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Abstract

The main objective of this thesis is the gravity field recovery using satellite-to-satellite

tracking methods. Based on new technologies like the global positioning system and

accelerometers satellite-to-satellite tracking yields a dramatic improvement in the de-

termination of the Earth gravity field. Two dedicated satellite missions, namely the

CHAllenging Minisatellite Payload (CHAMP) and the Gravity Recovery And Climate

Experiment (GRACE) are underway. This work describes the processing of the satel-

lite data from CHAMP and GRACE based on the energy balance approach. The first

part discusses the global gravity field recovery from CHAMP. Specifically, it aims at

a reprocessing of kinematic position data and at a refinement of the data processing

strategies. Although the energy balance approach is theoretically simple, its imple-

mentation proved to be quite challenging. By refining the processing techniques an

improvement of up to 30% is reached for the low degree spherical harmonic coefficients.

Nevertheless, the solutions still depend strongly on the variability of the groundtrack.

The quality of the monthly solutions can vary up to one order of magnitude. To ad-

dress this challenge, an in-depth analysis gives new insight into the phenomenon, and

a new and unique combination method with GRACE data is presented, which yields

a more homogeneous set of solutions and reaches the edge of the recoverability of a

time-variable gravity signal from high-low satellite-to-satellite tracking missions. In

the second part the energy balance approach is applied to the GRACE mission. Pre-

vious attempts of expressing the kinetic energy in terms of the K-band measurement

make use of an approximation. In this work, an exact representation is introduced and

is validated by simulations. In the third part, the aim is to make optimal usage of

the data distribution in the high latitude area. For this, interpolation and downward

continuation techniques are investigated and an improvement, compared to the global

solutions, is achieved. Overall, the analysis provides new and valuable insight into the

data processing of satellite-to-satellite tracking data using the energy balance approach.
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Chapter 1

Introduction

1.1 Historical development of physical geodesy

The determination of the shape of the Earth dates back to Aristotle (384–322 B.C.).

He assumed the Earth to be spherical and based his theory on the natural motion of

Figure 1.1: Eratosthenes

of Cyrene 276–194 B.C.

(O’Connor and Robertson,

1999)

the elements. The first determination of its radius was

performed by Eratosthenes of Cyrene (276–194 B.C.).

He developed the principle of the arc-measurement

and determined the circumference of the Earth to be

252 000 stadia (≈ 37 000 km).

With the advent of the Roman empire and the fol-

lowing Christianization the idea of a spherical Earth

was discarded and replaced by a flat Earth, surround-

ed by the sea and covered by the celestial dome. Al-

though this idea was dominant, it was not accepted

by all members of the church. Bishop Virgilius of

Salzburg was convinced of the spherical shape of the

Earth (700–784) and came into conflict with the pope.

Three centuries later the French pope Sylvester II.

(999–1003) even agreed with the idea and wrote a se-

ries of works principally on philosophical, mathematical, and physical subjects. He was

held in high repute for his learning capabilities, but the common people regarded him

as a magician in league with the devil and many legends grew around his name. Nev-

ertheless, he is said to have introduced the use of Arabic figures into Western Europe

and to have invented the pendulum clock. At the end of the middle ages and with the

1



Chapter 1 2

rise of the seafaring and the trading as well as the discovery of America by Christo-

pher Columbus (1451–1506) and the voyage around the world by Ferdinand Magellan

(1470–1521), the spherical shape of the Earth was established and the question of the

size of the Earth became most urgent.

Figure 1.2: Snellius (1580–

1626 A.D.) (Kertz, 2002)

The breakthrough in its determination came in the

end of the 16thcentury when Willebrord Snel van Ro-

yen (1580–1626), called Snellius, developed the prin-

ciple of triangulation. He used it to measure the arc

between Bergen op Zoom and Alkmaar in order to

determine the Earth’s circumference. At the end of

the 17thcentury France assumed the leading role in

geodesy and Jean Picard (1620–1682), a French as-

tronomer, measured the meridian arc from Malvoi-

sine through Paris to Amiens. His measurements were

more precise than the one of Snellius since he equipped

the telescopes with cross hairs. His measurements also

supported the verification of Isaac Newton’s (1642–

1727) law of gravitation and for the time being the determination of the shape of the

Earth was completed. The discussion started again when Giovanni Domenico Cassini

(1625–1712) observed in 1666 the flattening of Jupiter. Additionally, Christiaan Huy-

gens (1629–1695) showed with his precise pendulum measurements that a dependency

on the location exists. It was Newton again who explained these phenomena and the

precession of the Earth with his principle. The determination of the flattening of the

Earth was pushed forward again by the Academy of Science in Paris. Two expeditions

were sent out in order to measure meridian arcs. Pierre de Maupertuis (1698–1759)

provided the first results from his expedition to Lapland and proved the flattening of

the Earth.

At the end of the 18th century methods using satellites were used for the first time.

Pierre Simon Laplace (1749–1827) used the lunar nodal motion to determine the flat-
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tening of the Earth. The term satellite geodesy was formed only later. At the same

time the basics of potential theory were developed by the work of Jean Henri Lam-

bert (1728–1777), Comte Louis de Lagrange (1736–1813) and Adrien Marie Legendre

(1752–1833). George Gabriel Stokes (1819–1903) introduced in 1849 the connection

Figure 1.3: Johann B. List-

ing (1808–1882) (O’Connor

and Robertson, 1999)

between the potential, the surface of the Earth and

the mass distribution inside the Earth. Johann B.

Listing (1808–1882) formed the term geoid, which is

the mathematical and geometrical shape of the Earth

as an equipotential surface at mean sea level and is

still in use today. At the same time, Friedrich Robert

Helmert (1843–1917) conceived his definition of geo-

desy, which is the science of measurement and map-

ping of the Earth’s surface. He added that geodesy is

also teaching the method of determining the shape of

the Earth and mapping of any arbitrarily sized parts

by horizontal projection and heights under the con-

sideration of the shape of potential surfaces. At the

beginning of the 20thcentury geodesy was established

as a science field with a complete theory.

1.2 The decade of the geopotentials

The general objective is to determine the disturbing potential T . It is the part of the

gravity field W which deviates from a normal (ellipsoidal) model U :

W = U + T (1.1)

The quantity T cannot be observed directly. Instead so-called gravity anomalies ∆g

can be observed using, e.g., gravimeters. One way to derive the gravity field is the
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so-called Stokes-integral:

T (r, θ, λ) =
R

4π

∫∫

σ

S (r, ψ) ∆g dσ (1.2)

where θ is the co-latitude, λ the longitude, r the radius, R the mean Earth radius

and σ denotes the integration over the whole body. The function S (r, ψ) is the so-

called Stokes function which gives a weight depending on the spherical distance ψ (and

radius) to the calculation point. Similar integrals exists for other measured quantities,

cf. Heiskanen and Moritz (1967) or Rummel and van Gelderen (1995). The geoid N is

connected to the disturbing potential T by the equation of Bruns:

N =
T

∆g
(1.3)

Consequently, the theory requires the knowledge of the gravity anomalies (or other

quantities) all around the world in order to determine the geoid at a certain location.

Especially in the beginning of the 20th century this posed a huge problem for the

geodetic community. The theory is still the same today and the problem could only be

tackled with the development of dynamic satellite geodesy.

This relatively young branch of physical geodesy was adopted with the launch of

the first artificial satellite Sputnik I on 4thOctober 1957. The methods were used with

several satellites but there was no dedicated satellite mission for the gravity field recov-

ery till the year 2000. Gravity field models were derived from numerous data sources,

like terrestrial, shipborne and airborne gravimetry, satellite tracking and altimetry, thus

yielding a very inhomogeneous data set. Figure 1.4 shows the data density of terrestrial

gravity anomalies and shipborne gravimetry in 1997. Only a few areas are well covered.

Huge areas on the southern hemisphere, on the oceans, in the Arctic regions, but also

in Russia and in Canada have only a sparse coverage and/or only a few measurements.

The oceans are supplemented by altimetry measurements, which yields the sea surface

though. Averaging over at least one year, the mean sea surface can be determined,

which is a good approximation of the geoid but still deviates from it up to ±1 m.

The situation worsens since the data has different quality and is taken with mea-

surement techniques and instruments of variable accuracies. On the other hand, the
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Figure 1.4: Gravity data available in 1997 collected by the Bureau Gravimetrique

International (B.G.I.)

Earth with its atmosphere, oceans, ice sheets, land surfaces and its interior is subject to

multiple dynamic processes. They cover a broad variety of spatial and temporal scales

and are driven by large interior and exterior forces. Therefore, observations from space

play an important role since only from space it is possible to monitor the dynamics of

various processes globally with reasonable repetition rates and with homogeneous data

quality (Ilk et al., 2004).

During the last three decades a large number of proposals for the gravity field

recovery using satellite missions have been put forward, e.g., Geopotential Research

Mission (GRM), aristoteles or step. An overview of the historic development and

a discussion of the benefits of these mission concepts can be found in Sneeuw and Ilk

(1997). For this work, two concepts are of importance. Common to both concepts

is that the lower the satellite flies, the better the sensitivity to the spatial variations

of the gravity field is. However, a low Earth orbiter (LEO) will be influenced by non-
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gravitational forces on the surface of the satellite, especially by atmospheric drag. These

must either be modelled or measured by three-axis accelerometers. The basic concept of

an accelerometer uses normally the gravity vector as a constant signal, and deviations

are integrated to derive velocities and positions. In case of the satellite missions, the

application is different. The accelerometers are placed into the center of mass of the

satellite, which is in free fall. Therefore, the accelerometer does not sense any gravita-

tional forces. In fact this is the very important property. Any forces measured are not

due to gravitational attractions but due to non-gravitational forces like atmospheric

drag, solar radiation pressure, etc.

The first concept to be considered here is the high-low satellite-to-satellite tracking

(SST) case. A LEO is flying in an altitude of a few hundred kilometers and is continuously

tracked by GPS; see figure 1.5(a). The concept is successfully implemented in the

German geoscientific satellite CHAllenging Minisatellite Payload (CHAMP) which was

launched in July 2000 into a highly inclined but circular orbit with an initial altitude

of 450 km. The satellite decays slowly during the mission resulting in an in-orbit time

of approximately 7 years. The improvement of the knowledge about the gravity field

is almost one order of magnitude compared to any multi-satellite pre-CHAMP satellite-

only gravity field model for half-wavelength longer than 200 km (Reigber et al., 2003).

Due to the long mission duration, it has been expected to recover time variations of the

gravity field as well but to date no attempt was successful.

In the case of low-low SST, two satellites are placed in the same orbit, separated by

a few hundred kilometers. The quantity of interest is the relative motion of the mass

center of the two satellites, which is measured with an highly accurate inter-satellite

link. The low-low technique can also be combined with the high-low technique, cf. figure

1.5(b). The Gravity Recovery And Climate Experiment (GRACE), a joint US-German

mission, is the implementation of this concept. The satellites were launched in 2002 into

a near polar orbit and are flying at an initial altitude of about 500 km and are slowly

decaying to an orbit height of approximately 300 km at the end of their lifetime. They

are separated by approximately 200 km in the alongtrack direction. The observables are
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Figure 1.5: Concepts of satellite-to-satellite tracking

ranges, range rates and range accelerations. The advantage of the low-low SST technique

is that these can be connected to differentiated quantities of the potential, thus yielding

a much higher sensitivity. GRACE gives for the first time temporal variations on a global

scale with a spatial resolution of 1000 km half-wavelength and higher. (Tapley et al.,

2004b). It measures gravity changes due to mass redistribution related to hydrology, sea

level, glaciology, solid Earth and atmosphere. The scientific challenge is the separation

of these signals (Balmino et al., 1999).

1.3 Problem statement

The basic target of the research will be the recovery of the gravity field using satellite

methods, globally and in high-latitude areas. The conventional way of computing the

gravity from orbit data is the numerical integration of the equation of motion, as well

as of the partial derivatives, also known as the variational equations of motion. Orbit

and gravity field parameters are modelled in a combined way and the normal equation

system, which is very large and full, is inverted (Reigber, 1989). Clearly, this is a

costly operation in terms of processing time and computing resources, and can only be
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treated on high performance computers. The near-continuous tracking of the CHAMP

and GRACE satellites by GPS complicates the situation since a huge amount of data is

available and needs to be processed. However, this technique, in combination with the

accelerometer measurements, enables the implementation of new approaches, namely

for this thesis the energy balance approach.

The basic principle is the decoupling of orbit determination and gravity field recovery.

In the first step, position and velocity are solved for using the GPS data. In the

second step, position, velocity and accelerometer data are connected to the gravity

field. This method avoids problems related to orbit dynamics and initial state. It

is considered for gravity field recovery purposes since the beginning of the satellite

era (O’Keefe, 1957; Bjerhammer, 1967). Jekeli (1999) showed the applicability to the

CHAMP and GRACE mission. He and Visser et al. (2003) showed also that the approach

is highly sensitive to velocity errors. Nevertheless, it was successfully implemented by

several groups for the case of CHAMP using the Rapid Science Orbits (RSO) provided by

GeoForschungsZentrum Potsdam (GFZ); see Gerlach et al. (2003c); Howe et al. (2003);

Han et al. (2002). Due to the low accuracy of the RSO the procedure was refined

using the more accurate dynamic and reduced dynamic orbits (Gerlach et al., 2003b).

However, Gerlach et al. (2003a) showed that the solution depends on the a priori

gravity field used for the determination of dynamic positions and velocities. Švehla

and Rothacher (2005) introduced GPS-derived kinematic positions that are based on

a purely geometric approach and thus virtually independent of a priori information.

The best result in terms of a global spherical harmonic model using these data to date

is probably the TUM2s which was derived using two years of data (Wermuth et al.,

2004; Földváry et al., 2005). The best model using the classical approach is probably

the eigen-3p using 33 months of CHAMP data (Reigber et al., 2005b). Beside these,

several models exist that combine satellite data from CHAMP and terrestrial data, e.g.,

Reigber et al. (2004).

The processing of CHAMP data, however, has never reached completeness. The

eigen-3p model is still based on dynamic orbits and consequently the dependency



Chapter 1 9

on a priori data is still inherent. The TUM2s model is based on kinematic orbits but is

also criticized to have a deficient calibration procedure, thus filtering low degree gravity

signal.

The results from the CHAMP mission improved the knowledge of the gravity field

dramatically but one goal of this mission was not achieved. CHAMP was supposed to give

first empirical results of a time-variable gravity field. The idea is to calculate monthly

solutions of the gravity field and generate a mean of these snapshots. By subtracting

the mean from the monthly solution the remaining is the time-variable part and errors.

Sneeuw et al. (2005) analyzed the monthly solutions using this method and compared
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Figure 1.6: Monthly CHAMP signal and error spectra compared to TUM1s and to seasonal

gravity signal from atmosphere and ocean

the results with seasonal gravity variations from slr solutions. In their study TUM1s,

which was the predecessor of TUM2s, represents the static field in the period of interest.
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For comparison, the signal spectra of the annual and semi-annual atmospheric/oceanic

signal is shown in figure 1.6. Most geophysical signal spectra are below the CHAMP

error level. The error level of the monthly CHAMP solutions is insufficient for revealing

these time variations. Orbit decay and consequently the groundtrack variation is one of

the main contributors to the loss of accuracy. The problem is that one tries to recover

a time-variable gravity field from a time-variable geometry and the influence on the

monthly solution is neither well understood nor do any techniques exist to circumvent

or reduce this dependency.

With the advent of GRACE however, CHAMP has been outperformed in terms of

accuracy and many discontinued the data processing. Using a classical method, Tapley

et al. (2004a) derived the first gravity field from GRACE (GGM01s) using preliminary

data from the commissioning phase1. The early results indicated that they are better

by one order of magnitude than the CHAMP results. The important thing about GRACE

is that it gives these accurate results every thirty days. By differencing these monthly

snapshots the time-variable part of the gravity field can be recovered, see e.g., Wahr

et al. (2004). The results were improved in the following time and additional gravity

field models, like the GGM02s and the eigen-cg01c, were published (Reigber et al.,

2004). The new results are improved further but, as in the case of CHAMP, the results

are still not as good as predicted. Especially the very low coefficients, like J2, seem

to be problematic but also the overall accuracy is still below the expectations. Since

the orbit is similar to CHAMP and no drag-free system is installed the satellite system

is slowly decaying and the problem is again that one tries to recover a time-variable

gravity field from a time-varying geometry.

The energy balance approach can be extended for the case of low-low SST. One

of the first to discuss this in satellite geodesy was Wolff (1969). He connected the

difference of the potential in two orbit locations to the range-rate between the two

satellites. Thus he introduced a satellite configuration which is more sensitive to the

medium and short wavelength structure of the gravity field but his derivations were

1Phase of the initial power-up and evaluation of the science instrument system
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also based on approximations. First test results were obtained in the ats-6/geos-3

and the ats-6/Apollo-Soyuz experiment. Gravity anomalies with ≈ 3 mGal accuracy

and a wavelength of 500 − 1000 km were derived (Vonbun, 1977). Several theoretical

discussions and investigations using simulated data exist, as well. Jekeli (1999) derived

the energy balance approach for the case of GRACE in the inertial frame but it is still

based on the approximation suggested by Wolff, though it is applied to residuals.

Another specific property of the two satellite missions is that the satellites have an

almost polar orbit, which yields a higher data density due to convergence near the

pole. The missions provide new and vital information on the geoid and the gravity

field of the polar regions itself. The new data is beginning to yield the highly accurate

geoid, which is needed for Arctic oceanographic and sea ice studies. CHAMP- and

GRACE-based geoids could have the accuracy required to detect, in combination with

satellite altimetry, the poorly known dynamic topography of the Arctic Ocean (McAdoo

et al., 2005). Garcia (2002) discussed the application of the GRACE data for local geoid

determination using simulated data and showed that an improvement compared to

global models in these areas is possible.

An additional area of interest will be Canada. The newest official geoid for Canada is

the Canadian Gravimetric Geoid model 2000 (CGG2000) (Véronneau, 2001). It uses the

Helmert-Stokes condensation method and geoid heights are computed from gravimetric

measurements using the Stokes integral. The contribution for the long-wavelength part

comes from EGM96, which is a pre-CHAMP model. It is obvious that the far more

accurate data from CHAMP and GRACE should be implemented.

1.4 Thesis objectives

CHAMP. The primary task for the case of CHAMP is the reprocessing of the avail-

able kinematic data and the refinement of the data processing steps. It includes the

development of a proper calibration procedure, which takes the physical properties of

an accelerometer into account. The aim is an improvement of the low degree signal,
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which is especially important for the investigation of time variability. In addition, the

influence of the changing orbit geometry on the observables and on the modelling needs

to be investigated. Since CHAMP is a single satellite mission it can be investigated more

easily than in case of a multi-satellite mission but understanding of the dependency on

the orbit geometry is equally important for GRACE.

GRACE. The first task for the case of GRACE is the application of the energy balance

approach in the Earth-fixed frame, thus introducing an alternative but equivalent way

to the method of Jekeli (1999). Additionally and more importantly, the work aims at

the derivation of an exact relation between the gravitational potential and the K-band

measurement. The refined concept needs to be validated with simulated data, and its

applicability with real GRACE data is to be tested.

High latitude areas. In order to make optimal use of the data distribution in high

latitude areas, two different interpolation methods will be investigated, namely the

weighted mean interpolation and the least-squares prediction. The former yields fast

results and is often used as a gridding tool before the application of FFT-techniques.

The latter is a computationally expensive tool but can be combined with downward

continuation. This is the first step towards a highly accurate geoid model for Canada

and the Arctic regions, which will support the development of new gravimetric models

and the investigation of geophysical phenomena in these areas.

1.5 Research methodology - Thesis outline

The research comprises three parts. The first one discusses the reprocessing of the

CHAMP data and investigates the dependency on the geometry of the satellite orbit,

cf. chapter 4. The second part aims at the application of the energy balance approach

to GRACE (chapter 5). The final part discusses the two interpolation techniques for

the derivation of local geoids in high-latitude areas (chapter 6). The classical setup

of describing the theory in the first part, followed by numerical results is relinquished
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here on purpose. For the sake of clarity, global and local applications for each satellite

mission are discussed separately.

The thesis starts with a brief review of the theoretical foundations of gravity field

representation in chapter 2. For validation purposes, spectral representations are of

major importance. They are introduced for standard deviations of the spherical har-

monic coefficients as well as difference error spectra with respect to a known model.

Extensive use of the later will be made in chapters 4 and 5.

Chapter 3 introduces tools which are of importance for both satellite missions, glob-

ally as well as locally. These definitions, transformations, models and procedures enable

the application of the energy balance approach. It starts with the transformation of

time systems and the new transformation between the Earth-fixed and inertial sys-

tem according to the IERS conventions (McCarthy and Petit, 2003). The accelerometer

data needs to be transformed from the space-body frame to the inertial frame. For this,

quaternions are available but data gaps need to be interpolated. Due to the nature of

quaternions, a special interpolation technique is necessary and the spherical linear in-

terpolation is introduced in section 3.3. Kinematic orbits only yield positions, and thus

velocities need to be derived numerically. Two different approaches are discussed in

terms of accuracy and applicability. Finally, tides cannot be recovered from the two

satellite missions and their proper reduction is an important step in the data processing.

The energy balance approach for the high-low satellite-to-satellite tracking case is

introduced in chapter 4 and investigated in terms of accuracy requirements. Two years

of kinematic and accelerometer data is used to derive the global gravity model UofC using

a least-squares adjustment. The solution incorporates a refined calibration technique,

which is introduced in section 4.2.2, and is validated in the spatial and spectral domain.

Monthly solutions and the influence of the groundtrack pattern are investigated. Aiming

at an improvement of the data distribution, the two GRACE satellites are considered

as CHAMP-like satellite. The combination technique and the results are discussed in

section 4.3.

Chapter 5 extends the energy balance approach to the case of two satellites in the
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low-low satellite-to-satellite tracking mode and introduces an exact relation between

the kinetic energy term and the K-band measurement. The concept is validated with

simulated data and its feasibility is discussed with real GRACE data.

The local investigations are based on the pointwise measurements of CHAMP in high

latitude areas. First, the weighted mean interpolation and the least-squares prediction

for the interpolation of data at satellite height is discussed in section 6.2. Finally, the

concept of least-squares prediction can be extended to include downward continuation

yielding results on the surface, cf. section 6.3.

Chapter 7 summarizes the achievements of this thesis and gives recommendations for

future work.
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Fundamentals of the gravitational theory

Gravitational acceleration is described by Newton’s law of gravitation. The dominating

feature of this vector field can be represented by a rotating and oblate sphere (=ellip-

soid). The flattening of the Earth results in a higher attraction at the pole than at

the equator. However, the aim of the gravity field determination from satellite tracking

missions is to recover small deviations from this basic ellipsoidal model caused by a wide

range of mass inhomogeneities (Rummel et al., 2002). Additionally, mass transporta-

tion yields a time variation of the gravitational attraction. For this, a mathematical

representation on the sphere will be necessary, which is introduced in this section.

2.1 Representation and linearization of the gravitational po-

tential

The starting point is, whether the gravitational field can be determined from measure-

ments on and outside the Earth without the knowledge of its density structure. The

two input parameters for the determination are the measurements on or outside the

boundary and the knowledge of the spatial behavior described by partial differential

equations. This type of problem is called a Boundary Value Problem (BVP). In our

particular case, the measurements cannot be taken on the boundary since it is by itself

unknown. This type of BVP is known as the geodetic boundary value problem.

The behavior outside the boundary is described by the Laplace equation:

∆V = ∇2V = 0, (2.1)

where V is the gravitational potential of the Earth, ∆ is the Laplace and ∇ the Nabla1

operator. Any representation of V must fulfill this equation. The Laplace operator

1vector of the first partial derivatives

15
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corresponds to the sum of the diagonal elements of the tensor of the second order

partial derivatives of V , which is physically a measure for the divergence of the gravity

field. The divergence indicates the sources and sinks in a vector field. If it is equal to

zero, the field contains neither of them and is called a harmonic one.

Since the gravitational field of the Earth is a harmonic function outside the Earth, it

can be expressed as a spherical harmonic (sh) function (Heiskanen and Moritz, 1967):

V (r, θ, λ) =
GM

R

∞∑

l=0

(
R

r

)l+1 l∑
m=0

(
C̄lm cos mλ + S̄lm sin mλ

)
P̄lm (cos θ) , (2.2)

where G is the gravitational constant, M the mass of the Earth, R the radius, r, θ and

λ the coordinates of the calculation point, P̄lm the normalized Legendre functions and

C̄lm and S̄lm the normalized dimensionless spherical harmonic coefficients. The indices

of the double summation are the degree l and the order m. The infinite summation is

in reality truncated at a maximum degree L yielding an omission error.

If the density distribution of the Earth is known, the coefficients can be calculated

by integration over all mass elements dσ according to:

C̄lm

S̄lm



 =

1

M

1

2l + 1

∫∫∫

σ

( r

R

)l

ρP̄lm (cos θ)





cos mλ

sin mλ



 dσ, (2.3)

where ρ is the density of the mass element. Note that it is more convenient to use the

normalized Legendre function and spherical harmonic coefficients. The relation to the

non-normalized version of the two is given as:

Plm (cos θ) = N−1
lm P̄lm (cos θ) (2.4)

Clm

Slm



 = Nlm





C̄lm

S̄lm

. (2.5)

The normalization factor is given as:

Nlm =

√
(2 − δm0) (2l + 1)

(l − m)!

(l + m)!
. (2.6)

Adding the centrifugal potential

Z =
1

2
ω2 r2 sin2 θ (2.7)
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to the gravitational potential V yields the gravity potential W

W = V + Z. (2.8)

From section 1.2 it is known already that the gravity field W can be split into a normal

(ellipsoidal) model part U and the disturbing potential T :

W = U + T. (1.1)

Geodetic observables are normally connected to gravity field quantities by nonlinear

relations. Introducing the normal field is part of a linearization step using a Taylor

series which is truncated after the linear term. The normal potential is defined to have

the following properties:

• rotational symmetry;

• equatorial symmetry; and

• be constant on the ellipsoid.

Since the normal potential is also a harmonic function, it can be expanded in a sh-series

as well. Due to the first property of rotational symmetry, only zonal coefficients need

to be taken into account. Equatorial symmetry reduces the series to even degrees only.

Restricting the development to degree L = 8, the spherical harmonic series simplifies

to:

U (r, θ) =
GM

R

8∑

l=0,[2]

(
R

r

)l+1 l∑
m=0

c̄l,0P̄l (cos θ) , (2.9)

where P̄l (cos θ) is the Legendre polynomial of degree l. The spherical harmonic coeffi-

cients c̄l,0 are derived from the grs80 constants (Moritz, 1980b).

Subtracting the normal field from the gravity field yields a spherical harmonic ex-

pression for the so-called disturbing potential T :

T (r, θ, λ) =
GM

R

∞∑

l=0

(
R

r

)l+1 l∑
m=0

(
∆C̄lm cos mλ + ∆S̄lm sin mλ

)
P̄lm (cos θ) , (2.10)
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where ∆C̄lm = C̄lm − c̄lm and ∆S̄lm = S̄lm. The quantity T cannot be observed

directly. Instead, in terrestrial measurements the so-called gravity anomalies ∆g can

be observed using gravimeters. The fundamental equation of physical geodesy connects

the measured quantity with the disturbing potential:

∆g = −∂T

∂r
− 2

r
T. (2.11)

For measurements on the Earth’s surface, r is equal to the Earth radius R. The calcu-

lation can be performed on any level outside the Earth, thus making this equation also

fundamental for satellite applications. The objective of dynamical satellite geodesy is

the determination of the Earth’s gravitational field using observations to or of space-

borne vehicles. In the case of CHAMP and GRACE the satellites act as a test mass

on the one hand and as a measurement platform on the other hand. Instead of grav-

ity anomalies, positions, velocities, accelerations and differences of these quantities are

measured. Chapter 4 and 5 will introduce the energy balance approach which connects

these observables to T . The approach will yield the disturbing potential along the orbit

at the instantaneous location of the satellite. The spherical harmonic coefficients can

be derived by:

C̄lm

S̄lm



 =

1

4π

R

GM

∫∫

σ

( r

R

)l+1

T (r, θ, λ) P̄lm (cos θ)





cos mλ

sin mλ



 dσ. (2.12)

Equation (2.12) is generally referred to as spherical harmonic analysis. Equations (2.2)

and (2.10) are known as spherical harmonic synthesis. Certainly, the spherical harmonic

representations are not restricted to the disturbing potential only. Using their eigen-

values any of the gravitational functionals can be represented by a spherical harmonic

series (Rummel and van Gelderen, 1995).

2.2 Spectral error representation

When it comes to the validation and discussion of the spherical harmonic analysis

spatial as well as spectral comparisons are useful. Spectral representation of the signal
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and the noise can be two-dimensional or one-dimensional. These quantities will be used

intensively in the discussion of the global solutions in section 4 and 5.

2.2.1 Two-dimensional error spectrum

The spherical harmonic coefficients are two-dimensional quantities which are either

derived in a least-squares adjustment or from quadrature. As output, the covariance

matrix of the unknowns Qx̂x̂ might be available. Taking the diagonal elements, the

variance of the coefficients can be represented but correlations are neglected.

diag (Qx̂x̂) =





var
{
C̄lm, C̄lm

}
m > 0

var
{
S̄lm, S̄lm

}
m < 0



 = σ2

lm (2.13)

Similar to the error spectrum, the difference between two signal spectra can be used:

∆lm =





C̄new
lm − C̄old

lm m > 0

S̄new
lm − S̄old

lm m < 0
(2.14)

The advantage of the latter is that it can also be used when Qx̂x̂ is not available.

Moreover, comparison with external data is possible. The variance, on the other hand,

represents the internal accuracy of the estimation.

2.2.2 One-dimensional error spectrum

The most common way to determine a one-dimensional error spectrum from spheri-

cal harmonic coefficients is to derive degree-specific components. The first one to be

mentioned is the error degree variance:

σ2
l =

l∑

m=−l

σ2
lm ∀ l ε [2 . . . L] . (2.15)

The summation in this case is from −l to l, where the negative degrees denote the sine

and the positive the cosine coefficients. The error degree variance represents the total

error power in the coefficients and is a quadratic quantity. In order to derive an average

standard deviation for the coefficients of a specific degree l, the error degree variance
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can be divided by the number of coefficients (2l + 1) and the square root can be taken.

The result is the root mean square of the error spectrum per degree:

rmsl =

√
σ2

l

2l + 1
=

√√√√ 1

2l + 1

l∑

m=−l

σ2
lm. (2.16)

The rmsl is a representative standard deviation only if the error spectrum is isotropic,

i.e., it is independent of the order m. Order specific components can also be derived

but do not have any physical meaning. They might be useful for weighting purposes

and can reveal patterns in the spectrum.

2.2.3 Cumulative error spectrum

It might also be of interest to see the cumulative error which contains all the error

power up to a certain degree. It is also called commission error.

cuml =

√√√√
l∑

i=2

σ2
i =

√√√√
l∑

i=2

l∑

m=−l

σ2
im. (2.17)

Due to the nature of the spherical harmonic coefficients, the error is unitless. More

interesting is the comission error for any given gravitational functional f , which can be

derived from (2.17) and the Meissl-scheme (Rummel and van Gelderen, 1995):

cuml (f) =

√√√√
l∑

i=2

λ2
i σ

2
i , (2.18)

where λ is the eigenvalue of f . For example, in order to derive the comission error

in geoid height, λ is equal to the Earth radius R. Thus it represents the noise in the

functional due to noise in the coefficients.

2.2.4 Relative error spectrum

Two relative error spectra measures are available, namely gain and signal-to-noise ratio

(SNR). Both can be used with either the error spectrum or the difference spectrum.
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Here, both are mainly used as one-dimensional error spectra, i.e., expressed per degree.

They may also be expressed for each coefficient individually.

The gain describes the ratio between the error or the difference between two coeffi-

cients:

gσ
lm =

σold
lm

σnew
lm

g∆
lm =

∆old
lm

∆new
lm

. (2.19)

As one-dimensional quantity, the gain describes the ratio between the error or difference

curves of two models:

gσ
l =

σold
l

σnew
l

g∆
l =

∆old
l

∆new
l

. (2.20)

If one of the error spectra has a larger content than the other, the signal curve of the

bigger one takes the role of the missing part of the error curve. This means that the

expectation of the coefficients is zero and their variance equals the signal variance model

(Sneeuw, 2000). The ratio is usually expressed on a logarithmic scale, i.e., a value of zero

represents the same error level. Values above zero indicate an improvement whereas

values below describe a degradation.

The signal-to-noise ratio in the two-dimensional case is the ratio between the signal

coefficient and the noise or difference coefficient

snrσ
lm =





C̄lm

σlm
m > 0

S̄lm

σlm
m < 0

snr∆
lm =





C̄lm

∆lm
m > 0

S̄lm

∆lm
m < 0

. (2.21)

The one-dimensional counterpart is expressed as the ratio between the signal curve and

the noise or difference curve

snrσ
l =

√
cl

σl

snr∆
l =

√
cl

∆l

(2.22)

where cl is the signal degree variance, which can be calculated as the sum over all

degrees of the signal spectrum:

cl =
l∑

m=0

(
C̄2

lm + S̄2
lm

)

It is normally expressed on a logarithmic scale. A value of one represents the crossing

point between the signal and the noise curve, which determines the maximum solvable
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degree L. In practice, the signal curve might not cross the noise curve but rather merge

with it after a transition zone. In this case, the crossing with a model curve, e.g., Kaula

or Tscherning-Rapp, might be used instead in order to determine L.
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Transformations, numerical differentiation and tides

This chapter describes all the background models and transformations necessary in

order to derive successfully the disturbing potential along the orbit using the energy

balance approach that will be introduced in chapter 4. It starts with a description of

the transformations between time systems in use in section 3.1. They are also impor-

tant for the transformation between reference frames. Chapter 3.2 introduces the new

transformation between the celestial and the terrestrial frame according to the IERS

conventions. It adopts the IAU2000A precession and nutation model and takes polar

motion and the variable Earth rotation into account.

The equally important quaternion transformation is described in section 3.3. It en-

ables the transformation from the satellite frame to the inertial frame. The usage of

kinematic orbits requires the numerical differentiation of position data, and two differ-

ent approaches are discussed in section 3.4.

Tides introduce a time-variable gravity signal that would be an objective of the

gravity field recovery. For the gravity field missions CHAMP and GRACE however, the

tide signals will act as noise to the measurements or cause aliasing. Their proper

reduction is an important step towards the recovery of time-variable gravity signals.

Tides are a gravitational signal by nature and the relevant theory should be in chapter

2 but here its usage as a reduction tool before the actual gravity field recovery is

emphasized and thus it is part of this chapter.

3.1 Transformation of time systems

The overview is restricted to the transformation of the time systems used in the cal-

culations. For details and other time systems the reader is referred to Müller (1999),

Torge (2001) or Seeber (2003). Figure 3.1 summarizes the transformation between all

23
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necessary time systems.

GAST GMST

UT1 UTC TAI

TGPS

TDT

(3.1)

(3.3) (3.2)

(3.4)

(3.5) + (3.6) 

(3.7)

Figure 3.1: Transformation between time systems (Müller, 1999)

One basic time system is the International Atomic Time (TAI = Temps Atomique

International). It provides a uniform and highly accurate time-scale and is based on

the definition of the SI second. The primary system used in the calculations is the GPS

time TGPS, which is provided with the position and velocity data. It is connected to the

atomic time TAI by a constant offset:

TAI = TGPS + 19 s, (3.1)

which is the number of leap seconds at the time of its introduction on 06.01.1980, 0h

UTC. The GPS time is based on numerous atomic clocks of its ground and space segment.

Each satellite is equipped with four clocks that are connected to the coordinated time

scale of the US Naval Observatory with its 73 caesium clocks and 12 hydrogen maser.

It is counted in terms of GPS weeks, which start on Sunday at 0h00m00s GPS time.

The atomic time systems are complemented on the one hand by time systems based

on the Earth rotation and on the other hand by time systems based on the motion of

celestial bodies in the solar system. The Terrestrial Dynamic Time (TDT ) belongs to

the latter group and is referred to the geocenter. It is a strictly uniform time scale for

the calculations of ephemeris data of celestial and artificial satellites. The difference



Chapter 3 25

between TAI and TDT is constant:

TDT = TAI + 32.184 s. (3.2)

Celestial bodies have impact on the transformation between the celestial and the terres-

trial reference frame, and TDT is needed for the calculation of the precession-nutation

model, cf. section 3.2.

The connection to time systems based on the Earth rotation is implemented by the

Universal Time Coordinated (UTC). It is a constant timescale like TAI but kept close

to the mean solar day (UT1) by the application of leap seconds.

UTC = TAI + N = TAI + 32 s (for the period of interest) (3.3)

The data used throughout this thesis covers the period from April 2002 to February

2004; N is equal to 32 s during this period. The mean solar day is denoted with UT1

and the difference between UT1 and UTC is constantly monitored. If it becomes larger

than 0.9 s, another leap second is introduced.

∆UT = UT1− UTC (3.4)

The precise corrections ∆UT for every day can be interpolated from the EOPC04 data

file of the IERS (2002).

For the calculation of tidal accelerations, the Greenwich Mean and Apparent Sidereal

Times (GMST , GAST ) are needed. They describe the mean and true hour angle of the

Greenwich meridian with respect to mean and true vernal equinox, respectively. The

transformation from the mean solar time to the mean sidereal time is equivalent to a

change of the reference from the sun to the vernal equinox:

GMST = α− 12h + UT1, (3.5)

where α is the right ascension of the sun:

α = 18h41m50.54841s + 8640184.812866 s/JC · (T − T0)

+ 0.093104 s/JC2 · (T − T0)
2

− 0.0000062 s/JC3 · (T − T0)
3 .

(3.6)
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The reference epoch T0 is J2000.0 and the time T is counted in Julian centuries (JC).

The linear term corrects for precession. The quadratic and cubic term correct for the

secular influence of the planets. The difference of apparent and mean time is termed

the Equation of Equinoxes :

GMST −GAST = ∆ψ cos ε, (3.7)

where ∆ψ is the nutation correction in longitude and ε the obliquity of the ecliptic.

3.2 Transformation between celestial and terrestrial reference

frame

On its 24thGeneral Assembly in 2000 the International Astronomical Union (IAU)

adopted several resolutions, which allow the transformation between the Celestial Ref-

erence System (CRS) and the Terrestrial Reference System (TRS) with an accuracy at

the microarcsecond (mas) level. The transformation of the observation at the epoch t

can be written as:

rcrs = Q(t)R(t)W (t)rtrs, (3.8)

where Q(t), R(t) and W (t) are time dependent rotation matrices.

W (t) accounts for the polar motion. The modified polar coordinates xP and yP are

obtained by taking the polar coordinates provided by the IERS and adding the effects of

ocean tides and nutation with periods less than two days. After the W (t) rotation, the

z-axis points to the Celestial Intermediate Pole (CIP). The concept is an extension of

the formerly used Celestial Ephemeris Pole (CEP) which did not take diurnal and higher

frequency variations of the Earth rotation into account. With W (t), the x-axis is moved

on the moving equator from the instantaneous x-axis and to the Terrestrial Ephemeris

Origin (TEO). The second rotation matrix R(t) uses the negative Earth rotation angle

θ and the x-axis is moved to the Celestial Ephemeris Origin (CEO) as shown in figure

3.2(b). The frame generated by these two rotations is called the intermediate reference

frame at epoch t.
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σ
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d
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θ - Earth angle of rotation

(b) CEO, TEO, Earth angle of rotation

Figure 3.2: Relation between CIP, TEO and CEO

The rotation Q(t) continues to move the x-axis to the point S and rotates the frame

from the CIP to the celestial reference frame. At the core of this transformation is

the new IAU2000 precession-nutation model. Two versions of the model are available.

IAU2000A provides the highest accuracy of about 0.2 mas, while the shorter version

IAU2000B is precise to only 1 mas. Both models provide the coordinates X and Y which

do not have a physical meaning, but they can be transformed into the coordinates

d and E which can be visualized as in figure 3.2(a). The new transformation was

adopted beginning 1stJanuary, 2003, and replaces the precession-nutation model based

on the “IAU 1976 Precession and the IAU 1980 Theory of Nutation”. Modern Very Long

Baseline Interferometry (VLBI) observations had revealed that it was not adequate any

more.

3.3 Transformation using quaternions

The second important type of rotation is the quaternion transformation. The accelerom-

eter data is usually given in the Space Body Frame (SBF) which is connected to the

satellite body. The attitude data of the SBF with respect to the CRS is determined from
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the star sensor onboard the satellites. The rotation angles are expressed in terms of

quaternions, which is a four dimensional vector:

q = (q0, q1, q2, q3) = (q0, q) . (3.9)

It can be divided into a scalar part q0 and a vectorial part q. Their theory is based

on complex numbers and was developed by Sir William Rowan Hamilton (1805–1865).

The quaternions in use are restricted to unit length, i.e., their degree of freedom is also

restricted to three (Hanson, 2006).

q · q = q2
0 + q · q = 1 (3.10)

In order to apply the transformation to three-dimensional vectors, the quaternions can

be transformed to a rotation matrix as follows:

x′ = R (q) · x

R (q) =




q2
0 + q2

1 − q2
2 − q2

3 2q1q2 − 2q0q3 2q1q3 + 2q0q2

2q1q2 + 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 − 2q0q1

2q1q3 − 2q0q2 2q2q3 − 2q0q1 q2
0 − q2

1 − q2
2 + q2

3


 (3.11)

The quaternions can also be applied directly to the vector x, but for this the quaternion

conjugation (3.12) and the quaternion multiplication (3.13) needs to be defined:

q̄ = (q0,−q1,−q2,−q3) = (q0,−q) (3.12)

p ∗ q =


 p0q0 − p · q

p0q + q0p + p× q


 (3.13)

The three dimensional rotation is then given as:

 0

x′


 = q ∗


 0

x


 ∗ q̄ (3.14)

The attitude data is not as complete as the accelerometer data, since the Sun and the

Moon blind the star sensors every once in a while. Consequently, interpolation between

two quaternions q (t0) and q (t1) is necessary. Linear interpolation (lerp) will result in
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a nonconstant angular velocity and in general quaternions will loose their unit length.

They can be renormalized; thus forces the interpolation points to be on the unit sphere

(cf. figure 3.3(a)) but the uneven angular spacing is inherent. Instead the spherical

q
0 q

1

q
t

(a) linear interpolation

q
0 q

1

q
t

(b) spherical linear interpolation

Figure 3.3: Linear vs. spherical linear interpolation of quaternions, from Hanson (2006)

linear interpolation (slerp) is introduced, which guarantees the interpolation points to

lie on the unit circle and to maintain constant angular velocity. The difference of the

constant angular velocity (black points) with respect to the linear interpolation (gray

points) is illustrated in figure 3.3(b). The quaternion for any arbitrary time t between

the quaternion q (t0) and the quaternion q (t1) is given as:

q (t) = q (t0)
sin (1− t) φ

sin φ
+ q (t1)

sin tφ

sin φ
, (3.15)

where cos φ = q (t0) · q (t1) is the inner product of the two quaternions. For the defi-

nition of the inner product and a detailed derivation, see Hanson (2006). The slerp

interpolator keeps the vector at time t in the mutual plane of the two limiting vectors

and guarantees the transformation of one unit vector into another.
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3.4 Numerical Differentiation

In the calculations, purely kinematic CHAMP orbits are used in order to avoid the con-

tamination of the solution with a priori gravity field information. The data is provided

by Drazen Švehla from the Technical University Munich (Švehla and Rothacher, 2004).

They are derived using a zero-difference approach and are independent of the satel-

lite dynamics and the orbit characteristics. The disadvantage is that kinematic orbit

determination yields only positions, and velocities have to be derived by numerical dif-

ferentiation. The ideal differentiator can be described by the spectral transfer function

H
(
eiωT

)
(Antoniou, 1979):

H
(
eiωT

)
= iω for 0 6 |ω| < ωs

2
(3.16)

where ω is the frequency, ωs is the sampling frequency and i the imaginary number.

It represents the angle bisection of the first and third quadrant as shown in figure 3.4.

Note that the frequency axis is already adapted to the case of CHAMP, i.e., the sampling

frequency ωs is equal to 1/30 Hz. In the following, two methods are presented which are

both approximations of the ideal differentiator. The approximation is desired, since

differentiators act as a high-pass filter and tend to amplify noise. By adjusting the

properties of each method, the amplification of noise in the data can be minimized.

Further details can be found in Weigelt and Sneeuw (2004).

3.4.1 FFT Method

The first method presented here utilizes a Fast Fourier Transformation (FFT) approach.

The idea is to determine the spectral content of the signal, i.e., of the position, and mul-

tiply the result with iω or any suitable approximation of it. After back-transformation

to the time domain, the signal represents the velocities. The advantage of the approach

is the easy application and modification of the differentiator itself. The drawback is

that problems with leakage, aliasing and data gaps arise. The latter cause problems in

the transformation and need to be filled with dynamic position data or by interpolation.
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Figure 3.4: Spectral transfer of differentiators

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

10
−20

10
−15

10
−10

10
−5

10
0

Frequency (Hz)

M
ag

ni
tu

de
 r

es
po

ns
e

Difference between spectrum of differential operators and ideal differentiator

3. order

4. order

17. order

FFT
with Blackman

Figure 3.5: Difference to the ideal differentiator



Chapter 3 32

This is a major drawback of the approach since high frequencies due to jumps between

the kinematic and dynamic positions are introduced.

Leakage is caused by a finite number of measurements, which corresponds to a mul-

tiplication of the infinite signal with a boxcar function. The multiplication leads to

a convolution of the spectrum with the spectrum of a boxcar function, i.e., the sinc-

function. Windowing techniques are used in order to minimize leakage, but applying a

window results in major differences at the edges of the data since the data is contin-

uously downweighted towards zero. In order to minimize this effect, data before and

after the desired area of interest should be added. Since the number of frequencies in

the spectral domain is also finite, it can also be seen as a multiplication of an infinite

spectrum with a boxcar function and the corresponding time domain function is again

convolved with the sinc-function. Therefore, a window should also be applied to the

differentiator in the frequency domain in order to minimize the sidelobes of the corre-

sponding time domain function. The advantage is that this window will also act as a

low-pass filter, and therefore, gives control over the amplification of the noise.

In practice, the calculation is performed on a daily basis. For each day, one complete

day of data is added before and afterwards. Half of these are used to apply the window.

The differentiator is used complete up to ≈ 80% of the frequency content (figure 3.4),

and a Blackman window is applied (Lyons, 1997) in the stopband between 0.013 Hz and

the Nyquist frequency.

The top panel in figure 3.6 shows results with noiseless simulated data for CHAMP

which were developed by the IAG Special Commission SC7 (Ilk, 2001). The data

is created using numerical integration with the EGM96 model up to degree and or-

der 300. For the validation of the approach, the position of the satellite is differ-

entiated and compared to the simulated velocity. Note that the difference is at the

level of 10−3 mm/s for the simulated data. Computations with position and velocity

data provided by the IAPG, TU Munich (Švehla and Rothacher, 2004), are shown

in the middle panel of figure 3.6. The data is derived using a reduced dynamic ap-

proach, i.e., the dynamics are reduced by geometrical information. For an exten-
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Figure 3.6: Test results: simulated data (top), real dynamic data (middle), edge effect

(bottom)

sive overview over the different type of data the reader is referred to the webpage

of Drazen Švehla (http://tau.fesg.tu-muenchen.de/~drazen/), which contains nu-

merous publications about the methods used to derive kinematic, dynamic, reduced

kinematic and reduced dynamic data. The dynamic data has the advantage that ve-

locities can be derived as well, thus a more realistic test scenario than with simulated

data is achieved. Since the data contains noise, the simulated results are overoptimistic

and two orders of magnitude in accuracy are lost due to the noise. For the gravity field

recovery, an error level of 1 dm in geoid height is aspired for CHAMP which corresponds

to an minimum accuracy of 0.14 mm/s in the velocity (see section 4.1.2). The results are

at this level but the data availability was ideal, which means that there was enough

data before and after the timespan of interest available for the usage of the windowing

technique. The lower panel shows the edge effect, which occurs when a major data gap

exists and/or filling with dynamic position data is not possible. Valuable data is lost.
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In the case of CHAMP, approximately 1500 samples are necessary to reach the level of

0.14 mm/s. With its 30 second data sampling, this means a loss of data of 8 revolutions

or half a day, which is unacceptable.

The second problem is the global behavior of the approach. Changes due to orbit

maneuvers or sudden changes in the environment are aliased over the whole interval of

calculation. In practice, this means that the differentiator causes up to one day delay

in the reaction to these events and contaminates data before these events.

3.4.2 FIR Method

The FFT method uses multiplication in the frequency domain, which is identical to a

convolution in the time domain. Therefore, the differentiator can be implemented as

a Finite Impulse Response (FIR) filter. The design of the filter is based on a central

finite difference Taylor approximation of the first derivative (Bruton et al., 1999), the

so-called Taylor differentiator. It is applied by convolving the signal with the filter

coefficients fk:

yi =
n∑

k=−n

fk · xi−k, (3.17)

where n is the order of the differentiator. The coefficients of nth order can be calcu-

lated in a fast and effective way using closed-form expressions (Khan and Ohba, 1999).

Knowing that a convolution in the time domain is equivalent to a multiplication in the

frequency domain, the methodology is practically identical to the FFT method except

that the filter is designed and applied in the time domain. For the calculation of one

value, only 2n + 1 data elements for a nth order differentiator are necessary, i.e., the

delay is equal to the order n and the differentiator responds quickly to changes in the

environment or due to orbit maneuvers. The edge effect still exists but is much smaller

than in the case of FFT. For a nth order differentiator, n elements at the beginning and

at the end of an area of interest are lost. The smaller the order of the differentiator, the

smaller will the edge effect be. The filling with dynamic position data becomes unnec-

essary, if a reasonably small order is used for the differentiator and this leads to a more
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rigorous data treatment. Thus, the usage of a fir filter overcomes the two obstacles

of the FFT method but at the cost of a restricted freedom in the design of the filter

(Antoniou, 1979). On the other hand, it is necessary to use a reasonably high order

to achieve results better than the level of 0.14 mm/s. Figure 3.5 shows the difference of

several differentiators to the ideal differentiator and obviously the approximation be-

comes better with increasing order. The FFT differentiator naturally is identical with

the ideal differentiator in the passband but the sharp transition effect due to the Black-

man window is clearly visible. The Taylor differentiators have a much longer transition

zone, which is a disadvantage in the application to noisy data. A filter with a sharper

transition could also be designed in the time domain, which leads to the usage of the

so-called equiripple or least-squares differentiators but normally a much higher order is

necessary than in the case of the Taylor differentiator and the advantage compared to

the FFT approach is partially lost. The task is, therefore, to choose the minimum pos-

sible and maximum necessary order; naturally, this choice will depend on the frequency

content of the signal.

Several differentiators with different orders have been tested. Figure 3.7 shows results

with simulated data and clearly demonstrates that the order of the differentiator and

thus the approximation of the ideal differentiator influences the accuracy of the solution.

The higher the order, the better the result. Figure 3.8 shows test results performed with

reduced dynamic data and there is virtually no difference between the three solutions.

This is supported by the rms values of the three solutions, which are all around 0.04 mm/s

(cf. table 3.1). Note that only the dynamic data reaches this level. Kinematic data is

even more noisy and the rms will consequently be higher.

The conclusion is that in the case of CHAMP an order of three is sufficient. For

completeness, it should be mentioned that an order less than three gives unacceptable

results (e.g., rms = 0.23 mm/s for order 2).
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Figure 3.7: Test results with simulated data: 3rd order (top), 4th order (middle), 17th

order (bottom)
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17th order (bottom)
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order rms: simulated data rms: dynamic data

2 0.18 mm/s 0.23 mm/s

3 0.01 mm/s 0.04 mm/s

4 5.43 µm/s 0.04 mm/s

17 2.33 µm/s 0.05 mm/s

Table 3.1: rms of the difference between differentiated positions and velocities for simu-

lated and reduced dynamic data

3.5 Tides

Tidal deformations of the potential and forces on the satellite are primarily caused

by the Sun and the Moon. The direct effect is referred to as N-body perturbations

and can reach several decimeters in geoid height. Other planets, especially Jupiter

and Saturn, also cause tidal effects which are several orders of magnitude smaller and

usually neglected.

The Earth itself is not rigid and responds to the external force with displacement

that, in turn, changes the potential. This effect is referred to as the solid Earth tide.

The ocean tides take into account that the water masses react differently than the land

masses to the forces. Both effects also cause a change in the pole axis and yield indirect

effects which are known as solid Earth pole tide and ocean pole tide.

3.5.1 N-body perturbations

Assuming point masses for the disturbing body, the force on a satellite orbiting the

Earth can be calculated as:

r̈j = Gmj

(
rj − r

|rj − r|3 −
rj

|rj|3
)

, (3.18)

where G is the gravitational constant and mj the mass of the disturbing bodies. The

geocentric vectors rj and r point to the disturbing body j and the satellite, respectively.

Cartesian coordinates for the all major bodies in the solar system are available from
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the Jet Propulsion Laboratory (JPL). The so-called “Development Ephemerides” (DE)

are available in the versions DE200 and DE405. The DE200 include nutations, but no

librations. The DE405 include both. The data is provided in the form of a Chebyshev

approximation and can be interpolated to the time of interest (Montenbruck and Gill,

2000).

3.5.2 Solid Earth Tide

Since the Earth is not a rigid body, the astronomic tides will deform the Earth causing

an additional effect on the potential. The effect can be approximated by (Seeber, 2003):

r̈ =
k2

2

Gmj

r3
j

R5

r4

(
3− 15 cos2 θ

) r

r
+ 6 cos θ

rj

rj

, (3.19)

where k2 is the Love number describing the elasticity of the Earth body, mj the mass,

rj the distance and rj the position vector of the disturbing body j from the geocenter,

R the Earth radius, r and r the position vector and distance of the satellite from the

geocenter, and θ the angle between the geocentric position vector of the satellite and

the disturbing body.

The approximation is valid within 10% − 20% compared to the IERS conventions

and can already be used for the case of CHAMP. For more precise calculations, the

procedure of the IERS conventions (McCarthy and Petit, 2003, §6) should be followed.

The variations are most conveniently expressed as corrections to the spherical harmonic

coefficients. The computation is split into two parts.

In the first step, the frequency-independent part is calculated according to:

∆C̄nm =
knm

2n + 1

3∑
j=2

Gmj

GM

(
R

rj

)n+1

P̄nm (sin Φj) cos mλj (3.20)

∆S̄nm =
knm

2n + 1

3∑
j=2

Gmj

GM

(
R

rj

)n+1

P̄nm (sin Φj) sin mλj, (3.21)

where knm is the nominal Love number for degree n and order m, GM the gravitational

parameter of the Earth and rj, Φj and λj the geocentric distance, latitude and longitude,

respectively. The rest of the notation is following equation (3.19). The summation is
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restricted to j = 2 for the Moon and j = 3 for the Sun. The influence of other

disturbing bodies is neglected. The degree 4 terms will have an additional correction

due to the degree 2 tidal effect. Values for the nominal Love numbers knm can be found

in McCarthy and Petit (2003, table 6.1).

The second step includes a frequency dependent correction from a number of tidal

constituents depending on the respective band and the treatment of the permanent tide.

The degree two zonal tide has a mean value, which is nonzero and yields a permanent

deformation of the potential. Consequently, it has a time-independent contribution to

C̄20. If the tidal corrections are applied according to the IERS conventions the resulting

potential is a conventional tide free model as in the case of, e.g., EGM96. Care must be

taken in the comparison of geopotential models. Some include the time-independent

contribution and are referred to as “zero tide”. Examples are the JGM-3 and the

GGM02s model.

3.5.3 Solid Earth Pole Tide

The solid Earth pole tide is caused by the polar motion, which generates a centrifugal

effect and affects the geopotential coefficients C̄21 and S̄21. It can be calculated using

∆C̄21 = −1.333 · 10−9 (m1 − 0.01152) (3.22)

∆S̄21 = −1.333 · 10−9 (m2 + 0.01151) , (3.23)

where m1 and m2 are in seconds of arc and describe the time dependent offset of the

instantaneous rotation pole from the mean. For their determination the instantaneous

polar coordinates xp and yp are subtracted from the mean pole (McCarthy and Petit,

2003, §7).

3.5.4 Ocean tide

The ocean tides are similarly modelled as the solid Earth tide as variations to the

spherical harmonic coefficients. The modelling also follows the suggestions by the IERS
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conventions (McCarthy and Petit, 2003, §6).

∆C̄lm = Flm

∑

s(l,m)

−∑
+

(
C±

slm ∓ S±slm
)
cos±θs (3.24)

∆S̄lm = Flm

∑

s(l,m)

−∑
+

(
C±

slm ∓ S±slm
)
sin±θs (3.25)

with: Flm =
4πGρw

g

√
(l + m)

(l −m)(2l + 1) (2− δlm)

(
1 + k′l
2l + 1

)
, (3.26)

where ρw is the density of saltwater (1025 kg/m3), k′l the load deformation coefficients

and θs the argument of the tide constituent s. The coefficients C±
slm and S±slm are

gained by a spherical harmonic analysis of the ocean tide height caused by a specific

constituent s of the tide generating potential. The variations in the spherical harmonic

coefficients ∆C̄lm and ∆S̄lm of degree l and order m are then calculable by summation

over all constituents s for retrograde (top sign) and prograde (bottom sign) waves. The

effect of the ocean tides cannot be neglected for the CHAMP data processing, cf. figure

3.9, but the older Schwiderski model (Schwiderski, 1984) is already sufficient. For the

GRACE processing, newer models like CSR4.0 from Eanes (2002) or FES2004 (Letellier,

2004) are mandatory for a proper dealiasing (Han et al., 2004). The ocean tide will

also have an effect on the polar motion and thus introduces an effect similar to the
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Figure 3.9: Integrated accelerations due to ocean tides along the orbit
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solid Earth pole tide. The model for the latter is still under review and not yet part of

the recommendations in the IERS conventions 2003 (McCarthy and Petit, 2003). It is

about to be included in the near future and should be accounted for in the processing

of GRACE data. For CHAMP, the effect is negligible.

3.6 Non-tidal variations of the atmosphere and oceans

For the proper analysis of a series of monthly gravity field solutions, short term mass

variations in the atmosphere and oceans with periods smaller than one month need to

be taken into account. Since the mission profile of CHAMP and GRACE do not allow

an elimination by repeated observations within short periods, these effects need to be

removed during the data processing. Han et al. (2004) showed also that the current

atmospheric and ocean models are not sufficient for proper reduction and introduce

an error in the global monthly geoid estimates. For this, the atmosphere and ocean

dealiasing product AOD1B is introduced (Flechtner, 2005). It provides residual spher-

ical harmonic coefficients every six hours, which can be interpolated and transformed

into corresponding disturbing potential difference variations along the orbit.
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Global gravity field recovery from high-low

satellite-to-satellite tracking

This chapter discusses in detail the gravity field recovery for the case of a single satellite

mission using the energy integral. It starts in with its derivation in the Earth-fixed

frame in section 4.1.1 and investigates its sensitivity to input quantities in section

4.1.2. With the approach the disturbing potential along the orbit can be derived,

and a spherical harmonic analysis is subsequently necessary in order to derive global

spherical harmonic coefficients. Section 4.2 starts with a detailed description of the

data processing strategy for the case of CHAMP (section 4.2.1) and discusses the refined

accelerometer calibration procedure in section 4.2.2. In the subsequent sections 4.2.3–

4.2.5, the derived solutions are validated and the influence of the groundtrack variation

on the solution is quantified and investigated. In order to minimize the effect of the data

distribution, information from several satellite missions can be combined. Methodology

and results for the combined case are discussed in section 4.3.

4.1 The energy balance approach

The energy balance approach, also referred to as the energy integral approach, is based

on the law of energy conservation. It states that in a closed system the total energy is

conserved. Energy itself can exist in a number of forms. The kinetic energy is connected

to the motion of a mass, whereas the potential energy is a resultant of the spatial order

of the elements of the system (Tipler, 1995). In case of a satellite system, the kinetic

energy can be derived from the satellite’s velocity. The potential energy relates to the

gravitational field of the Earth and the distance between these two bodies. Remarkably,

the mathematical framework for the energy balance approach was already developed in

42
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the last century by the mathematician C. Jacobi (1804–1851) (Jacobi, 1836). Therefore,

this approach is also referred to as Jacobi integral and it was considered for gravity field

recovery purposes since the beginning of the satellite era (O’Keefe, 1957; Bjerhammer,

1967; Reigber, 1969; Jekeli, 1999). Its main advantage is its simplicity. Gravity field and

orbit determination are separated in two subsequent steps. It avoids the initial state

problem and enables the data processing on desktop computers. However, it relies on a

precise orbit determination and, due to its integral nature, on long and uninterrupted

time-series of velocity and accelerometer data. The lack of continuous data prevented

the practical implementation for a long time. CHAMP data closed this gap for the first

time due to the continuous GPS-tracking and the accelerometer measurements. It has

been demonstrated by a number of groups that the derivation of a gravity field using

this approach is qualitatively equivalent to the official champ solutions eigen-1s and

eigen-2s which are derived using classical methods, see Reigber (1989), Reigber et al.

(2002, 2003), Gerlach et al. (2003b) and Han et al. (2002).

4.1.1 Derivation

The derivation of the energy integral starts from the equation of motion in the rotating

frame (Schneider, 1992, §5.4). The basic steps are

1. the separation of static, time-variable and non-gravitational accelerations;

2. the substitution of accelerations by the gradient of the corresponding potential;

3. the multiplication with the velocity; and

4. the integration along the orbit.

In general, the derivation follows closely the one in Sneeuw et al. (2003) but time variable

gravitational accelerations of known sources like, e.g., tides are handled differently here.

All derivations are done per unit mass. The equation of motion in the Earth-fixed frame

reads:

ẍ = a− ω × (ω × x)− 2ω × ẋ− ω̇ × x. (4.1)
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The acceleration ẍ of a point mass on the left hand side is equal to all forces a acting

on the mass minus the centrifugal acceleration ω × (ω × x), the Coriolis acceleration

2ω × ẋ and the Euler term ω̇ × x. The position and velocity of the point mass in an

Earth-fixed reference system are denoted by x and ẋ. The Earth rotation rate and

its change are denoted by ω and ω̇, respectively. In the following, the Euler term is

neglected since the changes of the Earth rotation rate are of the order of 10−16 rad/s2

and can be assumed sufficiently constant.

The dynamic accelerations in equation (4.1) can be split into a static gravitational

part g, the sum of all time-variable gravitational accelerations
∑

i gi, and a non-gravi-

tational part f .

a = g +
∑

i

gi + f (4.2)

The static gravitational component is the unknown in this problem and is the main

subject of determination. The time-variable part consists on the one hand of parts which

are known and on the other hand of all unknown time-variable gravitational effects.

It is very important to take the time resolution into account. Currently, a common

procedure to determine time-variable gravity field solutions is to derive monthly mean

solutions and assume the data static within this month. It is obvious that any time-

variable effect with a period lower than one month needs to be modelled in order to

avoid aliasing effects, cf. Han (2004). A simple example are tidal effects with their

daily and sub-monthly periods. Naturally, any errors in the model will cause aliasing

as well.

For the time being let us follow the general idea of solving for monthly mean solutions

and assume that every time-variable effect with a period smaller than one month can

be sufficiently modelled or neglected. Therefore,
∑

i gi in equation (4.2) consists only

of all known time-variable gravitational effects, namely the astronomic, the solid Earth,

the ocean and the solid Earth pole, which are described in section 3.5.

Non-gravitational forces like, e.g., solar radiation pressure or atmospheric drag can

either be modelled or measured by the accelerometer onboard the satellite. A com-
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prehensive overview about the modelling of non-gravitational forces and its interaction

with the orbit parameters can be found in Milani et al. (1987). Here, we follow the sec-

ond approach using the accelerometer measurements which make the satellite missions

CHAMP and GRACE so unique. Hence the parameter f represents the accelerometer

measurements.

Inserting equation (4.2) into equation (4.1) yields

ẍ = g +
∑

i

gi + f − ω × (ω × x)− 2ω × ẋ (4.3)

The gravitational and centrifugal accelerations can be replaced by the gradient of the

gravitational potential, ∇V , and of the centrifugal potential, ∇Z.

ẍ = ∇V +
∑

i

gi + f +∇Z − 2ω × ẋ (4.4)

The centrifugal potential can be calculated using equation (2.7). Equation (4.4) by

itself can already be used for global gravity field recovery. This approach and its

modifications is referred to as the acceleration approach, cf. Ditmar and van Eck

van der Sluijs (2004); Reubelt et al. (2003). The advantage is that no integration is

necessary and it was shown by several groups that the usage of the accelerometer data

might not be necessary either. On the other hand, with the usage of kinematic positions

a double differentiation is necessary in order to derive accelerations, which might lead

to a higher amplification of noise in the data.

The next step is the scalar multiplication of equation (4.4) with the Earth-fixed

velocity ẋ. It yields the cancellation of the Coriolis term since this term is perpendicular

to the cross product of the Earth rotation rate and the velocity vector.

ẋ · ẍ = ẋ · ∇V + ẋ · ∇Z + ẋ ·
(

f +
∑

i

gi

)
(4.5)



Chapter 4 46

The scalar multiplication of the gradient of any potential Φ with the velocity can be

deduced from the total derivative of the potential:

dΦ

dt
=

∂Φ

∂x
· ∂x

∂t︸ ︷︷ ︸
+

∂Φ

∂t

∇Φ · ẋ

⇒ ẋ · ∇Φ =
dΦ

dt
− ∂Φ

∂t
, (4.6)

where ∂Φ
∂t

denotes the explicit time-variable part of the potential. As discussed before,

we assume all time-variable parts to be taken into account by using
∑

i gi or be negligible

within one month.

This is one of the key steps of this approach. Due to the evaluation of the energy

integral in the Earth-fixed frame ∂V
∂t

becomes 0. The explicit time derivative of the

centrifugal potential ∂Z
∂t

also becomes 0, but in this case due to the assumption of a

constant Earth rotation rate ω.

Doing the integration on the left hand side analytically and inserting into equation

(4.5) yields

1

2
ẋT ẋ + c = V + Z +

∫ (
f +

∑
i

gi

)
dx (4.7)

The left hand side can easily be recognized as the kinetic energy Ekin of a unit mass

plus an integration constant c. Note also that the integration over time of a quantity

that is multiplied by the velocity is equivalent to the integration along the orbit.

Splitting the gravitational potential V into a normal gravitational and a disturbing

part V = U + T and rearranging for the unknown disturbing potential gives the basis

of the gravity field recovery — the energy balance approach.

T + c = Ekin − U − Z −
∫ (

f +
∑

i

gi

)
dx (4.8)

Figure 4.1 gives an overview about the magnitude of each term (left panel) and the

contribution to the disturbing potential (right panel). Each plot shows the correspond-

ing energy for two revolutions or a period of approximately 3 hours.
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Figure 4.1: Magnitude of each energy term and contribution to the disturbing potential

The kinetic energy Ekin is at the level of approximately 30 km2/s2 and shows primarily

a 1 cycle per revolutions (CPR) signal, which is superimposed by a 2-CPR signal. The 1-

CPR signal is related to the ellipsoidal shape of the Earth and is reduced by subtracting

the normal field. The normal potential is derived from the position of the satellite and

additional parameters (e.g., textscwgs84). The difference is not fluctuating around 0

but has an offset of approximately 29.6 km2/s2. This gives already an idea about the

magnitude and the effect of the integration constant c, which is also referred to as

the Jacobi constant. It needs to be determined before or during a spherical harmonic

analysis. Here, the constant is determined in a calibration procedure by a least-squares

adjustment (cf. 4.2.2). Its application will center the disturbing potential around the
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zero-line as the definition of the disturbing potential demands.

Sometimes it is suggested to subtract a mean value instead. However, this accounts

for a continuous field only. The situation in a satellite orbit is different. The mean value

of an orbit segment is not necessarily zero (cf. figure 4.1). For sufficiently long arcs,

i.e., for several days, and a dense groundtrack coverage, the mean value would converge

against the zero mean. In reality, such long arcs are usually not available due to data

gaps and it is better to determine the difference to an a priori field over a continuous

segment of the orbit in the calibration procedure.

The reduction reveals the 2-CPR signal, which is about 2 orders of magnitude smaller

than the kinetic energy and normal potential. This signal is related to the centrifugal

potential and can be modelled using the position of the satellite and the Earth rotation

rate. Since the satellite is sensing the potential in an ascending orbit arc as well as in

a descending orbit arc, the resulting signal has a frequency of 2-CPR. After reduction,

the general shape of the disturbing potential along the orbit is already visible.

For the short period of two revolutions, the effect of the tides and the non-gravitational

forces is barely visible, especially since the signal is 4 orders of magnitude smaller than

the other energies. Nevertheless, their reduction is a very important step in the deriva-

tion. Only then the principle of energy balance is fulfilled. Non-gravitational forces are

derived from the accelerometer data and velocity measurements of the satellite. Tides

are calculated from the time and the position of the Sun, the Moon and the satellite.

The bias in the accelerometer data yields a drift as shown in the lower left panel of

figure 4.1 and needs to be removed in the calibration procedure.

The difference to the derivation in Sneeuw et al. (2003) is that the accelerations gi are

not integrated analytically to their corresponding potentials but integrated along the

orbit. Gerlach (2003) showed that this is necessary since the models for these potentials

do not take their temporal variations into account.

The final product is the disturbing potential along the orbit, which can be continued

downward to the Earth surface and decomposed into spherical harmonic coefficients.

It should be noted that the derivation can be done in a similar way in an inertial
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reference frame (Jekeli, 1999). The result is the same but the individual energy terms

have different meaning and magnitude.

4.1.2 Error analysis

The core component of the energy balance approach is the separation of orbit and

gravity field determination, i.e., position and velocity determination are considered

here as a preprocessing step. The disturbing potential along the orbit is derived using

the integral and a spherical harmonic analysis is applied in order to decomposed the

signal into spherical harmonic coefficients. In every step, the measurement errors need

to be propagated, e.g., Niemeier (2001):

Σyy = A Σxx AT , (4.9)

where A is the Jacobi matrix of a linear or linearized system y = Ax and Σxx and

Σyy are the covariance matrices of the input and the output, respectively. This means

that measurement errors need to be propagated first into position and velocity errors,

then into errors of the disturbing potential along the orbit and finally into standard

deviations of the spherical harmonics.

The usage of the full covariance matrix of the GPS-observations is obviously a com-

putationally very demanding task. For a single day and a data sampling of 30 s, the

matrix has already the size of 8640 × 8640 samples. Each sample consumes 8 bytes

of memory, which results in an overall memory usage of 569 MB just to store the ma-

trix. Fortunately, it seems that the matrix is mainly block-diagonal due to correlations

between observation points. These correlations depend likely on the ambiguity resolu-

tion, which forms a block structure for periods of fixed ambiguity (D. Švehla, personal

communication). This correlation is the reason for the high accuracy of the positions

and velocities, respectively. For a simple example, the reader is referred to Austen

and Reubelt (2000, §8). However, since the usage of the full covariance matrix is not

workable due to its size and an error model is not available, the best way is either to

use just the main diagonal of the covariance matrix or to assume the measurement to
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be of equal accuracy and the errors to behave like white noise. Practical experience has

shown that this is a reasonable assumption.

The objective of the error analysis here is to estimate the sensitivity of the output

quantity y on the input quantities, i.e.: How precise do we need to know a certain

quantity in order to reach a certain accuracy of the final product? For this, the total

differential towards all input quantities is built.

Firstly, the relevant input quantities need to be defined. Obviously position, velocity

and accelerometer data are the most important quantities. Other quantities are either

defined ones, like, e.g., GM or the Earth radius R, or assumed to be negligible like,

e.g., errors in the position of Sun and Moon in tidal models. Additionally, the effect of

position errors of the satellite in the tidal models is neglected here, as well. The total

differential of the energy integral is given as:

dT =
∂T

∂‖ẋ‖ d‖ẋ‖+
∂T

∂‖x‖ d‖x‖+
∂T

∂‖f‖ d‖f‖ (4.10)

Instead of using the three dimensional coordinates, the vectors are replaced with their

length and errors in the length, respectively. Furthermore, in order to simplify the

situation, each of the components of the energy integral is discussed separately. In

general, an accuracy at the dm-level for the geoid height (≈ 1 m2/s2 in the disturbing

potential) is anticipated for single satellite missions like CHAMP.

Kinetic energy. The partial derivative for the kinetic energy term is given as:

∂T

∂‖ẋ‖ =
∂Ekin

∂‖ẋ‖ = ‖ẋ‖ (4.11)

Solving the first term in equation (4.10) for d‖ẋ‖ yields an estimate for the necessary

accuracy in the velocity. It is illustrated in figure 4.2. The x-axis shows the aspired

error in the disturbing potential; the y-axis the corresponding accuracy demand on the

velocity determination. The dm-level geoid is approximately equal to a 1 m2/s2 level in

terms of the disturbing potential. Consequently, in order to reach this, an accuracy in

the velocity of ≈ 0.1 mm/s is necessary, which is at the edge of the achievable accuracy

by numerical differentiation from kinematic positions (cf. section 3.4).
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Figure 4.2: Error analysis of the kinetic energy term using ‖ẋ‖ = 7.7 km/s and r = 6778 km
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Normal potential. The normal part of the energy integral is calculated from a spher-

ical harmonic analysis of the even zonal terms till degree 8. For simplicity, only the

degree 0 and degree 2 terms are taken into account in the error analysis . The normal

potential is then given as:

U =
GM

r

[
1− J2

(
R

r

)2

P2 (sin φ)

]
, (4.12)

where GM is the gravitational constant multiplied with the mass of the Earth, r the

radius of the satellite, J2 the unnormalized cosine coefficient of degree 2 and order 0,

R the Earth radius and P2 (sin φ) the Legendre polynomial of degree 2 which depends

on the latitude φ. The partial derivative towards the radius r is given as:

∂U

∂r
= −GM

r2

[
1− 3J2

(
R

r

)2

P2 (sin φ)

]
(4.13)

For the radius, an accuracy of 1 dm in the geoid height demands an accuracy of 1 dm

in position. The kinematic positions of the IAPG, TU Munich, are provided with an

accuracy of 2−5 cm (Švehla and Rothacher, 2004), i.e., the accuracy demand is fulfilled

by the provided data, cf. figure 4.3.

Certainly, there is also a dependence of the error in the normal potential on the

latitude. For a dm-level accuracy in geoid height, the latitude must be known with an

accuracy better than one arcsec which is equivalent to a position accuracy of 60 m on

satellite height. Considering that cm-precision is provided by the kinematic orbit, this

condition is fulfilled.

Centrifugal potential. The centrifugal term is also shown in the same figure and

the situation is even more relaxed than in the case of the normal potential. An accuracy

of several meters is sufficient. For completeness, the partial derivative of the centrifugal

potential is given as:
∂Z

∂r
= ω2r (4.14)
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Dissipative energy. The integration of the non-gravitational forces f along the orbit

can be expressed as an integration over time and a scalar multiplication of f with

the velocity ẋ. The scalar multiplication of the two vectors can be rewritten as the

multiplication of the magnitude of the accelerometer and the velocity with the cosine of

the angle between the two vectors. Using the Cauchy-Schwarz inequality the maximum

effect can be derived:

Ediss =

∫
f · ẋ dt =

∫
‖f‖ ‖ẋ‖ cos φ dt 6

∫
‖f‖ ‖ẋ‖ dt (4.15)

Taking the partial derivative with respect to ‖f‖ yields the integration of the magni-

tude of the velocity over time. The magnitude has an average of approximately 7650 m/s

and a variation of ±15 m/s.
∂Ediss

∂‖f‖ =

∫
‖ẋ‖ dt (4.16)

The average of the magnitude will cause a drift after integration as shown in the left

panel of figure 4.4 for one day. Since the accelerometer bias will also cause a drift and a

calibration procedure is applied on a daily basis (cf. section 4.2.2) to remove this error,
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the drift caused by the velocity will be removed as well. The important point for the

error analysis is the variation of the integral after detrending. The variation is shown

in the right panel of figure 4.4 to be up to ±15 km per day.

For a dm-level in geoid height an accuracy in the accelerometer measurement of ≈
6·10−5 m/s2 is necessary. The accuracy of the CHAMP mission accelerometer is specified as

6 3 ·10−9 m/s2 (Touboul et al., 1998). Thus the accelerometer easily fulfills the necessary

requirements to derive a dm-level geoid. It is emphasized that the error estimate is only

valid if the bias and a scale are removed properly in a calibration procedure. Otherwise,

the error can contaminate the results and yield a severe degradation of the spherical

harmonic coefficients.

In summary, the error analysis showed that the restricting factor in the gravity field

recovery using the energy balance approach will be the kinetic energy term and thus the

velocity determination. For every other term, the provided position and accelerometer

data is precise enough to reach the expected dm-level geoid accuracy or even better.

4.2 Global spherical harmonic analysis by least-squares ad-

justment

The energy balance approach yields the disturbing potential pointwise along the orbit.

The term “in situ data” is also in use. The advantage is that the method can be

used for global as well as for local gravity field solutions. This section will focus on

the global part and aims at the spherical harmonic analysis. In section 4.2.1 the data

processing steps are described starting with the reading of the raw data and finishing

with a least-squares adjustment to derive the spherical harmonic coefficients. Section

4.2.2 will focus on the accelerometer calibration. Although it is part of the processing

chain, it is discussed in a separate section since a refinement of the procedure led to a

sub-centimeter accuracy in the cumulative geoid error for very low degrees.

The results of the spherical harmonic analysis are discussed in section 4.2.3. CHAMP
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was expected to provide time-variable gravity field information on a monthly basis

already. Sneeuw et al. (2005) showed among others that this was not possible using

CHAMP-only solutions and suggested the variable groundtrack pattern besides accuracy

itself as the main reason. This is investigated in section 4.2.4 and extended to the

mapping of spectral content in section 4.2.5.

4.2.1 Data processing strategy

For the calculation of spherical harmonic coefficients from position, velocity and ac-

celerometer data using the energy integral, the data handling is conveniently split into

three parts:

1. data reading;

2. application of the energy principle; and

3. analysis.

All these steps are implemented by the author during the preparation of the thesis. For

this, more than 30000 lines of Matlab code have been developed. The data comes from

three different data sources (see figure 4.5), namely the Institute for Astronomical and

Physical Geodesy (IAPG), TU Munich, the International Earth Rotation Service (IERS)

and the GeoForschungsZentrum Potsdam (GFZ).

Reading. Kinematic and dynamic positions and dynamic velocities are provided by

the Institute for Astronomical and Physical Geodesy (IAPG), TU Munich (Švehla and

Rothacher, 2004). Positions and velocities are given in an Earth-fixed coordinate sys-

tem and both are transformed to the inertial frame (cf. section 3.2). The data is

time-stamped using gps-time, which is also provided in the files and used as the time

reference throughout the calculations.

Earth Orientation Parameters (EOP) are read from the long term Earth orientation

data “EOPC04” provided by the International Earth Rotation Service (IERS, 2002).
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Different time systems, like e.g., UTC and GMST , are derived from the GPS-time and

then stored (for transformations, see section 3.1).

The last data source is the GeoForschungsZentrum Potsdam, which provides ac-

celerometer and quaternion data (GFZ Potsdam, 2000). Together with the raw data,

parameters for the Lorentz effect, for the deficient radial component, for the bias and

the scale of each axis are applied for a preliminary calibration. All the data is saved in

Matlab files on a daily basis.

Energy balance. The daily files are then combined to contiguous arcs interpolating

small data gaps and separating large data gaps into subsequent arcs. The separation

is necessary due to the integral nature of the energy balance approach. Data gaps that

cannot be closed by interpolation will cause an error which will propagate to subsequent

data points. It is emphasized that proper data handling is essential for the successful

implementation of the energy integral (and any method, in general).

Short arcs are dismissed as for the calibration a reasonable long arc is necessary. If

short arcs are used, the calibration tends to model long wavelength gravitational signal

which must be avoided. A general rule for how to define “small” and “large” cannot be

given but, from numerous practical tests, 400 s were accepted as a good compromise for

the interpolation and arcs shorter than 12000 s (≈ 2 revolutions) were dismissed. Note

that this only applies to data which is integrated, namely dynamic position, velocity,

accelerometer data and quaternions.

The kinematic position does not need to be contiguous and data gaps are denoted

with ’NaN’ in Matlab in order to preserve the structure and the dimensions of the

vectors. The kinematic positioning, however, is done in a least-squares adjustment and

its accuracy relies heavily on the geometry of the satellite constellation. The residuals

of the adjustment do not always identify outliers. Therefore, the data is screened using

the following criteria:

∆i = ‖xkin
i − xdyn

i ‖ 6 ε1 (4.17)

∆ij = |∆i −∆j| 6 ε2. (4.18)
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The first one is by taking the difference of kinematic and dynamic position. If the

length of the difference vector exceeds ε1 = 20 cm, the measurement is dismissed. An-

other effective tool to identify outliers is to take differences between two epochs of the

previously mentioned differences. If the value exceeds ε2 = 5 cm, the measurement is

also dismissed.

In the calculation step, the left two thirds in the center of figure 4.5 are straight-

forward and the corresponding formulas can be found in the previous sections. The

integration of the tidal accelerations differs from the integration of the dissipative forces

since it is performed using dynamic velocities in the Earth-fixed frame. The latter uses

differences of inertial positions. They are rotated to the space body frame with the

help of the quaternions which simplifies the accelerometer calibration. It would also

be possible to rotate the accelerations into the inertial or Earth-fixed system but the

bias will be mapped into a periodic function due to the time-dependent rotation and

its determination will be more difficult.

Short gaps in the accelerometer data are interpolated using cubic spline interpolation

and data gaps in the quaternion data are interpolated using spherical linear interpo-

lation (cf. section 3.3). It is not completely consistent to use dynamic positions and

velocities instead of kinematic for the integration but the error is small and the data

handling is much easier since dynamic positions do not depend as much on the geometry

of the system as kinematic positions do. They are supported by the underlying model

and the number of data gaps is significantly reduced. Kinematic orbits would yield a

number of short arcs and many need to be dismissed due to the calibration procedure.

After the application of the energy integral formula, the data is calibrated and outliers

are eliminated. The decision criteria for the outlier test is set to four times the rms-

value of the difference of the calculated disturbing potential to an a priori reference

(e.g., EGM96). This procedure is repeated for every arc. The arcs are combined for

storage. Data gaps, which are denoted so far by ’NaN’, are eliminated. For each time

point with a complete set of measurements, the disturbing potential is now available at

the location of the satellite.
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Analysis. The third and final step includes the downward continuation and the spher-

ical harmonic analysis using a least-squares approach. The basic theory of least-squares

can be found in numerous publications, e.g., Niemeier (2001), and is only briefly out-

lined here. The least-squares principle is applied in order to solve an equation system:

l + ε = A · x (4.19)

E{ε} = 0

D{l} = Qll, (4.20)

where l denotes the observations. The stochastic quantity ε denotes the errors in the

measurement. The expectation E of the measurement errors is zero, i.e., the estimation

is unbiased and the expectation of the estimated unknowns x̂ is equal to the true value

of x.

E{x̂} = x (4.21)

The coefficient matrix A is a non-stochastic quantity and is formed by the functional

model. If the dispersion D is known, i.e., covariance information is available, a stochas-

tic model is included:

Σll = σ2
0 Qll with Qll = P−1 =

1

σ2
0




σ2
1 σ2

12 · · · · · ·
σ2

21 σ2
2 · · · · · ·

...
...

. . .
...

... σ2
n




, (4.22)

where σ2
0 is the variance factor. The cofactor matrix Qll contains information about

the relationships between the observations. The covariance matrix Σll consists of the

variances and covariances of the observations. For the case of CHAMP, the a priori

variance factor was set to one due to the lack of the covariance information or an error

model as discussed in section 4.1.2.

If there are more observations than unknowns, the system is overdetermined and the

least-squares principle can be applied. The basis of the least-squares principle is the

minimization of the weighted square sum of the corrections:

εT P ε ⇒ min. (4.23)



Chapter 4 60

Equation (4.20) and (4.22) form an approach which is generally known as the Gauß-

Markov model. If A is regular, the solution vector x̂ can be calculated by:

x̂ =
(
AT PA

)−1

︸ ︷︷ ︸
N−1

AT P l︸ ︷︷ ︸
y

= N−1y. (4.24)

The cofactor matrix Qll is inverted for this application and consequently data with a

high variance σ2
i or covariance σ2

ij gets a small weight in the solution. The weighting

does not need to be dependent on the covariance information of the data only. The

denser data distribution in these areas would lead to a biased solution (Sansò, 1990) but

data weighting can also take into consideration the convergence of the orbit towards

the polar areas. However, it was not applied here, since it led to a poorer overall

performance of the solution than in the unweighted case.

The unknown vector x̂ consists of the spherical harmonic coefficients, which can be

sorted according to Colombo (1983) as:

x̂ =
[
x̂0 x̂1 . . . x̂L

]T
, (4.25)

where each of x̂m denotes a vector of spherical harmonic coefficients of all degrees l

for a specific order m, i.e., x̂m =
[
C̄m,mC̄m+1,m . . . S̄m,mS̄m+1,m . . .

]
. This ordering is

beneficial since the corresponding normal matrix is blockdiagonal as can be seen in

figure 4.6(b). The off-block-diagonal elements indicate aliasing. Figure 4.6(a) shows a

schematic view of the reordering. Note that figure 4.6(a) suggests a separation of even

and odd elements, which is neglected here for simplicity.

Each element of the coefficient matrix A is calculated from the spherical harmonic

synthesis formula (cf. section 2.1) as

aij =
GM

R

(
R

r

)n(j)+1





cos λi

sin λi



 Pn(j),m(j)(cos θi). (4.26)

Each measurement i fills a line in the coefficient matrix. The columns depend on the

ordering, i.e., j is a combination of the degree l and the order m. If a cosine or a sine

coefficient is calculated, the cosine or sine of the longitude λi is to be used, respectively.
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Figure 4.6: Block diagonal structure after ordering

A monthly solution has on average 80 000 data points and for a maximum degree of

L = 70 the number of unknowns is 5041. The A matrix in the least-squares adjustment

is subsequently of the dimension [80 000× 5041] which normally cannot be handled by

desktop computers. Instead, the normal matrix is build sequentially (e.g., in steps of

1000 measurements). In Matlab code, the procedure is:

% build the normal matrix N and the normal vector y

for i = 1:length(data)

idx = (i-1)*1000+1:i*1000;

A = f(theta(idx),lambda(idx),r(idx));

N = N + A’*P*A

y = y + A’*P*l(idx)

end

Subsequently, the system is solved and the unknown vector is reordered to the storage

format. On a 2.1 GHz Pentium V with 1 GB of memory a monthly solution is calculated

within 15–20 minutes excluding the reading step. Most of the time (≈ 80%) is spent
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building the normal matrix N .

This direct method of spherical harmonic analysis has the advantage, that no assump-

tions are made and it provides the full variance-covariance matrix. The disadvantage

is that it is a computationally costly method. Even with a sequentially build normal

matrix, the number of elements to be stored is of the order of L4. For CHAMP, the

direct method can be implemented but for GRACE with a maximum degree of L = 140

alternative methods must be used. One possibility is the pre-conditioned conjugate

gradient method (PCCGM) which is introduced in section 5.3.

Building the normal equations is a trade-off to the memory consumption and must

be used with care. If κ is the conditioning number of A, the matrix N = AT A has a

condition number of κ2. The solution is in best case (Trefethen and Bau III., 1997)

‖x̂− x‖
‖x‖ = O

(
κ2εmachine

)
, (4.27)

i.e., of the order of the machine precision εmaschine times the square of the condition-

ing number. Consequently, the normal equations can yield an unstable system more

easily than other methods like the Householder triangularization or the Gram-Schmidt

orthogonalization. These provide a solution of the order of O (κεmachine) but cannot be

applied due to the size of their matrices.

As an alternative, a semi-analytical approach could be used; e.g., Sneeuw (2000);

Xu et al. (2006). The method relies on the assumption of an orbit with constant

inclination and orbit height. The solution is reached in two steps. In the first step,

lumped coefficients are formed from the data using FFT techniques. In order to apply

these the satellite must either be in a repeat orbit or the data needs to be interpolated

to a regular grid on a torus. The interpolation error is compensated using an iterative

scheme. Coefficients with different order m are independent and form a block-diagonal

system, which can be solved blockwise in the second step.
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4.2.2 Accelerometer calibration

Energy dissipation takes primarily place due to the friction of the satellite in the at-

mosphere. The accelerometers onboard CHAMP and GRACE enable the measurement of

non-gravitational forces but every accelerometer suffers from errors like bias, drift and

a scaling factor in each axis. Using them with the energy balance approach, the accel-

erations are integrated along the orbit and these errors will cause an undesired linear

and/or quadratic drift in the energy, thus violating the principle of energy conservation.

This effect can be seen in figure 4.7. By ignoring the non-gravitational forces (case:
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Figure 4.7: Time-series of disturbing potential along the orbit without considering energy

dissipation, using uncalibrated and calibrated accelerometer data.

no ACC data used), the disturbing potential T clearly drifts away from a constant

level with about 220 m2/s2 per day. If raw accelerometer data is used (case: raw ACC

data used), i.e., the data is used as provided by the GFZ, the drift increases to about

1100 m2/s2 per day due to the inherent bias in the measurements. After the calibration

(case: calibrated ACC data used), the disturbing potential is fluctuating around zero

thus representing the principle of energy conservation.

Error modelling. The error model for an accelerometer includes primarily a scaling

matrix S, a bias b, and a linear drift term d, which need to be determined in a least-
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squares adjustment. The relation between the true non-gravitational forces and the

measurement of an accelerometer can be described as:

f = Sf true + b + dt , with S =




s1 0 0

0 s2 0

0 0 s3


 . (4.28)

The model might be extended using a quadratic and/or a cubic drift term. Introducing

equation (4.28) into the energy balance approach, the measurements are integrated

along the orbit:

Ediss =

∫ x(t)

x(t0)

Sf truedx +

∫ x(t)

x(t0)

bdx +

∫ x(t)

x(t0)

d (t− t0) dx (4.29)

Note that the position vector x is rotated to the SBF. For simplicity, the scale, bias and

drift coefficients are considered as scalar. Consequently, the parameters will loose their

physical meaning and just serve as an empirical error model. The model becomes:

Ediss = s

∫ x(t)

x(t0)




1

1

1


 f truedx + b

∫ x(t)

x(t0)




1

1

1


 dx + d

∫ x(t)

x(t0)




1

1

1


 (t− t0) dx (4.30)

Interestingly, the integration
∫ x(t)

x(t0)
(1, 1, 1)T dx will yield a linear and the integration

∫ x(t)

x(t0)
(1, 1, 1)T (t− t0) dx a quadratic drift as shown in figure 4.8. This can be more easily

understood if the integration along the orbit, i.e,
∫

dx, is considered as an integration in

time, i.e.,
∫

vdt. The velocity v of the satellite in the SBF is, in good approximation, a

constant value in the alongtrack direction. Its integration yields the drift. Consequently,

the bias will result in a linear drift, and the linear drift term in a quadratic drift.

Another way of simplification is suggested by Han (2003). Considering just the

alongtrack component of the accelerometer, the determination of the bias and scaling

factor retain its physical meaning. It is a good approximation since the atmosphere is

the strongest non-gravitational force affecting the satellite and will act primarily in the

alongtrack component. Other effects like, e.g., the solar radiation pressure will however
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Figure 4.8: Integration of dx and (t− t0) dx in the sbf

continuously change their working point on the satellite due to its motion. An error,

though small, is introduced and the energy balance is theoretically not valid anymore.

At the same time, considering the scale, bias and drift coefficient equal in all three

directions is a compromise to the solvability of the parameters in a least-squares ad-

justment. Theoretically, for each direction one parameter must be estimated. The

corresponding error equation is:

Ediss = sx

∫ x(t)

x(t0)

f true
x dx + sy

∫ y(t)

y(t0)

f true
y dy + sz

∫ z(t)

z(t0)

f true
z dz

+ bx

∫ x(t)

x(t0)

dx + by

∫ y(t)

y(t0)

dy + bz

∫ z(t)

z(t0)

dz

+ dx

∫ x(t)

x(t0)

(t− t0) dx + dy

∫ y(t)

y(t0)

(t− t0) dy + dz

∫ z(t)

z(t0)

(t− t0) dz

(4.31)

The input for the least-squares adjustment are differences ∆T of the disturbing potential

either to a reference field or from a crossover determination. The disturbing potential is

a one-dimensional quantity given along the orbit. The three-dimensional accelerometer

data is mapped by the integration to the one-dimensional quantity, and the directional

information is lost, which makes the inversion impossible (Raizner et al., 2006).

On the other hand, the primary aim of the calibration is not the derivation of phys-

ical meaningful parameter for the accelerometer but the calibration of the disturbing
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potential. For gravity field determination, the most important target is the removal of

the drift and thus the fulfillment of energy balance.

At the time of the accelerometer calibration, the constant c from the energy integral

(4.8) might or might not be included. The full model for the calibration is given as:

∆T (t) = c + s

∫ x(t)

x(t0)




1

1

1


 f truedx + b

∫ x(t)

x(t0)




1

1

1


 dx + d

∫ x(t)

x(t0)




1

1

1


 (t− t0) dx (4.32)

Calibration techniques. In standard ins applications, the bias can be determined

by aligning the accelerometer with the local gravity vector in two different directions.

The sum of the two measurements yields the bias. However, since the accelerometer in

the satellite is inaccessible and is not measuring any gravity, other calibration methods

need to be applied.

The first possibility includes the application of high- or band-pass filters (Ger-

lach et al., 2003b). The basis for the filtering approach is the fact that the accelerometer

is designed for a specific bandwidth, and applying a high- or band-pass filter will re-

move in the ideal case any signal in the frequency part outside the bandwidth of the

accelerometer. However, this approach is disregarded here since it is difficult to design

the proper filter without filtering gravity signal.

The second possibility is to use a crossover adjustment. A crossover occurs, when

the satellite track is crossing its own path from an earlier revolution. Neglecting time-

variable changes between the crossings the difference between these two measurements

should be zero. Any deviation is the result of errors in the measurements and can be

modelled. The advantage of the crossover calibration is that no a priori information

is necessary. The disadvantage is that the measurements are not taken in the exact

crossover location and the arcs normally do not cross in a 3D sense, cf. figure 4.9. This

means that interpolation along the orbit and radial up- or downward continuation is

necessary. The second disadvantage is that every ascending arc must be crossed with

all descending arcs and vice-versa, which becomes quickly computational costly.



Chapter 4 67

Figure 4.9: Crossover of ascending and

descending arcs

Several procedures to find crossover loca-

tions are suggested for different cases and

the calculations can be of theoretical na-

ture (Kim, 1997), rely on certain proper-

ties, or be numerical (Schrama, 1989).

Another problem is the assignment of

the point in time when the crossover re-

ally occurs. The crossover location could

be attributed to the time of the pass of the

satellite in the crossover point either of the

ascending or the descending arc. On the

other hand, the accelerometer bias causes

a drift, which means that the longer the

time between the two passes of the satellite at the crossover location, the bigger the

difference in the energy. Figure 4.10 illustrates this by showing the differences in energy

versus the time difference. A more rigorous approach is to divide the energy difference

by the time difference and interpret the result as a 1storder Taylor differentiator, thus

determining a time series of the first derivative, see also Weigelt and Sneeuw (2004).

Figure 4.10: Crossover calibration: energy difference vs. time difference
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The last and maybe simplest approach is the calibration with a priori data.

The difference ∆T on the left hand side of equation (4.32) is calculated by differencing

the disturbing potential derived from the satellite measurement and a corresponding

time-series from an existing a priori gravity field model. According to Han et al.

(2002), every current a priori gravity field can be used for this purpose since differences

between them are negligible and won’t affect the calibration results. Collecting several

differences over time, the unknown calibration parameter c, s, b and d can be estimated

in a least-squares adjustment. Since the calibration parameters are not constant over

time, the data is divided in daily arcs and one set of parameters is determined per

day. Figure 4.11 shows that the calibration method removes any drift reliably. The
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Figure 4.11: Modelling with a priori data: difference between calibrated energy and the

disturbing potential from tum2s (top); the correcting function (bottom)

advantage of this approach is that every data point can be used for the calibration.

Arbitrarily short arcs could be calibrated. Nevertheless, the arcs should be reasonably

long in order to avoid the removal of gravity information. This is avoided by selecting

arcs with a minimum length of 12 000 s as discussed in section 4.2.1. The technique is

applied throughout the rest of the thesis.
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4.2.3 Quality analysis

Two years of CHAMP data for the period from April 2002 to February 2004 is processed,

in total. By comparing the results to GGM02s, which is derived from GRACE data, the

results can be validated with independent and more accurate data. This enables the

investigation of effects like, e.g., the groundtrack pattern and other aliasing phenomena

on a single satellite mission. Throughout the computations of the monthly as well as the

two year solution, all background models and transformations are handled consistently.

Global gravity field using two years of CHAMP data. Gerlach et al. (2003b)

showed that the usage of kinematic data yields qualitatively the same gravity field

solutions but has the advantage of the independence from any a priori data. Dynamic

orbits depend on the choice of the a priori data and the gravity field solution is biased

towards it. Kinematic data is derived without the use of any a priori data at the cost

of higher noise in the position data and the necessity to derive velocities numerically.

Wermuth et al. (2004) presented the two year solution TUM2s for the same period as

discussed here. Although more data is now available, the emphasis is here on the usage

of kinematic data which are currently provided only for the presented period.

The solution using the two years of data is denoted as UofC and is compared first to

EGM96, which is a pre-CHAMP multi-satellite and multi-terrestrial gravity field. It was

the standard gravity field before the satellite missions. Figure 4.12 shows the difference

till degree and order 60 in the spatial domain and as mean values along the meridians

and parallels, respectively. On average, the difference along parallels is 41.5 cm and

along meridians 37.3 cm. In particular, the difference in Antarctica is clearly visible

and is in the range of ±2 m. Interestingly, the ocean area between 40 ◦ and 140 ◦ co-

latitude has a fairly good agreement with EGM96, which is most likely related to the

usage of altimetry data in EGM96. Noticeable are also the deficiencies in EGM96 in

remote continental areas, like, e.g., the Amazon basin, the Himalayan, the Alps and

other areas. The improvement in these areas is up to 1 m.

Comparing with TUM2s, UofC is expected to be on the same level. Figure 4.13 shows
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Figure 4.12: Geoid height difference between UofC and EGM96 in [m]: spatial (center),

rms along the meridians (top) and along parallels (left). Lmax = 60.

the difference. Note that the scale is changed to ±0.2 m and the degree is restricted

to 40. The spatial plot shows differences in the polar areas and north-south stripes,

which are likely related to the orbit of the satellite. One critical point in the derivation

of TUM2s was the filtering procedure in order to calibrate the data. The disturbing

potential of an a priori field (EGM96) was removed, the residuals filtered with a But-

terworth high-pass filter, and the a priori information restored. The filter, however,

removed not only the drift but also gravity signal which led to less signal power in the

low degree harmonics. The comparison of TUM2s and GGM02s in figure 4.14 shows the

same north-south stripes as figure 4.13. In the calibration of TUM2s, gravity signal was

filtered along the orbit, causing the pattern. The mean difference of TUM2s along paral-
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Figure 4.13: Geoid height difference between UofC and TUM2s in m: spatial (center), rms

along the meridians (top) and along parallels (left). Lmax = 40.

lels is in both comparisons, i.e., to UofC and GGM02s, in the range of a few centimeters

and on average 5.2 cm. There is also an increase towards the polar areas visible.

Finally, the comparison of UofC and GGM02s shows the quality of the newly derived

solution. The difference between UofC and TUM2s is primarily the refined calibration

procedure as discussed in section 4.2.2, which yields a better solution up to degree and

order 40 (cf. also figure 4.16). The spatial pattern of UofC is fairly random in contrast

to the one of TUM2s, which suggests that no systematic effect is involved anymore and

the solution up to degree 40 is of higher quality. The average difference in the rms

along parallels is 4.22 cm and thus approximately 19.1% better than the one of TUM2s.

The average rms along meridians is 4.28 cm and the improvement is approximately
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Figure 4.14: Geoid height difference between TUM2s and GGM02s in m: spatial (center),

rms along the meridians (top) and along parallels (left). Lmax = 40.

18%. Besides, UofC shows a slight increase from the pole towards the equator in the

rms along the parallels. This might be related to the data distribution which favors

the high-latitude areas.

The quality can also be quantified in the difference spectrum (figure 4.16). The

comparison in the spectral domain is done using the differences between the signal of

UofC, TUM2s and EGM96 w.r.t. GGM02s as an error estimate. The standard deviations

derived from the coefficients matrix of the unknowns Qx̂x̂ is available, too, but was found

in general to be overoptimistic for the low degrees. For verification, it is shown in figure

4.16 as a dashed line. The difference w.r.t. GGM02s is a comparison with an external,

independent and more accurate data source and therefore gives a better insight into
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Figure 4.15: Geoid height difference between UofC and GGM02s in m: spatial (center), rms

along the meridians (top) and along parallels (left). Lmax = 40.

the quality of the solution. Nevertheless, conclusions for the very low degrees are not

as reliable since GRACE is known to be deficient in the low degrees.

The top left panel of figure 4.16 shows the difference degree rms, which gives a very

good idea of the quality of each gravity model. Both TUM2s and UofC outperform EGM96

up to degree and order 60, with the exception of degree 4. The sh-coefficient C̄40 was

found to be deficient and causing a loss of accuracy by approximately one order of

magnitude. Substituting this value with the one provided by EGM96 fixes the peak and

yields a considerable improvement in the cumulative geoid error. The cause for this

peak is not clear yet. Interestingly, also the models TUM2s, EIGEN-2, EIGEN-3p (Reigber

et al., 2005a) and GIS-CHAMP (Reubelt et al., 2006) show the same peak. In general,
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UofC shows an improved performance for the low degrees compared to TUM2s due to

the calibration.

The interpretation of the cumulative geoid error obviously depends on the handling of

C̄40. If the value is unchanged, the level of 1 cm is exceeded with degree 4, i.e., the 1 cm

geoid height accuracy is only reached with a spatial resolution of more than 5000 km.

However, fixing the value of C̄40 yields a considerable improvement. The 1 cm-level is

exceeded at degree 14, i.e., UofC reaches a 1 cm geoid height accuracy with a spatial

resolution of 1400 km half wavelength. In the following, the effect of the calibration is

visible. TUM2s exceeds the 2 cm-level at degree 10 and UofC at degree 25. From degree
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40 on, the error of both is identical.

The bottom left panel shows the gain with respect to EGM96, i.e., it is the ratio of the

difference of UofC to GGM02s and the difference of EGM96 to GGM02s (cf. section 2.2.4).

A positive value shows an improvement, a negative value a degradation. The maximum

improvement is for degree 20 where the gain is almost one order of magnitude. Degree 4

has the aforementioned degradation if it is unchanged. Beyond degree 60, the errors in

the kinematic velocity set the limit of the recovery of the gravity field from CHAMP. The

same conclusion can be drawn from the signal-to-noise ratio (cf. figure 4.16, bottom

right).

Overall, the analyses in the spatial and the spectral domain show that CHAMP im-

proved the accuracy of the spherical harmonics up to one order of magnitude in the

low degrees up to 60 and has its most significant impact around degree 20. Due to

the velocity determination, CHAMP-only solutions are limited to degree 60. Note that

dynamic orbits will yield a similar picture, but with improved performance for degrees

higher than 40 due to the lower noise in the velocity. However, due to the reasons

explained before, only kinematic results are discussed here.

Monthly gravity field recovery. It is currently accepted that the derivation of

monthly gravity field information from CHAMP-only solutions is not successful. Reigber

et al. (2005a) concluded that monthly gravity solutions solely from CHAMP observations

reveal an unrealistic large scattering. Sneeuw et al. (2005) tried to recover time-variable

gravity signal with the energy balance approach and kinematic orbits. For their investi-

gations, TUM1s, which contains one year of CHAMP data, was used. Their investigation

was restricted to degree 4, i.e., a half wavelength of approximately 5000 km. They

showed that the error level of the monthly CHAMP solutions is insufficient for revealing

time-variations. Orbit decay and consequently the groundtrack variation is one of the

main contributors to this effect. Due to the improved calibration and the increased

signal power, the computations are repeated here.
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Figure 4.17: Variability in geoid height for low degree harmonics: April 2002 - March 2003
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Figure 4.18: Variability in geoid height for low degree harmonics: April 2003 - February

2004
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Figures 4.17 and 4.18 show the monthly variations in the spatial domain after the

subtraction of UofC for the very low degrees from 2 to 6. Expected patterns are seasonal

variations between northern and southern hemisphere due to, e.g., precipitation and

runoff. April 2002 and December 2002 show such a behavior. However, one year later

the same months do not show any similar pattern. Other areas like the Amazon basin

also show no annual or semi-annual signal but a random change instead. Immediately

obvious are also the artifacts in May 2002, October 2002, November 2002 and especially

in June 2003.

In the spectral domain, the monthly solutions are compared to Satellite Laser Ranging

(SLR) data (Cheng et al., 2004) in figure 4.19. Only the annual and semi-annual signal

is compared, i.e., the trend in the monthly CHAMP solutions was removed beforehand.

Note that the y-axis of each plot is restricted to ±5·1010 and due to their high variations

some of the monthly values of the CHAMP solution do not appear. Each value of a

CHAMP coefficient is denoted by a “?”. The errorbars denote an average error of the

solutions. It seems that the values are spread randomly around the signal of the SLR

model.

l = 2 4.93 14.82 5.03 16.58 4.94

l = 3 8.96 4.45 2.61 6.58 8.98 6.29 5.39

l = 4 12.66 8.78 3.52 10.81 7.35 7.37 4.39 6.18 6.74

l = 5 13.31 4.49 4.29 4.63 1.58 6.64 7.28 6.36 3.32 4.33 8.66

m=-5 m=-4 m=-3 m=-2 m=-1 m=0 m=1 m=2 m=3 m=4 m=5

Table 4.1: Difference rms between δKSLR
lm (t)× 1010 and δKCHAMP

lm (t)× 1010

Table 4.1 shows the difference rms between the low degree harmonics derived from

CHAMP and the SLR model. It confirms the bad agreement with the SLR model. For

many of the coefficients the difference is exceeding the predicted signal. In particular,

the coefficients S55, S44, S41, S21 and C21 show a very poor performance. Note that the

latter two were estimated and not set to the values suggested by the IERS.
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Although the improved low wavelength behavior of UofC seemed promising, the results

still point to the conclusion that even with the improved calibration technique the

derivation of time variable gravity field information is not possible.

4.2.4 Influence of the groundtrack on the monthly static solution

Assuming that no time variable gravity field can be derived, the variability of the

monthly solutions needs another explanation. The changes in May 2002, October 2002,

November 2002 and June 2003 of figure 4.17 and 4.18 cannot be explained by random

errors but suggest a systematic effect. Figure 4.20 shows the rms of geoid height
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Figure 4.20: rms of the difference between CHAMP monthly solutions and GGM02s in terms

of geoid height

differences w.r.t. GGM02s for the monthly solutions in the spatial domain. The bars are

grouped by month for three different degrees of development. The months May 2002,
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October 2002 and June 2003 have rms values of over 1 m for degree L = 60 whereas

all other months are, on the average, around 0.75 m. A decay from the beginning to

the end of the period is also visible and can be connected to the decaying orbit of the

satellite. CHAMP is slowed down primarily due to atmospheric drag and looses height

(cf. figure 4.22). The quality of the gravity field solution naturally improves since the

satellite is getting closer to the masses.

Figure 4.21 shows the groundtrack for months with obviously poor quality and, in

comparison, January 2004, which has a particular good coverage. Comparing it with

figure 4.20 reveals the connection between the quality of a monthly CHAMP solutions

and the groundtrack pattern. The satellite has a particular sparse groundtrack coverage,

i.e., the satellite is in a near-repeat orbit.

Figure 4.21: Groundtrack coverage: May 02 (top left), October 02 (top right), June 03

(bottom left), January 04 (bottom right)

The variation of the groundtrack coverage is caused by the changing orbit height.
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The relation of the orbit height and the gravity field recovery can be understood, if the

orbit perturbation spectrum is considered. Since CHAMP is in a near-circular orbit, the

simplified perturbation spectrum can be used:

ψ̇mk = ku̇ + mΛ̇ , with− L 6 m, k 6 L , (4.33)

where ψ̇mk is the perturbation frequency and L is the maximum degree of the spherical

harmonic representation of the potential. The drift in the argument of latitude u̇ is the

sum of the perigee drift ω̇ and the change in the mean anomaly Ṁ . The drift in the

longitude of the ascending node Λ̇ is the sum of the nodal drift Ω̇ and the change in

the Greenwich Apparent Sidereal Time ˙gast. For more details and derivations of the

simplified perturbation spectrum, the reader is referred to Sneeuw (2000).

The satellite experiences resonances with the gravity field, if the perturbation spec-

trum becomes equal to zero. Consequently:

ku̇ = −mΛ̇ ⇒ k

m
=
−Λ̇

u̇
=

Tu

TΛ

=
α

β
, (4.34)

where Tu denotes the orbital revolution period, TΛ one nodal day, β the number of

revolutions and α the number of nodal days. Since k and m are integers and k
m

con-

sequently an integer ratio, the ratio β
α

is also an integer ratio, i.e., after β revolutions

exactly α nodal days have passed. Note that all the ratios need to be relative primes,

i.e., they can not have a common divisor. Furthermore, the smaller the relatives primes

are, the sparser will be the groundtrack. Geometrically the satellite is in a repeat orbit.

During the months May 2002, October 2002 and June 2003 the satellite is passing

through a satellite height of ≈ 400 km and is experiencing a 31
2

repeat mode, i.e., the

satellite makes 31 revolutions in 2 nodal days. CHAMP is passing three times through

this height since it was lifted two times in between (cf. figure 4.22).

Note that the degradation in May and October 2002 seems not as bad as in June 2003,

which is related to the choice of the data. In the calculations, one month contained data

from the first to the last day of the month. It takes about one month to pass through

the repeat mode and for June 2003 the period falls exactly into this month whereas
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Figure 4.22: Mean orbit height and variability of CHAMP from April 2002 till February

2004

for May and October parts of this repeat mode take place in April and November,

respectively, which can also be seen in the poorer performance for these months (cf.

figure 4.20).

Yamamoto et al. (2005) investigated a similar effect for the GRACE satellite mission

using simulations. In their study they showed that in times of a near-repeat mode the

global standard deviations of the geoid height increase up to one order of magnitude

and the data distribution is insufficient for a gravity field recovery up to degree and

order 30 only.

Wagner et al. (2006) investigated the 61
4

repeat mode of GRACE in September 2004.

They come to the same conclusion and confirm that for a full solution up to degree L

the number of orbit revolutions before repeat must be greater than 2L. Similarly to

GRACE, the solutions for CHAMP during the 31
2

near-repeat mode will also be only valid

up to degree and order 30. Since the satellite is still sensing signal beyond degree L,

this signal will alias into lower degree coefficients; this is investigated in more detail in

the next section.
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4.2.5 Aliasing

Comparing the error spectra for January 2004 and June 2003, it is obvious that the

groundtrack has a severe influence on the solution (cf. figure 4.23). However, it is
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Figure 4.23: Error spectra: monthly solutions for January 2004 (left) and June 2003

(right)

not the only reason for changes in the spectrum. Signal is projected into different

parts of the spectrum for various reasons and a clear separation of each cause is not

always possible. All these phenomena are referred to as aliasing and are many times

neither reversible nor preventable. In general, aliasing occurs if the sampling theorem

is violated, which states that at least 2 samples are necessary in order to recover one

frequency of a signal correctly (Buttkus, 1991). Given a specific sampling, the maximum

resolvable frequency is consequently half the sampling frequency fmax.

fNyq =
fmax

2
(4.35)

This frequency is referred to as Nyquist frequency and should be only understood as a

theoretical boundary. In reality, noise will contaminate the measurements and consid-

erable more samples are necessary in order to recover a signal correctly. Lyons (1997)

suggests at least 5 samples as a more realistic rule of thumb.

Before the sampling problem and the subsequent mixed spectral mapping is discussed

in more detail, it should be mentioned for the sake of completeness that aliasing is also
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caused by:

• signal sampling interactions;

• satellite orbit geometry; and

• omission errors.

In the first case, the satellite senses at a specific time a certain gravity signal. If

the satellite is returning next time to this point the input signal changed due to the

inherent time-variable parts (Han, 2003, §5). Whether this time-variable part can be

recovered or not will depend strongly on the time resolution. Any satellite system will

in general deliver measurements with a specific time- and spatial-sampling according to

the choice of its instruments and orbit. The full spectral bandwidth of the input signal

can normally not be covered. Signal outside the bandwidth needs to be modelled and

reduced in a preprocessing step in order to avoid its projection.

As part of the orbit geometry itself the signal strength depends quadratically on

the satellite height (Heiskanen and Moritz, 1967). Additionally, polar gaps cause a

degradation of the spherical harmonic coefficients. It affects primarily the zonal and

near-zonal coefficients and the degradation increases with increasing degree (Sneeuw

and van Gelderen, 1997).

Last but not least, the omitted high degree signal aliases into lower frequencies which

occurs primarily in the degree-direction of the spectrum (Sneeuw, 2000, §6.3). From

the numerical point of view, there is a strong overlap between the omission error and

the temporal and spatial aliasing. However, the former is caused by the usage of a

deficient model whereas the latter should be understood as the loss of information due

to a insufficient sampling.

Temporal and spatial aliasing. It is important to understand aliasing as an under-

sampling of a signal causing mapping of high frequency content into lower frequencies.

The undersampling might occur in a temporal and a spatial sense.
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In the first case, the data is seen as a one-dimensional time series along the orbit.

CHAMP data is sampled in 30 s steps, which leads to a separation of data points along the

track by about 210 km assuming a speed of approximately 7 km/s. Taking the sampling

theorem into account, this would correspond to a degree and order of approximately

90. In reality, due to noise in the data the maximum resolvable degree is lower.

In the second case, the samples are related to the location where the measurements

are taken. Spacewise the signal is sampled on a closed surface (sphere). Assuming

a sufficient long time period and a static field, the surface could be covered arbitrar-

ily densly. With perfect coverage the aliasing problem would disappear but the data

distribution might lead to a biased estimation as was shown by Sansò (1990).

Aiming at the recovery of the gravity field on a monthly basis, the coverage will

be dependent on the data distribution within the month. In general, the sampling

along the equator is sparser than in polar areas due to the convergence of the orbit

tracks. Consequently, the distribution of the equator crossings of the orbit governs the

maximum solvable degree.

Figure 4.24 shows the sampling along parallels for a section of 60 ◦ around the Green-

wich meridian. In January the data is spread homogeneously over the equator but in

June the measurements are clustered. Obviously, in January sine and cosine functions

with higher periodicity can be fitted into the data. The resulting error spectrum is

homogeneous. In June 2003, the satellite has 31 revolutions before it is repeating its

own track, i.e., the satellite pattern has 62 ascending and descending arcs and the so-

lution is effectively only valid up to degree and order 31. Nevertheless, the satellite

is sensing signal beyond degree 31 and, consequently, aliasing occurs primarily in the

order-direction of the spectrum.

Jekeli (1996) discusses this thoroughly for the case of gridded simulated data and

suggests the usage of spherical cap averages as a de-aliasing filter. Here, the data is given

along the orbit and interpolation is to be avoided. The development of corresponding

filters for irregular sampled data using, e.g. wavelets, is an interesting aspect for future

work. For now, it can only be concluded that the time period in the months May and
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Figure 4.24: Sampling along latitude bands: January 2004 (left) and June 2003 (right)

October of 2002 and June 2003 is not long enough in order to cover the area sufficiently.

The situation might be improved only by adding additional data.

Note that due to the convergence of the orbit tracks the sampling at the pole is

rather constant, which is one motivation for local calculations in high-latitude areas,

cf. chapter 6.

Mixed spectral mapping: Orthogonality of the Legendre Functions. In the

measurement process, the two-dimensional gravity field is mapped on a one-dimensional

time series along the orbit of the satellite and subsequently into spherical harmonic

coefficients. The later step can be done in several ways, e.g., on a torus or on a sphere.

Here, a least-squares adjustment on the sphere is used. In the continuous case, the

orthogonality property of the Legendre functions ensures the separation into spherical
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harmonic coefficients. Sneeuw (1994) showed, among others, that due to the use of

discrete data the Legendre function loses its orthogonality property. Depending on

the severeness of discretization more and more signal is projected elsewhere instead of

the anticipated degree and order. If the exact behavior is known, a weighting matrix

could be designed to restore the orthogonality. Sneeuw (1994) demonstrated this for

the case of gridded data using the Neumann approach and it might be possible to derive

numerically a similar weighting matrix for irregular sampled data. First, the question

should be answered whether the loss of orthogonality influences the solution in such a

way that the pattern in the error spectra of figure 4.23 can be explained.

The orthogonality property is verified by integrating the multiple of two Legendre

functions along the latitude which is approximated by the summation over all measure-

ments when discretized.

2 (2− δm,0) δln =

∫ π

0

P̄lmP̄nm sin θdθ ≈
N∑

i=1

P̄ i
lmP̄ i

nm sin θi∆θi ⇒ P T W P, (4.36)

where δ is the Kronecker symbol and P contains the Legendre functions for a specific

order m and all degrees of interest arranged in a matrix and W has the factor sin θi∆θi

for each measurement on its main diagonal. This means that for a particular order m a

range of degrees can be evaluated and the resultant is a matrix. On its main diagonal,

the value should be 2 for {l = n, m = 0}, 4 for {l = n,m 6= 0} and all off-diagonal

elements should be zero.

In the following, the order with the largest degradation is used for the investigations.

As a measure for the largest effect, the rms of the matrix P T WP is determined for

m ∈ [0 . . . 70] after reducing the nominal value from the main diagonal. It is plotted in

figure 4.25. The effect is largest for order 2 and decreases up to order 7 by approximately

three orders of magnitude. There is virtually no difference between the rms of January

2004 and June 2003, which is a first indication that the loss of the orthogonality in the

Legendre functions due to discretization is not the reason for the pattern in the error

spectrum.
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Figure 4.25: rms of P T W P as function of the order m

Figure 4.26 shows the orthogonality matrix up to degree 70 for order 2. The month

January 2004 is on the left panel and June 2003 on the middle panel. For the first one,

82882 data points are processed and ∆θ has an average value of 10.63 arcsec or 349 m at

satellite height. In the latter, 80450 data points are used and ∆θ is slightly higher with

10.93 arcsec or 359 m. The degree is ordered in l −m even and l −m odd along the x-
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Figure 4.26: Orthogonality matrices for order 2: January 04 (left), June 03 (middle),

difference on a logarithmic scale (right)
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and y-axis. The diagonal elements have been removed according to equation (4.36) in

order to reveal the off-diagonal pattern. In the continuous case these elements are zero

and any deviations are a measure of the discretization error. The integration of an even

and an odd pair is naturally zero due to the development of the Legendre functions

and the numerical evaluation verifies this. The integration of even and odd pairs shows

symmetry w.r.t. the main diagonal and an increasing loss with increasing degree. The

difference of the two months on the right panel is shown in a logarithmic scale. It

reflects the influence of the data distribution on the mapping of the spectral content.

The pattern follows the general shape of the other two orthogonality matrices but the

magnitude is of the order of 10−10, i.e., the influence is small and barely reflected in the

matrix.

The main diagonal is affected similarly to the off-diagonal elements. This is also

confirmed in figure 4.27, which shows the difference of the main diagonal to the nominal

value of equation (4.36). The difference is small for low degrees and is constantly

increasing. This behavior and the drop in figure 4.25 up to order 7 suggests that the

influence of the polar gap is reflected in the matrix. The polar gap mainly affects the

zonal and near-zonal coefficients.
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Figure 4.27: Difference between the main diagonal of P T W P and the nominal value 2

for order 2.
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The loss of orthogonality, though present, is similar for both months and the difference

in the error spectra cannot be explained this way. The conclusion is also supported if

the number of points are counted in 1◦-latitude- and longitude-bands. Looking at the

number of points in the latitude direction, figures 4.28 and 4.29 show virtually no

difference.
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Figure 4.28: Groundtrack and number of points per 1◦-band: January 2004

On the other hand, there is a strong modulation in the longitude direction. The data

is clustered due to the near-repeat mode and the sparse groundtrack coverage. The

longitude direction is evaluated using cos mλ and sin mλ, which means that there is no

dependency on the degree. Cosine and sine only retain their orthogonality if the data

sampling is on an equidistant grid, which is not the case here due to the satellite orbit.

The orthogonality can be evaluated similarly to equation (4.36) but different cases for
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Figure 4.29: Groundtrack and number of points per 1◦-band: June 2003

the combination of cosine and sine functions must be evaluated.

1

2
(1 + δm,0) δmk =

1

2π

∫ 2π

0

cos (mλ) cos (kλ) dλ

≈
N∑

i=0

cos (mλi) cos (kλi) ∆λi = CT W C

(4.37)

0 =
1

2π

∫ 2π

0

cos (mλ) sin (kλ) dλ

≈
N∑

i=0

cos (mλi) sin (kλi) ∆λi = CT W S

(4.38)

1

2
(1− δm,0) δmk =

1

2π

∫ 2π

0

sin (mλ) sin (kλ) dλ

≈
N∑

i=0

sin (mλi) sin (kλi) ∆λi = ST W S,

(4.39)

where C and S contain the cosine and sine functions for all orders of interest and W

comprehends the factor ∆λ on its main diagonal. Since the data sampling depends on
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the latitude, the orthogonality must be investigated in different latitude bands.

The orthogonality matrices are shown in figure 4.30 for a 10 ◦ polar band and in

figure 4.31 for a 10 ◦ equator band. The matrices contain in the upper left corner the

combination of two cosines (4.37), in the upper right and lower left corner a cosine-sine

pair (4.38) and in the lower right corner the combination of two sine functions (4.39).

The diagonal elements have again been removed according to equations (4.37)–(4.39)

in order to reveal the off-diagonal pattern.
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Figure 4.30: Cosine/sine orthogonality matrix for a polar band: φ ∈ [75◦ . . . 85◦]

In the high latitude area a loss of orthogonality is visible for both months, but the

difference is of the order of 10−6. This means that the irregular data distribution leads

to a loss of orthogonality, but the effect again is similar for both months since the data

distribution in this area is congenerous (cf. figures 4.28 and 4.29) .

In the equator area the measurements are clustered in June 2003 and, consequently,

the effect is maximum. Figure 4.31 shows strong off-diagonal pattern and thus a severe

loss in the orthogonality. Cosine pairs are more affected at low orders and sine pairs

at high orders, which suggests that low order C̄lm-coefficients and high order S̄lm-

coefficients are more deficient. The error spectrum for June 2003 in figure 4.23, however,

does not reveal such behavior. Instead, a symmetric pattern about order 0 is visible.

The spectrum seems folded around the center line, i.e., signal of cosine coefficients is
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Figure 4.31: Cosine/sine orthogonality matrix for an equatorial band φ ∈ [0◦ . . . 10◦]

mapped to sine coefficients and vice-versa. This effect can be explained by the cosine-

sine combinations. In particular, the cosine at orders 0 to 20 and the sine at orders

20 to 40 show strong deviations from their nominal value of zero. This means that

either low-order cosine signal is mapped into mid-order sine coefficients or vice versa,

and might be an explanation for the triangularly shaped pattern.

In conclusion, it has been shown that the loss of orthogonality of the Legendre func-

tions is not responsible for the pattern in the error spectrum but most likely it is the

behavior of the cosine and sine functions. The situation is very complicated, however,

since the data distribution varies along the latitude and, consequently, there is loss of

orthogonality as well. Aside from this, both functions are processed here in one step,

which makes the numerical determination of a weighting matrix difficult. For future

work, it should be investigated if the separation into two steps and thus the separation

of Legendre and cosine/sine functions is more favorable. The theoretical framework for

the spherical harmonic analysis using two steps is outlined in Colombo (1983).
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4.3 Combination of single satellite missions

In the last sections it was shown that the groundtrack pattern is responsible for the

degradation of the monthly solutions. Currently, the situation can only be improved

by adding information which can either come from terrestrial measurements or, more

importantly, from other satellite missions. Ideally, the added measurements should be

taken globally in the same period as the CHAMP data with similar accuracy. The GRACE

mission enables exactly this. Note that for this case study the K-band measurement is

not used. Instead, each of the two GRACE satellites is considered as a single satellite

mission of the CHAMP-type. Before looking at the combination of the data, the monthly

variability of the GRACE data is analyzed.

Figures 4.32 and 4.33 show, similar to figure 4.20 for the case of CHAMP, the rms of

the geoid height differences w.r.t. GGM02s for the monthly solutions of grace a and

grace b, respectively. The solutions start in August 2002 due to data availability.

Consequently, the situation for May 2002 cannot be improved. Data for the months of

December 2002 and January 2003 is also not published, most likely due to poor quality.

With the exception of September 2002, when the satellites were passing a 76
5

repeat

mode (Ameele, 2004) and the spatial distribution of the data was sparse, the solutions

are more consistent but generally worse than CHAMP-only ones due to the altitude of

GRACE. The two GRACE satellites were at a higher orbit for the period of interest and,

assuming a similar error level, the downward continuation will amplify the noise more

in case of GRACE than in the case of CHAMP.

Figure 4.34 shows the spread of the monthly solutions in a degree-rms plot and

yields the same conclusion. The lower limit is defined by the minimum difference and

the upper limit by the maximum difference to GGM02s. CHAMP has the widest spread

but also the best solution especially for higher degrees due to its lower orbit. For the

two GRACE satellites, the downward continuation yields an increasing degradation with

increasing degree.

Clearly, the question of an optimal combination of the data arises. The simplest
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Figure 4.32: rms of the geoid height difference between grace a monthly solutions with

respect to GGM02s
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Figure 4.33: rms of the geoid height difference between grace b monthly solutions with

respect to GGM02s
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Figure 4.34: Spread of the difference degree rms of the monthly solutions

approach is to combine the data with equal weight but especially for months with a

dense groundtrack coverage the combined solution will be worse than a CHAMP-only

solution. The ratio between GRACE and CHAMP data is 2:1 which results in an undesired

bias towards GRACE. The downward continuation effect will then worsen the results.

Lerch (1991) suggested the usage of subset least-squares solutions. The differences

between a subset and the complete solution should be in agreement with their error esti-

mates which is achieved by adjusting the weights. Applying this method to CHAMP and

GRACE, the solution did not converge and, instead, the method of variance component

estimation was employed.

Variance component estimation. Variance component estimation enables the com-

bination of different data types using relative weights between the variance factors σ2
i

of each subset i of the data. Subsets can either be formed from the same data source,

e.g., monthly solutions of CHAMP, or by different types of data. Therefore, variance
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component estimation provides the platform for the combination with terrestrial, air-

borne, shipborne and altimetry data for future applications. The applied methodology

follows closely the one outlined in Koch and Kusche (2002) except that regularization

is not included here and a stochastic trace estimation is not necessary. The estimates

of the unknown parameters x̂ are calculated from
(

1

σ2
1

AT
1 P1 A1 +

1

σ2
2

AT
2 P2 A2 + . . .

)
x̂ =

1

σ2
1

AT
1 P1 l1 +

1

σ2
2

AT
2 P2 l2 + . . . (4.40)

Introducing the ratio ωi = σ2
1/σ

2
i which expresses the relative weighting of the observa-

tion li with respect to l1, yields:

(
AT

1 P1 A1 + ω2 AT
2 P2 A2 + . . .

)
x̂ = AT

1 P1 l1 + ω2 AT
2 P2 l2 + . . . (4.41)

The variance factors σ2
i are unknown random parameters since the weighting of different

types of observations is normally unknown. They are estimated iteratively in a best

invariant quadratic unbiased estimation (BIQUE) from

σ̂2
i =

v̂T
i Pi v̂i

ri

, (4.42)

where v̂ are the residuals after one calculation step and ri is the partial redundancy of

one subset of observations. It denotes the contribution of this subset i to the solution

and can be calculated as:

ri = ni − tr

(
1

σ̂2
i

AT
i Pi Ai N

−1

)
, (4.43)

where ni is the number of observation in the subset, “tr” the trace operator and N the

normal matrix of the complete solution. As discussed in section 4.1.2, the measurements

are assumed to be of equal accuracy due to the lack of the covariance information.

Consequently, the weight matrix Pi is the unit matrix. Koch and Kusche (2002) continue

with a stochastic trace estimation, which is necessary if the inverse of the normal matrix

N−1 is not available. This can be the case if the equation system is not inverted but only

solved by, e.g., a preconditioned conjugate gradient method, which might be interesting

for the case of GRACE including the K-band. In this application, the inverse of N is

available and a stochastic trace estimation is therefore not necessary.
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Monthly CHAMP/GRACE gravity field recovery. Subsequently, the monthly

solutions are analyzed and compared again in different domains. The first and maybe

most impressive one is the comparison of the rms of the difference between the combined

CHAMP/GRACE monthly solutions and GGM02s (figure 4.35). The figure should be
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Figure 4.35: rms of the difference between the combined CHAMP/GRACE monthly solutions

and GGM02s in terms of geoid height

compared to the CHAMP-only (fig. 4.20), grace a-only (fig. 4.32) and the grace

b-only solutions (fig. 4.33). The scale is kept the same throughout all four graphs for

easy comparison. The rms of all the months is relatively constant about 0.5 m with a

small variability around ±0.2 m. Clearly, the monthly solutions are vastly improved,

especially the months with poor groundtrack coverage, though the effect is still visible.

In October 2002 and June 2003 the rms dropped from 1.4 m and 2.5 m, respectively,

to 0.7 m for degree 60, which is an improvement by a factor of 2 to 3.5. The trend due

to the decreasing orbit height is still visible. This suggests that the combination can

reduce the influence of the groundtrack pattern but cannot improve significantly the

inherent problem of the downward continuation and the error propagation.



Chapter 4 100

The second point of view is the spread between the best and the worst difference

degree-rms w.r.t. GGM02s. Figure 4.36 shows for easy comparison the spread of all three

0 10 20 30 40 50 60 70

10
−10

10
−9

10
−8

10
−7

10
−6

Difference degree RMS−range w.r.t. GGM02s: lmax = 70

degree

Kaula

CHAMP

GRACE A

GRACE B

CHAMP/GRACE

Figure 4.36: Spreading of the monthly solutions

single satellite solutions and of the combined solution. Obviously, the combination gives

the best of both worlds. GRACE data reduces the spread of the CHAMP-only solutions

by one order of magnitude. At the same time, the downward continuation effect in the

GRACE-solutions is improved by CHAMP. The combined solutions are, therefore, more

consistent and homogeneous, which is important for time-variable investigations.

The question is whether the combined solutions show any time-variable patterns.

Figure 4.37 shows the monthly solution for the period of March 2003 to February 2004.

As seen above, due to the decreasing orbit height these results should be the best

available.
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March 2003 - February 2004



Chapter 4 103

The two-year solution UofC is again removed as an average field and only the very low

degrees 2 to 6 are shown. The northern hemisphere shows an increase in the geoid height

for the months of March and April 2003, and January and February 2004. The southern

hemisphere experiences a decrease at the same time. Since the summer months show

the opposite behavior, it could be an indication for mass redistribution with an annual

cycle and a signal range of ±2 cm. The Amazon basin shows now a more consistent

behavior throughout the year, as well. During the winter and spring months, there is a

decrease in the geoid height visible; in the summer and fall months, there is an increase.

Unrealistic, however, seem the variations over Europe and northern Africa.

The comparison with the SLR data from Cheng et al. (2004) (figure 4.38) also shows

improved results but only single coefficients have a similar behavior as the SLR data,

e.g., the order one terms with the exception of degree 2. Other coefficients experience

a phase shift like, e.g., C̄52 and S̄33, and some like C̄22 or S̄44 show again completely

random behavior.

l = 2 1.91 16.52 2.40 18.04 2.55

l = 3 1.97 2.50 0.80 1.36 0.96 1.81 2.13

l = 4 3.24 1.55 1.52 1.05 3.33 0.75 1.66 0.70 2.79

l = 5 2.07 2.50 1.12 1.41 1.61 2.54 1.13 2.21 0.76 1.88 1.87

m=-5 m=-4 m=-3 m=-2 m=-1 m=0 m=1 m=2 m=3 m=4 m=5

Table 4.2: Difference rms between δKSLR
lm (t)× 1010 and δK

CHAMP/GRACE
lm (t)× 1010

Table 4.2 shows again the difference rms between the low degree harmonics derived

from the combined solution and the SLR model. It confirms the improvement in the

comparison. Table 4.3 shows the relative improvement in the difference rms between

the low degree harmonics derived from the combined solution and the one from the

CHAMP-only solution. With the exception of S21, C21 and S51, the improvement is

between 44% and 90%.
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l = 2 61.2 -11.4 52.3 -8.8 48.4

l = 3 78.0 43.9 69.3 79.4 89.4 71.2 60.6

l = 4 74.4 82.3 56.7 90.3 54.7 89.8 62.1 88.6 58.6

l = 5 84.5 44.4 73.8 69.5 -1.8 61.8 84.4 65.3 77.0 56.7 78.5

m=-5 m=-4 m=-3 m=-2 m=-1 m=0 m=1 m=2 m=3 m=4 m=5

Table 4.3: Relative improvement in the difference rms of δKlm(t)× 1010 in percentage

Summarizing, the recovery of the time-variable signal cannot be considered conclu-

sive. The situation improved in comparison to the CHAMP-only solution and some

patterns seem reasonable. Yet, a clear identification of an annual or semi-annual signal

in the coefficients is only possible for individual coefficients. The results suggest that

the monthly solutions are now most likely at the edge of the recoverability of a time-

variable signal. Nevertheless, the signal is still contaminated, though minimized, by

the influence of the groundtrack. Furthermore, the overall accuracy and, in particular,

the noise level in the velocity determination still prevents the successful derivation of a

time-variable signal from CHAMP.

As a final comparison, one can take a look at the weighting factors themselves.

Especially in June 2003 the CHAMP solution should be downweighted, which is the case

(cf. figure 4.39). Interestingly, the two GRACE satellites do not have the same or similar

weight in some months. This is on the one hand related to the data availability and on

the other hand to the instrumentation of the satellites itself. For example, the atomic

clock onboard grace a is known to be problematic.

Initially, September 2002 was identified as a month of poor performance for the

GRACE-system. Nevertheless, the weighting between the GRACE satellites and CHAMP

is approximately equal. This and the remaining effect of the groundtrack in figure 4.35

could be an indication that the combination is still not optimal. In fact, the variance

component estimation as discussed in Koch and Kusche (2002) uses the residuals of the

reconstructed signal from the combined model with the measurements. This primarily
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Figure 4.39: Relative weighting factors for each combined month

gives insight into the internal fit of the solution. All the comparisons in the spatial and

spectral domain are done with external data (GGM02s), which suggests that the method

can be improved by introducing external information. Further, one variance factor is

determined for each subset. The influence of the groundtrack, however, is not equal

for all coefficients. A degree- and/or order-dependent weighting scheme would be more

desirable.

Global gravity field recovery using two years of CHAMP and GRACE data.

The combination of the two satellite systems can also be applied to the full set of data in

order to derive an improved mean solution. Figure 4.40 shows similar to figure 4.16 the

comparison of the combined CHAMP/GRACE solution to UofC as a difference spectrum

to GGM02s. The two solutions are very similar except for the very low degrees. The

high degrees show a slightly smaller noise level, but obviously the solution has more

problems with the degree 2 and degree 4 terms, which is an interesting observation.

The two satellite systems are affected similarly which might be an indication that the

error is not specific to the CHAMP satellite system. Since both satellites are processed in

the same way, likely the error is hidden in the data processing (including the GPS-data
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processing) and must be investigated in the future.

On the other hand, only a minor improvement can be expected from the combination.

It yielded improved monthly solutions because of the improved data distribution. Over

the two years, the data is well distributed for both the CHAMP-only and the combined

case. The limiting factor is the velocity determination. The figure proves also the

usefulness and reliability of the comparison with a different data source. The variances

of the combined solutions are clearly better since about 3 times the amount of data

is used. However, the variances indicate only the internal fit whereas the difference
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spectrum shows the limit of the data.

4.4 Summary

In this section, the energy integral is derived from the equation of motion in a moving

reference frame. The error analysis shows that the limiting factor is the velocity deter-

mination, either dynamically or by numerical differentiation from kinematic positions.

The data processing includes the preprocessing of the data, the derivation of ancillary

quantities like, e.g., tides, the application of the energy principle, the accelerometer

calibration with a priori data, and the subsequent least-squares adjustment.

From two years of kinematic data, the solution UofC is derived and compared to

EGM96, TUM2s and GGM02s. The solution shows an improved behavior in the low

degrees up to degree and order 40 due to the improved calibration procedure. The

derivation of monthly CHAMP-only gravity fields does not provide the anticipated time

variability of the gravity field. The degradation is caused mainly by the groundtrack

pattern, which causes aliasing of the gravity signal. The solutions in months with

sparse groundtrack coverage are effectively only valid up to degree and order 31, which

is related to the repeat mode of 31 orbits within 2 revolutions of the Earth. The loss of

orthogonality due to the discretization of the Legendre functions is present but similar

for all months, and is therefore not causing the degradation. On the other hand, a severe

loss of orthogonality of cosine and sine functions is observable in equatorial areas.

Combining CHAMP data with GRACE data, where the two GRACE satellites are con-

sidered as two independent satellites, yields improved monthly solutions due to an

improved data distribution. However, the determination of time variability is incon-

clusive so far. The two year combined solution also does not show any improvement

compared to the CHAMP-only solution. The combination minimizes the effect of the

groundtrack pattern but cannot remove the inherent problem of noise amplification due

to downward continuation.
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Global gravity field recovery from low-low

satellite-to-satellite tracking

This chapter starts in section 5.1 with the application of the energy integral to the case of

a low-low satellite-to-satellite tracking mission. The derivation in the Earth-fixed frame

is shown in section 5.1.1. Particular emphasis is placed on the exact representation of

the kinetic energy in terms of the K-band measurement. The sensitivity to the input

quantities is investigated in section 5.1.2. The newly developed concept of the exact

representation is proven in section 5.2 and the feasibility of processing real GRACE data

is investigated in section 5.3.

5.1 Energy balance approach for the low-low case

In the low-low satellite-to-satellite tracking case, the relative motion of the two satellites

is measured with a highly accurate microwave ranging system (K-band) in addition to

the positions and velocities of two satellites which are constantly measured by GPS.

The system is implemented in the GRACE satellite mission, and the recent gravity field

GGM02s outperforms CHAMP-solutions by a factor of 10. Error estimates indicate a

1 cm geoid height at spherical harmonic degree 70 or 285 km half wavelength (Tapley

et al., 2005). The solutions are derived using a conventional dynamic orbit and a gravity

adjustment process using least-squares. The objective of this section is to investigate the

applicability of the energy balance approach to the GRACE system, i.e., to incorporate

the K-band measurement into the approach and to investigate its error behavior and

its feasibility. Jekeli (1999) derived the energy integral for the case of GRACE in the

inertial frame. Part of this derivation is the approximation of the gravitational potential

108
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difference V12 by

V2 − V1 ≡ V12 ≈ |ẋ1|ρ̇12, (5.1)

where ẋ1 is the velocity of the first satellite and ρ̇12 the range rate between the two

satellites. The motivation here is to derive the energy integral in the Earth-fixed frame,

as in section 4.1 for the case of a single satellite mission, and to incorporate an exact

representation of the gravitational potential difference in terms of the K-band measure-

ment.

5.1.1 Derivation

The energy balance approach is applicable to each of the two satellites as was already

shown in section 4.3. The difference yields:

T2 − T1 ≡ T12 = Ekin
12 − U12 − Z12 −

∫ (
f 2 − f 1 +

∑
i

(
gi

2 − gi
1

)
)

dx− c12, (5.2)

where the subscript ’12’ always denotes the difference of one component of the second

satellite minus the same component of the first satellite. Otherwise, the notation is

kept consistent with the energy integral in equation (4.8). In order to find a connection

between the potential at the position of the two satellites and their relative motion,

the geometry of the system needs to be understood (figure 5.1). The two satellites are

travelling with velocities ẋ1 and ẋ2, respectively. Their relative velocity ẋ12 = ẋ2−ẋ1 is

projected onto the line of sight, which is expressed as the direction vector e12. The result

is the relative velocity ρ̇ in the along track direction. This is the K-band measurement.

On the other hand, the distance between the two satellites is the projection of the

relative position vector onto the line of sight:

x12 = ρe12 (5.3)

Taking the derivative splits the relative velocity vector into the alongtrack measurement

ρ̇e12 and a crosstrack part c = ρė12:

ẋ12 = ρ̇e12 + ρė12 (5.4)
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Figure 5.1: Geometry of the GRACE systems, from Rummel et al. (1978)

The crosstrack term is perpendicular to the line of sight and is represented by the

change of the direction vector ė12, which does not necessarily have unit length. Having

an expression for the relative velocity, this term can be combined with the kinetic energy

term. The latter contains the difference of the squared velocity for each satellite and

can be expanded as follows:

Ekin
12 =

1

2

(|ẋ2|2 − |ẋ1|2
)

=
1

2
(ẋ2 − ẋ1)

T (ẋ2 + ẋ1) . (5.5)

Inserting equation (5.4) in (5.5) yields:

Ekin
12 =

1

2

[
ρ̇ (ẋ2 + ẋ1)

T e12 + ρ (ẋ2 + ẋ1)
T ė12

]
(5.6)

which is an exact representation of the relative kinetic energy in terms of the microwave

measurement.

Wolff (1969) suggested to approximate equation (5.6). Half the sum of the velocities of

the two satellites is equal to the mean velocity ˙̄x of the two satellites and, assuming the

distance to be small, the relative velocity will primarily be in the alongtrack direction.

Considering all other terms in equation (5.2), it simplifies to:

T12 ≈ ρ̇| ˙̄x| − U12 − Z12 − . . . (5.7)
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which is a rough approximation for the system. Wolff (1969) developed his model in

1969, when a meter accuracy in geoid height was acceptable.

Nowadays, millimeter accuracy or better is expected for GRACE, and this method

needs to be refined. Jekeli (1999) used the same basic equation as Wolff but applied

it to residuals of the disturbing potential ∆T12, i.e., a reference orbit was subtracted

at first. The reference data must consequently also be subtracted from the microwave

measurement which yields the basic model:

∆T12 = T12 − T 0
12 = ∆ρ̇| ˙̄x| (5.8)

Han et al. (2003) proved the feasibility of static and time-variable gravity field recov-

ery using this approach with simulations and investigated several aliasing phenomena.

Nevertheless, the approach can still be considered an approximation and the exact rep-

resentation in equation (5.6) should outperform it if all elements are available with

sufficient accuracy.

5.1.2 Error analysis

The first step in the validation of the approach is the error analysis of the kinematic

energy term or, similarly to section 4.1.2, answering the question: How precise does

each component need to be known? Using the Cauchy-Schwarz inequality, the partial

derivatives w.r.t. the range-rate ρ̇, the range ρ and the magnitude of each velocity |ẋi|
are given as:

range-rate:
∂Ekin

12

∂ρ̇
6 1

2
|ẋ2 + ẋ1| (5.9)

range:
∂Ekin

12

∂ρ
6 1

2
|ẋ2 + ẋ1| |ė12| (5.10)

velocity:
∂Ekin

12

∂|ẋi| 6 1

2
( ρ̇ + ρ|ė12| ) (5.11)

The error estimates are shown in figure 5.2. Note that for the range-rate the unit of the

y-axis is [µm/s], for the range [cm] and for the velocity [mm/s]. The aspired accuracy in

geoid height is 1 mm which is denoted by the first vertical black line. Accordingly, the
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range-rate must be known with an accuracy of 1.3 µm/s which is achievable. The range

needs to be calculated from the GPS positions since the K-band range is biased. The

necessary accuracy is 55 cm, which is easily achievable. However, the limiting factor

is once more the velocity determination. The energy balance approach for the case of

GRACE demands an accuracy of 0.077 mm/s which is half an order of magnitude smaller

than the achievable 0.14 mm/s (cf. section 3.4). This already indicates that the aspired

accuracy of 1 mm in geoid height cannot be achieved with this approach. However,

surprisingly, it is a less stringent condition than Jekeli (1999) proposed. He stated a

value of 0.02 mm/s.

An alternative way was suggested by Han et al. (2006). An accuracy in the geopo-

tential differences at the level of 0.002 m2/s2 is achievable by simultaneously adjusting

the orbits of the GRACE satellites with the range rate measurements. As input, an a

priori orbit with an uncertainty of 2 cm in position and 20 mm/s in velocity is sufficient.
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5.2 Proof of concept: simulation study

The next step is the validation of the concept itself. For this, simulated data from the

IAG special commission SC7 (Ilk, 2001) is used. Noiseless positions and velocities are

provided for a period of one month with 5 seconds sampling. The two satellites are

released into the same orbit with a 6 seconds time difference. The distance is in the

beginning approximately 230 km and slowly decreasing to 228 km. Tidal accelerations

are neglected as well as non-gravitational forces. Therefore, equation (5.1.1) simplifies

and contains the kinematic energy, the normal potential and the centrifugal potential

term only. A reference difference in the disturbing potential is derived from a spherical

harmonic synthesis for each of the satellites using EGM96 to degree and order 300 as

input.

TEGM96
12 = T2 (λ2, φ2, r2)− T1 (λ1, φ1, r1) (5.12)

The kinetic energy term can be calculated in four different ways, i.e., from the velocities,

from equation (5.6) inserted into equation (5.2), according to the approach of Wolff

(1969), and by the approach of Jekeli (1999). For the last one, no consistent reference

orbit was available and thus it is dismissed in the following. From section 5.1.1 it

can still be concluded that the approach should outperform Wolff’s approach and be

close to the exact representation but slightly worse than it. Consequently, the following

approaches are compared:

from velocity: : T12 =
1

2

(|ẋ2|2 − |ẋ1|2
)− U12 − Z12

K-band representation: T12 =
1

2

[
ρ̇ (ẋ2 + ẋ1)

T e12 + ρ (ẋ2 + ẋ1)
T ė12

]
− U12 − Z12

according to Wolff: T12 = ρ̇ | ˙̄x| − U12 − Z12

If the data is consistent with the reference potential along the orbit, the first two

approaches should give results close to zero and the last one some type of approximation.

Figure 5.3 shows exactly this behavior. The approach according to Wolff indeed shows

an approximation at the level of ±8 m2/s2 as aspired in his paper. The data in the
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Figure 5.3: Differences between the three approaches and the reference data

left and middle panel is at the level of 10−6 and shows an identical pattern, i.e., the

derivation using the K-band is an exact representation of the velocity term and can be

reproduced using noiseless data.

5.3 Feasibility study: processing of real GRACE data

Despite the high demands of the energy integral for GRACE, the approach was imple-

mented for August 2002 using real data. Figure 5.4 illustrates the flow of the data

processing. The two satellites are first independently processed as discussed in section

4.2.1 and subsequently the components are combined and connected with the microwave

measurement using equation (5.6). The position data is again provided by the IAPG,

TU Munich, and is calculated in the exact same way as for CHAMP, i.e., the positions

are derived kinematically and the velocities are determined by numerical differentiation

according to section 3.4. Since positions and velocities were provided in a 30-second

sampling, the data was subsequently interpolated to the 5-second sampling of the K-

band using splines. The results are disturbing potential differences along the orbit

and the spherical harmonic coefficients are solved for using a pre-conditioned conjugate

gradient method (PCCGM) method.

The PCCGM method follows the procedure in Ditmar and Klees (2002). The initial
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solution is calculated as:

x0 = x̃0 = 0

r0 = r̃0 = AT P l

p0 = p̃0 = N−1
bd r0

k = 0

As an approximation, the block-diagonal of the normal matrix Nbd is used which reduces

the number of iterations compared to a diagonal matrix. The method also includes the

so-called Schönauer smoothing (Schönauer, 2000) which ensures a strictly monotonic

convergence of the method. If not included, the rms of the residuals may increase

in some steps and decrease in others. The symbols with the tilde are related to this

smoothing.

The first step of one iteration consists then of the following:

ak = AT (P (Apk)) + αRpk, (5.13)

where α is the regularization parameter and R the corresponding regularization matrix.

Currently, no regularization was applied in the calculation. Ditmar and Klees (2002)

suggest to use the first order Tikhonov regularization instead of the Kaula rule since

in their investigation the former yielded better results. The following steps can be

implemented straightforwardly:

αk =
rT

k pk

aT
k pk

xk+1 = xk + αkpk

rk+1 = rk − αkak

ek = N−1
bd (r̃k − rk+1)

γk = − rT
k+1ek

(r̃k − rk+1)
T ek

x̃k+1 = xk+1 + γk (x̃k − xk+1)

r̃k+1 = rk+1 + γk (r̃k − rk+1)
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At this point, the solution is tested for its convergence. The following two criteria are

used:

‖r̃k+1‖ < ε1

x̃k+1 − x̃k < ε2

The difference x̃k+1 − x̃k is defined as the maximum of the difference of the spherical

harmonic coefficients divided by the corresponding error degree variance (cf. Ditmar

and Klees (2002)). The two threshold values ε1 and ε2 are set to 10−9 in the compu-

tations and if the criteria are fulfilled the solution vector x is set equal to the solution

vector of the last iteration step x̃k+1. If the criteria are not fulfilled, the following steps

are executed:

p̃k+1 = N−1
bd rk+1

βk+1 =
rT

k+1p̃k+1

rT
k p̃k

pk+1 = p̃k+1 + βk+1pk

The iteration step k is raised by one and the procedure is repeated from equation

(5.13) on. The PCCGM enables the solution of large matrix systems. It uses a sparse

preconditioning matrix in order to derive a solution and compensates for the error by

iterations. For the case of GRACE, 29 iteration steps were necessary for the computation

of the solution in August 2002, which already indicates that the solution only converges

slowly due to high noise in the data.

The first validation of the results is done is in the spectral domain. Figure 5.5 shows

in the top left panel the degree rms difference spectra with respect to the GGM02s

solution and, for comparison, UofC is included. The GRACE solution for August 2002

is already one order of magnitude worse than UofC. The cumulative error shows that

the solution is one order of magnitude worse, in general. The gain with respect to

UofC and the signal-to-noise ratio show also the degradation by one order of magnitude.

Consequently, it must be concluded that this approach fails.
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Figure 5.5: Difference spectrum w.r.t. GGM02s: degree rms (top left), cumulative geoid

error (top right), gain w.r.t. EGM96 (bottom left), significant digits (bottom right)

The comparison in the spatial domain shows distinct North-South features which

coincide with the groundtracks of the satellite. The rms along parallels also shows a

bulge at the equator. The spatial data distribution can be excluded as a cause, since

the groundtrack coverage is dense in August 2002. Instead, the pattern is caused by the

noise in the position and velocity data along the orbit, which results in the degradation

of the spherical harmonic coefficients.

Overall, it can be concluded that the results are far below the expected performance

of GRACE and the velocity determination needs to be held liable as the primary error

source. Figure 5.7 shows the comparison of the difference disturbing potential along
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The unit is m and Lmax = 80.

the orbit. The top figure shows the comparison between EGM96 and GGM02s. The dif-

ference at satellite height has a maximum of 0.5 m2/s2, which corresponds to a difference

in geoid height of 5 cm. This serves as a reference. The derived signal should be better

than this since it will represent a subset of GGM02s; it is shown in the middle panel.

Obviously, oscillations exist which are by a factor of 10 higher than the difference of

EGM96 to GGM02s. The bottom panel is derived from simulated data by adding white

noise with a magnitude of 0.1 mm/s to the velocity component of each satellite. It shows

similar oscillations with the same magnitude and confirms that the velocity determi-

nation cannot match the demanded accuracy. At this point, it must be concluded that
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Figure 5.7: Difference of T12 with respect to GGM02s: from EGM96 (top), from real data

(middle), from simulated data with noise added (bottom)

the approach fails. It should be investigated whether the subtraction of a reference

orbit as introduced in Jekeli (1999) reduces the accuracy demands. Additionally, the

aforementioned approach by Han et al. (2006) should be considered.

5.4 Summary

The energy balance approach is extended for a second satellite and the microwave inter-

satellite measurements are included in the kinetic energy term which yields disturbing

potential differences along the orbit. The concept is validated with noiseless simulated
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data and shows that equation (5.6) is an exact representation of the relative kinetic

energy in terms of the K-band. However, GPS-derived velocities are necessary for the

determination of this term. The error analysis shows that the velocity needs to be deter-

mined with an accuracy of 0.07 mm/s or better in order to be applied successfully. Tests

with real GRACE data support the conclusion that the approach cannot be used with

the current achievable accuracy. The situation might be improved by the subtraction

of a reference orbit and should be investigated in future work.
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Local Gravity Field Recovery

The derivation of global gravity field solutions from CHAMP and GRACE led to a vast

extension of the knowledge about the gravity field. However, CHAMP as well as GRACE

only partially fulfill their anticipated objectives till now. CHAMP misses approximately

one order of magnitude in accuracy. As one of the reasons, the data distribution is

mentioned which is especially obvious during months with sparse groundtrack coverage

(cf. section 4.2.4).

On the other hand, the energy integral yields in-situ measurements but it is analyzed

by a global spherical harmonic analysis. Local variations are derived from the global

models and subsequently interpreted. Certainly, this is not optimal, especially since

global reference models for, e.g., tides are applied. An improvement for local areas is

therefore expected if a proper interpolation and/or downward continuation technique

is found. This chapter investigates two different methods which can be applied for

interpolation at orbit height and/or downward continuation. The input data for this

case study is kept consistent, i.e., no localized models for, e.g., tides are applied. This is

left for future work. The primary objective is to find a proper method for the derivation

of local solutions.

6.1 The framework of local gravity field determination

6.1.1 Motivation

Gravity field recovery depends on the spatial resolution of the data. The dependency

of a global solution is mainly related to the separation of orbit arcs at the equator. In

the case of CHAMP, the orbit arcs are separated by up to 5 ◦ in months with sparse

groundtrack coverage. Figure 6.1 illustrates this effect for a time period of good ground

122
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coverage on the left (January 2004) and for a sparse ground coverage on the right

(June 2003). The top part of the figure shows the Arctic region with its converging

groundtracks. The bottom part shows a 100 ◦-section around the Greenwich meridian

at the equator. Note that the number of measurements is similar in both months,

but in June 2003 the arcs are clustered due to the near-repeat mode (see also section

4.2.5). Due to the almost polar orbit of CHAMP the tracks are converging towards the

Arctic region: January 2004
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Arctic region: June 2003
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Figure 6.1: Monthly groundtrack pattern for January 2004 (left) and June 2003(right):

arctic (top) and equator section (bottom)

pole. It clearly shows that in high-latitude areas more information is available than

in equatorial areas. Figure 6.2 confirms the situation. It shows the number of points

available in an area of 100 km × 100 km for different latitude bands. The number of
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Figure 6.2: Number of points per latitude band

points is constantly increasing starting from |ϕ| = 50 ◦ towards the pole. In near-polar

areas, the data density is 20 times higher than at the equator. Therefore, it is beneficial

to recover regional solutions of the gravity field for areas at high latitudes. The possible

improvement was already shown by Jekeli and Garcia (2000) using simulated data.

6.1.2 Interpolation techniques

The interpolation or prediction x̂ at an arbitrary point P can be represented by a linear

combination of the stochastic measurements l̃:

x̂P =
I∑

i=1

αil̃i, (6.1)

where αi are the interpolation coefficients. Many different interpolations schemes

were investigated in the past. They include triangulation, tessellation and Overhauser

splines. Here, the techniques are restricted to the weighted mean prediction and the

least-squares prediction/collocation. The former is a computationally fast procedure and
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is often used to create quickly gridded data before the application of FFT-techniques.

The least-squares collocation is a computationally intensive method but is optimal in

the sense that it minimizes the interpolation error.

Weighted mean prediction Replacing αi in equation (6.1) with one over the num-

ber of measurements I yields the mean of the solution. However, since near masses

have a higher influence than far masses on the gravity in one point, the interpolation

coefficients should be weighted accordingly. The simplest way to achieve this is by using

a weighted mean. The weight depends on the inverse distance of the data point to the

calculation point.

αi =
1/rn

i∑I
i=1

1/rn
i

(6.2)

By controlling the power n of the distance r different local behavior can be achieved.

The higher the power, the higher the influence of local data. For the interpolation of

the disturbing potential, the power can be kept low since the gravity field is smooth.

Least-squares prediction/collocation An interpolation can be considered optimal

if the interpolation error is minimized. The interpolation error is given as the difference

between a predicted value x̂P and the true value xP at the same point:

ε = xP − x̂P = xP −
I∑

i=1

αil̃i (6.3)

Minimizing the maximum error in all interpolation points leads to a Tschebyscheff

interpolation. Applying the least-squares principle yields the least-squares prediction

(Heiskanen and Moritz, 1967). The theory is discussed comprehensively in Moritz

(1980a) and will only be reviewed here with the focus on the application. The optimal

interpolation coefficients are given as

αi =
I∑

j=1

CPQi

(
CQiQj

+ DQiQj

)−1
, (6.4)

where C is a signal covariance matrix and D a noise covariance matrix. The covari-

ance is the expectation of the product of two gravity quantities at a certain distance.
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The matrix CQiQj
describes the correlation of the error-free measurements, the ma-

trix CPQi
the correlation between the input quantity and the output quantity. Noise

is taken into account by DQiQj
. Its application is also the reason why least-squares

predicition/collocation is considered as consisting of a filtering plus a prediction step.

The usage of the eigenvalues λl (see below) of gravity functionals enables the trans-

formation between two gravity quantities of different kind. The covariance can either

be determined from a global covariance model or be derived from the measurements

itself. It is normally developed into a series of Legendre polynomials:

CAB (ψSQ) =
N∑

l=2

cAB
l P Leg

l (cos ψSQ) , (6.5)

where S is the calculation point, Q the data point, ψ the spherical distance between

S and Q and P Leg
l is the Legendre polynomial of degree l. The degree variance of the

two quantities A and B is denoted by cAB
l . The non-specific (i.e., dimensionless) degree

variances cl can be determined from

cl =
N∑

m=0

(
∆C̄2

lm + ∆S̄2
lm

)
. (6.6)

Specific degree variances can be derived by applying the law of covariance propagation:

cAB
l = βA

n βB
l cl (6.7)

cAA
l = βA

l βA
l cl (6.8)

Given a specific degree variance of B the transition to another specific degree variance

of A can be achieved by:

cAA
l =

βA
l βA

l

βB
l βB

l

cBB
l (6.9)

The degree variances are not treated as dimensionless quantities which means they

consist of a dimensioning factor D, an upward continuation term R
r

of specific power,

the eigenvalue λl and the dimensionless degree variances cl. The following table 6.1

lists these factors and the specific transfer coefficients βl. If the upward continuation

term is neglected and the input and output quantities are of the same kind, equation
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D
(

R
r

)
λl βl

T GM
R

l+1 1 GM
R

(
R
r

)l+1

N R l+1 1 R
(

R
r

)l+1

∆g γ l+2 (l − 1) GM
R2

(
R
r

)l+2
(l − 1)

δg γ l+2 −(l + 1) −GM
R2

(
R
r

)l+2
(l + 1)

Trr
2GM
R3 l+3 (l + 1)(l + 2) 2GM

R3

(
R
r

)l+3
(l + 1)(l + 2)

Table 6.1: Transfer coefficients for covariance propagation

(6.4) is generally referred to as least-squares prediction. Otherwise, the method is called

least-squares collocation.

For the degree variances, several models exist. A famous example is Kaula’s rule of

thumb:

cl =
1.6 · 10−10

l3
, (6.10)

which is a unitless signal model. Other degree variance models are mostly specific.

Among them is the model of Tscherning & Rapp (Tscherning and Rapp, 1974), which

is given as:

c∆g∆g
2 = 7.6 mGal2 for l = 2

c∆g∆g
l =

(
GM

R2

)2 (
R2

rP rQ

)l+2

sl+2 A(l − 1)

(l − 2)(l + B)
for l > 3,

(6.11)

with s = (RB/R)2 = 0.999617, A = 425.28 mGal2 and B = 24. According to equation

(6.9) the relation between the degree variances of the potential and of the gravity

anomalies is given as

cTT
l =

rP rQ

(l − 1)2
c∆g∆g
l (6.12)

In order to derive the covariance function for the disturbing potential, equation (6.12)
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needs to be inserted in equation (6.11):

cTT
2 = 7.6 mGal2 · rP rQ for l = 2

cTT
l =

(
GM

R

)2 (
R2

rP rQ

)l+1

sl+2 A

(l − 1)(l − 2)(l + B)
for l > 3

(6.13)

Equation (6.13) together with equation (6.4) provide the optimal interpolation co-

efficients for the application to CHAMP data. The coefficients are only optimal for a

global application due to the usage of a global covariance function. For the localized

calculations in high-latitude areas they might be suboptimal and the derivation of lo-

cal covariance functions from the data should be investigated. Nevertheless, since the

calculations are performed for the long to medium wavelength part and due to the

smoothing property of the upward continuation term the difference is most likely small.

Only a limited amount of data points can be used in the processing due to memory

constraints. The nearest 350 points are selected for the tests. For comparison: in Jan-

uary 2004, 82882 data points were used to estimate 5041 unknown spherical harmonic

coefficients.

6.2 Interpolation at satellite height

Before the data is continued downward, the interpolation at orbit height is considered.

Downward continuation will result in an amplification of errors. Approximately one

order of magnitude is lost during the process. The interpolation at orbit height is also

useful for applications that depend on gridded data like, e.g., the spherical harmonic

analysis using FFT techniques or for the torus approach (Sneeuw, 2003). The search for

time-variable effects can also be done at satellite height, although the signal is smoothed

due to the upward continuation term.

Before the interpolation the data is continued to a mean orbit height r̄ using a Taylor

expansion up to the third order:

T (r̄) = T (r) +
∂T

∂r
(r̄ − r) +

1

2

∂2T

∂r2
(r̄ − r)2 +

1

6

∂3T

∂r3
(r̄ − r)3 (6.14)
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The 3rd-order development ensures mm-level accuracy but one has to be aware that with

the partial derivatives a priori information from a known gravity field is introduced.

Least-squares collocation is capable of handling data at different heights but in this

case study the continuation to a mean radius is also applied in order to have the same

type of input for both interpolation methods.

The subsequent comparisons in the spatial domain (figures 6.3 to 6.13) are all set up

in the same way. The top left panel shows the signal itself. The top right one shows

the comparison to the monthly global CHAMP-only solution. On the bottom half is

the comparison to GGM02s; on the left the difference between the interpolated results

and GRACE, and on the right the comparison between the monthly global solution and

GGM02s. The interpolation method is considered superior if the results are better than

the global monthly CHAMP-only solution.

6.2.1 Weighted mean prediction

The first interpolation technique is the linear weighted mean approach, i.e., the order n

in equation (6.2) is set equal to 1. The tests are performed for January 2004 and June

2003. For each calculation point, the 20 nearest data points are used. The maximum

distance to the calculation point is 5 ◦. The weighted mean method depends on the

distance of the measurement to the interpolation point. The method is quick but

suboptimal, since it can be calculated quickly but the interpolation error is high. The

expectation is, that the worse the data distribution and the longer the distances, the

worse the results will be.

In January 2004 the groundtrack coverage was good and the data distribution was

homogeneous. The top left panel of figure 6.3 shows the interpolated values for Canada.

The general shape has the expected features with its minimum over the Hudson Bay,

the increase East of it towards Greenland and the slight increase due to the Rocky

Mountains. The top right and bottom left panel show the comparisons to global models.

Both pictures show similar patterns. The error in the interpolation method exceeds the

error caused by the global spherical harmonic analysis.
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Figure 6.3: The weighted mean solution for January 2004 (top left), the comparison to

the global CHAMP solution of January 2004 (top right), to GGM02s (bottom left) and the

difference between the global monthly CHAMP solution and GGM02s

40 45 50 55 60 65 70 75 80 85
0

0.05

0.1

Difference RMS w.r.t. GGM02s per latitude: January 2004

latitude [deg]

[m
]

 

 
local
global

Figure 6.4: Difference rms per latitude w.r.t. GGM02s at satellite height using weighted

mean interpolation: January 2004.
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The maximum error appears where the signal is maximum, i.e., in the Hudson Bay and

is close to 30 cm.

Figure 6.4 shows the geoid height difference rms per latitude w.r.t. GGM02s of the

interpolated (local) solution and, for comparison, of the spherical harmonic analysis

(global). The effect of the denser data distribution near the pole is clearly visible in the

local solutions. The rms drops from 10 cm at ϕ = 65 ◦ to 5 cm at the pole. The global

solution has a small tilt with increasing latitude but is tolerably constant. Note that the

constant value only indicates that the monthly CHAMP solution and the GRACE solution

are affected equally by their specific data distribution. This does not necessarily mean

that both take full advantage of the information at high latitudes.

The rms of the difference w.r.t. GGM02s for the whole area in table 6.2 shows that

the weighted mean solution is in general 2–3 times worse than the global solution. In

January 2004, the difference is about 8 cm–9 cm whereas the difference of the global

monthly CHAMP solution is as low as 3.5 cm. In June 2003, the rms value is more than

20 cm and consequently about 2 times bigger than the difference between the global

solutions.

January 2004 June 2003

weighted mean - CHAMP 8.6 cm 22.8 cm

weighted mean - GGM02s 9.4 cm 20.9 cm

CHAMP - GGM02s 3.5 cm 9.0 cm

Table 6.2: rms of the difference between the weighted mean solutions and the global

solutions for Canada

The interpolation results for June 2003 are strongly affected by the data distribution.

The error exceeds the limit of the colorbar in figure 6.5, i.e., it is higher than 30 cm.

The shape of the error follows the distribution of the orbit arcs. Near an arc the

interpolation error is small since the distance to the data points is small. However, the

gaps between the arcs can reach 5 ◦ and there the interpolation error is maximum.
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Figure 6.5: The weighted mean solution for June 2003 (top left), the comparison to the

global CHAMP solution of June 2003 (top right), to GGM02s (bottom left) and the comparison

between the global monthly CHAMP solution and GGM02s as a reference.
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Figure 6.6: Difference rms per latitude w.r.t. GGM02s at satellite height using weighted

mean interpolation: June 2003.
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Compared to January 2004, the error level in the geoid height difference rms (figure

6.6) is doubled for the global solution and tripled for the local solution up to a latitude

of ϕ = 75 ◦. Beyond this latitude, the local solution is comparable to the global monthly

CHAMP solution with an rms-value of 8 cm, i.e., the denser data distribution can only

be used effectively beyond ϕ = 75 ◦.

Any interpolator is generally a smoothing operator, which is a useful property since

it might smooth the errors in the measurements. Nevertheless, here it also resulted

in filtering of the signal. From section 4.2.3 it is already known that the monthly

global solution is degraded for June 2003. The weighted mean solution provides in the

best case results on the same level as the global solution and fails to make use of the

denser information in high-latitude areas as desired. It might still be useful for quick

verifications or data screening. A solution for an area in Canada with 80000 data points

is reached within 72 s. Using a least-squares prediction, the calculation of a solution

needs 11 min. Both times are measured on a conventional desktop system. In this sense,

the method is really “quick and dirty”.

6.2.2 Least-squares prediction

The second method is the least-squares prediction which minimizes the interpolation

error and is therefore expected to perform better. Besides, it can also be argued that

due the usage of the covariance function more information about the behavior of the

gravity field is introduced. It will allow the interpolation in areas with data gaps. For

the signal covariance, the Tscherning & Rapp model is used up to degree and order 80.

The noise covariance is also included, cf. Moritz (1980a). For the model of the noise

the global covariance model of Tscherning & Rapp is developed from degree 80 to 720.

The results for January 2004 are shown in figure 6.7. The least-squares prediction

improved the solution and the pattern seemed more random than in the case of the

weighted mean solution. The difference to GGM02s shows features with amplitudes

between 5 cm and 20 cm.
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Figure 6.7: The least-squares prediction solution for January 2004 (top left), the compari-

son to the global CHAMP solution of January 2004 (top right), to GGM02s (bottom left) and

the comparison between the global monthly CHAMP solution and GGM02s as a reference.
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Figure 6.8: Difference rms per latitude w.r.t. GGM02s at satellite height using least-squares

prediction: January 2004.
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The comparison of the global monthly solution to GGM02s has only a few pattern with

differences higher than 5 cm. The rms-values in table 6.3 show that the global solution

is still better by 3.1 cm. However, the interpolated solutions is about 3 cm better than

the weighted mean solution. Moreover, it is derived using a global covariance model

and it might improve by using a covariance model specific to this area.

January 2004 June 2003

LS prediction - CHAMP 5.9 cm 10.1 cm

LS prediction - GGM02s 6.6 cm 7.8 cm

CHAMP - GGM02s 3.5 cm 9.0 cm

Table 6.3: rms of the difference between the least-squares prediction solutions and the

global solutions for Canada

The geoid height difference rms w.r.t. GGM02s in figure 6.8 shows the same picture.

The least-squares solution is up to ϕ = 75 ◦ two times worse than the global monthly

solution. Only for latitudes 75 ◦–80 ◦ the interpolated solutions gets close to the global

solution. Likely, a similar effect as in the case of the weighted mean solution is respon-

sible for this drop. Beyond ϕ = 80 ◦, the least-squares prediction becomes sensitive to

the data distribution causing an increase in the rms. In this area, more and more data

points are selected south of the calculation point due to the polar gap and the predicted

value becomes biased towards these points.

In contrast to the weighted mean method, the least-squares prediction is able to han-

dle the sparse data distribution of June 2003. The least-squares prediction solution has

a smoother appearance, though there are still some artifacts left. In the south-eastern

coast of Canada, northwest of the Hudson Bay and near the border to Alaska, the

solution has errors larger than 25 cm. These might be related to the data distribution

in these particular areas. The covariance matrix of the measurements is inverted in the

processing and the geometry of the data points governs the stability of the matrix.
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Figure 6.9: The least-squares prediction solution for June 2003 (top left), the comparison

to the global CHAMP solution of June 2003 (top right), to GGM02s (bottom left) and the

comparison between the global monthly CHAMP solution and GGM02s as a reference.
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Figure 6.10: Difference rms per latitude w.r.t. GGM02s at satellite height using least-

squares prediction: June 2003.
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An uneven distribution or close measurements with large discrepancies will increase the

instability of the system.

Nevertheless, considering the overall rms-value, the interpolation method is outper-

forming for the first time the global monthly solution in the comparison against GGM02s.

The rms-value is 1.2 cm smaller. The same holds true for most latitude bands. With

the exception of the areas mentioned earlier and their corresponding latitudes, the

rms-value of the local solution is up to 4 cm smaller. This already proves that localized

solutions can be beneficial. It also shows that global models do not incorporate the full

information available in high-latitude areas.

6.3 Downward continuation method

6.3.1 Least-squares collocation: interpolation + downward continuation

The real advantage of the least-squares collocation, i.e., of the least-squares prediction

with downward continuation in this case, will be visible in this section. Unlike the

spherical harmonic analysis, the downward continuation in collocation yields a smooth

solution.

Thus collocation ensures, in fact, a smooth regular downward continu-

ation of ∆g (provided we have only a finite number of ∆gi). As the point

P can be an arbitrary point on the sphere r = R (Fig.13.1), the collocation

solution automatically combines downward continuation and interpolation

in a natural way, so as to obtain a smooth solution. (Moritz, 1980a, §13,

p.97)

Although the quote above describes the case of gravity anomalies, it can be easily trans-

ferred to the case of the disturbing potential using the law of covariance propagation

(6.9). In general, the downward continuation effect is inherent but since collocation is

a smoothing operator the effect is expected to be less pronounced than in the case of

the global solution.



Chapter 6 138

Figure 6.11: The least-squares collocation solution for January 2004 (top left), the com-

parison to the global CHAMP solution of January 2004 (top right), to GGM02s (bottom left)

and the comparison between the global monthly CHAMP solution and GGM02s as a reference.
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Figure 6.12: Difference rms per latitude w.r.t. GGM02s at satellite height using least-

squares collocation: January 2004.
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Starting with January 2004, the comparisons to GGM02s clearly shows that the local

solution is outperforming the global spherical harmonic analysis. Note that approxi-

mately one order of magnitude in the accuracy is lost due to the downward continuation.

The error is around or below 1 m for most of the area. The global monthly solution, on

the other hand, has errors of 1 m–2 m for many parts of the area. The overall rms-value

in table 6.4 shows an improvement of 14.2 cm due to the localized calculation.

Surprisingly, the geoid height difference w.r.t. GGM02s per latitude (figure 6.12)

shows a better agreement of the local solution with the GRACE-model for the latitude

area between 40 ◦ and 60 ◦. Beyond these latitudes, the difference rms increases and is

similar to the one of the global monthly solution up to ϕ = 77 ◦. For higher latitudes, the

global solutions are closer, which might be an indication that both global solutions are

biased towards the polar areas. On the other hand, the last jump in the local solution

is caused by a peak at the northwestern coast of Greenland. Due to this location near

the polar gap, these points are likely to be ill-determined. Still, it is surprising that

the difference rms between the local solution and the GRACE-model increases with

increasing latitude. Due to the decreasing difference rms of the two global models the

possibility that both global models are biased cannot be excluded without a comparison

to independent data, e.g., GPS-leveling or other geoid models like ArcGP. Consequently,

it cannot be concluded, if the local or global solution is deficient.

January 2004 June 2003

LS prediction - CHAMP 0.823 m 2.546 m

LS prediction - GGM02s 0.546 m 0.694 m

CHAMP - GGM02s 0.688 m 2.459 m

Table 6.4: rms of the difference between the least-squares collocation solutions and the

global solutions for Canada

Analogously to the case of the least-squares prediction, a vast improvement is reached

in the local solution for June 2003, and this time the effect is very impressive.



Chapter 6 140

Figure 6.13: The least-squares collocation solution for June 2003 (top left), the comparison

to the global CHAMP solution of June 2003 (top right), to GGM02s (bottom left) and the

comparison between the global monthly CHAMP solution and GGM02s as a reference.
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Figure 6.14: Difference rms per latitude w.r.t. GGM02s at satellite height using least-

squares collocation: June 2003.
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The global monthly solution shows strong artifacts due to aliasing as discussed in section

4.2.5. The pattern of the groundtracks is visible except for the very high latitude areas.

These areas are always densely covered, which also suggests that the spherical harmonic

solution is biased towards these areas. However, as mentioned before, the figures show

only the difference to GGM02s and it cannot be ruled out that GGM02s is also deficient

or biased in these areas. The figures only show that the monthly global CHAMP-only

solution and the GGM02s are close in this area.

The difference between the global monthly solution and GGM02s exceeds 3 m whereas

the localized solution remains at the level of the January 2004 solution. The overall

difference rms proves this. The value only increases by 14.8 cm. In case of the global

monthly CHAMP-only solution for June 2003, the rms-value is almost tripled. The

difference rms per latitude shows the same picture. For latitudes lower than 62 ◦, the

value is three times higher than the local solution. For 62 ◦ < ϕ < 71 ◦, the global

solution is two times worse and beyond 71 ◦ the local and global solution are on the

same level again.

The collocation solution for June 2003 shows a similar smooth picture as in January

2004. In fact, the patterns are almost identical in figure 6.11 and 6.13 but more pro-

nounced in the latter one. This means that least-squares collocation will yield more

consistent results than the global spherical harmonic analysis, which is important for

time-variable studies. The improvement, however, is not only reached due to a better

data distribution in high latitude areas as suggested earlier, but mostly due to the use

of collocation itself.

6.4 Summary

The interpolation at orbit height is not a trivial problem. “Quick and dirty” solutions

can only be used for data screening and preliminary solutions. Least-squares predic-

tion is already one of the most sophisticated methods and computationally intensive.

Nevertheless, if one is willing to accept this disadvantage, the least-squares prediction



Chapter 6 142

will yield better results in months with sparse groundtrack coverage. The effect is most

pronounced for the case of the least-squares collocation, where the smoothing prop-

erty of the downward continuation supports the derivation of localized and consistent

monthly solutions. From this investigation it is not yet clear if the global solutions

from both CHAMP and GRACE are biased towards the polar area, or the difference to

the local solution is really caused by the improved local solution. Only a test with an

independent data source can reveal this. Furthermore, the global covariance model of

Tscherning & Rapp was used; the solution might improve by deriving a local covariance

model. Both should be investigated numerically in the future.
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Concluding remarks

In this chapter the conclusions and recommendations for future work are outlined. The

gravity field recovery in this thesis was based on the principle of energy conservation

and was implemented for the case of high-low (CHAMP) and low-low (GRACE) satellite-

to-satellite tracking. For the calculations more than 60 million measurements have

been processed; 374 Matlab functions with more than 52700 lines of code have been

developed. Results have been derived on a global and on a local scale. The following

discussion provides a summary of the achievements for each of the three parts of the

thesis, namely the global gravity field recovery from CHAMP, the global gravity field

recovery from GRACE and the local gravity field recovery in high latitude areas from

CHAMP. It should be mentioned that many minor improvements and findings are

mentioned in the text but only the major achievements are discussed in the following.

7.1 Conclusions

CHAMP. Two years of CHAMP data have been reprocessed using the energy balance

approach and a least-squares adjustment in order to derive gravity models on a global

scale. Timewise, monthly as well as two-year solutions have been determined. The

important vertices of this part of the thesis are:

1. The two-year solution UofC has been derived and is outperforming the gravity

field model TUM2s, although the same input quantities have been used.

2. The calibration using a priori information is the primary reason for the improve-

ment in the solution. The filtering of low degree gravity signal is avoided by the

selection of a proper mathematical model in the least-squares adjustment and by

restricting the estimation to one set of parameters per day. This way, the physical
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properties and the behavior of the accelerometer are taken into account.

3. The refined calibration procedure has yielded an improved signal strength till

degree and order 40.

4. The derivation of time-variable gravity field information is not possible due to the

low accuracy of the CHAMP data. The changing groundtrack pattern has been

identified as one of the main contributor to the low accuracy.

5. The loss of the orthogonality in the sine and cosine functions has been identified

as the cause of the degradation of the monthly global solutions. The loss of the

orthogonality of the Legendre functions, on the other hand, has been ruled out.

6. Considering the GRACE-satellites as two CHAMP-type satellites, the resulting com-

bined monthly solutions start to show variations, which can be connected to mass

redistribution. Annual and semi-annual signals are recognizable for some spherical

harmonic coefficients whereas others show still a random behavior.

7. The derivation of a two-year combined solution has yielded no further improve-

ment. The limiting factor is the velocity determination by numerical differentia-

tion of kinematic positions.

The improvement w.r.t. TUM2s is maximum for degree 14 with 30%. The cumulative

geoid error of the UofC model can reach the 1 cm level with a spatial resolution of

1430 km half wavelength, if the deficient C̄40 is replaced by an a priori value, e.g., from

EGM96. The reason for the deficiency of this coefficient is not clear yet. Investigating

the orthogonality of the Legendre functions and the sine/cosine functions in months

with good and sparse groundtrack coverage has shown that the data distribution is

the main contributor to deficiencies of the global solution and thus is preventing the

determination of time-variable gravity patterns.

Currently, the data distribution can only be improved by introducing additional

information. Fortunately, the same type of data for the same period of interest is avail-

able from the GRACE satellite mission. The idea of using the two GRACE satellites as
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CHAMP-like satellites, i.e., no K-band measurements are used, is unique till now and

yields a more homogeneous data distribution for the time period of interest. For the

combination, variance component estimation is applied. A simple equal weight combi-

nation has yielded a deficient solution due to a bias towards the GRACE-data, which

has less signal strength due to the higher orbit. The combined solution of months that

have formerly been identified with a sparse groundtrack still shows a small deficiency

compared to months with good groundtrack coverage. This might be an indication

that the weighting coefficients are not yet optimal. Introducing external information

into the determination of the weighting factors might improve the situation. Still,

by combining single satellite missions, the influence of the groundtrack variability can

be minimized. The monthly solutions become more homogeneous and start to show

time-variable gravity signals.

GRACE. The energy balance approach for the case of low-low satellite-to-satellite

tracking has been derived in the Earth-fixed system, and its feasibility has been inves-

tigated using simulated and real GRACE-data. The results of the research are:

1. An exact representation of the velocity difference and consequently of the relative

kinetic energy in terms of the K-band measurement has been derived.

2. The error analysis has shown that the limiting factor is the velocity determination

from kinematic positions.

3. The application to real GRACE data failed due to the high accuracy demands on

the velocity.

The representation of the kinetic energy term in terms of the K-band avoids the ap-

proximation suggested by Wolff (1969). The concept has been verified using noiseless

simulated data. Compared to the accuracy demands of Jekeli (1999), the newly derived

approach can handle about half an order less accurate data and thus has a less stringent

condition on the velocity determination. Nevertheless, the approach still demands an
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accuracy of 0.077 mm/s and currently the noise in the kinematic position only admits an

error-level of 0.14 mm/s. Consequently, and due to the higher sensitivity of the observ-

able to noise, the derived monthly solution for August 2002 is one order of magnitude

worse than UofC. The situation might be improved by following the approach of Han

et al. (2006). By simultaneously adjusting the orbits of the GRACE satellites with the

range rate measurements, the accuracy demands can be reduced.

High latitude areas. One of the advantages of the energy balance approach is that

it yields pointwise measurements along the orbit. The convergence of the satellite

orbit in polar areas forms a denser data distribution than in equatorial areas. Using

interpolation and downward continuation techniques, localized solutions at satellite

height and on the surface have been derived. The conclusions of this study are:

1. The weighted mean solution has yielded a quick but less accurate solution.

2. The least-squares prediction at satellite height has outperformed the global solu-

tion in months with sparse groundtrack coverage.

3. The local solutions derived on the surface with least-squares collocation outper-

form the global solutions and thus represent an important tool for the investigation

of time-variability.

4. The validation showed that the local solutions agree with the GRACE solution

better in low than in high latitude areas.

The error of the weighted mean solution strongly depends on the data distribution and

does not reach, in comparison to GGM02s, a better level than the corresponding monthly

global CHAMP-only solution. The method takes no advantage of the denser information

in high-latitude areas. The least-squares methods are computationally intensive for

the task of interpolation but for calculation at satellite height have yielded results on

the same level as the global solution for month with good groundtrack coverage and
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showed a clear improvement for months with sparse groundtracks. The strength of the

least-squares prediction is that it allows combination with the downward continuation,

thus becoming least-squares collocation which has the property of yielding a smooth

solution. However, the predicted value is highly sensitive to outliers and depends on

the data distribution in each subset. The behavior of local and global solutions is

also contradicting the expectations. It has been anticipated that the local solutions

outperform the global solution in high latitude areas due to the higher data density.

Failure to do so has three possible explanations. First of all, the local solutions might

be deficient due to the data distribution and the high sensitivity of the least-squares

collocation to the data distribution. Secondly, the global solutions are biased towards

the pole. And thirdly, the global solutions are deficient at high latitudes. A comparison

with an independent data source is necessary in order to clarify this situation.

7.2 Recommendations for future work

The applicability of the energy balance approach to a high-low satellite mission has been

proven before. In this thesis, several aspects of the data processing have been refined

but improvements in some areas of the data processing are possible. For example, the

calibration is done using a priori information. Although it is generally accepted that

every current gravity field can be used and has minimum to no influence on the solution,

an iterative scheme might be more beneficial. In the first, step an approximate solution

can be derived using e.g. crossover calibration. The preliminary gravity solution can

be the input for the next iteration step. Thus the calibration becomes independent of

any a priori information.

Another not fully understood point is the parametrization and the estimation fre-

quency of calibration parameters. Common procedure of the GeoForschungsZentrum

Potsdam is the estimation of daily bias parameters and one monthly scale factor. Other

groups estimate scale factors on a daily basis without the estimation of any bias. The

primary objective is certainly the calibration of the data and any model enabling this
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can be used, but it neglects the physical properties of the accelerometer. In this thesis,

the calibration model has been selected with these in mind but a final answer has not

been reached so far. Furthermore, with the GGM02s-model an independent data source

is available. By determining the potential along the orbit and inverting the energy

balance approach, the behavior of the accelerometer can be analyzed. The noise level

and the contribution to the solution of each accelerometer axis can be investigated

and the optimal number of estimation parameters per time interval can be determined.

Certainly, not only the energy balance approach but also other approaches can be used

for this.

Concerning the derivation of global solutions from high-low satellite-to-satellite track-

ing, the focus should be on the improvement of the derivation of monthly solutions.

Although GRACE is currently outperforming CHAMP by one order of magnitude, both

satellite systems will decay continuously and end probably by 2007. The objectives of

physical geodesy include also the monitoring of the time variable gravity field. Future

satellite mission like, e.g., the swarm-mission will consist of three CHAMP-like satellites

and thus the optimal combination using variance component estimation is an important

tool. The variance is derived from the internal fit of the data, but introducing external

criteria might yield an improvement in the global gravity solution. Additionally, coef-

ficients with different degree and order are not equally affected by the different error

sources. A degree- and/or order-dependent weighting might be advantageous.

Further efforts should also be undertaken to apply the energy balance approach to

the case of low-low satellite-to-satellite tracking. Introducing a reference orbit to the

calculations might reduce the accuracy demands for the data. Additionally, the ap-

proach of Han et al. (2006) should be investigated in more detail and should be linked

to the exact representation of the kinetic energy in terms of the K-band measurement.

Also, the use of dynamic position and velocity data should be considered. They might

lead to a dependency on the a priori gravity field used in the determination of the

position and velocity, but the noise level is generally lower than the one of kinematic

positions. In case of a successful implementation, certainly the dependency on the a
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priori data should be investigated, as well. An iterative scheme for orbit determination

and gravity field recovery might be able to minimize this influence.

Regarding the local calculations, least-squares collocation has been identified as the

most powerful tool, especially when downward continuation is included and necessary.

The input data, on the other hand, was not optimal since the same data were used

for global calculations. The stepwise improvement of the input data by adapting, e.g.,

localized tides model and the estimation of local covariance functions will yield further

improvements. Deriving consistent data for monthly solutions in high-latitude areas is

expected to support studies of time-variability.



List of Abbreviations

BIQUE best invariant quadratic unbiased estimation

B.G.I. Bureau Gravimetrique International

BVP Boundary Value Problem

CEO Celestial Ephemeris Origin

CEP Celestial Ephemeris Pole

CGG2000 Canadian Gravimetric Geoid model 2000

CHAMP CHAllenging Minisatellite Payload

CIP Celestial Intermediate Pole

CPR cycle per revolutions

CRS Celestial Reference System

EGM96 Earth Geopotential Model 1996

EOP Earth Orientation Parameters

FFT Fast Fourier Transformation

FIR Finite Impulse Response

GAST Greenwich Apparent Sidereal Time

GFZ GeoForschungsZentrum Potsdam

GGM01s GRACE Gravity Model 01s

GGM02s GRACE Gravity Model 02s
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GMST Greenwich Mean Sidereal Time

GPS Global Position System

GRACE Gravity Recovery And Climate Experiment

GRM Geopotential Research Mission

IAG International Association of Geodesy

IAU International Astronomical Union

IERS International Earth Rotation Service

JPL Jet Propulsion Laboratory

LEO low Earth orbiter

PCCGM pre-conditioned conjugate gradient method

RSO Rapid Science Orbits

SBF Space Body Frame

SLR Satellite Laser Ranging

SNR signal-to-noise ratio

SST satellite-to-satellite tracking

TAI Temps Atomique International = International Atomic Time

TDT Terrestrial Dynamic Time

TEO Terrestrial Ephemeris Origin

TGPS Global Position System time

TRS Terrestrial Reference System
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TUM1s Technical University Munich model 1s

TUM2s Technical University Munich model 2s

UTC Universal Time Coordinated

UT1 mean solar day

VLBI Very Long Baseline Interferometry
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