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ABSTRACT 

 

The main objective of this research is to present a detailed analysis of the optimal 

combination of heterogeneous height data, with particular emphasis on (i) modelling 

systematic errors and datum inconsistencies, (ii) separation of random errors and 

estimation of variance components for each height type, and (iii) practical considerations 

for modernizing vertical control systems. Specifically, vertical control networks 

consisting of ellipsoidal, orthometric and geoid height data are investigated. Although the 

theoretical relationship between these height types is simple in nature, its practical 

implementation has proven to be quite challenging due to numerous factors that cause 

discrepancies among the combined height data. To address these challenges a general 

procedure involving empirical and statistical tests for assessing the performance of 

selected parametric models is developed. In addition, variance component estimation is 

applied to the common adjustment of the heterogeneous heights. This leads to an in-depth 

analysis of the effects of correlation among heights of the same type, provisions for 

computing non-negative variance factors, and the intrinsic connection between the proper 

modelling of systematic errors and datum inconsistencies with the estimated variance 

components. Additional numerical studies include the calibration of geoid error models 

(both regional and global), scaling the GPS-derived ellipsoidal height covariance matrix, 

and evaluating the accuracy of orthometric heights obtained from national/regional 

adjustments of levelling data. Ultimately, one of the main motivations for this work is 

embedded in the eminent need to introduce modern tools and techniques, such as GNSS-

levelling, in establishing vertical control. Therefore, part of this research is aimed at 

bringing to the forefront some of the key issues that affect the achievable accuracy level 

of GNSS-levelling. Overall, the analysis of the optimal combination of the heterogeneous 

height data conducted herein provides valuable insight to be used for a variety of height-

related applications. 
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Chapter 1 

 

Introduction 
 

 

 

1.1 Background 

Observed elevation differences between points on the Earth's surface are traditionally 

obtained through spirit-levelling (and/or its variants such as trigonometric, barometric 

levelling, etc.). For over a century the vertical control needs of the geodetic, cartographic, 

surveying, oceanographic and engineering communities have been well served by this 

technique (Vaníček et al., 1980). Due to the nature and practical limitations of spirit-

levelling most vertical control points are located in valleys and along roads/railways, 

which restricts the spatial resolution of control networks and confines the representation 

of the actual terrain. On the other hand, horizontal control networks have historically 

been established using triangulation and trilateration, which required that points be 

situated on hilltops or high points (Davis et al., 1981). As a result, most countries have 

completely separate networks for horizontal and vertical control with few overlapping 

points. However, with the advent of satellite-based global positioning systems (GPS, 

GLONASS, and the upcoming GALILEO) and space-borne/airborne radar systems 

(satellite altimetry, LIDAR, SAR) the ability to obtain accurate heights at virtually any 

point on land or at sea has in fact been revolutionized.  

 

The fundamental relationship, to first approximation, that binds the ellipsoidal heights 

obtained from global navigation satellite system (GNSS) measurements and heights with 
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respect to a vertical geodetic datum established from spirit-levelling and gravity data is 

given by (Heiskanen and Moritz, 1967) 

 

0=−− NHh                  (1.1) 

 

where h  is the ellipsoidal height, H  is the orthometric height and N  is the geoidal 

undulation obtained from a regional gravimetric geoid model or a global geopotential 

model. The geometrical relationship between the triplet of height types is also illustrated 

in Figure 1.1.  

 

Figure 1.1: Relationship between ellipsoidal, geoid and orthometric heights 

geoid 

ellipsoid 

plumb line 
ellipsoidal normal 

Earth’s surface 

θ

N h 

H 
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For the relative case, where height differences are considered, we simply have  

 

0=∆−∆−∆ NHh                  (1.2) 

 

where h∆ , H∆ , and N∆  refer to the ellipsoidal, orthometric and geoid height 

differences, respectively.  

 

The inherent appeal of this seemingly simple geometrical relationship between the three 

height types is based on the premise that given any two of the heights, the third can be 

derived through simple manipulation of Eq. (1.1), or similarly Eq. (1.2) for the relative 

case. In practice, the implementation of the above equation(s) is more complicated due to 

numerous factors that cause discrepancies when combining the heterogeneous heights 

(Rummel and Teunissen, 1989; Kearsley et al., 1993; Schwarz et al., 1987). Some of 

these factors include, but are not limited to, the following:  

•  random errors in the derived heights h , H , and N  

•  datum inconsistencies inherent among the height types, each of which usually refers 

to a slightly different reference surface 

•  systematic effects and distortions primarily caused by long-wavelength geoid 

errors, poorly modelled GPS errors (e.g., tropospheric refraction), and over-

constrained levelling network adjustments  

•  assumptions and theoretical approximations made in processing observed data, such 

as neglecting sea surface topography effects or river discharge corrections for 

measured tide gauge values   

•  approximate or inexact normal/orthometric height corrections 

•  instability of reference station monuments over time due to geodynamic effects and 

land subsidence/uplift (de Bruijne et al., 1997; Poutanen et al., 1996)  

More details are provided in the sequel.   
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The major part of the aforementioned discrepancies is usually attributed to the systematic 

errors and datum inconsistencies. The task of dealing with these effects has been 

designated to the incorporation of a parametric model (or corrector surface as it is 

commonly termed) in the combined adjustment of the heights. Numerous studies have 

been conducted using this approach with several different types of parametric models 

from a simple bias, a bias and a tilt, higher order polynomials with different base 

functions (Shretha et al., 1993), finite element models (Jäger, 1999), Fourier series 

(Haagmans et al., 1998) and collocation-based approaches (Forsberg and Madsen, 1990). 

It is evident from these studies that the appropriate type of corrector surface model will 

vary depending on the height network data and therefore a universal model applicable in 

all cases is not practical.   

 

The unknown parameters for a selected corrector surface model are obtained via a 

common least-squares adjustment of ellipsoidal, orthometric and geoid height data over a 

network of co-located GPS-levelling benchmarks. A key issue in this type of common 

adjustment is the separation of errors among each height type, which in turn allows for 

the improvement of the stochastic model for the observational noise through the 

estimation of variance components. There are numerous reasons for conducting such 

variance component estimation (VCE) investigations. For example, consider the case of 

optimally refining/testing existing gravimetric geoid models using GPS-levelling height 

data. Such a comprehensive calibration of geoid error models is essential for numerous 

applications such as, mean sea level studies (Klees and van Gelderen, 1997), connection 

of different continental height systems (Rummel, 2000), and establishing vertical control 

independent of spirit-levelling (Schwarz et al., 1987), to name a few. The latter 

application is especially important in mountainous terrain and remote areas without 

existing vertical control (e.g., northern Canada). 

 

An additional important area that will benefit from the implementation of VCE methods 

is the assessment of the a-posteriori covariance matrix for the height coordinates derived 

from GPS measurements. Specifically, it will allow for a means to test the accuracy 
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values for the ellipsoidal heights provided from post-processing software packages, 

which are often plagued with uncertainty (and usually overly-optimistic). Furthermore, it 

will allow for the evaluation of the accuracy information provided for orthometric heights 

obtained from national/regional adjustments of conventional levelling data. 

 

 

1.2 Thesis Objectives 

The main objective of this research is to present a detailed analysis of the optimal 

combination of heterogeneous height data, with particular emphasis on datum 

inconsistencies, systematic effects and data accuracy. Specifically, vertical control 

networks consisting of ellipsoidal, orthometric and geoid height data are investigated. As 

evidenced from the previous discussion, the combination of these heterogeneous height 

data is complicated by a number of outstanding issues, including (i) modelling systematic 

errors and datum inconsistencies, (ii) separation of random errors and estimation of 

variance components for each height type, and (iii) practical considerations for 

modernizing vertical control systems.  

 

The selection of the most appropriate parametric model for a particular mixed height data 

set is complicated and rather arbitrary as it depends on a number of variables such as data 

distribution, density and quality, which varies for each case. Therefore, it was deemed 

necessary to focus investigations on the determination and implementation of valid 

procedures for assessing model performance. In this manner, an established general 

methodology may be implemented that offers the flexibility of being applied with any 

candidate parametric model and data set.  

 

In addition to a proper parametric model, the suitability of the stochastic model used in 

the combined network adjustment of the ellipsoidal, orthometric and geoid height data 

must also be carefully evaluated. This is an important element for the reliable least-

squares adjustment of the geodetic data that is often neglected in practical height-related 

problems. The chosen approach for testing and improving the stochastic model is the 



 

 

6

well-known statistical tool of variance component estimation. Many different algorithms 

for VCE have been investigated with regards to geodetic data analysis, however limited 

studies have been conducted on its use with the combined height problem as it is posed 

herein. Therefore, a major emphasis of this research is placed on the determination of the 

most appropriate VCE algorithm to be applied in this case and its evaluation using real 

height data and the corresponding data covariance matrices. An in depth analysis of the 

effects of various factors such as correlation among heights of the same type, provisions 

for computing non-negative variance factors and the connection (if any) between the 

proper modelling of systematic errors and datum inconsistencies with the estimated 

variance components must also be studied.  

 

Ultimately, one of the main motivations for this research is embedded in the need to 

introduce modern tools and techniques in the establishment of vertical control. The 

manipulation of Eq. (1.1) or (1.2), such that orthometric heights (or height differences, 

respectively) are obtained using ellipsoidal and geoid height data is called GNSS-

levelling and is a procedure that is commonly used in practice and will undoubtedly 

dominate the future of vertical control. Part of this research is aimed at bringing to the 

forefront some of the key issues that affect the achievable accuracy level of GNSS-

levelling. Considerations for height-related information expected to be more readily 

available in the near future (such as sea surface topography and land uplift models) must 

also be made. 

 

An important aspect in all of the investigations mentioned is to test the developed 

procedures using real data sets that are representative of a variety of practical vertical 

networks. Overall, the analysis of the optimal combination of heterogeneous height data 

conducted herein, with particular emphasis on datum inconsistencies, systematic effects 

and data accuracy, will provide valuable insight and practical results to be used for a 

variety of height-related applications. 
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1.3 Thesis Outline 

The analysis and results of this research are presented in chapters 2 through 8. An outline 

of the essential structure of this thesis is discussed below. 

 

In chapter 2, the necessary background information regarding the height data types used 

in this research is presented. The discussion focuses on the main error sources affecting 

the computation of geoid, orthometric and ellipsoidal heights. The final section addresses 

the issue of why to combine the height data. Although the applications for the optimal 

combination of the heterogeneous height types are innumerable, a short-list of the most 

prevalent geodetic applications is discussed in this chapter. In particular, the concept of 

regional vertical datums and modernization issues are considered. Attention is also given 

to the goal of unifying existing regional datums for a global vertical datum. This is a 

major topic on its own that will rely heavily on the combined height adjustment solution. 

Furthermore, the process of GNSS-levelling and the refinement/testing of gravimetric 

geoid models using GNSS-levelling benchmark data are also described.  

 

In chapter 3, the combined least-squares adjustment scheme implemented throughout this 

work is described in detail. The formulation is provided for the case where absolute 

height data values are available, as in Eq. (1.1), and for the relative case, where height 

differences for baselines are available, as in Eq. (1.2). The second part of the chapter 

focuses on modelling systematic effects using a parametric corrector surface model. The 

procedure developed for assessing the parametric model performance is also described in 

detail.  

 

In chapter 4, the methodology outlined in the previous chapter is implemented using real 

data sets from three different test networks, namely Switzerland, parts of Canada and 

Australia, in order to test its effectiveness and to demonstrate the adaptive nature of the 

parametric model selection process. Each test network poses a different set of challenges 

for selecting and testing candidate parametric models.   
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In chapter 5, a review of numerous variance component estimation schemes applied to 

geodetic applications over the years is provided. In particular, several variance 

component estimation algorithms are scrutinized for use in the combined height network 

adjustment problem. The main reasons for selecting the iterative minimum norm 

quadratic unbiased estimation (IMINQUE) and iterative almost unbiased estimation 

(IAUE) schemes are provided as well as the detailed algorithms as they pertain to the 

problem at hand. 

  

In chapter 6, the results of numerous case studies are described, whereby some of the key 

issues related to the implementation of the IMINQUE (and IAUE) method are analyzed, 

demonstrating its use for practical height-related applications. Specifically, tests are 

conducted on changing a-priori covariance matrices for the height data, obtaining non-

negative variances, effects of correlations among heights of the same type and the role of 

the parametric model type on the final estimated variance components. The VCE case 

studies are conducted using covariance information provided for the Swiss and the 

southern British Columbia/Alberta test networks.  

 

In chapter 7, some of the practical considerations for modernizing vertical control are 

presented. This chapter essentially focuses on three main issues that have not been 

discussed thus far, namely how to evaluate the achievable accuracy of GNSS-levelling, 

how to incorporate height data at sea (or more appropriately at the coasts), and 

disseminating parametric model information to users. The complete procedure outlined in 

this thesis for the optimal combination of geoid, orthometric and ellipsoidal heights is 

modified in order to incorporate sea surface topography information at tide gauge 

stations. Finally, a brief discussion at the end of the chapter outlines some of the key 

concepts for providing users of GNSS with the proper information to transform 

ellipsoidal heights to heights with respect to a local vertical datum.  

 

Chapter 8 summarizes the main conclusions of this research. Finally, recommendations 

for future work in this area are also provided.  
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Chapter 2 

 

Heights, Vertical Datums and GNSS-Levelling 

 

 

 

The purpose of this chapter is to provide the necessary background information regarding 

the type of data and terminology used throughout this thesis. In particular, focus will be 

placed on describing the major error sources that affect the geoidal undulations, 

orthometric and ellipsoidal heights. The discussion will also provide insight into the 

problems and challenges encountered when attempting the optimal combination of these 

heterogeneous height data. The final section of this chapter addresses the question of, 

"Why combine geoid, orthometric and ellipsoidal heights?" This was briefly introduced 

in chapter 1 and will be elaborated on herein. 

 

 

2.1 Geoid heights 

The geoid height (or geoidal undulation) can be defined as the separation of the reference 

ellipsoid with the geoid surface measured along the ellipsoidal normal (see Figure 1.1). 

The classical Gauss-Listing definition of the geoid is given as an equipotential surface of 

the Earth's gravity field that coincides with the mean sea level. Today, it is well known 

that this is not a strictly correct definition as mean sea level departs from the 

equipotential surface by up to two metres due to various oceanographic phenomena, such 

as variable temperature, salinity, instantaneous sea surface topography, to name a few 
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(Vaníček and Krakiwsky, 1986). Over the years, many methods have been developed for 

determining the geoid, including astronomical levelling, gravimetric geoid determination 

using Stokes' or Molodensky's approach, and optimal operational schemes for combining 

heterogeneous data such as least-squares collocation (see Heiskanen and Moritz, 1967 

and Moritz, 1980 for more details on these formulations). The focus of this section is to 

provide a general overview of the main errors affecting the determination of the geoid 

heights in practice. Details on formulations and techniques for precise geoid 

determination are numerous and can be found in Vaníček and Christou (1994) as well as 

the aforementioned sources and will not be dwelled on herein.  

 

One practical procedure for regional geoid determination, which provides insight into the 

main errors inhibiting the accuracy of the computed geoidal height values ( N ) or relative 

geoidal heights ( N∆ ) is the classic "remove-compute-restore" technique (see, e.g., Rapp 

and Rummel, 1975; Mainville et al., 1992; Sideris et al., 1992). The underlying 

procedure can be summarized as follows: 

1) Remove a long-wavelength gravity anomaly field (determined by a global spherical 

harmonic model) from terrain-reduced gravity anomalies that are computed from 

local surface gravity measurements and digital elevation data.  

2) Compute "residual co-geoid undulations" gN∆ . This can be done by a spherical 

Fourier representation of Stokes' convolution integral using the residual gravity 

anomalies (see, e.g., Haagmans et al., 1993). 

3) Restore a long-wavelength geoid undulation field GMN  (determined by a global 

spherical harmonic model) to the residual co-geoid undulations, and add a 

topographic indirect effect term HN  (computed from digital elevation data) to form 

the final geoidal undulations. 

 

The above three steps can be combined in a single formula as follows: 
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HgGM NNNN         ++= ∆                 (2.1) 

               

The computation of the long-wavelength geoid component GMN  is usually made on a 

grid (e.g., 5' × 5'), within the appropriate geographical boundaries for the region of 

interest. Currently, the most widely used global geopotential model is EGM96 (Lemoine 

et al., 1998), complete to degree and order 360. The coefficients of the global 

geopotential models are determined from measurements of satellite orbits, satellite 

altimetry and gravity anomalies (Pavlis, 1988). In spherical approximation, its 

contribution is computed according to the following formula (Heiskanen and Moritz, 

1967): 
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where nmP  are fully normalized Legendre functions, nmC  and nmS  are the fully 

normalized unitless coefficients of the geopotential model (from which the contribution 

of a normal gravity field, based on the GRS80 geodetic reference system, has been 

subtracted), and R  is the mean radius of the Earth.  

 

The medium-wavelength contributions to the total geoid heights can be computed from 

the available local gravity anomaly data according to Stokes' formula (Heiskanen and 

Moritz, 1967) 
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where )( PQS ψ  is the Stokes' function, PQψ  is the spherical distance between the 

computation point P  and the running point Q , γ  is normal gravity, and g∆  are the local 
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gravity anomaly data. In mountainous regions, such as Canada, g∆  are residual Faye 

anomalies which, when Helmert's second condensation method is used for the terrain 

effects, are obtained from 

 

GMFA gcgg ∆−+∆=∆                                     (2.4) 

 

In the last equation, FAg∆  are the free-air anomalies, c  is the classic terrain correction 

term (Heiskanen and Moritz, 1967; Mainville et al., 1994), and GMg∆  is the removed 

long-wavelength contribution of the global geopotential model, which is computed from 

the expression, 

 

( ) ( ) ( )ϕλλ sin sincos1    
0m

360

2n
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n
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==
+−=∆            (2.5) 

 

Detailed discussions of the treatment and computation of all the necessary reductions 

(atmospheric, free-air gradient, downward continuation, terrain reduction) applied to the 

original gravity data can be found in Véronneau (1997), Mainville et al. (1994), and 

Vaníček and Christou (1994).  

 

The shorter wavelength information for the regional geoid model is usually obtained from 

the computation of the indirect effect term HN , induced by using Helmert's second 

condensation method for the gravity data reduction on the geoid surface. There are 

numerous ways of modelling the effects of the topography, however, in this discussion 

Helmert's second condensation method has been used to illustrate the process. In general, 

the formulation of the topographic indirect effect on the geoid (according to Helmert's 

second condensation method) is made in terms of a Taylor series expansion from which 

only the first three terms are usually considered. Wichiencharoen (1982) should be 

consulted for all the detailed formulas related to the three terms. The computation of the 

indirect effect involves height data obtained from a digital elevation model (DEM), 
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which covers the regional area of interest. In relatively flat areas, the indirect effect is 

sometimes neglected, which introduces a small error depending on the terrain. The 

process described by Eq. (2.1) is illustrated in Figure 2.1.  

 

 

 
Figure 2.1: Computation of regional geoid models using heterogeneous data  

(according to Schwarz et al., 1987) 
 

 

Following this formulation, it is evident that the accuracy of the computed geoid 

undulations depends on the accuracy of the three components in Eq. (2.1), namely 

gGM NN ∆,  and HN  (Schwarz et al., 1987 and Sideris, 1994).  

 

Errors due to GMN  

The global geopotential model not only contributes to the long wavelength geoid 

information but also introduces long-wavelength errors that originate from insufficient 

satellite tracking data, lack of terrestrial gravity data and systematic errors in satellite 

altimetry. The two main types of errors can be categorized as either omission or 

commission errors. Omission errors occur from the truncation of the spherical harmonic 

series expansion (Eq. 2.2), which is available in practice ( ∞<maxn ). The error from 

these neglected terms can be computed as follows for the absolute geoid heights (Jekeli, 

1979 and de Min, 1990): 

GMN gGM NN ∆+

HgGM NNNN ++= ∆

ellipsoid 
 

smoothed geoid 
 

detailed regional geoid 
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and the error for the geoid height differences between two points separated by a distance 

PQψ  is given by: 

 

∑
∞

+=
−








=∆

1

2
2

2

max

))(cos1()(
2

2
nn

PQnnno PcQRN ψψ
γ

δ                 (2.7) 

  

where, 
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where maxn  is the maximum degree to which the geopotential model coefficients are 

used (non-truncated terms) and nc  denotes the gravity anomaly degree variances 

computed by (Heiskanen and Moritz, 1967): 
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The other major contributing error type is due to the noise in the coefficients themselves 

and is termed commission errors. This can be computed as follows: 
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where 2
nσ  denotes the error degree variances, see de Min (1990) for detailed 

formulations. An alternative method for estimating the commission errors for the 

spherical harmonic coefficients is to use least-squares collocation and is aptly described 

in Tscherning (2001). As the maximum degree maxn , of the spherical harmonic 

expansion increases, so does the commission error, while the omission error decreases. 

Therefore, it is important to strike a balance between the various errors. In general, 

formal error models should include both omission and commission error types in order to 

provide a realistic measure of the accuracy of the geoid heights computed from the global 

geopotential model.  

 

Errors due to gN∆  

The errors contributing to the gN∆  component are due to the data coverage, density and 

accuracy of the local gravity data. An efficient and practical algorithm for computing the 

effect of the errors in the mean gravity anomalies (assumed to be available on an NM ×  

equi-angular spherical grid) on the computed geoidal heights is given by the following 

formula (She, 1993): 
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where it is assumed that the errors of the gravity anomaly data are uncorrelated and the 

associated a-priori variances, denoted by 2
),( QQg λϕσ ∆ , are known. ϕ∆  and λ∆  refer to 

the grid spacing in latitude and longitude, respectively and M , N  are the number of 

parallels and meridians in the grid, respectively. This formulation is provided as it can be 

efficiently evaluated using 1D FFT (see, She, 1993 for details).  
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Obviously, higher accuracy is implied by accurate g∆  values distributed evenly over the 

entire area with sufficient spacing, however there are some systematic errors, which 

influence the quality of the gravity anomalies. Following Heck (1990), the major sources 

affecting terrestrial gravity anomalies, which cause both systematic and random errors in 

absolute and relative geoidal heights include: 

− inconsistencies in the gravity datum(s) 

− inconsistencies in the vertical datum(s) 

− inconsistencies in the horizontal datum(s) 

− inconsistencies in the types of height systems 

− approximation errors due to the use of a simplified free-air reduction formula 

Since gravity anomalies depend on the horizontal, vertical and gravity network datums, 

any inconsistencies of these local datums will introduce biases into the computed (free-

air) gravity anomaly values. The wavelengths of the datum inconsistency effects range 

from hundreds to thousands of kilometres, which means that the medium-to-low 

frequency spectral components of the gravity field (and thus the geoid) are affected. More 

details and practical evaluations of most of the effects described can be found in Heck 

(1990).  

 

Other influences besides the datum inconsistencies and types of height systems include 

approximation errors due to the use of simplified reduction formulas for computed free-

air gravity anomalies (i.e., neglecting non-linear terms) and limited capsize in Stokes' 

integration (see Forsberg and Featherstone, 1998). The truncation error caused by the 

limited area of the integration of the terrestrial gravity anomalies to a spherical cap can be 

reduced by a suitable modification of Stokes' kernel (Véronneau, 2002). In Li and Sideris 

(1994), the error caused in the geoid heights by the use of different approximations of 

Stokes' kernel were investigated for parts of Canada and found to be a maximum at the 

metre-level.  

 



 17

Errors due to HN  

The shorter wavelength errors in the geoid heights are introduced through the spacing and 

quality of the digital elevation model used in the computation of HN . Improper 

modelling of the terrain is especially significant in mountainous regions (e.g., Rocky 

mountain area in western Canada), where terrain effects contribute significantly to the 

final geoid model in addition to errors due to the approximate values of the vertical 

gravity gradient (Forsberg, 1994; Sideris and Forsberg, 1991; Sideris and Li, 1992). 

Improvements in geoid models according to the computation of HN , will be seen 

through the use of higher resolution (and accuracy) DEMs, especially in mountainous 

regions.   

 

Comments 

Overall, the most significant error contribution in the total error budget for the computed 

geoid heights is due to the global geopotential model used as a reference in the remove-

compute-restore technique. The situation is expected to drastically improve with 

unprecedented global satellite-based gravity coverage promised from low earth orbiting 

(LEO) missions such as CHAMP, GOCE and GRACE. Specifically, the first two 

missions, CHAMP and GOCE, will considerably improve the long and medium 

wavelength information, while GRACE will allow for time variations in the gravity field 

to be accounted for (ESA, 1999). It is expected that the 'new' global geopotential model 

derived by incorporating these satellite data from the aforementioned missions will 

provide a total error (commission and omission) of cm15±  (Pavlis and Kenyon, 2002). 

This is a factor of 10 improvement compared to the current EGM96 model (Tscherning et 

al., 2000). Such improvements will start to emerge from the measurements made by the 

Gravity Field and Steady-State Ocean Circulation Explorer (GOCE), which will fly at a 

low altitude (~ 250 km) and high precision gradiometers on-board lead to improved 

higher degree harmonics. In addition, the precise orbit determination and high-low 

satellite tracking made possible by on-board GPS/GLONASS receivers will improve the 

lower degree harmonics (ESA, 1999 and Tscherning et al., 2000). Estimates of the 
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expected commission and omission errors, in terms of standard deviation after GOCE for 

various maximum degrees of expansion are provided in the Table 2.1. All values are 

given for the geoid height difference between two arbitrary points approximately 100 km 

apart.  

 
 

Table 2.1: Expected commission and omission errors after GOCE  
(according to Rummel, 2000) 

Degree of GM 
model 

Commission 
standard error (cm) 

Omission standard 
error (cm) 

150 0.07 38 
200 0.2 28 
250 0.8 23 
300 1.3 18 

 

 

The level of achievable accuracy and global homogeneous coverage provided by GOCE 

will not only improve the global geopotential model, but also contribute to the 

establishment of a global unified vertical datum (Rummel, 2000; see also section 2.4.2). 

Although these satellite mission data will produce new global geopotential models with a 

more homogeneous error spectrum, thus reducing systematic effects on geoid heights, 

terrestrial data is still needed for medium frequency improvements. Measurements on the 

surface of the Earth or airborne measurements typically provide better short wavelength 

resolution than satellite-based measurements (see Li, 2000 for more details).  

 

Regional geoid model accuracy also varies depending on the computational methodology 

(assumptions used) and available data in the region of interest. In areas where regional 

models exist, they should be used as they are more accurate compared to global models. 

However, many parts of the globe do not have access to a regional geoid model usually 

due to lack of data. In these cases, one may resort to applying global geopotential model 

values. An alternative approach to determining discrete geoid height values is the 

geometric approach, which utilizes the relationship between GPS-derived ellipsoidal 
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heights and orthometric heights with respect to a local vertical datum to provide discrete 

point values for N . In this case, a number of systematic datum issues enter the problem, 

which emphasizes the requirement that the same ellipsoidal reference surface is used for 

both the global geopotential model and residual gravity anomaly computations. 

Discussions in section 2.4.4 will provide more insight into this practical problem.  

 

 

2.2 Orthometric heights 

Height differences between points on the Earth's surface have traditionally been obtained 

through terrestrial levelling methods, such as spirit-levelling (and/or barometric levelling, 

trigonometric levelling, etc). For over a century, the vertical control needs of the 

geodetic, cartographic, oceanographic, surveying and engineering communities have 

been well served by this system. Although costly and labourious, spirit-levelling is an 

inherently precise measurement system whose procedural and instrumental requirements 

have evolved to limit possible systematic errors. Associated random errors in levelling 

originate from several sources, such as refractive scintillation or 'heat waves', refraction 

variation between readings, vibrations of instrument due to wind blowing, and movement 

of rod or non-verticality of rod caused by wind, terrain and unsteadiness of surveyor, to 

name a few (see Gareau, 1986 for details). These errors are generally dealt with through 

redundancy and minimized in the least-squares adjustment process (Vaníček et al., 1980). 

However, it should be realized that national networks of vertical control established in 

this way involve large samples of measurements collected under inhomogeneous 

conditions, such as variable terrain, environments, and instruments, with different 

observers and over different durations. This results in a number of errors/corrections that 

must be made to the measurements (see Davis et al., 1981, pp.118-187 for details).  

 

The problem with using only the elevation differences obtained from spirit-levelling for 

height-related applications is that the results are not unique as they depend on the path 

taken from one point to the other (due to non-parallelism of the equipotential surfaces). 
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Thus, a number of different height systems can be defined, which use the measurements 

of vertical increments between equipotential surfaces along a path from spirit-levelling 

( dn ) and measurements of gravity ( g ), as given by: 

 

∫ ⋅=
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o

dngC               (2.12) 

 

where PC  is the geopotential number and represents the difference in potential between 

the constant value at the geoid, oW , and the potential at the point, P, on the surface, PW , 

as follows: 

 

PoP WWC −=                (2.13) 

 

All points have a unique geopotential number with respect to the geoid and it can be 

scaled by gravity in order to obtain a height coordinate with units of length, as we have 

become accustomed to using for describing heights. Depending on the type of 'gravity' 

value used to scale the geopotential number, different types of heights can be derived. In 

this section, the focus will be placed on describing orthometric heights as they will be 

used throughout this thesis for numerical computations. However, two other common 

height systems (dynamic and normal heights) will also be briefly described in order to 

provide a basis for discussion and comparison.  

 

Orthometric heights are defined as the distance along the plumb line between the geoid 

and the point of interest on the surface of the Earth. Eq. (2.12) along the plumb line 

becomes  
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where dH  is the differential element along the plumb line between the geoid and the 

point on the Earth's surface. Eq. (2.14) can be re-written in a more practical form as 

follows (Heiskanen and Moritz, 1967): 

 

P

P
P g

CH =               (2.15) 

 

which provides the orthometric height of the point P on the Earth's surface denoted by 

PH  (see Figure 2.2).  

 

 

 

Figure 2.2: Orthometric height of a point  

 

 

The mean value of gravity along the plumb line is given by 
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The exact computation of Pg  would require complete knowledge of the mass density of 

the crust, which is not practically available. Therefore, approximations must be made in 

order to obtain the corresponding orthometric height values. It is evident from Eqs. (2.15 

Geoid 
 

Earth’s surface P

oP

PH
plumb line 

PW

oWW =
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and 2.16) that one may obtain any number of orthometric height systems depending on 

the selected value for Pg  (Bomford, 1971). This is an important point to understand 

when dealing with orthometric heights in practice as the providers of the data may not 

explicitly define the fundamental reductions and approximations made in computing Pg . 

Therefore, one must be cautious especially when combining different types of height data 

or when working with different national databases of orthometric heights.  

 

One of the most common orthometric height systems is Helmert heights, which are based 

on the Poincaré-Prey reduction model. The approximate value for gravity inside the crust 

is obtained in three steps as follows: 

1. remove the Bouguer plate of uniform density 

2. apply free-air downward continuation using the normal gradient of gravity 

3. restore the Bouguer plate 

The mean value of gravity along the plumb line is computed from the average of the 

gravity at the endpoints as follows (Heiskanen and Moritz, 1967): 

 

PPPP H
h

Hkgg
∂
∂+−= γρπ

2
12            (2.17)  

 

where k  is Newton's gravitational constant ( 2139107.66 −−−× secgcm ). By substituting 

nominal values for the density, 3/67.2 cmg=ρ , and the normal gravity gradient, 

mmGal
h

/3086.0=
∂
∂γ , we obtain the simplified expression given below: 

 

PPP Hgg 0424.0+=                (2.18) 

 

where the units associated with the 'factor' of 0.0424 are mmGal /  and the height PH  is 

given in metres. When Eq. (2.18) is substituted into Eq. (2.15), one obtains the Helmert 
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heights often used in practice for numerical computations of heights above the geoid as 

follows: 

 

PP

P
P Hg

CH
0424.0+

=             (2.19) 

 

It should be noted that the computation of the mean gravity along the plumb line in this 

manner requires PH , therefore Eq. (2.18) is usually solved through iteration or by 

solving the quadratic represented in Eq. (2.15) with Eq. (2.17) and neglecting terms 

beyond second-order (see Jekeli, 2000 for full formulations). Additional approximations 

for the computation of the mean gravity may be made in practice, which also introduces 

some error in the computation of the orthometric heights (see description of real datasets 

in chapters 4 and 6). 

 

Throughout this discussion, orthometric heights have been geometrically defined as the 

distance along the plumb line from the geoid to the corresponding point on the Earth's 

surface (also referred to as Pizzetti's projection; see Heiskanen and Moritz (1967), p. 

180). In practice and for all numerical computations/transformations, a simplification is 

made whereby the orthometric height is described as the distance along the ellipsoidal 

normal, referred to as Helmert's projection, as shown in Figure 2.3. The error caused by 

neglecting the difference in the length of the curved plumb line and the ellipsoidal normal 

(or the difference between Pizzetti's and Helmert's projection) is negligible for all 

topographic heights on the Earth's surface. This is demonstrated explicitly in Figure 2.3 

where θ  is the deflection of the vertical whose practical values range from the arcsecond-

level to a maximum of one arcminute. The effect on the height value can be 

approximated by θθδ tansinhh ≅ , which takes on a maximum value at the sub-

millimetre level (i.e. assume mh 000,10,1 =′=θ  then mmh 8.0=δ ). Therefore, for all 

theoretical formulations and numerical tests conducted throughout the sequel the classical 

Helmert projection will be used. 
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Figure 2.3: Approximation in orthometric heights by neglecting the difference in lengths 
between the curved plumb line and the ellipsoidal normal 

 

 

Normal and dynamic heights 

Although not directly used in this work, it is important to provide a brief overview of the 

normal height system as it is the basis of heights in many regions worldwide. If the value 

for gravity in Eq. (2.15) is replaced by the mean normal gravity along the plumb line, 

Pγ , then we obtain normal heights denoted by *
PH  and computed via 
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Both orthometric and normal heights have a clear geometrical interpretation, with the key 

difference being that the normal heights refer to the telluroid. Computationally, there is 
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no need to make approximations for the density of the Earth's crust in order to compute 

Pγ , and therefore *
PH  can be computed exactly. The reader is referred to Heiskanen and 

Moritz (1967) for more details. The equivalent form of Eq. (1.1), which gives the 

geometrical relationship between the ellipsoidal height, h , normal height, *H , and 

height anomaly, ς , is given by 

 

0* =−− ςHh              (2.21) 

 

In this case, the geoid surface is replaced by the quasi-geoid, which is closely related to 

the geoid and in fact coincides with the geoid in the open seas. An important distinction 

between the geoid and the quasi-geoid is that the latter is not considered to be an 

equipotential surface of the Earth's gravity field (see Heiskanen and Moritz, 1967 for 

more details). 

 

The final height system described is the dynamic heights defined as follows:  

 

o

Pdyn
P

CH
γ

=             (2.22) 

  

where the value for gravity in Eq. (2.15) is replaced by oγ , representing the normal 

gravity for a fixed latitude, usually taken to be 45°. Unlike the orthometric (Eq. 2.15) and 

normal heights (Eq. 2.20), dynamic heights have no geometrical interpretation and are 

merely a conversion of the geopotential number to units of length. Thus, although these 

heights are not geometrically meaningful like orthometric and normal heights, dynamic 

heights are the only type from the three, which are physically meaningful. That is, they 

will indicate the direction of water flow. In contrast, two points with identical orthometric 

heights generally lie on different equipotential surfaces and water will flow from one 

point to the other. The selection of the type of height to use in the combined height 
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problem (i.e., orthometric versus normal) depends on the available national databases, 

which traditionally prefer one system over the other. Essentially, each of the height 

systems described provides a unique definition of the vertical coordinate of a point on the 

Earth's surface based on levelling and gravity information. Since they are linked through 

the geopotential number, it is theoretically possible to convert between any of the three 

height types.  

 

Comments 

Although levelling measurements are very precise (i.e., at the mm-level depending on the 

order or class of levelling), it is often the regional or national network adjustments of 

vertical control points that leads to the greatest source of (systematic) error. If the vertical 

datum (see section 2.4.1) of a height network is based on fixing a single point (e.g., a tide 

gauge station), then the adjusted orthometric heights will contain a constant bias over the 

entire network area. The situation is somewhat complicated when an over-constrained 

network adjustment is performed (i.e., fixing more than one tide gauge station), which 

introduces distortions throughout the network.    

 

 

2.3 Ellipsoidal heights 

The physical shape of the Earth can be approximated by the mathematical surface of a 

rotational ellipsoid defined by a semi-major axis, a, and flattening, f. All other ellipsoidal 

shape and size defining quantities can be subsequently derived from these parameters 

(semi-minor axis b, eccentricity 2e , and the curvature in the prime vertical NR ). 

Because of its smooth well-defined surface, the ellipsoid offers a convenient reference 

surface for mathematical operations and is widely used for horizontal coordinates 

(Seeber, 1993). The geodetic latitude ϕ , and longitude λ , are defined in Figure 2.4, 

where it is assumed that the centre of the ellipsoid coincides with the Earth's centre of 

mass, its minor axis is aligned with the Earth's reference pole and the p-axis is the 

intersection of the meridian plane with the equatorial plane.  
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Figure 2.4: Reference ellipsoid and geodetic coordinates 

 

 

The straight-line distance between a point P on the surface of the Earth and its projection 

along the ellipsoidal normal onto the ellipsoid, denoted by Q, is the ellipsoidal height h. 

The location of the point P can also be defined in terms of Cartesian coordinates ),,( zyx , 

which has greatly benefited from the advent of satellite-based methods, such as GPS. 

Using GPS (or another global navigation satellite system), three-dimensional coordinates 

of a satellite-signal receiver can be determined within the same reference frame used to 

determine the coordinates of the satellites.  

 

Curvilinear geodetic coordinates ),,( hλϕ  offer an intuitive appeal that is lacking for 

Cartesian coordinates and are therefore preferred by users for describing locations on the 

surface of the Earth. The transformation of geodetic coordinates to a Cartesian coordinate 

system where the origin coincides with the centre of the ellipsoid and the z-axis aligns 
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with the semi-minor axis of the ellipsoid, is given by the closed form equations as follows 

),,( hλϕ → ),,( zyx :       
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where, the curvature in the prime vertical is computed from 

 

ϕ22 sin1 e

aRN
−

=                         (2.24)  

 

The transformation from the Cartesian coordinates to the geodetic coordinates, 

),,( zyx → ),,( hλϕ , is not as simple to compute as there is no linear relationship. 

Therefore, the computation involves the analytical solution of a complicated fourth order 

equation or an iterative solution using the formulations below.  
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where 22
pp yxp += . This method is preferred and often implemented in GPS 

processing software packages. As evidenced from the equations, the process requires 

initial estimates for h  and ϕ  and an appropriate convergence criterion, which can be set 
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for h  or NR  at the resolution level of the initial Cartesian coordinates. Details on these 

formulations and additional transformations between global geodetic systems and local 

geodetic systems can be found in numerous texts (Seeber, 1993). In particular, Soler 

(1998) and Soler and Marshall (2002) describe the coordinate transformations 

encountered when dealing with GPS data. In general, it is important to be aware of the 

type of ellipsoidal reference surface implied by the data and its relation to the geoid 

surface and the local vertical datum, which may vary from region to region. 

 

Using today's available technology and techniques, ellipsoidal heights can be obtained 

from a number of difference systems, such as very long baseline interferometry (VLBI), 

satellite laser ranging (SLR), and navigation based systems such as DORIS, GPS, and 

GLONASS. In the near future it is expected that the European contribution to global 

navigation satellite systems, GALILEO (ESA, 2002), will be used. Furthermore, satellite 

altimetry measurements are used to obtain ellipsoidal heights over the oceans, which 

cover more than 70% of the Earth's surface. Thus, although the most popular method in 

use today is GPS, the alternatives are set to broaden in the near future. This being said, all 

new global satellite-based navigation systems will benefit greatly from the experience 

gained by researchers and users working with GPS. In fact, many of the challenges and 

error sources that affect the quality of the positioning coordinates will still have to be 

dealt with. Therefore, it is appropriate to discuss some of the main error sources affecting 

the determination of ellipsoidal heights using GPS, as it is the main tool used to obtain 

ellipsoidal height data for all of the numerical tests used throughout this dissertation. 

Comprehensive overviews of the fundamental concepts, measuring, and processing 

procedures for GPS can be found in many textbooks such as Hofmann-Wellenhof et al. 

(1992), Parkinson and Spilker (1996a/b), and Kaplan (1996) and will not be dwelled on 

herein.  

 

The computation of ellipsoidal heights using GPS measurements is in general more 

challenging than estimating horizontal coordinates. Although, the common error sources 

affecting the quality of the positions affect all three coordinates, there are a few key 
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differences, which result in poorer height values (by approximately two to three times), 

namely (Rothacher, 2001): 

− satellite geometry/configuration can only be observed in one hemisphere above the 

horizon (i.e., there will never be satellites 'below' the receiver antenna) 

− need to estimate receiver clock corrections at every epoch  

− estimation of tropospheric zenith delay parameters (every hour) 

The most limiting factor remains the very high correlation of receiver clock corrections 

and tropospheric zenith delay parameters with the ellipsoidal height. The estimation of 

these effects significantly hinders the achievable accuracy of the height component, even 

in the absence of other errors and biases (Santerre, 1991). A suggested means for partially 

decorrelating the height from the receiver clock and tropospheric delay is to take 

advantage of the zenith dependence and process GPS data at low elevation cut-off angles 

(Rothacher, 2001). Figure 2.5 (originally published in Rothacher, 2001) depicts the zenith 

dependence of the height )(zhδρ , receiver clock )(zclkδρ  and tropospheric zenith delay 

)(ztropδρ  parameters, where c  is the speed of light and Rtδ  is the receiver clock 

correction. Of course, lowering the elevation cut-off introduces other problems with data 

processing as the noise level increases significantly. Therefore, due to the nature of the 

satellite configuration and the need to estimate receiver clocks (even differences), the 

height component will always be less accurate than the horizontal positions (ibid.). 

 

 
Figure 2.5: Zenith dependence of station height, receiver clock and tropospheric delay 

parameters (according to Rothacher, 2001) 
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The errors affecting GPS measurements originate from three sources, namely satellite 

errors, signal propagation errors and receiver errors (see Figure 2.6). All three types of 

error sources affect the quality of the estimated ellipsoidal heights and the most 

significant will be discussed herein.  

 

 
Figure 2.6: Sources of errors for global navigation satellite systems 

 

 

Orbital Errors 

At the satellite level, the most predominant source of error for ellipsoidal height 

determination is the orbital errors. For short baselines, the orbit error is cancelled when 

differential processing is performed, however the effect is spatially correlated and 

therefore the level of cancellation/reduction is dictated by the baseline length. A 

conservative and perhaps even pessimistic estimate of the decorrelation of satellite orbit 

errors based on the baseline length is provided by the following linear relationship 

(Seeber, 1993, p. 297): 
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ρ
σσ ρ≅

b
b               (2.26) 

 

where bσ  is the baseline error for a baseline length b . The satellite range is represented 

by ρ  (approximately 22,000 km for GPS satellites) and used to compute the orbit error 

ρσ . In general, the vertical coordinate is affected more than the horizontal coordinates 

because the largest orbit errors are in the along-track direction, which results in a tilting 

of the network. The best means to deal with this error source is to use precise ephemeris 

information provided by the International GPS Service (IGS), which has a significantly 

lower ρσ  than the broadcast ephemeris information provided in the broadcast navigation 

message.  

 

Tropospheric Delay Errors   

Atmospheric errors account for a large part of the error sources affecting the satellite 

signals as they propagate towards the receiver(s) located on the surface of the Earth. The 

signal travels through two parts of the atmosphere, namely the ionosphere and the neutral 

atmosphere. This neutral part ranges from 0 km to 40 km above the surface of the Earth 

and is considered a key deteriorating factor for height determination. Specifically, signals 

traveling through the troposphere suffer the effects of tropospheric attenuation, delay and 

short-term variations (scintillation). The magnitudes of these effects are a function of 

satellite elevation and atmospheric conditions such as temperature, pressure and relative 

humidity during signal propagation. Furthermore, the troposphere is a non-dispersive 

medium for GPS frequencies, which means that the tropospheric range errors are not 

frequency dependent and therefore cannot be cancelled through the use of dual-frequency 

measurements (unlike the ionospheric effects). The most damaging part is the relative 

tropospheric bias which is caused by errors in tropospheric refraction at one of the 

stations in a baseline configuration. The general estimate of the bias caused in ellipsoidal 

height difference measurements, h∆ , is given by (Beutler et al., 1987): 
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)cos( maxz
h r

�ρ∆
=∆             (2.27)  

 

where �

rρ∆  is the relative tropospheric zenith correction and maxz  is the zenith angle of 

the observation. Using this estimation, an error or unmodelled differential tropospheric 

delay of 1 cm in �

rρ∆  at a moderate satellite elevation angle of �20  ( �70max =z ) yields 

an error of 3 cm in the estimated ellipsoidal height difference. Two methods that can be 

applied to estimate tropospheric refraction include, modelling tropospheric parameters 

simultaneously with all other GPS parameters (clock, latitude, longitude, height, 

ambiguities), or independent modelling of the troposphere using water vapour 

radiometers and ground meteorological observations. Ultimately, the best means to deal 

with tropospheric effects for high precision height determination is by improving the 

measurements and models for water vapour content (Dodson, 1995). 

 

Multipath 

Multipath is a signal propagation error, which occurs when a signal arrives at a receiver 

via multiple paths (Braasch, 1996). It is caused by the reflection and diffraction of the 

transmitted signal by objects in the area surrounding the receiver antenna. In Elósegui et 

al. (1995), the magnitude of the multipath error on the vertical coordinate was estimated 

and found to be strongly dependent on the satellite elevation angle. For instance, a 

variation from 5° to 10° in elevation cut-off changed the estimates of the ellipsoidal 

height from tens of millimetres to several centimetres (ibid.). From a processing point of 

view, the problem is juxtaposed as lowering the elevation cut-off (i.e., for VLBI and GPS 

measurements) helps to decorrelate the tropospheric and height parameters, but at the 

same time may cause an increase in multipath effects. Over the past decade, there have 

been numerous improvements to receiver and antenna technology (choke rings, ground 

planes), which aid in mitigating the effects of multipath. Despite these technological 

advances, the best method for most GNSS users to mitigate multipath effects is to simply 

avoid it by carefully selecting receiver station sites that are free of any reflective 
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obstructions. Selecting a low multipath environment is an important consideration that 

must be adhered to when establishing permanent vertical control stations. Existing 

levelling stations may not be optimally located for such measures and therefore biases 

may exist in the ellipsoidal heights of co-located GPS-levelling benchmarks.        

 

Atmospheric and Ocean Loading  

For most combined height applications discussed in this thesis, a large network (e.g., of 

national scale) consisting of accurate ellipsoidal height determinations is used. In such 

cases, it is important to consider the vertical motion of the Earth's crust caused by 

differential loading effects of the atmosphere and ocean tides. In general, the deformation 

of the crust as a reaction to changing atmospheric pressure is at the level of 1 to 2 cm 

(Van Dam et al., 1994). The larger displacement is due to ocean loading, which is more 

difficult to model and may cause height changes of more than 10 cm for stations situated 

near the coasts (Baker et al., 1995). This is important for GPS monitoring of tide gauge 

stations, which may be incorporated into vertical datum definitions (see section 2.4.1).  

 

The best means to deal with these effects are to apply corrections to the estimated heights 

based on global models (in conjunction with higher resolution local models, if they are 

available), which are designed to predict the response to loads. The accuracy of the global 

ocean load models may vary depending on the location, with more accurate predictions in 

the open oceans and degrading accuracy approaching the coastal areas. With GPS 

measurements, making observations over a 24-hour period averages out most of the error. 

However, shorter occupation times may lead to significant biases in the estimated 

ellipsoidal heights if appropriate corrections are not applied. It is important for users of 

vertical control stations to be aware of the type of 'corrections' that have been made to the 

supplied ellipsoidal heights. Furthermore, when combining ellipsoidal and geoid heights, 

it is imperative that both geoid and GPS-derived heights are reduced in a consistent 

manner (Poutanen et al., 1996).   
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Antenna Phase Centre Offsets 

At the receiver level, the antenna phase centre offsets are of great concern for accurate 

ellipsoidal height estimates. GPS measurements are actually made with respect to the 

point in the antenna known as the phase centre, not the survey mark. Corrections must be 

applied to reduce the measurement to the unknown point. It has been shown that the 

antenna phase centre is not fixed and varies depending on the elevation of the satellite 

and also the frequency of the propagated signal. For the combined height networks used 

in this work, complications arise from the mixing of different antenna types, which may 

produce errors in the ellipsoidal heights of up to 10 cm (Rothacher, 2001). Estimated 

tropospheric parameters are also highly correlated with antenna phase centre patterns, 

which may be incorrectly interpreted in processing software, resulting in amplified errors, 

especially in the height component. Thus, it is important to use the same antenna make 

and model for network surveys in order to reduce the errors caused by antenna phase 

centre offsets. Although the mitigation of this error source seems simple compared to the 

complicated modelling of other error sources, this is a difficult task to manage, 

particularly for large networks as in Canada and Australia.  

 

 

2.4 Why combine geoid, orthometric and ellipsoidal height data? 

The optimal combination of geoidal undulations, orthometric and ellipsoidal heights is 

well suited for a number of applications. This is exemplified by the simple geometrical 

relationship that exists between the triplet of heights, expressed in Eq. (1.1) and depicted 

in Figure 1.1. Traditional methods for establishing vertical control, although precise, are 

very labourious, costly and impractical in harsh terrain and environmental conditions. On 

the other hand, ellipsoidal heights can be efficiently and relatively inexpensively be 

established with dense coverage over land (i.e., using global navigation satellite systems) 

or over the oceans (i.e., using satellite altimetry), albeit at a poorer accuracy level. The 

main problem with these techniques is that the heights refer to a fictitious reference 

ellipsoid approximating the true shape of the Earth and therefore do not embody any 

physical meaning. The link between geometrically-defined ellipsoidal heights and heights 
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with respect to a local vertical datum (i.e., geoid) is provided by geoidal heights. 

Recognizing the inherent advantages and limitations of each type of height system, it is 

clear that a proper combination of the heterogeneous heights, with proper error analysis, 

will benefit innumerable applications, not necessarily restricted to geodesy (e.g., 

oceanography, cartography, geophysics). For the purposes of the discussion in this 

dissertation, a number of important geodetic application areas that will benefit from the 

optimal combination of the heterogeneous height data have been identified, namely: 

•  modernizing regional vertical datums 

•  unifying national/regional vertical datums for a global vertical datum 

•  transforming between different types of height data 

•  refining and testing existing gravimetric geoid models  

The following four sections provide an overview of these important application areas.  

 

 

2.4.1 Modernizing regional vertical datums 

A vertical datum is a reference surface to which the vertical coordinate of points is 

referred. At a national level, some of the practical uses and benefits of a consistent 

regional vertical datum include, but are not limited to, the following (Zilkoski et al., 

1992): 

− improved coastal/harbour navigation 

− accurate elevation models for flood mitigation 

− accurate elevation models for environmental hazards 

− enhanced aircraft safety and aircraft landing 

− accurate models for storm surges and coastal erosion  

− improved models for chemical spill monitoring 

− improved understanding of tectonic movement 

− improved management of natural resources 
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Traditionally, geodesists have used three different types of vertical datums (according to 

Vaníček, 1991), namely (a) geoid, (b) quasi-geoid, and (c) reference ellipsoid. All of 

these reference surfaces can be defined either globally or regionally, such that they 

approximate the entire Earth's surface or some specified region, respectively. 

 

With no official global vertical datum definition, most countries or regions today use 

regional vertical datums as a local reference height system. This has resulted in over 100 

regional vertical datums being used all over the world (Pan and Sjöberg, 1998). The 

datums vary due to different types of definitions, different methods of realizations and the 

fact that they are based on local/regional data. A common approach for defining regional 

vertical datums is to average sea level observations over approximately 19 years, or more 

precisely, ~18.6 years, which corresponds to the longest tidal component period 

(Melchior, 1978; Smith, 1999), for one or more fundamental tide gauge. This average sea 

level value is known as mean sea level (MSL) and is used because it was assumed that 

the geoid and MSL coincided (more or less). This assumption is obviously false, as it is 

known today that the MSL and the geoid differ by approximately ± 2 metres (Klees and 

van Gelderen, 1997). Also, the geoid is by definition an equipotential surface, whereas 

MSL is not, due to numerous meteorological, hydrological, and oceanographic effects 

(Groten and Müller, 1991). This discrepancy between MSL and the geoid is known as 

mean dynamic sea surface topography, hereinafter denoted by MSST. With the current 

demands for a cm-level accurate vertical datum, the discrepancy between the geoid and 

MSL cannot be ignored.  

 

Figure 2.7 depicts a typical scenario for the establishment of a reference benchmark to 

define a regional vertical datum. The tide gauge records the instantaneous sea level height 

ISLH  and these values are averaged over a long term in order to obtain the mean value of 

the local sea level MSLH . The height of the tide gauge is also measured with respect to a 

reference benchmark that is situated on land a short distance from the tide gauge station. 

Then the height of the reference benchmark above mean sea level BMH  is computed by: 
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TGBMMSLBM HHH −∆+=             (2.28) 

 

Levelling begins from this benchmark and reference heights are accumulated by 

measuring height differences along levelling lines. The accuracy of the reference 

benchmark height derived in this manner is dependent on the precision of the height 

difference TGBMH −∆  and the value for mean sea level MSLH . If one assumes that the 

value for mean sea level is computed over a sufficiently long period of time which 

averages out all tidal period components and any higher frequency effects such as 

currents, then the accuracy depends on TGBMH −∆ .  

 

 

Figure 2.7: Establishment of a reference benchmark height 

 

 

For highly accurate heights as those needed for a cm-level vertical datum, the tide gauges 

cannot be assumed to be vertically stable. It is well known that land motion at tide gauges 

is a source of systematic error, which causes distortion in the height network if it is not 

corrected for. Land motion at tide gauges and reference benchmarks may be caused 

abruptly be earthquakes or by erosion or more subtle changes such as post-glacial 

rebound and land subsidence. The solution to this problem is to include an independent 

space-based geodetic technique such as GPS (or DORIS, GLONASS and in the future 

GALILEO) in order to estimate the land motion at these tide gauges. However, at this 
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point in time, there are still too few measurements available at tide gauges to provide an 

accurate assessment of the global situation (Mitchum, 2000).   

 

As an example of a regional vertical datum, let us consider the most recent general 

adjustment of the North American Vertical Datum conducted in 1988, known as 

NAVD88. NAVD88 consisted of a minimally constrained adjustment of observations in 

Canada, the United States and Mexico. The tide gauge benchmark at a point in Father 

Point/Rimouski, Quebec was held fixed at zero. This point was chosen due to its 

precisely documented position, stable location and it provided a link to the International 

Great Lakes Datum of 1985 (IGLD85). A detailed account of the adjustment can be 

found in Zilkoski et al. (1992). Although the United States has accepted NAVD88 as an 

official vertical datum (despite some differences between the east and west coasts and 

some remaining unexplained problems), Canada has not officially adopted NAVD88 as a 

national vertical datum. In fact, Canada still uses the Canadian Geodetic Vertical Datum 

of 1928 (CGVD28). This official Canadian height system was adjusted by constraining 

five tide gauges, three on the Atlantic (Yarmouth, Halifax and Pointe-au-Père) and two 

on the Pacific (Vancouver and Prince-Rupert) to the MSL of 1928. The heights are 

determined as Helmert orthometric heights as in the case of NAVD88, however for 

CGVD28 the actual gravity is replaced by normal gravity (Geodetic Survey Division, 

1998).  

 

As new methodologies and techniques evolve to the point where cm-level (and even sub-

cm-level) accurate coordinates are needed, the distortions in traditionally-defined 

regional vertical networks are no longer acceptable. With this in mind, five main 

approaches have been identified by Vaníček (1991) for the realization of a "modern" 

regional vertical datum. These options are summarized below, with some additional 

remarks (see also Kearsley et al., 1993). 

(i) Define the geoid by mean sea level as measured by a network of reference tide 

gauges situated along the coastlines of the country and fix the datum to zero at 

these stations. As stated previously, this approach will result in distorted heights as 
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MSL is not an equipotential surface and it varies from the geoid on the order of a 

few metres. Also, by fixing the datum to zero at these tide gauge stations, one is 

assuming that the gauge measurements are errorless or any error inherent in the 

measurements is acceptable. This is also a boldly incorrect assumption. For 

instance, consider the case in Canada where not only are some tide gauges poorly 

situated (sites of river discharge), but also the land to which the tide gauges are 

stationed is moving due to post-glacial rebound. It is known that regions such as 

Canada and the Scandinavian countries are rebounding or subsiding up to 1-2 

mm/year. If these tide gauge motions are neglected, the error propagates into the 

levelled heights referred to the regional vertical datum and causes distortions and 

inconsistencies in the final orthometric heights. 

(ii) Define the vertical datum by performing a free-network adjustment where only one 

point is held fixed. A correction factor (shift) is applied to the resulting heights from 

the adjustment so that the mean height of all tide gauges equals zero. This modified 

version of option (i) above relies heavily on the measurements from a single tide-

gauge, while ignoring the observations for MSL made at all other stations. 

(iii) Use the best model available to estimate sea surface topography at the tide gauge 

stations and then adjust the network by holding MSL-MSST to zero for all tide 

gauges. This approach does eliminate most of the shortcomings identified in 

options (i) and (ii) above, however there are some practical limitations in terms of 

accuracy. Tide gauges are situated near coastal areas and even with the use of 

satellite altimetry, which has revolutionized sea surface observations and greatly 

improved SST models in open oceans, the performance in coastal areas is still quite 

poor. Global ocean circulation models derived from satellite altimetry data and 

hydrostatic models may reach accuracies of 2-3 cm in the open oceans, but the 

models fall apart in shallow coastal areas giving uncertainties on the order of tens of 

centimetres (Shum et al., 1997). Therefore, with significant problems still looming 

in the coastal regions, distortions will be evident in heights referred to a vertical 

datum that is defined with low accuracy SST models. 
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(iv) Define the vertical datum in the same manner as option (iii), but allow the 

reference tide gauges to 'float' in the adjustment by assigning them realistic a-priori 

weights (estimates of errors). This approach can incorporate all of the information 

for MSL and SST at the reference tide gauges. With improvements in models 

obtained from satellite altimetry and a better understanding of the process of tide 

gauge observations (e.g., reference benchmark stability, changes in position), 

estimates of the accuracy of the observations can be made. 

(v) As in option (iv), but use estimates of orthometric heights from satellite-based 

ellipsoidal heights and precise gravimetric geoidal heights. One of the main 

advantages of this approach is that it relates the regional vertical datum to a global 

vertical reference surface (since the satellite-derived heights are referred to a global 

reference ellipsoid). This aids in the realization of an internationally accepted 

World Height System (WHS) or global vertical datum (Colombo, 1980; 

Balasubramania, 1994).  

A slightly modified version of option (v) which combines all relevant observations from 

tide gauges, SLR, GPS, satellite altimetry, and global geopotential models along with 

appropriate estimates of the accuracy is described by Kearsley et al. (1993) and tested 

using Australian data. It is also one of the most promising approaches to be pursued for 

future work as more accurate data becomes available.  

   

 

2.4.2 Global vertical datum 

A global vertical datum can be defined as a height reference surface for the whole Earth. 

The concept of a global vertical datum has been a topic of great research and debate over 

the past century and has yet to be established as an international standard although 

numerous proposals from the geodetic community have been made (see for example 

Burša et al., 2001 and Grafarend and Ardalan, 1997). Despite these efforts and the 

impending need, a widely used practical WHS has not been officially established for all 

heighting applications. The establishment of an accurate, consistent and well-defined 
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global vertical datum has many positive implications. Some arguments that support the 

global definition and practical realization for a global vertical datum include: 

•  provides a consistent and accurate method for connecting national and/or regional 

vertical datums 

•  inconsistencies in gravity anomalies and heights resulting from the use of different 

datums can be removed by referring measurements to a common geopotential 

surface 

•  results of geodetic levelling and oceanographic procedures for determining the sea 

surface over long distances can be compared (Balasubramania, 1994) 

Over the past several decades, another area where a global vertical datum has been 

deemed necessary is in the study of global change applications, such as, global change 

monitoring, mean sea level changes, instantaneous sea surface models, polar ice-cap 

volume monitoring, post-glacial rebound studies and land subsidence studies. All of these 

applications require a global view of the Earth with measurements not only on land, but 

over the oceans as well. The most modern tool available to geodesists and 

oceanographers for measurements over the oceans, other large bodies of water, and even 

polar ice-sheets (Ekholm, 1998), is satellite altimetry, which can be used to provide 

ellipsoidal heights.  

 

By studying the various approaches for the realization of regional vertical datums, 

significant insight can be obtained for the global vertical datum solution. In fact, 

numerous studies have investigated the connection of regional datums into one as a 

viable solution (Colombo, 1980; Balasubramania, 1994; and van Onselen, 1997). In 

Colombo (1980) a combination of geometric and geophysical data was used to define the 

global vertical datum. Specifically, three-dimensional geocentric coordinates and the 

geoidal undulation from a high degree geopotential model of at least one fundamental 

point in each connecting vertical datum are used to achieve an accuracy of ~ 50 cm for 

the connection of vertical datums between continents. In Balasubramania (1994), the 

achievable accuracy for datum connection ranges from  ± 5 cm to ± 23 cm. Recent results 
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using more accurate satellite and terrestrial data are given in van Onselen (1997), where 

depending on the regions to be connected, estimated errors of up to 80 cm occur when 

using satellite-only geoid models and 20 cm with the incorporation of terrestrial data (see 

also, Klees and van Gelderen, 1997). An excellent example of the latter is the successful 

connection of the land-based gravimetric geoid of The Netherlands with the geoid or 

MSL at sea (North Sea), which has been performed by fitting a correction model through 

the TOPEX/POSEIDON data and GPS-levelling data (de Bruijne et al., 1997). Other 

datum connections that have been fueled by the improved accuracy of sea level change 

estimates derived from satellite altimetry mission data include the precise determination 

of the sea surface in the region of the Indonesian Archipelago, which enabled the 

connection and unification of height datums of the Indonesian islands (Naeije et al., 

1998).  

 

Although the connection of regional vertical datums into one is a plausible solution to the 

global vertical datum problem, it is not viable at this time due to the accuracy 

requirements of a cm-level datum. A datum connection at this level requires very 

accurate geoid determination over varying wavelengths (depending on the spatial 

distance between regional height systems) as well as consistency between regions. This 

has not been achieved by most regions and is certainly not available on a global scale 

(Klees and van Gelderen, 1997). In the future, this situation is expected to improve with 

the promising results awaited from CHAMP, GRACE, and GOCE.  

 

In general four strategies for solving the global vertical datum problem have been 

identified (Heck and Rummel, 1990; Lehmann, 2000), as follows: 

a) Pure oceanographic approach. The main problem with connecting regional vertical 

datums between continents that are separated by the ocean is the sea surface 

topography. The oceanographic, hydrologic and meteorological processes that cause 

SST are complex as they deal with a fluid medium that is a dynamic surface with 

varying salinity, temperature, density, currents, wind stress, and air pressure, that are 

difficult to accurately model. However, oceanographers develop models for the 
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differences of the gravity potential of the sea surface using geostrophic and steric 

levelling techniques. As with the case of satellite altimetry, these techniques are least 

reliable/accurate in the low-lying coastal areas. This is an unfortunate predicament as 

it is in the coastal boundaries where the 'datum connection' is made. 

b) Satellite altimetry combined with geostrophic levelling. It is advantageous to combine 

traditional oceanographic techniques such as geostrophic levelling with modern tools, 

such as satellite altimetry. In this case, the most useful types of global information 

that can be derived from satellite altimetry are a global geopotential model and 

observations for the mean sea surface, which aid in the determination of a marine 

geoid. The mean sea level for the global vertical datum definition must be available 

as a two-dimensional surface all over the oceans. Using satellite altimetry this is 

obtained by determining MSL at discrete points along the ground tracks of the 

satellite altimeter and then using these values to interpolate wherever information is 

desired. However, geostrophic levelling is still required for the extrapolation of sea 

surface topography at the tide gauges since the temporal coverage of satellite 

altimetry is still quite poor. To date, there is only approximately 20 years of altimetric 

observations available, whereas over 100 years of tide gauge observations have been 

made.  

c) Geodetic boundary-value problem. The vertical datum issue can be approached from 

the point of view of a geodetic boundary value problem (Moritz, 1980). A detailed 

discussion of a possible solution using this approach is given in Lehmann (2000), and 

involves the combined use of terrestrial data and global geopotential models where 

the available data types change across coastlines. The treatment of the datum issues in 

this manner is contained in a family of problems that is known as the altimetry-

gravimetry boundary value problem (AGBVP). It should be noted that although this 

approach may be theoretically defined and the equations can be derived for its 

solution, it lacks in practicality as the solution often assumes unified data coverage all 

over the Earth. To deal with this practical limitation, certain assumptions are made 



 45

and approximations follow in the formulations. To date, however, a practical solution 

using this approach has yet to be realized.       

 d) Satellite positioning combined with gravimetry. In this approach, the connection 

between the geometric heights obtained from GNSS and levelled heights referred to a 

certain local vertical datum are utilized (see Figure 1.1). This method is one of the 

most promising approaches for the vertical datum problem, however no country has 

adopted it. This is mainly due to the limitation in achievable accuracy, which depends 

on the accuracy of the ellipsoidal heights and the internal precision of the gravimetric 

geoid model. Given the capabilities of such an approach, it is evident that further 

studies in this area are warranted and therefore studied in detail in this thesis.  

 

In Balasubramania (1994), two options for establishing a global vertical datum based on 

the adjustment of heterogeneous data (related to option (d) above) were explored. The 

first approach assumed that the required data was uniformly distributed and available all 

over the Earth. The four kinds of data required for this method, are (i) free-air gravity 

anomalies, (ii) precise heights of stations above a regional vertical datum, (iii) an 

accurate global geopotential model, and (iv) accurate ellipsoidal heights of stations. This 

approach is limited however, by the fact that the data are not uniformly distributed, nor 

are they available at the required precision at all parts on the globe. In general, Europe 

and North America are the only continents that have close to the sufficient amount of 

accurate information. Due to this lack of information on most parts of the Earth, only first 

results from a single iteration are provided using this method. These results showed that a 

global vertical datum can be realized to an accuracy of ± 5 cm.  

 

The second approach, is presented in terms of a more practical or operational realization 

of the global vertical datum by depending on GPS/DORIS tracking networks and 

accurate geoid models. The orthometric heights computed via Eq. (1.1) and the 

incorporation of a corrector surface model refer to a conceptual surface (the geoid), 

which is not associated with any specific MSL. By using this approach, any direct 
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reference to MSL is eliminated. In order to implement this method globally a geoid that is 

precise all over the globe is required.   

 

A global vertical datum can also be realized by choosing a geopotential value, 0W , either 

by adopting a geopotential for a regional vertical datum, or some arbitrary value. 

Variations in geopotential values will exist due to the local data used, and some possible 

values are provided in de Bruijne et al. (1997) and Grafarend and Ardalan (1997). One of 

the most recent studies conducted by Burša et al. (2001) proposes the definition of a 

global vertical datum by adopting the 0W  value that is averaged over the seas. Today, 

this value is directly obtained from satellite altimetry measurements with an accuracy of 

approximately 5 cm (using TOPEX/POSEIDON observations). In addition to the 

altimetric data, other required data for the solution are: GPS-levelling heights referred to 

a specified regional vertical datum, a global geopotential model, the geocentric 

gravitational constant, angular velocity of the Earth's rotation, and the second zonal 

harmonic coefficient (see Burša et al., 2001 for more details).   

 

Further to the aforementioned approaches, it is also important to supply users with the 

practical ability to connect regional vertical datums and transform from regional to global 

vertical datums. This can be done using the method proposed by Burša et al. (2001) 

provided GPS-levelling sites with ellipsoidal and orthometric/normal heights or more 

preferably geopotential numbers are available (also see Pan and Sjöberg, 1998).  

 

 

2.4.3 GNSS-levelling 

The inherent appeal of the seemingly simple linear geometrical relationship between the 

three height types is based on the premise that given any two of the height types, the third 

can be derived through simple manipulation of Eq. (1.1.). There are several issues hidden 

within this statement that will be uncovered in the sequel (e.g., datum inconsistencies, 

systematic errors, data accuracy). The optimal combination of GPS-derived ellipsoidal 
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heights with gravimetrically-derived geoid undulations for the determination of 

orthometric heights above mean sea level, or more precisely with respect to a vertical 

geodetic datum is referred to as GPS-levelling*. The process can be described as follows 

for the absolute and relative cases (height difference between two points i  and j ), 

respectively:  

 

NhH −=           (2.29a)  

 

,)()( ijijij NNhhHH −−−=−  NhH ∆−∆=∆     (2.29b)  

 

This procedure has been the topic of several studies over the years (see for e.g., Engelis et 

al., 1985, Forsberg and Madsen, 1990, and Sideris et al., 1992) and demonstrated to 

provide a viable alternative over conventional levelling methods for lower-order survey 

requirements. A major limitation of using GPS-levelling as a means for establishing 

heights or height differences with respect to a local vertical datum is that it is dependant 

on the achievable accuracy of the ellipsoidal and geoid height data. In practice, the 

relationship given by Eq. (2.29) is never fulfilled due to numerous errors, systematic 

distortions and datum inconsistencies inherent among the triplet of height data (Jiang and 

Duquenne, 1995; van Onselen, 1997; Ollikainen, 1997; Fotopoulos et al., 2001a). Thus, a 

more rigorous treatment for the integration of these different height types requires the 

incorporation of a parametric corrector surface model in Eq. (2.29). The role of such a 

model is to absorb the datum inconsistencies and any systematic distortions that exist in 

the height data sets (Shrestha et al., 1993). More details are provided in the next two 

chapters.  

 

In practice, the GPS-levelling technique has become quite common and used often 

erroneously or with a poor understanding of the transformations between reference 

surfaces and systematic errors involved. As accuracy requirements increase, the incorrect 

                                                           
* The terms GPS-levelling, GPS/geoid levelling and GNSS-levelling are used interchangeably. 
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application of Eq. (2.29) has more severe implications. Therefore, it is important to 

develop proper procedures for combining the heterogeneous height data and a means to 

convey this information to users. This is a major part of the work presented in the 

remaining parts of this thesis and will be discussed specifically in chapter 7 for numerical 

case studies in northern Canada, where vertical control is difficult to establish and GNSS-

levelling offers a viable alternative.  

 

 

2.4.4 Refining and testing gravimetric geoid models 

Another common manipulation of Eq. (1.1) is the combined use of co-located ellipsoidal 

and orthometric heights (or height differences) in order to compute geoidal height values 

at the GPS-levelling benchmarks. The form of the equation for absolute and relative 

values (between points i and j), respectively, is given by 

 

HhN −=           (2.30a) 

 

HhNHHhhNN ijijij ∆−∆=∆−−−=− )()(     (2.30b) 

 

These GPS-derived geoid heights are invariably different from the values interpolated 

from a gravimetrically-derived geoid model and are influenced by the datum 

inconsistencies, biases and errors associated with the independently derived ellipsoidal 

and orthometric height data. For instance, a gravimetrically computed geoid model, 

obtained from the remove-compute-restore process described in section 2.1, will 

(theoretically) refer to the geocentric reference system implicit in the used geopotential 

model. This reference system will in turn correspond to the adopted coordinate set for the 

satellite tracking stations used in the global geopotential solution. This coordinate set will 

not necessarily agree with the adopted reference system for the ellipsoidal heights 

obtained from the GPS measurements. Furthermore, the local levelling datum to which 
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the orthometric heights refer will not likely correspond to the reference potential value of 

the geopotential model or the GPS reference system.  

 

From this brief discussion, the complexity involved with combining the different height 

data becomes evident and it is imperative that users are knowledgeable about these 

matters in order to apply Eq. (2.30) properly. In practice, the major applications of Eq. 

(2.30) include: 

− external independent evaluation of gravimetric geoid accuracy, 

− incorporation of GPS-derived geoid heights into the gravimetric geoid solution as a 

constraint, and  

− densification of networks that have already been positioned by conventional 

horizontal and vertical methods, 

which are all described in more detail below.  

 

Comparisons between different geoid solutions provide insight into the accuracy of the 

geoid determination techniques (Sideris et al., 1992). To date, comparisons of 

gravimetrically-derived geoid model values interpolated at GPS-on-benchmarks with 

geometrically computed geoid values (derived from Eq. 2.30) provide the best external 

means of evaluating the geoid model accuracy. In order for this method to provide an 

indication of the 'accuracy' of the gravimetric geoid model, it is important that the GPS-

levelling data used for testing is not incorporated in the original geoid solution. This is an 

obvious statement, but often neglected in practice.  

 

Long-wavelength errors present in gravimetrically-derived geoid models (described in 

section 2.1) may be reduced by constraining the geoid solution to observed geoid values 

at GPS-levelling benchmarks (Forsberg and Madsen, 1990). This is a common procedure 

implemented in many recent national geoid models through the use of least-squares 

collocation procedures, and shown to give positive results (see Tscherning et al., 2001 

and Featherstone, 2000). In Roman and Smith (2000), this approach, referred to as the 
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hybird methodology, is used to compute the geoid model for the continental United 

States.    

 

The use of geoid values derived from Eq. (2.30) has also offered the opportunity for 

government agencies and mapping authorities responsible for national height databases to 

densify existing vertical control networks, as proposed in Engelis et al. (1985). Given the 

improvements and availability of satellite-based positioning techniques, it is certain that 

this procedure will continue and become increasingly popular in the near future.     
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Chapter 3 

 

Combined Height Adjustment and  
Modelling of Systematic Effects 

 

 

 

In this chapter, the algorithms and methodology used in the combined adjustment of the 

ellipsoidal, orthometric and geoid height data is presented. The first section describes the 

combined least-squares adjustment scheme for both absolute and relative height input 

values. The unknown parameters solved for in this adjustment are the 'coefficients' of 

some parametric model selected for dealing with the systematic errors and datum 

inconsistencies inherent among the heterogeneous height data. As there are numerous 

options available for the form of the parametric model, an overview of the main choices 

is also provided. Finally, the key elements of a procedure developed for assessing the 

parametric model performance is described in detail.  

 

 

3.1 General combined adjustment scheme 

In this section, a description of the observation equations and mathematical models used 

for the multi-data adjustment of ellipsoidal, geoidal and orthometric heights, is provided. 

The formulation herein forms the basis for all of the results presented in the remaining 

chapters, with particular emphasis placed on the role of the systematic and random errors 

inherent among the heterogeneous height types. It should be recognized that there are a 

number of options available for combining these height data (see, e.g., Kearsley et al., 
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1993, Kotsakis and Sideris, 1999, and Dinter et al., 2001). The algorithm used herein is 

an amalgamation of the procedures described in Kotsakis and Sideris (1999), Kearsley et 

al. (1993), de Bruijne et al. (1997), and others and it has been implemented and tested 

extensively using real data sets by the author; see, e.g., Fotopoulos et al. (2001a,b). It was 

selected as the most appropriate adjustment scheme as it offers a practical solution to the 

problem given the data currently available.  

 

Problem formulation using relative height data  

Given a network of points with known ellipsoidal and orthometric height values and the 

availability of a gravimetric geoid model, a combined 1D least-squares adjustment of 

GPS, levelling and geoid height data can be performed. In practice, the height differences 

for each data type are formed with respect to some selected initial point/station. 

Therefore, the “observed” input values are ijh∆ , ijH∆ , and ijN∆  for each pair of points 

),( ji  forming a baseline in the test network. The corresponding observation equation 

model is given by 

 

h
ij

h
ijijij vfhhh ∆∆ ++−=∆ αα                                    (3.1a) 

H
ij

H
ijijij vfHHH ∆∆ ++−=∆ αα                   (3.1b) 

N
ij

N
ijijij vfNNN ∆∆ ++−=∆ αα                 (3.1c) 

 

where the superscript α  denotes the true values of the various heights at each point. The 

)(⋅
ijf  terms describe the systematic errors and datum inconsistencies in the height data 

sets. The true values α
ih , α

iH , α
iN , α

jh , α
jH , and α

jN  refer to a common geodetic 

datum such that the following conditions, based on Eq. (1.1), are satisfied at each station: 

 

0=−− ααα
iii NHh            (3.2a) 
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0=−− ααα
jjj NHh              (3.2b) 

 

which can be extended for the relative case to include a condition for each baseline 

combination as follows: 

 

0=∆−∆−∆ ααα
ijijij NHh             (3.2c) 

 

Using Eqs. (3.2a), (3.2b) and (3.2c), a 'new' observation equation for each baseline in the 

test network can be formed according to the following expression:   

 

N
ij

H
ij

h
ij vvvfijij

∆
−

∆
−

∆+=�                 (3.3) 

 

where the 'observed' height misclosure value for each baseline is given by 

 

ijijijij NHh ∆−∆−∆=�                            (3.4) 

 

The ijf  term in Eq. (3.3) refers to the total (combined) correction term for the systematic 

errors and datum inconsistencies in the multi-data test network. It can be modeled 

according to a deterministic parametric form 

 

( ) xaxaa T
ijij

T
i

T
jf =−=                     (3.5) 

 

where ij aa ,  are 1×n  vectors of known coefficients that usually depend on the 

horizontal location of the network points ji, , and x  is an 1×n  vector of unknown 

parameters. The role of the corrector surface model in this combined multi-data height 

adjustment must also be investigated and is discussed further in section 3.2. Furthermore, 
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the choice of the parametric form of the corrector surface model will be discussed in 

more detail in sections 3.3 and 3.4.  

 

The )(⋅
ijv  terms in Eqs. (3.1a-c) describe the zero-mean random errors in the ellipsoidal, 

orthometric and geoid height differences. Their second order statistical properties, for all 

baselines in the multi-data test network, are provided by the covariance (CV) matrices 

 

{ } h
T

hhE ∆∆∆ = Cvv              (3.6a) 

{ } H
T

HHE ∆∆∆ = Cvv              (3.6b)  

{ } N
T

NNE ∆∆∆ = Cvv              (3.6c) 

 

where E  denotes the mathematical expectation operator and h∆v , H∆v , and N∆v  are 

the vectors that contain the unknown random errors for the height differences for all 

network baselines.  

 

Multi-data adjustment using absolute height data 

Given the observation equation set-up presented above, the adjustment of observations is 

performed for the relative height data case. This approach will be revisiting in chapter 7, 

where it is used with simulated test data to assess the accuracy of orthometric height 

differences obtained from GPS-levelling. In this section, the observation equation 

formulations are provided for the absolute case where the 'observed' input data to the 

adjustment are ii Hh ,  and iN  for a common set of co-located GPS-levelling benchmarks 

over a network area. This approach is used throughout as it was found to be the most 

accessible form of the real height data sets. Thus, the following discussion will focus on 

the typical scenario of a triplet of height information at each control point in the network 

where the observation equation for each station in the network is given by 
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N
i

H
i

h
i vvvfii −−+=�                 (3.7) 

 

where,  

 

iiii NHh −−=�                  (3.8) 

 

The if  term in Eq. (3.7) refers to the total (combined) correction term for the systematic 

errors and datum inconsistencies in the multi-data test network and can be modeled 

according to a deterministic parametric form 

 

xaT
iif =                   (3.9) 

 

In the absolute case, the covariance matrices are denoted by 

 

{ } h
T
hhE Cvv =          (3.10a) 

{ } H
T
HHE Cvv =          (3.10b) 

{ } N
T
NNE Cvv =          (3.10c) 

 

where hv , Hv , and Nv  are the vectors that contain the unknown random errors for each 

height type.  

 

The general linear functional model used for the multi-data (combined) adjustment of the 

heterogeneous height data described above is given as follows:  

 

BvAxl +=           (3.11a) 

0}{ =vE           (3.11b) 

vCvv =}{ TE           (3.11c) 
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where the 1×m  vector of observations l  is composed of the height 'misclosure' at each 

GPS-levelling benchmark as given in Eq. (3.8). It should be noted that the absolute height 

values, h, H, and N are the results of previous adjustments conducted using baseline 

information for each of the ellipsoidal and orthometric height networks and similarly in 

the computations for a gravimetric geoid model. Therefore, the results of these original 

adjustments are used as input into this secondary combined least-squares adjustment. The 

um ×  design matrix, A , depends on the parametric model type (see section 3.3). B  is 

the block-structured matrix denoted by  

 

[ ]IIIB −−=              (3.12) 

 

where each I  is an mm ×  unit matrix. x  is a 1×u  vector containing the unknown 

parameters corresponding to the selected parametric model and v  is a vector of random 

errors with zero mean (Eq. 3.11b), described by the following formula: 

 

[ ] TT
N

T
H

T
h vvvv =            (3.13) 

 

where )(⋅v  is an 1×m  vector of random errors for each of the NHh ,,  data types. The 

corresponding covariance matrix is described in general by Eq. (3.11c).  

 

Applying the least-squares minimization principle of  

 

minimum=++= NN
T
NHH

T
Hhh

T
h

T vPvvPvvPvPvv         (3.14) 

 

where the block diagonal weight matrix P  is  
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one can solve for the unknown parameters (i.e., coefficients) of the corrector surface 

model by 

 

lCCCAACCCAx 111 )(])([ˆ −−− ++++= NHh
T

NHh
T         (3.16) 

 

The combined adjusted residuals from the adjustment are given by  

 

NHh vvvvB ˆˆˆˆ −−=              (3.17) 

 

where we can explicitly solve for the separate adjusted residuals, according to height 

data type, by applying the well known formulation (Mikhail, 1976) 

 

)ˆ()(ˆ 11 xAwBBPBPv += −− TT            (3.18) 

 

where lw =  and is also shown in Kotsakis and Sideris (1999) as follows: 

 

MlCCCCv 1)(ˆ −++= NHhhh        (3.19a) 

MlCCCCv 1)(ˆ −++= NHhHH        (3.19b) 

MlCCCCv 1)(ˆ −++= NHhNN        (3.19c) 

 

where the M  matrix is expressed by  
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11 )()(( −− ++++−= NHh
T

NHh
T CCCACCCAAIM         (3.20)  

 

The accuracy of the corrector surface parameters can be computed by 

 

11
ˆ ])([ −−++= ACCCACx NHh

T            (3.21) 

 

This formulation provides us with the interesting opportunity to evaluate the contribution 

of each of the height types through the evaluation of vC , which can also be represented 

by the following expression: 
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A detailed discussion of the stochastic model and random errors is given in chapters 5 

and 6 and will not be dwelled on in this chapter.  

 

Note on an alternate formulation of the problem 

An alternative, yet equivalent formulation of the problem, can be stated by replacing the 

functional model in Eq. (3.11a) with 

 

{ } 0E =+= **, vvAxl             (3.23)  

 

where Bvv =* , or equivalently stated by 

 

NHh vvvv −−=*              (3.24) 
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It can easily be shown that the final equations corresponding to this alternative 

formulation are identical to those derived thus far.  

 

The unique perspective obtained by implementing this combined adjustment approach as 

described herein is embedded in two main areas, namely: 

•  the evaluation of the contribution of the xaT
iif =  term, which refers to the total 

(combined) correction term for the systematic errors and datum inconsistencies in 

the multi-data test network, and  

•  the separation of residuals according to the height data types, which allows for the 

refinement of data covariance matrices.   

In the past, numerous studies have been conducted which focused on the first issue. 

Despite these efforts, a consistent approach for implementing and assessing the model 

performance has not been widely proposed or accepted. The concept of the multi-data 

one-dimensional adjustment should not be trivialized, as there are many sources of 

systematic and random errors involved that have to be dealt with properly in order to 

rigorously combine all of the data and obtain meaningful and optimal (in the least-

squares sense) results. This problem will not only be addressed in the sequel from a 

theoretical point of view, but it will also be approached from the practical point of view 

where real-world data limitations are taken into account.  

 

 

3.2 Role of the parametric model  

The main factors that cause discrepancies when combining the heterogeneous heights 

include the following (Rummel and Teunissen, 1989; Kearsley et al., 1993; Schwarz et 

al., 1987): 
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− Random errors in the derived heights h , H , and N   

The covariance matrices for each of the height types (absolute or differences) are 

usually obtained from separate network adjustments of the individual height types. 

The main errors affecting the data were described in chapter 2. 

− Datum inconsistencies inherent among the height types  

Each of the triplet of height data refers to a different reference surface. For instance, 

GPS-derived heights refer to a reference ellipsoid used to determine the satellite 

orbits. Orthometric heights, computed from levelling and gravity data, refer to a 

local vertical datum, which is usually defined by fixing one or more tide-gauge 

stations (see discussion in sections 2.2 and 2.4.1). Finally, the geoidal undulations 

interpolated from a gravimetrically-derived geoid model refer to the reference 

surface used in the global geopotential model, which may not be the same as the 

one for the gravity anomalies g∆ .  

− Systematic effects and distortions in the height data  

These systematic effects have been described in chapter 2 and are mainly caused by 

the long wavelength geoid errors, which are usually attributed to the global 

geopotential model (i.e., EGM96). Biases are also introduced into the gravimetric 

geoid model due to differences between data sources whose adopted reference 

systems are slightly different. In addition, systematic effects are also contained in 

the ellipsoidal heights, which are a result of poorly modelled GPS errors, such as 

atmospheric refraction (especially tropospheric errors). Although spirit-levelled 

height differences are usually quite precise, the derived orthometric heights for a 

region or nation are usually the result of an over-constrained levelling network 

adjustment, which introduces distortions. 

− Assumptions and theoretical approximations made in processing observed data  

Common approximations include neglecting sea surface topography (SST) effects 

or river discharge corrections for measured tide gauge values, which results in a 
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significant deviation of readings from mean sea level. Other factors include the use 

of approximations or inexact normal/orthometric height corrections and using 

normal gravity values instead of actual surface gravity values in computing 

orthometric heights (Véronneau, 2002). The computation of regional or continental 

geoid models also suffers from insufficient approximations in the gravity field 

modelling method used (de Min, 1990). 

− Instability of reference station monuments over time  

Temporal deviations of control station coordinates can be attributed to geodynamic 

effects such as post-glacial rebound (e.g., see, de Bruijne et al., 1997), crustal 

motion and land subsidence. Most GPS processing software eliminate all tidal 

effects when computing the final coordinate differences. To be consistent, the non-

tidal geoid should be used (Ekman, 1989). More details on the error caused by 

mixing ellipsoidal heights referring to a non-tidal crust and orthometric heights 

whose reference surface is the mean or zero geoid is given in Poutanen et al. 

(1996). 

 

The combined effects of these factors and others result in poorly estimated height values 

and more importantly inaccurate assessments, if any, of the results achievable by GPS-

levelling. Thus far, the burden of dealing with most of these factors (mainly the 

systematic errors and datum inconsistencies) has been designated to the use of a corrector 

surface model. Before continuing with a description of modelling options, it is important 

to pause for a moment and take a closer look at the role of the parametric model in the 

GPS/geoid levelling problem. Given the theoretical relationship among the three types of 

height data and the incorporation of an appropriate corrector surface model, the 

orthometric height for a new point (not belonging to the original multi-data network) is 

obtained as follows:     

 

x̂TaNhH −−=              (3.25)  
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The question that must be addressed is to which vertical reference system does the 

computed value H  refer?  To answer this question, we refer to Figure 3.1, which 

provides an illustrative view of the various reference surfaces embedded in the different 

height data sets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Illustrative view of GPS/geoid levelling and the role of the corrector surface 

 

 

In this figure, the points on the Earth's surface represented by a solid circle belong to the 

multi-data control network and the point denoted by a triangle is the 'new' point for which 

the orthometric height is to be computed via GPS/geoid levelling. For the sake of this 

discussion, if one ignores the systematic effects, and concentrate on the datum 

inconsistencies, one can see from the figure that the role of the corrector surface is 

twofold. In general, the datum discrepancies occur between (i) the local vertical datum 

and the geoid model (both of which are supposed to represent different equipotential 

surfaces of the Earth's gravity field) and (ii) the two ellipsoids to which the GPS 

measurements and geoid undulations refer to. These discrepancies are typically not 

constant biases as depicted in the figure, but they may take on a more complicated form. 
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In order to obtain the orthometric height through GPS/geoid levelling that refers to the 

local vertical datum for the new point, kH , a connection between the different height 

surfaces must be made. This connection is embedded in the corrector term f (see Eq. 

3.9) and can take on many forms, depending on the model selection. It should be 

cautioned, however, that the corrector surface model will provide a consistent connection 

between the heights derived from GPS/geoid levelling and the official local vertical 

datum, only if the orthometric heights used in the multi-data adjustment also refer to the 

official local vertical datum. 

 

It is evident that the parametric model plays a major role in the combined height 

adjustment process, which highlights the importance of the following issues: 

(i) selecting the appropriate type of model 

(ii) selecting the extent/form of the model  

(iii) assessing the performance of the chosen model  

To date, the first two issues have been given a significant amount of attention in research 

and will be reviewed in the following section. However, the latter issue, which is equally 

as important, has often been neglected. Therefore, it will be one of the key aims of this 

thesis to investigate all of these issues with relevance to practical problems using real 

data. 

 

 

3.3 Modelling options 

The choice of the parametric form of the corrector surface model is not a trivial task. In 

fact, the list of potential candidates for the 'corrector' surface is extensive. Arguably, the 

selection process is arbitrary unless some physical reasoning can be applied to the 

discrepancies between the GPS-derived geoid heights GPSN , and the geoid heights from 

the gravimetric geoid model gravN , which fulfills 
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i
T
iiiii vxaNHh +=−−=�             (3.25) 

 

gravGPST
i NNxa −=             (3.26) 

 

In the past, researchers have often utilized a simple tilted plane-fit model, which in 

several cases has satisfied accuracy requirements. However, as the achievable accuracy 

of GPS and geoid heights improves, the use of such a simple model may not be sufficient. 

The problem is further complicated because selecting the proper model type depends on 

the data distribution, density and quality, which varies for each case.  

 

In general, the most common approach to the bilinear term in Eq. (3.26) is to employ a 

parameterized trend with a finite set of unknown parameters represented in its linear form 

as follows: 

 

qq fbfbfbp +++= ��2211            (3.27) 

 

where qbbb ,,, 21 �  are the unknown coefficients to be solved for in the combined least-

squares approach discussed in section 3.1 and qfff ,,, 21 �  are known base functions. 

The type of base functions may vary. One possibility is a polynomial (of various orders), 

also represented by the multiple regression equation (MRE) 
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where λϕ ,  are the mean latitude and longitude of the GPS-levelling points, respectively, 

and qx  contains the q unknown coefficients. The parameter q varies according to the 

number of terms up to a maximum of )1()1( +⋅+= MNq . An example of the use of this 
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bivariate MRE type of model is included in Bin et al. (1995) for the Singapore region. 

Other types of base functions include trigonometric, harmonic, Fourier series, and 

wavelets. In Featherstone (2000), the use of continuous curvature splines in tension was 

investigated for parts of Australia.  

 

In some cases, two or more different types of base functions may be appended/merged. 

This was the case for the recent North Sea region model where the selected models can 

be represented by the following equations (Haagmans et al., 1998): 

 

ϕλϕλ dcba +++              (3.29) 
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                  (3.30) 

 

Eq. (3.29) is a bilinear trend function and Eq. (3.30) is a trigonometric function based on 

Fourier analysis, which was used in different parts to model the long-wavelengths.  

 

Another family of models is based on the general 7-parameter similarity datum shift 

transformation, with the simplified classic 4-parameter model (Heiskanen and Moritz, 

1967, chapter 5) given by 

 

iiiii
T
i xxxx ϕλϕλϕ sinsincoscoscos 4321 +++=xa           (3.31) 

 

where ii λϕ ,  are the latitude and longitude, respectively, of the GPS-levelling points. The 

full form of the design matrix would be given as follows: 
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An extended version of the above model is given with the inclusion of a fifth parameter 

as follows: 

 

iiiiii
T
i xxxxx ϕϕλϕλϕ 2

54321 sinsinsincoscoscos ++++=xa       (3.33) 

 

It should be noted that the parameters from such a 'datum shift transformation' do not 

represent the true datum shift parameters (translations, rotations and scale) because other 

long-wavelength errors inherent in the data (such as those in the geoid heights) will be 

interpreted as tilts and be absorbed by the parameters to some degree. Recently, a more 

complicated form of the differential similarity transformation model was developed and 

tested in the Canadian region and is given by (Kotsakis et al., 2001): 
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   (3.34)  

 

where ieW ϕ22 sin1−= , 2e  is the eccentricity and f  is the flattening of the 

reference ellipsoid. 

 

Many researchers have opted for applying anyone of the aforementioned trend surfaces 

and then modelling the remaining residuals using least-squares collocation (Forsberg, 

1998) as follows: 
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( ) rICCv
11~ −−+= σrrsr             (3.35) 

 

where r  is a vector of known residuals with variance σ , to be predicted at another 

location(s), denoted by s . The above equation is usually implemented using a second-

order Markov covariance model of the form 

 

α
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 += 1)(
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CC             (3.36) 

 

where d  is the correlation distance and 
�

C  and α  are empirically determined from the 

actual data for each case (Forsberg, 1998). The use of other types of covariance functions 

has also been investigated; see, for example, Milbert (1995) and Denker et al. (2000). 

 

Using a mosaic of parametric models 

Thus far, the discussion on the type of model has been based on the use of a single model 

to represent an entire region. This approach is sometimes limiting as it assumes that a 

homogeneous set of discrepancies exist over an entire region, regardless of its extent and 

data distribution. Consider for instance, the task of selecting a single model to adequately 

model all of the discrepancies across large regions such as Canada and Australia, where 

comparatively sparsely distributed sets of GPS-levelling control points are available 

(Véronneau, 2002; Johnston and Luton, 2001). An additional limitation of this approach 

is that it relies on a single model to deal with both long and short wavelength 

discrepancies.  

 

One way to deal with this is to divide the region into a number of smaller sub-regions and 

fit the appropriate model to that region using, for example, any of the aforementioned 

models. The type of model or extent of the model (i.e., order of polynomial) may vary for 

each sub-region. The new problems that arise when implementing this approach are (i) 

how to divide the region and (ii) how to connect across adjacent sub-regions. Extensive 
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studies that test this method are described by Jiang and Duquenne (1996). In this 

research, the long and short wavelength errors are dealt with separately by using different 

models. A global transformation model is applied (based on a trigonometric function) to 

deal with the general transformation of reference systems. Several polynomial models 

(usually in planar representation) are applied to the divided sub-regions in order to deal 

with local deformations. The combined adjustment employs a set of constraint equations 

for common points in the neighbouring sub-regions. For example, the following 

constraint conditions can be used for the absolute (pointwise) and relative (baseline) 

cases: 

 

)()(
���

λλϕϕ −+−+∆=∆ baNN            (3.37) 

 

)()( ijijij baN λλϕϕ −+−=∆            (3.38) 

 

where N∆  is the observed geoidal undulation as given with respect to the geoid, 

���
N∆,,λϕ  are the mean values of latitude, longitude and geoidal undulation, 

respectively, in the sub-region, ijN∆  is the difference of geoidal undulation between 

points i and j, and the coefficients to be determined from the adjustment of the common 

points are denoted by a and b. It should be noted that in Jiang and Duquenne (1996), 

equivalent forms of Eqs. (3.37) and (3.38) were derived for observed height anomalies, 

ζ∆ , given with respect to the quasi-geoid. The common points belonging to each 

neighbouring sub-region should have the same adjusted values. For more details and 

results using test network data in France, see Duquenne et al. (1995) and Jiang and 

Duquenne (1996).  

 

A similar test study was conducted for Australia where it was determined that it was 

appropriate to use a mosaic of models in four sub-regions in order to model the 

discrepancies (see Fotopoulos et al., 2002). Test results for this region are described in 

more detail in chapter 4. A final note on this method is the specifications used to 
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determine the sub-region boundaries. This will vary from region to region, but may be 

based on guidelines such as geographical location, topography, data distribution/sources. 

The process can be likened to the Helmert block approach often used in the adjustment of 

large geodetic networks to distribute the computational burden (see for example Wolf, 

1978).  

 

An alternative approach to modelling the discrepancies between the ellipsoidal, 

orthometric and geoid heights that is worth mentioning is the use of a finite element 

model (FEM). In the approach described by Jäger (1999), a FEM is parameterized by sets 

of bivariate polynomials with continuity conditions employed to deal with discontinuities 

between surface meshes. All of the combined height information ( ,,,, hHHh ∆∆ and N ) 

contributes to the overall adjustment, which is used to compute the coefficients of the 

finite element model. A key difference between the designation of the meshes in this 

approach as compared to the sub-regions in the previous discussion is that the nodes and 

edges of the meshes are independent of the location of the data points. This affords the 

user a greater degree of flexibility in representing the corrector surface.  

 

 

3.4 Selecting a parametric model  

As evidenced by the brief overview in the previous section, there is a plethora of different 

models available for the corrector surface model. The type of parametric model suited for 

a particular set of control points may be completely incompatible for a different region. 

Therefore, the importance of empirical tests with real data cannot be stressed enough. 

However, experience has shown that some general guidelines can be followed in order to 

filter through the different models and test only a few for each case. The most important 

aspect is to avoid over-parameterization. A high degree surface may give unrealistic 

extrema in data voids where control points are missing. This is an important factor for the 

combined height problem in particular, as one of the most favourable locations to utilize 
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GNSS-levelling are in areas where it is difficult to establish vertical control and therefore 

data gaps are prevalent (see chapter 7).  

 

In order to demonstrate the consequences of over-parameterization, consider, as an 

example, a bivariate polynomial fit of various orders (see the multiple regression 

equation in Eq. 3.28). The coefficients for four different orders of the model (first, 

second, third and fourth) were computed for the same set of vertical control points in the 

western Canadian provinces of Alberta and Saskatchewan. The results of the computed 

fits are depicted in Figure 3.2. Two sets of figures for each model are shown, with the 

figures on the left showing the behaviour of the computed corrector surface and the 

figures on the right depicting the control network with an overlay of the corrector surface. 

As evidenced by the dispersion of the data, in the northern parts of the provinces there are 

virtually no GPS-levelling benchmarks. This is particularly evident in the northeastern 

quadrant (north of 56ºN and east of 100ºW). Focusing on this area, it is clear that as the 

order of the polynomial fit increases from first to fourth, the more exaggerated are the 

artifacts produced by the model. At a much lower level, the same behaviour is evidenced 

in the southwestern corner where there is also a gap in the data distribution.  

 

Although it is obvious, from visual inspection, that over-parameterization leads to poor 

results in some areas, it often goes unnoticed in practice as models are usually tested by 

comparing the computed values to existing control. In these areas, all models seem to 

perform well and there is no erratic behaviour. In fact, as a general rule of thumb for 

prediction of MRE surfaces, one should aim to derive the simplest model that adequately 

fits the data (Lancaster and Šalkauskas, 1986).  

 

Details on the different tests that can be conducted to assess model performance will be 

provided in the following section. However, it is appropriate to describe some model 

characteristics that may help or hinder the assessment process. In theory, the decision on 

the degree of the polynomial/MRE surface should be reached by hypothesis testing 

(Dermanis and Rossikopoulos, 1991). 
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Figure 3.2:  First (a), second (b), third (c) and fourth (d) order bivariate polynomial fits 
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However, the results of such statistical tests are often hindered by the fact that 

independent coefficients generated by a polynomial series are usually correlated with one 

another. Therefore, it is worth considering models with orthogonal base functions, which 

ensures no correlation between coefficients. Some classic orthogonal polynomials include 

Legendre, Tschebyscheff of first and second kind, Jacobi, Laguerre and Hermite (Davis, 

1963, ch. 10). If the application of these models is not suitable or too complex for 

practical use, then one can also apply orthogonalization/orthonormalization procedures to 

decorrelate existing base functions. A common orthonormalization procedure that is 

relatively simple to implement in practice is the Gram-Schmidt orthonormalization 

method (see Carroll and Green, 1976; ch. 3 for more details), which is employed in this 

work and the results will be discussed in chapter 4.  

 

Finally, a very useful guideline to follow, if possible, is to select a set of nested models as 

opposed to non-nested models. Two models are nested if one can be derived from the 

deletion of some of the terms in the other model. The imposition of such a criterion for a 

set of models to be tested greatly facilitates the assessment process as demonstrated in the 

following section.  

 
 

3.5 Assessing the parametric model performance 

In general, the process applied for selecting the best parametric model in a particular 

region suffers from a high degree of arbitrariness in both choosing the model type and in 

assessing its performance. In order to address this daunting issue, several tests are 

presented, which can be applied to the results of the combined least-squares adjustment 

of the ellipsoidal/orthometric/geoid heights. More specifically, they include the 

following: 

− classic empirical approach 

− assessing the goodness of fit 

− cross-validation 

− testing parameter significance 
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Each of these steps will be described in detail below. It is assumed throughout the process 

that reliable information for the statistical behaviour of the ellipsoidal, geoid and 

orthometric height data is available and any gross errors/blunders have been detected and 

removed from the observational data in order for the results to be meaningful.  

 

 

3.5.1 Classical empirical approach 

The most common method used in practice to assess the performance of the selected 

parametric model(s) is to compute the statistics for the adjusted residuals after the least-

squares fit. The adjusted residuals for each station in the network, iv̂ , are computed as 

follows: 

 

xa ˆˆ T
iiiii NHhv −−−=                (3.39) 

 

The model that results in the smallest set of residuals is deemed to be the most 

appropriate ('best' fit). Figure 3.3 depicts a typical series containing the original height 

misclosures (as computed from Eq. 3.8) and the adjusted residuals after the fit (Eq. 3.39). 

Of note is the reduction in the average value to zero imposed by the least-squares 

adjustment. In effect, these values give an assessment of the precision of the model as 

they indicate how well the data sets fit each other.  

 

In Figure 3.4, this classic empirical approach is illustrated. One of the main problems 

encountered when using this empirical method as the sole means for selecting between 

different models is that the lowest RMS usually corresponds to the highest order model. 

In fact, as the number of parameters in the corrector surface model increases, the 

associated root mean square (RMS) decreases. This is expected as the parameters absorb 

more of the differences (Fotopoulos et al., 2001b). Therefore, this method is valid for 

testing the precision of the model, but it should not be interpreted as the accuracy or the 

prediction capability of the model.   
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Figure 3.3: Example of height misclosures before and after parametric model fit 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Classical empirical testing approach 
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3.5.2 Cross-validation 

An additional empirical approach that can be used to complement the previous method 

and obtain a more realistic measure of the accuracy of the models is known as cross-

validation. The general process can be summarized in four steps: 

(i) select a subset of vertical control points in the area of interest 

(ii) use the selected points in the combined least-squares adjustment to compute the 

model parameters, x̂  

(iii) use the computed model to predict the residual values at new points, not included 

in the original subset 

(iv) compare the predicted values from step (iii) with the 'known' height misclosures 

One important practical problem with using this approach is that the results are dependent 

on the accuracy of the subset of points used for the comparison. Often the accuracy of the 

points are not known. Also, it is preferable to use as much data as possible in order to 

compute the unknown parameters. To alleviate these issues, the approach adopted herein 

involves a slight modification of the above steps as follows: 

(i) select all but one point, i.e., point P  in Figure 3.5 

(ii) use the subset of points (encircled in Figure 3.5) in the combined adjustment to 

compute the model parameters, x̂  

(iii) use the computed model to predict the residual value at point P          

(iv) compare the predicted values with the known height misclosure at P , 

xa ˆˆ T
pPPPp NHhv −−−=∆  

(v) repeat (i)-(iv) for each GPS-levelling benchmark in the network and compute the 

average RMS by ∑ = +m
1i

2
i

2
im

1 σµ   
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Figure 3.5: Cross-validation procedure on a point-by-point basis 

 

 

The average RMS computed in this manner provides a more realistic indication of the 

accuracy of the selected parametric model and its performance as a prediction surface for 

a new point. It is the preferred empirical testing scheme, as it does not rely exclusively on 

the accuracy of a single point or a small subset of points. It also maintains high data 

redundancy to compute the parameters in the combined least-squares adjustment. 

 

 

3.5.3 Assessing the goodness of fit 

A statistical measure of the goodness of the parametric model fit for a discrete set of 

points is given by the coefficient of determination, denoted by 2R . It can be described as 
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the ratio of the sum of the squares due to the fit, to the sum of the squares about the mean 

of the observations, as follows (Sen and Srivastava, 1990): 
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            (3.40) 

 

where m  observations are given by Eq. (3.8), the adjusted residuals for each station in 

the network are computed using Eq. (3.39), and i�  is the mean value of the observations. 

In the extreme case where the parametric model fit is perfect, ( ) 0ˆ
2

1 =−∑ =
m
i ii v�  and 

12 =R . The other extreme occurs if one considers the variation from the residuals to be 

nearly as large as the variation about the mean of the observations resulting in the 

fractional part in Eq. (3.40) to approach unity and 02 →R . Thus, the coefficient of 

determination varies between 0 and 1 ( 10 2 ≤≤ R ) and the closer the value is to one, the 

smaller the residuals and hence the better the fit.   

 

At first glance, 2R  may be regarded as a single-value indicator of the goodness of fit. 

However, it is important to realize that 2R  is a statistic and as with all statistics its values 

are somewhat governed by chance and peculiarities in the data (Wesolowsky, 1976). A 

relevant example to consider is the case where the data redundancy (or degrees of 

freedom) is small. In such cases, it is possible to obtain an erroneously large 2R  value, 

regardless of the quality of the fit. In fact, as the number of explanatory variables in the 

model (i.e., coefficients) increases, so does 2R  (ibid.). To deal with this limitation, a new 

statistic can be computed which is corrected for the degrees of freedom. This value, 

denoted by 2
αR , is called the adjusted coefficient of determination and is computed as 

follows (Sen and Srivastava, 1990): 
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where u  is the number of parameters in the model. The relationship between the two 

statistics is easily derived from relating Eqs. (3.40) and (3.41) and determined to be 
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−−=α             (3.42) 

 

This relationship between the two statistics is also depicted in Figure 3.6 for a sample of 

100=m , where the coefficient of determination takes on constant values of 0.2, 0.5 and 

0.9.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Relationship between 2R  and 2
αR  
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It is evident that as the number of parameters increases, the gap between 2R and 2
αR  also 

increases. In general, the adjusted coefficient of determination also varies as 1R0 2 ≤≤ α , 

with a good fit implied as 2
αR  approaches 1. However, there are cases where 2

αR  may 

give a negative value (also shown in Figure 3.6). This is a confusing result that may lead 

to incorrect interpretations.  

 

Given the limitations of both measures of fit, it is important to not rely exclusively on 

these values. Instead, the values should be computed and accompanied by a reasonable 

interpretation and additional tests, such as the empirical procedures described in the 

previous two sections. Realizing that the coefficient of determination may give a high or 

low value as a result of chance or peculiarities in the data, the user can be more critical of 

its result. For instance, another common effect encountered in practice is the result of a 

low 2R  due to the fact that there was not enough variation in the observations to justify a 

'good' or 'bad' fit. Therefore, these statistical measures can be a powerful tool in pointing 

out inappropriate models rather than establishing the validity of the model, which can be 

further tested by empirical cross-validation.  

 

It is important to recognize that all statistical measures/tests depend on the geometry of 

the data (i.e., A matrix). Therefore, the results of the tests will vary as the network 

configuration changes. The emphasis is therefore placed on establishing a procedure that 

allows for the selection of the most suitable model. Examples of relevant research in this 

area include de Bruijne et al. (1997), where statistical tests are applied in tandem with 

empirical fits to the data to find the best representation for the discrepancies between the 

gravimetric and GPS-derived geoid models in the North Sea region. In another case, 

using Australian data, the deciding factors/procedure for assessing the goodness of fit 

involved statistics of the differences (sections 3.5.1 and 3.5.2), number of outliers, mean 

discrepancy over all possible baselines and the number of height residuals beyond the 

acceptable errors defined for third order spirit-levelling (Featherstone, 2000). In any case, 
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some user intervention is required as it is important to evaluate all sets of criteria with 

regards to the purpose/objectives of the combined height adjustment. In the following 

section, the final module of the selection procedure is presented.  

 

 

3.5.4 Testing parameter significance 

As discussed previously, one of the key issues in the selection of a parametric model is 

the avoidance of over-parameterization. In line with this frame of thought is the principle 

of parsimony commonly referred to in statistical literature, where one should not use any 

more entities, beyond what is necessary, to explain anything. In this case, for the sake of 

simplicity, computational efficiency, and to avoid the effects of over-parameterization, 

the significance of each parameter in the selected model should be tested. Unnecessary 

terms may bias other parameters in the model, which will hinder the capability to assess 

the model performance (Wesolowsky, 1976). Therefore, the main focus of this section is 

to develop a procedure for testing, identifying and eliminating unnecessary terms to form 

a more simplified trend model. Due to the number of possibilities and the computational 

effort involved in such a task, it was determined that an automated procedure for testing 

parameter significance would be sought. In general, there are three schemes that can be 

implemented, namely (i) backward elimination, (ii) forward selection and (iii) stepwise 

procedure. All three procedures require that the models tested are nested as described in 

section 3.4.  

 

Backward elimination 

In the backward elimination procedure, one begins by fitting to the data the most 

extended (highest order) form of the model. The next step is to test if a parameter or set 

of parameters in the model are significant. The vector of parameters can be separated and 

denoted by 
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where Ix  is the set of parameters to be tested and )(Ix  are the remaining parameters 

(complement) in the model. The test is specified by the null hypothesis (
�

H ) that states 

which parameter(s) are insignificant versus the alternative hypothesis ( aH ) that declares 

these parameters to be significant, denoted as follows: 

 

0x =IH :
�

    vs.    0x ≠IaH :            (3.44) 

 

The statistic used to test this null hypothesis is the F-statistic computed as a function of 

the observations (Dermanis and Rossikopoulos, 1991) 
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where, 1
ˆ
−

IxQ  is the corresponding sub-matrix of the inverse of the normal equations, 

1
ˆ

−= NQx , k  is the number of parameters tested, and 2σ̂  is the a-posteriori variance 

factor.  

 

The null hypothesis is accepted when 

 

α
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82

α
fkF ,  is computed from standard statistical tables for a confidence level α  and degrees of 

freedom f  (see Papoulis, 1990 and Koch, 1999 for details). If Eq. (3.46) is fulfilled then 

the corresponding parameters are deleted from the model. If the contrary is true, i.e., 

 

α
fkFF ,

~ >               (3.47) 

 

the 'tested' parameters remain in the model. The procedure is repeated until all of the 

remaining parameters in the model pass the F-test or the user is satisfied with the final 

model.  

 

An alternative equation for computing the F-statistic is given by (Wesolowsky, 1976): 
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where the subscripts full and partial denote the values computed using all of the 

parameters in the model (highest order) and the partial denotes the values computed if 

the 'tested' parameters are eliminated. This statistic, termed the partial F-test, is 

commonly implemented for testing regression parameters. However, in this case, Eq. 

(3.45) was preferred as it allows for the significance of parameter(s) to be scrutinized and 

eliminated without the need to repeat the combined least-squares height adjustment. 

 

Forward selection 

The forward selection procedure begins with the most simple model (lowest order) and 

follows the same testing procedure as above, but for parameter addition. Thus, in this 

case the pair of hypotheses are given by 
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0x =∗:
�

H      vs.     0x ≠∗:aH               (3.49)    

 

where, ∗x  are parameters not included in the model. If the F-test passes, then the 

additional parameters are not added to the model. If, however, it fails, then the alternative 

hypothesis is accepted and the parameters are added to the model. The procedure is 

repeated until no more additional parameters can be added, or the user is satisfied that all 

useful parameters have been incorporated. An alternative test for determining if the 

parameter(s) should be added is to compute the coefficient of determination and add the 

parameter corresponding to the highest 2R  value.  

 

Stepwise procedure 

The stepwise procedure is a combination of both the backward elimination and forward 

selection procedures. Essentially one begins with the most simple model, as in the 

forward selection procedure, and then selects parameters one-by-one or several at a time. 

After inclusion, each parameter is examined for significance using the F-test described 

above. Embedded in this process is the backward elimination procedure for deleting 

parameters. An important issue is to select the same α -level for both the forward and 

backward schemes, otherwise the overall process will be counter-productive. The 

procedure is summarized in Figure 3.7. The challenging aspect in implementing any of 

these parameter significance tests is the fact that there is no unique answer. The final 

selection will be based on where one starts. Also, depending on the selected level of 

significance, different conclusions can be drawn. 

 

In general, a higher α  is set to err on the side of inclusion, whereas a lower value is 

selected if one wants to be careful about not including inappropriate parameters. The 

most limiting obstacle is parameter correlation, which may skew results and causes a 

number of problems, namely the standard errors of regression coefficients increase, 

computational/numerical difficulties arise, and biased estimates for the remaining 

regression parameters result if the missing parameters were correlated with the others. 
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One way to deal with this is to detect and delete highly correlated parameters. Another 

viable alternative, opted for herein, is to orthogonalize the model. If this procedure is 

applied properly, statistical tests can be performed without the consequences of multi-

colinearity. 

 

 

Figure 3.7:  Stepwise procedure for testing parameter significance  

 

 

3.6 Summary 

The combined least-squares adjustment scheme described in section 3.1 has been 

implemented in a software program. The candidate parametric models employed include 

Eq. (3.28), Eq. (3.31), Eq. (3.33) and Eq. (3.34). The program is designed such that 

modifications to include additional models can easily be made. An amalgamation of all 

the steps described above to assess the selected parametric model performance (sections 

3.5.1, 3.5.2, 3.5.3 and 3.5.4) has also been implemented in a (semi)-automated program. 
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The term (semi)-automated is used to describe the procedure as some user intervention is 

required. The major steps of the parametric model testing procedure (also used for the 

numerical tests in the next chapter) are summarized in Figure 3.8.  

 

 

Figure 3.8: Flowchart of major steps for assessing the performance of parametric 
corrector surface models 
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Chapter 4 

 

Results for the Parametric Model Surface Fits 

 

 

The focus of this chapter is to apply the combined adjustment scheme and parametric 

model testing procedure described in the previous chapter with real data sets from various 

networks. The results for three different networks, namely Switzerland, Canada and 

Australia, are analyzed. Each test network poses a different set of challenges and the 

results reveal practical aspects of the problem of deriving optimal transformation models. 

Consequently, the discussion of the results for each test network will focus on the unique 

aspects/issues involved in each case. 

 

For instance, the results for the Swiss network, described in section 4.1, will focus on the 

application of the main procedural steps summarized in Figure 3.8, with the exception of 

testing parameter significance as it was determined that it was unnecessary. In section 

4.2, the results for the Canadian regional test network demonstrate the utility of testing 

parameter significance in addition to all of the other empirical and statistical tests. 

Finally, the results for the Australian national network (section 4.3) illustrate the need for 

regional analysis and the solution of creating a mosaic of corrector surfaces 

corresponding to different regions, motivated by the variable data distribution. 

Ultimately, a new vertical reference system, which utilizes heterogeneous height data 

from both satellite- and land-based methods, should be established in all networks. 

However, for the immediate and intermediate needs, and as a preliminary step, an 
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efficient method for transforming heights between different reference surfaces (even 

distorted ones) is required. 

 

 

4.1 Results for the Switzerland test network 

A test network consisting of 111 co-located GPS-levelling benchmarks distributed 

throughout Switzerland (a 330 km × 210 km region) was used for the numerical tests. 

The data distribution is depicted in Figure 4.1 along with the height misclosures at each 

point as computed from Eq. (3.8). The average value is 1.1 cm ranging from a minimum 

of -4.9 cm and a maximum of 19 cm with an overall RMS of 4 cm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Swiss test network of GPS-on-benchmarks and original height misclosures 
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Details about the differences between the height systems and studies on the development 

of a consistent national height system in Switzerland are given in Marti et al. (2000) and 

Marti (2002), respectively. The network provides an excellent testbed for different 

parametric models as the data distribution is relatively consistent throughout the country 

with an average spacing of approximately 20 km between control points. In general, the 

height misclosures for the Switzerland network are not as variable as in other networks 

(see, e.g., Canadian region, section 4.2 and Australian network, section 4.3), with a range 

of almost 24 cm.  

 

The parametric model assessment procedure summarized in chapter 3 is tested using two 

pre-specified families of corrector surfaces, namely: 

(i) nested bivariate polynomial series models up to fourth degree, e.g.  
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(ii) similarity-based transformation model and its more simplified forms (Eqs. 3.31, 

3.33 and 3.34). 

The process works best if the most extended form of the corrector surface is first 

estimated and then the nested variations of the model can be assessed by properly 

applying the statistical and empirical tests. The computed corrector surfaces 

corresponding to all seven models for the Switzerland network are given in Figures 4.2a 

and 4.2b (note the different scales). The lower-order models (first and second) are 

provided in Figure 4.2a and the higher-order models (third and fourth) are plotted in 

Figure 4.2b, with the corresponding base functions for each model also noted next to each 

plot.  

 

Table 4.1 summarizes the statistics referring to the internal precision of each model, as 

described in section 3.5.1. This also indicates the precision of the gravimetric geoid 

model according to the GPS-levelling benchmarks. Predictably, as the number of terms in 
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the model increases, the RMS of fit decreases/improves. From these initial results, the 

full fourth-order polynomial model seems to provide the lowest RMS value of 2.0 cm 

improving the original RMS with no fit by approximately 50%. In general, the results do 

not show a significant difference between models. Therefore, based on these first results 

all models seem to perform satisfactorily providing an average RMS of about 2.3 cm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2a: Low-order corrector surface model fits for the Swiss network 
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Figure 4.2b: High-order corrector surface model fits for the Swiss network 
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Table 4.1: Statistics of residuals at points used in the adjustment for various  
parametric models (Swiss network, units: cm) 

Model Min Max µµµµ σσσσ RMS 
A. 1st order polynomial -5.8 6.7 0 2.3 2.3 
B. 4-parameter -5.8 6.7 0 2.3 2.3 
C. 5-parameter -6.2 6.4 0 2.3 2.3 
D. 2nd order polynomial -6.1 6.4 0 2.3 2.3 
E. differential similarity -5.9 6.4 0 2.2 2.2 
F.  3rd order polynomial -5.5 6.4 0 2.2 2.2 
G. 4th order polynomial -5.6 6.0 0 2.0 2.0 

 

 

Figure 4.3 shows the computed coefficient of determination and the adjusted coefficient 

of determination for the seven models tested.  

 

A  1st order polynomial B  classic 4-parameter C  classic 5-parameter 
D  2nd order polynomial E  differential similarity F  3rd order polynomial 
G  4th order polynomial   

 
Figure 4.3: Statistical measures of goodness of fit for various parametric models  
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According to these measures, there is only a slight difference between the performance of 

the different models with a marginal variability in 2R  between 0.56 to 0.66 and the more 

indicative 2
αR  ranging from 0.53 to 0.57. Again, the one outstanding model is the fourth-

order bivariate polynomial (model G), which corresponds to the highest measures of 

goodness of fit. Therefore, based on the combined results of these first tests, the fourth-

order polynomial would be identified as being suitable for this region. Most studies 

would stop at this point and provide the RMS of fit (i.e., 2.0 cm) as an indication of the 

accuracy of the best fit model. However, further tests will show that a very different 

conclusion can be drawn. 

 

Perhaps the most revealing test results are given in Table 4.2, which summarizes the 

results of the empirical cross-validation (or prediction) at independent control points (as 

described in section 3.5.2). The models are arranged according to the number of 

parameters increasing from top to bottom. From these values it is evident that the fourth-

order polynomial fit is not the best choice if the model is to be used for computing 

heights at independent stations (which is usually the case). Furthermore, the results reveal 

that the optimal choice would be the classic 4-parameter fit (Eq. 3.31) with an overall 

RMS of 2.4 cm.  

       

 
Table 4.2: Statistics of cross-validation tests for various parametric models  

(Swiss network, units: cm) 

Model Min Max µµµµ σσσσ RMS 

1st order poly. -6.2 14.4 -0.02 2.8 2.8 
4-parameter -6.3 6.9 0 2.4 2.4 
5-parameter -6.6 13.2 -0.01 2.7 2.7 
2nd order poly. -6.6 13.1 -0.02 2.8 2.8 
differential similarity -6.5 12.9 -0.01 2.7 2.7 
3rd order poly. -6.3 11.0 -0.01 2.7 2.7 
4th order poly. -10.0 7.1 -0.03 2.7 2.7 
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Evidently, two very different conclusions on the optimal model can be drawn from the 

same data depending on the criteria for testing. It should be mentioned however, that in 

this case there is only a minor difference in performance between each model. This is 

most likely due to the fact that the data is consistently distributed and exhibits rather 

small variations from point-to-point. Nonetheless, the use of a parametric model does 

reduce the original RMS of 4 cm by ~1 cm to just over 2 cm. Additional values of 

interest are the minimum and maximum in Table 4.2, which indicate the overall range of 

values for each parametric model. It is clear that the 4-parameter model is the best choice 

for reducing the overall range to between -6 cm to 7 cm.   

 

The performance of the corrector surfaces can also be gauged on the numerical stability 

over the region of interest. Since, there is not a prominent variation in the achievable 

accuracy for each model, the condition number may provide some insight into the overall 

performance of the model. Table 4.3 summarizes the condition numbers corresponding to 

each of the parametric models for the Swiss test network. It is evident from Table 4.3 

that, in general, the most stable models are those of the lowest order with fewer unknown 

parameters. The higher order models tend to be less stable and less accurate when applied 

at independent control points (as in GPS/geoid levelling).  

 

 

Table 4.3: Condition numbers for various parametric models in Switzerland  

model number of terms condition number 
1st order polynomial 3 1.66 × 104 
4-parameter 4 6.20 × 108 
5-parameter 5 8.53 × 109 
2nd order polynomial 6 2.56 × 108 
differential similarity 7 3.71 × 1012 
3rd order polynomial 10 9.05 × 1013 
4th order polynomial 15 5.62 × 1016 
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The next step in the assessment process would be to determine if any of the model 

parameters are insignificant using the procedure described in section 3.5.4. The procedure 

was carried out, however, it soon became obvious that it was not necessary. The selected 

model is of low order (2nd) and consists of only four terms. Based on the collective results 

presented above, it was deemed appropriate to make the final decision of the classic 4-

parameter fit (Eq. 3.31). The selection criteria are summarized in Table 4.4 and the final 

fit for the Switzerland network is given in Figure 4.4.  

 

Table 4.4: Summary of selection criteria for Swiss test network 

2R  0.57 

2
αR  0.52 

vv ˆˆT  24.4 cm 

condition number 6.20 × 108 
RMS after fit 2.3 cm 

RMS (prediction/cross-validation) 2.4 cm 
 

Figure 4.4: Classic 4-parameter corrector surface fit for the Swiss test network 

cm 
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4.2 Results for the Canadian test network  

The Canadian national network of GPS-on-benchmarks consists of 1292 points scattered 

across the country as depicted in Figure 4.5. The harsh terrain and environmental 

conditions in northern areas hinders the capacity to establish precise vertical control using 

spirit-levelling techniques (Gareau, 1986). As a result, the distribution of the control 

points is relatively inconsistent with a high concentration in the southern parts of the 

country (along the Trans-Canada highway) and the surrounding populated areas.  

For the results presented in this section, a subset of the GPS-on-benchmarks in Canada 

were used. Figure 4.6 shows this 495 km × 334 km region situated in the southern British 

Columbia (BC) and Alberta (AB) provinces. In this region, 63 points are unevenly 

distributed with several gaps containing few or no control points (i.e., mid-western region 

between 50°N - 51°N and 122°W - 124°W). The original height misclosures for the 

geoid, orthometric and ellipsoidal heights are also indicted in the figure for each 

benchmark. 

 

 

Figure 4.5: Canadian GPS-levelling benchmark network 
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Figure 4.6: Test network of GPS-on-benchmarks in southern BC/AB  
and original height misclosures 
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due to a number of sources (as described in section 3.2), for the Canadian data in 

particular, it is suspected that a large part of the misfit is due to the systematic errors in 

the primary levelling network. A detailed report describing the complete computational 
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measurements that are plagued by systematic errors. These systematic errors in the 
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gravity measurements and reductions are attributed as the main cause of the prevalent 

systematic east-west trend in the GSD95 geoid model (Véronneau, 1997). 

 

Currently, the published orthometric heights in Canada refer to the official local vertical 

datum, CGVD28. It was established using a network of more than 80,000 spirit-levelled 

benchmarks. The value for mean sea level was determined in 1928 by averaging sea level 

measurements at six tide gauge stations (two on the Pacific Ocean coast, two on the 

Atlantic Ocean coast, one on the St. Lawrence River and one in southern Quebec). Due to 

the shear size of the country, levelling survey campaigns often span decades apart. This 

introduces a number of issues with monument stability, which is considerably affected by 

post-glacial rebound and sea level changes, to name a few. These combined effects can 

add up to several centimetres and even decimetres in some parts of the country. The 

orthometric heights provided for the 63 points in the southern BC/AB test network are 

Helmert orthometric heights as described in chapter 2.  

 

A major issue with the computation of the ellipsoidal heights from GPS campaigns 

prevalent in most large networks, such as those in Canada, is the inevitable mixture of 

different types of receivers and antennae, not to mention the measurements at different 

epochs. In some parts of the country, GPS coordinates have been determined using single 

frequency receivers, which ultimately provide less accurate ellipsoidal heights than more 

precise dual frequency techniques. Other factors that deteriorate ellipsoidal height 

determination, such as antenna phase centre offsets, tropospheric corrections and session 

length are also common problems with some parts of the national network (see discussion 

in section 2.3).     

 

An interesting aspect of this test network is that there is a significant variation in the 

height misclosures, ranging from a minimum of -17.1 cm to a maximum of 25.2 cm with 

an average of 4.5 cm, standard deviation of 8.1 cm and an overall RMS of 9.3 cm. It is 

expected that the results of the corrector surface fits will be more variable than those for 

the Swiss network where the original misclosures were comparatively smooth.  
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The same two families of parametric models used with the Swiss network were tested in 

the southern BC/AB region and the resulting corrector surfaces are depicted in Figures 

4.7a and 4.7b for low-order and high-order fits, respectively. The statistics of the fits are 

given in Table 4.5, which shows the 'best-fit' model to be the 7-parameter differential 

similarity model, the third-order polynomial, and the fourth-order polynomial, with an 

improved RMS of ~ 6.7 cm compared to the original height misclosure of 9.3 cm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7a: Low-order corrector surface model fits for the southern BC/AB network 
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Figure 4.7b: High-order corrector surface model fits for the southern BC/AB network 
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Table 4.5: Statistics of residuals at points used in the adjustment for various  
parametric  models (southern BC/AB network, units: cm) 

Model Min Max µµµµ σσσσ RMS 
A. 1st order polynomial -22.1 20.5 0 8.1 8.1 
B. 4-parameter -22.8 20.8 0 7.9 7.9 
C. 5-parameter -23.2 20.5 0 7.9 7.9 
D. 2nd order polynomial -21.1 22.2 0 7.6 7.6 
E. differential similarity -21.6 17.3 0 6.7 6.7 
F.  3rd order polynomial -21.1 17.2 0 6.7 6.7 
G. 4th order polynomial -20.1 17.1 0 6.6 6.6 

 

 

The corresponding measures of goodness of fit, 2R  and 2
αR , depicted in Figure 4.8 

clearly indicates the differential similarity model as a better choice than the third or 

fourth-order polynomial models according to 2
αR .  

 

Figure 4.8: Statistical measures of goodness of fit for various parametric models  
(southern BC/AB test network) 
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The inflation caused in 2R  by an increase in the number of parameters from 7, 10 and 15 

for the differential similarity, third, and fourth-order polynomial models, respectively, is 

insignificant compared to the jump experienced from the second-order polynomial (6 

terms) to the 7-term differential similarity model. The inconclusive negative values 

obtained for the adjusted coefficient of determination for the lower-order models should 

also be noted.    

 

The computed condition numbers, indicating the numerical stability of each of the 

parametric corrector surfaces in this region are provided in Table 4.6. The numerical 

stability is comparable to the results obtained for the Switzerland data, with the first-order 

polynomial model consisting of three terms corresponding to the lowest condition 

number (as expected). 

 
Table 4.6: Condition numbers for various parametric models in southern BC/AB  

model number of terms condition number 
A. 1st order polynomial 3 3.50 × 103 
B. 4-parameter 4 4.53 × 107 
C. 5-parameter 5 1.41 × 109 
D. 2nd order polynomial 6 2.37 × 107 
E. differential similarity 7 1.52 × 1012 
F.  3rd order polynomial 10 1.94 × 1011 
G. 4th order polynomial 15 1.49 × 1015 

 

 

The empirical cross-validation results are summarized in Table 4.7. Of particular interest 

are the visible effects of over-parameterization exhibited by the behaviour of the fourth-

order polynomial trend surface, which provides a high RMS of 13 cm. This is even an 

inferior result to not applying any parametric model. The third-order polynomial model 

performs close to the original misclosure RMS at the 9 cm-level. The model that gives 

the best prediction results is the differential similarity with an RMS of 6.7 cm. This 7-

parameter model is the extended form of the classic 4-parameter model and takes into 
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account the change in the ellipsoidal parameters (GRS80 used in this case). Results after 

the model fit and prediction (cross-validation) empirical tests are illustrated in Figure 4.9, 

which clearly identifies the differences in performance between the models and the 

various conclusions that can be drawn regarding the best model depending on the type of 

test used.      

 

Table 4.7: Statistics of cross-validation tests for various parametric models  
(southern BC/AB network, units: cm) 

Model Min Max µµµµ σσσσ RMS 
A. 1st order polynomial -23.0 21.3 -0.1 8.7 8.7 
B. 4-parameter -23.7 22.3 0 8.5 8.5 
C. 5-parameter -25.3 22.4 -0.1 8.7 8.7 
D. 2nd order polynomial -25.3 22.8 -0.1 8.8 8.8 
E. differential similarity -23.6 20.0 0 7.9 7.9 
F.  3rd order polynomial -23.9 26.9 0.2 8.8 8.8 
G. 4th order polynomial -26.2 51.8 1.3 13.0 13.0 

 

Figure 4.9: Empirical test results for the southern BC/AB region 
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In most practical cases, the truncated/approximated 4- or 5-parameter versions of the 

differential similarity model are implemented. To test the significance of the additional 

parameters in the full 7-parameter version of the model (Eq. 3.34), the backward 

elimination procedure described in section 3.5.4 was used. The first statistical test is 

implemented to determine if the fourth, fifth, sixth and seventh parameters are 

significant. The hypothesis is set up as follows: 

 

[ ] 0=T
7654 xxxxH :

�
             vs.             [ ] 0≠T

7654a xxxxH :  

 

where,  

W
x λϕϕ sincossin

4 =   

W
x λϕϕ coscossin

5 =  

W
fx ϕ22

6
sin1−=   

W
x ϕ2

7
sin= .  

 

The computed F~ -value was 6.44 compared to the critical value obtained from the 

statistical tables of 54.205.0
56,4 =F  and 68.301.0

56,4 =F  for different levels of significance. In 

both cases, α
fkFF ,

~ > , and therefore the null hypothesis is rejected suggesting that all of 

the tested terms are significant. Additional F-tests were conducted, testing each of the 

seven parameters individually, i.e. 7,,1,0: l

�
== ixH i , and the results indicated that 

all seven parameters are statistically significant.  

 

Previously, it was mentioned that one must be cautious with the interpretation of these 

results as correlation among the model parameters may distort results. Consequently, the 
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model was re-formulated with a new set of orthonormal base functions using the Gram-

Schmidt process (Carroll and Green, 1976; ch. 3), which gives a new set of uncorrelated 

parameters. Each new parameter was tested for significance by applying the same 

procedure as above. Surprisingly, it was found that for the orthonormal form of the 

model, only two of the total seven parameters were significant at the 99% confidence 

level ( 01.0=α ). Using a 95% confidence level ( 05.0=α ), four of the seven terms were 

deemed significant. Table 4.8 summarizes the statistics after the fit for the three versions 

of the orthonormalized parametric models (i.e., 7, 4, 2 terms). The RMS of fit is on the 

same level as those achieved using the models given in Table 4.5.  

 

Table 4.8: Statistics of residuals at points used in the adjustment for orthonormalized 
versions of various parametric models (southern BC/AB network, units: cm) 

Model Min Max µµµµ σσσσ RMS 

7-terms ortho. -21.6 17.3 0 6.8 6.8 
4-terms ortho. -22.3 20.1 0 8.1 8.1 
2-terms ortho. -21.4 20.8 0 8.2 8.2 

 

 

The main problem encountered for testing these orthonormalized versions of the model 

any further (i.e., via cross-validation) is the lack of analytical form. That is, the model 

parameters and system of base functions are derived for the particular data and cannot be 

interpreted in a specific format for testing at independent control points. In order to avoid 

this limitation, it is important to start with an orthogonal model/series of base functions 

(as listed in section 3.4). Then the same process of identifying and eliminating 

insignificant terms using the F-test can be applied as shown. The final 'modified' model, 

derived in this manner, can be tested at new points since the analytical form is preserved 

throughout the process. This is an important issue, which shows the power of statistical 

testing if applied to models consisting of orthogonal systems of bases.  
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The application of this elimination procedure for insignificant parameters allows the user 

to describe the behaviour of the 'corrections' over the coverage area with fewer terms. 

The results provide valuable insight for several practical implementations of 

heterogeneous height data. For instance, in the near future, GNSS-levelling will become a 

viable alternative for realizing vertical datums and for (near) real-time height-related 

applications. In this case, corrector surface parameters may be disseminated to users 

anywhere in the country similar to wide area differential GPS (WADGPS) corrections. 

The various dissemination options will be described in more detail in chapter 7.  

 

The final test criteria for the selected model in this region are given in Table 4.9.  

 

Table 4.9: Summary of selection criteria for southern BC/AB test network 

2R  0.48 

2
αR  0.23 

vv ˆˆT  53 cm 

condition number 1.52 × 1012 
RMS after fit 6.7 cm 

RMS (prediction/cross-validation) 7.9 cm 
 

 

Figure 4.10 depicts the selected differential similarity corrector surface over the network. 

It should be noted that the 4-parameter model also performs well in this area providing an 

RMS of 8.5 cm when tested at independent points. The condition number for this model 

was considerably high (surpassed only by the full fourth-order polynomial), which may 

pose numerical problems, although none were noted throughout the tests conducted thus 

far.     
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Figure 4.10: 7-parameter differential similarity fit for the southern BC/AB test network 

 

 

4.3 Fitting a gravimetric geoid model to the Australian height datum via GPS  

The most common use of the Australian (quasi)geoid model is to transform GPS-derived 

ellipsoidal heights to normal-orthometric heights referring to the Australian Height 

Datum (AHD; Roelse et al., 1971). A properly selected 'corrector' surface model will 

allow for the direct transformation of GPS-derived ellipsoidal heights to the AHD and 

vice versa (Featherstone, 1998). The numerical data used for the tests comprise the latest 

Australian gravimetric geoid model, AUSGeoid98, available on a 2′ × 2′ grid 

(Featherstone et al. 2001) and 963 GPS-levelling points scattered over the Australian 

mainland (see Figure 4.11; Featherstone and Guo 2001). The gravimetric geoid values 

gravN  were obtained by bi-cubic interpolation of the AUSGeoid98 grid to the GPS-

levelling points. The residuals/observations were formed via Eq. (3.8) for all points, and a 

routine 3-RMS test (i.e., Z-score > 3) was applied to remove outliers. The remaining 953 

residuals were used in a least-squares adjustment to solve for the unknown parameters of 

each pre-selected ‘corrector’ surface. 

cm 
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Figure 4.11: GPS-levelling data on the Australian mainland 

(according to Featherstone and Guo, 2001)  
 

 

The absolute differences between the gravimetric geoid model and the nation-wide set of 

GPS-levelling control points varies from -2.6 m along the southern coast to a maximum 

of more than 3.5 m on the eastern coast. Most notably there is a dominant north-south 

trend of approximately 0.26 mm/km (ibid.). Much speculation exists that this may be due 

to the AHD heights, which were computed by constraining to mean sea level at 30 tide 

gauges around Australia. At the time, sea surface topography was not taken into account 

and could therefore be a possible reason for this systematic effect (see discussions in 

sections 2.2, 2.4.1 and 3.4). In addition, the AHD is not a true (Helmert) orthometric 

height system, as observed gravity data were not used to apply corrections to the levelling 

data. It is a normal-orthometric system (Roelse et al., 1971). The differences can be 

significant with high-frequency content. Allister and Featherstone (2001) calculate a 

difference of 5 mm over 15 km between Helmert orthometric heights and the normal-

orthometric heights used for the AHD. It is also widely acknowledged that the AHD is 

plagued with distortions, and the currently available GPS data are of a variety of vintages, 
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with many being collected under sub-optimal conditions (Johnston and Luton, 2001). The 

statistics for the absolute differences between the gravimetric and GPS-levelling height 

values is given in Table 4.10.   

 
Table 4.10: Statistics of the residuals before any fit (units: cm) 

Data Min Max µµµµ σσσσ RMS 

Original  
(963 pts) 

-257.2 355.8 1.1 31.7 31.7 

After 3RMS 
(953 pts) 

-75.9 93.3 1.3 25.8 25.8 

 

 

The following results use the 953 data points remaining after the removal of 10 outliers. 

The results of the numerical tests are presented at both national and regional scales. This 

is particularly important for a large area, where it is often difficult to have a uniform data 

distribution and quality. From Figure 4.11, it is evident that the GPS-levelling data are 

scattered with good coverage in the more populated southeastern parts and relatively poor 

coverage in the inner and northern parts of the continent. In order to assess the 

performance of the different models on a more local scale, Australia was divided into 

four regions. Each region reflects a different density and distribution of the GPS-levelling 

points. A summary of the four regions is given in Table 4.11.  

 

 

Table 4.11: Description of Australian regional network geometry 

Region Number of points Data Distribution 
NW 32 consistent  
NE 88 mixed  
SE 653 good  
SW 173 poor  
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A closer examination of the southwestern quadrant reveals the importance of both data 

density and distribution. In this area, there are 173 control points, however ~100 of them 

are concentrated in a small region surrounding Perth (32°S, 116°E). On the other hand, 

the most populated part of the country, the southeastern region, contains 653 points, 

which are more uniformly distributed.  

 

In this section, the results of the following models will be investigated in detail: 

a) 4-parameter model as given in Eq. (3.31) 

b) 5-parameter model as given in Eq. (3.33) 

c) MRE where M=N=1, M=N=2, …, M=N=6, as given in Eq. (3.28) 

d) 10-parameter MRE of fourth-order 

e) 16-parameter MRE of sixth-order 

f) 20-paramter MRE of sixth-order 

Models (d), (e) and (f) are essentially nested models of the fourth and sixth-order MREs, 

respectively. The criteria for parameter deletion involved the magnitude of the test 

statistic, as described in section 3.5.4 and implemented previously with the Canadian 

data. It should be noted that for testing purposes, the number of parameters in the model 

(i.e. 10, 16 or 20) was predetermined and therefore parameter deletion/addition was not 

as flexible as in the general case. Figure 4.12 gives two graphical examples of the 

corrector surfaces generated for the Australian mainland (excluding Tasmania).  

 

 
Figure 4.12: Examples of the 4-parameter corrector surface fit (left) and the 

10-parameter MRE fit (right) for the Australian mainland 
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Of note is the order of magnitude of the corrections (± 1.5 m), as compared to those for 

the Switzerland and regional Canadian networks (see Figures 4.2a/b and Figures 4.7a/b). 

Table 4.12 gives the statistics of the results for the full forms of the parametric models 

tested. There are two sets of statistics for each model. The first set (upper row) shows the 

statistics for the adjusted residuals after the least-squares fit at the points used in the 

adjustment (as described in section 3.5.1). By looking at these results, the lowest RMS is 

achieved by the MRE where M=N=6 (i.e., a 12th-order polynomial fit). The effect of a 

decrease in the corresponding RMS as the number of parameters in the models increases 

is again evident from these results. The results for the cross-validation process (described 

in section 3.5.2), repeated 953 times, are given in the second set of statistics. The 4-

parameter model achieves the lowest RMS. Furthermore, the worst accuracy is given by 

the MRE where M=N=6. This result is significant as it shows the dramatic difference in 

performance if the model parameters are to be used for estimating values at other points 

independent of the original adjustment (RMS of 13.5 cm after the fit compared to 86.1 

cm obtained from cross-validation). In this case, the sixth-order MRE should not be used. 

The importance of testing the models with an independent set of control points is clearly 

emphasized by these results.   

 
 

Table 4.12: Statistics of residuals at the points used in the adjustment (upper row) and 
statistics obtained through cross-validation (bottom row) for Australia (units: cm) 

Model Min Max µµµµ σσσσ RMS 

4-parameter 
 

-117.2 
-119.0 

61.8 
61.9 

0 
0 

19.4 
19.5 

19.4 
19.5 

5-parameter 
 

-119.9 
-125.0 

61.5 
61.7 

0 
0 

19.4 
19.6 

19.4 
19.6 

MRE N=M=1 -103.8 
-76.7 

62.3 
109.6 

0 
1.7 

19.9 
25.2 

19.9 
25.3 

MRE N=M=3 -73.4 
-75.9 

53.7 
100.1 

0 
1.6 

16.2 
26.2 

16.2 
26.2 

MRE N=M=6 -82.5 
-822.8 

60.6 
1540.6 

0 
7.2 

13.5 
85.8 

13.5 
86.1 
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Table 4.13 summarizes the condition numbers computed for various corrector surfaces. It 

is evident from the results in the table that, in general, the most stable models are those of 

lowest order with fewer unknown parameters. The higher order models tend to be less 

stable and less accurate when compared to independent control points not used in the 

original adjustment. Therefore, one should be extremely cautious when dealing with 

higher order MRE corrector surfaces as this may lead to uncontrolled oscillations in the 

computed values, generating artifacts that are not indicative of the ‘correction’ behavior 

over the area (consider the >15m maximum value obtained using MRE 6== MN  in 

Table 4.12). This will cause significant problems when the ‘corrected’ gravimetric geoid 

model is used to transform GPS-derived ellipsoidal heights to the local vertical datum.  

 

Table 4.13: Condition numbers for various parametric models for the Australian network 

Model Condition Number 
4-parameter 2.233 x 104 
5-parameter 4.771 x 104 
MRE N=M=1 6.073 x 103 
MRE N=M=3 7.640 x 1010 
MRE N=M=6 8.529 x 1021 

 

 

On a regional level, the best model fit varied depending on the control network data 

(geometry and quality). Figure 4.13 graphically depicts the best local fits determined 

according to a combination of the results obtained from the estimated accuracy (cross-

validation) and numerical stability. Note that the scales on the four plots are different. 

Based on these criteria, the selected models by region and the associated RMS of the 

adjusted residuals are provided in Table 4.14. All of the local fits resulted in an 

improvement over the national RMS of 19.4 cm achieved with the 4-parameter model.  
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Figure 4.13: Selected parametric models for regional fits in Australia (units: m) 
 

 

Table 4.14: Final selected models per region and corresponding RMS obtained  
through cross-validation  

Region Model RMS (cm) 
NW (b) 5-parameter 15.8 
NE (e) 16-parameter MRE 15.7 
SW (d) 10-parameter MRE 8.3 
SE (f) 20-parameter MRE  13.1 

 

 

Summary 

Evidently, the incorporation of a corrector surface for modeling local discrepancies in the 

Australian height data is necessary. In practice, local models may be provided to users 

who wish to fit the gravimetric geoid model to the AHD, however further work must be 

conducted on how to patch together the different models in a uniform manner across the 

borders of the neighboring regions. On a national level, the best model was the classic 4-

NW 

SW 

NE 

SE 
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parameter fit with an RMS of approximately 19 cm. The achievable RMS for local 

regions, based on empirical cross-validation tests, was found to vary from a minimum of 

~ 8 cm in the SW region to ~ 16 cm in the northern regions (see Table 4.14). In addition 

to determining the most appropriate corrector surfaces, systematic errors in the AHD, 

such as the apparent north-south trend and the systematic differences between Helmert 

and normal-orthometric heights, should be considered (Fotopoulos et al., 2002 and 

Featherstone et al., 2002).  

 

 

4.4 Remarks on results  

The three numerical data sets from Switzerland, Canada and Australia have been used to 

demonstrate the selection and assessment process for parametric corrector surface 

models. From these results, it is evident that each region represents a different set of 

challenges and therefore a completely automated procedure for selecting and testing 

models should not be used. Instead, it is instructive for users to familiarize themselves 

with the possible types of systematic errors and datum inconsistencies involved in the 

combined height adjustment problem. Armed with this knowledge a semi-automated 

procedure as summarized in Figure 3.8 can be followed. This proposed procedure 

provides a series of tests that can lead to the selection of the best model from a pre-

selected group (defined by the user) or family of corrector surfaces.  

 

In the Swiss case, the GPS-on-benchmark data was well distributed with a small average 

height misclosure of 1.1 cm, compared to more than 9 cm and 25 cm for the southern 

BC/AB and Australian data sets, respectively. A significant difference between the 

various corrector surface fits to the Switzerland data was not evident.  

 

For the southern BC/AB test network, the utility of testing model parameter significance 

was explored. It was found that the high correlation among model parameters inhibits the 

statistical testing process and therefore it is recommended that polynomials comprised of 

orthogonal base functions (such as Legendre, Jacobi, or Hermite) are used. 
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Orthogonalization procedures can be used to decorrelate parameters of any parametric 

model, however the results cannot be applied for prediction of height values at new 

points (GNSS-levelling) due to the lack of an analytical form for the 'orthogonalized' 

model.  

 

Finally, the results of the Australian test network revealed the option of using a mosaic of 

different parametric models for different parts of the continent. The practical 

implementation of such results would also require constraints be imposed for 

neighbouring 'patches' in order to ensure a smooth transition (see Eqs. 3.37 and 3.38).  

 

The procedure described in this chapter focused on the systematic errors and datum 

inconsistencies inherent among the height data types. However, the optimal combined 

least-squares adjustment solution presented in section 3.1 also involves the incorporation 

of a proper stochastic model for the observational noise (Eq. 3.22), which is the focus of 

the following two chapters. 
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Chapter 5 

 

Overview of Variance Component Estimation  

 

 

5.1 Introduction 

One of the key elements required for the least-squares adjustment of geodetic data, in 

addition to proper modelling of systematic effects, is a realistic stochastic model for the 

observational noise. Although the effect of the data covariance matrix may not be readily 

evident in the solution of the unknown parameters (see Marana and Sanso, 1996 for a 

detailed discussion), a poor covariance matrix may adversely affect decisions based upon 

statistical testing of hypotheses involving least-squares residuals and the estimated 

parameters. Additional reasons for using a correct covariance matrix for the observational 

noise include the examination of the relative magnitudes of the errors in observations due 

to different factors, the preservation of quality control and the facilitation of efficiently 

designed surveys (Rao and Kleffe, 1988). 

 

Often, in practice, the data covariance matrix is oversimplified or neglected entirely. In 

order to provide a better understanding of the inherent limitation of a simplified 

stochastic model, it is instructive to go through an example with one of the most common 

functional models used within the context of least-squares adjustment. The general 

Gauss-Markov model, that was described in chapter 3, is repeated here for the sake of 

discussion 
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vAxl +=                  (5.1) 

 

where, l  is an 1m ×  vector of observations, x is a 1u ×  vector of unknown parameters, 

A  is an um ×  known design matrix of full column-rank that relates the unknown 

parameters with the observations and v is a vector of random errors with zero mean 

 

{ } 0=vE                                     (5.2) 

 

and a variance-covariance matrix given by 

 

( )( ){ } { } vv QvvAxAxC 2
�

�� σ==−−= TT EE             (5.3) 

 

where vQ  is a known symmetric positive definite cofactor matrix and 2
�

σ  is an unknown 

variance factor. The a-priori variance factor can be estimated from the adjusted results 

according to the formula 

 

um

T

−
= vPv ˆˆˆ 2

�
σ                    (5.4) 

 

The adjusted least-squares residuals are denoted by the 1m ×  vector v̂ , 1−= vCP  is the 

data weight matrix. Given the estimated a-posteriori variance factor in Eq. (5.4), the data 

covariance matrix can finally be 'improved' by a simple scaling 

 

vv QC 2ˆ
�

σ=improved                  (5.5) 

 

This classic, and somewhat simplified approach, for the stochastic model is limiting as it 

allows for only one common variance factor of the CV matrix. This may be adequate for 

adjustments of observations of the same type and similar quality, however it is not 
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realistic for a variety of geodetic applications, where heterogeneous data types are 

involved. A more general treatment of the stochastic model includes the ability to 

estimate more than one variance and/or covariance components to improve the CV 

information.  

 

In addition to combining different types of data, often observations of the same type but 

different quality are merged. This is the case with the rigorous national or regional 

network adjustments of various orders (in terms of precision) of levelling data (Kelly, 

1991). Another excellent practical example is the combined adjustment of the multi-

national European levelling networks, where an estimated variance component was 

introduced for each national network in the combined adjustment (Adam et al., 2000). In 

these and many other cases the simplicity of Eqs. 5.3, 5.4, and 5.5 does not allow for an 

adequate description of the behaviour of the data. 

 

The chosen approach presented herein for testing and improving the stochastic model is 

the well known statistical tool of variance component estimation (VCE). Examples of 

recent geodetic applications where various VCE methods have been successfully 

implemented include: 

− assessment of triangulateration network for monitoring tectonic activity observed 

with different EDM instruments, testing parameter significance for error models of 

geodetic levelling, and estimating error components and weighting of GPS 

observations (Chen et al., 1990)   

− estimation of the variance components for satellite laser ranging data (Sahin et al., 

1992) 

− estimation of elements of the measurement CV matrix for precise GPS 

measurements, which improves reliability and efficiency of positioning results 

(Wang, 1999) 

− estimation of a stochastic model for GPS phase measurements that incorporates 

temporal correlations (Satirapod et al., 2002) 
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− construction of an adequate CV matrix for processing of GPS code and phase data 

(Tiberius and Kenselaar, 2003) 

− implications of estimated variance components on the results of spatial deformation 

trend analysis (Grodecki, 1997) 

− the statistical analysis of very long baseline interferometry data (Lucas and 

Dillinger, 1998)  

− estimation of variance components for weighting data of different types and the 

regularization parameter used in simulated gravity field models from new satellite 

missions such as GOCE (Koch and Kusche, 2002)  

 

The implementation of VCE techniques in the adjustment of combined height data types, 

more specifically ellipsoidal, orthometric and geoid heights, has not been suitably 

addressed in geodetic literature. The motivations for applying VCE techniques to the 

adjustment of heterogeneous height data are numerous. In particular, it will facilitate 

studies on the calibration of the geoid error model. Another important area that will 

benefit from this type of VCE testing is the assessment of the noise in the heights derived 

from GPS measurements. Furthermore, it will allow for the evaluation of the levelling 

precision and provide an independent test of the error values associated with various 

orders of conventional spirit-levelling. Thus, reliable calibration of the height data 

covariance matrices, via VCE, will enhance our knowledge of the error budget of all of 

the data in the combined adjustment. Finally, but definitely not least, the achievable 

accuracy of GNSS-levelling can be tested. This will provide users with realistic accuracy 

measures of an exceedingly popular survey practice. 

 

The selection and application of a suitable VCE technique to the combined height data 

analysis problem is the topic of the remaining sections in this chapter. Specifically, an 

overview of some of the existing methods for estimating variance components is 

provided in section 5.2. Details on the final selected VCE procedures are given in 

sections 5.3 through 5.7.  
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5.2 Review of methods for estimating variance components  

Over the years, a plethora of VCE methods have been developed. A proper and complete 

review of all of these methods would be beyond the scope of this text, instead the focus 

has been placed on identifying and discussing the key developments related to geodetic 

research (see also Grafarend, 1985). In particular, the discussion will focus on procedures 

that have been tested with real data and are useful for geodetic applications of 

heterogeneous data. It should also be noted that although the estimation procedures 

discussed can be applied for both variance and covariance components, provided the 

stochastic model has been set up as such, the emphasis herein is placed on estimating 

only variance components.  

 

An effective method for characterizing the different VCE procedures is to list them 

according to certain distinguishable features. In accordance to Crocetto et al. (2000), 

most approaches for estimating variance-covariance components within a least-squares 

estimation framework can be categorized according to the following: 

•  functional model 

•  stochastic model 

•  estimation procedure 

•  simplifications, assumptions 

Recognizing the utility of such a categorical scheme, a timeline/summary outlining the 

key developments in VCE theory applicable to geodetic problems is provided in Table 

5.1, which uses these distinguishable features as a guideline.  

 



 120

Table 5.1: Timeline of key VCE developments in geodetic literature 

Reference Functional 
Model 

Stochastic Model Estimation 
Procedure 

Helmert 
(1924) 

Gauss-Markov ii QC 2σ=  Helmert's 

Kubik 
(1970) 

Gauss-Helmert ][ 2
iidiag IC σ=  maximum 

likelihood 

Rao 
(1971) 

Gauss-Markov 
∑
=

=
k

i
ii

1
QC σ  MINQUE 

Sjöberg 
(1983) 

condition-only 
Gauss-Helmert 

∑
=

=
k

i
ii

1

2QC σ  MINQUE 

Sjöberg 
(1984) 

Gauss-Helmert 
∑
=

=
k

i
ii

1

2QC σ  iterative 
BIQUE, 

BQMBNE 
BQUNE 

Grafarend 
(1984) 

condition-only 
Gauss-Helmert 

∑
=

=
k

i
ii

1
QC σ  Helmert's 

Koch 
(1986) 

Gauss-Markov no restriction iterative 
maximum 
likelihood 

Koch 
(1987) 

Gauss-Markov no restriction approximate 
Bayesian 
inference  

Koch 
(1988) 

Gauss-Markov 
∑
=

=
k

i
ii

1
QC σ  Bayes 

estimators 

Caspary 
(1987) 

Gauss-Markov 
∑
=

=
k

i
ii

1

2QC σ  iterative 
BIQUE 

Ou Ziqiang 
(1989) 

Gauss-Markov 
condition-only 
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iterative 
maximum 
likelihood 

Ou Ziqiang 
(1991) 

Gauss-Markov ][ 12 −= iidiag PC σ  approximate 
Bayes & 

strict Bayes 
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Yu 
(1992) 

Gauss-Helmert 
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2
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maximum 
likelihood 

Crocetto et 
al. (2000) 

no restriction 
∑
=

=
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i
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1
QC σ  
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
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
== ∑

=
)(

1

2
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j
iji qdiagdiag σCC  

BIQUE 

Schaffrin &  
Iz (2002)  

rank deficient 
Gauss-Markov 

12 −= PC oσ  BLIMPBE 

Tiberius and 
Kenselaar 

(2003) 

Gauss-Markov 
∑
=

=
k

i
ii

1
QC σ  

T
iiio cc2σ+= QC  

)( T
ij

T
jiijo cccc ++= σQC  

BQUE & 
AUE 

Kusche 
(2003) 

Gauss-Markov 
∑ ∑
=

−

=
===

k

i
i

k

i
iii diag

1

1

1

2 )(, PVVVC σ  Monte-Carlo 

 

 

5.2.1 Functional models 

For geodetic problems, several different functional models have been adopted for setting 

up the observational equations in order to relate the observables to the unknown 

parameters. One common choice is the classic Gauss-Markov model given in Eq. (5.1). 

As can be seen from the second column of Table 5.1, most of the VCE approaches 

developed use this functional model.  
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An alternative method of representing the observations is to form condition equations that 

the observations have to fulfill. This is known as the condition model and is given by  

 

wBv =                   (5.6) 

 

where B is a design matrix relating the observations among themselves, w is an 1×m  

misclosure vector defined by the specific problem and v is an 1×m  vector of unknown 

random errors. Examples of VCE schemes that have been implemented based on this 

functional model are included in Sjöberg (1983), Grafarend (1984), and Ou Ziqiang 

(1989), to name a few.  

 

Another equally common functional model which can be viewed as an extension of both 

models described thus far is the Gauss-Helmert model, also known as the mixed or 

implicit model and is given by 

 

0=++ wBvAx                      (5.7) 

 

where all of the terms have been described previously. Several VCE procedures have 

been developed using this functional model as a base; see Kubik (1970) and Yu (1992; 

1996). In general, the selection and appropriateness of the functional models described 

have been given more attention by researchers and are typically well defined according to 

the application. The suitable form of the stochastic model, however, is often in question 

and remains a challenging area of research, which must be tested to ensure its 

appropriateness (Wang, 1999).  

 

 



 123

5.2.2 Stochastic models 

A number of different general stochastic models have emerged as practical and useful in 

geodetic problems. One of the most common models for the covariance matrix of the 

observations, C , is expressed by 

 

∑
=

=
k

i
ii

1
QC σ                   (5.8) 

 

where the unknown variance and covariance components are denoted by iσ  and iQ  is 

the respective known positive-definite cofactor matrix. This stochastic model has been 

used in many studies, including Rao (1971), Grafarend (1984), Koch (1987, 1988), and 

Tiberius and Kenselaar (2003). It is important to note that in this case both variance and 

covariance components are sought after.  

 

A more simplified, in terms of computation, stochastic model is given by 

 

∑
=

=
k

i
ii

1

2QC σ                   (5.9) 

 

where only variance components 2
iσ  are to be estimated. Such a model is used 

extensively in many applications, including Sjöberg (1984), Caspary (1987) and 

Fotopoulos and Sideris (2003).  

 

Additional simplifications can be made for uncorrelated sets of observations of one 

variance component each and is described by 
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This block diagonal form of stochastic model corresponds to vectors of observations that 

are commonly referred to as disjunctive, meaning that they are completely uncorrelated 

between groups, but can be correlated within the same group. Consider a vector of 

observations �  subdivided into k subsets of observations, i� , as follows: 
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              (5.11) 

 

The corresponding covariance matrix for each subset of observations is given by 

 

{ } kiE T
iii ,.....,2,1== vvC             (5.12) 

 

iC  is a fully populated positive-definite symmetric matrix. Since no correlation exists 

between subsets of observations, the cross-covariance matrices are formed as follows: 

 

{ } kjiandjiwhereE T
jiij ,....,3,2,1, =≠== 0vvC        (5.13) 

 

Depending on the application and type of data involved such a restriction may be 

suitable. See for instance Ou Ziqiang (1991) and Crocetto et al. (2000), where this type of 

model has been successfully implemented in both simulated numerical examples and 

real-world applications.  
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If the disjunctive subsets of observations have the same accuracy, the following 

stochastic model can be used: 

 

kiwherediag i ,,1][ 2
l== IC σ          (5.14) 

 

In this case the weight matrix is replaced by the identity matrix, I  (see Kubik, 1970 for 

more details). 

 

A specific stochastic model that has been effective for dealing with large data sets 

(assumed to be normally distributed) is a block-structured variance matrix described by 
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           (5.15) 

 

where ijσ  corresponds to a variance component if ji =  and a covariance component if 

ji ≠ . ijQ  is some known positive-definite cofactor matrix. A similar block-structured 

variance-covariance matrix was effectively implemented to deal with massive amounts of 

data originating from VLBI measurements (Lucas and Dillinger, 1998).  

 

A final stochastic model worth mentioning, especially for geodetic/survey-related 

applications, is the additive two-variance component model described by Sjöberg (1995) 

 

FIC 2
2

2
1 σσ +=               (5.16)  

 

where I is the identity matrix and F is a positive-definite diagonal matrix.  
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Examples where Eq (5.16) is applicable include the adjustment of levelling networks 

where the relative accuracy is typically composed of two parts as follows: 

 

dbc ⋅+=σ               (5.17) 

 

where σ  is the standard deviation of the observed height difference, c  is an empirically 

determined constant part of the contributing error, b  is the height difference accuracy 

based on pre-determined (or published) standards for levelling and d  is the baseline 

length corresponding to the levelling segment. Some simple error models affecting GPS 

signals can also be described using a form similar to Eq. (5.17), where the spatially 

correlated errors are represented by the db ⋅  part (i.e., ionospheric, tropospheric, and 

orbital errors) and the spatially uncorrelated or site/receiver specific error sources are 

simply assigned some constant value c  (i.e., multipath and receiver noise).  

 

 

5.2.3 Selection of variance component estimation procedures 

As far as variance component estimation procedures are concerned, a first solution to the 

problem was provided by Helmert (1924), who proposed a method for unbiased variance 

estimates. Much later, an independent solution was derived by Rao (1970), who was 

unaware of Helmert's method, and was called the minimum norm quadratic unbiased 

estimation (MINQUE) method. Under the assumption of normally distributed 

observations, both Helmert's and Rao's MINQUE approach are equivalent. Since then, a 

plethora of methods have been developed and tested for geodetic applications, with the 

most common outlined in the final column of Table 5.1.  

 

Maximum likelihood estimation methods 

The maximum likelihood estimation procedures involve writing the likelihood function in 

terms of the variance-covariance components, mean values and observations. The 

unknown parameters of the likelihood function are then solved by setting partial 
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derivatives of the unknown parameters equal to zero (Kubik, 1970 and Yu, 1996). 

Various stochastic models and functional models have been tested with this approach and 

proven to give valuable results. For instance, in Grodecki (1997) a restricted maximum 

likelihood method was successfully implemented for deformation trend analysis.  

 

Bayesian methods 

A closely related approach is the Bayesian methods, thoroughly investigated by Koch 

(1987), which also require that the distribution of the vector of observations is specified 

as with the maximum likelihood methods. The key difference with this approach is that it 

requires some prior knowledge about the vector of variance-covariance components in 

the form of a prior probability density function. Strictly speaking, Bayes estimates for 

variance components cannot be solved analytically. That is, numerical integration must 

be performed and, if too many unknown parameters are involved, problems with 

computational difficulty arise and numerical results are difficult (if not impossible) to 

obtain. This has led to the development of approximate Bayes procedures as described in 

Ou Ziqiang (1991). In this work, the approximate and strict versions are compared and 

found to give almost numerically equivalent results. The utility of this approximate 

method is contained in the splitting of the likelihood function into a product of individual 

likelihood functions. This results in a much simpler method that requires less 

computational effort than the strict rigorous Bayes method. 

 

Other methods 

The most popular estimation procedures are based on a quadratic estimator of the 

observational residuals v  as follows 

 

Mvvγ T=ˆ               (5.18) 

 

where M is a symmetric matrix to be determined via the following minimum trace 

problem: 
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{ } min=MQMQtr                         (5.19)  

 

for a linear combination of variance-covariance components described by 

 

θpγ T=               (5.20) 

 

where p is a known vector and θ  is a vector of the unknown variance and covariance 

components. The estimator minimizes a certain optimality criterion, such as minimum 

norm, minimum variance, or mean square error, subject to some constraints such as 

translation invariance or unbiasedness. In general, a quadratic estimator satisfies 

translation invariance if the trace minimum problem given in Eq. (5.19) is solved subject 

to the following constraint (Rao and Kleffe, 1988): 

 

0=MA               (5.21) 

 

Furthermore, the estimator is unbiased if  

 

{ } θpMvv TT =E              (5.22) 

 

which is equivalent to 0=MAAT . This latter property is important, since a biased 

estimate of a variance-covariance component may lead to overly optimistic or pessimistic 

relative weights depending on the magnitude of the bias (ibid.).  

 

The following is a list of some common procedures that use this quadratic-based 

estimation scheme: 

− minimum norm quadratic unbiased estimation, MINQUE 

− best invariant quadratic unbiased estimation, BIQUE 

− best quadratic minimum bias non-negative estimation, BQMBNE 
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− best quadratic unbiased non-negative estimation, BQUNE 

− best quadratic unbiased estimation, BQUE 

− almost unbiased estimation, AUE 

Simplifications and iterative procedures have been developed for most of the 

aforementioned methods. A significant characteristic with all of these various estimation 

procedures is that numerically (and under some assumptions such as normally distributed 

data) most of the methods give computationally equivalent results. However, 

distinguishable characteristics in the formulation of the problem for each algorithm exist.  

 

Selection criteria 

Ultimately, the selection of the appropriate technique should rely on the desired estimator 

properties, such as translation invariance, unbiasedness, minimum variance, non-

negativeness, computational efficiency, etc. In some cases all of these properties cannot 

be retained for a particular estimator and it is necessary to determine which properties 

should be sacrificed.  

 

A prevalent example can be found in Hartung (1981) where the property of unbiasedness 

was sacrificed for guaranteed estimation of non-negative variances. In Pukelsheim 

(1981), the existence of simultaneously unbiased and non-negative estimates of variance 

components was investigated and it was demonstrated that non-negative minimum norm 

quadratic unbiased estimators exist only in "very special cases". Furthermore, in Sjöberg 

(1995) it was shown that the properties of unbiasedness and non-negativity are 

incompatible for the additive two-variance component model (Eq. 5.16). These 

realizations led to the development of the best quadratic minimum bias non-negative 

estimation technique. In general, the decisions for which estimator properties to 

retain/enforce must be made on a case-by-case basis depending on the data and specific 

application. 
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Nowadays, the over-riding property that is usually sought after is computational 

efficiency, which arises due to the massive quantities of data that are used for the 

estimation of many variance-covariance components. In fact, the main criticism of 

traditional VCE methods is that they involve repeated inversions of large matrices, 

intensive computational efforts and large storage requirements for lots of unknowns. For 

these reasons, one may opt for entirely different estimation procedures, such as the Monte 

Carlo technique described in Kusche (2003) wherein the analysis of the low-to-medium 

degree gravity field recovery from simulated orbit perturbations of the GOCE mission 

was conducted. In other cases, mathematical manipulations or simplifications are made to 

the rigorous algorithm in order to reduce the computational burden involved with 

inverting large dimensional matrices (see for instance, Wang, 1999 and Crocetto et al., 

2000).  

 

Another aspect to consider when selecting an appropriate VCE algorithm is whether the 

problem deals with balanced or unbalanced data. All methods require that the data be 

grouped or classified according to some attribute(s) presumed to characterize the 

variation in them. This classification may be made according to the type of the data 

and/or according to the quality of the data (Rao and Kleffe, 1988). If the classification of 

the data into groups or sets (as described by Eq. 5.11) involves the same number of 

observations in each sub-set, then the observations are said to be balanced. For such 

cases, the estimation of variance components is relatively easier and can be performed 

using simple algorithms, such as the well known analysis of variance (ANOVA) methods 

(Searle et al., 1992). However, in general, balanced data is only a result of a designed 

experiment and rarely encountered in practice, therefore most methods listed above also 

deal with unbalanced data. This implies that the length of at least one observational sub-

vector, i� , in Eq. (5.11) is different from those of the other sub-vectors.  

 

A critical review of the methods available for the estimation of variance components and 

their benefits was conducted and it was found that the MINQUE and the AUE methods 

were the most appropriate. The selection was based on evaluating the utility of the 
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following criteria to the common adjustment of ellipsoidal, orthometric and geoid height 

data problem:    

•  computational load 

•  balanced versus unbalanced data 

•  ease of implementation 

•  flexibility for modifications 

•  unbiasedness 

•  non-negative variance factors 

Since identical numerical results can be achieved through the correct implementation of 

any method discussed and computational efficiency was not an issue (see section 5.5), 

one is free to select any scheme. The selected MINQUE and AUE algorithms suit the 

application at hand in addition to providing an allowance for improvements and any 

modifications that may be desired. The following sections describe the selected MINQUE 

and AUE algorithms in detail. 

 

 

5.3 The MINQUE method 

In this section, the general theory and algorithms of the minimum norm quadratic 

unbiased estimation procedure are described (Rao, 1971; Rao and Kleffe, 1988). This 

statistical estimation method has been implemented and proven useful in various 

applications for not only evaluating the CV matrix of the observations, but also for 

modelling the error structure of the observations.  

 

MINQUE is classified as a quadratic-based approach where a quadratic estimator is 

sought that satisfies the minimum norm optimality criterion. Given the Gauss-Markov 

functional model vAxl +=  where { } 0=vE  and the selected stochastic model for the 

data CV matrix expressed as follows: 
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the MINQUE problem is reduced to the solution of the following system 

 

qθS =ˆ                                     (5.24) 

                             

where θ̂  is a 1×k  vector containing the unknown variance components1. S  is a kk ×  

symmetric matrix that may not be of full rank and therefore its pseudo-inverse can be 

used for solving Eq. (5.24). Each element { }ijs  in the matrix S  is computed from the 

expression  

 

( ) kjitrsij ,,1,,ji l== RQRQ                                (5.25) 

 

where ( )⋅tr  is the trace operator, )(⋅Q  is a positive definite cofactor matrix for each group 

of observations indicated by i  and j . R  is a symmetric matrix defined by 

 

])([ 1T11T1 −−−− −= ��� CAACAAICR                    (5.26) 

 

where A  is an appropriate design matrix of full column-rank and �C  is the covariance 

matrix of the observations. The vector q  contains the quadratic forms  

 

{ } i
1

i
T
iii ˆˆ, vQvq −== qq                               (5.27) 

 

                                                           
1 The vector, θ̂ , can contain both unknown variance and covariance components. However, throughout this 
thesis only variance components will be estimated. 
 



 133

where iv̂  are the estimated observational residuals for each group of observations i� .  

 

It is evident from the expression for the R matrix (Eq. 5.26) that initial estimates for the 

unknown variance components must be provided as they are embedded in �C  that is used 

to compute R . This introduces one of the main drawbacks or criticisms of the MINQUE 

approach, which is the fact that it is only a locally best estimator. This implies that 'n' 

users with 'n' different a-priori values for the variance factors have the possibility of 

obtaining 'n' different estimates, all satisfying the criteria and properties imposed by the 

MINQUE procedure (i.e., minimum norm, translation invariance, unbiasedness). This is 

considered a major issue because if good initial estimates were easily obtainable then 

there would be limited use in performing variance component estimation to begin with! 

Remedies for overcoming this shortcoming include the use of an iterative approach in 

conjunction with ensuring that high redundancy is retained.  

 

 

5.4 Application of MINQUE to the combined height adjustment problem 

In this section, the specific formulations for the functional and stochastic models, as well 

as for the MINQUE algorithm implemented for the combined height data problem are 

presented. Most of the formulations have been previously described and therefore only a 

brief review of the required equations is provided.  

 

Given a network of points with ellipsoidal, orthometric and geoid height data, a 

combined adjustment can be performed. The general functional model used is given by 

 

BvAx +=� ,  { } 0v =E                                         (5.28) 

 

where the vector of observations �  is composed of the height ‘misclosure’ at each GPS-

levelling benchmark "i" as follows:  

 



 134

iiii NHh −−=�                                      (5.29) 

 

The selected stochastic model for this particular problem can be described in general as 

 

{ } vCvv =TE                              (5.30) 

 

where A  is the design matrix which depends on the parametric model type (see chapter 

3), B  is the block-structured matrix [ ]IIIB −−= , where each I  is an mm×  unit 

matrix ( m  is the number of observation equations), x  is a vector containing the unknown 

parameters corresponding to the selected parametric model and v  is a vector of zero-

mean random errors, described by the following formula: 

 

[ ] TT
N

T
H

T
h vvvv =                               (5.31) 

 

where )(⋅v  is an 1×m  vector of random errors for each of the NHh ,,  data types.  

 

The estimated adjusted residuals, v̂ , used to compute the variance components are 

disjunctive as the three sub-vectors are correlated among the same height type, but 

uncorrelated with each other. The data is grouped according to height type, as shown in 

Eq. (5.31). The separated residuals for each height type are computed as follows: 

 

�RQv )()(ˆ ⋅⋅ =                (5.32) 

 

where )(ˆ ⋅v  is computed for each of NHh ,, . The above equation is easily derived from 

the combined adjustment formulation as described in section 3.1 (see also Kotsakis and 

Sideris, 1999 for additional details).  
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The covariance matrix vC  is described by Eq. (5.30), where the positive definite cofactor 

matrix vQ  is scaled by the variance factor 2σ . For the case of heterogeneous disjunctive 

observations, a block-diagonal covariance model is used   
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where )(⋅C  is the covariance matrix for each of the height types. A linearly additive CV 

matrix model for the observations can be obtained through error propagation and is 

shown below 

 

TBBCC v=�               (5.34) 

 

The final expression is given by 

                          

N
2
NH

2
Hh

2
h QQQC σσσ ++=�            (5.35)           

 

where hQ , HQ , and NQ  are known positive definite cofactor matrices for the 

ellipsoidal, orthometric and geoid height data, respectively. The unknown variance 

components are 2
N

2
H

2
h σσσ ,, . The problem, therefore, is to solve for: 

− the unknown parameters of the parametric model, x, and  

− the individual variance components for each of the height data types, 2
N

2
H

2
h σσσ ,, .  
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Following this formulation, the specific MINQUE algorithm for the solution of the three 

unknown variance components, one for each height data type, is explicitly stated by the 

solution of the following: 
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5.5 Remarks on VCE and the combined height adjustment problem 

An interesting and advantageous property of the combined height adjustment problem as 

described herein is the inherent relatively high redundancy. Although the distribution and 

number of GPS-levelling benchmarks available in a particular country or region varies, 

the number of unknown variance components (three in this case) remains the same. Table 

5.2 provides a brief list of the current approximate number of GPS-levelling benchmarks 

in various countries. The regions are arranged in terms of geographical coverage area, 

with the largest area corresponding to Canada and the smallest in the list being that of 

Switzerland. 

 

The table includes a mixture of 1st, 2nd and in some cases 3rd -order levelling benchmarks, 

which makes a significant difference in the total number. For instance, in Denmark a total 

of 22 first order GPS-levelling benchmarks currently exist, however if second order 

levelling points are included then the total number increases to 416 GPS-levelling 

benchmarks (R. Forsberg, personal communication). Given the eminent economic 

benefits, high efficiency and improved achievable accuracy of instituting satellite-based 

vertical control points, it is only expected that the number of GNSS-levelling benchmarks 

will increase over time. In the meantime, they also provide an independent means for 

validating gravimetric geoid models. This high redundancy is valuable in any statistical 

method as it increases the reliability of the estimated parameters.  
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Table 5.2: Number of GPS-levelling benchmarks in different regions 

Region Area GPS-levelling benchmarks 

Switzerland 41,293 km2 111 

Denmark 43,094 km2 416 

Italy 301,309 km2 500 

Germany 356,955 km2 675 

Australia 7,682,300 km2 1013 

Brazil 8,547,404 km2 344 

United States 9,809,431 km2 11,020 

Canada 9,970,610 km2 1292 
 

 

Finally, since the same information is available at each point, namely, iii NHh ,, , the rare 

occurrence of balanced data is at our disposal. In this case, the computations using the 

MINQUE algorithm are greatly simplified as the same number of 'observations' is 

contained in each group or sub-class. Furthermore, under the assumption of balanced 

normally distributed observations, which is a common submission, the MINQUE 

algorithm also satisfies the property of minimum variance. Thus, it may be questioned 

why a relatively complex algorithm such as MINQUE is selected over simpler 

algorithms, which are available for dealing with balanced data only, such as ANOVA 

(Searle et al., 1992). The main reason for not selecting a simpler approach is due to the 

fact that it was desired to retain the capability of re-formulating the problem for the case 

where unbalanced data are used. For instance, in Kearsley et al. (1993), a parametric 

adjustment with constraints was investigated for the combined adjustment of ellipsoidal, 

geoid and orthometric height data. In this problem formulation, the case of unbalanced 

data arises, where the number of elements in each of the three observational sub-sets, 

NHh ∆∆∆ ,,  are different from each other.  
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An additional advantage offered by the design of this particular problem is a relatively 

low computational load. Only three variance components are sought. The largest matrix 

inversion will be of the order of the number of observations, m , which in the absolute 

case is equivalent to the number of network benchmarks. Thus, unlike many other VCE-

related applications, where the main obstacle encountered is the high computational load, 

the problem here lies in the absence of independently derived and reliable variance 

estimates for each height type. In such cases where there is a deficiency of good initial 

estimates, it is preferable to rely on a globally best estimator that provides results 

independent of the a-priori values rather than a locally best estimator. To achieve this, an 

iterative procedure must be used. The process is described in detail in sections 5.6 and 5.7 

and will be used throughout the remaining parts of this thesis for all of the numerical 

investigations. 

 

 

5.6 Iterative minimum norm quadratic unbiased estimation  

The computed values from a first run through the MINQUE algorithm, 1
iθ̂  are obtained 

by specifying a-priori values, �

iθ̂ . The resulting estimates can be used as ‘new’ prior 

values and the MINQUE procedure is repeated. Performing this process several times is 

referred to as iterative MINQUE (IMINQUE). It is an important application to consider 

as it yields less dependence of the estimator on the a-priori values, leading to a globally 

best estimator, rather than a local best estimator which is only ‘best’ given the initial 

estimates. Furthermore, this is a useful feature when the a-priori values are unreliable or 

uncertain at best. In Figure 5.1, the steps involved for the implementation of this 

approach are depicted. The flowchart provides a general overview of the computational 

scheme for all iterative procedures, where each α
iθ̂  value represents a ratio computed at 

each iteration α .   
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Figure 5.1:  Iterative variance component estimation computational scheme 
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The implementation of this convergence criterion is performed by checking the 

difference between the current estimates, αθ̂ , and previous estimates, 1ˆ −αθ , to test if 
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they are less than a pre-specified small value, i.e., 0.0001ˆˆ 1 <− −αα θθ . In general, each 

factor converges at different rates, however the process should not be stopped until all of 

the values satisfy Eq. (5.37). Therefore, the initial values for one group of observations 

affect the convergence rate, which is essentially a measure of the computational 

efficiency, of the entire solution. Figure 5.2 shows the convergence behaviour of the 

estimated variance components for each of the three height data types. The figure was 

created using the Swiss data set (see 3.6.1) and fully populated cofactor matrices for all 

three data groups (see chapter 6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Example of estimated variance components at each iteration step 
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As evidenced in the figure, the initial oscillatory behaviour varies for each component. In 

this case, the variance component from the levelling data converges the fastest taking 

approximately 58 iterations for the strict convergence criteria stated above, even though 

after the first few iterations it is at a higher level than the other two groups of data. The 

next component to converge is the geoid height variance factor, which levels out after ten 

more iterations. Finally, the ellipsoidal height variance factor converged, bringing the 

entire process to take approximately 78 iterations. Due to the resolution of the graph, this 

is not readily visible, however by zooming in the true number of iterations can be viewed. 

Of course, if the application allowed for the convergence criteria to be set to less stringent 

values, the process would be stopped sooner.  

 

The final estimated variance component values are given by 
 

k1i
n

0
ii ,,ˆˆ

l== ∏
=α

αθθ             (5.38) 

 

where n denotes the total number of iterations. An indication of their accuracy can be 

computed from the following formula, where the Moore-Penrose pseudo-inverse +S  may 

be used if S  is not of full rank: 

 

12 −= SCθ̂             (5.39) 

 

In practice, the proper implementation of this iterative process with sufficient 

observations has worked well. There are, however, some additional theoretical drawbacks 

associated with the iterative scheme. For instance, it is possible, under certain conditions, 

that the IMINQUE algorithm does not yield unbiased values (Rao and Kleffe, 1988). 

Also, there is a possibility that an admissible solution (i.e., positive variances, 3
+ℜ∈θ̂ ) 

will not be achieved. In fact, the process may not converge, which results in no solution. 

The following section will describe a procedure designed to avoid such problems. 
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5.7 Iterative almost unbiased estimation 

As mentioned previously, one of the major pitfalls of the described MINQUE algorithm 

is that no provision has been made to ensure non-negative variance values (i.e., 3
+ℜ∈θ̂ ). 

In general, negative outcomes of variance components can be attributed to two factors 

(Sjöberg, 1984): 

− an insufficient number of observations compared to unknown parameters (low 

redundancy), and/or 

− an incorrect stochastic model. 

Although the actual estimated negative variance values have no meaning, a negative 

variance outcome does yield important information regarding the problem set-up, 

information that is lost if the estimator is constrained to give only positive outcomes. 

Empirically, it has been noticed that negative variance estimates occur less frequently as 

the number of observations increases. Nonetheless, simplified algorithms exist which 

ensure that positive estimates are given at each iteration. One such algorithm, known as 

iterative almost unbiased estimation (IAUE) can be implemented through the following 

formula (Horn and Horn, 1975): 

 

)(

θ̂
θ̂

TT

i

i
old
inew

i tr QR

RRQ ��

=                             (5.40) 

 

where NHhi ,,= , new
iθ̂  and old

iθ̂  represent the current and previous iteratively-derived 

variance estimates, respectively. The estimators computed using this algorithm are also 

invariant with respect to translation of the unknown parameters as with the MINQUE 

estimates, however the results are ‘almost’ unbiased. In most practical cases, this 

sacrifice is accepted given the strictly lower mean square error of the AUE compared to 

either the MINQUE or the sample variance (Rao and Kleffe, 1988).  
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Several numerical tests were conducted using this algorithm with real data and it proved 

to give almost identical results to the rigorous IMINQUE (insignificant difference at the 

sub mm-level). An added benefit of this method is that it is computationally simpler and 

converges approximately 50% faster than the rigorous approach. Thus, in cases where 

computational efficiency is an issue, IAUE offers a viable alternative to the rigorous 

IMINQUE approach. More details from a practical implementation point of view will be 

presented from the results of the case studies in chapter 6.  
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Chapter 6 

 

Case Studies: Estimation of Variance Components via a Mixed 

Adjustment of Ellipsoidal, Geoid and Orthometric Heights 

 
 

In chapter 5, the theory and methodology involved with the application of VCE in the 

combined adjustment of heterogeneous height data was discussed. The focus of this 

chapter is to apply the proposed VCE techniques to real vertical networks and investigate 

the effects of the following issues on the final estimated variance components: 

•  modifying the a-priori covariance matrices for the height data, 

•  estimating non-negative variances, 

•  ignoring correlations among observations of the same type, and  

•  assessing the role of the corrector surface model. 

The chapter is organized into five main parts, starting with a description of the data used 

in the estimation of the variance components, namely the a-priori covariance information 

( Hh QQ ,  and NQ ) and height misclosure data ( NHh −−=� ) for each of the test 

networks. The first test network is located in Switzerland and it was described in detail in 

section 4.1. The second test network consists of a subset of the Canadian GPS-levelling 

stations located in southern British Columbia and Alberta as described in section 4.2. 

Both networks were used for the numerical investigations in this chapter in order to 

continue the analysis of the vertical networks that started with the modelling of 

systematic effects in chapter 3. The next four sections of this chapter are dedicated to the 
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detailed investigation of the four aforementioned items. The main results of these case 

studies are particularly important for understanding the capabilities and limitations of the 

potentially powerful statistical tool of VCE in the mixed height network adjustment 

problem.  

 

 

6.1 Description of the Swiss test network data 

The vertical test network described in section 4.1 consisting of 111 GPS-levelling 

benchmarks distributed throughout Switzerland was used for the VCE studies in this 

chapter. As seen in Figure 6.1, there is a very good distribution of vertical control 

throughout the coverage area.  

 

 

Figure 6.1: Swiss test network and error bars for NHh −−=�  
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Figure 6.1 also shows the associated standard deviation of the combined height 

misclosure, 
i�

σ , at each point without any fitting of a corrector surface model. It is 

evident from this figure that there is a moderate accuracy variation, ranging from the 

mm-level to more than 4 cm. Fully-populated initial CV matrices were also obtained for 

h, H and N , as described below.  

 

 

6.1.1 Initial covariance matrix for the GPS heights 

The original CV matrix corresponding to the three-dimensional Cartesian geocentric 

coordinates ( zyx ,, ) was computed from the results of a GPS data post-processing 

software package. The required information, hQ , was extracted after the matrix was 

transformed into the corresponding CV matrix for the ellipsoidal ( h,,λϕ ) coordinates 

(see Marti et al., 2001). Figure 6.2 shows the initial CV matrix for the ellipsoidal heights, 

which has an average standard deviation of 0.78 cm.  

 

Figure 6.2: Plot of initial covariance matrix for GPS heights (Swiss network) 
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The average standard deviation is computed as follows: 

     

mtr iave /)(Q=σ                             (6.1) 

 

where, hi QQ =  for this case. Eq. (6.1) intrinsically provides an optimistic measure of 

the accuracy as only the diagonal elements in the cofactor matrix are taken into 

consideration. Typical for GPS-derived coordinates, the output CV matrix was overly-

optimistic. In practice, this situation is rectified by arbitrarily scaling the CV matrix by 

some factor. The validity of this all too common practice is addressed in section 6.3.1. 

 

 

6.1.2 Initial covariance matrix for the geoid heights 

The fully-populated CV matrix corresponding to the geoid heights at the GPS-levelling 

benchmarks was obtained by straightforward application of error propagation to the least-

squares collocation equations that were used for the Swiss geoid determination (see Marti 

et al., 2001 for more details) 

 

T
gNZZgNNNN ∆

−
∆−= CCCCQ 1                (6.2)  

 

where NNC  is the covariance matrix of the true unknown geoid heights, gN∆C  denotes 

the cross-covariance matrix between the computed geoid heights, N , and the measured 

gravity anomalies, g∆ , and nnggZZ CCC += ∆∆  where n is noise. The computed CV 

matrix in this manner excludes the uncertainty contribution of the global geopotential 

model (commission and omission errors) as well as other effects such as terrain 

reductions and assumptions about the density models. Figure 6.3 depicts the initial fully-

populated CV matrix for the geoid heights as computed from Eq. (6.2). As expected, the 

geoid contributes the most (compared to the other height error components) to the overall 

accuracy of the height misclosures at the GPS-levelling benchmarks, with an average 
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cm2 

standard deviation of 1.92 cm. The comparatively high correlation for neighboring 

stations is also expected due to the smooth variation of the geoid signal over the network 

coverage area. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3: Plot of initial covariance matrix for geoid heights (Swiss network) 

 

 

In practice, regional geoid models are often refined through the incorporation of GPS-

levelling data into the gravimetric solution (as described in section 2.4.4). In such cases, 

the assumption of disjunctive observations is not strictly valid, which may adversely 

affect calculations of error models. To rectify this situation, the GPS-levelling 

observations can be excluded from the computation of the gravimetric geoid, which will 

ensure independence among the CV matrices, satisfying Eq. (5.13). 

  

 

6.1.3 Initial covariance matrix for the orthometric heights 

Of the three CV matrices required in the combined height network adjustment, the CV 

matrix for the orthometric heights is most readily available as it can usually be extracted 
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cm2

from the network adjustment of the geopotential numbers for a given set of points. This is 

often conducted through the use of in-house software by the responsible government 

agencies and provided to users upon request.  

 

In this case, the initial fully-populated covariance matrix for the orthometric heights, 

HQ , comes directly from the rigorous national adjustment of the first and second order 

levelling measurements since 1902. The orthometric heights were obtained directly from 

the division of the adjusted geopotential numbers by the mean gravity (computed from 

surface gravity measurements and a simple 3D density model of the Earth's crust) along 

the plumb line. Marti (2002) should be consulted for a description of the computation of 

the orthometric heights and a comprehensive comparison of the differences between 

Swiss height systems and the approximations made in the computation of the mean 

gravity. Further information on the national levelling system in Switzerland is provided 

in Marti et al. (2001). Figure 6.3 depicts the initial covariance matrix, which has an 

associated average standard deviation of approximately 0.74 cm. As expected, the 

correlation between nearby neighbouring stations is very high.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4: Plot of Initial covariance matrix for orthometric heights (Swiss network) 
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Table 6.1 summarizes some characteristics of the a-priori CV matrices for comparison 

purposes. The average error is computed from Eq. (6.1) and the condition number is 

computed from the following equation: 

 

NHhicond i ,,,)(
min

max ==
λ
λ

Q                (6.3) 

 

where iQ  is a positive definite cofactor matrix, and maxλ  and minλ  are its maximum 

and minimum eigenvalues, respectively. 

 

 

Table 6.1: Initial CV matrix characteristics for the Swiss network 

 GPS Levelling Geoid 
Condition number 146.2 2.23×107 4.50×105 

Average standard 
deviation  (cm) 

0.79 0.75 1.93 

 

 

The comparatively high condition number corresponding to the levelling data matrix is of 

particular interest. This high value may lead to numerical instability problems when the 

matrix needs to be inverted. Therefore, a simple ridge regression was applied to alleviate 

any numerical problems (see Bouman, 1998).  

 

The average standard deviation gives an indication of the overly-optimistic a-priori 

accuracy for the three height types, which is especially evident for the ellipsoidal heights 

with an average error of less than 1 cm. From the discussion on the various error sources 

affecting ellipsoidal heights derived from GNSS measurements in section 2.3, it is 

apparent that this measure is optimistic.  
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The utility in the covariance matrix characteristics provided in Table 6.1 will become 

more evident in the numerical case studies, as the effect of ignoring possible (or known) 

correlations between observations may be dangerous if the condition number of the 

matrix is large (Strang and Borre, 1997).  

  

 

6.2 Description of the southern British Columbia/Alberta test network data 

Unlike the Swiss test network where a relatively homogeneous coverage of GPS-

levelling benchmarks has been established over the entire country, in Canada the 

coverage is very mixed and too sparse in most parts. Furthermore, it is difficult to cover 

all parts of the country with existing control over a short period of time using 

conventional spirit-levelling techniques. This has resulted in a series of ongoing re-

adjustment and evaluation of the data. For the numerical studies conducted herein, a 495 

km × 334 km region in southern British Columbia (BC) and Alberta (AB) is used.  The 

Geodetic Survey Division (GSD) of National Resources Canada provided the height data 

at 63 stations and CV information for the ellipsoidal heights, orthometric heights and 

geoidal undulations.  

 

Figure 6.5 shows the test network area and the associated standard deviations for the 

height misclosures at each benchmark. Overall, the average standard deviations, 
i�

σ , are 

about three times higher than in the Swiss network case, with a minimum of 3 cm and a 

maximum of approximately 12 cm. The 63 stations are spaced roughly 30 km apart, 

compared to about 20 km for the Swiss test network. The relatively poor representation 

of GPS-levelling benchmarks for the size of the area is a realistic problem encountered in 

many networks and therefore warrants testing for comparison purposes. 
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Figure 6.5: Southern BC/AB test network and error bars for NHh −−=�  
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extracted from this weight matrix. It is worth mentioning that a slight computational 
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The a-priori CV matrix for the ellipsoidal heights in this region, hQ , is shown in Figure 

6.5. The average standard deviation is approximately 3.17 cm, which is notably higher 

than the corresponding value for the Swiss network. The precision of the vertical 

coordinates for the Canadian Base Network (a national network of high precision GPS 

control stations) is approximately 3 cm at the 95% confidence level (Craymer et al., 

1997). Therefore, the computed value for this smaller region is on par with the national 

standards.   

Figure 6.6: Plot of initial covariance matrix for GPS heights (southern BC/AB network) 

 

 

6.2.2 Initial covariance matrix for the geoid heights 

The a-priori error CV matrix, NQ , for the geoidal undulations was obtained through 

error propagation of an error grid of the Helmert gravity anomalies. The variance values 

corresponding to the 63 stations of interest were obtained through bilinear interpolation 

of the error grid. The final covariance matrix was provided by GSD in a diagonal form 

with all cross-correlations set to zero. Similar to the Swiss error CV matrix case, the 
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geoid error model does not include the uncertainty from the global geopotential model, 

which defines the long wavelength component and the gravity filed outside the Stokes' 

integration cap-size of 6° (Véronneau, 2002). The diagonal a-priori CV matrix is shown 

in Figure 6.6. The overall average standard deviation is approximately 5.6 cm, which 

seems to be a more realistic value than that obtained for the Swiss network.  

 

Figure 6.7: Plot of initial error CV matrix for geoid heights (southern BC/AB network) 

 

 

6.2.3 Initial covariance matrix for the orthometric heights 

A fully-populated error covariance matrix, HQ , for the orthometric heights in the 

southern BC/AB region was provided by GSD. The original matrix was in the form of a 

weight matrix for the corresponding geopotential numbers. In fact, most national network 

adjustments of levelling networks are performed using geopotential numbers as it 

provides the flexibility of converting to either orthometric or normal heights depending 

on the type of gravity used (see discussion in section 2.2). For the Canadian vertical data, 
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Helmert orthometric heights were used, computed using surface gravity values. All 

stations in the given region are of first order levelling and were part of a minimally 

constrained adjustment. The average standard deviation of this a-priori covariance matrix 

is 0.75 cm, which is coincidentally almost identical to the Swiss levelling covariance 

matrix.      

Figure 6.8: Plot of initial CV matrix for orthometric heights (southern BC/AB network) 

 

 

Table 6.2 summarizes the characteristics of the a-priori covariance matrices for the 

southern British Columbia and Alberta test network. In general, these covariance 

matrices indicate more moderate a-priori levels than in the previous network. Once again, 

the geoid is the major contributor to the overall error budget in the combined height 

network adjustment. Surprisingly, the numerical stability of the matrices corresponding to 

the GPS and geoid height data are very good, exhibiting fairly low condition numbers. 

The effect that this will have on the variance component estimation results will be seen in 

the numerical case studies in the next sections. 
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Table 6.2: Initial CV matrix characteristics for the southern BC/AB network 

 GPS Levelling Geoid 
Condition Number 997.5 1.1×105 13.7 

Average Error (cm) 3.17 2.99 5.57 
 

 

6.3 Case Study I - Testing a-priori covariance matrices for the height data 

The purpose of this case study is to test the effect of different a-priori CV matrices on the 

final estimated variance components. As stated previously, the IMINQUE scheme, in 

theory, is a globally best estimator and should provide estimates independent of the a-

priori values. However, the procedure does not provide any guarantee of the correctness 

of the final estimated values. Therefore, mere convergence cannot be taken as a positive 

re-enforcer. To overcome this uncertainty, there are a number of options that can be 

investigated. For instance, one can compute the covariance matrix for the estimated 

variance components, θC ˆ , using Eq. (5.39). From this equation, the standard deviations 

corresponding to each of the estimated variance components can be extracted and, 

depending on the relative magnitudes, inferences can be made regarding the ‘goodness’ 

of the estimated values. Another method, though beyond the scope of this study, is the 

computation of the associated confidence intervals for each of the variance components 

(Koch, 1987).  

 

In this study, a more empirical approach is followed whereby a number of different a-

priori variance values 2
�iσ  for each height type are tested to see if they all yield the same 

solution 2ˆ iσ . Interestingly, the results showed that the initial a-priori values for a single 

group of observations (e.g., orthometric heights) do not have a noticeable effect on the 

remaining groups, even though theoretically co-dependence is present. Figure 6.9 depicts 

an example of this procedure using the Swiss test network data, where three different a-

priori variance values for the orthometric heights are used as input to the IMINQUE 
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algorithm and the results for the final estimated variance values for the other two groups 

of observations (ellipsoidal and geoid heights) remain unchanged. This process was 

repeated for each of the height types and gave similar results.  

 

 

Figure 6.9: Effect of different a-priori variance factors (Swiss network, 12
H o

=σ ) 

 

 

Tests were also conducted using the Canadian data set and the same conclusions could be 

drawn, as illustrated in Figure 6.10, for different a-priori variance levels corresponding to 

the geoidal height data. An interesting observation, for both test networks, is that the 

number of iterations required as the initial values deviate from the 'true' unknown 

variance factors do not change much. The results also reveal the considerable difference 

in the number of iterations required for the different test networks with approximately 

100 for the Swiss data and 12 for the Canadian regional dataset! This may be related to 

the numerical stability of the initial covariance matrices, which was noticeable better for 

the Canadian data, or it may also be an indication of the more realistic measures of the 

CV information for the latter network as compared to the optimistic height accuracy 

values for the Swiss network.  The Swiss network also contains about twice as many 
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stations, a fact which increases the computational load, and thus the number of necessary 

iterations. 

 

 

Figure 6.10: Effect of different a-priori variance factors (BC/AB network, 12 =
oNσ ) 
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the following three sections.  
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6.3.1 Scaling the covariance matrix for the ellipsoidal heights   

It is well known that the covariance matrix for the estimated three-dimensional position 

parameters obtained from the processing of GPS phase and code data is usually overly-

optimistic (Satirapod et al., 2002). This is a direct result of neglecting, even partially, 

correlations (physical, spatial and temporal) between GPS observables in the creation of 

the covariance matrix for the input observations. As a result, not only is the usefulness of 

the computed CV matrix for the GPS coordinates poor (thus giving a false indication of 

the quality of the results), but it is also unlikely to be appropriate as input into another 

adjustment (multi-baseline or heterogeneous adjustment with terrestrial data). The 

solution offered in practice to users is that (Geodetic Survey Division, 1992; page 15): 

" … it is acceptable when justified to scale the formal covariance matrix  

       provided by such software prior to the final adjustment." 

 

Over the years, experience in processing of GPS data has resulted in a variety of different 

scale factors commonly used, i.e., 30 or 100. In Ollikainen (1997), the formal accuracy 

for the GPS-derived ellipsoidal heights resulting from the processing with the Bernese 

software were found to be too optimistic and scaled by empirically derived factors of 82 

and 102 for two different datasets. Obviously, every network is different and the blanket 

application of a somewhat arbitrary scale factor is not a viable solution, predominantly in 

high precision surveys. In light of this, much research has been conducted on the difficult 

task of improving the stochastic model for the observations by incorporating the 

correlations often neglected. In doing so, the output covariance matrix for the position 

parameters is less likely to be optimistic.  

 

Among the most significant sources of physical (both spatial and temporal) correlations 

in GPS phase measurements are the ionospheric and tropospheric delays. In El-Rabbany 

(1994), an exponential covariance function was derived whereby the temporal physical 

correlation was taken into account. Numerous other studies have been conducted which 

include modifying the covariance matrix by modelling individual sources of errors such 



 160

as the atmospheric, multipath, receiver noise, and orbital errors, over time and space in 

order to provide fully-populated covariance matrices for the observables. Needless to say, 

this is a difficult task and research is ongoing. Recently, a study was conducted whereby 

VCE (specifically the BQUE scheme) was used to construct an improved CV matrix for 

the processing of the GPS phase and code observables (Tiberius and Kenselaar, 2003). 

The stochastic model was refined in steps by estimating variance components for each 

satellite/channel, covariance components between satellites/channels, covariance 

components between observation types (L1, L2, C1, P2), and finally the covariances 

between epochs (temporal correlations).  

 

Despite these efforts, thus far, no commercial post-processing software package openly 

implements such advanced methods for dealing with correlations and therefore overly-

optimistic CV matrices are computed. In fact, some packages do scale the output 

covariance matrix for the positions, however, rarely is the procedure and/or the scale 

factor known to the user. For the purposes of the combined adjustment of satellite-

derived ellipsoidal height data with other terrestrial height data, it is imperative that the 

covariance matrix for the GPS height component, used as input into the combined 

adjustment, be appropriate.  

 

During the course of this study, it was discovered that through proper VCE, the 

arbitrariness of certain pre-selected factors (such as scaling hQ ) can be alleviated. For 

instance, in the Swiss network, a factor of 102 was empirically determined as being an 

appropriate scale for hQ  (Urs Marti, personal communication, see also Figure 6.2). By 

re-scaling the original covariance matrix with different a-priori factors, as illustrated in 

Figure 6.11, the independently-derived value was verified as an appropriate scale for hQ , 

which results in an estimated variance component of 8154.2ˆ 2 =hσ . This is an important 

realization as it ascribes some statistical reasoning towards an otherwise ‘arbitrary’ 

scaling practice and leads to a better or improved understanding of the true measures of 

error.    
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Figure 6.11: Effect of different a-priori variance factors (Swiss network, 12 =
ohσ ) 

 

 

For the Canadian region, the supplied covariance matrix for the ellipsoidal heights did not 

come with a known pre-selected scaling factor, although it is possible that some scaling 

may have been applied at the outset. To check if this was the case and to verify the 

provided matrix, the same procedure was applied to the initial covariance matrix by re-

scaling using various a-priori values. It was found that the original matrix was sufficient 

and did not have to be pre-multiplied by some arbitrarily large factor, such as 100, as was 

the case for the Swiss data. The final estimated variance component computed for the 

ellipsoidal heights in this data set was, 2.7ˆ 2 ≅hσ . Thus, the incorporation of the iterative 

VCE procedure in the combined height adjustment proved to be useful in determining 

and validating the appropriate scale for the covariance matrix of the ellipsoidal heights.    

 

 

6.3.2 Calibration of geoid error models   

In general, there are two ways for assessing the accuracy of computed gravimetric geoid 

models. A widely used approach is the comparison of different geoid models over the 

same region, which have been derived using various computational schemes and data 

2
ohσ ×  1

×  102

×  1002

281.54                   5.0582            1.0134 

2.8154                   5.0582            1.0134 

0.0282                   5.0582                1.0134 

2ˆ Hσ 2ˆ Nσ2
hσ̂IMINQUE

 100 iterations 

  99 iterations 

102 iterations 
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sets. This is an external way of evaluating the accuracy of existing geoid models and has 

been implemented in a number of cases on regional and global geoid modelling studies. 

Closely related to this approach, is the computation of the differences between the 

gravimetrically-derived geoid values, gravN , with those derived from GPS-levelling, 

levellingGPSN / , at pre-specified discrete locations such that 

 

HhNNNN gravlevellingGPSgrav +−=−=∆ /                  (6.4) 

 

The statistics of the discrepancies N∆  offer an external empirical evaluation of the 

gravimetric geoid model accuracy (as described in section 2.4.4). However, there are a 

number of issues that must be considered before a proper assessment of the geoid model 

is given using this approach. Firstly, when computing the discrepancies as given by Eq. 

(6.4) it is often assumed that the GPS-levelling derived geoid values are errorless and 

therefore used as a basis for comparison. This is obviously a major assumption and 

should be considered with caution. In addition, it is common practice to use the GPS-

levelling data in order to refine the existing gravimetric geoid model. Thus, the computed 

'gravimetric' geoid heights have been influenced already by the GPS-levelling values, 

which are then used as a basis for comparison in assessing the accuracy of the geoid. This 

approach only provides a means for checking how close the existing model is to the GPS-

levelling data, rather than an independent external accuracy assessment. Another major 

issue in this comparison is the described systematic effects and datum inconsistencies that 

exist between the three types of height data, Hh, and N  (see chapter 3 for a detailed 

discussion). It is important that any systematic effects, if any, are eliminated from the 

height data so that a reliable description of the behaviour of the random errors can be 

made. Therefore, the importance of an efficient corrector surface model is stressed for the 

evaluation of gravimetrically-derived geoidal undulations using GPS-levelling data.     

 

The second method for assessing the geoid error model is through the proper propagation 

of errors in the used data (i.e. local gravity anomalies, terrain models, etc.) and the 
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geopotential harmonic coefficients into the final geoid undulations (for detailed formulas, 

see Sideris and Schwarz, 1987; Strang van Hees, 1986). Other important studies are 

described in Li and Sideris (1994) where the propagated errors of the terrestrial gravity 

anomalies and the geopotential coefficients from the global gravity model were combined 

to form an error model in parts of Canada and the northern United States. In these 

regions, it was shown that internal propagated variances reasonably reflected the external 

estimated accuracy conducted via comparisons to GPS-levelling data. Such internal 

accuracy assessments were used in order to obtain the initial covariance matrices for the 

described Swiss and Canadian regional test networks; see sections 6.1.2 and 6.2.2, 

respectively. In the Swiss network, for instance, error propagation was performed on the 

results of the least-squares collocation formulation (see Eq. 6.2). In the Canadian region, 

a different approach was taken whereby the errors in the gravity anomalies were 

propagated in the geoid heights (Véronneau, 2002). It should be noted that for both local 

covariance matrices the uncertainty of the global geopotential model was not taken into 

account.  

 

In order to obtain an understanding of the uncertainty of the global geopotential model to 

the overall error budget, the fully-populated CV matrix corresponding to the EGM96 

global geopotential model in the network areas was computed by applying error 

propagation to the spherical harmonic expansion of the Stokes’ formula as given by Eq. 

(2.2). As input, the fully-populated covariance matrix for the commission errors of the 

spherical harmonic coefficients ( nmnm SC , ) up to a maximum degree and order of 70 

(Lemoine et al., 1998) was used and denoted by coefC . Although a higher degree of 

expansion (i.e., 180 or 360) may theoretically recover higher frequency information (thus 

reducing the aliasing error), the noise is also increased as the number of coefficients 

increases. Furthermore, only variance values (no covariances) are available for the 

coefficients for higher degree and order 70.  
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The final covariance matrix corresponding to the commission error of EGM96 is 

computed via the following formula: 

 

T
coefEGM DCDC =96                 (6.5) 

 

where the D matrix can be written as a series of sub-matrices such that 

 

[ ]TidddD ��21=                (6.6) 

 

where id  relates the spherical harmonic coefficients to the geoidal undulations for each 

of the network points, i, and is given by the following expression: 
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It should be noted that only the variance values are provided for the zero to second order 

coefficients, namely 2221222120 ,,,, SSCCC  (ibid.).  

 

Assuming the systematic effects among the different height types have been sufficiently 

eliminated (e.g., through the use of a proper parametric model), the VCE procedure leads 

to the refinement or calibration of existing geoid error models through the combined 

height adjustment process. To illustrate its usefulness, the IMINQUE procedure was used 

to estimate the a-posteriori variance factors for three different geoid error models in each 

of the Swiss and Canadian data sets, namely  

(i) local geoid error model derived from propagated errors of terrestrial gravity and 

height data  
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(ii) global geopotential geoid error model derived from propagated variance-

covariance information of the spherical harmonic coefficients for the EGM96 

model up to degree and order 70 (see Eq. 6.5)  

(iii) diagonal-only version of model (ii).  

For the case of the error model of type (i), the covariance matrix for the Swiss data is 

fully-populated (see section 6.1.2), while for the Canadian regional data only a diagonal 

covariance matrix is used (see section 6.2.2). The results are summarized in Table 6.3.  

 

 

Table 6.3: Estimated variance components and average standard deviations for local and 
global geoid models 

Test Network local geoid 
model 

EGM96 
(diagonal) 

EGM96  
(full) 

Switzerland 
original average σ 
estimated variance factor 
scaled average σ 

 
1.9 cm 
1.02 

1.9 cm 

 
25.4 cm 

6.2 × 10-5 

0.2 cm 

 
25.4 cm 

0.27 
13.1 cm 

Southern BC/AB 
original average σ 
estimated variance factor 
scaled average σ 

 
5.6 cm 
0.28 

2.9 cm 

 
24.7 cm 
0.05 * 
5.8 cm 

 
24.7 cm 

0.21 
11.4 cm 

* computed using the IAUE method 

 

The table shows the computed average standard deviation (Eq. 6.1) both before and after 

VCE is performed, which indicates the change in the corresponding accuracy level. The 

final estimated variance components are also provided for each test case. The first 

column refers to the results obtained when using the original covariance matrices (of type 

(i)) described in sections 6.1.2 and 6.2.2 for the Swiss and southern BC/AB test networks, 

respectively. The second column gives the results using a diagonal covariance matrix 

corresponding to the commission errors of the global geopotential model EGM96 (of type 
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(iii)) and finally the last column refers to the fully-populated covariance matrix for 

EGM96 up to degree and order 70 (type (ii)). All of the results were obtained by fitting 

the classic 4-parameter corrector surface model (Eq. 3.31) to the height residuals in order 

to deal with the intrinsic systematic effects and then applying the IMINQUE algorithm 

described in section 5.6. The only exception is the estimated variance component 

corresponding to the diagonal version of the EGM96 geoid error model in the Canadian 

region. In this case, a positive-valued solution was not numerically obtainable using 

IMINQUE and therefore the computed value was computed using the IAUE algorithm 

(see section 5.7).   

 

By comparing the original average σ  for the locally derived geoid error models and that 

of EGM96 it is evident that the contribution of EGM96 to the total error budget is 

significant. For the Swiss test network case, the scaled average σ  is approximately equal 

to the original average σ  as the estimated variance factor, 2ˆ Nσ , is close to one, which 

validates that the provided CV matrix was reasonable. This does not imply that the total 

uncertainty in the geoid heights in this area is described by the CV matrix as there are 

many sources of error that have been neglected (as mentioned in section 6.1.2).  

 

The covariance matrix for EGM96 in this region is shown to be pessimistic with an 

original average σ  of 25.4 cm compared to a scaled average σ  of 13.1 cm. The gravity 

coverage in this region is relatively homogeneous in coverage and quality, which 

possibly contributes to the down-scaling of the CV matrix giving a final estimated 

variance factor of 0.27. The results computed when the diagonal CV matrix is used 

reflect the overly-optimistic accuracy values obtained when significant correlations are 

neglected; see Figure 6.12 for the original fully-populated covariance matrix 

corresponding to EGM96 in this region.  
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Figure 6.12: Plot of covariance matrix for EGM96 over the Swiss network area 

 

 

For the Canadian test network, similar conclusions can be drawn regarding the EGM96 

error model. However, the locally derived geoid error model, although diagonal-only, 

was slightly pessimistic at 5.6 cm compared to an average scaled error of approximately 

3 cm. The contribution of the global geopotential model to the overall error budget is 

estimated at approximately 11 cm in this region.       

 

Overall, the test results show the capability of the VCE procedure for calibrating both 

regional and global geoid error models. In all cases, the estimated variance components 

were less than one, indicating a down-scaling of the initial CV matrix was necessary. 

Further to these error models, the global gravity field models expected from the current 

CHAMP and GRACE and upcoming GOCE missions in the near future will also need to 

be validated. The proposed VCE technique can be used with terrestrial data (assuming 

that it is also free of systematic errors) in order to reliably calibrate the newly-derived 

geoid error models. Thus, the co-dependency between the proper modelling of systematic 

errors and the effectiveness of the VCE method is evident.  

 

 

 
cm2 
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6.3.3 Assessing the accuracy of orthometric heights  

In general, the most precise height component in the mixed adjustment are the 

orthometric heights derived from precise spirit-levelling techniques and gravity data (see 

section 2.2). Over the years, numerous methods have been tested for evaluating the 

precision of levelling measurements, including correlation analysis, which involved 

postulating appropriate covariance functions for the nature of correlations, analysis of 

variance methods (Kelly, 1991), variance component estimation schemes (Chen et al., 

1990), and analysis of section line and loop discrepancies. The studies that have been 

conducted thus far on assessing the accuracy of levelling have predominantly focused on 

determining the appropriateness of the variance of a levelling line based on a function of 

segment length d and height difference H∆  

 

),(2 HdfH ∆=∆σ                (6.8) 

 

and can be approximated by the general formulation in Eq. (5.17).  

 

The aforementioned methods usually involve height-difference data of the same type (i.e. 

levelling) with heterogeneous quality distinguished according to classes or orders of 

levelling. In this study, the covariance matrix for the absolute orthometric heights is 

evaluated by testing a number of different a-priori variance factors. The scaled 

covariance matrix for the orthometric heights can then be used as a more reliable estimate 

of the accuracy for large or multinational adjustment of levelling networks. Table 6.4 

summarizes the estimated variance components for both the Swiss and Canadian test 

networks, as well as the average standard deviation before and after VCE.  

 

For the case of the Swiss network, the initial CV matrix was extremely optimistic with an 

average standard deviation of less than 1 cm. The estimated variance factor of 5.06 

results in an increased average standard deviation of almost 2 cm.        
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Table 6.4: Estimated variance components for orthometric height data and 
average standard deviations for HC  

 Switzerland Southern BC/AB 
original average σ 0.75 cm 2.99 cm 
estimated variance factor 5.06 3.97 
scaled average σ 1.68 cm 5.96 cm 

 

 

In the southern BC/AB test network, a more realistic initial measure of accuracy was 

given with an average standard deviation of ~ 3 cm. The resulting variance factor was 

3.97, which provided a final scaled average standard deviation of almost 6 cm for the 

orthometric heights in this area. Compared to the Swiss test network case, these values 

are significantly higher, however, the Canadian height network is plagued with numerous 

systematic and random errors that result in poorer accuracy, as described in chapters 2 

and 3.  

 

Overall, the results provide a more realistic measure for the accuracy of the orthometric 

heights, compared to the optimistic initial values. Such CV testing can also be considered 

beneficial in assessing national and regional height networks.  

 

 

6.4 Case Study II - Non-negative variance components 

One of the major pitfalls of the MINQUE variance component estimation algorithm is 

that no provision is in place to ensure that only non-negative variance values ( 3ˆ +ℜ∈θ ) 

are estimated. However, upon closer examination of the problem and after many years of 

research, it has been found that there are plausible methods for dealing with this 

unrealistic result, which may also provide valuable insight into the problem at hand. As 

mentioned previously negative outcomes of variance components can generally be 

attributed to: 
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− insufficient number of observations compared to the unknown parameters (low 

redundancy), and/or  

− incorrect stochastic model.  

Thus, although the estimated negative variance factor itself is not useful, a negative 

variance outcome may yield important information regarding the problem set up. This 

information is lost if the estimator is constrained to give only positive outcomes (Sjöberg, 

1984).  

 

The numerical tests conducted using the provided CV matrices for the height data in the 

Swiss and Canadian test networks have not exhibited negative outcomes. It is suspected 

that this can partially be attributed to the high redundancy in both cases. To determine the 

effect of data redundancy on the estimated variance components, using the IMINQUE 

approach, a test was performed whereby observations were eliminated (one-by-one) and 

the behaviour (positive or negative) of the estimated components was noted. For the 

absolute height data formulation, this is equivalent to removing a station from the 

network.  

 

Figure 6.13 provides a summary of the results for the Swiss network, where it is seen that 

at least 49 observations are required for convergence and positive-valued final variance 

components. This corresponds to 44% of the available GPS-on-benchmarks in this 

region. Furthermore, if fewer than 49 observations were available convergence was not 

possible. This undesirable outcome is frustrating in practice and has deterred the 

widespread application of rigorous VCE procedures.   
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Figure 6.13: Behaviour of estimated variance components vs. redundancy for the  
Swiss network (note: all three variance components considered) 

 

 

In the southern BC/AB regional test network positive estimates and definite convergence 

were achieved when more than 9 observations were used, that is 14% of the total 

available data in the region. With less than 9 observations, a positive outcome was not 

achievable using the iterated MINQUE algorithm. By comparing Figures 6.13 and 6.14, it 

is evident that for the Canadian test network there are more cases where negative 

outcomes are initially estimated and then gradual convergence to non-negative values is 

achieved. This may be partially attributed to the overall poorer initial CV information 

available for the particular region (i.e., diagonal-only covariance matrix for the geoid 

heights). It is also likely that the inhomogeneous and relatively sparse data distribution 

plays a significant role, as the removal of each station has a more prominent impact on 

the overall geometry in this case, as opposed to the more homogeneous data distribution 

in the Swiss network.      
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Figure 6.14: Behaviour of estimated variance components vs. redundancy for the 
southern BC/AB network (note: all three variance components considered) 

 

 

In effect, these tests raise the interesting question of what is implied by an algorithm that 

gives negative estimates initially and then converges to positive values. Should these final 

values be trusted? In practice, the only values of interest are the final estimated 

components. Thus, for the Swiss and Canadian test networks at least 49 and 9 

observations (as shown in the figures), respectively, are required. Obviously these values 

are network dependent and subject to change if the geometry of the network or CV 

information changes. Theoretically, mapping the behaviour of the estimator as described 

above provides some insight into the limitations and the achievable results using the 

unconstrained iterative MINQUE algorithm.      

 

Tests using the IAUE method 

As mentioned in section 5.7, simplified algorithms exist which ensure that positive 

variance component estimates are obtained at each iteration. One such algorithm, known 

as iterative almost unbiased estimation (IAUE) can be implemented through Eq. (5.40). 

This algorithm was tested with the real data sets and the results for the estimated variance 
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components are provided in Table 6.5 along with the rigorous IMINQUE outcomes. All 

results are computed after the classic 4-parameter model is fit to the height misclosures. 

Almost unbiased estimators consistently resulted in 'lower' variance factors for all tests. 

However, the estimated components for both test networks using either the rigorous or 

the constrained algorithm are very similar, with insignificant differences in all three 

components.  

 

 

Table 6.5: Estimated variance components using the IMINQUE and IAUE methods 

Switzerland Southern BC/AB VCE 
Method 2ˆ hσ  2ˆ Hσ  2ˆ Nσ  2ˆ hσ  2ˆ Hσ  2ˆ Nσ  

IMINQUE 2.82 5.06 1.02 7.20 3.97 0.28 

IAUE 2.69 4.74 0.97 7.00 3.76 0.26 

 

 

An added benefit of the IAUE method is that it is computationally simpler and converges 

approximately 50% faster than the rigorous approach. Figure 6.15 shows the estimated 

variance components at each iteration as they collectively converge to unity using both 

the IMINQUE and the IAUE algorithms.  

 

The figure shows that the final estimated variance components are computed after 76 

iterations using the IMINQUE method, as opposed to only 45 for the IAUE method. 

These results refer to the Swiss data, but similar results were obtained using the Canadian 

data, with the IAUE method converging to the values shown in Table 6.5 in only 12 

iterations as compared to 34 using the IMINQUE method. Thus, in cases where 

computational efficiency is an issue, IAUE offers a viable alternative to the rigorous 

approach; see Rao and Kleffe (1988) for details regarding this simplified positively-

constrained algorithm. 

 



 174

Figure 6.15: Iterations and estimated variance components using the IMINQUE  
and IAUE methods 

 

 

When computational efficiency is not an issue, as in the case at hand, then a viable means 

for avoiding the computation of negative variance components with the IMINQUE 

method is to increase the degrees of freedom by: 

− adding more observations   

− reducing the number of unknown variance components    

In the problem studied herein, the number of variance components was limited to three, 

however increasing the number by a few more components will not adversely affect the 

VCE scheme as a high degree of freedom will be retained.  
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6.5 Case Study III - Effects of correlations 

In practice, fully-populated covariance matrices for each group of height data 

( NHh QQQ ,, ) are not made available to the user or they are difficult to obtain. To 

overcome this, some users resort to approximating CV information from manufacturer's 

specifications or measurement accuracy, analysis of physical sources of observational 

errors, and experience from working with the data. For very large data sets it may be 

preferable to deal with only the variances, therefore often a diagonal covariance matrix is 

implemented in secondary adjustments. To test the effect of correlations between 

observations of the same type on the estimated variance components, numerical 

experiments were conducted with fully-populated and diagonal covariance matrices. The 

results for the Swiss test network are given in Table 6.6.  

 

Table 6.6: Effect of correlations on estimated variance factors (Swiss network)  

Covariance 
Matrices 

2
hσ̂  2

Hσ̂  2
Nσ̂  Number of 

iterations 

Full 2.82 5.06 1.02 99 

Diagonal 0.71 3.63 1.07 152 

 

 

It is evident from the results in the table that due to the correlation among the heights, a 

diagonal covariance matrix is further from the ‘true’ CV matrix and therefore requires 

more iterations to obtain the final estimated values, i.e., 99 compared to 152 for the 

diagonal-only covariance matrices. Also, by neglecting the off-diagonal elements, overly-

optimistic CV matrices are obtained compared to the fully-populated case. This is 

particularly demonstrated in the computed 2ˆ hσ  value where relatively high correlations 

existed between neighbouring stations for the ellipsoidal heights, thus underestimating 

the variance component by a factor of four. An exception is shown in the computed 2ˆ Nσ  

factor where the estimated values corresponding to the fully-populated and diagonal-only 
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CV matrices are essentially the same, with a slight increase for the diagonal-only CV 

matrix. Results will vary depending on the degree of correlation, however it is clear that 

unrealistically ‘good’ results are obtained when correlations are ignored, as expected.  

 

The test was repeated using the southern BC/AB test network data and the results are 

provided in Table 6.7. In this case, only hQ  and HQ  were fully-populated with an 

original NQ  in diagonal form. Similar results are exhibited in this case, as with the Swiss 

data, with the interesting exception of the estimated variance factor for the geoid heights. 

Although the original CV information provided for the geoidal undulations does not 

change from one scenario to the other (remains diagonal-only form), the fact that the 

prior CV matrices for the remaining types of heights is modified to remove the effect of 

correlations results in a change in 2ˆ Nσ  from 0.28 to 0.48. Both values are overly-

optimistic for this mountainous region, however the important realization is the effect 

that changing the form of the CV matrices has on the final estimated variance factors. 

This 'connection' was not noticed in the results of case study I, where different a-priori 

scaling factors for the CV matrices were tested. 

 

 

Table 6.7: Effect of correlations on estimated variance factors (south BC/AB network)  

covariance matrices 2
hσ̂  2

Hσ̂  2
Nσ̂  number of  

iterations 

Full Hh CC ,  

Diagonal NC  

 
7.20 

 
3.97 

 
0.28 

 
12 

Diagonal 7.71 1.63 0.48 17 

 

 

These conclusions can also be seen in Table 6.3 by comparing the diagonal-only EGM96 

covariance matrix with the fully-populated version. Again, for both test network cases, 

overly-optimistic variance factors resulted from ignoring the correlations, which is often 
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encountered in practice when implementing the contribution of the global geopotential 

models due to the very large matrices involved. The results show that the off-diagonal 

elements should not be considered insignificant and efforts should be made, when 

possible, to include all of the available CV information, especially for high precision 

applications.  

 

 

6.6 Case Study IV - Role of the type of parametric model  

All variance component estimation procedures outlined in chapter 5, pre-suppose that no 

biases or systematic effects are present in the data. Any unmodelled effects may 

propagate into the estimated variances and give unreliable results (Persson, 1981; Koch, 

1999; Rao and Kleffe, 1988). This case study was designed to determine the role of the 

type of the parametric model, if any, on the final estimated variance components. In 

particular, it was suspected that the inappropriateness of a parametric model would be 

revealed through the VCE procedure, which is influenced by unmodelled systematic 

effects. A recent study using simulated data was conducted to detect systematic errors 

through VCE, and initial effects were evident (Nafisi, 2003).  

 

Six different parametric models were selected for the investigations in this case study, 

namely the classic 4-parameter transformation model, described in chapter 3 and repeated 

below for completeness 

 

ϕλϕλϕλϕ sinsincoscoscos),( 421 xxxxp oc +++=                        (6.9) 

 

four simple nested polynomial regression models from first to fourth order as given by 
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where λϕ ,  are the horizontal coordinates of the benchmarks and 
��

λϕ ,  represent the 

midpoint of the network. In addition to the models given by Eqs. (6.9) and (6.10), a 

constant bias (i.e., the first term, ox , in Eq. 6.9) was also tested for the purposes of 

discussion. The computed estimated variance components corresponding to each model 

type for the Swiss and southern BC/AB test networks are shown in Tables 6.8 and 6.9, 

respectively.  

 

 

Table 6.8: Estimated variance components for the Swiss test network using  
various parametric models 

Parametric Model 
Type 

2ˆ hσ  2ˆ Hσ  2ˆ Nσ  

constant bias 2.67 10.45 0.99 
4-param model 2.82 5.06 1.01 
1st  n=m=1 2.83 4.80 1.01 
2nd n=m=2 2.94 4.50 1.05 
3rd  n=m=3 3.08 3.96 0.97 
4th  n=m=4 divergence, negative estimates 

 
 
 

Table 6.9: Estimated variance components for the southern BC/AB test network  
using various parametric models 

Parametric Model 
Type 

2ˆ hσ  2ˆ Hσ  2ˆ Nσ  

constant bias 7.16 16.59 0.12 
4-param model 7.20 3.97 0.28 
1st  n=m=1 6.92 4.72 0.26 
2nd n=m=2 7.85 3.58 0.28 
3rd  n=m=3 divergence, negative estimates 
4th  n=m=4 divergence, negative estimates 

 

 



 179

From the results in the tables, it is clear that the type of parametric model used in the 

combined least-squares adjustment affects the estimated values for the variance 

components. In both networks, the variance factor for the orthometric heights was 

influenced the most by the change in corrector surface, resulting in differences of several 

centimetres in the estimated variance factors from the use of a constant bias and the other 

parametric models.  

 

In all cases, the number of iterations required to converge to the final estimated 

components also varied depending on the type of model used. For instance, in the Swiss 

test network, 99 iterations were needed for the case of the 4-parameter model, whereas 

180 iterations were required for the third-order bivariate polynomial and over 250 

iterations for the estimates obtained after a constant fit. 

 

Predictably, a suitable solution was not achievable in all cases leading to unreasonable 

estimates, divergence and/or negative values. This may indicate that an inadequate model 

was used for the systematic effects resulting in 'residual' biases that corrupt the 

performance of the VCE method. This is the suspected cause for the unreasonably large 

estimates of 2ˆ Hσ  when only a constant bias is applied to remove all systematic effects; a 

model that is certainly inadequate for both test networks (see results in chapter 4). 

Another possibility is numerical instabilities caused by over-parameterization, which 

occurred when a complete fourth-order model was used in the Swiss test network and 

with both the third and fourth-order models in the southern BC/AB test network.  

 

In any case, these first results are revealing as they hint towards a means for identifying 

the inappropriateness of the tested corrector surface. This latter comment is stated with 

prudence, as it should be independently verified from additional studies. Therefore, the 

same parametric models were implemented for the same data and tested using the cross-

validation process described in section 3.5.2 and statistical testing methods described in 

sections 3.5.1 and 3.5.3. These results showed that for the Swiss test network, indeed the 
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failure of the fourth-order model could be deduced to numerical instabilities caused by 

attempting to fit a model of higher frequency attributes than is visible from the data. In 

fact, for the fourth-order model the condition number is 5.62×1016, which provides a first 

inference into the numerical stability incurred by employing this parametric model. 

Furthermore, statistical and cross-validation tests showed that this model is not the best 

candidate for the region.  

 

The southern BC/AB test network is perhaps more sensitive to the choice of the 

incorporated parametric model as the data is sparsely distributed, and therefore both the 

third and fourth-order bivariate polynomial models caused wild oscillations and negative 

variance components throughout the iteration process, which do not converge. The results 

from section 4.2 also verify the inadequacy of these models for absorbing the systematic 

errors and datum inconsistencies in this test network area.    

 

 

6.7 Summary 

The implementation of VCE techniques for the optimal combined adjustment of 

heterogeneous height data, namely ellipsoidal, orthometric and geoid height data was 

described. Specifically, the iterated MINQUE and AUE procedures were used and found 

to work well for testing and scaling the supplied CV matrices for the height coordinate 

provided by GPS post-processing software packages, calibrating geoid error models 

(regional and global), and assessing/evaluating the accuracy of the orthometric heights 

from results of national or regional adjustments.  

 

Through four numerical case studies with real data, a number of key issues aimed at 

improving the combined adjustment for height related applications, were studied in 

detail. Firstly, it was determined that by using iterative procedures, there was no effect of 

the changing a-priori variance factor on the final estimated variance component values 

(globally best estimator). Secondly, by applying a constrained algorithm, namely, IAUE, 
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provisions can be made for estimating non-negative variance components that yield very 

similar results to the rigorous IMINQUE method. Thirdly, the effect of overly-optimistic 

covariance matrices obtained by neglecting correlations for observations of the same type 

was validated.  

 

Last, but not least, an interesting relationship between the type of parametric model 

incorporated for dealing with the systematic effects and the VCE process was discovered. 

In particular, the divergence of the VCE solution or the computation of negative variance 

components provided some insight into the selected parametric model effectiveness. 

Results were more revealing when compared to independent evaluations of the parameter 

model performance using the testing procedure described in chapter 3 for identical data 

sets.  

 

All of the tests were conducted using two distinct networks in terms of data 

characteristics, quality, distribution, and coverage area. Challenges encountered in 

working with this data were described throughout, providing some insight into what can 

be expected in practical applications. However, it is important to continue testing with 

other data sets. In general, it was found that optimistic error models are initially obtained, 

which can be re-scaled through the implementation of VCE algorithms, leading to more 

realistic accuracy measures. This is essential for determining the relative contribution of 

each of the height data types to the overall error budget. Furthermore, in these studies 

only three variance components ( 222 ,, NHh σσσ ) were estimated, which is reasonable 

based on the information that is currently available. However, the estimation procedure 

can easily be expanded to include other height sources and their associated CV 

information, such as sea surface topography ( 2
SSTσ ) and land uplift ( 2

Uσ ). The prospect 

and incorporation of such information will be discussed in more detail in chapter 7.         
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Chapter 7 

 

 

Practical Considerations for Modernizing  

Vertical Control 
 

 

7.1 Introduction 

An overview of the complete procedure developed for the optimal combination of 

ellipsoidal, orthometric and geoid height data is provided in Figure 7.1. As mentioned 

previously, the reasons for combining the different types of height data are innumerable, 

with the most prevalent outlined in section 2.4. Thus far, the problem has been 

approached from the perspective of dealing with the systematic and random error sources 

inherent in each of the height data types and their combination. Ultimately, the main 

motivation for this research is embedded in the need to introduce modern tools and 

techniques in the establishment of vertical control. In this chapter, some of the practical 

implementation issues involved with establishing vertical control using modern 

techniques are discussed. In particular, the process of GNSS-levelling is demonstrated 

using a test network in the province of Alberta, Canada. The second part of this chapter 

involves the integrated optimal network adjustment of terrestrial benchmarks and tide 

gauge stations typically situated along the coast, in harbours, estuaries, etc. Specifically, 

the incorporation of sea surface topography (SST) values and the corresponding variance-

covariance information in the optimal adjustment of the heterogeneous height data is 

discussed. Modifications to the practical algorithms for variance component estimation 

are also provided that may be used for future 'calibration' of SST error models.  
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Figure 7.1: Optimal combination of ellipsoidal, orthometric and geoid height data 
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7.2 GNSS-levelling: What are the issues?  

The main problems that may be encountered by users when trying to implement GNSS-

levelling using the procedure described in Figure 7.1, in practice, include: 

− obtaining approximate initial covariance matrices for the ellipsoidal, orthometric 

and geoid height data (i.e., NHh ∆∆∆ QQQ ,, ) for a specified region 

− determining the accuracy contribution of the corrector surface model parameters, 

xC ˆ  (computed using Eq. 3.21) 

− determining the achievable accuracy of GNSS-levelling for a new baseline 

Although this study does not make use of actual height values, the height accuracy 

information that is used and the test network configuration are simulated to mirror 

realistic conditions. The selected test network consists of a subset of the GPS control 

benchmarks in the southwestern part of Canada (314 points in Alberta and British 

Columbia) covering �� 5549 ≤≤ ϕ  and �� 110120 −≤≤− λ , which translates to an 

approximate network coverage area of 667 km × 685 km as depicted in Figure 7.2 (the 

solid line is the political boundary for southern Alberta).  

 

 
Figure 7.2: Test network area and distribution of the GPS control benchmarks 
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Full CV matrices describing the accuracy of the orthometric and the ellipsoidal heights at 

the test network points were obtained through separate simulative least-squares 

adjustments. These separate adjustments used the measuring accuracy of GPS and spirit-

levelling as input, according to the standard formulation 

 

dbmm ⋅=)(σ                  (7.1) 

 

where σ  is the standard deviation of the observed height differences in millimeters, b  is 

the height difference accuracy based on published standards for GPS and levelling, and 

d  is the baseline length in kilometres (Kearsley et al., 1993).  

 

 

7.2.1 Computing the accuracy of the levelling data 

The multi-data integrated adjustment that was described in section 3.1 and used to extract 

the accuracy of the corrector surface parameters, requires the relative accuracy H∆C  of 

the levelling/orthometric heights in the control network (see Eq. 3.21 and consider its 

relative form). Such a covariance matrix was computed using a separate minimally 

constrained least-squares adjustment on the levelling network (see Figure 7.3), according 

to the equation 

 

T
netHnetH ACAC =∆                            (7.2) 

 

where netA  is a design matrix (composed of –1, 1 and 0 only) corresponding to the 

baseline configuration of the multi-data network adjustment (see Figure 7.9), and HC  is 

the covariance matrix for the orthometric heights at all points in the test network. 

Actually, the latter is the quantity that is obtained through the separate adjustment of the 

levelling network, as follows:  
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( ) 1−
= levlev

T
levH APAC                            (7.3) 

 

where levA  is a design matrix (composed also of –1, 1 and 0) corresponding to the 

baseline configuration of the levelling network adjustment (see Figure 7.3).  

 

Figure 7.3: Baseline configuration for the levelling network 
 

 

levP  is a diagonal weight matrix that takes into account the measuring accuracy of each 

levelling baseline in the test network, i.e. 
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Three different orders of accuracy were used for assigning the a-priori values H∆σ  for 

each levelling baseline in the weight matrix levP , namely )(7.0 kmdmm , 

)(3.1 kmdmm  and )(2 kmdmm , referring to first, second and third order, respectively 

(see Figure 7.4). National standards for the accuracy of vertical control vary depending 

on the country (Kearsley et al., 1993; Ollikainen, 1997; van Onselen, 1997). In our case, 

the U.S. standards were implemented for both levelling and GPS, as they were readily 

available (National Geodetic Survey, 1994). For the case of levelling, larger baselines 

( kmd 80> ) usually constitute part of a national levelling campaign and adhere to first 

order levelling standards, followed by denser regional levelling campaigns 

( kmdkm 8030 ≤< ) of second order, and finally local levelling lines ( kmd 30≤ ) which 

are of third order accuracy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: Relative measurement accuracy for the levelling baselines 
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7.2.2 Computing the accuracy of the GPS data 

A similar procedure to the one described in the previous section was followed in order to 

obtain the relative accuracy h∆C  of the ellipsoidal/geometrical heights in the control test 

network, which is also required as input into Eq. (3.21) for the multi-data adjustment.  

The GPS network is shown in Figure 7.5 and the final equation is: 

 

T
nethneth ACAC =∆                  (7.5) 

 

where netA  is the same design matrix that was used in Eq. (7.2) and it corresponds to the 

baseline configuration of the multi-data network adjustment (see Figure 7.9), and hC  is 

the covariance matrix for the ellipsoidal heights at all points of the test network. The 

latter was obtained through a separate simulative (minimally constrained) least-squares 

adjustment for the GPS network, according to the formula 

 

( ) 1−
= GPSGPS

T
GPSh APAC                   (7.6) 

 

where GPSA  is a design matrix (composed only of –1, 1 and 0) corresponding to the 

baseline configuration of the GPS network adjustment (see Figure 7.5). It is evident by 

comparing the two network configurations, shown in Figures 7.3 and 7.5, that the 

levelling network has a weaker geometry than the GPS network due to the stringent line-

of-sight restrictions of spirit-levelling (Ollikainen, 1997). This results in the GPS network 

having more observations between the network points and a stronger geometry overall. 

Finally, GPSP  is a diagonal weight matrix that takes into account the measuring accuracy 

of the vertical component for each GPS baseline in the test network, i.e. 
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The accuracy for observed GPS height differences also degrades as the baseline length 

increases, mainly due to the spatial decorrelation of atmospheric errors that affect the 

GPS observables (see, e.g., discussion in section 2.3 and Fotopoulos, 2000). In this 

analysis, ten different orders for the relative ellipsoidal height accuracy are used as 

defined by the U.S. standards (National Geodetic Survey, 1994). The a-priori values h∆σ  

in the weight matrix GPSP  were assigned based on the length of each GPS baseline in the 

test network. For every 10 km increase in baseline length, the value of dbh =∆σ  

changed according to b = (0.5, 0.7, 1, 1.3, 2, 3, 6, 15, 30, 60) mm (e.g., for kmd 55= , 

mmb 3= ), as shown in Figure 7.6.  

Figure 7.5: Baseline configuration for the GPS network 
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Figure 7.6: Relative measurement accuracy for the height component of GPS baselines 
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where the subscript m denotes the number of baselines in the multi-data test network 

configuration (Figure 7.9). Its diagonal values 2
N∆σ  were chosen based on the 

performance evaluation of the GSD95 Canadian geoid model in Alberta and British 

Columbia (Véronneau, 1997). Specifically, baselines located in the flat or rolling hills 

area of the network were assigned a relative geoid accuracy of kmmmcm /41 + , and 

those in more mountainous regions were assigned a lower accuracy of kmmmcm /101 + , 

as shown in Figure 7.7. The mountainous regions within the network coverage area were 

identified by terrain changes shown on a regional digital elevation map for western 

Canada (Alberta and British Columbia). The digital elevation data used for this case was 

part of the Canadian Digital Elevation Data (CDED) products (3″×3″ resolution), which 

are distributed by the Centre of Topographic Information of Natural Resources Canada 

(www.geod.nrcan.gc.ca). Therefore, the relative geoid accuracy depended both on the 

spatial separation of the points as well as on the geographical location of the baseline. 

 

 

Figure 7.7: Relative geoidal height accuracy 
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It should be noted that a full covariance matrix N∆C  for the internal accuracy of the 

gravimetric geoid model could be theoretically computed by properly propagating the 

errors in the local gravity and height data and the geopotential harmonic coefficients into 

the final geoid solution, as described in section 6.3.2 (for formulas, see Sideris and 

Schwarz, 1987; Li and Sideris, 1994). The process for obtaining a full CV matrix for the 

internal geoid accuracy is considerably complex (mainly due to the lack of adequate 

information on the accuracy of the input data in the geoid solution). An indication of the 

significance of this assumption is evident from the results in section 6.4. However, for the 

tests conducted herein, a diagonal CV matrix for the relative accuracy of the geoidal 

undulation signal is considered to be sufficient. Furthermore, all the software programs 

that were developed for this study were designed to facilitate the inclusion of a fully-

populated error covariance matrix N∆C , should it be available.  

 

 

7.2.4 Achievable accuracy of GNSS-levelling for a new baseline 

Given the theoretical relationship among the three types of height data and the 

incorporation of an appropriate corrector surface model, the orthometric height difference 

for a new baseline ( lk , ) (i.e., not belonging in the original test network) as obtained from 

relative GPS/geoid levelling is given by 

 

xaa ˆ)( T
k

T
lklklkl NhH −−∆−∆=∆                (7.9) 

 

where the estimated parameters x̂  are obtained from the adjustment of the multi-data 

observations in the control network (see chapter 3). In this study, we are interested in the 

achievable accuracy of the orthometric height difference klH∆ . By simply applying 

variance-covariance propagation to Eq. (7.9), the accuracy of GPS/geoid levelling can be 

obtained according to the following formula: 
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)()( ˆ
222

kl
T
k

T
lNhH klklkl

aaCaa x −−++= ∆∆∆ σσσ          (7.10)  

 

where 2
klh∆σ  and 2

klN∆σ  represent the relative accuracy of the ellipsoidal and geoidal 

heights of the new baseline, and xC ˆ  is the CV matrix of the estimated parameters of the 

corrector surface model, as shown in Eq. (3.21). A description of the procedure followed 

to obtain input accuracy levels used for the numerical tests was given in the previous 

sections.  

 

In this section, investigations on how accurately orthometric height differences can be 

determined from relative GNSS-levelling are conducted. More specifically, numerical 

investigations analyze the impact of the GNSS and geoid data accuracy, and the accuracy 

of the corrector surface model parameters, on the determination of orthometric height 

differences. A test network of spirit levelled GPS control points, situated in the western 

part of Canada, is used as a basis for all of the numerical investigations. In this network, 

various simulative adjustments of GPS/levelling/geoid data are performed in order to 

determine the CV matrix for the estimated parameters of the corrector surface model. 

Then, an evaluation of the achievable accuracy of GPS-derived orthometric heights for 

new baselines (not included in the original test network) is made. A number of different 

scenarios are studied by varying the: 

a) configuration of the multi-data control network (number of baselines, density of 

observations), 

b) location of the new baseline with respect to the test network, 

c) length of the new baseline, and 

d) type of the corrector surface model. 

A summary of the various test network configurations that were used is provided in Table 

7.1. The three network configurations labeled dense, mixed and sparse (see Figure 7.9) 

refer to the multi-data (GPS/levelling/geoid) integrated adjustment used to compute the a-
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posteriori accuracy xC ˆ  of the parameters for the corrector surface model. The different 

configurations for the multi-data test network were selected in order to assess the effect 

of varying control network geometry on the accuracy of relative GPS/geoid levelling for 

a new baseline that was not included in the original control network. The other two 

configurations for the test network that appear in Table 7.1 (i.e. levelling, GPS) 

correspond to the individual auxiliary adjustments that were performed in order to assess 

the relative accuracy of the levelling and the GPS heights (see sections 7.2.1 and 7.2.2).  

 
 

Table 7.1: Statistics of various test network configurations 
(d denotes baseline length in km) 

Network # obs µµµµ (d ) σσσσ(d) max (d) 

Levelling 390 27.9 13.5 95.2 
GPS 472 36.9 25.4 164.3 

Dense 514 41.1 33.3 438.2 
Mixed 425 32.3 20.3 128.1 
Sparse 408 30.6 18.9 128.1 

 

 

Figure 7.8 provides an illustrative view of the location of the new baseline(s) with respect 

to the control test network. For our numerical tests, the length and the location of the new 

baseline, as well as the test network configuration, will all be varied. In Table 7.2, the 

results of the achievable accuracy for relative GPS/geoid levelling, according to the 

procedure described in the previous sections (see Eq. 7.10), are shown for baselines of 

varying lengths, from a minimum of 10 km to a maximum of 100 km.  
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Figure 7.8: Example of the locations of newly established baselines within the  
test network area 

 

 

These results correspond to the averaged accuracy levels for baselines tested within and 

on the edge of the borders of the test networks (dense, mixed and sparse). The type of the 

parametric model used was also varied according to the relative forms of Eqs. (3.31), 

(3.33) and a seven-parameter third-order polynomial of the form in Eq. (3.28). However, 

by examining the values in Table 7.2 it becomes evident that the input accuracy of the 

geoidal height differences klN∆  and the GPS height differences klh∆  overshadow any 

contribution from the corrector surface model, surpassing the contribution of this third 

term in Eq. (7.10) by several orders of magnitude. This is the reason for not 

distinguishing in Table 7.2 between results from the different network configurations and 

parametric models used, as the results did not vary significantly. Hence, the final 

numerical values given in the fourth column of Table 7.2 correspond to the mean 

accuracy level over the three corrector surface models and the three multi-data network 

configurations. 
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Figure 7.9: Test network configurations for the multi-data adjustment 
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Table 7.2:  Standard error of relative height components (in cm) as a function of  
baseline length 

)(kmd  klh∆σ  klN∆σ  klH∆σ * 

10 4.7 5.0 6.9 
20 6.7 9.0 11.2 
30 8.2 13.0 15.4 
40 9.5 17.0 19.5 
50 10.6 21.0 23.5 
60 11.6 25.0 27.6 
70 12.6 29.0 31.6 
80 13.4 33.0 35.6 
90 14.2 37.0 39.6 
100 15.0 41.0 43.7 

* accuracy of GPS/geoid levelling, computed from Eq. (7.10) 
 

 

Since the internal relative accuracy of the GPS and geoid heights (second and third 

column values in Table 7.2) is independent of the type of the parametric corrector surface 

used and the test network configuration, it is more illuminating to base the discussion of 

the results on the third term in Eq. (7.10). This third term contains the contribution of the 

adjusted parameters of a pre-specified model (corrector surface) to the final GPS/geoid 

levelling accuracy, and is plotted for a number of different cases in Figure 7.10. In this 

figure, each error profile/line is labeled based on an abbreviation, which states the test 

network configuration ('d', 's', 'm' for dense, sparse and mixed, respectively), followed by 

a 3 or 7 for the relative model types corresponding to Eqs. (3.31) and (3.28), respectively. 

The results for the 4-parameter model (relative form of Eq. 3.33) were also computed, 

however they were very similar to the 3-parameter model values and therefore omitted to 

avoid cluttering the graph.  

 

The results in Figure 7.10 depict the values obtained when using the dense, mixed and 

sparse test network configurations for the multi-data adjustment. The figure also shows 
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that, in all cases, the 7-parameter model deteriorates the final klH∆  accuracy by 

approximately 30%, compared to the 3-parameter model. This may be due to the fact that 

over-parameterization of the systematic effects and datum inconsistencies in the corrector 

surface model can lead to large correlation values in the xC ˆ  matrix. However, it should 

be noted that all these differences are at the sub-cm level. At this point it can be said that 

the errors in the estimated parameters of the corrector surface model are not a major 

contributing factor to the overall accuracy of GPS/geoid levelling. The tests actually 

showed that relative GPS/geoid levelling can result in sub-decimetre accuracy for a 10 

km baseline, regardless of the parametric model chosen. The main factor that contributes 

to the achievable accuracy is the baseline length, as it comes into play through the a-

priori observation accuracy of the GPS and geoid height data. When the baseline length is 

increased up to 100 km, the relative GPS/geoid levelling accuracy degrades to over 40 

cm. By changing the relative accuracy of the GPS and geoid heights at the newly 

established baseline, these results will change accordingly.  

 

 
Figure 7.10: Accuracy contribution of the corrector surface model to GPS-levelling 
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It should be noted that, although the accuracy of the parametric model does not 

significantly affect the final results, its incorporation in the height determination 

procedure is absolutely essential for obtaining high accuracy in GPS-levelling 

applications, since the magnitude of the datum inconsistencies and systematic distortions 

in the original control height data can reach up to several metres (see results in chapter 4).  

 

 

7.2.5 Tests in northern Canada 

The general idea described herein is to use the accuracy information of the different 

height data types that is available from existing vertical control in densely surveyed areas 

(such as southwestern Canada) and propagate that information for determining the 

accuracy of the orthometric height difference for a newly established baseline in an area 

with no (or very limited) vertical control, such as northern Canada. The test network used  

is shown in the boxed area of Figure 7.11 and contains 252 vertical control points (a 

subset of the same network used in the previous studies, Figure 7.2). The procedure 

described in the previous sections was used to determine the achievable H∆σ  for a new 

baseline as it moves further north - away from - the test network. The covariance 

information for the levelling and GPS data was approximated in the same manner as 

described in sections 7.2.1 and 7.2.2, respectively.  

 

A diagonal covariance matrix for the geoid heights in the region of interest were obtained 

from a 1°×1° world-wide grid of the commission errors of EGM96, as computed from the 

accuracy of the spherical harmonic coefficients up to degree and order 70 and was used 

to interpolate Nσ  of each benchmark in the control test network. For this particular test 

network area, the 1°×1° grid resolution of the geoidal undulation errors was deemed 

sufficient as the gravity coverage employed for this area in the computation of EGM96 

was reasonably dense and homogeneously spaced (Lemoine et al., 1998). By using this 

global geoid error model and bilinearly interpolating the grid of commission errors for 

the points in the test network, a diagonal error CV matrix of the absolute geoid height 
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errors NC  was obtained. The computation of the relative geoid height accuracy N∆C , 

required as input into Eq. (3.21), was obtained by propagating the absolute height 

accuracy as follows:  

 

T
netNnetN ACAC =∆                         (7.11) 

 

where netA  is the same design matrix as mentioned above, corresponding to the baseline 

configuration of the multi-data network adjustment. This results in a fully-populated form 

of N∆C .  

 

From the results in section 7.2.4, it is evident that the major error contributor of the three 

height types to the final result was N∆C . By varying the type of corrector surface model 

used in the adjustment, the achievable accuracy also changed. For instance, for a 50 km 

baseline located in the north (ϕ = 60° N, λ= 116° W) with input accuracies of 

)(6.0 kmd⋅  and 23 cm for GPS and geoid height differences, respectively, the resultant 

relative orthometric height accuracy was 48.3 cm with the 3-parameter model (relative 

form of Eq. 3.31) and 52.4 cm with the 6-parameter model (relative form of Eq. 3.34, 

with the sixth term removed). Similarly, for a 100 km baseline the achievable accuracy 

degraded by ~13 cm with the 6-parameter model as compared to the 3-parameter model. 

It is evident from these results that the more parameters in the model, the more amplified 

its error contribution is (see Table 7.3). This is interesting, as we are not evaluating the 

performance/fitting of different parametric models (no actual height data is used), rather 

the focus is placed on how the random errors flow through the model and affect the 

accuracy of the final value.    

 

Table 7.3 provides a summary of some of the numerical results. The first column refers to 

the approximate latitude of a 40 km baseline (λ ~ 112° W). The latitude varies as the 

newly established baseline is moved northward with respect to the test network area (see 
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Figure 7.11). The column labeled 3rd term refers to the accuracy contribution of the 

corrector surface model (3rd term in Eq. 7.10). There are three main groups of results, 

where Full CVs refers to fully-populated covariance matrices for the three height types, 

Diagonal CVs refers to diagonal covariance matrices for the three height types, and Full 

& Diagonal refers to fully-populated CV matrices for levelling and GPS heights and a 

diagonal covariance matrix for the geoid heights. All results are based on fixed input 

accuracies of 15=∆Nσ  cm and  )(15.0 kmdh ⋅=∆σ  cm for Eq. (7.10). 

 

 

Figure 7.11: Test network coverage area and locations of newly established baselines  
in the north 

    

 

The results show that the achievable H∆σ  for the new baseline was worse as it moved 

farther north from the control test network. This was mainly due to the increased error 
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contribution of the corrector surface model parameters. Perhaps the most interesting 

result was the difference between using fully-populated and (approximate) diagonal CV 

matrices for h∆ , H∆ , and N∆  as input into Eq. (3.21). In studies where the newly 

established baseline was located within the test network coverage area, it was found that 

there was no difference between using fully-populated versus (more approximate) 

diagonal CV matrices. However, in cases where the baseline is moved farther north 

(away from) the test network area, differences up to several tens of centimetres resulted. 

This result is quite significant as it indicates that approximate versions of the CV matrices 

should not be used, for new baselines situated away from the test network, in order to 

take advantage of the highest accuracy that GPS-based levelling provides.  

 
 

Table 7.3: Results of baselines moving northward from the test network area (units: cm) 

3 - parameter corrector surface model 
Full CVs Diagonal CVs Full and Diagonal CVs ϕ 

σ∆H 3rd term σ∆H 3rd term σ∆H 3rd term 
49° 17.8 0.1 18.0 2.7 18.0 2.7 
53° 17.8 0.6 18.0 3.6 18.1 3.6 
56° 17.8 1.1 18.8 6.0 18.8 6.0 
60° 17.8 1.8 20.2 9.6 20.2 9.6 
64° 17.9 2.5 22.2 13.3 22.2 13.3 

6 - parameter corrector surface model 
49° 17.8 1.4 18.3 4.6 18.3 4.6 
53° 17.8 0.8 18.3 4.5 18.3 4.5 
56° 18.5 5.1 24.4 16.8 24.4 16.8 
60° 24.2 16.4 54.5 51.6 54.6 51.6 
64° 36.9 32.4 102.2 100.6 102.3 100.8 

 
 

A flowchart outlining the major steps of the software program that was designed to 

compute the orthometric height difference accuracy via GNSS-levelling is provided in 

Figure 7.12. 
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Figure 7.12: Flowchart outlining main components of software program designed to 

compute the accuracy of orthometric height differences via GNSS-levelling 
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7.3 Combining heterogeneous heights at sea 

One of the major sources of distortion in vertical control networks is caused by 

neglecting sea surface topography at tide gauge stations. Often, the orthometric height is 

fixed to zero at these stations, without applying proper corrections for the deviation of the 

mean sea surface from the equipotential surface represented by the geoid. Over the past 

couple of decades, numerous advances have been made in modelling the low-to-medium 

frequency components of the sea surface, particularly through satellite altimetry 

measurements, which provide accurate and global uniform coverage (Andersen and 

Knudsen, 2000). The principle satellite altimetric measurements and the relationship 

between different height reference surfaces is illustrated in Figure 7.13. Over the open 

seas, altimetric-derived stationary SST (the equivalent of GNSS-levelling at sea) is 

theoretically given by the following relationship (Gruber and Steigenberger, 2000): 

 

malt NhSST −=              (7.12)  

 

where the ellipsoidal heights with respect to the geocentric reference ellipsoid, alth , are 

derived from satellite altimetry measurements along the satellite tracks and the geoid 

heights, mN , are interpolated at track points from a marine geoid (or global geopotential 

model). In the past, the utility of this approach has been hindered by uncertainties in the 

global gravity field models and errors in the altimetric measurements (radial orbit error, 

atmospheric effects, tides, electromagnetic bias and measurement noise). Most of the 

errors affecting the altimetric ranges can be modelled and corrected leaving only residual 

effects at the cm-level (Cheney et al., 1994). Thus, the dominant error source affecting 

the SST computed via Eq. (7.12) is due to he global gravity field model, which is 

expected to greatly improve, as discussed below.     
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Figure 7.13: Satellite altimetry measurements and the relationship between various 
height reference surfaces 

 

 

The proposed scheme involves the combined adjustment of terrestrial GPS-on-

benchmark data and GPS-on-tide gauge data typically located in coastal areas, harbours, 

estuaries, and/or river mouths. This requires that accurate SST values are approximated at 

tide gauge locations. Although the performance of satellite altimetry is very good over 

open seas (i.e., 2 to 4 cm for TOPEX/POSEIDON), the measurement accuracy 

significantly deteriorates along the coast, over the shelf (which varies from tens to 

hundreds of kilometres off the coasts), in shallow depths, and at fresh water inflows 

(Hipkin, 2000). Unfortunately it is along this ocean/land boundary where the altimetric 

and global gravity field information is most critical for vertical positioning as it is where 

the tide gauges are situated.  

 

Improvements in global SST models (including in coastal areas) are expected with the 

increase in accuracy of the satellite-only global geopotential models from the new and 

upcoming dedicated LEO satellite gravity missions. Already, with preliminary results 

from the CHAMP and more recently the GRACE data, dramatic improvements in the 
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long wavelength features of the SST models have been observed (Gruber and 

Steigenberger, 2000). The meso-scale features are also expected to be enhanced with the 

availability of the GOCE mission data. Furthermore, the accuracy of oceanographic 

methods for SST will also improve from the assimilation of the improved gravity field 

solutions into the estimation scheme. Therefore, it is quite certain that SST models will 

rely heavily on the altimetric method in the future. Along the coasts, it is most likely that 

this information will be combined with oceanographic methods for determining SST, 

such as steric levelling and global ocean circulation models (Hipkin, 2000).  

 

In view of the significant improvements in sea surface topography determination made in 

the past decade and the expected improvement in global gravity field models in the near 

future, it is appropriate to consider the incorporation of SST into establishing vertical 

control. The purpose of this section is to develop a consistent procedure for incorporating 

the mean SST values into the combined height network adjustment problem described 

throughout this thesis. VCE can play a vital role in improving/calibrating SST covariance 

information (from altimetric, oceanographic or assimilated schemes) at tide gauge 

stations and surrounding areas and is also described herein.  

 

To facilitate the discussion, a typical vertical control network consisting of terrestrial in-

land stations (GPS-on-benchmarks) and stations on the coasts at tide gauges (GPS-on-

tide gauges) is depicted in Figure 7.14. In this example, two tide gauges for the island of 

Tasmania form the perimeter of a vertical control network consisting of 48 stations in-

land. The two main issues that arise for the proper incorporation of SST information into 

the optimal heterogeneous height network adjustment algorithm include: 

− modelling the systematic errors and datum discrepancies among the height data 

types ( NHSSTh ,,, ) using a corrector surface, and 

− separation of random errors for estimating variance components for each height 

type. 
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It should be noted that in the algorithms provided below, the ellipsoidal height 

information at the tide gauges is typically determined through GPS measurements and the 

SST values may be interpolated from oceanographic, altimetric or a combined model at 

the tide gauge stations. 

 

 

Figure 7.14: Example of a mixed network of terrestrial benchmarks and  
tide gauge stations 

 

 

The new observation equation model for this 'mixed' adjustment is described as follows: 

 

i
T
iiiii vNHh +=−−= xa~

�             (7.13)  

 

where iH~  for terrestrial points refers to the orthometric height ii HH =~ , as described 

thus far. At the tide gauge stations the observation equation model is modified to 
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accommodate SST values such that ii SSTH =~ . The new vector of observations consists 

of two types of observations as expressed by 

 













−−

−−
=












=

iii

iii

NSSTh

NHh

2

1

�

�

�             (7.14)  

 

where the terrestrial points are contained in the 11 ×m  subvector 1�  and the observations 

at the tide gauges stations comprise the 12 ×m  subvector 2� . In virtually all practical 

situations, there will be fewer tide gauge stations than benchmarks on land in the 

network, 12 mm <  (as is the case in Figure 7.14).  

 

The vector of random errors originally described by Eq. (3.13), is modified to include the 

new observation type as follows: 

 

[ ] TT
N

T
H

T
h vvvv ~=             (7.15) 

 

where )(⋅v  is an 1)( 21 ×+ mm  vector of random errors for each of the NSSTHh ),(,  

data types. The corresponding covariance matrix is described by the general formulation 

in Eq. (3.11c).  

 

The solution for the unknown parametric model coefficients follows in the same manner 

as described in section 3.1, with the observation vector replaced with Eq. (7.14) and is 

given by 

 

[ ] �
1~

11~ )()(ˆ −−− ++++= NHh
T

NHh
T CCCAACCCAx         (7.16) 
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It should be noted from the above equation that the corrector surface parameters are 

computed and applied to all stations (terrestrial and tide gauge) and therefore remains 

common throughout. 

 

Finally, the combined adjusted residuals from the adjustment are given by  

 

NHh vvvvB ˆˆˆˆ ~ −−=              (7.17) 

 

where we can explicitly solve for the separate adjusted residuals, according to height 

data type as was done in chapter 3. The values corresponding to the ellipsoidal and the 

geoid heights are equivalent to Eq. (3.19a) and Eq. (3.19c), respectively. The separate 

adjusted residuals corresponding to H~  are computed as follows: 
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where { }T
SSTSSTESST vvC =  is the covariance matrix for the SST data at the tide gauge 

stations in the network.  

 

The new block-diagonal covariance matrix for the disjunctive observations can be 

formulated as follows: 
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where the subscript, '1', refers to points on land and '2' refers to tide gauge stations. The 

individual CV matrices are defined as follows: 
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11
2

hhh QC σ= ,
22

2
hhh QC σ=   

11
2

HHH QC σ=              (7.20) 

11
2

NNN QC σ= , 
22

2
NNN QC σ=  

22
2

SSTSSTSST QC σ=  

 

where 
111

,, NHh QQQ  are the positive-definite cofactor matrices for the ellipsoidal, 

orthometric and geoid heights, respectively, on land. 
2hQ  and 

2NQ  are the positive-

definite cofactor matrices for the ellipsoidal and geoid height data, respectively, at the 

tide gauge stations.  

 

The utility of the MINQUE procedure described in chapter 5 is demonstrated through the 

effective incorporation of a fourth variance component, 2
SSTσ , for the sea surface 

topography values at the tide gauge stations in the network. We start with the general 

form of the stochastic model for the observations given by 

 

∑
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θ TC�               (7.21) 

 

where [ ] T
SSTNHh
2222 σσσσ=θ contains the four unknown variance components 

and the iT  matrix for each height data type is explicitly stated by  
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Since a common adjustment is performed for all of the ellipsoidal and the geoid heights 

(regardless if they are situated at terrestrial benchmarks or at tide gauge stations), the 

cross-covariance information between the two sets of points for the ellipsoidal and geoid 

heights is included and denoted by T
hh 2112

QQ =  and T
NN 2112

QQ = , respectively. This 

also results in a common variance factor to be estimated for each of the ellipsoidal and 

geoid heights. The positive-definite cofactor matrix for the sea surface topography values 

is given by 
2SSTQ . The decomposition of the stochastic model through the use of the 

matrices in Eq. (7.21) allows for unbalanced data to be used for the heterogeneous height 

data types and for more than one variance component to be estimated for the group of 

heights collectively denoted by H~ .  

 

Substituting the above equations into the general rigorous MINQUE formulation, the four 

unknown variance components are estimated by Eq. (5.24), where 
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The matrix R  is computed from Eq. (5.26) by substituting the appropriate form of the 

covariance matrix for the observations as given in Eq. (7.19). The above formulation is 

applied iteratively as explained in section 5.6.  

 

 

7.4 Other practical issues  

The discussion above essentially showed how to incorporate an additional height data 

type (that is not necessarily available at each point) into the mixed adjustment and VCE 

algorithms. Additional modifications can also be made to include the vertical 

displacement in height values (at both GPS-on-benchmark and GPS-on-tide gauge 

stations) resulting from crustal movement due to post-glacial rebound or land subsidence. 

These values may be interpolated from a land uplift model derived using geophysical 

parameters (Peltier, 1999). The rates of vertical displacements can also be computed from 

repeated precise levelling and analysis of tide gauge time series and more recently GPS 

information has been integrated as part of post-glacial rebound studies (Mäkinen, 2000; 

Mäkinen et al., 2000). The estimated accuracy of the land uplift may be determined from 

standard errors of computed land uplift differences obtained from the adjustment of 

precise levelling loops (Ollikainen, 1997). In this case, VCE could be applied to test the 

standard error values. Explicit formulas for this type of data are not provided herein as 

they are very similar to the inclusion of the SST information and can be derived along the 

same lines. The limiting factor in all of these studies is data availability or rather lack of 

data and obtaining initial CV matrices for the height data in a particular region. However, 

in practice these effects are visible over time and future improvements in models should 

allow for the proper numerical incorporation of uplift values for the vertical component. 
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Disseminating parameters to users  

There are several implementation issues that must be considered for a practical 

'modernized' approach to establishing vertical control, including (i) how to make model 

parameters available to users, (ii) to which region should the parameters refer, (iii) how 

frequently should the model parameters be updated, and (iv) how to make height data 

quality indicators available to users. Currently, it is common survey practice to use geoid 

models embedded in GPS receivers and apply the relationship given in Eqs. (1.1) or (1.2), 

to obtain orthometric heights (or differences) using GPS/geoid levelling. However, as 

demonstrated from the studies in this thesis, the contribution of the corrector surface is 

significant and should not be neglected. The experience gained from wide area 

differential GPS can be applied in this area in order to identify possible pitfalls and needs 

of the geodetic surveying community. In general, there are three possible alternatives for 

making corrector surface parameters available to users, namely (Fotopoulos, 2000): 

a) provide one set of parameters for an entire network coverage area (i.e. country)  

b) provide multiple sets of parameters for pre-determined 'regions' within the network 

coverage area  

c) provide both a set of corrections for the entire network (as in (a) above) and 

multiple sub-sets of parameters for the smaller sub-regions (as in (b) above).  

The appropriate choice will depend on the size of the network coverage area and the 

density of existing vertical control. The advantage of having sub-sets is the ability to 

model more localized error sources, as demonstrated in the Australian test network in 

section 4.3. In all cases, the parameters are usually provided in the form of a grid and 

interpolated at the point(s) of interest (Véronneau et al., 2002). Regardless of the method 

chosen, it is important that the geographical boundaries used to compute the model 

parameters are also made available to the user so that they are knowledgeable of the valid 

coverage area and to avoid extrapolation, which may lead to less accurate results (as 

evidenced in section 7.2.5 for the northern Canada results).  
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In terms of frequency of corrector surface model updates, the values are not required in 

(near) real-time as in the case for corrections in wide area differential GPS applications. 

Rather, the model parameters should only be updated depending on new network 

adjustments, provision of additional height data and computation of new geoid models. 

Therefore, it is important that the corrector surface parameters (in the form of a grid) are 

provided with an epoch to which the height data refer. In this manner valid comparisons 

between GPS/geoid levelling derived heights referring to different epochs can be 

conducted.  

 

A final comment should be made on the availability of quality indicators for height data 

values. It is suggested that full covariance matrices should be provided from software 

processing packages or at least some indication of the expected accuracy. Users should be 

aware that these values are usually overly-optimistic (as shown in chapter 6) and VCE 

can be applied in secondary adjustments in order to 'improve' the CV information. 

 

 

7.5 Summary 

Several practical implementation issues for establishing vertical control using modern 

techniques were discussed. Specifically, a means for obtaining approximate initial 

covariance matrices for the ellipsoidal, orthometric and geoid height data was described. 

This process was tested with a simulated test network in northern Canada and found to be 

a realistic alternative to obtaining covariance matrices from separate adjustments. The 

combined height adjustment was performed using relative height differences as opposed 

to absolute height values, which has been the main focus thus far. Investigations into the 

baseline configuration and network geometry were also conducted in order to establish a 

link between the performance of the corrector surface model as a function of network 

geometry. The actual contribution of the specified parametric model to the overall GNSS-

levelling procedure was also studied and found to vary.  
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Modifications to the mixed height network adjustment algorithm, provided in section 3.1, 

were described in order to incorporate data from both terrestrial benchmarks and tide 

gauge stations. Following the same procedure, additional height information can be 

included (such as land uplift models) as they become available. An important aspect was 

the modified VCE algorithm, which allows for the calibration of the SST and uplift CV 

information. Finally, some of the practical issues involved with providing users of 

vertical control with the appropriate corrector surface model parameters were described. 
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Chapter 8 

 

Conclusions and Recommendations 

 

 

In this final chapter the major conclusions and recommendations that can be drawn from 

this thesis work are outlined. Our starting point was the seemingly simple geometrical 

relationship between ellipsoidal, orthometric and geoid heights shown in chapter 1. 

Recognizing the profound impact that satellite-based measurement systems have had on 

the practice of geodesy and surveying, a detailed deconstruction of the major issues 

affecting the optimal combination of these heterogeneous height types was conducted. 

The following discussion provides a summary of the key findings regarding three main 

areas that were identified as outstanding issues, namely modelling systematic errors and 

datum inconsistencies, separation of random errors and estimation of variance 

components for each height type, and practical considerations for modernizing vertical 

control systems. It should be mentioned that several numerical results for specific test 

networks (Switzerland, parts of Canada and Australia) are included in the main text and 

only the major points will be repeated here. 

 

 

8.1 Conclusions 

A general methodology for testing/assessing candidate parametric model performance 

over a vertical network of co-located GPS-levelling benchmarks was developed. The 

procedure consists of five major modules including, empirical precision and cross-
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validation tests, statistical measures of goodness of fit, indicators of numerical stability 

and testing of individual parameter significance. The following lists the main conclusions 

regarding this part of the study: 

− Numerical results showed that incorrect conclusions could be drawn regarding the 

choice of the optimal corrector surface model if the selection is solely based on the 

computed statistics from levellingGPSgrav NN /− . Instead, the complete procedure 

developed in chapter 3 should be used which provides additional information 

regarding the numerical stability and performance of the model when used to predict 

height values at 'new' points (as in GPS-levelling). 

− Two alternative formulations for testing the significance of parameters of a corrector 

surface model were presented. The key advantage of the implemented formulation 

was the ability to scrutinize the significance of individual (or several) parameters and 

eliminate them without the need to repeat the combined least-squares height 

adjustment.  

− High correlation among model parameters was found to distort the results of the 

statistical testing process. Gram-Schmidt orthonormalization was implemented and 

shown to be a viable method for providing a new set of uncorrelated parameters. 

Subsequent evaluation of parameter significance resulted in a reduction in the number 

of vital terms, which was undetectable before orthonormalization.   

− A significant improvement in modelling the systematic discrepancies between 

gravimetrically-derived geoid heights and a nation-wide set of GPS-levelling control 

points was demonstrated through the use of a mosaic of different parametric models 

tailored to smaller sub-regions. This regional parametric modelling approach was 

proven to provide better results than using the 'best' national fit for the Australian 

vertical control test network of GPS-levelling benchmarks as described in chapter 4. 

− Various types of parametric models were tested including, polynomials of various 

degrees and order and base functions (MRE) and similarity-based transformation 

models. In general, the dangers of over-parameterization were described and the 



 

 

218

importance of comparing the numerical stability of each model over the region of 

interest was demonstrated. Such models should particularly be avoided if the 

parametric model is used to predict values for independent/new points exclusive of 

the original network adjustment, as shown by the results of the cross-validation tests. 

 

Another major contribution of this research work is the detailed variance component 

estimation studies related to the common adjustment of the ellipsoidal, orthometric and 

geoid height data types. In particular, the iterative minimum norm quadratic unbiased 

estimation algorithm using the separated height residuals (according to type) was 

determined as an appropriate method for this problem. The following conclusions can be 

drawn from the extensive numerical tests on the Swiss and Canadian test networks: 

− The iterative form of the MINQUE method was shown to be a globally best estimator 

providing consistent results independent of the a-priori covariance matrix values. This 

led to the 'validation' of the empirical (and somewhat arbitrary) scaling of the a-

posteriori covariance matrix for the GPS-derived ellipsoidal heights. For example, in 

the case of the Swiss test network, an empirically derived scaling factor of 102 for 

hQ  was validated through VCE. Therefore, more realistic measures for the accuracy 

of the ellipsoidal height data can be obtained using VCE as compared to the typically 

optimistic a-priori CV matrices supplied by GPS post-processing software. 

− Global and local geoid error models were calibrated via VCE. In all cases, the over-

bearing contribution of the global geopotential model (EGM96) to the total error 

budget was clear. Results revealed the necessary down-scaling of the 

provided/computed covariance matrices ( NQ ) for the given test areas, for both the 

global and the regional geoid models. Overall, it was found that the use of a diagonal 

CV matrix for the geoid height errors gives a very poor representation of the actual 

contribution of geoid uncertainty to the total error budget. 

− The effectiveness of evaluating the orthometric height accuracy from national 

adjustments (in the Swiss case) and regional adjustments (for the Canadian test 
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network) of levelling data was shown. Overall, the VCE results verified that the 

orthometric heights were the most accurate of the three height data types, as expected, 

however the corresponding a-priori covariance matrices ( HQ ) were found to be 

optimistic in all cases. 

− The estimation of variance components for each height type was conducted using two 

methods, namely, the IMINQUE and the IAUE method. Numerical studies showed 

that both methods provide very similar results for the estimated variance components 

(differences at the mm-level). It was also observed that the IAUE approach was on 

average 50% more computationally efficient than the rigorous IMINQUE method. 

Therefore, the IAUE method should be used when computational efficiency is an 

issue. 

− The effect of data redundancy on the estimation of variance components was 

investigated through several numerical tests. In general, a positive-valued numerical 

solution for all variance components was obtained unless the number of observations 

was significantly reduced (assuming the number of unknown parameters sought 

remains constant). The effect of changing the network geometry on the admissibility 

of the estimated variance components was exemplified, to some end, by the results of 

the Canadian test network. In this case, the removal of observations (GPS-levelling 

benchmarks) from the already sparse network resulted in the estimation of some 

negative variance components during the initial stages of the iterative process. This in 

turn resulted in a slower rate of convergence. 

− Overly optimistic values for the variance factors result when correlations among 

heights of the same type are neglected (i.e., diagonal-only CV matrices). The number 

of iterations required for a solution also dramatically increases (i.e. from 99 to 152 

iterations in the Swiss test network case) when diagonal-only CV matrices are used. 

The greatest impact on the final estimated variance components was obtained when a 

diagonal CV matrix for the EGM96 model was used compared to the fully-populated 

version. In this case, the use of an a-priori diagonal CV matrix resulted in extremely 

optimistic values for the Swiss network. For the Canadian test network, a positive-
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valued variance component was not obtainable when a diagonal a-priori CV matrix 

corresponding to EGM96 was used. Thus, correlations should not be neglected, 

especially when a global geopotential model is used.     

− An interesting relation between the type of parametric model and the final estimated 

variance components was observed. It was found that the use of an inappropriate 

parametric model in the common adjustment of the height data might lead to 

problems in estimating variance components (i.e., divergence or negative-values). 

The model assessment procedure described in chapter 3 was used to verify the 

inadequacy of these models for absorbing the systematic errors and datum 

inconsistencies in the test network area. Therefore, the intrinsic connection between 

the systematic effects and datum inconsistencies and the VCE process (which pre-

supposes the absence of biases and no systematic effects in the data) is evident. 

According to the results shown herein, this can be extended to the possible detection 

of inappropriate parametric models (not the selection of a proper model).  

 

Several other issues were also studied that provided insight into the practical problems 

encountered when implementing GPS-levelling. The following interesting conclusions 

were made: 

− A method for evaluating the achievable accuracy of relative GPS-levelling that 

incorporates the quality of the ellipsoidal and geoid height data and the contribution 

of the parametric model (which is typically neglected in practice) was presented. This 

approach does not require any actual observations and can therefore be used in the 

pre-design stages of surveys. 

− The accuracy contribution of the parametric model was found to be insignificant in 

general compared to the accuracy of the relative geoid and ellipsoidal height data. 

However, the incorporation of the parametric model is absolutely essential in the 

common height adjustment as the magnitude of the datum inconsistencies and 

systematic errors in the original control network can reach several metres. 
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− A practical problem encountered by 'secondary' users of height data is the lack of 

covariance information. A method for generating realistic covariance matrices for the 

NHh ∆∆∆ ,,  data when they are not readily available was described and tested.  

− Tests conducted using GPS-levelling in remote areas with few vertical control points 

showed that as the distance between the newly established baseline and the original 

control network increased, the significance of using fully-populated versus diagonal 

CV matrices for the three height types became evident. Therefore, it is recommended 

that fully-populated forms of CV matrices for the height types be used in the 

evaluation of the accuracy of orthometric heights computed via GPS-levelling.  

− Modifications to the combined adjustment scheme (described in chapter 3) and the 

IMINQUE algorithm (described in chapter 5) to accommodate additional height 

information were provided. In particular, the integrated optimal adjustment of 

terrestrial benchmarks and tide gauge stations was described. The application of the 

MINQUE algorithm for the case of unbalanced data where sea surface topography 

information is available at tide gauge stations was also presented. A similar approach 

can be applied to include additional height information expected in the near future 

such as land uplift models. 

− Practical options for disseminating corrector surface parameters to GPS-levelling 

users were described. It is suggested that fully-populated covariance matrices for the 

height data are also made available to practitioners so that the optimal adjustment 

procedure summarized in chapter 7 can be implemented. 

 

 

8.2 Recommendations for future work  

The following is a list of some of the areas recommended for future work: 

− Parametric models composed of orthogonal base functions should be testing using 

real data and evaluated using cross-validation at independent control points after 

insignificant terms have been identified and deleted from the analytical model. 
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− The least-squares adjustment scheme presented in this work focused on using either 

absolute height values ( NHh ,, ) at all points in the test network or relative height 

differences ( NHh ∆∆∆ ,, ) between all points in the test network. It would be 

worthwhile to re-formulate the problem using a mixture of observed input values 

including relative height differences and absolute values, which is a closer 

representation of real databases.  

− The variance component estimation studies conducted herein should be extended to 

consider estimating covariance components as well. This complicates the problem 

somewhat through the introduction of more unknown parameters and reduces the data 

redundancy. The viability of a numerical solution using available a-priori height data 

CV matrices should be tested. 

− The correlation between the local gravimetric geoid heights and the levelled 

orthometric heights at the GPS-levelling benchmarks was ignored for the purpose of 

this study. The effect of such a correlation, which exists in the case where the 

gravimetric geoid solution has incorporated height information from the levelling 

network, may merit further investigation.  

− The adjusted residuals were separated according to height type and used to estimate a 

single variance component for each group. It may be worthwhile, especially in larger 

disconnected networks, to estimate more than one variance component for each 

height type. 

− Given the upcoming satellite-only global gravity field models expected from the LEO 

missions for dedicated gravity field research, it is suggested that the VCE procedures 

described herein are implemented to calibrate the new global geoid error models. The 

results should be compared to those obtained from previous models such as EGM96. 

− Temporal variations of height datums are very important and must be considered in 

view of the goal for a 1-cm accurate geoid. This involves the incorporation of time 

variable geophysical, geodynamic and oceanographic models to account for processes 

such as sea level change, post-glacial rebound, plate subduction and plate movement, 
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land subsidence, etc. in the geoid model. Essentially we engage in a bootstrap 

procedure where data from different time periods is used to test the validity of these 

time variable models while this data is also integrated to improve the models 

themselves.  

 

Given the current state of technologies with emerging global navigation satellite systems 

(i.e., GALILEO) and modernized existing systems (GPS) as well as new LEO missions 

for dedicated gravity field research (i.e., CHAMP, GRACE, GOCE), it is expected that a 

new era in geodesy is upon us offering many challenges and promising resolutions. The 

author hopes that this research will be a small contribution to the changing world of 

geodesy and surveying in view of the vertical datum problem. 
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