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ABSTRACT 

To protect wetlands from loss, managers need tools to understand the status and trends of 

wetland resources. Remote sensing techniques provide a cost-effective way for wetland 

mapping and inventory establishment. However, a robust classification algorithm is the 

key to generate a reliable map from remotely sensed imagery. To identify wetlands from 

multispectral imagery, classifiers should take the natural phenomenon, i.e. spatial and 

spectral vagueness, into account. The Fuzzy C-Means (FCM) clustering algorithm is 

better suited for dealing with the imprecise data than traditional “hard” classifiers, but it 

completely ignores the spatial variability inherent in an image. In this thesis, the 

Semivariogram Guided Fuzzy C-Means (SGFCM) classifier, a modification of the FCM 

algorithm with spatial variances involved, has been developed for wetland mapping.  

 

Two major tasks are included: replacing the Euclidean distance by the Mahalanobis 

distance and incorporating the semivariogram texture as spatial guidance in the fuzzy 

clustering algorithm. Two Landsat 7 ETM+ subscenes are used to examine the 

effectiveness of the developed SGFCM algorithm. The SGFCM classifier shows an 

improvement by increasing the overall accuracy from 70 percent to 93 percent and 

decreasing the commission error by 20 to 40 percent compared to the standard FCM 

classifier. The SGFCM has an ability to highlight ambiguous pixels that normally lead to 

the classification uncertainty.  
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CHAPTER 1  

INTRODUCTION 
 

 

 

“The dreams of scientists and engineers are not easily confined. Numerous people thirst 

for the opportunity to conduct a continental and/or global inventory of wetlands. Such an 

inventory would be of great interest to the scientific community and the public.” 

 

John G. Lyon and Jack McCarthy 

Editors of “Wetland and Environmental Applications of GIS”, 1995 

 

 

 

1.1 Background Information 
1.1.1 The need for wetland inventory 

Wetlands are a major feature of the landscape in almost all parts of the world. However, 

the extent of wetlands is decreasing in many countries due to human-generated stresses 

such as urban development, resource extraction, toxic chemicals pollution, and non-

native species introduction (Mitsch and Gosselink, 1993). The global climate changes 

that result in the rising of sea water level have also some impacts on wetland resources 

(Day, 2000). To conserve and protect the remained wetlands, thoughtful planning and 

regular monitoring are required.  

 

Why are wetlands so valuable? Wetlands have been considered transitional seres that 

have extensive boundaries with both terrestrial and aquatic ecosystems. Because wetlands 

are neither aquatic nor terrestrial, such transitional ecotones reflect a complex and 
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dynamic interaction of physical and biotic forces acting at the landscape scale. They 

should be considered a distinctive class. In the 1980’s, as wetlands were recognized for 

their societal values that motivate their protection, scientists were asked to give the 

definition of wetlands to determine the wetland boundaries for regulatory purposes. The 

functions of wetlands that directly benefit the society include storing floodwater, 

protecting shorelines, improving water quality, and recharging groundwater aquifers 

(Daily, 1997). Associations between functions and values may also be indirect. For 

example, wetlands provide critical habitats for fish and wildlife in sustaining a rich 

biodiversity. People can enjoy the recreational opportunities and aesthetics based on 

healthy wetland ecosystems.  

 

To protect wetland resources, managers should conduct a ‘status and trends’ assessment 

of wetlands involving the analysis of the past, current and future landscape changes. The 

assessment needs ancillary information and data, such as maps or field surveys, for 

decision making. Inventory and monitoring are the key elements for effective 

implementation of wetland management programs, policies and sustainable development 

indicators (Milton and Hélie, 2003). The common objective of compiling wetland 

inventories is to determine wetland locations, to delineate the extent of various types of 

wetlands in a region, and to identify important habitats for wildlife, economic interests 

and other functions. An inventory can be made either for a small watershed or an entire 

nation. Whatever the size of the area to be surveyed, the inventory must provide 

information on wetlands to meet the needs of specific users.  

 

In Canada, wetlands occupy about 18 percent of the total land area (Natural Resource 

Canada, 1986). Natural Resource Canada has published a map of the wetland regions in 

Canada in 1986. The exact amount varies somewhat according to the techniques and 

methods of survey. Seven major regions are recognized: Arctic, Sub-Arctic, Boreal, 

Prairie, Temperate, Mountain, and Oceanic. These regions are further divided into 20 

sub-regions according to their geographic location. This general inventory does not 

identify specific wetlands; rather it delineates wetland regions based on similar ecological 
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characteristics. Another category instead of the general inventory is wetland type 

inventory that focuses on the specific wetland types such as peatlands or forested 

wetlands.  

 

Regional wetland type inventories and national data sets do exist. However, no nation-

wide wetland type inventories and reports have been undertaken to track or report on the 

status and trends in wetland resources. The barriers of the different classifications and 

mapping standards cause the result of the difficulties in developing a nationwide wetland 

inventory, because each political jurisdiction and institution may have a different 

availability of technology and digital wetland inventory information (Milton et al., 2003). 

Although the previous attempts at a national inventory have been frustrated due to these 

difficulties, the development of a national inventory is still called for in understanding 

and managing wetland resources. Davidson et al. (1999) concluded, “This lack of a 

national inventory with a standard classification system makes it virtually impossible to 

monitor wetlands at the ecosystem level, except in those areas that have developed their 

own inventories, but then only if the same methodologies are adhered to over time.”  

 

Wetland identification and classification need a standard approach either a classification 

technique or an inventory system as a basis for wetland monitoring in the future. 

Developing a widely adopted wetland classification scheme such as the Cowardin system 

(Cowardin et al., 1979) used for the National Wetland Inventory (NWI) in the United 

States or the Canadian Wetland Classification System (CWCS) goes beyond the scope of 

this thesis study. Whatever the classification system used for wetland types identification, 

extracting wetlands from landscape is the first step in building up a nationwide wetland 

resource database. The needs call for wetland mapping. Superior land cover classification 

techniques and data management systems can facilitate synoptic wetland inventories. 

This thesis study narrows the scope to the image processing techniques for wetland 

mapping by using remotely sensed imagery. 
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1.1.2 Remote sensing for offsite wetland mapping 

Wetland mapping is a prerequisite for wetland inventory. Aerial photography, satellite 

imaging, or maps can be utilized as an alternative to collect field data in order to map 

wetlands. Offsite methods are recommended for use in areas where an inspection is not 

possible due to time constraints or other reasons. Sometimes offsite wetland 

determinations may be the only source of information for environmental planning 

decisions. However, delineation of wetlands by offsite methods is subject to some errors; 

it thus should be used only when their inherent limitations are recognized. The overall 

accuracy of offsite wetland determinations is a function of the quality of the sources used 

and the ability of data interpretation (Tammi, 1994).  

 

A mapping approach that relies upon remote-sensing technology holds the promise of 

greater efficiency, lower costs, and ease of repeatability. Because the remotely sensed 

images provide a synoptic view of wetlands and their surrounding terrain, they facilitate 

rapid boundary determination. The use of remote sensing platforms may include aircraft 

at various altitudes, and satellites. The choice of which platforms to use depends on the 

spatial resolution required, the area to be covered, and the cost of the data.  

 

Aerial photography has been used to map wetlands for at least three decades (National 

Research Council, 1995). Before the second-generation satellite imagery from the 

“Thematic Mapper” that provided multispectral data at 15m or 30m resolution at a 

reasonable cost was available, wetland scientists preferred to use aerial photographs for 

wetland mapping. As aerial photography provided the basemap and framework for most 

other offsite sources, wetland scientists relied primarily on aerial photography. For 

example, the National Wetland Inventory (NWI) project, begun in 1975 by the United 

States Fish and Wildlife Service for conserving and managing wetlands, chose high 

altitude aerial photography over satellite imagery because of the desired level of details 

(Tiner, 1990).  
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While satellite imagery has advantages for the continued monitoring of wetland resources, 

aerial photographic coverage and availability significantly limit its use for offsite wetland 

identification. Because the coverage of wetlands is unpredictably varying from complete 

chronological coverage over several years to no coverage at all, the costs of purchasing 

aerial photographic imagery can be quite high with some firms charging access fees for 

database reviews (Tammi, 1994). Satellite imaging offers excellent opportunities to 

obtain cost-effective data at landscape-scale or watershed-scale to meet the demand for 

monitoring large wetland extents repeatedly.  

 

Because reflectances of ground objects make associated responses to the status of 

physical characteristics, the changes of wetland extents across the landscape can be 

detected from multispectral imagery. Many satellite sensors, such as Landsat, SPOT, 

IKONOS, and radar systems, have been used to study wetlands. For example, Gluck et al. 

(1996) used Landsat TM imagery to determine the technology required for wetland 

classification and mapping. Parmuchi et al. (2002) evaluated the suitability of using 

multi-temporal RADARSAT-1 data with a decision-tree classifier to map wetlands. To 

take advantages of both the optical sensors, which contain information about the 

reflectivity of objects, and the SAR sensors, which are sensitive to moisture differences, 

Töyrä et al. (2001) investigated the use of multispectral SPOT and Radarsat imagery for 

mapping the extent of standing water in the Peace-Athabasca Delta wetland. High-

resolution satellite imageries have also been used for wetland mapping. Dechka et al. 

(2002) investigated the use of IKONOS imagery that provides 4m-resolution 

multispectral and 1m-resolution panchromatic image data to assist in the assessment of 

wetland habitat classification in the Canadian Prairies region. Readers can refer to 

Ozesmi and Bauer (2002) for the summary of reviews on satellite remote sensing of 

wetlands and the classification techniques for wetland identification in the past two 

decades. 
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1.2 Problem Statement 
Interpretation of satellite images is difficult, especially in areas where changes of 

vegetation, soil, or hydrology are indistinct or variable through time. Such areas are 

generally difficult to delineate by field methods as well (National Research Council, 

1995). The boundary between wetland and upland can be identified scientifically as a 

transition zone that incorporates a hydrologic gradient as well as gradients in soil type 

and in community composition of plants. However, image classification techniques for 

wetland identification cannot ensure that any resultant definition will be precise in its 

ability to distinguish wetlands from all other kinds of ecosystems, or in its ability to 

specify the exact boundary of a wetland. Especially when using the traditional hard 

classification techniques, these areas may introduce classification errors and reduce the 

mapping accuracy.  

 

The classification uncertainties result from two facts. First, the spatial vagueness is 

inherited in wetland ecosystems and the wetland definition itself (Carter et al., 1994). The 

characteristics of hydrology, soil and vegetation in an ecotone from wetlands to uplands 

vary transitionally rather than abruptly. Second, a spectral mixture of sub-pixel elements 

leads to an uncertainty of the classification. Traditional image classification techniques 

assume pixels to be pure and thus carry out the classification results based on binary logic, 

in which a pattern is either a full member or not of the class. Such a hard classification 

algorithm is not the best way to deal with data that are mixed and imprecise in nature. 

The spatial extent of each object can be defined ambiguously and may contain 

unidentified areas not belonging to the object (Burrough, 1996; Cheng and Molenaar, 

1999).  

 

 

1.3 Research Objectives 
It is hypothesized that because a fuzzy approach can measure the uncertainty between the 

class boundaries to identify the degree of mixed classes by membership values and 

because image texture contains complementary information for image classification, 
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wetland mapping will be more efficient when the applied fuzzy classifier takes image 

textures into account. The research goal of the study is to develop a more robust fuzzy 

clustering algorithm for land cover classification. A fuzzy classification can be treated 

more realistically when the data point is difficult to be assigned to one single class. In 

addition, the fuzzy classifier should consider information not only from the data set itself 

but also from the variances between the data points. The variances represent the spatial 

variability inherent in the data set and provide additional information for the 

classification.  

 

The major objective of this thesis is to develop a fuzzy classifier incorporating image 

texture information for wetland mapping and to investigate its effectiveness in dealing 

with the data that are mixed and imprecise in nature. In order to fulfill the major objective, 

the following related objectives will be accomplished: 

 

(1) To modify the Fuzzy C-Means clustering algorithm as a partial supervised classifier. 

(2) To highlight the spectrally vague areas that are sensitive to disturbances by replacing 

the maximum defuzzifier with a threshold mode approach. 

(3) To examine the applicability and effectiveness of the modified FCM algorithm with 

two test areas. 

 

 

1.4 Thesis Outline 
This thesis is structured in six chapters. Chapter 1 gave an introduction of the need for 

wetland mapping. The motivation for developing a texture involved fuzzy classifier for 

wetland mapping and the objectives of this thesis research are also introduced.  

 

Chapter 2 reviews the literature related to this research along with spatial vagueness that 

leads to classification uncertainty, image textures, geostatistics in remote sensing, and 

accuracy assessment.  
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Chapter 3 portrays the methodology used and developed for this research. The chapter 

describes the fuzzy clustering algorithm - Fuzzy C-Means (FCM) - and its disharmony 

issues. The modifications of the FCM clustering algorithm - Semivariogram Guided 

Fuzzy C-Means (SGFCM) - are demonstrated with derivations.  

 

Chapter 4 describes the study areas and the data processing for this thesis. The 

framework of the study is given and details of each procedure are addressed in this 

chapter. 

 

Chapter 5 discusses the experimental results for test areas. The discussions begin with the 

preliminary examination of the data set dispersion and the semivariogram behaviors of 

the land cover classes of interest. The classifications from the two fuzzy classifiers are 

compared qualitatively (visual assessment) and quantitatively (accuracy assessment). 

 

Finally, Chapter 6 summarizes the findings of this thesis study, and draws the important 

conclusions and the future scope of the research.  
 

 

1.5 Summary 
This chapter has discussed the background of wetland mapping. Because managers need 

the tools for wetland resources management, wetland scientists are developing a remote-

sensed wetland inventory using satellite imagery. However, identifying wetlands from 

multispectral imagery is not a trivial task, because such a complex ecosystem is 

characterized by a mixing of the signatures of water, soil, and vegetation, which vary 

gradually and continuously between aquatic and terrestrial systems. The main objective 

of this research is to develop a fuzzy approach incorporating image texture information 

for improving the accuracy of wetland mapping.  
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CHAPTER 2  

LITERATURE REVIEW 
 

 

 

“You must not know too much or be too precise or scientific about birds and trees and 

flowers and watercraft; a certain free-margin, and even vagueness - ignorance, credulity 

- helps your enjoyment of these things.”  

 

Henry David Thoreau, 1817-1862 

American author, poet and philosopher 

 

 

“How many problems can we say that the information content is known absolutely ... 

There is uncertainty that arises because of complexity; there is uncertainty that arises 

from ignorance, from chance, from various classes of randomness, from imprecision, 

from inability to perform adequate measurements, from lack of knowledge, or from 

vagueness, like the fuzziness inherent in our natural language.” 

 

Timothy J. Ross 

Professor, Civil Engineering, University of New Mexico, 1995 

 

 

 

2.1 Image Classification 
The goal of classification in general is to select the most appropriate category for an 

unknown object. In principle, classification of remotely sensed image should be 
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straightforward. To achieve an acceptable mapping accuracy, it should be concerned to 

choose the appropriate analytical tools first and then apply them. The classification 

techniques may be categorized either on the basis of training processes (supervised and 

unsupervised) or on the basis of theoretical models (parametric and non-parametric). The 

difference between supervised and unsupervised classification depends on whether the 

classifier has been trained by user-based training data. Making a certain assumption of 

the probability distribution of data can differentiate the parametric and non-parametric 

classification. The parametric classifier provides a way to estimate the error of the 

classification process itself since the decision boundaries between classes are established 

in the distribution assumption. With the non-parametric classifiers, classes are to be 

found with no prior knowledge of the probability density function of each class. To attain 

optimal results, more often a hybrid strategy of combining the two will be necessary 

(Richards, 1993). In a hybrid classification supervised and unsupervised classifier may be 

used in different stages of the classification procedure. 

 

2.1.1 Supervised parametric classification 

Supervised classification procedures are the essential analytical tools used for the 

extraction of quantitative information from remotely sensed images. An important 

assumption in supervised parametric classifications adopted in remote sensing is that 

each spectral class can be described by a probability distribution in the multispectral 

space (Richards, 1993). The most commonly used distribution is the Normal or Gaussian 

distribution. For example, Maximum Likelihood Classification is the most commonly 

used classifier among the other parametric classifiers despite its longer computational 

time and inherent assumptions. A supervised classification needs existing reference data 

to establish user-selected training sets for land cover classes. Reference data can be 

obtained from site visits, maps, air photographs or even photo-interpretation of a color 

composite product formed from the images. When pixels are selected as training site, 

these training pixels are used to derive various statistics (e.g. mean and standard 

deviation) for each land cover class to represent the prototype of the associated class. 

According to the statistics generated from the training data, the parameters of the 
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particular classification algorithm are estimated and the classifier is taught to recognize 

the spectral characteristics of each class.  

 

2.1.2 Unsupervised parametric classification 

Unsupervised classification is a means by which pixels in an image are assigned to 

spectral classes without the user having foreknowledge of the existence or names of those 

classes. Clustering analysis is usually the common method to perform an unsupervised 

image classification. The user determines the number and the location of the spectral 

classes into which the data falls, as well as the spectral class of each pixel according to 

statistical similarity. After the completion of the clustering, it is the task of the analyst to 

identify those classes by associating a sample of pixels in each class with available 

reference data, which could be maps or information from ground visits (Richards, 1993). 

Often unsupervised classification is used on its own, particularly when the training data 

for supervised classification cannot be obtained or is too expensive to acquire.  

 

2.1.3 Partially unsupervised classification 

Contrasting the supervised and unsupervised learning processes, intermediate modes of 

data structure searching are called for the real-world applications. Especially when the 

domain knowledge about the classification problem is available, a prudent use of the 

foreknowledge could substantially enhance the classification efficiency (Pedrycz and 

Waletzky, 1997). Semi-supervised/unsupervised classifiers, therefore, have been 

proposed by some researchers to deal with the fact that gathering training samples or 

labelling training samples is very expensive in terms of time and manpower. For 

examples, Jeon and Landgrebe (1999) in their study had prior knowledge of only one 

particular class of interest. They thus developed a partially supervised clustering method 

as a special case of unsupervised clustering with one particular cluster initially known for 

classification. Bruzzone et al. (2002) proposed a multiple-classifier architecture that first 

trained the classifier in a supervised way, and then retrained the classifier in an 

unsupervised way with the obtained parameters to updated land cover maps. Their hybrid 

classification system was capable of producing accurate land cover maps even for images 
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without available ground-truth information. The combination of supervised and 

unsupervised classifiers can be a useful strategy in classification, especially when training 

samples of only a particular class of interest is available. 

 

 

2.2 Classification Uncertainties 
Remote sensing offers the potential to study the ecotone dynamics over a large space and 

long time periods. Here, the ecotone in the general sense represents the merged 

ecological classes that neighbour with each other. The potential of remote sensing for 

land cover mapping, however, may be restricted if an inappropriate classification method 

is chosen for the specific mapping purpose. Especially the inherent uncertainty from 

various sources propagates during the image processing. Recognizing the limitations of 

classification techniques and understanding the sources of mapping errors are important 

to both producers and users. In land cover mapping, either natural phenomenon or 

classification techniques would lead to classification uncertainty. First, no exact boundary 

exists between spatially vague objects. Second, spectrally mixed pixels enclosing more 

than one object are contradictory to the pure pixel assumption of image generation. In 

order to have reliable mapping results, these uncertainty sources need to be considered in 

the choice of an appropriate classifier for wetland mapping. 

 

2.2.1 Spatial vagueness of natural objects 

Many geographical applications describe the spatial extensions of natural geographic 

objects by sharp regions that have a unique boundary. However, the determinate and 

crisp concepts are not adequate logic for mapping the spatial phenomena of the real world. 

The reason is that the intrinsically spatial indeterminacy and spatial vagueness are 

inherent in many geometric and geographic data (Schneider, 2002). Almost every natural 

object has a gradual boundary; two vague regions can share a common gradual boundary 

like the transition of wetland and upland. For example, the presence of hydrophyte 

vegetation, hydric soil, and flooding is commonly used as conditions to classify wetlands 
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and to determine their boundaries. Typically, these characteristics of wetlands are 

distributed gradually and continuously rather than abruptly over space in ecotones.  

 

Carter et al. (1994) analyzed the changes of hydrogeology, soil and vegetation along the 

moisture/elevation gradient to select tentative boundaries based on field survey. Their 

investigation showed that these three parameters demonstrated a gradual change from 

wetlands to uplands and that the locations of boundaries based upon the individual 

parameters could differ in broad gradual transition zones. They thus concluded that the 

basic problems appearing to the placement of exact wetland boundaries were the 

vagueness and circularity of the wetland definition itself. This conclusion is coincident 

with the statement of Kulik (2003), “At least two perspectives of spatial vagueness to be 

considered: the objects themselves are vague, or the concepts or representation of objects 

are vague.” The ambiguity of nature land cover composition in the transitional area leads 

to confusion and thus to classification errors. Indeed many errors in image classification 

may be concentrated spatially around boundaries of both continuous and discrete classes 

(Zhang and Foody 1998).  

 

2.2.2 Spectrally mixed pixels 

As the vagueness of natural objects introduces confusion and classification errors, this 

natural phenomenon is also reflected spectrally on a remotely sensed image. When 

collecting the spectral information from the ground objects, the remote sensor records the 

comprehensive reflectances of an area based on a pixel unit. A problem in remote sensing 

is that the land cover may vary more spatially than the sampling interval between pixels 

in the imagery, particularly with imagery of moderate and coarse spatial resolution. This 

implies that many of the pixels may represent a mixture of land cover classes and may be 

referred to as mixed pixels.  

 

Mixed pixels can represent a significant problem in image analysis and they are not 

sensible to assign a single pixel to a single class. Conventional image classification 

techniques, however, assume that the study area is composed of a number of unique, 
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internally homogeneous classes (Fisher and Pathirana, 1990). They also presume that the 

classification analysis based on reflectance data can identify these unique classes. 

Unfortunately, these untenable assumptions cannot give a realistic description of data 

because they violate the real facts. Furthermore, the inherent errors emerge from the 

classification uncertainty (Cheng et al., 2001). The mixed pixels degrade the image 

classification accuracy because a mixed pixel contains more than one class, and because a 

mixed pixel displays a composite spectral response that is similar to each of its 

component classes. The pixel sometimes may not be allocated to one of the component 

classes, but in the conventional classification a pixel can be allocated to only one class.  

 

A number of approaches have been developed and tested for solving pixel unmixing to 

reduce the classification errors. Foody and Cox (1994) in their study estimated the sub-

pixel land cover composition from Landsat MSS imagery. Their results showed that pixel 

unmixing approaches were more accurate than traditional image classifiers in the 

assessment of class coverage over a region. This means that the traditional classification 

method such as maximum likelihood classification is often incapable of performing 

satisfactorily in the presence of mixed pixels.  

 

 

2.3 Fuzzy Logic for Imprecise Nature 
Recognizing that the classical theoretical notion of classification techniques as a discrete 

view of space, researchers are trying to model and reason about areas with “indeterminate 

boundaries” (Burrough and Frank, 1996). With this perception both the spatial continuity 

and the fuzziness of spatial data can be involved in the classification techniques. When 

the two or more classes occupy a single pixel especially in a coarse spatial resolution 

remotely sensed imagery, the mixed pixel would be appropriate to conceive the different 

landscapes as a set of fuzzy classes. Burrough (1996) considered fuzzy sets as an 

appropriate method to deal with ambiguity, vagueness, and ambivalence in mathematical 

or conceptual models of empirical phenomena. 
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Originally, fuzzy logic was developed by Zadeh (1965) to provide a general 

representation of vagueness based on different degrees of membership values. In contrast 

to a traditional “hard” classification constructed based on binary logic, a classification 

method using fuzzy logic is called a “soft” classifier. Fuzzy approaches have been 

successfully utilized in pattern recognition (Cuevas et al., 2004; Leung et al., 2004) or 

classification in different study fields, such as medical image analysis (Pham, 2001; 

Ahmed et al., 2002) and climate study (McBratney and Moore, 1992). Fuzzy 

classification is now widely accepted as a ubiquitous solution to the mixed and imprecise 

problems in nature because of its ability to describe the classification uncertainty. De 

Bruin and Stein (1998) applied the fuzzy set approach to soil data derived from a digital 

elevation model (DEM) to represent transition zones in the soil-landscape. They 

concluded that the fuzzy approach could reveal the spatial pattern of soil-landscape and 

improve the conventional soil-landscape modelling. Zhang et al. (2004) applied the fuzzy 

approaches and the statistical method to ecological habitats classification with the field 

data collected from the mixed-species forest stands. Their study showed the ability of the 

fuzzy classifiers in improving the classification accuracy and the flexibility in classifying 

ecological habitats that have a mixture of overstory and understory species. 

 

In the applications of capturing the gradual transition areas from remote sensing imagery, 

Foody and Boyd (1999) compared the fuzzy classification to the conventional “hard” 

classification while using Advanced Very High Resolution Radiometer (AVHRR) data to 

identify the changes in the apparent position of the forest-to-savanna transition. Their 

study revealed that fuzzy classifications could characterize the migration of the 

transitional area because richer information emerged in the class memberships. To 

delineate ‘meaningful’ objects from uncertain classification results, Cheng et al. (2001) 

elucidated three fuzzy object models (i.e. fuzzy-fuzzy, fuzzy-crispy and crispy-fuzzy 

object model) to represent objects with indeterminate boundaries. Recently, fuzzy 

approaches also illustrate their potential in sub-pixel mapping by interpreting the spectral 

data in terms of membership grades to a class. For example, Lucas et al. (2002) applied 

the fuzzy approach to airborne image spectrometer (CASI) imagery for coastal dune 
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habitat mapping. Schmidt and Schoettker (2004) utilized the fuzzy membership function 

for spectral unmixing to optimize a land cover classification. 

 

 

2.4 Image Texture 
The linkage between landscape structures and ecological functions is based on the spatial 

arrangement of landscape elements rather than on an identical square area. In landscape 

ecology, the basic unit of a landscape is a landscape element - a “homogeneous surface 

area that differs from its surroundings in nature or appearance” (Turner et al., 2001). 

Using remote sensing images, homogeneity is defined in relation to pixel size. A patch 

refers to a compact element consisting of a few pixels and is also a homogeneous surface 

area. Pixels comprising the patch are supposed to have similar digital numbers. 

Intrinsically, the local spatial variability of image pixels provides a practical means of 

analyzing the textural properties of objects since the grey level is not randomly 

distributed within an image.  

 

In digital images, the characteristics of a texture can be sensed via variations in the 

captured intensities. It is a valuable feature in discriminating among different land cover 

types. Image texture, which provides a complementary tool to satellite images, has 

received great attention in land cover mapping (Treitz et al., 2000; Franklin et al., 2000; 

Arzandeh and Wang, 2002). Classical image classification algorithms based on the 

“pixel-paradigm”, however, focus on the statistical analysis of individual pixels rather 

than on the spatial patterns they build up (Blaschke and Strobl, 2001). The potential of 

the spatial information existing between a pixel and its neighbours is totally ignored. 

Therefore, image attributes within a landcover type over its neighbourhoods should be 

characterized to achieve a more reliable and a more accurate mapping result.  

 

2.4.1 Statistical texture analysis 

Haralick et al. (1973) noted that texture has been extremely refractory to precise 

definition. So far no one has been able to define digital texture in mathematical terms 
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although a number of people have been trying to find ways of categorizing textures 

(Mäenpää, 2003). Traditionally, textural processing algorithms can be divided into two 

categories: structural and statistical methods. Structural methods consider texture as a 

repetition of basic primitive patterns. Statistical methods treat texture as statistical 

properties of intensities and positions of pixels.  

 

Grey-level co-occurrence matrix (GLCM), one of the most widely used statistical texture 

measures, has been well implemented in commercial software, such as PCI GeomaticaTM. 

The idea of the algorithm is to consider the relative frequencies for which two 

neighbouring pixels are separated by a distance on the image. Since the GLCM collects 

information about pixel pairs instead of single pixels, it is called a second-order statistic. 

Texture measures, such as homogeneity, contrast, and entropy derived from the co-

occurrence matrix can be incorporated with spectral features for classification purposes 

(Haralick, 1979). The GLCM approach has been utilized in different applications such as 

crop classification in agriculture, forest species classification, and wetland mapping in 

nature resources management. By using the GLCM approach for crop classification, 

Treitz et al. (2000) noted that combination of texture features in classification was 

superior to the original image. Franklin et al. (2000) also demonstrated the improvement 

of the accuracy for forest stands classification while incorporating derived texture 

measures from airborne multispectral video images into classifier.  

 

Two parameters, such as the combinations of textural features and window size, 

associated with the GLCM method should be considered directly. Examining the effects 

of textural feature combination, Arzandeh and Wang (2002) observed that the 

combination of three or four texture features provided a better performance than only one 

or two texture features. However, the most appropriate combinations of texture features 

strongly depend on the surface properties for a particular application; no rules are 

recommended for the texture measures selection. With an appropriate window size for 

texture feature derivation, unique texture patterns of a patch can be extracted for land 

cover type discrimination. Marceau et al. (1990) and Peng et al. (2003) have examined 
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the effects of different moving window sizes, from 3×3 to 25×25 pixels, on classification 

accuracy. They concluded that large window size could capture the spatial patterns of 

each land cover type better, but might contain more than one land category which could 

introduce systematic errors. The window should be small enough, however, to keep the 

variance low and to maximize the potential for class separability.  

 

In general, the window size is a critical factor in remote sensing. Instead of a time 

intensive trial-and-error method, a promising strategy, the semivariogram, based on the 

actual image data can be used into the procedure to derive an optimal geographic window 

to use in remote sensing. The semivariogram is a property used in regionalized variable 

theory to express the degree of relationship between pixels on image digital numbers. The 

semivariance at some distance, called range of the regionalized variable, is approximately 

equal to the variance of the image digital numbers. This range shows the greatest distance 

over which the value of a pixel on the image is related to the value of another pixel. The 

range can thus be used as a measure of homogeneity and be used to derive an optimal 

geographic window.  

 

2.4.2 Semivariogram  

Geostatistics is a set of techniques for the analysis of spatial data. The techniques 

consider the spectral-response patterns existing between a pixel and its neighbours. They 

are characterized by their dependence on a model of the spatial covariance function: the 

semivariogram function. The semivariogram, a data-driven graphical representation of 

the spatial variability, provides a method to measure the spatial dependency of 

continuously varying phenomena (Curran, 1988; Franklin et al., 1996). In remote sensing, 

digital numbers of remotely sensed imagery can be geostatistically interpreted as a 

regionalized variable, and characterized by both random and spatial correlation aspects. 

Under the intrinsic hypothesis, both aspects can be jointly studied through the 

semivariogram function concept. 
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The semivariogram, developed from the theory of regionalized variables, displays the 

average change of a property with changing lags. The relation between a pair of pixels 

that are lag distance h  apart can be given by the average variance of the difference 

between all such pairs and expressed as follows: 
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In remote sensing, )(hγ  estimates the variability of radiance as a function of the spatial 

separation in lag distance, Z  represents the digital number at a pixel location , and 

 means the total number of pixel pairs. Because real spatial phenomena may show 

directional effects depending on the data properties, a spatial process of a directional 

semivariogram may reflect anisotropy phenomenon. Directional semivariograms define 

the variation of two point pairs depending not only on the separation distance, but also on 

the orientation of the two points. However, omnidirectional semivariograms considers 

that the separate lag distance  is a scalar rather than a vector in the space. 
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The interpretation of a semivariogram usually focuses on the relating parameters: range, 

sill and nugget effect (Figure 2-1). Fig 2-1 shows an omnidirectional semivariogram 

computed according to the average variance of eight directions. At a lag distance called 

the range, the variogram would typically stabilize. Groups of pixels within the range are 

highly correlated. Thus the range can be used to measure the homogeneity of a patch and 

further to predict the optimal geographic window sizes (Curran, 1988; Franklin et al., 

1996). The value of the variogram at this range is called the sill. The sill can be viewed as 

a mean value of the digital number variations. At distances greater than the range, any 

two pairs of values are independent of each other. In general, the value of the variogram 

would also be smaller at smaller lag distances because values separated at small distances 

tend to be more similar. However, a plot of the experimental semivariogram may indicate 

a discontinuity at the origin, 0h = . Mathematically the variance of the pixel itself is equal 

to zero. However, due to microscale variation a nugget effect occurs (i.e. the variance at 
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the origin is not equal to zero). This nugget effect is considered as random noise due to 

microscale processes and measurement error.  

 

Chiu and Couloigner (2004a) used the omnidirectional semivariograms derived from 

Landsat image data to find out the optimal window size(s) for deriving texture features. 

The result showed that the incorporation of texture measurements into multispectral data 

could improve the classification accuracy. Also, using the predicted range as the window 

size for deriving texture features for a specific class could provide superior discrimination 

and correlation results compared to those obtained using randomly selected identical 

windows.  

 

 
Figure 2-1. Illustration of an omnidirectional semivariogram showing the 

parameters of nugget effect, sill, and range in image application. 

 

 

2.4.3 Semivariogram texture classification 

Recently, classification techniques have involved the use of semivariogram computed 

within a local window as a measure of texture (Atkinson and Lewis, 2000). Carr (1996) 

presented the concept of using the semivariogram to aid digital image classification. 
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Miranda et al. (1998) employed the semivariograms of training classes as textural 

signatures to perform image classification. Chica-Olmo and Abrarca-Hernandez (2000) 

computed a set of textural measures based on several semivariogram estimators. However, 

in their study these semivariogram measures were calculated only for a specific lag of 

distance in a neighborhood. While geostatistical measures were compared to traditional 

co-occurrence based textural measures, Carr and Miranda (1998) found that the texture 

measure achieving the greatest accuracy depended upon the nature of the data and texture. 

The semivariogram textures were employed as additional input layers to the classifiers, 

such as the maximum likelihood algorithm or the minimum-distance-to-mean classifier. 

Image classifications in these studies were performed with hard classifiers in a fully 

supervised manner.  

 

 

2.5 Accuracy Assessment 
Accuracy assessment allows a degree of confidence to be attached to the mapping results. 

It also serves to indicate whether the analysis objectives have been achieved. Often 

reference data is referred to as ground truth. From the percentage of pixels labelled 

correctly by a classifier, the results can be expressed in a confusion matrix to illustrate the 

effectiveness of the classifier. A confusion matrix is used for checking the accuracy of a 

classification. It contains information about actual and predicted classifications done by a 

classification system as shown in Table 2-1. There are four different possible outcomes of 

a single prediction for a two-class case: true positive (TP), true negative (TN), false 

positive (FP), and false negative (TN). Among the four outcomes, only true positives and 

true negatives are obviously correct classifications. False negative means an incorrect 

prediction that an instance is positive, and false positive defines an incorrect outcome 

when an instance negative is misclassified as positive. 

 

The accuracy will be affected by many factors, such as the degree of spectral separability 

of the classes under study, the characteristics of the test site, and the image processing 

techniques used. These factors introduce somewhat errors due to either systematic 
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problem in image generation or personal misunderstanding during image processing. On 

all accounts, the accuracy of each classification is an obvious limit to its value for the 

provision of land cover information. 

 

Table 2-1. Example of a confusion matrix. 

Predicted Class Confusion 
Matrix Positive Negative 

Positive TP FN 

A
ct

ua
l C

la
ss

 

Negative FP TN 

 

 

2.5.1 Accuracy and error 

Accuracy refers to the agreement between a measurement and the true or correct value; 

error refers to the disagreement between a measurement and the true or accepted value 

(Richards, 1993). Both the accuracy and the error are often calculated in percentage. In 

image classification, overall classification accuracy is the widely used estimator to 

illustrate the average percentage of correct classifications. As in Table 2-1, both TP and 

TN are correctly classified outcomes. Therefore, the proportion of the total number of 

correct predictions (i.e. TP plus TN) defines the overall accuracy. However, the overall 

accuracy method considers the classes as having equivalent or similar accuracies whereas 

classes in the real application often exhibit drastically differing accuracies. More specific 

measures are thus needed because the overall accuracy does not indicate the accuracy 

distributed across the individual class.  

 

Producer’s accuracy and user’s accuracy are the two methods to determine the accuracy 

of individual classes. The producers are more interested in how correctly the reference 

samples are classified by the classifiers, while the users are concerned about what 

 



Literature Review 23

 

percentage of the classes has been correctly classified and correspond to the reality. As 

shown in Table 2-1, TP and TN that define the proportion of correct predictions of an 

individual class respectively represent the producer’s accuracy of each class. User’s 

accuracy means the precision that the predicted positive instances are correct. 

 

When only a small number of cover types is of interest, a more appropriate way of 

presenting the individual classification accuracies is through the use of commission error 

and omission error. Omission errors correspond to those pixels belonging to the class of 

interest that the classifier has failed to recognize. As shown in Table 2-1, the proportion 

of FN to actual positive instances has the equivalent meaning of omission errors. 

Omission error is directly related to producer’s accuracy as:  

errorOmission1accuracyroducer'sP −=   (2-2) 

Commission errors are those pixels labelled by the classifier from other classes to the 

belonging class of interest. As shown in Table 2-1, the proportion of FP to total positive 

predictions is the commission error. Commission errors are associated with use’s 

accuracy as: 

errorCommission1accuracyUser's −=    (2-3) 

 

 

2.6 Summary 
This chapter has shown some of the relevant theories that are employed in this thesis 

study. Image classification is the major objective in mapping application. Classification 

models to be selected for the image classifiers have been introduced. The sources of the 

classification uncertainty are inherent in either the target objects or the acquired imagery. 

A “soft” classifier has an ability to describe these uncertainties in the imprecise nature 

phenomena by fuzzy membership functions. Image textures derived from geospatial 

techniques can be incorporated with spectral information in the classification procedures 

 



Literature Review 24

 

to improve the accuracy. Finally, the accuracy assessment is a quantification method to 

evaluate the effectiveness of classifiers. Each section in this chapter has reviewed some 

associated studies corresponding to the topics to highlight the potential strengths and 

weaknesses of each technique being used. The framework of developing this research is, 

therefore, formed: the semivariogram texture can be employed as a weighting factor in a 

partially unsupervised fuzzy classifier for wetland mapping, so that the vagueness of 

ecological transition zones can be interpreted through the fuzzy membership degrees. 
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CHAPTER 3  

FUZZY CLUSTERING THEORY AND 

DEVELOPED MODIFICATIONS 
 

 

 

“There is one thing even more vital to science than intelligent methods; and that is, the 

sincere desire to find out the truth, whatever it may be.”  

 

Charles Sanders Pierce, 1839-1914 

American philosopher and scientist 

 

 

 

3.1 Concept of Clustering Analysis 
Clustering analysis is an important exploratory technique for searching the structures of 

natural groupings in data. It can provide information for assessing dimensionality, 

identifying outliers, and suggesting interesting hypotheses that concern relationships. The 

common application of clustering methods is based on the similarity or distance measures 

computed from the input data to partition the data set into classes. Similar data are 

assigned to a same cluster whereas dissimilar data are allocated to different clusters. 

Clustering analysis thus is to discover natural groupings of a certain data set and to obtain 

a meaningful partition according to the given definition of similarities.  

 

The two major categories of clustering techniques are the hierarchical clustering methods 

and the non-hierarchical clustering methods. The hierarchical clustering methods proceed 

by either a series of successive mergers or a series of successive divisions. The non-
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hierarchical clustering process is based on a monotonically increasing ranking of 

strengths and the clusters themselves progressively become members of larger clusters. 

The non-hierarchical clustering methods are also called partitioning methods. The 

similarity matrix, in non-hierarchical clustering algorithm, does not need to be 

determined initially and data do not have to be stored during the computer run. The non-

hierarchical clustering methods have more flexibility and can be applied to larger data 

sets than the hierarchical techniques. The non-hierarchical clustering proceeds iteratively. 

In general, partitioning methods first start from either an initial partition of the data set or 

an initial set of seed points, which will form the nuclei clusters (Johnson and Wichern, 

1988). Each pixel are then classified and assigned to the closest cluster in the second step. 

In the third step the new cluster mean vectors are calculated based on all the pixels 

belonging to the cluster. The second and third steps are repeated until the “change” of the 

objective function is smaller than a predetermined threshold. 

 

3.1.1 Multidimensional feature space 

Remote sensing is a technology for sensing and recording reflected or emitted energy, 

which is called Electro-Magnetic (EM) radiation, at various wavelengths or polarizations. 

Because many ground materials reflect and emit EM radiations in unique ways that form 

their spectral signatures, they can be characterized and identified by analyzing the 

spectral information of a multispectral imagery. In an image, a pixel is the basic unit to 

represent ground objects. However, the pixel size is associated with the spatial resolution 

that defines the smallest level of spatial detail perceived in an image. The smallest ground 

objects may be distinguished as separate entities in the image when having sizes larger 

than a single pixel.  

 

Pixels can then be viewed as a picture element in a p -dimensional vector space, which is 

called the feature space. If a multispectral imagery has p  bands, each pixel is a 1p×  

vector. Figure 3-1 shows a pixel of a multispectral imagery viewed as a picture element 

in a 3D multispectral feature space. This space is the basis of clustering analysis. When 

the location of all image pixels are plotted in the feature space, pixels that belong to a 
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same class will form a cluster. After a clustering process, all pixels in the image will be 

assigned to one of the predefined information class.  

 

 
Figure 3-1. Illustration of feature space. A pixel of a multispectral imagery can be 

viewed as a picture element in a feature space. p1, p2 and p3 are the brightness value 

of the pixel located at row i, column j and band 1, 2 and 3 respectively. 

 

 

3.1.2 Similarity measures 

A measure of the similarity between the pixels is necessarily required to produce a simple 

group structure from a complex data set. Similarity measures can be defined as functions 

that automatically map data points represented by feature vectors to indicate the degree of 

similarity between the objects. The distance between two data points is the central idea 

for the mathematical representation of similarities. Two techniques are provided for 

distance measurement in the following. 
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3.1.2.1 Euclidean distance 

The Euclidean distance is a straight-line distance measure. If we consider two arbitrary 

data points  and  in a x v p -dimensional feature space, the straight-line distance between 

the ordinates  and )( , p2xx K=x , x,1 )( ,,, p21 vvv K=v  is given by: 

2
pp
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22
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11 vxvxvx )()()()(D2 −++−+−= Lvx,   (3-1) 

However, the Euclidean distance may not be satisfactory for many purposes because of 

the assumption of an equal contribution of each coordinate to the distance results. When 

using the Euclidean distance in a clustering analysis, it gives good results only when all 

clusters are spheroids of the same size or when all clusters are well separated in the 

feature space (Krishnapuram and Kim, 1999). Once the measurement of each coordinate 

is subject to random fluctuations of scale magnitudes, the variability of these coordinates 

should be taken into account when computing the distance; that is, without considering 

the scale variability among the coordinates, the coordinate with larger number scale 

dominates the distance computation and results in a bias outcome. This suggests a 

different distance measure: the Mahalanobis distance. 

 

3.1.2.2 Mahalanobis distance 

The Mahalanobis distance is a statistiscal distance measurement invented by P.C. 

Mahalanobis in 1936. Because the correlations of a data set are taken into account, the 

variability of the coordinates are standardized on an equal footing with one another. It is a 

useful way of determining the similarity of an unknown sample set to a known one. Thus 

the Mahalanobis distance of two data points  and  is of the form: x v

)()()(D2 vxMvxvx, −−= −1T     (3-2) 

where  denotes the covariance matrix and M T  indicates the transpose of a vector. Since 

the Mahalanobis distance can give the description for an ellipsoidal distributed data set, it 

was introduced to design the Gustafson and Kessel fuzzy clustering algorithm (1979). It 
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is to be noted that the Mahalanobis distance is the same as the Euclidean distance if the 

covariance matrix is the identity matrix. 

 

 

3.2 Theory of Fuzzy Clustering 
“Fuzzy” is a word that means uncertain, incomplete, and not fully determined. Fuzzy 

logic is a means to handle the concept of partial truth, that is, true values between 

"completely true" and "completely false". Zadeh (1965) initiated the concept of a fuzzy 

set theory in the early 1960s. He stated that the development of a fuzzy set theory was 

motivated in large measure by problems in pattern classification and cluster analysis. He 

thus extended the notion of binary membership to accommodate various degrees of 

membership on the real continuous interval from 0 to 1, where the endpoint of 0 and 1 

conform to no membership and full membership, respectively. Later in the beginning of 

the 1970s, Zadeh presented the foundations of a linguistic synthesis and showed how 

vague logical statements could be used to construct computational algorithms that might 

be used to derive inferences from vague data (Zadeh, 1973).  

 

Clustering techniques without introducing the fuzzy theory enables a clear distinction 

between objects. However, geographic objects in the natural world are not often 

illustrated by a sharp boundary in contrast to man-made objects. Rather, almost every 

natural geographic object has a vague boundary (Couclelis, 1996). Fuzzy clustering is 

often suited better than crisp assignments of the data to the clusters. A key difference 

between crisp and fuzzy sets is their membership function: a crisp set has a unique 

membership function, whereas a fuzzy set can have an infinite number of membership 

functions to represent it (Ross, 1995).  

 

Figure 3-2 gives a simple hypothetical example to illustrate the membership function for 

a crisp and a fuzzy set. The variations in land covers run along an environmental gradient 

and control the distribution of three classes: upland, wetland, and open water. The 

membership value, ],[)( 10x ∈µ , measures the similarity degree of the element x  
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belonging to the class. For a crisp set function, the binary logic is applied to the land 

cover distribution; that is, the strength of membership is either 0 or 1. A crisp boundary is 

given to divide a gradual geography into two classes. By contrast, a fuzzy set function 

allows the classes to intergrade and co-exist spatially between the “core” areas of the two 

classes. The “core” areas of each class are characterized by a complete coverage of the 

relevant class. The membership to one class should be expected to decline from the 

class’s core area while the membership of the other class should rise.  

 

 

Figure 3-2. Illustration of the membership function for (a) a crisp and (b) a fuzzy set. 

 

 

3.3 Overview of Fuzzy C-Means 
The Fuzzy C-Means (FCM) clustering algorithm developed by Bezdek (1984) is 

commonly implemented and employed as a constrained soft partition to provide a cluster 

description. Bezdek and Pal (1992) have stated that feature vectors should be allowed to 

have degrees of membership in more than one class. This statement strongly supports the 
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fuzzy classification of a multispectral image. This clustering algorithm uses image 

attributes as information to divide the image domain into a predetermined number of 

clusters. It then assigns every pixel in the image with a certain degree of membership to 

the clusters. In the last decades, fuzzy partitions have been the approaches applied to 

image classification and intended to overcome the intrinsic limitations of crisp partitions. 

The terminology “fuzzy segmentation” thus can be found in several papers related to 

image analysis and pattern recognition (Tolias and Panas, 1998; Noordam et al, 2000; 

Chumsamrong et al., 2000; Thitimajshima 2000; Gordan et al., 2002; Ahmed et al., 2002; 

Chamorro-Martinez et al., 2003; Cuevas et al., 2004) 

 

3.3.1 Fuzzy C-Means clustering algorithm (FCM) 

The idea of the FCM clustering technique is to minimize the objective function that can 

be expressed in the form of a generalized least-squared error function. The objective 

function specifies a sum of distances, characterized by the Euclidean norm, between the 

feature points and the corresponding cluster centres. This algorithm is noted J , 

where U  is the partition matrix and V  is a vector of the cluster centres. Given a n

),;( VUX

21 n×  

sized image, the data set can be expressed as a p -dimension feature vector 

, where Np
N RxxX ∈= },...,{ 21 x, 21n n×=  is the number of total pixels in the image. The 

objective function is then given by: 
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where C  is the number of clusters and d  is the Euclidean distance measure (in a ik p -

dimension feature space, d ) between the ip
ik R∈ th data sample x  and the i k th cluster 

centre , written as: kv
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Since the location of each data sample x  can be described in the ij
pR  feature space, each 

cluster centre should be represented in the same feature space. Therefore, the k th cluster 

centre is a vector of length p , 

{ }kp2k1kk vvvv ,,, L=       (3-5) 

The optimum partition matrix, U , that produces the minimum value of the objective 

function  is that of interest in the fuzzy c-means clustering algorithm. That is: 

*

J

),;(min),;(
),(

** VUXJvUXJ
VU

=     (3-6) 

The iterative optimization, devised by Bazdek (1984), is an effective algorithm for fuzzy 

classification. The solution to Eq. (3-6) cannot be promised to be a global optimum but 

rather a local minimum within a given level of accuracy. Because fuzzy sets allow for 

degrees of membership, a single point can have partial membership in more than one 

class. It will be useful to describe the membership value that the i th feature point has in 

the k th class with the following notation: 

],[ 10ik ∈µ  for all 1k C2 ,,, K=  and  i  (3-7) N21 ,,, K=

In the optimization process, the partition matrix is subject to two constraints. First, no 

cluster should be empty and no cluster should contain all the feature points. This 

qualification is manifested in the following expression: 

N0
N

1i
ik <<∑

=

µ  for all 1k C2 ,,, K=    (3-8) 

Second, the overall weight of all membership values for a single feature point in all of the 

clusters has to be unity, i.e.: 
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1
C

1k
ik =∑

=

µ  for all 1i N2 ,,, K=     (3-9) 

By taking these constraints into consideration, the partition matrix, U , can be solved with 

an iterative scheme leading either to a local minimum or a saddle point of . Meanwhile 

high membership values are assigned to pixels whose intensities are close to the centroid 

of its particular cluster and low membership values are assigned to pixel data located far 

from the centroid. The membership degrees associated to each class are given in the 

partition matrix U , which follows from the overlapping character of the classes 

and the infinite number of membership values. 

J

}{ **
ikµ=

 

In Eq. (3-3) the weighting parameter, m , is called the fuzzy index whose range for the 

membership exponent is ),[ ∞∈ 1m . It controls the degree of fuzziness in the classification 

process. When , the clusters tend to be crisp, i.e. the membership degree 1m → ikµ  equals 

either 1 or 0. Conversely, as ∞→m , larger powers of the membership values that are less 

than or equal to 1 make the objective function approaching to zero, J . As m  

increases, the membership function becomes increasingly fuzzier and the convergence of 

the algorithm tends to be slower. Pham (2001) compared different values of fuzzy indices 

in the FCM clustering algorithm for magnetic resonance image (MRI) segmentation. His 

study denoted that when the selection of m  was greater than 1, the membership function 

did not become binary. However, there is no theoretical optimum choice of m  in the 

literature. The literature seems to report that m

0→

2=  is usually chosen (Pham, 2001; 

Ahmed et al., 2002). Therefore, the fuzzy index is chosen to be 2 in this study. 

 

 

3.4 Modification of Fuzzy C-Means  
When the FCM classifier is applied for wetland mapping, two major problems need to be 

clarified. First, the Euclidean distance used in the FCM clustering algorithm for similarity 

measurement assumes that every cluster comes from a spherical normal distribution with 

different means but an identical variance (Krishnapuram and Kim, 1999). If clusters 

 



Modified Fuzzy Clustering Algorithm 34

 

having spherical distributions fit in with the assumption, the Euclidean distance works 

better for the clustering. Furthermore the implementation of the clustering algorithm with 

the Euclidean distance is easier. Unfortunately, spherically distributed clusters do often 

not happen in a remotely sensed image data set, especially for natural land cover classes. 

For example, a cluster of “water” pixels is compact and well detected as one distinct 

cluster while a “wetland” cluster is usually more or less elongated with a much larger 

variability compared to the “water” cluster. This is because the inherently spectral 

characteristics of the land cover itself that are spectrally mixed and that vary gradually in 

the landscape.  

 

Second, the standard FCM clustering algorithm uses only the spectral information in the 

objective function. Although using only the spectral information in clustering is intuitive 

and allows the algorithm to be easily applied to many applications, spatial variability 

inherent in an image implies that some structure properties of landscape elements should 

be taken into account. As image textures highlight the relationship between a pixel and its 

neighbourhood, they characterize the spatial variability of data and provide additional 

information for image classification. However, the objective function of the standard 

FCM clustering algorithm does not take the spatial information into account.  

 

These two concerns motivate the modification of the FCM clustering algorithm for 

wetland mapping from two aspects: replacing the Euclidean distance by the Mahalanobis 

distance and incorporating the semivariogram texture as spatial guidance in the 

conventional FCM clustering algorithm. 

 

3.4.1 Semivariogram Guided Fuzzy C-Means clustering algorithm (SGFCM) 

Since only the pixel intensity is considered in the distance function of the FCM classifier, 

we propose a modification to Eq. (3-4) by introducing the texture component as a 

weighting factor. This introduction allows the labelling of a pixel to be influenced by the 

semivariograms of the training sites and thus by the spatial information of the classes 

under consideration. The semivariogram texture involves the regional homogeneity of 
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observations. A ss ×  pixel region surrounding a pixel  to be classified is extracted from 

an image for the semivariogram computation. In this instance, 

ix

s  is of the same size as the 

one used for the training sites. For each changing lag h , the average distance is computed 

between the semivariogram for the extracted region )(hiγ  and the semivariogram for 

each of the training classes )(hkγ . The semivariogram texture parameter w  can be 

formulated as: 

ik
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where  is referred to the semivariance expressed in Eq. (2-1). The modified 

distance function of Eq. (3-4) corresponding to pixel i  and cluster k  can thus be written 

as: 

pRh ∈)(γ

( ) 21
ikkikiik wvxvxdd /)( ×−=−′=′     (3-11) 

As mention above, the Euclidean distance is only suitable for spherically distributed data 

set. To overcome the drawback due to the Euclidean distance, the Mahalanobis distance 

is used as the distance measure, i.e.: 

( ) ki
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k
T
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2

ik vxAvxwd −−=′ −     (3-12) 

where the norm matrix  is a positive definite symmetric matrix. Since the norm matrix 

determines the size and the shape of the points enclosed within a given distance of the 

centre, the above distance measure is meaningful only when all clusters are expected to 

be ellipsoids with same orientation and size. Although the Mahalanobis distance is well 

known for its invariance to linear transformations, it cannot be used directly in the 

clustering algorithm by making the covariance matrix  diagonal as  

kA

kA
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In this case, every point has been proven to be shared equally by all clusters, that is, 

meaning that C1ik /=µ . This result is not expected for fuzzy membership values 

(Krishnapuram and Kim, 1999). Instead, the data set is linearly transformed to have the 

covariance matrix of cluster k  becoming diagonal in the Gustafson and Kessel (1979) 

fuzzy clustering algorithm. In the general case, the distance measure becomes: 
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where kρ  is a constant and M  denotes a fuzzy covariance matrix associated with a 

given class k  and is defined by:  
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Gustafson and Kessel (1979) recommend that 1k =ρ  to preserve the volume of the 

ellipsoidal clusters after transformation. Substituting Eq. (3-14) into (3-3), the modified 

objective function is obtained as 
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As shown by Gustafson and Kessel (1979), minimizing the objective function by using 

the distance in Eq. (3-14) is equivalent to minimizing  
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Here, the norm matrix 
p

kk

k
k M

M
detρ

=A  is subject to kkA ρ=det  with 1k =ρ . The 

function  can be solved while enforcing the two constraints given in Eq. (3-8) and (3-9) 

by means of Lagrange multipliers: 
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Taking the partial derivatives of F  with respect to m ikµ  and setting the result to zero for 

 can derive the formula for updating the membership degrees. 1p >
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Solving for ikµ , it can be written as: 
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Since the sum of the membership values for a single feature point in all classes equal to 

one, it leads to: 
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and λ  is solved as: 

( )
1m

C

1g

1m2
igd

m
−

=

−−








′

=

∑ )/(

λ      (3-21) 

Substituting Eq. (3-21) into Eq. (3-19) results in the following formula for updating the 

membership functions: 
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Taking the derivative of  with respect to v  and setting the result to zero, we will have 

the differential equation leading to: 
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Thus, the zero-gradient condition for the cluster centre is expressed as  
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and the covariance matrices are updated according to 
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The iterative procedures repeatedly replace the membership function and the cluster 

centre until the change in memberships drops below a given threshold: 

( ) ( ) ε≤−+ t1t UU      (3-27) 

 

 

3.5 Defuzzification of Fuzzy Membership Function 
Once the fuzzy clustering procedure has stopped, the partition matrix U  must be 

defuzzified to obtain a final classification of the pixels. The data sets have been computed, 

reasoned, and modeled with fuzzy information. However, most of the actions and 

decisions implemented by human or machines are crisp or binary. “Defuzzifying” the 

fuzzy results generated through a fuzzy set analysis is, therefore, necessary for various 

applications to reduce a fuzzy quantity into a single scalar quantity. The output of a fuzzy 

process can be the logical union of two or more fuzzy membership functions defined on 

the universe of discourse of the output variable.  

 

3.5.1 Maximum membership defuzzy principle 

In the application of image classification, the maximum membership defuzzy principle is 

the most commonly used defuzzification criterion for either fuzzy classifications or 

possibilistic approaches. Even the widely used Maximum Likelihood Classifier employs 
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the concept of maximum operator for the classification. The operation is known as the 

highest method, which is limited to peaked output functions. It is given by the algebraic 

expression: 

)()( * kk
ii xx µµ ≥  for all k C∈     (3-28) 

and is shown graphically in Figure 3-3. The maximum membership defuzzification does 

not consider the relative strength of the memberships for other classes; it has to assign a 

pixel into a class without taking the coexisting classes into consideration at all. But how 

can the pixel be assigned to a class over the others if the highest membership value is 

extremely low? The classification error is, therefore, committed because the maximum 

membership method ignores the similarity between the coexisting classes. To emphasize 

the pixel ambiguity leading to uncertain classification, a method using the alpha (α )-cut 

set for partition matrix defuzzification is proposed in the following.  

 

 
Figure 3-3. Illustration of maximum membership defuzzification. 

 

3.5.2 Alpha (α )-cuts defuzzy rule 

Addressing the vagueness in the transition zones, this study utilizes the α -cuts as a 

threshold mode defuzzification method. A α -cuts method rescale the membership values 

to one for all elements of the fuzzy set having membership values greater than or equal to 

α , and zero for all elements of the fuzzy set having membership values less than α . 

Therefore, in this study, two threshold values according to the maximum ambiguity are 
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given as the lower threshold lowα  and the upper threshold highα . Since the maximum 

ambiguity of each pixel’s membership depends on the number of clusters, we can have 

the lower threshold lowα  defined as 1 . Any pixel having a membership value lower 

than 

C/

lowα  would not be assigned to the associated class, whereas a pixel is assigned to a 

certain class only when the associated membership value is higher than the upper 

threshold highα , where C11 /high −=α , or when the associated membership value is the 

only one larger than the lowest threshold. As shown in Figure 3-4, the ambiguous pixels 

can be expressed according to their membership values as follow: 

transitionx k
i

µ (low ≤
*α (2C

71 =2 3 −

highα<)  for all )1−k∈   (3-29) 

To classify the ambiguous pixels, which are not assigned to any of the major classes, new 

classes are created. By creating the “transition” classes, the classifier allows the transition 

areas between any two major classes to be captured. For example, if the given number of 

the major classes is three, the maximum number of classes after defuzzification will be 

seven or lower (i.e. ).  

 

(a) (b) 

Figure 3-4. Illustration of two different α -cut sets for classification: (a) maximum 

membership criteria with a lower threshold restriction and (b) “transition” classes 

are created to allocate the ambiguous pixels. 
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3.6 Measurement of Uncertainty  
These vague areas are the regions with highly spatial uncertainty in the classification map. 

Burrough (1996) suggested the term “confusion index ( ” to inspect interference 

between multiple membership maps. The measure calculates the difference between the 

highest and the second highest membership class per pixel. It is given as 

)CI

)(. max,max, nd2ikiki 01CI µµ −−=     (3-30) 

The confusion index values are scaled between zero and one, that is, CI . Any pixel 

with CI  values close to one has a higher uncertainty, meaning that the two classes are 

similar. For a pure pixel, it will have a maximum membership value for the associated 

class and for the other classes it will have very low membership values. Then CI  will be 

close to or equal to zero. 

],[ 10∈

 

 

3.7 Summary 
This chapter demonstrates the principal fuzzy classifier― the Semivariogram Guided 

Fuzzy C-Means clustering algorithm―used in the study. From the point of view of fuzzy 

clustering analysis, the definition of similarity measurement is an important factor in a 

clustering approach. Similarity is defined as a distance function to decide to which cluster 

the data point belongs in the clustering algorithm. Because the standard FCM clustering 

algorithm does not take the spatial information into account and assumes that the clusters 

inherent in the data set are well separated from each other, a more robust fuzzy clustering 

algorithm has been developed for wetland mapping. The modification of the standard 

FCM algorithm includes two tasks: replacing the Euclidean distance by the Mahalanobis 

distance and incorporating the semivariogram texture as spatial guidance in the fuzzy 

clustering algorithm. The derivatives of the algorithm are shown in this chapter. 

Furthermore, a threshold defuzzification method has been proposed to emphasize the 
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ambiguous pixels in the transition zones by allocating them to newly created “transition” 

classes since the classification uncertainty is always accompanied with these pixels. 
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CHAPTER 4  

METHODOLOGY  
 

 

 

“The practice of conservation must spring from a conviction of what is ethically and 

aesthetically right, as well as what is economically expedient. A thing is right only when 

it tends to preserve the integrity, stability, and beauty of the community, and the 

community includes the soil, waters, fauna, and flora, as well as people.” 

 

Aldo Leopold, 1887-1948 

American ecologist, wildlife biologist, and forester 

 

 

4.1 Study Area Description 
The area of interest is located within the boundary of Prince Albert National Park, 

Saskatchewan, Canada. The geographic location of the area is predominantly situated in 

the south-Boreal Plains ecoregion. The Churchill River basin runs through the study site 

that has a geographical extent of 53°45’00’’N to 54°00’00’’N and 106°00’00’’W to 

106°25’00’’N as shown in Figure 4-1. Because of its northern mid-continental location, 

the mean monthly temperatures range from approximately -17.2°C in January to 17.5°C 

in July according to the 7-year Meteorological Service of Canada (MSC) Normals for 

1996-2002. The mean monthly precipitations can vary significantly from 80.2mm in July 

to only 14.7mm in November. 

 

The relatively simple topography is defined by low hills and ridges and by lake basins. 

The ground relief of the area varies gradually from the western hills to the eastern valleys 
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and the altitude ranges from 512m to 689m above sea level. The area is usually well 

rounded so that the mean slope is about 6 percent except for some rugged areas that have 

steep slopes varying from 20 to 70 percent. In the south, the land is gently undulating or 

nearly flat. Open to semi-open expanses of true prairie are found there too (Soper, 1952). 

 

 
Figure 4-1. Area of interest is located within the boundary of Prince Albert National 

Park, Saskatchewan, Canada. 

 

The lake system of the park is remarkable. Hundreds of water bodies vary from ponds to 

fair-sized lakes. Since the region was once heavily glaciated, there are numerous bodies 

of water, bogs, sand and gravel ridges, and deep deposits of boulder clay. Many small 

ponds dominate Waskesiu Hill located in the west of the study area and Lake Waskesiu 

in the east side of the park is one of the largest and most important lakes.  

 

The landscapes of the area consist of a range of vegetation types. Two of the major 

vegetation zones are the mixed wood section of the boreal forest region and the aspen 

grove section. Forest canopies are often controlled by small changes in relief and soil 
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drainage. For example, aspen occurs on the uplands while jack pine are on minor ridges. 

Because some small (10 to 30m) ponds occur in the canopy, local wet areas characterize 

the site. In the poorly drained areas throughout the study area, black spruce with some 

tamarack is found in bogs, while sedge vegetation with discontinuous cover of tamarack 

or swamp birch is found in the fen areas (ORNL DAAC, 2001). The commonest 

emergent aquatic plant is the roundstem bulrush (Scirpus), which often forms a narrow 

belt along the shores of lakes and ponds. Cattail (Typha) is represented in widely 

scattered stands and pondweeds (Potamogeton), water-milfoil (Myriophyllum), coontail 

(Ceratophyllum) and arrowhead (Sagittaria) are well grown in few small lakes, ponds, 

and streams (Kiil et al, 1973).  

 

 

4.2 Data 
4.2.1 Satellite imagery 

The available imagery data for this study was acquired in August 1999 by Landsat 7 

Enhanced Thematic Mapper Plus (ETM+) satellite. Except for the thermal infrared, this 

multispectral imagery consists of six bands in different spectral bandwidth: blue (0.45-

0.52 mµ ), green (0.53-0.61 mµ ), red (0.63-0.69 mµ ), near infrared (0.78-0.90 mµ ), and 

two middle infrareds (1.55-1.75 mµ  and 2.09-2.35 mµ ). All the bands have a spatial 

resolution of 25m. The image was Universal Transverse Mercator (UTM) projected under 

Zone 13. Two 200 × 200 pixel subscenes of the area of interest were used for the 

experiment in order to test the effectiveness of the developed classifier. Figure 4-2 shows 

the colour composite images of TM 432 of the two testing sites, i.e. test area A and test 

area B.  

 

4.2.2 Reference data 

The reference data used in this thesis research were acquired from two sources. First, the 

topographic data at a 1:50,000 scale was obtained from the National Topographic 

Database (NTDB) developed by Geomatics Canada. The topographic data includes 

wetland thematic maps, which can be used as the reference data for the validation of the 
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classification results, and digital elevation model (DEM) data. The accuracy of the NTDB 

data is about 25 metres (NRCan, 2003). In other words, about one pixel pixel error exists 

in the topographic maps. 

 

The second source of the reference data was referred to the data of the project “Boreal 

Ecosystem-Atmosphere Study (BOREAS)” conducted in central Canada from 1993 to 

1996 (ORNL DAAC, 2001). The project is a large-scale experiment to investigate 

interactions between the boreal forest biome and the atmosphere. Our test areas are 

covered in the portion of the BOREAS Southern Study Area (SSA). According to the 

description of the project, the classification map derived from the Landsat TM imagery 

acquired in 1990 was used as a reference map in our study for selecting training sites of 

information classes.  

 

 
Figure 4-2. Color composite images (TM 432) showing the test areas subset from the 

area of interest. 
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Figure 4-3. The framework of the image data processing. 

 

 

4.3 Image Pre-processing 
Figure 4-3 presents the framework of the image preparation. First, the digital numbers of 

the multispectral imagery are converted to at-satellite reflectance to achieve radiometric 

consistency between the images. This standard measurement unit (reflectance) allows us 

to compare between dates and sensors, i.e. our reference map was established in 1990 

after an at-satellite reflectance transformation of the Landsat images. Then the data are 

transformed into the at-satellite reflectance-based tasseled cap features. Then water pixels 

are excluded from the data set before the fuzzy clustering algorithm is applied. Very low 

reflectance responses make water bodies easy to distinguish from the other ground 

features. Although water class often shows higher producer’s accuracy, excluding the 

water pixels can promise that misclassified water pixels would not reduce the overall 
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classification accuracy. The remaining pixels are used as the input data set for both the 

standard Fuzzy C-Means (FCM) classifier and the developed Semivariogram Guided 

Fuzzy C-Means (SGFCM) classifier. Furthermore, defuzzification with the maximum 

function and the alpha-cuts method is applied to harden the fuzzy output into a single 

scalar quantity (i.e. land cover class) and the classification accuracy is computed to 

compare the classification results of the two classifiers. 

 

4.3.1 Radiance conversion 

After a 3 × 3 median filter was applied to the image to remove any noise such as “salt and 

pepper” shown on the image, raw digital numbers were converted to at-satellite 

reflectances for further usage according to Landsat 7 Users Handbook (Irish, 2000). The 

digital numbers were converted back to the radiance unit according to: 

OffsetDNGainL +×=λ      (4-1) 

where 

λL  is the spectral radiance at the sensor aperture in ; mstermwatts 2 µ−−/

Gain  is the rescaled gain provided in the ancillary data record from Table 4-1 in 
; mstermwatts 2 µ−−/

Offset  is the rescaled bias provided in the ancillary data record from Table 4-1 in 

; mstermwatts 2 µ−−/
DN  is the raw digital number of each pixel. 

 
 
4.3.2 Reflectance conversion 

Accordingly, the spectral radiance was converted to the planetary reflectance as 
normalization for the solar irradiance to reduce the variability between scenes. The 
combined surface and atmospheric reflectance could be computed according to: 

s

2

ESUN
dL

θ
π

ρ
λ

λ

cos⋅
⋅⋅

=       (4-2) 
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where 

ρ  is the planetary reflectance (unitless); 

λL  is the spectral radiance at the sensor aperture in ; mstermwatts 2 µ−−/

d  is the earth-sun distance in astronomical units ( 01121d .=  for the available 
image data in this study); 

λESUN  is the mean solar spectral irradiances from Table 4-1 in ; mmwatts 2 µ−/

sθ  is the solar zenith angle in degrees ( °= 4843s .θ  for the available data in this 

study). 
 
 

Table 4-1. Ancillary data of the LANDSAT 7 ETM+ scene acquired in August 1999 

for the radiance conversion showing the gain and offset values. 

Band number 1 2 3 4 5 7 

Gain  0.786274 0.817255 0.639608 0.635294 0.128471 0.044439

Offset  -6.2 -6.0 -4.5 -4.5 -1.0 -0.35 

λESUN  1969.9 1840 1551 1044 225.7 82.07 

Source: data of  is obtained from Irish (2000). λESUN

 

 

4.4 Tasseled Cap Transformation 
4.4.1 Overview 

The tasseled cap transformation in remote sensing is the conversion of the readings in a 

set of bands into composite values. The transformation linearly combines the readings in 

the multiple bands to a weighted sum according to the given coefficients. The composite 

weighted sums represent the tasseled cap features, that is, brightness, greenness, and 

wetness. The tasseled cap transformation is inspired by the method of the principal 

component analysis. The principal component analysis is often used to evaluate data 

dimensionality. It decomposes the data set into a new coordinate system with a new set of 

orthogonal axes and uses the first two principal components to define the plane into 

which the data are dispersed. However, the principal component analysis may fail to 
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define the actual planes into which the data are dispersed because the variation of data 

density in the other planes will change the results to a degree (Crist and Cicone, 1984).  

 

By contrast, the tasseled cap transformation has a more analytical basis because it 

combines a generalization from empirical observations. Although used mainly for 

vegetation studies, tasseled-cap transformation can separate urban, water, and wetland 

classes (Jensen, 1996). Usually there are just three composite variables. Brightness, 

greenness, and wetness are the most important composite indices of a tasseled cap 

transformation. In a three-dimensional space, two perpendicular planes and a “transition 

zone” between the two define the feature space. The axes of brightness and greenness 

form a “vegetation plane” while the axes of brightness and wetness form a “soil plane”. 

Between the two planes are the data from partially vegetated plots where both vegetation 

and soil are visible. Usually, the transition zone is roughly filling out a right triangle. 

Figure 4-4 illustrates this relationship between the three tasseled cap indices in a feature 

space.  

 

 
Figure 4-4. Dispersion of the six-band Thematic Mapper data. 
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The tasseled cap transformation was originally developed for understanding important 

phenomena of crop development in the spectral space (Kauth and Thomas 1976). 

However, with the information from the third dimension, i.e. the wetness feature, the 

distinction between forest vegetation and cultivated vegetation is enhanced. Figure 4-5 

adapted from Crist et al. (1986) illustrates the approximately locations of the scene 

classes in the TM tasseled cap feature space. It gives the primary ideas about the types of 

land cover enclosed in the test areas when the data distributions are presented in the 

feature space. In the figure, the forest class is always distributed on the front of the “cap” 

while the water class is located in the corner of the “cap”. The tasseled cap 

transformation thus has potential in revealing key forest attributes including species, age 

and structure (Cohen et al. 1995) and in extracting water and wetland pixels (Civco and 

Hurd, 1999).  

 

4.4.2 At-satellite reflectance-based tasseled cap transformation 

Since the brightness feature highlights the areas of high reflectance, the greenness feature 

the areas that are vegetated, and the wetness feature the areas that have high canopy and 

soil moisture content, the wetland pixels can be extracted by using a tasseled cap 

transformed imagery. An at-satellite reflectance-based tasseled cap transformation 

compresses the Landsat 7 ETM+ multispectral data into a few bands associated with the 

physical scene characteristics. Huang et al. (2001) developed a new tasseled cap 

transformation based on at-satellite reflectance. They noted that their transformation was 

more appropriate for regional applications where atmospheric correction was not feasible. 

It also improves the ability to differentiate bright soil pixels from some dark green 

vegetation pixels. The tasseled cap features can be derived through linear combinations 

of the at-satellite reflectance coefficients as given in Table 4-2. Brightness is a partial 

sum of all bands; greenness describes the contrast between the near infrared bands and 

the visible bands; wetness depicts the contrast between the middle infrared bands that is 

sensitive to water and other bands.  
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Figure 4-5. Approximate locations of important scene classes in TM tasseled cap 

feature space: (a) the plane of vegetation, (b) transition zone, and (c) the plane of 

soil. (From Crist et al., 1986). 

 

Table 4-2. Tasseled cap coefficients for Landsat 7 ETM+ at-satellite reflectance  

Band number 1 2 3 4 5 7 

Brightness 0.3561 0.3972 0.3904 0.6966 0.2286 0.1596 

Greenness -0.3344 -0.3544 -0.4556 0.6966 -0.0242 -0.2630 

Wetness 0.2626 0.2141 0.0926 0.0656 -0.7629 -0.5388 

Source: data is obtained from Huang et al. (2001). 
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4.5 Water Area Extraction 
A band ratio-typed index was used to extract out the water pixels. Because water is a 

strong absorber in the near infrared and shows a higher reflectance in the middle infrared 

region of the Electro-Magnetic spectrum, the Normalized Difference Water Index 

(NDWI), derived from band 4 and band 5 reflectances, was proposed by Gao (1996). The 

index could be useful for discriminating water bodies from land. Anderson et al. (2004) 

found the index was least susceptible to saturation at high levels of leaf area index. The 

NDWI is a broad-channel ratio and can be defined as: 

5TM4TM

5TM4TMNDWI
ρρ
ρρ

+
−

=      (4-3) 

where 4TMρ  and 5TMρ  are the reflectances of TM band 4 and band 5 respectively. The 

NDWI is far less sensitive to atmospheric scattering effects and more sensitive to 

vegetation water content than the NDVI. In this study the NDWI was used as an index to 

mask out water bodies rather than the NDVI. However, both water bodies and closure 

canopies illustrated high water content on the image. 

 

To improve this problem of detecting pure water bodies, the NDWI could be adjusted to a 

specific range so that pure water pixels could be easily distinguished from vegetation 

features by setting a threshold to the adjusted water index. Figure 4-6 shows the typical 

spectral reflectances of water and vegetation. In the near infrared and the middle infrared 

regions water appears with a darker tone and vegetation with a lighter tone. Both the 

water and the vegetation features have positive NDWI values. It becomes difficult to 

manually decide a threshold to separate these two features. However, the trends of the 

spectral signatures of water and vegetation are significantly opposite in band 2 and band 

5. For example, water shows a higher reflectance in band 2, whereas vegetation shows a 

higher reflectance in band 5. Because of this difference, water and vegetation give an 

opposite sign (i.e. one is in positive and the other is in negative) when the normalized 

difference ratio of band 2 to band 5 is applied.  

 



Methodology 55

 

 
Figure 4-6. Typical spectral reflectance of common earth features: water, vegetation, 

and soil. 

 

The ratio is known as the Normalized Difference Snow Index (NDSI), derived from the 

green band (TM2) and the middle infrared band (TM5) reflectances. It can be expressed 

as: 

5TM2TM

5TM2TMNDSI
ρρ
ρρ

+
−

=       (4-4) 

Vegetation has negative NDSI values due to higher reflectance in TM band 5 than in TM 

band 2, whereas water has positive NDSI values. Because of this physical characteristic, 

water bodies can be easily distinguished from vegetation when the NDWI is multiplied 

by the NDSI. As given in Eq. 4-5, zero can be set as a threshold to extract water pixels 

out from the original data set. When the pixel has a multiplied value of two indices higher 

than zero, it should be defined as a water pixel and excluded from the original data set. In 
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contrast, if the pixel has a multiplied value lower than zero, the pixel should be included 

in the fuzzy input data set. After the water pixels are extracted out from the original data, 

the remaining data set will be used as the inputs of the two fuzzy clustering algorithms. 
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   (4-5) 

 

4.6 Training Site Selection  
In this thesis study semivariograms were assumed to represent the landscape structure 

pattern of land cover types. In the partial supervised clustering algorithm, training site 

selection is crucial to the guidance of the clustering procedure. Before finally selecting 

the training sites, several training sites should be evaluated to find out the representative 

site. Except water class, three different classes of land cover were examined in this study: 

deciduous forest, wetland, and mixed stand. The information of these three land cover 

classes is available in the BOREAS project done over the area (ORNL DAAC, 2001). 

The forest inventory provides land cover information for selecting the training sites of 

these three land cover types. The land cover classes used in this study are defined as 

follows: (1) deciduous forest is comprised of areas covered by aspen groves; (2) wetland 

is comprised of areas covered by wet conifers such as black spruce in the poor-drained 

area; (3) mixed stand is comprised of areas covered by deciduous forest stands and dry 

conifers. 

 

Our preliminary examination of this study has evaluated the applicability of utilizing 

texture features in hard classification for wetland mapping (Chiu and Couloigner, 2004a, 

see Appendix A) and the suitable window sizes for deriving geospatial texture features to 

extract wetland patches (Chiu and Couloigner, 2004b). After examining the 

semivariogram behaviors and comparing the classification accuracy obtained, the study 

concluded that an arbitrary window of 7×7 pixels was suitable for deriving texture 

features for wetland mapping and that a combination of texture features derived from 
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multiscale window sizes could also help to improve the classification accuracy. The 

explanation was that a smaller window size highlights edges between different land cover 

classes and a larger window size characterizes the texture properties of land cover classes.  

 

In this study since semivariograms are employed as landscape structure pattern in the 

classification, the idea inspired from the preliminary examination of using multiscale 

window sizes for texture features is to extend an arbitrary window size to a series of sizes.  

 

In order to select the training sites for deriving the semivariogram structure patterns for 

each land cover class, several sites have been examined until the representative one has 

been found. To derive the semivariogram patterns, training sites of the different land 

cover categories were randomly selected from the area of interest instead of from the test 

areas used in the experiments. One of the reasons is that the test areas are too small (i.e. 

200×200 pixels) to find out representative training sites for every class. Another reason is 

that using the same training sites as guidance in the clustering iterations for two different 

test areas gives an unbiased result. Figure 4-7 illustrates the locations and subscenes of 

the selected training sites. The subscenes show the differences in the morphological 

features and the texture appearance. The water class is also included as one of the training 

sites because of the intention to compare differences in the semivariogram patterns of 

different types of land cover. 

 

By extending a moving window size from a lag distance of 1 to 23 pixels, the algorithm 

derived a series of omnidirectional semivariogram texture images. The maximum 

window size was restricted to 23×23 pixels because of the concern around computation 

time. The geospatial variations of the data could be counted on using multiple window 

sizes simultaneously rather than just an arbitrary window size. The omnidirectional 

semivariograms that consider the means of eight directions were computed in this study 

because of unnoticeable anisotropy and greater computation time for deriving directional 

semivariograms. 
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Figure 4-7. Training sites for deriving semivariograms. 

 

 

4.7 Implementation of Classification Algorithms 
Both the standard FCM classification algorithm and the new developed SGFCM 

classification algorithm have been implemented into MATLAB. After the image pre-

processing, a set of input vectors having N  feature points was given. According to the 

theory described in Chapter 3, minimization of the objective function is based on the 
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suitable selection of a partition matrix U  and a cluster centre V  using an iterative process 

described by the following steps. 

(1) Determining values for the number of clusters C , fuzziness index m , and the 

convergence error ε . 

(2) Creating an initial  partition matrix U  of the input data set randomly. NC ×

(3) Calculating cluster center of the clusters using Eq. 3-24 and the fuzzy covariance 

matrix using Eq. 3-25. 

(4) Obtaining the distance measure according to Eq. 3-14. 

(5) Updating the partition matrix U  using Eq. 3-22 until Eq. 3-27 is true. Otherwise, 

repeating step (3) to (5) until convergence. 

(6) Performing a final defuzzification by assigning the image data to the cluster with 

(a) the highest membership value for the FCM classification 

(b) the alpha-cuts rule for the SGFCM classification. 

 

In this study, the three tasseled cap features - brightness, greenness, and wetness - were 

used as the fuzzy inputs. The default values, including the fuzzy index, the number of 

classes, and the convergence error, used in the standard FCM clustering algorithm and 

the semivariogram guided FCM (SGFCM) clustering algorithm were identical, i.e. m 2= , 

 and. . The standard FCM clustering algorithm belongs to a purely 

unsupervised classifier and used the maximum function in the defuzzification. The 

developed SGFCM clustering algorithm is defined as a partial supervised classifier. The 

alpha-cuts approach was applied in the defuzzification. In SGFCM, three semivariogram 

training features were used to guide the fuzzy classifier: deciduous forest, wetland, and 

mixed stand. Water was excluded because of its specific reflectance responses shown in 

the preliminary analysis of the semivariogram behaviors. 

3C = 510−=ε

 

 

4.8 Summary 
This chapter has given a description of the study site, the area within the boundary of 

Prince Albert National Park, including its topographic status and commonly distributed 
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flora. The available image data was a Landsat 7 ETM+ scene acquired in August 1999. 

Image pre-processing has been done through radiance and reflectance conversion and the 

tasseled cap transformation has compressed the six Landsat bands of interest into three 

spectral features: brightness, greenness, and wetness. These three tasseled cap features 

can represent the physical characteristics of wetland, such as soil, vegetation, and 

hydrology status, respectively. Because pure water bodies were easily distinguished, this 

land cover class has been excluded from the original data set and the remained data set 

was prepared for the fuzzy clustering procedure. The idea of how to extract water pixels 

by using an adjusted Normalized Difference Water Index (NDWI) has also been 

introduced. The selection of the training sites and the preparation of their semivariogram 

texture features have been introduced. Finally, the steps of the classification algorithms 

implemented in MATLAB have been described in this chapter. 
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CHAPTER 5  

EXPERIMENTAL RESULTS AND DISCUSSIONS 
 

 

“We must not forget that when radium was discovered no one knew that it would prove 

useful in hospitals. The work was one of pure science. And this is a proof that scientific 

work must not be considered from the point of view of the direct usefulness of it. It must 

be done for itself, for the beauty of science, and then there is always the chance that a 

scientific discovery may become like the radium a benefit for humanity.”  

 

Marie Curie, 1867-1934 

Polish Scientist and physicist 

 

 

 

5.1 Examination of Tasseled Cap Features 
The original Landsat TM image data sets of both subscenes have been converted to 

tasseled cap features based on at-satellite reflectance. These image data sets were plotted 

into the tasseled cap feature space to demonstrate the data distributions. Figure 5-1 and 

Figure 5-2 show the scatter plots of the data sets for test area A and test area B on the 

three TM tasseled cap feature planes. The color legend represents the density of the data 

points. If the occurrence of the data composition in the feature space is high, the data 

point with that composition has higher data density and is displayed in dark red. By 

contrast, the lower occurrence means lower data density and is displayed in dark blue. 

Compared to the study result of Crist et al. (1986) shown in Figure 4-5, “our” scatter 

plots give some initial cluster information according to the approximate locations of 

scene classes in the TM tasseled cap feature space. 
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Figure 5-1. Planar dispersion of the test area A data set in TM tasseled cap feature 

space: (a) The plane of vegetation, (b) the transition zone, and (c) the plane of soil. 

The color legend represents the data density of the data points. 
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Figure 5-2. Planar dispersion of the test area B data set in TM tasseled cap feature 

space: (a) The plane of vegetation, (b) the transition zone, and (c) the plane of soil. 

The color legend represents the data density of the data points. 
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5.1.1 The plane of vegetation  

Figure 5-1(a) and Figure 5-2(a) illustrate the planar data dispersions of the two data sets 

in the plane of vegetation. In both figures, the data points seem to be separated into two 

major groups. Both figures indicate that theses two major clusters should be water and 

forest according to their locations in the TM tasseled cap feature space. The data points of 

the water cluster have the greenness values lower than zero and the brightness values 

close to zero, while the data points of the forest cluster have high greenness and 

brightness values. The data density of the forest cluster is much higher than the water 

cluster, which means that most of the data points in the data set belong to vegetation 

canopies. Even though forest is the major type of land cover in the subscene, the data 

dispersion illustrates that two or three subclasses emerged in the forest cluster according 

to the different density levels displayed. However, the subclasses are not easily 

distinguished because of the compactly elongated data distribution in the plane of 

vegetation. The other TM tasseled cap features should provide helpful information to 

separate these emerged subclasses. 

 

5.1.2 The plane of transition zone 

The transition zone provides additional information and results by providing a clearer 

separation of compact clusters. This distinction can be seen particularly in color 

composite imagery. Partially vegetated data points mainly occupy the transition zone. 

Figure 5-1(b) and Figure 5-2(b) show the planar dispersion of the data points for both test 

areas in the TM tasseled cap transition zone. When the tasseled cap wetness index is 

added, the dispersion of the data points in the transition zone is not as compact as it is in 

the plane of vegetation. It spreads out in the transition zone and makes the vegetation 

structure to be more easily detected from that plane.  

 

In both Figure 5-1(b) and Figure 5-2(b), the forest cluster is separated into at least two 

subclasses: forest and other vegetation cover. The forest class can be furthermore 

partitioned into two more subclasses, forest 1 and forest 2, according to the data density. 

The forest classes have higher wetness values than the other type of vegetation canopy. 
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However, greenness does not present such trends; it varies between different vegetation 

structures. Crist et al. (1986) has given the most probable explanation for the tasseled cap 

wetness difference, “as compared to cultivated crop or grass canopies, the relatively 

dense forest stands contains a higher percentage of opaque stems and thus increasing the 

incidence of deep shadows both on the lower layers of the canopy and on the leaves in 

the tree crowns.” Their hypothesis that increased shadowing should cause increased 

signal in the wetness feature has found support on theoretical grounds as well as in 

simulated and actual data. Thus, the forest structure has been at least one of the important 

factors determining the wetness value.  

 

5.1.3 The plane of soil  

The plane of soil is composed of the brightness and wetness projection. The brightness 

direction is correlated to the texture and the moisture content of the soil while the wetness 

direction is heavily weighted by the middle infrared reflectance that is sensitive to soil 

moisture. In the plane of soil, both the brightness and the wetness features show their 

spectral response to the soil moisture content. Cohen et al. (1995) noted that the tasseled 

cap wetness was essentially unaffected by the topographic variations in closed conifer 

stands. Wetness in the plane of soil is thus more powerful than brightness and greenness 

for distinguishing upland from lowland forest type.  

 

Figure 5-1(c) and Figure 5-2(c) present the scatter plots of the two test areas in the plane 

of soil. Two subclasses of the forest cluster are highlighted in the plane of soil: upland 

forest and lowland forest. The cluster of upland forest shows lower wetness values while 

the cluster of lowland forest has wetness values close to zero. The cluster of upland forest 

has higher brightness values than the cluster of lowland forest. Usually deciduous stands 

have higher brightness and greenness values than coniferous stands due to the structure of 

their leaves. The cluster of upland forest has then a high probability to be defined as 

deciduous forest stand. The tasseled cap transformation can make a direct association 

between the feature response and the physical characteristics of the scene classes (Crist et 

al., 1986). By capturing the majority of data variation in the TM tasseled cap features, at 
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least four land cover clusters can be approximately defined from the scatter plots: water, 

dense upland forest (i.e. deciduous forest), dense lowland forest, and less dense canopy.  

 

 

5.2 Preliminary Analysis of Semivariogram Behaviors 
From the previous examination of the tasseled cap enhanced images, at least four clusters  

- water, upland forest, lowland forest, and other vegetation canopy - have been found in 

both scenes. Compared to the reference data for the definition of land cover types in the 

study area, the cluster of lowland forest is equivalent to the type of mixed stands that 

include deciduous forest and dry coniferous stands, and the cluster of other vegetation 

canopy exactly represents the type of wetland that is covered by the wet coniferous stands 

in the poor-drained area. Therefore, the four categories of land cover classes are now 

defined as water, deciduous forest, wetland, and mixed stand.  

 

From a textural point of view, land cover types can demonstrate their landscape structure 

through semivariogram patterns. In the preliminary analysis of the semivariogram 

behaviors, the semivariogram texture features are derived from the TM tasseled cap 

features. Figure 5-4 shows the examples of the semivariogram patterns computed from 

the TM tasseled cap brightness, greenness, and wetness, respectively. For the selected 

training sites (Figure 4-7) corresponding to the four land cover classes, Figure 5-3(a), 

Figure 5-3(b), and Figure 5-3(c) represent the omnidirectional semivariograms computed 

from the three tasseled cap features respectively to illustrate the relationship between the 

image texture and the semivariogram. The semivariograms computed for each land cover 

class are unique and have the following characteristics: 

(1) Water: water body has very low pixel values in the three tasseled cap features and 

shows almost no variation between the pixels and their neighborhoods when a visual 

inspection is done. The semivariograms of water body are essentially flat in Figure 5-

3(a) to (c). The curve exhibits little or no spatial correlation for lag distance greater 

than 1 pixel. 
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(a) 

(b) 

(c) 

Figure 5-3. Omnidirectional semivariograms derived from the TM tasseled cap 

features: (a) brightness, (b) greenness, and (c) wetness for the four classes presented 

in the training sites (Figure 4-7). 
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(2) Deciduous forest: deciduous forest shows many bright forest stands in the color 

composite image. These brighter forest stands represent higher values in both the 

tasseled cap brightness and greenness. However, the forest structure such as stand 

density demonstrates somewhat degree variations. The semivariograms of deciduous 

forest class exhibit smooth curves that reach the limiting value (i.e. the sill) at a lag 

of 7 pixels. The semivariogram of this class has greater variances in the brightness 

and the greenness features as compared to the variances in the wetness feature. This 

finding indicates that the moisture content within the deciduous forest is much even. 

However, the difference between deciduous forest and mixed stand is not significant 

enough in the wetness feature when only the wetness information is used for class 

separation. 

(3) Wetland: wetland does not show the homogeneity as the deciduous forest class and 

the water class do. Especially, it shows the greatest variances among the four training 

classes in the study area. Wetland is associated with the largest semivariance in the 

tasseled cap wetness feature. The semivariograms of wetland in both the brightness 

and the greenness features show a wave shape, while reaching first limiting values at 

a lag of 5 pixels and second limiting values at a lag of 15 pixels. This wave shape 

indicates that the landscape structure of wetland, such as vegetation compositions, 

has some changes occurring between the lag distances of 5 to 15 pixels. In contrast to 

the semivariogram shown in Figure 5-3(a) and 5-3(b), the semivariogram rises 

steadily upward, approaching the sill only at lag distances greater than 15 pixels. 

This trend indicates that the moisture status of the wetland class varies in a large 

areal extent: the transitional characteristics of wetland are spectrally reflected on the 

semivariogram. 

(4) Mixed stand: mixed stand shows much greater semivariances in brightness and 

greenness than the deciduous forest class. Although these two classes both belong to 

dense canopies in the tasseled cap feature space, mixed stand has the largest variance 

of the semivariogram in greenness. The likely explanation of the difference in 

greenness is that mixed stand is composed of both deciduous and coniferous stands. 

The semivariograms rise smoothly upward up to the sill at a lag distance of 9 pixels, 

 



Results and Discussions 69

 

and rise upward again after curving downward to a lag distance of 16 pixels. This 

semivariogram behavior is similar to the behavior of planted coniferous woodland in 

the study of Curran (1988). 

 

 

5.3 Fuzzy Classification of Land Cover Types 
5.3.1 Analysis of the fuzzy membership values 

The partition matrix of a data set is obtained after the objective function converged in the 

fuzzy clustering iterations. The partition matrix gives each pixel a fuzzy membership 

value to the associated class. In this study, both the FCM and the SGFCM classifiers 

produce a set of three fuzzy membership values (FMVs) for three land cover class: 

deciduous forest, wetland, and mixed stand. These comparable fuzzy membership values 

can indicate the “likelihood” degrees to which land cover type the pixel belongs. One 

example of the fuzzy membership image is shown in Figure 5-4.  

 

Figure 5-4(a) and 5-4(b) show the fuzzy membership images of the wetland class for test 

area A and test area B respectively. In these figures, the brighter the pixel is, the higher 

the value of its membership to wetland. Here, the fuzzy membership values of the 

wetland class are generated from the SGFCM clustering algorithm. In the same way, the 

fuzzy classifier gives to the other two classes, deciduous forest and mixed stand, a 

membership value at the same time. After examining the fuzzy membership values of the 

wetland class (Figure 5-4), the following patterns are found: (1) areas along the 

lakeshores or the riparian areas have higher membership values in the wetland class; (2) 

pixels nearby the water bodies have higher membership values in the wetland class. 

These patterns emphasize that the occurrence of wetlands is accompanied with ponding 

waters. This is satisfactory with the definition of wetlands, which states that wetland is 

referred to a transition zone between uplands and aquatic areas.  
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 (a) 

 (b) 

Figure 5-4. Images of fuzzy membership values (FMVs) of the wetland class: (a) test 

area A and (b) test area B. 
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Ancillary data such as digital elevation model (DEM) data can also help to clarify the 

findings. Figure 5-5 shows the 25m DEM from 1:50,000 scale maps of test area A and 

test area B. The brighter areas represent uplands while the darker areas depict lowlands. 

When a fuzzy membership map is compared to the DEM data, the pixels with the higher 

membership values in the wetland class are located in the lowlands while the pixels with 

the lower membership are in the uplands. As mentioned above, wetland represents poor-

drained areas covered by wet coniferous stands in the area of interest. While deciduous 

and coniferous stands are mixed in some area, it may result in the increase of wetland 

membership value for a particular pixel. However, these pixels may be misclassified in 

the defuzzification procedure. 

 

Parameters such as slope, curvature, and flow direction, derived from DEM data are 

helpful in wetland mapping, because the hydrology condition, which is one of the most 

important characteristics in wetland definition, is directly related to these topographic 

information. However, in this study DEM data was not included in the classification 

procedure. The main reason is that the 25m resolution of the DEM data is too coarse to 

present the variations of the topographic parameters. The parameters did not show 

distinguished variations in the area based on the 25m resolution DEM data. However, it is 

possible to involve DEM data in the post-classification process to adjust misclassified 

pixels. This would be one of the scopes for further study. 
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Figure 5-5. Digital Elevation Model (DEM) of test areas (a) A and (b) B. 
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5.3.2 Visual evaluation of the fuzzy classification 

After the fuzzy classifier has given a set of membership values to each pixel for each 

class, all these fuzzy membership vectors were stacked one on the other to create a 

partition matrix. The defuzzification was applied to the partition matrix for classification. 

Pixel labeling has also been done at the same time to identify the classes. 

 

In this study, two defuzzification approaches were employed in the FCM and the SGFCM 

classifiers. The maximum function was applied to the partition matrix generated from the 

standard FCM classifier. Thus the one of the three land cover classes having the highest 

membership values determined the class type of the pixel disregarding the differences of 

membership values between the classes. In the defuzzification, number codes were used 

to label the pixels to which class they belong. For example, “0” represents the class 

“Water”; “1” the class “Deciduous forest”; “2” the class “Wetland”, and “4” the class 

“Mixed stand”.  

 

In contrast to the maximum function, the alpha (α )-cuts method was applied to the 

partition matrix generated from the SGFCM classifier. The selection of α  was based on 

the number of predefined classes. Because the significant differences between the 

membership values of the three classes were taken into account in the defuzzification, 

pixels with membership values that were not significant enough to assign those pixels to 

one of the three classes were rejected to transition classes. Therefore new classes were 

created in the defuzzification procedure to allocate these in-between pixels. To label the 

pixels belonging to these transition classes, codes were added to represent a new class. 

For example, the transition class of “Deciduous forest” and “Wetland”, called “Transition 

Df-Wd”, was coded as “3”; the transition class of “Deciduous forest” and “Mixed stand”, 

i.e. “Transition Df-Ms”, as “5”; “Transition Wd-Ms”, the transition of “Wetland” and 

“Mixed stand”, as “6”. When pixels represented a mix of all three classes, they were 

coded as “7”. However, the occurrence of this last transition class is rare: it only 

happened when a pixel has the same membership value for each of the three classes.  
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Figure 5-6. Reference data and two classification maps for test area A. Yellow mask 

obtained from the National Topographic Data-Base (NTDB) Canada, represents the 

wetland areas.  
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Figure 5-6 illustrates the mapping results for test area A. In this figure, the classification 

maps of the two fuzzy classifiers, the FCM classifier and the SGFCM classifier, are 

presented for comparison. The wetland data retrieved from the National Topography Data 

Base (NTDB) of Canada is also illustrated in the figure as reference. The yellow mask 

shown in the reference map indicates the wetland areas. The color legend shows the 

predefined classes. The class illustrated in dark blue is the class of interest in wetland 

mapping.  

 

A visual evaluation is first used to examine the performance of the two classifiers in 

wetland mapping. To emphasize the differences found in the two classification maps, 

three areas are marked as examples. For the area noted 1, a wetland patch is shown in the 

reference map. However, the standard FCM classifier can detect only few pixels 

belonging to that wetland while the SGFCM classifier can extract the whole wetland 

patch. For the area noted 2, another wetland patch is masked in the reference map. 

Compared with the reference data, this patch can be correctly classified by neither the 

FCM classifier nor the SGFCM classifier. The FCM classifier misclassifies this patch as 

the class of “Mixed stand”, while the SGFCM classifier assigns the pixels within the 

patch as the transition class of “Wetland” and “Mixed stand”. Although the SGFCM 

classifier does not label the patch as the right class, it has the ability to denote the patch 

as a wetland related transition class. For the area noted 3, no wetland is indicated in the 

reference data. The SGFCM classifier, in contrast to the FCM classifier that misclassifies 

the area as a “Wetland” class, does not have misclassified pixels regarding to the wetland 

class. Although both fuzzy classifiers have problems with misclassification, the SGFCM 

classifier demonstrates a better performance than the FCM classifier. 

 

Figure 5-7 illustrates the mapping result for test area B. Three areas are marked for a 

visual evaluation of the performances of the two classifiers. For the area noted 1, a large 

riparian area is shown in the reference data as wetland. The FCM classifier cannot detect 

the wetland area as a continuous landscape element, but it classifies the area as 

fragmental patches of deciduous forest and wetland.  
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Figure 5-7. Reference data and two classification maps for test area B. Yellow mask 

obtained from the National Topographic Data-Base (NTDB) Canada, represents the 

wetland areas. 
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Meanwhile, the SGFCM classifier shows a significantly different mapping result. It 

extracts almost the whole patch of the riparian area and classifies the area as wetland. 

When compared to the reference data, the extent of the wetland class in this noted area is 

coincident with the area covered by the yellow mask. For the areas noted 2 and 3, the 

FCM classifier misclassifies these two areas as wetlands, whereas such misclassification 

does not happen on the classification map given by the SGFCM classifier. This visual 

evaluation again proves that the SGFCM classifier provides a better performance on 

wetland mapping than the FCM classifier. 

 

5.3.3 Analysis of the fuzzy class dispersion 

To further understand the reasons that result in the qualitative differences between the 

performances of the two fuzzy classifiers, the class dispersion in the TM tasseled cap 

feature space can give more information. Figure 5-8 illustrates the class dispersions of the 

seven classes given by the SGFCM classifier for test area A. The class dispersions are 

displayed in three tasseled cap planes. The major classes are distributed in elongated 

shapes and the transition classes lying between the classes are highlighted. In the TM 

tasseled cap feature space, the class of deciduous forest is the one that has the higher 

brightness and greenness values while the water class is located in the corner of the “cap”. 

This classification result is satisfactory in respect to the class properties. It fits with the 

expectations provided by the preliminary analysis of the tasseled cap transformation 

regarding these two classes. However, while we emphasize that the spectral and spatial 

vagueness in the transition areas should be taken into account, the classification 

generated from the FCM classifier is not acceptable, especially for the wetland class. 

Figure 5-9 shows the class distributions of the three major classes given by the FCM 

classifier in the TM tasseled cap feature space for test area A. Apparently the three 

classes are separated in layers. Figure 5-10 shows the class distribution when the alpha-

cuts rule is applied in the defuzzification. Although some overlap areas are marked as 

transition classes, the transition class of deciduous forest and mixed stand, and the 

transition class that includes the three primary classes do not exist. Because the FCM 
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classifier partitions data into classes in layers, the transition classes are meaningless in 

this case. 

 

 

 
 

Figure 5-8. Class dispersion in the TM tasseled cap feature space for test area A 

using the SGFCM classifier  
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Figure 5-9. Class dispersion in the TM tasseled cap feature space for test area A 

using the FCM classifier  
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Figure 5-10. Class dispersion in the TM tasseled cap feature space for test area A 

using the FCM classifier with alpha-cuts rule defuzzification. 
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For test area A the class dispersions are significantly different in the feature space when 

the SGFCM classifier is compared to the FCM classifier. Since the SGFCM classifier 

uses the Mahalanobis distance in the clustering algorithm, the class dispersion 

demonstrates an ellipsoidal shape in the feature space. As the vegetation and the moisture 

conditions of wetland vary gradually in the space, an ellipsoidal shape in the feature 

space describes the data distribution better than a spherical shape. However, the FCM 

classifier, which does not incorporate information from the spatial domain, uses the 

Euclidean distance in the algorithm. Thus the three clusters are well separated with 

almost the same size and a spherical shape. The SGFCM classifier separates well wetland 

from deciduous forest and mixed stand from deciduous forest in test area A. The lower 

separability between wetland and mixed stand explains why in the visual evaluation some 

brighter pixels are commissioned as wetland. Because of the lower separability of 

wetland from other classes, it may result to a lower mapping accuracy. 

 

Figure 5-11 illustrates the class dispersions of the seven classes given by the SGFCM 

classifier in the TM tasseled cap feature space for test area B. The separability of 

deciduous forest and mixed stand is lower than the separability between the other two 

classes, i.e. wetland/mixed stand and wetland/deciduous forest. Because wetland is easier 

to separate from the other two classes in this data set, a higher wetland mapping accuracy 

can be expected. Furthermore, the SGFCM classifier allows the classes to be overlapped 

and gives a better mapping result. Figure 5-12 shows the class distributions of the three 

major classes given by the FCM classifier in the TM tasseled cap feature space for test 

area B. Classes are not allowed to overlap in the feature space for the FCM classifier 

because of maximum defuzzification. Since such restriction of the algorithm violates the 

natural phenomenon of the data, misclassification errors should increase when the FCM 

classifier is used with highest defuzzification for wetland mapping. This kind of errors 

has been noticed during the visual assessment of the mapping results. Figure 5-13 shows 

the class distributions of test area B when the partition matrix is defuzzified with the 

proposed alpha-cuts rule. Although the transition classes are shown as overlap areas in 

the feature space, they are presented in thin boundary layers between the primary classes.  
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Figure 5-11. Class dispersion in the TM tasseled cap feature space for test area B 

using the SGFCM classifier  
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Figure 5-12. Class dispersion in the TM tasseled cap feature space for test area B 

using the FCM classifier  
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Figure 5-13. Class dispersion in the TM tasseled cap feature space for test area B 

using the FCM classifier with alpha-cuts defuzzification. 
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5.3.4 Analysis of the confusion index and mixed pixels 

The overlapped classes in the feature spaces represent the inherent ambiguity that may 

lead to the classification uncertainty of the maps. Pixels are classified to the “belonging” 

classes according to their membership values. Although pixels are assigned to the 

belonging classes based on highest membership values in the associated class, it does not 

promise that the maximum membership value of the belonging class is significantly 

higher than the second maximum membership value. The classification uncertainty thus 

increases when the differences between these two membership values are not large 

enough. A confusion index is used to describe the classification uncertainty of the 

mapping result.  

 

Figure 5-14(a) shows the confusion index of the mapping result for test area A in gray 

level. The brighter the pixel is, the higher the confusion index is, i.e. the higher the 

uncertainty. Pixels located on the boundaries of landscape patches are found much 

brighter than the pixels within the patches. This finding is reasonable because boundary 

pixels are always spectrally mixed with two land cover types and thus more ambiguous. 

The confusion index is further divided into five levels to demonstrate the degree of 

classification uncertainty: negligible, very low, low, high, and very high.  Figure 5-14(b) 

presents the confusion index with mixed pixel (i.e. mixel) information that illustrates the 

uncertainty level. Mixel information shows that around five percent of the classified 

pixels have a very high uncertainty and twenty-nine percent a high uncertainty in the 

mapping result for test area A. Only nine percent of the classified pixels have a negligible 

uncertainty level. Although the mixel information can be shown here, it is not possible to 

illustrate all the classes in a single pixel in a map. Assigning those highly mixed pixels 

(i.e. ambiguous pixels) to a single class could introduce some degree of classification 

errors, because each pixel can be assigned only to the dominant class. In the accuracy 

assessment, only the dominant class is taken into consideration as the reference to that 

pixel for the accuracy calculation. This is the explanation of why the results of the 

hardened fuzzy outputs are less accurate. However, most systems used in real 

applications are designed based on binary logic. Hardening the fuzzy outputs is necessary  
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 (a) 

(b) 

Figure 5-14. Confusion index (CI) maps displayed in (a) gray level and (b) mixel 

level for test area A.  
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Figure 5-15. Class level uncertainty maps of test area A. (Code description: 1-

Deciduous forest; 2-Wetland; 3-Transition Df-Wd; 4-Mixed stand; 5- Transition Df-

Ms; 6- Transition Wd-Ms)  
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Being aware that not all the classes can be assigned to a single pixel when the uncertainty 

is high, we proposed to create new classes to allocate these ambiguous pixels. We break 

down the whole map into the different class levels to demonstrate the uncertainty 

inherent in each class. In Figure 5-15, only six classes are shown because of the empty 

class of the transition Df-Wd-Ms (i.e. class code “7”). Compared to the three major 

classes, all three transition classes show higher uncertainty. When these ambiguous pixels 

are highlighted on the map, the source of misclassification becomes apparent.  

 

Figure 5-16(a) shows the confusion index in gray level for test area B. Mixel information 

in Figure 5-16(b) shows that fifteen percent of the classified pixels have negligible 

uncertainty level. Around six percent of the classified pixels have a very high uncertainty 

and twenty-eight percent a high uncertainty. Figure 5-17 represents the uncertainty level 

for each class. Most pixels belong to deciduous forest have uncertainty in negligible and 

lower level while the transition classes again are illustrated in the higher uncertainty level. 
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(a) 

 (b) 

Figure 5-16. Confusion index (CI) maps displayed in (a) gray level and (b) mixel 

level for test area B. 
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Figure 5-17. Class level uncertainty maps of test area B. (Code description: 1-

Deciduous forest; 2-Wetland; 3-Transition Df-Wd; 4-Mixed stand; 5- Transition Df-

Ms; 6- Transition Wd-Ms)  
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5.4 Accuracy assessment 
To quantify the classification accuracy and errors, a confusion matrix is used. The 

confusion matrices of the two test areas are summarized in Table 5-1 and Table 5-2. 

Since wetland is the only land cover type that can be expected from the reference 

database, classes used in the accuracy assessment are simplified into two classes: wetland 

and non-wetland. Because water body is excluded in the classification, the producer’s 

accuracy of the water class is one hundred percent.  

 

The accuracy assessment of test area A (Table 5-1) shows that the FCM classifier 

provides an overall classification accuracy of 71 percent while the SGFCM classifier 

improves the overall accuracy to 87 percent. When examining the producer’s accuracy 

given by the FCM classifier, we find that only 57 percent and 72 percent of accuracies 

are obtained for wetland and non-wetland, respectively. However, the SGFCM classifier 

can provide a producer’s accuracy up to 65 percent for wetland and 90 percent for non-

wetland. The commission error is also interesting in an accuracy assessment. Since the 

FCM classifier is used for wetland mapping, commission error of non-wetland is only 6 

percent; the error is acceptable in contrast to the 81 percent commission error for the 

wetland class. Compared to the FCM classifier, the SGFCM classifier reduces the 

commission errors to 4 percent and 57 percent for non-wetland and wetland respectively. 

So half of the wetland classified pixels should be found to be wetland on the ground 

compared with 1/5 of them only for FCM. 

 

The effectiveness of the SGFCM classifier is also examined through the accuracy 

assessment of test area B. In this example, an improvement of the overall accuracy and 

the commission error is also demonstrated in Table 5-2. When the FCM classifier is 

compared to the SGFCM classifier, the overall accuracy increases from 70 to 93 percent 

and the commission error decreases from 78 to only 26 percent for wetland, which means 

that with SGFCM 3/4 of the wetland classified pixels have a high probably to be wetland 

on the ground compared to 1/4 for FCM.  
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Based on the reference data, the topographic maps obtained from NTDB, the accuracy 

assessments show that the SGFCM classifier can provide higher mapping accuracy than 

the FCM classifier. This result is satisfactory with the expectation of the visual evaluation 

of classification maps.  

 

However, some weaknesses of the reference data should be noticed: the topographic 

maps are generated with some data structure errors. For example, errors may come from 

the aerial photographic interpretation. In consequence, some small wetland areas may be 

neglected by human interpretation depending on the scale of the imagery used. On the 

other hand, the reference data were generated decades ago and has not been updated. The 

change of the landscape should be considered when using the reference maps. Image 

georeferencing may also cause some shifting errors. When an accuracy assessment is 

conducted based on pixel unit, the shifting between a reference map and a classification 

map results in errors. For example, the accuracy of NTDB data is about 25m, which is 

equal to one pixel error of Landsat image used in the study. 

 

Despite errors inherent to the reference data, such errors have limited effects on the 

comparison of the two algorithms because of the same reference data used in the 

accuracy assessment. Therefore according to both the qualitative and quantitative 

assessments, the conclusion can be drawn that the SGFCM classifier is better suited than 

the standard FCM classifier. 

 

 

5.5 Summary 
This chapter has presented the findings of the study results and the relevant discussions. 

First, the preliminary examination of the data dispersion in the TM tasseled cap feature 

spaces has been discussed according to the three dimensions: the plane of vegetation, the 

transition zone, and the plane of soil. The result showed that both the original data sets of 

test area A and B are dominated by forested type ground objects and water. The forest 

cluster could be further partitioned into two to three subclasses. Second, the 
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semivariogram behaviors of each training land cover class were analyzed. Water body 

showed a flat curve; deciduous forest illustrated a stable variation of variances in all three 

TM tasseled cap features; wetland had larger variances in semivariogram with a wave 

shape; mixed stand exhibited a typical semivariogram curve type of dry conifers. 

Furthermore, the classification results were given and discussed regarding to membership 

functions, visual evaluations, class dispersions, and classification uncertainty. Spectrally 

mixed pixels that were rejected to the transition class showed a higher-level uncertainty 

in the classification. Finally, an accuracy assessment was conducted to quantify the 

findings of the visual evaluation. The results showed that the SGFCM classifier is more 

effective than the FCM classifier for wetland mapping because it has demonstrated its 

ability to improving the producer’s and overall accuracy, and to reduce the commission 

errors. 
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CHAPTER 6  

CONCLUSIONS AND FUTURE SCOPE 
 

 

 

“Everything is deducible, everything is linked. The cause allows one to guess the effect, 

just as each effect allows one to reconstruct a cause. The scientist can resuscitate in this 

manner even the warts of ancient times. From this comes without doubt the prodigious 

interest that an architectural description can inspire when the writer's fantasy is faithful 

to its basic elements. Cannot each person reattach it to its past by rigorous 

deductions?”(In The Search for the Absolute) 

 

Honoré de Balzac, 1799-1850 

French writer 

 

 

 

6.1 Conclusions 
To identify wetlands from a multispectral satellite image, a robust classification 

algorithm is one of the critical keys to derive a reliable mapping outcome. However, a 

traditional classification algorithm, a “hard” classifier, is built based on binary logic, 

which cannot give good descriptions of mixed and imprecise data since pixels are 

assumed to be pure. Although the fuzzy concept is introduced in the Fuzzy C-Means 

(FCM) clustering algorithm, a “soft” classifier, to describe data attributes with fuzzy 

membership functions, the spatial variability of the data attributes is completely ignored 

in the algorithm. To compensate these weaknesses, this thesis has presented a variance 
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involved fuzzy classifier, the Semivariogram Guided Fuzzy C-Means (SGFCM) 

clustering algorithm, by modifying the standard FCM classifier.  

 

The main idea of the SGFCM classifier is the incorporation of the spatial variability of 

the data set itself into the clustering algorithm. Because wetland mapping is the purpose 

of the application, the vagueness of wetland’s attributes should be taken into account by 

classifiers; especially such inherent vagueness that leads to the spectral mixture and the 

classification uncertainty that reflects on an image spectrally. This claim has been 

demonstrated in the analysis of the class dispersions in the TM tasseled cap features. 

Crist et al. (1986) stated, “Neither the TM tasseled cap transformation nor any other 

transformation can create information that was not present in the original data”. In this 

study when the image data is transformed into the TM tasseled cap features, the data 

dispersion exhibits some emerged clusters in the feature space. The data dispersion also 

demonstrates the data fuzziness inherent in the cluster boundaries. The TM tasseled cap 

transformation greatly facilitates the extraction of the information contained in the 

multispectral data. However, without a proper classifier the information may still be 

misinterpreted and lead to improper applications. This thesis has shown that the inherent 

vagueness of natural objects is revealed by the SGFCM classifier but undiscovered by the 

FCM classifier when comparing the data dispersion in the preliminary examination to the 

class dispersion of the final classification results.  

 

Since the tasseled cap features (i.e. brightness, greenness, and wetness) can make direct 

association between the feature response and the physical characteristics of the scene 

classes, the semivariograms derived from these features can represent the spatial 

variations of the physical characteristics of a landscape element. This thesis has proved 

this hypothesis, while the scene classes illustrated the different semivariogram patterns 

when their behaviors were analyzed. This evidence gives the possibility of treating 

semivariogram as a kind of texture index to be employed in the classifier. However, the 

selection of training sites for deriving semivariogram may be a critical issue just as other 

supervised classification approaches. This is because the sizes of landscape patches vary 
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in the nature environment: even same type forest stands may have different stand size, 

unless the land cover belongs to a man-made object or a cultivated crop. Therefore the 

window size, i.e. the maximum lag distance, used for deriving a semivariogram pattern 

should be large enough to generate a stable and a representative semivariogram pattern 

for the associated class. Furthermore, the computation time should be of concern for 

deriving semivariogram texture features if the window size is too large. This thesis has 

also demonstrated that the SGFCM classifier has an ability to handle a classification 

based on multi-scale texture features. 

 

The new developed SGFCM classifier shows its effectiveness on wetland mapping with 

the incorporation of semivariogram texture features in the classification algorithm. 

Compared to the standard FCM classifier, the SGFCM not only increases the producer’s 

accuracy but also reduces the commission errors quite dramatically in this study. The 

improvement of the overall accuracy shows an increase from 70 to 93 percent. Two 

things make a major contribution to this improvement. The first one is the consideration 

of the fuzzy covariance, i.e. replacing the Euclidean distance measure with the 

Mahalanobis distance. The second one is the premeditation of the semivariogram 

attributes in the clustering algorithm, i.e. adding a texture-typed weighting factor in the 

objective function. This thesis demonstrates that the spatial variability inherent in the 

image data set can provide extra information beyond a digital number itself. A robust 

classifier is required to have a capability of discovering the spatial variability in land 

cover mapping, especially when dealing with a mixed and imprecise image data set.  

 

For a mixed and imprecise data set, a fuzzy classifier provides a better description of the 

data than a “hard” classifier does. However, hardening the fuzzy output is unavoidable in 

the defuzzification because some real applications need to be a single scalar quantity as 

opposed to a fuzzy set. Although the maximum function has been widely used in 

classification applications to defuzzify the fuzzy outputs of the FCM classifier, it neglects 

the ambiguity inherent in the membership values. The maximum function does not 

consider whether a significant difference appears between the membership values of two 
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classes or not; pixels are assigned to the one predefined class that has the highest fuzzy 

membership value. The uncertainty thus remains in the classification and results in lower 

accuracy. By contrast, the alpha-cuts defuzzification method with newly created 

transition classes has successfully extract out the ambiguous pixels resulting to 

misclassification. In an image, these ambiguous pixels are always located in the 

boundaries of the landscape elements. Reflected back to the nature environment, the 

boundary areas of two ecosystems are always weak and sensitive to external disturbances. 

By highlighting the ambiguous pixels in the boundary areas, a map provides an additional 

information for users to notice the “status and trend” of the associated land cover.  

 

 

6.2 Future Scope 
The partition matrix consisting of fuzzy membership values is an important outcome of a 

fuzzy clustering algorithm. However, a question remains here: how to interpret this 

partition matrix in the following step? Further applications of these membership values, 

either the defuzzification or the mathematical combination, are fields that need to be 

discovered. For example, setting different thresholds for the alpha-cuts defuzzification 

method inspires an idea for delineating a buffer zone for a sensitive ecosystem, or for 

formatting a fuzzy ground object. In addition, a mixed pixel can be further decomposed 

into sub-pixels according to the fuzzy membership values to examine the portion of each 

class, i.e. to provide pixel unmixing or sub-pixel classification. If another higher spatial 

resolution image is available, the locations of these sub-pixels can even be more 

accurately defined. The weakness of uncertainty of the ambiguous pixels may be the 

strength of any inspiration for a future study. 
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ABSTRACT 

Multispectral images have been transformed into Tasseled Cap features to characterize the 
wetland properties for mapping purpose. The texture derivatives were applied to the brightness, 
greenness, and wetness using three texture measures based on grey-level co-occurrence matrix 
method. In this study, the data-driven window size over which texture measures are derived will 
be determined based on the experimental semivariograms instead of a trial-and-error method. 
Eight combinations of window sizes have been analyzed to evaluate the benefit of the proposed 
strategy. A supervised classification based on the maximum likelihood algorithm was applied to 
the three Tasseled Cap features and to their combination with each texture inputs under different 
window sizes. Classification accuracy is measured by the overall accuracy for the whole set of 
classification. User’s accuracy and kappa coefficient are used to estimate individual class 
accuracy. The combination of multiple window sizes from the Tasseled Cap features to derive 
texture measures for classification purposes is proposed according to the semivariograms. The 
overall accuracy of the spectral-textural classification shows a 95.5% accuracy higher, than the 
multispectral classification alone. For the purpose of wetland mapping of the study site, the 
proposed combinations of multiple window sizes provide wetland class 92.6% accuracy higher 
than randomly selected identical window sizes.  

Keywords: Texture analysis, Semivariograms, Grey-level co-occurrence matrix (GLCM), 
Tasseled Cap features, Wetland, Multispectral image. 

INTRODUCTION 

Information about landcover is essential for environmental monitoring. Remotely sensed data 
supply a current and important source of data for wetland mapping. Image texture quantifies the 
spatial variation of tone that is related to the distributions of different landcover types on the 
ground surface. However classical classification algorithms, which applied on a pixel-by-pixel 
basis, ignore the potential of the spatial information existing between a pixel and its neighbours. 
To achieve reliable and accurate results in mapping applications, image attributes within a 
landcover type over its neighbourhood should be characterized. Texture, the intrinsic spatial 
variability of radiometric data, is a valuable feature to discriminate the different landcover types.  

Many approaches were developed for texture analysis. According to the processing algorithms, 
three major categories, namely, structural, spectral, and statistical methods, are common ways for 
texture analysis. Grey-level co-occurrence matrix (GLCM), one of the most widely used methods, 
contains the relative frequencies of the two neighbouring pixels separated by a distance on the 
image. Several statistical measures (1) such as homogeneity, contrast, and entropy can be 
computed from the matrix to describe specific textural characteristics. Each texture measure can 
create a new channel that can be incorporated with spectral features for classification purposes. 
However a certain number of parameters directly associated with the GLCM method should be 
considered before computing texture measures. Two important factors, the combinations of 
texture features and the window size selection, have been examined according to their benefits 
on the classification accuracy. 

Various combinations of texture measures have been tested for different applications such as 
crop classification in agriculture (2) and forest species classification (3) in nature resources 
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management. Results showed that incorporating texture features in classification was superior to 
the classification of the original image. A combination of three or four texture features performs 
better than the combinations of one or two texture features. But no rules have been 
recommended for the texture measures selection. The most appropriate combination of texture 
features depends strongly on the surface properties of the landcover types of interest. Since 
unique texture patterns were hypothesized to discriminate different landcover types, a proper 
window size that matches the patch size can extract the textural pattern of this particular 
landscape. Large window size can capture the spatial patterns of each landcover type better, but 
may contain more than one land category, which could introduce systematic error. The window 
should be then small enough to keep the variance low and to maximize the potential for class 
separability. Previous studies have tried examining several different window sizes (4,5). These 
trail-and-error methods are time intensive and window size strongly depends on the attributes of 
the radiometric data for each particular case.  

Geospatial techniques utilize spatial information that considers the spectral dependence existing 
between a pixel and its neighbour. Radiometric data that are highly correlated within a range can 
be indicated through the semivariogram function (6). The digital number (DN) value of each pixel 
can be interpreted as a regionalized variable. Meanwhile a data-driven semivariogram provides a 
method of measuring the spatial dependency of continuously varying phenomena. Recently some 
techniques have involved geostatistical parameters deduced from the semivariogram function for 
image classification (7, 8, 9). Although suggestions have been made that the window size should 
be defined for each particular case, identical windows as fixed square pixel arrays were used for 
all input channels. The approach of this paper intends to analyze the spatial dependence of 
radiometric data by geostatistical methods to obtain the suitable window size for the landcover 
type of interest from data-driven semivariograms. For this purpose multiple window sizes will be 
used to derive texture measurements from the Tasseled Cap features – brightness, greenness, 
and wetness - for wetland mapping. The objective of this paper is to assess the benefit of 
incorporating texture for classification by the proposed methodology.  

METHODS 

The study site is located within the boundaries of Prince Albert National Park in Northern 
Saskatchewan, Canada. Approximate coordinates of the study are as follows: 53°45’00’’N to 
54°00’00’’N and 106°00’00’’W to 106°25’00’’W. The elevation in the area generally decreases 
from west to east, with elevation varying from 501 to 747 m above sea level. The lowest elevation 
is Waskesiu Lake (elevation 501 m) while the highest (about 747 m) is in the western part of the 
site. According to the 7-year Meteorological Service of Canada (MSC) normals for 1996-2002, the 
mean monthly temperature range from approximately -17.2°C in January to 17.5°C in July and the 
mean monthly precipitation vary significantly from 80.2 mm in July to only 14.7 mm in November. 

Multispectral data was obtained from the Landsat ETM+ sensor. The multispectral image was 
acquired in August 1999 and processed at level 1G (standard geocoded image resampled to 
UTM projection). The scene was resampled to 25 m resolution by cubic convolution and a 
1086×1086 pixels sub-image was extracted for this study (Figure 1). 

Image pre-processing 

According to the definition given by the National Wetlands Working Group (1988), wetlands are 
characterized by three components: soil, vegetation, and water. A Tasseled Cap transformation 
utilizes a canonical component analysis to decompose multispectral image into three-dimensions: 
brightness, greenness, and wetness. Wetland pixels can be extracted by using Tasseled Cap 
transformed images (10) since the brightness channel highlights areas of high reflectance; the 
greenness channel represents vegetated areas and the wetness channel marks areas that have a 
high water or moisture content. A Tasseled Cap transformation based on at-satellite reflectance is 
more appropriate for regional applications where atmospheric correction is not feasible (11). Thus 
the six cloud-free multispectral bands were chosen to not use atmospheric correction due to the 
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lack of atmospheric data necessary for running atmospheric correction algorithm. Raw digital 
numbers were converted to radiance and at-satellite reflectances were calculated according to 
Landsat 7 Science Data Users Handbook (12).  

 
Figure 1: Location map of study area and Landsat-7 composite image (RGB=TM 4/3/2) 

Semivariogram 

The semivariogram was employed as a tool to model the spatially varying phenomenon of natural 
objects. The average change of a property is illustrated by a changing lag and the classical 
equation can be expressed as follow: 

∑
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The experimental semivariance )(hγ  is defined as half the average squared difference between 
values separated by a given lag h , where h  is a vector in both distance and direction. While 

 represents the DN value at a pixel location x ,  means the total number of pairs. 
Semivariogram interpretation is usually focused on relating nugget, sill, and range parameters 
(Figure 2). In this study, lag h  increased by one pixel instead of a real measurement in length 
unit. Pixels separated within the range are highly correlated with each other. Range can be used 
as a measure of homogeneity. Automatic fitting of models to semivariograms is the main problem 
(13) with variogram model-based approaches for texture classification. Since the choice of model 
may be restricted to certain regions or classes, the coefficient of the model fitting the local 
variogram may be misleading and unreliable. Modelling was not used to fit the semivariance 
curves in this study; only experimental values of the semivariograms were used. Semivariograms 
of four landcover types, wetland, water, dense vegetation, and open vegetation, were examined. 

)( ixZ i )(hN

Image textural channels and classification 

Texture analysis, which provides a complementary tool to multispectral studies, has received 
great attention in image processing. The grey level is assumed to be not a randomly distribution 
within an image, but associated with structures of landcover types. Texture reflects the local 
variability of grey levels in the spatial domain and reveals the information about the object 
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structures in the natural environment. In this study, texture features are computed over a moving 
window determined by semivariograms. Odd numbers of pixels from 5 to 11 were employed as 
window size for the three Tasseled Cap features to derive texture measures. In addition 
combinations of multiple window sizes were also evaluated. The following texture measures were 
computed from the Tasseled Cap features: mean, variance, and angular second moment (ASM). 
To evaluate the effects of the proposed window sizes, data were subjected to a maximum 
likelihood classification algorithm. Accuracy was assessed for wetland mapping. 

Although open water can be classified very accurately from the image, some misclassified errors 
were still resulted from water pixels. Water bodies in the study area varied from few pixels to 
thousand of pixels due to the natural geographic condition. A pixel-based image classification 
algorithm may eliminate small size water bodies. To minimize the errors from misclassification of 
water body, the normalized difference vegetation index (NDVI) was employed to develop an 
upper threshold, which would identify pixels likely to be open water. One binary map highlighting 
all pixels within the image being considered open water was created according to this threshold. 
The map masked out the water-likely pixels to eliminate those pixels during the classification 
procedure. Therefore, only three classes were considered in the classification process: dense 
vegetation, open vegetation, and wetland. 

 
Figure 2: Example semivariogram showing nugget, sill, and range in image application. 

RESULTS 

Analysis of semivariogram behavior 

Semivariogram behaviours of four classes, water, wetland, dense vegetation, and open 
vegetation were examined in the study. An arbitrary size (34x34 pixels) was selected for each 
training site (Figure 3). The DN statistics (mean ± standard deviation) within the geometric size 
are presented in Table 1.  

While dense vegetation has higher brightness and greenness values, its wetness value is lower 
than for any of the other three classes. On the other hand wetland and open vegetation have 
similar values in brightness and greenness. Although open vegetation has slightly higher 
vegetation density than wetland, these similarities are factors that decrease the signature 
separability of the two landcover types. In this study of spatially autocorrelation, experimental 
semivariograms of the three Tasseled Cap features were computed within the selected training 
areas for four directions (i.e. NS, EW, NNE, SSE) and for one isotropic curve. The 
semivariograms have different behaviours due to variations in the correlation patterns of the DN 
values. Only omnidirectional semivariograms are analyzed to extract the optimum lag distance for 
deriving texture features in the study.  
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Table 1: DN statistics (mean ± standard deviation) of Tasseled Cap features for four training sites. 

Class Brightness Greenness Wetness 
Water 50.41±1.64 -38.30±2.39 -65.95±5.22 
Wetland 155.95±12.78 -50.50±2.77 -271.82±25.19 
Dense Vegetation 180.56±4.13 -24.79±2.61 -283.03±7.62 
Open Vegetation 134.47±13.62 -47.60±4.90 -230.665±23.66 

 

Semivariograms computed for each class are unique (Figure 4) and have the following 
characteristics.  
(1) Water: the semivariograms calculated from brightness, greenness, and wetness are 

essentially flat, exhibiting little or any spatial correlation for lag distances greater than one 
pixel. Although the nugget and sill values may varied with the DN data, the analogous curve 
behaviours can be observed from the semivariograms for the three different data features. 

(2) Wetland: directional and isotropic semivariograms have similar behaviours either for 
brightness or wetness features. They rose smoothly and reached the sill at a lag of 7 pixels. 
Semivariogram of greenness feature showed the less of variances among the training 
classes of the study area, but greatest variance in wetness. The curve of greenness rose 
steadily upwards up to a local peak at a lag distance of 5 pixels and waved a little bit until it 
reached the sill at a lag of 11 pixels.  

(3) Dense vegetation: the semivariograms of dense vegetation calculated either from 
brightness, greenness or wetness features showed periodic forms in four directions. For the 
isotropic curves of the three Tasseled Cap features, the semivariograms reached a limiting 
value at a lag of 5, 9, and 5 pixels respectively. 

(4) Open vegetation: although open vegetation showed the greatest of variances among the 
training classes in brightness and wetness features, the range was slightly higher than that 
of the wetland class. The semivariograms for both brightness and wetness features rose 
upwards to a lag distance of 11 pixels, curving to a flat level fairly coincident to the DN 
variance of the training site. One significant difference should be noticed: although wetland 
and open vegetation have similar spectral DN values in greenness feature, their 
semivariograms showed the difference in variance. 

 
Figure 3: Selected training sites for semivariance calculation. (1) Dense vegetation; (2) open 
vegetation; (3) open water; and (4) wetland. Composite image is illustrated by Tasseled Cap 
features in RGB=Brightness/ Greenness/ Wetness. 
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The semivariograms of the three Tasseled Cap features are used as criteria to determine the 
optimal window size for deriving texture measurements. A window size for each brightness, 
greenness, and wetness feature was determined according to the experimental semivariogram 
signatures of wetland class presented in Figures 4. Therefore, the window size used to derive 
texture features from the three Tasseled Cap features were 7×7, 11×11, and 7×7 pixels 
respectively. 

 
 
 
 
 
Figure 4: Omni-directional semivariograms of the 
four training sites extracted from the Tasseled 
Cap features: brightness (a), greenness (b), and 
wetness (c). 

Classification 

 
Figure 5: Graph illustrating comparison for classification accuracy for three classes based on the 
Tasseled Cap features and on different window sizes for texture measures. 
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The overall accuracy and accuracies of the three classes are illustrated in Figure 5. The three 
Tasseled Cap features were always used as the input channels for the classification. Texture 
features derived from different window sizes were compared to assess their influence on wetland 
mapping. Consequently the strategy utilizing semivariograms to determine the optimal window 
size was also evaluated. For this purpose, four identical window sizes from 5×5 to 11×11 and four 
multiple sizes combinations were investigated.  

The comparison of spectral and spectral-textural classification accuracies indicates that 
introducing texture features into classification could provide a better result than spectral data 
alone. The overall accuracy increases by 4% at least (Figure 5). The proposed method predicting 
the preferred window sizes for deriving texture features as 7×7 for brightness, 11×11 for 
greenness, and 7×7 for wetness shows a highest overall accuracy of 95.5%. Incorporation of the 
texture features into the classification of the Landsat TM data improved the accuracy of the 
wetland class. The accuracy of wetland class improved from 61.5% using spectral bands to 
92.6% using a combination of spectral bands and texture features. Wetlands in the study area are 
fragmentary and distributed around small water bodies or in the river riparian. Nearly identical 
spectral reflectances between vegetation types cause the low signature separability between the 
wetland and open vegetation classes. Texture features therefore provide additional information to 
distinguish the insignificant differences in the spectral signature. 
 
Table 2: Summary results of accuracy assessment of spectral and textural classification. 

User’s accuracy (%) Kappa coefficient 
Band 

combination a 
Overall 

accuracy Wetland Dense 
Vegetation

Open 
Vegetation Wetland Dense 

Vegetation 
Open 

Vegetation
Spectral alone 90.4 61.5 95.7 95.0 0.56 0.93 0.90 
Spectral-textural    

Proposed size 95.5 92.6 99.4 93.3 0.92 0.99 0.86 
5×5 93.9 80.9 98.8 93.1 0.78 0.98 0.86 
7×7 94.7 86.2 99.4 92.9 0.84 0.99 0.86 
9×9 94.9 88.6 99.4 92.9 0.87 0.99 0.86 
11×11 95.3 90.4 99.4 93.3 0.89 0.99 0.86 
5,9,5 94.6 85.4 99.2 93.1 0.83 0.99 0.86 
7,5,7 94.1 83.3 99.2 92.7 0.81 0.99 0.85 
7,9,7 95.0 88.8 99.4 93.0 0.87 0.99 0.86 

a The window sizes used to derive the texture features from Tasseled Cap transformations are represented 
by numbers.  

User’s accuracy and kappa coefficients for spectral and spectral-textural classifications are 
computed to estimate the accuracy of individual class in Table 2. The table also illustrates the 
comparison between random selected window size and the one predicted by the semivariogram 
analysis. The window size is responsible for most of the variability in the classification because a 
significantly correlation between class accuracy and selected window sizes used for deriving 
texture features is observed. However this trend was not found in dense vegetation class and 
open vegetation class. The accuracies of these two classes do not show much variation between 
different combinations of textural classification. Since the wetlands in the study area are 
fragmentary and vary in different sizes, semivariogram captures the spatial correlation by 
predicting an appropriate lag distance for deriving texture measures. The kappa coefficient of the 
wetland class evaluated by adding proposed texture channels is 0.92, which is higher than the 
other randomly selected 5×5 window to 11×11 window size. When examining the semivariogram 
of the greenness feature (Figure 4.b), the variance reached a local peak at a lag of 5 pixels. By 
using a 5×5 window for greenness, it shows a lower kappa coefficient for the wetland class. The 
result indicates that a small window size may lose some spatial information of the specific class. 
However template window size at 11 pixels, which is the range value related to the sill of the 
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semivariogram, can provide a better classification result. The utilization of multiple window sizes 
(i.e. 7×7 for brightness, 11×11 for greenness, and 7×7 for wetness) is proposed in the 
classification. Multiple window sizes can retain the integrity of the small windows while reducing 
the effects of noise encountered with large windows. The result also illustrated the capability of 
improving the accuracy by applying this concept.  

CONCLUSIONS 

The overall accuracy indicated that the incorporation of texture measures into multispectral data 
could improve the classification result by 5% for this case study. Window size for deriving texture 
features is a factor contributing to classification accuracy. The study addresses the need to 
determine the data-driven window size predicted by the range of semivariogram for specific class 
inspection. According to the semivariograms of the target class, the resulting range parameter 
can provide superior discrimination and correlation results compared to those obtained using 
randomly selected identical windows. The proposed method shows the capability in increasing 
wetland class discrimination from 61.5% to 92.6%. This is a time-effective strategy that can be 
used to optimize texture derivations of remotely sensed imagery. Future study will examine if the 
pixels of these fragmentary classes can be grouped as segments and then take the advantage of 
texture analysis for identification of landcover units.  
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