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Abstract 
 

Gravimetric reduction schemes play an important role on precise geoid determination, 

especially in rugged areas. The main theme of this research is to explore different 

gravimetric reduction schemes in the context of precise geoid determination, in addition 

to the usual Helmert’s second method of condensation and residual terrain model (RTM). 

A numerical investigation is carried out in the rugged area of the Canadian Rockies to 

study gravimetric geoid solutions based on the Rudzki inversion scheme, Helmert’s 

second method of condensation, RTM, and the topographic-isostatic reduction methods of 

Airy-Heiskanen (AH) and Pratt-Hayford (PH). The mathematical formulations of each of 

these techniques are presented. This study shows that the Rudzki inversion scheme, which 

had neither been used in practice in the past nor is it used at present, can become a 

standard tool for gravimetric geoid determination since the Rudzki geoid performs as well 

as the Helmert and RTM geoids (in terms of standard deviation and range of maximum 

and minimum values) when compared to the GPS-levelling geoid of the test area. Also, it 

is the only gravimetric reduction scheme which does not change the equipotential surface 

and thus does not require the computation of the indirect effect.  

 

In addition, this thesis investigated two important topics for precise geoid determination; 

the density and gravity interpolation effects on Helmert geoid determination and the 

terrain aliasing effects on geoid determination using different mass reduction schemes. 

The study of first topic shows that the topographic-isostatic gravimetric reduction 

schemes like the PH or AH models or the topographic reduction of RTM, should be 

applied for smooth gravity interpolation for precise Helmert geoid determination instead 

of the commonly used Bouguer reduction scheme. The density information should be 

incorporated not only for the computation of terrain corrections (TC), but also in all other 

steps of the Helmert geoid computational process. The study of the second topic suggests 

that a DTM grid resolution of 6′′ or higher is required for precise geoid determination 

with an accuracy of a decimetre or higher for any gravimetric reduction method chosen in 

rugged areas.  
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Chapter 1 

Introduction 
 

1.1 Background 

 

The topographical effect is one of the most important components in the solution of the 

geodetic boundary value problem (BVP), and should be treated properly in the 

determination of a precise geoid. The classical solution of the geodetic BVP using 

Stokes’s formula for geoid determination assumes that there should be no masses outside 

the geoid. The input gravity anomalies should refer to the geoid, which requires the actual 

Earth’s topography to be regularized in some way. The mathematical and physical 

treatment of this issue play an important role in the computation of a precise (local or 

regional) gravimetric geoid solution. There are several reduction techniques, which all 

differ depending on how these topographical masses outside the geoid are dealt with. 

Each gravity reduction scheme treats the topography in a different way. In theory, 

gravimetric solution for geoid determination using different mass reduction methods 

should give the same results, provided that the corresponding indirect effect is taken into 

account properly and consistently (Heiskanen and Moritz, 1967; Heiskanen and Vening 

Meinesz, 1958).  

 

The specific choice of gravity reduction method depends on the magnitude of its indirect 

effect, the smoothness and the magnitude of the resulting gravity anomalies, and their 

associated geophysical interpretation. The complete Bouguer reduction, for example, 

removes all topographic masses above the geoid producing smooth gravity anomalies, but 

introduces excessively large indirect effects. Topographic-isostatic gravity reductions (for 

example, Airy-Heiskanen and Pratt-Hayford), on the other hand, remove the topographic 

masses by shifting them into the interior of the geoid according to some model of 

isostasy, and they exhibit all the characteristics of a ‘good’ gravity reduction scheme. 

These methods introduce indirect effects of the order of several metres, which are much 

smaller than those of the Bouguer scheme, but still larger than those of Helmert’s second 
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method of condensation, and thus have not been used in geoid determination since the 

late seventies. In Helmert’s second method, the topographic masses between geoid and 

the Earth’s surface are condensed on the geoid forming a surface layer. The direct 

topographic effects and indirect effects using this condensation reduction method have 

been discussed in the literature; see, for example, Heiskanen and Moritz (1967), 

Wichiencharoen (1982), Wang and Rapp (1990), Sideris (1990), Heck (1993), and 

Vanicek and Martinec (1994). The residual terrain model (RTM) scheme, which is not a 

topographic-isostatic reduction but gives anomalies similar to topographic-isostatic 

anomalies, has been used for almost two decades as a common tool for terrain reduction 

in quasigeoid computation (Forsberg, 1984). The recent studies on Helmert’s first method 

of condensation by Heck (2003) and on topographic-isostatic reductions by Kuhn (2000) 

can be considered as an exploration of different gravimetric reduction techniques for 

geoid determination, in addition to RTM and Helmert’s second method of condensation. 

Theoretical and practical research on direct and indirect effects is very important to be 

carried out for different gravimetric reduction schemes in addition to Helmert’s second 

method of condensation in the context of precise geoid determination. 

 

One of the most interesting methods of gravimetric reduction is the Rudzki inversion 

scheme, developed by the Polish scientist Rudzki in 1905 (Rudzki, 1905; Heiskanen and 

Meinesz, 1958; Heiskanen and Moritz, 1967). He postulated his theory of gravimetric 

reduction in such a way that the potential of topographical masses above the geoid is 

equal to that of inverted topographical masses inside the geoid. Besides Rudzki’s own 

original work on this reduction scheme, it had neither been used in the past nor is it used 

at the present for geoid determination. However, the emphasis on using this gravimetric 

scheme had been given by Lambert (1930). This reduction method is purely mathematical 

and has no associated geophysical meaning, which is not as important in geoid 

determination as in geophysics. 

 

The study of terrain aliasing effects on geoid determination is very important for every 

terrain reduction technique. There are different resolutions of digital terrain model (DTM) 
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available these days throughout the world. Since a small grid spacing in modern DTMs 

can represent the local features of rugged terrain very precisely, such high-resolution 

DTMs should be used (if available) in the numerical computation of different mass 

modeling techniques for geoid determination and gravity densification; this has been 

shown in previous studies (see, e.g., Kotsakis and Sideris, 1997; Kotsakis and Sideris, 

1999). 

 

The knowledge of actual crust density is required in each gravity reduction method 

(including the terrain correction) in order to effectively and rigorously remove all the 

masses above the geoid. Constant density is often used in practice instead of actual crust 

density because of lack of actual bedrock density information. However, two-dimensional 

digital density models (DDMs) are becoming available these days in some countries 

though a three-dimensional model is required to represent a real topographical density 

distribution. These density models should be incorporated in the terrain correction (TC) 

computation. This has been studied by Tziavos et al. (1996), Huang et al. (2000), and 

Tziavos and Featherstone (2000). The study of the effects on gravity and geoid using 

actual density information in different mass reduction techniques will show us the 

significance of using variable density instead of using constant crust density for precise 

geoid determination.  

 

Molodensky’s solution is the other fundamental solution to the geodetic boundary value 

problem. This approach considers the Earth’s surface as the boundary reference surface. 

This solution overcomes the problem of removing all the topographical masses above the 

geoid, which is strictly required by Stokes’s approach. Molodensky formulated the 

integrals in the form of series, which consist of gravity anomalies and the topographical 

heights. Molodensky’s theory requires both gravity anomalies and the topographical 

heights be available at the same points but does not require the knowledge on the crust 

density information. This modern solution gives the quasigeoid but not a level surface 

(geoid) as in Stokes’s solution. Brovar’s and Pellinen’s solutions to this modern geodetic 

boundary problem have been extensively discussed in Moritz (1980). The importance of 
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gravimetrtic mass reduction in quaisigeoid determination was first introduced by Pellinen 

(1962). 

 

Gravity interpolation is one of the important aspects in Helmert geoid determination. The 

gravity anomalies based on Helmert’s second method of condensation are very rough. 

The Free-air (FA) anomalies computed directly can not be used in practice for precise 

Helmert geoid determination and thus the Bouguer gravimetric terrain reduction is most 

commonly used for interpolation to obtain smoother FA anomalies. The study of using 

different gravimetric terrain reductions for interpolating FA anomalies in addition to the 

Bouguer reduction is very important in precise geoid determination using Helmert’s 

second method of condensation. 

 

1.2 Objectives 
 

The main objectives of the research are the following: 

 

(i) The first and primary objective of this research is to study gravimetric geoid 

solutions in planar approximation using different gravimetric reduction 

schemes in the context of precise geoid determination. The gravimetric geoid 

solutions based on the Rudzki inversion scheme, Helmert’s second method of 

condensation, RTM method, and Airy-Heiskanen (AH) and Pratt-Hayford 

(PH) topographic-isostatic methods will be studied and they will be critically 

compared in terms of their usefulness in precise geoid determination. 

 
(ii) The second objective is to investigate two important aspects of precise geoid 

determination using Helmert’s second method of condensation, which is 

commonly used in practice.  The first one is to study the importance of using 

actual crust density information instead of using constant density. A two 

dimensional digital density model will be incorporated not only in the TC 

computation, but also in all steps of Helmert’s geoid computational process. 
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The next one is to study the effect of different gravimetric terrain reductions 

on gravity interpolation and on Helmert geoid determination. 

 

(iii) The third and final objective is to investigate the importance of using various 

grid resolution levels of DTM for different mass reduction schemes within the 

context of precise geoid determination. The terrain aliasing effects on geoid 

determination using the Rudzki inversion scheme, Helmert’s second method 

of condensation, the RTM model, and Pratt-Hayford model will be studied. 

 

1.3 Thesis outline 

 

This thesis consists of six chapters. Each chapter from chapter 2 to chapter 6 is structured 

in such a way that it will focus on each objective described above followed by the results 

from numerical investigations carried out in the test area. 

 

Chapter 2 describes the concepts of geoid and quasigeoid, briefly explains each 

gravimetric reduction scheme and presents computational formulas required to compute 

indirect effects and geoid undulations using each gravimetric reduction scheme.  

 

Chapter 3 presents all mathematical formulations required to study the direct 

topographical effects on gravity for every mass reduction scheme. 

 

Chapter 4 presents the numerical investigation of different types of topographic and 

topographic-isostatic gravity anomalies in the test area along with their critical 

comparisons. The results of indirect effects, gravimetric geoid solutions using different 

reductions, their differences with GPS-levelling geoid of the test area, and their 

comparison are shown in this chapter. 
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Chapter 5 shows numerical results of two important aspects of precise Helmert geoid 

determination. First, it shows results of the effects that different gravimetric reductions 

schemes have on gravity interpolation and precise Helmert geoid determination. Second, 

it shows results illustrating the importance of using actual density information instead of 

using constant density in the context of precise Helmert geoid determination. 

 

Chapter 6 presents the results of the terrain aliasing effects in two parts. First, it shows the 

results of aliasing effects on TC computation. Second, it shows the terrain aliasing effects 

on geoid determination using the Rudzki inversion scheme, Helmert’s second method of 

condensation, the RTM model, and the Pratt-Hayford topographic-isostatic method. 

 

In chapter 7, conclusions are drawn from the investigations of the research carried out in 

this thesis, and some recommendations are presented based on these investigations. 
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Chapter 2 

Gravimetric Geoid Determination 
 

 
2.1  Geoid and quasigeoid 

 
Precise geoid determination is one of the most important tasks in physical geodesy. The 

geoid is a vertical datum for orthometric heights. The orthometric height is the height 

above sea level. The ellipsoidal height is the height above reference ellipsoid. The recent 

advances of GPS techniques made it possible to determine the ellipsoidal heights with an 

accuracy of millimetre/centimetre depending on the observation and processing 

techniques. The combination of GPS and a precise gravimetric geoid is an alternative tool 

to the orthometric height determination using spirt levelling (and/or trigonometric 

levelling).  

 

This modern approach of determining orthometric height can be more effective in both 

cost and time compared to the conventional spirit (and/or trigonometric) levelling. The 

precise geoid is important not only in geodetic applications, but also in geophysical and 

oceanographic applications. The accurate geoid determination possesses more demand 

these days than ever before because of the latest developments in GPS technology which 

let us obtain the ellipsoidal height with high accuracy.   

 

The geoid is defined as an equipotential surface (a surface of constant potential), a level 

surface, which approximates the mean sea surface of the earth; it represents the 

mathematical formulation of a “horizontal” surface at sea level (Heiskanen and Moritz, 

1967). Geoid determination is carried out using Stokes’s approach, which is regarded as a 

classical solution to the geodetic boundary value problem. Figure 2.1 illustrates the 

geometrical principle of the geoid. The geoid undulation is the vertical separation 

between the geoid and the ellipsoid. The ellipsoidal height he can be obtained from the 

orthometric height, h and the geoid undulation, N, as follows: 
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Fig. 2.1 Geoid and quasigeoid   

 

he = h + N                   (2.1) 

 

Geoid determination using the classical Stokes approach requires the knowledge of the 

actual crust density above the geoid. The topographical masses above the geoid should be 

completely removed and the gravity anomalies should refer to the geoid surface in 

Stokes’s gravimetric solution.  

 

Molodensky, on the other hand, introduced a new approach to solve the geodetic 

boundary value problem. His theory does not require the knowledge of crust density. The 

gravity anomalies according to his boundary value problem solution refer to the ground. 

Earth’s surface 

Telluroid 

ζ

hn

Geoid

Quasigeoid

Ellipsoid 

he

N 

h

P

Q 

Po

Qo 
ζ

hn

P′ 

orthometric height (PoP): h 

ellipsoidal height (QoP): he 

geoidal undulation (PoQo): N 

normal height (P′P = QoQ): hn 

height anomaly (QoP′= PQ): ζ 
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The geometrical principle of the quasigeoid is shown in Figure 2.1. The surface, whose 

normal potential at every point Q is equal to the actual potential at the corresponding 

point P on the Earth’s surface with the points P and Q on the same ellipsoidal normal, is 

termed as the telluroid by Molodensky. The vertical separation between the telluroid and 

the physical surface of the Earth, is called height anomaly. The quasigeoid is the surface 

obtained by plotting the height anomalies above the ellipsoid. It is not a level surface and 

does not have any geophysical meaning. The vertical distance between the ellipsoid and 

the telluroid, which is equal to the vertical distance between quasigeoid to the Earth’s 

surface, is the normal height. The ellipsoidal height according to this modern boundary 

value problem solution can be expressed as 

 

he = hn + ζ            (2.2) 

 

where hn is the normal height which replaces the orthometric height and ζ is the height 

anomaly instead of the geoid undulation of equation (2.1) in the case of geoid 

determination. The height anomaly is also equal to vertical separation between the 

quasigeoid and ellipsoid. 

 

2.2 Gravimetric terrain reductions 

  

There are various gravimetric reduction techniques in physical geodesy to remove 

topographical masses above the geoid in the classical solution of the geodetic boundary 

value problem using Stokes’s formula. The Bouguer and residual terrain model (RTM) 

topographic mass reductions, Airy-Heiskanen, Pratt-Hayford, and Vening Meinesz 

topographic-isostatic reductions, Helmert’s first and second methods of condensation, and 

the inversion method of Rudzki are mostly described and used in practice both in geodesy 

and geophysics.  

 

In this thesis, the Bouguer and the RTM topographic reductions, the Pratt-Hayford and 

Airy-Heiskanen topographic isostatic reductions, Helmert’s second method of 
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condensation, and the Rudzki inversion method are used. The brief description of each of 

these reductions is presented in this section with illustrations. The details of mathematical 

formulations using each of these gravimetric schemes are presented in Chapter 3. 

 

The Bouguer reduction is one of the most common gravimetric reduction schemes used 

both in geodesy and geophysics. In geodesy, it is used for gravity interpolation, but not 

for geoid determination. This reduction removes all the masses above the geoid using a 

Bouguer plate. TC, which represents the effect of the topography deviating from the 

Bouguer plate should be considered to remove rigorously all topographic masses above 

the geoid surface. The Bouguer reduction, which includes TC in its reduction process is 

called the refined Bouguer reduction. Figure 2.2 shows the Bouguer reduction. The 

Bouguer plate of thickness hp, which is equal to the height of a point P removes all the 

topographical masses above the geoid except TC. 

 

 

 

 
Fig. 2.2 Bouguer reduction  
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The Residual Terrain Model (RTM) is one of the most common terrain reduction methods 

used in geoid determination. This reduction scheme was introduced by Forsberg (1984). 

A reference surface (a mean elevation surface), which is defined by low pass filtering of 

local terrain heights, is used in this terrain reduction. The topographical masses above this 

reference surface are removed and masses are filled up below this surface. The RTM 

reduction is illustrated by Figure 2.3. A quasigeoid is obtained using this mass reduction 

model. 

 

 

 
 

Fig. 2.3 Residual terrain model    

 

The Rudzki inversion is the only gravimetric reduction scheme which, by definition, does 

not change the equipotential surface and thus introduces zero indirect effect in geoid 

computation. The topographical masses above the geoid are inverted into its interior in 
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this scheme. The inverted masses are also called mirrored masses. Figure 2.4 illustrates 

the geometry of the Rudzki reduction. 

 

 
Fig. 2.4 Geometry of Rudzki reduction in planar approximation 

 

Helmert’s second method of condensation is one of the most common gravimetric 

reduction schemes used in practical geoid determination. In this scheme, the 

topographical masses are condensed on the geoid surface as a surface layer. Helmert 

defined this condensation scheme in two ways depending on the location of this 

infinitesimally thin condensation layer. In his first method of condensation, the 

topographical   masses are condensed on a surface parallel to the geoid located 21 km 

(this value represents the difference between semi-major axis and semi-minor axis of a 

reference ellipsoid) below the geoid, whereas these masses are condensed on the geoid 
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surface in his second method (Heiskanen and Moritz, 1967; Heck, 1993; Heck 2003). His 

first method has not been used in geoid determination and has been recently suggested by 

Heck (2003). This reduction scheme is shown in Figure 2.5. 

 

 

Fig. 2.5 Helmert’s second method of condensation 

 

The Pratt-Hayford reduction scheme is one of the topographic-isostatic mass reduction 

techniques used in physical geodesy. The topographic masses above the geoid are 

distributed between the level of compensation and the sea level. This reduction principle 

is illustrated by the Figure 2.6  

 

The density is uniform underneath the level of compensation, whereas the mass of each 

column of cross section is equal above this level of compensation. The topography is 

removed together with its isostatic compensation yielding a homogenous crust of constant 

density and constant depth of compensation.   
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Fig. 2.6 Pratt-Hayford model  

 

The Airy-Heiskanen model is another topographic isostatic reduction scheme commonly 

used in geodesy and geophysics. In this topographic-isostatic scheme, the topographical 

masses are removed to fill roots of the continents bringing the density from its constant 

value to that of upper mantle.  

 

The masses above the geoid surface are removed together with their isostatic 

compensation according to the Airy-Heiskanen theory yielding a homogenous crust of 

constant density and constant normal crust thickness. The principle of this theory is 

illustrated by Figure 2.7. Airy stated that the higher mountains sink deeper than moderate 

lands and are floating on material of higher density. 
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Fig. 2.7 Airy-Heiskanen model  

 

2.3 Computational formulas for geoid determination 
 

Global geopotential model, local gravity information and digital terrain model represent 

the low, medium and high frequency part of the gravity signal, respectively. Gravimetric 

geoid solution is carried out using the remove-restore technique in this thesis for all 

gravity reduction methods in planar approximation. Each method treats the topography in 

a different way as described in the earlier section. First, the gravity anomalies are reduced 

in a remove step using a mass reduction scheme to formulate boundary values on the 

geoid, which can be expressed as: 
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where ∆gF is the Free-air anomalies, ∆gT is the direct topographical effect on gravity in 

each reduction method used as formulated in Chapter 3, and ∆gGM is the reference gravity 

anomaly from a geopotential model.  

 

The surface computed by Stokes’s formula without considering the indirect effect on 

geoid is called the cogeoid, which is not the geoid. This surface is also called the 

regularized geoid since it is obtained by regularizing the external masses above the geoid 

surface as Stokes’s approach requires (Heiskanen and Moritz, 1967). Figure 2.8 shows 

the relation between geoid and the co-geoid. The vertical distance between geoid and co-

geoid caused by the change in potential due to the gravimetric reduction process is called 

the indirect effect on geoid.  

 

 

Fig. 2.8 Geoid and cogeoid  

 
The indirect effect on gravity, which reduces gravity anomaly from the co-geoid to the 

geoid, should be added in equation (2.3) for Helmert’s second method of condensation 

and the topographic-isostatic mass reduction schemes, and can be expressed using the 

simple free-air gradient (Heiskanen and Moritz, 1967): 
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indN3086.0g =δ  mGal                                                                                            (2.4) 

 

The direct topographical effect on gravity ∆gT in equation (2.3) for each mass reduction 

scheme can be expressed as: 

 

)fRe,Comp,Cond,Inv(T AAg −=∆                                                                             (2.5) 

 

where A is the attraction of all topographic masses above the geoid and A (Inv ,Cond, Comp, 

Ref) represents the attraction of either inverted topographical masses, or the condensed 

masses, or the compensated masses, or the reference topographic masses for the Rudzki, 

Helmert, AH or PH, and RTM reduction schemes, respectively.  

 

In spherical approximation, the reference gravity anomaly at latitude φp and longitude λp 

is expressed by (Heiskanen and Moritz, 1967) 
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where R is the mean radius of the Earth, nm

_

nm

_
S and C are the fully normalized spherical 

harmonic coefficients of the anomalous potential, and Pnm is the fully normalized 

associated Legendre function. 

 

The total geoid obtained as the result of the restore step can be expressed as: 

 

indgGM NNNN ++= ∆                  (2.7) 
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where NGM denotes the long wavelength part of the geoid obtained from a geopotential 

model, N∆g represents residual geoid obtained by using ∆gr from equation (2.3) in 

Stokes’s formula, and Nind is the indirect effect on the geoid, which depends on the mass 

reduction scheme used. The reference geoid undulation NGM from a geopotential model 

can be expressed as (Heiskanen and Moritz, 1967) 

 

)(sinφP]sinmλScosmλC[RN pnm

_

pnm

_nmax

2n
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= =

                (2.8)  

 

Stokes’s formula for the classical solution of the geodetic BVP is given by (Heiskanen 

and Moritz, 1967) 

 

σψ∆
πγ

= ∫∫
σ

d )S( g
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RN                  (2.9) 

 

The above formula using gridded gravity anomalies can be formulated as (Li and Sideris, 

1994) 
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where ∆gr is the reduced gravity anomaly given by equation (2.3) and S (φp, λp, φn, λm) is 

the spherical Stokes kernel function defined by 
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Equation (2.10) can be expressed as a convolution in the East-West direction considering 

that spherical Stokes’s kernel is constant for all points on one parallel but different for 

points at different latitudes (Haagmans et al., 1993) 
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where F1 and F1
-1 denote the one-dimensional Fourier and inverse Fourier transform 

operators.  

 

The indirect effect on the geoid, in equation (2.7), can be computed from Bruns’s 

formula, as follows: 

 

γ
∆

=
TNind                                        (2.13) 

  

where γ is the normal gravity and ∆T is the change in the potential at the geoid, which 

depends on the reduction method used and can be expressed as follows: 

 

)fRe,comp,Cond,Inv(TTT −=∆                   (2.14) 

 

where T is the gravitational potential of the actual topographical masses and T (Inv, Cond, 

Comp, Ref) represents the potential of the inverted, condensed, compensated, and reference 

masses for the Rudzki, Helmert, AH or PH reduction schemes, and RTM reduction, 
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respectively. The topographical masses between the geoid surface and the reference 

surface in the RTM reduction are called the reference masses.  ∆T in the equation (2.14) 

is zero for the Rudzki inversion scheme since the potential of the topography is equal to 

that of the inverted topography as given by the equation (3.40). The potentials of the 

topographical masses and the compensating masses can be given as: 
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where ρ is topographical density and ∆ρ is the density defect in topographical isostatic 

reduction schemes. 

 

The integrals in equation (2.15) can be numerically integrated using rectangular prisms 

with the computation point coinciding with the origin of the coordinate system (Nagy, 

1966):  
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Figure 2.9 shows the notations used for the definition of a prism. The prism is bounded by 

planes parallel to the coordinate planes. The prism is defined by the coordinates x1, x2, y1, 

y2, z1 and z2. Point P is the computation point. Equation (2.15) of the prism serves as the 
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basic formula for the computation of the potential for different mass reduction schemes in 

this thesis. 

 

 
Fig. 2.9 Notations used for the definition of a prism 

 

The indirect effect for Helmert’s second method of condensation can be obtained in 

planar approximation as (Wichiencharoen, 1982) 
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The RTM reduction method gives the quasigeoid. Equation (2.7) for the RTM reduction 

scheme gives the height anomaly, which is also known as the quasigeoid height. 

Similarly, the gravimetric quantity, Nind, in equation (2.7) represents the indirect effect on 

quasigeoid for this reduction, which is also  known  as  the  restored terrain effect on the 

quasigeoid. This gravimetric quantity in RTM reduction is also equal to the distance 

between the original telluroid and the changed telluroid, which is illustrated in figure 

2.10. Equation (2.7) for quasigeoid determination can be formulated as 
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The separation between quasigeoid and geoid, which is required to obtain the geoid from 

the quasigeoid in the RTM method, can be computed from (Heiskanen and Moritz, 1967) 

 

 
Fig. 2.10 Telluroid and changed telluroid 
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where g , γ , and ∆gB represent the mean (along the plumb line) gravity, normal gravity, 

and Bouguer anomaly, respectively. 
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Chapter 3 

Direct Topographical Effects on Gravity 
 

 
3.1 Refined Bouguer Reduction 
 
 
The refined Bouguer reduction removes all the topographical masses above the geoid as 

already described in Chapter 2, which includes not only the removal of topographical 

masses contained in the Bouguer plate but also the rough part of the topography deviating 

from the Bouguer plate, which is called terrain correction. The following steps are 

required to compute Bouguer (refined Bouguer) anomalies: 

 

1. Measure gravity at a point P on the Earth’s surface. 

2. Remove all the masses above the geoidal surface with the Bouguer plate 

(including TC for refined Bouguer). Subtract this direct effect on gravity due to 

Bouguer reduction from the observed gravity value. 

3. Bring the gravity station down to the geoidal surface with the Free-air reduction. 

4. Compute the normal gravity at corresponding point Qo on the reference ellipsoid 

and subtract it from the reduced gravity. 

 

The topographic potential at a surface point P (see figure 2.2) can be expressed by 

Newton’s integral 

 

dν
s

GT ∫∫∫
ν

ρ
=                    (3.1) 

  

where ρ is the density of the topographic masses, G is Newton’s gravitational constant, dν 

is a volume element, and s is the distance between the mass element dm = ρ dν and the 

attracted point P. Introducing rectangular coordinates in equation (3.1), we have 
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where 2
p

2
P

2
P )hz()yy()xx(s −+−+−= , dxdydE = , and ρ is assumed constant and 

taken out of the integral. The integral of equation (3.1) is separated into two integrals in 

equation (3.2). The first term, T1 represents the potential of a Bouguer plate of thickness 

hp and the second one, T2 represents the potential of the irregular topography deviating 

from the Bouguer plate. The potential T1 of the Bouguer  plate of radius a and thickness b 

at a point P of height hp (Figure 3.1) can be expressed as follows (Heiskanen and Moritz, 

1967): 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 The homogeneous cylinder 

z

hp 

P 

dm 

s

so 
z

a

b



 

 

25

)]hahln(a))bh(abhln(a      

hah)bh(a)bh( h )bh[(GT
2
p

2
p

22
p

2
p

2

2
p

2
p

2
p

2
p

2
p

2
p

1

+++−++−−

++−+−−−−ρπ=
                       (3.3) 

 

The vertical attraction, A1, of the Bouguer plate at P can be expressed as 
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The potential of equation (3.3) and the vertical attraction of equation (3.4) for the 

computation point P on the cylinder (hp = b, which means the computation point is on the 

earth’s topography) can be expressed as 
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The attraction of the Bouguer plate with an infinite radius, a→∞, is given by the 

following equation: 

 

p
1 hG2A ρπ=                               (3.7) 

 
This attraction is called “direct topographical effect” (Heiskanen and Moritz, 1967) of 

Bouguer reduction on gravity. The term “direct topographical effect” will be used in the 

following sections for the attraction of either the topographical masses above the geoid or 

the topographical effect of compensated, condensed, or inverted masses for AH and PH 

topographic-isostatic models, Helmert’s second method of condensation, and the Rudzki 



 

 

26
inversion scheme, respectively. This gravimetric quantity is also called the “attraction 

change effect” (Wichiencharoen, 1982), or the “topographical attraction effect” (Vanicek 

and Kleusberg, 1987). The gravity anomalies for the Bouguer reduction scheme can be 

expressed as   

 
1

QPB AFgg
o

−+γ−=∆                              (3.8) 

 

The attraction for the complete Bouguer reduction can be expressed as 

 

chG2A pB −ρπ=                    (3.9) 

 

and the refined Bouguer anomalies can be expressed by the following formula: 
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where g is the measured gravity value on Earth’s surface at point P, γQo is the normal 

gravity computed on the reference ellipsoid at a point Qo, F is the Free-air reduction, AB is 

the direct topographical effect on gravity for the complete Bouguer reduction, and c is the 

TC, the details of which are described in the next section.  

 

Normal gravity in this thesis is based on Geodetic Reference System 1980 (GRS80), 

which was adopted at the XVII General Assembly of the IUGG in Canberra, December 

1979. The rigorous formula for the computation of normal gravity on the ellipsoid given 

by Somigliana’s formula (Heiskanen and Moritz, 1967) 
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where γa  and γb represent the normal gravity at the equator and the pole, respectively, and 

φ is the geodetic latitude of the gravity station. 

 

The free-air reduction is not a topographic reduction, but only a part of the topographic 

reduction procedure. This reduction process brings the gravity stations measured on the 

Earth’s topography down to the geoidal surface. It is a requirement in the classical 

solution of boundary value problem using Stokes’s formula. In other words, the gravity at 

point P (Figure 2.2) is transferred to Po on the geoid by means of the Free-air reduction. 

The change of gravity due to the Free-air reduction is given by  

 

h
dh
dgF −=                   (3.12) 

 

In practice, the normal gradient of gravity is used to replace the vertical gradient of 

gravity as follows (Heiskanen and Moritz, 1967): 
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Free-air anomalies are referred to the geoidal surface in the classical geoid solution using 

Stokes’s approach, while they are referred to the topographical surface in the modern 

boundary value problem of  Molodensky approach and can be given by 

 

QPgg γ−=∆                  (3.14) 

 

where gp is the same as in equation (3.8) but γQ represents the normal gravity not on the 

ellipsoid but on the telluroid. It can be computed from the normal gravity on the ellipsoid 

γQo applying the free-air gradient in the upward direction (Heiskanen and Moritz, 1967): 
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where hn
 is the normal height of the station at P.  It is obvious that conventional Free-air 

anomalies are different from those based on modern boundary value problem of 

Molodensky and should not be interchanged with each other. Free-air anomalies also 

should not be confused and interchanged with Helmert (or Faye) anomalies. They can 

only be regarded as an approximation to Helmert (or Faye) anomalies on the condition 

that gravity stations are measured on the sea surface or in moderate terrains. The TC in 

these areas is negligible. The negative of TC is the difference between the attraction of all 

topographical masses and their condensation on the geoid according to Helmert’s second 

method of condensation as will be described in the following sections.  

  

3.1.1 Terrain Correction  

 

The TC is a key auxiliary quantity in gravity reductions, which are used in solving the 

geodetic boundary value problem of physical geodesy and in geophysics. It contains the 

high frequency part of the gravity signal representing the irregular part of the topography, 

which deviates from the Bouguer plate. Helmert’s second method of condensation is 

mostly used in practice as the mass reduction technique in the classical solution of the 

geodetic boundary value problem. Helmert anomaly (or Faye anomaly), which consists of 

free-air anomaly plus TC, represents the boundary values in the Helmert Stokes approach 

since TC alone is the difference between the attraction of the topography and the 

attraction of the condensed topography in planar approximation; see Moritz (1968), 

Wichiencharoen (1982) and Sideris (1990). In Molodensky’s problem, TC can replace the 

g1 term under the assumption that the gravity anomalies are linearly dependent on the 

heights (Moritz, 1980). 

 

The TC integral at a point P which is the negative derivative of the second potential 

integral, T2, in formula (3.2) is given by (Heiskanen and Moritz, 1967) 
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where ρ (x, y, z) is the topographical density at the running point, hp and h are the 

computation and running point, respectively, and E denotes the integration area.   

 

Various computational approaches have been developed based on conventional methods, 

which usually evaluate the TC integral of equation (3.16) using a model of rectangular 

prisms with flat tops (Nagy, 1966) or even with inclined tops (Blais and Ferland, 1984). 

TC computation based on these formulas is very time-consuming but rigorous. Recently, 

Biagi et al. (2001) have given a new formulation for residual TC (RTC) and Strykowski 

et al. (2001) have introduced a polynomial model for TC computation. The TC 

computation can be performed very fast in the frequency domain by means of fast 

ForFFT, having the TC convolution integral expanded in the form of Taylor series; see 

for example, Sideris (1984), Forsberg (1984), Tziavos et al. (1988), Harrison and 

Dickinson (1989), Sideris (1990), Li and Sideris (1994), Li et al. (2000), Sideris and 

Quanwei (2002).  

   

Integrating equation (3.16) with respect to z gives 
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Inserting equation (3.18) into equation (3.17) and keeping only up to two terms in the 

binomial series expansion, the following formula is obtained:   
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The closed analytical expressions for the potential and its derivatives using rectangular 

prisms have been extensively used since the early eighties in gravity field modelling for 

flat-Earth approximation (Nagy, 1966; Forsberg 1984). The closed formula (which is 

similar to the equation (2.15) given for the gravitational potential in chapter 2) for the 

equation (3.16) using right rectangular prisms for the computation of TC at a 

computational point can be expressed as follows (Nagy,1966): 
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3.1.1.1 Mass prism topographic model 

 

A prism with a mean height of the topography represents the height within each cell in 

mass prism (MP) topographic representation. The two dimensional convolution formulas 

for each term in equation (3.19) for the TC integral using the MP algorithm with variable 

density can be evaluated by means of fast Fourier transform (FFT) as Tziavos et al. 

(1996) provided that the grid size DTM and the DDM is the same: 
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where F and F-1 are fast Fourier transform and inverse Fourier transform. α is a parameter 

used to speed up the convergence of the series; the optimal value for this parameter is 

given by the standard deviation of the heights divided by the square root of two (Li and 

Sideris, 1994). The formulas in the frequency domain considering lateral density variation 

need some additional computation of Fourier transform of density function compared to 

those considering constant density.  
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The density function can be taken outside the integral in equation (3.19) when the DDM 

is not available. The modified TC formula using constant crust density and mass prism 

algorithm can be obtained by modifying equations (3.21) and (3.22) as given by Li (1993) 

and Li and Sideris (1994): 
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3.1.1.2 Mass line topographic model 

 

The mass of the prism is concentrated along its vertical axis of symmetry representing the 

topography as a line mass in the mass line (ML) model. In this case, the TC integral  in  

the  form of 2-D convolutions using mass line algorithm and using variable density can be 

formulated for up to two terms in binomial series expansion as (Tziavos et al., 1996; Li, 

1993; Li and Sideris,1994) 
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where kR  is given by 

 



 

 

33









α++
= +1k2222k )y(x

1R F ,  k = 1,2                                   (3.33) 

 

Equations (3.31) and (3.32) can be modified to use constant density in a similar way as in 

the mass prism algorithm. The unified two dimensional convolution formulas for equation 

(3.19) using MP and ML algorithms can be evaluated by means of FFT (Li et al., 2000) 

 

There are different resolutions of DTM available these days throughout the world. TC 

computation using FFT technique is one of the most efficient tools to handle the large 

amounts of height data efficiently. The convergence condition, that the slope of the 

topography be less than 45o, can be regarded as a major problem in the application of FFT 

to the series expansion of the TC integral, especially in rugged areas. Divergence of the 

series has been observed with densely sampled height data in rough terrain; for example 

see Martinec et al. (1996) and Tziavos et al. (1996). A combined method, based on the 

evaluation of the numerical integration method in the intermediate zone around the 

computation point and the use of FFT in the rest of area, has been used to tackle the 

convergence problem by Tsoulis (1998) and Tziavos et al. (1998). 

 

3.2 Rudzki inversion gravimetric scheme 

 

Rudzki reduction is not a gravimetric reduction scheme that has been widely used for 

geoid determination. Although by definition the potential of the topography is equal to 

that of the inverted masses, and thus there is no indirect effect on geoid using this mass 

reduction scheme, the attractions of the topography and the inverted topography are not 

equal.   

 

In potential theory, a point Q′ (see figure 3.2) can be regarded as the inversion of a point 

Q on a sphere of radius R, if both points are on the same ray from the center of the sphere 

and if the radius of the sphere is the geometric mean of their distances r and r′ from the 
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center (Kellog, 1929). Hence the term inversion is used in Rudzki’s gravimetric method. 

The point Q′ is also known as the mirror image of the point Q. The geoid is approximated 

by the sphere of radius R. Not only single points can be inverted (or mirrored) into the 

geoid using this inversion theory, but also the whole topographical masses as shown in 

Figure 3.2. The condition of the inversion on the sphere can be expressed as (Macmillan, 

1958) 

 
 
 

 
Fig. 3.2 Geometry of Rudzki reduction in spherical approximation 
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An algebraic negative sign in the second part of the above equation is eliminated for 
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dr′ to make both dr and dr′ of the same sign. 

 

The main condition in Rudzki’s inversion method is that the indirect effect on the geoid is 

zero. The gravitational potential at point Po on the geoid (and for any points on the geoidal 

surface) due to mass element dm at point Q is equal to that of the inverted mass element 

dm′ at point Q′, which can be expressed as 

 

'' TT     ; 0TTT ==−=∆                                                                                      (3.35) 

 

where ∆T is the difference in the gravitational potential T of the topographical masses  

and the one of the inverted topographical masses, T′. The differential potential dT at point 

Po on the geoidal surface due to the topographic mass element dm and the differential 

potential dT′  at the same point due to the mirrored topographical mass element dm′ can 

be expressed as 
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        (3.36) 

where G is the universal gravitational constant, (r, φ, λ) and (r′, φ, λ) are the spherical 

coordinates of the topographical mass element of density ρ and the mirrored 

topographical mass element of density ρ′ , respectively, s and s′ are the radial distances 

between point Po and the mass elements, and ψ is the angle formed by the radius vectors 

pointing from the Earth’s geocenter to point Po and the mass elements. Applying the 

condition of the inversion on the sphere from equation (3.34) and the condition of 

Rudzki’s scheme from equation (3.35) to equation (3.36), the following equation can be 

obtained: 
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where z = r – R is the height QoQ of topographical mass element. This equation provides 

the fundamental relationship between the topographical crust density and the density of 

mirrored topographical masses below the geoid in Rudzki’s gravimetric scheme. It shows 

that the ratio of the densities of the topography and mirrored masses is proportional to the 

fifth power of the ratio of the radial distance of the topographical mass to the radius of the 

Earth. If we take the mass element at the top of Mt. Everest, the density of the mirrored 

topographical mass element will change by 0.7% of the standard Earth’s crust density of 

2.67 g/cm3.  

 

Similarly, from equations (3.34), (3.35) and (3.36), the following formula can be 

obtained: 

 

dm
r
Rdm' =                    (3.38) 

 

This condition shows us that the shifting of topographical masses into the geoid by 

mirrored masses introduces a slight mass change. The inverted topographical masses are 

slightly smaller than the topographical masses. It is obvious from equation (3.38) that if 

the mass element is near the geoidal surface, these two types of masses are nearly equal 

and the height of the topographical mass element will be nearly equal to the depth of the 

inverted masses below the geoid. For the planar approximation (see figure 2.4), we can 

obtain the following conditions: 
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'
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The gravitational potential Tp of all topographical masses outside the geoid at a point P on 

the topographical surface can be expressed by the following expression introducing the 
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equation (3.5) into the equation (3.2):  
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This equation represents the potential of the regular (Bouguer plate of thickness hp) and 

irregular part (TC) of the topography.  

 

The gravitational attraction of all topographical masses above the geoid at a point P is 

equal to the negative derivative of equation (3.40). It can be represented by equation 

(3.9). The following expression is obtained introducing equation (3.17) into equation 

(3.9).  

 

[ ] dE
)hh(s

1
s
1GhG2A

E
2/12

p
2
00

pp ∫∫ 













−+
−ρ−ρπ=                                        (3.41) 

 

This formula represents the gravitational attraction due to all the topographical masses 

above the geoid, which is a sum of the attractions of the regular and irregular parts of the 

topography. This equation is common in all gravimetric reductions since the 

topographical masses above the geoid should be removed completely before applying 

their compensation (condensation or inversion) below the geoid. 

 

The expression for the gravitational attraction at a point P on the topographical surface 

due to the mirrored topographical masses can also be expressed as a sum of the 

gravitational attraction due to regular and irregular parts of the inverted topography as 

follows: 
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The expression for the direct topographical effect on gravity, which is equal to the 

difference between the gravitational attraction due to all topographical masses above the 

geoid and that due to the mirrored topographical masses inside the geoid in Rudzki’s 

scheme, can be obtained from equations (3.39), (3.41) and (3.42) as follows: 
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        (3.43) 

In this formula, it is obvious that the attractions due to the regular parts of the 

topographical and mirrored topographical masses are equal and cancel out. The direct 

topographical effect on gravity in this Rudzki reduction scheme is the difference of the 

attraction due to the irregular part of the topography and mirrored topography evaluated 

at a point P on the surface of the Earth.  

 

Rudzki anomalies can be given by the following formula: 
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3.3 Residual Terrain Model 

 

The topographical masses above the reference surface (see figure 2.3), which is defined 

by low pass filtering of local terrain heights, are removed and masses are filled up below 

this surface in the RTM gravimetric reduction scheme. The direct topographical effect on 

gravity for this reduction method can be expressed as (Forsberg, 1984) 

 

dxdydz
)zh,yy,xx(s

)zh(
GA

ppp
3

p

E

h

h
RTM

fRe
−−−

−
ρ=δ ∫∫ ∫                        (3.45) 

 



 

 

39
where href  and h  represent the height of reference surface and the topographic heights, 

respectively. Using rectangular prisms for the computation of the direct RTM 

topographical effect at a computational point a closed expression can be obtained as 

follows: 
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The RTM reduction is also approximated by the following formula when the mean 

elevation computed is adequate enough to represent the long wavelength surface 

(Forsberg, 1984): 

 

c)hh(G2A refRTM −−ρπ=δ                           (3.47) 

 

The first term in the above formula is the difference between two Bouguer plates, the first 

one computed with the thickness of the height of the computation point and the second 

one with the height of the reference surface. In other words, the topographical masses 

above the geoid are removed with the complete Bouguer reduction and then are restored 

with the reference Bouguer plate. This formula also exhibits the importance of the TC in 

the RTM method. The RTM gravity anomalies can be expressed as 

 

RTMoQPRTM Agg δ−γ−=∆                (3.48) 

 

A quasigeoid is obtained using this mass reduction technique instead of the geoid. A 

correction term should be applied to convert from quasigeoid to geoid. 

 

Though RTM gravity anomalies have been compared with topographic-isostatic gravity 

anomalies (Forsberg 1984), the RTM reduction has no geophysical or mathematical 

relations with isostatic compensation, or with condensation, and thus does not possess any 

geophysical meaning.  The integration for the computation of the direct RTM terrain 
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effect on gravity needs to be carried out only up to an appropriate radius. The density 

anomalies oscillate between positive and negative values depending on the position of the 

gravity points from the reference surface and the effect of distant topography on gravity 

thus cancels out (Forsberg 1984). 

 

The measured gravity stations above the reference surface after applying the RTM 

method lie in the air while those below that surface remain inside the topographic mass 

since we remove the topographical masses above this surface and fill up the masses in the 

valleys below this reference surface. The potential below this surface is not a harmonic 

function and therefore imposes a great theoretical problem in this method.  

 

3.4 Helmert’s second method of condensation 

 
Helmert’s second method of condensation is one of most common gravimetric reduction 

schemes used in practical geoid determination in addition to the RTM method described 

in the previous chapter. Studies on direct topographical effect on gravity using this 

scheme are available in the geodetic literature (Heiskanen and Moritz, 1967; 

Wichiencharoen, 1982; Vanicek and Kleusberg, 1987; Wang and Rapp,1990; Sideris, 

1990; Martinec and Vanicek, 1993; Martinec et al., 1993; Heck, 1993; and Heck, 2003). 

Helmert postulates that the topographical masses above the geoid can be shifted onto a 

condensation layer (see Figure 2.4), the surface density of which is equal to the product of 

topographical density and the height. This condition can be mathematically expressed as  

 

hρ=κ                  (3.49) 

 
where κ, ρ and h are surface density of the condensation layer, the density of the Earth’s 

crust, and topographical height, respectively.  
 
The potential of the condensed masses can be expressed as (Heiskanen and Moritz,1967): 
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The following expression for the attraction due to the regular part of the condensed 

topography can be obtained by letting b→ 0 in the equation (3.4) 
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For a Bouguer plate of an infinite radius (a→∞) it becomes 
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The expression for the attraction due to the irregular part of the condensed masses 

computed on the geoid is given by (Sideris, 1990; Wang and Rapp, 1990 and Heck, 

1993): 
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The following expression for the attraction of the condensed masses (both regular and 

irregular) computed on the geoid can be obtained by combining equations (3.52) and 

(3.53) 
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The direct topographical effect on gravity can then be computed using equations (3.9) and 

(3.54) as follows: 
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cAAA CondHelmert −=−=δ                 (3.55) 

 
 
This quantity, which represents the high frequency of gravitational signal, is an important 

gravimetric quantity in solving not only classical problem of BVP using Stokes scheme, 

but also modern BVP using Molodensky approach.  

 

Helmert (or Faye) anomalies can be expressed by the following formula: 

 

cFgg
oQP)Faye(Helmert ++γ−=∆               (3.56) 

 

3.5 Pratt-Hayford topographic isostatic reduction 

 

The PH reduction method is one of the topographic-isostatic reduction schemes used in 

physical geodesy. Although this method was used as a mass reduction technique in the 

past, it has not been used since the late seventies for geoid determination. Pratt studied 

first the geodetic evidence for isostatic equilibrium of topographical masses from the 

geodetic and astro-geodetic measurements carried out in the triangulation stations of the 

Himalayas in India.  The big difference in the deflections of the vertical between two 

stations 375 miles apart made him conclude that the attraction of the Himalayas on these 

stations must be compensated by mass deficiencies located under the mountains. 

According to him, the mountains had risen from the base like fermenting dough and the 

density underneath the mountains would be less than that in the lowland.  

 

Hayford, of U.S. Coast and Geodetic Survey, carried out a new study on Pratt’s 

hypothesis of isostatic equilibrium in 1910 for geodetic purpose. This method has been 

named the Pratt Hayford method since then. This scheme can be formulated as follows: 
 

1. The density underneath high mountains is uniformly smaller than that under 

moderate lands. Isostatic compensation is uniform. 

2. The compensation starts from directly under the mountains. 
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3. The compensation reaches down to a compensation depth D, where isostatic 

equilibrium exists. 

4. The relation between the density ρo of the compensating masses in a column of 

height D  and  the density ρ of a column with height equal to sum of the height of  

the topography and the compensation depth  is then (see Figure 2.6) 

 

ohD
D

ρ
+

=ρ                            (3.57) 

 

where h is the height of the topography. The compensation depth D is assumed 

equal to 100 km. The normal or standard density value ρo is taken equal to 2.67 

g/cm3. It is obvious from formula (3.57) that the actual density is smaller than the 

standard value, which implies that there is mass deficiency given by 
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Similarly, in the ocean, the density of ρ of the column D-h′ can be given by 
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where h′ and ρw are the depth of the ocean and the density of the water, 

respectively. There is a mass surplus in the ocean given by 
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The isostasy is defined as a hydrostatic equilibrium that prevails at a depth of 

compensation in such a way that every unit area at the compensation depth is under the 
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same pressure everywhere under mountain or ocean. The condition of equality of pressure 

for a unit column is given by the equation 
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The condition of equality of mass can be expressed as  
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where R is the Earth’s radius and z is the vertical coordinate. The PH hypothesis agrees 

neither with the condition of pressure nor with that of mass. The difference of mass 

computed using these two conditions shows that the equal pressure hypothesis of 

compensation is four times closer than equal mass hypothesis (Heiskanen and Vening 

Meinesz, 1958). The equality of topographical masses and their compensation can thus be 

regarded as an approximation to the equality of pressure since the latter depends not only 

on mass but also on gravity. 

 

The direct topographical effect in the PH model can be regarded as the attraction change 

due to the topographical masses above the geoid and compensated masses below the 

geoid, which lie within the depth of compensation. The direct topographical effect at a 

point P for this reduction method can be expressed as follows: 

 

CompPH AAA −=δ                                       (3.63) 

 

where A and AComp represent the attraction of the topographical masses and the 

compensated masses, respectively, and they can be expressed by the following integrals: 
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Equations (3.64) and (3.65) can be numerically integrated using rectangular prisms as 

follows (Nagy, 1966): 
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The following steps are required to compute PH anomalies: 

 

1. Measure gravity at a point P on the Earth’s surface. 

2. Compute the effect on gravity due to the complete removal of the topography 

above the geoid using formula (3.66). 

3. Compute the effect on gravity due to the compensating masses using the formula 

(3.67). 

4. Compute the direct topographical effect on gravity for this PH reduction scheme 

using formula (3.63). 

5. Bring the gravity station down to the geoid surface with the Free-air reduction. 

6. Compute the normal gravity of the reference ellipsoid at the corresponding point 

Qo on the reference ellipsoid. 

 

The PH topographic-isostatic anomalies can be given by the following formula: 
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HayfordattPrQPHayfordattPr AFgg
o −− δ−+γ−=∆             (3.68) 

 

3.6 Airy-Heiskanen topographic-isostatic reduction 
 
The AH model is based on the principle that mountains are floating on material of higher 

density forming roots under mountains and anti-roots under the oceans. A British 

astronomer, G. B. Airy, came to the same conclusion as did J. H. Pratt from the geodetic-

astronomical observations in the triangulation chains of India, that the masses of 

mountains are compensated in some way but postulated his hypothesis of isostatic 

equilibrium in a different way compared to that postulated by Pratt. The theory that  the 

gravitational attraction of the masses of the mountains is compensated either due to 

compensating masses of lesser density underneath the mountains according to Pratt or due 

to root formation according to Airy is an important similarity between these two theories. 

According to the “mountain-root theory” proposed by Airy, mountains can be pictured as 

Earth’s crust floating in a magma-like layer, the density of which is higher than that of the 

Earth’s crust (see Figure 2.7). 

 

W. A. Heiskanen formulated Airy’s hypothesis more precisely for the computation of 

topographic-isostatic anomalies for geodetic purposes, and made the following 

assumptions (Heiskanen and Vening Meinesz, 1958): 

 

1. The isostatic compensation is complete. 

2. The compensation is local, which means the compensating masses lie directly 

under mountains. 

3. The density of the Earth’s crust is constant and is assumed to be 2.67 gm/cm3. 

4. The density of the upper mantle is also constant but 0.6 gm/cm3 higher than that of 

the Earth’s crust. 

5. The normal crust thickness is assumed to be 30 km. 

6. The condition of floating equilibrium for the continents can be formulated as 
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o
ht ρ
ρ∆

=                 (3.69) 

 

where t represents the thickness of root and ∆ρ is density contrast between the 

normal crust thickness, ρo and the upper mantle, ρ1 , which is equal to 0.6 g/cm3. It 

is obvious from the equation (3.69) that the smaller the difference in density 

between the normal crust thickness and the upper mantle, the greater the thickness 

of the mountain root. Similarly, the thickness of the antiroot in the ocean can be 

expressed as 
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=                            (3.70) 

 

where h′ and ρw are the depth of the ocean and the density of the water, 

respectively. The density contrast for the case of ocean is given by 
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The direct topographical effect due to this AH topographic isostatic scheme is the 

difference in the attraction between topographical masses and their compensating masses 

within the depth of the root. It can be represented by the equation (3.63), where the 

second term AComp stands for the attraction due to compensated masses according to AH 

gravimetric scheme. The first term which shows the gravitational attraction of the 

topographical masses is evaluated by the equations (3.64) and (3.66). The second term 

can be expressed as 
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where t is the thickness of root and D is the normal crust thickness. The attraction of the 

compensating masses can be given in the same way as in equation (3.67): 
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AH topographic-isostatic anomalies can be computed by the following steps: 

 

1. Measure gravity at a point P on the Earth’s surface. 

2. Compute the effect on gravity due to the complete removal of the topography 

above the geoid using formula (3.66). 

3. Compute the effect on gravity due to the compensation of masses according to AH 

model using formula (3.73). 

4. Compute the direct topographical effect on gravity for this AH reduction scheme 

using the formula (3.63). 

5. Bring the gravity station down to the geoid surface with the Free-air reduction. 

6. Compute the normal gravity of the reference ellipsoid at the corresponding point 

Qo on the reference ellipsoid. 
 
AH topographic-isostatic anomalies can be given by the following formula: 

 

HeiskanenAiryQPHeiskanenAiry AFgg
o −− δ−+γ−=∆                        (3.74) 

 
 

Table 3.1 shows three criteria of each reduction method used in this investigation. 
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Table 3.1 Characters of gravimetric reduction methods 

 

Reduction scheme Indirect effects Smoothness Geophysical meaning 

Bouguer Very large 

indirect effects 

smooth It has geophysical  

meaning 

Helmert (Faye) Very small 

indirect effects 

rough It has no geophysical  

meaning 

Airy Heiskanen Small indirect 

effects (larger 

than Helmert’s ) 

smooth It has geophysical  

meaning 

Pratt Hayford Small indirect 

effects (larger 

than Helmert’s ) 

smooth It has geophysical  

meaning 

Residual Terrain model very small 

restored terrain 

effect  

smooth It has no geophysical  

meaning 

Rudzki zero indirect 

effect 

rough It has no geophysical  

meaning 
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Chapter 4 

Numerical Tests 
 

4.1 Gravimetric reductions 

 

One of the most rugged areas in the Canadian Rockies bounded by latitude between 49ºN 

and 54ºN and longitude between 124º W and 114ºW is selected to compute direct 

topographical effects on gravity using the different gravity reductions presented in the 

previous chapters. They include the Rudzki inversion method, Helmert’s second method 

of condensation, the refined Bouguer and RTM topographic reduction schemes, and the 

AH and PH topographic-isostatic reduction methods. A total of 9477 measured gravity 

values are used for this test, the distribution of which is given in Figure 4.1. The 

maximum and minimum values of measured gravity are 981219 mGal and 980226 mGal 

with a standard deviation 179 mGal.   The    normal   gradient   of 0.3086   mGal/m  is    
 

 
Fig. 4.1 The distribution of gravity points in the test area of Canadian Rockies 
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Fig. 4.2 The digital terrain model of Canadian Rockies (m) 

 
 
used  for the computation of Free-air anomalies. The standard constant density of 2.67 

g/cm3 is assumed. A digital terrain model with 6′′ (0.12 km in East West and 0.18 km in 

North South directions) grid resolution is used in the computations. The attraction of the 

topography, the attraction of the compensating masses, and the attraction of the inverted 

masses are computed integrating a radius of 300 km around the computation point. There 

is a maximum elevation of 3937 m with a standard deviation of 420 m in the test area. 

Figure 4.2 shows the digital terrain model of the test area. The grid resolution used for 

gravity anomalies for each reduction method is 5′ × 5′. 

 
Figures 4.3 and 4.4 show the refined Bouguer anomalies (computed using formula 3.10) 

and their correlation with the topography, respectively.  The statistics of the refined  
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Fig. 4.3 The refined Bouguer anomalies (mGal) 
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Fig. 4.4 The correlation between refined Bouguer anomalies and topography 
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Bouguer anomalies have a maximum value of –6 mGal, a minimum value of –213 mGal, 

a mean value of -110 mGal, and a standard deviation of 44 mGal.  The higher the 

mountains in the test area, the more negative the value of the anomalies. These large 

negative values suggest that the topographic masses of the Rocky Mountains are 

compensated according to some models of topographic-isostatic hypothesis.  It is obvious 

from the formula (3.7) of an infinite Bouguer plate that Bouguer anomalies are linearly 

dependent on the elevation. 

 

In the modern context of geoid or quasigeoid determination, Helmert or Faye anomalies 

(see formula 3.55) can be regarded as an important type of gravity anomalies. This is 

because, on one hand, geoid determination using Helmert’s second method of 

condensation is most commonly used in practice throughout the world and, on the other 

hand, the Molodensky correction term, in planar approximation, is equal to the TC (under  

 

 
Fig. 4.5 Helmert (Faye) anomalies (mGal)  
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the assumption that the free air anomalies are linearly correlated with the height) which 

when added to Free-air anomaly gives us the Helmert or Faye anomaly. Though their 

physical meanings are different, they are approximately equal numerically. Also, Free-air 

anomalies can replace Helmert anomalies in the ocean areas where there is negligible 

effect of TC.  

 

Figures 4.5 and 4.6 show the Helmert anomalies (computed using formula 3.56) and the 

correlation between Helmert anomalies with the topography. Helmert anomalies fluctuate 

between positive and negative values, with a   maximum value of 252 mGal  and  a  

minimum  value  of  -153 mGal. The maximum and minimum values are seen in high 

mountains and low valley stations, respectively.  The correlation with height is bigger 

than that of the refined Bouguer anomalies. 
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Fig. 4.6 The correlation between Helmert anomalies and topography 
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Fig 4.7 PH topographic-isostatic anomalies (mGal) 

 
Fig. 4.8 The correlation between PH topographic-isostatic anomalies and topography 
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Figures 4.7 and 4.8 represent the Pratt Hayford topographic isostatic anomalies 

(computed using formula 3.68) and their correlation with the topography. The 

compensation depth for this mass reduction scheme is assumed to be equal to 100 km for 

the computation of PH anomalies. The maximum and minimum values vary from -108 

mGal to 50 mGal. The range of the difference between maximum and minimum values is 

approximately two and half times smaller than that of Helmert anomalies and also smaller 

than that of the refined Bouguer anomalies by 60 mGal. The standard deviation is 18 

mGal, which is much smaller than that of the Bouguer, Free-air, and Helmert (Faye) 

anomalies.  

 

Figures 4.9 and 4.10 show the Airy Heiskanen topographic-isostatic anomalies (computed 

using 3.74) and their correlation with the topography, respectively. The normal crust 

thickness is assumed to be equal to 30 km and the density contrast between the normal 

crust thickness and the upper mantle is assumed to be 0.6 gm/cm3 in the computational 

process for this mass reduction scheme. The statistics of AH anomalies are similar to 

those of PH model. The small difference in the statistics between these two sets of 

topographic-isostatic anomalies indicates that the attraction of compensating masses 

using AH and PH models is nearly equal.  

 

The correlation of AH and PH anomalies with topography is much smaller than that of 

Free-air, Bouguer, and Helmert (or Faye) anomalies. The removal of topographical 

masses along with compensated masses according to Pratt Hayford and Airy Heiskanen 

topographic isostatic hypothesis prove better on eliminating the strong correlation of 

gravity anomalies with the height as seen with Bouguer and Helmert anomalies. The 

maximum value is observed in the highest mountains. The range of the difference 

between maximum and minimum values is much smaller (almost two and a half times) 

compared to that of Helmert anomalies and also smaller than that of refined Bouguer 

anomalies by 51 mGal. 
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Fig. 4.9 AH topographic-isostatic anomalies (mGal) 
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Fig. 4.10 The correlation between AH anomalies and topography 
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The statistics of Rudzki anomalies (computed using the formula 3.44) show that they 

fluctuate between a maximum value of 124 mGal and a minimum value of –123 mGal. 

When we compare Rudzki anomalies with Helmert, they show similar statistics. 

However, the range between maximum and minimum values is smaller (more than one 

and a half times) than that of Helmert and Free-air anomalies. The standard deviation of 

Rudzki anomalies is 36 mGal, which is much smaller than those of Helmert and Free air 

anomalies (58 mGal and 51 mGal, respectively) but bigger than those of both the AH and 

the PH topographic isostatic anomalies. 

 

Figures 4.11 and 4.12 show the Rudzki anomalies and their correlation with the 

topography, respectively. Their correlation with the topography is less than that of 

 

 
Fig. 4.11 Rudzki anomalies (mGal) 
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Fig. 4.12 The correlation between Rudzki anomalies and topography 

 

Helmert anomalies. However, the removal of topography with inverted masses could not 

remove the strong correlation of Rudzki anomalies with height as significantly as 

topographic isostatic mass reduction schemes. The maximum and minimum values are 

seen at stations in mountains and low valleys, respectively. 

 

The RTM anomalies are not used in geophysics. They were merely developed for geoid 

determination. Figures 4.13 and 4.14 show the RTM gravity anomalies (computed using 

formula 3.48) and their correlation with the topography. The statistics of the RTM 

anomalies are similar to those of topographic isostatic anomalies using the PH and AH 

reduction schemes, though the RTM reduction scheme is not a topographic isostatic 

reduction scheme.  
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Fig. 4.13 RTM anomalies (mGal) 
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Fig. 4.14 The correlation between RTM anomalies and topography 
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The RTM anomalies were also less correlated with the topography, like the PH and AH 

topographic isostatic anomalies. They have a maximum value of 116 mGal and a 

minimum value of –90 mGal with a mean value of –1 mGal. The standard deviation is 23 

mGal, which is closer to those of topographic isostatic schemes and smaller compared to 

that of Free-air, Bouguer, Helmert, and Rudzki anomalies. The maximum value of RTM 

anomalies is seen in mountains and the minimum in moderate lands. 

 

The statistics of gravity anomalies for different gravimetric mass reduction schemes are 

presented in Table 4.1. The AH and PH topographic isostatic gravity  anomalies result in 

the smoothest gravity field in terms of standard deviation among all mass reduction 

techniques used in this investigation. Their range is the smallest compared to those of all 

other methods. Helmert anomalies yield the roughest gravity field for the test area.  The 

Free-air and Helmert anomalies show similar statistics. The statistics of Rudzki anomalies 

are better than those of Helmert and Free air anomalies in terms of both the range and the 

standard deviation. RTM anomalies, though they do not belong to any topographic 

isostatic reduction scheme and have some theoretical problems as described in the earlier 

chapter, show statistics similar to topographic isostatic anomalies, which is a main reason 

why they are favored for geoid determination and are being widely used throughout the 

world these days. Figures 4.15 and 4.16 present all gravity anomalies and their correlation 

 

Table 4.1 The statistics of gravity anomalies (mGal) 
 

Reduction scheme Max Min Mean Std 

Free-air 166.38 -183.58 -22.39 50.71 

Refined Bouguer -5.52 -212.87 -110.08 43.62 

Helmert (Faye) 251.56 -152.67 -15.06 58.22 

AH 49.86 -118.83 -25.14 18.54 

PH 49.86 -107.58 -29.78 18.05 

RTM 115.45 -89.91 -0.57 23.49 

Rudzki 123.69 -122.34 -17.38 35.85 
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with the topography once again in single pages for the purpose of easy comparisons. The 

maximum and minimum values of gravity anomalies are held fixed in Figure 4.15. 

 
 
 
 
 
 
 
 
 
 
 
 
 
  Bouguer                Helmert 
 
 
 
 
 
 
 
 
 
 
 
 

Airy Heiskanen     Pratt Hayford 
                       
 
 
 
 
 
 
 
 
 
 
 

           Rudzki            RTM 
                                    

Fig. 4.15 Gravity anomalies 
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Fig. 4.16 The correlation of gravity anomalies with topography 
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4.2 Gravimetric geoid determination 

 

The terrain-reduced gravity anomalies are further reduced with a geopotential model to 

extract the long wavelength component of the gravity signal prior to the solution of the 

geodetic boundary value problem using the classical Stokes formula. It is restored again 

in the computational process to compute the total geoid. This procedure is regarded as the 

“remove restore” technique in geoid determination.  

 

The geopotential model EGM96 is used as a reference model for all mass reduction 

schemes used in this investigation. Comparing the statistics of reduced gravity anomalies 

(see equation 2.3) in Table 4.2 to those in Table 4.1 we see that the removal of the global 

reference field does improve the statistics of the reduced gravity anomalies for Free-air, 

Helmert, Rudzki, and RTM schemes but not for the refined Bouguer, AH and PH 

topographic-isostatic methods in terms of standard deviation and range. The standard 

deviation and the range get bigger for refined Bouguer, AH and PH models, exhibiting a 

disagreement of these reduction schemes with the geopotential model. 

 

Table 4.2 The statistics of reduced gravity anomalies (mGal) 
 

Reduction scheme Max Min Mean Std 

Free-air 125.47 -185.77 -16.53 44.03 

Refined Bouguer 26.61 -261.30 -104.23 64.21 

Helmert( Faye) 214.65 -155.74 -9.20 50.15 

Airy-Heiskanen 65.38 -136.98 -19.29 28.41 

Pratt-Hayford 62.80 -144.13 -23.93 29.59 

RTM 67.59 -78.29 5.20 15.29 

Rudzki 77.04 -118.16 -11.54 24.22 

 

It is theoretically not correct to use the EGM96 geopotential model, which is based on FA 

anomalies, to  extract  the  long-wavelength  component  for  all  gravimetric  reduction 
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schemes. The EGM96 geopotential model is based on FA anomalies and therefore either 

a geopotential model corresponding to each reduction scheme should be used or the 

corresponding correction for each reduction method should be applied to FA coefficients 

(also see Kuhn, 2000). However, it will be very difficult in practice to create geopotential 

models based on each reduction scheme.  

 

The 258 GPS benchmarks available in the test area of Canadian Rockies are used as 

control for estimating the accuracy of the gravimetric geoid solutions; their distribution is 

given in Figure 4.17. There are no GPS leveling points above the elevation of 2000 m. 
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Fig 4.17 The distribution of GPS leveling points in the test area 

 

The indirect effect on gravity for Helmert, AH, and PH models is considered before 

applying Stokes’s formula for these reductions. The statistics of the indirect effects on 

gravity and the geoid are given in Table 4.3. The indirect effect on gravity for Helmert’s 

method is very small, while that of the PH topographic-isostatic reduction reaches a 
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maximum of 3 mGal. The indirect effect on geoid undulations for the PH isostatic 

reduction changes the geoid by nearly 10 m, while that for Helmert’s method changes the 

geoid by only 47 cm. The indirect effect for Helmert’s second method is computed using 

FFT method (based on Formula 2.17) in 6′′ × 6′′ grid. The indirect effects on geoid for  

Table 4.3 Indirect effects on gravity (mGal) and on geoid undulation (m) 
 

Geoid Model Indirect 
Effect 

Max Min Mean STD 

Helmert gravity 0.26 0.00 0.04 0.03 
 geoid 0.01 -0.47 -0.12 0.08 

Airy Heiskanen gravity 2.61 0.09 1.04 0.64 
 geoid 8.46 0.31 3.36 2.06 

Pratt Hayford gravity 3.08 0.18 1.35 0.75 
 geoid 9.97 0.59 4.36 2.41 

RTM (restored 
terrain effect) 

quasigeoid 1.07 -1.03 -0.33 0.46 

 

 
Fig 4.18 The indirect effect on geoid for Helmert scheme (m) 
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Fig 4.19 The indirect effect on the geoid for the PH reduction (m) 

 

Fig 4.20 Restored terrain effect on the quasigeoid  for the RTM reduction (m) 
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AH and PH models and restored terrain effect on quasigeoid for RTM method are 

computed using the numerical integration of rectangular prisms given by Formula 2.16. 

The results are then gridded to 5′ × 5′ resolution.  

 

The indirect effects on gravity and geoid for the AH and PH models have similar 

statistics. Figures 4.18 and 4.19 show the indirect effect on geoid for Helmert’s second 

method of condensation and the PH model. The maximum indirect effect for all reduction 

schemes is seen in mountains. The restore terrain effect on the quasigeoid for the RTM 

model reaches nearly a metre and is shown in figure 4.20. 

 

A four-parameter trend surface is applied to fit the gravimetric geoid solutions to GPS-

leveling. The statistics of the difference of gravimetric geoid undulations with GPS-

leveling before and after the fit are given in table 4.4.  

 

The gravimetric geoid solution based on Rudzki’s inversion reduction shows almost the 

same differences as the RTM and Helmert methods in terms of standard deviation and 

range after the fit. The absolute magnitudes of maximum, minimum, and mean values of 

the differences between the Rudzki gravimetric solution with GPS-levelling before fit are 

the smallest, and those based on the topographic-isostatic gravimetric solutions of AH 

and PH models are the largest. As mentioned in the earlier paragraph, the main reason for 

this large bias is the use of the global geopotential model EGM96, which is based on FA 

coefficients.  

 

These biases are removed by the fit to GPS levelling geoid and the range of maximum 

and minimum values for these models becomes nearly the same as for the Rudzki, 

Helmert, and RTM methods. However, their standard deviation is 6 cm bigger than other 

methods. The figure of absolute geoid using every reduction scheme looks nearly the 

same as that of the Rudzki geoid shown in figure 4.21.  
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Table 4.4 Statistics of different gravimetric geoid solutions compared with GPS 

leveling geoid (m) 
(values in the parentheses are before fit) 

 

Reduction scheme Max Min Mean Std 

Helmert 0.62 -0.59 0.00 0.19 

 (1.97) (0.65) (1.33) (0.23) 

Airy-Heiskanen 0.59 -0.86 0.00 0.26 

 (-4.85) (-6.64) (-5.64) (0.35) 

Pratt-Hayford 0.54 -0.81 0.00 0.25 

 (-5.18) (-6.81) (-5.77) (0.34) 

RTM 0.76 -0.55 0.00 0.19 

 (1.46) (0.31) (0.77) (0.21) 

Rudzki 0.76 -0.56 0.00 0.19 

 (0.12) (-1.37) (-0.67) (0.35) 

 

 
Fig. 4.21 The Rudzki geoid (m)     
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4.3 Summary of results 

 

A numerical investigation was carried out to explore different gravimetric reduction 

schemes in addition to the usual Helmert’s second method of condensation and the RTM 

method, in the context of precise geoid determination.  The Rudzki geoid, which had 

never been used in the past for geoid determination, proves to be as good as the Helmert 

and RTM geoids, and better than the AH and PH geoids, compared to GPS-levelling after 

fit. Also, it has the smallest bias among all other reduction schemes. The main advantage 

of using this method is that one does not have to compute the indirect effect on the geoid 

required for all other reduction schemes. Therefore, it can become an alternative tool for 

gravimetric geoid determination in the future. 

 

The AH and PH topographic-isostatic anomalies are the smoothest among all in terms of 

range and standard deviation. Rudzki anomalies have smaller standard deviation and 

range than Helmert anomalies, which yield the roughest gravity field in the test area. 

However, Rudzki, RTM, and Helmert anomalies seem to be in better agreement with 

EGM96 (which is based on FA coefficients) than the AH and PH anomalies, and thus are 

the best anomalies for geoid determination using a geopotential model like EGM96. The 

large bias in the topographic-isostatic geoid solutions indicates that one should use a 

corresponding topographic-isostatic geopotential model to extract the low frequency part 

of the gravity signal.  

 

The indirect effect of Helmert’s second condensation method is very small (47 cm), while 

that of the topographic-isostatic reductions is as big as 10 metres. The maximum restored 

terrain effect on the quasigeoid for the RTM reduction is nearly a metre. The Bouguer 

correction term to transform from quasigeoid to geoid is as big as 59 cm. 
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Chapter 5 
 

Density and Gravity Interpolation Effects on Helmert Geoid 

Determination 
 

5.1 Gravity Interpolation Effects on Helmert Geoid Determination 

 
The importance of Helmert’s second method of condensation as a common gravimetric 

tool to handle the topography for Stokes’s boundary value problem solution has been 

already described in previous chapters. Because the Helmert anomalies based on this 

method are very rough, gravity interpolation is one of the very important aspects to be 

cautiously treated for precise geoid determination using this mass reduction technique. 

The Bouguer reduction is generally used in practice to remove all the topographical 

masses above the geoid before gridding Free-air anomalies and then the corresponding 

Bouguer effect is added back to the gridded gravity values.     

 

The main purpose of the investigation in this section is to study the effects that different 

gravimetric reductions have on gravity interpolation and Helmert geoid determination, in 

addition to the commonly used Bouguer scheme. As described earlier, the main principle 

of using a gravimetric terrain reduction for the interpolation of free-air anomalies is that 

the topography is first removed either completely with the refined Bouguer reduction or 

removed with compensating or inverted masses depending on the reduction method used 

before gridding, and these corresponding masses are added back again to the gridded 

gravity anomalies producing free-air anomalies.  

 

This section will illustrate via a numerical test in the Canadian Rockies the effect 

different gravity reduction schemes have on gravity interpolation and on Helmert geoid 

determination. The Bouguer and residual terrain modelling (RTM) topographic 

reductions, the Rudzki inversion scheme, and the topographic-isostatic reduction of PH 
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are used to remove terrain effects before gridding reduced FA anomalies, and then their 

corresponding topographic or topographic-isostatic or inverted masses are restored to 

produce FA anomalies. The procedure for interpolation using different gravimetric 

reduction schemes is shown in figure 5.1. 

 

This investigation is carried out in the same area of the Canadian Rockies used in the 

previous investigations. The data sets of gravity points and GPS-levelling points are the 

ones used in the numerical investigation for gravimetric geoid determination in chapter 4. 

 

 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Fig. 5.1 Procedure for gravity interpolation 

 

A digital terrain model of 15′′ grid resolution is used for this test. The assumptions made 

on the density, density contrast, compensation depth, and normal crust thickness for 

topographic and topographic-isostatic reductions are the same as those in the previous 

tests. The main difference in the data sets used for this part of research is the OSU91A 
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geopotential model. This model is used in this test instead of EGM96, and the gravity 

observations are referenced to GRS67.  

 
The procedure for computing the Helmert geoid is the same one applied in chapter 4. The 

results presented in this section come from the difference of using different gravimetric 

reduction methods for gridding free-air anomalies instead of using just a simple Bouguer 

scheme used in chapter 4.   

 

First, the Helmert gravity anomalies are computed using the same formula (3.55) used in 

chapter 4. The different sets of Free-air anomalies are obtained using different mass 

reduction schemes for gridding. Their statistics, shown in table 5.1, show that Helmert 

anomalies using any gravimetric reduction for interpolating FA anomalies become 

smoother in terms of standard deviation and range than those using directly computed FA 

anomalies. The standard deviation of Helmert anomalies decreases by at least 10 mGal 

using any gravimetric reduction scheme for FA interpolation. The Pratt Hayford and 

RTM reductions prove to be the best among all reduction schemes used in this test for 

gravity interpolation.  

Table 5.1 The statistics of Helmert anomalies using different mass reduction 

schemes for interpolating free-air anomalies (mGal) 

 
 

Reduction Scheme 

Used for Gridding 

Max Min Mean Std 

Direct (Free-air) 225.84 -145.98 27.84 58.36 

Refined Bouguer 190.18 -138.90 15.42 49.73 

Pratt-Hayford 179.24 -134.52 12.61 48.62 

RTM 178.49 -133.76 11.57 48.56 

Rudzki 178.09 -143.00 11.46 48.82 

 

Second, the difference between directly interpolated Free-air anomalies and those 

obtained from using different reduction schemes is computed. They are presented in table 
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5.2. The difference is very big and reaches a maximum of 229 mGal, with a standard 

deviation of 43 mGal using the Pratt Hayford method.   

 

Table 5.2 Difference between FA anomalies directly interpolated and after applying 

different mass reduction schemes for interpolation (mGal) 

 

Reduction scheme Max Min Mean Std 

Direct-Refined Bouguer  228.18 -198.86 12.44 42.43 

Direct-Pratt 223.02 -207.88 16.29 42.61 

Direct-RTM 228.58 -210.47 15.25 42.84 

Direct-Rudzki 180.22 -150.96 16.83 36.92 

 
 

Table 5.3 The statistics of difference of Helmert geoids using different mass 

reduction schemes for interpolation (m) 

 

Reduction scheme Max Min Mean Std 

Direct-Refined Bouguer  8.77 2.00 4.30 1.25 

Direct-Pratt 9.84 2.92 5.55 1.33 

Direct-RTM 9.68 2.49 5.26 1.36 

Direct-Rudzki 9.62 2.71 5.83 1.41 

 

Third, the Helmert geoids using different gravimetric reduction techniques for gridding 

FA anomalies are computed. In this thesis, the Helmert geoids obtained from using the 

Bouguer, Rudzki, RTM, and Pratt Hayford gravimetric reductions for gravity 

interpolation will be named Bouguer-Helmert, Rudzki-Helmert, RTM-Helmert, and PH-

Helmert, respectively, and the one obtained from directly interpolated FA anomalies is 

termed direct-Helmert. The differences between the direct-Helmert geoid and the other 

Helmert geoids are given in table 5.3. The difference is as high as 9.8 m for the PH 
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topographic isostatic method. The standard deviation and the range of the differences are 

greater than a metre and 10 metres, respectively. These results suggest that one should not 

use directly interpolated FA anomalies for Helmert geoid determination. 

 

Table 5.4. The statistics of difference between different Helmert geoids and GPS-levelling 

geoid solution (m) 
 
 

Helmert geoid Max Min Mean Std 

Direct-Helmert 5.93 2.29 4.68 1.00 

 (6.89) (1.98) (4.21) (0.95) 

Bouguer-Helmert -0.23 -1.62 -0.72 0.34 

 (0.55) (-0.83) (0.00) (0.22) 

PH-Helmert 0.18 -1.27 -0.49 0.28 

 (0.76) (-0.76) (0.00) (0.22) 

RTM-Helmert 0.47 -1.06 -0.22 0.29 

 (0.73) (-0.62) (0.00) (0.20) 

Rudzki-Helmert 0.13 -1.84 -0.82 0.38 

 (0.57) (-0.97) (0.00) (0.22) 

 

 

The statistics of the differences between different Helmert geoids (applying different 

mass reduction schemes for gravity interpolation) and the GPS-levelling geoid solution 

are given in table 5.4. The results show that the RTM-Helmert and PH-Helmert geoids 

demonstrate better fit with GPS-levelling geoid of the test area before fit than the 

Bouguer–Helmert and Rudzki-Helmert geoids. However, the standard deviation after fit 

becomes nearly the same for all Helmert geoids (except for direct-Helmert) but the range 

of the RTM-Helmert and Pratt-Helmert geoids is still smaller compared to that of 

Bouguer-Helmert and Rudzki-Helmert geoids.  

 



 

 

76
We can draw a very important conclusion from the results obtained in this test, namely, 

that the use of a proper gravimetric terrain reduction scheme for the interpolation of free-

air gravity anomalies plays a key role in precise Helmert geoid computation, especially in 

areas of rugged topography. The commonly used Bouguer reduction scheme should be 

replaced by the topographic-isostatic gravimetric reduction schemes like the PH model, or 

by the RTM topographic reduction method for gravity interpolation in the context of 

precise Helmert geoid determination. 

 

5.2 Helmert Geoid Determination Using Lateral Density Variation 

 

This study will show the importance of using actual crust density information on Helmert 

geoid determination. The information on density, which is available as a two-dimensional 

digital    density    model  for the  test area, is   incorporated   in   all  steps of   the  geoid  

 

2.5

2.55

2.6

2.65

2.7

2.75

2.8

2.85

2.9

2.95

Longitude (°)

La
tit

ud
e 

( °
)

-124 -123 -122 -121 -120 -119 -118 -117 -116 -115 -114

54

53

52

51

50

49

 
Fig 5.2 The density model in the Canadian Rockies (g/cm3)  
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computational process. The actual density information is used in the computation of  

refined  Bouguer   anomalies, which is  used  for  the  interpolation of free-air anomalies, 

in the computation of terrain correction (which is the direct topographical effect on 

gravity for Helmert’s second method of condensation scheme as described in chapter 3), 

and in the computation of the indirect effect on geoid for this mass reduction scheme.  

 

The numerical test is carried out in the same area of the Canadian Rockies as for the other 

investigations. The computational methodology and all data sets required for geoid 

determination in this test are the same as those applied in the previous investigation of 

geoid determination, except for the DTM grid resolution. Since the DDM grid resolution 

available for this test is 30′′, a 30′′ grid spacing of DTM and DDM is used for this test. 

Figure 5.2 shows large contrasts in the topographic density of the Canadian Rockies, with 

maximum and minimum values of 2.98 g/cm3 and 2.63 g/cm3, respectively. 

 

Table 5.5 The statistics of TC using constant and variable density (mGal) 
 

Density Max Min Mean RMS Std 

Constant  100.07 0.05 6.97 9.77 6.86 

Variable 95.98 0.05 6.86 9.62 6.75 

Difference 10.87 -4.91 0.13 0.38 0.36 

 

 

Table 5.6 The statistics of direct topographical effect on geoid using constant and 

variable density (m) 
 

Density Max Min Mean RMS Std 

Constant  3.779 1.179 2.482 2.556 0.612 
Variable 3.703 1.152 2.436 2.509 0.600 

Difference 0.105 -0.011 0.046 0.052 0.024 
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The TC computation is carried out using the MP model for up to the second term in the 

Taylor series expansion using constant and variable density. The kernel function is 

computed over the whole area and 100% zero padding is performed around the matrices 

of heights in order to remove circular convolution effects.  

 

Figure 5.3 shows the difference in terrain correction using constant and variable density 

information. The difference is as much as 10.9 mGal with the standard deviation of 0.4 

mGal and is correlated with the topography. The maximum value is observed at the top of 

the mountains. Their effect on geoid undulation is shown in the Figure 5.4 and their 

statistics are given in the Table 5.6. There is a maximum effect of 10 cm with an RMS of 

5.2 cm on geoid undulation using constant and lateral density variation in Canadian 

Rockies. 

 

Table 5.7 presents the statistics of refined Bouguer anomalies using constant and variable 

density. There is a difference of 29 mGal in maximum value and 5 mGal in standard 

deviation using constant and lateral density variation in the computation of refined 

Bouguer anomalies.  

 

Table 5.8 shows the statistics of Helmert anomalies using constant and variable density 

not only for terrain correction computation but also for interpolation of free-air anomalies 

using the Bouguer reduction scheme. The difference of Helmert anomalies using constant 

and variable density reaches up to 33 mGal with the standard deviation of 7 mGal. 

 

Table 5.7 The statistics of Bouguer anomalies using constant and variable density 

(mGal) 
 

Density Max Min Mean Std 

Constant  -4.77 -297.07 -117.41 50.77 

Variable -5.11 -268.80 -113.37 47.59 

Difference 29.08 -28.27 -4.05 5.54 
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Fig 5.3 Difference in TC using constant and variable density (mGal) 
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Fig. 5.4 Difference of direct topographical effect on geoid undulation using constant 

and variable density (m) 
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Table 5.8 The statistics of Helmert anomalies using constant and variable density for 

terrain correction computation and interpolation of Free-air anomalies (mGal) 

 
 

Density Max Min Mean Std 

Constant  193.57 -151.16 4.71 45.98 

Variable 188.72 -151.66 8.72 47.04 

Difference 32.75 -41.91 -4.01 7.24 

 

The statistics of indirect effects on Helmert geoid using constant and variable density is 

given in the Table 5.9. These results suggest that the difference in using constant density 

instead of using actual density information for the computation of indirect effects can 

alter the geoid as much as 5 cm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.5 Difference of indirect effects on Helmert geoid using constant and variable 

density (m) 
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Table 5.9 The statistics of indirect effects on Helmert geoid using constant and 

variable density (m) 
 

Density Max Min Mean Std 

Constant  0.000 -0.818 -0.122 0.152 

Variable 0.000 -0.784 -0.119 0.148 

Difference 0.051 -0.034 -0.002 0.006 

 

Table 5.10 The statistics of total terrain effects on Helmert geoid using constant and 

variable density (m) 
 

Density Max Min Mean Std 

Constant  3.745 1.148 2.360 0.579 

Variable 3.669 1.116 2.317 0.570 

 

The statistics of the total terrain effects (direct and indirect effects) on Helmert geoid is 

given in Table 5.10. The statistics of the differences between Helmert gravimetric geoid 

solutions using constant and variable density with the GPS-levelling geoid is shown in 

table 5.11. The results demonstrate that Helmert geoid determination incorporating actual 

Earth crust density information in all steps of its computational process shows better fit 

with the GPS-levelling geoid of the test area in terms of standard deviation (34 cm) than 

when using constant density (56 cm) before fit. 

 

5.3 Summary of results 

 

This chapter investigated two important aspects of precise Helmert geoid determination. 

From the results of the first investigation, the topographic-isostatic reduction schemes like 

Pratt-Hayford or the RTM reduction should be used for smooth gravity interpolation 

rather than a simple Bouguer reduction scheme, which is most commonly used in 

practice. The difference between direct-Helmert geoid and other Helmert geoids can be as 
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Table 5.11 The statistics of difference between Helmert gravimetric geoid solutions 

using constant and variable density with GPS-levelling geoid (before and after fit) 

(m) 
 

Density Max Min Mean Std 

Constant (before fit) -0.28 -3.04 -1.61 0.56 

Variable (before fit) 0.55 -1.70 -0.15 0.34 

Constant (after fit) 0.54 -1.27 0.00 0.25 

Variable (after fit) 0.69 -0.77 -0.00 0.25 

 

large as 10 metres with the standard deviation of more than a metre. Therefore the direct 

Helmert geoid can not be used for Helmert geoid determination, even when we are after 

an accuracy of several metres. The Pratt-Helmert and RTM-Helmert geoids demonstrate 

better fit with the GPS-levelling geoid of the test area before fit than the Bouguer–

Helmert and Rudzki-Helmert geoids do. Also, their range is the smallest compared to 

other ones. 

 

The second investigation in this chapter has illustrated the importance of using actual 

crust density information (if available) in all steps of Helmert geoid determination; (i) TC 

computation; (ii) gravity interpolation and (iii) the computation of indirect effects. The 

results show that Helmert geoid determination incorporating actual Earth crust density 

information in all steps of its computational process shows better results compared to the 

GPS-levelling geoid of the test area in terms of standard deviation (34 cm) than using 

constant density (56) cm before fit. 

 

The difference in terrain correction using constant and variable density information can 

alter the geoid as much as 10 cm with an RMS of 5.2 cm in the test area. The difference 

in using constant density instead of using actual density information for the computation 

of indirect effects can alter the geoid as much as 5 cm.  
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The real density information of the topographical masses above the geoid, which is 

required by Stokes’s boundary value problem, produces smoother terrain reduced and 

interpolated gravity anomalies. 
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Chapter 6 
 

Terrain-Aliasing Effects on Geoid Determination  
 

This chapter focuses on investigating the importance of using various DTM resolutions 

for different mass reduction schemes within the context of precise geoid determination. 

The terrain aliasing effects are studied for the RTM topographic reduction, Pratt-Hayford 

topographic isostatic reduction, Helmert’s second method of condensation, and the 

Rudzki inversion method. Because the terrain correction is a key quantity (as described in 

earlier chapters) in physical geodesy for both geoid and quasigeoid determination, a 

separate section in this chapter presents aliasing effects on terrain correction.  

 

In this chapter, the term aliasing represents the loss of detail information as terrain 

reductions are evaluated from a high-resolution DTM to a coarse one. In other words, the 

results from the densest DTM are taken as “control values” and the differences between 

these results and the results obtained by using sparser DTMs are considered to be the 

aliasing effects.  

 

6.1 Aliasing Effects on Terrain Correction  
 
This section investigates the importance of using various DTM resolutions for terrain 

correction computation using constant and lateral density variation in flat and rough 

areas, within the context of precise geoid determination.  

 

Numerical tests are carried out in two areas in Canada; the rugged area in the Canadian 

Rockies used in the previous investigations and a modest terrain area in Saskatchewan 

bounded by latitude between 49ºN and 54ºN and longitude between 110º W and 100ºW. 

The statistics of the DTMs in the test areas are presented in the tables 6.1 and 6.2 for 

different grid resolutions. 
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Fig 6.1 The topography in the Saskatchewan area (m) 
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Fig. 6.2 The density model of Saskatchewan area (g/cm3) 
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The original grid resolution available for this test is 3′′, while 15′′, 30′′, 45′′, 1′ and 2′ grid 

files are produced by selecting point height values from the 3′′ grid. The resolution of the 

original DDM available for these test areas is 30′′, while 1′ and 2′ grid resolutions of 

DDM are produced from the 30′′ DDM by picking point density values for the 

corresponding grid levels. The topography and density models of the first test area are 

shown in Figures 4.2 and 5.2, respectively, whereas those of the second test area are 

shown in Figures 6.1 and 6.2, respectively. Saskatchewan has a smooth geological 

structure with constant density of 2.56 g/cm3 except in some areas in the southern part. 

 

Table 6.1 Statistical characteristics of DTMs in the Canadian Rockies (m) 
 

 

Grid Resolution Max Min Mean STD 
15′′×15′′ 3840 0 1355 543 
30′′×30′′ 3785 0 1355 543 
45′′×45′′ 3656 0 1354 543 

1′×1′ 3429 0 1354 543 
2′×2′ 3275 0 1353 544 

 
 

Table 6.2 Statistical characteristics of DTMs in the Saskatchewan area (m) 
 
Grid Resolution Max Min Mean STD 

15′′×15′′ 1385 244 581 159 
30′′×30′′ 1381 244 581 159 
45′′×45′′ 1380 244 581 159 

1′×1′ 1379 244 581 159 
2′×2′ 1379 244 581 159 

 

The TC computation is carried out using the mass prism model for different grid 

resolutions of DTM in both test areas for up to the second term in the Taylor series 

expansion. The kernel function is computed over the whole area and 100% zero padding 

is added around the matrices of heights in order to remove circular convolution effects. 

Table 6.3 summarizes the statistics of TC results using different grid resolutions of DTM. 
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Table 6.3 Terrain correction in the Canadian Rockies (mGal) (C1-first term, C2-
second term, of Taylor series) 

 
 

Grid resolution Terms Max Min Mean RMS STD 
C1 142.00 0.05 6.73 9.57 6.80 15′′×15′′’ 

C1+C2 108.76 0.05 7.06 9.89 6.93 
C1 121.23 0.05 6.75 9.64 6.88 30′′×30′′ 

C1+C2 100.06 0.05 6.96 9.77 6.86 
C1 109.92 0.05 6.65 9.54 6.84 45′′×45′′ 

C1+C2 83.38 0.05 6.71 9.44 6.64 
C1 82.62 0.05 6.39 9.22 6.63 1′×1′ 

C1+C2 59.83 0.05 6.36 8.98 6.34 
C1 52.85 0.05 5.20 7.59 5.53 2′×2′ 

C1+C2 42.73 0.05 5.09 7.31 5.24 
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Fig 6.3 Difference in TC using 15′′ and 2′ grid resolution (mGal) 

 



 

 

88
Figure 6.3 shows the difference in TC using DTM grid resolutions between 15′′ and 2′. 

The difference in TC using different DTM resolutions is correlated with the topography. 

TC varies from 109 mGal to 42.7 mGal in maximum value, and 9.9 mGal to 7.3 mGal in 

RMS in the Canadian Rockies, while there is no considerable difference in the statistics 

(which are shown in table 6.4) of Saskatchewan using DTMs from 15′′ grid resolution 

level up to 2′ grid level. Maximum and RMS values of TC decrease from 2.6 mGal and 

0.1 mGal to 1.5 mGal and 0.1 mGal, respectively, in Saskatchewan. Their effects on 

geoid undulations are given in Tables 6.5 and 6.6. 

Table 6.4 Terrain correction in Saskatchewan (mGal) (C1-first term, C2-second 
term) 

 
Grid resolution Terms Max Min Mean RMS STD 

C1 2.585 0.005 0.056 0.106 0.090 15′′×15′′’ 
C1+C2 2.653 0.005 0.058 0.108 0.092 

C1 2.522 0.005 0.055 0.103 0.087 30′′×30′′ 
C1+C2 2.533 0.005 0.055 0.104 0.088 

C1 2.521 0.005 0.054 0.100 0.085 45′′×45′′ 
C1+C2 2.521 0.005 0.054 0.101 0.085 

C1 1.932 0.005 0.052 0.098 0.082 1′×1′ 
C1+C2 1.928 0.005 0.052 0.098 0.082 

C1 1.459 0.005 0.048 0.089 0.075 2′×2′ 
C1+C2 1.457 0.005 0.048 0.089 0.075 

Table 6.5. TC effect on geoid undulation (m) (Canadian Rockies) 

 

Grid  Spacing Max Min Mean RMS STD 
15′′×15′′ 3.866 1.207 2.536 2.614 0.634 
30′′×30′′ 3.779 1.179 2.482 2.556 0.612 
45′′×45′′ 3.619 1.128 2.376 2.448 0.588 

1′×1′ 3.410 1.066 2.247 2.314 0.556 
2′×2′ 2.729 0.852 1.795 1.850 0.445 

Table 6.6. TC effect on geoid undulation (m) (Saskatchewan) 
 

Grid  Spacing Max Min Mean RMS STD 
15′′×15′′ 0.037 0.011 0.019 0.019 0.003 
30′′×30′′ 0.037 0.010 0.018 0.019 0.004 
45′′×45′′ 0.036 0.010 0.018 0.018 0.003 

1′×1′ 0.035 0.010 0.017 0.018 0.003 
2′×2′ 0.034 0.009 0.016 0.016 0.003 
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Table 6.7 The difference in TC using constant and variable density (mGal) 
(Canadian Rockies) 

 
Grid  Spacing Max Min Mean RMS STD 

30′′×30′′ 10.87 -4.91 0.13 0.38 0.36 
1′×1′ 3.26 -2.94 0.11 0.29 0.27 
2′×2′ 1.77 -2.46 0.08 0.23 0.22 

 

Table 6.8 The difference in TC using constant and variable density (mGal) 
(Saskatchewan) 

 
 

Grid  Spacing Max Min Mean RMS STD 
30′′×30′′ 0.105 0.002 0.002 0.004 0.004 

1′×1′ 0.079 0.000 0.002 0.004 0.004 
2′×2′ 0.055 0.000 0.002 0.004 0.003 
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Table 6.9 Effect of difference in TC using constant and variable density on the geoid 

(m) (Canadian Rockies) 

 
Grid  Spacing Max Min Mean RMS STD 

30′′×30′′ 0.105 -0.011 0.046 0.052 0.024 
1′×1′ 0.085 -0.012 0.038 0.043 0.021 
2′×2′ 0.068 -0.010 0.029 0.034 0.016 

 

Table 6.10 Effect of difference in TC using constant and variable density on the 
geoid (m) (Saskatchewan) 

 

Grid  Spacing Max Min Mean RMS STD 
30′′×30′′ 0.002 0.000 0.001 0.001 0.000 

1′×1′ 0.002 0.000 0.001 0.001 0.000 
2′×2′ 0.002 0.000 0.001 0.001 0.000 

 
The results from the first part of this test show that the effect of TC on geoid undulation 

using a 15′′ grid spacing of DTM up to a 2′ spacing can vary from 3.88 m to 2.73 m in 

maximum value and 2.50 m to 1.73 m in RMS in the Canadian Rockies. These values can 

even be higher if 3′′ grid resolution of DTM is used. On the other hand, there is just a 

change of 3-4 mm in maximum value and RMS in Saskatchewan. These results show that 

the high resolution DTM (15′′ or finer) should be used in mountainous areas like the 

Canadian Rockies for geoid determination with an accuracy of a decimetre or higher. In 

the modest terrain areas like Saskatchewan, the high resolution DTM is critical only for 

geoid determination with the accuracy of a centimetre or higher. 

  

The second part of this test is to study the same effect using variable density. The grid 

spacing of DTM and DDM used for this test are 30′′, 1′ and 2′. Tables 6.7 and 6.8 show 

the statistics of the difference in TC using constant density and actual density information 

for different grid resolutions in the Canadian Rockies and Saskatchewan, respectively. 

Tables 6.9 and 6.10 show their effects on the geoid.  
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There is a difference of 3 cm in maximum value and 2 cm in RMS using constant and 

actual density information for grid spacing of DTM and DDM ranging from 30′′ up to 2′ 

in the Canadian Rockies. There is no considerable difference in TC and their effects on 

geoid undulation using constant and actual density information in Saskatchewan. These 

results suggest that the finer DDM resolution (if available) should be incorporated in 

precise geoid determination with the accuracy of decimetre or higher in rugged areas. The 

use of DDM is not critical in the computation of terrain effect in non-mountainous 

regions for precise geoid determination. 

 

6.2 Terrain-Aliasing Effects on Rudzki, Helmert, RTM, and PH Geoid 
Determination  
 

This study investigates the importance of using various grid resolutions of DTM for 

different gravimetric mass reduction schemes within the context of precise geoid 

determination. The reduction methods used in this study are the Rudzki inversion method, 

Helmert’s second method of condensation, the RTM method, and the PH topographic-

isostatic reduction technique. The effect of using different DTM grid resolutions of 6′′, 

15′′, 30′′, 45′′, 1′ and 2′ on gravity anomalies and absolute geoid undulations is studied for 

each of these reduction schemes. The same test area of the Canadian Rockies used in the 

previous investigations is selected for this study.  

 

The geoid is computed from Stokes’s integral formula with the rigorous spherical kernel 

by the one-dimensional fast Fourier transform algorithm. The 5′×5′ grid of gravity 

anomalies is used in Stokes’s computation. The aliasing effects on gravity anomalies and 

on the geoid are not only due to the different DTM resolutions used in this test, but also to 

the use of 5′×5′ grid of gravity anomalies. Thus the results shown in this study should not 

be considered as absolute aliasing effects. The EGM96 is used as the reference global 

field for all schemes. The geoid computational procedure is the same as the one used in 

the investigation presented in Chapter 4. The only difference in this test is the 
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incorporation of different DTM resolutions for geoid determination in every gravimetric 

reduction technique. 

 

First, the gravity anomalies are computed using different DTM grid resolutions for each 

mass reduction technique. The gravity anomalies obtained by using the highest DTM 

resolution are regarded as the control gravity anomalies for each reduction scheme. 

Figures 6.5 and 6.7 show the difference in maximum value and standard deviation, 

respectively, between control gravity anomalies and gravity anomalies obtained by using 

coarser DTM grid resolutions. The use of a 2′ DTM grid resolution instead of a 6′′ one 

changes the gravity anomalies from 55 mGal to 123 mGal in maximum value, depending 

on the type of the gravimetric reduction technique chosen. Similarly, the difference in 

standard deviation changes from 8 mGal to 13 mGal. As the grid spacing decreases, we 

can note for every reduction scheme that the resultant map of gravity anomalies tends to 

get smoother. This can be easily seen by comparing the two figures of Rudzki gravity 

anomalies shown in Figure 6.6.  
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Fig. 6.5 The difference in maximum value between control gravity anomalies and 

anomalies obtained using different DTM resolutions 
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Fig. 6.6  5′×5′ Rudzki anomalies using  6′′ and  2′ DTM grid resolution 
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Fig. 6.7 The difference in standard deviation between control gravity anomalies and 

anomalies obtained using different DTM grid resolutions 

 
Second in this investigation, the gravimetric geoid solution is carried out using each 

reduction scheme with different DTM resolutions. The geoid solution obtained by using 

the highest DTM resolution is regarded as the control geoid. Figure 6.8 shows the 

difference in maximum value between the control geoid and geoids obtained using 

different DTM resolutions. These differences can reach 2.05 m to 2.75 m in maximum 

value depending on the mass reduction scheme selected for geoid determination. These 

results in the Canadian Rockies suggest that a DTM grid resolution of 6′′ or higher is 

required for precise geoid determination with an accuracy of a decimetre or higher for any 

gravimetric reduction method in rugged areas. A DTM resolution not coarser than 45′′ is 

required for the geoid determination with an accuracy of a metre using Rudzki, Helmert, 

and RTM gravimetric reductions, whereas a DTM resolution not coarser than 15′′ is 

required for geoid determination using Pratt Hayford topographic-isostatic reduction to 

gain the accuracy of a metre. 
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Fig 6.8 The difference in maximum value between the control geoid and geoids 

obtained using different DTM resolutions 
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Fig. 6.9 The difference in standard deviation between the control geoid and the 

geoids obtained using different DTM resolutions 



 

 

96
Figure 6.9 shows the trend of increasing the standard deviation with increasing DTM 

resolution, which is similar for all gravimetric reduction schemes. The difference in 

standard deviation between the control geoid and the geoids obtained using different 

DTM resolutions is between 3 and 4 decimetres depending on the reduction method 

selected. Comparing the Rudzki geoid using 6′′ and 2′ DTM resolution shown in the 

figure 6.11, the geoid using 6′′ DTM resolution is smoother as well as less correlated 

with the topography. This is true for all reduction methods used in this test. 
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Fig. 6.10 Standard deviation of the differences between different geoid undulations 

with GPS-levelling geoid before fit 

 
Finally, the gravimetric geoid solutions obtained from using different DTM resolutions 

for every reduction method are compared with the GPS-levelling geoid solution. Figures 

6.10 and 6.12  present  the  graphs of  standard  deviation  of  the  differences  between 
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Fig. 6.11  5′×5′ Rudzki geoid using  6′′ and  2′ DTM grid resolution 
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Fig 6.12 Standard deviation of the differences between different geoid undulations 

with the GPS-levelling geoid after fit 
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Fig 6.13 The range of differences between different geoid undulations with the GPS-

levelling geoid after fit 



 

 

99
different gravimetric geoid solutions with the GPS-levelling geoid before and after fit. 

The increasing trend of the standard deviation of the differences between gravimetric 

geoid solutions using different DTM grid resolutions with the GPS-levelling geoid looks 

similar for every reduction technique after fit. There is an increase of nearly a decimeter 

in standard deviation when using a 2′ DTM grid resolution instead of a 6′′. 

 

The most precise geoids obtained from this test are the ones obtained using Rudzki, 

Helmert, and RTM method with 6′′ DTM resolution. The use of 2′ DTM grid instead of 1′ 

brings the change of nearly 7 cm in standard deviation for every reduction method. The 

finer the DTM grid resolution, the smaller the standard deviation and the range (as shown 

in Figure 13) of the differences between the gravimetric and GPS-levelling geoid.  

 

6.3 Summary of results 

 

This chapter investigated the terrain aliasing effects on geoid determination in two parts. 

First, the terrain aliasing effects in TC computation using constant and variable density 

variation were studied in two test areas. Second, the same effects on geoid determination 

using different gravimetric mass reduction schemes within the context of precise geoid 

determination were investigated. As earlier stated, the aliasing effects on gravity 

anomalies and on the geoid are not absolute since the 5′×5′ grid of gravity anomalies is 

used in Stokes’s computation 

 

The first investigation shows that a high resolution DTM (15′′ or finer) should be used in 

mountainous areas like the Canadian Rockies for geoid determination with an accuracy of 

a decimetre or higher. The high DTM resolution is critical only for geoid determination 

with an accuracy of a centimetre or higher in modest terrain areas like Saskatchewan.  

The results in the Canadian Rockies show that the effect of different TC resolutions on 

geoid undulation using grid spacings between 15′′ and 2′ can vary from 3.88 m to 2.73 m 
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in maximum value. The finer DDM resolution (if available) should be used for precise 

geoid determination with an accuracy of a decimetre or higher in the rugged areas, 

whereas it is not crucial in the computation of terrain effect in non-mountainous regions.  

 

The second investigation showed the importance of using various grid resolutions of 

DTM for different gravimetric mass reduction schemes within the context of precise 

geoid determination. A DTM grid resolution of 6′′ or higher is required for precise geoid 

determination with an accuracy of a decimetre or higher for any gravimetric reduction 

method chosen to treat the topographical masses above the geoid in rugged areas. A DTM 

minimum spacing of 45′′ or dense is required for geoid determination with an accuracy of 

a metre using the Rudzki, Helmert, or RTM gravimetric reductions. A DTM not coarser 

than 15′′ is required for geoid determination with metre accuracy when using Pratt 

Hayford topographic-isostatic reduction. The choice between using a 6′′ and a 2′ DTM 

can alter the geoid from 2.05 m to 2.75 m in maximum value depending on the mass 

reduction scheme selected for geoid determination.  

 

The most precise geoids obtained in this test are the ones obtained using Rudzki, Helmert, 

and RTM methods with 6′′ DTM resolution. The standard deviation and the range of the 

difference between the gravimetric geoid and GPS-levelling geoid become smaller as the 

DTM resolution goes higher. 
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Chapter 7 
 

Conclusions and Recommendations 

 
6.1 Conclusions 

 

The conclusions are drawn from three major investigations carried out in this thesis, i.e., 

(i) gravimetric geoid determination using different terrain reduction schemes; (ii) density 

and gravity interpolation effects on Helmert geoid determination; and (iii) terrain-aliasing 

effects on geoid determination using different reduction schemes. The following 

conclusions can be drawn  

 

- The first investigation explored other gravimetric reduction schemes both in 

theory and in practice in the context of precise geoid determination, in addition to 

the usual Helmert’s second method of condensation and RTM methods.  

- The Rudzki geoid performs as well as, and has a smaller bias than, Helmert and 

RTM geoids, and better than the AH and PH geoids compared to GPS-levelling. 

The Rudzki reduction, therefore, can become a standard tool for gravimetric geoid 

determination.  

- The main advantage of using this method is that one does not have to compute 

indirect effect on the geoid as required for the other reduction schemes. On the 

other hand, the Helmert and RTM methods not only require the computation of 

indirect effects on the geoid and restored terrain effects on the quasigeoid, 

respectively, but they also require some additional computations; in Helmert’s 

second method of condensation, one needs to use different reduction methods for 

smooth gravity interpolation, while in RTM reduction, the transfer from the 

quasigeoid to the geoid is required for geoid determination. 

- Rudzki anomalies have smaller standard deviation and the range than those of 

Helmert anomalies. Helmert anomalies yield the roughest gravity field in the test 
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area while topographic-isostatic anomalies with the AH and PH models produce 

smoothest field as well as have less correlation with the topography.  

- The Rudzki, RTM, and Helmert anomalies seem to be in better agreement with 

EGM96 (which is based on FA coefficients) than the AH and PH anomalies, and 

thus are the best anomalies for geoid determination using a geopotential model 

such as EGM96. 

- The indirect effect on geoid undulations with topographic-isostatic reductions 

reaches 10 metres, while the indirect effect of Helmert’s method is only 47 cm. 

The maximum restored terrain effect on the quasigeoid for the RTM reduction is 

nearly a metre. 

- The large bias in the topographic-isostatic geoid solutions indicates that one 

should use a corresponding topographic-isostatic global geopotential model to 

extract the low frequency part of the gravity signal.  

 

The followings are the main conclusions drawn from the second investigation carried out 

in this research, which shows the density and gravity interpolation effects on Helmert 

geoid determination. 

 

- The Pratt Hayford topographic-isostatic model and the RTM are the best 

gravimetric schemes for smooth gravity interpolation in the test area. The Pratt-

Helmert and RTM-Helmert geoids fit better with GPS-levelling geoid than other-

Helmert geoids. Also, their range is smallest compared to other ones before and 

after fit. 

- The topographic-isostatic gravimetric reduction schemes like the PH or AH 

models or the topographic reduction scheme of RTM should replace the usual 

Bouguer reduction scheme for the interpolation of FA gravity anomalies in precise 

Helmert geoid determination especially in rugged areas like Canadian Rockies.  
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- The difference between direct-Helmert geoid and other Helmert-geoids can be as 

large as 10 metres with a standard deviation of more than a metre. Therefore, the 

direct Helmert geoid should not be used for Helmert geoid determination even 

with an accuracy of several metres.  

- The investigation on the use of actual density bedrock information for Helmert 

geoid determination suggests that the actual density information should be used (if 

available) in precise geoid determination in high mountains, especially where 

large contrast in topographical density exists.  

- The density information should be incorporated not only in the computation of 

TC, but also in all other steps of Helmert’s geoid computational process. It should 

be used in the computation of Bouguer anomalies (if it is chosen for smooth 

gravity interpolation), which is commonly used for the interpolation of FA gravity 

anomalies and indirect effects on geoid.  

- The difference in the direct effect of TC on geoid and indirect effect on geoid for 

Helmert’s second method of condensation between using constant and actual 

density information reaches as much as 10 cm and 5 cm, respectively, in the test 

area. 

- The final Helmert geoid solution using two dimensional digital density model in 

all steps of geoid computational procedure shows better results in terms of 

standard deviation (34 cm) compared to the one using constant density (56cm).  

- It would be wise to use at least the mean density of the area, if available, for 

terrain correction computation in mountains if a DDM is not available.  

- The knowledge of actual density information is not crucial in the TC computation 

of non-mountainous areas.  

- The difference in TC using constant and lateral density variation is correlated with 

the topography.  

 



 

 

104
The following conclusions are made from the final investigation of this thesis, which 

exhibits the importance of using various DTM grid resolution levels for different 

gravimetric mass reduction schemes within the context of precise geoid determination. 

These conclusions are based on the aliasing effects not only because of using different 

DTM resolutions but also because of using 5′×5′ gravity grid in Stokes’s formula. 

 

- A DTM grid resolution of 6′′ or higher is required for precise geoid determination 

with an accuracy of a decimetre or higher for any gravimetric reduction method 

chosen to treat the topographical masses above the geoid in rugged areas.  

- The DTM not coarser than 45′′ is required for geoid determination with an 

accuracy of a metre using Rudzki, Helmert, and RTM gravimetric reductions, 

whereas a DTM not coarser than 15′′ is required for geoid determination using the 

Pratt Hayford topographic-isostatic reduction with an accuracy of a metre. 

- The difference between gravimetric geoid solutions using DTM resolution of 6′′ 

and 2′ can reach from 2.05 m to 2.75 m in maximum value depending on the mass 

reduction scheme selected for geoid determination. 

- The most precise geoids obtained from the test are the ones obtained using 

Rudzki, Helmert, and RTM method with 6′′ DTM resolution. 

- The differences between gravimetric geoid solutions and the GPS-levelling geoid 

are smaller in terms of the range as well as standard deviation as finer DTM grid 

resolution is used. 

 

6.2 Recommendations 

 

The following recommendations are made based on the research carried out in this thesis: 

 

- Theoretical and practical research on direct and indirect effects on geoid 

undulations should be studied not only for Helmert’s second method of 

condensation but also for other gravimetric reduction methods in the context of 

precise geoid determination. For example, the computation point of direct effect 
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on gravity either on the topography or on the geoid plays a great role in precise 

geoid determination for all reduction schemes. The optimal depth of compensation 

for PH and AH methods should be studied for geoid determination using 

topographic isostatic schemes. 

- Theoretical and practical research should also be carried out in the spherical 

approximation to see the difference between planar and spherical approximation 

not only for Helmert’s second method of condensation but also for all other mass 

reduction techniques.  

- More practical studies using the Rudzki reduction scheme should be carried out in 

different parts of the world especially in the high mountains both in planar and 

spherical approximation. 

- Further investigation using high density gravity measurements and homogenously 

distributed GPS benchmarks should be carried out in the test area. Some gravity 

points above the elevation of 2000 m would be very helpful to picture the better 

gravity map of a test area for geoid determination. 

- It will be useful to establish a small test area in rugged area with local precise 

levelling not necessarily connected to a regional or national network to precisely 

evaluate the difference between GPS-levlling geoid solution and gravimetric 

geoid.  

- More theoretical and practical studies on topographic-isostatic geopotential 

models should be conducted in the context of precise geoid determination.  

- The studies incorporating actual density information should be carried out for 

different mass reduction techniques especially in high mountains where a large 

contrast in density exists.  

- The study of using denser grid (3′′ or finer) of DTMs should be carried out to 

study the terrain aliasing effects using different gravimetric solutions. Absolute 

aliasing effects should be studied using the same resolution of gravity grid as the 

DTM in Stoke’s formula. 
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