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Abstract

As a commonly used system for a land vehicle positioning system, a GPS/INS integrated
system harnesses either a tactical grade or low cost IMU. The high cost of a tactical grade
IMU constitutes its main limitation to commercial deployment. The performance of a low
cost IMU degrades quickly over a short time interval of GPS outages. A larger error drift
of a low cost IMU is not well suited to a land vehicle positioning system that has a strict
requirement on positioning accuracy such as an intelligent or autonomous vehicle control

system.

With a consideration of low cost and high accuracy, several on-board vehicle sensors
built-in an actual vehicle stability control system are integrated with GPS and low cost
IMU. The on-board vehicle sensors are dedicated to bridging the gap and limit low cost

IMU rapid drift errors during GPS outages.

The on-board vehicle sensors used and analyzed include four wheel speed sensors, G
sensors (accelerometers), yaw rate sensor (angular rate gyro) and steering angle sensor.
Three basic and two combined integration strategies and algorithms are developed. The
integration of the steering angle sensor is particularly novel. A mechanism is developed to
detect and alleviate the violation of the lateral non-holonomic constraint widely used in
the wheel speed sensor. The integrated system is implemented in both post-mission and

real-time.



The benefits gained from the on-board vehicle sensors are investigated in terms of the
positioning accuracy and the time-to-fix GPS ambiguities. The integration strategy with
all on-board vehicle sensors performs best among all the proposed integration strategies.
With respect to the GPS and low cost IMU integrated system, its percentage
improvements are 92.6% for a post-mission test in an open-sky area by simulating GPS
outages, 65.1% for a suburban area real-time test and 79.2 % for a pseudo-urban area
real-time test. For ambiguity resolution, the percentage improvement over GPS-only in
terms of the average time-to-fix ambiguity by integrating all on-board vehicle sensors

with a low cost IMU is about 15% for 40 s GPS outages.
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Chapter 1 Introduction

1.1 Background

Vehicular positioning and navigation is one of the most important application areas for
the Global Positioning System (GPS). In modern society, significant attention has been
paid to intelligent vehicle systems with the increase in demand for safe and flexible
manuvering of a vehicle. Typical advanced vehicle systems include anti-lock brake
systems (ABS), traction control (TC), and vehicle stability control systems (VSC), which
have already found their way into the production of passenger vehicles (Tseng et al.
1999). In these systems, positioning accuracy and system redundancy have a crucial
impact on their performance (Bevly 1999). Positioning accuracy and system redundancy
also impact the performance and reliability of autonomous vehicle control systems and
vehicle safety and stability control systems. The more accurate the positioning system,
the more reliable the vehicle autonomy or the safety control. The importance of sensor
redundancy lies in the fact that any sensor failure due to mechanical, electrical or external
disturbances could lead to a disastrous result if the failed sensor was the only sensor

on-board (Redmill et al. 2001).

For autonomous vehicle control, Carlson (2003) focused on parameter estimation of

vehicle models used for navigation and stability control, including the estimation of
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longitudinal stiffness and wheel effective radius. Bevly (2001) investigated the automatic
steering control of farm vehicles. By devising a new model for the farm vehicle’s yaw
dynamics, a Linear Quadratic Regulation (LQR) controller was developed to implement

accurate lateral control of farm vehicles.

In autonomous vehicle control and vehicle stability control systems, GPS and other
dead-reckoning sensors can provide navigation and positioning information (Bevly 1999).
With respect to GPS, centimetre-level accuracies can be achieved by using carrier phase
measurements in a double difference approach whereby the integer ambiguities are
resolved correctly. However, difficulties arise during significant shading from obstacles
such as buildings, overpasses and trees. This has led to the development of integrated
systems in which the GPS is complemented by an inertial navigation system (INS). GPS
provides long-term, accurate, and absolute positioning information. It is also immune to
gravity. However, it is subject to blockage of line-of-sight signals as well as signal
interference or jamming. In addition, its measurement update rate is relatively low (< 20
Hz). By contrast, an INS is autonomous and non-jammable. Because of its high
bandwidth, an INS provides relative navigation information at a high data rate. Most
IMU data rates exceed 50 Hz with some reaching into several hundreds of Hz (Petovello
2003). However, the weak points of an INS lie in the fact that its navigation quality

degrades with time, and its accuracy depends on the quality of INS sensors.
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GPS/INS integration has been recognized as an effective means for kinematic positioning
(Cannon 1990). In a GPS-aided INS integrated system, the INS derives position, velocity
and attitude that are used as the primary navigator outputs. The GPS provides update
information for the INS, and a Kalman filter can serve as an adequate formulation for
system integration (Farrell et al. 2000 and Omerbashich 2002). The INS and GPS are
usually coupled in one of three different ways: loose coupling, tight coupling and deep
coupling (EI-Sheimy 2004, Farrell & Barth 1998 and Schwarz & Wei 1999) to provide
continuous navigation solutions. The integrated system can maintain centimetre-level
accuracies with fully available GPS or during short GPS outages provided the inertial

sensors are sufficiently accurate (Scherzinger 2000).

Significant research has been undertaken on GPS and INS integration for precise
kinematic positioning. Petovello (2003) integrated carrier phase DGPS and a tactical
grade IMU to provide decimetre-level accuracies during GPS outages. Both post
processing and real-time tests were conducted. A comparison between the tight and loose
coupling strategies shows that a tight coupling strategy outperformed a loose coupling
strategy due to the reduction of noise in the integrated system. To compensate for the
GPS time latency, a real-time system was implemented by storing INS data in a buffer
and restoring it when the GPS data was available. Scherzinger (2000) investigated a
precise robust positioning system by integrating GPS and a tactical grade IMU. Inertial

navigation errors, gyro and accelerometer biases, as well as float double difference
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ambiguities, were estimated. The positioning accuracy during partial and complete GPS
outages was described. By integrating GPS and low cost inertial sensors, Sukkarieh (2000)
developed a low cost, high integrity, aided inertial navigation system for autonomous

land vehicle applications.

The accuracy of an integrated system can be further improved by applying some effective
measures (Masson et al. 1996). These measures include non-holonomic constraints, Zero
Velocity Updates (ZUPTs) as well as limiting attitude error growth (Shin 2001). When
the vehicle does not jump off or slide on the ground, non-holonomic constraints assume

the velocities in lateral and longitudinal directions to be zero (Sukkarieh 2000).

Due to the importance of fast and reliable GPS ambiguity resolution on high positioning
accuracy, the aforementioned research done by Petovello (2003) and Scherzinger (2000)
also discussed the benefits of inertial aiding on ambiguity resolution. The time to fix
ambiguities is measured by the volume of the search space that is closely related to the
covariance matrix of the estimated ambiguities. Skaloud (1998) derived a closed form of
ambiguity covariance with an external update from the GPS L1 carrier phase. It indicated
that an enhanced precision of the float ambiguities and a reduction in the search volume
depends on the a priori INS position error. A relatively smaller the a priori INS position
error with respect to the C/A code measurement accuracy will introduce a reduction in the

time-to-fix ambiguity resolution after GPS outages.
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To improve accuracy and redundancy, numerous sensors are being employed in advanced
and intelligent vehicle systems. Significant work has also been done to integrate GPS
with other lower cost sensors to aid positioning and/or attitude determination. These
sensors have ranged from the use of a compass, tilt meter and fiber-optic gyro for vehicle
pitch and azimuth estimation (Harvey 1998), to the integration of GPS with an on-board
odometer in ABS as well as gyro for positioning in urban areas (Stephen 2000). Wheel
speed sensors are fundamental components of ABS which is standard equipment on most
vehicles (Hay 2005). The integration of a wheel speed sensor with GPS/INS has been
extensively studied. Kubo et al. (1999) implemented a GPS/INS/Wheel speed sensor
integrated system in the wander angle frame for land-vehicle positioning, and proposed
an algorithm to calibrate two tilt angles (azimuth and pitch) between the wheel speed
sensor and the IMU body frame. Numajima et al. (2002) investigated the integration of
INS/DGPS/Vehicle Motion Sensor (VMS) for land-vehicle in-motion alignment that
could compensate the poor initialization or large cumulative errors by using a
decentralized Kalman filter. Bonnifait (2003) developed a very inexpensive vehicle
localization system by using GPS and ABS sensors (four wheel speed sensors) available
on most modern cars. It showed that wheel speed sensors can also provide positioning
information at several metres accuracy by integrating with GPS. Since the wheel speed

sensor only measures velocity in a forward direction, most of the previous research
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related to the integration of wheel speed sensor information with GPS/INS applied two

non-holonomic constraints on the lateral and vertical directions (Shin 2005).

1.2 Limitations of Previous Research

As a commonly used system for a land vehicle positioning system, a GPS/INS integrated
system harnesses either a tactical grade or low cost IMU as shown in previous research.
The high cost of a tactical grade IMU constitutes its main limitation to commercial
deployment. By contrast, the performance of a low cost IMU degrades quickly over a
short time interval of GPS outages. A larger error drift is not well suited to such a land

vehicle positioning system that has a strict requirement on positioning accuracy.

Augmenting other low cost sensors with a GPS/INS is an effective way to bridge GPS
gaps (a time period of partial or complete GPS signal blockage) and reduce the
stand-alone INS drift error. On-board vehicle sensors built-in a modern automotive
vehicle provide the most direct and cost-efficient external aid sources for a GPS/INS
system. To date, research on GPS/INS/On-board vehicle sensor integration mainly
focuses on wheel speed sensors and low cost gyros (Yaw rate sensors). To make full use
of on-board vehicle sensors, the previous research can be extended to investigate the
possibilities and benefits of integrating various on-board vehicle sensors through various
sensor combinations. By evaluating various sensors and their integration strategies, the

positioning accuracy can be improved.
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It was shown through previous research that an automatic vehicle steering system had
been studied extensively in terms of dynamic modeling and parameter estimation
(Carlson 2003 and Bevly 2001). However, how to make use of the steering angle sensor
to enhance positioning accuracy during GPS outages has not been thoroughly

investigated to date.

Previous research shows that a lateral constraint applied to wheel speed sensor integration
is effective only when the vehicle operates on a flat road and no side slip occurs (Brandit
& Gardner 1998 and Dissanayake et al. 2001). It is no longer valid when the vehicle
jumps off the road or is driven on an icy or bumpy road where a larger side slip angle can
occur. In a land vehicle positioning system, the violation of non-holonomic constraints is
always accompanied by larger side slip angles (ibid). Side slip is a very complicated
phenomenon. A larger side slip angle that exceeds a specific threshold (5 degrees used in
this dissertation) is usually coupled with road and tire conditions, high vehicle dynamics
including fast driving, sharp turns as well as high pitch and roll angular rates. Typical side
slip angles range approximately from O to 30 degrees (Ray 1995). Anderson & Bevly
(2004) investigated a model-based Kalman filter with GPS velocity measurements to
estimate side slip. However, its estimation accuracy relies heavily on the correctness of

the model which is difficult to develop for various road conditions.

Both real-time and post-mission processing is necessary for the development of an

integrated system. The purpose of post-mission processing is to fine tune the parameters



8

of the Kalman filter, to assess the modeling of the sensors, and to check the validity of the
algorithm. It saves time and cost during system development and reduces the need for
conducting field tests each time a scenario needs to be evaluated. As an ultimate goal in
practical applications, a real-time system provides an instantaneous positioning solution.
The validity of the Kalman filter design and the impact of various sensor combinations
can be evaluated by real-time test scenarios. Petovello (2003) successfully implemented a
GPS/INS real-time integrated system. This work can be further extended into a

GPS/INS/On-board vehicle sensor real-time system with enhancements.

For a tactical grade IMU, the benefit of inertial aiding on ambiguity resolution has been
investigated extensively. A comparison between different grades of IMUs (tactical grade
and automotive grade low cost IMU) in terms of a time-to-fix integer ambiguities will
enrich these research findings even though the benefits gained from a low cost IMU may
be somewhat limited than expected. When on-board vehicle sensors are integrated, the
improvements on ambiguity resolution gained from on-board vehicle sensors can be

analyzed in addition to the positioning accuracy.

1.3  Objectives and Contributions of This Dissertation

Based on the above discussion, with particular emphasis on Petovello (2003), this
dissertation aims to develop an enhanced land vehicle integrated system. The primary

objective of this research is to develop a precise land vehicle positioning system with a
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consideration of low cost, high accuracy and fast ambiguity resolution. Several on-board
vehicle sensors built-in the vehicle stability control system of an actual vehicle are
designed to integrate with GPS and low cost IMU. The on-board vehicle sensors,
including wheel speed sensors, G sensors and yaw rate sensor, and steering angle sensor,
are dedicated to bridging the gap during GPS outages and limit low cost IMU rapid drift

errors to some degree depending on the characteristics of the vehicle sensors.

To achieve this objective, this dissertation focuses on the following methodologies or

research topics:

e Analysis of on-board vehicle sensors and development of integration strategies as
well as algorithms. The characteristics of on-board vehicle sensors are analyzed to obtain
key statistical specifications and error models. The integration strategies are investigated
by making full use of on-board vehicle sensors in either an individual or combined
manner. The basic integration modules are developed by integrating individual on-board
vehicle sensors. Among all the basic integration modules, the integration of a steering
angle sensor with GPS and INS constitutes a novel integration strategy. Another valuable
investigation proposal is to develop combined integration strategies either by a sequential
combination of the basic integration modules or by creating a complementary
relationship between different types of sensors. With an appropriate modelling of
on-board vehicle sensors, integration algorithms will be developed by deriving dynamics

and measurement models.
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o Detection and alleviation of the lateral constraint violation. With regard to the wheel
speed sensor integration strategy and algorithm, the widely used lateral constraint is close
to the real situation without the side slip or the side slip angle is small. The system
positioning accuracy will be definitely degraded if the lateral constraint is violated by a
larger side slip angle. To compensate the violation of the lateral constraint and enhance
the positioning accuracy, how to detect and alleviate the violation of the lateral constraint

will be investigated in this thesis.

o Implementation of the integration strategies and algorithms. A hardware platform is
set up by including GPS receivers, a low cost IMU and on-board vehicle sensors
time-tagging system, a pair of radio link transceivers as well as computers. The

integration strategies and algorithms are implemented in both post-mission and real-time.

o Benefits gained from the integration of on-board vehicle sensors. It is important to
investigate what benefits can be gained from integrating on-board vehicle sensors in
terms of positioning accuracy and ambiguity resolution. With the reference solution
provided by an integrated system with the superior quality IMU, positioning accuracy
with respect to the proposed integration strategies will be analyzed by various tests for
both tactical grade and low cost IMUs. The time-to-fix GPS ambiguity resolution after
GPS outages will be compared between GPS-only, GPS/INS as well as
GPS/INS/On-board vehicle sensors integration strategies for both tactical grade and low

cost IMU integrated systems, respectively.
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The major contributions of this dissertation are summarized below.

1. By considering a variety of on-board vehicle sensors, three basic and two combined
integration strategies and algorithms are developed. The errors of on-board vehicle
sensors are modelled in an appropriate manner. The dynamics and measurement
models of the Kalman filter are developed for each integration strategy. Among all the
integration strategies, the integration of the steering angle sensor is particularly novel

for its application in a positioning and navigation system.

2. In one of the combined integration strategies, an interactive relationship is created
between the wheel speed sensors, G sensors and yaw rate sensor. Using the
relationship between different sensors, a mechanism is developed to detect and
alleviate violations of the lateral non-holonomic constraint used in most of the

previous research.

3. The GPS/INS/On-board vehicle sensor integration strategies and algorithms are
successfully implemented in both real-time and post-processing after Petovello (2003).
For various integration strategies, the benefits gained from on-board vehicle sensors in

terms of positioning accuracy and ambiguity resolution are investigated in detail.

1.4 Dissertation Outline

This dissertation consists of eight chapters describing how to achieve the objectives

outlined above. The chapters are organized as follows.
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Chapter 2 introduces background information that is relevant to this research. Three
different frames, namely the IMU body frame (b frame), the vehicle frame (v frame) and
ECEF (Earth-Centred Earth-Fixed) frame (e frame), are defined. The fundamentals of
GPS and INS are discussed and include: GPS observables, GPS errors, GPS ambiguity
resolution, INS error sources and equations of motion as well the INS error dynamics

model.

In Chapter 3, the characteristics of the selected on-board vehicle sensors are analyzed.
With a reference velocity provided by the NovAtel OEM2 precise velocity GPS receiver,
the measurement accuracy of the wheel speed sensors is assessed. G sensors and yaw rate
sensors are evaluated using mathematical variance and wavelet decomposition for a static
data set over seven hours. The temporal variability characteristics are analyzed by

deriving a first-order Gauss-Markov process. The steering angle sensor is also introduced.

To illustrate in detail the development of integration strategies of GPS, INS and on-board
vehicle sensors, Chapter 4 first gives an overview of the Kalman filter algorithm. On the
basis of a comparison between a linearized and extended Kalman filter as well as
between a centralized (tight coupling strategy) and decentralized (loose coupling strategy)

Kalman filter, various integration strategies are proposed.

In Chapter 5, the lever arm effect and the way of estimating the wheel speed sensor lever

arm vector are discussed due to the importance of the lever arm effect on the integrated
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system positioning accuracy. The integration algorithms are described by showing the

dynamics and measurement models for each integration strategy.

Chapter 6 describes the equipment used as well as the configuration of the hardware
platform. By dealing with GPS time latency in real-time, a way to implement a real-time

GPS/INS/On-board vehicle sensor integrated system is analyzed.

Chapter 7 first describes the tests conducted in different areas. By showing the data
analysis and processing methods, the data collected is analyzed with respect to various
integration strategies. The benefits gained from integrating all on-board vehicle sensors in

terms of positioning accuracy as well as ambiguity resolution are investigated.

Chapter 8 concludes the entire work of this dissertation. Recommendations for future

work are also presented.
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Chapter 2 Fundamentals of GPS and INS

This chapter reviews background information that is necessary for the development and

analysis in later chapters. These include coordinate frame definitions, GPS and INS.

2.1 Coordinate Frame Definitions

Three coordinate frames are important to this research. These include the ECEF frame (e
frame), the body frame (b frame) and the vehicle frame (v frame), as described below.
The three frames are shown in Figure 2.1.

ECEF Frame

&

== =z

Wehicle Frame T B ody Frame

Figure 2.1 Coordinate frame definition



15

The origin of the ECEF frame is the centre of the Earth’s mass. The X-axis is located in
the equatorial plane and points towards the mean Greenwich Meridian. The Y-axis is also
located in the equatorial plane and is 90 degrees east of the mean Greenwich Meridian.

The Z-axis parallels the Earth’s mean spin axis (Wang 2003).

The IMU body frame (b frame) represents the orientation of the IMU axes. The IMU
sensitive axes are assumed to be approximately coincident with the moving platform
upon which the IMU sensors are mounted. The origin of the body frame is at the centre of
the IMU. The X-axis points towards the right of the moving platform upon which the
IMU sensors are mounted, the Y-axis points toward the front of the moving platform, and

the Z-axis is orthogonal to the X and Y axes to complete a right-handed frame.

The vehicle frame (v frame) refers to vehicle body frame, and represents the orientation
of the vehicle. The origin is the vehicle centre of gravity. The X-axis points towards the
right side of the vehicle and the Y-axis points towards the forward direction of the
vehicle’s motion. The Z-axis is orthogonal to the X and Y axes to complete a

right-handed frame.

2.2  Global Positioning System

GPS is an all-weather satellite navigation system, and has been widely used in air, land
and marine environments as the navigation and positioning tools. Depending on the

measurements and data processing method, the accuracy of GPS positioning ranges from
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several metres to the centimetre-level (Lachapelle 2003). To deal with GPS-related issues,
GPS observables, limitations, error sources and ambiguity resolution will be discussed

below.

2.2.1 GPS Observables and Limitations of GPS

GPS satellites broadcast a signal on a carrier wave with two frequencies (1575.42 MHz
for L1, 1227.60 MHz for L2) modulated by the C/A code and P code. By acquiring and
tracking satellite signals, most GPS receivers generate three GPS measurements:
pseudorange, carrier phase and Doppler. Pseudorange measurements are generated by
measuring the difference between the transmission time and reception time for tracking a
GPS signal code. GPS carrier phase measurements are generated by beating the
frequency between the received GPS carrier signal and the carrier signal generated within
the receiver. The carrier phase measurements are ambiguous by an unknown integer
number of cycles. The Doppler measures the instantaneous phase measurement rate,

which is the derivative of the carrier phase measurement (Kaplan & Hegarty 2006).

With dual frequencies, L1 and L2, carrier phase measurements, ¢,and ¢, can be

linearly combined to generate a new measurement including widelane, narrowlane and

ionosphere-free. The widelane measurement, ¢,, , of interest to this study is given by

@vl_ = ¢|_1 - ¢|_2 (2.1)
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The widelane combination exhibits a relatively longer wavelength at approximately 86
cm and reduces the ionospheric error (in cycles) four-fold with respect to L1 only
observations. Thus, the widelane is more reliable and faster to resolve ambiguities under
adverse conditions (Liu 2003). Despite the advantages of ambiguity resolution, the

widelane combination amplifies noise compared to L1 and L2 raw observables in metres.

GPS is susceptible to line-of-sight blockage when operating in urban areas or under dense
foliage. Signal blockage of several satellites may result in a sudden deterioration in
positioning accuracy. Other causes of signal loss include intense ionospheric activity,
satellite failure and inadvertent jamming. When using carrier phase measurements, cycle
slips can occur due to loss of phase lock, which results in discontinuous measurements
that limit positioning accuracy. To detect and correct cycle slips, the phase velocity trend
method, the double frequency detection method or a Kalman filter innovation-based
detection method can be used (Bisnath & Kim 2001). If cycle slips are detected, attempts
can be made to correct the ambiguity by the number of slipped cycles. Additionally, when
using Real-Time Kinematic (RTK) GPS, an outage can be caused by loss of radio
communication between the base and the rover. An outage at the GPS base station can
cause rapid deterioration of the GPS rover positioning accuracies (Woolven &

Scherzinger 1997). All of these are limitations of GPS that need to be considered.
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2.2.2 GPS Error Sources

GPS measurements are corrupted by errors. The main error sources include satellite and
receiver clock error, orbital error, ionospheric and tropospheric errors as well as multipath
and receiver noise. By taking into account these error sources, GPS measurement

equations are expressed by

P=p+dp+c(dt—dT)+d,, +d, +&y +é&y (2.2)
¢:%[p+dp+c(dt—dT)—dion+dTmp+gN oy 4N 2.3)
¢=%[p+dp+c(dt’—d'l;)—dion+dtr0p+éM é,] (2.4)

where P is the pseudorange measurement in metres, p is the geometric range between
the satellite and receiver, dp is the orbital error, dt and dT are satellite and receiver
clock errors respectively, d,

is the ionospheric error, d, is the tropospheric error,

on trop

gy IS the multipath error, ¢, is the measurement noise, ¢ is the carrier phase

measurement in cycles, and N is the ambiguity integer.

To achieve centimetre-level accuracies, double differenced carrier phase measurements
must be used with ambiguities being resolved to their correct integers (Kaplan & Hegarty
2006 and Hofmann-Wellenhof et al. 1997). Double differenced GPS measurements are
computed between the reference and the rover as well as between two satellites to
eliminate the receiver and satellite clock errors. The orbital, ionospheric and tropospheric
errors are significantly reduced, and their reductions are correlated with spatial separation

between the base and rover stations. The noise level in the double differenced
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measurements, however, is amplified due to the linear combinations in the double

differenced operation.

On the basis of Equations (2.2) to (2.4), the double differenced measurements are

expressed by

VAP =VAp +VAdp +VAd,, +VAd,,, + VAg, + VAg, (2.5)

trop

+VAé, +VAg, )+ VAN (2.6)

trop

VA$ = %(mp +VAdp -VAd,, +VAd

1

VA :Z(VApWAd p=VAdy, +VAdy,, +VAZ, +VAZ ) 2.7)

trop

where VA is the double difference operator.

The satellite orbital error is characterized by a discrepancy between the computed
satellite positions from the broadcast ephemeris in the navigation message and their
actual values. The residual double differenced satellite orbit error is a function of the

baseline length. It is around 0.1-0.3 ppm.

lonospheric error is caused by electrons in the atmosphere layer from 50 to 1500 km
above the Earth’s surface that affect the propagation of radio waves. It is frequency
dependent and spatially correlated, and varies with geographic position and solar activity
(Hofmann-Wellenhof et al. 1997). The phase measurement is advanced and the code
measurement is delayed by the ionospheric error with equal magnitude and opposite sign.
The double differenced ionospheric error is approximately 1-3 ppm. It may reach 20 ppm

or more under extreme ionospheric conditions (Lachapelle 2003 and Cannon 1991).
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The troposphere delay is caused by the neutral troposphere atmosphere that slightly bends

the traveling path of the GPS signal. The error consists of dry and wet parts with the dry
delay being the larger of the two effects. It can be modeled as a function of atmospheric
pressure, temperature, relative humidity and satellite elevation angle. Given explicit
modeling or correction, the residual tropospheric error is generally less than 1 ppm
(Misra & Enge 2001). Under the assumption of short to medium baselines, the

tropospheric error is generally negligible after applying troposphere modeling.

Multipath is the error resulting from the reflection and diffraction of a direct GPS signal
by such structures as buildings or the edges of sharp objects. Since it is highly dependent
on the surroundings of the GPS receiver antenna, it is difficult to predict and to
compensate for, and cannot be mitigated by double differencing. Typically, the
undifferenced C/A-code multipath error tends to be at several metres under adverse
conditions. With a benign environment, the C/A code multipath error is at the decimetre
level (1o level of 20 cm). By contrast, the L1 carrier phase multipath error is at the

centimetre level (1o level of 2 cm) (Kaplan & Hegarty 2006).

Measurement noise is generated by the effects of thermal noise and dynamic stress in a
receiver tracking loop. Measurement noise is closely related to satellite elevation angle:
the lower the elevation angle the higher the measurement noise. Measurement noise is
actually amplified by double differencing. The standard deviation of C/A-code

measurement noise can be around 5-10 cm by using narrow correlator GPS receivers. The
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standard deviation of L1 carrier phase measurement noise is 1.2 mm (Kaplan & Hegarty
2006). The low multipath and noise error on carrier phase measurements illustrates the
advantages of these measurements for high positioning accuracy. On the basis of the

above analysis, Table 2.1 summarizes the characteristics and magnitudes of GPS errors.

Table 2.1 GPS Errors and Magnitudes (after Petovello 2003)

GPS Errors Characteristics Magnitude
Orbital Spatially correlated Typical: 0.1-0.3 ppm
Spatially correlated
lonosphere _ _ Frequency (_Jlependgnt Typical: 1-3 ppm
Varies with geographic location and solar Extreme: > 10 ppm
activity
Spatially correlated Typical: <1 ppm
Troposphere Frequency independent Extreme: 1-3 ppm
Multipath Dependent on surro_undmgs, antennas and Code: 20 cm
elevation angle Phase: 2 cm
Measurement Amplified by double differencing Code: 5-10 cm
Noise Elevation angle dependent Phase: 1-2 mm

2.2.3 GPS Ambiguity Resolution

To achieve centimetre-level accuracies in a reasonable amount of time, double
differenced carrier phase measurements must be used with ambiguities being resolved to

their correct integers (Misra & Enge 2001 and Hofmann-Wellenhof et al. 1997).

Numerous methods are available for ambiguity resolution and validation such as the
least-squares ambiguity search technique (Hatch 1994), the least-squares ambiguity
decorrelation adjustment method (LAMBDA) (Teunissen & Kleusberg 1996 and Hein &

Werner 1995), the fast ambiguity search filter (FASF) (Chen 1994), and sequential
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integer rounding (Bootstrapping Method) (Han & Rizos 1997). Even though these

methods are different in some aspects, most of them follow similar procedures that
include estimation of real-valued ambiguity values and their corresponding covariance
matrices by least squares or Kalman filtering, the definition of a search volume, the
determination of correct integers and the validation of the selected set. The LAMBDA
method is used in this research as it has been shown to be both computationally efficient

and reliable (Teunissen & Kleusberg 1996).

Ambiguity resolution is significantly affected by many factors such as satellite
availability, measurement reliability and GPS error sources. Deterioration in satellite
availability increases the difficulty for ambiguity resolution by extending the time to
search and fix the integers. Therefore, it is difficult to accomplish both fast and reliable
ambiguity resolution in this case. The blunders caused by unreliable measurements can
greatly affect parameter estimations including real-valued ambiguities. Consequently,
measurement reliability has a crucial effect on the accuracy of ambiguity resolution.
Furthermore, large error sources introduce uncertainty for ambiguity resolution and cause
real-valued estimates to differ from an integer number of cycles. Thus, the larger the error,

the more the ambiguity will vary from its correct integer value.
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2.3 Inertial Navigation Systems

The IMU consists of a triad of accelerometers as well as a triad of gyros. It measures
three dimensional specific force and angular rates with respect to the IMU axes. The IMU
measurements are sensitive to temperature and are susceptible to errors and noise. By
using a mechanization equation, the navigation solution including position, velocity and
attitude can be derived from the IMU measurements. To improve accuracy, the external
aid on an INS can update the mechanization output and compensate for IMU

measurement errors (Rogers 2000 and Grewal et al. 2001).

2.3.1 IMU Error Sources and Classification of IMU
Typical IMU errors are classified into bias, scale factor, and non-orthogonality of sensor
triads, temperature related error as well as noise (Shin 2005 and Petovello 2003). They

are mathematically expressed by
St =0b"+S, - f°+T, -y, +¢, -6T +w, (2.8)
o =d°+S, @) +T -y, +C -OT +W, (2.9)
where & f°represents the accelerometer errors, b’is the accelerometer biases, S, is

the accelerometer scale factor error, f° is the accelerometer measurement, c, -oT is

the temperature error effect, dwp is the gyro error , w, is accelerometer noise, w,, is

gyro noise, d”is the gyro bias, S, is the gyro scale factor error, w, is the gyro
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measurement, y, andy, are the non-orthogonalities errors of the accelerometers and

gyros, and are defined by

.
re=ry 7e Tw Ve Ya 7] (2.10)

f2 f> 0 0 0 0

z

r,={0 o0 f> f 0 0 (2.11)
0 0 0 0 f f
.

vo=ve ve Ve ve 7 7e] (2.12)

(@), (@), O 0 0 0
r,=| 0 0 (), (w), O 0 (2.13)
0 0 0 0 (@), (b)),

The magnitude of the errors determines the accuracy of an IMU. The IMU is mainly
classified in terms of accuracy into different grades, namely navigational, tactical as well
as automotive grades. There is a trade-off between quality and cost. Table 2.2 gives a
brief comparison of different grades of IMUs.

Table 2.2 Comparisons of different grades of IMUs (EI-Sheimy 2004, Shin 2001 and

Godha 2006)
IMU grades Navigational Tactical Automotive
Gyro bias (deg/h) 0.005-0.01 1.0-10.0 >100
Accelerometer bias (mg) 0.05-0.1 0.1-1.0 >1.0
Cost >$90000 >$20000 <$2000
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It is desired to achieve a high positioning accuracy by making use of a low cost IMU.
Three grades of IMU are used in this dissertation. The navigational grade IMU integrated
with DD GPS provides the reference solution for the integrated system. Both the tactical
grade and the low cost IMUs are integrated with a GPS and on-board vehicle sensors by

comparing their positioning accuracy to the reference solution.

2.3.2 Equation of Motion and Mechanization Equation

With IMU measurements, the equation of vehicle motion in e frame is expressed by

(Schwarz & Wei 1999)

e e

r Vv
Ve |=| REFP—2Q8v° +g° (2.14)
RS R (2, +Q25)

where rfis the position vector, v°is the velocity vector, RS is the direction cosine
matrix between the b and e frames, g°is the gravity vector in the e frame, f"is the
accelerometer measurements, QP is the skew-symmetric matrix of the gyro
measurement @y, QF is the skew-symmetric matrix of the Earth’s rotation rate

e’

and Q7 is the skew-symmetric matrix of .

The position, velocity and attitude information shown in the equation of motion are
solved Dby the mechanization equation. The mechanization equation algorithm
implemented in this dissertation is detailed in Savage (2000). Due to the dead reckoning

nature of an IMU, the initial values of position, velocity and attitude are required as a
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start-up for the mechanization equation. Position and velocity are usually initialized by an
external data source or an external aid. The alignment procedure, however, initializes the
pitch and roll angles by levelling and the heading by gyro-compassing. When a low cost
IMU runs in a static or constant velocity mode, the heading observability becomes poorer.
Furthermore, larger gyro biases and a lower signal-to-noise ratio degrade its performance
over time. In this scenario, the initial heading cannot be determined by gyro-compassing.
Other sensors, such as a magnetic compass or a multi-antenna GPS attitude system, have

to be considered as alternatives (Shin 2005).

The outputs of high grade IMUs are incremental angles and velocities due to precise
digitization. Most low cost IMUs output specific forces and angular rates. The
mechanization equation proposed by Savage (2000) is operated on incremental velocities
and incremental angles. To be compatible with Savage’s mechanization equations, low

cost IMU outputs are transformed into incremental values by

t+At

Avszt f Pdt

(2.15)

b t+At b
A6 :L D dt

where AV® is the incremental velocity, A@° is the incremental angle, and At is the

IMU data sampling rate.

2.3.3 INS Error Dynamics Equation
When implementing the mechanization equation for a stand-alone INS system, the

abovementioned typical IMU errors grow with time. The noise exhibits random walk
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behaviour. To achieve high accuracy, it is necessary that the IMU errors are estimated and
compensated. In the development of a real-time GPS, INS and on-board vehicle sensor
integrated system, the augmentation and estimation of on-board vehicle sensor error
states will increase the system complexity and the computational tasks. The trade-off
between positioning accuracy and computational load as well as system observability is

the main consideration in the system development.

As most low cost IMUs are equipped with an internal temperature compensator, the error
effects with respect to temperature can thus be ignored. The impacts of accelerometer
scale factor error and non-orthogonality of the sensor’s installation are dependent on the
vehicle’s dynamics to a large extent. The high vehicle dynamics result in large inertial
sensors errors (Salychev et al. 2000). A land vehicle usually operates at a much lower
dynamic than marine and airborne systems. Consequently, scale factor and
non-orthogonality errors can be neglected in a land vehicle positioning system without
significant influence on positioning accuracy. On the basis of the above considerations,
IMU biases and noise are taken into account in the system design. By modeling the biases
as a first-order Gauss-Markov process to represent temporal characteristics, all IMU

errors are simplified and lumped into biases and noises.

By applying perturbation analysis to the equation of motion and augmenting gyro and
accelerometer biases into error states, the INS error dynamics model is given by

(Schwarz & Wei 1999)



28

S¢° 0 | 0 0 0 ore
ove | [N® 208 —F° RS 0 SV
& 1l={0 0 - 0 R P
Sh° 0 0 0 —diag(e,) 0 Sh°
5d° 0 0 0 0 —diag(B) || 5d°
Lod*] LG ] g(s) ]| 6d” | (2.16)
0 0 00
e Wf
R, 0 0 0f
+/0 R 00 WW = F s OX+ G W
0o 0 I of °
Wd
0 0 0 I]

where or° is the position error vector, 6v° is the velocity error vector, &° is the
misalignment angle error vector, Sb® is the vector of accelerometer bias errors, 6d° is
the vector of gyro bias errors. All of aforementioned error states are 3x1 vectors. In
addition, diag(e;) is the diagonal matrix of the time constant reciprocals for the
accelerometer bias model ,diag(4;) is the diagonal matrix of time constant reciprocals
for the gyro bias models, w, is the driving noise for accelerometer biases, w, is the
driving noise for gyro biases, R; is the direction cosine matrix between the b frame and
the e frame, F° is the skew-symmetric matrix of specific force in the e frame, N° is
the tensor of gravity gradients, Q;, is the skew-symmetric matrix of the Earth’s rotation
with respect to the e frame, ox is the error states vector, and F, is the dynamics
matrix for the stand-alone INS system, G, is the shaping matrix of the driving noise of

the stand-alone INS system, and w is the noise matrix.

With respect to the low cost IMU used in this research, Table 2.3 summarizes the

mathematical variance (noise level) and the parameters of the first-order Gauss-Markov
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model of low cost IMU biases. These parameters were obtained by using the sensor

analysis method described in Chapter 3.

Table 2.3 Low cost IMU mathematical variance and Gauss-Markov model parameters

Parameters of the first-order
Gauss-Markov model for low cost IMU
IMU Sensors Mathematical variance biases
Time Constant Temporgl S.t andard
deviation
X Accelerometer 0.0017 m2/s4 0.36 hr 0.006 m/s2
Y Accelerometer 0.0039 m2/s4 1.07 hr 0.007 m/s2
Z Accelerometer 0.0019 m2/s4 0.53 hr 0.004 m/s2
X Gyro 2.5920e+4.0 deg?/ h? 0.89 hr 86.40 deg/h
Y Gyro 8.0352e+4.0 deg2/h? 0.73 hr 205.20 deg/h
Z Gyro 2.3328e+4.0 deg2/h? 0.70 hr 194.40 deg/h

2.3.4 External Aided INS

An INS is an autonomous system that can operate continuously in urban centres,
underpasses and underwater. It is immune to jamming and interference. The inherent
disadvantage of an INS is that its error sources grow with time. To limit its drift error or
improve its accuracy, an INS can be aided by complementary external sensors such as
GPS and on-board vehicle sensors as discussed in this research. With complementary
features to INS, GPS provides all-weather, accurate and absolute positioning information.
However, it is susceptible to blockage of line-of-sight signals as well as signal
interference or jamming. The augmentation of on-board vehicle sensors with GPS and
INS can bridge the gap during the masking of GPS signals and consequently improve the

accuracy of a stand-alone INS system.
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The mechanism of the external aiding on an INS is described in Figure 2.2. In the
external sensor aiding INS system, the position, velocity and attitude information are

derived from the mechanization equation.

Positi on/WVelocity/Attitude (3-D)

-
L

Figure 2.2 External aiding on INS
With an appropriate integration strategy and algorithm, the error states of the INS
mechanization equation output (position, velocity and attitude) as well as the IMU
measurement error can be estimated by Kalman filter through external aid. Consequently,
the INS mechanization equation output can be updated, and the IMU sensor error can be
compensated. The integration strategies and algorithms for GPS, INS and on-board

vehicle sensors will be discussed in Chapters 4 and 5, respectively.
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Chapter 3 Analysis of On-Board Vehicle Sensors

The on-board vehicle sensors used in this research come from the vehicle stability control
system, including four wheel speed sensors, two horizontal G sensors (accelerometers)
and a yaw rate sensor (i.e., a two dimensional automotive grade inertial unit), as well as
the steering angle sensor. This chapter gives a description and analysis of these on-board

vehicle sensors.

3.1 Description of On-Board Vehicle Sensors

Four wheel speed sensors are attached to the wheels of the vehicle. G sensors and yaw
rate sensors are placed on the chassis of a vehicle to constitute a two dimensional
automotive grade inertial unit. The location of the G sensor and yaw rate sensor (GL/YRS)
unit is very close to the centre of gravity of the vehicle. The steering angle sensor is
located in the centre of the front wheel axis to measure the front tire turning angle with

respect to the neutral position.

Figure 3.1 illustrates the approximate location and geometric relationship of all the
on-board vehicle sensors. In a general case, the vehicle is assumed to turn at an angular

rate (yaw rate) » with respect to an instantaneous rotation centre o, b is the track width

between the two rear wheels, R is the length between the right rear wheel and the point o,

Vyss 1S the velocity at the centre point of the rear wheel axis, V, is the velocity at the
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gravity centre point, and & is the angle between the velocity at the centre of gravity and

the forward direction in the vehicle frame. The G sensors (GX andGY ) and yaw rate
sensor measure horizontal specific force and the yaw rate at a specific point near the
centre of gravity, with a distance of L, to the rear wheel axle as well as a distance of
L, to the front wheel axle. The front wheel speed v, at the centre point of the front
wheel axle is decomposed into the horizontal velocities, v, and v,. The steering angle
w can be approximately derived from v, andv,. Given a rigid body of the vehicle, it is

reasonable to assume thatv, = Vi .

. L e Ly »
' i » Vi Legend
¥ Gy vy Ve Ve - Front wheel left/right velocity
A > /‘-'"—'-\ > > VaraVez - Rear wheel lefi/nght velocity
Viwss V] Vx ! v w . Steering angle
vCy Vo Ve v, : Velocity at the gravity centre
Vs Velocity at the centre of rear axle
Ver v, : Velocity at the centre of front axle
¥ : Yawrate

Figure 3.1 Relationship between the on-board vehicle sensors

3.2  Wheel Speed Sensors

Wheel speed sensors are fundamental components of an ABS which is standard
equipment on most vehicles (Hay 2005). The wheel speed sensor measures the

Y-direction velocity in the vehicle frame. The wheel speed sensors used in this research
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are passive types which work on the principle of variable reluctance. The sensor teeth

travel through a passive magnetic field at a sufficient speed to generate a low voltage
analog waveform (ibid). The number of pulses per second is measured by the sensor teeth.
The wheel speed is consequently correlated with the sensed pulses number per second,
the teeth numbers per rotation as well as the radius of the wheel tire, which can be

explicitly expressed by

Viss = 27Ryyss * (Npyise / N reetn) (3.1)

where R, is the radius of the wheel, N is the number of pulses per second sensed

Pulse

by the wheel speed sensor and N, iS the number of teeth.

From Figure 3.1, the two rear wheel speeds can be computed from the yaw rate by

(Carlson et al. 2002)

Vo =(R+D)-
re = ( )y 3.2)
Ver =Ry
where V., and Vg  are the rear right and rear left wheel speed sensor measurements

respectively
From the rear wheel speed sensor measurements, R and y are derived by

VRL _VRR
b
b-Vgq
VRL _VRR

Y=
(3.3)
R=
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Equation (3.3) implies that the differential of two rear wheel speed sensors provides a

way to estimate the yaw rate assuming no slip (ibid).

On the basis of Equation (3.3), the velocity v, and V, can be computed by

Viwss = (R+D/2) -y = (Ve +Vg)/2

1 (3.4)
Ve = \/(R + b/2)2 + er V= Z_b\/bz(VRL +VRR)2 +4|—2r(VRL _VRR)Z
The angle @ is computed by
0 =tant| — | = tant[ 25 Ve =Vee) (3.5)
R+b/2 b(Vq +Ver)

As a special case, when the vehicle operates without turning, the difference between the

two rear wheel speed sensor measurements is very small. It makes sense that ¢ ~0 and

Ve & Viygs -

The wheel speed sensor used in this research always outputs zero speed when the vehicle
operates in static mode. Therefore, it is impossible to assess the characteristics of a wheel
speed sensor using static data. Since the wheel speed sensor measurement noise is
required in the Kalman filter when it is integrated with other sensors, another method was
devised to assess measurement noise. The NovAtel OEM2 precise velocity GPS receiver
can provide velocity accuracy at a millimetre per second level, and it can therefore be
used as the reference speed to estimate wheel speed sensor measurement noise. By
driving the vehicle at low (20 km/h), medium (50 km/h) and high (80 km/h) constant

speeds on a flat road and in a straight direction, the speed error between the wheel speed
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sensor and the OEM2 GPS velocity receiver can be computed to estimate wheel speed

sensor measurement accuracy. This basic idea is illustrated in Figure 3.2.

Figure 3.2 Estimation of wheel sensor measurement accuracy

To verify the measurement accuracy of NovAtel OEM2 GPS velocity receiver, one hour
static data was collected using NovAtel OEM2 GPS receiver. In static mode, the
reference velocity is at zero. Figure 3.3 shows the speed error and the average variance of
the NovAtel OEM2 precise velocity GPS receiver in static mode. By randomly taking 20
evenly spaced one-second intervals from the speed error, the average speed variance of
this velocity can be derived to be 1.0 mm%s® Consequently, its standard deviation is
1.0 mm/s, which verifies the fact that the accuracy of NovAtel OEM2 GPS receiver is at
millimetre per second level. The spikes appeared in Figure 3.3 is introduced by external

disturbance.

In dynamic mode, the speed of the wheel speed sensor and the OEM2 GPS receiver, as

well as the speed difference between the wheel speed sensor and the OEM2 GPS receiver,



are shown in Figure 3.4. This speed difference in dynamic mode mainly results from the

error sources of the wheel speed sensors such as the scale factor and side slip.
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Figure 3.3 NovAtel OEM2 precise velocity GPS receiver speed error and speed average
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Figure 3.4 Speeds and the speed difference for the OEM2 GPS receiver and the wheel

speed sensor
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To avoid long term variation of the wheel speed difference, 20 evenly spaced one-second

intervals were taken from Figure 3.4 for mathematical variance analysis. The average

variance of the wheel speed sensor with respect to the OEM2 GPS receiver is computed

and shown in Figure 3.5. In this test, the wheel speed sensor measurement is sampled at

20 Hz. Within a one-second time interval, 20 data samples are covered. Also, the 20

evenly spaced one-second time intervals are selected randomly. The average variance

across all intervals is shown by the solid line. From this point of view, the mathematical

variance computed in this way can statistically represent the measurement noise of the

wheel speed sensors.

Speed Variance [mzlsz] ()(10'3)

-
2]
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o

—

WSS Average Varaince With Respect to OEM2 Receiver
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Interval Mumber

Figure 3.5 Average variance of the wheel speed sensor with respect to the OEM2 GPS

receiver

Using covariance propagation theory, the wheel speed sensor variance can be computed

by



38

{O_v%/ss = Olss aps ~ Oaps = 0.001 m?/s? (3.6)

Owss = Vv0.001=0.032 m/s = 3.2 cm/s

where ou is the wheel speed sensor average variance, o ,ops IS the average
variance of the wheel speed sensor variance relative to the GPS receiver, and o2, is the
average variance of the OEM2 GPS receiver.

Therefore, the standard deviation or measurement noise of the wheel speed sensor is 3.2
cm/s. This value is used as the measurement noise in the Kalman filter when integrating

WSS with GPS and INS later.

3.3 G Sensors and Yaw Rate Sensor

G sensors (accelerometers) measure the specific force in the lateral and longitudinal
directions. The yaw rate sensor measures the angular rate with respect to vertical

direction.

To assess the performance including noise and drift characteristics of the G sensors and
the yaw rate sensor, a static test was conducted on March 10, 2006. Seven hours of static
data was collected while the engine was idling. The idling engine speed was
approximately 750 rpm. The data sampling rate was 100 Hz. The data logging system
power was supplied by car batteries and an inverter. The outside temperature during the

test was around -15 degree Celsius and thus the vehicle’s heater was turned on.

In static mode, the yaw rate sensor measures the Earth’s rotation. The outputs of the G

sensors are theoretically zero if they are assumed to be highly aligned with the horizontal
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plane. Practically, the static output of on-board vehicle sensors can be used to assess

noise level or error variability.

The G sensor and yaw rate sensor raw data was processed to evaluate the noise level by a
mathematical variance analysis, and a wavelet tool was used to decompose the raw data
into high and low frequency data sets. The low-frequency data was utilized to
approximate the error temporal variability as a first-order Gauss-Markov process

(Lachapelle et al. 2003).

3.3.1 Mathematical Variance of G Sensors and Yaw Rate Sensor

To avoid long term variations in the data, 40 evenly spaced one-second intervals were
chosen, and the corresponding variance of each interval was calculated for lateral and
longitudinal G sensors, and yaw rate sensor, respectively. In Figure 3.6, the average
variance across all intervals is shown by the solid line. The average mathematical
standard deviation and variance of the G and yaw rate sensors are summarized in Table
3.1. These values provide the process noise level used in the Kalman filter. With the noise
level and the double-sided bandwidth information, the noise spectral density of G sensors

and yaw rate sensor can be computed by (Scherzinger 2004)

2

q — O-GLNoise
°t 2BW,, 3.7)

_ OvRs Noise

Ovgs = 2BW,,
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where Qg , 0 are the noise spectral density of G sensors and yaw rate sensor,

respectively, o3 woiser Ovasnoie Ar€ NOISe level of G sensors and yaw rate sensor,

respectively, and BW, ,BW,, are the bandwidth of G sensors and yaw rate sensor,

respectively.
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Figure 3.6 Mathematical variances of G and yaw rate sensors

Table 3.1 Average standard deviation and variance of raw data

Sensor Average standard deviation Average variance
GX 0.014 m/s2? 2.0620e-004 mz2/s4
GY 0.039 m/s2 1.4786e-003 m2/s4
Yaw Rate Sensor 256.32 deg/h 6.5699e+004 deg?/h?

3.3.2 Wavelet analysis of G and Yaw Rate Sensors
Similar to Fourier analysis, wavelet analysis can decompose a signal into low and high
frequency components (Walker 1999). The main difference between Wavelet and Fourier

analyses is that Wavelet analysis uses a wide variety of base functions whereas Fourier
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analysis uses sine and cosine as its base functions. A Daubechies (db8) mother wavelet is

used to decompose the raw data herein (Lachapelle et al. 2003). Since the noise has a
zero mean, the wavelet decomposition level at which the mean of the high frequency
components becomes non-zero is selected. After wavelet decomposition, the high
frequency parts can be used to analyze noise, and the low frequency part can be used to

analyze slowly varying errors.

Figure 3.7 shows the mean of the high frequency components across the levels of wavelet
decomposition. It can be seen that the mean value of the high frequency noise starts to be
non-zero when the decomposition level is greater than 10. Therefore a decomposition
level of 10 is selected here. With respect to the decomposition level 10, the raw data,
the decomposed high and low frequency data for G and yaw rate sensors are shown from
Figure 3.8 to Figure 3.10, respectively. The raw data is a combination of high-frequency
noise and slowly varying sensor errors. After wavelet decomposition, the high-frequency
noise and slowly varying errors are separated effectively from the raw sensor data, and

the slowly varying sensor noise becomes a relatively clean, low frequency signal.

The variance of the high-frequency components gives an estimate of the noise power.
Table 3.2 summarizes the variance of the high frequency components for the G and yaw
rate sensors, and gives a comparison with the mathematical variance computed in the last

section. This comparison shows that the mathematical and decomposed high-frequency



42

variances are very close to each other, which indicates that no error was introduced by

the wavelet analysis.

Figure 3.7 Means of high frequency components vs. the level of wavelet decomposition
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Figure 3.8 Raw and decomposed data from the GX sensor
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Table 3.2 Comparison of the average standard deviation of the raw data and the average
standard deviation of the high frequency noise after wavelet decomposition

Standard deviation of Wavelet

Sensors Standard deviation of the raw data ..
decomposition

GX 0.014 m/s2 0.015 m/s2
GY 0.039 m/s2 0.038 m/s2
YRS 256.32 deg/h 263.88 deg/h

3.3.3 First-Order Gauss-Markov Model of G Sensors and Yaw Rate Sensor

The low-frequency components after wavelet decomposition can be used to compute
autocorrelation function. With the autocorrelation function, the slow varying error can be
modeled as a first-order Gauss-Markov process. The first-order Gauss-Markov model is

expressed by

X(t) = —Bx(t) + 207 u(t) (38)

and its corresponding autocorrelation function is
R(r) = 0% (3.9)
The parameters o and S can be estimated from the autocorrelation series by using a
least squares curve fitting technique. In an integrated system, the biases of the G and yaw

rate sensors are modeled as first-order Gauss-Markov processes, and are estimated by

Kalman filtering.

Figure 3.11 shows the raw and approximated autocorrelation functions from the least
squares curve fitting technique for G and yaw rate sensors. In general, a first-order

Gauss-Markov approximation is accurate for a time shift of up to a few hours. For longer



time shifts, the approximation no longer holds. The estimated parameters o and fS

for the G and yaw rate sensors are summarized in Table 3.3.

Autocorrelations of G SensorsfYaw Rate Sensor

45
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LSQ Curve Fitting

Time Shift [hour]

Figure 3.11 Raw and approximated autocorrelation functions for G and yaw rate sensors

Table 3.3 Parameters of the first-order Gauss-Markov process for the G and yaw rate

sensors
Sensor o 1B [hour]
GX 0.017 m/s2 1.25
GY 0.033 m/s2 1.21
Yaw Rate Sensor 221.04 deg/h 0.87

These parameters provide the necessary information for modelling the biases of G

sensors and yaw rate sensor as the first-order Gauss-Markov process. The noise spectral

densities with respect to the biases of G sensors and yaw rate sensor can also be derived

from o and g asshown by (Gelb 1976)
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O, = 20¢ e

, (3.10)

Uy, = 20vrs Brrs
where q, , g, are the noise spectral density associated with G sensors and yaw rate
sensor biases, respectively, o, , o, are the temporal standard deviation of G sensors

and yaw rate sensor biases, respectively, and £, , /3, _are the time constant reciprocals

of G sensors and yaw rate sensor biases, respectively.

3.4  Steering Angle Sensor

As illustrated by Figure 3.12, the steering angle sensor measures the front tire turning
angle with respect to the neutral position. Through an electrical control unit, the operation
of the steering wheel is transformed into steering angle information with respect to the
neutral position by using a constant scale factor. Since the transformation implemented
by the electrical control unit is nonlinear in nature, the constant scale factor is only an

approximation of the real situation.

Steering Angle
W

Steening Angle
W

Figure 3.12 Steering angle sensor
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Since it is difficult to find a reference for evaluating the measurement accuracy of the

steering angle sensor, its measurement accuracy can be either determined empirically
through testing various scenarios in the Kalman filter or indirectly estimated from the
derived steering angle from other sensor measurements with the known measurement

accuracy by using the variance propagation theory.

As shown in Figure 3.1, the steering angle can be derived from v, and v . The

relationship between v, and v, with the wheel speed sensor and the yaw rate is given

by
v, =L
T (3.11)
Vy = Vivss
The steering angle is thus indirectly computed by (Carlson et al. 2002)
L.r
W= —tan‘l( ! j (3.12)
VWSS

The opposite sign in Equation (3.12) is due to the definition of the vehicle frame as
Right-Front-Up, while a positive steering angle is defined as being in the

counter-clockwise direction.

With the known measurement accuracy of the wheel speed sensor and yaw rate sensor,
the measurement accuracy of the steering angle sensor can be estimated in term of the

variance propagation theory by
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where aj is the variance of the steering angle sensor measurement, Vv, is velocity at
the centre point of the rear wheel axle (the average value of two rear wheel speed sensor
2 - - -
measurement), o,  is the variance of v, » is the yaw rate sensor measurement,

2
GI’

is the variance of the yaw rate sensor measurement, and L, is the distance between

the location of GL/YRS unit and the axle of the front wheel.
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Chapter 4 GPS/INS/On-Board Vehicle Sensor Integration

Strategies

Kalman filtering is well suited for information integration from different data sources. To
develop integration strategies for the GPS, INS and on-board vehicle sensors analyzed in
Chapter 3, this chapter first gives an overview of the Kalman filter algorithm. On the
basis of a comparison between linearized and extended Kalman filters as well as
centralized (tight coupling strategy) versus decentralized (loose coupling strategy)

Kalman filters, various integration strategies are proposed.

4.1 Overview of Kalman Filter

Kalman filtering is an optimal recursive estimator that incorporates measurement
information to estimate the current states of interest in a linear dynamic system (Maybeck
1979). Based on an assumption that the linear dynamics system and the measurement are
perturbed by white noise, the Kalman filter utilizes the system dynamics model and
measurement model, the statistics of the dynamics system noise and measurement noise

as well as the required initial information to deduce the estimation (ibid).

4.1.1 The Algorithm of Kalman Filter

For practical use, the dynamics model is usually expressed in a continuous format by
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X(t) = F(t)x(t) + G(t)w(t) (4.1)

where x(t) is the continuous-time state vector, F(t) is the continuous time dynamics
matrix, G(t)is the shaping matrix, w(t) is a dynamic process noise vector with zero

mean and uncorrelated Gaussian distribution. The covariance matrix of the noise vector is

given by (Gelb 1974)

E[w(t)w(r) 1=Q(t)-6(t-7) (4.2)
where t, 7 denote different time epochs, o(t) is called the Dirac delta function, and
Q(t) is the process noise matrix.

The continuous measurement model is given by
Z=H-x+w, 4.3)
where z is the measurement, H is the design matrix, and w,, is the measurement noise

that has zero mean with uncorrelated Gaussian distribution. Similarly to the process noise

in the dynamics model, the covariance matrix of the measurement noise is expressed by
E[w,(tw, () |=R-5(t-7) (4.4)

where R is called the covariance matrix of the measurement noise.
In practical use, the continuous models are usually transformed into discrete form, and

the discrete dynamics and measurement models are expressed as follows

X = q)k—l,kxk—l + W (4 5)
z, = Hx + W, '
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where @, ., is called the transition matrix, which can be approximately calculated

through a Taylor series expansion (Brown & Hwang 1992)

O, =" =1+FAt+ (F2A!t)2 + (th)z +... (4.6)
where At is the sampling rate of the discrete system.
The discrete process noise w, is computed by
W= [ @ (40,7)-G(0)- W () 4.7)

The discrete process noise also has a zero mean with uncorrelated Gaussian distribution,

namely

E[w,]=0

L= 4.8
E[(wk)i(wkm:{Qk =] (48)

0, i#]
where Q, is the covariance matrix of the discrete process noise.

A numerical algorithm for the computation of the covariance matrix of w, is expressed

by the following formula (Grewal et al. 2001)
T THT Ty At
Qk = E[Wk - Wy 1= (q)k,k+leQGk (Dk,k+l + GkQGk )? (4.9)

Similarly, the covariance matrix of the discrete measurement noise is characterized by

E[w,, ]=0
R, i=] (4.10)
0

, 1# ]

E[(ka )i (ka )11—] = {
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The state vector x, and its covariance matrix P, are computed by prediction and

update steps. The prediction step propagates the current state to the next step, and the
update step modifies the prediction results using currently available measurements. The
optimal Kalman filter gain is calculated in the update step. These procedures are

summarized here and are detailed in Gelb (1974).

The prediction step is

X, =®- X
{ k+1 k (411)

P, =®R @' +Q,
where x, is a posteriori state vector at the current epoch, x,,, is the a priori state vector

at the next epoch, P~ is the a priori estimated covariance matrix, and Pis the a

posteriori estimated covariance matrix.

The update step is conducted by

Kk+1 = Pk_+1H (Hpk_uHT + Rk)_l
X =X+ K (z, —HX ) (4.12)
Pk+l = (I - Kk+1H)Pk_+1

where K is the Kalman filter gain, and | is the identity matrix.
The Kalman filter is an unbiased, recursive estimator on the condition of the minimum

variance. Through the prediction step, followed by measurement update, the state vector

and its covariance matrix are estimated on an epoch-by-epoch basis.
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4.1.2 Linearized and Extended Kalman Filters

The Kalman filter is essentially linear in nature. In most practical applications, however,
the measurement model and/or the system dynamics model are nonlinear. Kalman filter
theory can be applied approximately to a nonlinear system when the nonlinear system is
linearized with a trajectory. Depending on the trajectory used for linearization, a Kalman

filter can be classified into a linearized or an extended approach (Brown & Hwang 1992).

With a nominal trajectory, relevant Kalman filter parameters, such as the Kalman filter
gain and the design matrix, can be computed off-line. Thus, the linearized Kalman filter
has an efficient real-time implementation. However, the deviation between actual and
nominal trajectories drifts with time without bound, and the assumption of small error
magnitudes tends to be violated in the process of linearization. With these features, the
linearized Kalman filter is applicable for areas with an approximate trajectory and a short

system running time.

On the contrary, the extended Kalman filter does not depend on any nominal trajectory.
Its linearization trajectory is continuously updated with estimated results. In this way, the
deviation between estimated trajectory and actual trajectory is bounded at a small level.
However, a larger initial uncertainty and measurement noise may lead to a divergence of
the extended Kalman filter. The pros and cons of the linearized and the extended Kalman
filters are summarized in Table 4.1 and imply that the extended Kalman filter is

appropriate for land vehicle positioning and navigation systems.
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Table 4.1 Comparison of linearized and extended Kalman filters (Brown & Hwang

1992)

Extended Kalman Filter Linearized Kalman Filter

The trajectory deviation is
bounded

Large initial uncertainty and
Disadvantages | measurement noise may lead
to a divergence

The approximate trajectory is | The approximate trajectory is
Application area | not known in advance known in advance

The running period is long The running period is short

Advantages Efficient real-time computation

Trajectory deviation drifts without
bound

To illustrate the linearization of the measurement model, assume the nonlinear

measurement model is given by
z=h(x)+w, (4.13)

where h(x) is the estimated measurement, and e, is the measurement noise, z is the

raw measurement that is also a function of state x.
By defining the error state as

OX=X—X (4.14)
where &x is the error state, X is the estimated state, and x is the true value.

Using the Taylor series theory at the first-order, the linearization of the measurement

model is expressed by

z+§3hﬂ5x=h@)+§nhﬂ5x+a% (4.15)
OX OX
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where 67 =%|M ox is the perturbation of the raw measurement, and oh = g—2|xx OX
is the perturbation of the estimated measurement.
By defining the measurement misclosure (or innovation sequence) as
e,=z—h(X) (4.16)
Equation (4.15) can be rearranged as
e,=oh-d67+w, :(2_2|x_i_%|x_i)5x+a)m (4.17)

=HoX + w,

where H is the design matrix.

4.1.3 Decentralized and Centralized Kalman Filters

Kalman filtering is well suited to information integration from different data sources
(Maybeck 1979). Different sensor sources can be integrated with either a loose coupling
or a tight coupling strategy. According to the coupling relationship between the local
sensors and the filtering technique, Kalman filtering for integrated systems is usually

implemented in decentralized and centralized ways (Schwarz et al. 1994).

Figure 4.1 illustrates the structure of loose coupling and decentralized Kalman filter (after
Scherzinger 2004). Decentralized Kalman filtering processes the local Kalman filtering
outputs within a master Kalman filter in a suboptimal and sequential way, and it

corresponds to a loosely coupled integrated system. A decentralized Kalman filter has a
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two-staged, distributed, architecture whereby the output of local sensor-related filters is

subsequently processed and combined by a larger master filter (Gao et al. 1993).

Ilaster Kalman Filter

Reset

—

Local Ealman

Local Sensor 1 ——* Thilae 1l S Estimated

Cutput

Eeset —

——

Local Ealman
Local Sensor 2 —» Filter 2

Reset

Local Ealman
Filter m

Local Sensorm ——

Figure 4.1 Loose coupling and decentralized Kalman filter

As shown in Figure 4.2 (after Scherzinger 2004), centralized Kalman filtering combines
different sensor data optimally using one Kalman filter. It is associated with a tightly
coupled integrated system. A centralized Kalman filter processes all available sensor

measurements at each epoch to obtain a globally optimal solution.

Both centralized and decentralized Kalman filters have their advantages and
disadvantages, and a tradeoff needs to be made for a specific application. Centralized
Kalman filtering outperforms decentralized filtering in terms of overall system accuracy,
which is attributed to reduced process noise in a centralized Kalman filter (Petovello
2003). Another noticeable advantage of centralized Kalman filtering is that ongoing

aiding can be provided even when the number of GPS satellites is less than four
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(Scherzinger 2001), and an optimal solution can be determined. However, data

processing concentrated on one Kalman filter degrades system flexibility and tolerance to

fault.

Centralized Kalman Filter

Estimated
Cutput
—

Local Sensor 1

Local Sensor 2

Local Sensorm

Figure 4.2 Tight coupling and centralized Kalman filter

The decentralized Kalman filter has a modular and flexible architecture that results in
high computational efficiency and fault-tolerant characteristics. However, a decentralized
Kalman filter only provides suboptimal solutions, and the GPS local Kalman filter inside
a decentralized Kalman filter cannot work effectively when the number of GPS satellites
is less than four. Table 4.2 makes a comparison between centralized and decentralized

Kalman filters.

Based on the above analysis, a tight coupling strategy and extended Kalman filters are
used in this research to tightly couple the GPS, INS and on-board vehicle sensors in an

effective manner.
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Table 4.2 Comparison of centralized and decentralized filters

Decentralized filter
(Loose coupling strategy)

Centralized Filter
(Tight coupling strategy)

Small noise level
Global optimal solution

GPS measurement can be less than 4
Fast ambiguity resolution

Large size of error model

Low calculation efficiency

Low tolerance to fault

Flexible
High computing efficiency
Tolerance to fault

Advantages

4 satellites are needed
Suboptimal
High noise

Disadvantages

4.2  Integration Strategies

To make full use of the on-board vehicle sensors for the land vehicle positioning and
navigation, Table 4.3 gives a description of the relationship of the on-board vehicle

sensors and the navigation information.

Table 4.3 On-board vehicle sensors vs. navigation information

Sensor Name Position Velocity Azimuth Others
Yes
Wheel speed es Yes (De“.VEd fro_m Susceptible to
sensors (WSS) (Integrated from (Directly) the differential the side sli
WSS and YRS) y of two wheel P
speed sensors)
Yes Yes Can detect the
G Sensors (Integrated from (Integrated NO side sllp_by
(GL) GL and YRS) from GL and cooperating
YRS) with YRS
Can detect the
Yaw rate es side slip by
No No (Integrated .
sensor (YRS) from YRS) cooperating
with GL
Steering angle Constraint
sensor (SAS) No No No veloc(:jl:i):cterror
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Using a tight coupling strategy, five types of integration strategies are proposed by

integrating GPS, an IMU (tactical grade or MEMS low cost IMUs) as well as several
on-board vehicle sensors. The proposed integration strategies are summarized in Table

4.4,

Table 4.4 Descriptions of integration strategies

Integration strategies Descriptions

WSS provides the longitudinal velocity update
Non-holonomic constraints are applied in lateral and
GPS/INS/WSS vertical directions

Constraints are violated by a larger side slip angle

WSS performs ZUPT in static mode

Provides the lateral and longitudinal velocity update
GPS/INS/GL/YRS Lower quality of GL/YRS

Computes the side slip angle

Compute the steering angle from the horizontal velocity
Velocity error drift is constrained by SAS
GPS/INS/WSS/SAS WSS and SAS sequentially update the Kalman filter
SAS updates the Kalman filter in a sequential way
WSS and GL/YRS are functioning in an interactive way
GPS/INS/WSS/GL/YRS/SAS | WSS enhances the initial velocity accuracy for GL/YRS
GL/YRS computes the side slip angle to detect and
alleviate the violation of non-holonomic constraints

GPS/INS/SAS

4.2.1 GPS/INS/Wheel Speed Sensor Integration Strategy

Figure 4.3 shows the integration strategy for GPS/INS/Wheel speed sensor combination.
All available sensor measurements are integrated by a tight coupling strategy at each
epoch to obtain a globally optimal solution using one centralized Kalman filter. For the
equipment used, the IMU data rate is 100 Hz, and its mechanization equation output rate

is set to 10 Hz. The position, velocity and attitude information of the integrated system
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are given by implementing the mechanization equation of the IMU in ECEF frame. The

GPS measurements used herein are double differenced carrier phase, double differenced
Doppler and double differenced pseudorange at a 1 Hz rate. The on-board vehicle sensors
are sampled at 100 Hz. To make a tradeoff between system accuracy and computational
load in a real-time test, vehicle sensors data are thinned at 1 Hz for the update of the
centralized Kalman filter. The external update to the centralized Kalman filter, such as
GPS and on-board vehicle sensors, facilitates the estimation of error states including
position errors, velocity errors, misalignment angles, as well as accelerometer and gyro
biases.

Position/VelocitylAttitude (3-I)
¥

Estimated Satellite
Measurement

Error states Centralized KF sapz| - GPS measurements
- * DD carrier phase

¥

4 * DD Doppler
B2 * DD Pseudorange
+ Position Ealman f
* Velocity Filter — Ambiguity Resclution
+ Wi salignment angles Ieasurem ent
+ Gyro biases Mlisclosures

» Accelerometer biases

* GP3 ambiguities

* W3S scale factor

* b to v frames tilt angles

Legend
- IMTT Data Flow I:I Ealman Filter
[ ocestUpdwe [ WSS Update

Figure 4.3 GPS/INS/ WSS integration strategy

Due to the centralized processing approach, the satellite measurements are estimated by
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using the integrated position and velocity. The raw GPS measurements and the estimated

satellite measurements are compared to derive GPS measurement misclosures in the
centralized Kalman filter. When ambiguities need to be fixed, the float double differenced
ambiguities are augmented and estimated in the centralized Kalman filter. Integer
ambiguities are resolved by the LAMBDA method using real-valued ambiguities and

their relevant estimated standard deviations from the Kalman filter.

The centralized Kalman filter used for each integration strategy is a closed loop type. It
indicates that the relationship between the centralized Kalman filter and the external
update are bidirectional. In one manner, the GPS update provides an external aid to limit
the INS drift error when GPS is available. During GPS outages, on-board vehicle sensors
will continue to update the centralized Kalman filter and bridge the GPS data gap. In
another way, the estimated error states feedback to the integrated solutions as well as the
IMU and vehicle sensor measurements. With feedback information, the integrated
position, velocity and attitude angles can be corrected by the estimated error states of
position, velocity and misalignment angles. Also, the estimated accelerometer and gyro
biases, as well as augmented on-board vehicle sensor error states can rectify the IMU and

on-board vehicle sensor measurements.

In practical use, tire size is subject to many factors such as a payload, driving conditions,
temperature, tire-air pressure and tread wear. Additionally, the IMU body frame does not

always coincide with the vehicle frame. Thus, the scale factor of the wheel speed sensor
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and the tilt angles between the vehicle and the body frames are augmented into error

states of the centralized Kalman filter.

The wheel speed sensor estimates the forward-direction velocity in the vehicle frame,
while two non-holonomic constraints are applied to vertical and lateral directions. The
non-holonomic constraints imply that the vehicle does not move in vertical or the lateral
directions assuming the land vehicle does not jump off or slide on the road. The lateral
non-holonomic constraint is very close to a real condition when the vehicle runs on a flat
road with a very small side slip, and it is violated when the vehicle runs on an icy or
bumpy road with a larger side slip. This constitutes a weak point of the GPS/INS/WSS

integration strategy.

The wheel speed sensor provides absolute velocity information to update the centralized
Kalman filter. The measurement misclosure is computed in the vehicle frame by
comparing the difference between integrated velocity and WSS measurements plus two
non-holonomic constraints. With feedback from the centralized Kalman filter, the raw
WSS measurement corrected by the estimated scale factor becomes closer to reality, and
the estimated tilt angles between the body and vehicle frames make the WSS update more
precise. During GPS outages, non-holonomic constraints as well as absolute velocity
information can constrain the velocity and consequently the position drift of the
stand-alone INS system. Furthermore, the zero velocity output of the WSS in static mode

provides the possibility to perform a zero velocity update (ZUPT). Hence, it contributes



63
to limit the drift error in such a scenario that the vehicle runs in a static mode.

4.2.2 GPS/INS/G Sensors/Yaw Rate Sensor Integration Strategy

The GSP/INS/G sensors/Yaw rate sensor integration strategy is described in Figure 4.4.
Instead of providing absolute velocity as WSS, the GL/YRS unit constitutes a
dead-reckoning, horizontally two-dimensional IMU. Consequently, lateral and
longitudinal velocity can be derived from GL/YRS measurements with the initial velocity

being provided from the integrated system.

100 He 10He

Pasiti on/VelocitylAttitude (3-I)

Estimated Satellite
IMeasurement

Error states Centralized EF 1Hz | - GPS measurem ents
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+ Position SGFPSE * DD Fseudorange

* Velocity )

: Msahgnm satlaneles Ealman et Ambiguity Eesolution
» Gyro biases Filter

. Acceleror.net.ex.' biases NMirEnramet B
+ GP5 ambigmtles ik geilsEmes "
+ G zensors biases

* Taw rate sensor bias 1H=z

+

Legend
B pupweFow [] KelmanFilter

Figure 4.4 GPS/INS/GL/YRS integration strategy

The GL/YRS unit performs a velocity update in its body frame by computing
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measurement misclosures between the integrated velocity (being transformed from the

ECEF frame into the body frame) and the lateral/longitudinal velocity derived from the
GL/YRS. Similarly to an IMU, the biases of the G sensor and yaw rate sensor are
augmented into error states of the closed loop centralized Kalman filter. On the other

hand, estimated GL/YRS biases are used to compensate raw GL/YRS measurements.

The quality of an automotive grade GL/YRS is of the same order as the low cost IMU,
and is much lower than a tactical grade IMU. Thus, its error will drift at the same rate as a
low cost IMU or at a much greater rate than a tactical grade IMU during GPS outages.
Consequently, the improvement on positioning accuracy gained from the GL/YRS is

expected to be somewhat limited and less significant than that from the WSS.

4.2.3 GPS/INS/Steering Angle Sensor Integration Strategy

Using a similar structure as that of the other two integration strategies discussed above,
the basic idea of integrating the steering angle sensor is to compute the estimated steering
angle from the integrated velocity output in the vehicle frame, and then to employ the
steering angle measurement to update the centralized Kalman filter as shown in Figure

4.5.

As described in Chapter 3, the steering angle sensor measures the angle of the steering
wheel. By passing through the Electrical Control Unit (ECU) and the actuator, the
steering wheel angle is transformed into the vehicle tire angle relative to its neutral

position. The steering angle is referred to as the vehicle tire angle relative to its neutral
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position hereafter. The transformation between the steering wheel angle and the vehicle

tire angle is performed by a constant gain or scale factor.

100 He 10 He
Positton Vel ocityiAttitude (3-I0)
Estimated Satellite
IMeasurement
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* GPS ambiguities Eesiduals
* Steering angle sensor bias
* Steering angle sensor

scale factor

Legend
0 nwopwasiow []  Kelman Filter
[ crsUpse [ 545 Updae

Figure 4.5 GPS/INS/SAS integration strategy
Due to some of the non-linear characteristics in the ECU and the actuator, however, this
transformation is far from linear in nature. To adapt to the variation of the transformation
gain, the scale factor and bias of the steering angle sensor are augmented into error states
of the Kalman filter. Similarly to the G sensors and the yaw rate sensor, a constant bias
exists in the steering angle sensor measurement. It will degrade the steering angle sensor

measurement accuracy, and needs to be estimated by the centralized Kalman filter.
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The literature indicates that using the steering angle sensor to aid an INS to constrain the

INS velocity error drift is novel. To date, the steering angle sensor is mainly used in the
land vehicle steering system for the autonomous control of the vehicle. This research
develops a new way to put the steering angle sensor into the land vehicle positioning and

navigation by effectively integrating the steering angle sensor with GPS and INS.

4.2.4 Combined Integration Strategy for GPS/INS/On-Board Vehicle Sensors

Based on the aforementioned basic integration strategies, namely the GPS/INS/WSS
(with two non-holonomic constraints), GPS/INS/GL/YRS as well as GPS/INS/SAS, two
combined integration strategies can be derived from the basic modules or by creating a
relationship between different vehicle sensors. These include:

o GPS/INS/WSS/SAS , and

o  GPS/INS/WSS/SAS/GL/YRS

Either the basic or the combined integration strategies can be flexibly selected and
implemented in software. Since the wheel speed sensor and the steering angle sensor
produce independent measurements, sequential updating is used in the combined
integration strategy GPS/INS/WSS/SAS. This integration strategy performs velocity and
steering angle update in a sequential way.

The combined integration strategy GPS/INS/WSS/SAS/GL/YRS integrates all on-board
vehicle sensors with the GPS/INS. With a sequential and independent update from the

steering angle sensor, the WSS and GL/YRS work in a coordinated way to compensate



their weak points in one way or another.

between the WSS and GL/YRS.

Figure 4.7 describes this interactive relationship
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Figure 4.6 Combined integration strategies of GPS/INS/On-board vehicle sensors
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The absolute velocity update from the WSS measurements limits the longitudinal

velocity drift error. Consequently, the accuracy of the initial longitudinal velocity for the

GL/YRS is increased. On the other hand, the side slip angle can be calculated from the



lateral and longitudinal velocities. The side slip angle information provides a way to
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detect and alleviate violation of the lateral non-holonomic constraint. When the side slip

angle is smaller than a specific threshold, the lateral constraint is most likely valid.

However, when the side slip angle goes beyond a specific threshold, the lateral

non-holonomic constraint is violated.

One possible way to compensate for the violation of the lateral non-holonomic constraint

is to make use of the lateral velocity calculated from the GL/YRS to replace the lateral

non-holonomic constraint.
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Figure 4.7 Interactive relationship between WSS and GL/YRS
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Chapter 5 GPS/INS/On-Board Vehicle Sensor Integrated
Algorithms

Integration algorithms are developed by deriving the dynamics and measurement models
used in the Kalman filter for each basic integration module discussed in Chapter 4,
namely, GPS/INS/WSS, GPS/INS/GL/YRS and GPS/INS/SAS, as well as a combined
integration strategy GPS/INS/WSS/SAS/GL/YRS. Due to the importance of the lever
arm effect on the integrated system positioning accuracy, the lever arm effect and the way

of estimating the wheel speed sensor lever arm vector will be discussed first.

5.1 Lever Arm Effect

In the GPS/INS/On-board vehicle sensor integrated system, the GPS antenna is placed on
the roof of the vehicle. The low cost IMU is fixed near the driver seat. The wheel speed
sensors (WSS) are attached to the vehicle’s wheels. The average value of the two rear
wheel speed sensor measurements is used for system integration. Thus, the centre point
of the rear wheel axle is the virtual location of the wheel speed sensor. The steering angle
sensor is located on the centre point of the front wheel axle. The G sensors/Yaw rate
sensor (GL/YRS) unit is installed on the chassis of the vehicle, and lies between the
wheel speed sensor and the yaw rate sensor. The offsets of these locations introduce

spatial vectors, which are called lever arms. When the GPS, IMU and on-board vehicle
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sensors are integrated, lever arm effects must be taken into account since they are

significant relative to the accuracy required.

Using the GPS antenna phase centre as a reference point, the lever arm vectors are
computed from the IMU and on-board vehicle sensors to the GPS antenna phase centre.

b b b
These lever arm vectors are represented by L, .ops + Lwssoops + Leasoops  and

Lot jvrs»ops iN Figure 5.1,

GPS Antenna

EaGl IR RS

SAS GL/YRS WSS

On-Board Vehicle Sensors

Figure 5.1 Lever arm vector for GPS, INS and on-board vehicle sensors

With the defined lever arm vectors, the position and velocity at the IMU and on-board
vehicle sensors are mapped to the GPS antenna phase centre. In this way, the outputs of
the integrated system are referenced to the GPS antenna phase centre. The position and
velocity at the IMU are transformed into the GPS antenna phase centre by Equation (5.1)

(Petovello et al. 2005).
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{Plfvlu GPS — PI?VIU + RE L?MU GPS (5 1)

VIi/IU»GPS :VI:/IU + RS"?MU%GPS :VIIEiAU + (RSleb _QieeRt?)Ltl)MU»GPS
where Py, _cps IS the e frame position mapped from the IMU to the GPS antenna phase
centre, Py, Iisthe e frame position at the IMU, R; is the direction matrix between the
b and e frames, Ly cps = Xiwuoms  Yiwusops z,bMU%GPS]T is the lever arm vector
between the IMU and the GPS antenna phase centre, V,,, ,qpsiS the e frame velocity
mapped from the IMU to the GPS antenna phase centre, V,, is e frame velocity at the
IMU, QP is the skew-symmetric matrix of the gyro measurement, and Q is the

skew-symmetric matrix of the Earth’s rotation (which can be neglected for low cost

IMUSs).

For on-board vehicle sensors, the position information does not get involved in the
system integration or in the update of the Kalman filter. Thus, only a velocity
transformation from the on-board vehicle sensors into the GPS antenna phase centre is

required, as shown in Equation (5.2).

e _\/€ eb epeyyb
VWSS»GPS —szs + (RbQib - Qie Rb)LWSSaGPS

e _\/® e\b epeyb

VSAS%GPS _VSAS + (RbQib - Qie Rb)LSASeGPS (52)
e e eb epeyb

VGL/YRS—)GPS :VGL/YRS + (RbQib - QieRb)LGL/YRSeGPS

where Vi ,cps 1S the e frame velocity mapped from the centre point of the rear wheel
axle to the GPS antenna phase centre, V., is e frame velocity at the centre point of the

T
rear wheel axle, Lyss s =| Xissoops  Yussoops  Zussoces | 1S the lever arm vector

from the centre point of the rear wheel axle to the GPS antenna phase centre, Vg ,cps iS
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the e frame velocity transformed from the centre point of the wheel axle to the GPS

antenna phase centre, Vg, is e frame velocity at the centre point of the front wheel axle,
b b b b o

L sops =| Xenssops Yenssops  Zonsseps | 1S the lever arm vector from the SAS to the

GPS antenna phase centre, Vg, vrs_.cps IS the e frame velocity from the GL/YRS unit to

the GPS antenna phase centre, Vs s IS e frame velocity at the centre point of the

: b b b b o
GL/YRS unit, and L, jves_,cps :[XGL/YRS»GPS YoLrvrssaps ZGL/YRS»GPS} is the lever

arm vector from the GL/YRS unit to the GPS antenna phase centre.

5.2  Wheel Speed Sensor Lever Arm Estimation

The lever arm vector between the centre point of the rear wheel axle and the GPS antenna
phase centre can be estimated by the Kalman filter using a loose coupling strategy. The
method discussed in this section also applies to the estimation of the IMU lever arm
vector. A geometric layout of on-board vehicle sensors can be found from the vehicle
manual. With the estimation of the lever arm vector of the wheel speed sensor, the lever
arm vectors of other on-board vehicle sensors can be determined accordingly in terms of

the geometric dimension of the sensors.

The loose coupling strategy used for the estimation of WSS lever arm, as shown in Figure
5.2, consists of a GPS-Only Kalman filter and an INS Kalman filter. The GPS-only
Kalman filter estimates the position and velocity from GPS measurements. Instead of
using the raw GPS measurement to update the centralized Kalman filter in the tight

coupling strategy, the position and velocity estimated by the GPS-Only Kalman filter as
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well as the WSS measurement are used to update the INS Kalman filter. Given the initial

values of the lever arm vector, the error state of the lever arm vector is estimated by the

INS Kalman filter.

100 He 10Hz
Position/VelootylAthitude (3-I)
Error states 093 Kalman Filter 1 :z | +
- GPE-Cnly Kalman Filter
Sridv t
GPS measurements
Position Ka.lman * DD carrier phase
Velocity M Filter * DD Doppler
Misalignment angles Easurem = * DD Pseudorange
2 Residuals
Gyro biases 1 Hz
Accelerometer biases » P
T3S scale factor K Sv

Lever arm vector

Figure 5.2 Loose coupling strategy for the estimation of the WSS lever arm effect

For simplification, misalignment angles between the IMU body frame and the vehicle
frame are not considered in the lever arm estimation. The error states of the lever arm
vector and the wheel speed sensor scale factor are modeled as random constants, and are
augmented to the state vector of the INS Kalman filter. The state vector of the Kalman

filter consequently becomes,
ox=[or" oV & b 6d" Ol ,ps AS| (5.3)

where SL s IS the error state of the lever arm vector, and &S is the error state of

the wheel speed sensor scale factor.
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For the low cost IMU, the Earth’s rotation rate in Equation (5.2) can be neglected. The

measurement equation is shown as follows

e eb b
VGPS/INS/WSS = Rkivwss + Rbgzib L\NSS%GPS +w (54)

where Vs =[0 S+ Vs 0]T contains two non-holonomic constraints and the wheel

speed sensor measurement Vv, , S iS the wheel speed sensor scale factor, and

Vs mswss 1S the velocity of the integrated system in the e frame.

The perturbation of the right hand side of the measurement model in Equation (5.4) is
shown in Equation (5.5)

5(R§ Viss + RsQibb f ss»eps)
= (5R§) 'szs + Rg 'szs “0S + (5R§)Qibb y ss—cps T Rg (&?b)L\?\/SS%GPS + RSQ?bé‘L\k:VSSeGPS (5-5)
= _(Vvass + QES%GPS) &%+ RE 'szs 08— Rg L\?\/BSS»GPS -d ° + RSQ?bé‘LS\ISSHGPS

QFE

where V. is the skew-symmetric matrix of R{ -V, Lies apsiS the skew-symmetric

matrix of RIQP L. cps»aNd Los oo is the skew-symmetric matrix of L ps -

On the basis of Equations (5.4) and (5.5), the measurement model for the WSS lever arm

vector estimation is shown in Equation (5.6)
H =|:03><3 |3><3 Vvass"' QISESAGPS 03><3 Rg SBss»(;Ps —RSQ:’b _Rtfvwss] (5.6)

where O is the null matrix with the subscripted dimensions.
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5.3 Modeling of the On-Board Vehicle Sensor Errors Using a

Stochastic Process

Random constant, random walk and the first-order Gauss-Markov processes are

commonly used stochastic processes to model random phenomena (Gelb 1974).

A random constant is a non-dynamic quantity with a fixed, albeit random amplitude. It is

modelled as an integrator with no input but with an initial condition,
x=0 (5.7)

The random constant is appropriate for modelling typical phenomena that do not change
their values over time (Maybeck 1979). As steering and turning operations generally
occur over short time spans, it makes sense to model the steering angle sensor scale factor
and bias as random constants. Similarly, other on-board vehicle sensor error parameters
that are long-term stable, such as the tilt angles between the IMU body and vehicle
frames, the wheel speed sensor scale factor as well as the lever arm vectors are also
modelled as random constants. When IMU and on-board vehicle sensors are
mechanically installed on a certain point, the tilt angles between the IMU body and
vehicle frames as well as the lever arm vector are almost constant. The scale factor of the
wheel speed sensor is closely related to payload on the vehicle, and is susceptible to the
side slip. The side slip is associated with road conditions and high vehicle dynamics. It is
not easy to predict. Without losing generality, it is reasonable to model the scale factor of

the wheel speed sensor as the random constant.
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However, it is a more appropriate way to model error states that vary slowly over time as

a random walk or a first-order Gauss-Markov process.

A random walk represents the output of an integrator driven by Gaussian white noise. It is

an independent increment process, whose stochastic differential equation is expressed by

X=WwW (5.8)

where w is the Gaussian white noise.

The first-order Gauss-Markov process is used to model an exponentially correlated

process comprised of white noise. It is characterized by an exponential autocorrelation

X=-fX+W (5.9)

where f is the reciprocal of the correlation time constant.

Between the first-order Gauss-Markov process and the random walk, the first-order
Gauss-Markov process can approximate the random walk when the correlation time is

extreme largeor S =0.

The typical usage of a first-order Gauss-Markov process is to model the slow varying
errors in the IMU and on-board vehicle sensors, such as gyro and accelerometer biases as

well as G sensors and yaw rate sensor biases.

In the random walk process, if the noise power in the random walk process is expressed

by
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E[wt)w(z)" |=as(t—7) (5.10)

The variance of the random walk process is consequently (Brown & Hwang 1992),
ol =q(t-t,) (5.12)
where t; is the initial time, and t is the time at current epoch.

It explicitly indicates that the variance of the random walk grows with time. The noises in
IMU and some on-board vehicle sensors behave as the random walk when integrating the
noise corrupted measurements of accelerometers/G sensors or gyros/yaw rate sensor into
velocity or attitude angles. In this way, the accuracy of mechanization outputs of IMU or
G sensor/Yaw rate sensor degrade with time due to the integral of noise in the random
walk process. It can be seen the noise is another factor that leads to the drift error in the

stand-alone inertial system in addition to the error sources such as biases.

54  GPS/INS/Wheel Speed Sensor Integration Algorithm

When using a centralized Kalman filter, the GPS/INS integrated system augments double
differenced ambiguities (AVN ) when necessary into the INS dynamics error model in
Equation (2.16). The dynamics model for the GPS/INS centralized Kalman filter is

consequently given by Equation (5.12) (Petovello 2003).

Equation (5.12) implies that the bias states for the accelerometers and gyros are modeled
as first-order Gauss-Markov processes, although any other suitable models could be used

instead.
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(5.12)

where AVN is the vector of double difference carrier phase ambiguities, and Fgpg, s

is the dynamics matrix for the GPS/INS integration strategy, Ggps, s 1S the shaping

matrix of the driving noise, and w is the noise matrix.

In terms of the GPS/INS/WSS integration strategy shown in Figure 4.3, the scale factor

of the wheel speed sensor and the tilt angles between the vehicle and body frames are

augmented to the error states of the GPS/INS centralized Kalman filter. Thus, the

dynamics model in Equation (5.12) is augmented into Equation (5.13). The wheel speed

sensor scale factor and the tilt angles between the b and v frames are modeled as random

constants.
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or | Sr
oV | oV
ée FGPS/INS | O ge
&b | sb°
sd® |~ | 5d°
AVN : AVN
o3 00 o0 0000 of
(%] oo 0 000 0 of %
0 0 0 0]
RE 0 00
0 R0 Ofw,
0 0 I 0fw,
+ 0 0 0 I Wb = FGPS/ INS /WSS5X + GGPS/ INS /WSSW
0 0 0 0fw,
0 0 00 (5.13)
(0 0 0 0]

where  Fgps)inswss 1S the dynamics matrix for the GPS/INS/WSS integration strategy
Gops/inswss 1S the shaping matrix, oS is the wheel speed sensor scale factor error state,
and ¢,_,=[6a Sp 5;/]T is the error vector of the tilt angles between the body frame

and the vehicle frame corresponding to the X, Y and Z axes, respectively.

Since wheel speed is measured in the vehicle frame, whereas velocities in the integrated
system are parameterized in the ECEF frame, the WSS update can be carried out either in
the e frame by transforming the WSS measurement into the e frame, or alternatively it
can be carried out in the v frame by transforming the integrated velocities into the v frame.

In this research, the WSS update is carried out in the v frame.
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The velocity at the centre point of the rear wheel axle represents the average of the two

rear wheel speed sensor measurements. It is used as the external velocity update to aid the
INS. The wheel speed sensor provides the velocity information in the longitudinal
direction (along-track) of the vehicle. The non-holonomic constraints are applied in
vertical and lateral (cross-track) directions of the vehicle frame. As shown in Figure 5.3,
the non-holonomic constraints mean that the velocities in vertical and lateral (cross-track)

directions are zero if the vehicle does not jump off and slide on the ground.

Figure 5.3 Non-holonomic constraints
The measurement equation in the Kalman filter is expressed by Equation (5.14) with two
non-holonomic constraints being applied to the X and Z axes of the vehicle frame.
0

SV |[=RI(RE) Ve +w, (5.14)
0

where S is the wheel speed sensor scale factor, and R, is the direction cosine matrix

between the b and v frames as calculated by Equation (5.15)

Ry = Ry (7)Ri(2)R,(8) (5.15)
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where «, 3,y are the tilt angles between the b and v frames with respect to the X, Y

and Z axes, respectively.

The perturbation of the left hand side of Equation (5.16) is expressed by the following

equation
0 0
Ol 1S Vigss | | = Viuss [0S =Viyss0S (5.16)
0 0

where Vs =[0 Vigss 0]T is the measurement used for the WSS update. It is a 3x1

vector.

The perturbation of the right hand side of Equation (5.14) is shown in Equation (5.17)
S(RY(RE)TVE) = RY(RE)SVE +RY(RE)'VEe —VVs, (5.17)

where Vv© is the velocity in the integrated system in the e frame, and v' =R!(R{)'v® is

the integrated velocity in the v frame. VF is the skew-symmetric matrix of the
integrated velocity in the e frame v, and V" is the skew-symmetric matrix of the

integrated velocity expressed in the vehicle frame v".

From Equations (4.16) and (5.14), the measurement misclosure is shown in Equation

(5.18).

0
e, =SV, [-RI(R)TV (5.18)

0

From Equations (4.17) and (5.14), the design matrix is derived from Equation (5.19)
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e, =R/(RS)TOVE+RV(RE)VE —VVe, |, —VyeedS + @,

(5.19)
=Hss0X + @,
Thus, the design matrix H, is summarized below
Hyss = |:03><3 Rk\;(RS)T RJ(RS)TV - Oss Oss Ospr Vs _VV] (5.20)

Equation (5.20) is a hyper-matrix in which each sub-matrix corresponds to the error states

defined in (5.13). O is a null matrix with subscripted dimensions.

55 GPS/INS/G Sensors/Yaw Rate Sensor Integration Algorithm

As shown in Figure 4.4, the biases of the G sensors and yaw rate sensor are augmented
into the GPS/INS centralized Kalman filter as a first-order Gauss-Markov process.
Consequently, the dynamics model for the GPS/INS/GL/YRS integration strategy is

shown in Equation (5.21)
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[ OF ] | [ or ]
ov | SV
5" FGPS“NS | O c
ShP | SoP
sd® N | 5d®
AVN : AVN
| oo 0o 000 -p o |%

| OCygs | 0 0 0 0001 O _ﬂYRS__5dYRS_

0 0 00 0 0]
R® 0 000 0w, ]
0 R 000 0w,
o o 1000w 620
0 0 01 0 0w,
0 0 00 0 0wy
0 0 00 1 0w
(0 0 00 0 1]
= FGPS/|NS/GL/YRS5X +GGPS/|NS/GL/YRSW

where g, Is the (2x1) error vector of the G sensor biases, odd,,s is the (1x1) error
vector of the yaw rate sensor bias, g; and f,s are the time constant reciprocals of
the first-order Gauss-Markov process model for the GL and YRS biases respectively,
wg. and W, are the driving noises for the GL and YRS biases respectively,
Feps/ins/aLivrs 1S the dynamics matrix for the GPS/INS/GL/YRS integration strategy and

Gaps/ins /6L vrs 1S the shaping matrix.

When using the G sensors and yaw rate sensor, the equations of motion in the body frame

are shown in Equation (5.22) (Dissanayake et al. 2001). Since the non-holonomic
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constraint is applied in the vertical direction, the vertical velocity is only coupled with

gravity.

vxb = ( f - bGLl) _Vy(r —Oyps) + g:
V= (f, —bs, ) +V, (r—dyg )+ 0y (5.22)
V'b — gb
where f, and f, are the specific force measurements from the G sensors, » is the yaw
rate measurement , V,’,V;,V; are the velocities in the b frame, and g,9°,9> are the

gravity elements in the b frame, by =[bs, b, 0] and d. are the biases of the G

sensors and the yaw rate sensor respectively.

The gravity vector in Equation (5.22) is derived from the gravity vector in the e frame by

Equation (5.23).
9" =(R))"g" (5.23)

where g®is the gravity vector in the e frame, and Rf is the direction cosine matrix

between the b and e frames.

By defining
1 00 f, 0 -1 0
M=0 1 0}, f=f | J=1 0 0 (5.24)
0 0O 0 0 0 O
Equation (5.22) can be replaced by the state space vector in Equation (5.25), which

simplifies the mathematical analysis.
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VP=M(f-by )+IV°(y—dys)+0° (5.25)

where V° is the velocity vector in the b frame, f is the specific force vector from the
G sensors, g° is the gravity vector in the b frame, and M,J are the coefficients defined

in Equation (5.24).

Using the trapezoid method of integration (Jekeli 2000), the velocity in the body frame

can be integrated from Equation (5.25) as

Vo =V0b+%(kl+k2)-At

ki =M (f) —bg)) + JVob(V(O) —Oyps(0)) + g (5.26)
Ky =M (f —bg)+I(Vy +K - At)(y —dyes) + 9°

where V,* is the initial velocity that comes from the integrated system, foy and g,
are the G sensors and yaw rate sensor measurements at the last epoch, b o, and dyg
are the G sensors and yaw rate sensor biases at the last epoch, g¢ is the last epoch’s
gravity vector in the b frame, k, and k, are parameters for the trapezoid integration,
and At is the integration time interval (defined to be 1 s in this research). As
aforementioned, the update rate on the centralized Kalman filter from the external aid
(GPS, WSS, GL/YRS and SAS) is selected at 1 Hz by making a tradeoff between the
computational load and the system performance. Additionally, the integration of GL/YRS
unit is bounded by retrieving the initial velocity from the integrated system output within
each integration time interval. Hence the integration time interval for GL/YRS

mechanization equation is selected at 1 Hz.
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To conduct the GL/YRS update in the b frame, the velocity in the integrated system is

transformed from the e frame into the b frame, and the measurement equation is

expressed by Equation (5.27).
VP =(RS)"ve (5.27)
where V° is the velocity computed from Equation (5.26), and v¢ is the velocity of the

integrated system in the e frame.

The perturbation of the gravity vector in Equation (5.23) can be derived as shown in

Equation (5.28).

59° = (RY)'N°or® + (RS G®¢* (5.28)
where N°© is the tensor of gravity gradients, G° is the skew-symmetric matrix of the
gravity vector in the e frame.
Using Equations (5.26) and (5.28), the perturbation of the velocity vector Vv° is
expressed by Equation (5.29)

NP :%(5k1 + 5k,)AL
- %(RS)T N°STe +%(R§)Teege (5.29)
" % M &by, + %J V2 +k, - AYSd g

The perturbation of the right hand side of Equation (5.27) is shown in Equation (5.30)

S((R)'V)=(R)T ov° + (R;)'V E&? (5.30)
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where VE is the skew-symmetric matrix of the integrated velocity in the e frame.

Similarly to the WSS update, the measurement misclosure can be derived from Equations

(4.16) and (5.27), as shown below
e, =V’ —(R))"v* (5.31)

Based on Equations (5.29) and (5.30), the design matrix related to the GL/YRS velocity
update is consequently derived in Equation (5.32) in terms of Equations (4.17)
e, =5((R))'v*)-oV +w,
_ AL Ry NS + (RE)T oV {(R@)TVE —ﬂ(Rg)Tc;eAt}ge
2 2 (5.32)
: % M Sby, — % JVP +kAYS,, + W,

=Hg jyrsOX +W
where Hg yrs 1S the design matrix for the GL/YRS update, which is coupled with the
error states of position, velocity, b to e frame misalignment angles and GL/YRS biases.
More specifically, the design matrix is:

HeLivrs =

A, (5.33)

ton/b
J + kAt
> > Vo +ke )}

[%(RS)T N® (RS)' (RS)'VE —%(RS)T GAt Osg Oz Ogepr -
In this research, the noise power of the GL/YRS was determined using data from a static
test by calculating the average standard deviation across 40 evenly spaced one-second
intervals of static data. When performing integration with the GL/YRS measurements to

derive velocity, the noise in the GL/YRS generates a random walk error because of the

integration. In terms of Equation (5.11), the integral of G sensor noise into the velocity
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behaves as a random walk process. The variance resulting from the propagation of noise

is

ol =0 At (5.34)

b
VNoise

where avzb is the noise power of the G sensors, At is the time interval for integration,

Noise

and a\fb is the variance propagated by measurement noise.

Noise

Considering that integration is performed every 1 s, and the initial value comes from the

integrated system every 1 s, a\fb = 0'; herein. Therefore, the velocity variance for the

Noise

GL/YRS velocity update can be tuned adaptively in terms of variance propagation theory

from Equation (5.26), which is shown in Equation (5.35)

2 2 1. 5 2\ hp2
O-Vb —Gvob +Z(O-k1+o-k2)At

O'Sh =(R§)"N°c% (N°)' R}
2

2 2 2 T 2 24T be 2 2 b\T

; (5.35)
oky =M(cf +op IMT +1] (avzob +0% At )(y = dygg ) - 37
+ (Vg + kAt (ol + o5 )V +kAt) T

2
+ 0
q°

where o7, is the velocity variance of the GL/YRS, of and o; are the estimated

variances of GL/YRS biases provided by the Kalman filter, o2  and agYRS(O) are the

be (o)

variances of GL/YRS biases at the previous step, ojob is the initial velocity variance

from the integrated system, ogb is the variance of the gravity vector in the b frame, and

o’ s the position variance in the e frame.
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5.6 GPS/INS/Steering Angle Sensor Integration Algorithm
In the dynamics model for the GPS/INS/Steering angle sensor integrated system, the
scale factor and the bias of the steering angle sensor are augmented into the error state
vector of the GPS/INS centralized Kalman filter. The scale factor and steering angle
sensor bias are all modeled as random constants. The dynamics model is therefore

expressed by

ot ] | [ or
oV | SV
é‘e FGPS/lNS | O ge
SbP | SbP°
sd° |~ | s5d°
AVN : AVN
Sas| o0 0 00 0 0 o]
9dus] o0 0 00 0| 0 09U
0 0 0 0]
R 0 00
0 R 0 0|w,
+ 0 0 1 Ofw, =F ox+G w
O O 0 I Wb GPS/INS /SAS GPS /INS /SAS
0 0 0 0fw,
0 0 00 (5.36)
0 0 0 0

where 5Sg,s IS the error state of the steering angle sensor, sds,s IS the error state of the
steering angle sensor bias, Fgps;ins/sas 1S the dynamics matrix of the GPS/INS/SAS

integration strategy, and Ggps;ins;sas 1S the shaping matrix of the GPS/INS/SAS

integration strategy.
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Assuming the sideslip of the front tire is zero, the steering angle can be estimated from

the velocity in the vehicle frame. The measurement model for the GPS/INS/Steering

angle sensor is shown in Equation (5.37)

S — g =—tan™ {V—§]+wm (5.37)
v
y

where S, is the scale factor of the steering angle sensor, d, is the bias of the
steering angle sensor, yw is the steering angle sensor measurement, and w, is

measurement noise.

The opposite sign on the right hand side of Equation (5.37), which represents the
estimated steering angle from the velocity in the vehicle frame, is due to the definition of
the vehicle frame as Right-Front-Up, while a positive steering angle corresponds to a left

turn which is contrary in sign to the value calculated from the estimated velocity.

The velocity in Equation (5.37) is defined in the vehicle frame, which is obtained by

transforming the velocity from the ECEF frame, as shown in Equation (5.38)
V' =RY(RS)TV* (5.38)

The measurement misclosure is computed below

Vy

e, = Sel —dg, +tan™ Yo (5.39)
z SAS SAS v

The perturbation of the measurement on the left hand side of Equation (5.37) is shown in

Equation (5.40)
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67 = 5(Sspsl — Usps) = WO Sgus — 0gys (5.40)

The perturbation of the velocity in the vehicle frame shown in Equation (5.38) is derived
by

ov' =RY(RS) oV +RY(RE)'V Fe
» (Ry) » (Ry) (5.41)
=C.ov +C&°
where C, = RY(Rg)" is the coefficient of the perturbation of velocity (in the v frame)

with respect to the velocity error state, V® is the skew-symmetric matrix of the

integrated velocity in the ECEF frame, and C. =R/(R;)"VFEis the coefficient of

perturbation of the velocity (in the v frame) with respect to misalignment angles

The perturbation of the estimated steering angle is:

oh = 5{ ‘1( )} avv .t aa:v ovy
) " S (5.42)
== 2Vy 25\/1"' 2VX 25VV
W) +M) (W) +()
Substituting Equation (5.41) for Equation (5.42) gives,
sh = C. (2,1)v2Z -C. (;L,l)v; : C.(2, 2)v2 -C.(L2)v, ov;
() +(v) )+ ()
C.(23v,-C.(L3)vy .. C.2Yv,-C.(LYv,
+ 2 2 z 2 2 &y
(vi) +(v) (v) +(v) (5.43)
C.(22v,-C.(L2v, ., C.(23v,-C.(L3)vy .
+ N2 2 gy 2 2 &,
)+ () )+ ()

=C,, .0V +C,_ 06"
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where C (i, j) represents the element of C ., matrix at the i-th row and j-th column.

C.(i,]) represents the element of C. matrix at the i-th row and j-th column.
5Ve=[5v§ ov, §va is the velocity error state vector, and Eez[ge &t ge} is the

X y z

misalignment angle vector.

) {Cve 21V -C, @IV, C,(22V -C, L2V, C,(23V -C, L3V, ] o
Hove v\2 v\2 v\2 V)2 V12 V\2
(ve) +(vy) (ve) +(v) (ve) +(vy)
|lc.@v -C.aDyy C.(22vi-C M2V, C.23v-C, A3V,
(Vi) +(vy) (ve) +(vy) (ve) (v

oh=C_  .0ov"+C, .&° (5.44)

Hove

On the basis of Equations (5.40) and (5.44), the design matrix for the steering angle

sensor update can be derived from Equation (5.45)

e,=0h-0672+@, =C_ .0V +C, .&° —ydSgs + 0lgys

(5.45)
=H Gps/ins 15as OX + @,
Therefore, the design matrix is summarized below:
Hoas = [les CH(g\,e Cng Oz Oz Opm —¥ 1-0} (5.46)

5.7 GPS/INS/WSS/SAS/GL/YRS Integrated Algorithms

As described in Section 4.2.4, the integration strategy GPS/INS/WSS/SAS/GL/YRS
integrates all on-board vehicle sensors with the GPS/INS. The WSS and GL/YRS are
incorporated as a mechanism for the detection/alleviation of lateral non-holonomic

constraint violation applied in the WSS update. Following the GPS/INS/WSS/GL/YRS
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update, the steering angle sensor updates the centralized Kalman filter sequentially. By

augmenting all error states associated with on-board vehicle sensors into the error state

vector of the GPS/INS centralized Kalman filter, the dynamics model for this integration

strategy is evolved into Equation (5.47).
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where  Fgps)inswss/sas/oLves 1S the dynamics matrix for this integration strategy, and

Gaps/ins wss/sas/oLivrs 1S the shaping matrix.
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With respect to the mechanism for detecting and alleviating the violation of the lateral

non-holonomic constraint, Figure 5.4 describes the geometric relationship between the

WSS and GL/YRS, as well as a simplified vehicle’s bicycle model containing the rear

wheel side slip angle. Vehicle’s bicycle model actually simplifies the four-wheel vehicle

model into a two-wheel vehicle model along the vehicle gravity center.

v I p}'ﬁ

¥,
'."\._ i ., “‘"‘-_»
. ., -

GL/YRS

g

L, -

Figure 5.4 Geometric relationship between WSS and GL/YRS
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The rear wheel side slip angle can be calculated in Equation (5.48) from the transformed

velocity in the lateral and longitudinal directions using Ray (1995).

b
B =tant [VX\;#} (5.48)

y

where g, is the rear wheel side slip angle, L, is the distance between the GL/YRS and

WSS, and v; and v, are the lateral and longitudinal velocity derived from the

GL/YRS.

The lateral non-holonomic constraint is most frequently violated when the side slip angle
is large. Therefore, the side slip angle provides a way to detect and alleviate a violation of

this constraint. The design of this mechanism is described below.

With a statistical analysis on the side slip angle, the positioning accuracy starts to degrade
when the side slip angle is greater than 5 degrees whereas the lateral constraint is still
applied in WSS update. Thus, a threshold of 5 degrees is selected in this research for
detecting the violation of the lateral constraint. When the side slip angle is smaller than a
threshold, the non-holonomic constraint is valid, and the non-holonomic constraints are
applied in both the lateral and vertical directions. In this case, Equation (5.49) is used as

the measurement for the WSS update

0
Vwss =| Viwss (5.49)
0
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By contrast, if the side slip angle exceeds a threshold, the violation of the lateral

non-holonomic constraint can be replaced by the GL/YRS derived lateral velocity, i.e.

Vb

X

Viwss =| Viwss (5.50)
0

The cooperation between the WSS and GL/YRS leads to a mechanism for the detection
and alleviation of lateral non-holonomic constraint violation. As a result, the GPS/INS/
on-board vehicle sensor integrated positioning system can adapt to a variety of driving

cases with high positioning accuracy.

The velocity in vehicle frame used for WSS update,V, , is a vector that contains three
elements. The longitudinal element is a real value that comes from WSS measurement.
The lateral and vertical elements are virtual values that can be either non-holonomic
constraints or other values from external measurements. Despite the fact that a lateral
velocity can also be given from the INS mechanization output, it cannot be employed as
an external or independent measurement to remove the lateral constraint if violated.
Otherwise, a linear correlation or dependence will be introduced when performing
external update to the centralized Kalman filter. GL/YRS unit, however, provides
redundant and independent measurement for detecting and compensating the violation of

the lateral constraint.

To achieve a high positioning accuracy, it is necessary to switch Equation (5.49) and

Equation (5.50) in terms of a side slip angle threshold. With a small side slip angle, the
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lateral constraint is more close to the real situation where the lateral velocity is very

small. If Equation (5.50) is still being used when the lateral constraint is not violated, the

error and noise from GL/YRS unit will degrade the positioning accuracy.

To match the dynamics model defined in Equation (5.47), the design matrices for WSS,

SAS as well as GL/YRS measurements update are accordingly resized as follows:
He=[0s RER) REV" Q4 Oy O M V' 0O, O, O, Q,] (551)

C(RY)TGAr?

At
7(R§)T N® (RE)T (RE)'VE 5 Ozy3 Oz Ozcpr -
HoL/vrs = At I 4k ADAL (5.52)
+ .
O3, 03,3 =y M —% Oz Oz

Hns :[OM C C Ous Ous Oum Oy Ons Oy, Oy —w 1-0} (5.53)

Hove He®
5.8 Error Compensations in a Closed Loop Integrated System

As discussed in Chapter 4, GPS, INS and on-board vehicle sensors are integrated in a
closed loop. When on-board vehicle sensors and GPS perform external update, the error
states of navigation information (position, velocity and attitude) as well as IMU and
on-board vehicle sensor errors are estimated from the centralized Kalman filter. The
estimated error states are fed back to the integrated system to update the integrated
solution and compensate the errors in the raw measurements of the IMU and on-board
vehicle sensors. In this way, the external measurements used in the Kalman filter as well
as the integrated system solution become close to the true value, and a high positioning

accuracy can be achieved.

The estimated error states of position, velocity and attitude are used to update the
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navigation information computed from the INS by

r =f+or
V =V+0V (5.54)
Ry=(1-E")R}

where | is the identity matrix, E®is the skew-symmetric matrix of &, f and Vv are
the position and velocity from INS integrated solution, r and v are the position and

velocity after updating from the error states in the Kalman filter, R! is the updated

direction cosine matrix, and Iit', is the direction cosine matrix computed from the INS

integrated system.

Using the estimated error states of accelerometer and gyro biases, the previous estimated

IMU biases are updated by

b=b+db

. (5.55)
d=d+dd

where band d are the previous accelerometer gyro and accelerometer biases, and b
and d are the updated value by the estimated error states of oband od in the Kalman

filter.

The IMU raw measurements are compensated for the estimated biases by

(5.56)

where f° and ) are the compensated IMU measurements on the basis of the raw

IMU measurements f° and @ .
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Similar to the IMU, the error states of the on-board vehicle sensors are updated by

S =5+6S

Seas = Sens + OSess

dops =0gps + Sgu (5.57)
by, =bg +0by

Oyan = Oy + Oyay

where the existing wheel speed sensor scale factor S, the steering angle sensor scale
factor §SAS, the steering angle sensor bias &SAS , the G sensor bias BGL and the yaw rate

sensor bias d

Yaw

are updated by the error states 6S, S, 0dg, Obg and od

Yaw

respectively to introduce more accurate values of S, S, dgg, by and d

Yaw *

Consequently, the on-board vehicle sensor raw measurements are compensated by the
updated scale factors or the biases to give more accurate values used as the measurements

in the centralized Kalman filter,

Viss = \7wss /S
=y /Ses —d
A/ SAS SAS (5.58)
fGL = fGL - bGL
Ve = f_ dYaw

A

where V., ¥, fg, and y are the raw measurements of wheel speed sensor, steering

angle sensor, G sensors and yaw rate sensor, respectively.

5.9 External Aiding on GPS Ambiguity Resolution

Reliable and fast ambiguity resolution has crucial effects on high-accuracy GPS

applications. The search volume of ambiguity resolution is closely related to ambiguity
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resolution speed, and is often measured by the Ambiguity Dilution of Precision (ADOP)

given by Teunissen and Odijk (1997),

1
ADOP = [P,|" (5.59)

where P, is the covariance matrix of the estimated ambiguities, and m is the number of

double difference ambiguities being estimated.

It can be seen from Equation (5.59) that the search volume for ambiguity resolution is
closely related to the covariance of the float ambiguities. Scherzinger (2002) and
Petovello (2003) as well as Zhang et al. (2005) analyzed the impact of inertial aiding on
ambiguity resolution over GPS-only by investigating the covariance matrix. Based on this
work, three strategies, including GPS-only, GPS/INS and GPS/INS/on-board vehicle

sensors, are compared for the time to fix ambiguities after GPS outages.

Assuming that the covariance matrix after resetting the ambiguity resolution isP; , and no
correlation exists between the error states of the Kalman filter and the ambiguity states,

that is

p |7 O 60
X_{O PJ >0

where P, is the initial covariance matrix after resetting the ambiguity resolution, P is the

covariance matrix of estimated float ambiguities, and P, is the covariance matrix of the

estimated error states.
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Scherzinger (2002) investigated the relationship between a posteriori covariance matrix

of floated ambiguity and estimated error states, as illustrated by

P, —P., = A*cD'DR:.D" A(P; — P;)A'DR:D'D
R =D"AP;AD +H PyH} +R, (5.61)

N1

R =D'AP,A'D +H,Py,H} +R,

N2

where P;  and P, are the a posteriori VCV matrix of the float ambiguities for
strategies 1 and 2, P, and P., are the initial the a priori VCV matrix of the error states
after the reset of ambiguity for Strategies 1 and 2, A is the wavelength, o, is the
initial accuracy of the float ambiguities, D is the double difference operator, A is the
single-difference measurement model design matrix, H, = Al is the design matrix

correlated with ambiguity, and R, is the carrier phase measurement accuracy.

Equation (5.61) implies qualitatively that a smaller the a priori covariance matrix of the
error states is associated with a smaller covariance matrix of the float ambiguities. For
example, if the a priori covariance matrix of the error states for Strategy 1 is smaller than

that for Strategy 2,

P, <P, (5.62)
then, the a priori VCV matrix of the float ambiguity for Strategy 1 is accordingly smaller
than for Strategy 2, namely

P.. <P, (5.63)

N1 N2
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Thus, a smaller the a priori covariance matrix of error states (such as the position error

states) can introduce a smaller covariance matrix of the float ambiguities, which leads to
a smaller ambiguity search volume and, consequently, to a reduction in the time-to-fix

ambiguities.

With respect to resetting the ambiguity resolution process after GPS outages, the a priori
covariance matrix of the error states can be initialized in three ways in terms of different
integration strategies implemented for the integrated system. The effects of different

strategies on the time-to-fix ambiguities are analyzed as follows.

Case I: GPS-Only. In this strategy, the position, velocity as well as the position and
covariance matrix are initialized using DD C/A code solution when resetting ambiguities
after GPS outages. The initial positioning accuracy derived from the DD pseudorange

measurements is at the level of several metres.

Case I1: INS aiding during ambiguity resolution. During GPS outages, the position and
velocity are derived from the INS mechanization equation. The covariance matrix is

propagated by a prediction without external updating, as illustrated by Equation (5.64).

(5.64)

+ —

P_ =0P" @' +Q,
fr
where @ is the transition matrix, Q, is the process noise matrix in the current epoch,

P, is the a priori covariance matrix at the current epoch, and P;" is the a posteriori

covariance at the current epoch.
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The posteriori covariance, P, in Equation (5.64) measures the accuracy of the error

states. Without external update, the INS error drifts with time. As noise is accumulated

epoch by epoch, the propagated covariance matrix also increases with time. After GPS

outages, P." is used as the initial covariance matrix for ambiguity resolution.

Case I11: INS/On-board vehicle sensor aiding ambiguity resolution. In this strategy, the
on-board vehicle sensors perform the external update on the INS system. The
measurement model for the on-board vehicle sensor update is expressed by Equation

(5.65),
z, =H,0x+w, (5.65)
where z,is the measurement misclosure of the on-board vehicle sensors, H, is the

design matrix of the on-board vehicle sensors, and w, is the measurement noise of the

on-board vehicle sensors.

The INS-only propagated covariance matrix is updated by on-board vehicle sensors, as

shown below

P. =®P" @' +Q
{ k ‘ (5.66)

Pfl:l = Pﬁ;l o Pfk_ﬂHJ (HVPfk_AHJ + RV)_IHVP'{A
where R, is the measurement accuracy of the on-board vehicle sensors.
Since the term P HJ(H,P_ H/ +R,)™H P in Equation (5.66) is quadratic in nature,

the external update from the on-board vehicle sensors can limit the INS drift error and
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reduce the INS propagated covariance to some degree depending on the measurement

accuracy of the on-board vehicle sensors.

In summary, the covariance matrix of the float ambiguities determines the ambiguity
search space. A smaller initial covariance matrix of the error states in the Kalman filter
(more specifically the position error states) is associated with a smaller covariance matrix
of the float ambiguities. Thus, faster ambiguity resolution can be achieved by a smaller
initial covariance of the error states. A comparison of the aforementioned three strategies
on the performance of ambiguity resolution after GPS outages is therefore investigated by
their initial covariance matrix of error states. Compared to INS-only aiding on ambiguity
resolution, INS/on-board vehicle sensor aiding can reduce the covariance by an on-board
vehicle sensor update. As a result, faster ambiguity resolution can be expected from
INS/on-board vehicle sensor aiding than from INS-only aiding. The degree of
improvement depends on the measurement accuracy of the on-board vehicle sensors. The
initial position accuracy for ambiguity resolution with the GPS-only strategy can be about
several metres. In contrast, the covariance of either the INS-only or INS/on-board vehicle
sensor system increases with time and is correlated with the quality of the IMU. The
benefits gained from stand-alone INS or INS/on-board vehicle sensor aiding over a
GPS-only system is related to the duration of GPS outages and the quality of the IMU.
With shorter duration GPS outages and higher quality of IMUs, aiding from a stand-alone

INS or from INS/on-board vehicle sensors on ambiguity resolution performs better than
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the GPS-only strategy assuming the estimated standard deviation of the position drift

error is smaller than the standard deviation of DD C/A code solution. On the contrary,
when positioning drift error of the stand-alone INS or INS/on-board vehicle sensor
system goes beyond the positioning accuracy derived from pseudorange measurements
due to longer duration GPS outages or a lower quality IMU, the benefits of the
time-to-fix ambiguity resolution gained from the stand-alone INS or INS/On-board

vehicle sensor are expected to be somewhat limited.
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Chapter 6 Real-Time GPS/INS/On-Board Vehicle Sensor

Integrated System

A hardware platform was set up to test the integration strategies and algorithms. The
equipment used as well as the system configuration will be described in this chapter. By
dealing with the GPS time latency in real-time, a method to implement the real-time

GPS/INS/On-board vehicle sensor integrated system will also be discussed.

6.1 Hardware Platform Setup

Figure 6.1 gives an overview of the system used for the tests and data collection. It
includes all the equipment used in the open-sky test that was processed in post-mission as
well as all the real-time tests in open-sky, suburban and pseudo-urban areas, although
only a subset of the IMUs (HG1700 IMU or CIMU) were used in each case for the
generation of the reference trajectory. Through a connection to the interface unit, the
on-board vehicle sensors and the low cost IMU data were time tagged and logged onto
the PC1 via a serial port. This part was common to both the post-mission and real-time
tests. All the GPS, low cost IMU and the on-board vehicle sensor data were collected or
processed in real-time on PC2. Three NovAtel 600 antennas atop the van were connected
to four NovAtel OEM4 GPS receivers for different purposes. To save antenna numbers

and reduce the complexity of the lever arm effect, one splitter is used for two GPS
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receivers. The FreeWave radio link antennas and transceivers were used to broadcast the

GPS base station data for the real-time test. The CIMU data were collected by an
Applanix POS LS system to generate the reference trajectory for all the real-time tests.
The HG1700 IMU data were time-tagged and logged by a NovAtel SPAN system to

provide the reference solution for the post-mission test in an open-sky area.

r.
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Figure 6.1 System setup
Figure 6.2 is a block diagram that illustrates the system setup. The GPS base station was
setup on a pillar with a surveyed coordinate. For the post-mission test in the open-sky
area, the GPS base station data was saved onto a flash card. For all the real-time tests,

however, the reference GPS data was broadcast from the base station to the rover station
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via a pair of FreeWave radio link antennas and transceivers. The data stream from the

serial port of the base GPS receiver is packaged in a binary format defined by GPS
receiver manufacturer. This binary data stream is picked up and broadcast by a radio
transceiver at base station. With a radio link connection created between a pair of radio
link transceivers at base and rover ends, the binary data stream from the serial port of

base GPS receiver is consequently received at the rover station for real-time use.

Antenna 1 was connected to a GPS receiver (20 Hz data rate) that was built into the PC1
for time-tagging of the low cost IMU and the on-board vehicle sensor data. The low cost
IMU and the on-board vehicle sensor data were interfaced with the PC1 via an interface
unit and a serial port. The low cost IMU and the vehicle sensor data collected at 100 Hz
by the PC1 were packaged in a binary format and logged onto PC2 via a RS232 serial
port. The binary data stream with a combination of both low cost IMU and all on-board
vehicle sensors constitutes a large data volume for serial port communication. To fulfil a
real-time integrated system, a higher baud rate at 230400 bps is selected, which goes
beyond the limit of current PC system nominated at 115200 bps. To overcome this
limitation, a special PCI card (NI PCI-84304) for the enhancement of RS232 serial port

communication speed is embedded into the PC.
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Figure 6.2 System set-up block diagram

As shown in Figure 6.2, the post-mission and real-time tests each collected and processed
the data in different ways. In post-mission processing, the low cost IMU, the on-board
vehicle sensors as well as the rover GPS data were collected and saved onto the hard

drive of the PC2 by a specially designed data logging software. The GPS base station
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data was saved onto a flash card. The GPS base and rover data as well as the low cost

IMU and on-board vehicle sensor data was processed off-line to generate a post-mission

solution.

Unlike the post-mission test, the real-time tests collected and processed the data in
real-time using the SAINT™ (Satellite And Inertial Navigation Technology) software.
The real-time raw data was also logged onto the hard drive of PC2 for comparing the
compatibility between the real-time and post-mission solutions. The GPS base station
data (1 Hz data rate) was broadcast by a pair of radio transceivers. The SAINT™
software on the PC2 collected the real-time raw data via three RS232 serial ports. The
data included the low cost IMU and the on-board vehicle sensor data, the GPS base
station data broadcast by the radio link antenna and the transceiver as well as the GPS
rover data. The GPS, low cost IMU and on-board vehicle sensor data was processed in

real-time on the PC2 to generate a real-time solution.

Using a splitter, Antenna 2 was connected to both a rover GPS receiver and the SPAN
system GPS receiver. The GPS receiver in the SPAN system provided time-tagging to the
HG1700 IMU data, which was saved on a flash card at 100 Hz data rate. The
GPS/HG1700 IMU integrated solution provided a reference solution for the analysis of

the post-mission test.

An embedded NovAtel OEM4 GPS receiver in the POS LS system was connected to

antenna 3. The CIMU data was collected at 200 Hz by the Applanix POS LS data logging
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system. For all the real-time tests, the reference trajectory was generated by GPS/CIMU

integrated solution using the Applanix Pos Pac software.

6.2 GPS Latency

In the real-time integrated positioning system, the GPS base station data is broadcast to
the land vehicle by a radio link. A time delay will be introduced due to a certain amount
of time taken for the transmission of base GPS data to the land vehicle. The time delay
depends on the amount of data to be broadcast, the Baud rate of the radio link, the power
of the radio link transceiver as well as the length of the separation between the GPS
receiver and the vehicle. When the integrated system computes the time-matched double
differenced GPS data, the GPS time is “behind” the most recent IMU or vehicle sensor
time by the amount of the time delay called GPS latency. In the GPS/INS/On-board
vehicle sensor real-time integrated system, the low cost IMU and the on-board vehicle
sensor data was received synchronously on a same data flow encoded in a binary data

format. Hence, no time latency exists between the IMU and on-board vehicle sensors.

The GPS data is sampled at 1 Hz, and IMU data is sampled at 100 Hz. IMU data is
processed at a higher rate than GPS. When the time matched double difference GPS data
IS received at the rover station, the GPS time latency is computed as the difference

between the IMU time and the GPS time, i.e.

GPS Time Latency=IMU time-GPS time
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As IMU and on-board vehicle sensor data are considered to be synchronous, the GPS

time latency with respect to IMU coexist to the on-board vehicle sensors. To achieve a
high positioning accuracy, the GPS latency needs to be taken into account when a
real-time integrated system is implemented by integrating GPS with INS and on-board

vehicle sensors.

6.3 Implementation of Real-Time Integrated System

The most effective way to handle the GPS time latency in real-time is to buffer the
relevant data, including the IMU data, the on-board vehicle sensor raw measurements, the
INS mechanization states as well as the Kalman filter covariance matrix, when GPS data
is not available, and to restore and reprocess the buffered data when the GPS data is

available.

In the software, the buffer was set up to tolerate a maximum GPS latency at 3 seconds.
This selection represents a good compromise between the worst case of GPS latency and
the data buffering/reprocessing capability in the real-time system. The GPS latency at 3
seconds can cover the most of the worst cases of GPS latency and make the real-time
system work in a proper way. A much larger maximum GPS latency will increase the
time for data buffering, data restoration and data reprocessing, and lead to a malfunction
of the real-time system. With the data buffering/restoring technique, the real-time solution
can be expected to be compatible with the post-mission solution when the GPS time

latency is less than 3 s. The GPS time latency varies from test to test. By investigating the



GPS time latency in each real-time test, the compatibility between the real-time and the

post-mission solution can also be verified if the GPS time latency is less than 3 s.
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Figure 6.3 is a flowchart to show the procedure of the real-time data processing. The

flowchart consists of three branches: IMU data processing, On-board vehicle sensor

update and GPS data update. To keep the system accuracy and maintain computational

efficiency of the real-time system, both the vehicle sensor and GPS update rates are

selected to be 1 Hz.

Initialize IS

1

Load IMIT /W ehicle sensor
data (100 Hz)

t

IS mechanization
IS Ealman filter prediction

!

Buffer M data
Buffer mechanization states
Buffer Ealman filter data

Figure 6.3 Real-time data processing flowchart
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The INS is initialized by the GPS solution. The vehicle sensor and GPS data update the

Kalman filter independently. During periods when no GPS and/or the vehicle sensor are
available, the Kalman filter predicts ahead and the IMU mechanization equation is
implemented at 10 Hz. The relevant IMU/INS parameters (including IMU raw data, the
INS mechanization states as well as the centralized Kalman filter covariance matrix) are
buffered. When the on-board vehicle sensor measurements are available, the on-board
vehicle sensor raw measurements and other relevant parameters are buffered after the
on-board vehicle sensor update on the Kalman filter is performed. Similarly, when GPS

data is available, the following steps are performed:

1. The relevant IMU/INS parameters and the on-board vehicle sensor data if any are
restored from the data buffers at the GPS measurement time;

2. The GPS update is performed, and,;

3. All of the buffered IMU and vehicle sensor data is reprocessed to the latest IMU and
vehicle sensor time.

To implement a real-time integrated system, Figure 6.4 illustrates the time sequence for

real-time data processing (after Petovello 2003). Nine steps are classified and described

below for the real-time data processing including INS mechanization, vehicle sensor

update, GPS update, the buffering of the IMU/INS data and the vehicle sensor data, as

well as the restoring/reprocessing the IMU and the on-board vehicle sensor data.

Step 1. Initialize the INS at time t1.
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Step 2. Process the IMU data as it is received. This includes executing the INS

mechanizations, predicting the INS Kalman filter error states and covariance
matrix and buffering the relevant IMU data and INS mechanization states.

Step 3. When vehicle sensor data is available at time t2, it is used to update the INS
Kalman filter. The data are then stored in a data buffer.

Step 4. Continue to process the IMU data until the next measurement update is received
(assumed here to be a GPS update). As in Step 1, this involves executing the
INS mechanizations, predicting the INS Kalman filter and buffering the relevant
data.

Step 5. When GPS data, time-tagged for time t1, is received at time t3, the relevant
parameters in the buffer at time t1 are restored and the GPS update is performed.

Step 6. Reprocess all of the buffered IMU/INS data from time t1 to t2. Note that the
IMU/INS data is still buffered during this processing.

Step 7. At time t2, reprocess the buffered vehicle sensor data.

Step 8. Reprocess all of the buffered IMU/INS data from time t2 to t3. Note that the
IMU/INS data is still buffered during this processing. After this step, the
system has “caught up” to the current data being received. This is equivalent to
Step 1, but the system is now “initialized” at time t3, instead of t1, and,

Step 9. Continue processing and buffering IMU/INS data as it is received. Continue
performing on-board vehicle sensor update and buffering the on-board vehicle

sensor data if available.



Step 1: Initialize INS at t1.

Step2: INS mechanization to t2. INS
Kalman filter prediction. Buffer data.

} » IMU Time

1

Step 3: Perform vehicle sensor update at £2.

111 1'1 1
T rrri
t1 2

» 1ML Time

Step 4: INS mechanization to £3. INS

BulTer the vehicle sensor data. Kalman filter prediction. BulTer data.
—+H++++++———m™wTime —HH+HHH++—> MU Time
‘ 2 i3
i . Veh. Sens.

: " Time
t2

Step 5: Restore data from buffers at £1.

Step 6: Reprocess the INS data from t1 to £2.

Perform GPS update.
—+—++++++—+——wTime —H444+++——— MU Time
| t3 t1 2
e —— Y .-—--‘

Step 7: Restore vehicle sensor data at t2 and

Step B: Reprocess the INS data from t2 to £3.

perform update.
—+H+H+++H——— ™ Time —HHHHHH++—> MU Time
‘ 2 i3
i _ Vieh. Sens.
1 >
o Time Legend

Step 9: INS mechanization to next update.
INS filter prediction. Bulfer data.

=
———— > MU Time

t3

Figure 6.4 Data buffering, restoring and reprocessing sequence (after Petovello 2003)

— IMU mechanization INS
Kalman filter prediction

Vehicle sensor update

GPS update

116



117

Chapter 7 Tests, Results and Analysis

This chapter describes the tests conducted in different areas for either real-time or
post-mission processing. The data processing and analysis method is presented. Data
collected from all tests is analyzed with respect to all the integration strategies discussed
in Chapter 4. The tuning of the Kalman filter is verified and the benefits gained from the
integration of on-board vehicle sensors in terms of the position and velocity accuracy as

well as the ambiguity resolution are investigated.

7.1  Test Descriptions

The tests included an open-sky kinematic test processed in post-mission and real-time
tests in various areas (open-sky, suburban and pseudo-urban areas). Each test ran for
several minutes in static mode for initialization and 20-30 minutes in kinematic mode.
The reference solution for the open-sky kinematic test processed in post-mission was

generated by GPS/HG1700 IMU.

For all real-time tests in open-sky, suburban and pseudo-urban areas, the integrated
GPS/CIMU provided the reference information. During real-time tests, raw data was
recorded along with the real-time solutions, which was used to assess the compatibility
between the real-time and post-processed solutions. Due to an ideal GPS environment in

the open-sky tests (post-mission and real-time), only L1 carrier phase measurement is
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used. To maintain a reliable and fast ambiguity resolution under severe multipath effects

in suburban and pseudo-urban areas, the widelane carrier phase measurements were

employed in suburban and pseudo-urban area real-time tests.

7.1.1 Post-Mission Kinematic Test in Open-Sky Area

The purpose of the open-sky kinematic test processed in post-mission was to test the
software for tuning of the Kalman filter, the modeling of sensors as well as the validity of
the integration algorithm. The system performance and positioning accuracy for various

integration strategies were assessed by simulating GPS outages over various times.

Figure 7.1 gives an overview of this test. It was conducted on March 21, 2006 in

Springbank near Calgary, which is an open-sky area with good GPS satellite visibility.

Figure 7.1 Open-sky kinematic test processed in post-mission
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The system ran several minutes in static mode for initialization, and approximately 30

minutes in kinematic mode for positioning and navigation testing with a maximum GPS
baseline length of 4 km. With an ideal environment for GPS ambiguity resolution, the

GPS measurements used in this test included L1 carrier phase, Doppler and the C/A code.

7.1.2 Real-Time Test Descriptions

The real-time tests are described in terms of the test areas, namely, the open-sky,
suburban and pseudo-urban areas, respectively. The real-time tests gave an evaluation of
the validity of the design of the Kalman filter as well as the impact of various sensor
combinations when the satellite signals were masked in suburban and pseudo-urban

areas.

The real-time open-sky test was conducted on June 28, 2006 in Springbank near Calgary.
Figure 7.2 shows the GPS base station and the test surroundings. The GPS base station
antenna was set up on a pillar with a surveyed coordinate. Beside the pillar, a radio link
antenna was erected on a tripod to broadcast the GPS base station measurement signals
with a radio transceiver. The radio link transceiver broadcast the raw GPS measurements

in a binary format from base station to the rover on the vehicle.
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Open Sky Good GPS Availability

Figure 7.2 Description of real-time test in open-sky area

The real-time test in a suburban area started and ended in front of the Calgary Centre for
Innovative Technology (CCIT) building at the University of Calgary on June 28, 2006.
The test was conducted around the campus with a maximum baseline of 2.5 km, and
several minutes of static mode for initialization, as well as approximately 20 minutes for
the real-time kinematic test. As shown in Figure 7.3, the GPS base station and radio link
antennas were set up on the roof of the CCIT building. Also, partial and complete GPS
outages were mainly introduced by the dense foliage, small buildings near the street as
well as bridges. Unlike the open-sky area, the multipath error significantly increases in
suburban or urban areas. To guarantee reliable ambiguity resolution, the widelane (L1-L2)
carrier phase (rather than L1 in the open-sky test), Doppler and the C/A code

measurements were used.
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Figure 7.3 Real-time test in suburban area

The pseudo-urban area approximates urban canyon environment but with overall lower
masking angles and with severe masking conditions occurring for significantly shorter
durations than in a real urban canyon (Petovello 2003). Using the same GPS base station
and integration strategy as in the suburban area test, the pseudo-urban area test was
conducted on the campus of the University of Calgary on June 28, 2006. The maximum
baseline was around 1 km. The test ran several minutes in static mode for initialization as
well as approximately 20 minutes in kinematic mode. The multipath error and GPS signal
masking were more severe than that in the suburban area. Therefore, the widelane carrier

phase, Doppler and C/A code measurements were also used.

Figure 7.4 gives a brief description of the environment in the pseudo-urban area test. The
tall buildings, tunnels and trees frequently masked the GPS satellite signals to introduce a

position and velocity drift when the low cost IMU lost external aiding. The position and
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velocity drift errors were measured by comparing the integration strategy of GPS/Low

cost IMU/WSS/SAS/GL/YRS output with the GPS/CIMU integrated solution. Even
though the navigational grade CIMU also drifts with time without GPS aiding, it drifts to
a much smaller degree than the low cost IMU due to its high accuracy and quality.
Therefore, even with relatively longer GPS masking duration in the pseudo-urban area,
the accuracy of the reference solution generated by CIMU is still acceptable. The

accuracy of the reference solution will be detailed in the following sections.

Figure 7.4 Real-time test in pseudo-urban area

7.2  Data Processing and Analysis Methods

For each test, the data were processed and the results were analyzed among the six
integration strategies, which include:

1. GPS/INS,
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2. GPS/INS/WSS,

3. GPS/INS/SAS,

4. GPS/INS/GL/YRS,

5 GPS/INS/WSS/SAS, and

6 GPS/INS/WSS/SAS/GL/YRS

The data processing and analysis methods are described as follows.

7.2.1 Analysis of GPS Information

In the GPS/Low cost IMU/On-board vehicle sensor integrated system, GPS is the driving
factor in terms of system accuracy. When GPS is fully available, it plays a dominant role
in the integrated system and determines the absolute accuracy of the integrated system.
To this end, the GPS availability, namely, the satellite availability in both the base and
rover stations, was analyzed in all tests. Also, the satellite DOPs (horizontal and vertical
dilutions of precision) which are measures of the satellite geometry are also shown in

each test. Lower DOP values give better position accuracies.

Correct and fast ambiguity resolution has crucial effects on the positioning accuracy
when the carrier phase measurement is used. In general, correct ambiguity resolution
can result in a centimetre-level positioning accuracy. Associated with the number of
satellites tracked, the number of double difference ambiguities that have been fixed is

also shown.
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In double differenced GPS, multipath, noise and the ionosphere are the main error

sources. As discussed in Chapter 2, the ionospheric error is spatially correlated and its
residual error level is about 2-3 ppm with respect to the baseline separation under normal
conditions. The ionospheric error is generally negligible for short baselines. Multipath in
the suburban and urban areas is much more severe than in open-sky conditions. In this
research, the C/A code measurement is used for system integration in all tests. The C/A
code is more susceptible to multipath error than the carrier phase. Even though C/A code
can benefit ambiguity resolution by providing the unambiguous position information after
GPS outages, the increased code error due to severe and highly variable multipath effects
in the suburban and urban areas sometimes may lead to wrong and slowly converging
ambiguity resolution. To improve the robustness of the ambiguity resolution, the
widelane carrier phase measurement was used in the real-time suburban and
pseudo-urban area tests. By contrast, the L1 carrier phase was used in the open-sky test
due to a relatively benign multipath environment. The use of widelane measurements is at
the cost of amplifying the noise by the linear combination of the L1 and L2 carrier phase.
However, it is a tradeoff between fast and reliable ambiguity resolution and an increase in

the noise.

The carrier phase results (L1 and widelane) with fixed ambiguities and the C/A code
residuals are investigated to give some relevant information on the accuracy of GPS

solution as well as the correctness of the ambiguity resolution. With a good estimated
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position, the overall L1 carrier phase residuals with fixed ambiguities are around 1-2 cm.

The magnitudes of the WL carrier phase residuals are below 5 cm for the most part. If the
truth solution is accurate to the centimetre-level, the C/A code residuals are essentially
equivalent to the code errors (Petovello 2003). Unexpectedly large carrier phase residuals
and/or biased pseudorange residuals suggest a wrong ambiguity fix or large multipath

error may have occurred.

7.2.2 GPS Time Latency

For all real-time tests, the GPS latencies with respect to the IMU time are investigated.
They were typically on the order of 0.1-0.2 s (Petovello, 2003). With the data
buffering/restoring technique, the real-time solution can be compatible with the
post-mission solution when the GPS time latency is less than 3 s. The GPS time latency
varies from test to test. By investigating the GPS time latency in each real-time test, the
compatibility between the real-time and the post-mission solution can also be verified if

the GPS time latency is less than 3 s.

7.2.3 Reference Solution and Its Accuracy

To assess the performance of the GPS/Low cost IMU/On-board vehicle sensor integrated
system, a reference solution is generated from another independent system such as the
GPS/HG1700 IMU (tactical grade IMU) integrated system or GPS/CIMU (navigational

grade IMU). As shown in the hardware platform description, three different GPS units are
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employed to integrate with navigational grade, tactical grade and low cost IMUs for

generating independent solutions. Furthermore, the reference solution can be generated
by either the optimal backward smoothing technique or by a forward Kalman filtering
technique. In the open-sky test with good GPS availability, the GPS determines the
absolute accuracy. Both the GPS/HG1700 IMU and GPS/CIMU integrated solutions are
accurate to the centimetre-level, and there is no significant difference in the optimal
smoothing and forward Kalman filtering solutions. However, in the suburban and urban
areas, both tactical and navigation grade IMUs are susceptible to position and velocity
drift due to the frequent masking of satellite signals by trees, buildings and underpasses.
As the CIMU is about 100 times more accurate than the HG1700 IMU, the reference
trajectory generated by the GPS/CIMU with an optimal backward smoothing technique
would be more reliable than that generated by the GPS/HG1700 IMU in suburban and
urban areas. With this in mind, the reference trajectory in the open-sky kinematic test
with post-mission was generated by the GPS/HG1700 IMU integrated solution without
optimal smoothing. For the real-time tests in the open-sky, suburban and the
pseudo-urban areas, however, the GPS/CIMU integrated solution with backward optimal

smoothing was used to generate the reference.

It is important to know the accuracy of the reference trajectory. For the reference
generated by GPS/HG1700 solution, its accuracy was shown by the estimated standard

deviations of position and velocity. Furthermore, some extra information can also be
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given by investigating the carrier phase residuals with fixed ambiguity processing. The

GPS/CIMU solution processed by the Applanix POS Pac software gives the estimated
RMS error of the estimated position and velocity. The estimated RMS errors are
equivalent to the estimated standard deviation assuming the estimated error has zero

mean.

7.2.4 Performance Analysis of Various Integration Strategies

The performances of the six integration strategies were assessed with respect to the
reference by looking into their position and velocity difference and the estimated standard
deviations of the position and velocity difference. The estimated position and velocity
standard deviations are an estimate of the error by the Kalman filter, which should have
good agreement with the actual error in an ideal case. In practice, however, it indicates
that the model and parameters in the Kalman filter are well tuned if the estimated
standard deviation does not deviate too much from the variation of the actual error, or
more specifically the position and velocity differences in this case. The estimated
standard deviations of the position and velocity differences are computed by variance
propagation theory. Assuming the position (velocity) solution from the GPS/Low cost
IMU/On-board vehicle sensor integrated system is X, with an estimated standard
deviation o, , and the corresponding solution from the reference is X, with an

estimated standard deviation oy , the position (velocity) difference and the estimated

standard deviation were computed by Equation (7.1)
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_[2 . 2 (7.1)
ODifference — X, T OX,

To confirm the consistency of the position (velocity) difference and the estimated
standard deviation of the difference, the position (velocity) difference and the
+ 30 pitrerence. (- 3-SIgmMa”") were plotted on the same plot. Statistically, the probability of
the difference being =+ 30 erence 1S 99.74%. It implies that most of the difference should

be within the scope of + 30 qeence 1T the Kalman filter was well tuned.

To check the validity of the Kalman filter by comparing the actual difference and the
estimated standard deviation of the difference, only the results for the GPS/INS and the
GPS/INS/WSS/SAS/GL/YRS strategies are investigated and illustrated by figures. This is
feasible since these two integration strategies are two extreme cases. Among all the
GPS/INS/On-board vehicle sensors integrated strategies, GPS/INS/WSS/SAS/GL/YRS
integration strategy is the most typical one which covers all the information of the low
cost IMU and all the on-board vehicle sensors. If its Kalman filter is verified to be well

tuned, it suggests that any other integration strategy should also work well.

7.3 Results and Analysis
By comparing the six integration strategies for all tests, the test results are analyzed in the
following order:

1. Open-sky kinematic test - post-mission,

2. Open-sky area - real-time,
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3. Suburban area - real-time, and

4. Pseudo-urban area — real-time.

7.3.1 Open-Sky Kinematic Test - Post-Mission

The post-mission results for the open-sky kinematic test were analyzed by using the
GPS/HG1700 IMU tightly coupled solution as the reference. It is necessary to first
analyze the performance and accuracy of the reference solution. Figure 7.5 shows the L1
carrier phase residuals when the ambiguities are fixed, the baseline length and the
pseudorange code residuals (colour-coded by PRN) for the reference solution. With a
maximum separation between the GPS reference station and the vehicle being
approximately 4 km, most of the L1 carrier phase residuals were within 1-2 cm. The code
residuals were also within a reasonable level. It implies that ambiguities are resolved

correctly.

To be more specific, Figure 7.6 and Figure 7.7 show the estimated standard deviations of
the position and velocity for the GPS/HG1700 integrated reference solution. The
estimated standard deviation is a measure of the accuracy for the estimated solution. It
can be seen that the reference is estimated to be accurate to the centimetre and cm/s level,
which indicates that the GPS/HG1700 IMU integrated solution is sufficiently accurate to

be used as the reference solution.
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Figure 7.5 L1 Carrier phase and PRN code residuals for the reference solution (Open-sky

Figure 7.6 Estimated position standard deviation of the reference solution (Open-sky test
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Figure 7.7 Estimated velocity standard deviation of the reference solution (Open-sky test

in post-mission)
With respect to GPS/Low cost IMU integrated system, Figure 7.8 and Figure 7.9 show
the L1 carrier phase residuals with fixed ambiguities, C/A code residuals colour-coded by
PRN, the satellite horizontal and vertical DOPs, the number of satellites tracked as well
as the number of resolved ambiguities. With good GPS availability and satellite geometry,
the DD ambiguities were fixed correctly, which is also implied by the reasonable L1

carrier phase and the pseudorange code residuals.
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Figure 7.8 L1 carrier phase and code residuals for GPS/Low cost IMU integrated solution
(Open-sky test in post-mission)
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Figure 7.9 Satellite DOPs, SV numbers and fixed ambiguity numbers for GPS/Low cost
IMU integrated solution (Open-sky test in post-mission)

To verify that GPS determines the absolute accuracy in open-sky conditions, the

GPS/Low-cost IMU integrated position was compared with the GPS-only solution as



shown in Figure 7.10. Table 7.1 gives the statistics of the position differences. It shows
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that the position difference between the GPS/Low-cost IMU and GPS-only has a zero

mean, and the standard deviation of the position difference is at the millimetre level. The

small difference between the GPS/Low-cost IMU and the GPS-only solution indicates

that the integration of the low cost IMU and GPS did not introduce a deviation of the

integrated solution with respect to the GPS-only solution, and consequently it can be

assumed that the Kalman filter was designed properly.
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Figure 7.10 Position differences between GPS/Low cost IMU and the GPS-Only

(Open-sky test in post-mission)

Table 7.1 Statistics of the position differences between the GPS/Low cost IMU and the
GPS-only solutions (Open-sky test in post-mission)

Mean of position difference [cm]

Standard deviation of position difference [cm]

North East

Up

North

East

Up

0.0 0.0

0.0

0.5

0.4

0.5
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To go one step further, the consistency of the actual position and velocity differences and

the estimated standard deviation of the position and velocity differences are investigated
for the GPS/Low-cost IMU and the GPS/Low-cost IMU/WSS/SAS/GL/YRS integrated
solutions with respect to the reference solutions. Figure 7.11 to Figure 7.14 show the
position and the velocity differences (with the corresponding 3-sigma envelope) of the
GPS/Low cost IMU and GPS/Low cost IMU/WSS/SAS/GL/YRS solutions. It can be
seen that the difference is at the centimetre level with more noise in the GPS/Low cost
IMU/WSS/SAS/GL/YRS integration strategy. As expected, most of the differences were
within the 3-sigma boundary. The consistency of the actual differences and the estimated
standard deviations of the differences indicate that the Kalman filters for these two

integration strategies were well tuned from this scenario.

Table 7.2 and Table 7.3 summarize the statistics of the position and velocity differences
of all integration strategies with respect to the reference. The position and velocity
differences of all integration strategies with respect to the reference are within the

centimetre level when GPS is fully available.
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Figure 7.11 Position differences between GPS/Low cost IMU and the reference solution
(Open-sky test in post-mission)
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Figure 7.12 Velocity differences between GPS/Low cost IMU and the reference solution
(Open-sky test for post-mission)
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Figure 7.13 Position differences between GPS/Low cost IMU/WSS/SAS/GL/YRS and
the reference solution (Open-sky test in post-mission)
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Figure 7.14 Velocity differences between GPS/Low cost IMU/WSS/SAS/GL/YRS and
the reference solution (Open-sky test in post-mission)
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Table 7.2 Statistics of the position differences between GPS/Low cost IMU/On-board
vehicle sensor and the reference solution (Open-sky test in post-mission)

Mean position difference | standard deviation of

Strategies [cm] position difference [cm]
North | East Up | North | East Up
GPS/INS 0.0 0.0 0.7 15 1.3 1.1
GPS/INS/WSS 0.0 0.0 0.0 3.3 3.1 1.9
GPS/INS/SAS 0.0 0.1 0.6 3.4 3.0 1.8
GPS/INS/GL/YRS -0.2 0.0 0.6 3.9 3.7 2.0
GPS/INS/WSS/SAS -0.2 -0.1 0.6 3.4 3.1 2.0
GPS/INS/WSS/SAS/GL/YRS | -0.2 -0.1 0.6 3.4 3.1 2.0

Table 7.3 Statistics of the velocity differences between GPS/Low cost IMU/On-board
vehicle sensor and the reference solution (Open-sky test in post-mission)

N Standard deviation of
Mean velocity difference o
Strategies [cmis] velocity difference
[cm/s]
North East Up | North | East | Up
GPS/INS 0.0 0.0 0.4 2.3 2.3 1.4
GPS/INS/WSS 0.0 0.0 0.4 2.3 2.4 1.4
GPS/INS/SAS 0.0 0.0 0.4 2.4 2.4 1.4
GPS/INS/GL/YRS 0.0 0.0 0.4 2.6 2.7 1.7
GPS/INS/WSS/SAS 0.0 0.0 0.4 2.3 2.4 1.4
GPS/INS/WSS/SAS/GL/YRS 0.0 0.0 0.4 2.3 2.4 1.4

To investigate the benefits gained from the integration of the on-board vehicle sensors, 12
GPS outages were simulated with a duration of 40 s. The simulated GPS outages are
labelled by the red lines on the reference trajectory in Figure 7.15. The vehicle velocity
and attitude associated with the 12 simulated GPS outages are shown in Figure 7.16 and

Figure 7.17, respectively.

Table 7.4 outlines the maximum vehicle dynamics during GPS outages. From the range

for speed and the attitude angles and the maximum attitude angular rate summarized in



Table 7.4, it can be concluded that the simulated GPS outages cover a wide range of
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vehicle dynamics. Therefore, the simulated GPS outages are typical and useful for the

evaluation of the position and velocity drift error of various integration strategies.

4500 ! ! ! ! !
S e S —_—— 1
3500 — -------------- ¢ b 1
S e e 1
0 R T S S T —
2000 — -------------- --------------------------- ------------- .
BN e e e 1
R R SO TS — S — i

z | | | |
Su0 _] """"""" I """"""""""" frosr g 1
oA I
110 SO E—— e e 1
O AU — SRR R— 1
YT | . S — ......................... -_‘_"‘ .......... i

2000 i i i i i

1000 -500 0 500 1000 1500 2000

Figure 7.15 Reference trajectory with the 12 simulated GPS outages (Open-sky test in

East [m/fs] Marth [mis]

Up [mfs]

Figure 7.16 Velocity during 12 simulated outages (Open-sky test in post-mission)

30
1%

East [m]

post-mission)

_________ -

! ! ! ! ! ! !
e B R e
1 1 1 i i 1 1
0 5 10 15 20 25 30 35 40
Time [g]



Roll [deq]

Azimuth [deg]

139

Y ._.,.‘_ ____________________

Figure 7.17 Attitude during 12 simulated GPS outages (Open-sky test in post-mission)

Table 7.4 Summary of the vehicle dynamics for 12 simulated GPS outages (Open-sky test

in post-mission)

Speed Roll Pitch Azimuth
Minimum 0.0 km/h -1.78 deg -5.25 deg 0.0 deg
Maximum 78.8 km/h 8.34 deg 2.88 deg 359.0 deg
Maximum rate - 8.58 deg/s 10.25 deg/s 27.13 deg/s

A side slip angle is closely related to a violation of the lateral non-holonomic constraint.

When a larger side slip angle (exceeds the five-degree threshold) is detected, the removal

of the lateral non-holonomic constraint will improve the positioning accuracy to some

degree. As a complicated phenomenon, side slips are correlated with many factors, such

as the vehicle dynamics and road conditions. Figure 7.18 shows the computed side slip

angles during the 12 simulated GPS outages, with a maximum of side slip angle of about

20 degrees. By correlating the larger side slip angles with the vehicle dynamics

(especially the vehicle attitude shown in Figure 7.17), the larger side slip angles that
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appeared in the 12 simulated GPS outages mainly resulted from sharp turns, or larger

roll/pitch angular rates due to bumpy or icy roads in the winter. The side slip angles
appeared within the 12 simulated GPS outages are typical for the land vehicle positioning

and navigation system.
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Figure 7.18 Side slip angles during 12 simulated GPS outages (Open-sky test in
post-mission)

To illustrate the position and velocity drift error for the 12 simulated 40 s GPS outages
and to analyze the validity of the Kalman filter, Figure 7.19 to Figure 7.21 show the RMS
position error and the average estimated standard deviation in the horizontal, up and the
3D directions, respectively. Similarly, Figure 7.22 to Figure 7.24 show the RMS velocity
error and the average estimated standard deviation in the same directions. Also shown in

the figures (for comparison purposes) are the results of the associated GPS/HG1700
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IMU/On-board vehicle sensor integration strategies. The solid lines represent the RMS

error, and the dashed lines represent the average estimated deviation.

Table 7.5 and Table 7.6 compare the position RMS errors and the average estimated
standard deviations using different integration strategies for both the low cost IMU and
HG1700 IMU, respectively. The corresponding velocity results are summarized in Table

7.7 and Table 7.8.

Being consistent with the relevant results of the GPS/HG1700 IMU/On-board vehicle
integration strategies, the stand-alone low cost IMU system drifts very rapidly. However,
significant benefits can be gained from the integration of the wheel speed sensor by
improving the horizontal positioning accuracy by 91%. The next best sensor is the
steering angle sensor which can improve the horizontal positioning accuracy by 50%. The
horizontal positioning accuracy can be further enhanced by sequentially integrating the
wheel speed sensor and the steering angle sensor. The improvement gained from the
integration of the G sensors and yaw rate sensor is less significant than the wheel speed
sensor or the steering angle sensor as their accuracy is at the same grade with the low cost
IMU. With several larger side slip angles during the simulated GPS outages, the lateral
non-holonomic constraint will most likely be violated when the side slip angles are larger
than the 5-degree threshold. In these cases, the G sensors and yaw rate sensor can be
employed to detect and alleviate the violation of the lateral non-holonomic constraint,

which can enhance the positioning accuracy when the side slip angles exceed the



pre-defined threshold. Overall, the integration strategy with GPS, INS and all the vehicle
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sensors together (GPS/INS/WSS/SAS/GL/YRS) shows the best performance, as

expected.

Figure 7.19 Horizontal position RMS error and average estimated standard deviation
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Figure 7.20 Up position RMS and average estimated standard deviation (Open-sky test in
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Figure 7.21 3D RMS position error and average estimated standard deviation (Open-sky
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Figure 7.24 3D RMS velocity error and average standard deviation (Open-skytest in
post-mission)

Table 7.5 RMS position error and average estimated standard deviation (Low cost IMU,
Open-sky test in post-mission)

Horizontal RMS position Average estimated standard
Strategies for Low error at the end of 40 s GPS | deviation at the end of 40 s
Cost IMU outages [m] GPS outages [m]

Horizontal | Up 3D | Horizontal Up 3D

GPS/INS 30.48 2.45 | 30.58 31.98 7.36 | 32.82

GPS/INS/WSS 202 | 080 | 303 | 350 230 | 4.27

GPS/INS/SAS 1438 | 247 | 1450 | 1959 | 680 |2074

GPS/INSIGLIYRS 1 5500 | 254 | 2513 | 2401 | 7.35 | 2597

GPS/INS/WSS/SAS 267 | o076 | 278 | 308 214 | 373

GPS/INS/WSS/SAS

IGL/YRS 2.27 081 | 241 2.02 2.25 3.02
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Table 7.6 RMS position error and average estimated standard deviation (HG1700 IMU,

Open-sky test in post mission)

Horizontal RMS position Average position estimated
Strategies for HG1700 | error at the end of 40 s GPS | standard deviation at the end
IMU outages [m] of 40 s GPS outages [m]

Horizontal | Up 3D Horizontal Up 3D

GPS/INS 1.62 1.04 1.93 3.62 1.32 3.85

GPS/INS/WSS 0.57 0.76 0.95 1.23 1.13 1.67

GPS/INS/SAS 1.01 1.03 1.44 2.58 1.32 2.90

GPS/INS/GL/YRS 1.49 1.03 1.81 3.56 1.32 3.80

GPS/INS/WSSISAS 0.55 0.76 0.94 1.22 1.13 1.66
GPS/INS/WSS/SAS

IGL/YRS 0.43 0.79 0.90 0.74 1.14 1.36

Table 7.7 RMS velocity error and average velocity estimated standard deviation (Low
cost IMU, open-sky test in post-mission)

Horizontal RMS position Average position estimated
Strategies for Low error at the end of 40 s GPS | standard deviation at the end
Cost IMU outages [m/s] of 40 s GPS outages [m/s]
Horizontal | Up 3D | Horizontal | Up 3D
GPS/INS 187 | 010 | 187 | 194 | 031 | 19
GPS/INS/GL/YRS 163 010 | 1.63 1.51 031 | 154
GPS/INS/WSS/SAS 0.19 004 | 020 0.19 0.13 | 0.23
GPS/INS/WSS/SAS
IGLIYRS 0.12 005 | 0.13 0.14 0.14 | 0.20




Table 7.8 RMS velocity error and average velocity estimated standard deviation
(HG1700 IMU, Open-sky test in post-mission)

Strategies for

Horizontal RMS velocity
error at the end of 40 s GPS

Average velocity estimated
standard deviation at the end

HG1700 IMU outages [m/s] of 40 s GPS outages [m/s]
Horizontal | Up 3D | Horizontal Up 3D
GPS/INS 0.09 0.04 0.10 0.18 0.05 0.19
GPS/INS/WSS 003 | 003 | 005 | 007 | 005 | 0.08
GPS/INS/GL/YRS 0.08 004 | 010 0.18 0.05 | 0.18
GPS/INSIWSS/SAS | o | 403 | 005 0.07 0.05 | 0.08
GPS/INS/WSS/SAS

IGL/YRS 0.03 0.03 0.04 0.05 0.05 0.07
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A full GPS outage is an extreme case in which the Kalman filter will only perform

prediction or the on-board vehicle sensor update if selected. Using a tight coupling

strategy implemented by a centralized Kalman filter, GPS can still update the Kalman

filter and limit the INS position and velocity drift error with partial GPS outages (the

double differenced observations are less than four). In land vehicle positioning

applications, partial GPS outages can be introduced by dense foliage and tall buildings.

To evaluate the effects of on-board vehicle sensors on positioning performance in the

case of partial GPS availability, 12 partial GPS outages with 1, 2 and 3 double

differenced satellites are simulated, respectively. As shown in Figure 7.25, the horizontal

positioning accuracy is compared between various integration strategies for both the low

cost and HG1700 tactical grade IMUs with partial and full GPS outages.
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Table 7.9 gives the horizontal position RMS error at the end of the 40 second partial and

full GPS outages with and without on-board vehicle sensor aiding on the GPS/Low cost
IMU and GPS/HG1700 IMU integrated systems. With two or three double differenced
satellites, the horizontal position error is relatively small. To be specific, the horizontal
position RMS error is at the decimetre level for the low cost IMU integrated system, and
is at the centimetre level for the HG1700 tactical grade IMU integrated system. GPS is a
still a driving factor that determines the absolute system accuracy when two or more
double differenced satellites are available. However, with only one double differenced
satellite, the horizontal position error drifts with time rapidly without external aiding
from the on-board vehicle sensors. However, its horizontal positioning error is still
smaller than the case of a complete GPS outage. It implies that one double differenced
satellite can still improve the horizontal positioning accuracy due to the structure of the
centralized Kalman filter. Similar to the complete GPS outage, the integration of the
on-board vehicle sensors can significantly reduce the horizontal positioning error when

only one double differenced satellite is available.
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Low Cost IMU Horizontal Position RMS Error{From partial into full GRS Outages)
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Figure 7.25 Horizontal RMS position drift error with 40 s partial and full GPS outages
(Open-sky test in post-mission)

Table 7.9 Horizontal RMS position error at the end of 40 s partial and full GPS outages
(Open-sky test in post-mission)

Horizontal RMS position drift Horizontal RMS position drift
Number of error at the end of 40 s GPS error at the end of 40 s GPS
DD satellites outages for low cost IMU [m] outages for HG1700 IMU [m]
available GPS/INS/WSS GPS/INS/WSS
GPS/INS ISAS/GL/YRS GPS/INS ISAS/GL/YRS
None 30.48 2.27 1.62 0.43
1 28.56 1.96 1.34 0.43
2 0.18 0.15 0.08 0.07
3 0.14 0.13 0.06 0.04

Since fast ambiguity resolution plays an important role in a precise positioning system,
the improvement from the IMU and on-board vehicle sensors on ambiguity resolution is

investigated. Twelve GPS outages are simulated with durations of 10 s, 20 s, 30 s and
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40 s, respectively. For the data collected herein with the maximum baseline length at 4

km, the correct ambiguities were always selected and thus focus is only given to the time
required to fix the ambiguities. Figure 7.26 compares the average time to fix GPS
ambiguities after various GPS outage durations for the GPS-Only, GPS/INS (including
low cost IMU and HG1700 IMU), as well as GPS/INS/WSS/SAS/GL/YRS integration
strategies. Table 7.10 summarizes the average time to fix GPS integer ambiguities shown

in Figure 7.26.

The time to fix integer ambiguities is determined by the search volume, which is closely
related to the covariance of the estimated ambiguities reference. A GPS-only system is
initialized by a differential pseudorange solution, which can be at the level of one to
several metres. The initial positioning covariance matrix of either the stand-alone INS or
INS/On-board vehicle sensor system grows with time and correlates with the quality of
the IMU. With shorter GPS outage durations and a higher quality IMU, the stand-alone
INS or INS/On-board vehicle sensor system outperforms the GPS-only strategy given
that its estimated standard deviation of the position error state is smaller than the
positioning standard deviation initialized by the DD pseudorange solution. Otherwise, the
benefits gained from INS or INS/On-board vehicle sensor aiding is expected to be
somewhat limited due to longer duration GPS outages or a lower quality of IMU.
Compared to the stand-alone INS, the INS/On-board vehicle sensor system reduces the

estimated covariance matrix by external aiding from the on-board vehicle sensors. Thus,
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faster ambiguity resolution can be expected from the INS/On-board vehicle sensor

system with respect to the stand-alone INS system.

It can be seen from Figure 7.26 and Table 7.10 that the IMU can reduce the time-to-fix
ambiguities over GPS-only, especially when the duration of the GPS outage is less than
30 s. Due to a relatively lower quality, the low cost IMU has a larger estimated
covariance than that for the tactical grade HG1700 IMU. Therefore, the benefits on the
ambiguity resolution gained from the low cost IMU is less than that from the tactical
grade HG1700 IMU. Furthermore, when all the on-board vehicle sensors are integrated
with the IMU, the time to fix ambiguities can be further reduced on the basis of an IMU
due to the fact that the on-board vehicle sensors increase the positioning accuracy and
significantly reduce the estimated covariance of the ambiguities when integrated with an

IMU.
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Figure 7.26 Average time to fix GPS ambiguities after GPS outages
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Table 7.10 Average time to fix GPS ambiguities after GPS outages for different

integration strategies (Open-sky test in post-mission)

Average time to fix GPS ambiguities after
. GPS outages for different integration
Strategies .
strategies [s]

10s 20s 30s 40s
GPS-Only 30.1 33.3 32.3 33.0
GPS/HG1700 IMU 2.5 19.0 25.8 29.2
GPS/HG1700 IMU/WSS/SAS/GL/YRS 2.1 17.0 24.3 27.9
GPS/Low cost IMU 26.3 29.3 32.1 32.9
GPS/Low cost IMU/WSS/SAS/GL/YRS 22.8 26.9 26.7 28.2

7.3.2 Open-sky Area — Real-time Test

With good GPS availability and satellite geometry in the open-sky real-time test, Figure
7.27 and Figure 7.28 show the L1 carrier phase and pseudorange code residuals, the
satellite horizontal and vertical DOPs, the number of tracked satellites and the number of
fixed ambiguities for the GPS/Low cost IMU/WSS/SAS/GL/YRS integration strategy, as
obtained in real-time. Most of the L1 carrier phase and code residuals are at a similar
level to the open-sky post-mission results analyzed in Section 7.3.1. However, the carrier
phase residuals increased to be more than 5 cm with a biased pseudorange residual
around GPS time 339720 s. At this time period, the separation between the reference
station and the vehicle was about 3 km, and the vehicle was passing a construction site
near the road. The increased multipath error resulted from the construction site could
account for the increased carrier phase residuals and the biased code residual on one
satellite. This conjecture is confirmed by the fact that the residuals return to smaller

values later in the data set.
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Figure 7.27 L1 carrier phase residuals with fixed ambiguities and the C/A code residuals
(Real-time open-sky test)
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Figure 7.28 Satellite DOPs, satellite availability and number of fixed ambiguities
(Real-time open-sky test)

Figure 7.29 shows the estimated GPS time latency associated with the open-sky real-time
test. The GPS time latency was mostly on the order of 0.1 to 0.2 s with an exception of

the maximum 1.8 s GPS time latency during a short time period around 339810 s. During



154
this time period, the vehicle was running across a construction site with a 3 km

separation between the GPS reference station and the vehicle. The radio link transceiver
did not work in a normal way within this short time period. Nevertheless, the data buffer
in the software can tolerate 3 s of GPS time latency. The abnormal GPS time latency
within this short time period can be handled properly by using the data
buffering/restoring technique discussed in Section 3 of Chapter 6. Thus, the compatibility

between the real-time and post-mission solutions can be guaranteed.
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Figure 7.29 GPS time latency with respect to IMU time (Real-time open-sky test)
The vehicle dynamics (velocity and the attitude) and the side slip angles during the entire
real-time test in the open-sky area are illustrated from Figure 7.30 to Figure 7.32,
respectively. As the vehicle was operated on a flat road in the summer, the roll and pitch
angles were less than 5 degrees. As a result, the side slip was less significant than the

open-sky test conducted in the winter time for the post-mission analysis. Most of the side
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slip angles are less than 5 degrees with the maximum values being about 8 degrees and

sparsely distributed around the specific epochs at 339180 s and 339600 s, respectively.
These two specific epochs are correlated with the vehicle’s turning maneuver which can

be found from the azimuth and the side slip angle shown in Figure 7.31 and Figure 7.32.

30 ! ! !
150-f : : :

0
15
30
30
15

0

Marth [mfs]

East [m/fs]

9000 339360 339720 240080
10:00 16:16:00 16:22:00 16:28:

GPS Time/Local Time

Figure 7.30 Vehicle velocity for real-time open-sky test
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Figure 7.31 Vehicle attitude for real-time open-sky test
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Figure 7.32 Side slip angle for open-sky real-time test

The reference trajectory generated by the GPS/CIMU is shown in Figure 7.33, and the
estimated RMS for position and velocity are shown in Figure 7.34 and Figure 7.35,
respectively. The estimated RMS of the position and velocity in GPS/CIMU integrated
system is computed from Applanix POS PAC software. Some ripples in these figures are
due to a higher CIMU mechanization output rate (20 Hz) and a lower GPS update rate
(1 Hz). As an optimal backward smoothing was used, the estimated RMS is relatively
large at the last epoch, because a backward Kalman filter is still not converged to a steady
state. In general, the estimated horizontal position is accurate to be 1 cm, and the
accuracy of the estimated position in the up direction is around 6 cm. The velocity

accuracy is at the millimetre per second level.
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Figure 7.33 Reference trajectory generated by the GPS/CIMU integrated solution
(Open-sky real-time test)

3 T T T
E
k=3
o
=
o
=
E
5,
5
o
w
0
2 : : :

] i S i
£° i ]
Sl e [ 1
=X : :
e e ererere 4

o] i | i
339000 339360 339720 240080
16:10:00 16:16:00 16:22:00 16:28:00

GPS Time/Local Time
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Figure 7.35 Estimated velocity RMS of the reference solution (Open-sky real-time test)
The position and the velocity differences between the real-time solution for the GPS/Low
cost IMU/WSS/SASGL/YRS integration strategy and the reference solutions as well as
the relevant 3—sigma envelopes are shown in Figure 7.36 and Figure 7.37, respectively.
The statistics of the differences are given in Table 7.11. Similar to the open-sky
post-mission results, the difference is also at the centimetre level. Most of the position
and velocity differences are within the 3-sigma envelope. It indicates that the actual
difference and the estimated standard deviation of the difference have a good agreement,

and the Kalman filter is well tuned in the open sky area with good GPS availability.
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Figure 7.36 Position difference between GPS/Low cost IMU/WSS/SAS/GL/YRS and
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Figure 7.37 Velocity difference between GPS/Low cost IMU/WSS/SAS/GL/YRS and the
reference solution for open-sky real-time test
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Table 7.11 Statistics of the position and velocity differences between the GPS/Low cost
IMU/WSS/SAS/GL/YRS and the reference solution (Open-sky real-time test)

ltems Mean Standard deviation
North East Up North East Up
Position
difference [cm] 0.5 0.2 -0.5 3.4 35 2.5
\elocity
difference [cms] 0.2 0.2 -0.2 2.9 2.8 2.4

7.3.3 Suburban Area — Real-time Test

For the real-time test in the suburban area, Figure 7.38 and Figure 7.39 show the detailed
GPS information, which include the widelane carrier phase residuals with fixed
ambiguities, baseline length, the pseudorange residuals, DOP values, the number of
tracked satellites at the reference and rover stations (and their difference), as well as the
number of fixed ambiguities. Since the widelane linear combination amplifies the noise,
the widelane carrier phase residuals are larger (5 cm for the most part) than the L1 carrier
phase residuals (1-2 cm for the most part) as shown in the open-sky test. The variable
multipath in the suburban area adversely increases the pseudorange code residuals
compared to that in the open-sky test. Some severe multipath scenarios lead to a
maximum of 2 m pseudorange code residuals. Most of the horizontal DOPs are below
two with several cases exceeding five. However, the GPS availability is far from ideal
since dense foliage, underpasses and buildings near the road introduced partial and
complete satellite masking. The satellite availability differences between the GPS
reference and the rover stations indicate the level of GPS satellite masking. In Figure 7.39,

for example, eight satellites are constantly tracked by the reference station Therefore, any
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time when the difference of the satellite numbers overlaps with eight, it implies complete

satellite masking.
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Figure 7.38 WL carrier phase and C/A code residuals (Suburban area real-time test)
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(Suburban area real-time test)
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Figure 7.40 shows the estimated GPS time latency during the test. Most of the

latencies are on the order of 0.1-0.2 s with the maximum value being 0.4 s which
indicates that the radio link was working well throughout the test. Since the time latency
is far below the data buffer limit (3 s), the real-time and the post-mission solutions can be

expected to be compatible.
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Figure 7.40 GPS time latency (Suburban area real-time test)

Figure 7.41 and Figure 7.42 indicate that the suburban area real-time test is associated
with a relatively low vehicle dynamics including the vehicle velocity and attitude.
Compared to the open-sky test conducted in the winter for post-mission processing, the
side slip is less severe since the test was conducted in the summer time on a relatively flat
road as shown in Figure 7.43. The side slip angles that are larger than 5 degrees are
sparsely distributed around specific epochs at 321100 s, 321400 s and 321840 s, which

are correlated with the vehicle turning operations.
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Figure 7.43 Vehicle side slip angle (Suburban area real-time test)

Figure 7.44 shows the reference trajectory generated by the GPS/CIMU integrated system
with optimal backward smoothing. The map appeared on the plot comes from the
database of Microsoft Map. Figure 7.45 and Figure 7.46 illustrate the estimated position
and velocity accuracies for the reference solution. The estimated accuracy of the
GPS/CIMU integrated solution with optimal smoothing is closely related to the GPS
availability. When GPS is fully available, the estimated accuracy is comparable to that in
open-sky conditions. However, the estimated accuracy is correlated to satellite masking,
and relies heavily on the durations of the any outages. The longer the duration of the GPS
blockage, the poorer the estimated accuracy it is. Nevertheless, due to the superior quality
of the navigational grade CIMU, the worst case for the estimated accuracy is at the
decimetre level (10-15 cm) for this test. Its accuracy is much higher than that in the low

cost IMU integrated system.
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Figure 7.44 Reference trajectory generated by GPS/CIMU integrated solution (Suburban
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Figure 7.46 Estimated velocity RMS of the reference solution (Suburban area real-time
test)

The position and velocity computed from both the GPS/Low cost IMU and GPS/Low
cost IMU/WSS/SAS/GL/YRS integration strategies are compared with the reference
solution. For the GPS/Low cost IMU integration strategy, Figure 7.47 and Figure 7.48
show the position and velocity differences respectively, along with the corresponding
3-sigma envelopes. Figure 7.49 and Figure 7.50 show the same plots for the GPS/Low
cost IMU/WSS/SAS/GL/YRS integration strategy. Due to the well tuned Kalman filter,
the actual differences and the estimated standard deviations are consistent at an
acceptable level. When GPS is fully available, both the differences and the estimated
standard deviations of the differences are very small. The actual differences and their
estimated standard deviations increase significantly depending on the GPS outages and
the duration of the outage, which can be seen from two specific epochs such as 321120 s

and 321480 s. By comparing the two integration strategies, the aiding from all the



167
on-board vehicle sensors can significantly reduce the position and velocity drift of

stand-alone INS with the low cost IMU.
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Figure 7.47 Position differences between GPS/Low cost IMU and the reference solution
(Suburban area real-time test)
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(Suburban area real-time test)
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Figure 7.50 Velocity differences between GPS/Low cost IMU/WSS/SAS/GL/YRS and
the reference solution (Suburban area real-time test)

To detail the comparison of all the integration strategies, Figure 7.51 to Figure 7.53
compare the performance of all integration strategies on the same plot by investigating

the position differences in the horizontal, up and 3D directions. The velocity differences
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for the different integration strategies and the associated estimated standard deviations of

the position and velocity differences are shown in Appendix C. For comparison purposes,
the results for both the tactical grade HG1700 IMU and the low cost IMU are analyzed.
The benefits gained from the on-board vehicle sensors on the stand-alone IMU (either the
low cost or tactical grade HG1700 IMU) is a significant reduction in the horizontal
position error. To be more specific, the horizontal position difference shown in Figure
7.51 at epochs 321120 s and 321320 s can be reduced from approximate 10 m with the
stand-alone low cost IMU to approximate 2-3 m by integrating all the sensors with the
low cost IMU. Due to a higher quality, the free-running HG1700 IMU drifts at a lower
rate than the low cost IMU. With external aiding on the HG1700 IMU from all the
on-board vehicle sensors, the horizontal position drift error can also be significantly

reduced from 5 m to less than 1 m at epoch 321120 s.

By zooming the horizontal positioning error between some epochs with a longer duration
of GPS outages, Figure 7.54 compares the horizontal positioning errors between different
integration strategies of the low cost IMU integrated system. On the same plot, the GPS
satellite HDOP is indicated by the black dots at a 1 Hz data rate. The discontinuity of the

HDOP output implies the satellite availability is less than four.
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Figure 7.55 compares the histograms of the positioning error for GPS/INS and

GPS/INS/On-board vehicle sensors integration strategies with both the low cost IMU and
the tactical grade IMU. Table 7.12 and Table 7.13 compare various integration strategies
associated with two grades of IMUs statistically by computing their RMS position and
velocity differences with respect to the reference solution. When GPS is fully available,
GPS plays a dominant role that determines the absolute positioning accuracy of the
system. During partial or complete satellite signal masking, any integration strategy that
contains the wheel speed sensor has a relatively lower RMS difference. It implies that the
wheel speed sensor is a key sensor to limit the position and velocity drift in the integrated
system. This is mainly due to the fact that the wheel speed sensor provides an absolute
velocity update at a high measurement accuracy. Furthermore, it performs a special

function (ZUPT) to limit the drift error when the vehicle operates in static mode.
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For the low cost IMU integrated system, the steering angle sensor can also benefit in the

reduction of the position and velocity errors even though its improvement is less than the
wheel speed sensor. In contrast to the wheel speed sensor that performs ZUPTs in static
mode, the steering angle sensor does not work in static mode as the estimated steering
angle derived from the velocity becomes undetermined at zero velocity. In kinematic
mode, however, the steering angle sensor can constraint the velocity drift, and

consequently limit the positioning error during partial and complete GPS outages.

With a relatively lower quality, the GL/YRS unit always provides a relative velocity
update by retrieving its initial information from the integrated system every 1 second.
Given the integrated system degrades at a rapid rate without external GPS aid, the benefit
gained from GL/YRS is somewhat limited compared to WSS and SAS. However, if the
side slip angle exceeds a specific threshold (5 degrees) to introduce a violation of the
lateral constraint, the horizontal position accuracy can be further enhanced by using the G
sensor and yaw rate sensor to remove the lateral constraint. Thus, the integration strategy
that contains all the on-board vehicle sensors (GPS/INS/WSS/SAS/GL/YRS) performs
best among all of the integration strategies. These results are consistent with the

post-processed results for the open-sky kinematic test with simulated GPS outages.

Due to a relatively short duration of GPS masking in the suburban area as well as the
relatively lower quality of the G sensors, yaw rate sensor and the steering angle sensor

compared to the tactical grade HG1700 IMU, the benefits gained from the G sensors, yaw
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rate sensor as well as the steering angle sensor on the HG1700 IMU integrated system

are somewhat limited compared to the low cost IMU integrated system.

Table 7.12 RMS position and velocity difference of all integration strategies and the
reference solution (Low cost IMU, Suburban area real-time test)

e . RMS velocity difference

Strategy RMS position difference [m] [mis]
Horizontal UP 3D Horizontal UP 3D
GPS/INS 1.09 0.64 1.27 0.14 0.07 0.16
GPS/INS/WSS 0.48 0.36 0.60 0.08 0.06 0.09
GPS/INS/SAS 0.76 0.57 0.94 0.12 0.07 0.14
GPS/INS/GL/YRS 1.05 0.62 1.22 0.15 0.07 0.16
GPS/INS/WSSISAS 0.47 0.36 0.59 0.07 0.06 0.09

GPS/INS/WSS/SAS

IGL/YRS 0.38 0.35 0.51 0.06 0.05 0.08

Table 7.13 RMS position and velocity difference of all integration strategies and the
reference solution (HG1700 IMU, Suburban area real-time test)

L RMS velocity difference
Strategy RMS position difference [m] [m/s]
Horizontal | UP 3D | Horizontal | UP 3D
GPS/INS 053 | 040 | 067 | 003 | 002 | 0.04
GPS/INSIWSS 033 | 028 | 044 | 003 | 002 | 0.03
GPS/INS/SAS 0.51 039 | 065 0.03 0.02 | 0.04
GPS/INS/GL/YRS 053 040 | 0.66 0.03 0.02 | 0.04
GPS/INS/WSS/SAS 0.33 028 | 044 0.03 002 | 003
GPS/INS/WSS/SAS
IGL/YRS 0.32 0.28 0.42 0.02 0.02 | 0.03
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7.3.4 Pseudo-Urban Area — Real-time Test

For the real-time pseudo-urban area test, multipath is more severe than that in the
open-sky and the suburban area. Consequently, some larger pseudorange residuals appear
periodically. Figure 7.56 shows the carrier phase residuals, baseline length and
pseudorange residuals. Most of the widelane carrier phase residuals were about 5 cm.
Since the maximum baseline length was approximately 1 km, the main error sources in

the carrier phase residuals are from multipath effects (Lachapelle 2003).

It is shown in Figure 7.57 that partial and complete GPS masking were more frequently
encountered in the pseudo-urban area test because of the tall buildings, trees and
underpasses. The masking duration was also longer than in the suburban area. The

horizontal DOP was generally around two with some epochs exceeding five.
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Figure 7.56 WL carrier phase residuals with fixed ambiguities and the code residuals
(Pseudo-urban area real-time test)
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Figure 7.57 Satellite DOPS, satellite numbers and fixed ambiguity numbers
(Pseudo-urban area real-time test)

The GPS latencies with respect to the IMU time shown in Figure 7.58 are mostly on the
order of 0.1 s to 0.2 s with some on the order of 0.3 s to 0.5 s. It indicates that the radio
link transceiver and the real-time data collection system worked properly. Similar to the
open-sky and the suburban area tests, the real-time system generates the same solution as
that processed in post-mission since the GPS time latencies are far less than the time limit

(3 s) that the data buffer can accommodate.
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Figure 7.58 GPS latencies (Pseudo-urban area real-time test)
The vehicle velocity, attitude as well as the side slip angle during the entire pseudo-urban
area real-time test are given in Figure 7.59 to Figure 7.61. The vehicle operated on a flat
road in the summer time where the maximum pitch and roll angles were less than 5
degrees, and the maximum velocity was less than 15 m/s (54 km/h). It implies relatively
low vehicle dynamics. More frequent vehicle turning in the pseudo-urban area leads to a
maximum side slip angle of 8 degrees that are more densely distributed across the entire
test than that in the suburban area test with more than 5 degree side slip angles distributed

around three different epochs.
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Figure 7.59 Vehicle velocity (Pseudo-urban area real-time test)
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Figure 7.60 Vehicle attitude (Pseudo-urban area real-time test)
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Figure 7.61 Vehicle side slip angle (Pseudo-urban area real-time test)

Figure 7.62 shows the reference trajectory generated by the GPS/CIMU integrated system.
It can be seen from Figure 7.63 and Figure 7.64 that the position and velocity accuracies
for the GPS/CIMU integrated solution was lower than that in the suburban area due to the
more severe satellite masking and the longer duration of the masking. However, even in
the worst cases, the position accuracy is still at the decimetre level, and the velocity is at

the centimetre per second level.
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Figure 7.64 Estimated velocity RMS of the reference solution (Pseudo-urban area
real-time test)

Similar to the analysis in the suburban area test, Figure 7.65 to Figure 7.68 are the
position and the velocity differences of the GPS/Low cost IMU and GPS/Low cost
IMU/WSS/SAS/GL/YRS systems with respect to the reference solution, along with the
corresponding 3-sigma envelopes. Most of the position and the velocity differences of
these two integration strategies fall within the 3-sigma range, as expected. Comparing to
the suburban area test, the position and velocity drift errors are larger (maximum of
approximately 15 m in the horizontal direction) for the low cost IMU system without any
external aiding from GPS and the on-board vehicle sensors. On the other hand, the
integration of the on-board vehicle sensors with the low cost IMU can also significantly

reduce the position from 15 mto 1.5 m.
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Figure 7.65 Position differences between GPS/Low cost IMU and the reference solution
(Pseudo-urban area real-time test)

i)
E
oy
=
(=]
=
i)
E
o
o
Ll
2 —_— [ifference
el — 3 Sigma
1 :
0 :
1
3 i i i i
322600 322960 323320 323680 324040
11:36:40 11:42:40 11:48:40 11:54:40 12:00:40

GPS Time/Local Time

Figure 7.66 Velocity differences of GPS/Low cost IMU and the reference solution
(Pseudo-urban area real-time test)
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Figure 7.67 Position differences of GPS/Low cost IMU/WSS/SAS/GL/YRS and the
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Figure 7.68 Velocity differences of GPS/Low cost IMU/WSS/SAS/GL/YRS and the
reference solution (Pseudo-urban area real-time test)

Figure 7.69 to Figure 7.71 compare the position differences in the horizontal, up and 3D
directions for all integration strategies. The velocity differences along with the estimated

standard deviation of the position/velocity differences (1-sigma) in the horizontal, up and
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3D directions for all integration strategies are shown in Appendix C. Figure 7.72

emphasizes the horizontal position error for the low cost IMU integrated system within a
longer duration of the GPS outage. Figure 7.73 shows the histograms of the horizontal
position error of the GPS/INS and GPS /INS/On-board vehicle sensor integration
strategies for both the low cost and tactical grade IMUs. Table 7.14 and Table 7.15
summarize the RMS of the position and velocity differences for all the integration
strategies in terms of the low cost IMU and the tactical grade HG1700 IMU, respectively.
During masking of the GPS satellite signals, the performance of either low cost IMU or
HG1700 IMU system without external aiding from the on-board vehicle sensors degrades
more severely than that in the suburban area. The improvement on the positioning
accuracy of the low cost IMU integrated system gained from the on-board vehicle sensor
is more significant and more evident than the tactical grade HG1700 IMU integrated
system. Among all the on-board vehicle sensors, the wheel speed sensor contributes the
most, with the steering angle sensor as the second, and the benefits from the G sensor and
yaw rate sensor being somewhat limited. However, using a mechanism for the detection
and alleviation of the lateral non-holonomic constraint violation, the
GPS/INS/WSS/SAS/GL/YRS integration strategy performs best among all the integration

strategies.
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Table 7.14 RMS position and velocity differences of all integration strategies and the
reference solution (Low Cost IMU, Pseudo-urban area real-time test)

RMS position difference RMS velocity difference
Strategy [m] [m/s]
Horizontal UP 3D | Horizontal | UP 3D
GPS/INS 2.60 203 | 330 | 021 | 008 | 0.22
GPS/INS/WSS 0.58 083 | 102 | 006 | 003 | 007
GPS/INSISAS 1.76 188 | 258 | 016 | 008 | 0.8
GPS/INS/GL/YRS | o 003 | 329 | o021 | 008 | 022
GPS/INS/WSS/SAS | 082 | 100 | o006 | 003 | 007
GPS/INS/WSS/SAS
oL Ra 0.54 082 | 098 | 005 | 003 | 0.06




Table 7.15 RMS position and velocity differences of all integration strategies and the
reference solution (HG1700 IMU, Pseudo-urban area real-time test)

RMS position difference

RMS velocity difference

Strategy [m] [m/s]
Horizontal | UP 3D | Horizontal | UP 3D
GPS/INS 071 | 089 | 114 | 002 | 002 | 003
GPS/INS/WSS 055 | 062 | 083 | 002 | 001 | 0.03
GPS/INS/SAS 071 | 089 | 114 | 002 | 003 | 0.03
GPSINSIGLIYRS | (o0 | 1ao | 114 | o002 | 002 | 003
GPSINSIWSS/SAS | o | 0o | 083 | o002 | 00l | 003
GPS/NSIWSSISAS | o | 0o | 082 | 002 | 00l | 003

IGL/YRS

7.3.5 Summary
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It is consistently illustrated by all the tests that GPS plays a dominant role in determining

the absolute positioning accuracy of the system when double differenced GPS availability

is more than two. During GPS outages, the positioning accuracy can be enhanced by the

integration of on-board vehicle sensors. The wheel speed sensor is a key sensor to limit

the horizontal position drift error. The steering angle sensor is the second best sensor that

can moderately limit the positioning error drift. The improvement from G sensors and

yaw rate sensor is somewhat limited than the wheel speed sensor and the steering angle

sensor. However, when the lateral constraint is violated, the positioning accuracy can be

further enhanced by alleviating the violation of the lateral constraint with an interactive

relationship between WSS and GL/YRS. The integration strategy that contains all
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on-board vehicle sensors performs best among all the proposed integration strategies. A

faster ambiguity resolution can be expected from INS/On-board vehicle sensor system

with respect to the stand-alone INS system.
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Chapter 8 Conclusions and Recommendations

The goal of this research has been to develop a land vehicle positioning and navigation
system at low cost and with high accuracy. To bridge GPS gaps and limit the drift error of
a stand-alone INS, several on-board vehicle sensors are integrated with GPS and a low
cost IMU. The on-board vehicle sensors are built-in the vehicle stability control system of
an actual vehicle. To make full use of the built-in sensors and improve the positioning
accuracy to a larger degree, the on-board vehicle sensors used in this research include
wheel speed sensors, G sensors (accelerometers), a yaw rate sensor as well as a steering

angle sensor.

Based on an analysis of the characteristics of the on-board vehicle sensors, three basic
and two combined integration strategies and algorithms are developed. The basic
integration module that integrates the steering angle sensor with GPS and INS is novel.
The combined integration strategy that contains all on-board vehicle sensors creates an
interactive relationship between the wheel speed sensors, G sensors and yaw rate sensor.
A mechanism is developed to detect and alleviate the violation of a lateral non-holonomic

constraint by using the interactive relationships between different sensors.

A hardware platform is set up by composing GPS receivers, a low cost IMU and on-board
vehicle sensor time-tagging system, a pair of radio link transceivers and antennas and

computers. The integration strategies and algorithms are implemented in post-mission
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and real-time. Test results imply significant benefits in terms of positioning accuracy and

ambiguity resolution can be gained through external aiding of the on-board vehicle

sensors on INS.

The following summarizes the results of this dissertation and presents recommendations

for future work.

8.1 Conclusions

The integration of on-board vehicle sensors can enhance the horizontal positioning
accuracy during GPS outages, and reduce the time to fix GPS ambiguities after GPS
outages. The benefits gained on the horizontal positioning accuracy and the ambiguity
resolution is dependent on the performance or the measurement accuracy of the on-board

vehicle sensors. The major conclusions are summarized below.

1. Performance of on-board vehicle sensors

The measurement accuracy of wheel-speed sensors is at 3-5 cm/s level. The wheel speed
sensor has a capability of detecting zero velocity in static mode. As their limitations, the
wheel speed sensors are susceptible to the change of the actual tire rolling radius as well

as the side slips.

Similar to the grade and quality of the low cost IMU used in this research, the G

sensors/Yaw rate sensor constitutes a two-dimensional automotive grade inertial unit.
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GL/YRS unit provides a possible way to detect and alleviate negative impact of the side

slip on the performance of the wheel speed sensor.

The scale factor and bias are main error sources of the steering angle sensor. The
measurement accuracy of the steering angle sensor can be either empirically determined
by tuning the Kalman filter or indirectly estimated from the measurement accuracy of

wheel speed sensor and yaw rate sensor.

2. Positioning accuracy

It is consistently illustrated by all the tests that GPS plays the dominant role in
determining the absolute positioning accuracy of the system, and the solution of the

integrated system is accurate to be 2-3 centimetre level when GPS is fully available.

The wheel speed sensor provides absolute velocity update with relatively high
measurement accuracy as well as ZUPT in static mode. Due to these characteristics, the
wheel speed sensor can limit the velocity and consequently the position error drift of the
free-running INS system during GPS outages. The wheel speed sensor is a key sensor to
limit the horizontal position drift error. With respect to horizontal positioning accuracy,
the percentage improvements from the wheel speed sensor over GPS and low cost IMU
integrated system are 90.4% for the open-sky test (post-mission processing with 12
simulated GPS outages), 56.0% for suburban area real-time test and 77.7 % for

pseudo-urban area real-time test, respectively.
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The steering angle can be observed from the velocity in kinematic mode. Consequently,

the steering angle sensor can create a constraint on velocity. The steering angle sensor is
the second best sensor that can moderately limit the positioning error drift. Over GPS and
low cost IMU integrated system, the percentage improvements on the horizontal
positioning accuracy from the steering angle sensor are 52.8% for the open-sky test
(post-mission processing with 12 simulated GPS outages), 30.3% for suburban area

real-time test and 32.3 % for pseudo-urban area real-time test, respectively.

With a relatively lower quality, the automotive grade GL/YRS unit performs relative
velocity update. Hence, the improvement from G sensors and yaw rate sensor is less
significant than the wheel speed sensor and the steering angle sensor. The percentage
improvements on the horizontal positioning accuracy from GL/YRS unit are only 18.0%
for the open-sky test (post-mission processing with 12 simulated GPS outages), 3.7% for

suburban area real-time test and 0.8% for pseudo-urban area real-time test, respectively.

The combined integration strategy with all on-board vehicle sensors performs best among
all the proposed integration strategies. This strategy performs WSS and SAS update in a
sequential way given the steering angle sensor and wheel speed sensor provide
fundamentally independent measurements. More external updates on Kalman filter yield
a better estimation of the navigation information. The positioning accuracy can be further
enhanced by detecting and alleviating the violation of the lateral constraint with an

interactive relationship between WSS and GL/YRS. Over GPS and low cost IMU
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integrated system, its percentage improvements on the horizontal positioning accuracy

are 92.6% for the open-sky test (post-mission processing with 12 simulated GPS outages),
65.1% for suburban area real-time test and 79.2% for pseudo-urban area real-time test,

respectively.

GPS is a still a driving factor that determines the absolute system accuracy when two or
three double differenced satellites are available. The horizontal position RMS error is at
the decimetre level for the low cost IMU integrated system, and is at the centimetre level
for the HG1700 tactical grade IMU integrated system. One double differenced satellite
can still improve the horizontal positioning accuracy over full GPS outage by 6.3% for
low cost IMU and by 17.3% for the tactical grade IMU integrated system, respectively.
With external aid from all on-board vehicle sensors, horizontal positioning accuracy can
be further improved on the basis of one double differenced GPS satellite by 93.1% for

low cost IMU and by 67.9% for tactical grade IMU.

The well tuned Kalman filter is implied by a good agreement between actual RMS error
and the average estimated standard deviation in the open-sky test processed in
post-mission with simulated GPS outages. In all real-time tests, most actual position

errors occur within a 3 Sigma (estimated standard deviation) boundary.

3. Ambiguity resolution

With a shorter duration of GPS outage and a higher quality IMU, the stand-alone INS or

INS/On-board vehicle sensor system outperforms the GPS-only strategy given that its
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estimated standard deviation of the position error state is smaller than the position

standard deviation of differential C/A code solution. For a longer duration of GPS
outages or a lower quality of IMU, the benefits gained from stand-alone INS or
INS/On-board vehicle sensor are expected to be somewhat limited. A faster ambiguity
resolution can be expected from the INS/On-board vehicle sensor system over the

stand-alone INS system.

The low cost IMU reduces the average time to fix ambiguity to a much smaller degree
than that of the tactical grade IMU. With a 20 s GPS outage, 42.9% and 12.0%
percentage improvement over GPS-only can be gained from stand-alone tactical grade
and low cost IMUs, respectively. For a 40 s GPS outage, the percentage improvement
over GPS-only by integrating all on-board vehicle sensors with tactical grade IMU and

low cost IMU are 15.5% and 14.6%, respectively.

8.2 Recommendations

1. Use fuzzy logic theory to detect the violation of the lateral non-holonomic

constraint

In this research, a predefined threshold of side slip angle was used to detect the violation
of the lateral non-holonomic constraint. The detection result is sensitive to the definition
of the side slip angle threshold. To be more robust, the fuzzy logic theory can be

considered as an alternative.
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2. Develop the low cost GPS and on-board vehicle sensor integrated system

In the land vehicle positioning system, the two dimensional horizontal positioning
information is a main concern when the vehicle operates on a flat road. In a system that
requires meter level accuracy and an extremely lower cost, a two dimensional land
vehicle positioning system can be developed by integrating GPS with the dead-reckoning
on-board vehicle sensors in two ways, namely GPS/Wheel speed sensor/Yaw rate sensor
as well as GPS/G sensors/Yaw rate sensor. Without IMU, system costs can be reduced to

a large degree.

3. In-motion alignment

It is difficult for the low cost IMU to align the heading or azimuth in static mode due to
the rapid drift error and the large uncertainty of the vertical gyro. Furthermore, it is not
feasible to initialize the INS in static mode for a certain period of time before starting the
land vehicle positioning system. To increase system flexibility, it is necessary to

investigate in-motion alignment by dealing with large heading uncertainty.

4. Make use of vehicle dynamic model to aid INS or on-board vehicle sensor

The vehicle dynamic model describes the relationship between the driving force, mass,
moment of inertia, velocity, acceleration and angular rate based on Newton’s law. It can
work as an external aid for INS or on-board vehicle sensors to extend periods of high

accuracy performance when GPS is not available.
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5. Use high sensitivity GPS receiver and map-mapping technique

The GPS receiver used in this research was the dual frequency NovAtel OEM4 receiver.
Its high price constitutes a major limitation for an extensive commercial application in
land vehicle positioning systems. The development of an integrated system with a low
cost high sensitivity GPS receiver, map-mapping module, a low cost IMU and/or
on-board vehicle sensors can be considered. The high sensitivity GPS receiver can reduce
the cost and increase the GPS availability in the urban area. With auxiliary information
from the map-mapping module, a better estimation of the navigation information can be

given.

6. Simulate more realistic GPS outages

In the open-sky area with a good GPS signal, it is an ideal case to simulate 12 GPS
outages with 40 s durations. To be more realistic and typical, it is necessary to simulate
more GPS outages with much longer outage duration as well as with attenuated or

deteriorated GPS signals.

7. Long baseline length

The maximum baseline length in this research is around 4 km. This kind of short baseline
length is not enough for the real application. The increase of baseline length will not only
increase the magnitude of GPS errors, but also increase the complexity of GPS ambiguity

resolution. The assessment of effects of longer baseline length is required.
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8. Use on-board vehicle sensor to aid GPS signal tracking

As INS can aid GPS signal tracking inside GPS receivers by ultra-tight coupling strategy,
it is also reasonable to make use of on-board vehicle sensors or INS/On-board vehicle

sensors to aid GPS signal tracking.

9. Unscented Kalman filter (UKF) and adaptive Kalman filter

The Kalman filter implemented in this research is a standard extended Kalman filter. An
extensive investigation and comparison of various Kalman filters, such as unscented
Kalman filter and adaptive Kalman filter, will be helpful for the design of a more robust

navigation system in terms of specific applications.
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Appendix A

Skew-Symmetric Matrix, Gravity Vector and Tensor of
Gravity Gradients
e  Symmetric Matrix
Assuming a 3xlvector a=[Xx y z]T

The skew-symmetric matrix of vector a is defined by

0 -z vy
A=z 0 -—x (A1)
-y x 0

e Normal Gravity Vector

The normal gravity vector is defined by

. kM
Vo R-

7 1° = QOr* (A.2)

r

where
k is the gravitational constant,
M is the mass of the Earth,

r = [ry r, rZ] is the position in ECEF frame,

.2 2 2
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w, 1S the rotation rate of the Earth

e

e Tensor of Gravity Gradients
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Appendix B

Reliability Test in the Kalman Filter
The reality test in the Kalman filter is based on the analysis of the innovation sequence.
The innovation sequence is defined by
v=2z,-H -X (B.1)
The innovation sequence follows a zero mean Gaussian distribution. The covariance
matrix of the innovation sequence is
Q,=HP H" +R (B.2)

Two hypotheses can be made by

Hy:E[v]=0
(B.3)
H,:E[v]=V
where Vv is the model error vector.
Assuming a single blunder, the blunder vector is defined by
m,=[0 .. 010 .. 0] (B.4)

On the basis of the null hypothesis H, and the alternative hypothesis H,, the test

statistics is given by

mgQ, 'V
V@Y,

The distribution of the single blunder test statistics follows Gauss normal distribution,

t, = (B.5)
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Appendix C

Supplementary Results for Real-Time Test
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Figure A 1 Estimated position differences with respect to the reference of all integration

strategies (Suburban area test)
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Figure A 2 Estimated standard deviations of the up position difference of all integration

strategies (Suburban area test)
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Figure A 3 Estimated standard deviations of the 3D position difference for all integration

strategies (Suburban area test)
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Figure A 4 Horizontal Velocity differences with respect to GPS/CIMU for all integration

Horizontal Velocity STD [mis)

Horizantal Velocity STD [mis)

strategies (Suburban area test)
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Figure A 5 Horizontal estimated standard deviations of the horizontal velocity difference
for all integration strategies (Suburban area test)
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Figure A 6 Up velocity differences with respect to the reference for all integration

strategies (Suburban area test)
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Figure A 7 Estimated standard deviations of up velocity difference for all integration

strategies for the real-time test in suburban area
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Figure A 8 3D velocity differences with respect to the reference of all integration

strategies for the real-time test in suburban area
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Figure A 9 Estimated standard deviations of 3D velocity difference for all integration

strategies for real-time test in suburban area
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Figure A 10 Estimated standard deviations of horizontal position difference for all

integration strategies for real-time pseudo-urban area test
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Figure A 11 Estimated standard deviations of the up position difference for all integration

strategies (Pseudo-urban area test)
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Figure A 12 Estimated 3D position differences of all integration strategies

(Pseudo-urban area test)
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Figure A 13 Horizontal velocity differences of all integration strategies (Pseudo-urban

area test)
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Figure A 14 Estimated standard deviations of the horizontal velocity difference for all
integration strategies (Pseudo-urban area test)
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Figure A 15 Up velocity differences of all integration strategies (Pseudo-urban area test)
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Figure A 16 Estimated standard deviations of up velocity difference for all integration
strategies (Pseudo-urban area test)
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Figure A 17 3D velocity differences of all integration strategies (Pseudo-urban area test)
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Figure A 18 Estimated standard deviations of 3D velocity for all integration strategies
(Pseudo-urban area test)



