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Abstract

An analysis of the combination and downward continuation of satellite, airborne and

terrestrial gravity data is presented. The thesis encompasses theoretical investigations

of the underlying model problems and a numerical study using simulated and real data.

The downward continuation of gravity data is inherently unstable and requires reg-

ularization, iteration or filtering methods to obtain a stable solution. This research

scrutinizes several regularization methods for the downward continuation of airborne

and terrestrial gravity data. All of them can be considered as filtered least-squares

solutions. Additionally, an alternative numerical method is developed and compared

to the other methods. It provides a considerable improvement in terms of numerical

efficiency and accuracy when the assumptions for the method are satisfied.

With newly available satellite gravity data, additional low-frequency information

about the gravity field can be obtained. Since applications such as geoid determi-

nation and resource exploration demand a much higher resolution than resolved by

satellite-only models, the combination with data collected closer to the Earth’s surface

is essential. In this research, local airborne and terrestrial gravity data have been used.

Several combination strategies are proposed and implemented.

The feasibility of the combination strategies is demonstrated for a local data area close

to Ottawa, Canada. The results indicate that a combination of satellite, airborne and

terrestrial gravity is beneficial both in terms of accuracy and resolution. A combined

local geoid and a high-degree spherical harmonic model up to degree and order 900 are

developed. The results show a geoid accuracy in the cm-range for the test area.

iii



Acknowledgements

I would like to express my sincere gratitude to my distinguished supervisor Dr. Klaus-

Peter Schwarz for his continuous inspiration, encouragement, advice and support through-

out my graduate studies. He manages to strike the perfect balance between providing

direction and encouraging independence.

I would like to extend my gratitude to my Ph.D. defense members, colleagues and

teachers, namely Drs. B. Heck, P. Holota, J. Kusche, P. Novák, M. G. Sideris, N.

Sneeuw and P. Wu. They are thanked for their invaluable advice, cooperation and help

on many occasions.

I would like to thank my friends and fellow students for their daily help and support.

In particular, I thank my dear friends Cameron Ellum, Lynn Raaflaub and Sandy

Kennedy for their friendship and for making my stay in Canada a wonderful experience.

My final and most heartfelt appreciation goes to my family for their love, encourage-

ment and understanding.

iv



Contents

Approval Page ii

Abstract iii

Acknowledgements iv

Contents v

List of Tables viii

List of Figures xi

List of Symbols xii

List of Acronyms xvii

1 Introduction 1

2 The Remove-Restore Technique 7

2.1 The Meissl Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Satellite Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 The Helmert Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Case Study – Stokes Integration . . . . . . . . . . . . . . . . . . . . . . 39

2.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Upward and Downward Continuation 46

3.1 Upward Continuation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Downward Continuation . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Analysis of the Discrete Downward Continuation Problem . . . . . . . 62

3.4 An Alternative Numerical Solution . . . . . . . . . . . . . . . . . . . . 67

v



Contents vi

3.5 Downward Continuation Results . . . . . . . . . . . . . . . . . . . . . . 72

4 The Combination of Heterogeneous Gravity Data 79

4.1 A Glance at the Combination Problem . . . . . . . . . . . . . . . . . . 79

4.2 Analysis and Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Combination Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Quality of the Combination Strategies . . . . . . . . . . . . . . . . . . 93

4.5 Combining a Satellite Model with a Geopotential Model . . . . . . . . 96

5 From Theory to Application 102

5.1 General Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Specific Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Real Data Results 114

6.1 Individual Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Combined Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Concluding Remarks 136

Bibliography 152

A Tables and Properties 153

Quality Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

A.1 Filter Window Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.2 Degree Variance Models . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.3 Removing the Singularity from the Stokes Kernel . . . . . . . . . . . . 156

A.4 Abel-Poisson Kernel Modifications . . . . . . . . . . . . . . . . . . . . . 158

A.5 Pellinen Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.6 Covariance Functions and Least-Squares Collocation . . . . . . . . . . . 161

Geodetic Reference Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Legendre Polynomials and Legendre Functions . . . . . . . . . . . . . . . . . 166

B Additional Results 166

B.1 First Helmert versus Second Helmert Condensation Method . . . . . . 166

B.2 Stokes Integration and Continuation Results . . . . . . . . . . . . . . . 167

B.3 Satellite Models and Geopotential Models . . . . . . . . . . . . . . . . 171

B.4 Geoid Determination Based on Satellite and Terrestrial Gravity Data . 171

Index 173



List of Tables

2.1 Operators, singular systems and upward continuation (uc) degree . . . 9

2.2 Direct and indirect effect . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Condensation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Helmert scheme – direct effect . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Helmert scheme – indirect effect . . . . . . . . . . . . . . . . . . . . . . 19

2.6 Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7 Deterministic kernel modifications . . . . . . . . . . . . . . . . . . . . . 38

2.8 Simulated data statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.9 Remove-restore technique versus local data method [m] . . . . . . . . . 44

2.10 Kernel function comparison (# – small; G# – medium;  – large) . . . . 44

3.1 Filter factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Simulated data statistics for the downward continuation problem . . . . 73

3.3 Determination of the regularization parameter . . . . . . . . . . . . . . 75

4.1 Spectrals weights pl for the satellite data . . . . . . . . . . . . . . . . . 90

4.2 Input data statistics for the combination . . . . . . . . . . . . . . . . . 94

5.1 Spectral sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Measures for spectral sensitivity . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Link between spatial and spectral resolution . . . . . . . . . . . . . . . 105

5.4 Satellite and geopotential models . . . . . . . . . . . . . . . . . . . . . 113

6.1 Statistics of the geoid based on ground gravity data . . . . . . . . . . . 118

6.2 Statistics of the geoid based on airborne gravity data . . . . . . . . . . 122

6.3 Statistics of the high-degree model TM900g . . . . . . . . . . . . . . . . 124

6.4 Statistics of the high-degree model GM900sgl . . . . . . . . . . . . . . . 125

6.5 Statistics for the geoid determination of satellite data and a local gravity

data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.6 Statistics of the first combination – satellite and airborne data . . . . . 131

vii



List of Tables viii

6.7 Statistics for the geoid determination based on satellite, airborne and

terrestrial gravity data . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.8 Statistics of the high-degree model based on satellite, airborne and ter-

restial gravity data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.1 Quality measures for x ∈ IRn . . . . . . . . . . . . . . . . . . . . . . . . 153

A.2 Filter window functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

A.3 Degree variance models (Wenzel, 1985, pg. 147) . . . . . . . . . . . . . 155

A.4 Stokes kernel functions (LMD ≤ LS) . . . . . . . . . . . . . . . . . . . . 157

A.5 Abel-Poisson kernel functions (LMD ≤ LS) . . . . . . . . . . . . . . . . 159

A.6 Pellinen mean formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

A.7 Covariance functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.8 Summary of least-squares collocation (Moritz, 1989) . . . . . . . . . . . 163

A.9 Geodetic reference systems . . . . . . . . . . . . . . . . . . . . . . . . . 164

A.10 Legendre polynomials and Legendre functions . . . . . . . . . . . . . . 165

B.1 First Helmert versus second Helmert condensation method . . . . . . . 166

B.2 Stokes integration – noise-free data . . . . . . . . . . . . . . . . . . . . 167

B.3 Stokes integration – noisy data . . . . . . . . . . . . . . . . . . . . . . 168

B.4 Continuation results [mGal] . . . . . . . . . . . . . . . . . . . . . . . . 169

B.5 Continuation results [mGal] – cont. . . . . . . . . . . . . . . . . . . . . 170

B.6 Undulation differences between the CGG2000, satellite and geopotential

models [m] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

B.7 Statistics for the geoid determination of satellite data and a local gravity

data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171



List of Figures

1.1 Gravity field from EGM96 (gravity anomalies exaggerated) . . . . . . . 2

2.1 Singular values in the Meissl scheme . . . . . . . . . . . . . . . . . . . 10

2.2 Geometry of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Helmert values for the direct and indirect effects . . . . . . . . . . . . . 23

2.4 Geometry and two divisions . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Combinations using satellite data and one local gravity data set (de Min,

1996) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Computation of truncation errors using a geopotential model . . . . . . 35

2.7 Kernel functions and truncation coefficients with ψc = 1◦ and LS = 120,

LMD = 120 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.8 Geoid error with different kernel modifications. First bar is the geoid

rms error with noise-free data, second bar the geoid rms error with noisy

data [cm] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.9 Influence of different modification degrees using the FEO kernel. LS =

120 and ψc = 1◦ fixed . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Sparsity pattern of the design matrix A with m = 2304 and n = 864.

335452 non-zero elements . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Mean square error functions, example taken from Bouman (2000) . . . 55

3.3 Filter factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Singular values and condition numbers . . . . . . . . . . . . . . . . . . 65

3.5 Picard condition for simulated airborne data . . . . . . . . . . . . . . . 67

3.6 Approximate condition numbers for different continuation heights and

spatial resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7 RMS error of the continuation solutions. INV, LAI, TIK, DSVD, TSVD,

CG, A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.8 Reference solution versus A, TIK, and CG using gravity disturbances at

2 km [mGal] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

ix



List of Figures x

3.9 Frequency spectra of the least-squares solution (LSQ), the conjugate gra-

dient solution (CG) and the alternative approximation (A) . . . . . . . 77

4.1 Degree variances of simulated global and local gravity data . . . . . . . 80

4.2 Iteration scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Iteration scheme for the combination of satellite and geopotential models 89

4.4 Development of a high-degree spherical harmonic model . . . . . . . . . 91

4.5 Geoid determination using satellite and a local gravity data set . . . . . 93

4.6 Geoid determination using satellite, airborne and terrestrial gravity data 94

4.7 Undulation differences compared to GPM98a [cm]; first bar stands for

mean difference, second bar is standard deviation . . . . . . . . . . . . 96

4.8 Differences between the EGM96 and CSM360 . . . . . . . . . . . . . . . 98

4.9 Differences between the EGM96 and EGM96e . . . . . . . . . . . . . . . 99

4.10 Differences between the EGM96 and CSM360w . . . . . . . . . . . . . . 101

5.1 Attenuation and amplification . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Geophysical effects in periods, wavelengths and magnitude (from Verha-

gen (2000); NRC (1997)) . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Signal and error anomaly degree variances of some global models [mGal2] 109

5.4 Location of the test area . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 Ground gravity anomalies and airborne field test [mGal] . . . . . . . . 111

6.1 Separation between the reference ellipsoid and an adopted reference equipo-

tential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Undulation differences between the CGG2000, satellite models and geopo-

tential models [cm]; first bar stands for mean difference, second bar is

the standard deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Differences between CGG2000 and two models [m] . . . . . . . . . . . . 117

6.4 Determination of a local geoid based on ground gravity anomalies . . . 119

6.5 Effect of different Stokes kernel modifications . . . . . . . . . . . . . . . 120

6.6 Determination of a local geoid based on airborne gravity disturbances . 123

6.7 High-degree spherical harmonic model based on ground gravity data . . 124

6.8 High-degree spherical harmonic model based on airborne data . . . . . 126

6.9 Performance of individual solutions. First bar stands for mean difference,

second bar is standard deviation . . . . . . . . . . . . . . . . . . . . . . 127

6.10 Undulation differences [m] . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.11 Geoid based on a combination of satellite, airborne and terrestrial gravity

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132



List of Figures xi

6.12 High-degree spherical harmonic model based on satellite, airborne and

terrestrial gravity data . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.13 Performance of combined solutions. Standard deviation to CGG2000

after removing a systematic trend . . . . . . . . . . . . . . . . . . . . . 135

A.1 Degree variance models . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

A.2 Pellinen curves βl for ψc = 1◦, 2◦, 3◦ . . . . . . . . . . . . . . . . . . . 160

A.3 Covariance function and degree variances . . . . . . . . . . . . . . . . . 162

B.1 Geoid determination based on satellite and terrestrial gravity data . . . 172



List of Symbols

a major semi-axis of the geocentric reference ellipsoid

b minor semi-axis of the geocentric reference ellipsoid / bandwidth

cl degree variances

e first numerical eccentricity of the geocentric reference ellipsoid /

noise

eGl errors by degree of the local gravity data G

eSl errors by degree of the satellite data S

f polar flattening of the geocentric reference

ellipsoid / frequency band

f̂ functional of the disturbing potential (= BT )

fk solution in the k-th step of the iteration

f̂lm Fourier coefficients of f̂

f̂α regularized solution

g magnitude of gravity
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1 Introduction

“The intention and the result of a scientific inquiry is to obtain an understanding and a

control of some part of the universe. No substantial part of the universe is so simple that

it can be grasped and controlled without abstraction. Abstraction consists in replacing the

part of the universe under consideration by a model of similar, but simpler structure.

Models, formal or intellectual on the one hand, or material on the other, are thus a

central necessity of scientific procedure.”

Rosenblueth and Wiener, 1945

Background

Satellite geodesy has been an important part of geodesy for about 30 years and de-

termining the Earth’s gravity field is one of its major tasks (Seeber, 1993). Almost

immediately after the launch of Sputnik-1 in 1957, ground-based tracking of (artificial)

satellites has been used to obtain information about the global gravity field. Free-

falling satellites have been considered as probes in the gravity field. Observation tech-

niques such as Doppler and satellite laser ranging have been used and have led to first

global gravity models in the 1960s. Since then, an increased number of satellites and

tracking stations, technology enhancements and methodology changes have remarkably

improved the knowledge of the low-degree gravity field. Combinations of satellite and

other gravimetric data have increased the resolution of these models yielding combined

geopotential models; see Figure 1.1 for a recent example. Yet still, the spatial dis-

1
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tribution is inhomogeneous; the derived models are low frequency in nature and the

quality is often too poor for applications in geodesy and geophysics. Characteristics of

the time-variable field and the global stationary gravity field are not available in suffi-

cient detail. It is expected that all this will change once the data of the three satellite

missions CHAMP, GRACE and GOCE and their successors become available. In close

collaboration with other geosciences, satellite geodesy will then move into a new phase.

Figure 1.1: Gravity field from EGM96 (gravity anomalies exaggerated)

Two of the three satellite gravity missions have already been launched, leaving one

mission under development (GOCE). Measurement techniques such as satellite gra-

diometry and satellite-to-satellite tracking will be used. As indicated above, the main

mission objectives are to determine the stationary gravity field with an unprecedented

accuracy (GOCE) and to map its variability in time in an efficient and cost-effective

way (GRACE). Models will be derived that provide information down to spatial scales

of about 100 km. In particular, the goals are centimeter accuracy in terms of geoid

heights and less than 1-2mGal (1mGal=10−5 m/s2) in terms of gravity (ESA, 1999) for

the part of the spectrum that can be resolved. If the missions are successful, they will
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provide state-of-the-art information for the lower frequencies since their quality will

be unmatched. Undoubtedly, many global applications can greatly benefit from these

missions.

Setting the Stage – Problem Statement

Typically, applications such as geoid determination and resource exploration demand a

much higher resolution than that obtained by satellite-only models (expected 100 km).

Since the gravity field is damped at satellite altitude and only large-scale features are

visible, other means have to be found to resolve the higher frequencies. Measure-

ments collected closer to the Earth’s surface, such as airborne and terrestrial gravity

data, represent attractive alternatives because the high-frequency part of the signal is

more pronounced. These measurements, albeit often burdened by systematic errors

and limited in spatial extent, can contribute to the determination of the medium to

high frequencies of the gravity field. Airborne gravimetry is a particularly interest-

ing candidate to resolve these frequencies since it provides gravity measurements in a

cost-effective and economic way. In addition, it can be used in remote areas that are

not easily accessible. For further details on airborne gravimetry and its characteristics

refer to Schwarz & Li (1997, 1996); Glennie (1999); Bruton (2000). By means of data

combination, the satellite spectrum could be widened and enhanced. As a result, a uni-

fied estimate of the gravity field could be obtained that satisfies requirements of many

applications and is less encumbered by specific mission objectives. Hence, a detailed

analysis of the combination problem of satellite, airborne and terrestrial gravity data,

and its solution strategies, is one of the objectives of this dissertation.

The second problem to be discussed is the downward continuation problem. Mea-

surements collected or derived at satellite altitude, airborne flight path or at the surface

of the Earth have to be downward continued to a different surface. This process belongs

to the class of improperly posed problems (Moritz, 1966; Schwarz, 1971). Numerical

instabilities occur in the form of drastically amplified noise. The higher the contin-

uation height and the finer the data spacing, the more severe is the problem. The

instabilities can be overcome by adding a-priori information to the solution (Schwarz,
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1979). However, a stable solution comes at the cost of a biased solution, which is

equally problematic (at least in some applications). Many stabilization concepts have

been developed over the years, see for instance Tikhonov & Arsenin (1977); Rummel

et al. (1979); Bouman (1998); Kusche (2002). Recently, their performances have been

studied for the satellite case (Bouman, 2000; Kusche, 2002). Hence, it is of interest

to apply and compare these methods to the less severe case of airborne and terrestrial

measurements. This has not been studied in sufficient detail. Furthermore, stability

investigations on the downward continuation problem of airborne and terrestrial gravity

data could enhance the understanding of the problem and lead to alternative solution

concepts for specific applications.

Objectives

The main objective of this thesis is a detailed analysis of the combination and down-

ward continuation of satellite, airborne and terrestrial gravity data. The analysis en-

compasses a theoretical investigation of the underlying model problems and a numerical

study using simulated and real data. Furthermore, the concept of tailoring (improving

a global model by local or regional gravity data) is revisited and its quality is evaluated

with respect to traditional geoid modelling by integration.

Outline

The thesis is structured in the following way:

The second chapter investigates, generalizes and analyzes the remove-restore tech-

nique, i.e., a combination strategy for the combination of satellite and one local or

regional gravity data set. Further insights are provided into the second Helmert

condensation scheme as well as the impact of kernel modifications.

Chapter three delves into the continuation problem. Theoretical and numerical

challenges of the downward continuation problem are discussed. After a theoretical

analysis of the degree of ill-posedness of the downward continuation of airborne and

terrestrial gravity data, an alternative solution concept is developed. A numerical

comparison of regularization/stabilization concepts for the downward continuation
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problem of airborne gravity data concludes the chapter.

Chapter four revisits the concept of tailoring as a possible candidate for the com-

bination of satellite and multiple local gravity data. A brief analysis of the com-

bination model problem is followed by outlining the principle of the combination

method and some refinements made by the author.

The fifth chapter analyses gravity data from a conceptual point of view. It also

includes a first glance at the real satellite, airborne and terrestrial gravity data

used in Chapter six.

Chapter six presents combination solutions using satellite, airborne and terrestrial

gravity data over a local test area. A high-degree spherical harmonic model is

developed and a local geoid is determined based on all available gravity data in the

area. The results are compared to the official geoid in Canada.

Conclusions are drawn in chapter seven. Future work and recommendations con-

clude the thesis.

Limitations

This investigation is confined to local and regional combinations rather than op-

timal global solutions. This has been decided upon since airborne and terrestrial

measurements are often limited in their spatial extent. In addition, they are usu-

ally not of homogeneous quality. Since a global solution would suffer from an

unbalanced distribution, regional or local solutions are favoured in this study.

Satellite information is used here in form of low-degree spherical harmonic models.

Although combinations using satellite, airborne and terrestrial data could take

place at the observation or normal equation level, this possibility is not investigated

here.

Throughout the thesis, it is assumed that the gravity data are of good quality, i.e.

calibrated and validated.

Spherical approximation is used throughout the thesis. This represents a clear

approximation of the physical situation. Ellipsoidal formulation or ellipsoidal cor-
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rection terms would be required to enhance the solutions. As only local and regional

solutions are developed, however, the error remains relatively small (on the order of

the ellipsoidal flatting). Whenever it seems convenient, the geoid is approximated

by a reference sphere R.

A constant density is used for the computation of the topographic effects. This

assumption has been made since no specific knowledge of the actual mass density

variations was available.

Temporal variations of the gravity field are neglected in the computations.



2 The Remove-Restore Technique

Outlined in this chapter is the combination of satellite data with one local gravity data

set. This is the typical case that has been discussed by numerous authors. The chapter

is structured around the remove-restore technique that will be used for the combination

of satellite and local gravity data (Rapp & Rummel, 1975; Forsberg & Tscherning,

1981). The remove-restore technique can be summarized as follows:

Remove : AT ′ = AT −AT S −AδV H

Transformation : ↓
Restore : BT̂ = BT̂ ′ + BT S + BδV H

(2.1)

where A and B are operators applied on the disturbing potential T , the residual dis-

turbing potential T ′, the disturbing potential computed from a satellite model T S and

the residual (Helmert) gravitational potential δV H.

The remove-restore technique involves three steps, see Eq. (2.1). The first step is the

remove step. The local gravity data are reduced by the satellite model AT S and by the

topographic and atmospheric effects AδV H. The result of the remove step is residual

gravity data (AT ′) that is input to the transformation step. The transformation step

maps the residual observable to the output function (BT̂ ′). In the restore step, the low-

frequency information of the satellite data is added back to the data in the output unit,

namely BT S. Furthermore, the topographic and atmospheric indirect effects (BδV H)

are restored to obtain the final output BT̂ . The tools for the remove-restore technique

are described in the following sections.

7
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2.1 The Meissl Scheme

The Meissl scheme is extensively used in the following. Therefore, it will be briefly

reviewed and the connection to the remove-restore technique will be established.

Every gravity observation can be expressed as a functional of (or an operator applied

on) the disturbing potential T ∈ X (Meissl, 1971b; Rummel & van Gelderen, 1995)

g = AT ←→ g =
∑
l

σl (T, vl)X ul (2.2)

where

g is the gravity function/operator (scalar, vector or tensor) reduced by a

reference value (computed from a reference ellipsoid), g ∈ Y
A is an operator that maps the Hilbert space X (domain) into

the Hilbert space Y (range), A : X → Y

T is the disturbing potential at a known point Q (T (Q) = W (Q)− U(Q))

σl are singular values (σl =
√
λl, λl is the eigenvalue)

ul, vl are the left and the right singular functions, respectively (ul = σ−1
l Avl)

(T, vl)X is the scalar product of T and vl in X

l is the (spherical harmonic) degree (l ∈ IN)

Eq. (2.2) shows a link between gravity functions/operators and the disturbing potential

in the space domain as well as the spectral domain. Let A∗ : Y → X be the adjoint

operator of A, i.e., (g,AT )Y = (A∗g, T )X . Then A : X → X is called self-adjoint

with respect to the scalar product (·, ·)X if A = A∗ holds or, equivalently, (g,AT )Y =

(Ag, T )X . Eqn. (2.2) is an eigenvalue analysis (EVA) for self-adjoint cases (ul = vl)

and a singular value decomposition (SVD) for non self-adjoint operators.

Meissl (1971b) lists the most commonly used singular values in tabularized form. The

resulting Meissl scheme is a list of singular systems {σl, ul, vl} for idealized observables

continuously given on a reference sphere. The extension to non self-adjoint operators

and the upward and downward continuation is treated in Rummel & van Gelderen
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(1995) and Grafarend (2001). Following Meissl (1971b), van Gelderen & Rummel (2001)

and Kusche (2002), Table 2.1 can be obtained. x, y, z form a local coordinate system

with x pointing to north, y pointing east and z normal to the sphere pointing outside.

The upward continuation degree uc is used in (R/r)uc; R being the mean Earth radius,

and r = R +H the radius at height H. I stands for the identity operator.

Table 2.1: Operators, singular systems and upward continuation (uc) degree

A AT σl ul vl uc

I T 1 Ȳlm Ȳlm l + 1

∂z Tz −(l + 1)

R
Ȳlm Ȳlm l + 2

∂x, ∂y Tx, Ty −
√
l(l + 1)

R
Ylm X̄

1
lm, X̄

2
lm l + 2

∂zz Tzz
(l + 1)(l + 2)

R2
Ȳlm Ȳlm l + 3

∂xz, ∂yz Txz, Tyz −
(l + 2)

√
l(l + 1)

R2
Ȳlm Z̄

13(1)
lm , Z̄

23(1)
lm l + 3

∂xx − ∂yy,2∂xy Txx−Tyy,2Txy
√

(l − 1)l(l + 1)(l + 2)

R2
Ȳlm Z̄

11(2)
lm , Z̄

12(2)
lm l + 3

In Table 2.1, Ȳlm, X̄ lm and Z̄ lm are the fully normalized scalar, vector and tensor

spherical harmonics, respectively. For a thorough discussion on vector and tensor spher-

ical harmonics reference is made to Rummel & van Gelderen (1992) or Freeden et al.

(1994).

Singular values from the Meissl scheme will be used in every step of the remove-restore

technique. Depending on the observable, the singular values can be taken directly

from Table 2.1 (for disturbance quantities) or be derived (for anomalous quantities).

For l → ∞, however, disturbance and anomalous quantities have a similar behaviour.

Figure 2.1 visualizes the singular values listed in Table 2.1. While the singular values of

the first derivatives increase on the order of O(l), those of the second derivative increase

as O(l2).

Remark 2.1 The singular values in Table 2.1 are not dimensionless; yet they correspond

to the notation commonly used in geodesy. The scheme is commutative.
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Figure 2.1: Singular values in the Meissl scheme

2.2 Satellite Contributions

The second terms in the remove-restore technique, AT S and BT S, are contributions

of the satellite data. Satellite information is usually provided in spherical harmonics.

The spherical harmonic representation is advantageous since it provides global support,

orthogonality and harmonicity. On the other hand, spherical harmonics do not show

space localization. Thus, local problems are difficult to treat with spherical harmonics

only. Non-uniformly distributed data sets may cause problems as well. Nevertheless, the

satellite data are assumed to be given in spherical harmonic representation throughout

the thesis. The gravitational potential is computed as (Heiskanen & Moritz, 1967),

V (r, θ, λ) =
GM

R

∞∑
l=0

(
R

r

)l+1 l∑
m=−l

K̄lmȲlm(θ, λ) (2.3)

where

K̄lm =

 C̄lm

S̄l|m|
and Ȳlm(θ, λ) =

 cosmλP̄lm(cos θ) ,m ≥ 0

sin |m|λP̄l|m|(cos θ) ,m < 0
(2.4)

and
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r, θ, λ is the geocentric radius, co-latitude and longitude of point P

GM is the universal gravitational constant times the mass of the Earth

R is the mean equatorial radius

K̄lm are the fully normalized potential coefficients

Ȳlm are the fully normalized surface spherical harmonics

P̄lm are the fully normalized associated Legendre functions

Proving uniform convergence of the series inside the Brillouin sphere (a sphere enclosing

all masses) is an open problem. While a number of publications indicate that the

series might be divergent (Bäschlin, 1948; Moritz, 1961), most of the newer publications

assume that the series is also convergent for a point inside the Brillouin sphere (Krarup,

1969; Arnold, 1969, 1978; Moritz, 1989). Even if the series for V would be divergent,

however, Runge’s theorem ensures that an arbitrarily close V ′ exists that is convergent

(Moritz, 1989, pg. 67). Furthermore, as the series over l is usually truncated to a

maximum degree LS, the potential can always be continued.

Disturbing Potential in Spherical Harmonics

As mentioned before, the disturbing potential is the difference between the gravity

potential and a potential generated by a reference ellipsoid, i.e., T (P ) = W (P )−U(P ).

The expansion of T can then be computed as (Heiskanen & Moritz, 1967)

T (r, θ, λ) =
GM

R

∞∑
l=2

(
R

r

)l+1 l∑
m=−l

∆K̄lmȲlm(θ, λ) (2.5)

where

∆K̄lm =

 C̄l0 − Ūl0 , m = 0, l even

K̄lm , else
(2.6)

with Ūl0 = Ū2n,0 given as

Ū2n,0 =
(−1)n 3 (e2)

n

√
4n+ 1(2n+ 1)(2n+ 3)

[
1− n+ 5n

(
1

3
− 2

45

me′

q0

)]
n = 1, . . . , 5 (2.7)
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Ūl0 are the fully normalized potential coefficients from a Somigliana-Pizzetti reference

field. GRS80 is used as the reference field in this thesis. The computational formulas

for m, e2, e′ and q0 are provided in Moritz (1980a) and Chen (1981). Numerical values

for Ūl0 are summarized in Table A.9. The difference GM − GM0 is assumed to be

sufficiently small and the center of mass of the ellipsoid coincides with the center of

mass of the Earth (C̄10 = C̄11 = S̄11 = 0).

Other Functionals in Spherical Harmonics

When functionals of the disturbing potential have to be computed, the Meissl scheme

can be applied. The corresponding singular value can be taken from Table 2.1 and

simply inserted into the disturbing potential series as

AT (r, θ, λ) =
GM

R

∞∑
l=2

σl

l∑
m=−l

∆K̄lmȲlm(θ, λ) (2.8)

Example. Gravity disturbances have to be computed from a satellite model at a known

position P = (r, θ, λ). The singular value is known to be l+1
r

(
R
r

)l+1
(δg = −∂T

∂r
= −∂T

∂z
).

Let the minimum degree of the satellite model be l = 2, the maximum degree LS and

GM = GM0. The gravity disturbances from the satellite model S are then computed

as

δgS(P ) =
GM

R

LS∑
l=2

l + 1

r

(
R

r

)l+1 l∑
m=−l

∆K̄S
lmȲlm(θ, λ)

2.3 The Helmert Scheme

To obtain a solution of the classical geodetic boundary value problems, the disturb-

ing potential has to be a harmonic function. The (twice continuously differentiable)

disturbing potential T : D → IR (D ⊂ IR3) is called harmonic if it satisfies Laplace’s

equation, ∆T = 0, in D. Hence, masses between the geoid and the Earth’s surface are
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inadmissible. A reduction process, removing the masses outside the geoid, is necessary

(AδV H). The residual field is assumed to be harmonic and the transformation step can

be applied. Eventually, the effect of the topographic and atmospheric masses (BδV H)

is added back in the restore step. It should be noted that any reduction technique suf-

fers from the insufficient knowledge of the density of the removed masses. A constant

density distribution is frequently used (2.67 g/cm3), causing an error in the solution.

The Helmert condensation method is a widely used reduction technique, see for in-

stance Helmert (1884); Wichiencharoen (1982); Vańıček & Kleusberg (1987); Wang &

Rapp (1990); Sideris & Forsberg (1991); Heck (1992); Martinec (1998); Sjöberg (2000);

Kuhn (2000); Huang (2002) to name only a few. Helmert’s idea is to compress the

topographic and atmospheric masses on a condensation layer that is either ’parallel’

to the geoid (1st Helmert condensation with a condensation depth of 21 km below the

geoid) or situated at or just below the geoid (2nd Helmert condensation).

In this thesis, the second Helmert condensation method will be used. Since the spatial

forms of the Helmert condensation are extensively described in the literature, see for

instance Martinec (1998); Novák (2000) and Novák et al. (2003a), only the spectral

forms will be discussed. Furthermore, the derivations are confined to the topographic

effects. The atmospheric effects, in turn, may be applied in the standard fashion (Ecker

& Mittermayer, 1969; Moritz, 1980a). The spectral formulation highlights the concept

of the reduction technique, the effect of different condensation schemes and could be

used for airborne data due to their band-limited character. Similar investigations using

isostatic models such as the Airy-Heiskanen model or the Pratt-Hayford model are

reported in Rummel et al. (1988); Sünkel (1985, 1986); Tsoulis (2001).

The residual gravitational potential is the difference between the actual potential of

the topography and the corresponding potential of the condensation layer. For a point
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P on and outside the Earth’s surface S = ∂D, it becomes (Heck, 2002)

δV H(P ) = Vt(P )− Vct(P ) =

= µ

∫
ω

R+H′∫
z=R

z2

K
dz dω

︸ ︷︷ ︸
topography

− GR2

∫
ω

ς i

K
dω

︸ ︷︷ ︸
condensed topography

(2.9)

where

P is a known point (r, θ, λ)

Vt(P ) is the gravitational potential of the topographic masses

Vct(P ) is the gravitational potential of the condensed masses

µ is the Newtonian universal constant times the mean density (µ = Gρ0)

K is the Newtonian integration kernel, see Table 2.2

ς i is a condensation density model, see Table 2.3 for different

forms of condensation surface layers

z is the integration variable in radial direction, R ≤ z ≤ R +H ′∫
ω
dω is the integration over the unit sphere (ω = {x|x2

1 + x2
2 + x2

3 = 1})
with dω = sin θ dθdλ denoting the surface element of the unit sphere.

The direct and the indirect effect have to be separated. The direct effect (AδV H) is

computed at the computation point location P , while the indirect effect (BδV H) is

either computed at the computation point (for B = A) or at the reference sphere Q.

The geometry of the problem is shown in Figure 2.2. F , B and S denote the flight

path, Bouguer shell and surface of the Earth, respectively.

The integration kernel can be expanded into a series of Legendre polynomials as

(Lense, 1954, pg. 14)

1

K
=
(
r2 − 2rz cosψ + z2

)− 1
2 =

1

r

(
1− 2

z

r
cosψ +

(z
r

)2
)− 1

2

=
1

r

∞∑
l=0

(z
r

)l
Pl(cosψ) (r > z) (2.10)



2.3 The Helmert Scheme 15

Figure 2.2: Geometry of the problem

where Pl stands for the l-th degree Legendre polynomial and ψ 6 (P, P ′) is the spherical

distance between the computation point (θ, λ) and the integration point (θ′, λ′)

cosψ = cos θ cos θ′ + sin θ sin θ′ cos(λ′ − λ) (2.11)

Unfortunately, the series is not convergent everywhere (Grafarend & Engels, 1994).

To ensure a convergent series expansion in the following derivations, the computation

point P is assumed to be outside the Brillouin sphere. This can safely be assumed

for measurements taken at airborne or satellite altitude. The indirect effect will be

computed at the reference sphere R that sufficiently approximates the geoid. Table 2.2

summarizes the chosen parameters for the direct and the indirect effect and explicitly

shows the integration kernel K. The case ψ = 0 (singularity) may require special

treatment.

One has to distinguish between the topography and the terrain. The topography,

shown in grey in Figure 2.2, includes all masses above the geoid (except the atmosphere).

When subtracting the Bouguer shell (VB(P ) = 4πµ
3r

(r3
B − R3)) from the potential of
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Table 2.2: Direct and indirect effect

Effect Height Operator
1

K
Convergence Remark

Direct r A 1

r

∞∑
l=0

(z
r

)l
Pl(cosψ) r > z z = R for Vct

Indirect R B 1

z

∞∑
l=0

(
R

z

)l
Pl(cosψ) z > R z = R for Vct

the topographical masses, however, the potential of the terrain (sometimes also called

topographic roughness or irregular part of the topography) remains. Thus, the terrain

is the deviation between the actual topographical radius r′ = R+H ′ and the constant

radius rB = R+H. The Bouguer shell is mainly introduced for computational reasons;

the effect of the terrain is considerably smaller than the effect of the topography.

Gravitational Potential of the Topography Vt

Inserting the integration kernel into Eqn. (2.9) results in the gravitational potential of

the topographic masses as

Vt(P ) = µ

∫
ω

R+H′∫
z=R

z2

K
dz dω

= µ

∫
ω

R+H′∫
z=R

1

r

∞∑
l=0

(z
r

)l
Pl(cosψ)z2 dz dω

= µ
∞∑
l=0

(
1

r

)l+1 ∫
ω

R+H′∫
z=R

zl+2Pl(cosψ) dz dω (2.12)

Interchanging the summation and integration is permitted due to a uniformly conver-

gent kernel. Following Rummel et al. (1988), the integral term
∫
zl+2 dz can be derived

as

R+H′∫
z=R

zl+2 dz =
Rl+3

l + 3

[(
1 +

H ′

R

)l+3

− 1

]
=
Rl+3

l + 3

l+3∑
k=1

 l + 3

k

(H ′

R

)k
(2.13)
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Eqn. (2.12) then becomes (Vańıček et al., 1995)

Vt(P ) = µR2

∞∑
l=0

(
R

r

)l+1
1

l + 3

l+3∑
k=1

 l + 3

k

∫
ω

(
H ′

R

)k
Pl(cosψ) dω (2.14)

Gravitational Potential of the Condensed Topography Vct

The derivation of the condensed topographic effects is easier than the derivation of the

topography; only the integration kernel and a condensation scheme have to be inserted

into the integral. The most commonly used condensation methods are listed in Table

2.3. They are extensively discussed in Wichiencharoen (1982). Selecting the mean

density condensation scheme, for instance, Vct becomes

Vct(P ) = GR2

∫
ω

ς i

K
dω

= µR2

∞∑
l=0

(
R

r

)l+1 ∫
ω

(
H ′

R

)
Pl(cosψ) dω (2.15)

Note that z is equal to R in the integration kernel as required for the second Helmert

condensation, see Table 2.2. Using the first Helmert condensation, z would be equal to

z = R− 21 km. In addition, the density is assumed to be constant.

Table 2.3: Condensation schemes

ς i Condensation name Remarks

ς1 = ρ0H Mean density

ς2 = ρ0H

[
1 +

H

R
+
H2

3R2

]
Mass conservation no l = 0 term

ς3 = ρ0H

[
1 +

3H

2R
+
H2

R2
+
H3

4R3

]
Mass-centre conservation no l = 1 term
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Residual Topographical Potential δV H

The derived expressions in Eqn. (2.14) and (2.15) are subtracted to yield the residual

potential. Thus, Eqn. (2.9) becomes for the mean density condensation scheme

δV H(P ) = µR2

∞∑
l=0

(
R

r

)l+1

 1

l + 3

l+3∑
k=1

 l + 3

k

∫
ω

(
H ′

R

)k
Pl(cosψ) dω −

−
∫
ω

(
H ′

R

)
Pl(cosψ) dω


= µR2

∞∑
l=0

(
R

r

)l+1
1

l + 3

l+3∑
k=2

 l + 3

k

∫
ω

(
H ′

R

)k
Pl(cosψ) dω (2.16)

The residual potential for the indirect effect takes a very similar form as the direct

effect. Omitting the intermediate steps, the indirect effect becomes

δV H(Q) = µR2

∞∑
l=0

 1

2− l

2−l∑
k=1

 2− l
k

∫
ω

(
H ′

R

)k
Pl(cosψ) dω

−
∫
ω

(
H ′

R

)
Pl(cosψ) dω


= µR2

∞∑
l=0

1

2− l

2−l∑
k=2

 2− l
k

∫
ω

(
H ′

R

)k
Pl(cosψ) dω (2.17)

There are two main differences between the direct and the indirect effect formulas,

compare Eqn. (2.16) and (2.17). The first difference is the binomial series and the

summation over k. This is due to the different kernel functions. The second difference

is that the upward continuation term is required for the direct effect to accommodate

for the different computation height.

Analogous derivations can be performed for the other condensation schemes. Recog-

nizing the conceptual similarities, one obtains the residual potential for the direct and
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the indirect effect as

δV H(·) = µR2

∫
ω

∞∑
l=0

σl

DG∑
k=1

Λ
(k)
l

(
H ′

R

)k
Pl(·, ·) dω (2.18)

where DG stands for the maximum summation degree; DG = l+ 3 for the direct effect

and DG = 2 − l for the indirect effect. The computation point (·) is either P or Q.

σl =
(
R
r

)l+1
for the direct effect and σl = 1 in the indirect effect. Λ

(k)
l will be denoted

as the Helmert values . The Helmert values for all three condensation schemes are listed

in tables 2.4 and 2.5. They constitute the Helmert scheme.

Table 2.4: Helmert scheme – direct effect

ς i Λ
(1)
l Λ

(2)
l Λ

(3)
l Λ

(4)
l Λ

(k)
l , k > 4

ς1 0
l + 2

2

(l + 1)(l + 2)

6

l(l + 1)(l + 2)

24

1

l + 3

(
l + 3
k

)
ς2 0

l

2

l(l + 3)

6

l(l + 1)(l + 2)

24

1

l + 3

(
l + 3
k

)
ς3 0

l − 1

2

l2 + 3l − 4

6

l3 + 3l2 + 2l − 6

24

1

l + 3

(
l + 3
k

)

Table 2.5: Helmert scheme – indirect effect

ς i Λ
(1)
l Λ

(2)
l Λ

(3)
l Λ

(4)
l Λ

(k)
l , k > 4

ς1 0 − l − 1

2

l2 − l
6

−l3 + l

24

1

2− l

(
2− l
k

)
ς2 0 − l + 1

2

l2 − l − 2

6

−l3 + l

24

1

2− l

(
2− l
k

)
ς3 0 − l + 2

2

l2 − l − 6

6

−l3 + l − 6

24

1

2− l

(
2− l
k

)

For the numerical evaluation of the residual potential, Eqn. (2.18) is often arranged
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in an alternative form

δV H(·) = µR2

∫
ω

DG∑
k=1

K(k)(·, ·)
(
H ′

R

)k
dω (2.19)

where the kernel functions are

K(k)(P, P ′) =
∞∑
l=0

(
R

r

)l+1

Λ
(k)
l Pl(cosψ) or K(k)(Q,Q′) =

∞∑
l=0

Λ
(k)
l Pl(cosψ) (2.20)

Expanding both the integration kernel and the topographical heights leads to the final

results for the residual potential

δV H(·) = µR2

∞∑
l=0

4π

2l + 1
σl

DG∑
k=1

Λ
(k)
l Hk

l (θ, λ) (2.21)

where the Laplace surface harmonics of topographical heights are defined as, e.g. Heck

(2001)

Hk
l = Hk

l (θ, λ) =
2l + 1

4π

∫
ω

(
H ′

R

)k
Pl(cosψ) dω (2.22)

Remark 2.2 The series over k is converging very fast. Therefore, it is often truncated af-

ter the third term k = 3; see Vańıček et al. (1995), Novák et al. (2003a) or Nahavandchi

& Sjöberg (1998).

Remark 2.3 When splitting the integration into Bouguer shell and terrain, conceptually

the same formulas are obtained. The only difference is the term
(
H′

R

)k − (H
R

)k
instead

of
(
H′

R

)k
. The former is derived in Heck (2002) for the mass conservation scheme.

Other Functionals in the Helmert Scheme

Using singular values (only self-adjoint operators are considered here) from the Meissl

scheme, other functionals than the residual potential can be computed as well. Thus,

a link between the Meissl scheme and the Helmert scheme is established. Omitting the

intermediate steps, the direct and the indirect effect for functionals of the gravitational
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potential can be obtained as

AδV H(P )

BδV H(Q)

 = µR2

∫
ω

∞∑
l=0

σl

DG∑
k=1

Λ
(k)
l

(
H ′

R

)k
Pl(cosψ) dω (2.23)

Note the similarity of Eqn. (2.23) to Eqn. (2.18). Depending on the functionals

involved, the only difference may be the singular value σl. Alternatively, Eqn. (2.23)

can be written as

AδV H(P )

BδV H(Q)

 = µR2

∫
ω


l+3∑
k=1

K(k)(P, P ′)

(
H ′

R

)k
dω

2−l∑
k=1

K(k)(Q,Q′)

(
H ′

R

)k
dω

(2.24)

where

K(k)(P, P ′) =
∞∑
l=0

σlΛ
(k)
l Pl and K(k)(Q,Q′) =

∞∑
l=0

σlΛ
(k)
l Pl (2.25)

Finally, one obtains the result

AδV H(P )

BδV H(Q)

 = µR2

∞∑
l=0


4π

2l + 1
σl

l+3∑
k=1

Λ
(k)
l Hk

l (θ, λ) direct effect

4π

2l + 1
σl

2−l∑
k=1

Λ
(k)
l Hk

l (θ, λ) indirect effect

(2.26)

Remark 2.4 In the usual notation, the direct and the indirect effects on gravity (= at-

traction) are defined as the positive radial derivatives of the residual potential, see for

instance Martinec & Vańıček (1994a,b).

Comparison of Condensation Schemes

An advantage of the Helmert scheme is that condensation methods can be compared.

For that purpose only the Helmert values have to be analyzed. Although they cannot

be identified as singular values as in the Meissl scheme, they completely characterize
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the problem. The Helmert values Λ
(2)
l and Λ

(3)
l for the direct and the indirect effect

are shown in Figure 2.3. The direct effect, shown in the subfigures (a) and (b), will be

discussed first. They are essentially parallel lines, which means that the condensation

schemes generate solutions that are offset with respect to one another. While the

second Helmert values increase as O(l), the third Helmert values increase with O(l2).

The Helmert values of the indirect effect show an interesting behaviour. For Λ
(2)
l , the

values are linearly decreasing with increasing degree, see Figure 2.3 (c). The Helmert

values Λ
(3)
l in turn are quadratically increasing, see Figure 2.3 (d). The dominant term

is, however, Λ
(2)
l since (H/R)k, k > 2 is very small. Hence, comparing the direct and

the indirect Helmert values, it can be concluded that the indirect effect compensates

the direct effect. This is well-known and expected. However, this phenomenon becomes

immediately obvious when examining the Helmert values.

The remarks for Table 2.3 can be explained by inspecting Figure 2.3. Both Helmert

values are zero for degree l = 0 in the mass conservation scheme and are zero for l = 1 in

the mass-centre conservation scheme. This has been also shown in a completely different

way in Wichiencharoen (1982). Yet the analysis in the spectral domain provides a more

transparent insight into the problem.

Example. The computational formulas for the direct effect of band-limited airborne

gravity disturbances at flight height and the corresponding indirect effect of the resid-

ual potential on the geoid are sought. The mass-centre conservation scheme shall be

used. Let the squared (H2
l ) and the cubed (H3

l ) Laplace surface harmonics of the to-

pographical heights be given (k = 3). The singular value for gravity disturbances at

flight height can be obtained from the Meissl scheme as σl = l+1
r

(
R
r

)l+1
. The direct

effect on gravity (topographic attraction would be δATOP = −δgH) is then computed

as (Λ
(2)
l = [l − 1] /2 and Λ

(3)
l = [l2 + 3l − 4] /6)

δgH(P ) = µR2

n2∑
l=n1

4π

2l + 1

(
l + 1

r

)(
R

r

)l+1 l+3∑
k=1

Λ
(k)
l Hk

l (θ, λ)

= 2πµR

n2∑
l=n1

l + 1

2l + 1

(
R

r

)l+2 [
(l − 1)H2

l +
(l2 + 3l − 4)

3
H3
l

]
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l terms for the direct effect
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l terms for the indirect effect

Figure 2.3: Helmert values for the direct and indirect effects

where n1 ≤ l ≤ n2 is the resolved frequency band of the airborne data. The indirect ef-

fect on the potential at the geoid is (σl = 1, Λ
(2)
l = − [l + 2] /2 and Λ

(3)
l = [l2 − l − 6] /6)

BδV H = δV H(R, θ, λ) = µR2

n2∑
l=n1

4π

2l + 1

[
− l + 2

2
H2
l +
−l2 + l − 6

6
H3
l

]

= 2πµR2

n2∑
l=n1

1

2l + 1

[
−(l + 2)H2

l +
l2 − l − 6

3
H3
l

]

The indirect effect is the vertical separation between the co-geoid (geoid in Helmert’s
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space) and the geoid.

Remark 2.5 Note that all anomalous quantities require the calculation of a secondary

indirect effect. This is due to the fact that anomalous quantities involve an unknown

position (free boundary value problem).

2.4 Transformations

The process AT → BT̂ may be defined as a tranformation or mapping from the input

functional AT to the estimated output functional BT̂ (Note that the prime has been

neglected). T is the disturbing potential. There are three common transformations

in gravity field modeling besides the trivial case. For mixed problems refer to Holota

(1995). In the following, only the self-adjoint case will be discussed. The three common

transformations are all of convolution type. They are:

i) AT (R, θ, λ)→ BT̂ (r, θ, λ), where A = B : The input functional is the same as

the output functional. This transformation involves a height (or height level)

change. It is described by the first boundary value problem; more specifically,

the exterior Dirichlet problem. The upward continuation is the direct prob-

lem. The downward continuation in turn is an inverse problem for which no

continuous solution exists. Chapter 3 describes and analyzes this case in detail.

ii) AT (R, θ, λ) → BT̂ (R, θ, λ), where A 6= B : The input functional is different

from the output functional. Usually, this also includes a unit change. A well-

known example is the transformation of gravity anomalies to the potential at

the geoid. This involves an integration with the Stokes integral, i.e. ∆g [mGal]

→ T [m2/s2]. It is the solution of the third boundary-value problem. The second

boundary value problem can be described in an analogous way.

iii) AT (R, θ, λ) → BT̂ (r, θ, λ), where A 6= B : In this case, the transformation

includes two steps at once, the upward continuation and the conversion into the

desired output functional. One may denote this mapping as one-step approach

(Novák & Heck, 2002). Using band-limited data, the downward continuation
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can also be formulated in one step.

All three transformations are based on the same solution strategy. The gravity data

are transformed to the disturbing potential in the first step. The second step, in turn,

maps the disturbing potential into the desired functional of the disturbing potential.

These mappings may be performed in the space domain or in the spectral domain:

space domain g = AT ←→ T = A−1g ←→ BT̂ = f̂

l l l

spectral domain glm = σltlm ←→ tlm =
glm
σl

←→ f̂lm = λltlm =
λl
σl
glm

(2.27)

where λl and σl 6= 0 are the singular values linking the disturbing potential and the

output functionals. Eqn. (2.27) is commutative, i.e., path independent. tlm, glm and

f̂lm are the Fourier coefficients of t, g and f̂ , e.g.

g(Q) =
∞∑
l=0

l∑
m=−l

glmȲlm(Q) with glm = (g, Ȳlm)X (2.28)

Example. Gravity disturbances at flight height are given and the disturbing potential

is the sought function. The singular value for the gravity disturbance at flight height is

σl = l+1
r

(
R
r

)l+1
and λl = 1. The spectral solution is then f̂lm = t̂lm = r

l+1

(
r
R

)l+1
δglm.

Integral Representation

The integral representation is an often used representation of the disturbing poten-

tial. Other parametrizations are described and discussed in Kusche (2002). Let the

continuously given gravity observable (on a sphere with radius R) be decomposed into

(Heiskanen & Moritz, 1967, pg. 30)

l∑
m=−l

glmȲlm(θ, λ) =
2l + 1

4π

∫
ω

g(θ, λ)Pl(cosψ) dω (2.29)
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Then, using Eqn. (2.27), the output functional BT̂ (P ) can be derived as

BT̂ (P ) =
1

4π

∫
ω

K(ψ)AT (Q) dω(Q) (2.30)

where the (isotropic) kernel function is (σl 6= 0)

K(ψ) = K(P,Q) =
∞∑
l=0

(2l + 1)
λl
σl
Pl(cosψ) (2.31)

Note that Eqn. (2.31) may include the upward continuation term. The point P (r, θ, λ),

r ≥ R is on or outside a sphere of radius R and f is harmonic and regular at infinity.

Depending on the functionals involved, the summation over degree l may be truncated

at a finite value and start from a value different than zero.

Example. The computation of T from ∆g, i.e. the Stokes integration, shall be

performed. The singular values can be derived as σl = (l−1)/R (∆g = −∂T
∂r
− 2

r
T ) and

λl = 1. Thus, the Stokes integral becomes (Heiskanen & Moritz, 1967, pg. 97)

T̂ =
R

4π

∫
ω

K(·, Q′)∆g(Q′) dω(Q′)

with the (singular) Stokes kernel function

K(ψ) = K(·, Q′) =
∞∑
l=2

2l + 1

l − 1
Pl(cosψ)

Note that the summation starts at two, since σl = 0 is inadmissible for l = 1. The l = 0

term can be neglected if the reference ellipsoid has the same potential as the geoid and

has the same mass as the Earth (Heiskanen & Moritz, 1967, pg. 101). This problem

will be treated in more detail in Chapter 6.

Discretization, Frequency Division and Integration Domain Division

In practice, the integral representation in Eqn. (2.30) has to be discretized, the integral

is replaced by discrete summations or convolutions. Furthermore, mean values are
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frequently used in the integration process. They are averages of point data in a certain

area. For an area of extent 2π(1 − cosψc), i.e. point data inside a spherical cap of

radius ψc, the mean values ḡ(Q) can be obtained by (Meissl, 1971a)

ḡ(Q) =
1

2π(1− cosψc)

∫
ωc

g(Q′) dω(Q′) (2.32)

Due to the lack of global gravity data, two further modifications are frequently em-

ployed – the data frequency division and the integration domain division. This is shown

in Figure 2.4 (b). The graphical representation of the two divisions closely follows

de Min (1996). The data frequency division is shown along the horizontal axis, while

the integration domain division is performed along the vertical axis of the plot. The

frequency division divides the gravity spectrum into the low-frequency part and the

medium to high-frequency part. The integration domain in turn, divides the spectrum

spatially. One usually distinguishes between the near zone and the far or distant zone.

The near zone is the area, where local or regional data are available. The far zone is

the region over the remainder of the sphere.

(a) Geometry of the data area and the
spherical cap

(b) Two divisions (de Min, 1996)

Figure 2.4: Geometry and two divisions

In practice, the remove-restore technique represents the frequency division model.
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The low-frequencies in the near-zone are replaced by the satellite or geopotential data.

The integration is only performed in the near zone. The far zone may be approximated

by the information from a satellite or geopotential models (Molodenskij, 1958).

Putting it alltogether, the spatial solution of the remove-restore technique is given

by (Rapp & Rummel, 1975)

BT̂ = BT S +
1

4π

∫
ωc

K(·, Q)AT ′(Q) dω(Q) (2.33)

where AT ′(Q) are the residual (mean) gravity data AT ′(Q) = AT (Q)−AT S(Q). The

integral over ωc stands for the near-zone integration, i.e.

∫
ωc

dω(Q) =

2π∫
α=0

ψc∫
ψ=0

sinψ dψ dα (2.34)

α is the azimuth and ψc is the spherical cap radius. In the following, BT̂ (Q) is abbre-

viated by BT̂ .

Spectral Solutions

The remove-restore technique can also be derived in the spectral domain. This illus-

trates the main characteristics of the method and allows for an error analysis. Let the

disturbing potential be represented by surface spherical harmonics as

T = T (θ, λ) =
∞∑
l=0

tl(θ, λ) =
∞∑
l=0

tl (2.35)

Then, the spectral solution of Eqn. (2.33) is given as

BT̂ =

LS∑
l=0

λlt
S
l +

1

2

LS∑
l=0

Sl(gl − gS
l ) +

1

2

∞∑
l=LS+1

Slgl

=
1

2

LS∑
l=0

Qlg
S
l +

1

2

∞∑
l=0

Slgl (2.36)
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where tSl and gS
l = σlt

S
l are the l-th degree (estimates of the) disturbing potential and

disturbing potential functionals derived from satellite potential coefficients, respectively.

The first equation on the right side of Eqn. (2.36) is the spectral representation of the

remove-restore technique. The second equation is the spectral representation of the

local data solution (Method B in Rapp & Rummel (1975)). Eqn. (2.36) shows the

equivalence between the remove-restore technique and the local data solution in the

spectral domain. The two solutions are shown in figures 2.5 (a) and (b).

(a) Remove-restore technique (b) Local data solution

Figure 2.5: Combinations using satellite data and one local gravity data set (de Min,
1996)

The coefficients Sl are

Sl =

π∫
0

K(ψ)Pl(cosψ) sinψ dψ −
π∫

ψc

K(ψ)Pl(cosψ) sinψ dψ = 2
λl
σl
−Ql (2.37)

due to the orthogonality relations of the Legendre polynomials
π∫
0

PlPn sinψ dψ =

2
2l+1

δln. The coefficients Ql are usually denoted as truncation coefficients and can be
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written as (Heiskanen & Moritz, 1967, pg. 260)

Ql =

π∫
ψc

K(ψ)Pl(cosψ) sinψ dψ =

π∫
0

K̄(ψ)Pl(cosψ) sinψ dψ (2.38)

Note that the truncation coefficients here may contain a unit while the original trunca-

tion coefficients in Heiskanen & Moritz (1967) are dimensionless. Ql can be numerically

computed using recursive algorithms (Paul, 1973; Hagiwara, 1976). The second integral

of Eqn. (2.38) is extended over the entire sphere ω. In this case, the (truncation) error

kernel K̄(ψ) has to be used. For the spherical case, it is piecewise discontinuous:

K̄(ψ) =

 0 for 0 < ψ ≤ ψc

K(ψ) for ψc < ψ ≤ π
(2.39)

Example. Let the output functional be the disturbing potential (BT̂ = T̂ ) and gl =

∆gl = ∆gl(R, θ, λ) the l-th degree surface spherical harmonic of the gravity anomalies

(σl = l−1
R
, λl = 1). The spherical Stokes kernel shall be used. Using Eqn. (2.36), this

results in

T̂ =

LS∑
l=0

R

l − 1
∆gS

l +
1

2

LS∑
l=0

Sl(∆gl −∆gS
l ) +

1

2

∞∑
l=LS+1

Sl∆gl

where the Sl are given as, see Eqn. (2.37),

Sl =

π∫
0

S(ψ)Pl(cosψ) sinψ dψ −Ql = 2
R

l − 1
−Ql

This is equivalent to Eqn. (12) in Vańıček & Featherstone (1998).

In the remove-restore technique, the low-frequency spectrum is covered by the satellite

data and the medium to high frequencies are obtained from the local gravity data that

are reduced by the satellite model. Clearly, the medium to high frequencies of the

far-zone are missing in the solution. In the local data method, the local data are not
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reduced by the satellite model. The combination is then obtained by, see for instance

Sjöberg & Hunegnaw (2000, pg. 233),

BT̂ =

LS∑
l=0

λl
σl
gS
l +

1

4π

∫
ωc

K(·, Q)
[
AT (Q)−AT S(Q)

]
dω(Q)

=
1

2

LS∑
l=0

Qlg
S
l +

1

4π

∫
ωc

K(·, Q)AT (Q) dω(Q) (2.40)

since
∫
ωc

dω =
∫
ω

dω −
∫

ω−ωc

dω and

1

4π

∫
ω

KAT S dω =

LS∑
l=0

λl
σl
gS
l and

1

4π

∫
ω−ωc

KAT S dω =
1

2

LS∑
l=0

Qlg
S
l (2.41)

This shows the equivalence of the remove-restore technique and the local data method

in the spatial domain. Thus, the use of Eqn. (2.33) or (2.40) is a matter of taste as

long as Ql is correctly computed.

Error Analysis

Introducing errors by degree for the satellite data (eSl ) and the local gravity data (eGl ),

such as

ḡS
l = gS

l + eSl and ḡG
l = gl + eGl (2.42)

an error analysis can be performed. The true solution BT is then subtracted from the

estimated solution BT̂ yielding an error E. Using Eqn. (2.36), this results in

E = BT̂ − BT

=
1

2

(
LS∑
l=0

Qle
S
l +

∞∑
l=0

Sle
G
l −

∞∑
l=LS+1

Qlgl −
∞∑
l=0

Sl [1− βl] gl

)
(2.43)

The first two summations in Eqn. (2.43) are the commission errors of the local data

and the satellite data. The third summation represents the truncation or omission
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error. The last summation is the discretization error that is due to the use of mean

values instead of point values (Heck, 1979; Smeets, 1994). βl are the Pellinen functions,

see Appendix A.5.

Table 2.6: Error analysis

Error Case Factor Commission Omission Discretization

satellite local

Eqn. (2.43)
1

2
+

LS∑
l=0

Qle
S
l +

∞∑
l=0

Sle
G
l −

∞∑
l=LS+1

Qlgl −
∞∑
l=0

Sl (1− βl) gl

eSl = 0
1

2
+

∞∑
l=0

Sle
G
l −

∞∑
l=LS+1

Qlgl −
∞∑
l=0

Sl (1− βl) gl

eGl = 0
1

2
+

LS∑
l=0

Qle
S
l −

∞∑
l=LS+1

Qlgl −
∞∑
l=0

Sl (1− βl) gl

eSl = eGl = 0
1

2
−

∞∑
l=LS+1

Qlgl −
∞∑
l=0

Sl (1− βl) gl

ψc = π +
∞∑
l=0

λl
σl
eGl −

∞∑
l=0

λl
σl

(1− βl) gl

ψc = 0 +

LS∑
l=0

λl
σl
eSl −

∞∑
l=LS+1

λl
σl
gl

Different error scenarios and the special cases ψc = π (integration over the entire

sphere) and ψc = 0 (no integration) are summarized in Table 2.6. For completeness,

Eqn. (2.43) is repeated in the first line of Table 2.6. To obtain an error estimate E for

each case, the respective terms have to be multiplied with the factor and then simply

added. The global mean square error (MSE) is derived by squaring the terms involved.

Signal degree variances are then used instead of gl and error degree variances instead

of eSl and eGl .

Ideally, the error E (or MSE) could be reduced by

i) improving the data quality, i.e., reducing the errors eSl and eGl
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ii) computing the truncation or omission errors

iii) computing the discretization error that is due to the use of mean data

iv) decreasing the magnitude of the truncation coefficients Ql

v) improving the decay rate of Ql

In reality, only approximations for the truncation error can be computed and the mag-

nitude of the truncation coefficients decreased by kernel modifications.

Example. An error analysis of the Hotine integration shall be performed assuming

the satellite data to be error-free. The singular values are σl = [l + 1]/R and λl = 1.

Using Table 2.6, the combination error of local and global data is given by

E =
1

2γE

(
LS∑
l=1

Sle
G
l −

∞∑
l=LS+1

Qlgl −
∞∑
l=1

Sl (1− βl) gl

)
(2.44)

where γE is normal gravity evaluated at the reference ellipsoid. Even though the global

data are error-free, low-frequency errors from the local data leak into the solution, see

also Vańıček & Featherstone (1998). The global mean-square error of Eqn. (2.44) is

then given as

MSE = ‖E‖22 =

(
1

2γE

)2
(

LS∑
l=1

[Sl]
2 εG

l +
∞∑

l=LS+1

[Ql]
2 cl +

∞∑
l=1

[Sl (1− βl)]2 cl

)

where εl are the error degree variances of the local data and cl are the degree variances

of the local data, see Chapter 5.

Truncation Errors

When a geopotential model is available, the truncation errors can be approximately

computed. Hence, the combination error in Eqn. (2.43) will be reduced. The distant

zone data is approximated by geopotential model data as, compare Eqn. (2.8),

AT ′ ≈
LM∑

l=LS+1

σlt
M
l (2.45)
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where tMl are the l-th degree of the surface spherical harmonics of the disturbing poten-

tial computed from the geopotential model M and LM is the maximum degree of the

geopotential model. Clearly, the degrees 0 ≤ l ≤ LS will be computed in the restore

step. Thus, the far-zone contribution becomes

BT̂ω−ωc =
1

4π

∫
ω−ωc

K(·, Q)AT ′(Q) dω
.
=

1

2

LM∑
l=LS+1

Qlσlt
M
l (2.46)

The situation of Eqn. (2.46) is shown in Figure 2.6 (a). It shows the combination of

local gravity data with a satellite model and a geopotential model. Unfortunately, the

far-zone effect from degree l = LM+1 to l =∞ is still missing in the solution. Figure 2.6

(b) shows the combination of satellite and local data also using a geopotential model. In

this case, however, the local data have more power in the lower degrees (degrees LE to

LS). This approach may be applied when the satellite data contain errors that increase

with increasing degree. The degree LE may be chosen with respect to the errors of the

satellite data, the expected local data errors, the data coverage or following other ideas.

The far-zone contribution consists of two parts, the truncation error computed from the

satellite model (LE ≤ l ≤ LS) and the truncation error from the geopotential model

(LS < l ≤ LM). In any case, a modification procedure that reduces the magnitude of

the far-zone effect or improves the decay rate with increasing degree (or does both) is

desirable (Evans & Featherstone, 2000).

Kernel Modifications

As indicated before, kernel modifications are performed

to decrease the magnitude of the far-zone contribution,

to improve the decay rate of the far-zone contribution,

to change filtering properties of the kernel function or

to change the smoothing behaviour of the error kernel.

There are stochastic and deterministic kernel modifications (Heck & Grüninger, 1987).

The deterministic methods neglect all possible stochastic a-priori information about the
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(a) Using a geopotential model for the
computation of truncation errors

(b) Combination of satellite, geopoten-
tial and local data with emphasis on the
local data

Figure 2.6: Computation of truncation errors using a geopotential model

data sources and might in some cases be too pessimistic. The stochastic solutions, in

turn, more or less rely on the quality of the error and noise estimates. In this section,

only deterministic modifications are briefly reviewed and compared.

Table 2.7 summarizes the most commonly used deterministic kernel modifications.

The unmodified spherical kernel, shown in the first row of Table 2.7, is added for

completeness. The kernels are given in form of Eqn. (2.39), i.e. for 0 < ψ ≤ ψc in

the first row and ψc < ψ ≤ π in the second row of each method discussed. The kernel

function and error kernel are listed in Table 2.7. Originally, all of the modifications are

introduced for the Stokes kernel, see Appendix A.3. However, other isotropic kernel

functions can be modified in the same way. In Table 2.7, rk stands for modification

coefficients that are obtained from

min
rn


π∫

ψc

[K(ψ)]2 sinψ dψ

 (2.47)
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which can be re-written as a system of linear equations, see for instance (Novák et al.,

2001b) (l = 0, 1, 2, . . . , LS)

LMD∑
n=0

2n+ 1

2
Rl,nrn(ψc) = Ql (2.48)

LMD is the modification degree; often LMD = LS is chosen. rn are called the Molodenskij

modification coefficients. Ideally, they minimize the truncation coefficients, and thus the

truncation error, in the least-squares sense. Of course, Ql are the truncation coefficients

associated with the respective kernel function in Eqn. (2.48) and Rln are coefficients

introduced in Paul (1973)

Rln = Rln(ψc) =

π∫
ψ=ψc

Pl(cosψ)Pn(cosψ) sinψ dψ n ≤ l (2.49)

Remark 2.6 It should be noted once again that some of the functionals require the sum-

mation starting from a value other than 0 in the kernel. Furthermore, the Molodenskij

modification coefficients are often computed from 1 or 2 mainly due to stability (ill-

conditioning) problems (Vańıček & Sjöberg, 1991) when solving the system of linear

equations.

Figure 2.7 shows some (modified) Stokes kernel functions and (dimensionless) trun-

cation coefficients. The kernel functions, shown on the left side of Figure 2.7, are very

similar except for the spheroidal Stokes kernel. All kernel functions are decreasing with

increasing spherical distance. Most of the power is close to the computation point

(ψ = 0). Note that the Meissl (1971a) (M) kernel and the Featherstone et al. (1998)

(FEO) kernel are zero for ψ = 1◦ since K(ψc) is subtracted. The truncation coefficients

Ql of four kernel functions are shown on the right side of Figure 2.7. The Molodenskij

(MO) and the Vańıček and Kleusberg (VK) truncation coefficients are more or less zero

from spherical harmonic degree 181 on. Thus, the resulting far-zone contribution will

be very small for these degrees. The spheroidal and spherical coefficients on the other

hand, exhibit considerable power in these degrees and the resulting far-zone contribu-
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tion will be large. These kernel functions should be avoided in geoid computations. Not

shown in the figures is the discontinuity of some of the error kernels listed in Table 2.7.

For instance, while the Meissl error kernel is a continuous function, the spherical error

kernel has a discontinuity at ψ = ψc. The discontinuity of the spherical error kernel

causes oscillations in the truncation coefficients. Moreover, a smoother error kernel

enjoys a much improved convergence rate (Jekeli, 1980).

0.5 1 1.5 2 2.5 3
−200

0

200

400

600

spherical distance [deg]

Spherical

Spheroidal

Featherstone et al.

Meissl

(a) Kernel functions

150 200 250 300 350
−0.01

0.005

0

0.005

0.01

degree

Spheroidal
Heck−Grueninger
Featherstone et al.
Vanicek−Kleusberg
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(b) Truncation coefficients

Figure 2.7: Kernel functions and truncation coefficients with ψc = 1◦ and LS = 120,
LMD = 120
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ań

ıč
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2.5 Case Study – Stokes Integration

To assess the performance of different integration kernels, four tests using simulated

data are conducted. The simulated data are generated using a synthetic spherical

harmonic model (SGM), see Table 2.8. The model consists of the EGM96 up to degree

and order 360 and a Kaula-like extension for higher degrees. The maximum degree and

order of the model is 2160, corresponding to 5 ’×5 ’. The higher degrees are fitted to

the GPM98b (Wenzel, 1998b) and decay slightly faster than the original Kaula rule

of thumb. For more information on the model refer to Novák et al. (2001b). The

simulated data represent idealized versions of the rugged gravity field over the Rocky

Mountains, Canada. LS = 120 is used due to the data coverage of 3◦ × 5◦ degrees, i.e.

49◦ ≤ ϕ ≤ 52◦ and 238◦ ≤ λ ≤ 243◦.

Remark 2.7 A number of alternative synthetic models have been developed, see for in-

stance Haagmans (2000); Pail (2000) or Featherstone (2002). Unfortunately, they were

not available when the test were done and have therefore not been used.

Table 2.8: Simulated data statistics

Type Degree Density Height Min Max Mean Std Unit
[–] [’] [km]

T 2-2160 5 0 −175.778−121.175−146.908 7.470 m2/s2

T 121-2160 5 0 −6.386 7.977 −0.093 2.421 m2/s2

∆g 2-2160 5 0 −31.295 54.098 4.301 11.430 mGal
∆g 121-2160 5 0 −30.896 30.903 −0.254 10.215 mGal
∆g + e 121-2160 5 0 −33.649 31.045 −0.311 10.392 mGal

The kernels are compared for the Stokes integration, see also Appendix A.3. A

spherical cap radius of ψc = 1◦, LS = LMD = 120 are used in the first and second test

(LS = 21 for Wong-Gore). Although these values may adversely affect the results for

some of the kernel modifications, the values have been chosen for comparison purposes.

Generally, the optimal choice of ψc, LMD and LS is a difficult matter. It will not be

discussed here in detail.
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The applied computational scheme for the first two tests is summarized in Eqn.

(2.50). In the first test, residual gravity anomalies (spacing 5 ’× 5 ’) are input into the

integration process yielding an estimate of the residual potential T̂121−2160. Comparing

this estimate with the residual potential directly computed from the SGM, an error

estimate of the integration process can be obtained. In the second test, noisy gravity

anomalies have been used. White noise of 1.5mGal standard deviation is applied to

the gravity data. Otherwise, the computational procedure is equivalent to the first test.

The potential T121−2160 from the SGM is considered to be the true solution in both cases.

Dividing the result by the normal gravity γE leads to geoidal undulations in units of m

(Bruns).

SGM


∆g121−2160 → Stokes→ T̂121−2160

↓
T121−2160 −→ Geoid error

(2.50)

The results of the two tests are shown in Figure 2.8 (Statistics are summarized in

tables B.2 and B.3 in the Appendix). The various solutions are given along the hori-

zontal axis of the figure. The first bar in each case stands for the rms geoid error for

noise-free gravity data (first test) while the second bar is the rms geoid error for noisy

gravity anomalies (second test). The scale of the rms-error is shown on the left vertical

axis. For easy comparisons, a line is drawn showing the 1 cm rms error. Also shown

are the rms values of the far-zone contributions. In this case, the right vertical axis is

the scale. Although the far-zone contribution is small for most solutions, large values

are obtained for the spherical, spheroidal (S) and Heck-Grüninger (HG) kernels.

The results using noise-free gravity data are somewhat surprising. In most cases, the

errors stay consistently below 1 cm. Only the spherical, the Wong-Gore (WG) and the

S kernel perform worse than 1 cm rms error. The residual errors are due to remaining

integration errors and model approximations. The situation is not as good when using

noisy gravity anomalies. Although the Stokes convolution generally acts as a low-pass

filter, the noise seems to leak into the solution. Errors larger than 1 cm are obtained and
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Figure 2.8: Geoid error with different kernel modifications. First bar is the geoid rms
error with noise-free data, second bar the geoid rms error with noisy data
[cm]

lead to the conclusion that a kernel modification should be used. Taking the far-zone

results into account, the MO, JK, VK and FEO kernels successfully alleviate the effect

of the far-zone contribution. Using gravity anomalies that may be burdened by low-

frequency inconsistencies, one of the kernels WG, S, HG, VK or FEO should be favored.

They reduce the impact of these inconsistencies since they represent an ideal high-pass

filter up to degree LS (if the integration would be extended over the entire sphere).

Generally, modifications such as MO, JK, VK, FEO are computationally demanding.

They add additional complexity to the problem since modification coefficients have to

be computed.

A third test is performed to investigate the influence of different modification degrees.

The FEO kernel is used for this test and noisy gravity anomalies, see again Table 2.8.

The spherical cap ψc and the satellite degree LS are fixed to the previous values of 1◦

and 120. Thus, only the modification degree LMD varies in steps of 10 (modification)

degrees. The results of this test are shown in Figure 2.9. For LMD = 0, the FEO
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Figure 2.9: Influence of different modification degrees using the FEO kernel. LS = 120
and ψc = 1◦ fixed

kernel reduces to the HG kernel. This provides the smallest geoid error rms of 7 mm.

Yet, the HG has a relatively large far-zone contribution of about 3.7 cm, compare also

Figure 2.8. Selecting a larger modification degree such as LMD = 10, 20, . . . yields

considerably smaller far-zone contributions. However, the overall geoid error rms seems

to suffer from higher modifications. A choice has to be made between modifying the

kernel function, and thus reducing considerably the far-zone contribution, or taking a

slightly larger far-zone contribution into account but reducing the overall geoid error.

This choice may depend on the quality of the available data, the data coverage size and

the bandwidth of the satellite data.

The fourth test is a comparison of the remove-restore technique and the local data

method. Clearly, the investigation in Section 2.4 using gravity data over the entire

sphere has shown that the two models are theoretically equivalent. A similar conclusion

is drawn in Sjöberg & Hunegnaw (2000); Rapp & Rummel (1975) indicating that the

local data model may perform as well as the remove-restore technique. Kearsley (1988)
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in turn claims that the remove-restore technique is numerically superior and should be

used. The following test set-up is applied to investigate the quality of the two methods:

∆g121−2160 → Stokes→ T̂121−2160 T̂2−2160 ← Stokes← ∆g2−2160

Method A ↓ ↓ Method B

T2−2160 → Error A← T2−120 + T̂121−2160 Error B ←− T2−2160

In method A (remove-restore technique), residual gravity anomalies are input into the

Stokes integration. The gravity anomalies are previously reduced by the low-frequency

information up to degree and order 120. After the Stokes integration, which includes

the calculation of the far-zone contribution from 121 ≤ LS ≤ 360, the residual potential

is obtained. Finally, an estimate of the potential is found when adding back the low-

frequency information in units of potential (T2−120). This, in turn, may be compared to

the potential directly computed from the model yielding error A. In method B (local

data model), the gravity data are not reduced by a model. The Stokes kernel is identical

to the one in method A, yet the added low-frequencies are differently computed. They

are

1

2

LS∑
l=2

(rl +Q∗
l ) ∆gS

l (2.51)

where a modified kernel function is used (rl = 0 and Q∗
l = Ql for the spherical Stokes).

The far-zone contribution is computed in the same way as in the remove-restore tech-

nique. Comparing the estimate T̂2−2160 with the potential from the model, error B is

obtained. Table 2.9 summarizes the results of the two concepts. Error-free gravity

anomalies are used to show best-case scenarios and convolved with the Molodenskij

kernel (JK). The truncation radius of ψc = 1◦ and LS = LMD = 120 is used once again.

Clearly, the methods are also numerically equivalent. Hence, the local data method

can be used instead of the remove-restore technique whenever it seems more convenient

(Sjöberg & Hunegnaw, 2000).

Summary. Table 2.10 summarizes the comparison of different kernel functions. The
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Table 2.9: Remove-restore technique versus local data method [m]

Error Min Max Mean Std RMS

A −0.007 0.007 0.001 0.003 0.003
B −0.007 0.007 0.000 0.003 0.003

HG kernel does not reduce the far-zone effect as effectively as the FEO or VK kernel.

But it represents a good alternative to the sophisticated kernel functions and shows

best overall performance taking the required computation time and implementation

complexity into account. The FEO kernel is recommended when the data area is very

small. It successfully alleviates the far-zone effect. The spherical kernel function is not

recommended for local or regional geoid determinations.

Table 2.10: Kernel function comparison (# – small; G# – medium;  – large)

Name Computation Implementation Far-zone Inclusion of
Time Complexity Contribution Inconsistencies (Biases)

Spherical # # G#  
MO   #  
WG # G# # #
M # # #  
JK   #  
S # G#  #
HG # G# G# #
VK   # #
FEO   # #

Remark 2.8 The presentation and comparison of different kernel modifications is con-

fined here to the Stokes integration. Other isotropic kernel functions have been studied

as well. However, the conclusions are either equivalent or very similar and are thus not

further pursued here.
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2.6 Limitations

The remove-restore technique is a proven strategy for the combination of satellite data

and one local gravity data set. A unified estimate of the gravity spectrum is obtained

by combining global and local data complementary in the spectral domain. However,

there are a number of problems and limitations associated with the technique. Some of

them are listed here:

i) New satellite and local gravity data are available that should be incorporated

into the solution. Thus, an overdetermined situation arises where more infor-

mation is available than actually needed to solve the problem. This cannot be

instantly handled by the remove-restore technique.

ii) The remove-restore technique is a solution for almost ideal measurements. The

basic assumption is that the signal-to-noise ratio of the data is high. Errors

from the satellite and the local data can leak into the solution since no error

measures are taken into account.

iii) The remove-restore technique does not provide quality measures for the output

functional.

iv) Possible correlations between the two data sets are neglected. These may occur

due to a calibration or regularization process of the satellite data.

v) The determination of optimal values for the spherical cap size ψc and the

maximum satellite degree LS are unsolved problems.



3 Upward and Downward Continuation

Gravity measurements are observed or derived at the Earth’s surface, at the airborne

flight path or at satellite altitude. In many instances, however, the gravity information is

not required at the measurement location. Thus, an upward or downward continuation

process to a different height level has to be performed. Two problems are addressed in

this chapter:

i) The measurements are not taken on a regular surface such as a sphere, etc. An

approximation has to be applied for the upward and downward continuation.

ii) The mathematical model is given for the upward continuation. The downward

continuation problem is an ill-posed problem, which may be unstable. The

downward continuation problem is analyzed and an alternative approximation

formulated.

3.1 Upward Continuation

Upward Continuation of the Disturbing Potential

The upward continuation of the disturbing potential can be formulated as (Kellogg,

1929; MacMillan, 1930)

T̂ (P ) =
1

4π

∫
ω

K(P,Q) T (Q) dω(Q) ←→ g = Af (3.1)

46
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where

T̂ (P ) is the sought estimate of the disturbing potential (harmonic and

regular at infinity) on a radius of a sphere r = R +H,

abbreviated by g ∈ G
T (Q) is the continuously given disturbing potential on the

reference sphere R, abbreviated by f ∈ F
A is a linear operator A : F → G, where F and G are

appropriate (Hilbert) spaces

The kernel function K(P,Q) is given as (Heiskanen & Moritz, 1967, pg. 35)

K(P,Q) = K(r, ψ,R) =
∞∑
l=0

(2l + 1)

(
R

r

)l+1

Pl(P,Q)

= R
r2 −R2

(r2 +R2 − 2Rr cosψ)
3
2

(3.2)

The upward continuation is also denoted as direct or forward continuation problem. It

is the solution of the first boundary value problem (exterior Dirichlet problem). The

kernel function is referred to as Abel-Poisson or Poisson kernel function.

Upward Continuation of Other Functionals

Linear functionals of the disturbing potential are upward continued using

AT̂ (P ) =
1

4π

∫
ω

K(P,Q) AT (Q) dω(Q) ←→ g = Af (3.3)

where g stands now for AT̂ (P ) and f for AT (Q), respectively.

Example. Applying Eqn. (3.3) to the (Helmert) disturbing potential (no masses above

the geoid), gravity disturbances can be upward continued from the sphere R to R+H

as

− T̂ (r, θ, λ)

∂r

∣∣∣∣∣
r

= δ̂g(P ) =
R

4πr

∫
ω

K(P,Q) δg(Q) dω(Q)
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This is allowed since rδg is a harmonic function. Note that δg(Q) = δg(R, θ, λ) does

not depend on r (Heiskanen & Moritz, 1967, pg. 37).

Discrete Problem

The numerical evaluation of the upward continuation requires the discretization of the

problem. Eqn. (3.1) is then given as

T (r, θi, λi) =
∑
j

AijT (R, θj, λj) + Tω−ωc(r, θi, λi) (3.4)

where Tω−ωc(r, θi, λi) is the far-zone contribution, which can be approximately computed

from a geopotential model. Eqn. (3.4) is cast into the following matrix-vector form

(Novák et al., 2001a)

T (r)− T ω−ωc(r) = AT (R) ←→ y = Ax (3.5)

where x ∈ IRn is the disturbance vector at the reference sphere R, and y ∈ IRm is the

disturbance vector minus the far-zone vector at the sphere r = R +H. A ∈ IRm × IRn

is the design matrix with full rank. In the downward continuation problem, m stands

for the number of measurements and n is the number of unknowns (m ≥ n).

The entries of the matrix A are explicitly derived in Martinec (1996, 1998). The

off-diagonal entries of the matrix are (Aij = 0 for ψij > ψc)

Aij =
1

4π
K(ri, ψij, R)∆ωj for ψij ≤ ψc i 6= j (3.6)

and the entries on the main diagonal become (Martinec, 1996)

Aii =
1

4π

∫
ωc

K(r, ψ,R) dω − 1

4π

N∑
j=1,j 6=i

K(ri, ψij, R)∆ωj (3.7)

=
1

2

[
r +R

r

(
1− r −R√

r2 +R2 − 2Rr cosψc)

)]
− 1

4π

N∑
j=1,j 6=i

K(ri, ψij, R)∆ωj (3.8)
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where ∆ωj is the area of the trapezoidal cell centered at the j-th geographical node

ωj and N is the number of data within the spherical cap of radius ψc. Of course,

band-limited kernel functions and modified kernel functions can be used instead of the

original Abel-Poisson kernel. In this thesis, the VK kernel modification is used, see

Appendix A.4. Similar derivation steps as described above can be performed for linear

functionals of the disturbing potential.

Since the upward continuation is a direct problem, it does not pose any numerical

difficulty. The process is stable and acts, due to the kernel function characteristics, as

a low-pass filter. It effectively smooths the high-frequency noise or measurement errors

when continuing gravity data to a different height.

Deviations from Constant Height

Actual gravity data are not provided at a constant height. For airborne data, for

instance, the height deviations are typically at the level of a few meters depending

on the flight conditions. This causes theoretical as well as computational problems.

The theoretical problem is that the constant radius approximation is not rigorously

satisfied. The computational problem is the adequate computation of the matrix A.

The following approximation is used: Firstly, compute matrix entries Aij and Aii for

different height layers, such as Hk = 200 m, 300 m, 400 m etc., corresponding to the

height range of the data. Note that the kernel function has to be evaluated for only

one computation point per parallel since the kernel function is isotropic for each height

layer. Then, secondly, interpolate between matrix entries to obtain the matrix entry

for the specific data height and spherical distance ψij. The interpolation method of

Lagrange is used. The pseudo code for setting up the matrix A becomes:

Algorithm (Computation of Matrix A):

set ψc, set LS (set LMD kernel modification degree if desired)

while number of parallels ≤ maximum number of parallels

compute off-diagonal entries Aij
if ψij ≤ ψc integration point is inside the spherical cap

for height layer k ≤ maximum number of height layers

compute Aij (Eqn. (3.6)) for ψij and r = R +Hk
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end

else

set Aij = 0 (Eqn. (3.6))

end

compute main diagonal matrix entries Aii
for height layer k ≤ maximum number of height layers

compute Aii (Eqn. (3.8))

end

end

interpolate between matrix entries

compute final Aij and Aii entries by interpolation between the

data height and the matrix entries of the height layers k

0 500

0

500

1000

1500

2000

nz = 335452

Figure 3.1: Sparsity pattern of the design matrix A with m = 2304 and n = 864.
335452 non-zero elements

A typical pattern of the design matrix is shown in Figure 3.1; only non-zero elements

are shown. The matrix is predominately diagonally structured, which may be used to

speed up the computation process. In the figure, the number of measurements and

the number of unknowns is different. The design matrix is taken from the numerical

investigation carried out in Section 3.5, i.e. gravity data are given in a 2◦ × 2◦ data
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area with spacing 2.5 ′ × 2.5 ′. This yields m = 48 × 48 = 2304 data points. To avoid

edge effects, a smaller output area is used (1.5◦ × 1.5◦, i.e n = 24× 36 = 864 points).

3.2 Downward Continuation

The downward continuation is a problem where the unknown function f is to be de-

termined from the given function/data g and operator A. Eqn. (3.1) turns into a

Fredholm integral of the first kind where T̂ (P ) is known and T (Q) sought. A solution

for Eqn. (3.1) only exists for g ∈ R(A) := {Af : f ∈ F} (range of A). Let the operator

A : F → G be compact, i.e., the sequence (Afn) contains a convergent subsequence in G

for each bounded sequence (fn) in F (Kress, 1989, pg. 18). Consequently, the inverse

A−1 (if it exists at all) cannot be continuous since A is compact and dim(F ) = ∞.

Hence, the downward continuation is inherently unstable and ill-posed , see also Section

3.3. The generalized inverse solution can be written as

A+g = f ←→ A+y = x (3.9)

Strategies for the solution of Fredholm integrals of the first kind have been extensively

discussed in the mathematical and geodetic literature, see for instance Hoerl & Kennard

(1970); Tikhonov & Arsenin (1977); Schwarz (1979); Rummel et al. (1979); Louis (1988);

Rauhut (1992); Xu & Rummel (1994); Engl et al. (1996); Hansen (1998); Bouman (1998,

2000); Kern & Schwarz (2001); Huang (2002); Kusche (2002) to name a few. After a

revision of the model problem, some of these strategies are described and applied.

Model Problem of Downward Continuation

Least-squares solutions aim at minimizing the norm

‖Af − g̃‖ (3.10)

where the norm may be the L2 norm. The measurements g usually contain measurement

noise e, i.e. g̃ = g + e and ‖e‖2 < ‖g‖2 is usually assumed. The least-squares solution
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will provide a stable solution (small changes in the input do not cause large changes in

the output) if the problem is well-posed:

f̂ = (A∗A)−1A∗g̃ ←→ f̂ = A+g̃ =
∞∑
i=1

(g̃, ui)

σi
vi (3.11)

When the continuous problem is an ill-posed problem, however, the spectral form, shown

on the right side of Eqn. (3.11), instantly exhibits the instability problem: Errors in

the high-frequency components (large i) are amplified by large factors 1/σi (Schwarz,

1979; Louis, 1988). Consequently, the least-squares solution may become unbounded

for i → ∞ as σi → 0. In this case, the main challenge is to find a stable solution.

Characteristic elements of the model problem are the gravity observable (disturbance,

anomaly or other functional of the potential) and its roughness, the data noise e, the

continuation height H and the radius of the reference sphere R, the approximation

method and choice of parametrization, the data spacing S, the dimension of the problem

n, m and the solution bandwidth b. Moreover, the regularization parameters α or k

are elements that influence the quality of the downward continuation, see also Kusche

(2002, pg. 34). In short, the model problem is given by

{g, e, R, R +H, A, S, n, m, b, α or k} (3.12)

Mathematically, a solution is found by first stabilizing (or regularizing) the continuous

problem using some sort of a-priori information and, in the second step, to discretize

the problem (Hansen, 1998). The other way (first discretizing and then regularizing) is

possible and will lead to the same numerical results. However, the norm to be minimized

cannot always be interpreted.

Regularization

The goal of a regularization scheme is the substitution of the unbounded operator A+

by a bijective (surjective and injective) bounded operator (Kress, 1989, pg. 224). The
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bijective operator is defined as

{A+
α}{α>0} : G→ F . (3.13)

where G and F are normed spaces and A : F → G shall be an injective operator. The

operator A+
α is called the regularized inverse (Louis, 1988) and α is the regularization

parameter . In iteration methods, the iteration step k is used instead of α. A regular-

ization scheme for A+ could consist of the following three conditions (Louis, 1988; Ilk,

1993):

i) A+
α should be bounded, i.e.

‖A+
α‖2 ≤ d(α) (3.14)

where d(α) is a positive constant (Kress, 1989)

ii) The regularized solution should converge to the generalized inverse when the

data do not contain errors (asymptotic condition I)

lim
g̃→g
e→0

A+
α(e,g)g̃ = A+g g ∈ D(A+) (3.15)

iii) The regularization parameter should converge to zero when the data errors go

to zero (asymptotic condition II)

lim
g̃→g
e→0

α(e, g) = 0 . (3.16)

Unfortunately, not all regularization schemes can be described by the above conditions.

A different access to regularization schemes is given by the singular value decomposition.

A regularized solution can be described by

f̂α = A+
α g̃ ←→ f̂α =

∞∑
i=1

δα
(g̃, ui)

σi
vi (3.17)
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where δα is a filter factor satisfying the properties limα→0 δα = 1 and |δα| ≤ d(α)σi.

‖A+
α‖ ≤ d(α) is then a bounded operator with bound d(α) (Kress, 1989, pg. 236). The

original ill-posed problem is turned into a well-posed problem. Eqn. (3.17) represents

a filtered least-squares solution.

Using discrete measurements, the regularized solution vector x̂α is computed from

x̂α = A+
α ỹ ←→ x̂α =

n∑
i=1

δα
uT
i y

σi
vi (3.18)

where ỹ are the noisy measurements. The solution and residual (L2-) norms are given

as

‖x̂α‖22 =
n∑
i=1

(
δα

uT
i ỹ

σi

)2

and ‖Ax̂α − ỹ‖22 =
n∑
i=1

(
(1− δα) uT

i ỹ
)2

(3.19)

Mean-Square Error Function

Comparing the regularized solution A+
α(e,g) g̃ with the (generalized) inverse solution for

the error-free solution, a regularization error is obtained. The difference between the

solutions is given by (Bouman, 2000)

f̂α − f = A+
α (g̃ − g) + (A+

α −A+)g (3.20)

The first part of the right-hand side of Eqn. (3.20), A+
α (g̃ − g), is frequently called

data or perturbation error and the second part, (A+
α −A+)g, is the regularization error

or bias. If f is known, the quality of the regularized solution f̂α can be investigated.

This is often done (in simulation studies when f is known) using the mean-square error

function. On the other hand, the mean-square error function can also be used to select

an optimal value of α. Thus, the mean-square error function serves a dual function –

to find an optimal value of α and to describe the quality of the solution.

When P−1 contains the variance-covariance information of the noisy data (D(ỹ) =

P−1), the mean square error matrix can be derived using the covariance law as (Hoerl
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& Kennard, 1970; Bouman, 2000)

MSE = E
(
[x̂α − x] [x̂α − x]T

)
= A+

αP−1
(
A+
α

)T︸ ︷︷ ︸
Data Error

+
[(

A+
α −A+

)
A
]
xxT

[(
A+
α −A+

)
A
]T︸ ︷︷ ︸

Bias

(3.21)

The mean-square error function (MSE) is obtained by taking the trace of MSE. Obvi-

ously, the MSE function can only be approximated in real world computations since the

true solution x is unknown. Kusche (2002, pg. 41) summarizes three approximation

methods for the term xxT . They involve the use of

x̂αx̂
T
α instead of xxT , see also Xu & Rummel (1994).

the inverse term (1/α2) when the standard Tikhonov regularization is used, see

also Grafarend & Schaffrin (1993, pg. 117)

a scaled inverse (γ2/α2), where γ may be determined by setting

(γ2/α2) = trace{x̂αx̂Tα}, see Kusche (2002) for further details.
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Figure 3.2: Mean square error functions, example taken from Bouman (2000)

Figure 3.2 shows the three terms together – bias, noise (data error) and mean-square

error function. The example is borrowed from Bouman (2000). It demonstrates the
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potential of the mean-square error function to determine an optimal solution. The

minimum mean square error represents a balance between an unstable solution (very

small α) and an overly filtered, biased result (large α). In Figure 3.2, a regularization

parameter α of about 0.01 would solve the problem.

Regularization Methods

Tikhonov Regularization (TIK). The Tikhonov regularization has been described and

implemented for different purposes. Introduced independently by Phillips (1962) and

Tikhonov (1963), it is the most prominent regularization method. An advantage of the

Tikhonov regularization is that the method stabilizes the problem and may simulta-

neously incorporate information about the solution smoothness. The main idea is to

extend the minimizing function ‖Af − g̃‖2 by a stabilizing function. The Tikhonov

regularization functional becomes (Tikhonov & Arsenin, 1977, pg. 72)

Fα = ‖Af − g̃‖2 + α2‖Lf‖2 (3.22)

where ‖Lf‖2 is the stabilizing function, L a differential operator. It should be noted that

the norm of the second term can be associated with a Sobolev space. The regularized

solution is given as (Tikhonov & Arsenin, 1977)

f̂α = A+
α g̃ with A+

α = (A∗A+ α2L∗L)−1A∗ (3.23)

A+
α is a bounded operator since (A∗A + α2L∗L)−1 is bounded and A∗A is compact.

Often, the standard form of the minimizing function is used, i.e the minimizing term

becomes a signal constraint. The general case of (3.22) is simplified to

Fα = ‖Af − g̃‖2 + α2‖f‖2 (3.24)

The solutions in space and spectral domain turn into:

f̂α = (A∗A+ α2I)−1A∗g̃ ←→ f̂α =
∞∑
i=1

(
σ2
i

σ2
i + α2

)
(g̃, ui)

σi
vi (3.25)
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where I is the identity operator and

δα =

(
σ2
i

σ2
i + α2

)
≈

 1 for σi � α

σ2
i

α2
for σi � α

(3.26)

the filter factor. In discrete form, the Tikhonov solution becomes (assuming orthogonal

base functions)

x̂α =
(
ATA + α2I

)−1
ATy ←→ x̂α =

n∑
i=1

δα
uT
i y

σi
vi (3.27)

where I is the identity matrix.

Remark 3.1 In other research areas, the terms ridge regression or biased estimation are

often used, see for instance Golub & van Loan (1996); Vinod & Ullah (1981). The dis-

crete Tikhonov regularization and the ridge estimation are formally identical (Bouman,

1998, pg. 27). Yet the solution motivation is different. The primary motivation in

the development of the Tikhonov regularization is the solution of Fredholm integrals of

the first kind (Tikhonov & Arsenin, 1977). Ridge estimation in turn stabilizes linear

systems of equations that may originate from an arbitrary (physical or mathematical)

problem.

Methods Based on Singular Value Decomposition. Ekstrom & Rhodes (1974) in-

troduced a variant of Tikhonov’s regularization that filters the unstable solution with

the filter factors

δα =
σi

σi + α
≈

 1 for σi � α
σi
α

for σi � α
(3.28)

It is often denoted as damped singular value decomposition (DSVD). The damped

singular value decomposition introduces less filtering than the Tikhonov regularization

(for the same α). The filter factors decay slower than the Tikhonov filter factors.

The truncated singular value decomposition (TSVD) suppresses the highest frequen-

cies in the solution. The summation is truncated using the filter factors and thus,
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high-frequency errors have no impact in the solution. Unfortunately, high-frequency

components of the signal are also truncated. The regularized solution of the truncated

singular value decomposition is (Hansen, 1998)

x̂k =
n∑
i=1

δk
uT
i y

σi
vi δk =

 1 for i ≤ k

0 for i > k
(3.29)

The solution represents the ideal low-pass filter in the spectral domain (Oppenheim

et al., 1999).

Landweber Iteration (LAI). The iteration method solves the normal equation via

matrix-vector multiplications and constructs a sequence of iteration vectors that con-

verge to the generalized inverse solution. It only has a regularization effect when it is

stopped before convergence is achieved. This phenomenon is frequently referred to as

semiconvergence, see for instance Hansen (1998). Hence, the iteration number plays

the role of a regularization parameter. The solution may become unstable again when

the iterations exceed an optimal value. Starting from the normal equation, here in

continuous form,

A∗Af = A∗g̃ (3.30)

the Landweber iteration method is formulated as (Strand, 1974)

fk+1 = fk + β (A∗g̃ −A∗Afk) (3.31)

where

k stands for the number of iteration steps

fk is the solution in the k-th step

fk+1 is the solution in the k + 1-th step

β is the relaxation parameter, set as 0 < β < 2/σ1

The starting value for the solution is often f0 = 0. The Landweber iteration method
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converges to the generalized solution when β is chosen as 0 < β < 2/σ1. It can be

written in spectral form as (Louis, 1988; Hansen, 1998)

fk =
∞∑
i=1

(
1− (1− βσ2

i )
k
) (g̃, ui)

σi
vi (3.32)

In pseudo-code, the method becomes

Algorithm (Landweber Iteration):

set kmax, set β, x = 0, r = y

for k = 1 : kmax
x = x + βATr Solution Vector

r = y −Ax Residual Vector

end

Conjugate Gradients (CG). The conjugate gradient method is much more involved

than the Landweber iteration method. Conjugate gradients are especially suited for

the solution of large, sparse (symmetric and positive definite) systems of equations

(Lanczos, 1950). It has been applied to large-size adjustment problems from satellite

geodesy by several authors, see for instance Schuh (1996). The main idea of the al-

gorithm is that the residuals rk = g̃ − Afk and the iterates fk are orthogonal to the

residuals of the normal equations A∗rk = A∗g̃ − A∗Afk (Hestenes & Stiefel, 1952).

The convergence rate of the method is dependent on the condition number of A; often

preconditioned versions are employed. Since the (non-linear) method is more complex

than the preceding methods, the following pseudo-code describes the algorithm for the

solution of the normal equation system ATAx = ATy in detail. It is often denoted

as conjugate gradients by least-squares (CGLS) (Björk, 1996) and does not involve the

explicit computation of ATA. Alternative conjugate gradient algorithms can be found

in Lanczos (1950), Golub & van Loan (1996, pg. 520) or Hanke (1995, pg. 17, 24).

Algorithm (Conjugate Gradients by Least-Squares):

set kmax, x = 0, r = y, d = ATr, ρ0 = dTd

for k = 1 : kmax

αk = ρk−1/
[
(Ad)T Ad

]
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x = x + αkd Solution Vector

r = r − αkAd Residual Vector

ρk =
(
ATr

)T
ATr

d = ATr + ρk/ρk−1d

end

After k iterations, the residuals are mutually orthogonal. As before, the stop criteria

for the iteration is a complicated matter if one wants to make use of the regularization

properties of CGLS (Hansen, 1998, pg. 149). In this thesis, the appropriate value for

kmax is determined experimentally. The spectral filter factors can be found again in

Hansen (1998) to

δi,k = 1−
p∏
j=1

θpj − σ2
i

θpj
i = 1, . . . , n (3.33)

The (Ritz values) θpj are the p eigenvalues of A∗A of the Krylov space Kk. The Krylov

space, often referred to as the space of polynomials of degree k, is defined as (Hanke,

1995, pg. 7)

Kk = span(r0, Ar0, A2r0, . . . , Ak−1r0) (3.34)

where r0 = y −Ax0 is computed using an initial guess x0. The convergence rate of

the CG method is given by (Golub & van Loan, 1996, pg. 530)

‖x− x̂k‖A ≤ 2‖x− x0‖A

(√
cond(A)− 1√
cond(A) + 1

)k

(3.35)

where cond(A) is the condition number of A.

Summary. All discussed methods can be considered as filtered least-squares solutions.

Table 3.1 summarizes the corresponding filter factors. p stands for the upper summa-

tion limit in the spectral decomposition. The inverse solution (INV), the least-squares

solution (LSQ) and least-squares collocation (LSC) are added for completeness. Note

the difference in matrix dimension when using the INV solution or the other solutions,
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the design matrix is either square or rectangular. A similar result is shown in Bouman

(1998), which should also be consulted for further analyses.

Three filter factors are compared in Figure 3.3 (a). The singular value is chosen

as σl = (R/(R + 4))l+1, which corresponds to a continuation height of 4 km. The

singular values are sorted with respect to the spherical harmonic degree. The considered

frequency band is 1 ≤ l ≤ 4000. The regularization parameter α = 0.5 is used for TIK

and DSVD. The TIK corresponds to the LSC for α = 1. As mentioned before, the

DSVD filter decays slower than the Tikhonov filter, which corresponds to less filtering.

Figure 3.3 (b) shows the TIK and the DSVD solution versus a varying regularization

parameter, l is fixed.

As mentioned before, a numerical evaluation requires the finite dimensional discretiza-

tion of the downward continuation problem. Discretization, however, always stabilizes

the problem to a certain extend. Depending on the resolution, continuation height,

noise level etc., further regularization may not be required. Additional regularization

methods can be derived by combining several methods. Kusche (2002), for instance, de-

rives a combination of the Tikhonov regularization and iteration methods, which shows

an increased filtering effect.
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Table 3.1: Filter factors

Name Abbr. p Filter δ

Inverse solution INV m 1

Least-squares solution LSQ n 1

Tikhonov regularization TIK n
σ2
i

σ2
i + α2

Least-squares collocation LSC n
σ2
i

σ2
i + 1

Damped SVD DSVD n
σi

σi + α

Truncated SVD TSVD n

{
1, i = 1, . . . , k
0, i = k + 1, . . . , n

Landweber iteration LAI n 1− (1− βσ2
i )
k

Conjugate gradient CG n 1−
k∏
j=1

θkj − σ2
i

θkj

3.3 Analysis of the Discrete Downward Continuation

Problem

The concept of ill-posed problems goes back to Hadamard (1923). He calls a problem

well-posed when the solution:

exists (surjective), the input data satisfy g ∈ R(A),

is unique (injective),

is a continuous function of the data, A−1 : G→ F is continuous.

Consequently, a problem that does not satisfy one or more of these conditions is

called an ill-posed problem. The continuous downward continuation problem has been

classified as an inverse, ill-posed problem (Schwarz, 1979); at least the last (Hadamard)

condition is violated since the operator A is compact and dim(F ) =∞.

The classification of the discrete problem has been controversially discussed. Dis-

crete Fredholm integrals of the first kind are not ill-posed in the original Hadamard

sense according to Groetsch (1984). Hansen (1990) uses the terminology of discrete
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ill-posed problems whenever the underlying continuous problem is ill-posed. Vańıček

et al. (1996), Martinec (1996) and Wong (2000) define the discrete downward con-

tinuation problem as a well-posed problem for a ’reasonable’ grid size, continuation

height and computer floating point accuracy. Their classification is mainly based on

the last Hadamard condition. It is argued that A−1 remains bounded (R(A) ⊂ IRn)

and discretization acts as natural filter/regularization.

The first two conditions are less studied. The first condition depends on the used

data (including the noise). Basically, it is a smoothness condition and existence cannot

be guaranteed for all cases. Hence, there may be cases where the n functionals are not

linearly independent or g /∈ R(A). Moreover, the discrete problem may not be injective:

If a solution exists, the nullspace N (A) may not be empty. Hence, one can always add

an arbitrary element from the nullspace to the solution x. Consequently, even if the

discrete solution exists and appears to be stable, it may not be unique (Kusche, 2002).

Therefore, the discrete downward continuation problem is considered here as a discrete

ill-posed problem.

Two aspects of the discrete problem may be further studied (Louis, 1988; Hansen,

1990):

the degree of ill-posedness, condition numbers and decay rate of singular values

the discrete Picard condition.

An analysis of the degree of ill-posedness, condition numbers and decay rate of the

singular values, provides more insight into the stability problem. The Picard condition,

in turn, examines the existence of the problem (linearly independent functionals) and

the need for stabilization. It should be noted that an analysis of the problem does not

change the numerical complexity and theoretical difficulty of the problem, but it may

improve the understanding of the problem and lead to alternative solution concepts.

Degree of Ill-posedness

The degree of ill-posedness is a finer classification for ill-posed problems. According to

Wahba (1990) and Hofmann (1993), the degree of ill-posedness ν is given by the decay
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rate of the singular values σi → 0 or

ν := sup{µ : σi = O(i−µ) as i→∞} (3.36)

A linear mildly ill-posed problem is then given by

σi ∼ i−ν , 0 < ν < 1 (3.37)

Similarly, a moderately ill-posed problem is 1 ≤ ν <∞ and a severely ill-posed problem

if ν =∞. For a discrete problem, one could reformulate the conditions to 0 < ν < 1 for

a mildly ill-posed problem, 1 ≤ ν ≤ 5 for a moderately ill-posed problem and ν > 5 for

a severely ill-posed problem. The values of ν are selected for a computer precision of

about 10−16 and maximum value of i = 2000. Alternatively, the degree of ill-posedness

could be linked to the ratio between height H and spacing S. As described in Schwarz

(1973), the problem becomes problematic for a ratio H
S
> 1.

Figure 3.4 shows the singular values for the downward continuation of simulated

airborne data (spacing 2.5 ′× 2.5 ′). The continuation height is between 2 km and 6 km.

The data used for Figure 3.4 are further described in Section 3.5. The singular values

decay by i−ν , where 0 < ν < 1. Conservatively, ν lies between 0.01 to 0.3 while the

height-to-spacing ratio is 0.4 < H
S
< 1.3. For the selected spacing and heights, the

discrete downward of airborne and terrestrial gravity data can be classified as a mildly

ill-posed problem. Figure 3.4 also shows the corresponding condition numbers that are

defined as

κ = cond(A) := ‖A−1‖‖A‖ ≥ ‖A−1A‖ = 1 (3.38)

An analysis of the condition numbers for airborne gravity data was first performed in

Schwarz (1971, 1973). For the satellite case refer to Kusche (2002, pg. 37). If matrix

A is symmetric and positive-definite, the condition number can be computed as

κ = cond(A) =
σ1

σrank(A)

(3.39)
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Figure 3.4: Singular values and condition numbers

where σ1 ≥ σ2 ≥ · · · ≥ σrank(A). The very small condition numbers lead to the conclu-

sion that the problem is well-conditioned for the considered spacing and heights.

Note that the condition number can be used to quantify the effect of pertubations in

A and in g. For ‖δA‖ < 1
‖A−1‖ , the equation Af = g becomes

(A+ δA)(f + δf) = g + e = g̃ (3.40)

The following stability measure can then be derived (Kress, 1989, pg. 216)

‖δf‖
‖f‖

≤ cond(A)

1− cond(A)‖δA‖‖A‖

(
‖e‖
‖g‖

+
‖δA‖
‖A‖

)
(3.41)

since δf = (I +A−1δA)
−1A−1 (e− δAf).

Picard Condition

A square-integrable solution of Af = g exists if and only if g ∈ R(A) and the Picard

condition is satisfied (Hansen, 1990, 1994)

∞∑
i=1

(
(ui, g)

σi

)2

< ∞ for σi 6= 0 (3.42)
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This follows directly from (Kress, 1989, pg. 234)

∞∑
i=1

(
(ui, g)

σi

)2

=
∞∑
i=1

(f, vi)
2 ≤ ‖f‖22 (3.43)

The Picard condition states that the Fourier coefficients (ui, g) have to decay faster

than the corresponding singular values σi. Hence, the Picard condition is a smoothness

condition for g. Using discrete data, the summation in Eqn. (3.42) is bounded although

it may become large for noisy data (this is one of the reasons for Wong (2000) to call

the problem well-posed). Analogously, a discrete Picard condition can be formulated,

which compares the decay rate of uT
i y to the singular values σi. The decay rate of

uT
i y does not have to be monotonic but should be on average faster than the one of

the singular values (Hansen, 1990). Cases of i, where uT
i y or σi are numerically zero,

should be excluded.

uT
i y may be varying fast when using noisy observations. Hence, a plot of uT

i y and

σi is often difficult to interpret. Therefore, Hansen (1990) proposes to check the Picard

ratio

ωi :=

(∏i+q
j=i−q |uT

i y|
σi

)1/(2q+1)

i = 1 + q, . . . , n− q (3.44)

where q is a small integer (q = 10 is chosen here). This ratio should decay monotonically

to zero to satisfy the Picard condition. It is a moving geometric mean and filters out

the highest variations of uT
i y.

Figure 3.5 shows two examples for the Picard condition. The left hand side shows

the Picard ratio for the downward continuation of noise-free gravity disturbances. The

data height is 2 km. The Picard condition is satisfied in Figure 3.5 (a). The Picard

ratio ωi given in Eqn. (3.44) decays monotonically (red line). Hence, a solution for

Af = g exists. Stabilization or regularization may only be required to filter some of

the high variations of uT
i y. No regularization is required for smaller degrees i.

A different situation is shown in Figure 3.5 (b). Noisy gravity data at 6 km are
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Figure 3.5: Picard condition for simulated airborne data

used. In this case, the Picard condition is not satisfied. The Picard ratio increases for

i ≥ 200. To solve this downward continuation problem, regularization is required. The

stabilization should dampen the components for which the perturbation dominates.

Using the TIK filter factor δα = σ2
i /(σ

2
i + α2) for instance, the following regularized

Picard ratio can be computed

ωTIK
i =

(
δα

∏i+q
j=i−q |uT

i y|
σi

)1/(2q+1)

i = 1 + q, . . . , n− q (3.45)

The regularized Picard ratio ωTIK
i is also shown in Figure 3.5(b). Clearly, the ratio

decays rapidly and indicates that the problem is stabilized by the Tikhonov regulariza-

tion.

3.4 An Alternative Numerical Solution

The preceding continuation solutions are very involved both in terms of implementation

and computational burden. Moreover, it is often not possible to solve the large system
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of linear equations on a standard computer even when sparse matrix computations

could be performed. Other approximate solutions have to be found.

An alternative solution for the downward continuation of terrestrial gravity anomalies

can be formulated as

∆̂g(Q) =
R + H̄

4πR

∫
ωc

K(Q, P̄ )∆g(P̄ ) dω(P̄ ) (3.46)

where only the critical near-zone is considered and the kernel function K(Q, P̄ ) is given

as

K(Q, P̄ ) =

LMax∑
l=2

(2l + 1)

(
R + H̄

R

)l+1

Pl(Q, P̄ ) (3.47)

In eqns. (3.46) and (3.47), H̄ is the mean height of the gravity data inside the spherical

cap ψc. H̄ is changing from computation point to computation point. The maximum

LMax may be selected according to the input data or to the desired solution bandwidth.

Of course, the kernel function can be modified if necessary.

Remark 3.2 The truncated (or band-limited) summation kernel can be considered as

TSVD- regularized since the highest frequencies are suppressed.

Using the remove-restore technique, the input data ∆g(P ) are first reduced by the

satellite data (∆gS) and the topographic and atmospheric effects, yielding residual

gravity data ∆g′(r, θ, λ). They are then upward or downward continued to a mean

height H̄, i.e. ∆g′(r, θ, λ)→ ∆g′(r̄, θ, λ) = ∆g′(P̄ ). This intermediate continuation step

may approximately be solved by taking the first term of a Taylor series development:

∆g′(r, θ, λ) = ∆g′(r̄, θ, λ) +

(
∂∆g′

∂r

)∣∣∣∣
(r̄,θ,λ)

(r − r̄) + · · ·

≈ ∆g′(r̄, θ, λ) +

(
∂∆g′

∂r

)∣∣∣∣
(r̄,θ,λ)

(H − H̄) (3.48)

Hence, the upward and downward continuation of the residual gravity data to a mean
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height can be performed with

∆g′(r̄, θ, λ) = ∆g′(r, θ, λ)−
(
∂∆g′

∂r

)∣∣∣∣
(r̄,θ,λ)

(H − H̄) (3.49)

The vertical gradient of gravity anomalies is computed from a high-degree spherical

harmonic model as

(
∂∆g′

∂r

)∣∣∣∣
(r̄,θ,λ)

=
GM

R

LM∑
l=LS+1

(l − 1)(l + 2)

r̄2

(
R

r̄

)l+1 l∑
m=−l

∆K̄M
lmȲlm(θ, λ) (3.50)

Similar derivations can easily be made for gravity disturbances or other functionals of

the disturbing potential.

In eqns. (3.46) to (3.50), it has been assumed that

i) the gravity data are band-limited (note that mean gravity data are frequency

limited) or the desired continuation result is not adversely affected by band-

limiting the kernel function. Solving for the geoid, for instance, may permit

such an approximation since most of the power is in the low-frequencies (the

omission error is small).

ii) the data spacing is not too fine and the continuation height is not too large.

A stability investigation may be required for critical cases since the kernel

function is divergent for a large continuation height.

iii) the height difference between the data point H and mean height H̄ is small.

iv) higher Taylor terms do not significantly contribute in Eqn. (3.49).

v) the vertical gradient of the gravity anomalies computed from a model (Eqn.

3.50) sufficiently represents the actual vertical gradient between H and H̄.

After the integration yielding ∆̂g′(Q), the final result ∆̂g(Q) at the reference sphere

is obtained by adding back the indirect topographic and atmospheric effects as well as

the satellite contribution ∆gS, see Eqn. (2.1). Additionally, the far-zone effect (ω−ωc)

may be approximately computed using a geopotential model. This approach will be

denoted as the alternative numerical solution (A).
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Remark 3.3 A downward continuation approach based on a Taylor series development is

the so-called analytical continuation (Moritz, 1989; Sideris, 1987). The approach can be

used due to Runge’s theorem, see for instance Moritz (1989). A numerical comparison

to the Poisson downward continuation is performed in Huang (2002).

When the geoid is sought, the downward continuation and transformation into the

potential can be combined into one step. This will be called the direct approach (DA).

The integral in Eqn. (3.46) and the kernel in Eqn. (3.47) are replaced by (employing

R+H̄
l−1

from the Meissl scheme)

T̂ (Q) =
R + H̄

4π

∫
ωc

K(Q, P̄ )∆g(P̄ ) dω(P̄ ) (3.51)

and

K(Q, P̄ ) =

LMax∑
l=2

2l + 1

l − 1

(
R + H̄

R

)l+1

Pl(Q, P̄ ) (3.52)

Using (airborne) gravity disturbances instead of anomalies, the kernel function would

be given by

K(Q, P̄ ) =

LMax∑
l=1

2l + 1

l + 1

(
R + H̄

R

)l+1

Pl(Q, P̄ ) (3.53)

if no further kernel modification was used. Eqns. (3.51 - 3.53) remind of the one-step

approach presented in Novák & Heck (2002). Indeed, the DA would be equivalent to

the one-step approach if the gravity data were provided on a reference sphere R +H.

This is, however, rarely the case in reality. Therefore, the A or DA should be preferred

in practical computations. Moreover, the design matrix is not explicitly assembled (in

constrast to the formulation in Novák & Heck (2002)). This allows for an efficient

computation and reduces the memory load (no storage problem). More importantly,

the solution will be less burdened with numerical instabilities, see for instance Björk

(1996). Note also that the continuation process to a mean height in a first step acts
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implicitly as a (low-pass) filter. The following pseudo code describes the implemenation

of the algorithm:

Algorithm (Alternative Approximation/Direct Approach):

set ψc, set LM (set LMD kernel modification degree if desired)

while computation point ≤ total number of computation points

if ψij ≤ ψc integration point is inside the spherical cap

sum = sum +Hj add heights in spherical cap

end

H̄ =
sum

n
average height over all points inside the cap

r̄ = R + H̄ average radius of the spherical cap

compute Eqn. (3.50) for point (r̄, θ, λ) from a high-degree model

end

while computation point ≤ total number of computation points

if ψij ≤ ψc integration point is inside the spherical cap

continue to mean height of spherical cap using Eqn. (3.49)

integrate with (modified) band-limited kernel function

end

end

end

Stability Investigation

Before the alternative approximation is applied, a stability investigation ought to be

performed since the term
(
R+H
R

)l+1
is divergent for higher degrees of l. Three main

factors influence the alternative approximation – the continuation height, the solution

bandwidth and the data spacing. All three components are lumped into the factor

κ ≈
(
R +H

R

)l+1

≈
(
R +H

R

)Rπ/x
(3.54)

when the upward continuation degree is associated with the data spacing and band-

limitation degree. The condition number κ is increasing with increasing continuation

height (H → ∞), decreasing grid spacing or increasing upward continuation degree

(l + 1 → ∞). Figure 3.6 shows approximate condition numbers for different spatial

resolutions and continuation heights. The conversion between spatial resolution x [km]
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and the upward continuation degree is l + 1 = Rπ/x, see also Table 5.3. When the

condition number is above the computer precision (≈ 1016), the problem is said to be

numerically unstable and requires stabilization.
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Figure 3.6: Approximate condition numbers for different continuation heights and spa-
tial resolutions

From Figure 3.6 it can be concluded that the alternative approximation may be ap-

plied to terrestrial and airborne measurements. The downward continuation of satellite

data may be only admissible for large data spacings, say 100 km, since the altitude

is large. Furthermore, the alternative approximation is confined to spatial resolutions

larger than 0.7 km. In reality, the quality of the alternative approximation may also

suffer from errors due to the recursive computation of Legendre polynomials. Feasibility

tests with satellite data will have to follow.

3.5 Downward Continuation Results

The downward continuation of airborne gravity disturbances was simulated. A spacing

of 2.5 ′×2.5 ′ (about 5 km half-wavelength) was selected since coarser grids did not suffer
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from the downward continuation problem at the specified continuation heights and the

simulated gravity data, see Novák et al. (2001b). Also, the downward continuation

of terrestrial gravity data did not involve additional difficulties. The statistics of the

simulated data are summarized in Table 3.2. In this case, a data area of 2◦ × 2◦ was

used and a spherical cap radius of ψc = 0.5◦ due to numerical difficulties with larger

data areas.

Table 3.2: Simulated data statistics for the downward continuation problem

Type Degree Density Height Min Max Mean Std Unit
[–] [’] [km]

T 121-2160 2.5 0 −6.438 8.523 −0.093 2.422 m2/s2

δg 121-2160 2.5 0 −30.983 31.563 −0.261 10.278 mGal
δg + e 121-2160 2.5 2 −29.266 28.437 −0.259 9.050 mGal
δg + e 121-2160 2.5 3 −27.721 26.573 −0.258 8.498 mGal
δg + e 121-2160 2.5 4 −26.286 25.157 −0.256 8.003 mGal
δg + e 121-2160 2.5 5 −24.950 24.202 −0.254 7.556 mGal
δg + e 121-2160 2.5 6 −23.707 23.303 −0.250 7.152 mGal

Analyzing the noisy gravity disturbances at H = 4 km, the signal-to-noise ratio was

about ‖b‖
‖e‖

.
= 5.3. Together with the height-to-spacing ratio H

S

.
= 0.8, the problem can be

categorized as a critical downward continuation problem (Schwarz, 1973). An unstable

least-squares solution can be expected although the applied noise is highly idealized

and the data are band-limited.

A computational procedure analogous to Eqn. (2.50) was used. In this case, however,

the Poisson integration was performed, see Eqn. (3.55).

δg121−2160(R +H, θ, λ) + e → Poisson→ δ̂g121−2160(R, θ, λ)

↓
δg121−2160(R, θ, λ) −→ Error

(3.55)

The VK modification was used to alleviate the contribution of the far-zone (Huang,
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2002). The results of the test are shown in Figure 3.7. Shown along the horizontal

axis are the different solutions for various continuation heights. Each bar stands for

the rms error of a solution compared to the data at the reference sphere R. The left

vertical axis applies to the bars. The order of the solution bars is INV, LAI, LSQ, TIK,

DSVD, TSVD, CG, A. For completeness, all solutions are also listed in the Appendix in

tabularized form, see Table B.4 and B.5. Two immediate conclusions can be drawn by

inspecting Figure 3.7. Firstly, the downward continuation provides unstable results even

for simulated, band-limited, data. The different solution concepts provide significantly

different results for the same continuation height. Secondly, the downward continuation

problem becomes more severe for higher continuation heights when the data spacing

stays constant. In particular, the error of the LSQ solution, shown in light blue as the

third column, is almost exponentially increasing, reaching maximum error ranges from

-73mGal up to +83mGal. Without a doubt, the solution has to be stabilized or the

problem differently solved.
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Comparing the different stabilization, regularization or iteration methods, only the
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CG and A seem to provide acceptable results. The noise is not overly amplified and

the bias remains reasonably small. The solutions found with the TIK and DSVD are

burdened with noise and have a bias. The regularization parameter α was found by

the generalized cross-validation (Wahba, 1977; Golub et al., 1979) (last row in Table

3.3) and by inspecting the mean-square error function (calculating the result for several

values of α). The regularization parameter α obtained from the generalized cross-

validation gives an estimate for the unknown (predictive) mean square error, see for

instance Kusche & Klees (2002),

α = arg min
1

m
‖Ax̂α −Ax‖2 (3.56)

where m is the number of measurements.

Table 3.3: Determination of the regularization parameter

Name α Remark

Optimal (MSE) arg min
1

n
‖x̂α − x‖2 true x unknown

L-curve arg min ‖Ax̂α − y‖‖x̂α‖

GCV arg min
m‖Ax̂α − y‖2

(trace(I −Qα))
2

Qα = A(ATA + α2I)−1AT

Since the problem was only mildly ill-posed for the airborne data at the considered

spacing and continuation height, the mean-square error curve is relatively flat and

allows a range of values for α. The results shown in Figure 3.7 represent the best set of

solutions. Remarkable is the performance of the alternative approximation (A), which

is the last bar in each case. It provides by far the best solution to the problem with

rms error values of only 3.236mGal. Although it clearly represents an approximation

of the problem, it seems to solve the simulated downward continuation problem with

the smallest rms error. It should also be noted that the alternative approximation is

the most efficient solution in terms of computation time. The better performance can

be attributed to the fact that the normal equation system is not set up. Furthermore,
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the band-limited kernel function suppresses the highest frequencies.
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Figure 3.8: Reference solution versus A, TIK, and CG using gravity disturbances at 2 km
[mGal]

Added to Figure 3.7 is the direct approach (DA), i.e., the direct transformation of

gravity disturbances into potential as described in Section 3.4. Since the gravity data

are generated at a constant height, the direct approach corresponds to the one-step

approach presented in Novák & Heck (2002). The right vertical axis applies for these

results. Although the error of the solution increases, it is still surprisingly accurate (less
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Figure 3.9: Frequency spectra of the least-squares solution (LSQ), the conjugate gradi-
ent solution (CG) and the alternative approximation (A)

than 1.5 cm for airborne data at an altitude of 6 km) taking the small computational

effort into account. The direct approach is also listed in tables B.4 and B.5 in units of

m.

For illustration, the A, TIK and CG solutions for a continuation height of 2 km are

shown in Figure 3.8 side-by-side with the reference gravity disturbances at the reference

sphere. Comparing the figures, the amplification of the noise is clearly visible in the

TIK and CG solution while the A solution is very similar to the reference solution.

Using a different regularization parameter in the TIK may yield a smoother solution,

yet a larger bias.

Remark 3.4 A biased solution is a problem in geoid determinations. In resource ex-

ploration, however, a biased solution would be irrelevant and a larger regularization

parameter could be used.

The error spectra, shown in Figure 3.9, visually emphasize the quality of the solutions

in the frequency domain. The differences along one parallel are transformed into the

frequency domain. Clearly, the LSQ amplifies the high-frequency components. The CG
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in turn seems to solve the inverse problem with a reasonable error compared to the

reference solution. However, it follows the general trend of the LSQ. Finally, the A

provides much better results. Once more, it introduces the smallest bias and does not

amplify the added noise. The alternative approach is therefore recommended for the

downward continuation of airborne and terrestrial gravity data. For higher resolutions

and data altitudes, the conjugate gradient method is generally recommended.



4 The Combination of Heterogeneous

Gravity Data

In this chapter, strategies for the combination of heterogeneous gravity data are de-

veloped. After a brief review of the underlying model problem and a discussion of

alternative solutions, the formulas to be used are derived and the combination strate-

gies are presented. Advantages and limitations of the proposed methods are discussed.

Finally, a satellite model and a combined geopotential model are combined in a large

regional area and a local data area.

4.1 A Glance at the Combination Problem

The combination of heterogeneous gravity data is among the most involved problems

in gravity field modeling. Its solution is needed in applications such as geoid determi-

nation and resource exploration. Since a single measurement device (or measurement

campaign) provides only parts of the solution, a combination with additional data en-

hances the quality and reliability of the solution and widens its spectrum. The remove-

restore technique may be understood in this way: Satellite data and local gravity data

complement each other in the frequency domain. The satellite data provides the low-

frequency information of the solution and the local data covers the medium and higher

frequencies. The combined solution enjoys higher quality and a wider spectrum.

79
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Model Problem

The main problem when combining gravity data is that the data are heterogeneous.

Gravity data g are functions in space (λ, ϕ,H) and time (t). Moreover, they have an

individual noise spectrum (e) and resolve a certain frequency band (f). Hence, the

following elements constitute the model problem

{
g, ϕ, λ,H, e, t, f, A(BT̂ )

}
(4.1)

whereA(BT̂ ) stands for the used approximation method and selected representation/base

functions that depends on the desired combination output. In Chapter 5, several of

these characteristics are discussed in more detail.
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Figure 4.1: Degree variances of simulated global and local gravity data

When heterogeneous gravity data are used on the same spatial grid, the main differ-

ence (no stochastics considered) between the data is their frequency content (Schwarz,

1984). Figure 4.1 shows global and local degree variances in the spectral domain and

compares them to the ’true’ solution. In this case, satellite data are the only means

to recover long wavelengths of the gravity field. The extent of the medium frequency

zone, shown in grey in Figure 4.1, depends on the area size of the local data and the

resolution of the satellite data. Possible correlations between the local data and the



4.1 A Glance at the Combination Problem 81

global models are strongest in this overlapping zone. The high-frequency part is solely

resolved from the local gravity data, representing small-scale features of the gravity

field. Figure 4.1 indicates that a single data set does not resolve the entire spectrum of

the gravity field. However, a unified estimate of the entire spectrum could be obtained

by combining global and local gravity data in a complementary way. Additional local

data would strengthen the (medium to high frequency) solution when combined in an

adequate way. The maximal achievable resolution and accuracy of the combination

depends on the quality of the data that are used. In this thesis, two specific local data

sets are used in the combination – airborne gravity disturbances and terrestrial gravity

anomalies. The global data sets include satellite data and combined geopotential mod-

els. The combination outputs are a local gravimetric geoid and a tailored high-degree

spherical harmonic model.

Combination Methods

Least-squares collocation is the most commonly used model for the combination of

heterogeneous gravity data. It is based on ideas in the fields of least-squares esti-

mation, approximation theory, functional analysis, potential theory and inverse prob-

lems, see Krarup (1969); Moritz (1980b). The main elements of the model are sum-

marized in Table A.8. In addition to the possible use of heterogeneous gravity data,

the following elements describe the least-squares collocation solution (Denker, 1988, pg.

32):

i) the solution is independent of the number of signal parameters to be estimated

ii) the solution is invariant to linear transformations of the data and results

iii) the result is optimal with respect to the covariance functions used.

Least-squares collocation (LSC) is a powerful model to combine heterogeneous gravity

data. Different theoretical variants (stochastic, deterministic, spatio-statistical) and

various interpretations have been developed and established over the years, see for

instance Moritz (1978); Sansò (1980); Moritz & Sansò (1980); Kotsakis (2000). Yet,

the method has also disadvantages. The LSC solution (in physical geodesy) is usually
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sought in a reproducing kernel Hilbert space. The harmonic kernel function requires

terms that are dependent on the choice of base functions. Typically, degree variances are

used, i.e., spherical harmonics are the base functions. The choice of the base functions,

and subsequently the associated norm, is somewhat arbitrary, see for instance Dermanis

(1977). Furthermore, LSC may not be suited for the use of mixed gravity data problems

(Svensson, 1983). This is due to the fact that the problem may not be well-posed in

terms of the mean-square norm. Hence, one could argue the suitability of LSC to

the current problem. A practical problem is the determination of suitable covariance

functions from empirical covariance functions; see also Appendix A.6. The covariance

functions are usually chosen to be invariant to rotations. As the fitting process can

only be done approximately, the question arises whether the approximation leads to

the correct solution. This is mainly a convergence problem as discussed in Sansò &

Tscherning (1980) and cannot be proven in general. The stochastic variant of LSC

suffers from the fact that it does not correspond to the physical reality – the gravity field

is not a stochastic field. For a thorough discussion on this topic refer to Kotsakis (2000,

pg. 46). Other valid arguments and open problems are discussed in Schwarz (1986).

Although LSC will not be used in this thesis, it certainly represents an alternative for

the combination of heterogeneous gravity data.

Principally, the multiple-input/multiple-output method (MIMO) is equivalent to least-

squares collocation (Sansò & Sideris, 1997). Originally introduced in the framework of

system theory, the MIMO has become a fast alternative to LSC provided that the data

are given on a grid, see Bendat & Piersol (1986); Vassiliou (1986); Schwarz et al. (1990);

Bendat & Piersol (1993); Sideris (1996); Li & Sideris (1997); Andritsanos et al. (2001).

In addition to the efficient numerical computations, an advantage of the MIMO is the

possible use of the full power spectra. While LSC requires an isotropic covariance

function, the MIMO may also incorporate nonisotropic components into the solution.

If they are available, their use may lead to more accurate results as pointed out in

Li & Sideris (1997). Yet, a principal drawback of the method is the reliance on the

observation spectra (PSD), the cross-PSD functions between different data types and

noise PSD’s. All these have to be determined or approximated. In particular, the
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non-stationarity of the noise leads to approximate solutions for the noise PSD.

A slightly different access to the combination problem offers spectral combination. It

has been introduced as a special case of LSC by Moritz (1975). Further theoretical and

practical developments are reported in Sjöberg (1980); Wenzel (1981, 1982); Wichien-

charoen (1984); Wei (1986); Smeets (1994); Kern et al. (2003). Since the method

involves virtually the same assumptions as LSC (stationarity is additionally assumed),

interest has waned for the last decade. On the positive side, though, one could argue

that the method is easier to implement and can handle an arbitrary amount of data. In

addition, the method does not rely on the selection of an optimal covariance function;

only the principal behaviour of the data and errors has to be modelled. A different

access to the spectral combination, starting from boundary value problems and their

general solution, is provided in Sacerdote & Sansò (1987) and van Gelderen & Rummel

(2001).

In the following, strategies for the combination of satellite, airborne and terrestrial

gravity data will be developed. Because error measures of the local gravity data at

hand are insufficiently known, none of the the above combination methods will be used.

An iteration method will be used that is largely immune against high-frequency noise

and may filter gross errors. It is based on spherical harmonic analysis and the idea of

tailoring, i.e. of improving a geopotential model by local or regional data. The original

idea is revisited and further refined for the use of satellite, airborne and terrestrial

gravity data. The proposed strategies solve for a combined geoid and a tailored, high-

degree spherical harmonic model. The concepts of spherical harmonic analysis and

synthesis are reviewed first.
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4.2 Analysis and Synthesis

A square integrable function f(θ, λ) on the unit sphere can be expanded into a series

of spherical harmonics as (Hobson, 1931)

f(θ, λ) =
∞∑
l=0

l∑
m=0

(
C̄lm cosmλ+ S̄lm sinmλ

)
P̄lm(cos θ) (4.2)

where C̄lm and S̄lm are fully normalized spherical harmonic coefficients. Due to the

orthogonality relations of spherical harmonics, the spherical harmonic coefficients can

be obtained as, see for instance Colombo (1981),

C̄lm

S̄lm

 =
1

4π

∫
ω

f(θ, λ)

 cosmλ

sinmλ

 P̄lm(cos θ) dω (4.3)

Eqn. (4.3) is usually denoted as the (continuous) global spherical harmonic analysis,

see also Sneeuw (1994) or Jekeli (1996). The function f is given at every point and the

summation in Eqn. (4.2) is performed up to infinity.

Analysis and Synthesis of the Disturbing Potential

Let the disturbing potential T (Q) be the given function. Then, it can be expanded into

a series of spherical harmonics as shown in Eqn. (4.2). Hence, the spherical harmonic

coefficients are derived as

∆C̄lm

∆S̄lm

 =
R

GM

1

4π

∫
ω

T (Q)

 cosmλ

sinmλ

 P̄lm(cos θ) dω (4.4)

Note that T (Q) is given at the reference sphere with radius R. The spherical harmonic

coefficients are dimensionless due to the factor R
GM

. Using cap mean values instead of

point values, the spherical harmonic analysis takes the form (βl � 0, ∀ l = 0, 1, . . . )

∆C̄lm

∆S̄lm

 =
R

GM

1

4π

∫
ω

1

βl
T̄ (Q)

 cosmλ

sinmλ

 P̄lm(cos θ) dω (4.5)
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Eqn. (4.5) follows from the orthogonality relations applied to

T̄ (Q) =
GM

R

∞∑
l=0

βl

l∑
m=0

(
∆C̄lm cosmλ+ ∆S̄lm sinmλ

)
P̄lm(cos θ) (4.6)

where βl are the Pellinen smoothing functions, see Appendix A.5, and T̄ is the mean

disturbing potential.

Analysis and Synthesis of Functionals of the Disturbing Potential

Since the disturbing potential is not a measurable quantity, other functionals must be

used for the analysis. Equivalent to Eqn. (4.6), the synthesis step of a (mean) functional

of the disturbing potential is given as

AT̄ (Q) =
GM

R

∞∑
l=0

βlσl

l∑
m=0

(
∆C̄lm cosmλ+ ∆S̄lm sinmλ

)
P̄lm(cos θ) (4.7)

where the spherical harmonic coefficients are

∆C̄lm

∆S̄lm

 =
R

GM

1

4π

∫
ω

1

σlβl
AT̄ (Q)

 cosmλ

sinmλ

 P̄lm(cos θ) dω (4.8)

As before, σl stands for the singular value (or more precise, the eigenvalue in the self-

adjoint case) in the Meissl scheme. Dividing the sphere into N data blocks, Eqn. (4.8)

can be written as (Wenzel, 1985, pg. 72)

∆C̄lm

∆S̄lm

 =
R

GM

1

4π

N∑
i=1

1

σlβl
AT̄ (Q)

∫
∆ωi

 cosmλ

sinmλ

 P̄lm(cos θ) dω (4.9)

The integrals over ∆ωi can be computed as

∫
∆ωi

 cosmλ

sinmλ

 P̄lm(cosmλ) dω =

λE∫
λW

 cosmλ

sinmλ

 dλ

θS∫
θN

P̄lm(cos θ) sin θ dθ (4.10)
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Note that the integration of the fully normalized Legendre polynomials may become

unstable for a high-degree expansion and certain values of θ. Investigations on this

issue are reported in Wenzel (1985) and Holmes & Featherstone (2002). It should be

noted that H.-G. Wenzel provided two subroutines for the computation of Eqn. (4.10)

to the author.

Improving a Geopotential Model Using Additional Data

Improving a geopotential model using additional gravity data is often referred to as

tailoring . Originally, the approach goes back to an investigation in Kaula (1966) and

has been further studied by Rapp (1967). The basic assumption is that the additional

data have not been used in the development of the geopotential model. The main idea

is then to add small correction terms to the original spherical harmonic coefficients such

as

∆C̄New
lm

∆S̄New
lm

 =

 ∆C̄Old
lm

∆S̄Old
lm

+

 δ∆C̄lm

δ∆S̄lm

 (4.11)

where the corrections terms are computed from the residual data as δ∆C̄lm

δ∆S̄lm

 =
R

GM

1

4π

N∑
i=1

pl
1

σlβl
AT̄ ′(Q)

∫
∆ωi

 cosmλ

sinmλ

 P̄lm(cos θ) dω (4.12)

In Eqn. (4.12), pl are spectral weights that control the magnitude of the contributions

per degree and the residual (mean) gravity data are given as

AT̄ ′(Q) = AT̄ (Q)−AT̄Old(Q) (4.13)

Note that the data have to be downward continued to the reference sphere and that

topographic and atmospheric effects must be applied. This appproach was used in Li &

Sideris (1994). The model was developed to degree and order 500, i.e., down to spatial

scales of 40 km.

Example. Let mean gravity anomalies ∆ḡ(Q) be given over the entire Earth. Fur-
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thermore, let a geopotential model be given that was independently developed. Then,

the correction terms in Eqn. (4.11) are computed as (pl = 1) δ∆C̄lm

δ∆S̄lm

 =
R

GM

1

4π

N∑
i=1

R

(l − 1)βl
∆ḡ′(Q)

∫
∆ωi

 cosmλ

sinmλ

 P̄lm(cos θ) dω

where the residual data ∆ḡ′(Q) are given as

∆ḡ′(Q) = ∆ḡ(Q)−∆ḡOld(Q)

An Iterative Combination Approach

Typically, gravity data are not continuously provided over the entire Earth and a spher-

ical harmonic analysis may lead to large errors in the coefficients due to the Gibbs

phenomenon, aliasing and leakage problems. Also, the orthogonality relations cannot

be applied. The standard approach to (numerically) alleviate the effect of this problem

is to set up an iteration process, see for instance Wenzel (1985); Weber & Zomorrodian

(1988); Kearsley & Forsberg (1990). The iteration scheme is shown in Figure 4.2.

In the first step, one has to provide an initial model (a computed model can be

used or an initial guess) that is input to Eqn. (4.7). Residual gravity data are then

obtained by subtracting the mean data AT̄Old from the mean data AT̄ , see Eqn. (4.13).

A harmonic analysis of the residuals (AT̄ ′) yields correction terms that are added to

the initial model coefficients. The new model is then used to compute updated AT̄Old

and so on. The iteration is stopped when the rms of the residual gravity data is

smaller than a previously set threshold. Usually, this implies only a few iterations. The

iteration scheme is advantageous since gross errors can be detected and eliminated.

A smooth combined field is obtained that does not require the a-priori knowledge of

data error measures. The iteration method can use a large number of data and may

combine different functionals of the disturbing potential. Alternatively, a least-squares

adustment may be used that optimally fits a truncated set of coefficients to the given
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data, see Rapp (1967); Pavlis (1988). However, this will not be studied here since large

computational resources are required.

The combination of global and local data could also be done by a combined spherical

harmonic and wavelet expansion, see Freeden & Windheuser (1997) or Freeden et al.

(1998, pg. 272). In this way, the spherical harmonics are used for the representation of

the low-frequency spectrum and spherical wavelets represent the high-frequency part.

Lastly, the spherical harmonic analysis of local data could be performed in a spherical

cap (Haines, 1985; de Santis, 1991) or the base functions could be (re-)orthonormalized,

see Hwang (1993); Albertella et al. (1999). While the spherical cap analysis as de-

scribed in de Santis (1992) did not result in better results, further investigations on the

orthonormalization could be made. This is, however, outside the scope of this study.

Initial model ∆C̄lm, ∆S̄lm

Compute AT̄Old, Eqn. (4.7)

Compute residual data AT̄ ′, Eqn. (4.13)

Compute correction terms δ∆C̄lm, δ∆S̄lm, Eqn. (4.12)

Compute the new model ∆C̄New
lm , ∆S̄New

lm , Eqn. (4.11)
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Figure 4.2: Iteration scheme
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4.3 Combination Strategies

Based on the iteration method presented in the last section, several strategies for the

combination of satellite, airborne and terrestrial gravity data will be developed. The

first combination is a way for combining a satellite and a combined geopotential model.

The second strategy aims at a high-degree spherical harmonic model and the last strat-

egy is proposed for geoid determination.

Combination of a Satellite Model and a Geopotential Model

The combination of a satellite-only model and a geopotential model can be beneficial for

many global and regional purposes. The new combined model has an increased resolu-

tion compared to the satellite-only model, or conversely, the quality of the geopotential

model is enhanced in the lower frequencies. Ideally, the combination is performed glob-

ally and the original normal equation system, which was set up for the geopotential

model, is enriched by the satellite data. This is problematic in practice for a number

of reasons (normal equation system would have to be set up again, demanding compu-

tational load, not all data are publicly available, etc.). Hence, the combination using

tailoring may be an alternative. The combination scheme is shown in Figure 4.3.

∆g′ = ∆gS −∆gM

δ∆C̄lm, δ∆S̄lm

∆C̄M
lm, ∆S̄M

lm
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T
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O
N
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Figure 4.3: Iteration scheme for the combination of satellite and geopotential models

Mean gravity anomalies from a satellite model (∆gS) are input into the iteration

process. They are computed on a global or regional grid using Eqn. (4.7). After com-

puting correction terms δ∆C̄lm and δ∆S̄lm, new model coefficients can be computed.
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Subsequently, the model coefficients are used to compute new values of ∆gM and the

iteration process continues until convergence is achieved. The quality of this combina-

tion approach is investigated in Section 4.5. Of course, other functionals can also be

used. The new coefficients adopt the semi-major axis a and geocentric gravitational

constant GM from the combined geopotential model.

When error measures of the satellite and the geopotential model are available, they

can be used to weight the individual contributions. Table 4.1 summarizes some of the

possibilities for satellite degree variances cSl and error degree variances εS
l , respectively.

εM
l stand for the error degree variances of the geopotential model.

Table 4.1: Spectrals weights pl for the satellite data

Linear (l2 > l1) Least-Squares Least-Squares Collocation

l − l2
l1 − l2

(εS
l )
−1

(εS
l )
−1 + (εM

l )−1

(εS
l )
−1

(cSl )
−1 + (εS

l )
−1 + (εM

l )−1

Development of a High-Degree Spherical Harmonic Model

Based on the previous combination approach, a spherical harmonic model can be de-

veloped that exceeds the maximum degree of the satellite or geopotential model. This

is done using local or regional gravity data that may provide information about the

higher frequencies. The proposed combination concept is shown in Figure 4.4.

In the first step, a satellite and a geopotential model are combined. This step is

equivalent to the previously discussed combination and can take place on a global or

regional grid. In the second combination step, local or regional airborne gravity dis-

turbances (δg) are used to derive a new, high-degree, spherical harmonic model. The

maximum degree of the model is theoretically limited to a degree of lmax = 180◦/∆ω,

where ∆ω is the grid size of the given mean gravity disturbances. In the final combina-

tion, terrestrial gravity data (∆g) are input to the iteration and yield final coefficients

∆C̄C
lm, ∆S̄C

lm.

The maximum degree and order of the model is dependent on the data grid size
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∆g′ = ∆gS −∆gM

∆C̄A
lm, ∆S̄A

lm

δg′ = δg − δgA

∆C̄B
lm, ∆S̄B

lm

∆g′ = ∆g −∆gB
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Figure 4.4: Development of a high-degree spherical harmonic model

and the data extent. Practical tests have indicated that a high-degree model based

on local terrestrial and airborne data is not likely to exceed a maximum degree of

lmax = 180◦/(2∆ω). Beyond that degree, errors due to the iteration process, the com-

putation of normalized Legendre polynomials and other approximations increase. A

clear distinction between numerical round-off errors and actual information cannot be

made. Another limitation is due to the use of the Pellinen smoothing functions βl.

Large errors are introduced when they tend to zero. This problem can only partially

be overcome by the iteration.

It is recommended that the lowest coefficients in the second and the third combination

step remain unchanged. Otherwise, leakage errors may affect the solution. In addition,

local gravity data cannot match the quality of the global data in the lower frequencies

due to various systematic errors (Heck, 1990). The lowest degree that can be resolved

from local data is lmin = 180◦/θ, where θ stands for the data block size. Due to

the good quality of satellite data, however, a minimum degree of lmin = 2 · 180◦/θ is

recommended for the second and third combination step. In this thesis, the airborne
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and terrrestrial gravity data are reduced by topographic and atmospheric effects. This

provides a smooth residual field that is easier to combine. In addition, the gravity data

are downward continued to the reference sphere before they are combined with other

data.

Example. Let local terrestrial gravity data be provided on a 5′ × 5′ grid in an area of

5◦ × 10◦. Then the coefficients that can be resolved from this data are lmin = 36 ≤ l ≤
2160 = lmax. However, only coefficients in the band of lmin = 72 ≤ l ≤ 1080 = lmax will

be solved for in this thesis.

Geoid Determination

Geoid determinations based on a combination of heterogeneous gravity data have been

done in numerous ways. In this thesis, two strategies are proposed that are based on

the concepts of tailoring and the remove-restore technique. The first strategy is shown

in Figure 4.5. As before, a combined model (∆C̄A
lm, ∆S̄A

lm) is computed using satellite

and geopotential data. This model serves as reference model in the remove-restore

technique. A combined gravimetric geoid can be obtained.

The strategy is especially advantageous for local geoid determinations. Since satellite

models are low-frequency in nature, the satellite spectrum does not necessarily overlap

with the local data spectrum. Hence, the remove-restore combination with local data

would leave some frequencies unresolved – the geoid is spectrally incomplete. The com-

bination of satellite data with a combined geopotential model increases the bandwith of

the satellite model. The information content of the satellite data is somewhat stretched

into higher frequencies. The new model is of better quality in the lower frequencies and

maintains the bandwidth of the initial model. Consequently, the new model reduces

to the problem of finding a proper spherical cap radius and modification degree in the

(Poisson and Stokes) integrations. Hence, a refined local geoid can be expected by such

a combination.

The second strategy uses two local or regional gravity data sets and satellite data.

The computational steps of this combination are shown in Figure 4.6. In the first

step, the satellite data and a geopotential model data are combined. This can be done
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∆g′ = ∆gS −∆gM
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Figure 4.5: Geoid determination using satellite and a local gravity data set

using the above-mentioned iteration scheme. The new model (∆C̄A
lm, ∆S̄A

lm) is the

initial model for the combination with airborne gravity data (δg). A high-degree model

∆C̄B
lm and ∆S̄B

lm is obtained through iteration. It serves as a reference field for the

terrestrial gravity data in the remove-restore technique and a combined geoid based on

satellite, airborne and terrestrial gravity data can be computed. It should be noted

that the strategy can also be used for airborne data that are given in a small area. The

iteration method preserves the information content of the data as will be demonstrated

in Chapter 6.

4.4 Quality of the Combination Strategies

To evaluate the quality of the combination strategies, two tests were performed. The

first test aimed at the development of a high-degree model based on two local data sets

and a global model. In the second test, in turn, a combined local geoid was computed

using the same simulated data. Closed-loop simulations were performed.

The simulated local gravity data were gravity disturbances and gravity anomalies.

They were computed from the GPM98a (Wenzel, 1998b) up to degree and order 1800

in a 10◦ × 5◦ area. The gravity disturbances were predicted to a (flight) height of

600 m on a 5′ × 5′ grid. Furthermore, the gravity disturbances were burdened with
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Figure 4.6: Geoid determination using satellite, airborne and terrestrial gravity data

noise of zero mean and 1.5 mGal STD. The gravity anomalies in turn, were computed

at varying topographic heights (mean=297.9m, std=171.8m). The anomalies were

disturbed with noise of 2mGal STD (independently computed from the noise for the

gravity disturbances). The parameters for the local data were selected with the actual

data in mind, which will be described in Section 5.2. The statistics of the noisy input

data and the reference undulations from GPM98a are provided in Table 4.2.

Table 4.2: Input data statistics for the combination

Type Min Max Mean Std Unit

NGPM98a −36.817 −25.750 −32.054 3.151 m

δgGPM98a + e −65.660 57.853 −18.644 16.362 mGal
∆gGPM98a + e −58.603 69.754 −8.827 16.130 mGal

The computational flow of the first test is shown in Eq. (4.14). Essentially, it

represents the combination strategy shown in Figure 4.4. The GPM98a was used as an
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initial model in the iteration process. The local gravity disturbances were used in the

first iteration yielding the model SM1. SM1 is a tailored, high-degree model developed

up to degree and order 900. In the second step, the SM1 was used as initial model

for the combination with noisy gravity anomalies. The high-degree model SM2 was

obtained. Comparisons were made to the GPM98a, where GPM98a is considered to be

the true solution. The differences indicate how sensitive the combination strategy is to

noisy data. Furthermore, the magnitude of aliasing effects can roughly be estimated.

Aliasing may occur since SM1 and SM2 are truncated models and the input gravity

data contain higher frequencies.

GPM98a → δgGPM98a + e→ SM1 → ∆gGPM98a + e→ SM2

l l
GPM98a GPM98a

(4.14)

Undulations were computed of SM1 and SM2 for a smaller output area of 2◦×1◦ in order

to avoid edge effects. The results of the first test are shown in Figure 4.7 where the

first bar stands for the mean difference and the second bar for the standard deviation

in each case. The remaining differences to the true solution are at the cm-level. Hence,

the iteration scheme alleviates the effect of aliasing and data noise.

The second test was based on the combination strategy presented in Figure 4.6. The

combination output is a combined local geoid based on three data sets. Eqn. (4.15)

shows the computational flow.

GPM98a → δgGPM98a + e→ SM1 → ∆gGPM98a + e→ N̂

l l
GPM98a GPM98a

(4.15)

The first combination is identical to the previous test, see Eqn. (4.14). Yet, the second

combination transforms the local gravity data directly into geoidal undulations by the

Stokes integral. Since the gravity anomalies were simulated at varying topographic

heights, the data are downward continued first using the Abel-Poisson integral. While
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the Poisson integration kernel was modified by the VK modification, the Stokes kernel

function was modified using the FEO modification (LS = 180, LMD = 180). The

undulations were then compared to the undulations from GPM98a. The results, shown

in Figure 4.7, are indicated by the last pair of bars. Analogous to the first test, the

local data noise does not propagate through the computations. It is filtered out by the

iteration method in the first combination and by the Stokes integration in the second

combination. Thus, the combination strategy can provide reliable solutions even when

the local data contain (white) noise.
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Figure 4.7: Undulation differences compared to GPM98a [cm]; first bar stands for mean
difference, second bar is standard deviation

In conclusion, both combination strategies can be used for the combination of real

satellite, airborne and terrestrial gravity data. Numerica results will be presented in

Chapter 6.

4.5 Combining a Satellite Model with a Geopotential

Model

A satellite-only model was combined with a geopotential model using the combination

strategy presented in Figure 4.3. The most recent satellite model EIGEN-2 from the

satellite mission CHAMP and the geopotential model EGM96 were used. It can be safely
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assumed that the two models are independent. Three tests were performed that reveal

advantages of the combination approach as well as some of its limitations.

The first combination was done for an area enclosing most of Canada (30◦ ≤ ϕ ≤ 80◦

and 240◦ ≤ λ ≤ 310◦). Mean gravity anomalies were computed from the EIGEN-2

model on a 0.5◦ × 0.5◦ grid on the reference sphere R. The summation in Eqn. (4.7)

was performed for l = 2 − 120, i.e. the gravity anomalies have a resolution down to

spatial scales of 167 km. The EGM96 was used as an initial model in the iteration. After

10 iteration steps, the new model has a rms difference of less than 0.5mGal compared to

the EIGEN-2 gravity anomalies. It will be called CSM360, short for Canadian Spherical

harmonic Model up to degree and order 360.

Figure 4.8 provides more information on the model. Figure 4.8 (a) shows the differ-

ences of the CSM360 and the EGM96 in terms of anomaly degree variances. Differences

are visible in all frequencies with a peak at degree l = 120. This is the maximum

frequency of the EIGEN-2 gravity data. The iteration extends the satellite information

to higher degrees; the iteration provides a smooth continuation up to degree 360. The

coefficient differences between CSM360 and EGM96 are plotted in logarithmic scales in

Figure 4.8 (c). Up to degree l = 120, differences in zonal (m = 0), sectorial (l = m) and

tesseral (l 6= m, m 6= 0) harmonics are visible. Beyond this degree, the magnitudes of

the coefficients differences are much smaller indicating that the satellite model does not

significantly contribute to these frequencies. Finally, Figure 4.8 (d) compares geoidal

undulations computed from the EGM96 and the CSM360. The differences range from

-7.850m up to 7.303m over the area shown (mean=-0.022m, std=1.443m).

In the second test, mean gravity anomalies from EIGEN-2 were computed for a much

smaller area, namely 43◦ ≤ ϕ ≤ 48◦ and 280◦ ≤ λ ≤ 290◦. The chosen grid size was

5′ × 5′. The first 30 degrees of the initial model were unchanged in order to avoid

possible leakage problems. After 5 iterations, the rms variations between the newly

computed anomalies and the input anomalies were insignificant and remained at a

constant level of 1.3mGal. The model tailored to the local area will be referred to as

EGM96e. Differences to the EGM96 are shown in Figure 4.9. Due to the smaller data
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Figure 4.8: Differences between the EGM96 and CSM360

area, the differences of the EGM96e compared to the initial model EGM96 are much

smaller than in the previous test. The differences in terms of anomaly degree variances,

for instance, are always less than 0.0025mGal2 with an expected peak at degree l = 120.

Figure 4.9(b) shows that the differences to the EGM96 are smaller than in the previous

test. Beyond degree 120, the differences are mainly in the sectorial harmonics (l = m).

As expected, local changes affect the entire set of spherical harmonics since spherical

harmonics are globally supported. Hence, EGM96e is invalid outside the data area. This
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Figure 4.9: Differences between the EGM96 and EGM96e

can be easily seen in Figure 4.9(c). EGM96 and EGM96e undulations are computed for

a larger area than the data area. The differences show a typical pattern of the Pellinen

smoothing function and emphasize that the computed model EGM96e cannot be used

outside the original data area.

A third combination was performed in the area of the first test (30◦ ≤ ϕ ≤ 80◦ and

240◦ ≤ λ ≤ 310◦). Gravity anomalies from EIGEN-2 were predicted to a 0.5◦×0.5◦ grid

for the frequency band between l = 2 − 140. In this case, however, the contributions
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δ∆C̄lm and δ∆S̄lm were weighted using spectral weights. Since error measures are

available from EIGEN-2 and EGM96, the spectral weights can be obtained from least-

squares collocation as, see Table 4.1,

pl =


(εEIGEN2
l )−1

(cEIGEN2
l )−1 + (εEIGEN2

l )−1 + (εEGM96
l )−1

for l ≤ LS = 140

0 for l > LS

(4.16)

where εEIGEN2
l and εEGM96

l are the error-degree variances of the satellite data and the

model, respectively. cEIGEN2
l are the signal degree variances from the satellite data.

Alternatively, the signal degree variances from EGM96 (cEGM96
l ) could be used. The

spectral weights are shown in Figure 4.10 (a). The satellite data obtain full weight

in the lower degrees. Yet, the weights decrease rapidly with increasing degree since

the satellite error degree variances are increasing. Clearly visible is a jump at around

degree 70, which is caused by the EGM96 error degree variances. Beyond this degree,

the satellite data gain more weight up to degree 140, which is the maximum degree

of the model. The weights are forced to be zero beyond degree 140 since there is no

additional satellite information. The actual computation by iteration was equivalent

to the first combination (except that the weights are used). The iteration seemed to

converge after about 9 iterations. However, the final rms difference remained at a

high level of 16.9mGal compared to the gravity anomalies from EIGEN-2 (14000 data

points). This may be due to the fact that the weights were set to zero beyond degree

140 and the iteration could not adjust higher degrees.

Figures 4.10 (b-d) show the differences between the tailored model CSM360w and

EGM96 after the combination. Figure 4.10 (b) are the anomaly degree variance differ-

ences between the new model and the EGM96. The changes are of the same magnitude

as for the first combination, see Figure 4.8 (a). However, the differences are limited

up to degree 140. This is also visible in Figure 4.10 (c), which shows the coefficient

differences between the two models CSM360w and EGM96. As a result, the CSM360w

spectrum has a small discontinuity at degree 140 which may have adverse effects. Fi-

nally, the undulation differences between the tailored model CSM360w and EGM96 are
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Figure 4.10: Differences between the EGM96 and CSM360w

shown in Figure 4.10 (d). The differences (std=1.104m) are slightly smaller than in

the first combination since the degrees 141-360 in CSM360w are unchanged EGM96

coefficients. However, the CSM360w is biased (mean=-0.219m) compared to EGM96.



5 From Theory to Application

This chapter analyzes gravity data from a conceptual point of view. Following Schwarz

(1984) in the main points, further studies on the upward and downward continuation

as well as remarks on the temporal variability of the gravity field will be made. In

addition, the gravity data to be used in Chapter 6 will be analyzed.

5.1 General Considerations

Four gravity data characteristics are investigated:

i) Spectral sensitivity

ii) Resolution

iii) Height

iv) Temporal variability.

Both deterministic and stochastic parts of gravity data can be described by the above

criteria.

Spectral Sensitivity

Schwarz (1984) coined the term spectral sensitivity, i.e., different gravity functionals

have the main power in different parts of the spectrum. Although the functionals the-

oretically resolve all frequencies, the measuring process limits the actual spectral range

(bandlimitation). The spectral sensitivity of different gravity functionals is demon-

102
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strated in Table 5.1. It compares the power of some functionals computed from model

degree variances. The Tscherning-Rapp degree variance model is used, see Tscherning

& Rapp (1974) or Appendix A.2.

The following conclusions can be made: Geoidal undulations N are clearly low-

frequency in nature. Thus, gravity measurements that have power in the lower fre-

quencies will have a large impact on the geoid. Gravity anomalies and gravity dis-

turbances mainly cover the low to medium frequency range, while the second-order

derivatives of the potential obtained from gravity gradiometry may resolve higher fre-

quencies. These measurement types may be advantageous for resource exploration

purposes where higher frequencies are decisive. In conclusion, the higher the order of

the derivative (of the potential), the higher the sensitivity to the higher frequencies.

Additional measures for the spectral sensitivity are collected in Table 5.2. The measures

can be derived for every (isotropic) functional of the disturbing potential (Haagmans

& van Gelderen M., 1991; Sneeuw, 2000).

Table 5.1: Spectral sensitivity

Functional 2 ≤ l ≤ 36 37 ≤ l ≤ 360 361 ≤ l ≤ 3600 3601 ≤ l ≤ 36000

N 99.2% 0.8% 0.0% 0.0%
∆g 22.5% 41.9% 32.7% 2.8%
δg 32.2% 37.3% 28.1% 2.4%
Trr 0.0% 0.8% 39.0% 60.2%

Resolution

Closely related to the term spectral sensitivity is the resolution. Eqn. (5.1) summarizes

the main components and indicates connections.

Resolution


spatial : coverage ←→ density

l l
spectral : leakage ←→ aliasing

(5.1)
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Table 5.2: Measures for spectral sensitivity

measure abbreviation one-dimensional two-dimensional

signal degree variance cl

l∑
m=−l

clm clm

error degree variance εl

l∑
m=−l

εlm εlm

root-mean-square RMSl

√
1

2l + 1
εl

signal-to-noise ratio SNRl

√
cl
εl

|clm|
εlm

gain GAINl
εold
l

εnew
l

εold
lm

εnew
lm

power POWl
εl∑∞
l=2 εl

commission variance εc
l

ηres∑
l=2

εl

omission variance εo
l

∞∑
l=ηres+1

εl

∗ ηres is the degree-of-resolution, i.e., the maximum degree with signal-to-noise ratio smaller than 1
∗∗ RMSl, GAINl, POWl, εc

l and εo
l can be also calculated for signal degree variances cl

While the data coverage (global, regional, local) limits the low frequency part of the

spectrum, the data density (low, medium, high) represents the upper limit that can

be resolved from a data set. Spectral leakage and aliasing can be considered as the

spectral equivalents of the data coverage and data density. For further explanations

and discussions, Schwarz (1984) should be consulted. The mathematical link between

spatial and spectral resolution is provided in Table 5.3. Hence, the terms can be used

synonymously; they are different in unit and/or scale. Note that spatial resolution is

often expressed in half-wavelengths.

Example. For degree l = 2160, aircraft speed v = 50 m/s and a geocentric radius given

as r = R + H = 6371000m + 4000m, the spectral resolution is given as f = lv
2πr

.
=

0.0027Hz (corresponds to a spatial resolution down to x = πr/l = 9.272 km). Typical
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low-pass filters in airborne applications have cut-off frequencies between fc = 0.0050

(=200 s filter) and fc = 0.0166 Hz (=60 s filter).

Table 5.3: Link between spatial and spectral resolution

v [m/s] – speed, f l θ x
r [m] – radius [Hz] [-] [◦] [m]

Spectral resolution f 1
lv

2πr

180v

2πrθ

v

2x

Spherical harmonic degree l
2πrf

v
1

180

θ

πr

x

Block size θ
180v

2πrf

180

l
1

180x

πr

Spatial resolution x
v

2f

πr

l

πrθ

180
1

Height – Attenuation/Amplification

The measurement height plays a significant role when combining gravity data. The

gravity field tapers off with approximately 1/l3 (Kaula, 1966). At altitude r = R+H,

this attenuation effect is expressed by (R/r)l+1. Figure 5.1(a) shows this attenua-

tion process using geoidal undulations of 1 cm at all frequencies. When the geoidal

undulation is upward continued to heights of 1 km, 5 km, 10 km or even 100 km, the

attentuation effect is clearly visible. For instance, 1 cm upward continued to a height

of 5 km will result in a geoidal undulation of only 0.5 cm at degree 1000. Thus, the

main goal in a high-resolution gravity field determination is to counteract this atten-

uation effect by collecting measurements as low as possible. In addition, measuring a

functional of the potential that is sensitive to the desired frequencies will improve the

situation (ESA, 1999).

Remark 5.1 Figures 5.1 (a) and (b) are of qualitative nature and possibly too optimistic

for real data.

When measurements are collected at a certain height, the downward continuation to
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the surface of the Earth or the geoid leads to an amplification of the high frequencies

of the data. The amplification process is shown in Figure 5.1(b). Gravity disturbances

of 1 mGal magnitude at all frequencies are downward continued from different heights.

The conversion into undulations is simultaneously done by r
l+1

( r
R
)l+1. For instance, the

above figure indicates that 1mGal at 5 km height at 5 arcmin spacing results in an effect

of approximately 5 cm in terms of geoidal undulations.
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Figure 5.1: Attenuation and amplification

Temporal Variability

The gravity field can be decomposed into a static part and a smaller time-variable part.

The time-variable part is on the order of a few millimeters to centimeters when expressed

in geoidal heights (NRC, 1997). It is caused by several (superposed) geophysical effects.

The most prominent causes, their peroids, wavelengths and approximate magnitude

(g ≈ 9.8 m/s2) are shown in Figure 5.2. Not shown are the tidal effects (magnitude of

about 10−7g (Torge, 2001)) that would spread over a wide range of periods.

Gravity changes in time can be detected when gravity measurements are collected or

derived at different times over the same area with comparable quality. This is expected
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for the satellite mission GRACE. Assuming a successful mission, it will provide spherical

harmonic coefficients with an unprecedented accuracy every few weeks. Global changes

can be detected down to spatial scales of a few hundred kilometers. According to Wahr

et al. (1998), GRACE will be able to detect monthly changes in water storage to accu-

racies better than 1 cm. One principal challenge is to isolate individual effects/causes

from other effects or measurement errors. Sensitivity analyses and combination of

GRACE data with previous models may differentiate individual effects. Notwithstand-

ing the fact that the gravity data at hand may vary in time, this characteristic will be

neglected in the following.

Figure 5.2: Geophysical effects in periods, wavelengths and magnitude (from Verhagen
(2000); NRC (1997))

5.2 Specific Considerations

Global Gravity Data

Global gravity data are typically provided in spherical harmonics. They are either

calibrated satellite models or combined geopotential models (resulting from a combi-

nation of different gravity data sources). The main characteristics of current satellite
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models are their limited resolution (band-limited spectrum) and high quality in the low-

frequencies. The low resolution (an expected maximum 100 km using GOCE) is mainly

due to the attenuation effect at satellite altitude and, thus, the downward continuation

problem. Yet, the quality at the lowest scales is unmatched.

The combined geopotential models are usually unencumbered by specific satellite

mission goals. They aim at providing high-resolution global gravity solutions for a

maximum number of applications. Due to the use of heterogeneous gravity data, the

models represent an optimally weighted solution that enjoys higher quality and reso-

lution. However, they may have been created using the same terrestrial gravity data

that will also be used in the application at hand. Hence, to make the combined solu-

tion immune to the inevitable error correlations, satellite data are favoured. Combined

geopotential models only come into play for the computation of truncation errors and

to increase the limited resolution of the satellite data.

A comparison of different global models is presented in Table 5.4. More information

on these models, including their data sources, can be found in Bouman (1997). Most

of the models are obtained from Wenzel (1998a). Note that some of the models are

not complete in degree and order. The commission error is computed whenever the

standard deviations of the coefficients are provided. The formula used is shown in

Table 5.2 (ηres is set to the maximum degree of the model). To obtain the commission

error for the two functionals (geoidal undulations and gravity anomalies) the singular

values from the Meissl scheme are employed. The omission error is computed using

the Tscherning-Rapp degree variances starting from the maximum degree of the model

(plus 1) up to degree 25000. GRS80 is used as a reference ellipsoid.

Example. The models GPM98a,b,c are complete to degree and order 1800, which

corresponds to a spatial resolution of about 12 km half-wavelength. Since standard

deviations of the coefficients are unavailable, only the omission error is computed from

degree 1801 to 25000. The error is about 3 cm in terms of geoidal undulations and

about 13mGal for gravity anomalies. The errors are cumulative errors.

Three of the global models, shown in Figure 5.3, are used in this study. They include
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Figure 5.3: Signal and error anomaly degree variances of some global models [mGal2]

the Earth Geopotential Model (EGM96) (Lemoine et al., 1998) and two satellite models

from the CHAMP satellite mission (EIGEN1S, EIGEN-2). For details on the CHAMP

mission, its objectives and further results refer to Reigber et al. (2002a,b). The anomaly

degree variances of the three models cl(∆g), shown in Figure 5.3 (a), are similar up

to degree and order 50. The error degree variances in Figure 5.3 (b) underscore the

quality of the satellite solutions. Beyond degree 50, the satellite data seem to have less

power than EGM96. The EIGEN-2 is most likely correlated with the Kaula rule since it

closely follows it. The Kaula rule may have been used to stabilize the normal equation

system.

Local Gravity Data

The test area for this study is located close to Ottawa (Ontario, Canada); see Figure

5.4 for the general situation. The location was selected due to its large variations in

the gravity field (mean=-9.6mGal, std=21.7mGal), yet relatively small topographic

height variations (mean=297.9m, std=171.8m). Furthermore, the location was conve-

niently located for one of the major Canadian airborne gravimetry companies, Sander

Geophysics Ltd. It supplied the necessary airplane for the airborne test and provided
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further facilities. The airborne campaign took place in April and May 2000 and included

the following participants:

Sander Geophysics Ltd. (SGL)

Intermap Technologies Corporation (Intermap)

Geodetic Survey Division Canada (GSD)

The University of Calgary (UofC)
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Figure 5.4: Location of the test area

The main purpose of the test was to compare the performance of three different airborne

system types. Bruton et al. (2002) and Bruton (2000) should be consulted for further

details of the flight campaign. The principal conclusion was that airborne gravity data,

although measured with different devices, can provide accurate and reliable estimates

of the gravity field. Comparing the airborne data from the different airborne systems

to ground gravity anomalies showed only minor accuracy differences (between 0.7mGal

and 1.5mGal). Since methodology and technology enhancements have gone hand in

hand over the years, the quality of airborne gravimetry is most likely better than ground

gravity measurements in the medium to high-frequency band (Glennie et al., 2000). The
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remaining differences are, in part, due to the ground gravity data. Further studies on

their quality are still needed.

Two of the systems provided very good results – the three-axis stabilized platform

system by SGL and the gravimeter based on an off-the-shelf strapdown inertial navi-

gation system (SINS) owned by Intermap and operated jointly by Intermap and UofC.

Details on the principles of these gravimeters can be found in Schwarz & Li (1996);

Glennie (1999); Czombo & Ferguson (1995). The airborne data sets were cross-over

adjusted and were gridded to a 5′×5′ grid using least-squares collocation. The effective

data area was 1◦ × 1◦. Since geoid determination necessitates a larger data coverage,

the airborne data area was artificially extended by gravity disturbances predicted from

either EGM96 or GPM98a (depending on the test).

Terrestrial gravity anomalies were provided by the GSD and cover an area of 10◦×5◦.

The free-air anomalies are shown in Figure 5.2. It is worth noting that they are strongly

correlated with the topography. The airborne flight path is plotted on top of the

anomalies.
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Canadian Gravimetric Geoid (CGG2000)

The Canadian Gravimetric Geoid of 2000 (CGG2000) is used as a reference geoid in

this thesis. This description of it closely follows the technical report by Véronneau

(2001). The geoid was computed at GSD and was developed in close collaboration

with the University of Calgary (Dr. Sideris) and the University of New Brunswick (Dr.

Vańıček). The geoid is based on the so-called Stokes-Helmert scheme, which means

that residual gravity anomalies were transformed into geoidal undulations using the

Stokes integral and that the 2nd Helmert condensation method was used. The remove-

restore technique was applied with EGM96 up to degree LS = 30. The VK Stokes

kernel function was used with a spherical cap radius of ψc = 6◦ and modification degree

LMD = 30. The Stokes integral was evaluated by 1D-FFT to speed up the numerical

computations. Indirect effects for the topography and atmosphere were computed (first

and second). Also, ellipsoidal corrections were taken into account and the primary

indirect effect for the EGM96. The CGG2000 did not include, however, the downward

continuation process. The geoid covers most of North America; yet is optimized for

Canada. It fits 1090 GPS-levelling benchmarks across Canada with a mean of -0.260m

and 0.179m STD. The reference ellipsoid is GRS80.

The CGG2000 is used in this thesis since only eight GPS-levelling benchmarks are

available in the area under study. As they are very close to each other, no representive

surface can be fitted to them. However, since the CGG2000 fits the GPS-levelling points

in the area with cm-accuracy (Véronneau, 2001), it was decided that the CGG2000 could

be used alternatively. It must be noted that some of the solutions presented in this

thesis are based on the same input data as CGG2000 – the same gravity anomaly data

and EGM96 were used. Therefore, the results are expected to be close to the CGG2000

with remaining differences mainly due to a smaller integration area, integration cap,

the neglected ellipsoidal corrections and the applied downward continuation.
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6 Real Data Results

Individual and combined solutions over the Ottawa test area are presented. Three test

areas are under consideration, namely A0, A1 and A2. A0 is the ground data area with

7200 data points. A1 is the area after the downward continuation process and A2 is the

final output area for which most of the comparisons will be made.

Area A0

280◦ ≤ λ ≤ 290◦

43◦ ≤ φ ≤ 48◦

7200 points

−→

Area A1

282◦ ≤ λ ≤ 288◦

44◦ ≤ φ ≤ 47◦

2592 points

−→

Area A2

284◦ ≤ λ ≤ 286◦

45◦ ≤ φ ≤ 46◦

288 points

(6.1)

It should be noted that all analyses presented in this chapter are empirical in nature.

Hence, the solutions are affected by the quality of the data.

Geoid Heights and Zero-Degree Term

The quantity under study is the geoid height N . It is computed from Bruns’s formula

as follows (Heiskanen & Moritz, 1967; Rummel & Teunissen, 1988)

N =
T −∆W0

γ
(6.2)

114



6 Real Data Results 115

where ∆W0 = W0 − U0 is the reference potential anomaly. Geoid heights are derived

from a satellite spherical harmonic model or the Stokes integral as

N = N0 +N1 + N̂ (6.3)

where N0 is the zero-degree term, N1 is the first-order term, i.e. the deviation between

the center of mass of the reference ellipsoid and the center of mass of the Earth and N̂

is estimated from a satellite model or Stokes’ integral. N1 is neglected in this thesis,

i.e. it is assumed that the center of mass of the reference ellipsoid and the center of the

actual mass coincide. The zero-order term is computed as

N0 = −(W0 − U0)

γ
+
GM −GM0

Rγ
= −∆W0

γ
+

∆GM

Rγ
≈ −0.422 m (6.4)

where R = 6371008.771 m, γ = 9.79764466 m/s2, GM0 = 0.3986005 · 1015 m3/s2 and

U0 = 62636860.85 m2/s2 are taken from GRS80, see Moritz (1980a) or Table A.9 in the

Appendix. In accordance with the official Canadian Gravimetric Geoid (CGG2000), the

geocentric gravitational constant GM of the actual Earth is assumed to be the EGM96

value (GM = 0.3986004415 · 1015 m3/s2). W0 = 62636855.8 m2/s2 has been adopted as for

the CGG2000 (Burša et al., 1997; Véronneau, 2001). Thus, geoid heights or undulations

represent the vertical separation between the geocentric reference ellipsoid GRS80 and

W0 along the ellipsoidal normal, see Figure 6.1.

U = U0

W = W0

Reference Ellipsoid

Reference Equipotential
6

N =
T −∆W0

γ

Figure 6.1: Separation between the reference ellipsoid and an adopted reference equipo-
tential



6.1 Individual Solutions 116

Remark 6.1 Note that some of the models have a semimajor axis a that is different

from the reference ellipsoid GRS80. For instance, the semimajor axis of GRS80 is a0 =

6378137.0 m, while the semimajor axis of EGM96 is a = 6378136.3 m. The difference

of ∆a = 70 cm should not be neglected (Véronneau, 2003).

6.1 Individual Solutions

Individual solutions are presented first, i.e., satellite, airborne and ground data are not

combined to a unified solution. This may help to identify problems in the combined

solutions and demonstrates the feasibility of the strategies.

Satellite Models and Geopotential Models

Two satellite models and two geopotential models were compared to the current geoid

model CGG2000 (Véronneau, 2001). In addition, the tailored models CSM360 and

CSM360w were used. The area under study was the output area A2. The statistics of

the undulation differences to the CGG2000 are presented in Figure 6.2 or Table B.6 in

the Appendix. The first bar in Figure 6.2 stands for the mean difference and the second

bar for the standard deviation.

EGM96 GPM98a EIGEN1s EIGEN−2 CSM360 CSM360w
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Figure 6.2: Undulation differences between the CGG2000, satellite models and geopo-
tential models [cm]; first bar stands for mean difference, second bar is the
standard deviation
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The results indicate a relatively good agreement between the models and the official

geoid model. Especially the EGM96 and the tailored model CSM360 agree to about

98% with the official geoid (in terms of mean differences). The differences are shown in

Figure 6.3. The good fit of the EGM96 is not surprising, though, as the CGG2000 used

EGM96 up to degree and order 30 (Véronneau, 2001). The tailored models CSM360

and CSM360w in turn involved EGM96 as the initial model.

  76oW  40’  20’   75oW  40’  20’   74oW 
45oN 

 12’ 

 24’ 

 36’ 

 48’ 

46oN 

−0.2

0

0

0.2

0.2

−0.2

−1 −0.5 0 0.5 1

(a) EGM96 -CGG2000

  76oW  40’  20’   75oW  40’  20’   74oW 
45oN 

 12’ 

 24’ 

 36’ 

 48’ 

46oN 

−0
.4

−0
.2

0

0

0.2

0.
2

0.4

0.
4

0.6

0.6

0.8

0.
8

1

−1 −0.5 0 0.5 1

(b) EIGEN-2 -CGG2000

Figure 6.3: Differences between CGG2000 and two models [m]

Geoid Based on Ground Data

A local geoid based on ground gravity data and the EGM96 was computed. All com-

putational steps are summarized in Eqn. (6.5), i.e. the remove-restore technique was

used. No surface fitting or bias removal was performed.

Remove : ∆g′(r) = ∆g −∆gEGM96 + δATOP + δAATM

Transformation : ∆g′(r)→ ∆g′(R)→ T̂ ′

Restore : N̂ = N0 + T̂ ′/γ + TEGM96/γ + δV TOP/γ + δV ATM/γ

(6.5)

The EGM96 was used up to degree and order 180 in ∆gEGM96 and TEGM96. Hence,

the far-zone effects can be computed from 181 to 360 when the EGM96 is to be used
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for the computation of the truncation error. Note that the topographic (δATOP) and

atmospheric (δAATM) direct effects have to be added (attractions are the positive radial

derivative of the potential). Secondary indirect effects as well as far-zone topographic

and atmospheric effects were neglected due to their small influence in the specific area,

see also Novák et al. (2003b). The downward continuation (∆g′(r)→ ∆g′(R)) did not

involve numerical problems due to a spacing of 5 ′× 5 ′ and a small continuation height

(average height=297.870m). The upward continuation of the Helmert gravity anomalies

from the geoid to the Helmert co-geoid was neglected since its effect is less than 0.1 cm

(Vańıček et al., 1999). The FEO kernel modification was used in the Stokes integration

to ensure a small far-zone effect (LMD = 180) and the VK modification (LMD = 180)

in the Poisson integration as recommended in Huang (2002). A spherical cap of 1◦ was

used in both integrations. The statistics of the applied steps are summarized in Table

6.1.

Table 6.1: Statistics of the geoid based on ground gravity data

Data/Effect/Result Min Max Mean Std Unit Area

∆g −70.390 82.772 −9.566 21.669 mGal A0
δATOP (DTE) −8.086 28.399 0.374 2.344 mGal A0
δAATM (DAE) 0.750 0.870 0.840 0.017 mGal A0
∆gEGM96 −39.646 26.579 −8.169 14.834 mGal A0
∆g′ −54.637 79.110 −0.183 15.868 mGal A0

∆g′(R) −54.751 85.712 0.020 15.011 mGal A1

T̂ ′/γ −0.398 0.450 −0.009 0.212 m A2

δV TOP/γ (PTE) −0.022 0.000 −0.003 0.004 m A2
δV ATM/γ (PAE) −0.007 −0.006 −0.006 0.000 m A2
TEGM96/γ −33.898 −30.352 −32.508 0.828 m A2

N̂ −33.996 −29.909 −32.526 0.872 m A2

N̂ - CGG2000 −0.097 0.066 −0.023 0.038 m A2

Figures 6.4 (a) and (b) show the original (∆g) and the residual gravity anomalies

(∆g′). The residual (Helmert) anomalies are correlated with the topography; yet they

are considerably smoother than the original data. The topographic and atmospheric
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indirect effects are small due to the small topographic height variations. For a com-

parison of the 2nd Helmert condensation with the 1st Helmert condensation refer to

Appendix B.1.
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Figure 6.4: Determination of a local geoid based on ground gravity anomalies

As expected, the two solutions are very close, since they essentially use the same data

sets. However, the (local) geoid based on ground gravity data is slightly biased with
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respect to the CGG2000. This is most likely due to the use of EGM96 up to degree 180

vs. degree 30 for CGG2000. In addition, the use of a much smaller spherical cap (1◦ vs.

6◦) and the applied downward continuation may have adversely affected the local geoid

determination. However, the local geoid exhibits most of the features of the CGG2000

geoid when comparing figures 6.4 (c) and (d). The quality of the geoid confirms the

feasibility of the applied strategy.

The effect of different Stokes kernel modifications on the local geoid is shown in

Figure 6.5. The rms undulation differences compared to the FEO kernel are presented.

All other steps such as the reductions and the downward continuation process were the

same. Clearly, the use of the spherical kernel results in an undulation difference of up

to 6 cm compared to the FEO kernel while the MO, M, JK and the VK kernels agree

within a cm with the FEO solution. Somewhat surprising is the performance of the HG

kernel function with a rms difference of about 4 cm. The reason for the relatively large

difference is unclear at this point.

Spherical MO M JK S HG VK
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Kernel Modifications

Figure 6.5: Effect of different Stokes kernel modifications

Geoid Based on Airborne Data

Principally, the geoid determination based on airborne data followed the same steps

as for the ground data. Additional difficulties arose, however, as the airborne data at

hand are limited in their spatial extent; a geoid determined from a 1◦ × 1◦ data area
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would be burdened with large edge effects. Therefore, to preserve the airborne gravity

information, gravity disturbances from EGM96 were predicted around the data area,

see Figure 6.6 (a). The aforementioned effects were alleviated since the data area was

(artificially) extended. The airborne data have a higher frequency content than the

EGM96 data and are clearly noticeable in the center of the data area. Alternatively,

GPM98a gravity disturbances could be predicted around the airborne data, yet this did

not yield better results.

EGM96 : δg = [δgAIR; δgEGM96]

Remove : δg′(r) = δg − δgEGM96 + δATOP + δAATM

Transformation : δg′(r)→ δg′(R)→ T̂ ′

Restore : N̂ = N0 + T̂ ′/γ + TEGM96/γ + δV TOP/γ + δV ATM/γ

(6.6)

Eqn. (6.6) summarizes the remove-restore technique for airborne gravity disturbances.

Again, no bias removal or surface fitting was performed. Note that the direct effects were

computed at flight height and are slightly smaller than for the ground case. Analogous

to the previous case, the FEO kernel modification was used in the Hotine integration

(LMD = 180). Table 6.2 gives the statistical values for the local geoid based on airborne

data. A bias of about 1.2 cm is obtained and a standard deviation of about 15 cm

when compared to the CGG2000. Clearly, the geoid based on airborne data suffers

from the use of the predicted EGM96 gravity data. This conclusion can be drawn from

inspecting Figure 6.6 (c). Although the general direction of the geoid agrees with the

ground geoid, the geoid based on airborne data is much smoother than the ground geoid.

High-frequency features do not show up in this geoid. Hence, a different combination

strategy has to be found for the airborne data.

Remark 6.2 An additional test was performed with ground data in the same area as the

airborne data. Similar to the airborne case, EGM96 anomalies were predicted around

the limited data area. The obtained ground geoid agreed up to 1.7 cm rms with the geoid

based on airborne data and confirmed the quality of the airborne data.
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Table 6.2: Statistics of the geoid based on airborne gravity data

Data/Effect/Result Min Max Mean Std Unit Area

δg −58.140 62.848 −18.016 19.656 mGal A0
δATOP (DTE) −16.287 33.713 0.339 2.005 mGal A0
δAATM (DAE) 0.809 0.809 0.809 0.000 mGal A0
δgEGM96 −50.684 17.627 −17.975 15.561 mGal A0
δg′ −33.397 55.032 1.107 10.965 mGal A0

δg′(R) −29.753 51.678 1.241 9.942 mGal A1

T̂ ′/γ −0.226 0.272 0.026 0.119 m A2

δV TOP/γ (PTE) −0.022 0.000 −0.003 0.004 m A2
δV ATM/γ (PAE) −0.007 −0.006 −0.006 0.000 m A2
TEGM96/γ −33.898 −30.352 −32.508 0.828 m A2

N̂ −33.816 −30.129 −32.492 0.865 m A2

N̂ - CGG2000 −0.354 0.299 0.012 0.143 m A2

High-Degree Spherical Harmonic Model Based on Ground Data

A high-degree spherical harmonic model (TM900g) based on terrestrial gravity anoma-

lies has been developed. Such a model could be used for calibration or validation

purposes of new satellite missions such as GOCE. The high-degree model was tailored

to the Ottawa region with GPM98a as an initial model. It was developed up to degree

and order 900, i.e. down to spatial scales of about 22 km. A higher development of the

model was not deemed to provide more information and is likely to be encumbered with

numerical problems. The coefficients of the first 70 degrees were taken over from the

GPM98a in order to avoid large leakage effects. To ensure a smooth transition between

the global model and the local data, a linear weighting function was applied as follows

pl =
l − l1
l2 − l1

for 70 = l1 > l < l2 = 140 and pl = 1 ∀ l ≥ l2 (6.7)

The input ground data were reduced by the topographic and atmospheric effects. As

the downward continuation was not critical for the area under consideration, a simple

Taylor series development was used (Wenzel, 1985, pg. 57). The model was obtained

after 7 iterations with a final rms difference to the ground data anomalies of 5.882mGal.
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Figure 6.6: Determination of a local geoid based on airborne gravity disturbances

The statistics of the model and the differences to the reference geoid and the CGG2000

are provided in Table 6.3.

Although the model is band limited, the computed geoidal undulations are of similar

quality as the ones from the local ground geoid. However, the high-degree model

TM900g is slightly biased compared to the official geoid CGG2000. Furthermore, the
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Table 6.3: Statistics of the high-degree model TM900g

Data/Result Min Max Mean Std Unit Area

N̂ −33.884 −30.262 −32.539 0.756 m A2

N̂ - N̂Ground −0.353 0.261 −0.013 0.134 m A2

N̂ - CGG2000 −0.287 0.170 −0.035 0.099 m A2

standard deviation is larger than for the local ground geoid. This may be due to the

fact that the GPM98a was used as an initial model. The undulations of the model are

shown in Figure 6.7 (a). Anomaly degree variances of the model are compared to the

Tscherning-Rapp anomaly degree variances in Figure 6.7 (b). The model has slightly

less power than the Tscherning-Rapp variances beyond degree 200.
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Figure 6.7: High-degree spherical harmonic model based on ground gravity data

High-Degree Spherical Harmonic Model Based on Airborne Data

A spherical harmonic model (GM900sgl) based on airborne data has been developed up

to degree and order 900. As the airborne data were provided in a small area, gravity

disturbances were predicted from the EGM96 around the airborne data area. This
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followed the same rationale as described earlier. The gravity disturbances in A0 were

reduced by the topographic and atmospheric effects. Otherwise, the computational

steps followed the ones for the ground data. The iteration method converged rapidly

and the final rms difference between the disturbances predicted from the model and

the input disturbances was 6.693mGal after 7 iteration steps. The results are given in

Table 6.4 and Figure 6.8.

Table 6.4: Statistics of the high-degree model GM900sgl

Data/Result Min Max Mean Std Unit Area

N̂ −33.971 −30.288 −32.577 0.821 m A2

N̂ - N̂Ground −0.379 0.194 −0.051 0.095 m A2

N̂ - CGG2000 −0.313 0.137 −0.074 0.083 m A2

In this combination, the airborne data contributed to the final solution. Especially

the medium frequencies were improved by the local data. This can be concluded by

inspecting Figure 6.8 (b). Although the bias is slightly larger than for the ground data,

the obtained standard deviation is encouraging since it is about 2 cm smaller than for

the model based on terrestrial data. Since the airborne data are band-limited, the

aliasing effects are most likely smaller. In conclusion, the combination strategy based

on tailoring can preserve the information content of the airborne data.

Summary. Four individual solutions have been computed – two local geoids and two

high-degree models. All of them are of relatively good quality and the comparison

to the official Canadian Gravimetric Geoid CGG2000 may be considered as proof-of-

concept. It should be noted once again that no bias removal, surface fitting or additional

data filtering was aplied. The remaining differences to the CGG2000 are most likely

due to the use of a much smaller integration area and integration cap, the applied

downward continuation, the neglect of ellipsoidal corrections and other approximation

errors. Nevertheless, the differences are minor for the local geoid based on ground

gravity data with a bias of -2.3 cm and standard deviation of about 4 cm, see Figure

6.9. For the airborne geoid, the mean is slightly smaller than for the ground data

(1.2 cm). However, the use of predicted EGM96 gravity disturbances around the data
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Figure 6.8: High-degree spherical harmonic model based on airborne data

area adversely affected the solution and the information content of the airborne data

was not preserved.

Quite interesting is the performance of the computed high-degree models. To the best

of the author’s knowledge, these models are by far the highest developed models that

have been computed from a local data area (the models from H.-G. Wenzel are based

on global data). They provide information down to spatial scales of 22 km. Comparing

their performance to the local geoids one can conclude that the high-degree models are

of almost the same quality as the local geoids. The high-degree model based on ground

data is about 4 cm biased compared to the CGG2000 and has a standard deviation of

almost 10 cm. The high-degree model based on airborne data in turn preserves more

information from the local data area than the local airborne geoid. A bias of -7 cm

and a standard deviation of 8 cm were obtained. Hence, tailored high-degree spherical

harmonic models can be seen as an alternative to geoid modelling by integration. Since

other functionals can be computed from the models at every point in the data area

and above, the high-degree models may be beneficial for even more application areas

than a local geoid. For instance, they could be used for the calibration or validation
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Figure 6.9: Performance of individual solutions. First bar stands for mean difference,
second bar is standard deviation

of future satellite missions. With a resolution of about 22 km, they certainly provide

more high-frequency information than any current satellite-only model.

6.2 Combined Solutions

Three combination strategies are presented in this section. The first strategy aims at

a geoid computed from satellite and terrestrial gravity data. The second combination

approach is an attempt to solve for an improved geoid based on a combination of all

available gravity data over the Ottawa area, i.e., ground and airborne data. Finally,

the third combination uses the global and local gravity information for the develop-

ment of a tailored high-degree model. It should be noted that the combined solutions

provide different solutions than the CGG2000 since additional gravity information is

used. Hence, a comparison with the CGG2000 provides differences, which may be due

to either methodology or data.

Geoid Determination Based on Satellite and Terrestrial Gravity Data

Terrestrial gravity data and the CSM360 were used in the first combination. An im-

proved local geoid was the main objective. The lowest frequencies that can be resolved

from local data in a spherical cap of 1◦ is about l = 180 or a resolution of 111 km.
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Hence, combining the local data with the EIGEN-2 (LS = 140) would result in a gap

in the spectrum between l = 141 and l = 179. To ensure that the geoid contains all

frequencies, it was decided to use the CSM360 instead of the EIGEN-2 solution. Thus,

the CSM360 is considered to be a high-frequency ’version’ of the satellite data EIGEN-2.

The remove-restore technique was applied. The gravity anomalies were first reduced

for the direct topographic and atmospheric effects and by the gravity anomalies (l = 2−
180) computed from CSM360. Downward continuation of the residual gravity anomalies

was performed, which was followed by the modified Stokes integration (FEO kernel,

LMD = 180). Restoring the indirect effects and the low-frequency information from the

tailored model CSM360 led to a combined local geoid. The statistics of the solution

are provided in Table 6.5. The geoid based on a combination of satellite and terrestrial

gravity and the CGG2000 differ by about -10 cm. The bias and tilt is likely due to the

use of CSM360 rather than EGM96, compare Table B.6. This can also be concluded

from Figures 6.10 (a) and (b). The comparison of the CSM360 and CGG2000 in Figure

6.10 (a) shows the same features as Figure 6.3 (b). The differences of the combined

model to the CGG2000 are shown in Figure 6.10 (b). The bias and the tilt are clearly

visible. It should be noted once again that this difference should not be considered

as an error since gravity information was used that is not contained in CGG2000. To

evaluate the performance of the combination, a smooth surface was fitted to the geoid

which removes the bias and the tilt (Forsberg & Madsen, 1990). The fitted geoid was

computed from

N̂
Fitted

= N̂ + x̂(1) + x̂(2) cos ϕ cos λ + x̂(3) cos ϕ sin λ + x̂(4) sin ϕ (6.8)

where x̂4×1 is obtained from a least-squares adjustment (x̂ =
(
ATA

)−1
AT l) with the
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design matrix A computed as

Am×4 =


1 cosϕ1 cosλ1 cosϕ1 sinλ1 sinϕ1

1 cosϕ2 cosλ2 cosϕ2 sinλ2 sinϕ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 cosϕm cosλm cosϕm sinλm sinϕm

 (6.9)

and l given as lm×1 = N̂
CGG2000

m×1 −N̂m×1. The remaining differences are about 5 cm, see

Table 6.5. Thus, the quality of the local geoid based on satellite and terrestrial gravity

data is comparable to the individual combinations. Equivalent computations were

performed for the model CSM360w see Appendix B.4. Since the model CSM360w has

more EGM96 components, the fit with CGG2000 is slightly better than with CSM360,

see also Table B.7.

Table 6.5: Statistics for the geoid determination of satellite data and a local gravity
data set

Data/Effect/Result Min Max Mean Std Unit Area

∆g −70.390 82.772 −9.566 21.669 mGal A0
δATOP (DTE) −8.086 28.399 0.374 2.344 mGal A0
δAATM (DAE) 0.750 0.870 0.840 0.017 mGal A0
∆gCSM360 −29.173 15.180 −9.761 8.808 mGal A0
∆g′ −59.482 93.897 1.408 21.639 mGal A0

∆g′(R) −46.250 99.507 −0.125 19.830 mGal A1

T̂ ′/γ −0.864 0.688 0.004 0.336 m A2

δV TOP/γ (PTE) −0.022 0.000 −0.003 0.004 m A2
δV ATM/γ (PAE) −0.007 −0.006 −0.006 0.000 m A2
TCSM360/γ −34.419 −30.820 −32.598 1.021 m A2

N̂ −34.224 −30.157 −32.603 0.910 m A2

N̂ - CGG2000 −0.281 0.285 −0.100 0.154 m A2

N̂Fitted - CGG2000 −0.122 0.177 0.000 0.052 m A2
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Figure 6.10: Undulation differences [m]

Geoid Determination Using Satellite, Airborne and Terrestrial Gravity Data

All available gravity information over the Ottawa area was used for geoid determination.

The combination strategy presented in Section 4.3 was followed. At first, a high-degree

model was developed that combined satellite and airborne data. As in the previous

tests, the airborne data area was again extended with predicted GPM98a disturbances

to yield a A0 area. The initial model in the iteration was the EIGEN-2 with coefficients

up to degree and order 140. The coefficients beyond that degree were set to zero in

the initial model. The iteration with residual (topographic and atmospheric reduced)

airborne disturbances converged after eight iterations and led to a final rms difference

of 6.133mGal compared to the input disturbances. The new model consisted of the

EIGEN-2 coefficients up to degree and order 70 and new coefficients beyond this degree.

The semimajor axis a and the geocentric gravitational mass constant GM were adopted

from EIGEN-2. The statistics of the tailored model (HM900sgl) are given in Table 6.6.

Not surprisingly, the undulations computed from the new model are biased with respect

to the CGG2000. Comparing the result with the previous combination result, however,

indicates that the bias is slightly larger (-19 cm in Table 6.6 versus -10 cm in Table 6.5).
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Yet in this case, the solution has a smaller standard deviation when compared to the

CGG2000 (STD = 9 cm).

Table 6.6: Statistics of the first combination – satellite and airborne data

Data/Effect/Result Min Max Mean Std Unit Area

N̂ −34.056 −30.298 −32.696 0.851 m A2

N̂ - CGG2000 −0.448 −0.006 −0.192 0.089 m A2

In the second and final combination step, the new model HM900sgl was used together

with terrestrial gravity data. As described in Section 4.3, the remove-restore technique

was applied. The HM900sgl was used up to degree and order 180. Note that the

truncation error can be computed from 181 up to 900. Since the Poisson and the

Stokes integration kernels were modified, the truncation errors were very small and no

substantial difference to the truncation errors computed up to degree 360 was found.

Adding back the indirect effects and restoring geoidal undulations from HM900sgl up to

degree 180 yielded a combined local geoid. All steps applied are documented in Table

6.7. The fitted geoid NFitted was obtained by removing the systematic trend between N̂

and CGG2000, see Eqn. (6.8). Remarkable is the small standard deviation compared

to the CGG2000. The solution can be considered as an EIGEN-2 improved geoid.

The geoidal undulations from the first and the second combination are shown in Fig-

ure 6.11 (a) and (b). While Figure 6.11 (a) presents undulations computed from the

HM900sgl model, Figure 6.11 (b) shows the final result. The first combination using

satellite and airborne data provides most of the long and medium frequencies of the so-

lution. Airborne data define the medium and higher frequencies. The terrestrial gravity

data in turn, seem to add some high-frequency information to the result, see Figure 6.11

(b). It seems that there is no loss of medium to high-frequency information compared

to the CGG2000. Taking the results of the previous combination (satellite+terrestrial

gravity data) into account, one could argue that this is due to the use of airborne data.

Hence, combining heterogeneous gravity data is beneficial for the final result both in

terms of accuracy and resolution.
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Table 6.7: Statistics for the geoid determination based on satellite, airborne and terres-
trial gravity data

Data/Effect/Result Min Max Mean Std Unit Area

∆g −70.390 82.772 −9.566 21.669 mGal A0
δATOP (DTE) −8.086 28.399 0.374 2.344 mGal A0
δAATM (DAE) 0.750 0.870 0.840 0.017 mGal A0
∆gHM900sgl −44.770 22.823 −10.893 14.516 mGal A0
∆g′ −55.849 77.603 2.541 16.348 mGal A0

∆g′(R) −50.886 85.580 1.680 15.276 mGal A1

T̂ ′/γ −0.470 0.570 −0.001 0.275 m A2

δV TOP/γ (PTE) −0.022 0.000 −0.003 0.004 m A2
δV ATM/γ (PAE) −0.007 −0.006 −0.006 0.000 m A2
THM900sgl/γ −34.193 −30.546 −32.715 0.850 m A2

N̂ −34.155 −30.171 −32.726 0.846 m A2

N̂ - CGG2000 −0.312 −0.179 −0.222 0.030 m A2

N̂Fitted - CGG2000 −0.026 0.028 0.000 0.007 m A2
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Figure 6.11: Geoid based on a combination of satellite, airborne and terrestrial gravity
data
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High-Degree Model Determination

A combined high-degree spherical harmonic model up to degree and order 900 has been

developed. It is based on a combination of EIGEN-2 satellite data, airborne gravity

disturbances and terrestrial gravity anomalies. In the first combination, the satellite-

only model EIGEN-2 and airborne data were combined. Hence, the tailored high-degree

model HM900sgl described earlier was obtained.

In the second combination step, the tailored model was used as an initial model.

The combination was now performed with terrestrial gravity anomalies. Analogous to

the individual combination of a global model and terrestrial data, the first coefficients

remained unchanged. The linear weighting function as presented in Eqn. (6.7) was

again employed with l1 = 70 and l2 = 140 to ensure a smooth final model. No major

variations were obtained after seven iterations (final RMS=6.117mGal). The tailored

model was refined by the information of the ground data. The statistics of the combined

model are given in Table 6.8. As in the previous combination yielding a combined

geoid, the solution is an improved model. A standard deviation of 3.7 cm compared to

CGG2000 demonstrates the quality of the solution. The bias is likely due to the use of

EIGEN-2 information. A solution NFitted without the systematic trend was computed,

see Eqn. (6.8).

Table 6.8: Statistics of the high-degree model based on satellite, airborne and terrestial
gravity data

Data/Effect/Result Min Max Mean Std Unit Area

N̂ −34.362 −30.320 −32.895 0.858 m A2

N̂ - CGG2000 −0.484 −0.309 −0.391 0.037 m A2

N̂Fitted - CGG2000 −0.071 0.085 0.000 0.022 m A2

The second combination resulted in smaller model changes. This can be concluded

by inspecting Figure 6.12 (b) which compares the two solution in the spectral domain.

Although the terrestrial gravity data contribute to the lower frequencies (beyond de-

gree 70), they do not significantly change the tailored model from the first combination.

Hence, the airborne data define the medium to high frequencies of the model with ad-
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ditional high-frequency information from the terrestrial gravity data. The undulations

are shown in Figure 6.12 (a). The results are encouraging showing that all available

gravity data can contribute to the final solution. The combined model preserves the

information content of the global and local gravity data, can filter out measurement

errors and noise through the iteration process and provides a high-resolution tailored

model that is comparable to local geoid determination by integration.
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Figure 6.12: High-degree spherical harmonic model based on satellite, airborne and ter-
restrial gravity data

Summary. Three combined solutions were presented. The first solution, a combination

of satellite data and terrestrial gravity anomalies, was of similar quality as the individual

solutions. Since the satellite data EIGEN-2 are low frequency in nature and could not be

directly used in the remove-restore technique, the combination was based on the tailored

model CSM360 which was based on EIGEN-2. The second solution in turn, combined

gravity information from satellite, airborne and terrestrial gravity data. A local geoid

was the desired combination output. The resulting geoid fits the CGG2000 better

than all other combinations (after removing a systematic trend). The geoid effectively
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uses satellite data for the lower frequencies, airborne data for the medium and higher

frequencies and terrestrial gravity data for the medium to highest frequencies of the

spectrum. Although the airborne data were provided in a small area, they contributed

to the solution. A difference of less than 1 cm STD to the CGG2000 was obtained after

removing a systematic trend, see Figure 6.13.

CSM360&Ground CSM360w&Ground Combined Geoid High−Degree Model
0

2

4

6

D
iff

er
en

ce
s 

to
 C

G
G

20
00

 [c
m

]

Figure 6.13: Performance of combined solutions. Standard deviation to CGG2000 after
removing a systematic trend

Finally, a combined high-degree model was computed. The first combination step

was identical to the previous combination (satellite+airborne data) resulting in a high-

degree model HM900sgl. The second combination step with terrestrial gravity anomalies

changed the model only slightly, underscoring the quality of the airborne data in the

medium frequencies of the spectrum. Compared to the CGG2000, a standard devia-

tion of about 2 cm was obtained after removing a systematic trend. Hence, a tailored

spherical harmonic model based on satellite, airborne and terrestrial gravity data can

achieve cm-accuracy with a resolution down to spatial scales of 22 km.



7 Concluding Remarks

A detailed analysis of the combination and downward continuation of satellite, airborne

and terrestrial gravity data was presented. It encompassed theoretical aspects as well

as numerical tests.

Conclusions

The following conclusions can be drawn from this study:

The Helmert scheme, proposed in this thesis, gives insight into the nature of the

reduction method and simplifies the comparison of different condensation methods.

An error analysis of the remove-restore technique led to the conclusion that the

far-zone effect has to be considered. It can be minimized by a kernel modification.

A comparison of deterministic kernel modifications for geoid determination showed

that the numerical accuracy of these kernel modifications is at the 1 cm level for

noisy gravity anomalies. Taking into account the implementation complexity and

overall error, the Heck-Grüninger kernel modification is recommended. When a

small far-zone effect is desired and computational efficiency is not a primary con-

cern, the Featherstone-Evans-Olliver kernel should be favoured.

It is shown that regularization methods for the downward continuation can be

considered as filtered least-squares solutions.

The discrete downward continuation was analyzed as having the characteristics of

a discrete ill-posed problem. When applying the Picard condition to analyze the

136
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sensitivity of the problem to noisy input data, it could be shown that for noisy and

very densely spaced airborne data, the Picard condition may not be satisfied and

regularization has to be applied.

An alternative approximation, developed in this thesis, showed best performance

for the downward continuation of airborne data in terms of accuracy and efficiency.

Eight different downward continuation methods were numerically compared. Using

simulated, noisy, airborne data at 6 km height, the downward continuation error

can reach up to 25mGal for the least-squares solution. Hence, regularization is

required to alleviate the effect of noise. The best solutions, the conjugate gradient

method and the alternative solution, reduced the error to 5mGal and 3mGal,

respectively.

Two strategies for the combination of heterogeneous gravity data – tailoring and

the remove-restore technique – were numerically evaluated. Using simulated data,

both methods give results at the cm-level.

Several combination strategies were compared using real gravity data in an area

close to Ottawa, Canada. All local solutions were slightly biased compared to the

reference used (CGG2000). This is likely due to the fact that CGG2000 is based

on different (low-frequency) information and on a different computational strategy.

The fit of combined solutions to the CGG2000 was consistently better than the

fit of solutions using one data set only. The strategy that provided best results

compared to the CGG2000 was the geoid determination based on satellite, airborne

and terrestrial data. A standard deviation of less than 1 cm was obtained with

respect to CGG2000 after removing a systematic trend. The combined high-degree

spherical harmonic model up to degree and order 900 agreed with the CGG2000

up to 2 cm (after removing a systematic trend).
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Outlook

An incomplete list of recommendations and future work is given here:

The gravity data in this thesis are interpolated to a spatial grid of 5′×5′. This inter-

polation was performed with least-squares collocation and the interpolation error

was neglected. Further investigations on the interpolation problem are needed.

A-priori information about the quality of the local data has not been taken into

account in the combination. Future studies may have to include this information

in order to improve the combination. Theoretical and numerical comparisons with

alternative combination methods such as LSC, MIMO and spectral combination

should be performed.

It has been assumed that the satellite and the local data are calibrated and vali-

dated. Studies on data correlations and their effect on the combination result may

prove to be useful.

Synthetic gravity data models that allow for feasibility studies on data combina-

tions are required. These models should also include topographic models.

The combinations presented in this thesis are not performed at the observation

level. Investigations on combining gravity data at the observation or normal equa-

tion level of the satellite data could be carried out and compared to the presented

combination strategies.

The feasibility of the downward continuation of satellite data with the alternative

approach could be studied. Also, additional gravity data could be used to constrain

the downward continuation solution.

Developing downward continuation methods based on spherical wavelets may be

another research direction worthwhile studying. First results in this direction are

reported in Schneider (1997).

Other discretizations of the Fredholm integral of the first kind such as finite element

methods or Galerkin methods could be tested.
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Albertella A, Sansò F, Sneeuw N (1999) Band-limited functions on a bounded spherical

domain: the Slepian problem on the sphere. Journal of Geodesy 73:436–447.

Andritsanos VD, Sideris MG, Tziavos IN (2001) Quasi-stationary sea surface topogra-

phy estimation by the multiple input/ output method. Journal of Geodesy 75:216–

226.

Arnold K (1969) Zur Konvergenz der Kugelfunktionsentwicklung für das Gravita-

tionspotential der Erde im Außenraum der Erde. Gerland’s Beiträge zur Geophysik
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Martinec Z, Vańıček P (1994a) Direct topographical effect of Helmert’s condensation

for a spherical approximation of the geoid. Manuscripta Geodaetica 19:257–268.
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Véronneau M (2001) The Canadian Gravimetric Geoid Model of 2000 (CGG2000).

Technical report, Natural Resources Canada, Geodetic Survey Division Natural

Resources Canada, Ottawa, Ontario.

URL www.geod.emr.ca/index_e/products_e/publications_e/papers_e/

CGG2000a.pdf
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A Tables and Properties

Table A.1: Quality measures for x ∈ IRn

Name Formula Remark/Abbreviation

L1 norm
n∑
i=1

|xi| = |x1|+ · · ·+ |xn| ‖x‖1

L2 norm

√√√√ n∑
i=1

x2
i =

(
|x1|2 + · · ·+ |xn|2

) 1
2 Euclidian norm ‖x‖2

L∞ norm
n

max
i=1
|xi| ‖x‖∞

Absolute error ‖x̂− x‖ x̂ = estimate

Relative error
‖x̂− x‖
‖x‖

x 6= 0

Mean
1

n

n∑
i=1

xi x̄

Standard Deviation

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2
STD

Root mean square

√√√√ 1

n

n∑
i=1

x2
i =
‖x‖2√
n

RMS
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A.1 Filter Window Functions

Low-pass filters are often used in gravity field modeling. For convenience, some of the

most common filter window functions are given in Table A.2, see also Hammada (1996).

The input data x is filtered with the linear, non-recursive, algorithm

yi =
M∑

k=−M

wkhkxi−k

where yi is the Finite Impulse Response (FIR) filtered output data at the i-th epoch

and hk are the filter impulse response coefficients given as (Oppenheim et al., 1999)

hk =
T

π

∫ π
T

0

H(jω) cos(kωT ) dω

=
ωcT

π

sin(kωc)T

kωcT

where ωc is the cut-off frequency [rad/s] and T is the sampling period [s]. H(ω) is the

Fourier transform of the low-pass filter response. M is a selected integer, e.g. M = 25.

Table A.2: Filter window functions

Name Formula for wk

Bartlett

{
1− |k|

M
|k| ≤M

0 else

Blackman

{
0.42 + 0.5 cos(πk

M
) + 0.8 cos(2πk

M
) |k| ≤M

0 else

Hamming

{
0.54 + 0.46 cos(πk

M
) |k| ≤M

0 else

Hanning

{
0.5
(
1 + cos(πk

M
)
)
|k| ≤M

0 else

Rectangular

{
1 |k| ≤M

0 else
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A.2 Degree Variance Models

Table A.3: Degree variance models (Wenzel, 1985, pg. 147)

Source Anomaly degree variances [mGal2]

Kaula (1966) (9.7983 · 105)2(l − 1)2 1.6 · 10−10

l3

Rapp (1972)
251.6468(l − 1)

(l − 2)(l + 12.9287 + 0.000715l2)

Tscherning & Rapp (1974)
425.28(l − 1)

(l − 2)(l + 24)
0.999617l+2

Jekeli (1978)
18.3906(l − 1)

l + 100
0.9943667l+2+

658.6132(l − 1)

(l − 2)(l + 20)
0.9048949l+2

Rapp (1979)
3.404(l − 1)

l + 1
0.998006l+2 +

140.03(l − 1)

(l − 2)(l + 2)
0.914232l+2
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Figure A.1: Degree variance models
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A.3 Removing the Singularity from the Stokes Kernel

The Stokes kernel function is singular for ψ = 0. This is mainly due to the term

1
sin(ψ/2)

in the spherical Stokes kernel. Molodenskij proposed to remove the singularity

by adding and subtracting the gravity anomalies at the same point. The integration

for the near-zone is then given as

Nωc(ϕ, λ) =
R

4πγ

∫
ωc

S(ψ)∆g′(ϕ, λ) + S(ψ)
[
∆g′(ϕ′, λ′)−∆g(ϕ, λ)

]
dω′

=
R∆g(ϕ, λ)

2γ

ψc∫
ψ=0

S(ψ) sinψ dψ +
R

4πγ

∫
ωc

S(ψ)
[
∆g(ϕ′, λ′)−∆g(ϕ, λ)

]
dω′

The singularity is removed because the second integration equals zero for ψ = 0, see

also Martinec (1993). The second integration is then discretized using the mean-value

theorem, i.e. the gravity data are mean values corresponding to N cells ∆ωk (Novák

et al., 2001c)

R

4πγ

∫
ωc

S(ψ)
[
∆g(ϕ′, λ′)−∆g(ϕ, λ)

]
dω′ ≈ R

4πγ

N∑
k=1

S(ψk)
[
∆g(ϕk, λk)−∆g(ϕ, λ)

]
∆ωk

The integration over the Stokes kernel is analytically calculated. Table A.4 summarizes

the integration terms for the kernel functions discussed. The following abbreviation is

used in Table A.4, see Paul (1973) and Hagiwara (1976)

Rl,0 = −
ψc∫

ψ=0

Pl(cosψ) sinψ dψ =
Pl+1(cosψc)− Pl−1(cosψc)

2l + 1
(A.1)

Also, the term Q0 is used (Heiskanen & Moritz, 1967, pg. 263)

Q0 = −4t+ 5t2 + 6t3 − 7t4 + (6t2 − 6t4) ln t(1 + t), t = sin
ψc

2
(A.2)
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A.4 Abel-Poisson Kernel Modifications

Analogous to the Stokes integral, the (Abel-)Poisson integral can be modified. The

integration is split into a near-zone and a far-zone. Furthermore, the near-zone is split

again into the contribution of the computation point and the contribution of the rest

of the cap. The respective formulas are derived in Martinec (1996). The Abel-Poisson

kernel can be again modified by the modification principles described in Section 2.4. In

this case, however, the modification coefficients rn are dependent on the height. They

are computed from minimizing the norm

min
rn


π∫

ψc

[K(r, ψ, ψc, R)]2 sinψ dψ

 (A.3)

which becomes

∂

∂rn


π∫

ψc

[K(r, ψ, ψc, R)]

 = 0 rn ∈ IRn (A.4)

or (m ≤ l)

LMD∑
n=0

2n+ 1

2
rn(H,ψc)Rn,m(ψc) =

π∫
ψc

K(r, ψ,R)Pm(cosψ) sinψ dψ (A.5)

All kernel modifications discussed are listed in Table A.5. Note that a substitution is

made in Table A.5:

P0=

ψc∫
ψ=0

R
r2 −R2

L3
sinψdψ =

(r2 −R2)

r

1√
r2 +R2 − 2rRx

∣∣∣∣1
x=cosψc

=
r +R

r

(
1− r −R

L

)

This is the primitive function to the indefinite Abel-Poisson integral over ψ (Martinec,

1996). Also, the spatial distance L is given as

L =
√
r2 +R2 − 2Rr cosψ (A.6)
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A.5 Pellinen Mean

The Pellinen mean is the weighted mean of gravity data ḡ over a spherical cap, i.e.

ḡ =
1

2π(1− cosψc)

∫
ωc

g dω or ḡl = βlgl (A.7)

where 2π(1− cosψc) is the area of a spherical cap ψc. Table A.6 lists different Pellinen

definitions; only the recursion formula derived in Sjöberg (1980) is stable for ψc = 0

and l→∞.

Table A.6: Pellinen mean formulas

Source Formulas for βl

Pellinen (1969) βl = cot
ψc

2

Pl,1(cosψc)

l(l + 1)

Meissl (1971b) βl =
1

1− cosψc

1

2l + 1
[Pl−1(cosψc)− Pl+1(cosψc)]

Sjöberg (1980) βl =
2l + 1

l + 1
βl−1 cosψc −

l − 2

l + 1
βl−2

initial values: βl = 1, βl =
1 + cosψc

2
ψc = arccos(1− ∆ω

2π
) with ∆ω = ∆λ(cos θN − cos θS)
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Figure A.2: Pellinen curves βl for ψc = 1◦, 2◦, 3◦
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A.6 Covariance Functions and Least-Squares

Collocation

Table A.7 lists some of the most commonly used (positive definite) covariance functions

(GM stands for Gauss-Markov). All of them are dependent on the spherical distance ψ,

i.e. they are homogeneous (origin independent) and isotropic (azimuth independent)

(Moritz, 1989, pg. 82). The first seven covariance functions can also be used in the

planar case. Then, ψ is replaced by the distance s =
√
x2 + y2. The covariance

function attributed to Moritz is the usual covariance function used in LSC. cl are the

degree variances and RB is the Bjerhammar sphere radius that is usually chosen slightly

smaller than R. C0 is the variance (scale factor for interpolation errors) and C0/2 the

correlation length (describes the behaviour of the covariance function as a function

of ψ), see Schwarz & Lachapelle (1980) for further interpretations. Other covariance

functions or procedures are described in Sünkel (1978, 1979). Table A.8 summarizes

the main components of least-squares collocation as described in Moritz (1989).

The covariance function introduced by Sjöberg is particularly interesting. It allows

for an analytical derivation of degree variances as (Sjöberg, 1986)

cl = k(1− µ)µl 0 < µ < 1 (A.8)

Example. Selecting a variance of C(0) = C0 = 10 mGal2 and a correlation length

of C(0)/2 ≈ 0.1◦, the parameters µ = 0.999 and k = 10 are found. Figure A.3 shows

the corresponding covariance function and degree variances computed with Eqn. (A.8).

The degree variances are decreasing with degree.
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Table A.7: Covariance functions

Name Formulas for C(ψ) Parameters

Gaussian C0e
−A2ψ2

C0, A

Hirvonen
C0

(1 +B2ψ2)m
C0, B, m

Inverse distance
C0B√

ψ2 + [zi + zj +B]2
C0, B, zi, zj

Poisson
C0B

2[zi + zj +B]

(ψ2 + [zi + zj +B]2)3/2
C0, B, m

first order GM C0e
− ψ
D C0, D

second order GM C0(1 +
ψ

D
)e−

ψ
D C0, D

third order GM C0(1 +
ψ

D
+

ψ2

3D2
)e−

ψ
D C0, D

Moritz
∑
l

cl

(
RB

rPrQ

)l+1

Pl(cosψ) cl, RB

Sjöberg k(1− µ)

(
1√

1− 2µ cosψ + µ2
− 1− µ cosψ

)
k, µ
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Figure A.3: Covariance function and degree variances
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Table A.8: Summary of least-squares collocation (Moritz, 1989)

Name Formulas

Model l = Ax + s + n
l observation vector
A design matrix
x parameter vector
s signal vector
s′ signals to be predicted
n noise vector
t = (s, s′)T

Covariance Css = Ē(ssT )
functions Cnn = Ē(nnT )

C ls = CT
sl = Ē(lsT )

C ll = Ē(llT ) = Css + Cnn

Assumptions Ē(s) = Ē(n) = Ē(snT ) = Ē(tnT ) = 0
Ē(l) = Ax

Minimum principle tTC−1
tt t + nTC−1

nnn = min

Solutions x̂ =
(
ATC−1

ll A
)−1

ATC−1
ll l

ŝ = CssC
−1
ll (l−Ax̂)

ŝ′ = Cs′sC
−1
ll (l−Ax̂)

n̂ = CnnC
−1
ll (l−Ax̂)

Error covariances Ex̂x̂ =
(
ATC−1

ll A
)−1

E ŝŝ = Css −CssC
−1
ll

(
I −A(ATC−1

ll A)−1ATC−1
ll

)
Css

E ŝ′ŝ′ = Cs′s′ −Cs′sC
−1
ll

(
I −A(ATC−1

ll A)−1ATC−1
ll

)
Css′
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Ū
2
,0

−
0.

48
41

98
15

98
95
·1

0−
3
−

0.
48

41
66

85
48

95
·1

0−
3
−

0.
48

41
66

40
76

60
·1

0−
3

−
0.

48
41

65
37

01
68
·1

0−
3

Ū
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B Additional Results

B.1 First Helmert versus Second Helmert Condensation

Method

An additional test was performed for the topographic effects in the Ottawa area – the

first Helmert condensation method was tested against the second Helmert condensation

method. The formulas are explicitly derived in (Heck, 2002; Kuhn, 2000). The results

indicate that the first Helmert condensation produces a smoother residual field. In

effect, the RMS of the indirect effect is almost five times larger than the one of the

second Helmert effect.

Table B.1: First Helmert versus second Helmert condensation method

Name Min Max Mean Std RMS Unit

1. Helmert DTE −55.185 28.712 0.381 6.277 6.288 mGal
2. Helmert DTE −8.086 28.399 0.374 2.344 2.373 mGal

1. Helmert PTE −1.273 0.438 −0.013 0.109 0.110 m
2. Helmert PTE −0.174 0.000 −0.014 0.015 0.020 m
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B.2 Stokes Integration and Continuation Results

Table B.2: Stokes integration – noise-free data

Name Min Max Mean Std RMS Remarks

Spherical Near-zone −3.209 1.520 −1.060 1.209 1.605
Far-zone −0.047 0.086 0.016 0.030 0.033
Error −0.053 0.043 0.008 0.021 0.022

MO Near-zone −1.582 0.750 −0.523 0.596 0.791 LMD = 120
Far-zone −0.040 0.020 −0.007 0.016 0.018
Error −0.007 0.007 0.001 0.003 0.003

WG Near-zone −2.564 1.215 −0.847 0.966 1.282 LMD = 20
Far-zone −0.027 0.044 0.011 0.018 0.021
Error −0.035 0.026 0.003 0.012 0.013

M Near-zone −1.547 0.733 −0.511 0.583 0.774
Far-zone −0.043 0.027 −0.000 0.018 0.018
Error −0.008 0.005 −0.001 0.003 0.003

JK Near-zone −1.394 0.660 −0.460 0.525 0.697 LMD = 120
Far-zone −0.049 0.021 −0.009 0.019 0.021
Error −0.005 0.003 −0.000 0.002 0.002

S Near-zone −0.371 0.176 −0.123 0.140 0.185 LS = 120
Far-zone −0.104 0.053 −0.034 0.041 0.053
Error −0.020 0.022 −0.003 0.009 0.010

HG Near-zone −1.049 0.497 −0.347 0.395 0.525 LS = 120
Far-zone −0.073 0.030 −0.027 0.026 0.038
Error −0.009 0.004 −0.003 0.004 0.005

VK Near-zone −1.582 0.750 −0.523 0.596 0.791 LMD = 120
Far-zone −0.040 0.020 −0.007 0.016 0.018
Error −0.007 0.007 0.001 0.003 0.003

FEO Near-zone −1.394 0.660 −0.460 0.525 0.697 LMD = 120
Far-zone −0.049 0.021 −0.009 0.019 0.021
Error −0.005 0.003 −0.000 0.002 0.002
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Table B.3: Stokes integration – noisy data

Name Min Max Mean Std RMS Remarks

Spherical Near-zone −3.361 1.602 −1.075 1.241 1.638
Far-zone −0.047 0.086 0.016 0.030 0.033
Error −0.048 0.065 0.019 0.023 0.030

MO Near-zone −1.657 0.790 −0.530 0.612 0.808
Far-zone −0.040 0.020 −0.007 0.016 0.018
Error −0.014 0.025 0.008 0.008 0.011

WG Near-zone −2.686 1.280 −0.859 0.992 1.309
Far-zone −0.027 0.044 0.011 0.018 0.021
Error −0.032 0.045 0.013 0.015 0.020

M Near-zone −1.620 0.772 −0.518 0.598 0.790
Far-zone −0.043 0.027 −0.000 0.018 0.018
Error −0.016 0.025 0.007 0.009 0.011

JK Near-zone −1.459 0.696 −0.467 0.539 0.711
Far-zone −0.049 0.021 −0.009 0.019 0.021
Error −0.016 0.023 0.006 0.008 0.010

S Near-zone −0.388 0.185 −0.124 0.143 0.189
Far-zone −0.104 0.053 −0.034 0.041 0.053
Error −0.027 0.027 0.000 0.011 0.011

HG Near-zone −1.099 0.524 −0.351 0.406 0.536
Far-zone −0.073 0.030 −0.027 0.026 0.038
Error −0.013 0.020 0.002 0.007 0.007

VK Near-zone −1.657 0.790 −0.530 0.612 0.808
Far-zone −0.040 0.020 −0.007 0.016 0.018
Error −0.014 0.025 0.008 0.008 0.011

FEO Near-zone −1.459 0.696 −0.467 0.539 0.711
Far-zone −0.049 0.021 −0.009 0.019 0.021
Error −0.016 0.023 0.006 0.008 0.010
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Table B.4: Continuation results [mGal]

Height Method Min Max Mean Std RMS Remark

2 km INV −7.638 11.679 0.150 2.604 2.608

LAI −7.637 11.678 0.150 2.603 2.607 11 steps

LSQ −7.440 11.622 0.104 2.680 2.682

TIK −10.280 10.577 1.029 4.104 4.231 α = 0.575

DSVD −13.144 11.648 1.426 5.266 5.456 α = 0.575

TSVD −7.440 11.628 0.093 2.682 2.683 k = 863

CG −7.170 11.355 0.059 2.654 2.655 k = 3

A −3.546 2.991 0.024 1.213 1.213

DA −0.023 0.031 −0.001 0.011 0.011 [m]

3 km INV −10.852 16.113 0.207 3.622 3.628

LAI −10.851 16.111 0.206 3.622 3.628 21 steps

LSQ −11.239 16.837 0.121 4.122 4.124

TIK −8.794 12.204 0.563 3.357 3.404 α = 0.360

DSVD −12.382 13.232 1.091 4.545 4.675 α = 0.360

TSVD −11.207 16.855 0.109 4.126 4.128 k = 863

CG −10.950 15.947 −0.029 3.724 3.724 k = 3

A −4.596 3.560 0.020 1.513 1.513

DA −0.024 0.030 −0.001 0.010 0.010 [m]

4 km INV −15.879 23.007 0.266 5.195 5.202

LAI −15.878 23.003 0.265 5.194 5.201 37 steps

LSQ −18.433 27.564 0.134 6.395 6.396

TIK −12.322 18.220 0.306 4.550 4.560 α = 0.212

DSVD −13.898 16.671 0.789 4.753 4.818 α = 0.212

TSVD −18.410 27.554 0.123 6.394 6.395 k = 863

CG −14.667 21.037 −0.110 4.488 4.490 k = 3

A −5.967 4.300 0.016 1.924 1.924

DA −0.027 0.028 −0.001 0.011 0.011 [m]
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Table B.5: Continuation results [mGal] – cont.

Height Method Min Max Mean Std RMS Remark

5 km INV −23.919 33.824 0.330 7.750 7.757

LAI −23.917 33.820 0.328 7.749 7.756 68 steps

LSQ −28.161 41.147 0.143 9.883 9.884

TIK −22.325 32.587 0.196 7.276 7.279 α = 0.122

DSVD −19.419 24.265 .555 6.531 6.555 α = 0.122

TSVD −28.113 41.158 0.128 9.893 9.894 k = 862

CG −16.155 22.892 −0.131 4.822 4.824 k = 3

A −7.760 5.498 0.013 2.481 2.481

DA −0.031 0.028 −0.001 0.012 0.012 [m]

6 km INV −57.393 77.000 0.381 18.928 18.932

LAI −57.393 76.985 0.380 18.926 18.930 224 steps

LSQ −72.707 83.350 0.055 24.096 24.096

TIK −62.619 78.605 0.049 20.220 20.220 α = 0.037

DSVD −52.768 67.383 0.172 17.267 17.268 α = 0.037

TSVD −72.831 83.546 0.042 24.049 24.049 k = 862

CG −17.410 24.639 −0.168 5.083 5.086 k = 3

A −10.113 7.380 0.020 3.236 3.236

DA −0.037 0.030 0.001 0.014 0.014 [m]
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B.3 Satellite Models and Geopotential Models

Table B.6: Undulation differences between the CGG2000, satellite and geopotential
models [m]

Model Min Max Mean Std Area

EGM96 −0.280 0.323 0.029 0.147 A2
GPM98a −0.276 0.780 0.143 0.227 A2
EIGEN1s −1.534 0.628 −0.307 0.387 A2
EIGEN-2 −0.923 1.059 0.316 0.461 A2
CSM360 −0.880 1.184 −0.103 0.481 A2
CSM360w −0.957 1.028 −0.068 0.509 A2

B.4 Geoid Determination Based on Satellite and

Terrestrial Gravity Data

Table B.7: Statistics for the geoid determination of satellite data and a local gravity
data set

Data/Effect/Result Min Max Mean Std Unit Area

∆g −70.390 82.772 −9.566 21.669 mGal A0
δATOP (DTE) −8.086 28.399 0.374 2.344 mGal A0
δAATM (DAE) 0.750 0.870 0.840 0.017 mGal A0
∆gCSM360w −37.071 20.249 −9.232 10.581 mGal A0
∆g′ −55.723 90.519 0.879 18.092 mGal A0

∆g′(R) −44.036 98.807 0.153 17.690 mGal A1

T̂ ′/γ −0.733 0.725 0.042 0.331 m A2

δV TOP/γ (PTE) −0.022 0.000 −0.003 0.004 m A2
δV ATM/γ (PAE) −0.007 −0.006 −0.006 0.000 m A2
TCSM360w/γ −34.467 −30.838 −32.605 1.007 m A2

N̂ −34.152 −30.128 −32.572 0.882 m A2

N̂ - CGG2000 −0.240 0.211 −0.069 0.124 m A2

N̂Fitted - CGG2000 −0.063 0.116 0.000 0.029 m A2
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Figure B.1: Geoid determination based on satellite and terrestrial gravity data
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