.3 

277.51 43.14 0.8 0.1 - 0.3 0.3 

276.71 44.66 1.7 0.1 0.2 0.2 0.2 
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273.56 43.95 -1.2 0.3 - 1.1 0.8 

272.46 41.73 -0.6 0.3 0.6 0.8 0.8 

272.11 43.00 -1.3 0.3 0.6 0.6 0.7 

272.69 44.60 -0.2 0.3 0.6 0.8 0.7 

271.99 44.54 -1.0 0.3 0.6 0.8 0.8 

274.13 45.97 1.0 0.3 0.6 0.9 0.8 

273.80 42.77 -0.7 0.3 0.6 0.6 0.7 

272.50 44.46 -0.4 0.3 0.6 0.6 0.7 

283.66 44.13 1.5 0.1 0.3 0.3 0.2 

283.49 43.46 1.3 0.1 0.3 0.3 0.3 

282.37 43.27 1.2 0.1 0.3 0.3 0.3 

280.78 43.23 0.4 0.1 - 0.3 0.3 

280.23 43.33 -0.1 0.1 - 0.4 0.3 

280.62 43.63 1.0 0.1 0.3 0.3 0.2 

281.83 43.95 1.3 0.1 0.3 0.3 0.2 

283.48 44.22 1.7 0.1 0.3 0.3 0.2 

275.37 46.48 2.5 0.2 0.4 0.5 0.5 

272.62 46.54 1.3 0.2 0.4 0.4 0.5 

270.68 46.88 0.1 0.2 - 0.4 0.5 

267.91 46.78 -0.7 0.2 0.4 0.4 0.5 

269.66 47.75 1.3 0.2 0.4 0.4 0.5 

270.78 48.42 2.1 0.2 0.4 0.4 0.4 

272.48 48.83 4.2 0.2 - 0.7 0.6 

275.10 47.97 4.3 0.2 0.4 0.5 0.6 

275.42 46.53 2.2 0.2 - 0.5 0.5 

 

 

 

 


