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ABSTRACT

Code and carrier measurements and techniques for rapid static GPS surveys are
investigated. Developments are based on using only single frequency carrier phase data
with high accuracy C/A code measurements. Theory of GPS observables, least squares
solutions and preanalysis as applied to GPS is reviewed. Solutions using code
measurements, carrier measurements and code-carrier measurements combined with up to
five minutes of data for 720 m and 4.1 km baselines are analyzed. The ambiguity
function method, the fast ambiguity resolution approach and the least squares ambiguity
search technique are each investigated as means for ambiguity resolution in rapid static
surveys. Although each of these methods is shown to be negatively affected by code or
carrier multipath, they are shown to be successful within certain constraints. The
investigations made in this thesis are important to the objective of achieving centimetre

accuracies in minutes using rapid static GPS surveying techniques.
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NOTATION

Symbols

denotes estimated quantity

first design matrix (n~ u)

active control point

ambiguity function evaluated at point (X,y,2)
significance level (Type| error probability)
confidence level

Type Il error probability

power of the test

speed of light, or

zero vector, withalinonerow (n” 1)
calculated double difference

covariance matrix of the observations(n” n)
covariance matrix of the parameters (u” u)
covariance matrix of theresiduals(n” n)
degrees of freedom

error due to the ionosphere

orbital errors

satellite clock error

receiver clock error

error due to the troposphere

phasor or complex vector d = cosq +i sing



XF Fisher distribution

Xc2 Chi sguared distribution

Xt Student t distribution

d difference between code and carrier double differences, or

d correction vector to approximate values of the unknowns

ao,i datum independent measure of external reliability for the
ith observation

NI minimal detectable error of thei'th observation

NX vector of external reliabilities(u” 1)

e code measurement noise

®rx receiver component of code measurement noise

mult multipath component of code measurement noise

eF carrier measurement noise

eF rx receiver component of carrier measurement noise

eF mult multipath component of carrier measurement noise

dq phasor or complex number ed = cosqg +i sing

h height

f latitude

F carrier phase observation

| carrier wavelength, or

I longitude

l o non-centrality parameter

I vector of observations (n” 1)

L1 GPS carrier with frequency of 1575.42 MHz
L2 GPS carrier with frequency of 1227.60 MHz



n number of observations

N carrier phase ambiguity, or

N normal equations matrix

NA potential integer ambiguity

nepoch number of epochs

nsat number of satellites

obs observed double difference

p pseudorange observation

r range between satellite and receiver

r redundancy

ri redundancy number for thei'th observation
S standard deviation

s2 variance

s/\o2 estimated a posteriori variance factor

Ssp achievable single point positioning accuracy
SDN achievable double difference positioning accuracy
Sogp single point measurement accuracy

SopR double difference measurement accuracy
Sij covariance between i and |

t time, or

t critical value from Student t probability distribution
u right hand side of normal equations, or

u number of parameters

v residua vector (n” 1)

w misclosure vector (N~ 1)



Xr,Yr.Zr receiver cartesian coordinates

xS,y875 satellite cartesian coordinates

i) Defined Operators

AT matrix transpose

cl matrix inverse

N between satellite single difference

D between receiver single difference

ND double difference

nint(e) nearest integer of

qf

™ partia derivative of the function f with respect to x

P product of

S summation of

tr(s) trace of, i.e. sum of matrix diagonal components
i) Acronyms

AF ambiguity function

AFM ambiguity function method

CIA code coarse acquisition code

DD double difference

DoD United States Department of Defense

DOP dilution of precision

EDM electronic distance measurement

FARA fast ambiguity resolution approach

GDOP geometrical dilution of precision



GPS Global Positioning System

HDOP horizontal dilution of precision

LSAST least squares ambiguity search technique
MDE minimal detectable error

P code precise acquisition code

PDOP positional dilution of precision

PPS precise positioning service

RDOP relative dilution of precision

RGDOP relative geometrical dilution of precision
RHDOP relative horizontal dilution of precision
RMS root mean square

RPDOP relative positiona dilution of precision
RVDOP relative vertical dilution of precision

SA sdlective availability

SPS standard positioning service

sV space vehicle (used to reference specific GPS satellites)
TDOP time dilution of precision

VDOP vertica dilution of precision



CHAPTER 1
INTRODUCTION

1.1 BACKGROUND AND OBJECTIVE

The Global Positioning System (GPS), a satellite-based radio-navigation system
established by the U.S. Department of Defense, has become awell accepted tool in static
surveying, replacing conventiona surveying techniques for many applications. Static
GPS carrier phase relative positioning has yielded accuracies ranging from afew parts per
million to afew parts per 100 million (Delikaraoglou et al., 1985; Lichten and Bertiger,
1989), depending on the observation and processing methodology used. To achieve afew
parts per million accuracy, site observation periods of at least one hour are typicaly
recommended for short baselines (< 10 km), with longer observation periods necessary
for longer baselines. The objective of rapid static surveys is to achieve comparable
accuracies with short observation periods (typically < five minutes), and thereby

dramatically increase GPS surveying efficiency.

Efforts towards higher GPS surveying efficiency first led to the development of
semi-kinematic and pseudo-kinematic survey techniques, but neither have the logistical

and efficiency advantages of rapid static survey techniques. In semi-kinematic surveys



(Remondi, 1985), one GPS receiver is left stationary at a"monitor” dte, as a second
"rover" receiver is moved successively to sites to be positioned. High accuracy is
achieved by determining the integer ambiguities at the initid rover Ste, and then
maintaining lock on at least four satellites (i.e. retaining constant carrier phase integer
ambiguities) while moving between sites to be positioned (Cannon, 1990). The
requirement of maintaining satellite phase lock is very restrictive since the rover antenna
must be transported from site to site, with an unobstructed line of sight between the
antenna and satellites. In pseudo-kinematic surveys (Remondi, 1990), the benefit of
different satellite geometry in ambiguity resolution is exploited by occupying the rover
site for two to three minutes twice, at least one hour apart, after the satellite geometry has
changed significantly. The requirement to visit each station at least twice and timing site
visits to ensure sufficient geometry change between satellites poses logistical constraints

and reduces efficiency.

Rapid datic surveys, which require simultaneous occupation of monitor and
remote sites for periods of severa minutes, provide high accuracies and efficiencies
without the cumbersome constraints inherent to semi-kinematic and pseudo-kinematic

techniques. They are based on the ability to resolve carrier phase ambiguities in minutes.

To investigate rapid static surveys, it isimportant to review related developments.
Advances in rapid static surveys have paralleled advances in precise kinematic surveys,
where one desires the position of amoving "remote” receiver with respect to a stationary
"monitor” receiver. Ideally, kinematic surveys should be carried out in real—time using
"on the fly" ambiguity resolution techniques and computationally efficient processing
algorithms. Comparatively, rapid static surveys are less demanding since both monitor

and remote receivers are stationary, and real-time computations are not vital. Since both



rely on ambiguity resolution, developments in kinematic surveys may be used in arapid

static environment.

Over the past few years several techniques for rapid ambiguity resolution have
been developed. Theseinclude "extra-widelaning” (W bbena, 1989; Abidin and Wells,
1990), "multiple observable processing techniques' (Allison, 1991), "sequential phase
ambiguity resolution” (Talbot, 1991), "short-time application with ambiguity preselection”
(Euler et a., 1990), the "fast ambiguity resolution approach” (Frei and Beutler, 1990), the
"least squares ambiguity search technique® (Hatch, 1991a; Hatch, 1991b) and the
"ambiguity function method" (Counselman and Gourevitch, 1981; Remondi, 1984).
Although each of these techniques has some unique eement, each also has eements
shared with other ambiguity resolution techniques. Furthermore, a combination of

techniques may be used as proposed in Abidin (1991).

The first two techniques listed above rely on the combined use of P code and
carrier phase observations. In "extra wide-laning”, narrow-lane and wide-lane carrier
phase observations and narrow-lane P code observations are constructed and used
together to resolve ambiguities (Abidin and Wells, 1990). For "multiple observable
techniques' Allison (1991) considers the case of 3-observable processing, where carrier
phase observations are available on L1 and L2, but P code observations are only available
on L2 (asis the case with the Trimble Geodetic Surveyor [1P™ receiver). He combines
wide-lane carrier phase observations with L2 P code observations to aid ambiguity
resolution and shows the method to be 25 times |ess susceptible to ionospheric delay than
an L1 only process. The main limitation of extra wide-laning and multiple observable
techniquesistheir dependence on P code observations, because P code is scheduled to be
unavailable for civilian use in 1993 when the full satellite constellation is operationa

(McNeff, 1991).



In "sequential phase ambiguity resolution” each carrier phase observation is tested
and constrained to an integer ambiguity independently (Talbot, 1991). Aseach ambiguity
is successively constrained, the computed solution isimproved making it easier to resolve
the remaining ambiguities. Talbot (1991) describes a real-time rapid static system, which
lets an observer know in the field when ambiguities are resolved. He reported resolution
of ambiguitiesin 17 minutes for six satellite single frequency data. The disadvantage of
this technique is its time requirements exceeds the short periods desired for rapid static
surveys. Although not addressed in this thesis, the combination of sequential techniques

with other rapid ambiguity resolution techniques could prove to be fruitful.

"Short-time application with ambiguity presdection”, the "fast ambiguity
resolution approach” and the "least squares ambiguity search technique” are similar in that
each uses potential ambiguity sets to compute several least squares solutions with fixed
integer ambiguities, and the ambiguities which yield the solution with the smallest variance
factor and pass requisite statistical testing are deemed "correct”. "Short-time application
with ambiguity preselection” (Euler et a., 1990) requires use of dua frequency data
(P code or sguaring), and adds the additional constraints of ambiguities being integers on
L2 aswell asL1. The "fast ambiguity resolution approach” (FARA) uses ambiguity
covariance information from an adjustment with floating carrier phase ambiguities to
reduce the number of ambiguity sets to be considered, along with several statistical tests
(Frei and Beutler, 1990). The "least squares ambiguity search technique" (LSAST) uses
four "primary"” satellites to define a point and redundant "secondary” satellites to test the

validity of the point and corresponding ambiguities (Hatch, 1991a).

The final rapid ambiguity resolution technique listed above is the "ambiguity
function method" (AFM). Developed for conventional static GPS surveys (Counselman

and Gourevitch, 1981), it has recently been applied to pseudo-kinematic and kinematic



surveys (Remondi, 1990; Mader, 1990). The ambiguity function method is unique

compared to the other techniques mentioned because it is unaffected by cycle dips.

This thesis focuses on a subset of rapid static GPS surveys, considering the case
where only single frequency data with high accuracy C/A code measurements are
available. Of the ambiguity resolution techniques described, only the last three, namely
FARA, LSAST and AFM, can be used with single frequency observations. (Sequential
phase ambiguity resolution is not included here since reports indicate it takes much longer
than the periods being considered for these investigations (Talbot, 1991).) 1n 1991, a
new technology which allows for high accuracy C/A code measurements was unveiled and
implemented in the single frequency NovAtel Model 1001 GPSCard™ (Fenton et d.,
1991). The unprecedented C/A code accuracy of 10 cm shown with this receiver
(Erickson et al., 1991) opens new possibilities for rapid ambiguity resolution using single

frequency data, which are investigated in thisthesis.

The objective of thisthesisisto investigate rapid static survey measurements and
techniques using single frequency carrier phase data and high accuracy C/A code data.
Code, carrier and code-carrier measurements combined, over observation periods of up to
fiveminutes and baselines up to four km, are studied through preanalysis and post-
processing of data, providing insight into the measurements which affect the ambiguity
resolution techniques and rapid static survey results. Three ambiguity resolution
techniques are tested and compared: the ambiguity function method, the fast ambiguity
resolution approach and the least sguares ambiguity search technique.  Some
modifications of these techniques are explored. Investigations are limited to short
baselines, where most observational errors are reduced or eliminated through double
differencing. The investigations made in thisthesis are a subset of those needed towards

the objective of developing efficient, effective rapid static surveying techniques.



12 THESISOUTLINE

In Chapter 2 background theory which is fundamental to developments in the
subsequent chaptersis provided. GPS observables are described, observation equations
are formulated and errors are summarized. Double differencing, which isused in all the
rapid static techniques examined in this thesis, is explained along with its associated
equations. The formulation of least squares solutions for pseudorange observations, and
carrier phase observations with fixed and floating ambiguities is given. Methods of
preanalysis for GPS baseline solutions using dilution of precision (DOP), relative dilution
of precision (RDOP) and statistical reliability are discussed.

In Chapter 3 the field tests conducted and data sets used in the subsequent
chapters are described. The elevations and DOPs given for each data set, make useful

references in the discussion of results given in Chapters 4, 5 and 6.

In Chapter 4 coordinate estimation accuracies achievable based on double
differencing using code only, carrier only and combined code and carrier observations are
investigated. RDOP preanalysisis carried out for each solution type to show what should
be achievable under ideal conditions, and reliability preanalysisis carried out for each to
analyze their satistical reliability characteristics. Results from actual data for code
solutions are compared to "truth” to give ameasure of achievable code accuracies. These
are compared to RDOP preanalysis results, and discrepancies found are investigated
through analysis of code multipath. Results from actual datafor carrier and code-carrier
combined solutions are also analyzed, demonstrating the benefits of afixed over float
solution, the inadequacy of code-carrier combined solutions, the benefits of accurate code

solutionsover carrier float solutions for short observation periods, and the need for



special techniques for rapid ambiguity resolution to ensure ambiguities are resolved to the

correct integers.

In Chapter 5 one method of rapid ambiguity resolution, the ambiguity function
method, is investigated. The theory behind the ambiguity function method is given
followed by a description of search techniques which may be used. The reliability of
AFM resultsis discussed with consideration of the observation conditions under which it
is applied, the adequacy of the search technique, and criteria to decide the acceptability of
the AFM results. AFM is then put to the test using actual data along with the

accompanying search techniques.

In Chapter 6 two least squares ambiguity resolution techniques for rapid static
GPS, namely the fast ambiguity resolution approach (FARA) and the least squares
ambiguity search technique (LSAST), are investigated. For each of these methods, the
underlying theory is reviewed and results are presented. The relation between AFM and

LSAST isdiscussed, followed by acomparison of these techniques with FARA.

Conclusions formed throughout this thesis and recommendations for further

investigations are presented in Chapter 7



CHAPTER 2
BACKGROUND THEORY

21 GPSOBSERVABLES

The Global Positioning System (GPS) consists of a congtelation of radio-
navigation satellites, a ground control unit which manages satellite operation, and users
with specialized receivers who use the satellite data to satisfy a broad range of positioning
requirements. The system was established by the United States Department of Defense
(DaoD) to fulfill defence positioning needs and as a by-product, to serve the civilian
navigationa community. The satellite constellation, to be fully operationa in 1993
(McNeff, 1991) will consist of 21 satellites and threeactive spares at an dtitude of
20,000 km, positioned in a manner which ensures the visibility of four or more satellites
amost anywhere in the world at anytime. The launch of prototype satellites as early as
1978 and the current constellation of some 17 satellites has resulted in awell developed
GPS industry of receiver manufacturers, software developers and application oriented

users, of which surveyors are asmall portion.



2.1.1 GPS Signals

The signals transmitted by the satellites and received at a GPS user's receiver form
the GPS observables, which are manipulated to attain position estimates. Much of the
power of GPS lies in the wealth of information provided in these signals. They are
transmitted autonomously from al GPS satellites on two carrier frequencies; an L1
frequency of 1575.42 MHz and an L2 frequency of 1227.60 MHz. A pseudo-random
noise C/A code of 1.023 MHz is modulated on the L1 carrier and a pseudo-random noise
P code of 10.23 MHz is modulated on both the L1 and L2 carriers. A satellite message,
which among other information contains the satellite's ephemeris, is also modulated on

both frequencies. A summary of the signal componentsisgivenin Table 2.1.

Table2.1
GPS Signal Components
Carrier Freq. Wavelength | Modulation Fregq. | Chip Length

C/A code 1.023 MHz 293 m

L1 1575.42 MHz 19cm P code 10.23 MHz 29.3m
Message 50 Hz

L2 1227.60 MHz 24 cm P code 10.23 MHz 29.3m
Message 50 Hz

GPS receivers are classified as either being single frequency, meaning they receive
L1 signalsonly, or dual frequency, meaning they receive both L1 and L2 signals. Most
provide access to C/A code data by correlating the incoming signal from a satellite with a
replica of the code generated in the receiver. Dual frequency receivers may provide access
to C/A code data, P code data or both. When only C/A code data is used in dua
frequency receivers, the L2 carrier is squared to remove the unknown P code modulation,
resulting in an effective L2 wavelength of 12 cm. The dual frequency receivers which

provide access to P code data do so through code correlation, alowing for a full L2
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wavelength of 24 cm. Accessto P code datais expected to be denied to civilian users by

the U.S. DoD after the full constellation is operational (McNeff, 1991).

The type of data that a receiver collects has a direct impact on achievable
accuracies, and usually a corresponding impact on price. The least expensive receivers on
the market are ones which provide real time position solutions based only on C/A code
datawith SPS (standard positioning service) accuracies of 100 m horizontal and 156 m
vertical. P code receivers which are similar in operation but boast accuracies of 25 m
horizontal and 30 m vertical as per the PPS (precise positioning service) requirements are
limited to U.S. and NATO military users. Receiverswhich base their solutions on carrier
phase observations rather than pseudorange observations are inherently more accurate due
to the much finer resolution of the 19 cm and 24 cm carrier wavelengths as compared to
the 293 m and 29 m code chip lengths. The most sophisticated receivers on the market
are dual frequency P code receivers. These receivers are used to support some of the
most exacting relative positioning needs, such as crustal motion studies with accuracies
ranging from a part per million to afew parts per billion. Between the two extremes one
finds awide range of receiver equipment which meets a comparably wide range of user

accuracy requirements.

2.1.2 Observation Equations

A code observation (also called pseudorange) is the difference between the signal
transmission time at the satellite and reception time at the receiver. It isscaled to units of
length using the speed of light. The equation to solve for an unknown position using

code observationsis given as:

p=r +c(dt-dT) +djon + dirop + dr + €p, (2.1)
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where p is the observed pseudorange, r isthe unknown satellite-receiver range, c isthe
speed of light, dt isthe satellite clock error, dT isthe receiver clock error, dion is the error
due to the ionosphere, dtrop is the error due to the troposphere, dr is the orbital error and
ES) is the code measurement noise (Wells et a., 1986). The code measurement noise ES) IS

afunction of the code receiver noise, epry and multipath emyit, i-e.

& = f{ eprx, €pmult } (2.2)

(Lachapdlle, 1991). The satellite-receiver range, r , when expanded has the form

r = (8- x0)2+ (yS-yn2+ (@S- 2)2 (3

where xS, yS and ZS are satellite coordinates computed using broadcast ephemeris data and

Xr, yr and zy are the unknown receiver coordinates. Since there are four unknownsin total

(Xr, ¥r, zr and dT), aminimum of four satellites are needed to solve for a solution at a

single epoch (meaning four different equations of the form of (2.1)).

A carrier phase observation is more complex to define than a pseudorange
observation. At the epoch tg when a satellite is "locked on", the carrier phase observation
isameasure of the misalignment between an incoming signal and that generated by the

receiver oscillator. Assuming continuous lock, at subsequent epochs this measurement is

asum of theinitial phase misalignment at epoch tg and the number of integer cycles from
epoch tg to the current epoch t. Accordingly, from Wells et al. (1986) the measured

carrier phase, F measureg can be written as
F measured = fraction(F ) + integer(F; to, t). (2.9

From herein F will be used to represent the measured carrier phase as per equation (2.4).
Carrier phase measurements are scaled by their wavelength to convert them from cyclesto

units of length.
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For acarrier phase measurement to represent a satellite-receiver range, one needs

to add an ambiguity term which accounts for the unknown number of integer cycles

between the satellite and receiver at epoch to. Then the equation to solve for an unknown

position using carrier phase observation is given as

F=r +C(dt- dT) + | N -dion"‘ dtr0p+ dr + eF, (25)

where | isthe carrier wavelength, N is the unknown integer cycle ambiguity, eg isthe

carrier phase measurement noise, and all other terms are as defined above. The carrier
measurement noise e resembles the code measurement noise of equation (2.2) sinceitis

aso afunction of the receiver noise, e rx and multipath, eqyit, i-€.
er =f{ errx, &Fmult}- (2.6)

Note the similarities between the pseudorange observation equation (2.1) and the carrier
observation equation (2.5). The only differences between the two are the addition of an
ambiguity term, | N, for carrier phase observations and the reversal of signs for the
ionospheric correction term djgn. Carrier phase observations alone may not be used to
solve for a position at one epoch of time because the addition of an unknown ambiguity

term for each satellite observation resultsin an underdetermined system of equations.

2.1.3 Errors

Both pseudorange and carrier phase observations are subject to a number of

errors, which are described in Table 2.2.
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Table2.2
GPSErrors
Error Description
dr orbita - nominal errors due to inaccuracies in broadcast ephemeris data

- additional errors dueto theintentiona orbital degradation of
selective availability (SA)

dion ionospheric |- delay of pseudorange measurements and equivalent advance of
carrier phase measurements due to free electronsin the
ionosphere (the region of the atmosphere extending from 50 to
1000 km above the earth)

dtrop tropospheric |- delay insignal transmission due to wet and dry componentsin
the region of the atmosphere extending up to 80 km above the
earth

dt sateliteclock |- difference between satellite time and true GPS time

dT receiver clock |- difference between receiver time and true GPStime

Sprx

cod(_e _ - inaccuracies of code measurements due to receiver noise
receiver noise

Frx . . . . .
carrier _ - inaccuracies of carrier measurements due to receiver noise
receiver noise

€mult _ _ _
multipath - phenomenawhere the measured signal includes the

superimposition of one or more reflected signals, rather than the
direct signd aone

These errors, their magnitudes and methods for handling them are discussed in

Lachapelle (1991).

A phenomenon unique to carrier phase observationsisthe cycle dip. Recall from
the discussion of integer cycle ambiguities with equations (2.4) and (2.5), that carrier
phase observations will have the same integer ambiguity if satellite lock is maintained.

Cycle dips aways occur when satellite lock islost and occasionally occur as aresult of a
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receiver malfunction. When a processing a gorithm depends on one integer ambiguity per
satellite for the full observation period it is important to implement preprocessing
techniques to detect and correct for the effect of cycle dlips. Such techniques are
described in Wells et al. (1986) and Leick (1990).

One method for reducing or eliminating some of the errors of Table 2.2 is double

differencing.

2.2 DOUBLE DIFFERENCING

Double differencing is avery common and accepted technique for processing
GPS observables (code or carrier) when the coordinates of an unknown point are sought
with respect to a known point. Double difference observation equations are presented

followed by a discussion of residual double difference errors.

2.2.1 Observation Equations

The concept of double differencing isillustrated in Figure 2.1. Observations from
two satellites to one receiver are differenced, then observations from the same two
satellites to a second receiver are differenced, and the resulting differences are differenced,

hence the name doubl e differencing.

In the figure, the symbol A1 represents the observation between receiver A and
satellite 1, the symbol B2 represents the observation between receiver B and satellite 2 and
so on. The double difference operation defined in equation (2.7) can be represented with
the operator ND.
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satdllite 1 satellite 2

double difference 7
= (B2-B1) - (A2- Al) (2.7)

i
receiver A recaiver B
(unknown) (known)
Figure2.1

Double Differencing

To transform the undifferenced pseudorange and carrier phase observation
equations of (2.1) and (2.5) to double difference equations, each term is double

differenced, i.e:
NDp: NDI’ + NDdion + NDdtr0p+ NDdI’ + QQDp, and (28)
NDF = RNDr + I «NDN - NDdjon + NDdirop + NDdr + efDF - (2.9)
The variables of equation (2.8) and (2.9) are simply the double differences of the variables
described following equations (2.1) and (2.5). Instead of having unknown coordinates

within the satellite-receiver range, r , of equation (2.2), unknown coordinates fall within the

double difference range, DNr , which iswritten as

DR = R[0Z g2+ 62 yp2+ (€2 7p)2
.
-0t x )2+ (v -y )2+ (- 7p)2

- e 62y 2+ 0272

ST a2+ 6Ty w2+ @025, (210
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The superscripts sl and s2 indicate coordinates of satellites 1 and 2 respectively and the
subscripts rA and rB indicate the coordinates of receiversA and B respectively (as

illustrated in Figure 2.1). Note the only unknownsin equation (2.10) arethe x, y and z
coordinates of receiver A (X.p Yrp @nd Zp)-

A disadvantage of double differencing is the resulting correlations (illustrated in

Figure 2.2) that must be accounted for in double difference processing.

sadlitel — saellite2 satellite 3
Bl A2AB2 A3
A B3 |_. =«
ND =(B2-B1)-(A2-Al)
a1 (2.11)
ND =(B3-B1)-(A3-Al)
recaiver A receiver B
(unknown) (known)
Figure 2.2

Double Difference Correlations

Figure 2.2 follows that of Figure 2.1, but three satellites are included instead of two,
resulting in two double difference equations instead of one. Theranges Al and B1 are
used in both equation ND21 for double differences using satellites 2 and 1, and equation
ND3! for double differences using satellites 3 and 1, hence their mathematical correlation.
Methods for accounting for these correlations in processing are given in Remondi (1984)

and Biacs et a. (1990).
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2.2.2 Errors

A key benefit of double differencing isits ability to reduce or eliminate many GPS
observations errors. There are no clock errors present in equations (2.8) or (2.9) because
the satellite clock errors cancelled in inter-receiver differencing, and the receiver clock
errors cancelled in inter-satellite differencing. lonospheric, tropospheric and orbital errors
are greatly reduced through double differencing for short baselines (< 10 km), where the
errors at the two receiver sites tend to be highly corrdlated. As the spatial distance
between receivers increases, these errors decorrelate and become significant. Receiver
noise and multipath errors are receiver and site dependent, and so are not reduced through

double differencing, but rather are amplified by afactor of two (Lachapelle, 1991).

Receiver measurement noise isaresult of thermal noise intercepted by the antenna,
noise from the receiver oscillator and other hardware components. It isafunction of the
tracking bandwidth, carrier to noise density ratios and code tracking mechanization
parameters.  Although a narrow tracking bandwidth results in more accurate
measurements, the bandwidth must be wide enough to maintain carrier phase lock
(Lachapelle et ., 1987). Receiver noise for code and carrier measurements is given for
the NovAtd GPSCard™ and Ashtech P-XII receivers in Table3.1 (under the row

headings of ‘code accuracy' and 'carrier accuracy’).

Over short baselines, where most errors are dramatically reduced through double
differencing, multipath errors can be alimiting factor. Georgiadou and Kleusberg (1988)
have shown that the amplitude of multipath carrier phase errors theoretically cannot
exceed | /4, or 4.8 cm for an L1 wavelength. In practical applications one would not
expect to see such high magnitudes of carrier multipath errors since highly reflective

surfaces are avoided in choosing GPS observation sites and minimization of multipath is
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considered in receiver and antenna design. For example, Henson et al. (1985) claim 0.0 to
1.5 cm asthe double difference carrier phase multipath error budget of the TI-4100
receiver. C/A code multipath can theoretically reach up to 293 m and in practice has been
shown to have magnitudes of up to 20 m (Lachapelle et a., 1989). However, technology
implemented in the new NovAtel GPSCard™ (Van Dierendonck et al., 1992) effectively
reduces code multipath to sub-metre levels (Cannon and Lachapelle, 19924).

One of the drawbacks of multipath in a static environment isits cyclical nature. Its
periodicity may range from afew minutes to over an hour for carrier phase observations
(Georgiadou and Kleusberg, 1988) or code observations (Tranquillaand Carr, 1990), and
so would require the corresponding averaging times to nullify its effects. Multipath can
be reduced through site selection and the use of ground planes (Lachapelle et al., 1989;
Tranquillaand Carr, 1990; Cannon and Lachapelle, 1992b).

23 LEAST SQUARESSOLUTIONS

The system of equations for undifferenced observations, (2.1), and double
difference observations, (2.8) and (2.9), can be solved through a parametric least squares
adjustment with math models of the form

Il = AXx + w, (2.12)

(nx1) (nxu) (ux1) (nx1)
Here, | isthe vector of observations, A isthe design matrix, X is the vector of unknown
parameters and w is the vector of misclosures. Dimensions are given under each variable

of equation (2.12), where n is the number of observations and u is the number of

unknown parameters.
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The explicit form of the unknown parameters vector and the design matrix for an
epoch t using the pseudorange observations from a single receiver (as per equation (2.1))
isgivenin Table 2.3a. In this case the number of observations equals the number of
satellites (nsat) and so the A matrix has dimensions (nsat x 4). Carrier phase observations
are not used for single point positioning since orbital errors are too great to fully exploit
the accuracy of pseudorange observations, let alone the more accurate carrier phase

observations.

The explicit form of the unknown parameters vector and the design matrix for a
single epoch using double differenced pseudorange observations (as per equation (2.8)) is
givenin Table 2.3b. Note the number of unknowns has been reduced from four to three
due to the elimination of the clock term through double differencing. The number of
observations in this case refers to the number of double difference observations. Hence
the dimensions of the A matrix are reduced from (nsat x 4) in Table2.3a to
((nsat-1) x 3) in Table 2.3b.

If the unknown double difference carrier phase ambiguities, NDN, are determined
by some independent means prior to aleast squares GPS solution, equation (2.9) reduces
to the same form as the pseudorange equation (2.8) and the unknown parameters vector

and design matrix areidentical to the pseudorange double difference case of Table 2.3b.
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Explicit Formsof The Parameter Vectorsand Design Matrices

(a) For Single Point Pseudorange Solutions
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T2 2 M2
xr Tyr Yz
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Ty, p st
1, (-2
1z, B p st

(b) For Double Difference Pseudorange Solutions OR

Double Difference Carrier Phase Solutions with Fixed Ambiguities

XrA
X= yrA

oy
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(c) For Double Difference Carrier Phase Solutions
with Floating Ambiguities
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The ambiguities are then said to be "fixed", meaning they are held at some constant

predetermined integer value.

When double difference ambiguities are not predetermined, they must be
estimated as unknowns along with receiver coordinates. In this case the ambiguities are
said to be "floating" since they are not restricted to integer values. The explicit form of
the unknown parameters vector and the design matrix for a single epoch using double
differenced carrier phase observations with floating ambiguities (as per equation (2.8)) is
givenin Table 2.3c. The number of double difference observationsis (nsat-1). The

unknowns include three receiver coordinates and (nsat-1) double difference ambiguities.

The linearized form of equation (2.12) is

v = Ad + w (2.13)
(nx1) (nxu) (ux1) (nx1)

where v is the vector of residuals, A the design matrix, d the correction vector to the
approximate values and w the misclosure vector. The corresponding least squares

solution is

e 1.0 -1
d=-€6ATC AZ1 ATC w (2.14)

where C; isthe covariance matrix of the observations (Krakiwsky, 1990). Equation

(2.14) can be written as
d=-N-1lu where, (2.15)
& 10
N = €ATC, AL and (2.16)

u=AT ' w. 2.17)
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The design matrices given in Table 2.3 al correspond to a single epoch in time.
Assuming GPS observations are uncorrelated between epochs, the normal equations
matrix, N, corresponding to a set of consecutive epochs of observationsis block diagonal,

meaning summation techniques may be used in solution computations (Mikhail, 1976).

24  PREANALYSIS

Much can be learned about the relative accuracies achievable with the above
models under a variety of observing conditions using dilution of precision (DOP) and
statistical reliability. Both are suited for preanalysis since they require only a ssmulation
of observing conditions (i.e, time, saellite constellation etc.) and do not require

observations.

241 DOP and RDOP

Dilution of precison (DOP) is a scalar which represents the geometrica
contribution of observationsto a solution. Conventionally DOP is used to represent the
geometry of single point positioning, but it can be extended to represent the geometry of
double differencing for pseudorange and carrier phase observations. This extension will
be referred to as RDOP (relative dilution of precision). Equations for computing and

using DOPs and RDOPs follow.
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DOP Computations

DOPs are computed as the square root of the trace of the covariance matrix of the

parameters Cy, which isthe inverse of the normal equations matrix, i.e.,
& 1.0
C, =N-1=8ATc,'ab1 (2.18)

where A is the design matrix givenin Table 2.3a. Here C;” is unscaled and used to

represent relative weighting of the observations. For single point positioning, since

observations are assumed uncorrelated and of equal weight, C[l reduces to a diagonal

matrix and equation 2.18 reduces to

Cx =N-1=(ATA)-1, (2.19)

Covariance matrix components for cartesian and geodetic coordinate systems are given in

equations 2.20a and 2.20b respectively:

2
St SfI Sth Stt -
s¢ Sxy Sxz Sxt

Syx 59 Syz Syt
Cx = (220a) Cx= . (2.200)

Shf Shl S% Sht Szx Szy Sg Szt

2 . Stx Sty Stz St2

In the geodetic coordinate system, f, | and h represent the latitude, longitude and height

parameters respectively, and t the clock offset. In the cartesian coordinate system,

parameters are as previoudy defined. From these covariance matrices the influence of the
satellite geometry on the full solution or any component thereof may be calculated from

the square root of the sum of the diagonal components as shown in Table 2.4.
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Table2.4
Types of DOPs

Acronym Type Cartesian (X, Y, 2) Geodetic (¢, A, h)
GDOP | geometrical (Sx2 + Sy2 + SZ2 + StZ)]JZ (sz + 5| 2 + Shz + StZ)JJZ
PDOP pOSitional (SXZ + Sy2 + 522)1/2 (Sf 2 + S| 2 + Sh2)1/2
HDOP horizontal --- (st 24 S| 2)1/2
VDOP vertica --- Sh
TDOP time St St

RDOP Computations

RDOPs, like DOPs are computed as the square root of the trace of the covariance

matrix Cy (Lu et a., 1990). For double difference pseudorange solutions or carrier phase

solutions with fixed ambiguities, the covariance matrix of the parameters is computed

using the design matrix of Table2.3b, and for carrier phase solutions with floating

ambiguities, it is computed using the design matrix of Table 2.3c.

In both cases the

covariance matrix of the observations should be included to account for double difference

correlations.

Covariance matrix components in the geodetic coordinate system corresponding to

double difference pseudorange solutions or carrier phase solutions with fixed ambiguities

aregivenas
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2
St SflI Sth
2
Cx=| SIf S| Sinh|. (2.21)
~ Shf Shl Sﬁf

Covariance matrix components in the geodetic coordinate system corresponding to double
difference carrier phase solutions with floating ambiguities (assuming four satellites are

observed, i.e. three double differences) are given as

2
St Sf1 Sfh SfN1 SfN2 SfN3

2
S| f S| Sl’h  SIN1L SIN2 SIN3
Shf Shi Sﬁ ShN1 ShN2 ShN3

SN1f SNiI  SNih Sﬁu SNIN2 SNIN3
(2.22)

SN2f SN2l SN2h SN2N1 SKIZ SN2N3

SN3f SN3I  SN3h SN3N1 SN3N2 SEIB

From these covariance matrices of the parameters, the influence of the satellite geometry
on the full solution or any component thereof may be calculated from the square root of

the sum of the diagonal components as shown in Table 2.5.
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Table2.5
Types of RDOPs
Acronym | Type Codeor Carrier with Carrier with
Fixed Ambiguities Floating Ambiguities

sn12 Tspp2tsnad) 2

RHDOP | horizontal (sf2+ s 2)1/2 (sf2+ s 2)12
RVDOP vertica Sh Sh

Significance of DOPs and RDOPs

The effect that satellite geometry has on single point pseudorange positioning

accuracy isgivenin Wells et d. (1986) as
Ssp=DOP- Sogp: (2.23)

where sgp is the achievable single point positioning accuracy, DOP is a dilution of

precision measure from Table2.4 and s Osp IS the measurement accuracy encompassing

all the errors discussed in Section 2.1.3. The effect that satellite geometry has on double

difference positioning accuracy can similarly be written as
spil = RDOP * sopy;. (2.24)

where spg isthe achievable double difference positioning accuracy, RDOP isadilution

of precision measure from Table 2.5 and sy is measurement accuracy encompassing

errors which remain after double differencing.
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In practice, DOP measures are commonly used and well accepted. In contrast,
RDOP values are rarely used and not as well accepted. Part of the problem with RDOPs
istheir ambiguous definition. Above two definitions for RDOPs are given, one assuming
fixed ambiguities and the other assuming floating ambiguities. When using RDOP

valuesit isimportant to specify such assumptions.

It should be noted that DOPs and RDOPs are scalar numbers and do not provide
the full set of information made available in the covariance matrices. Nevertheless, both
measures are significant tools that can be used to analyze the geometrical strength of GPS

solutions.

2.4.2 Reliability

Reliability analysis (Baarda, 1968), which has been applied to network strength in
conventional surveying applications (MacKenzie, 1985; Caspary, 1988) has been
extended to GPS surveys (Van der Marel and Ko sters, 1989; Biacs and Krakiwsky,
1990; Biacs et al., 1990; Lu, 1990). By specifying the appropriate alternative hypothesis,
the sensitivity to and effect of undetected errorsin GPS surveys may be analyzed. In
GPS baseline adjustments, errors may include code or carrier outliers, uncorrected cycle
dips, satellite ephemeris errors or atmospheric modeling errors.  In GPS network
adjustments, errors may include station set-up errors, station misidentifications, incorrect
antenna heights or coordinate difference errors (Vander Mard, 1990). Only the

reliability analysisfor baseline adjustments are presented in thisthesis.

Reliability may be classified as interna or external. Interna reliability is the
minimum size an observation error must be to be detected through satistical testing.

External reliability is the influence of undetected errors on the adjustment results. An
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overview of the formulation of each follows, but for detailed explanations and derivational
developments one may refer to Mackenzie (1985) or Caspary (1988). Sincereliability is

based on redundancy numbers, redundancy numbers are discussed first.

Redundancy Numbers

Redundancy in an adjustment is equivalent to the degrees of freedom. For a
parametric adjustment the redundancy, r, is given as the number of observations, n, minus

the number of unknownsu, i.e.
r=n-u. (2.25)
From MacKenzie (1985), redundancy may aternatively be derived as
=&, G2, (2.26)
where C,, isthe covariance matrix of the residuals which may be computed as

C-

Vv

=" -AC AT. (2.27)

While redundancy refers to the total redundancy of an adjustment, redundancy
numbers give the contribution of a specific observation to the tota redundancy. The

redundancy number of thei'th observation is given as

f =&, GG (2.28)

Redundancy numbers are aways greater than zero and less than one, i.e.

0<rni<1 (2.29)

and the sum of al redundancy numbers equals the total redundancy, i.e.
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(2.30)

q
I

Il Qo=
—

The smaller the redundancy number the more critical the i'th observation is to the

adjustment solution and vice versa (Forstner, 1979).

Internal Reliability

Since internal reliability isthe minimum size an error must be to be detected
through Statistical testing, it is referred to as the "minimal detectable error" (MDE).
Computations of internal reliability are based on the assumption that all observations are

normally distributed except for one which is biased by some non-stochastic error. The

non-centrality parameter | o which corresponds to the significance level ag and power of

thetest 1 - bg to be used in statistical testing to detect outliers (Vanicek and Krakiwsky,

1982; Caspary, 1988), is used in internal reliability computations. For uncorrelated

observations the MDE is computed as

NIiZS|i \/ lrio , (2.31)

where Nlj is the MDE of the i'th observation, s|; isthe standard deviation of the i'th
observation, | g isthe non-centrality parameter and rj is the redundancy number. The

smaller the MDE, the weaker the adjustment and vice versa (Mackenzie, 1985).
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External Reliability

External reliability isthe influence of undetected errors on the adjustment results.
It can be computed following the least squares solution equation of (2.14) by replacing

the misclosure vector with an expression to represent MDESs (Caspary, 1988), i.e.

. & -10 1.

R =8ATG'ABL AT ¢t e N (2.32)
where c=(0,..,010,...,0)T. (2.33)

Here N X isthe vector of externa reliabilities for the parameter vector x, Nlj is the vector of

internal reliabilities (MDES) for each observation, and c is a zero vector with a1l inthei‘th row

corresponding to the observation MDE whose effect is being tested.

The usefulness of the external reliability measure given in equation 2.32 is limited

since like the unknown parameters x, the external reliabilities NX are datum dependent

(Mackenzie, 1985), meaning they are biased by the chosen reference base. Instead, a

datum independent measure of externa reliability, Bo,i , can be used as given by Griindig

and Bahndorf (1984)

do.i =1 o 1':i fi| (2.34)

This equation is based on the assumption of observations being uncorrelated.

Redundancy numbers, interna reliability and externa rdiability can all be
computed in preanalysis mode to analyze the strengths and weaknesses of GPS solutions.
They have been used by Van der Marel (1990), Lu et a (1990) and Biacs et a (1990) to
analyze dstatic GPS surveys. They are used to anadyze rapid static surveys and the

combination of code and carrier measurements in Chapter 4.
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CHAPTER 3
DATA DESCRIPTION

Descriptions of data sets used to test the methods presented in the following
chapters are given. The receiver types used, baselines observed and data sets collected are
described.

31 RECEIVERTYPES

Two receiver types were used for data collection, the NovAtd Model 1001
GPSCard™ and the Ashtech P-X11 receivers. The NovAtel receiver was introduced to the
GPS industry in mid-1991 (Fenton et a., 1991) and The University of Calgary had access
to the NovAtd GPSCard™ data for analysis prior to the expected 1992 production
(Erickson et a., 1991). The Ashtech P code receivers used were recent purchases of the
Department of Surveying Engineering at The University of Calgary (delivered November
1991). The technologica currency of these two types of receivers has significant
implications for the investigations made in this thesis. In particular, they dramaticaly

improveinitial coordinate estimation as discussed in Chapter 4.
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The NovAtel GPSCard™ isa 10 channel receiver card which tracks C/A code and
carrier phase observations from up to 10 satellites simultaneously. It is most noteworthy
for its high accuracy C/A code measurements, shown to be accurate to the 10 cm level
(Erickson et al., 1991) as opposed to the one to three m level which typifies C/A code
accuracies of other receivers (Lachapelle et al., 1989). This high accuracy is achieved
through the innovative code tracking loop technology employed (Fenton et al., 1991). The
receiver is aso resistant to much of the multipath effects which usually plague C/A code
measurements (Van Dierendonck et al., 1992; Cannon and Lachapelle, 1992a). The C/A
code accuracy of the NovAtel GPSCard™ is similar to P code accuracy, without the

impending access denia facing the P code.

The Ashtech P-XI1 isa 36 channel dual frequency receiver which receives carrier
phase and P code observations on L1 and L2 frequencies from up to 12 satellites
simultaneously. It also collects C/A code data, making it unique as compared to other
receivers which collect either P code data or C/A code data. The dual frequency P code
data opens many possibilities for rapid static positioning, especially concerning the use of
various widelaning and extra-widelaning techniques (Wi bbena, 1989; Abidin and Wells,
1990). However, these are not investigated in thisthesis, as the scope has been limited to
single frequency observations. P code data on a single frequency is used on occasion to
compare with the NovAtel C/A code data, and to assist in some of the developmentsin this
thesis. Mgor characteristics of the NovAtel GPSCard™ and Ashtech P-X11 receivers are
givenin Table 3.1.
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Characteristics of the NovAtel Gnggllred?';"llOOl and Asnhtech P-XII Receivers
Characteristics NovAtel GPSCard™ Ashtech P-XI|
carrier frequencies L1 L1& L2
number of channels 10 36 (12 x 3)
code modulation C/AonlLl C/AonLl,PonL1& L2
C/A code accuracy 10cm 1-25m*
P code accuracy -- 10 - 30 cm*
Carrier accuracy 4 mmT <0.5mm*
* (Cannon and Lachapelle, 1992b) T (NovAtd Communications Ltd., 1991)

32 BASELINELENGTHS

Observations used in this thesis were made over baselines with lengths of 0 m,
700 m and 4 km, as the scope for this thesis was limited to the short baseline case. The
zero baseline consisted of two receivers connected to one antenna through an antenna
splitter. Since the same observations were received at both receivers, al errors with the
exception of the receiver noise and a small amount of residual multipath cancelled out in
double differencing, giving an idea data set for initid investigations of theories and
algorithms. The 700 m baselines measured were on two concrete pillars (Piers 2 and 4)
of the Calgary EDM Calibration Baseline, established by the Province of Alberta. The
piers were designed for positional stability and forced centering. A "known" distance
between piers, from very precise electronic distance measurements (EDM), was available
from the Geodetic Survey of Canada. (See Gillis and Nabe (1988) for details on EDM

Calibration Baselines.) This provided a good independent interstation distance check for




the GPS observations. Precise X, y and z coordinate differences were not available and
instead were derived using the program SEMIKIN (Cannon, 1990) using carrier phase
observations over time spans of at least 20 minutes. The 4 km baseline was measured on
points without any ground truth. Therefore it was necessary to attain precise coordinate

and distance differences using SEMIKIN once again.

3.3 DESCRIPTION OF DATA SETS

The characteristics of each data set used are given in Table 3.2. Antenna choke

ring ground planes were used in al data collection to reduce multipath effects.

Table3.2
Summary of Data Sets
Date Receiver Baseline Length | Data Rate gt
Jan. 25 | Ashtech P-XII 0.0 m 2s active
Feb. 12 | NovAtel 1001 720.1 m 1s active
Feb. 15 | NovAtel 1001 720.1 m 1ls active
Feb. 17 | NovAte 1001 4.1 km 1ls active

T based on observations at ACP sites (Heroux, 1992)

The number and position of satellites used have great importance when analyzing
results. For this reason elevations for each data set are shown in Figures 3.1t0 3.4. The
PDOP range (positional dilution of precision) for each data set is shown in the top right
hand corner of each graph. The horizontal axis shows time in seconds of GPS week, with
the interval between each major tick representing five minutes and the interval between

each minor tick representing one minute.
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CHAPTER 4
COORDINATE ESTIMATION BASED ON CODE AND CARRIER
MEASUREMENTS

In surveying applications using GPS, it isimportant to understand the potential
and limitations of code and carrier measurements. Thisis even more critical for rapid
static surveys where few epochs of observations are used over short time periods. The
potential of these measurements in an adjustment may be assessed through preanalysis
and their limitations may be evaluated by comparing the ideal preanaysis with achievable
results. In this chapter coordinate estimation based on least squares double difference
solutions using code only, carrier only and code and carrier observations combined, are

reviewed.

The first section examines the strength of solutions through preanayss, the
second section examines code doubl e difference solutions and the third section examines

carrier and code-carrier double difference solutions.

41 PREANALYSIS

Through preanalysis, the behavior of double difference solutions using code only,

carrier only, and code and carrier observations combined may be studied. Rdative
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dilution of precisions (RDOPs) and reliability measures are presented for each solution

type.

All results presented are from a C-language program specificaly written to
compute RDOP and reliability measures. The program allows for varied code and carrier

data rates and observation weighting.

411 RDOP

Relative geometrica dilution of precision (RGDOP) vaues were computed
following the equations described in Section 2.4.1 over a five minute observation on
February 12th from 350100 to 350400 GPS seconds of week, and are plotted in
Figures 4.1 to 4.4. Although observations were not used in RGDOP computations, the
time span used falls within the same period for which six satellite NovAtel GPSCard "™
datawas collected (see Figure 3.2). Double difference mathematical correlations were

accounted for in RGDOP computations.

In all cases accumulated rather than instantaneous RGDOPs are shown. This
means RGDOPs at one minute are a product of all data up to and including the one
minute mark, RGDOPs at two minutes are a product of all data up to and including the
two minute mark and so on. RGDOPs are also computed and shown for different data
intervals. The varied data intervals over rapid static survey observation periods of say
five minutes, are insignificant in terms of satellite geometry but greatly affect the tota
number of observation epochs. For instance, at a 60 second interval, RDOPs are derived
from six observation epochs while at a one second interval RDOPs are derived from

61 observation epochs.
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The first calculations were made for carrier observations with ambiguities
unknown (float solutions) and are shown in Figure 4.1. The second calculations were
made for carrier observations with ambiguities known (fixed solutions) and are shown in
Figure 4.2. Two vertical scales appear in each figure, one with unitless RGDOPs and the
other with scaled RGDOPs. The unitless RGDOPs were calculated assuming all carrier
phase observations to have equal unit weight and the scaled RGDOPs were calculated
assuming all carrier phase observations to have equal weights based on standard
deviations of five mm. This latter weighting is optimistic since it does not include errors
beyond the measurement accuracy, but serves as an indicator of the "best” RGDOPs
achievable and will be used for comparisons in the discussion of code and carrier

combination.

Note, in the program used, the variances are input for undifferenced observations.
These variances are then multiplied by four to account for the propagation of errorsin
double differencing. Consequently, the unitless RGDOP measures shown in al the
figuresin this section are based on undifferenced observations of unit weight rather than

double difference observations of unit weight.

Comparing Figure 4.2 with 4.1, it can be seen that RGDOP values are plotted for
zero minutes in Figure 4.2 but not Figure 4.1. Thisis because for the former case only
three double difference observations are required to solve for the coordinate unknowns,
meaning only one epoch is required for a solution, whereas for the latter case eight double
difference observations are needed to solve for the coordinate and ambiguity unknowns

(assuming six satellites observed), meaning two epochs are required for a solution.
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Note the dramatic difference in verticd scales for the cases of ambiguities
unknown and known, which illustrates the benefits of being able to compute a solution
with "fixed" ambiguities. From Figure 4.2 the smaller dataintervalsimprove the RGDOP
somewhat, showing the benefit of smaller dataintervals when solving only for coordinate

unknowns.

RGDORP values for double difference code solutions are given in Figure 4.3. The
left hand RGDOP scale is unitless and the right hand has been scaled by a 10 cm code
accuracy (representative of the NovAted GPSCard™ code accuracy). This vaue is
optimistic since it does not include errors beyond the measurement accuracy, but serves as
an indicator of the "best" RGDOPs achievable and will be used for comparisons in the

discussion of code and carrier combination.
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Figure4.3
RGDOP - Code
(Feb. 12th, 350100 to 350400 s, 6 satellites)
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As can be expected based on the formulation in Table 2.5, the RGDOP for code

and fixed carrier solutions are identical with the exception of the scaling.

Figure 4.4 shows RGDOPs for code and carrier observations combined. The
combination of observations was achieved using equations (2.8) and (2.9) together
through summation of normal equations, based on the assumption that code and carrier
observations of the same epoch are uncorrelated. The objective of forming such a
combination of observations is to investigate the possibility of resolving ambiguities
simply by combining very accurate code measurements (10 cm) with carrier
measurements. In Figure 4.4, carrier observations are weighted with a standard deviation
of 5 mm in keeping with Figure 4.1, and code observations are weighted with a standard
deviation of 10 cm in keeping with Figure 4.3. The carrier datainterval in all casesis15s

and the code intervalsare 15 s, 5 sand 1 sas shown in Figure 4.4.

Code Interval (s)

—— 15 ' 0-4§

e O 5
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Figure4.4
RGDOP - Code and Carrier Combined - Ambiguities Unknown
(Feb. 12th, 350100 to 350400 s, 6 satellites)
(code scaling 0.10 m, carrier scaling 0.005 m, carrier interval 15 s)
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Severd observations can be made regarding Figure 4.4. At the first epoch
(O minutes) a solution impossible using a carrier float solution alone (as per Figure 4.1),
is possible using a combination of code and carrier measurements, albeit worse than a
code solution alone as indicated by the RGDOP values. After five minutesat al s code
datarate the RGDOP vaueis 0.03 m, accurate enough to resolve integer ambiguitiesif all

the underlying assumptions are true.

The relative weighting of code and carrier observations has significant implications
on the combined solutions and RGDOPs. To combine the observations effectively,
correct relative weights, determined through rigorous testing should be used. The results
presented here give an indication of theoretical accuracies possible for code and carrier

combinations, but optimal relative weighting has not been investigated.

To show the significance of relative weights, in Figure 4.4 code observations were
given 1/20th of the weight of carrier observations. In Figure 4.5, the same code-carrier
observations are shown, but with code observations holding only 1/40th of the weight of

the carrier obsarvations.

Comparing Figure 4.5 with 4.4 and paying attention to the vertical scales, it can be
seen that doubling the code accuracy (halving its relative weight with respect to carrier
observations) has the effect of essentially doubling the RGDOP. Based on the
assumptions used, from Figure 4.5 it can be seen that with five minutes of observations
using 15 s carrier dataat a5 mm accuracy and 1 s code data at a 20 cm accuracy, one
should theoretically be able to achieve about 5 cm accuracy. These numbers indicate that
ambiguities theoretically can be resolved using a simple combination of carrier and code
measurements in an adjustment through the summation of normal equations. Shortfalsin
the assumptions used, discussed in Section 4.2 and 4.3, show why thisis inconsistent

with results found with real data.
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4.1.2 Reliability

Reliability measures were computed following the equations described in
Section 2.4.2 over the same five minute observation span as used for the RDOP
calculations shown above. In al casesreliabilities are based on accumulated rather than
instantaneous solutions. To reduce the computational burden, the double difference

correlations are neglected asis donein Lu (1990).

Statistical reliabilities are computed to give an indication of the quality of solutions
over the short time spans which characterize rapid static surveys. Redundancy numbers,
interna reliability and external reliabilities for carrier only, code only and code and carrier

observations combined are presented.
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Redundancy Numbers

Redundancy numbers help provide an understanding of how observations are
combined within an adjustment to arrive at a solution. Asexplained in Section 2.4.2,
observations critica to a solution will have small redundancies numbers, and those

well-checked within a solution will have large redundancy numbers.

Redundancy numbers for carrier float solutions computed based on
eguation (2.28) over one and five minute periods are shown in Figures 4.6aand 4.6b
respectively. A datainterval of 15 sisused, resulting in five epochs for the one minute
solution and 21 epochs for the five minute solution. The legend shows the respective SV

(space vehicle, i.e. satellite) pairs used in double differencing.
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Figure4.6
Carrier Float Solution Redundancy Numbers
(Feb. 12th, 350100 to 350400 s, 6 satellites, 15 s datainterval)

In both figures, atrend where redundancy numbers are highest in the center, and
lowest at the start and end of the observation periods is evident, meaning the observations

at the start and end of the periods are the most critical. As can be expected and as shown
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by the results in Figure 4.6, the five minute - 21 epoch solution has much higher
redundancy numbers than the one minute - five epoch solution. Moreover, for the five
minute solution, redundancy numbers for the different satellite pairs are closer in

magnitude, showing the observations to be more consistently controlled.

Redundancy numbers for code solutions (or fixed carrier solutions since they are
based on the same design matrix) computed for one and five minute periods which

correspond with Figure 4.6, are shown in Figures 4.7a and 4.7b respectively.
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Code (or Carrier Fixed) Solution Redundancy Numbers
(Feb. 12th, 350100 to 350400 s, 6 satellites, 15 sdatainterval)

In both figures redundancy numbers are essentially constant across the full
observation period, meaning all observations from the same satelite pair contribute
equally to the solution. Similar to the carrier float solution, the five minute - 21 epoch
solution has much higher redundancy numbers than the one minute - five epoch solution.
Theredundancy benefits of a fixed carrier solution (Figure 4.7) over a float carrier

solution (Figure 4.6) can be seen.
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Redundancy numbers over the same periods for combined code and carrier
solutions are shown in Figure 4.8. A datainterval of 15 sis used for both code and
carrier observations. In the graphs for one minute and five minute solutions, the top set of
lines represent redundancy numbers for code observations and the bottom set of lines

represent redundancy numbers for carrier observations.

Comparing Figure 4.8awith Figures 4.6a and 4.7a, it can be seen that over a
oneminute period, the overdl carrier redundancy is greatly improved through the
combination of code and carrier observations, and the code redundancy is amost
unchanged. For the five minute case comparing Figures 4.6b and 4.7b with 4.8b, one can
see a small improvement of the carrier redundancy with the combined solution and an

almost unchanged code solution redundancy.
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Redundancy Numbersfor Combined Code and Carrier Solution

(Feb. 12th, 350100 to 350400 s, 6 satellites, 15 scode & carrier datainterval,
code std. dev. 10 cm, carrier std. dev 5 mm)
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From examination of redundancy numbersin Figures 4.6 to 4.8, one can see that
for the five minute solutions at a 15 s rate, redundancy numbers are usually above 0.9, and
always above 0.8. For the one minute solutions, redundancy is good for the code only
and code and carrier combined solutions where al values are above 0.8, but relatively poor
for the carrier solution where valuesfall aslow as 0.4. If fewer satellites had been used in
redundancy computations, lower redundancy numbers would be expected and if higher

dataintervals had be used, higher redundancy numbers would be expected.

In network adjustment applications, an average redundancy number of 0.5 has
been cited by MacKenzie (1985) as a criteriafor judging a network to be well designed.
Compared to this value, the redundancy numbers shown above are quite large, meaning
that GPS baselines adjustments are generally well controlled, even over the short periods

which characterize rapid static surveys.

The benefits of combined code and carrier solutions over carrier alone from a
redundancy perspective are dgnificant for very short observation periods
(e.g. one minute), especially if the code observations are used at a high data interval, but

become less significant as the length of the observation period increases.

Internal Reliability

Internal reliability isinversely proportional to the square root of the redundancy
number (see equation (2.31)). Consequently, if one were to plot the minimal detectable
errors (MDES) for each observation over a full observation period, one would see
opposite but more subdued trends of those shown in Figures 4.6 to 4.8, scaled by the
standard deviation of the observation and the square root of the non-centrality parameter.

For example, the carrier phase MDEs corresponding to Figure 4.6 would be highest at the



49

start and end of the observation period where the largest errors would go undetected, and
smalest in the centre where observations are well checked. The code MDEs

corresponding to Figure 4.7 would be amost constant for the full observation period.

For any given solution, the largest MDE is the most important. Consequently,
rather than examining individual MDEs over afull observation period, the highest MDE

for arange of solutions are examined.

The highest MDEs for solution lengths of one to five minutes and data intervals of
1, 5 and 15 seconds are shown in Figure 4.9 and 4.10 for carrier float solutions and code
solutions respectively. A non-centrality parameter of 4.13% was used in the computations,
which corresponds to a significance level of 0.001 and power of the test of 0.8 (Caspary,
1988).
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Figure4.9
MDE for Carrier Float Solutions
(Feb. 12th, 350100 to 350400 s, 6 satellites, carrier std. dev. 5 mm)

MDEs which were computed for combined solutions (not shown here) were

dightly lower than those for both code only and carrier only solutions.



50

15s

0
91 5s ~~
8

1S e00r——p—

L a g \ g L L 4

MDE (m)
o o =

0 1 2 3 4 5 6
Length of Observation Period (minutes)

Figure4.10
MDE for Code Solutions
(Feb. 12th, 350100 to 350400 s, 6 satellites, code std. dev. 10 cm)

Figures 4.9 and 4.10 both show the same trends of lower MDESs for smaller data
intervals and longer observation periods, leading one to believe the number of observation
epochs is the most significant factor for internal reliability of rapid static surveys. To
investigate this, the code MDEs of Figure 4.10 were plotted against the number of epochs

used in the solution rather than the length of the observation period and data intervals, as

shown in Figure 4.11.
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Figure4.11
MDE for Code Solutionsvs. Number of Epochs
(Feb. 12th, 350100 to 350400 s, 6 satellites, code std. dev. 10 cm)
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Figure 4.11 clearly shows, based on the assumptions of equaly weighted
uncorrelated code observations for periods up to five minutes, interna reliability is
dependent on the number of observation epochs rather than the period or interval of

observations. At about 50 epochs, one sees alevelling off of the MDEs.

External Reliability

Measures of external reliability based on equation (2.34), which give an indication
of the effect of an undetected observation error on the estimated parameters, are shown in
Figures 4.12 and 4.13 for code and carrier float solutions respectively. Reliabilitiesusing
observation periods of one to fiveminutes and data intervals of 1, 5 and 15s were

computed, and the worst external reliability measure for each is plotted.

-‘? 30 15s

3 20-.

20

TE0] o3

o= 1s T

% 0 T T T T T T T 1 T 1

w 0 1 2 3 4 5 6

L ength of Observation Period (minutes)

Figure4.12
External Reliability Measuresfor Carrier Float Solutions
(Feb. 12th, 350100 to 350400 s, 6 satellites, carrier std. dev. 5 mm)

One can see the same general trendsin Figures 4.12 and 4.13, of externa reliability
measures gradually diminishing with increased lengths of observation periods and
decreased dataintervals. Unlike the internal reliabilities which leveled off (see Figures

4.10), the externa reliability measures continue to decrease as the number of
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epochsincrease. Thisisshown in Figure 4.14 where the code external reliability
measures of Figure 4.13 are plotted against the number of epochs. The gradual decrease
in external reliability measuresislogical since more and more observations are combined

to diminish an MDEs effect.

In Figure 4.15 external reliability measures for solutions using combined code
and carrier observations are shown for observation periods of one to five minutes. Code
dataintervals of 15, 5 and 1 sare used while the carrier datainterval isleft at 15s. Code
standard deviations of 10 cm and carrier standard deviations of 5 mm are assumed. Since
two types of observations are combined, two types of externa reliabilities are shown, one
based on redundancy numbers of carrier observations and one based on redundancy

numbers of code observations.
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Figure4.13
External Reliability Measuresfor Code Solutions
(Feb. 12th, 350100 to 350400 s, 6 satellites, code std. dev. 10 cm)
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External Reliability Measuresfor Code Solutionsvs. Number of Epochs
(Feb. 12th, 350100 to 350400 s, 6 satellites)

° 1 Code Carrier
4 —O— 15 —e— 15
T —A~— 5 —&— §
7 3 —0— 1 —=—
=2 21
=
l - A\\A\/N\
0 O
0] 1 2 3 4 5 6

L ength of Observation Period (minutes)

Figure4.15
External Reliability Measuresfor Combined Code and Carrier Solutions
(Feb. 12th, 350100 to 350400 s, 6 satellites, code std. dev. 10 cm,
carrier std. dev. 5 mm, carrier datainterval 15 9)

Comparing the code portions of Figure 4.15 with Figure 4.13, it can be seen that
the addition of carrier observations and ambiguity unknowns has little effect on code

external reliabilities. Comparing the carrier portions of Figure 4.15 with the 15 s data



interval external reliabilitiesin Figures 4.12, and noting the difference in vertical scales, it
can be seen that the addition of very accurate code observations significantly improve

carrier externa rdiabilities.

The preanalysis results represent what may be achieved under idea conditions
when al the assumptions used hold true. The validity of reliability measuresis not tested
through analysis of real datain thisthesis, however the validity of RDOP preanaysisis

tested through evaluation of real datain the following sections.

42 CODE DOUBLE DIFFERENCE RESULTS

Code results are presented for several solution sets for three different days of
observations. The results are then compared to RDOP preanalyses, and the effect of
multipath on the solutions is investigated. Results are from a program written in
C-language, to compute code, carrier or combined code and carrier double difference
solutions. Mathematical correlations which result from double differencing are taken into
account. Variations in data intervals and observation weighting are permitted in the

program.

421 Code Solutions

Sets of code double difference solutions were generated for Feb. 12th, Feb. 15th and
Feb. 17th NovAtel GPSCard™" data and compared to "known" values to attain a measure
of achievable code accuracies. The data sets used are described in detail in Chapter 3.
Sets of solutions were computed using one epoch of data, one minute of data at one

second intervals, and five minutes of data at five second intervals. Individual
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results for Feb. 15th are shown in Figures 4.16 to 4.18. The root mean squares

(rms) of results from al three data sets are presented in Figures 4.19 and 4.20.

Figure 4.16 shows the difference from truth of latitude, longitude and height
components, when solutions are computed using asingle epoch of data. The points
plotted correspond to the epochs of code solutions, and the lines joining points are added
to improve the graph's clarity. Each tick on the horizontal scale represents one minute. In

total 11 one epoch solutions, spaced one minute apart are shown.
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Figure4.16
Accuracy of Code Solutions Using 1 Epoch of Data
(Feb. 15th, 6 satdllites, 720 m baseline)
Figure 4.17 shows the difference from truth of latitude, longitude and height
components, when solutions are computed using one minute of dataat a1 s datainterval.

The points plotted on the graph show the first epoch in each one minute period. The

10 solutions represented are from ten consecutive but independent minutes of data.

Comparing Figures 4.16 and 4.17, which use the same 10 minutes of data, and
paying attention to the difference in vertical scales, one can see the one minute solutions

are better than the one second solutions, as can be expected. The largest "difference from
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truth” of the height component is 1.6 min the one second case (Figure 4.16), and 0.8 min

the one minute case (Figure 4.17).
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Figure4.17
Accuracy of Code SolutionsUsing 1 min. of Data at 1 sIntervals
(Feb. 15th, 6 satellites, 720 m baseline)
Figure 4.18 shows the difference from truth of latitude, longitude and height
components, when solutions are computed using five minutes of dataat a5 sdatainterval.

The points plotted on the graph show the first epoch in each five minute period. The

five solutions represented are from consecutive but independent blocks of data

Comparing Figure 4.17 with Figure 4.18, one can see significant improvementsin
the accuracies achieved. The largest differences from truth for the 5 minute solutions
(Figure 4.18) are about 20cm, much smaller than the 80 cm from the oneminute

solutions (Figure 4.17).

The rms of the differences from truth for the results presented in Figures 4.16 to
4.18 are shown for latitude, longitude and height componentsin Figure 4.19b. The same

information for solutions computed for Feb. 12th and Feb. 17th are shown in
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Figures4.19aand 4.20. Therms of the vector distance from truth for each day and the

number of solution sets used to arrive at the rms are given in Table 4.1, columns (5) and

(3) respectively.
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Figure4.18
Accuracy of Code SolutionsUsing 5 min. of Data at 5 sIntervals
(Feb. 15th, 6 satellites, 720 m baseline)

Reviewing the rms graphs (Figures 4.19 and 4.20), it is evident that the accuracy
of the height component is the weakest and the longitude component is the strongest.

Thisis consistent with GPS solutionsin general and isafunction of satellite geometry.

Also evident from the rms graphs is the improvement in all components as one
moves from 1 s, to one minute, to five minute solutions. The 4.1 km baseline results of
Figure 4.20 are similar to the 720 m baseline results of Figure 4.19, leading one to believe
code double difference accuracy is not degraded over very short baselines.
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RMS of Code Solutions For a 720 m Baseline
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4.2.2 Comparison of RDOPs and Code Solutions

The code solutions above can be compared to the RDOP preanaysis of
Section 4.1. To enhance the validity of these comparisons, RDOPs directly computed
from the code solutions covariance matrices can be used. (Recall RDOPS are merely the

sguare root of the trace of the covariance matrix of the parameters).

The theoretical relationship between RDOPS and achieved accuraciesis given by
equation (2.24). Rearranging equation (2.24) to solve for the measurement accuracy,
Sopy. 9ives

SDN
Sopii = RDOP - (4.1)

If the assumption of observations being uncorrelated between epochs holds true then

Sopy should yield approximately the same value for all computed solutions.

Equation (4.1) was applied to the code solution computations and results are
shownin Table4.1. In the table, the RGDOPs used are shown in column (4), achieved
accuracies (spfy) are shown in column (5) and the measurement accuracies (i.e. the
product of equation (4.1)), are shown in column (6). Note, asexplained in Section 4.1.1,
these RGDOPs are based on undifferenced observations of unit weight, and consequently
the measurement accuracies apply to undifferenced measurements. The tabulated
RGDOPs are the averages derived from all the code solutions used in the rms
computations. Since the total observation span was short and the changes in RGDOPs
very small, the averaging was a reasonable approximation. The achieved accuracies (SpR)

were represented by the rms of the distance from the truth.
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Table4.1
Computed Code M easur ement Accuracies
(1) @) ©) (4) (5) _(6)
Average RM S of Undifferenced
Solution | Date # of RGDOP | Dist. From M easur ement
Period Solns | (unitless) | Truth (cm) | Accuracy (cm)
1s Feb. 12 11 3.65 79 22
Feb. 15( 12 3.58 71 20
Feb. 17 12 3.92 75 19
1min Feb. 12 10 0.47 40 85
(1srate) | Feb.15( 12 0.46 47 102
Feb. 17 12 0.50 54 108
5min Feb.12| 4 0.52 36 69
(5srate) | Feb.15| 5 0.49 14 28
Feb.17| 4 0.49 35 71

Perusing the results of Table 4.1, interesting observations can be made. The rms
of distances from the truth show the five minute solutionsto give the best results, and the
one second solutions to give the worst results, which is consistent with the results of
Figures4.19 and 4.20. Y et, the measurement accuracies from column (6) are best for the

1 second solutions and worst for the 1 minute solutions.

For the 1 second solutions, the double difference measurement accuracy is a
product of the NovAtel GPSCard™ measurement accuracy and code multipath effects.
For 20 cm tota measurement accuracy, assuming 10 cm code recelver measurement
accuracy and applying the law of propagation of errors, the multipath error is 17 cm
(assuming all other errorsto be negligible). For the one minute solutions, the double
difference measurement accuracy is shown to be four to five times worse than for the

one second solutions. For the five minute solutions, accuracies are 1.5 to 3.5 times worse.

Note the RGDOPs for the oneminute and fiveminute solutions are very close in

magnitude, which islogica since 60 epochs were used in each solution and the satellite
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The results of Table 4.1 lead to the belief that the assumption of observations
being uncorrelated between epochs does not hold for the sets of observations used. This
would explain why the RGDOPs for the one second case, where no summations of
normal equations over consecutive epochs are required, result in favorable measurement
accuracies through application of equation (4.1), and the RGDOPs for the one minute and

5 minute cases do not.

To investigate the suspected correlations between epochs, multipath effects are
examined. Since code observations are especially susceptible to multipath, and since
receiver noise and multipath are the only significant errors not reduced or eiminated
through double differencing (because residual atmospheric errors are present, but are
insignificant over such short baselines), multipath is alikely cause of the correlations

between consecutive epochs of observations.

4.2.3 Multipath Effects

An estimate of the magnitude of code multipath and code measurement accuracy
combined may be acquired by subtracting the carrier double difference observations from

the code doubl e difference observations (Lachapelle, 1991), i.e.
d=NDp- (NDF + NDN). (4.2)

Thistechnique is valid for short baselines where ionospheric errors are negligible. The
errors left in the difference, d, include receiver noise and multipath from both code and
carrier observations. With receiver carrier noise and multipath usualy less than afew cm
(Cannon and Lachapelle, 1992a), the contribution of carrier errors as compared to code

errorsisnegligible. Thisleaves code receiver measurement accuracy and code multipath
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errors. From zero basdline tests where multipath is al but eiminated in double
differencing, the NovAtd GPSCards' receivers show code double difference
measurement accuracies of 20 cm (Erickson et al, 1991). Consequently, the remaining

errors in d, after consideration of the 20 cm double difference code measurement

accuracy, islikely a product of multipath.

Code minus carrier differences were formulated following equation (4.2) for the
data which corresponds to the Feb. 15th solutionsin Figures 4.16 and 4.17. The double
difference ambiguities NDN were determined independently and the data used was cycle
dip free. Inall cases satellite 19, which had the highest elevation during the observation
period (see Figure 3.2) was used as the base satellite in double differencing (asit wasin

the code doubl e difference solutions).

The code minus carrier differences to the highest and lowest non-base satellites
are shown in Figures 4.21 and 4.22 respectively. Thelines on the graphs show the
connection of differences, d, at 540 epochs evenly spaced over nine minutes. The highest
non-base satellite, satellite 2, had elevations ranging from 460 to 500, and the lowest,
satellite 18, had elevations ranging from 160 to 120. Low satellites are more prone to
multipath. Thisiswell illustrated in the comparison of Figures 4.21 and 4.22, where the
code-carrier difference for satellites 2-19 do not exceed 0.4 m, but for satellites 18-19
extend up to 1.7 m. Neither graph shows random noise-like behavior, instead signatures

which characterize multipath are evident.
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Figure4.21
Code- Carrier Differencefor Satellite Pair 2-19

(Feb. 15th, 720 m basdline, elevations. satellite 2, 46 to 500; satellite 19, 60 to 580)
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Figure4.22
Code- Carrier Differencefor Satellite Pair 18-19

(Feb. 15th, 720 m basdline, elevations. satellite 18, 16 to 120; satellite 19, 60 to 580)




To see the direct effect the multipath shown in Figures4.21 and 4.22 on the
Feb. 15th code solutions, the code minus carrier differences for the same data, at the same

epochs, interval and solution periods were formed.

Code minus carrier results, which correspond to the ones solutions of
Figure 4.16, are plotted in Figure 4.23. Satellites 16 and 18, which are below 200 and
represented with hollow symbolsin the figure, clearly are the most affected by multipath.
The remaining satellites, which are all above 30° and represented by dark filled symbols,
aretheleast affected. Notethed of 1.7 m for satellite 18 at 4015 seconds of week. This
spike correlates with the poor code solution at the same epoch in Figure 4.16. From a

visua inspection of Figure 4.16 and 4.23, one can see similar trends.
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Figure 4.23
Code - Carrier Differences At Single Epochs (Feb. 15th)
It was shown that the code solution accuracy improves when using one minute of
dataat al sinterval, instead of just one epoch. To represent the one minute code-carrier

differences, the means and rms of the differences were computed using
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é (NDp- (NDF + NDN))

dmean = n , and (43)
geé (NDp- (NDF + NDN))Z%%
(D) =8 = 5 (4.4)

(Cannon and Lachapelle, 1992a). The resulting means and rms are shown in Figure 4.24
and 4.25 respectively. Inthefigures, the values are plotted at the first epoch of the minute

of datathey represent. For instance, the means for the minute from 4015 to 4095 s are

plotted at 4015 s.
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Figure4.24
Code - Carrier Differences (Feb. 15th)
Averaged From 1 min. of Data at 1 sIntervals
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Figure4.25
Code - Carrier Differences (Feb. 15th)
RMS From 1 min. of Data at 1 sintervals
Looking at the single epoch case (Figure 4.23) and the one minute epoch averages
(Figure 4.24) and noting the difference in vertical scales, one can see a near two-fold
general improvement in code noise through averaging over a minute. There are
exceptions, such as at 4135 seconds of week, where averaging produced worse results.
This exception corresponds to avery large rms for svs 16-19 for the minute following
4135 seconds of week (Figure 4.25). Therms in general centre around 20 cm for the
high satellites (sv 2, 6 and 11) and 40 cm for the low satellites (sv 16 and 18). The one
minute average code-carrier differences show a near two-fold improvement over the single

epoch case of Figure 4.23.

Means and rms were caculated following equations (4.3) and (4.4) for two
five minute blocks of data at 5 s dataintervals. Results are shown in Figure 4.26. Inthe
figure, the values are plotted in the centre of the five minutes they represent. Note the

vertical scales. The largest average code - carrier difference over five minutes was only
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some 23 cm, and the largest rms, 55 cm. These values signify a major improvement over

the one minute case.
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Code - Carrier Differences (Feb. 15th)
Averagesand RMS From 5 min. of Data at 5 sIntervals
The figures above show correlations between epochs of data mainly as a product
of multipath. Some correlations may also exist due to the physical and eectronic
properties of the receiver. Because of these correations, the direct application of
RGDOPs for code observations based on the assumptions of no correlations between
consecutive epochs (as shown in Table 4.1) can produce erroneous results. For code
RDOPS to be used over consecutive epochs rather than a single epoch, some means must

be used to handle the correlations between epochs.

Forming code solutions from adjustments over longer time periods (one minute rather
than one second, five minutes rather than one minute) resulted in improved accuracies as
shown in Figures 4.19 and 4.20. Forming averages and rms of code - carrier differences,
which give a measure of code multipath effects, over longer time periods resulted in

comparable improvements in accuracy. Thusfor rapid static surveys
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based on initial code solutions, to mitigate multipath effects, code observations

across the full duration of the observation period should be used.

Asacaveat, for full reduction of multipath through averaging, depending on the
cause and type of multipath, observation periods of up to one hour may be required
(Tranquillaand Carr, 1990). Thisisimpossible for rapid static surveys. Nevertheless, the
sub-metre code noise shown above, made possible by the NovAtd GPSCard's high
resistance to multipath and high code accuracy, is very small compared to amplitudes over
10 m possible on standard C/A code receivers (Lachapelle et al., 1989; Tranquillaand
Carr, 1990).

Although not investigated here, based on research of others (Georigiadou and
Kleusberg, 1988) one can expect similar correlations as a result of multipath for carrier

phase measurements, and accordingly, similar problems.

4.2.4 Accuracy Estimates

In practical applications, thereisno "truth™ against which code solutions may be
compared and one must rely on the accompanying covariance information for accuracy
estimates. The standard deviations for the coordinates can be used to define the limits of
search volumes used in the ambiguity function method (AFM) and the least squares
ambiguity search technique (LSAST). For instance, with AFM Remondi (1990) suggests
using a block with sides of 4sx, 4sy and 4szwhere sy, sy and sz are the standard
deviations of the X, y and z coordinates respectively. It istherefore important, when using
the code solution and its accuracy estimates to define a search block, that the accuracy

estimates beredligtic.
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It has been shown that RDOPs give measures of achievable code accuracies that
are too optimistic because of multipath correlations between consecutive epochs. Since
RDOPs and parameter accuracy estimates are derived from the same covariance matrices,
the accuracy estimates associated with the code solutions will also be too optimistic. If
these accuracy estimates are then used to define a search volume for an ambiguity
resolution technique, erroneous results may be attained. This also applies to carrier

solution accuracy estimates.

One of the advantages of using covariance information rather than pre-specified
dimensions to define a search block is the ability to scale the coordinate axes according to
their uncertainties. The relative accuracies of the coordinate estimates are generally
realistic even though their magnitudes become too optimistic over time. Thus by applying
an appropriate scaling or modeling, appropriate accuracy estimates for defining a search
volume may be determined. These are not investigated in thisthesis, rather the intent here

isto bring attention to the problem of overly optimistic code accuracy estimates.

43 CARRIER AND CODE-CARRIER COMBINED RESULTS

Carrier and code-carrier combined results are shown for several reasons. The
carrier results show the inability to resolve ambiguities over short baselines using
5 minutes of data, hence the requirement for rapid static ambiguity resolution techniques.
They aso show why accurate code solutions are more desirable than carrier float
solutions for initial coordinate estimates in rapid static ambiguity resolution techniques.
The combined code and carrier results show the simple combination of these observation

types in an adjustment is inadequate for ambiguity resolution. Float and fixed solutions
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shown for both sets of results emphasize the importance of fixing ambiguities to the

correct integer.

431 Carrier Solutions

Two sets of 5 minute carrier solutions were computed for Feb. 12th, 15th and 17th
NovAtel GPSCard™ data and then compared to "known" values. For each, a float
solution was computed and ambiguity estimates attained. The nearest integers to the float
ambiguity estimates were then held as constants in afixed carrier adjustment. Thefive
minute solutions were computed using observations at a5 sdatainterval. Resultsare give

inTable4.2.

In the results table, the proximity of ambiguities to the correct integer are given.
The "correct” integers were determined using SEMIKIN results for the full set of
observation data. For float solutions the proximity is in real vaues, and for fixed
solutionsin integer values. The observation period for each set number is shown in Table

4.3, to enable cross-referencing with the satellite elevations shown in Chapter 3.

Examining Table 4.2, one can see the correct integers are determined for al double
difference pairsin only one case: Feb. 15th, set #1. The resulting coordinate difference
from the truth was at the mm level for thisfixed solution, compared to the 28 cm level for
the float solution, illustrating the importance of afixed solution over afloat solution for
precise surveys. Note for the float solution, the integers were barely rounded to the
correct solution since two were at the half cycle level (satellites 11 and 12). Asseeninthe

table, fixing ambiguitiesto the wrong integer can degrade results.
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Table4.2
Carrier Solutions*

Date | Set Proximity of Ambiguitiesto | Distance From Truth (m)
(Feb) | # Correct Integer (cycles)t

2 6 11 16 12 lat. | long. [ hght. | dist.

12th 1 |float] -05| -02| 02 | -06 | -0.8 |-0.10(-0.06| -0.09| 0.15
fix 0 0 0 -1 -1 |-0.04] 0.01 | -0.36| 0.36

2 |float] -1.2 | -05| 11 | -06 | -0.2 |-0.22| -0.23| 0.33 | 0.46
fix -1 0 1 -1 0 ]-017(-0.21| 0.17 | 0.32

15th [ 1 | float|] -02 | 00 | 05 [ 04 | -05]-0.07|-0.07| 0.26 | 0.28
fix 0 0 0 0 0 0.00 [ 0.00 | 0.00 | 0.00

2 |float] 1.7 | 08 | -1.3 | 1.0 [ 02 | 0.25| 0.31 | -0.39| 0.56
fix 2 1 -1 1 0 0.22 |1 0.32 | -0.46 | 0.60

17th 1 |float] -1.1 | -09| 03 | -14 | -09 |-0.05(-0.14| -0.12| 0.20
fix | -1 -1 0 -1 -1 |-0.04]-0.10]-0.11| 0.15

2 |float] -10| -06 | 06 | -09 [ -0.7 | -0.12| -0.14| 0.03 | 0.19
fix -1 -1 1 -1 -1 ]-0.17]-0.20| 0.05 | 0.27

* solution period: 5min.  carrierinterval: 5s. T pase satellite; 19,

Table4.3
Solution Periods
(corresponding to Tables 4.2 & 4.4)

[ Date Set# Time (seconds of week)
Feb. 12th 1 349999-350299
2 350299-350599
Feb. 15th 1 3835-4135
2 4135-4435
Feb. 17th 1 175466-175766
2 175766-176066
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Thefloat carrier phase solutions were in error by about the same magnitude as the
code solutions of Section 4.2.1. For shorter periods, arapid deterioration in carrier float
results can be expected as shown for the RGDOPs of Figure 4.1. If the data had cycle
dips, results would be worse. In contrast, code accuracies degrade gradually with shorter
time spans (Figures 4.19 and 4.20) and are not subject to cycle slips. Since for rapid
static surveys one ideally wants resultsin five minutes or less, and in consideration of the
above discussion, accurate code solutions are superior to carrier float solutions for initial

coordinate estimation.

4.3.2 Combined Code and Carrier Solutions

Code and carrier observations were combined in an adjustment to see if accurate
code measurements at a high data rate could help resolve ambiguities as the RGDOP
results in Figures4.3 and 4.4 might lead one to believe. The same data sets and
observation periods used in Table 4.2 were used for combined code-carrier solutions and
areshownin Table 4.4. Dataintervalswere5 sfor carrier observations and 1 s for code
observations. Carrier observations were weighted by 5 mm and code observations were

weighted by 20 cm.

From the table it can be seen that in no case were the code observations sufficient
to resolve the carrier ambiguities correctly. Comparing Tables 4.2 and 4.4, it can be seen
that sometimes the carrier float solution is better than the combined code-carrier solution,
and sometimes the reverseistrue. Further investigations of code-carrier combinations
would require testing several different code-carrier relative weighting schemes and data

intervals. Thisisnot pursued here.
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Table4.4
Code and Carrier Combined Solutions*
Date | Set Proximity of Ambiguitiesto | Distance From Truth (m)
(Feb) | # Correct Integer (cycles)t

2 6 11 16 12 lat. | long. [ hght. | dist.

12th 1 |float] -03 | -13 | -04| -09| 11 | 028 (-0.12| 0.04 | 0.30
fix 0 -1 0 -1 1 0.231-0.12| -0.03| 0.26

2 |float] -06 | -10| 02 | -1.1 | 0.2 | 012 |-0.12| -0.04| 0.17
fix -1 -1 0 -1 0 0.02 [ -0.16| 0.08 | 0.18

15th 1 |float] -0.1 | -01| 00 | -0.2 | -0.6 |-0.06( 0.00 | -0.11| 0.13
fix 0 0 0 0 -1 | -01 ] 0.04|-0.14( 0.17

2 |float] 0.3 | 04 | 0.2 1 0.6 |-0.01| 0.03 | 0.20 { 0.20
fix 0 0 0 1 1 0.03 ] 0.00 | 0.32 | 0.32

17th 1 |float] 04 | 07 | -01| 08 | -0.2 |-0.07| 0.09 | 0.05 | 0.13
fix 0 1 0 1 0O ]|]-010| 0.08 | 0.18 | 0.22

2 |float] 02 | 1.0 | 09 | 14 | 0.2 |-0.20( 0.02 | 0.38 | 0.43

fix 0 1 1 1 0 ]-0.22(-001| 0.31 | 0.38

T base satellite: 19
* golution period: 5min, carierinterval: 55, codeinterva: 1s,
carier std. dev.: 5mm, codestd. dev.: 20cm

The limited results in Table 4.4 show the code-carrier combinations tested to be
unsuccessful for resolving carrier phase ambiguities over short time periods. A few
explanations for the success of this technique suggested by the RGDOP Figures of 4.4
and 4.5 and the lack of success here can be put forward. To start with, the same between-
epoch multipath code correlations shown in Section 4.2.3 apply in the code observations
used for code-carrier combined solutions. Correlations between consecutive epochs of
carrier phase data are also probable. Code-carrier divergence (Hatch, 1982) due to the

opposite effect the ionosphere has on each observation type should not be a problem for
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the short baselines investigated, but differential multipath effects of the two are a problem.
The lack of success of combined code and carrier solutions gives impetus for more
rigorous rapid static ambiguity resolution techniques, such as the ambiguity function

method, addressed in Chapter 5, and the least squares techniques, addressed in Chapter 6.
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CHAPTER 5
CARRIER PHASE AMBIGUITY RESOLUTION USING
THE AMBIGUITY FUNCTION METHOD

The ambiguity function method (AFM) is unique compared to other ambiguity
resolution techniques because it iscycle dlip invariant. It was originally introduced for
GPS data processing by Counselman and Gourevitch (1981) and later developed by
Remondi (1984). Only in recent years, with the advent of more powerful computers and
the development of precise kinematic applications, has the application of the ambiguity
function method become more prevalent (Remondi, 1990; Mader, 1990; Remondi, 1991,
Lu, 1991).

The ambiguity function method is used to arrive a a correct set of integer

ambiguities, by following four steps:

@ initial coordinates of an unknown point are estimated;

2 aneighbourhood of points (potential solutions) around the initial point are defined

by a specified set of criteria;

(©)) the "ambiguity function" is calculated for each potential solution and the one with

the maximum value is saved; and
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4 the integer ambiguities are computed using coordinates of the "best" solution.

The initid coordinates may be estimated using triple difference solutions (Remondi,
1984), double difference carrier phase solutions with real ambiguities, or double
difference pseudorange solutions. The latter two methods are discussed in Chapter 4.
Defining a neighbourhood of points to be tested may be accomplished by grid searches or
double difference plane intersections as described in Section 5.2. Means for ensuring the
certainty of AFM solutions are given in Section 5.3 and AFM results are given in
Section 5.4. The crux of the ambiguity function method lies in the computation of the

ambiguity function itself.

51 THEAMBIGUITY FUNCTION

The ambiguity function (AF) is described geometrically in amanner similar to that
used by Remondi (1984), followed by its mathematicad formulation and practica

implementation.

For the sake of explanation, consider an errorless carrier phase observation
transmitted from one GPS satellite to areceiver, on asingle frequency at one epoch. The

equation representing this observation would be the error free form of equation (2.5), i.e.:

F=r +IN. (5.1)
Here the carrier phase ambiguity, N, and the receiver coordinates of the satellite-receiver
range, r , are unknown, the carrier phase, F, is observed and the carrier wavelength, | , isa
constant. This observation alone gives little useful information for finding the correct
receiver coordinates or carrier phase ambiguity. The information contained here is

illustrated in Figure 5.1. It isevident from Figure 5.1 that potential solutions for the
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receiver coordinates must lie along the arcs, separated by the wavelength, radiating from

the satellite to the receiver. Each arc represents a different ambiguity value, hence the one

satellite with
"known"
coordinates

waveength (1 ) spacing.

receiver with
unknown
coordinates

arcs representing potential
ambiguity solutions

Figure5.1
One Satellite-Receiver Carrier Phase Geometry
With two satellites instead of one at a single epoch, Figure 5.1 is transformed to
Figure 5.2. The extra satellite adds both an unknown ambiguity term and a carrier phase
observation. From a geometrical perspective, the two satellitesin Figure 5.2 provide a
richer source of information since instead of potential coordinate solutions lying at all
points along one set of arcs, they must lie at the intersection of arcs radiating from the two

satdllites.

One can envison with each addition of a satdlite, the number of points of
intersection of all satellite arcs would decrease meaning fewer potential solutions.
Similarly, if observations at a second epoch were added (after a period long enough to

ensure substantial change in satellite geometry), fewer intersections of arcs would result.
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Intersections alone are not useful since infinite space may need to be searched to locate
them. However, if the solution is known to lie within a bounded region, the number of
potential solutions (or intersections) to be considered are limited. Thefirst two stepsin
the ambiguity function method mentioned above (finding a good initia coordinate
approximation and setting a criteria for testing neighbouring points) serve to define a
bounded region thereby restricting the number of potential solutions. Points within the
bounded region may then be tested to seeif they mark a strong positive intersection of al
satellite arcs. With sufficient satellite geometry a unique point which clearly intersects

"better" than any other in the region should be discernible.

satellites with
"known" coordinates “»

arc intersections representing
potential solutions

receiver with
unkn_own
coordinates

Figure5.2
Two Satellite-Receiver Carrier Phase Geometry

It isinteresting to consider hypothetically if aunique AFM solution could exist in

infinite space. Moreover, atheoretical formulation of the number and type of observations
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that would be required for a unique solution in any given volume would provide guidance
for practicd AFM applications. Elements in the functiona relationship between the
observations required and the volume size would include the number of satellites, satellite
geometry, the length of observation period, the carrier wavelength(s) and the distance
between the satellite and the receiver. Some characteristics of AFM over physical space
are developed by Counselman and Gourevitch (1981) through the use of Fourier
Transforms. These theoretical developments are not dealt with in this thesis but deserve

investigation.

Up to this point only the geometric relations for undifferenced observations have
been discussed; yet the ambiguity function may be applied to single difference carrier
phase observables as is done in Remondi (1984) or double difference carrier phase
observables asis done in Mader (1990), Lu (1991) and as will be done herein. For the
case of double difference observations, the undifferenced satellite-receiver range vector
shown in Figure 5.1 is replaced by the vector resulting from double differencing. The
unknowns are the double difference ambiguities and receiver coordinate portion of the
double difference range. Maintaining the error-free assumptions represented above, this

isformulated as

DNF,_ =DRNr +1DNN, (5.2)
where the subscript L denotes units of length.

The mathematical realization of the ambiguity function method for the double
difference observable can be devel oped starting with equation 5.2. At any given epoch
and for any satellite pair the double difference carrier phase observable, DNF, may be

determined and the double difference satellite-receiver range, DNr, may be computed
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(using trial receiver coordinates x,y,z). |f DNF and DNr are scaled to cycles by factoring

out | , and equation 5.2 is rearranged, then

DNIN = DNF . - DNIr , (5.3)

where the subscript ¢ indicates units arein cycles. In other words, the observed double
difference carrier phase minus the calculated double difference range should give the
double difference ambiguity. If the true receiver coordinates are used to calculate DNIr ,
then DNIN should be an integer. In reality, the "correct” point will approach but not give
an exact integer due to atmospheric, measuring noise, carrier phase multipath and other
errors which were ignored in the above geometrical development. To check atest point
with a given double difference observation, one needs to measure how well the double
difference ambiguity computed using equation (5.3) approaches an integer. This can be

done by using phasors, which have the properties needed for the desired testing.
The term phasor describes a complex vector of the form
dd = cosq +i sing, (5.4)

where q is the angle in the counter-clockwise direction from the positive real axis (see
Figure 5.3). Phasors have the property of yielding the same value for any number of
cycles (or full rotations) given the same fractional cycle value. Thus by letting g be the
observed minus calculated double difference from equation 5.3 (converted to radians) the
phasor can be used to compute how well agiven test point satisfies the requirement for an
ambiguity to be an integer. The unique test point for which all double difference
observables closely approximate integers would be considered the "correct” point at which

"true" ambiguity values may be calculated.

This leads to the formulation of the ambiguity function, which iswritten as
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negoch ”Sgt' 1 . o kj o kj
AF(xy2) = a a e2pi (DNF . -DNr - .(xy.2)), (5.5)
k=1 j=1

~_Kj
where AF(X,y,z) isthe ambiguity function for the test point (x,y,z), DNF OJbS is the

~ K
observed double difference range for the "true" point and DNr Cgc(x,y,z) isthe calculated

double difference range for the test point (x,y,z). Summations are made for all nsat-1
double difference observations (where nsat is the number of satellites) and all epochs
(wWhere nepoch is the number of epochs). Only the real (cosine) portion of e2Pdi need be
computed since its maximization will correspond with the closest proximity of an

ambiguity to an integer value.

imaginary axis
A

Figure5.3
Phasor Diagram

Note that if dual frequency carrier phase datais available (squaring or P-code
types), summations may be performed over the two frequencies providing additional
information to isolate a maximum. The two frequencies may also be used to compute
ionospheric correction terms, which are very important for AFM applications on longer
baselines (e.g. over 10 km). Dual frequency datais not dealt with in thisthesis, but is
discussed in relation to the ambiguity function method in Mader (1990).
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A variation of egquation (5.5) which accounts for weighting of observations as a
function of satellite elevation angles was given by Counselman and Gourevitch (1981) and
discussed by Remondi (1984). Although not considered in this thesis, it holds merit,
especialy since accessto six, seven or eight satellite constellations will often require the
use of low elevation satellites, which are subject to a greater portion of atmospheric and

multipath distortions than their higher elevation counterparts.

The computation of the ambiguity function is rather simple to implement. The
algorithm used herein follows Mader (1990) and isillustrated in Figure 5.4. For each test
point (x,y,z), al epochs and al double difference observations are looped through. For
each individual observation the cosine of the observed minus calculated double differences
are computed. If thisvalue falls below athreshold (here set to 0.7), the test point is
immediately rejected and the next test point is examined. If this value passes the threshold
test its value is accumulated along with all other cos(obs - calc) observations for the test
point. Once all observations have been checked, the average value (referred to as the
ambiguity function in Figure 5.4 and elsewhere for brevity, but it really is the normalized
ambiguity function) is calculated and its value and corresponding coordinates are written
to file for later examination. The maximum value is saved along with its coordinates.
These coordinates are then used to compute the double difference range which is used

together with the observations to compute the unknown ambiguities of equation (5.3).
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Figure5.4
Ambiguity Function Algorithm



The relation between maximizing cos(obs - calc) and maximizing the proximity of
an ambiguity to an integer isillustrated by the cosine function of Figure 5.5. Here three
horizontal scales are given, one in degrees, onein cycles, and onein cm of L1 carrier
observations. It can be seen that the 0.7 threshold given in Figure 5.4 corresponds to the
observed minus cal culated double differences coming within at least 0.12 cycles of an
integer. This correspondsto 2.3 cm of L1 carrier observations. Results have shown that
the maximum cal culated ambiguity function for a given data set is usually above 0.9. This
value is also shown in Figure 5.5, and corresponds with 0.07 cycles from an integer or

1.3 cm of carrier phase observations.

integer
Cyc|e T threshold
+ “usedin AFM
1.0_ . implementation 10
0.9 N Jo9
0.7- — -1 0.7
O
0.0 00 &
/ O
1.0 o L 1.0
1 ] L1 ] L1 ] ] dearees
180 270 315334 0 26 45 90 180 G (degrees)
| ] L1 ] L1 ] ] q (cycl%)
.50 75 .88 93 0 .07.12 .25 .50
| ] L1 ] L1 ] ] q (cm of L]_)
-9.5 -4.8 -23-1.30 13 23 48 9.5

Figure5.5
Relationship Between Cosine Function and Proximity to an Integer Cycle
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The computation of the ambiguity function itself is straight forward and objective.
The same cannot be said about the search patterns required to identify test points and the

decision of whether the maximum ambiguity value is trustworthy.

52 SEARCH PATTERNS

The ambiguity function method requires that a series of test points around an
initial point be defined by a specified set of criteria. Each point is then evaluated using the
algorithm of Figure 5.4 following some search pattern. In this section two main search

patterns are examined, the grid search and the doubl e difference plane intersection.

521 TheGrid Search

In the grid search, a volume around an initial point is searched by stepping
through equally spaced points (see Figure 5.6). Theinitial point is situated at the centre
of the volume, and the "true" point must lie somewhere within. The search volume may be
cubic as shown in the figure, with all dimensions of equal "block size", or it may have
different dimensions along each coordinate axis proportional to the uncertainty of the
initial coordinate estimates. At each grid intersection the AF is calculated. As described
in Mader (1990), the grid search technique may be implemented using nested loops to

increment the x, y and z coordinates respectively.
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Figureb5.6
Grid Search For a Cube

The grid search may be made much more efficient by first searching with a coarse
grid to isolate the general location of the maxima, and then searching with afiner gridina
block around the point found by the coarse grid. This concept was described by Remondi
(1984) in relation to search volumes of afew metres and observation periods spanning
over hours. At that time he warned that too large an observation period would result in a
very narrow peak that a coarse grid might miss, and recommended that short periods (and
a consequently broader peak) be used with the coarse grid and the large periods be used
with the fine grid. In his 1990 publication on pseudo-kinematic GPS (Remondi, 1990),
he advocated using a coarse grid of 0.33 to 0.25 cycles as afirst pass with the ambiguity

function.

When searching with afiner grid in ablock around the point found by the coarse
grid, the block size should exceed that of the coarse grid step size, to ensure atrue point is

not overlooked. In the coarse-fine grid implemented for resultsin thisthesis, the fine grid
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block was bounded by dimensions twice the coarse step size. The advantage of a
2 X coarse step size grid over a 1 x coarse step size grid for a hypothetical two
dimensional caseis shown in Figure 5.7. It can be seen that if only one coarse step size
around an initial point was searched with afine grid, atrue point just over the search

boundary would be regjected, whereas the use of two step sizeswould includeiit.

true point
on outer edge of
coarse search square

— coarse grid
T _— point at which
K3 1 // maxima found
coarse i
step size t
o _fine stepsize
A
[ T
coarse
step size
- >

2 X coarse step size

Coarse-Fine Grid Search - showing beng‘%usrc?f%i?e grid being bounded by 2
x instead of 1 x coar se step size

One may desire to lower the cos(obs - calc) rgection criteria of 0.7 given in
Figure5.4 when using larger grid sizes. The reason for this is evident through
examination of Figure 5.5. When using alarger grid, the proximity of atest point to the
true point is potentially reduced and the chance of the cos(obs - calc) falling below 0.7
increases. Hence alower threshold may be warranted to avoid rejecting a good test point.

Carrier multipath is another reason for reducing the rgjection criteria. If double difference

multipath exceeds 2.3 cm (from Figure 5.5), agood test point may be rejected.
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The advantage of using a coarse-fine grid instead of a uniform grid is the great
reduction of test pointsto be examined and the corresponding reduction in computation
time. Thisisshown in Table 5.1 where the number of points for uniform and coarse-fine
gridsfor 1 m and 0.5 m cubes are shown. Here acoarse grid size of | /4 and afine grid

size of | /10 are assumed.

Table5.1
Comparison of Uniform vs. Coarse-Fine Grid Search Techniques
Grid Type Step Size Cube Size No. of Points’
Uniform [ /10 (1.9cm) 1.0m 157,464
[ /10 (1.9 cm) 0.5m 19,683
Coarse-Fine Coarse | /4 (4.8 cm) 1.0m 10,648
Fine [ /10 (1.9 cm) 9.6 cm 216
Totd 10,864
Coarse | /4 (4.8 cm) 05m 1,728
Fine [ /10 (1.9 cm) 9.6 cm 216
Totd --- --- 1,944

T number of steps on cube sides aways rounded up before computing number of points

The table shows that for 1 m and 0.5 m cubes, only 7% and 10% of the points
respectively, needed for afine uniform grid search, need be considered for a coarse-fine
grid search. Corresponding computation times are not given. However, using Mader's
claimed ability to compute one million points in 55 seconds using a Compaq 386 with
25 Mhz clock speed and an 80387 and Weitek math co-processor (Mader, 1990) as a
benchmark, the relatively small number of pointsfor the limited search regions given

above (made possible by the accurate code solutions discussed in Chapter 4), shows that
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computation time is no longer alimiting factor for applying the AFM for post-mission

static and rapid static applications.

The grid search technique, whether used uniformly or via the coarse-fine
technique, does not take advantage of the one wavelength spacing between potentia
ambiguity solutions. Only every 19 cm of space (one L1 wavelength) need be searched
rather than the full volume as is done using the grid search techniques. The needless
searching of space between potential solutions may be diminated using the double

difference plane intersection search technique.

5.2.2 TheDouble Difference Plane I nter section Search

The geometrical concepts underlying the double difference plane intersection were
presented by Hatch (1991a) as the first stepsin his Least Squares Ambiguity Search
Technique and applied by Remondi (1991) with the AF for kinematic applications without
static initialization. The double difference plane intersection uses the observations from
four satellites (three double differences) with sets of potential ambiguities to generate
positions. Each satellite double difference with its trial ambiguity defines aplanein 3-
dimensiona space. By finding the intersection of the planes from three double
differences the coordinates of a potential solution are found. All potential solutions are

then tested by computing the AF, following the routine shown in Figure 5.4.

Sets of potential ambiguitiesmay be generated in two ways. First, a double
difference carrier phase solution with real ambiguities and datistics representing their
accuracy may be used. This method will not be mentioned again with respect to the
ambiguity function method, but will be discussed in relation to the fast ambiguity

resolution approach (FARA) in Chapter 6. Second, the limits of ablock around an initial
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point may be specified as done for the grid search technique, and the ambiguities for each
double difference observation for each corner point may be calculated. Thisisillustrated
for asimplified 2-dimensional case with undifferenced observationsin Figure 5.8. Inthe
2-dimensional case, the real ambiguity terms are calculated for the four corners of the
square for one satellite-receiver observation. The figure shows the calculations for the

minimum and maximum ambiguities.

Ay minimum ambiguity: PR
N=F-r (x2 yZ)\
(X1, y2) 02y2) o7 5
r <’ 4\ maximum ambiguity:
// N=F -r (x1,vyl)
(x1,y1) (x2,y1)
P X
Figure5.8

Computation of Maximum and Minimum Ambiguitiesfor 2-D Space

In AF applications, the ambiguities for the eight corners of a block are calculated
for three double difference pairs. The maximum and minimum ambiguity for each is
saved. The resulting ranges may be zero to several cycles depending on the size of the
search block and its orientation with respect to the double difference vectors. Sets of

potential ambiguities are then generated using nested loops to increment between the
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maximum and minimum of each ambiguity. An arbitrary example of ambiguity ranges

and their sets of generated ambiguities are givenin Tables 5.2 and 5.3 respectively.

Tableb.2

Ambiguity Ranges

Maxi mumI

SV Pair | Minimum
19-2 -3 -2
19-6 8 9
19-11 4 4

Table5.3

Generated Ambiguity Sets

Set 19-2 19-6 19-11
1 -3 8 4
2 -3 9 4
3 -2 8 4
4 -2 9 4

The smaller the ambiguity ranges, the fewer the number of points that need be considered

astest points. The number of ambiguity sets to be considered may be computed as

nsat-1

#sets= O [(max. ambiguity - min. ambiguity) + 1] ;.

=1

(5.6)

where nsat is the number of satellites. For example, in Table 5.2 the number of setsis

computed as2 x 2 x 1 =4, hencethe 4 setsin Table 5.3.

The maximum and minimum ambiguities computed as per Figure 5.8, will almost

never be exact integers and will require rounding of some sort. One may round the real

ambiguities "in" so they fall within the cube, or "out" so they fall outside the cube, or they
may be rounded to the nearest integer. Even though block corners may be used to find
ambiguity ranges, this does not imply that all generated test points (or ambiguity

intersections) will fall within the block. Thisisillustrated in Figure 5.9 for a simplified

2-dimensiona case with the intersection of undifferenced observations from two satdllites.
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Figure5.9
Ambiguity Inter sections Outside Sear ch Square
In the figure, the inner darkly shaded region demarcates the area bounded by maximum
and minimum ambiguities that were rounded "in" and the surrounding lightly shaded area
demarcates the maximum and minimum ambiguities that were rounded "out". The darkly
outlined square represents the search region. It can be seen that even when rounding

ambiguities"in" the test points may lie outside the search region.

To avoid testing points outside the search cube, test points generated using the
double difference plane intersection techniques should be checked to seeif they fall within
the search cube. If not, they should be rgjected from further consideration. This step can
considerably reduce the number of test points to be evaluated, and at the same time reduce

the potential for false ambiguity determinations.

Since only three double difference observations are required to compute a test

point solution, some consideration must be given as to which satellites should be used.
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From Hatch (1991b), Figure 5.10 shows that poor geometry would result in fewer

intersections (and candidate test points), than would good geometry.

poor geometry good geometry
12 grid intersections 32 grid intersections

Figure5.10
Number of Intersections With Poor Geometry Compared to Good Geometry
(Hatch, 1991b)

The trade off against fewer intersections to compute with poor geometry, isaless
accurate test point to evaluate using the ambiguity function. If the test point istoo far
from the "true" point, a peak may be missed (similar to the risk of missing a peak using
Remondi's course grid technique (Remondi, 1984)). For rapid static applications using
AF and the small search volumes made possible by accurate code solutions, the advantage
of poor geometry for computational efficiency is negligible, but the importance of being
close enough to the true point to detect an AF peak is critical. Consequently the use of

satellites which yield the best geometry is recommended for the AF.

For the double difference observations used in this thesis, the relative dilution of

precision (RDOP) as discussed in Section 2.4, isthe best tool to quantify geometry.
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However, since PDOP measures are much more familiar and accepted by most working in
the GPS industry, and since there is a general trend for PDOP values to correspond with
RDOP vaues, PDOP values are given with resultsin Section 5.4.

Unless one is sure there are no cycle slips in a given set of data, only asingle
epoch of observations should be used in the computation of test points using double
difference plane intersections. Using a single epoch of observations however, opens the
risk for bad position estimates due to carrier phase outliers or poor geometry. Thisrisk
could be alleviated by computing independent tests point solutions (e.g. at sequential
epochs) and cross-checking them, or by using mini-grid cubes around the point
determined through double difference plane intersection. The development of the former

point is straight forward, but the latter point will be expanded upon.

Instead of having to be sure a double difference plane intersection test point is
determined accurately enough to find a maxima, a cube around the point (one step size out
in all coordinate directions) may be used to generate surrounding points for testing, as
shown in Figure 5.11. Although this would mean 27 test points to check for each double
difference plane intersection point instead of one, the greater chance of finding the true

point may outweigh the added computational burden.
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Figureb5.11
Mini-Grid Cubes Around Points of Double Difference Plane I nter section
The significance of the grid search and double difference plane intersection
techniques, and variations thereof, will become apparent with the analysis and discussion
of results of processed GPS data, but first it isimportant to develop means to assess the

certainty of results.

53 AFM RELIABILITY

One of the pitfalls with the ambiguity function method to date has been the lack of
robust means to assess if the resulting solution isreliable. In this section, reliability is
used to mean a measure of certainty of the results attained, rather than the more narrow
definition of statistical reliability given in Chapter 2. Unlike the least squares ambiguity
search technique (Hatch, 1991a) or the fast ambiguity resolution approach (Frei and
Beutler, 1990) which use statistical tests based on generated residuals, no rigorous testing
has accompanied results of the AF. Hatch (1991a) argues this point as an indication of

the superiority of the least squares ambiguity search technique over the ambiguity
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function method. However, some certainty of AF results can be attained by limiting the
observation conditions under which the AF is applied, being aware of the effect of search

volumes and techniques on AFM solutions, and developing criteriafor assessing results.

5.3.1 AFM Observation Conditions

Errors which affect all GPS observations, namely ionospheric, tropospheric,
residual orbital errors, measurement and multipath errors, affect the ability of AFM to
arrive at the correct solutions. Similarly, the geometry and redundant observations which
lead to improved least squares GPS solutions also correlate with increased ability for the

AFM to give good results.

Using only the single frequency data dealt with in thisthesis, it is difficult to
resolve ambiguities to the correct integers over long baselines (>15 km) using any
ambiguity resolution technique, mainly due to errors resulting from decorrelation of the
ionosphere with distance. Testing in different ionospheric conditions is needed to validate
what baseline lengths are reasonable for AFM applications, but as a preliminary guideline

in Canada, one would be wise not to exceed 10 km.

Low elevation satellites are subject to greater atmospheric errors because they map
alonger signal path through the atmosphere, and are subject to greater multipath because
their signal paths come closer to reflective multipath causing surfaces. The errors will
have the effect of distorting the double differences such that when they are combined
together, they may not yield a"clean” intersection. The AFM, which measures how well
the doubl e difference ambiguities intersect, may then fail by not detecting a point of
intersection as a maxima, or be weakened and outweighed by afalse maxima. To reduce

the chance of low elevation satellites corrupting the power of the AFM, very low satellites
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(below 100) should not be used, and low satellites (below 159) should be used with
caution. An alternative not addressed in this thesis would be to use an elevation weighting

function as described by Counselman and Gourevitch (1981), and Remondi (1984).

The ambiguity function method is similar to least squares techniques, in that the
more significantly different good observations available, the greater the chance of attaining
good results. Significantly different isintended to mean observations which contribute
new information, not more of the same. Observations from more satellites or from dual
frequency receivers constitute significantly different observations which would aid in the
solution determination. Observations from the same satellite would not constitute
significantly different information unless a sufficient change in satellite geometry had
occurred. Observations five minutes apart, the time frame over which one would typically
desire to have completed arapid static survey, would correspond to less than a 3° change
in satellite elevation, meaning the added observations would have negligible geometrical
implications for the AFM, athough they would improve somewhat its statistical reliability.
It isfor this reason that Remondi (1990) recommends pseudo-kinematic surveys based on
AFM have vidits to the same station separated by at least an hour in time, which
corresponds to about a 300 change in satdllite elevation. Greater satellite coverage

congtitutes significantly different information.

From the above discussion, the rapid static application of the AFM amost reduces
to a one epoch solution problem from a geometrical perspective. However, by using
severa epochs instead of one, reduction in carrier phase measurement noise and multipath

effects through averaging is possible.

A description of achievable AFM results for one epoch of observationsis given by
Mader (1990). Mader showed that for a cube with 1 m edges with 5 satellites at one

epoch, ambiguity resolution by the AFM isimpossible since several peaks of comparable
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magnitude are present. He further showed that with addition of either L2 observations or
an epoch of observations two hours later, the false peaks are suppressed and the true
position is easily distinguished. Using eight satellite dual frequency data at one epoch he
showed that only one peak would be detected in a cube bounded by 2 m edges. Since the
scope of thisthesisis limited to the single frequency case, most of hisfindings are not
directly applicable. However two fundamentals can be built upon, the greater the satellite
coverage, the greater the chance of success using AFM, and the smaller the search block,

the greater chance of successusing AFM. Thislatter point will soon be expanded upon.

In summary, for the greatest chance of success with AFM using single frequency
data, observation conditions should be limited to

1) short basdlines ( <10 km),

2) satellites > 150, and

3) as great a satellite coverage as possible.

These are general guidelines, not steadfast rules; and exceptions are plentiful. The satellite
coverage required has not been quantified, sinceit is closely linked to the size of the

search volume.

5.3.2 Thelnfluence of Search Volumesand Techniqueson AFM

Two general situations may apply when using the AFM in a specified search
volume. A single unique peak may exist in the volume or more than one peak may exist.
The former caseisideal and sought after. The latter caseis apt to occur and may pose
significant problems. In the latter case it isimportant to understand two factors which

influence the success of the AFM or lack thereof. These are
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Q) the closest test point to the true point must be close enough to detect a
maximarel ative to other test points, and

2 the search volume must be small enough for the corresponding satellite
coverage and geometry to rule out from consideration, all peaks of

comparable size except the peak at the true point.

The proximity of atest point to atrue point is dictated by step-size when using the grid
search technique, and the accuracy of the computed test points when using the double
difference plane intersection technique. The arbitrary designation of grid points relative to
the true point, may result in a true point exactly coinciding with a grid point, being
equidistant between grid points (as shown in Figure 5.12) or being somewhere between
these two extremes. (It is assumed the true point falls within the search cube.) The closer
the true point isto agrid corner or to atest point computed using the double difference
plane intersection technique, the higher the AF that will be found. Consider the case when
aprimary and secondary peak exists in a search volume. If the primary peak was
equidistant between grid corners (as in Figure5.12), the test points (grid corners)
surrounding the primary peak may be rejected from consideration over atest point which

happened to coincide exactly with the location of the secondary peak.

To give an indication of the type of values one might expect at test points
separated from the "true point” by arange of distances, AFM results using a uniform grid
withal cm step size (I /20) for one epoch of the January 25th, five satellite zero baseline
data set were computed. (See Chapter 3 and Figure 3.1 for data set details.) From the
listing of test point coordinates and normalized AF, sample results at different distances
from the truth were extracted and are tabulated in Table 5.4. The agorithm used to
produce data shown had its cos(obs - calc) threshold set at 0.0 instead of 0.7.
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Figure5.12
True Point Equidistant Between Grid Corners
The first column in Table 5.4 gives a range of step sizes as fractions of
wavelengths that correspond to the second column’'s maximum distances of the closest
grid corner to thetruth. (Recall from Figure 5.12, the distance is the length of the vector
from the test point to agrid corner.) The third column gives sample ambiguity function

values for respective distances from the truth.

One could interpret Table 5.4 by saying at al /2 grid spacing, the AF expected at a

true point may range anywhere from 0.73 (at the most distant point) to 1.00 (collocated
with the true point). For al /2 spacing, afalse peak could be easily thought of as atrue

point if it coincides with the test point, and the closest test point to the true point was 8 cm

avay.
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Table5.4
Typical Ambiguity Function Valuesfor Varied Step Sizes
(Jan. 25 - zero baseline - epoch 576460 - 5 satellites)

Maximum Distance Normalized
Step Size Between Closest Grid Ambiguity
(A=19cm) Point and True Point Function Value
172 8.2cm 0.73
[ /4 4.1 0.90
[ /7 2.4 0.93
| /10 16 0.97
| /20 0.8 1.00

The significance of Table 5.4 should not be misconstrued. It has been provided
for no purpose other than to illustrate the potential for choosing an incorrect point over a
correct point. Itisshown in Section 5.4 that the AF values surrounding true points show
oriented patterns rather than concentric patterns, as the misinterpretation of Table5.4
might lead one to believe. Also, since Table 5.4 is based on zero baseline data, the results

are more optimistic than under normal conditions.

The above discussion brings about the observation that a test point must be close
enough to atrue point (as compared to other test points) to yield good results no matter

what search technique is used, if there is more than one peak within the search volume.

The size of a search volume has significant implications since smaler search
volumes not only dramatically reduces the number test points (as shown in Table 5.1), but
also have the potential for ruling out secondary peaks from consideration. This was

mentioned in Mader (1990) and is demonstrated in Section 5.4.

Looking at the extreme case, if an initial coordinate estimate was known with a

certainty of £2.75 cm, implying a search cube of with 5.5 cm edges, with only one double

difference observation, the ambiguity would be immediately determined asillustrated in
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Figure 5.13. Note how the numbersin Figure 5.13 were arrived at. The solution must lie
within 9.5 cm (half awavelength) of the truth for its correct integer ambiguity to be
chosen. Transferring this length to a cube's diagonal results in cube edges of 5.5 cm, and

arequired initial point accuracy of £2.75 cm.

argest permissible search cube size to
find the correct integer ambiguity with
AFM, for one double diff. observation

7 cmi @ \ potential

- - K - - - - - - = Integer
9.5 le ambiguity
+ solutions
Vem|{ _ _ _ _ _ _ _
Figure5.13
Maximum Cube Size To Find Integer Ambiguity With One Double Difference
Observation

In typical applications for rapid static surveys, five to seven satellites might be
visible. Each could be used for rapid static ambiguity resolution if theinitial search areaiis
well enough determined to eliminate false peaks. One can envisage the general trend, that
an increase in the number of satellites will correspond with an increase in the alowable
uncertainty of theinitial search volume. Thistrend isillustrated graphically in Figure
5.14. The word "general" isimportant here. Many considerations including satdllite
geometry have an intertwined relationship with the size of the AFM search cube. Two

entries have been made in Figure 5.14, a’5.5 cm cube size for one satellite as shown in
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Figure 5.13, and a 40 cm cube size for 6 satellites as results of Section 5.14 tend to show.

All others are left with question marks, to be determined through empirical testing.

10 _
?
f 8 J
: ?
§°1 °
S 4l D Note:
g . relationship
= 5 also function
3 1@ of satellite
geometry
O . 1 1 1 1
0.0 0.5 1.0 15 2.0
Cube Edge (m)
Figure5.14

Satellites Required vs. Search Cube Size

In designing production AFM agorithms and assessing AFM results, it is
important to know the behavior of peaks for a given satellite coverage and configuration,
and know the corresponding ability or lack thereof to isolate a correct peak for a specific
search cube size. A figure such as 5.14 would be of assistance. One shortcoming of this
figureisitslimitation to cubic dimensions. In production one is more apt to define blocks
proportionally to the accuracy of initial coordinate estimates, which in turn is afunction of
code accuracy, errors and satellite geometry. Variations of the information of Figure 5.14

may be required in these instances.

Ensuring good observation conditions and checking that search techniques and

volumes are compatible with the satellite coverage are prerequisites which diminate
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situations where the AFM is not apt to succeed. Meansto reject or accept AFM results

assuming al the above have been taken into consideration are still required.

5.3.3 AcceptanceCriteria

Acceptance criteriafor AFM solutions fall into two basic categories; first, checks
that are made on the integrity of an individual solution and second, checks that are made
against sequential but independent solutions. Before discussing details of these two
categories of acceptance criteria, it isinformative to review techniques other authors have

used to evaluate the certainty of AFM results.

Mader (1990) wrote a 3-dimensional colour plotting program to plot AFM
"peaks'. Through this technique, he could visually see the number and location of peaks
and make a decision based on human intelligence if the solution was good. Thisisan

effective method, but not practical for production applications.

Remondi (1990) spoke of predominant peaks which are clearly greater than other
peaks, as being distinct enough to identify the correct peak for pseudo-kinematic GPS
surveys. He also gave a clever method to verify the identification of the correct peak. He
recommended the coordinates at the candidate peak be used to correct cycle dips and then
the cycle slip corrected data be used in a float double difference solution. If the cycle
slips were correctly fixed (meaning the candidate point was correct), the real ambiguity
estimates would be almost perfect integers on short baselines. Thiswould not be the case
with incorrectly fixed cycle slips. If no cycle slips were present in the data, false cycle
dlips could be introduced. The drawback with this method is that observations with

sufficient change in satellite geometry are needed to make a float double difference carrier
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phase solutions feasible. (Remondi was applying this to the pseudo-kinematic case where

the geometrical requirements are well fulfilled.)

The checks that are made on the integrity of an individual solution proposed here
extract some basic concepts from Mader (1990) and Remondi (1990). Before delving

into these, an important pattern of AF's needsto be clarified.

The normalized ambiguity function (AF) may have several "peaks' in a given
search volume. These "peaks' generally consist of a point with the highest local AF value
surrounded by points with lesser AF values, oriented in some direction in 3-dimensional
space. Two errors could occur in isolating the "true" solution. First, the correct peak
could be isolated, but a point other than its highest point may be chosen (perhaps as a
consequence of a search pattern). This error is amost always acceptable since the point
will be close enough to the true point to ensure the correct integer ambiguities are
computed. Second, the wrong peak could be isolated. This error has grave repercussions
sinceit could result in one or more ambiguities being fixed to the wrong integer. It isthis

second error that the checks presented aim to avoid.

A scheme for checking individual AFM solutionsis presented in Figure 5.15.
The algorithm is used to validate that the point with the largest AF is the solution. One
begins with afile of all test points generated following the ambiguity function algorithm
of Figure 5.4. The points with the highest and second highest AF values are extracted,
and in the figure are referred to as points 1 and 2 respectively. The AF of point 1is
checked to seeif it isgreater than 0.92. If not, no solution is deemed to be found. Next,
the AF of points 1 and 2 are differenced. If their difference exceeds 0.08 asolutionis
said to beisolated. (Thisisaquantification of Remondi's method of distinguishing points
with clearly larger AF.) If not, the length of the vector between points 1 and 2 is

calculated. If the distance between the pointsis greater than 10 cm they can be thought of
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as belonging to different "peaks’, hence a solution cannot be isolated. If the distance
between points is less than 10 cm, the second point can be disregarded. (Thisis done by
Mader through visual inspection of the results of his 3-D plots.) Thefileisthen checked
for the next largest point. If there are no more pointsin thefile, point 1 has been isolated
asthe solution. If there are more pointsin thefile, the point with the second largest AF is

extracted, and the routine is repeated with this new point as point 2.

Extract Points With
Largest & Second
Largest AF's
(points1& 2

(AF1-AF2) >

0.087 — ( Solution Isolated

No Solution Found
72 Cotmontsiast

File of Tests Points
by Descending AF

coordinates | AF
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—
—
—_—
—_—
—
—

W

- N

Distance From
1to2<10cm?

yes Cannot |solate
Solution

Extract

"new" Second
Largest Point
more points
infile?

Solution Isolated
Figure5.15

AFM Integrity Checks For a Single Solution
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The (AF1 - AF2) threshold of 0.8 given is quite pessimistic, but specified as such to avoid
identification of false peaks as the correct solution. It is set with the assumption that the
single solution being tested is one of a set of independent solutions used to resolve

ambiguities.

The AF agorithm is unforgiving of bad carrier phase observations. From
Figure 5.3, if an individual cos(obs - calc) falls below athreshold of 0.7, the test point is
immediately rejected. Hence, one outlier of one observation at one epoch could cause the
rgiection of a "good" solution. In tests carried out this has not posed a problem.
Nevertheless, this dilemma along with noise due to receiver hardware or multipath may
invalidate good results either in the AF algorithm or the AFM integrity checksfor asingle
solution. To mitigate these effects, several independent solutions may be computed using
neighbouring epochs of observations. Even if the AFM was calculated over 5 minutes
using observations every 20 s for the sake of statistical reliability, severa independent
solutions could be computed at the same data rate but each offset by 1 second from the
previous solution. The consistency of the independent results may then be assimilated to
validate the correct isolation of a solution or the inability to do so. This concept is

illustrated in Figure 5.16.

One begins with a file of results which contains products of the individua
ambiguity checks of Figure 5.15. The overall success rate of isolating a solution is
checked against a threshold success rate value. In the figure an 80% success rate has

been shown, but this may be modified based on the sample size (i.e. the number of results
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used), statistical assumptionsand experience. If less than 80% of the solutions are
successfully isolated, the datais presumed too weak to isolate a correct solution. If over
80% of solutions are successfully isolated, they are checked to ensure they apply to the
same peak. If they do, a correct solution is said to be isolated and ambiguities can be

computed from the X, y and z coordinates.

File of Results

Il
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\
I

Solution
| solated 80%
of Time?

nc Cannot Isolate
Solution

Distance

Between yes Solution Isolated
Solution Points -

<10cm?2

Figure5.16
AFM Integrity Checks For Result I ntercomparison

The integrity checks shown above for individua solutions and result
intercomparisons, are one set of acceptance criteriathat may be used with the ambiguity
function method. Numerous developments and variations of the above agorithm are
possible. Different thresholds, based on statistics, experience or catered to a specific
observing environment, may be used. Each technique will surely have merits for different

situations and for the incorporation in different GPS processing packages. Hence, it is
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not the intent here to suggest a"best" technique, but rather to show that criteriato assess

the results of the ambiguity function method are available.

The results presented in the latter portion of Section 5.4 were assessed using the

criteriagiven in Figures 5.15 and 5.16.

54 AFM RESULTS

The results presented herein serve two purposes. First, they provide a better
understanding of the concepts described in Sections 5.1 to 5.3. Second, they show results
attainable with single frequency data using AFM under varying conditions. As described
in Section 5.1, the ambiguity function method is comprised of initial point estimation,
defining a search volume and test points, and then computing the normalized AF value.
Results on initial point estimation and boundary definition are described in Section 4.2
and are not addressed here. Results of tests of cubic volumes around "true" points are
presented. Output listings generated and used to produce the reported results include the
normalized ambiguity function values, the x, y and z coordinate differences from the truth,

and the vector distance from the truth.

The initial discussion of resultsis based on a single epoch over two days of
observations. The single epoch results can be thought of as a"raw" form of AF since
they are unaltered by averaging and rejections over successive epochs. Single epoch AFs
are then compared to AFs accumulated over several epochs. Following, a detailed
examination of these results show the patterns of AF for different search techniques,
different numbers of satellites and different cube sizes. The latter portion of the
discussion of results examines several AFM solutions for three different data sets using

different search techniques.
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54.1 AF Patterns- Using Grid Search Techniques

The pattern of AFM peaks are best seen plotted in three dimensions using colour
graphics as done by Mader (1990), but thisis not practical or meaningful for two colour
representation. Information presented below, plotted in one and two dimensional space,
effectively shows subsets of AF patterns. One should bear in mind when reviewing these

graphic representations, that they are only part of the full 3-dimensional picture.

The pattern of AFM peaks is shown with normalized ambiguity function values
plotted against the distance from the true point. Jan. 25th, 5 satellite, zero baseline datais
shown in Figure5.17, and Feb. 12th, 6 sadlite, 700 m baseline data is shown in
Figure 5.18. In both cases only one epoch of observations was used and a uniform grid

search with a 1.9 cm step size over a cube with 1 m edges was carried out.
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Figureb5.17
1 Epoch AF for 5 Satellite Data Usinga 1.9 cm Grid Over a 1.0 m Cube



111

maxima
§ 100 T‘/
g8 & -
3 0.95 1% HoE |4, dataset: Feb. 12th
L 1% . length: 720.1 m
£ 0.90 1+ .. A I epoch: 350100
A=y 1% ot Wt #of svs: 6
2 0851+ Lt H PDOP: 4.2
5 ] e + cubesize: 1.0 m3
5 0801 TR L stepsize: 1.9cm
N 17
B 0751
£ :
= 0.70-
0.19 0.38 0.57 0.76
Distance From True Point (m)

Figure5.18
1 Epoch AF for 6 Satellite Data Usinga 1.9 cm Grid Over a 1.0 m Cube
For the 5 satellite datain Figure 5.17, the location of peaks are centered at about
0.0 cm, 38 cm and 66 cm from the truth. From Figure 5.18, it can be seen that the sixth
satellite ruled out many points found with five satellite data. A clear peak is evident at
0.0 cm, with less distinct peaks stretching from about 38 cm to 67 cm from the truth. In
both the five and six satellite case, the largest and secondary AFM peaks are too close to

distinguish the true point.

Up to adistance of about 9 cm from the true point in both Figures 5.16 and 5.17,
one can see a gradual decrease in the ambiguity function values determined. It is
interesting to see this same pattern in 2-dimensiona space. To show this, adicein they-z
plane was taken out of the 3-dimensional data corresponding to Figure 5.17 for x = 0. All
normalized ambiguity function values for the corresponding y and z coordinates are

plotted in Figure 5.19.
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Figure5.19
Ambiguity Function Values Around True Point For ThePlanex =0

Notefor x, y and z = O (i.e. at the true point) the ambiguity function is 1.00 as
expected. The values gradually decrease as one moves away from the true point, with a
marked orientation extending from the positive y to the positive z axis. The same gradua
decrease in values from the true point, and notable orientations are present in plotsfory =
0 and z = 0, which have not been shown because they do not add to what can be learned

from Figure 5.19.

All ambiguity values which crossthe x = 0 axis and passed the individual rejection
test of cos(obs - calc) > 0.7 (from Figure 5.4), are shown in Figure 5.19, yet they only
extend £4 cm from the true point. In vector length, the greatest distance from the true
point in Figure 5.19 isabout 5.7 cm (for y = 4 and x = -4). This means points extending
out to about 9 cm in Figure 5.17 must be on planes where x * 0. Tests carried out have
shown that when the (obs - calc) threshold is reduced, the same trend as shown in Figure
5.19 prevails, with the differences being the extension to lower normalized ambiguity

function values occurring at further distances from the truth.
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Note Figure 5.19 is amost symmetrical about zero. One of the characteristics of
the ambiguity functionis its symmetry. Theoretical explanations and discussions in
relation to this are given in Counselman and Gourevitch (1981) and Remondi (1984), and

are not reiterated here.

One of the dangers of non-uniform grid search techniques is evident through
analysis of Figure 5.18. If adouble difference plane intersection search yielded a test
pointat x =0,y =-2, and z = -2, which isless than 3 cm from the truth, no solution would
be found. Itisthistype of occasion that a mini-grid search around a double difference

intersection point asillustrated in Figure 5.11 would be needed.

All results presented to this point have been based on a single epoch. Results for

Feb. 12th data using several epochs are shown in Figures 5.20 to 5.23.

In Figure 5.20, the results from auniform grid search over a 1.0 m cube, but using
61 epochs over oneminute instead of a single epoch are shown for Feb. 12th data.
Comparing the 61 epoch results of Figure 5.20 with the one epoch results of Figure 5.18,
one can see the same values for the maxima (0.99) and the secondary peak (0.97). The
difference between the two sets of resultsisthat for the one epoch case, AF extends down
to 0.78, and for the latter case, AF only extends down to 0.90. This suggests that many
marginal test points which passed the cos(obs - calc) threshold of 0.7 for a single epoch,
failed to passit for one of the other 60 epochs. Note that most of the points rejected by
using several epochs would not be considered when using a double difference plane

intersection search.
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Figure5.20

61 Epoch AF for 6 Satellite Data - 1.9 cm Uniform Grid Over a 1.0 m Cube

AF resultsfor six epochs over five minutes, with all other parameters as described

for Figure 4.20, are shown in Figure 5.21. Comparing this figure with Figure 5.18, one

can see the maxima AF is 0.98 instead of the 0.99 seen in Figure 5.18, and the secondary

AFis0.95, instead of the 0.97 seen in Figure 5.18. Comparing Figures 5.21 and 5.20, it

can be seen that using six epochs over five minutes had the effect of reducing the number

of test pointswhich failed the threshold test by more than the 61 observations over

one minute did. A probable cause for both of these observationsisthe greater variation in

carrier multipath effects over five minutes than over one minute. The small change in

geometry is not alikely cause, since the same primary peaks and secondary peaks formed

are close to the same magnitude and distance from the truth as for the single epoch case.

The geometrical change over five minutes however, likely does influence multipath.
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Figure5.21
6 Epoch AF for 6 Satellite Data - 1.9 cm Uniform Grid Over a 1.0 m Cube

Figure 5.22 shows the same data as Figure 5.21, but instead of using a data
interval of 60 s, adatainterval of 1 sisused, meaning 301 epochs over five minutes. As
can be seein the figure, only three points survived the rejection criteriafor al 301 epochs,
and these 3 points all occur near the truth. At first glance one might assume from these
results, that the best procedures using AF isto use all possible epochs of observations at
the smallest datainterval possible. The danger with this approach is that all test points
could potentially be rejected and no solutions found. Furthermore, there is no guarantee
only one peak will remain asin Figure 5.22, because as seen in Figure 5.21, secondary

peaks still do occur over five minutes of datausing six satellitesinal m cube.
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Figure5.22
301 Epoch AF for 6 Satellite Data -
1.9 cm Uniform Grid Over a 1.0 m Cube

Variation in Cube Size

To see the effect of a smaller cube size on the AF, the single epoch data for
Figures5.17 and 5.18 is shown again in Figures 5.23 and 5.24 respectively, but for cubes
with 0.5 m edges instead of 1.0 m edges. Note in each figure, only one clear peak is
evident, centred around 0.0 cm from the truth, showing that the correct point is easily
discernible using a cube with 0.5 m edges instead of 1.0 m edges. Fewer points are

present in the six satellite data than the five satellite data as expected.
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Figure5.23
1 Epoch AF for 5 Satellite Data Using a 1.9 cm Grid Over a 0.5 m Cube
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Figure5.24
1 Epoch AF for 6 Satellite Data Using a 1.9 cm Grid Over a 0.5 m Cube
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At first glance one may wonder why the peaks at 38 cm in Figures 5.17 and 5.18
are not present in Figures5.23 and 5.24. The explanation for this lies in the
transformation from the one-dimensional vector lengths shown in these figures to the
3-dimensional blocks for which AF values are calculated. These 38 cm peaks in the
earlier figures were products of x,y,z coordinates where at least one coordinate laid outside
+0.25 m from the true point. Different orientations of the search cube, or different
orientations of the pattern of peaks could result in some points near the borderline ruled
out in these 0.5 m cube examples, not being ruled out in other cases using the same cube

size.

Asdiscussed in Section 5.3, and asillustrated above, the dimensions of the search
cube are very significant as to whether ambiguities can be correctly resolved or not. The
specific results shown above illustrate that with a 1 m search cube, ambiguities would not

be resolved whereas for 0.5 m they would be.

Variation in Step Size

All the results shown above are based on a 1.9 cm uniform grid. However using
the coarse-fine grid technique described in Section 5.1.2, oneinitially uses a coarse grid.
To see the effect of using larger step-sizesthat characterize coarse grids, the AF for
uniform grids over a 1 m cube with step sizes of 4.8 cm (I /4) were computed using the

same five and six satellite data, and are shown in Figures 5.25 and 5.26 respectively.
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Figure5.25

1 Epoch AF for 5 Satellite Data Using a 4.8 cm Grid Over a 1.0 m Cube
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1 Epoch AF for 6 Satellite Data Using a 4.8 cm Grid Over a 1.0 m Cube



120

As can be seen in the figures, larger step-sizes result in sparser AF points with
smaller magnitudesin general. The resultsin Figure 5.25 agree with thosein Figure 5.16,

i.e. thefive satellite datais insufficient to isolate a maxima over a cube with 1.0 m edges.

The resultsin Figure 5.26 for the six satellites appear inconsistent with those of
Figure 5.18 because the correct maximais well separated in magnitude from an incorrect
maxima using the 4.8 cm step size (a 0.06 separation), but not using the 1.9 cm step size
(a0.02 separation). Theresultsin Figure 5.26 are a product of chance, not rigour. If the
4.8 cm test points had been aligned to coincide exactly with the maxima for afalse point
and not atrue point, these results may have been reversed. Note that following the
algorithm to check solution integrity shown in Figure 5.15, the 0.08 peak separation
threshold would have correctly identified the data of Figure 5.26 as being too weak to

isolate a solution.

Ambiguity function values were also plotted with step-sizes of 4.8 cm over cubes
with 0.5 m edges for the Jan. 25th and Feb. 12th data, but are not shown here. Results
were completely consistent with those of Figure 5.23 and 5.24, but with sparser AF values
of lower magnitudes. For the six satellite case, only a single point, with a magnitude of

0.94 and located 4 cm from the true point, was detected.

5.4.2 AF Patterns- Using Double Difference Plane I nter sections

The double difference plane intersection search technique was carried out for the
same epoch of data as used for the Feb. 12th results of Figures 5.18, 5.24 and 5.26.
Search cubes of both 1.0 m and 0.5 m were tested. The details for each run are givenin
Table5.5. Inthistable, the second column gives the total number of test points generated

from sets of trial ambiguities. (Ambiguities were rounded to the nearest integer from the
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cube corners.) Thethird gives the number of points remaining after the rejection of those
which did not fall within the search cube. (Figure 5.9 illustrates how points found
through double difference intersection may fall outside search cube limits.) The fourth
column gives the distance between the true point and the closest test point to the double
difference solution. For the given data set and epoch, the computed test point was poor
(4 cm away from truth), which can be attributed to the bad PDOP of 74.9 for the four
satellites used in the doubl e difference plane intersection. (It is known that satellites with
the best RDOP or PDOP should be used, but the program used was not modified to
accommodate this.) Upon testing all points using the ambiguity function algorithm of
Figure 5.4, no points passed the rejection criteria, hence no ambiguity function vaues

were found (asindicated in the fifth column) and no solutions were found.

Table5.5
Double Difference Plane I nter sections For Varied Cube Sizes - Results
(1) @) 3 (4) ) (6)

dataset: Feb. 12th
Cube | Total# | #of Test | *Distance | #of AF length: 720.1 m
Size of Test | Pointsin | toClosest | Values| Soln epoch: 350100

Points Cube Test Point #of svs. 6

PDOP: 4.2
10m 495 20 4cm 0 none
05m 75 3 4cm 0 none

* based on 4 satellite double difference solution with PDOP of 74.9

When no AFM solution was found for either case, the double difference plane
intersection search technique with mini-grid cubes around each point (as illustrated in
Figure 5.11) was successfully employed. Around each double difference plane
intersection within the cube, 26 other test points were generated. Results are shownin
Table 5.6. The mini-grid cubes brought test points within 2 cm of the true point. A

number of AF values were determined for both the 1.0 m and 0.5 m cube cases. For the
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1 m cube size, the solution was unresolved because there were two peaks of comparable

magnitude over 10 cm apart. For the 0.5 m case, one peak was uniquely determined.

These results are in keeping with those found using the uniform grid technique.

Table5.6
Mini-Grid Cubes - Results
#of Test| *Distance
Cube Points | toClosest | #of AF Soln
Size in Cube| Test Point | Values
10m 540 2¢cm 16 unresolved
0.5m 81 2cm 5 good

*using mini-grid cube of +2.7 cm around double diff. test point

dataset: Feb. 12th
length: 720.1 m
epoch: 350100
#of svs. 6
PDOP: 4.2

The ambiguity function values for the 1 m cube, double difference plane

intersection with mini-gridsis plotted in Figure 5.27 against the distance from the truth.

Note the similar but sparser pattern of this figure as compared to Figure 5.18 where

results with auniform grid with 1.9 cm spacing are shown. From Figure 5.23, the AF

magnitude at the true point (at 0.0 cm) of 0.99 istoo close in magnitude to the secondary

peak (at about 0.47 cm) of 0.96 to resolve the ambiguities.

As can be seen from these results, the double difference plane intersection

technique produces essentially the same results as the grid technique, abeit more

efficiently since it checks points spaced by ambiguities, not by an arbitrary grid.



123

] maxima

s 1007« dataset: Feb. 12th
5] ] o+ length: 720.1 m
S 0957 * epoch: 350100
‘; ] . . #of svs. 6
= 0.90 7 R, PDOP:. 4.2
3 1™+ * * cubesize: 1.0m3
g 0.85 1 : T
< ]
3 0807 based on mini
= ] grid cubeswith
g 0757 2.7cmgep size
2 0701 - - -

0.19 0.38 0.57 0.76

Distance From True Point (m)

Figureb5.27
1 Epoch AF for 6 Satellite Data Using Mini-Grid Cubes Around Points of
Double Difference Plane I nter section

54.3 AFM Basdline Results

The results presented so far have been limited to small samples from two data sets.
When evaluating processing algorithms, one needs to look at the consistency with which
comparable results may be achieved. For thisreason, a series of results are given for two
data sets of the same 720 m baseline (Feb. 12th and Feb. 15th) and one data set of a
4.1 km baseline (Feb. 17th). Detailled descriptions of these data sets are given in

Chapter 3.

All results shown are based on the ambiguity function method applied over two
minute data samples using two epochs of data; the first and the last. The use of two

minute data samples was chosen to investigate twominute solutions rather than
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five minute solutions, and a 120 s data interval was chosen to moderately reduce the
number of points under consideration while minimizing the chance of rgecting good
points. All solutions are based on six satellite data and a search cube with 0.5 m edges.
Results for coarse-fine grid tests (using a | /4 coarse step size), double difference plane
intersections, and double difference plane intersections with mini-grid cubes are given for

the three data setsin Tables 5.7 t0 5.9.

In each table the second column gives the time of the first epoch of the two minute
sample in GPS seconds of week. For double difference plane intersections results, the
PDORP of the four satellites used is given in the third column. Note, the software used
was not modified to choose the best DOP, hence the poor DOP used for some solutions.
The column headed "# of AF Values' gives the number of test points which survived the
0.7 rgjection criteria of the AF algorithm (Figure 5.4). The AF and distance from truth for
the test point with the largest AF are given in the next two columns followed by the same
information for the test point with the second largest AF. If asecondary peak was evident,
the second largest AF column was filled with the values for the highest point of the
secondary peak instead. For the coarse-fine grid results, the largest and second largest
AF values and distances correspond to coarse grid results. The final column indicates if
the solution found was "good" (solution could be clearly and correctly isolated),
"unresolved" (solution could not be isolated), "false” (the incorrect solution was isolated),
or not found ("none"). Theintegrity check algorithm of Figure 5.15 was used to arrive at

the solution classifications.



Table5.7
Feb. 12th AFM Results (720 m Baseline, 6 Satellites, 0.5 m Cube)

(a Coarse-Fine Grid

Time | #of AF | Largest | 2nd Largest

(sec) Values | AF | Dist. | AF | Dist. | Solution
1| 349999 1 91(.05m none
2 | 350119 2 941.04 91[.05m good
3 | 350239 0 none
4 | 350359 1 951 .02 good
5 | 350479 1 961 .02 good
6 | 350599 2 95(.02 92].28 unresolved
(b)  Double Difference Plane I nter section

Time | 4sv | #0f AF Cargest 2nd Lar gest

(sec) | PDOP| Values | AF | Dist. | AF Dist. Solution
1 | 349999 70 1 99(.01m good
2 | 350119 85 1 1.00] .01 good
3 [ 350239 | 103 1 .98 .01 good
4 | 350359 [ 127 0 none
5 [ 350479 | 157 1 .95] .03 good
6 [ 350599 | 196 1 .99] .00 good
(c) _ Double Difference Plane I nter section With Mini-Grid Cubes

Time 4dsv | #of AF Largest 2nd Largest

(sec) | PDOP| Values | AF | Dist. | AF Dist. | Solution
1 | 349999 70 6 99/ .01m .96].04m good
2 | 350119 85 6 1.00] .01 .95[.04 good
3 [ 350239 [ 103 4 .98 .01 .95[.04 good
4 [ 350359 [ 127 3 .95/ .02 921.29 unresolved
5 [ 350479 | 157 4 97| .01 .95].03 good
6 [ 350599 | 196 9 .99] .00 93] .28 unresolved
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Upon perusal of results, it is evident that the integrity check algorithm of

Figure 5.15 was effective, as no false solutions were accepted. Most solutions are good,

with some unresolved and some not found.
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Table5.8
Feb. 15th AFM Results (720 m Baseling, 6 Satellites, 0.5 m Cube)

(a Coarse-Fine Grid

Time | #of AF Cargest | 2nd Largest

(sec) Values | AF | Dist. | AF | Dist. | Solution
1] 3835 1 90([.31m none
2| 3955 0 none
3| 4075 0 none
4 4195 0 none
5] 4315 2 901 .26 .83].19 none

(b)  Double Difference Plane | nter section

Time | 4sv | #of AR Cargest | 2nd Largest

(sec) | PDOP| Values | AF | Dist. | AF | Dist. Solution
1 | 3835 | 104 1 99[.0Im | —|— good
2 3955 0.8 1 97 .01 good
3 4075 9.3 1 .98[ .01 good
4 4195 8.9 1 .99( .01 good
5 4315 8.5 1 1.00| .01 - --- good

(c) __ Double Difference Plane I ntersection With Mini-Grid Cubes

Time | 4sv | #of AF Largest 2nd Largest

(sec) | PDOP| Values | AF | Dist. | AF | Dist. Solution
1 3835 10.4 6 99(.01m 94(.03m good
2 3955 9.8 5 97( .01 97(.01 good
3 4075 9.3 5 98| .01 95(.02 good
4 4195 8.9 7 .99] .00 901 .32 unresolved
5 4315 85 8 1.00] .01 941 .28 unresolved

Results using the three different search techniques were consistent for the most
part, with the exception of Table 5.8a and 5.8b, where no solutions were found using the
coarse-fine grid, but good solutions were found using the double difference plane

intersection.



Table5.9
Feb. 17th AFM Results (4.1 km Baseline, 6 Satellites, 0.5 m Cube)

(a Coarse-Fine Grid

Time | #of AF Cargest | 2nd Largest

(sec) Values | AF | Dist. | AF | Dist. | Solution
1 | 175466 2 921.02m [ .90].09m none
2 | 175586 2 941 .02 90[.09m good
3 | 175706 2 941.02 .88 .09 good
4] 175826 1 941.02 good
5 | 175946 1 97| .02 good
6 | 176066 1 0.96( .02 good
(b)  Double Difference Plane I nter section

Time | 4sv | #0f AF Cargest 2nd Lar gest

(sec) | PDOP| Values | AF| Dist. | AF | Dist. Solution
1 | 175466 35 0 none
2 | 175586 41 1 99(.04m good
3 | 175706 48 2 .96] .04 93].37m unresolved
4 | 175826 57 1 .95] .04 good
5 | 175946 63 1 .96] .03 good
6 | 176066 82 0 none
(c) _ Double Difference Plane I nter section With Mini-Grid Cubes

Time 4dsv | #of AF Largest 2nd Largest

(sec) | PDOP| Values | AF| Dist. | AF | Dist. Solution
1 | 175466 | 35 4 98/.06m | .95/.03m good
2 | 175586 41 6 .99( .04 95( .04 good
3 | 175706 48 7 .98] .05 93| .37 good
4 | 175826 57 3 97| .04 96 .02 good
5 | 175946 63 5 .96] .03 93| .04 good
6 | 176066 82 2 .96] .04 911 .29 unresolved
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From Table 5.8a, one can see that no AF maxima were detected around the true point. To

seeif the cause of no solutions being found was due to the cos(obs - calc) threshold at 0.7

being too siff, the data was reprocessed with a threshold of 0.5. With the lower

threshold, two peaks were detected for al solutions, one at the true point and one at afase

point. The magnitudes of the AFs were comparable, meaning the solution integrity checks

resulted in unresolved solutionsin all cases. Consequently, using the lower cos(obs-calc)

threshold was of no assistancein finding a"good" solution.
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Based on these findings, it is believed that the coarse-fine grid, with a coarse grid
of | /4 isnot suited for situations where peaks are in close proximity, asthey are using
6 satellite single frequency data. It is believed that Remondi's success of this technique
for his pseudo-kinematic work was due to alarger physical separation of peaks, made
possible by alarger mix of significantly different observations. The relative success of
the coarse-fine technique for the Feb. 12th data and Feb. 17th data may be attributed to

higher satellite elevations and grid corners closer to true points (as a product of chance).

Looking at double difference plane intersection results, one can see that for
Feb. 12th, four of the six solutions had test points within 1 cm of the truth, and all of Feb.
15th double difference plane intersections were within 1 cm of the truth. The better
results for Feb. 15th correlate with the greatly improved four satellite PDOP value, and
give incentive for future double difference plane intersection software to incorporate a
feature to check DOPs. The Feb. 17th data showed poorer results, with solutions within 4
cm of the truth. A few factors could be contributing here; poor PDOPs, the longer

baseline length and chance.

It should be noted that there were only three points of double difference plane
intersection within each search cube. If the cube had been reduced to having 0.4 m edges
instead of 0.5 m edges, only one point would have been detected in most cases (explaining
the 6 satellite - 0.4 cm cube edge plotted in Figure 5.14).

In all cases where the double difference test point solution was within 1 cm of the
truth, good unique solutions were found. When points in a mini-grid cube around the
point of double difference intersection were tested (Tables 5.7¢, 5.8c and 5.9¢), in amost
all cases results were consistent with those of simple double difference plane intersection,
but instead of one AF value being found, severa belonging to the same correct peak were

found. On occasion, solutions otherwise rendered good, were rendered unresolved using
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mini-grid cubes. In al the results presented, only on one occasion did the mini-grid cubes
resolve a solution that could not otherwise be resolved, and that was for the sixth result

tabulated in Figures 5.9b and c.

Results such as the fourth result in Table 5.7b and ¢ may seem somewhat baffling
when all neighbouring points have been well resolved. It isthistype of a situation, where
a solution stands out as an abnormality, that a technique such as that described in
Figure 5.16 becomes important for intercomparisons. To assess whether solution 4 in
Table 5.7c wastruly unreliable or just an outlier, solutions starting each second for the 15
seconds before and 15 seconds after the two epochs were computed. Of the 30 solutions
26 (87%) of the solutions could be isolated. From this (following Figure 5.16) it can be
concluded that solution 4 was just an outlier. The test point coordinates for any of the
other 26 successful solutions at surrounding epochs may be used to compute ambiguity

terms.

As can be seen from the results shown, the AFM is an effective technique for
ambiguity resolution, but needsto be used with care to ensure reliable solutions are
attained. Some basic findingsinclude:

(1) Individua integrity checks, as shown in Figure 5.15, and solution
intercomparisons as shown in Figure 5.16, are very important for ensuring
reliable AFM solutions.

(2) The coarse grid searches are not well suited for data where peaks are relatively
close together.

(8) The four satellites with the best geometry should be used for the double

difference plane intersection.
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(4) Mini-grid cube searches using double difference intersections can be used in
cases where the double difference plane intersection does not yield good

results, but such occasions are apt to berare.
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CHAPTER 6
CARRIER PHASE AMBIGUITY RESOLUTION USING
LEAST SQUARES TECHNIQUES

L east squares ambiguity resolution techniques have been used with conventional
static GPS surveys for a number of years. When used in a rudimentary sense,
ambiguities estimated in aleast squares float carrier phase solution are rounded to their
nearest integer as done in Section 4.3.1. In more sophisticated routines, sets of integer
ambiguities around the initial ambiguity estimates may be tested by carrying out severa
fixed carrier phase solutions. The computed variance factors from each solution are then
compared. If one estimated variance factor can be found to be smaler than and
satistically independent of all others, the ambiguities are said to be resolved. This
procedure is often referred to as an "integer search”. The drawback with such integer

search routines istheir high computational requirements.

The techniques proposed by Frei and Beutler (1990) and Hatch (1991a), namely
the fast ambiguity resolution approach (FARA) and the least squares ambiguity search
technique (LSAST), are smilar to conventiona integer search routines, but have
modifications which greatly enhance their efficiency by reducing the number of sets of

integer ambiguities which need to be searched. The underlying theory for each of these
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techniques is reviewed, followed by results. The relation between AFM and LSAST is
discussed. A comparison of AFM, LSAST and FARA isthen presented.

6.1 FAST AMBIGUITY RESOLUTION APPROACH

The fast ambiguity resolution approach (FARA) requires only carrier phase data.
This differsfrom AFM and LSAST which, as presented herein, use double difference
code observationsto find an initial solution. The FARA algorithm is presented followed

by results.

6.1.1 FARA Algorithm

A summary of the steps used in FARA as described by Frel and Beutler (1990)

aregivenin Table 6.1. Detailed explanations for each step follows.

Thefirst step involves the computation of a double difference carrier float solution
following the observation equation (2.9). The appropriate parameter vector and design
matrix are given in Table 2.3(c) and the least squares solution is computed following

equation (2.14). The adjusted residuals, v , are computed as
N N
v =Ad +w, (6.1)

where A isthe design matrix, d isthe vector of correctionsto the parameter vector and w

isthe misclosure vector. Since the a priori variance factor is unknown, the covariance
matrix of the observations, Cy, is derived using a unit apriori variance factor, and the

o 2 .
aposteriori variance factor, /s\o , Isestimated as



133

-1a
A2 OTC| Vv

So =" Thu (6.2)
where n is the number of observations and u is the number of unknown parameters. The
covariance matrix of the adjusted parameters can then be scaled by the aposteriori
variance factor to give

N /\2
Cp =50Cp. (6.3)

Table6.1
Summary of Stepsin the Fast Ambiguity Resolution Approach

(1) Compute Float Carrier Phase Solution
* edtimate rea vauesfor each double difference ambiguity
» compute residuals and a posteriori variance factor
» scaecovariance matrix of the parameters with a posteriori variance factor

(2) Choose Ambiguity Setsto be Tested
» chooseindividual integer ambiguities which fall within the confidence range of the
real estimatesto form sets of potential integer solutions
* rgect ambiguity sets which have ambiguity pairs with differences which exceed
the confidence range of the differences of the real ambiguity estimates

(3) Compute Fixed Solution for Each Ambiguity Set
» compute fixed solutions, variance factors and parameter covariance matrices

(4) Statistically Test the Fixed Solution with the Smallest Variance
» testif fixed and float solutions are compatible
« test variance factor for normal distribution (c 2 test on the variance factor)

e compare smallest variance factor with second smallest
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The covariance matrix of the parameters, Ca , dlong with the estimated parameters, X ,

provide the information needed to choose sets of integer ambiguities to be tested.

In the second step thisinformation is used following the criteriain Table 6.1 to
choose which ambiguity sets should be tested through fixed least squares solutions. The
fewer the ambiguity sets which need be tested through a least squares solution, the greater
the overall computational efficiency of FARA. For thefirst criteria, the integer ambiguity
ranges are determined based on confidence intervals around the real ambiguity solutions
using the appropriate diagonal components of éQ . Letting Nj represent an adjusted real

value ambiguity from the float solution and NA| represent a potential integer value for the

same ambiguity, then
Pj{Nj-xtdf,1-a/2*sNj £ NAj £ Nj+xtdf1-a/2°sNj}=1-a. (6.4)

Here P{ } represents the probability for a certain confidence level 1- a and xt df 1-a/2
represents the student t distribution for df degrees of freedom and a significance level of
a. The standard deviation of the float solution ambiguity, sNj, is the square root of the

appropriate diagonal component of the covariance matrix, 67)2 . Integer ambiguities which

fulfill the probability statement (6.4) are used to generate potential sets of ambiguities as
illustrated in Tables 5.2 and 5.3.

The second criteria given for choosing ambiguity sets to be tested makes FARA
unique as compared to other rapid ambiguity resolution techniques. In each set of
potential ambiguity solutions, pairs of ambiguities are considered. The difference between
two real ambiguities and the difference between two corresponding potential integer

ambiguities are formed asfollows:

Nij = Nj - Nj (6.5)



135

NAjj = NA;j - NA| (6.6)

The standard deviation of the real ambiguity differences Njj is

2 2
SNij=\/SNi - 2SNjNj * SN;j (6.7)

2 2
where s Njj ' SN; and SNiN;j are extracted from 6/)2 .

The probability statement relating the real ambiguity differences with potential ambiguity

differencesisthen written as

Pj {Nij - xt,df,1-a/2*SNjj £ NAjj £ Nijj+ Xtdf1-/2*SNjj} =1-a. (6.8)
j |

Ambiguity setswith pairs of ambiguities which do not fulfill equation (6.8) are rejected
from consideration. Note that since the same potential ambiguity pairs may occur in
several ambiguity sets, awell designed routine will minimize the amount of searching

using equation (6.8) asdetailed in Frel and Beutler (1990).

The third step in FARA requires computing batch least squares solutions with
fixed ambiguitiesfor al potential ambiguity sets which survived the probability statements
of equations (6.4) and (6.8). The required formulation is described in Section 2.3. The
adjusted parameters and a posteriori variance factors from the fixed solutions are used in

the fourth and final step of FARA.

The fourth step tests the fixed solution for the ambiguity set which yields the
smallest variance factor. The fixed position vector XA is compared to the float position
vector X to check for compatibility. Although not explicitly given in Frei and

Beutler (1990), this may be formulated for each coordinate i as

. A- N N . /\- N
Pi{xi-xtdf,l-a/2*sx; £ XAi £ Xij+Xtdfl-al2*sy; } =1-a,  (6.9)
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assuming the standard deviation of X Aj is much smaller than X i. The aposteriori

variance factor is checked for compatibility with the a priori variance factor by performing

ac2 test of the variance factor (Vanicek and Krakiwsky, 1982). Thisisformulated as

2

XC24f:a/2 So XC24f:1-a/2

e £ — £ —g (6.10)
So

where xc 2df-a/2 and X¢ 2df:1-a/2 denote the chi-squared distribution with df degrees of

freedom. The fixed solutions with the smallest and second smallest variance factors are

then computed to ensure their independence. This comparison is given as

N2, XFdf1;df2;a - (6.11)

2, . : 2 . :
where'§0 " isthe smallest variance factor, 's\o is the second smallest variance factor, and

XFdf1:df2:1-a/2 Isthe F (Fisher) distribution for df1 degrees of freedom (for the solution

with the smallest variance factor) and df2 degrees of freedom (for the solution with the
second smallest variance factor) and with asignificancelevel a. If the fixed solution with
the smallest variance factor fails any of the tests of equation (6.9) to (6.11) the data used

is deemed to be insufficient to correctly resolve ambiguities.

FARA, like all the rapid ambiguity resolution algorithms discussed in thisthesis,
is much more effective using dua frequency P code data. Additiona steps which
incorporate dual frequency P code data through wide-laning and have similar statistical

foundations to those steps listed above are also given in Frei and Beutler (1990).



137

6.1.2 FARA Results

The fundamental steps of the fast ambiguity resolution approach as described by
Frei and Beutler (1990) were implemented in a C-language program and tested with the
Feb. 12th, 15th and 17th data sets (see Chapter 3 for data set details). Investigations of
FARA discussed here differ from those of AFM and LSAST, since theinitial coordinate
estimation steps could not be separated from the ambiguity resolution procedure.
Therefore, instead of showing results starting the ambiguity searching around a "true"

point, searching is based around afloat solution estimate.

One cannot expect good results using FARA over periods as short as two minutes
since afloat solution over such a short period would be too weak to provide good
coordinate and ambiguity estimates. Thisis better visualized by referring to Figure 4.1,
which shows the change in the relative geometrical dilution of precision (RGDOP) as a
function of time. Accordingly, FARA investigations made here are based on 5 minutes of

data.

Tests were conducted using two 5 minute data periods on Feb. 12th, 15th and 17th
at a60 sdatarate. These tests proved to be generally successful. Similar tests using the
same 5 minute data periods at a 15 s data rate were unsuccessful. Results for one of the
successful FARA 5 minute solutions are reviewed in detail, followed by an explanation for

the lack of success ataa 15 srate, and a summary of results for Feb. 12th, 15th and 17th.

Results pertaining to the application of FARA using 5 minutes of dataat a60 s
datarate (6 epochs) on Feb. 12 from 349999 to 350299 seconds of GPS week are
presented in Tables 6.2 t0 6.4 and Figures6.1 and 6.2. In Table 6.2 the ambiguity
estimates attained from a float solution and their respective standard deviations are shown.

True ambiguities are also shown for comparison purposes. It can be seen that two of the
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five ambiguities would be rounded to the incorrect ambiguity if anearest integer algorithm
was used. Equation (6.4), based on the Student t distribution, was applied to define
ambiguity ranges. The maximum and minimum values used were rounded to the nearest
integer. Solutions using significance levels of 0.1, 0.01 and 0.001, which correspond to
Student t statistics of 1.72, 2.82 and 3.79 respectively (for the 22 degrees of freedom
applicable here) were attempted. As shown in Table 6.4, the smaller significance levels
resulted in larger confidence intervals and a dramatic increase in the number of ambiguity

setsto be considered as potential solutions (from 72 for a = 0.1 to 1200 for a = 0.001).

The ambiguity differences, formulated following equations (6.5) and (6.6) and the
respective standard deviations formulated using equation (6.7) are shown in Table 6.3.
The number of ambiguity sets under consideration were greatly reduced by applying
equation (6.8) to thisdata. From Table 6.4 it can be seen that a significance level of 0.1
resulted in al ambiguity sets being rejected, whereas a significance level of 0.01 and 0.001
resulted in 9 and 24 ambiguity sets being accepted respectively. This demonstrates the

sengitivity of FARA to the chosen significance level a.

Fixed solutions were computed for the 9 and 24 ambiguity setsreferred to in
Table 6.4. The standard deviations (square root of the variance factor) for each of these
solutionsis plotted against the distance from the true solution in Figures 6.1 and 6.2 for

significance levels of 0.01 and 0.001 respectively.



Table6.2

Ambiguity Estimates and Standard Deviations

(Feb. 12th, 720 m, 6 satellites, 5 min., 60 sdatarate)

Real Ambiguity True Standard
Satellite Pairs Estimate, N;j Ambiguity Deviation, ON;

(cycles) (cycles) (cycles)
2-19 -17,329,426.7 -17,329,426.0 0.6
6-19 -14,178,677.6 -14,178,677.0 04
11-19 -11,027,757.7 -11,027,758.0 04
16-19 1,575,518.2 1,575,519.0 04
18-19 15,754,175.6 15,754,176.0 0.2

Table6.3

Ambiguity Differences and Their Standard Deviations
(Feb. 12th, 720 m, 6 satellites, 5 min., 60 sdatarate)

Satellite Pairs Real Ambiguity True Ambiguity Standard
Used in Difference Difference Deviation of
Differencing Estimates, Nj-N;j (cycles) Difference, ONjj
(cycles) (cycles)
2-19, 6-19 -3,150,749.2 -3,150,749.0 0.2
2-19, 11-19 -6,301,668.1 -6,301,668.0 0.7
2-19, 16-19 -18,904,945.1 -18,904,945.0 0.2
2-19, 18-19 -33,083,601.7 -33,083,601.0 0.4
6-19, 11-19 -3,150,918.9 -3,150,919.0 0.6
6-19, 16-19 -15,754,195.9 -15,754,196.0 0.1
6-19, 18-19 -29,932,852.5 -29,932,852.0 0.3
11-19, 16-19 -12,603,277.0 -12603277.0 0.7
11-19, 18-19 -26,781,933.6 -26,781,933.0 0.4
16-19, 18-19 -14,178,656.6 -14,178,656.0 0.4




Table6.4
Number of Ambiguity Sets Remaining After Testing Confidence Intervals
(Feb. 12th, 720 m, 6 satellites, 5 min., 60 sdatarate)
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Statistical Par ameters
a=01 a=0.01 a =0.001
Criteria For Selecting df =22 df =22 df =22
Ambiguity Sets t=1.72 t=2.82 t=3.79
Nj, SN j and confidence interval 72 384 1200
Ni-Nj,SNij and confidence interval 0 9 24
£ 010
£ datase: Feb. 12th
S 008 r length: 720.1m
= - epochs. 349999-350299
S 006 * datarate: 60s
a 1 Lt #of svs: 6
5 0047 . sig. level: 0.01
3 002 :
- )
© +
7 0.0
0.00 0.19 0.38
Distance From Truth (m)
Figure®6.1

FARA Standard Deviations Versus Distance From Truth For a = 0.01
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E o +
£ 010 1 dataset: Feb. 12th
S 008 . + «| length: 720.1 m
T ] epochs: 349999-350299
g 006 s datarate: 60 s
a) ] - " + #of svs. 6
o 0.04 7 ), sig. level: 0.001
S 002 = :
c
© +
& 0.00 " y

0.00 0.19 0.38

Distance From True Point (m)

Figure 6.2
FARA Standard Deviations Versus Distance From Truth For o = 0.001

In both Figures 6.1 and 6.2 the smallest variance factor is clearly distinguishable
at 1 cm from the truth with a double difference standard deviation of 3mm, and the
second smallest is some 17 cm from the truth with a standard deviation of 17 mm. The
Fisher test of equation (6.11) agreed with the hypothesis of the solutions with the smallest
and second smallest variance factors being independent, supporting the point nearest the
true point as corresponding to the correct set of integer ambiguities. It can be seen from
the figures that there was no loss of information or increase in difficulty in distinguishing
the correct solution by using a significance level of 0.001 instead of 0.01. In this
statistical application, the additional computational burden of using a smaller significance
level is negligible compared to the risk of rejecting a good observation, hence the use of a
0.001 significance level isreasonable. Thisisthe value used in examples given by Frel

and Beutler (1990).

As previously mentioned, using the same data at a 15 srate instead of a 60 srate
proved to be unsuccessful. When applying the second confidence interval criteria of
equation (6.8) all potentiad ambiguity sets were rgected from consideration. The

explanation for this lies with suspected correlations, likely due to multipath and internal
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measuring effects, between the data, which eradicates the underlying datistica
assumptions. Dueto the statistical testing which underlies FARA, normally distributed
uncorrelated observations are vital. Recalling the multipath correlations shown for code
observations in Chapter 4 and knowing that similar cyclic multipath behavior characterizes
carrier phase observations (Georigiadou and Kleusberg, 1988), one would expect the
assumptions of normally distributed uncorrelated observations to be a potential source of
problems. Itisinteresting that Frei and Beutler (1990) use adatainterval of 60 sin their
data processing examples as opposed to a smaller datainterval (e.g. 15s). Thelonger
data rate avoids overly optimistic covariance information which could result from short
term correlations. Long term cyclical fluctuations due to multipath could still pose a

problem.

FARA results from Feb. 12th, 15th and 17th are presented in Tables 6.5 to 6.7.
Two 5 minute solutions, at a 60 s datainterval, were computed for each day. There were
22 degrees of freedom for each solution. The times given in the second column of each
table are the times of the first epoch of observation used. For each solution period, two
sets of results were computed, one based on a = 0.01 (t = 2.82) and the second based on
a =0.001 (t = 3.79). Inprevious discussions it was stated that it iswiseto use a =
0.001. However, memory limitations of the program and computer configuration used to
test FARA would not support the large number of pointsto be considered in some cases
when t = 3.79, but solutions were still possible whent = 2.82. (Program optimization
could overcome this problem but was not pursued in this research.) Consequently, to
produce results for all data sets and allow for comparisons, solutions for both t = 2.82 and

t = 3.79 are presented.

In each table, the number of ambiguity sets remaining after the rejection criteria
based on confidence intervals for ambiguities (S j asper equation (6.4)) and ambiguity
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differences (s j s per equation (6.8)) are given. If the described computer memory

limitations were exceeded in testing, "mem." is entered in the table and no further entries
are made. The variance factor (scaled by 1,000,000) and the distance from the truth for
the corresponding fixed carrier phase solution for the smalest and second smallest
variance factors are tabulated. The ratio of the variance factors, as per the Fisher test
(equation (6.11)) isalso given.

Table6.5

Feb. 12th FARA Results
(720 m basdline, 6 satellites, 5 min., 60 srate)

Time HSets After Smallest | 2nd Smallest
(sec) t ONj | ONjj [ vf*| Dist. vf* | Dist. | Ratio

la| 349999 | 2.82| 384 9 6.7]0.01m | 3025 [0.17m | 45.1

1b| 349999 | 3.79| 1200 24 6.7 0.01 302.5]0.17 45.1

Z2a| 350299 | 2.82| 960 40 9.5 0.00 183.6 | 0.38 19.3

2b| 350299 | 3.79 2520 | mem.

Table 6.6
Feb. 15th FARA Results
(720 m basdline, 6 satellites, 5 min., 60 srate)

Time #Sets After Smallest | 2nd Smallest
(sec) t ONj | ONjj | vf*|Dist. vi* | Dist. | Ratio

la| 3835 |282| 480 9 199.6 | 0.48 | 707.9 | 0.60m 35

m
1b| 3835 | 3.79| 800 40 106 | 0.00 | 199.6 | 0.48 18.8
2a| 4135 |2.82 900 19 | 12241038 | 316.6[0.79 2,6

2b| 4135 | 3.79| 2700 | mem T T

2b| 4135 | 3.20( 900 37 86[0.00 [ 122.4]0.38 14.2
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Table6.7
Feb. 17th FARA Results
(4.1 km basdline, 6 satellites, 5 min., 60 srate)

Time #Sets After Smallest 2nd Smallest
(sec) t ONj | ONjj [ vf*|Dist. vi* | Dist. | Ratio

la| 175466 | 2.82| 216 0 - | - | - -

1b| 175466 | 3.79| 480 27 | 12.3|0.04m | 188.1| 0.51m 15.2

2a| 175766 | 2.82 600 29 | 24.410.04 299.9 | 0.40 12.2

2b| 175766 | 3.79| 3600 | mem

* variance factor, scaled by 1,000,000, in m2

First examining Table 6.5, for a 720 m baseline, one can see the general success of
FARA, with the only shortcoming being memory limitations of the program used (for
solution 2b) rather than the algorithm itself. Table 6.7 shows similar successfor a4.1 km
baseline. For solution 1 of the 4.1 km baseline, all potential solutions were rejected from

consideration using t = 2.82, but the correct solution was found using t = 3.79.

The solutions for Feb. 15th were not as clean as those for Feb. 12th and 17th.
For both observation periods on Feb. 15th, when t = 2.82, the correct ambiguity sets were
rejected from consideration and points 0.48 cm and 0.38 cm from the true point, for
solutions 1a and 2a respectively, had the smallest variance factors. Whent = 3.79 the
solution for the first observation period was successfully determined and the solution for
the second observation period was not possible due to program memory limitations. To
ensure a correct solution would be found if the program used had not been limited by
memory constraints, a solution with t = 3.2 (solution 2c¢) was attempted and found to be

successful.
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Note that for the two cases where the correct solution was not found (i.e., for
Feb. 15th, solutions 1a and 2a) the variance factor ratios of 3.5 and 2.6 were very small.
In comparison the successful solutions had ratios ranging from 12.2 to 45.1. For the
27 degrees of freedom applicable for the solutions here and a = 0.01, the critical value for
the Fisher distribution is 2.6. Using this value, all the solutions would pass the Fisher
test, including the two false solutions on Feb. 15th whent = 2.82. This suggests the

Fisher test as applied here istoo lenient.

In summary, FARA has been found to be generally successful at a 60 s data rate
using five minutes of six satellite single frequency data over 720 m and 4.1 km baselines.
The use of confidence intervals around ambiguity differences effectively eiminates
numerous potential ambiguity sets which would have otherwise been considered. The
limitation with FARA isits sengitivity to elements which defeat the statistical normality of
the data. To be applied routinely, a greater understanding of, and means to cope with,

correlations between epochs of GPS observations are required.

6.2 LEAST SQUARESAMBIGUITY SEARCH TECHNIQUE

The least sguares ambiguity search technique (LSAST) as described by
Hatch (1991a) and Hatch (1991b) was initially designed for kinematic positioning and
based on differential corrections to support efficient real-time processing. It is modified
here to apply to double differencing. The algorithm for LSAST is presented, followed by

results.
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6.2.1 LSAST Algorithm

The LSAST can be broken down into three steps; initid coordinates of an
unknown point are estimated, sets of ambiguities around the initial point are defined and
the least squares ambiguity search algorithmis applied. Initial coordinates of an unknown
point may be estimated using a double difference code solution as discussed in Chapter 4
and avolume around this point may be defined by using code solution accuracy estimates.
Sets of ambiguities for the primary observations are generated by finding the range of
ambiguities which fall within the volume, as described in Section 5.2.2. Here "primary"
observations are those double difference observations necessary to solve for a unique
position, and "secondary" observations are the remaining redundant double difference
observations. The next step forms the basis of the LSAST and so is explained in some

detail.

The LSAST algorithm is based on a sequential adjustment, first using the primary
observations for an initial solution and then using the secondary observations to update
the solution. Equations used by Hatch (1991a) follow the phase expression formulation
as given in Krakiwsky (1990) and Adams (1987). These equations are shown below for
the parametric case applicable here. The matrices and vectors are as defined in Section 2.3
but have been annotated with the subscript "p" for primary observations, "s'for
secondary observations and "c" for the complete set of observations (i.e. primary plus
secondary). The correction vector for the solution using the primary observations, d p IS
given as

dp= gC[;ApCEM Ap C|-F1, Wp. (6.12)
The solution is then updated using the secondary observations, giving the updated

correction vector
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N N '1 T N
d c- d p- NC As CIS(WS + Asdp) , (613)
where
g\l T-1 0
NC = p + A5C|SAsﬂ . (614)

The LSAST agorithm which applies these equations, with the goal of efficiently
resolving integer ambiguities, is shown for asingle epoch in Figure 6.3. Explanations of
each step are given, followed by a description of how severa epochs would be
incorporated into this algorithm. It is assumed that one begins with a number of potential

ambiguity setsfor the primary double difference observations.

At asingle epoch, the only variable of equation (6.12) which changes with each
ambiguity set isthe misclosure vector, wp, and the only variable portion of equation (6.13)

which changesisthe innovations vector, ys where
AN
ys=(ws + Agdp) - (6.15)

Thisismore readily apparent by expanding the general form of the misclosure vector.
Rearranging the observation equation (2.9) and neglecting error terms, the misclosure

Vector is
w=NDr - (NDF +1NDN).  (in metres) (6.16)

At agiven epoch, the calculated and observed double differences (NDr and NDF) will
remain unchanged while the double difference ambiguities (NDN) change with each
ambiguity set being tested. For efficiency, the coefficients of wp and ys, in theinitial
update equations ((6.12) and (6.13) respectively) may be precomputed as shown in the
first box of Figure 6.3.
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Figure6.3
Major Elements of LSAST for a Single Epoch
Next, the first ambiguity set to be tested is used to compute a corresponding
potential solution using the primary observations following equation (6.12). The

ambiguities for each secondary observation are then calculated as
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NDNs = nint(NDF - NDr /1)  (in cycles) (6.17)

where nint(+) is the nearest integer operator, NDF the observed double difference and
NDr the calculated double differences based on the position determined by the unique

primary observations solution.

It is important to understand why equation (6.17) is used to derive the integer
ambiguities for the secondary satellites. As previously mentioned, the means of choosing
the best set of ambiguitiesis by choosing the one which yields the solution with the
smallest variance factor, which also implies the solution with the smallest residuals. When
the primary solution is updated by the secondary observations (equation (6.13)), the
resulting residuals are the smallest when the innovations vector is the smallest. Choosing
ambiguities for secondary satellites using equation (6.17), i.e. choosing the ambiguities
which come closest to the primary solution, will result in the smallest innovations vector
and hence the smallest residuals. This step diminates needlessly searching other

extraneous potential secondary satellite ambiguities.

Using the computed ambiguities for the secondary satellites, the updated position
vector may be computed following equation (6.13). The corresponding residuals, v c for

the updated solution, d ¢ are computed as
N N
Ve=wc+Acdc (6.18)

The variance factor for this single epoch can findly be caculated using the same

formulation as used in FARA (equation (6.11)), i.e.:

=—. (6.19)
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Here the number of observations, n, will correspond to the number of double difference
observations and the number of unknowns, u, will be three, for the unknown x, y and z

coordinates.

As shown in Figure 6.3, the computed variance factor is compared to some
prespecified threshold. If it exceeds the threshold, the ambiguity set is rgected from
consideration and the next ambiguity set is extracted for testing. If it is within the
threshold it issaved. The processis repeated until all potential ambiguity sets have been
tested.

Figure 6.3 summarizes the steps for asingle epoch. Severa epochs are combined
by Hatch (1991b) by independently applying the least squares algorithm (as shown in
Figure 6.3) at successive epochs and meaning the resulting variance factors. The number
of potential ambiguity sets at each successive epoch is reduced through rejections from
variance factor threshold testing. Ideally, only one unique ambiguity set will remain after
variance factor testing. The success of meaning observations over severa epochs is

dependent on the data being free of cycle dips.

In the implementation of LSAST described by Hatch (1991b), the square root of
the variance factor was first tested against athreshold of 0.009999 L 1 wavel engths (about
2 mm). Through testing he found this value to be too pessimistic and so he raised the
threshold. It isthistesting, to accept or discard potential solutions, which Hatch claimsto
be one of the best features of the algorithm since only viable solutions are saved and

considered at successive epochs.

Some enhancements of LSAST may be implemented. First, the position estimated
with the primary satellites can be checked to seeif it falls within the prescribed search

cube. If it does not, the ambiguity set being considered can be regjected. Second, a Fisher
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test to compare resulting variance factors, as used with FARA (equation (6.11)) can be
carried out with the smallest and second smallest variance factors. Note that using this
test at a single epoch means only two degrees of freedom exist for observations from
six satellites (five double differences). Accordingly, the ratio between the smallest and
second smallest variance factors would be 19 at a significance leve of 0.05, 39 at a
significance level of 0.25 and 99 at a significance level of 0.01. If means of variance
factors between epochs are taken (as proposed by Hatch) these would ill be the

appropriate test statistics.

In the following section LSAST results are presented, based on a C-program
implementing the algorithm shown in Figure 6.3. In the program, variance factors over
consecutive epochs are averaged and points outside the prespecified search cube are

rejected.

6.2.2 L SAST Results

The LSAST was applied to the same epochs of observations as the AFM solutions
(Tables 5.7 t0 5.9) for Feb. 12th, 15th and 17th (see Chapter 3 for data descriptions). The
search cube used had 0.5 m edges and was centered around the "true" point. Results are
givenin Tables 6.8 t0 6.10. In each table, the first column gives the solution number, the
second column indicates the first epoch of the 2 minutes over which LSAST is applied,
the third column shows the PDOP for the four primary satellites and the fourth column

gives the number of points of intersection of the primary satellites within the search cube.

Comparing the PDOPs and the number of points in the cube between Tables 6.8,
6.9 and 6.10, the relationship explained by Hatch (1991b) and graphically illustrated in
Figure 5.10, iswell demonstrated. The comparatively good PDOPS of Feb. 15th resulted
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in five to nine points in the cube, whereas the poorer PDOPS of Feb. 12th and 17th had
two to four pointsin the cube. Note, dight variationsin the number of pointsin the cube
for solution sets with similar PDOPS are likely a result of noise or errorsin the data
(particularly multipath) which causes alterationsin a given solution depending on the

epoch of data used.

In each of the Tables 6.8 to 6.10, variance factors for the ambiguity sets with the
smallest and second smallest AF are shown along with their distances from the true point.
The variance factors are in units of metres squared, scaled by 1,000,000. They are the
product of two variance factors (with 2 degrees of freedom) meaned over two epochs.
Since LSAST is based on testing ambiguity sets rather than point coordinates, the precise
magnitude of the distance from the truth is not critical, but the relative distance between the
ambiguity sets which yield the smallest and second smallest variance factors are

significant.

The ninth columns of Tables 6.8 to 6.10 give the ratio between the second smallest
and smallest variance factor, which isused in the F test of equation (6.1). For a 95 per
cent confidence level (significance level of 0.5), and two degrees of freedom, following
equation (6.1), the ratio between the second smallest and smallest LSAST results should
be greater than 19. The final column in the tables shows " 0" if the ratio is above 19,
indicating ambiguities could be resolved, and an"" " if the ratio falls below 19, indicating

the ambiguities could not be resolved with Statistical certainty.



Feb. 12th L SAST Results (720 m Baseline, 6 Satellites, 0.5 m Cube)

Table6.8
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Time 4sv | #Points Smallest 2nd Smallest >

(sec) | PDOP| in Cube | vf* [ Dist. | vf* Dist. Ratio | 19?
1 | 349999 70 3 6[.0lm 590 ( 0.34 m 98 O
2 | 350119 85 3 12 (.01 420 | 0.30 35 O
31350239 | 103 3 80| .01 37410.33 5 ’
41350359 | 127 2 80| .01 310 0.29 4
51350479 | 157 4 121.01 170 0.28 14
6 | 350599 | 196 3 6].01 1381 0.27 23 @)
* variance factor, scaled by 1,000,000, in m2

Table6.9
Feb. 15th L SAST Results (720 m Baseline, 6 Satellites, 0.5 m Cube)

Time 4sv | #Points Smallest 2nd Smallest >

(sec) | PDOP| in Cube | vf*|Dist. vi* | Dist. Ratio 19?
1| 3835 104 5 36|.0lm | 1392]|0.24 m 39 O
2| 3955 9.8 6 36| .01 8991 0.21 25 O
3| 4075 9.3 7 22| .01 8701 0.21 40 O
4 [ 4195 8.9 9 13| .01 2351 0.26 18 ’
5| 4315 8.5 7 4].01 208 | 0.27 52 O
* variance factor, scaled by 1,000,000, in m2

Table6.10

Feb. 17th LSAST Results (4.1 km Baseline, 6 Satellites, 0.5 m Cube)

Time 4sv | #Points Smallest 2nd Smallest >

(sec) | PDOP| in Cube | vf*| Dist. | vf* |Dist. Ratio 19?
1 | 175466 35 3 32 0.04m | 2280(0.19m 71 O
2 | 175586 41 18 0.02 2531(0.12 141 O
3 | 175706 48 4 39 0.03 2873] 0.12 74 O
4| 175826 | 57 4 44 0.03 2734] 0.18 62 O
5 | 175946 68 4 77 0.03 2571] 0.18 33 O
6 | 176066 82 4 199 0.03 849| 0.31 4.3 ’

* variance factor, scaled by 1,000,000, in m2
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In al the results shown, the ambiguity set with the smallest variance factor isthe
correct ambiguity set. Nevertheless, using the Fisher datistica test for solution
independence, the ratio between the smallest and second smallest variance factor are
sometimes too small to trust the solution. Note that in these tests, no variance factor
threshold rejection level, as proposed by Hatch (1991a) and shown in Figure 6.3, was
used. If one had been used, the acceptance and rejection of solutions shown in the last
column of Tables 6.8 to 6.10 would likely be different. In some cases only the ambiguity
set with the smallest variance factor would remain, and in other cases no solutions would
remain (Abidin, 1991). The decision of what threshold level to use would be dependent
on thorough empirica testing. In his presentation of the application of LSAST,
Hatch (1991b) reported that he was still exploring ways to determine the acceptability of a

solution.

Preliminary findings show no loss of ambiguity resolution abilities when moving
from a 720 m baseline to a 4.1 km baseline (these investigations are too limited to make
any conclusive statements). Looking at the ratios from the tables, it can be seen that the
results from the 4.1 km baseline appear if anything, better than the results of the 720 m
baselines.

Results shown in Tables 6.8 to 6.10 can be directly compared with AF results
using the double difference plane intersection techniques from Tables 5.7 to 5.9 since
they were derived from identical observations. In all casesusing LSAST, the ambiguity
sets with the smallest variance factors were the correct ambiguity sets. In all cases using
AFM, the test points with the largest AF were the correct test points. The differences
between the LSAST and AFM results are the judgments as to the goodness of the

solutions. From previous discussions concerning each of these ambiguity resolution
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techniques, the decisions as to whether the solutions are trustworthy still leaves much

room for investigations and improvements.

In general, comparing Tables6.8 to 6.10 with Tables 5.7to 5.9, the results seem
reasonably compatible. The relation between the two sets of results will become more
apparent in the discussion of the relations between AFM and LSAST in the following

section.

6.3 COMPARISON OF AMBIGUITY RESOLUTION TECHNIQUES

Three ambiguity resolution techniques that can be used with single frequency data,
AFM, FARA and LSAST, have been described, and results using each technique have
been presented. As previously mentioned, FARA, LSAST and conventional static integer
search techniques all rely on minimizing the variance factor, which is in essence the
minimization of the quadratic form of the residuals. From the discussion in Chapter 5, it
is known that the AFM maximizes the summation of the cosines of the observed minus
calculated double differences. It isshown in Lachapelle et a. (1992) that the fundamental
effect of the least squares and AFM techniques are the same. Furthermore, LSAST can
be derived from AFM. The relationship between LSAST and AFM is shown in the first
section, and the fundamental methodology and characteristics of AFM, FARA and

LSAST arereviewed in the second section.

6.3.1 TheRelationship Between AFM and L SAST

The equivalence of LSAST and AFM (using double difference plane intersection

searches) is shown for asingle epoch case. The implementations of AFM and LSAST
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are discussed, and a better rapid static algorithm for applying these techniques assuming

cycledip free datais presented.

The development of the relation between LSAST and AFM starts by expanding
the AF expression as a Taylor's series (Lachapelle et al., 1992). Rewriting equation (5.5)

to consider only the cosine terms gives

nepoch nsat- 1

AF(xy,2) = a cos, (6.20)

k=1 j=1

~_Kj - Kj
where q=DNF Ojbs - DNIr Cgc(x,y,z) . (in radians) (6.21)
The cosine term can be expanded as a Taylor seriesto give
2 4
_ q q q6
coq=1-5r + 71 - Bl t ... (6.22)

Replacing the cosine term in equation (6.20) with the series expansion of equation (6.22),

but neglecting higher order elements gives

n%)ochnsgt. 1 2

AF(xy,2) » (nepoche(nsat -1)) - q . (6.23)

NI

k=1 j=1

It can be seen that AF(x,y,Z) is maximized when g2 is minimized. Assuming
20
Re2=02 (in metres) (6.24)
2n @

then the sum squares of the residuals (as formulated in the least squares ambiguity search

technique) may be derived from the AF as

2
nepoch nsat- 1 |
5 A V2 2{ nepoche(nsat -1) - AF(xy.2) }55 - (6.25)

k=1 j=1
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Now consider the assumption of equation (6.24). The formulation for the
adjusted residuals, \//\ ,isgivenin equation (6.12). In aconvergent least squares solution d

approaches zero, and so v approaches w. Accordingly, from equation (6.16),
v »w=RDr - (NDF + 1 NDN) (in metres) (6.26)

at convergence. Note the difference between equations (6.21) and (6.26), namely
equation (6.26), used in least squares techniques, includes the doubl e difference ambiguity
term NDN whereas equation (6.21) does not. This is the essence of the difference
between the least squares and the AF techniques. In the equivalence expression of (6.24)
and resulting derivation of (6.25), only fractional values of vV are considered and the
ambiguity term is neglected. Furthermore, neglecting higher order terms means equation
(6.23) isonly valid for small angles (i.e. points close to integer cycles) asillustrated in
Figure 6.4. Taking these points into consideration, it can still be shown that LSAST and
AFM are essentially equivalent when the double difference plane intersection techniqueis

used with AFM (see Section 5.2.2).

1
2 o
(70}

5 // 2 \\

/ 1- 4 7\

1 [ 1\
-p 0 Y

0 (radians)
Figure6.4

Effect of Truncation in Cosine Series Expansion
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With AFM, the point of intersection between three double difference planes
computed using atria set of ambiguities at a single epoch will yield cosg terms of 1 since
by definition g = DNF - DNr = 0 for aunique solution. Similarly, following LSAST, by
definition the residuals for the primary observations will be zero. For the redundant
observations, the AF will measure how well the fractiona ambiguities meet the point
determined by the primary observations, and all but points with small angles g will be
rgected using the cosq<0.7 rgection criteria. For the redundant (secondary)
observations, the LSAST will also measure how well the fractional ambiguities meet the
point determined by the primary satellites (the limitation to fractional ambiguities to be
considered is aresult of equation (6.17)). Hence for AFM using the double difference
plane intersection technique, equations (6.24) and (6.25) are valid. They are not valid if
AFM using grid searches or mini-grid cube searches are used since the LSAST ambiguity

setswill not intersect at the same points as the test grid points.

A minor difference between AFM when using double difference plane intersection
searches and LSAST as applied here, isthat the latter allows for consideration of the
double difference correlations through the use of aweight matrix C_ll in the formulation
of the a posteriori variance factor (equation (6.19)). Hatch (1991a) does not consider
these correlations because he deals with uncorrelated single difference observables rather

than correl ated doubl e difference observables.

There are differences between AFM and LSAST as aresult of their described
implementations with regards to threshold testing and their basis on test points or test
ambiguity sets. Mader (1990) recommends a threshold test of 0.7 for cosq for each
independent observation in AFM. Hatch (1991a) advocates testing the variance factor at
each epoch against some prespecified threshold in LSAST. The implementations of these

thresholds have different effects. For instance, if one observation with a very small
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residual was combined with an observation with alarge residual, Hatch's algorithm may
accept the ambiguity set, whereas if one observation with a cosq of 0.69 was combined
with an observation with a cosqg of 0.99, Mader's algorithm would reject the test point
from consideration. An example of thisis evident by comparing solution 1 of Table 5.9b,
which shows an AFM result, with solution 1 of Table 6.10 which shows aLSAST result
for the identical 2 epochs. Using AFM, no test points passed the cosq < 0.7 test for all
observations. Using LSAST this point would not be rejected if a scaled variance factor

threshold of 40 was set (assuming the variance factor at each epoch to be < 40).

Even using the double difference plane intersection technique with AFM can yield
different results from LSAST over consecutive epochs due to AFM's basis on test points
and LSAST's basis on ambiguity sets. For AFM using the double difference plane
intersection technique, Remondi (1991) computes a unique solution with primary
observables at asingle epoch. At that epoch, test point coordinates are estimated. These
coordinates are then used for all subsequent AF computations asitisthe x, y and z
coordinates being tested. For LSAST, Hatch (1991a) tests sets of ambiguities at
successive epochs. At each epoch a sequential fixed solution is used with these
ambiguities, first using the primary observables and then using the secondary observables.
Consequently, from epoch to epoch, the ambiguity sets being tested remain the same but
the position determinations and respective residuals change. The testing of X, y and z
coordinates with AFM consequently allows for cycle slips, but the testing of ambiguity

sets does not.

The developments for AFM and LSAST have followed procedures used in
publications, which are more directed towards kinematic surveys. Modifications to the

above algorithms described would make them more suitable for rapid static surveys.
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However this does not negate any of the investigations made herein since the underlying

concepts of AFM and LSAST are the samein static or kinematic mode.

In static mode, if software was implemented with efficient and effective cycle dip
detection algorithms for short observation spans, an improved version of AFM or LSAST
could be implemented. In this case, rather than computing a unique solution with the
primary observables at one epoch, solutions could be computed using al epochs with the
primary observables. Thiswould result in a better position estimate by providing some
averaging of short term multipath effects. With AFM, this better solution estimate could
then be used with the AF algorithm. However, in the cycle dip free scenario, AFM does
not prove to be advantageous over LSAST, so consequently aLSAST agorithm could be
applied instead. A sequential LSAST agorithm using primary observables at al epochs,
followed by updating by using secondary satellites at all epochs could be implemented.

Up to this point, the relationship between AFM and LSAST has been reviewed
and the least squares basis for FARA and LSAST has been shown. A comparison of the

three techniques is given in the next section.

6.3.2 Methodology and Characteristics of AFM, FARA and LSAST

The main elements of the ambiguity resolution techniques reviewed in Chapters 5
and 6 are summarized in Table 6.11. Variations of the implementations of each of these
techniques is possible, which may result in modifications of the table entries. The
differencesin the main eements of the ambiguity resolution techniques presented in

Table 6.11 result in differences in their characteristics as presented in Table 6.12.
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In Section 5.3.1, observation conditions under which AFM should be applied to
optimize the chances of success are discussed. These observation conditions apply
equally to FARA and LSAST for the same reasons given in Section 5.3.1, hence the first
entriesin Table 6.12.

Table6.11
Summary of Ambiguity Resolution M ethodol ogies*
[Elements AFM FARA LSAST
initial * code solution * carrier float solution | ¢ code solution
solution
search domain |  test points * ambiguity sets * ambiguity sets
search space |- * kesNj fromcarrier |«
kesx, kesy, kesz fr| float solution kesx, kesy, kesz, fr
om code solution om code solution
meansto  coarse-finegrid * Ni-NjandkesNjj [+ doublediff. plane
reduce * double diff. plane from carrier float intersection of
potential intersection of solution primary satellites
solutions primary satellites
thresholds  cos(obs-calc) <0.7 | » none » § g2 <threshold
selection * maximum AF « minimum § o2 « minimum § o2
criteria
acceptance * only remaining » compatible with float [ « only remaining
criteria solution solution solution
> threshold e Fishertestonratio | Fishertestonratio
» Szerdaiveto of smallest and of smallest and
second largest AF second smallest second smallest
which belongsto variance factor variance factor
secondary peak

* Kk represents a constant
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Under the observation periods required for the three techniques, AFM and LSAST
are shown to have potential for instantaneous sol utions (assuming enough observations
are avallable) whereas for FARA a preference for observation periods of up to five
minutes has been indicated. This is due to the weakness of the carrier phase float

solutions over the short time periods used in FARA.

Of the three techniques used, AFM isthe only method which can tolerate data with
cycledlipssinceit is based on testing points rather than ambiguity sets. Note that AFM
cannot tolerate half cycle dips. This should not be a major concern since most receivers

are designed to avoid half cycle dips.

For both LSAST and AFM using the double difference plane intersection search
technique, primary observables are used to define potential ambiguity sets and potential
test points respectively. In Section 5.3.2 the AFM dangers of the best test point being too
far from the true point are discussed. It isshown that a point too far from the true point
may not be considered as a potential solution, and a false peak may instead be erroneoudy
accepted. It isthis problem which gave impetus to the mini-grid cube search technique. It
is also recommended that the double difference observations from the four satellites which
give the best PDOP be used with AFM. The same arguments for good PDOP apply to
LSAST but are not quite asvital asfor AFM, since agood point is less apt to be rejected
from consideration with LSAST if thresholds are set judiciously.

The last four rows in Table6.12 characterize the effect of code and carrier
multipath on each solution type. The multipath effects have been further categorized by
multipath magnitude and periodicity. Such categorization is warranted since multipath
with large magnitudes (for instance C/A code multipath of 10 m instead of 20 cm) will
have different implications than multipath with large periods but small magnitudes (for

instance 60 minute periods instead of 5 s periods).
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The effect of carrier multipath on LSAST and AFM are essentially the same.
Both have the effect of causing the potential rejection of a good solution if an observation
istoo corrupted by carrier multipath to have an ambiguity which approaches an integer.
For both FARA and LSAST residuals and the resulting variance factors will be larger, the
larger the multipath magnitude. Similarly, for AFM, the AF values will be smaller. The
longer the periodicity of carrier multipath as compared to the data interval used, the more
correlated the observations. Asaresult covariance matrices for the results will be too
optimistic. The variance factor for FARA will also be too optimistic, due to larger degrees
of freedom than warranted, considering the correlated nature of the observations. The
same would be true of LSAST if observations over several epochs were combined in an

adjustment.

Code observations are used in the same manner for LSAST and FARA, so
consequently multipath will have the same effects on the code observations. If the
magnitude of code multipath ishigh, theinitial search cube will be large, meaning a greater
computational burden, and more potential for accepting false solutions. Periodicitiesin
code multipath which exceed the data interva used will result in overly optimistic
covariance information. If thisoverly optimistic covariance information is used to define a
search cube, the resulting cube may be too smal, resulting in failure of ambiguity

resolution.

The natural question which follows investigations and comparisons of ambiguity
resolution techniquesis, which isthe "best"? However, it is more important to understand
the behavior of the measurements and techniques than to know which method is the
"best", because if a "best" ambiguity resolution technique is used inappropriately,

erroneous results are likely.
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Table6.12
Characteristics of Ambiguity Resolution Techniques
AFM FARA LSAST
observation - satellites > 150 « satellites> 150 - satellites > 150
conditions « baselines<10km |« basdlines<10km |+ baselines<10km
o themores satellites | » the more satellites | « the more satellites
the better the better the better
observation * potential for « five minutes * potential for
period Instantaneous preferred Instantaneous
(L1 only) solution solution
tolerant of cycle]e yes * no * No
slips?
small primary |+ yesor may omit * not gpplicable * yes, but less
obs. PDOP solution (for important than for
important? double diff. plane AFM
Intersection)
effect of carrier |+ potentia rgection |« larger residualsand | potentia rejection
multipath of good solution variance factor of good solution

(magnitude)

o smaler AF

* larger residuals and
variance factor

effect of carrier
multipath
(periodicity)

* not major problem
since AFM not
subject to statistical
testing

* SNj and sNjj too
optimistic, true
solution potentialy
omitted

» overly optimistic
variance factors

* overly optimigtic
variance factors if
adjustment over
severd epochs

effect of code * poor initia * none * poor initia
multipath coordinate estimate, coordinate estimate,
(magnitude) large search cube large search cube
effect of code * Sx, Sy, Sztoo * none * Sx, Sy, Sztoo

multipath
(periodicity)

optimistic and
solution potentially
not in search cube

optimistic and
solution potentially
not in search cube
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Nevertheless, generdizations of the suitability for the above techniques in different
situations are possible. (Note these generalizations are all based on the premise of using

only L1 carrier phase data with high accuracy C/A code measurements.)

If data which has not been prescreened for cycle slipsis used, AFM is the best.
Although independent cycle slip detection and correction algorithms are possible, they
may be ineffective over very short observation periods (e.g. one minute). If datais cycle

dip free, AFM has no advantages over LSAST.

One shortcoming with FARA isitsinability to take advantage of high accuracy
code measurements. In Section 4.3.2, carrier float solutions over a5 minute period were
shown to have the same level of accuracy as precise C/A code solutions over the same
period. For shorter time periods arapid deterioration in carrier float solutions can be
expected. Consequently, for observation periods less than five minutesin length LSAST
is more suitable than FARA. Another shortcoming with FARA isits sensitivity to the
satistical parameters upon which it is based. Nevertheless, applying FARA over

five minutes at a60 s data interval consistently proved to be successful.

In applications of AFM and LSAST in a search cube around the true point with
0.5 m edges, the true points were found using just two epochs of observations over two
minutes, although in many cases there was not enough certainty in the solution to support
the answer as being correct. Furthermore, the code solution accuracies found in Chapter 4
were not good enough to support a 0.5m cube, athough use of overly optimistic
covariance accuracy estimates might lead one to believe otherwise. With more satellites,
one would expect AFM and LSAST to be successful using alarger search cube. Using
LSAST in a batch mode over five minutes (but still using a sequential adjustment for
primary and secondary satellites), one would expect results consistent with FARA. This

would assume cycle dip free data, as does FARA.
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The combination of ambiguity resolution techniques proposed in Abidin (1991) holds
merit. LSAST can be used with AFM to check for cycle dlips. It would be interesting to
compute accurate code and float solutions smultaneously, and use the covariance
information from the float solution along with a search cube from the code solution in

ambiguity resolution.
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CHAPTER 7
CONCLUSIONSAND RECOMMENDATIONS

Rapid static GPS holds great promise for precise and efficient surveying. Inthis
thesis, rapid static survey measurements and techniques applicable for single frequency
high accuracy C/A code receivers were investigated. Coordinate estimation over rapid
static time periods (up to five minutes), based on double difference code measurements,
carrier measurements and code-carrier measurements combined, were studied using
preanalysis and post-processing techniques. Rapid ambiguity resolution using the
ambiguity function method, the fast ambiguity resolution approach and the least squares
ambiguity search technigue were tested and compared. Conclusions made throughout this

thesis are given below, followed by recommendations for further investigations.

7.1  CONCLUSIONS

Conclusions are grouped under those related to multipath effects, reliability
preanalysis, and ambiguity resolution techniques. The grouping by multipath effectsis
appropriate since the magnitude and periodicity of multipath on code and carrier
measurements was prevalent in most of the investigations made in this thesis. Note that

although receiver measurement accuracies also affect solutions and are intertwined with
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multipath, the focus in this thesis has been on multipath, sinceit is generally larger in

magnitude and tends to have longer correlation periods.

1) Multipath Effects

a)

b)

d)

Averaging across a full observation period tends to mitigate the influence of the
magnitude of multipath and usually resultsin the best possible solution. However,
since multipath can have periods extending over an hour, one cannot expect to

eliminate its effects through averaging in rapid static surveys.

The magnitude of carrier multipath and measurement noise can affect ambiguity
resolution techniques. For example, if threshold levels used to reject points from
consideration in AFM are too rigid, observations corrupted by multipath may
result in a correct point being unduly rejected from consideration. In a severe

case, carrier multipath could prohibit successful ambiguity resolution.

The cyclicd nature of multipath can result in overly optimistic covariance
information for code, carrier or code-carrier combined solutions. Thisis because
GPS adjustment solutions are based on the assumption of observations being
uncorrelated between consecutive epochs. The extent to which observations are
correlated between consecutive epochs is a function the receiver measurement
characteristics, and more significantly, the periodicity of the multipath in agiven

data set relative to the datainterva used.

The effect of overly optimistic covariance information, resulting from correlations
caused by the cyclical nature of multipath, has implications on the significance of
accumulated relative dilution of precisions (RDOPs). Theoretically, the product of
the reative dilution of precison (RDOP) and the measurement accuracy

(including al errors) gives the achievable solution accuracy. Testswith real data
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show this relationship to be valid for instantaneous code solutions (i.e., at one
epoch) but invalid for accumulated code solutions (i.e, over severa epochs).
Furthermore, although RDOPs show ambiguity resolution is theoretically possible
using a simple combination of high accuracy C/A code and carrier measurements
in an adjustment, solutions with real data show the combination of C/A code and
carrier measurements to be inadequate for ambiguity resolution, again mainly due

to neglected multipath correlations.

The effect of overly optimistic covariance information, resulting from correlations
caused by the cyclica nature of multipath, has implications for ambiguity
resolution techniques which rely on covariance accuracy estimates. This was
demonstrated through FARA's success with five minutes of dataat a60 s data
interva and failure over the same period at a15 sinterval. At the 60 sdatainterval,
the covariance information used to decide which ambiguity sets should be

considered as potential solutions was more realistic.

2) Reliability Preanalysis (Note, the validity of these reliability preanalysis findings are

limited by unaccounted for correlations between consecutive epochs of observations.)

a)

b)

GPS baseline adjustments are well controlled, even over the short periods which
characterize rapid static surveys, if a sufficient number of observation epochs and
satellites are used (eg., fiveepochs of observations from six satellites over
one minute). The redundancy benefits of combined code and carrier solutions
over carier alone are only significant over very short observation periods

(e.g., one minute).

For periods of up to five minutes, internal reliability is dependent on the number

of observation epochs rather than the period or interval of observations.
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c)

d)

170

External reliability increases as the number of epochs of observations increases

(since the extra epochs reduce the effect of an observational error).

Very accurate code measurements at a high data rate can significantly improve

carrier externa rdiabilities.

Ambiqgquity Resolution Techniques

a)

b)

d)

A coarse-fine grid search with AFM is computationally more efficient than afine
grid search, but tests using a coarse grid of | /4 showed that often a good solution
was overlooked. The cause for the lack of success with the coarse-fine grid
technique is attributed to the proximity of AF peaks with the single frequency, six
satellite data used for testing.

A double difference plane intersection search with AFM is more efficient than a
coarse-fine grid search. The dangers of defining AF test points using a single
epoch of observations can be mitigated by using mini-grid cubes around the point
of double difference plane intersection. This step is effective, but unnecessary in

most circumstances.

Results showed criteria proposed to decide the trustworthiness of a given AFM
solution to be effective, since no false solutions were accepted. If anything, the
established criteriawas too rigid. The AFM, as applied in this thesis with the

double difference plane intersection search, preservesitsinvariance to cycle dips.

A functional relationship between the number of satellites (and geometry) and the
search cube size which would allow for successful ambiguity resolution using

AFM was shown.
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€) Compatible results are achievable with AFM and LSAST, assuming datais cycle-

f)

dip free. The close relationship between LSAST and AFM using double
difference plane intersection techniques explains the compatibility of results.
With the criteria used to judge both AFM and LSAST, no false results were
accepted, but several good results were rejected. The development of reasonable
thresholds and acceptance criteria for both methods is perhaps the most

challenging part of these ambiguity resolution techniques.

All the ambiguity resolution techniques reviewed have merits, as does the
combination of more than one technique. AFM is best if data has cycle dlips.
FARA is a reasonable technique for observation periods of five minutes.

Otherwise LSAST isthe best algorithm to use.

RECOMMENDATIONS

The investigations made in this thesis are a subset of those needed towards the

objective of developing efficient, effective rapid satic surveying techniques.

Recommendations which follow include further investigations needed based on the

findings of thisthesis as well as complementary investigations needed, which were not

within the scope of thisthesis.

1) Recommendations for Further Investigations Based on Findingsin This Thesis

a) One of the greatest challenges with rapid static surveying techniques is the

judicious decision as to whether a solution is good enough to confirm that
ambiguities have been successfully resolved. Investigationsin thisthesis, have

been made with the luxury of knowing the "true" solution. Thisis not the case
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d)

f)
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with practica field applications. Applications of satistics is complicated by
correlations between epochs of observations. The nature of these correlations as
they arise from multipath and other noise are not predictable. Cyclic signatures
from multipath may be in the order of 10's of seconds or 10's of minutes. More

investigations are required in this area.

Means to randomize multipath effects in a static environment are required to be
able to take full advantage of observations made at a high datarate in rapid static

surveys.

Theoretical developments should be made into the relation between saellite
geometry and the number of pointsin a given search cube, with an eye towards
better defining situations where ambiguities may or may not be successfully

resolved.

Investigations using seven and eight satellite data sets are needed to better
understand the AFM relationship between the search cube size and the number of
satellites and geometry needed to solve for asolution. Tests over larger cube sizes

are also needed.

Tests using the modifications described in Chapter 6, for cycle dlip free data, are

worthy of investigation.

The ambiguity resolution techniques described in this thesis should be tested with
severa different receiver types. In particular, FARA should be tested to seeif the
problems encountered due to overly optimistic covariance information is equally

common with other receiver types.
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Reliability analysis carried out in this thesis was based on a confidence level (1-a)
of 99.9% and a power of the test (1-b) of 80%. These values, conventionally used
for network analysis, have been extended for use with GPS basdline analysis.
Investigations should be made to see if these values are appropriate for GPS
baseline analysis, or if different values should be adopted.

2) Recommendations for Complementary Investigations

a)

b)

The investigations in this thesis have been limited to high accuracy C/A code data
with single frequency carrier phase data. Greater success with rapid static surveys
could be achieved, unperturbed by the impending threat of P code access denid, if
a high accuracy C/A code receiver aso had L2 squaring carrier phase data.

Currently no such receiver isavailable.

Investigations into rapid static ambiguity resolution techniques using dual
frequency P code data are warranted. The multipath correlations investigated in

thisthesis are apt to also be a point of concern using dual frequency P code data.

Investigations into ambiguity resolution over longer baselines are required. In
cases where ambiguities cannot be resolved as integers, the benefit of accurate

code measurements to the final solution should be examined.

Rapid datic GPS is a remarkably efficient tool avalable for surveyors.

Investigations made in this thesis provide insight into the measurements and techniques

for rapid static GPS surveys using C/A code and carrier measurements. The challenge of

routinely and confidently using rapid static surveys in a production environment, without

P code observations, lies ahead.
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