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Abstract

The integration of the Global Positioning System (GPS) and Inertial Navigation

Systems (INSs) is often used to provide accurate positioning and navigation infor-

mation. For applications requiring the highest accuracy, the quality of the inertial

sensors required is usually assumed to be very high. This dissertation investigates

the integration of GPS with a tactical-grade Inertial Measurement Unit (IMU) for

centimetre-level navigation in real-time.

Different GPS/INS integration strategies are investigated to assess their relative per-

formance in terms of position and velocity accuracy during partial and complete data

outages, carrier phase ambiguity resolution after such data outages, and the overall

statistical reliability of the system. In terms of statistical reliability, the traditional

equations used in dynamic systems are redeveloped in light of some practical consid-

erations, including centralized and decentralized filter architectures, and sequential

versus simultaneous measurement updating.

Results show that the integrated solution outperforms the GPS-only approach in

all areas. The difference between loose and tight integration strategies was most

significant for ambiguity resolution and system reliability. The integrated solution

is capable of providing decimetre-level accuracy or better for durations of about five

or ten seconds when a complete or partial GPS outage is simulated. This level of

accuracy, extended over longer time intervals, is shown to reduce the time required

to resolve the L1 ambiguities by an average of about 50% or more for data outages

as long as 30 seconds when using a tight integration strategy. More importantly,

the reliability of the ambiguity resolution process is improved with the integrated
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system. Statistical reliability parameters are also dramatically better when using the

integrated system with the ability of detecting a single-cycle cycle slip being better

and more consistent, relative to GPS-only. The effect of undetected blunders on the

final system is also significantly reduced.

Two real-time tests are analyzed and results show that directly resolving the L1

ambiguities is still unreliable in suburban environments, even with the integrated

system. However, using the widelane phase observable, sub-decimetre navigation

is demonstrated in suburban and pseudo-urban environments, despite the relatively

adverse operational conditions encountered.
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Chapter 1

Introduction

Satellite-based positioning and navigation systems are playing an ever-increasing role

in today’s society. Three-dimensional ship navigation in constricted waterways, au-

tomobile positioning for en-route guidance and commercial aircraft positioning are

just a few examples of the applications for such systems. Unfortunately, to achieve

the accuracy requirements for such applications, satellite-based systems are often

insufficient and must be augmented with other sensors. Inertial sensors are well

suited for integration with satellite-based systems and have been successfully used in

this capacity in the past. However, previous investigations have typically used very

high quality inertial sensors to meet the most stringent accuracy requirements. This

dissertation investigates the integration of medium-performance (tactical-grade) in-

ertial sensors with satellite-based systems for continuous centimetre-level navigation

applications.

1.1 Background

Global Positioning System (GPS) navigation has progressed tremendously over the

past decade. Originally designed as a military system, it is now driven by the con-

sumer product sector which represents a multi-billion dollar industry annually. The

quality of GPS position estimates are basically time-invariant and range from metre-

level to centimetre-level (Lachapelle, 1997), depending on the measurements and

1
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methods employed. To this end, the carrier phase observable is the most precise mea-

surement available to GPS users with a resolution of 0.2–1 mm (1σ) (Raquet, 1998).

This precision, combined with differential GPS (DGPS) techniques involving two (or

more) GPS receivers, is what allows for centimetre-level positioning. However, this

level of positioning is only possible using GPS if the carrier phase ambiguities can be

resolved to their true integer values. Much research has therefore been directed at

resolving the integer ambiguities in as short a time as possible. Several algorithms

have been developed for this purpose including the Least-Squares Ambiguity Search

Technique (LSAST) (Hatch, 1990), the Fast Ambiguity Search Filter (FASF) (Chen,

1994), and the Least-Squares Ambiguity Decorrelation Adjustment (LAMBDA) (Te-

unissen and Tiberius, 1994), to name a few. The performance of these and other

algorithms is discussed in Hatch (1994), Hein and Werner (1995) and Han and Rizos

(1997).

Although the above algorithms provide rapid ambiguity resolution capabilities un-

der certain circumstances, they are still limited by the error sources affecting the

GPS measurements. In this regard, the amount of error in the measurements is

primarily a function of the spatial decorrelation of the various error sources and

inter-receiver separations, both horizontally and vertically, as was shown in Shi and

Cannon (1995). Recent work has been done to better model errors in the ionosphere

(Skone, 1998), the troposphere (Zhang, 1999) and composite error effects (Raquet,

1998). A method to reduce code and carrier phase multipath, which is unaffected by

differential techniques, was developed by Ray (2000). Unfortunately, many of these

techniques require extra infrastructure, equipment and/or processing time, none of

which may be readily available to many users.
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A drawback of GPS in general is the requirement to maintain light-of-sight visibility

to the satellites being tracked. Under signal masking conditions, the number of visible

satellites can be significantly reduced, leading to a loss of geometric strength in the

estimation process and lower position accuracies. However, signal shading effects

are particularly bad for carrier phase processing as they can produce non-continuous

phase measurements known as cycle slips. Unfortunately, if a cycle slip is detected

while the two receivers are separated by a long distance, the ability to resolve the

true ambiguity may be compromised by the increased measurement errors and the

GPS-only position uncertainty. Methods of mitigating the effect of these errors, or of

obtaining a better position estimate, would therefore improve ambiguity resolution

times and reliability.

Unlike GPS, Inertial Measurement Units (IMUs) are completely autonomous (self-

contained) instruments that sense accelerations1 and rotation rates in three orthogo-

nal axes relative to an inertial reference frame. An Inertial Navigation System (INS),

which contains an IMU as one of its components, integrates the rotation rates to ob-

tain orientation changes, and doubly integrates the accelerations to obtain velocity

and position increments (Jekeli, 2000). The integration of the rotation rates implies

that vehicle orientation is obtained as a natural byproduct of the navigation solution,

thus adding potentially useful information to certain applications (orientation is not

usually a product of GPS-only systems). Furthermore, the aforementioned integra-

tion process acts as a low-pass filter and thus produces very accurate short-term

position and velocity differences.

Also in contrast to GPS, which typically updates position and velocity at 1 to 20 Hz,

1The IMU actually measures specific forces, which are related to the applied accelerations
through the gravity field as discussed in Chapter 3.
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IMUs are capable of making measurements at several hundred Hz. Although rarely

processed at this rate, output rates of 50 Hz or higher are not uncommon in the

literature, see for example Hartman (1988) or Böder and Seeber (1997). Of course,

output rates are a function of application requirements, bandwidth and processor

limitations.

Despite the above advantages, sensor inaccuracies such as gyro drifts and accelerom-

eter biases cause a rapid degradation in pure-inertial position quality. To this end,

higher quality IMUs exhibit significantly slower position degradation. It therefore

becomes necessary to provide an INS with regular updates in order to bound the

errors to an acceptable level. Traditionally, this was done using zero velocity up-

dates (ZUPTs), as described in Masson et al. (1996) and Jekeli (2000), for example.

However, in many applications, aviation being an obvious one, periodic stops of the

vehicle are impractical, if not impossible. Such applications therefore require either

a very accurate IMU or another means of bounding the errors.

Given the complimentary nature of GPS and INS, their integration arguably repre-

sents the best opportunity for meeting the ever-increasing accuracy and availability

demands of commercial users. The advantages of GPS/INS integrated systems, rel-

ative to GPS or INS only, are reported to be a full position, velocity and attitude

solution, improved accuracy and availability, smoother trajectories, greater integrity

and reduced susceptibility to jamming and interference, as discussed in Hartman

(1988) and Greenspan (1996). Other studies such as Škaloud (1998) and Scherzinger

(2000, 2001, 2002b) have also looked at the benefit of using the inertial solution

for improving GPS ambiguity resolution performance. These benefits have been ex-

ploited for a wide variety of applications including airborne mapping (Da, 1997a;
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Grejner-Brzezinska et al., 1998), as-built road surveys (Lapucha, 1990), airborne po-

sitioning (Cannon, 1991; Sun, 1994; Sun et al., 1994) and mobile mapping systems

(El-Sheimy et al., 1995), to name a few.

Although emphasis has recently been given to integrated GPS/INS systems in in-

terference and jamming environments, most studies to date have focused on sys-

tem performance under more benign operational conditions. Specifically, position

accuracy during complete GPS data outages (i.e. absence of updates) is a direct

reflection of system performance, but reported accuracies vary considerably in the

literature. For example, reported accuracies include ten centimetres over one second

(Yang et al., 2000), decimetre-level accuracy over 20 seconds (Ford et al., 2001) and

decimetre-level over approximately one minute (Da et al., 1996; Grejner-Brzezinska

et al., 1998), depending on the quality of IMU and method of updating the system.

Vehicle dynamics during the data outages is also a critical factor.

Position accuracy between GPS updates is related to the ability of the integrated

system to identify and correct GPS cycle slips, via the predicted phase accuracy

(Cannon, 1991; Schwarz et al., 1994a; Sun et al., 1994). This concept can also

be expanded to include instantaneous resolution of the ambiguities after a full loss

of lock or data outage. The general rule of thumb is that immediate ambiguity

resolution is possible if the position accuracy (along the line of sight to the satellite)

is known to better than half of the wavelength of the ambiguities being resolved

(de Jong et al., 2002). Again, studies have shown varying levels of performance

in this regard, depending on the quality of the IMU considered. In Schwarz et al.

(1994a) successful bridging of data outages lasting 20–30 seconds are quoted when

using a high-quality IMU, with a discussion of performance improvements if optimal
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smoothing algorithms are used offline. Similarly, Sun et al. (1994) reported success

for data outages up to about ten seconds, although the specifications for the IMU

were not provided (but it appears to be of relatively high-quality).

Assessments of the ability of an INS to assist in the ambiguity resolution process

has also been the focus of recent investigations, as mentioned above. Specifically,

theoretical improvements were shown in Škaloud (1998) and Scherzinger (2002b).

Operationally, Scherzinger (2000, 2001, 2002b) shows improvements in ambiguity

resolution times when using an integrated system approach. Unfortunately, very

little other work has been done to quantify the performance improvement observed

under operational conditions.

As a final note, the level of integration used in the GPS/INS system will likely be

significant depending on the application. Typically, three main levels of integration

are defined, namely loose integration, tight integration and ultra-tight (or deep) in-

tegration. The latter approach is typically performed at the hardware level and has

therefore been implemented by equipment manufacturers only until recently. The

other two strategies are used in approximately equal quantities in the literature, al-

though recently the tight integration seems to be gaining popularity. Each approach

has its own advantages and disadvantages, but there has been little comparison be-

tween the two, and the investigations that have been undertaken showed little or

no advantage in performance for either approach (Wei and Schwarz, 1990b; Schwarz

et al., 1994b).
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1.2 Limitations of Previous Work

The integration of GPS and high-quality IMUs has thus far proven very successful.

Specifically, with reference to Table 1.1, navigation-grade IMUs have been primar-

ily used for high-accuracy applications. While such systems provide decimetre-level

positioning accuracies during GPS data outages of up to one minute (e.g. El-Sheimy

et al., 1995; Grejner-Brzezinska et al., 1998), the costs of these systems places a

severe restriction on the number of applications capable of exploiting their benefits.

Costs for a navigation-grade IMU can run into the hundred’s of thousand’s of dol-

lars. However, with the decreasing size and cost of inertial sensors that perform at

comparatively low accuracy levels, the need to investigate poorer quality systems for

high-accuracy navigation is important. The question arises therefore as to whether

a tactical or automotive-grade IMU could be used to obtain some benefits in this

regard, albeit not as significant as those quoted using navigation-grade systems.

Using an automotive-grade IMU, Salychev et al. (2000) reported metre-level accu-

racy for data outages of a few seconds when using DGPS code and Doppler measure-

ments. Yang et al. (2000) quoted decimetre-level accuracy over one-second intervals

using fixed carrier phase ambiguity updates with similar quality sensors. Finally,

centimetre-level accuracy over one second was also reported in Farrell et al. (2000).

Other investigations (e.g. Schwarz and Zhang, 1994) have also used similar quality

sensors but have focused on attitude accuracy and not on position performance. In

general, these investigations show that automotive-grade IMUs are not well suited

for high-accuracy navigation applications because of their rapid position and velocity

degradation, even in the short-term.

The use of tactical-grade IMUs for high-accuracy navigation has also been some-
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Table 1.1: IMU Classification (Modified from Shin, 2001)

IMU Grade
Sensor Error Navigation Tactical Automotive

Gyro Bias
[deg/h]

0.005–0.010 0.1–10 100+

Gyro Noise
[deg/h/

√
Hz]

0.002–0.005 0.2–0.5 N/A

Accel Bias
[mm/s2]

0.050–0.100 2–4 12+

Accel Noise
[mm/s2/

√
Hz]

0.050–0.100 2–4 N/A

what limited, despite its potential for success. In Da (1997b), the analysis of system

performance was very limited in terms of position accuracy and no mention of the

potential for improving the ambiguity resolution process was made. In Scherzinger

(2000) two integration strategies were investigated in terms of ambiguity resolution

performance with some summaries of position accuracies. This investigation only

considered limited GPS data outage durations and did not compare results to the

GPS-only case. Furthermore, comparison of the two integration strategies is not

entirely fair, given that each used different GPS processing software. Other inves-

tigations by Scherzinger (2001, 2002b) also used a distance measurement indicator

(DMI). While the corresponding results are promising, the additional cost of the DMI

is generally undesirable and no comment is made as to its benefit (or lack thereof)

to the system’s performance.

Most investigations to date have operated in post-mission only. Notable exceptions

(which include post-mission processing using real-time algorithms) are Scherzinger

(2000, 2001, 2002b), Farrell et al. (2000) and Yang et al. (2000). While ideal for sys-

tem testing and development, offline processing opens the door to optimal smoothing
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techniques (as discussed in Schwarz et al., 1994a; El-Sheimy et al., 1995), Kalman

filter tuning, and increased modeling and/or processing capabilities (Nassar and

Schwarz, 2001) which are unavailable to real-time systems. Therefore, in terms of

meeting the growing demands for real-time position and navigation information,

some of these techniques will have little use. As a result, system performance may

suffer accordingly. A more thorough analysis of GPS/INS systems in real-time envi-

ronments is therefore needed.

Finally, the operational environment of a navigation system will play a large role in

the quality of measurements obtained. Under adverse conditions, for example, GPS

receivers may have difficulty tracking satellites, may track a reflected signal or may

even track the wrong satellite altogether. Such problems can introduce large mea-

surement errors that can bias the estimated parameters, thus compromising system

integrity. Statistical reliability quantifies what magnitude of error can be detected

and removed by a system. While reliability in kinematic systems has been investi-

gated in the past (e.g. Teunissen, 1990a; Wei et al., 1990; Lu, 1991; Ryan, 2002),

only one study has looked at the reliability of integrated systems, but did not focus

on the integration of GPS with inertial sensors (Salzmann, 1990). Consequently,

reliability in GPS/INS systems remains largely unexplored despite its direct impact

on system performance.

1.3 Objectives and Contributions of This Dissertation

Given the lack of research directed towards the use of tactical-grade IMUs for high-

accuracy navigation, this dissertation expands upon the work described in the pre-

vious section with the ultimate goal being robust sub-decimetre-level positioning
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capabilities at all times. Real-time operation of the system is also a major focus. As

the size and cost of tactical-grade IMUs decrease, their inclusion in real-time systems

will become abundant thus demanding appropriate and efficient implementations be

available.

With regard to the shortcomings outlined in the previous section, the objectives of

this dissertation are to investigate the following parameters of the integration of a

tactical-grade IMU with GPS

1. System Positioning Accuracy During GPS Data Outages. Under operational

conditions GPS data outages occur with varying (application and/or environ-

ment specific) durations. The duration for which the integrated system can

navigate through such data outages with satisfactory accuracy will determine

the potential uses for the system. Data outages can vary in severity from

complete data outages where no satellite signals are available, to partial data

outages where sub-optimal or insufficient satellite visibility is available. Sim-

ulation of complete and partial GPS data outages of varying duration is used

to assess the performance of the integrated system.

2. Ambiguity Resolution Improvements. Once GPS signals become available af-

ter GPS data outages, timely and reliable determination of the integer carrier

phase ambiguities is required to obtain the highest possible positioning accu-

racy. The ambiguity resolution performance of the integrated system will be

compared to that of GPS-only to determine the possible improvements and

limitations. Specifically, can the integrated system reduce the time needed to

resolve the ambiguities as integers and/or improve the reliability of the process?

If so, at what point does the improvement become insignificant?
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3. System Reliability. By assessing the ability of a system to reject erroneous

observations, the overall robustness of the system can be assessed. Specifi-

cally, the magnitude of the smallest detectable blunder can be computed, as

well as its affect on the estimated parameters (assuming it passes undetected).

Comparing these values using GPS-only and GPS/INS systems will provide

valuable insight into the benefit of using the integrated system. Considera-

tion of different measurement update strategies will also be considered in this

regard.

4. Impact of Integration Strategy On Overall System Performance. While loose

and tight integrations are common in practice, the benefits of each approach

in operational conditions is not well demonstrated. Consequently, each of the

above parameters will be investigated using a loose and tight integration strat-

egy.

Each of the above parameters are investigated with real-time applications in mind.

This implies no special post-mission processing of the data be required, even if results

are obtained offline.

The major contributions of this dissertation to the general field of positioning and

navigation can be summarized as follows

1. Characterization of benefits and limitations of integrating GPS with tactical-

grade IMUs for real-time applications. Such a characterization is important

given the trends in lower-cost sensors while trying to satisfy increasing user

demands. Included in the characterization is a thorough assessment of the

(a) Integrated system performance during GPS data outages
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(b) Improvement in ambiguity resolution time and reliability achieved with a

GPS/INS system relative to GPS-only

(c) Integrated system’s statistical reliability relative to GPS-only

System characterization is performed using actual field data collected with

specific GPS and IMU equipment, and using real and simulated GPS outages.

2. Modification of the statistical reliability equations for use in cascaded filter

architectures and for sequential updating of Kalman filters. Normally, statis-

tical reliability algorithms assume all observations are processed together in a

single filter. However, computational savings can be realized by processing ob-

servations sequentially in groups, or by having multiple filters process data in

stages. Given this, the traditional reliability analysis equations are re-worked

accordingly.

3. Development and testing of a software program capable of using data from var-

ious qualities of IMUs and GPS receivers, and able to implement user selectable

processing strategies.

1.4 Dissertation Outline

This dissertation contains nine chapters and six appendices which are organized as

described below.

Chapter 1 presents the motivation, objectives and contributions of this dissertation

to the integration of tactical-grade IMUs with GPS. Results and shortcomings of

previous work are shown and used to justify the scope of the research undertaken.
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Chapter 2 discusses the estimation theory used throughout the dissertation. In

particular, the Kalman filter algorithm is presented. Statistical reliability theory in

the context of Kalman filtering is also presented.

In Chapter 3 the basic GPS and INS methodology is reviewed. Differential GPS

errors are discussed in general with attention given those relevant to this research.

Ambiguity resolution is also discussed. For inertial navigation, the equations of

motion, mechanization equations and error equations are presented.

Chapter 4 presents the various strategies for GPS/INS integration. Details of the

GPS-only, INS-only and GPS/INS filters are then presented with attention given to

the methods used for selecting the system models and corresponding model param-

eters. The lever-arm effect is also discussed.

In Chapter 5 some issues relating to real-time processing and performance are raised

and addressed. Reducing the update rate of the INS parameters relative to the

raw IMU data rate and some practical implementation issues of the Kalman filter

algorithm are discussed. Special attention is given to the method of updating the

filter with external measurements. Specifically, sequential and simultaneous updates

are compared in terms of computational efficiency.

The classical reliability theory from Chapter 2 is re-worked in Chapter 6 to accom-

modate cascading filters and sequential measurement update strategies.

Offline results of the integrated system are presented in Chapter 7. Specifically,

position accuracy during complete and partial data outages, ambiguity resolution

performance after these data outages, as well as overall system reliability are inves-

tigated. Where possible, comparisons between GPS-only and the integrated system
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are made. The above performance parameters are also discussed for the appropriate

integration strategies. An assessment of the real-time performance is evaluated in

Chapter 8.

Chapter 9 concludes the major results and findings obtained in the previous chapters

with reference to the objectives listed in Section 1.3 and makes recommendations for

expanding upon the research presented.

The appendices contain various detailed information relevant the dissertation.



Chapter 2

Estimation and Reliability Overview

Basic navigation involves the combination of multiple measurements to estimate a

desired set of parameters. For situations where the measurements uniquely observe

the unknown parameters, the estimation process becomes relatively trivial. Unfor-

tunately, this situation is rarely encountered in practical situations and so more

complicated estimation procedures are required. This chapter reviews the estima-

tion strategies employed in this dissertation. Estimation using measurements only

(least-squares) is briefly presented followed by a detailed presentation of estimation

in dynamic systems (Kalman filters). Finally, a discussion of blunders, reliability

testing and statistical reliability is presented.

2.1 Estimation

This section provides a general overview of estimation theory as applied in later

chapters.

2.1.1 Estimation Using Measurements Only

As a starting point, the concept of estimating a set of quantities based purely on mea-

surements is considered. The most common estimation procedure for this purpose

in geomatics applications is least-squares. To understand the least-squares princi-

ple, consider a measurement (observation) vector, z, that relates to an unknown

15
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parameter (state) vector, x, as follows

zk = Hkxk + vk (2.1)

where subscript ‘k’ represents a quantity at the kth epoch and

H is typically referred to as the design matrix, which contains the “geome-

try” of the observations, relative to the parameters of interest, and

v is a vector of measurement noise.

The objective of least-squares is to derive an estimate of the parameters, x̂k, in order

to minimize the weighted sum of squares of deviations, (zk −Hkx̂k) (Gelb, 1974)

Jk = (zk −Hkx̂k)
TW−1

k (zk −Hkx̂k) (2.2)

where

J is the cost function to be minimized, and

W is a weighting function.

The solution, consistent with setting the derivative of Equation 2.2 (with respect to

x̂k) to zero and solving for x̂k, is given by

x̂k = (HT
k W

−1
k Hk)

−1HT
k W

−1
k zk (2.3)

whose estimated covariance matrix is given by

Cxk
= (HT

k W
−1
k Hk)

−1(HT
k W

−1
k Czk

W−1
k Hk)(H

T
k W

−1
k Hk)

−1 (2.4)
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where C is the covariance matrix of the subscripted quantity. To obtain the minimum

variance for the estimated parameters let Wk = Czk
such that Equations 2.3 and 2.4

reduce to

x̂k = (HT
k C

−1
zk
Hk)

−1HT
k C

−1
zk
zk (2.5)

Cxk
= (HT

k C
−1
zk
Hk)

−1 (2.6)

Once the final estimate of the states are obtained, the measurement residuals, rk,

can be computed as the difference between the actual and predicted observations (zk

and Hkx̂k, respectively) as

rk = zk −Hkx̂k (2.7)

Assuming a correct measurement model, residuals indicate the extent to which the

measurements agree with each other and are therefore useful for indirectly assessing

the quality of the estimated parameters.

Alternate derivations of the above equations, as well as other least-squares formu-

lations, are shown in Mikhail (1976), Vańıček and Krakiwsky (1986), Krakiwsky

(1990).

2.1.2 Estimation of Dynamic Systems

Least-squares estimation, as presented above, is limited to determining the desired

parameters based on measurements only. However, it follows that if knowledge of

how a particular system behaves over time is available, a better estimate of the

desired parameters can be obtained. Specifically, if the parameters to be estimated

are not only related to the observations as in Equation 2.1, but are also known to
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behave as

ẋ(t) = F (t)x(t) +G(t)w(t) (2.8)

where a dot represents a time derivative and

F is a coefficient matrix describing the dynamics of the system (dynamics

matrix),

G is a coefficient matrix used to shape white noise input (shaping matrix),

w is a vector of random forcing functions, assumed to be zero-mean white

noise with a Gaussian distribution, and

t is a time variable.

then a Kalman filter can be used to efficiently compute optimal state estimates while

exploiting the assumed system dynamics. A Kalman filter is a recursive algorithm

that uses a series of prediction and measurement update steps to obtain an optimal,

in a minimum variance sense, estimate of the state vector (Gelb, 1974). Only the

final form of the discrete-time algorithm is shown here, with details of the derivation

as well as the continuous-time algorithm available in Gelb (1974) and Brown and

Hwang (1992).

Using the measurement model in Equation 2.1 with the additional assumption that

vk is a zero-mean white noise sequence with a Gaussian distribution, an updated

estimate of the state vector and its covariance (assuming values for these are already

available) can be obtained as

x̂+
k = x̂−k +Kkνk (2.9)

C+
xk

= (I −KkHk)C
−
xk

(2.10)
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where superscript “–” and “+” represents a quantity before and after the measure-

ment update respectively, and

K is the Kalman gain matrix given by

Kk = C−
xk
HT

k (HkC
−
xk
HT

k + Czk
)−1 (2.11)

ν is the innovation sequence given by

νk = zk −Hkx̂
−
k (2.12)

The innovation sequence has a form similar to Equation 2.7 and is thus sometimes

called the predicted residuals. The innovation sequence can be interpreted as the

amount of new information being introduced into the system from the measurements.

The gain matrix on the other hand, is a weighting factor indicating how much of

the new information contained in the innovations should be accepted by the system.

Loosely speaking, it weighs the information from the measurements against the cur-

rent knowledge of the states. To illustrate, consider a scalar system whose state is

directly observable such that Hk = 1. In this case, the gain matrix reduces to

Kk =
σ2

x̂k

σ2
x̂k

+ σ2
zk

=
1

1 +
σ2

zk

σ2
x̂k

=
1

1 + NSRk

(2.13)

where σ2 is the variance of the subscripted quantity, and NSR is the Noise-to-Signal

Ratio (i.e. the amount of noise in the measurement relative to the current knowledge



20

of the state/signal). In this way, if the NSR is large the gain will be small, indicating

the filter will trust the system model (i.e. the current estimate) more than the mea-

surements. In contrast, a small NSR implies the filter will trust the measurements

more than the system model. Although this discussion is not directly applicable to

the multi-dimensional case, it serves to illustrate the role of the gain matrix and its

reaction to the confidence of the measurements and current state estimates.

Prediction of the state vector and its covariance matrix forward in time can be

performed using

x̂k+1 = Φk,k+1x̂k (2.14)

Cxk+1
= Φk,k+1Cxk

ΦT
k,k+1 +Qk (2.15)

where

Φk,k+1 is the transition matrix of the system from epoch k to k + 1, and

Q is the process noise matrix.

For most system models the dynamics matrix is considered to be time invariant

for the time interval over which the prediction is to be performed. Even if this is

not theoretically valid, resulting errors can be mitigated by further shortening the

prediction time interval. The benefit is that under this assumption the transition

matrix is obtained as the solution of the system model in the absence of forcing

functions, given by (Gelb, 1974)

Φk,k+1 = eF∆t (2.16)

where ∆t is the time interval over which the prediction is to take place. The process

noise matrix, which accounts for uncertainty in the system model, is computed as
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the solution of (Gelb, 1974)

Qk =
∫ tk+1

tk

Φc(tk+1, τ)G(τ)Qc(τ)G
T (τ)ΦT

c (tk+1, τ)dτ (2.17)

where

Φc(tk, tj) is the continuous-time transition matrix between times tj and tk (Gelb,

1974), and

Qc(t) is the continuous-time spectral density matrix of the forcing functions,

w(t).

With the above equations, the Kalman filter algorithm can be illustrated as in Fig-

ure 2.1. The prediction and update steps described above are clearly indicated. It is

noted that the prediction increments can be as large as the update interval, however

smaller intervals can be used if desired and/or necessary such that several prediction

steps are performed between each update step. Also of note is that the covariance

propagation (both for prediction and update) is independent of state and observation

vectors. In this way, the state covariance can be propagated offline using assumptions

of the process noise and expected measurement updates.

Figure 2.1: Discrete-Time Kalman Filter Algorithm
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2.2 Practical Considerations in Estimation

This section discusses some practical considerations of the theoretical development

of the previous section.

2.2.1 System Linearization

The system and measurement models of the previous section were assumed to be lin-

ear. Unfortunately, in many applications one or both of these models are non-linear

and linearization techniques must be applied. The following presentation follows

that shown in Brown and Hwang (1992) or Grewal and Andrews (1993).

Non-Linear System Models and the Extended Kalman Filter

To illustrate the linearization process for non-linear system models, consider a slightly

modified form of Equation 2.8

ẋ(t) = f
(
x(t), t

)
+G(t)w(t) (2.18)

where f
(
x(t), t

)
is a (presumably) non-linear function representing the temporal

behaviour of the system states. First, a nominal trajectory, x∗(t), is selected such

that

x(t) = x∗(t) + δx(t) (2.19)

where δx(t) is a perturbation from the nominal trajectory. Note that “trajectory”

in this context is meant to represent the time-series of any type of parameter, and

need not be restricted to the trajectory of a car, for example. A first order Taylor



23

series expansion of Equation 2.18 about the nominal trajectory is performed to yield

ẋ(t) = f
(
x(t), t

)
+G(t)w(t)

≈ f
(
x∗(t), t

)
+
∂f
(
x∗(t), t

)
∂x(t)

∣∣∣∣∣∣
x(t)=x∗(t)

δx(t) +G(t)w(t)

= ẋ∗(t) + Fδx(t) +G(t)w(t)

ẋ(t)− ẋ∗(t) = Fδx(t) +G(t)w(t)

δẋ(t) = Fδx(t) +G(t)w(t) (2.20)

where F is now the dynamics matrix for a system whose states consist of the per-

turbed states, δx(t). In this way, the Kalman filter actually estimates the perturba-

tions and then reconstructs the desired states using Equation 2.19.

The remaining step is the determination of the nominal trajectory around which the

linearization occurs. Although a nominal trajectory can be computed beforehand, a

more common (and practical) procedure is to use the last Kalman filter estimate as

the linearization point. This approach is implemented in an extended Kalman filter

(EKF). In this approach, the perturbation can also be interpreted as the error in the

nominal (i.e. estimated) trajectory. The only difference between a “regular” and an

extended Kalman filter is that in the latter, the state vector is reset to zero after each

update. This is conceptually valid if one considers that the current Kalman filter

estimate is optimal, and that the errors of the estimated stated have zero mean.

Given that the state vector is actually a null vector, the prediction of the state vector

is unnecessary. Also, the state update equation (2.9) can be reformulated as

δx̂+
k = δx̂−k +Kk(zk −Hkδx̂

−
k )
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= (0) +Kk(zk −Hk (0))

= Kkzk (2.21)

Finally, the update and prediction of the state covariance is performed as before (see

Equations 2.10 and 2.15).

Non-Linear Measurement Model

The concept of linearizing the measurement model is analogous to the development

just shown. To begin, re-formulate Equation 2.1 as

zk = h
(
xk, k

)
+ vk (2.22)

where h
(
xk, k

)
is a (presumably) non-linear function relating the states to the ob-

servations. As before, a first order Taylor series expansion of Equation 2.22 about

the nominal trajectory is performed to yield

zk = h
(
xk, k

)
+ vk

≈ h
(
x∗k, k

)
+
∂h
(
xk, k

)
∂xk

∣∣∣∣∣∣
xk=x∗

k

δxk + vk

= z∗k +Hkδxk + vk

zk − z∗k = Hkδxk + vk

δzk = Hkδxk + vk (2.23)

where δzk is termed the measurement misclosure, and Hk is the design matrix re-

lating the misclosures to the perturbed states. Stated differently, the misclosures
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act as observations of the perturbed states. If an extended Kalman filter is used in

conjunction with a non-linear measurement update, the state update equations can

be re-written as

x̂+
k = x̂−k + δx̂+

k

= x̂−k + δx̂−k +Kk(δzk −Hδxk)

= x̂−k + (0) +Kk(δzk −Hk(0))

= x̂−k +Kkδzk (2.24)

Note that in the case under consideration, the innovation sequence reduces to the

misclosure vector.

As already stated, the measurement residuals are important for indirectly assessing

the quality of the estimated parameters. However, instead of recomputing them

using Equation 2.7, a more efficient implementation is desirable. Given that the

residuals are the difference between the actual and predicted observations, based on

the updated estimate of the state, they can be formulated as

rk = zk − h(x+
k , k)

= zk −

h(x−k , k) +
∂h(xk, k)

∂x(t)

∣∣∣∣∣
xk=x−

k

δx+
k


=

(
zk − h(x−k , k)

)
−Hkδx

+
k

= δzk −Hkδx
+
k (2.25)

Of course, the computation of the residuals should be performed before the error
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states are reset to zero. As a final note, a similar linearization procedure can also be

applied to the least-squares concept presented in Section 2.1.1.

2.3 Reliability in Dynamic Systems

Reliability refers to the ability to identify and reject errors (blunders) in the mea-

surements. The actual identification of the blunders is performed via testing of the

measurement residuals in the least-squares case, and of the innovation sequence in

the case of Kalman filtering. As such, it requires actual measurement and state

information. This process will herein be referred to as reliability testing.

In contrast, statistical reliability quantifies the theoretical reliability of a system

under certain statistical assumptions, and does not require actual measurements.

Instead, statistical reliability can be performed offline using only the necessary co-

variance and measurement geometry information, which is readily available from the

Kalman filter algorithm (see Section 2.1.2). The concept of statistical reliability can

be sub-divided into two categories. First, internal reliability refers to the theoretical

magnitude of blunders that can be detected for a given observation. Second, and

perhaps more important, external reliability quantifies the effect of these blunders

on the estimated states if they were to pass through the system undetected.

Statistical reliability theory was originally developed by Baarda (1967, 1968) for

least-squares applications but was expanded to dynamic systems by Teunissen and

Salzmann (1989). Since then, many theoretical and practical investigations have

taken place. Theoretical development of the equations are shown in Teunissen

(1990a,b,c) and Koch (1999), while some practical applications in positioning or
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navigation systems are shown in Salzmann (1990), Wei et al. (1990), Lu (1991), Lu

and Lachapelle (1992) and Ryan (2002).

This section begins with a brief discussion of the properties of the innovation se-

quence and how they change in the presence of blunders. Statistical testing is then

introduced as a means of identifying such blunders. Finally, statistical reliability is

presented.

2.3.1 Reliability Testing of the Innovation Sequence

One of the properties of a Kalman filter is that if the input noise, w and v, are zero-

mean white noise sequences with Gaussian distributions, the innovation sequence

will have similar properties (Gelb, 1974). Furthermore, it can be shown that the

covariance matrix of the innovation sequence is given by

Cνk
= HT

k C
−
xk
Hk + Czk

(2.26)

which, with reference to Equation 2.11, is computed as part of the Kalman gain

matrix. As such, it is readily available during normal filter operation.

Reliability With Multiple Blunders

However, what if the above assumptions do not hold? Specifically, what happens if

the measurement errors are not zero mean? To investigate this, first consider the

measurement model (Equation 2.1) under the presence of a blunder vector, ∇

zk = Hkxk +Mk∇k + vk (2.27)

where M is a known full-rank matrix, mapping the blunders into the observations.

The innovation sequence is then constructed as before, as the difference between the
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actual and predicted measurements and is therefore biased by the second last term

in the above equation. This bias in the innovations is represented as

∆νk = Mk∇k (2.28)

For blunder detection, the null hypothesis (H0) assumes that the observations are

bias-free. The alternate hypothesis (Ha) is that the observations are biased byMk∇k.

Under these hypotheses, the innovation sequence is distributed as (Teunissen and

Salzmann, 1989)

νk|H0
∼ N(0, Cνk

) (2.29)

νk|Ha
∼ N(Mk∇k, Cνk

) (2.30)

where N(a, b) is a normal distribution with mean ‘a’ and (co)variance ‘b’ and it is

tacitly assumed that even in the presence of a blunder, the covariance matrix of the

innovation sequence remains unchanged. Next, the test statistic used for testing H0

against Ha is given by (Teunissen and Salzmann, 1989; Koch, 1999)

Tk = νT
k C

−1
νk
Mk(M

T
k C

−1
νk
Mk)

−1MT
k C

−1
νk
νk (2.31)

However, Equation 2.30 is equivalent to the form of the measurement model in

Equation 2.1 where

• the observations are given by the biased innovation sequence with a covariance

matrix given by Cνk
(which is both white and Gaussian)

• the design matrix is given by Mk

• the states are the observation blunders
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In this light, Equation 2.31 can re-formulated (using Equations 2.5 and 2.6) as

Tk = νT
k C

−1
νk
Mk(M

T
k C

−1
νk
Mk)

−1(MT
k C

−1
νk
Mk)(M

T
k C

−1
νk
Mk)

−1MT
k C

−1
νk
νk

=
[
(MT

k C
−1
νk
Mk)

−1MT
k C

−1
νk
νk

]T
(MT

k C
−1
νk
Mk)

[
(MT

k C
−1
νk
Mk)

−1MT
k C

−1
νk
νk

]
= ∇̂T

kC
−1

∇̂k
∇̂k (2.32)

where C∇̂k
is the covariance matrix of the estimated observation blunders. The test

statistic is distributed under the two hypotheses as

Tk|H0
∼ χ2(d, 0) (2.33)

Tk|Ha
∼ χ2(d, δ2

0) (2.34)

where d is the degrees of freedom, equal to the number of assumed blunders, and δ0

is the non-centrality parameter of the distribution given as (Teunissen, 1990b)

δ2
0 = ∇T

kC
−1

∇̂k
∇k (2.35)

Consequently, the null hypothesis is rejected in favour of the alternate hypothesis if

Tk ≥ χ2
α(d, 0), at some significance level, α. This represents the basis for reliability

testing.

Reliability With a Single Blunder

Focus is now given to the special case where the blunder vector is assumed to consist

of a single blunder on a single observation. In this case, the blunder vector reduces

to a scalar and the Mk matrix reduces to a column-vector, mk, of the form

mki
=
[

0 · · · 0 1 0 · · · 0

]T
(2.36)
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where the one is in the ith location, and thus corresponds to the ith observation. Using

this new form, the test statistic is re-formulated on an observation-by-observation

basis as the square-root of Equation 2.31 to yield

tki
=
mT

ki
C−1

vk
νk√(

C−1
vk

)
ii

(2.37)

or, using Equation 2.32, as

tki
=
∇̂ki

σ∇̂ki

(2.38)

The single-blunder test statistic is denoted using a lower case letter to avoid confusion

with the more generic case. Having limited the number of blunders to one and

having taken the square-root of the original test statistic (Tk), the single-blunder

test statistic is now distributed as (Teunissen, 1990b)

tk|H0
∼ N(0, 1) (2.39)

tk|Ha
∼ N(δ0, 1) (2.40)

where the non-centrality parameter is the square-root of Equation 2.35 and, for the

scalar case, is given as

δ0 = |∇ki
|
√(

C−1
vk

)
ii

(2.41)

The null hypothesis is then rejected if |tk| ≥ n1−α/2, where n1−α/2 is the point

on the X-axis beyond which only 1 − α/2 percent of the points lie (assuming a

Gaussian distribution). Throughout this dissertation, only the single blunder case is

assumed. The above testing procedure is therefore implemented herein, with some

modifications as discussed below. The testing procedure is shown graphically in

Figure 2.2.
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Figure 2.2: Graphical Representation of Reliability Testing

Practical Validity of Single Blunder Testing

Unfortunately, the assumption of a single blunder is not always valid. To detect

multiple blunders, several alternate hypotheses are typically required depending on

what type of blunders are expected to occur. While such hypotheses can be made

for certain situations, they are not likely universally applicable. To alleviate this

problem, the testing procedure used herein recursively applies the single blunder test

whenever a blunder is detected. Assuming multiple blunders occur simultaneously,

the reliability algorithm proceeds as follows

• If multiple blunders are detected (i.e. |tki
| ≥ n1−α/2 for multiple observations),

the observation with the largest |tk| is rejected.

• The reliability testing procedure is then repeated with the remaining observa-

tions.

• The process is repeated until no more blunders are detected.
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Although not theoretically sound, the above approach can be characterized using

some statistical assumptions (Koch, 1999). Assuming the first n observations contain

blunders, the significance level (see next section for description) is theoretically given

by (ibid.)

P
(
|tk1| > n1−α/2 ∪ |tk2| > n1−α/2 ∪ · · · ∪ |tkn| > n1−α/2

)
= α (2.42)

However, from elementary statistics

P (A ∪B) = P (A) + P (A)− P (A ∩B) (2.43)

Recursive application of this identity to Equation 2.42, assuming the probabilities of

the intersections are negligible, yields

P
(
|tk1| > n1−α/2

)
+ P

(
|tk2| > n1−α/2

)
+ · · ·+ P

(
· · · |tkn| > n1−α/2

)
≥ α (2.44)

Simplifying the left-hand side gives the following approximation

nP
(
|tki
| > n1−α/2

)
= α (2.45)

P
(
|tki
| > n1−α/2

)
= α/n (2.46)

Heuristically, the above implies that in order to detect n blunders with a significance

level of α, the significance level for each individual blunder must be reduced by a

factor of n. For the case considered here, the significance level for each individual

blunder is assumed constant, implying that the significance level of detecting n is

increased by the same factor.

2.3.2 Statistical Reliability

Statistical reliability is a theoretical extension of reliability testing. Whereas relia-

bility testing aims purely at identifying a blunder based on the innovation sequence
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and its covariance, statistical reliability aims at quantifying the magnitude of the

blunders that can be detected. As a subsequent step, statistical reliability quantifies

the effect that the smallest blunder capable of being detected would have on the esti-

mated parameters. In so doing, the extent to which reliability testing can “protect”

the system is quantified.

To begin, there are two types of errors that can occur in a statistical test as sum-

marized in Table 2.1 (Vańıček and Krakiwsky, 1986). The first is termed a Type I

error and occurs when the null hypothesis is incorrectly rejected. The second error is

termed a Type II error and occurs when the null hypothesis is incorrectly accepted.

The probability of committing a Type I and Type II error is α and β, respectively.

Internal Reliability

Statistical reliability begins with a selection of the probability of committing a Type I

or Type II error. These values are typically selected based on an application’s re-

quirements. Next, the non-centrality parameter can be computed as

δ0 = n1−α/2 + n1−β (2.47)

This is shown graphically in Figure 2.3. Next, under the assumption that a blunder

Table 2.1: Testing of Null Hypothesis H0 Against Alternate Hypothesis Ha

Decision Based On Statistical Test
Actual Situation Accept H0 Reject H0

H0 Is True Correct Decision
Probability: 1− α
(Confidence Level)

Type I Error
Probability: α

(Significance Level)
H0 Is False Type II Error

Probability: β
Correct Decision

Probability: 1− β
(Power of the Test)
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Figure 2.3: Relationship Between Type I and Type II Error Probabilities and the
Non-Centrality Parameter

has occurred and the test statistic has failed, the non-centrality parameter can be

computed based on the magnitude of the blunder (see Equation 2.41). However, if

the problem is reversed and the non-centrality parameter is selected based on some

predefined values for α and β, the magnitude of the blunder capable of being detected

can be computed. Using this approach, the Minimum (or Marginal) Detectable

Blunder (MDB) for the ith observation can be computed as

∇MDB
ki

=
δ0√(
C−1

vk

)
ii

(2.48)

Once the MDBs are computed, they should be quoted as “a blunder of magnitude

∇MDB
i can be detected on the ith observation ‘1 − β’ percent of the time, with
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‘1−α’ percent confidence”. As a final note, some sample values of the non-centrality

parameter are shown in Table 2.2. Since the non-centrality parameter is not unique,

it is important that the corresponding α and β parameters are specified, and not

just the non-centrality parameter itself.

External Reliability

Once the MDB for a particular observation is detected, its impact on the final es-

timate of the parameters can be determined. Specifically, since the blunder maps

directly into the innovation sequence, its effect on the estimated parameters, ∆x̂k,

is readily seen from Equation 2.9 to be

∆x̂ki
= Kkmki

∇MDB
ki

(2.49)

This is termed the external reliability vector. Furthermore, because the MDB rep-

resents the smallest blunder that can be detected by the system, its impact on the

estimated parameters is also the smallest effect that statistical testing can protect

the system against (for the given α and β values). For this reason, the external reli-

ability is called the protection level (PL). If only certain elements of the PL vector

are of interest, they can be investigated individually.

Table 2.2: Some Non-Centrality Parameters (Ryan, 2002)

Type I Error (%) Type II Error (%) Non-Centrality

5.0 20.0 2.80
2.5 20.0 3.10
5.0 10.0 3.24
2.5 10.0 3.52
0.1 20.0 4.12
0.1 10.0 4.57
0.9 2.5 4.57
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As a note, if a vector of MDBs of the form

∇k =
[
∇MDB

k1
∇MDB

k2
∇MDB

k3
· · ·

]T
(2.50)

is available, then the protection level vector can also be computed as

∆x̂ki
= Kkmki

mT
ki
∇k (2.51)

To summarize, the overall procedure for computing the internal (MDB) and external

(PL) reliability parameters for dynamic systems is as follows

1. Select the probability of committing a Type I and Type II error. Typical values

in the literature are α = 0.1% and β = 10% or 20% (Lu, 1991; Ryan, 2002).

2. Use Equation 2.47 to compute the non-centrality parameter, δ0.

3. For each epoch compute the MDB for the ith observation using Equation 2.48.

4. For each MDB use Equation 2.49 or 2.51 to compute the protection level vector.

Statistical reliability is revisited again in Chapter 6. There, reliability is addressed in

light of some of the practical considerations presented in the intermediate chapters.



Chapter 3

Systems Overview

As a precursor to a discussion of the integration of GPS and INS, this chapter reviews

the relevant characteristics of each system. GPS is reviewed first with emphasis

given to the differential error sources and their magnitudes as well as the ambiguity

resolution process. Next, principles of inertial navigation systems are reviewed with

focus given to the relevant equations. A brief discussion of the initial alignment

procedure concludes the chapter.

3.1 Overview of the Global Positioning System

Developed by the United States Department of Defense, GPS was originally designed

for metre-level positioning accuracies (Parkinson, 1996). However, several develop-

ments since it was first declared operational in 1993 (Leick, 1995), primarily by the

civil community, have made centimetre-level positioning relatively common. This

ability to provide a wide range of positioning accuracies under all weather conditions

has resulted in GPS revolutionizing modern positioning and navigation.

3.1.1 GPS Signal Structure and Available Measurements

The GPS signal structure is complex and will not be reviewed in detail here. Instead,

only the material relevant to this dissertation is provided. For more details on the

signal structure, refer to Ward (1996), Spilker (1996) and Misra and Enge (2001).

37
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The GPS signal is comprised of two frequencies, namely L1 (1575.42 MHz) and L2

(1227.60 MHz). Modulated on these carriers are the

• Pseudo-Random Noise (PRN) codes used for ranging measurements

• Navigation data to communicate the satellite’s position, time, health, etc. to

users in real-time (50 Hz modulation)

Currently, only two types of PRN codes are used, namely the Coarse/Acquisition

code (C/A-code) on L1, and the Precise code (P-code) on L1 and L2. Exploiting

the characteristics of the signal structure, the following three types of measurements

can be obtained from most GPS receivers

• Pseudorange (code) measurements. These are derived from the PRN codes and

are therefore classified according to code and frequency as L1-C/A, L1-P and

L2-P.

• Carrier phase (phase) measurements. By measuring the phase of the incom-

ing carrier (L1 and/or L2), the range to a satellite can be measured with an

ambiguous number of cycles.

• Doppler measurements. The derivative of the carrier phase measurement is the

Doppler shift caused by the relative receiver-satellite motion.

In terms of code measurements, the P-code theoretically provides better overall per-

formance. Unfortunately, the P-code signal is currently encrypted in an attempt to

limit its use to the military community (including the entire L2 signal). However,

codeless and semi-codeless tracking techniques have been developed which allow the
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civil community access to these signals (Lachapelle, 1997). Unfortunately, these

techniques decrease the signal-to-noise ratio by 14 dB or more and therefore pro-

duce considerably noisier measurements than would otherwise be expected. This

dissertation only deals with L1 C/A-code measurements, although it is noted that

GPS receivers must still implement P-code tracking to obtain the L2 carrier phase

measurements.

Linear combinations of the above measurements are also possible, although it is most

common with the carrier phase. For example, a linear combination, φm,n, of the L1

and L2 phase measurements can be formed, with a wavelength of λm,n, as

φm,n = mφ1 + nφ2 (3.1)

λm,n =
λ1λ2

mλ2 + nλ1

(3.2)

where subscripts “1” and “2” refer to L1 and L2 respectively. Of particular interest

to this dissertation is the widelane (WL) combination (m = 1, n = −1) with a

wavelength of approximately 86 cm.

3.1.2 GPS Error Sources

Several error sources play a role in GPS applications. To eliminate or mitigate some

of these sources of error, differential processing techniques are often implemented.

In this approach, two receivers are used; one occupying a known location while the

other is located on the vehicle to be positioned. If a measurement from receiver m

to satellite a is denoted `am, then a double difference measurement is formed as

∇∆`a,b
m,n = (`am − `an)−

(
`bm − `bn

)
(3.3)
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where ∇∆ is the double difference operator. Unfortunately, this procedure does

not eliminate all sources of error. To illustrate, the double difference measurement

equations for code (p), phase (φ), and Doppler (φ̇) can be written (without subscripts

or superscripts for clarity) as

∇∆p = ∇∆ρ+∇∆dρ+∇∆T +∇∆I +m∇∆p + ε∇∆p (3.4)

∇∆φ =
1

λ
(∇∆ρ+∇∆dρ+∇∆T −∇∆I +∇∆N +m∇∆φ + ε∇∆φ) (3.5)

∇∆φ̇ =
1

λ

(
∇∆ρ̇+∇∆ḋρ+∇∆Ṫ −∇∆İ +m∇∆φ̇ + ε∇∆φ̇

)
(3.6)

where a dot represents the time derivative of a quantity and

ρ is the geometric range between the receiver and the satellite,

dρ is the orbital error of the satellite,

T is the delay due to the troposphere,

I is the delay or advance due to the ionosphere,

m is the multipath error for the subscripted observation,

ε is the measurement noise for the subscripted observation,

λ is the wavelength of the carrier on which the measurement is made, and

N is the integer carrier phase ambiguity.

Each of these error sources is briefly discussed below but a more comprehensive

overview is found in Raquet (1998) and Ryan (2002), with the latter investigating

the undifferenced errors. Details on the troposphere, ionosphere and multipath errors

are investigated in Zhang (1999), Skone (1998) and Ray (2000), respectively.
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Orbital Errors

In order for the satellite positions to be broadcast in real-time to the user, they are

predicted based on the previous motion of the satellites and knowledge of the Earth’s

gravity field. Given that a satellite’s navigation data is updated a maximum of three

times per day (Spilker and Parkinson, 1996), the accuracy of these predictions are

limited. The magnitude of the errors are about 3.5 m (50th percentile) (Ryan, 2002)

and vary slowly with time.

Troposphere

Tropospheric errors are caused by the slowing and bending of GPS signals by the

neutral atmosphere. Errors due to the troposphere are about 2.4 m at the zenith and

can increase by a factor of about ten for low elevation satellites (Leva et al., 1996).

The error is typically broken down into a dry (hydrostatic) and wet part. The

hydrostatic part comprises approximately 90% of the delay but can be predicted

with an accuracy of about 1% at the zenith using meteorological data. In contrast,

the wet term makes up the remaining 10% of the error and can only be predicted

with about 10–20% accuracy (de Jong et al., 2002).

Ionosphere

The ionosphere delay or advance is due to the presence of free electrons in the upper

atmosphere, typically between 70 and 1000 km above the Earth’s surface (Leva et al.,

1996). These free electrons in turn influence electromagnetic wave propagation. The

presence of free electrons is closely related to the amount of solar radiation and so

ionospheric effects show diurnal variations with maximum effects typically occurring

at approximately 1400 local time.
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The errors listed above are correlated between stations. It is for this reason that

the double difference approach can mitigate their effect. However, the extent of

this correlation is related to the separation of the two receivers used. Consequently,

the above errors are typically quantified in terms of parts-per-million (ppm), where

1 ppm is equivalent to 1 mm of error per 1 km of receiver separation. With this in

mind, Table 3.1 summarizes some typical and extreme error magnitudes for spatially

correlated errors.

Table 3.1: Magnitudes of Spatially Correlated Double Difference Error Sources

Error Magnitude
Error Typical (RMS) Extreme

Orbital 0.1 ppm N/A
(Ryan, 2002)

Troposphere1 <1 ppm 1–3 ppm
(Zhang, 1999)

Ionosphere 1–3 ppm2 >10 ppm3

(Klobuchar et al., 1995;
Fortes et al., 2000, 2001)

(Lachapelle et al., 2000)

1After applying a tropospheric model.
2Effects vary with geographic location and the solar cycle.
3For Calgary region. Effects near the equator can be as large as 50 ppm (Wanninger, 1993).

Noise and Multipath

The multipath and noise terms have different effects depending on the observation

under consideration. In order to assess their combined effect, a GPS data set was

collected between two pillars on the roof of the Calgary Centre for Innovative Tech-

nology (CCIT) for just under six hours. NovAtel OEM4 GPS receivers were used

with NovAtel 600 antennas. Using the known coordinates of the pillars, the double

difference misclosures for each observable of interest was computed. Since the pil-
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lars were located only a few metres apart, the only remaining errors are those from

multipath and noise (Lachapelle, 1997).

The double difference misclosures were binned according to the lower elevation of

the two satellites used in the double difference, in 2.5◦ increments, and the standard

deviation for each bin was computed. The standard deviation for an undifferenced

measurement on a high-elevation satellite, σhigh, was then computed as half of the

standard deviation of the highest elevation bin. This was needed because high-

elevation satellites show more uniform behaviour than do low-elevation satellites

(see Figures 3.1, 3.2 and 3.3). The undifferenced standard deviations, σud, for the

other elevation bins were then computed as (Raquet, 1998)

σud =

√
σ2
∇∆ − 2σ2

high

2
(3.7)

where σ2
∇∆ is the variance of the computed double differences for a particular eleva-

tion bin. The results of this analysis for the L1 C/A code, L1 carrier phase and L1

Doppler observations are shown in Figures 3.1, 3.2 and 3.3, respectively. As can be

seen, the effect of code noise and multipath is at the decimetre-level. However, cau-

tion must be exercised when interpreting these results. The multipath environment

in which the data was collected was relatively benign in that only short multipath

effects are seen. Under more adverse conditions however, the effect of multipath can

reach several metres even with high-quality GPS receivers (Ray, 2000).

In contrast to the code observable, the effect of noise and multipath on the L1 carrier

phase is at the millimetre-level. This represents one of the greatest advantages of

the carrier phase measurement. Specifically, if the carrier phase ambiguities can be

resolved as integers (see Section 3.1.3) then the carrier phase measurements act as

code observations with considerably better precision. This in turn translates into
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Figure 3.1: Combined Effect of Noise and Multipath for L1 C/A Code

much higher accuracy position estimates. Care must also be exercised in this case

since the theoretically largest carrier phase multipath effect on a single measurement

is one quarter of a wavelength (about 4.8 cm for L1) (Ray, 2000). Furthermore,

because multipath is deterministic, its effect in a double difference can be up to

four times its maximum value. Therefore, double difference multipath effects under

adverse conditions can reach a magnitude of one full wavelength.

Finally, the results of the Doppler observations show cm/s-level accuracy. However,

given that the data were collected in a static environment there are theoretically no

multipath effects. Instead, Doppler multipath is a function of the receiver velocity
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Figure 3.2: Combined Effect of Noise and Multipath for L1 Carrier Phase

and is therefore expected to be larger in kinematic environments.

The findings of this analysis were used for selecting appropriate measurement accu-

racies for the Kalman filter algorithm. To this end, it is noted that the measurement

standard deviations show an increase with decreasing elevation angle. Although

expected, this behaviour must be properly accounted for.
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Figure 3.3: Combined Effect of Noise and Multipath for L1 Doppler

3.1.3 Ambiguity Resolution

As shown in the previous section, the carrier phase observable has significantly lower

noise and multipath effects than does the code. It follows therefore, that its use in

navigation systems is highly desirable. Unfortunately, exploiting the advantages of

the carrier phase comes at the cost of having to resolve the ambiguities as integer

values. This section very briefly reviews ambiguity resolution in general and its

dependence on the above errors. An analysis of using external position estimates for

improving the process is also presented.
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Resolving the carrier phase ambiguities as integers has been a major focus of many

research studies (e.g. Counselman and Gourevitch, 1981; Hatch, 1990; Chen, 1994;

Teunissen and Tiberius, 1994). In particular, on-the-fly (OTF) techniques have

received much attention because of their requirement in most operational conditions.

Most approaches search a range of values for the best set of integers and select the

optimal set based on some criteria. The search range (volume) is usually defined in

the position or ambiguity domains. Position-domain searches are less common in the

literature and are not discussed herein. Some examples of ambiguity-domain searches

include the Fast Ambiguity Search Filter (FASF) (Chen, 1994) and Least-Squares

Ambiguity Decorrelation Adjustment (LAMBDA) (Teunissen and Tiberius, 1994),

to name a couple. The typical steps involved in ambiguity-domain techniques include

estimation of the ambiguities as real-values, searching for the optimal ambiguity set,

and validation of the selected set.

All ambiguity resolution approaches suffer from differential errors. The errors cause

the real-valued estimate of the double difference ambiguity to differ from an integer

number of cycles. The larger the errors, the more non-integer the estimate. Errors

in the estimated receiver position can also cause a similar effect. Regardless of the

source of error, the result is that identifying the correct ambiguity set becomes more

difficult.

Effect of Differential Errors

In terms of ambiguity resolution, the magnitude of the differential errors in units of

cycles is most important. In Table 3.2 the spatially correlated differential GPS error

sources are shown in units of cycles, for L1 and widelane. The symbol f represents

the frequency and λWL is the widelane wavelength. The ratio between L1 and WL
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Table 3.2: GPS Error Sources in Units of Cycles For L1 and WL Carrier Phase
(Raquet, 1998)

Error L1 Error [cyc] WL Error [cyc] WL / L1 Ratio

Orbital ∇∆dρ

λ1

∇∆dρ

λWL

λ1

λWL

≈ 0.221

Troposphere ∇∆T

λ1

∇∆T

λWL

λ1

λWL

≈ 0.221

Ionosphere1 1

λ1

∇∆Z

f 2
1

1

λ1

∇∆Z

f 2
1

f2 − f1

f2

∣∣∣∣∣f2 − f1

f2

∣∣∣∣∣ ≈ 0.283

1Z is the Total Electron Content which is directly proportional to the ionospheric effect.

immediately shows the benefit of the widelane observable, namely it provides about

a four-fold improvement in resistance to errors. For this reason, ambiguity resolution

with widelane carrier phase measurements is considerably more robust than with L1.

For perspective, the rule of thumb for resolving the ambiguities is to have a ranging

accuracy of better than one half of a wavelength (de Jong et al., 2002). Therefore,

given the relatively short wavelengths of interest here, a four-fold improvement is

very significant.

Effect of External Positioning Information on Ambiguity Resolution

The precision of the estimated real-valued ambiguities, as reflected in their covari-

ance matrix, is directly related to the volume of the search space in the ambiguity

resolution process. The most common indicator of the search space volume is the
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Ambiguity Dilution of Precision (ADOP) (Teunissen and Odijk, 1997) given by

ADOP =
√
|CN̂ |

1
m

(3.8)

where CN̂ is the covariance matrix of the estimated ambiguities and m is the number

of double difference ambiguities being estimated. With this in mind, the objective

here is to evaluate the covariance matrix of the ambiguities as a function of the

covariance matrix of an external position update. In Škaloud (1998), a closed form

of the ambiguity covariance matrix using code, phase and an external position up-

date is derived. Scherzinger (2002b) also showed a similar relationship. Instead of

reproducing the details of these works, a slightly more heuristic explanation is given

herein. First, it is noted that both of the above references assumed the GPS am-

biguities were reset after a GPS data outage. The system was then updated using

code, carrier phase and external position information. Here, the updating process

is broken into two steps. First, it is assumed that the GPS observations are pro-

cessed followed by an update from an external position observation. As shown in

Appendix A, the results of this two-step approach will be mathematically identical

to those of the one-step approach. With this in mind, after the GPS measurements

are processed the estimated position and ambiguity states will be correlated with

each other. This can be represented mathematically as

Cx̂ =

 Cr̂ Cr̂,N̂

CN̂,r̂ CN̂

 (3.9)

where

Cx̂ is the covariance matrix of the entire system, assumed to be composed of

position and ambiguity states only,
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r represents the position states in the filter,

N represents the ambiguity states in the filter, and

Câ,b̂ is the covariance matrix between â and b̂.

The addition of a direct position measurement would then take the form

zr =
[
I 0

]
︸ ︷︷ ︸

H

 r

N


︸ ︷︷ ︸

x

+v (3.10)

where the first hyper-matrix on the right-hand side acts as the design matrix. Using

this design matrix along with Equations 3.9, 2.10 and 2.11, the updated covariance

matrices for the position and ambiguity states can be shown to be

C+
r̂ = C−

r̂ − C−
r̂ (C−

r̂ + Cz)
−1C−

r̂ (3.11)

C+

N̂
= C−

N̂
− C−

N̂,r̂
(C−

r̂ + Cz)
−1C−

r̂,N̂
(3.12)

From these equations, two conclusions can be drawn. First, the covariance matrix

of the position states is directly reduced. This makes sense given the nature of

the observation. Second, and more important for the discussion at hand, is that the

covariance matrix of the ambiguities is also reduced indirectly through its correlation

with the position states. Furthermore, the extent of this improvement depends on

two factors, namely

1. The correlation between the position and ambiguity states. This is a function

of the satellite geometry after a GPS data outage and is beyond the user’s

control.
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2. The accuracy of the position update used, with more accurate positions pro-

viding greater improvement in the ambiguity covariance matrix. Therefore, if

the user is capable of obtaining an independent estimate of the position, from

an INS for example, then it can be used to reduce the ambiguity search space.

3.2 Overview of Inertial Navigation Systems

In many respects, an Inertial Navigation System (INS) is the perfect complement to

GPS. Orthogonally mounted accelerometers and angular rate sensors (gyros) com-

prise the Inertial Measurement Unit (IMU) which, when combined with the mech-

anization equations (and system error estimation), comprises the INS itself. This

section begins with a review of the coordinate frames used herein and then briefly

presents the equations of motion and mechanization equations. The equations are

then perturbed to define the INS error equations. Finally, a discussion of the initial

alignment process is presented.

3.2.1 Coordinate Frames

Three coordinate frames are used in this dissertation. The discussion of each follows

from Schwarz and Wei (1999) and Jekeli (2000).

Inertial Frame (i-frame)

An inertial frame is considered to be non-rotating and non-accelerating relative to

far-off galaxies (Schwarz, 1996). Operationally, an inertial frame is realized if the

above conditions are met to better than the accuracy of the measurements used to
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define the frame in the first place. With this in mind the definition of the i-frame is

as follows

Origin : Earth’s centre of mass

Z-Axis : Parallel to the Earth’s instantaneous spin axis

X-Axis : Pointing towards the mean equinoctial colure in the equatorial plane

Y-Axis : Orthogonal to the X and Z axes to complete a right-handed frame

Earth Centred Earth Fixed Frame (ECEF or e-frame)

The Earth-fixed frame used herein is defined as follows

Origin : Earth’s centre of mass

Z-Axis : Parallel to the Earth’s mean spin axis

X-Axis : Pointing towards the mean meridian of Greenwich

Y-Axis : Orthogonal to the X and Z axes to complete a right-handed frame

Body Frame (b-frame)

The body frame represents the orientation of the IMU axes. In stabilized platform

systems, the IMU can be kept aligned to a particular navigation frame of interest (e.g.

the ECEF frame) using external torques derived from the measured angular rates

(Jekeli, 2000). However, in a strapdown inertial system such as is used herein, the

IMU is rigidly mounted to the vehicle to be positioned and thus can have arbitrary

orientation. For convenience, the body frame is assumed to be aligned with the

frame of the vehicle with the following convention
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Origin : Centre of IMU

X-Axis : Pointing towards the right of the vehicle

Y-Axis : Pointing towards the front of the vehicle

Z-Axis : Orthogonal to the X and Y axes to complete a right-handed frame

3.2.2 Equations of Motion and Mechanization Equations

The mechanization equations are the set of equations used to convert the output of

the IMU into useful position, velocity and attitude information. To this end, the

output of an IMU can be defined as vectors of rotation rates, ω, and specific force

measurements, f . The specific force measurements are related to the total vehicle

acceleration, a, via the gravitational acceleration, g̃, as follows

f = a− g̃ (3.13)

Therefore the raw IMU measurements must be corrected for the gravitational accel-

eration before the vehicle’s actual acceleration can be obtained.

Once the angular rates and accelerations are obtained, inertial navigation can be

performed in two basic steps. First, assuming the IMU’s initial orientation is known

relative to some navigation frame of interest, the angular rates are integrated to

obtain the new orientation of the IMU. Second, this new orientation information

is used to rotate the accelerations into the navigation frame where they are twice

integrated to obtain velocity and position increments. While this is an oversimplified

description, it serves to illustrate the general principle of inertial navigation.
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Notation

In an effort to clarify the following discussion, the majority of notation used in this

section can be summarized as

• A rotation rate vector ωa
bc represents the rotation rate of frame ‘c’, relative to

frame ‘b’, expressed in frame ‘a’.

• A rotation matrix of the form Ra
b transforms a vector from frame ‘b’ to ‘a’.

• A vector denoted xa represents a quantity, x, in frame ‘a’.

Equations of Motion

The equations of motion mathematically describe the motion of the vehicle to be

positioned. They can be written in the e-frame as (Schwarz and Wei, 1999)
ṙe

v̇e

Ṙe
b

 =


ve

Re
bf

b − 2Ωe
iev

e + g̃e − Ωe
ieΩ

e
ier

e

Re
b

(
Ωb

ei + Ωb
ib

)

 (3.14)

where a dot represents a time derivative and

r is the position vector,

v is the velocity vector, and

Ω is the skew-symmetric form of the rotation rate vector ω.

However, exploiting the fact that the combination of the last two terms in the second
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equation is the gravity vector, ge, the above equation can be simplified to
ṙe

v̇e

Ṙe
b

 =


ve

Re
bf

b − 2Ωe
iev

e + ge

Re
b

(
Ωb

ei + Ωb
ib

)

 (3.15)

As can be seen, the specific force, f b, and angular rate measurements, ωb
ib, measured

by the IMU act as input to the system.

Mechanization Equations

The mechanization equations are used to solve the equations of motion in order to ob-

tain the necessary position, velocity and attitude increments. These, combined with

the initial conditions of the system, provide the information needed for navigation.

The mechanization equations consist of four basic steps

1. Correction of raw data for known or estimated errors

2. Attitude update

3. Transformation of specific force to navigation frame of interest

4. Calculation of velocity and position

It is noted that instead of the measured rates, most IMUs will actually output

velocity and angular increments (∆v and ∆θ, respectively) over the interval tk to

tk+1. While this does not affect the validity of the above equations, it will be assumed

in the following, which is taken mostly from Schwarz and Wei (1999).
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Correction of Raw Data

The errors for which the raw data are corrected typically include biases, scale factor

errors and axis non-orthogonalities. These values can be obtained from laboratory

or field calibrations, or can be estimated during the navigation process as shown in

Chapter 4.

Attitude Update

The total angular increment of the vehicle is the combination of the vehicle’s and

the navigation frame’s rotation relative to inertial space, as shown in the last row

of Equation 3.15. While the former is obtained from the IMU directly, the latter is

obtained using the known rotation rate vector, ωe (i.e. Earth rotation rate). The

final result is

∆θb
eb = ∆θb

ib −Rb
eωe∆t (3.16)

where ∆t = tk − tk+1. The updated rotation matrix can then be obtained to first

order approximation as

Re
b(tk+1) = Re

b(tk)
(
I + Sb

)
(3.17)

where Sb is the skew-symmetric form of the angular increment vector in Equa-

tion 3.16. Practically, the approach shown above is rarely used. Instead, the orienta-

tion is often parameterized in terms of quaternions because of their robustness against

singularities and their computational efficiency (Schwarz and Wei, 1999; Jekeli, 2000).

The quaternion can also be uniquely converted into a rotation matrix as necessary

for the following development.

Once the updated rotation matrix is obtained, the rotation matrix from the body

frame to the local level (l) frame (i.e. the frame centered at the user, with the Y-axis
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pointing north, Z-axis pointing up and X-axis completing a right-handed frame) is

computed as

Rl
b = R1(90

◦ − φ)R3(λ+ 90◦)Re
b (3.18)

where

φ is the latitude of the IMU,

λ is the longitude of the IMU, and

Ri is the rotation matrix about the ith axis.

From this matrix, the attitude parameters can be computed using

ξ = − tan−1

(
(Rl

b)3,1

(Rl
b)3,3

)
(3.19)

η = − sin−1
(
(Rl

b)3,2

)
(3.20)

ψ = tan−1

(
(Rl

b)1,2

(Rl
b)2,2

)
(3.21)

where

ξ is the roll of the vehicle,

η is the pitch of the vehicle,

ψ is the azimuth of the vehicle, and

(Rl
b)a,b is the element at the ath row and bth column of the Rl

b matrix.

Although the Rl
b matrix is itself unique, practically it is computed assuming a par-

ticular order of rotations. The order in which the rotations are assumed to have
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occurred will impact the computation of the attitude parameters in Equations 3.19

to 3.21. With this is mind, the rotation matrix is herein assumed to be constructed

as follows

Rl
b = R3(ψ)R1(−η)R2(−ξ) (3.22)

Transformation of Specific Force to the Navigation Frame

Before correction and integration, the measured specific force measurements must

be rotated from the body frame to the ECEF frame. Instead of using the rotation

matrix computed above, the average orientation of the IMU during the interval tk

to tk+1 is preferred. With this in mind, the velocity increment in the e-frame is

computed using either of the following two equations

∆ve
f = Re

b(tk)
(
I +

1

2
Sb
)

∆vb
f (3.23)

∆ve
f = Re

b(tk+1)
(
I − 1

2
Sb
)

∆vb
f (3.24)

where the f subscript implies that the velocity increments are due only to the mea-

sured specific force.

Calculation of Velocity and Position

The final velocity increment in the e-frame is given by

∆ve = ∆ve
f − 2Ωe

iev
e + γe (3.25)

where γ is the normal gravity, computed using the parameters of a given reference

frame. An efficient method of computing this value in the e-frame is given in Schwarz

and Wei (1990) or Wei and Schwarz (1990a). The second term in the above equation



59

is the Coriolis term and is computed using the previous epoch’s velocity. Once the

velocity increment is computed, the updated velocity is given by

ve (tk+1) = ve (tk) + ∆ve (3.26)

Finally, using trapezoidal integration, the position can be incremented as

re (tk+1) = re (tk) +
(
ve (tk) + ve (tk+1)

)∆t

2
(3.27)

3.2.3 INS Error Equations

The mechanization equations discussed in the previous section provide no informa-

tion about the errors of the system. Instead, they blindly process data received from

the IMU to obtain updated navigation parameters without regard to the veracity

of these parameters. In practice, it is often required to estimate the system errors

in order to improve performance to a satisfactory level. This is commonly done us-

ing a Kalman filter. However, given the non-linear nature of the system shown in

Equation 3.15, the system must first be perturbed.

Given the complexity of the system at hand, the full derivation of the perturbed

system is not shown here. Instead, readers are referred to Schwarz and Wei (1999)

or Jekeli (2000) for details. Following steps outlined in ibid., the results of the

perturbed system can be expressed as
δṙe

δv̇e

ε̇e

 =


δve

−F eεe +N eδre − 2Ωe
ieδv

e

−Ωe
ieε

e

+


0

Re
bδf

b

Re
bδω

b
ib

 (3.28)

where a δ in front of a parameter indicates a perturbed quantity and
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F is the skew-symmetric matrix of specific force measurements,

ε is a vector of misalignment angles along each axis,

N is the tensor of gravity gradients,

δf b is the vector of errors in the measured specific force vector, and

δωb
ib is the vector of errors in the measured angular rates.

3.2.4 Initial Alignment

One of the underlying assumptions used in the presentation of the mechanization

equations was that the initial condition of the system was already known. While

position and velocity are usually easily input by the user, the initial orientation of

the system is not so readily available. For this reason, the INS usually has to execute

an initial alignment procedure. Typically, this is performed in two steps; a coarse

alignment step and a fine alignment step.

Coarse Alignment

Two known quantities, namely the Earth’s rotation rate and gravity vector, are used

to provide the initial alignment of the INS. Specifically, under static conditions (i.e.

no external acceleration) the gravity vector is used to compute the roll and pitch as

ξ = − sin−1

(
∆vb

x

γ∆tIMU

)
(3.29)

η = sin−1

 ∆vb
y

γ∆tIMU

 (3.30)

where a bar above a quantity represents a time average, the subscripts represent the

axis of interest, and ∆tIMU is the data interval of the IMU. The time interval used



61

for averaging is selected based on the noise of the sensor. For the IMU used for this

research, the averaging time used was 90 s. Using a longer interval provided no sig-

nificant improvement. Using the above quantities, the averaged angular increments

can be rotated into a horizontal frame (h-frame) as follows

∆θh
ib = R1(−η)R2(−ξ)∆θb

ib (3.31)

The approximate azimuth of the system can then be obtained as

ψ = −tan−1


(
∆θh

ib

)
x(

∆θh
ib

)
y

 (3.32)

Finally, with the roll, pitch and azimuth computed, the rotation matrix from the

b-frame to the e-frame is computed as

Re
b = R3 (−90◦ − λ)R1 (φ− 90◦)R3 (ψ)R1 (−η)R2 (−ξ) (3.33)

where φ and λ are the latitude and longitude of the IMU respectively.

Fine Alignment

The fine alignment process is used to refine the initial alignment estimates obtained

in the coarse alignment process. Also, some sensor errors can be observed so as to

improve upon previous calibration values. The process is based on updates of an

extended Kalman filter estimating the error states of the system. Equation 3.28

shows the basic system model, with more details given in Chapter 4.

Of all observations typically used for the fine alignment process, zero velocity up-

dates (ZUPTs) are perhaps the most popular and were used herein. A coordinate

update was performed upon terminating the fine alignment process. Other possible
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observations include the horizontal accelerations (which should be zero if the vehicle

is stationary) or an external azimuth reference (Jekeli, 2000).

3.2.5 IMU Quality

The quality of an IMU is typically quoted based on the system’s nominal gyro biases.

The motivation for this is two-fold (Scherzinger, 2002a). First, the performance of

all IMU components will be selected to be commensurate with each other. In other

words, all of the system components will contribute in a similar manner to the

overall error budget. Second, the gyro biases are the primary factors in the free-

inertial position performance. To this end, there are three grades of IMUs, namely

navigation-grade, tactical-grade and automotive-grade. A very general comparison

of these was given in Table 1.1.

Previous studies have shown that automotive-grade IMUs will be of little benefit to

high-accuracy navigation (refer to Section 1.2 for details). Since this dissertation

aims at replacing navigation-grade units with tactical-grade units for high-accuracy

applications, Table 3.3 compares the specifications for the Honeywell HG1700 AG11

unit used in this dissertation with those of two navigation-grade units. Specifications

for the HG1700 unit were obtained from Honeywell (1997), while those of the other

two systems were obtained from Mohamed (1999).

As can be seen, the accuracy of the HG1700 is significantly poorer than the two

navigation-grade units. Specifically, the accelerometer and gyro biases are up to four

and 333 times larger respectively. Large differences in the scale factors and misalign-

ments are also seen. Given these differences, this dissertation aims at characterizing

the benefits and limitations of tactical-grade systems for high-accuracy navigation.
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Table 3.3: Comparison of Tactical-Grade and Navigation-Grade IMU Specifications

Inertial Measurement Unit
Quantity Honeywell

HG1700 AG11
Litton

LTN90-100
Honeywell
LRF-III

Grade Tactical Navigation Navigation

Accelerometer Errors

Bias (1σ) 1 milli-G 0.5 milli-G 0.25 milli-G
Scale Factor (1σ) 300 ppm 50 ppm 50 ppm
Misalignment (1σ) 500 µrad 24 µrad 24 µrad

Gyro Errors

Bias (1σ) 1 deg/h 0.01 deg/h 0.003 deg/h
Scale Factor (1σ) 150 ppm 5 ppm 1 ppm
Misalignment (1σ) 500 µrad 10 µrad 10 µrad



Chapter 4

GPS/INS Integration

Having reviewed the major aspects of GPS and INS in the previous chapter, focus

can now be directed to integrating the two systems. To begin, a review of the most

common GPS/INS integration strategies is presented with more detail given to those

strategies used in later chapters. The details of each Kalman filter used in the various

approaches are then presented separately, with attention given to model selection and

parameterization. Finally, the required accuracy for the lever-arm between the GPS

antenna and the IMU is discussed.

It is noted at the outset that throughout this chapter, real-time processing is as-

sumed. Post-mission processing strategies such as backwards processing, optimal

smoothing, and error interpolation between updates (e.g. as in Nassar and Schwarz,

2001) are not discussed here. However, given the potential advantages of these ap-

proaches for post-mission applications, they are certainly worth investigating in other

contexts.

4.1 GPS/INS Integration Strategies

In general, there are several strategies used for integrating GPS and INS data into

a common system. Most differ by the type of information that is shared between

individual units. The following four approaches are the most common (Jekeli, 2000;

Scherzinger, 2000)

64
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• Uncoupled Integration

• Loose Integration

• Tight Integration

• Deep / Ultra-Tight Integration

In the uncoupled integration, the fact that GPS solutions are typically of high-

accuracy is exploited. In this way, if GPS data is available it is used to compute the

system output. The GPS data is also used to reset the INS errors to zero, but does

nothing to affect the rate of their increase. Consequently, when the INS output is

used in the absence of GPS, the accuracy of the system declines very rapidly. For

this reason, this approach is not well suited to high-accuracy navigation. For details,

see Jekeli (2000).

In contrast, deep integration is very well suited to the problem at hand. In this

setup the GPS receiver and INS no longer work as independent systems. Instead,

the GPS updates are used to calibrate the INS, while the INS is used to aid the GPS

receiver tracking loops during interference or otherwise degraded signal conditions

(Sennott and Senffner, 1997). Unfortunately, this approach requires access to a

receiver’s firmware, or at least the tracking loop information. As such, this strategy

is typically only implemented by equipment manufacturers, and is thus not used

herein.

The loose and tight integration strategies are the most common in the literature.

In both cases, the GPS receiver and IMU operate as separate systems, and differ

only in the type of information shared between them. Each approach is described
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in detail in the following sections. For convenience, the terms “loosely coupled” and

“tightly coupled” will also be used to refer to each strategy.

4.1.1 Loose Integration

In the loose integration strategy, position and velocity are used as observations to

an INS-only filter. The position and velocity estimates are obtained either from an

external source such as a GPS receiver, or are computed internal to the integrated

navigation software. In this way, the integration approach uses a cascading scheme

where the raw GPS measurements (code, Doppler and phase) are first processed in

a GPS-only filter before being passed along to aid the INS. It is important that the

full covariance matrix of the estimated states from the GPS-only filter be passed to

the INS-only filter. Failure to do so will corrupt the system statistics and thus its

performance. The loose integration concept is illustrated in Figure 4.1.

The advantage of the loose integration strategy is that the dimension of the state

vectors (in the GPS-only and INS-only filters) are generally of smaller dimension than

in the tight integration case (see Section 4.1.2). This translates into faster processing

times. A second advantage is that since the position and velocity information used

to update the INS-only filter could be obtained from external sources, the software

development and required number of computations could be further reduced.

The disadvantage of the loose integration strategy is that the GPS-only filter essen-

tially operates independent of the rest of the system. While this poses no considerable

problem under ideal conditions, if a full filter reset (due to loss of lock, for example)

is required, the GPS-only filter is subject to the same shortcomings as a GPS-only

system. To help circumvent this problem, Figure 4.1 shows a dashed line from the
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Figure 4.1: GPS/INS Information Flow Diagram for Loose Integration Strategy

INS-only filter to the GPS-only filter. When a full GPS reset is required, the inertial

position and velocity (along with the full covariance matrix) can be used to initialize,

or seed, the GPS-only filter. In so doing, the GPS-only filter can benefit from the

additional information provided by the INS. For clarity, the use of seeding will always

be stated explicitly, as in “seeding the GPS filter” or “loose integration with INS

seeding”. This is done to avoid confusion with the more basic “loose integration” or

“loosely coupled” terms in which seeding is not used.
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Although listed as an advantage above, having two independent Kalman filters can

also be a slight disadvantage. The reason is that process noise must be added to both

the GPS-only and INS-only filters (compared to just the GPS/INS filter in the tight

integration approach, as discussed below). The “extra” process noise in the GPS-

only filter is required to accommodate uncertainties in that filter’s dynamic model.

However, recall that the Kalman gain matrix ultimately determines how much new

information is accepted from new measurements, and thus acts as a “filter” for the

observation data. Furthermore, the extent of filtering is a function of the NSR, as

shown in Equation 2.13. It follows therefore, that if the process noise increases, the

NSR will decrease thus limiting the filtering capability of the system. Ultimately,

this will impact system performance.

4.1.2 Tight Integration

Using a tightly coupled integration, the raw GPS observations are passed directly to

a combined GPS/INS Kalman filter. The information flow diagram for this approach

is shown in Figure 4.2. The grey box and lines in the figure correspond to the loose

integration strategy and are included for comparison purposes only. There is no GPS

filter in the tightly coupled case.

Having only a single filter means that it must estimate all the states for both the

GPS and INS systems. However, this has several advantages. First, it provides a

statistically rigourous sharing of information among states (to the extent that the

input statistics are correct). Second, because process noise is only added to a single

filter, the filtering of the GPS measurements is improved. In fact, as shown in

Section 4.2, the reduction in the amount of process noise added relative to the loose
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Figure 4.2: GPS/INS Information Flow Diagram for Tight Integration Strategy

integration approach is significant. Finally, having to program only a single Kalman

filter can simplify software development and debugging.

The major disadvantage of the tightly coupled versus loosely coupled approach is the

increased size of the state vector (in general), which leads to increased computational

loads. However, as will be shown in Section 4.2.3, when the GPS ambiguities are

fixed, the GPS/INS filter actually reduces to that of the INS-only filter in the loosely

coupled case. As a result, the computational burden is actually significantly reduced.
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4.2 Details of Specific Kalman Filters

The previous section showed that depending on the integration strategy, either a

GPS-only and INS-only filter, or a GPS/INS filter, is required. The following sections

outline the details of these individual filters. The system models used as well as the

spectral densities are given.

4.2.1 GPS-Only Filter

The GPS-only filter used in the loosely coupled approach can theoretically estimate

any state observable using GPS data. Typically, this will include position, velocity

and possibly acceleration errors, but may include attitude parameters if multiple

receivers are available. To this end, Schwarz et al. (1989) investigated constant

velocity and constant acceleration models in kinematic processing. With limited

satellite coverage, no significant position differences were obtained while a slight

improvement was seen with the constant acceleration model in terms of velocity.

For both models, the highest time-derivative states being estimated (i.e. velocity

or acceleration) were modeled as a first-order Gauss-Markov processes with a time

constant on the order of 10–30 s.

In lieu of the above, the GPS-only filter used in this research estimates position and

velocity errors with the latter being modeled as random walk processes. Real-valued

double difference ambiguity states are also estimated as needed. Once ambiguities

are fixed to integers they are removed from the Kalman filter and are assumed

known. The position and velocity states are parameterized in the ECEF-frame and

are transformed into the local level frame when necessary. The state vector and
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system model can therefore be represented as

xT
GPS =

 δreT︷ ︸︸ ︷
δre

x δre
y δre

z

δveT︷ ︸︸ ︷
δve

x δve
y δve

z

δNT︷ ︸︸ ︷
δN1 · · · δNm

 (4.1)
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δṙe
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δṄ
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0 I 0

0 0 0

0 0 0




δre

δve

δN

+


0

wGPS

0

 (4.2)

where δN is the vector of double difference ambiguity errors.

The spectral densities for the velocity error states, wGPS, were initially computed

using kinematic GPS data collected in open-sky conditions. The time-difference

of the estimated velocity states (basically the acceleration) was then used as an

indication of the error in the constant velocity model. Taking the standard deviation

of the time series of velocity differences gave an initial estimate for the spectral

densities. However, since most of the trajectory consisted of approximately constant

velocity, this estimate is perhaps conservative. It was therefore decided to raise the

spectral densities from the computed values to avoid over-smoothing during periods

of higher dynamics. The spectral densities computed from the data as well as the

final values are shown in Table 4.1.

Table 4.1: Spectral Densities for Velocity States in GPS-Only Filter

Velocity Spectral Density [m/s2/
√

Hz]
Axis Computed From Data Final

X 0.63 1.00
Y 0.55 1.00
Z 0.42 1.00
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4.2.2 INS-Only Filter

The basis for the INS-only filter was outlined in Section 3.2.3 where the INS error

equations were shown. These are reproduced here for convenience.
δṙe

δv̇e

ε̇e

 =


δve

−F eεe +N eδre − 2Ωe
ieδv

e

−Ωe
ieε

e

+


0

Re
bδf

b

Re
bδω

b
ib

 (4.3)

Theoretically, the above equations could be used as is to model the inertial errors.

The reason this is not normally done lies with the forcing functions (i.e. the second

term on the right-hand side). Specifically, δf b and δωb
ib represent the errors in the

IMU measurements. In order for the above system of equations to fit the system

model used to derive the Kalman filter algorithms (Equation 2.8), these two terms

must be zero-mean white noise sequences with Gaussian distributions (the rotation

matrices can be considered shaping matrices). Unfortunately, due to systematic

errors in the inertial sensors, none of these conditions are met. The sensor error

models must therefore be refined accordingly.

A theoretically rigourous model for a resonating beam accelerometer, similar to the

kind used herein, is given as (Jekeli, 2000)

δf b = b+ cT δT +
2∑

i=1

ciai +
3∑

i=1

miai + sa+ wf (4.4)

where

b is the constant bias of the sensor,

cT δT is the temperature sensitivity effect,

ai is the acceleration along the ith axis,
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ciai are anisoelasticity1 effects,

mi are misalignment errors,

s is the scale factor error, and

wf is the sensor noise.

Similarly, the model for a ring laser gyro is typically given by (ibid.)

δωb
ib = d+ cT δT +

3∑
i=1

ciBi +
3∑

i=1

miωi + sω + wω (4.5)

where

d is the constant bias (drift) of the sensor,

cT δT is the temperature sensitivity effect,

ciBi are magnetic sensitivity terms,

ωi is the rotation rate around the ith axis,

mi are misalignment errors,

s is the scale factor error, and

wω is the sensor noise.

Modeling all of the above states in a Kalman filter is impractical for the application

at hand. The observability of all the above states, even if theoretically possible (see

Gelb (1974) for details on observability), is virtually impossible under operational

1Elasticity refers to an object’s ability to return to its original size and shape after deforma-
tion. Anisoelasticity, thus refers to the non-symmetric nature of this restoration. In this context,
anisoelasticity could refer to the actual sensor or to its supports.
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conditions due to GPS signal outages, limited vehicle dynamics and short data col-

lection campaigns. Attempting to model all parameters may even weaken the model

to a point where the system becomes unstable. Furthermore, given that a real-time

system is one of the objectives of this dissertation, adding several more states to the

system would increase the computational burden beyond an acceptable level.

In light of the above, both sensors errors are therefore considered to consist of a only

bias term and noise, with some temporal variability given to the bias states. The

temporal variability is used to account for time-varying parameters in the theoretical

models shown above, such as temperature sensitivity, scale factors, etc.. The sensor

error models can therefore be written as

δf b = b+ wf (4.6)

δωb
ib = d+ wω (4.7)

Augmenting the INS error model with these bias states, assuming them to be modeled

as first-order Gauss-Markov processes, the final system model in state-space form is
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+
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(4.8)

where a more detailed form of the dynamics matrix is included in Appendix B and

δbb is the vector of accelerometer bias errors,

δdb is the vector of gyro bias errors,

diag(αi) is diagonal matrix of time constants for the accelerometer bias models,

diag(βi) is diagonal matrix of time constants for the gyro bias models,

wb is the driving noise for the accelerometer biases, and

wd is the driving noise for the gyro biases.

To obtain the Gauss-Markov model parameters for the sensor errors, approximately

15 hours of static IMU data was collected. The IMU used for this purpose was the

same one used in the field tests discussed in later chapters, namely a Honeywell

HG1700 AG11. Under static conditions, the IMU measures Earth rotation and the

reaction force of gravity. However, because these two quantities are constant (for the

length of the test considered), any temporal variations in the measurements must be

caused by temporal variations in sensor errors, which is to be modeled. Therefore,

the autocorrelation function of the raw data was computed and used to determine

the parameters for the Gauss-Markov models. The final parameter values are shown

in Table 4.2. The corresponding spectral densities can be computed from the values
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Table 4.2: Gauss-Markov Parameters for Honeywell HG1700 AG11 IMU

Sensor Time Constant Temporal Variance

X Gyro 100 min 0.35 deg2/hr2

Y Gyro 55 min 0.34 deg2/hr2

Z Gyro 84 min 0.47 deg2/hr2

X Accel 170 min 8.0e-8 m2/s4

Y Accel 68 min 2.5e-7 m2/s4

Z Accel 152 min 4.8e-7 m2/s4

in the table as q = 2βσ2 where β is the inverse of the time constant and σ2 is the

temporal variance.

For computing the sensor noise values that drive the velocity error and misalignment

states (i.e. wf and wω), the standard deviation of a few seconds of data was sufficient

to obtain a reasonable estimate. This was repeated at several periods in the data

set to obtain a representative sample. Longer periods of data were not used so as to

avoid any short-term variability that may have been caused by bias instabilities. Un-

expectedly, the computed values were approximately one order of magnitude larger

than those quoted by the manufacturer, both for the gyros and accelerometers. To

refine the computed values, the first of two sets of data collected near Springbank

airport was processed with simulated GPS data outages using 36 different combi-

nations of accelerometer and gyro noise parameters (see Chapter 7 for processing

details). The final noise parameters were selected as those that gave a standardized

error near unity during the data outages (on average). Consideration was also given

to the innovation sequence, which shows systematic effects if the process noise value

is set too low. The final spectral density values are listed in Table 4.3. The noise

value for a particular sensor type is assumed invariant across all three axes.
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Table 4.3: Sensor Noise Spectral Densities for Honeywell HG1700 AG11 IMU

Sensor Spectral Density

Accelerometers 4.1e-3 m/s2/
√

Hz
Gyros 5.5 deg/h/

√
Hz

4.2.3 GPS/INS Filter

The GPS/INS filter used in the tightly coupled integration is the combination of the

GPS-only and INS-only filters. It must account for all of the GPS and INS states to

be modeled. However, as shown in Sections 4.2.1 and 4.2.2, the two filters share the

same position and velocity states. Therefore, the GPS/INS filter is simply the INS-

only filter augmented with the double difference ambiguities when they need to be

estimated as real-valued quantities. With this is mind, the tight integration approach

is actually more efficient (computationally) than the loose integration approach when

the ambiguities are fixed (and thus not estimated), since the GPS-only filter is no

longer necessary.

The process noise to be added to the filter is also the same as in the INS-only filter

above. In other words, the process noise needed for the GPS-only filter is obviated

in this case. Given the relatively large magnitude of the spectral densities used in

the GPS-only filter, this represents a tremendous improvement.

4.3 Lever-Arm Effect

For a GPS receiver, the point to which all observations refer is the phase centre of the

antenna. The analogous point for an IMU is the intersection of the three sensitivity

axes. It is immediately obvious that these two points cannot coincide, with the offset
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between the two being termed the lever-arm. Denoting the lever-arm vector from

the IMU to the GPS antenna phase centre as `, the following equations hold

∆re = Re
b`

b (4.9)

∆ve = Ωe
eiR

e
b`

b +Re
bΩ

b
ib`

b (4.10)

where ∆re and ∆ve are the differences in position and velocity between the GPS

antenna phase centre and the IMU. To determine the required accuracy of the lever-

arm, the above equations will be perturbed under the assumption that the rotation

matrix is perfectly known and the gyro measurements are errorless. This yields

δ∆re = Re
bδ`

b (4.11)

δ∆ve = Ωe
eiR

e
bδ`

b +Re
bΩ

b
ibδ`

b (4.12)

From the first equation, it is obvious that the lever-arm needs be known only to

the accuracy of the estimated positions, in this case a few centimetres. However,

considering the effect on velocity (primarily the second term), the lever-arm must be

known to even better accuracy. Specifically, a turn rate in a ground-based vehicle is

capable of reaching 30◦/s (∼0.5 rad/s). For a 1 cm error in the lever-arm, this could

cause a velocity error of up to 5 mm/s. Since this is only slightly below the level of

noise for velocity estimation using GPS, and other errors have not yet been taken

into account, the required accuracy for the lever-arm is better than 1 cm.

This accuracy can be achieved using traditional surveying techniques. However,

the approach used herein estimated the lever-arm components in the INS-only filter

(only the loose integration strategy was used for this purpose). This was done in

an iterative manner, using the final solution of one processing run as the starting
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point for the next processing run. Typically, four to ten iterations were necessary

depending on the accuracy of the initial estimate. Once the final estimate of the

lever-arm was obtained it was held fixed for subsequent processing.



Chapter 5

Real-Time Considerations

Operating in real-time imposes some limitations that are not often considered in post-

mission software packages. This chapter discusses some of these issues. In particular,

some methods to handle data latency from the base station are presented. Next, some

of the processing limitations are discussed including the INS output rate, some of the

matrix computations in a Kalman filter, and the Kalman filter measurement update

strategy.

5.1 Base Station Latency

As shown in Equation 3.3, data from two receivers is needed to form a GPS double

difference observation. In order to minimize errors, the data from the two stations

should be time matched. In real-time applications however, a finite amount of time

is needed to transmit the necessary base station data to the vehicle to be positioned.

The latency associated with this transmission is a function of the amount of data

to be transmitted and the baud rate of the communication link. Typical latencies

experienced in this research were on the order of 0.1–0.2 s. This latency must be

properly taken into account, especially when integrating the GPS data with an INS.

In this regard there are two options

1. Process the GPS data using non-time-matched data from the base and remote

receivers. In this way, “old” base station data can be used such that process-

80
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ing can begin as soon as data from the remote station receiver is available.

Alternatively, previously received base station data can be predicted forward

using a Kalman filter to approximate time-matched data. These approaches

eliminate the latency altogether.

2. Store a time series of IMU/INS information as it becomes available. When

latent GPS data is received, the buffered information is restored to the proper

time and the update is performed. Finally, the IMU data from the update time

to the most recent time is processed. This is diagramed in Figure 5.1.

The first approach offers a relatively simple solution to the situation but is plagued

with two practical problems. First, as the data from the base and remote stations

becomes less synchronized, the differential errors increase because of their temporal

variability. This in turn complicates the ambiguity resolution process. For this

reason, non-time-matched data is often only used once the ambiguities are fixed

(Neumann et al., 1996). During the ambiguity resolution process the latency must

be addressed differently. Second, in this setup it becomes critical that a given epoch

of base station data not be used twice. Doing so would mean that the measurement

errors are not white and would violate one of the assumptions made in deriving the

Kalman filter algorithm. Similarly, if a filter is used to predict the measurements,

correlation across multiple epochs will develop. For these reasons, this approach was

not implemented.

The second option, while more complicated to implement, provides time-matched

GPS double difference observations and removes the possibility of introducing a time

correlation in the measurements. As implied above, use of this approach requires

information to be stored (buffered) for later use. This information includes the raw
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Figure 5.1: Real-Time Processing Strategy With Latent GPS Data

IMU data, the state of the mechanization equations (i.e. current position, etc.) and

the INS filter covariance. Practically, only a finite amount of information is stored.

If the GPS latency exceeds the maximum time span stored in the buffer, the GPS

data is simply not processed.
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5.2 Processing Limitations

The most obvious limitation imposed on real-time processing is the amount of com-

putations that can be performed in a given time interval. Having too many opera-

tions will mean the system cannot keep up with the incoming data. The objective

of real-time processing therefore, is to minimize the amount of computations while

maximizing system performance. This section outlines some of the practical issues

associated with real-time processing.

5.2.1 IMU Data Rate Versus INS Output Rate

Most IMU data rates exceed 50 Hz with some reaching into the hundreds of Hertz.

Processing all of this data in real-time is a significant challenge. Furthermore, propa-

gating the INS filter at this rate becomes even more complex. It is therefore preferred

to output the INS solution at a rate lower than the IMU raw data rate.

The mechanization equations presented in Section 3.2.2 assume the data is processed

as it is received. For this reason, this approach is not well suited to real-time pro-

cessing. Instead, the mechanization equations developed by Savage (1998a,b) were

implemented (these algorithms are also developed from basic principles in Savage

(2000)). These equations are developed assuming a high-rate and low-rate cycle.

The high-rate cycle accounts for systematic effects such as coning and sculling while

the low-rate cycle is used for updating the position, velocity and attitude. For the

equipment used, the high-rate cycle coincides with the 100 Hz IMU data rate while

the low-rate cycle is performed at 10 Hz. The INS error filter is also propagated at

this lower rate.
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5.2.2 Calculation of Kalman Filter Matrices

In Section 2.1.2 the theoretical methods for computing the transition and process

noise matrices were given (see Equations 2.16 and 2.17). For many systems however,

theoretical evaluation of these equations is impractical and so numerical approxima-

tions must be made.

Calculation of Transition Matrix

Computation of the transition matrix can be approximated by expanding Equa-

tion 2.16 as a Taylor series

Φk,k+1 = eF∆t

= I + F∆t+
(F∆t)2

2!
+

(F∆t)3

3!
+ · · · (5.1)

Practically, truncation of this series after a few terms is often sufficient. The GPS-

only filter is time invariant, implying the transition matrix is only a function of

the time interval. Assuming no data outages, it can therefore be computed once.

Furthermore, the transition matrix is rigourous if a first order expansion is used for

a constant velocity model.

For the INS error filter, the dynamics matrix is a function of the measured specific

force (see Appendix B) and thus must be evaluated at the filter update rate (i.e.

10 Hz). Although not rigourous, a second order expansion was used to compute the

transition matrix for the INS error filter. It was found that increasing the order of

expansion beyond two provided no noticeable improvement in results.
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Calculation of Process Noise Matrix

Theoretical evaluation of the process noise matrix, as given by Equation 2.17 is often

impractical, even for relatively simple systems. A numerical integration approach is

therefore required. The algorithm used herein takes the form (Geier, 1998)

Qk =
(
Φk,k+1GkQcG

T
k ΦT

k,k+1 +GkQcG
T
k

) ∆t

2
(5.2)

The interval over which the propagation is to take place could also be sub-divided into

smaller time intervals such that the above integration is more accurate. However, it

was found that for a 0.1 s interval there was no advantage to this approach. Finally,

because the process noise matrix is a function of the transition matrix, it must also

be computed at the filter update rate.

5.2.3 Kalman Filter Update Strategy

In many applications, groups of observations are often mutually independent. As a

result, the covariance matrix of the observations is either diagonal or block diagonal.

In these situations, the block diagonal form can be exploited to minimize the number

of computations needed in the Kalman filter algorithm by processing the independent

groups of observations sequentially (sequential processing) instead of all at once

(simultaneous processing). The two methods are shown to be numerically equivalent

in Appendix A. To illustrate the potential computational savings, reconsider the

equation for the Kalman gain matrix

Kk = C−
xk
HT

k (HkC
−
xk
HT

k + Czk
)−1 (5.3)

Notice that the dimension of the matrix to be inverted is equal to the number of

observations. Consequently, reducing the number of observations to be processed
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at a time will reduce the size of the inverse. Given that covariance matrices are

positive-definite and symmetric, the inversion is typically done using a Cholesky

decomposition for efficiency (Press et al., 1992). The number of floating point oper-

ations for this approach (including square roots) is given by

Γ(N) =
2N3

3
+

3N2

2
− 5N

6
(5.4)

where N is the dimension of the matrix to be inverted. Now consider the three

measurements available from a typical GPS receiver, namely code, Doppler and

phase. Most applications assume these measurements to be uncorrelated and thus

can benefit from the sequential processing approach. To illustrate the improvement

in the number of floating point operations for this case, the following represents

the fractional improvement of using the sequential approach over the simultaneous

approach

Γ(3m)

3Γ(m)
(5.5)

where m is the number of double differences, assumed to be the same for all three

measurement types. For three to ten double differences, the above ratio ranges

from about 6 to 7.2, as shown in Figure 5.2, and thus represents a tremendous

computational savings. It is noted that for the computer platform used for generating

the results of later chapters, the time saved using the sequential update approach

was only about 2 ms. However, for embedded systems where the actual number of

floating point operations is critical, the above advantages are still important.
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Figure 5.2: Matrix Inverse Operations Count Using Sequential and Simultaneous
Updates



Chapter 6

Statistical Reliability in Integrated Systems

The presentation of statistical reliability in Chapter 2 assumed only one filter was

used and all observations were processed simultaneously. However, as seen in Chap-

ters 4 and 5, these two assumptions are not always valid. Specifically, the loose inte-

gration strategy (with and without seeding) uses two separate filters in a cascading

approach, and any filter processing raw GPS observations could possibly process the

code, Doppler and carrier phase observations sequentially, instead of simultaneously.

This chapter addresses statistical reliability in light of these issues. A summary of

all of the major results is included at the end of the chapter.

6.1 Notation

Before proceeding, a more generic notation for the Kalman filter parameters than

was used in previous chapters is required. First, the epoch subscript (k) is dropped

without loss of generality. Second, observations are assumed to be processed in sets,

as in the sequential approach. The new notation can then be summarized as follows

Hi is the design matrix for the ith set of observations,

Czi
is the covariance matrix of the ith set of observations,

K
(a,b,...)
i,F is the Kalman gain matrix for the ith set of observations, computed by

filter F , after having already processed observations a, b, etc.,

88
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ν
(a,b,...)
i,F is the innovation sequence for the ith observation set from filter F , after

having already processed the observation sets a, b, etc.,

C
(a,b,...)
νi,F

is the covariance matrix of the innovation sequence for the ith set of obser-

vations, computed by filter F , after having already processed observations

a, b, etc.,

C
(a,b,...)
x̂,F is the covariance matrix of the estimated states from filter F after having

processed the observation sets a, b, etc., and

(•)(0) is the quantity (•) without having performed any previous updates at

that epoch (analogous to the (•)− notation from before).

The subscript i is omitted in all above locations for the simultaneous update ap-

proach. The value of F will be one of the following; G for the GPS-only filter, I for

the INS-only filter, or GI for the GPS/INS filter.

The notation for the reliability parameters is also somewhat altered from before. It

can be summarized as

∇(a,b,...)
i,F is the internal reliability vector for the ith observation set, computed from

filter F , after having already processed observation sets a, b, etc., and

∆x̂
(a,b,...)
i,F is the external reliability vector for the ith observation set, computed from

filter F , after having already processed observation sets a, b, etc..

As above, the subscript i is omitted when considering simultaneous observation up-

dates.

Instead of trying to show the equations for all possible combinations of filters and

update strategies, a simpler approach is desired. For internal reliability computa-



90

tions, the following notation implies that the MDB vector for the ith observation set

is computed using the specified innovations covariance matrix

C
(j,k,...)
νi,F

−−−−−→ ∇(j,k,...)
i,F (6.1)

The “transformation” from C
(j,k,...)
νi,F

to ∇(j,k,...)
i,F can be performed using Equation 2.48

and 2.50. Similarly, the external reliability is expressed using

∇(j,k,...)
i,F

K
−−−−−→ ∆x̂

(j,k,...)
i,F (6.2)

which implies that the protection level vector is computed by “passing” the specified

blunder vector through the (gain) matrix above the arrow. This is performed using

Equation 2.49 or 2.51.

6.2 Loose Versus Tight Integration

For contrasting the loosely and tightly coupled integrations in terms of statistical

reliability, the most important consideration is that blunders can only enter the

system before the first filter. For the case at hand, this implies all blunders occur

prior to the GPS-only filter in the loose integration or before the GPS/INS filter in

the tight integration. Stated differently, blunders are limited to the raw GPS data.

However, regardless of which filter “sees” the blunders first, the external reliability

of the final solution is of utmost importance. With this in mind, the major focus of

this section is twofold. First, the internal reliability of the filter processing the GPS

data is investigated. Second, the external reliability of the final solution is presented.

In all cases, simultaneous processing of the observations is assumed.
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6.2.1 Internal Reliability

The internal reliability for the loose and tight integration strategies are the same as

presented in Section 2.3.2. The only detail is that the MDBs should be computed

from the appropriate filter. Therefore, the MDBs for the loose and tight integration

cases are respectively given by

C
(0)
ν,G −−−−−→ ∇(0)

G (6.3)

C
(0)
ν,GI −−−−−→ ∇(0)

GI (6.4)

6.2.2 External Reliability

The external reliability for the tightly coupled integration is the same as shown in

Section 2.3.2, and can therefore be denoted

∇(0)
GI

K
(0)
GI−−−−−→ ∆x̂

(0)
GI (6.5)

For the loosely coupled integration, the external reliability is less straight forward.

Specifically, applying the traditional external reliability equations to the GPS-only

MDB vector will only yield the protection level for the GPS-only filter. The objective

however, is to determine the effect after the INS-only filter, since this represents the

final system output. Therefore, consider that an undetected blunder from the GPS-

only filter will have the effect of biasing the entire GPS-only estimate by an amount

given by that filter’s PL vector. Since the GPS solution is used as input to the

INS-only filter, it follows that the GPS-only PL vector also acts as a (multiple)

blunder vector in the INS-only filter. As such, its impact on the state estimates of
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the INS-only filter is given by

∆x̂
(0)
I = K

(0)
I ∆x̂

(0)
G (6.6)

where

∇(0)
G

K
(0)
G−−−−−→ ∆x̂

(0)
G (6.7)

It is important to note that the new notation is not used in Equation 6.6. The reason

is that in this case the entire observation vector is assumed to be in error. As such,

the GPS-only PL vector must be pre-multiplied by the entire gain matrix, not just

a single row as assumed in Equations 2.49 or 2.51.

The above discussion is diagrammed in Figure 6.1. Note that the MDBs for the

INS-only filter are not used in this situation. The reason for this is that the basic

assumption of statistical reliability, as derived herein, is that only a single blunder

exists at any given epoch. However, a single GPS blunder actually biases all of the

observations used in the INS-only filter. This situation cannot be reconciled without

further algorithm development, which is beyond the scope of this dissertation.

6.3 Sequential Updates

The results of the previous section apply only if all available observations at a given

epoch are processed simultaneously. However, as shown in Section 5.2.3, signifi-

cant computational savings can be achieved if sequential processing of uncorrelated

measurements is performed. This section presents the statistical reliability equa-

tions assuming sequential measurement processing. The results of this section apply

equally to the GPS-only filter in the loose integration or the GPS/INS filter in the

tight integration. As such, the filter identifier will be omitted until the end.
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Figure 6.1: Statistical Reliability Parameters for Loose and Tight Integration Strate-
gies Assuming Simultaneous Processing

6.3.1 Internal Reliability

To begin, consider two sets of statistically independent measurements, z1 and z2,

with covariance matrices given by Cz1 and Cz2 respectively. The observations can be

written as

z1 = H1x+ v1 (6.8)

z2 = H2x+ v2 (6.9)

Initially, assume that the first set of observations is processed alone. Using the

equations from Chapter 2, the following matrices can be formed

C(0)
ν1

= H1C
(0)
x̂ HT

1 + Cz1 (6.10)
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K
(0)
1 = C

(0)
x̂ HT

1

(
H1C

(0)
x̂ HT

1 + Cz1

)−1

= C
(0)
x̂ HT

1

(
C(0)

ν1

)−1
(6.11)

C
(1)
x̂ =

(
I −K

(0)
1 H1

)
C

(0)
x̂

= C
(0)
x̂ −K

(0)
1 H1C

(0)
x̂ (6.12)

The MDB vector for this set of observations is obtained from Equation 6.10 as follows

C(0)
ν1

−−−−−→ ∇(0)
1 (6.13)

Next, assume that the second set of observations are processed to yield

C(1)
ν2

= H2C
(1)
x̂ HT

2 + Cz2 (6.14)

from which the following holds

C(1)
ν2

−−−−−→ ∇(1)
2 (6.15)

Repeating the above procedure for subsequent observation sets shows that the follow-

ing general expression holds for the computation of MDBs in sequential processing

C
(0,1,...,i−1)
νi,F

−−−−−→ ∇(0,1,...,i−1)
i,F (6.16)

Relationship Between Simultaneous and Sequential Updates

Using sequential processing, the covariance matrix of the estimated states decreases

after each successive update as (this is the general form of Equation 6.12)

C
(0,1,...,i)
x̂ = C

(0,1,...,i−1)
x̂ −K

(0,1,...,i−1)
i HiC

(0,1,...,i−1)
x̂ (6.17)
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To illustrate the implications of this, consider the case when two sets of observations

are available such that Hi = Hi+1 and Czi
= Czi+1

. The corresponding innovation

covariance matrices are therefore given as

C
(0,1,...,i−1)
νi,F

= HiC
(0,1,...,i−1)
x̂ HT

i + Czi
(6.18)

C
(0,1,...,i)
νi+1,F = Hi+1C

(0,1,...,i)
x̂ HT

i+1 + Czi+1

= HiC
(0,1,...,i)
x̂ HT

i + Czi
(6.19)

Comparing Equations 6.18 and 6.19 with the knowledge of Equation 6.17 implies

that for a given filter

C
(0,1,...,i−1)
νi,F

≥ C
(0,1,...,i)
νi+1,F (6.20)

This means that the internal reliability parameters for the (i+1)th set of observations

are smaller than those of the ith set, even if they both contain the same information.

In general, the last set of observations to be processed in sequential mode has the

same internal reliability as if it was processed simultaneously with all previously

processed observation sets. To illustrate this, recall the two sets of observations from

the start of this section. Assuming z2,1 =
[
zT
2 zT

1

]T
, the covariance matrix of the

innovation sequence is

C(0)
ν2,1

=

 H2

H1

C(0)
x̂

[
HT

2 HT
1

]
+

 Cz2 0

0 Cz1



=

 H2C
(0)
x̂ HT

2 + Cz2 H2C
(0)
x̂ HT

1

H1C
(0)
x̂ HT

2 H1C
(0)
x̂ HT

1 + Cz1

 (6.21)

=

 C11 C12

C21 C22


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The internal reliability parameters for observation set #2 depend on the upper left

matrix of the inverse of C(0)
ν2,1

, which is nothing more than
(
C

(0)
v2,sim

)−1
, where “sim”

signifies simultaneous processing. Using the inversion lemma in Appendix C(
C

(0)
ν2,sim

)−1
=

(
C11 − C12C

−1
22 C21

)−1

=
(
H2C

(0)
x̂ HT

2 + Cz2 −H2C
(0)
x̂ HT

1

(
H1C

(0)
x̂ HT

1 + Cz1

)
H1C

(0)
x̂ HT

2

)−1

=
(
H2C

(0)
x̂ HT

2 + Cz2 −H2K
(0)
1 H1C

(0)
x̂ HT

2

)−1

=
(
H2C

(0)
x̂ HT

2 −H2C
(0)
x̂ HT

2 +H2C
(1)
x̂ HT

2 + Cz2

)−1

=
(
H2C

(1)
x̂ HT

2 + Cz2

)−1

=
(
C(1)

ν2

)−1

where (K
(0)
1 H1C

(0)
x̂ = C

(0)
x̂ − C

(1)
x̂ ) from Equation 6.12 was used between the third

and the fourth lines. The result confirms that the second observation set processed

in sequential mode has the same reliability as if both the observation sets were

processed simultaneously. This can be expanded to the general case by assuming

three sets of observations are to be processed. However, given the above, the first

two sets can be processed together without affecting the final solution. This again

leaves two observation sets (i.e. the combination of the first two, plus the third one)

which produce the same result if processed sequentially or simultaneously. Recursive

application of this logic proves the generic case.

The above conclusion can be explained heuristically as follows. Sets of observations

that are processed first do not have “access” to other observation sets that are

processed afterwards. In this way, “early” observations have less information to

use for identifying blunders. However, by the time the final set of observations are
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to be processed, the filter has already acquired the information from the previous

observations. Consequently, the last set of sequentially processed observations will

have the same reliability as if it was processed simultaneously with all previous

observation sets. Unfortunately, this accumulation of information with subsequent

observation sets does not affect the internal reliability of earlier observations. The

reason for this is that any undetected blunder in earlier observations would have

already been incorporated into the filter’s state estimate (although, as shown below,

the external reliability for a given observation set can be decreased with subsequent

observation sets).

A consequence of the above is that, in sequential mode, the order in which observa-

tions are processed becomes important (since the order in which a given observation

set is processed will affect its MDB). While there is no “correct” processing order,

the observations that are most likely to influence the estimated parameters should

be processed last. The reason for this is that because these observations are most

influential in the estimation process, blunders on these observations will be more

pronounced in the final state estimates. However, by processing these observation

sets last, their internal reliability improves (i.e. their MDB decreases), which in turn,

improves the external reliability of the system.

6.3.2 External Reliability

To determine the external reliability using sequential updates, the fact that both

sequential and simultaneous processing of the observations produces numerically

identical results, in terms of a final state estimate, is exploited. Assuming only two

sets of observations are available, Appendix A shows that the final correction to the
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initial state estimate using either processing strategy is given by (see Equation A.13)

χ
(0)
1,2 =

(
I −K

(1)
2 H2

)
K

(0)
1 ν

(0)
1 +K

(1)
2 ν

(0)
2 (6.22)

where χ
(0)
1,2 is the correction to the state vector using observation sets 1 and 2 before

any other observations are processed. In matrix form, this equation becomes

χ
(0)
1,2 =

[ (
I −K

(1)
2 H2

)
K

(0)
1 K

(1)
2

]  ν
(0)
1

ν
(0)
2

 (6.23)

where the first matrix is the Kalman gain matrix from the simultaneous processing

approach (i.e. K
(0)
1,2 for the example under consideration). Using this notation, the

above equation can then be written as

χ
(0)
1,2 = K

(0)
1,2 ν

(0)
1,2 (6.24)

Finally, assuming blunders are present

χ
(0)
1,2 = K

(0)
1,2

(
ν

(0)
1,2 +∇(0)

1,2

)
(6.25)

From the above, it becomes clear that the blunders are actually propagated into

the estimated parameters through the gain matrix from the simultaneous processing

approach. Therefore, the following relationship holds

∇(0)
1,2

K
(0)
1,2

−−−−−→ ∆x̂
(0)
1,2 (6.26)

or in matrix form  ∇(0)
1

∇(0)
2

 K
(0)
1,2

−−−−−→

 ∆x̂
(0)
1

∆x̂
(0)
2

 (6.27)

However, the blunder vectors of interest are those obtained from the sequential pro-

cessing approach, not from the simultaneous approach as shown above. Fortunately,
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the “transformation” from blunder vector to protection level is linear in terms of the

blunder vector itself. This means that the MDB vectors in Equation 6.27 can be

scaled to match those of the sequential approach. Doing so yields ∇(0)
1

∇(1)
2

 K
(0)
1,2

−−−−−→

 ∆x̂
(0)
1

∆x̂
(1)
2

 (6.28)

Finally, the more general form of the above equation is given by

∇(0,1,...,i−1)
i,F

K
(0)
sim,F

−−−−−→ ∆x̂
(0,1,...,i−1)
i,F (6.29)

where K
(0)
sim,F is the gain matrix assuming all observations are processed simultane-

ously. Furthermore, Equation 6.29 tacitly assumes that the proper sub-matrix of

K
(0)
sim,F is used for obtaining the protection levels, which is equivalent to considering

only a single blunder vector at a time.

Equation 6.29 shows that the MDBs from sequential processing are mapped into

the estimated states using the simultaneous processing gain matrix. Essentially, this

means that although the MDBs are larger with sequential processing (in general),

their effect on the estimated states can be minimized because the blunders are mit-

igated by other measurements that may be processed afterwards.

So far, consideration has only been given to the external reliability of a given filter.

However, applying the findings of Equations 6.6 and 6.7, the external reliability for

the loosely coupled case is

∆x̂
(0,1,...,i−1)
i,I = K

(0)
sim,I∆x̂

(0,1,...,i−1)
i,G (6.30)

where

∇(0,1,...,i−1)
i,G

K
(0)
sim,G

−−−−−→ ∆x̂
(0,1,...,i−1)
i,G (6.31)
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6.4 Summary

The results of this chapter can be summarized as in Table 6.1 and 6.2. Respectively,

these show the appropriate formulation and equation number for the internal and

external reliability parameters, using all combinations of integrations and processing

strategies discussed.

Table 6.1: Summary of Internal Reliability Formulas

Update
Mode Loose Integration Tight Integration

Simultaneous
C

(0)
ν,G → ∇(0)

G

Equation 6.3

C
(0)
ν,GI → ∇(0)

GI

Equation 6.4

Sequential

C
(0,1,...,i−1)
νi,G

→ ∇(0,1,...,i−1)
i,G

Equation 6.16
with F = G

C
(0,1,...,i−1)
νi,GI → ∇(0,1,...,i−1)

i,GI

Equation 6.16
with F = GI
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Table 6.2: Summary of External Reliability Formulas

Update
Mode Loose Integration Tight Integration

Simultaneous

∇(0)
G

K
(0)
G−−−−−→ ∆x̂

(0)
G

∆x̂
(0)
I = K

(0)
I ∆x̂

(0)
G

Equations 6.6 and 6.7

∇(0)
GI

K
(0)
GI−−−−−→ ∆x̂

(0)
GI

Equation 6.5

Sequential

∇(0,...,i−1)
i,G

K
(0)
sim,G→ ∆x̂

(0,...,i−1)
i,G

∆x̂
(0,...,i−1)
i,I = K

(0)
sim,I∆x̂

(0,...,i−1)
i,G

Equations 6.30 and 6.31

∇(0,...,i−1)
i,GI

K
(0)
sim,GI→ ∆x̂

(0,...,i−1)
i,GI

Equation 6.29
with F = GI



Chapter 7

Field Testing and Post-Mission Analysis

In this chapter, post-mission processing using the real-time algorithms presented in

the previous chapters is used to assess the integrated system performance. Details

of the data collection and data processing procedures are presented first followed

by the results themselves. Results address the objectives listed in Chapter 1 and

include position and velocity accuracy during data outages, ambiguity resolution

performance and overall system reliability.

7.1 Data Collection

This section presents the details of the field test used to collect the data analyzed

later in this chapter.

7.1.1 Equipment

The primary piece of equipment used for this research was NovAtel’s Black Diamond

System (BDS). The BDS contains a NovAtel OEM4 dual-frequency GPS receiver

capable of tracking up to 12 satellites at a time and provides high-quality code,

Doppler and carrier phase measurements. The BDS also interfaces with a Honeywell

HG1700 AG11 IMU. The IMU data is time tagged with GPS time thus ensuring

synchronicity of the data to better than 1 ms. The specifications for the IMU are

provided in Table 7.1.

102
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Table 7.1: Specifications for Honeywell HG1700 AG11 IMU (Honeywell, 1997)

Parameter Value

Accelerometers

Bias (1σ) 1 milli-G
Scale Factor Accuracy (1σ) 300 ppm
Scale Factor Linearity (1σ) 500 ppm
Axis Alignment Stability (1σ) 500 µrad
Velocity Random Walk (max) 0.0013 m/s/

√
h

Gyros

Bias (1σ) 1 deg/h
Scale Factor Accuracy (1σ) 150 ppm
Scale Factor Linearity (1σ) 150 ppm
Axis Alignment Stability (1σ) 500 µrad
Angular Random Walk (max) 0.125 deg/

√
h

The IMU was rigidly mounted to the floor of the University of Calgary’s test van,

a 2002 Dodge Grand Caravan. Specifically, one of the chairs was removed and the

IMU was attached to the chair’s mounting pins. The GPS antenna was mounted

on the roof of the van. The antennas on the van and at the base station were both

NovAtel 600 antennas. The lever-arm was measured as discussed in Section 4.3.

The base station GPS receiver was also a NovAtel OEM4. For real-time testing

(discussed in Chapter 8) a pair of FreeWave DGR-115W data transceivers was used

to transmit base station data to the vehicle (remote station). The radio antenna was

also mounted on the roof of the van. A picture of the vehicle setup (with radios)

is shown in Figure 7.1. Equipment in the vehicle was powered either from the van

itself or from additional car batteries.
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Figure 7.1: Typical Equipment Setup on Test Vehicle

7.1.2 Test Description

The data used for post-mission analysis was collected west of Calgary near Spring-

bank airport on February 1, 2002. This area was selected because it provided excel-

lent GPS satellite visibility. In the area are accessible pillars with known coordinates,

one of which was used as the base station. The base station receiver was powered

by a gas generator, as was the corresponding logging computer.

Two data collection runs were performed, each beginning with a static initialization

period of about 12 minutes followed by about 15–20 minutes of driving. Vehicle

speeds varied from 0 to 120 km/h. Vehicle dynamics were somewhat limited, with

most of the data being collected at constant velocity. However, the analysis procedure
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used (see next section) considers both constant velocity and dynamic portions of the

trajectories. In this way, a more realistic assessment of the system is obtained. The

distance from the test vehicle to the base station ranged from a few metres during

the initialization to about 4 and 7 km during runs one and two respectively. These

relatively short distances were selected such that an accurate DGPS solution could

be used as a reference for evaluating the integrated system (see the next section for

details).

Ionospheric conditions during the test are not considered to be significant. Figure 7.2

shows the Kp index for the day of the test as well as for two days on either side of

the test. The Kp index is a global indicator of geomagnetic variation, which is

affected by ionospheric activity, measured in eight three-hour segments daily (GFZ-

Potsdam, 2003). The Kp index ranges from zero to nine, corresponding to the

lowest and highest levels of geomagnetic activity. As shown in the figure, the Kp

index for the period of the test is relatively low. However, given that the Kp index

is a global average, it cannot accurately account for local variations. Consequently,

given that the index is higher on either side of data collection period (within 24

hours), ionospheric activity during the test may also have been higher.

7.2 Analysis Procedure

The post-mission data analysis procedure consisted of two basic steps. First, the

necessary truth information was computed for each of the data collection runs dis-

cussed in the previous section. Second, GPS data outages of varying duration and

severity were simulated in subsequent data processing sessions. The GPS-only and

integrated system behaviour during and after these outages was then used to assess
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Figure 7.2: Kp Index Before and After Data Collection Period

performance. Comparisons of GPS-only and GPS/INS performance were then used

to assess the improvement associated with the integrated system.

This section begins with a description of the software developed for this dissertation.

Second, the generation of the truth trajectories as well as an assessment of their

quality is presented. Finally, the method used to select the data outages is discussed.

7.2.1 Software Description

As part of this research, a new software package named SAINTTM (Satellite And

Inertial Navigation Technology) was developed. Written in C++ using the University
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of Calgary’s Navigation Development Library (NDLTM), SAINTTM is capable of

running in post-mission or real-time and was designed to accommodate high-accuracy

applications while maintaining a flexible interface. All three integration strategies

presented in Chapter 4 are selectable as are the types of GPS observables to be used

for updating the system. Different quality IMUs can also be used by changing the

necessary parameters. A basic program flowchart is shown in Figure 7.3.

Processing Parameters

For the results presented herein, C/A code and L1 Doppler measurements were

always used to update the system. The carrier phase measurements were either L1

or widelane. The carrier phase will be used to identify the measurements used for a

particular processing run. For example, “. . . the solution obtained using L1 carrier

phase updates . . . ” implies the solution was computed with code, Doppler and L1

phase data. The standard deviations of the undifferenced measurements are listed

in Table 7.2.

Table 7.2: Standard Deviations for Undifferenced GPS Observables at the Zenith
Undifferenced

GPS Observable Standard Deviation

C/A Code 50.0 cm
L1 Doppler 3.0 cm/s

L1 Carrier Phase 2.0 cm
L2 Carrier Phase 2.5 cm

The values shown are standard deviations for measurements made at the zenith.

These value are scaled by 1/ sin(e) where e is the satellite’s elevation angle. This

scaling closely matches the increase of the undifferenced measurement standard de-

viation with decreasing elevation angle shown in Figures 3.1, 3.2 and 3.3.
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Figure 7.3: SAINTTM Software Flowchart
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Comparing the values from Table 7.2 with those of the “high” elevation satellites

from Figures 3.1 to 3.3 shows that the values in the table are larger. The reason for

this depends on which observable is being considered. Specifically

• The code misclosures of Figure 3.1 show slowly varying error due to multipath.

This implies a temporal correlation of the measurements which must be taken

into account. A simple method of doing this is to increase the measurement

uncertainty.

• The carrier phase errors due to noise and multipath are at the millimetre-level,

but the differential errors could easily exceed 1 cm even for relatively short

baselines. The standard deviation was thus increased accordingly.

• Using an uncertainly for the Doppler selected from Figure 3.3 resulted in several

observations being rejected by the reliability testing algorithm. The most likely

reason for this is that Doppler multipath increases with vehicle speed. However,

the results of Figure 3.3 were derived using static data. The final value was

thus computed based on having a reasonable number of rejected observations.

Better characterization of Doppler noise and multipath effects under kinematic

conditions would be required for a more rigourous value to be selected.

Finally, unless stated otherwise, all GPS data was processed with a ten degree ele-

vation mask.

Ambiguity Resolution Fixing Criteria

At some point, the software algorithm must make a decision as to when to fix the

ambiguities to integers. In SAINTTM this decision is made based on weighted sum-
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of-squared ambiguity residuals, where the residuals are computed as the difference

between an assumed integer ambiguity value and the float estimate. Specifically,

the ratio of the weighted sum-of-squared residuals of the second best ambiguity set

to that of the best ambiguity set is used. Unfortunately, there are two conflicting

considerations affecting the acceptance value for this ratio. On the one hand, ambi-

guities should be fixed to integers as quickly as possible, suggesting the threshold be

a small value. On the other hand, the accuracy of the ambiguity resolution process

should be high, suggesting the threshold should be fairly large. A compromise must

therefore be made.

The above ambiguity ratio does not technically follow a Fisher-distribution (Te-

unissen, 1997). However, values from this distribution were found to work well in

practice. As such, the threshold value used in SAINTTM is obtained from the Fisher-

distribution with a significance level of 10%. The number of degrees of freedom for

the distribution is equal to the number of ambiguities trying to be resolved. While a

significance level of 10% may seem high, the threshold values for 5–8 satellites are in

the range 3.45–2.59. These values agree well with constant threshold value of three

used by Liu (2001). However, in contrast to ibid., the Fisher-distribution offers the

advantage that when trying to fix fewer ambiguities the threshold value increases

to reflect the relative ease of fixing only a few ambiguities. Finally, because Liu

(2001) used a constant ratio of three for baseline lengths ranging from 30–400 km,

the approach adopted in SAINTTM should be valid for any practical implementation.
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7.2.2 Truth Trajectory Generation

Generation of the truth trajectories was accomplished by processing all available

GPS and IMU data using the tightly coupled integration strategy. In this way, the

trajectory was computed using all available information and should thus be of the

highest quality. Optimal smoothing techniques could have been used here but given

the expected accuracy of the forward processing run (see the following subsections),

little benefit would have been gained.

As stated above, the test area provided very good GPS satellite visibility. This, com-

bined with the very short distance to the base station during the static initialization

meant that the GPS ambiguities were resolved before the kinematic portion of the

test. The following subsections analyze the quality of the truth trajectories after

this initial fix. First, the quality of the GPS-only solutions is investigated followed

by an analysis of the integrated solutions. A comparison of the different integration

approaches is also included to illustrate their differences.

GPS-Only Solution for First Run

For the first run, the majority of initial ambiguities were maintained throughout

the trajectory with only some satellites needing to recompute their ambiguities on-

the-fly. As such, the expected position accuracy is expected to be quite high. To

help confirm this, Figure 7.4 shows the L1 carrier phase residuals for satellites whose

ambiguities are fixed, as computed using GPS-only. Also shown on the figure is the

distance of the vehicle from the base station and the number of satellites available.

Baseline lengths of approximately zero occur when the vehicle is stationary next to

the base station. During these times, the residuals are on the order of the double
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Figure 7.4: Absolute Value of GPS-Only Fixed Ambiguity L1 Carrier Phase Resid-
uals and Baseline Length for Run #1 Without Data Outages

difference standard deviations computed in Figure 3.2, implying that the only re-

maining errors are those due to multipath and noise. More importantly, it implies

the ambiguities are fixed correctly.

As the distance from the base station increases, so does the magnitude of the resid-

uals. This is typical of the increase in differential errors as a function of receiver

separation. For the longest baseline (∼4km) the differential errors are at a level of

about 5 ppm. Because this value is slightly larger than the typical values quoted

in Table 3.1, this suggests that the ionospheric effects are somewhat larger than the

Kp index of Figure 7.2 would indicate. However, the apparent decrease in the resid-



113

uals starting at GPS time 508626 is caused by loss of lock on two satellites, both of

which were below 16◦ (the residuals for these satellites are not shown until 508674

because their ambiguities were not resolved as integers until that time). Given their

low elevation, these satellites would be more susceptible to differential errors. This

being the case, the remaining satellites show considerably smaller errors. Therefore,

the average differential errors for this test are probably lower than the 5 ppm values

quoted earlier and are probably closer to 3 ppm. Given the above, the GPS-only

solution are considered accurate to 1–2 cm.

GPS-Only Solution for Second Run

The analysis of the second run closely follows that of the first. The L1 carrier phase

residuals for those satellites with fixed ambiguities are shown in Figure 7.5, along

with the baseline length and the number of visible satellites.

Again, for short baselines, the magnitude of the residuals match those expected

from noise and multipath effects. For longer baselines, the residuals show differential

effects on some satellites of up to about 9 ppm, but RMS values are probably closer

to about 3 ppm. This makes sense since the two runs were collected consecutively,

and thus should show similar error behaviour.

There were two problems encountered during this run. First, starting at GPS time

510613 no data from the base station was logged for 13 seconds. During this period,

the truth solution is based solely on the INS. Fortunately, after the outage the GPS

data showed no signs of cycle slips and so no “recovery” of the ambiguities was

needed. The magnitude of the residuals after the data outage confirms this was the

case. Second, at GPS time 511291, the vehicle passed underneath a highway sign
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Figure 7.5: Absolute Value of GPS-Only Fixed Ambiguity L1 Carrier Phase Resid-
uals and Baseline Length for Run #2 Without Data Outages

and lost lock on all but four satellites. While this is still sufficient to compute a

solution, the relatively long distance from the base station at that time, combined

with code multipath errors, will limit system accuracy to several centimetres. This

portion of the data set was therefore avoided when selecting locations for simulated

data outages (see Section 7.2.3). With the exception of the problematic periods

discussed above, the GPS-only solution is again assumed to be accurate to 1–2 cm.

Tight Integration Solution

The above analysis focused on the GPS-only results, since this will ultimately de-

termine the absolute accuracy of the integrated system. However, an assessment
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of the integrated system performance is also important. A good indication of the

quality of the integrated solution is the magnitude of the corrections applied to the

INS position and velocity errors states. Table 7.3 shows the RMS three-dimensional

corrections to the position and velocity error states for each run. The problematic

sections from the second run were omitted for this analysis. Since the corrections are

an indication of the smoothness of the trajectory over time, it can be seen that the

trajectories are smooth to about the centimetre-level in position and about 5 mm/s

in velocity. Furthermore, since the GPS solutions analyzed above will determine the

absolute accuracy of the system, the truth trajectories are assumed to be accurate

to 1–2 cm at all times.

Finally, given the high-quality of the position estimates, the fixed ambiguities used

to derive these positions can also be considered correct. They will thus be used as a

reference when investigating the ambiguity resolution performance in Section 7.5.

Comparison of Loose and Tight Integrated Solutions

This section compares the solutions of the different integration approaches to illus-

trate their differences under ideal situations. To begin, Table 7.4 shows the difference

between the loosely and tightly coupled solutions. As above, the problematic peri-

ods of the second run were not used for computing these statistics. The difference

between the two solutions is at the millimetre-level. These differences are most likely

Table 7.3: RMS of Corrections to INS Position and Velocity Errors States Using a
Tight Integration Without Data Outages

Run Position Velocity

1 8 mm 3 mm/s
2 9 mm 4 mm/s
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Table 7.4: RMS Difference Between Positions Computed Using Loose and Tight
Integration Strategies Without Data Outages

Axis Run 1 Run 2

North 3 mm 3 mm
East 4 mm 5 mm
Up 4 mm 2 mm

the result of the better ability of the tight integration approach to smooth the GPS

data (noise). This concept is addressed again below. The estimated standard de-

viations for position and velocity using both systems were the same to better than

1 mm and 1 mm/s respectively, with the tight integration giving the more optimistic

estimate.

The RMS of the fixed L1 carrier phase residuals for the loose and tight integra-

tion solutions are shown in Table 7.5. The residuals are larger when using the

tightly coupled approach. This helps confirm that the position differences in Ta-

ble 7.4 are caused by high-frequency errors on the measurements. Specifically, since

the tight integration approach is better able to filter the GPS measurements, more

high-frequency measurement error is forced into the residuals, and not the position

estimate as with a loose integration. Overall, the two integration approaches can be

assumed to be almost equivalent under ideal situations, with the tight integration

approach providing the smoother trajectory.

Table 7.5: RMS of Fixed L1 Carrier Phase Residuals Computed Using Loose and
Tight Integration Strategies Without Data Outages

Run Loosely Coupled Tightly Coupled

1 5 mm 10 mm
2 8 mm 12 mm
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7.2.3 Simulated Data Outages

To assess GPS-only and GPS/INS performance in terms of (i) position and velocity

accuracy, and (ii) ambiguity resolution during and after data outages (gaps) respec-

tively, six data outages were simulated in each run. The locations of the data outages

(during the trajectory) were carefully selected to represent a wide range of vehicle

dynamics. This is important because the INS error filter’s dynamics matrix is a

function of the measured specific force (see Appendix B). As such, the INS error be-

haviour, and thus the overall INS performance, will vary with vehicle dynamics. By

selecting a wide range of dynamics, a more representative assessment of the system’s

performance will be obtained.

The duration of the data outages varied from 2 to 40 seconds for assessing the

ambiguity resolution performance after the outages. The full trajectories with the

location of the data outages are shown in Figures 7.6 and 7.7 for the first and second

runs respectively. Since a particular outage starts at the same time regardless of

its duration, Figures 7.6 and 7.7 show the longest (i.e. 40 second) data outages. The

trajectory during each data outage is shown in detail in Appendix D, along with the

approximate vehicle accelerations.

Another important criteria for selecting the data outage locations was the vehicle’s

distance from the base station. The varying baseline lengths will be used in the

ambiguity resolution assessment where spatially correlated differential errors are im-

portant. To this end, Figures 7.6 and 7.7 show that data outages are simulated

anywhere from a few metres to about 7 km from the base station.

The data outages were actually simulated by artificially raising the satellite elevation

mask during the selected portions of each trajectory. In this way, the severity of
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Figure 7.6: Trajectory and Simulated Data Outages for First Run Relative to Base
Station

the data outages could be adjusted. For this research, two types of outages were

simulated; complete and partial. Complete outages simulate situations where GPS

signals are completely unavailable, such as in a tunnel. This was accomplished using

an elevation mask of 90◦. In contrast, partial data outages simulate situations where

fewer than four GPS satellites are available. With so few satellites, a standalone

GPS solution is impossible unless a Kalman filter is used. For the first and second

runs, the elevation masks used for the partial data outages were 44.5 and 58.0 degrees

respectively. The number of remaining satellites was either two or three.

Finally, for the first run, only one data outage was simulated per processing session.
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Figure 7.7: Trajectory and Simulated Data Outages for Second Run Relative to Base
Station

For the second run, two outages were simulated per processing session with sufficient

time between each to ensure the system completely recovers from the first outage

before beginning the second.

7.3 Position Accuracy During Data Outages

To assess the positioning accuracy of the integrated system during data outages,

the solution obtained during each outage is compared to the reference trajectories of

the previous section. Since the reference trajectory is of high-accuracy, the difference

between it and the position estimate during the data outage will be mostly due to the
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error of the latter solution. As such, this difference represents a direct assessment of

the system performance, accurate to the centimetre-level. The following subsections

present the results for complete and partial data outages.

It is noted that in order to obtain an assessment of the absolute accuracy of the

system, the comparison of the solutions during the data outages should be made

with an independent estimate of the trajectory. In the absence of such a trajectory,

the reference trajectories of the previous section are used instead. In this way,

the following accuracy assessment is only as good as the accuracy of the reference

trajectory itself.

Also of note is that prior to the data outages, the carrier phase ambiguities are always

fixed to integers. As such, system performance during data outages will be better

than in the case where only float ambiguity estimates are available. Similarly, for

partial data outages, the ambiguities for those satellites that remain visible during

the outage are held fixed. However, the simulations used are still valid in that they

simulate situations where extended periods of ideal satellite coverage are temporarily

interrupted by partial or complete signal masking, as is often encountered in practical

situations.

7.3.1 Complete Data Outages

Since no GPS signals are available during the complete data outages, system per-

formance is due entirely to the free-inertial solution. Instead of assessing the error

behaviour on a case-by-case basis, the north, east and up errors for each data outage

were computed as a function of time since the last GPS update. Using the resulting

12 time series (i.e. one for each gap over the two runs), the RMS error across all data
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gaps was computed. In this way, a statistical assessment of the error as a function

of time is obtained. The results using L1 carrier phase data in a tightly coupled

integration strategy are shown in Figure 7.8. As shown, the position accuracy de-

grades quadratically with time. This is expected since any error in the navigation

frame (i.e. e-frame) accelerations, due errors in the estimated INS parameters, will

be doubly integrated into the position. After about 30 s, the position error is slightly

larger than 1 m. Considering that a differential code solution is accurate to approx-

imately the same level, this is significant. Specifically, it can be concluded that the

free-inertial solution is as good or better than a differential code solution for data

outages lasting up to about 30 s (in an RMS sense). As such, after data outages

lasting up to about 30 s, the integrated approach will initialize the position of the

system to a more accurate value (relative to GPS alone), which should result in faster

filter convergence.

A second potential benefit of the above accuracy improvement (over GPS-only) is

a reduction in the GPS ambiguity search space once the GPS data becomes avail-

able after the data outage. However, as shown in Section 7.5, such a reduction is

dependent on the covariance of the position observation (or error in this context).

Consequently, the Kalman filter’s estimate of the actual error is important, with the

ideal situation being a perfect agreement between the actual error and the estimated

error from the filter. To this end, Figure 7.9 compares the three-dimensional RMS po-

sition error from Figure 7.8 with the average estimate of the filter’s three-dimensional

standard deviation (across all 12 outages). As can be seen, the two values agree rea-

sonably well with the filter estimate being slightly pessimistic. However, given that

the RMS errors are computed using only 12 samples, this discrepancy is not consid-

ered significant. The agreement between the actual and estimated errors confirms
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Figure 7.8: RMS Position Error During All Complete Data Outages Using L1 Carrier
Phase Updates and a Tight Integration

that appropriate model parameters were used for modeling the system states as well

as the measurements. Furthermore, this also means that in the absence of a refer-

ence solution, the estimated standard deviation provides a reasonable estimate of the

solution’s accuracy for scenarios similar to ones used here. In this context, “similar”

refers to the magnitude of the differential errors and the inter-antenna distances.

The analysis so far has only considered the use of L1 carrier phase updates with a

tight integration strategy. To compare and contrast these results with those obtained

using other approaches, Figure 7.10 shows the three-dimensional position errors ob-

tained using all combinations of loose/tight integrations and L1/WL carrier phase
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Figure 7.9: Comparison of Three-Dimensional RMS Position Error and Average
Estimated Standard Deviations During All Complete Data Outages Using L1 Carrier
Phase Updates and a Tight Integration

observations. Note that loose integration with and without seeding are the same

in this context. While the overall error behaviour is similar with all approaches,

there are some general trends which should be noted. First, for a given carrier phase

frequency, the tight integration strategy outperforms the loose integration strategy.

While the differences are on the order of about 10 cm after 40 s, the reason is likely

because the loose integration approach cannot “calibrate” some of the INS errors as

well. This is the result of the additional process noise needed for the GPS-only filter,

since the two integration approaches are otherwise the same. Second, the widelane

observations are not as useful as L1 for bridging data outages. The reduced accuracy
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Figure 7.10: Comparison of Three-Dimensional RMS Position Error During All Com-
plete Data Outages Using Different Processing Strategies

of the widelane observations will limit their ability to calibrate the inertial errors,

thus causing poorer performance. Finally, the loose integration with L1 and the tight

integration with widelane provide approximately the same level of performance.

7.3.2 Partial Data Outages

For partial data outages, the system performance is a function of the inertial errors

and the quality of the GPS information/geometry available from the remaining vis-

ible satellites. The latter is typically quantified using Dilution of Precision (DOP)

values. Unfortunately, for the situation considered here, DOPs cannot be computed
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due to the underdetermined nature of the estimation problem. However, since DOPs

are an approximation to the estimated standard deviations, the latter will be used

instead, since they are still available from the GPS-only Kalman filter. Figure 7.11

shows the estimated position standard deviations as computed using the GPS-only

filter. For the horizontal and three-dimensional standard deviations, there appear

to be two “groups” of curves. These correspond to the number of satellites in view,

either two or three in this case. As can be seen, the three-dimensional GPS-only

solution degrades rapidly to 100 m in about 25 or 30 seconds, depending on the

available GPS constellation. Furthermore, after only a few seconds, the estimated

position accuracy is poorer than the worst case free-inertial error during complete

data outages (up to 40 s). The impact of this on the integrated position accuracy is

analyzed below.

Figure 7.12 shows the RMS position error as a function of time into a partial data

outage, as computed using a tight integration approach with L1 carrier phase up-

dates. The plot has the same scale as those in Section 7.3.1 to facilitate comparison.

The position accuracy is considerably better than with complete data outages despite

the relatively weak satellite geometry. The position error still grows quadratically,

but much more slowly than before. The three-dimensional error is approximately

70 cm after 40 s, compared with over 2 m with complete data gaps.

Although not shown, the agreement of the RMS error and of the filter’s estimate

of the error is not as good as with complete data outages. The RMS error appears

to be a factor of about two smaller than the filter’s estimated error. Although not

necessarily representative, a pessimistic estimate of the error is better than having

an optimistic one as the latter may cause filter divergence.
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Figure 7.11: Estimated GPS-Only Standard Deviations During All Partial Data
Outages Using L1 Carrier Phase Data

Finally, Figure 7.13 compares the results obtained using different integrations and

carrier phase updates. As with the complete data gaps, L1 is better than widelane

but the difference between the loose and tight integration approaches is much more

significant. Specifically, both integration strategies provide very similar behaviour

for data outages lasting up to about 20 seconds, at which time the loose integration

solutions show a much more rapid degradation in performance. To explain, consider

that the results of Figure 7.11 also represent the observation standard deviations for

the INS-only filter in the loose integration approach. Given their very rapid increase,

due primarily to the amount of process noise being added to the GPS-only filter, the

influence of the GPS data on the integrated solution rapidly becomes negligible.
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Figure 7.12: RMS Position Error During All Partial Data Outages Using L1 Carrier
Phase Updates and a Tight Integration

As such, the final solution will tend towards the case where no GPS updates are

available. In other words, as the estimated GPS-only position uncertainty increases,

the integrated solution slowly tends to the full data outage case. In contrast, the

tightly coupled approach has considerably less process noise and is thus better able

to extract the “useful” information from the remaining GPS observations with the

ultimate result being improved system accuracy.
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Figure 7.13: Comparison of Three-Dimensional RMS Position Error During All Par-
tial Data Outages Using Different Processing Strategies

7.3.3 Summary

The analysis of the previous sections shows that the integrated system is capable of

providing decimetre accuracy during complete and partial GPS data outages last-

ing approximately 5 and 10 seconds respectively. These results were obtained with

ideal satellite measurements and geometry prior to the simulated data outages, and

therefore represent a somewhat optimistic situation. Nevertheless, the results give a

reasonable expectation of system performance.

Given that the covariance estimate of the filter appears to be a reasonable, if not

pessimistic, approximation to the actual error behaviour, the results obtained in
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subsequent tests can be assessed from the covariance matrix alone, if necessary.

Finally, the results presented herein are considered to be representative for the qual-

ity of system considered. Some improvements may be possible if laboratory and/or

field calibrations of the IMU are performed prior to a data collection campaign. How-

ever, these procedures are time consuming and may not be practical under normal

operational conditions.

7.4 Velocity Accuracy During Data Outages

For certain applications, the more relevant parameter of interest may be the vehicle

velocity. To this end, the results of the previous section could be used to infer the

accuracy of the estimated velocity during data outages. However, for completeness

and clarity, Figure 7.14 shows the RMS velocity errors using L1 carrier phase up-

dates and a tight integration for complete and partial outages. The velocity errors

are seen to grow linearly with time, as expected since any biases in the navigation

frame accelerations will be integrated only once. The RMS accuracy during complete

outages is about 11 cm/s after 40 s, while for partial data outages the accuracy is

about 4 cm/s for the same duration. The results of other combinations are approxi-

mately the same, with only slight differences. These differences can be inferred from

the position accuracy analysis of the previous section, and are therefore not shown

here explicitly.
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Figure 7.14: RMS Velocity Error During All Complete and Partial Data Outages
Using L1 Carrier Phase Updates and a Tight Integration

7.5 Ambiguity Resolution After Data Outages

The ability of a system to recover from complete and partial GPS data outages

and return to a correctly fixed integer ambiguity solution is extremely important.

Since it is the exploitation of the integer nature of the ambiguities that allows for

high-accuracy position estimates in a timely manner, it follows that the ambiguity

resolution process is vital to achieving a system’s most stringent performance ob-

jectives. Furthermore, for an integrated GPS/INS system, it is the GPS solution

that provides the absolute accuracy of the system. Therefore, while the inertial in-

formation does provide some advantages, the use of inertial data by itself will not
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significantly improve the overall system accuracy beyond what the GPS component is

capable of delivering. The question therefore becomes, can the ambiguity resolution

process be expedited by using the information available from the inertial system?

This section investigates ambiguity resolution performance using standalone GPS

and using an integrated approach. In particular, the loose coupling with seeding and

tight coupling approaches are compared with GPS-only to assess their improvements

and limitations. In this context, there are two main interests

1. The time needed to resolve the ambiguities as integers. The faster the am-

biguity resolution process, the faster the system will be able to return to the

highest accuracy level.

2. The veracity of the ambiguity fix. Since an incorrect fix of one cycle on one

satellite is capable of producing position errors that far exceed the navigation

system’s estimated accuracy for that position, the accuracy of the ambiguity

fix is crucial. Failure to fix the ambiguities correctly can, and likely would,

create a serious integrity problem.

The following analysis is performed on a run-by-run basis and investigates the ambi-

guity resolution performance after complete and partial data outages using various

integration strategies and carrier phase measurements. Data outages of different

durations are investigated to determine the situations under which the inertial data

can be of benefit.

It is noted that the results of this section are to be interpreted in the context of the

levels of differential errors and inter-antenna distances experienced in the two data

collection runs. For example, baselines longer than 7 km and/or differential error
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effects larger than about 3 ppm would likely adversely impact the following results.

Nevertheless, the following analysis serves to illustrate the potential benefits and

limitations of using an integrated system for ambiguity resolution.

7.5.1 Results From First Run

For the first run, data outages of 2, 4, 6, 9, 12, 16, 20, 30 and 40 seconds were

simulated. The following subsections investigate the ambiguity resolution process

after all six data outages using each data outage duration. Results after complete

data outages are investigated first, followed by those obtained after partial data

outages.

Complete Data Outages

As an initial assessment, Figure 7.15 shows the average time needed to fix the L1

ambiguities for each of the six data outages using different integration strategies.

In this context, “average” refers to the mean time across all data outage durations.

For this particular case, all ambiguity fixes were correct and so the focus of the

following will be on the time needed to resolve the ambiguities. Also, note that in

terms of ambiguity resolution, the loose integration without feedback is simply the

performance of GPS alone, and is therefore denoted accordingly.

The results of Figure 7.15 show two important characteristics. First, the GPS-only

solution performs the poorest with either integrated solution providing improvements

in all cases, some of which are significant. Specifically, for data outage number three,

the average time to fix is reduced by over a minute by simply using the inertial

position and velocity to seed the GPS-only filter. Second, the tight integration
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Figure 7.15: Average Time to Fix L1 Carrier Phase Ambiguities After Complete
Data Outages for Run #1

approach outperforms the loose integration with seeding. While the improvement is

not always significant, certain data outages show average times to fix being reduced

by over 30 seconds.

The relative improvement of the tight integration over the loose integration with

seeding can be attributed to three factors. First, the reduced amount of process

noise in the former approach allows for a faster convergence of filter parameters,

including the ambiguities. Second, the tight integration strategy is better able to

mitigate code errors. This will be investigated in detail in Section 7.5.2. Third, the

correlation between the ambiguity states and the other states being estimated in the
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same filter will differ between the two cases. This is illustrated in Figure 7.16, which

shows the absolute correlation coefficient between selected L1 ambiguity states and

the position states as a function of time since the GPS data was recovered after

a data outage. The results shown were generated using only a single data outage

but are representative of other cases. Other ambiguities show similar behaviour and

are therefore not included here to maintain figure clarity. For each ambiguity, there

are three “lines”, one for the correlation with each position coordinate. The plot is

limited to time intervals of less than 50 seconds since this is longer the average time

needed to resolve the ambiguities using the tight integration approach.

Although the correlations do not appear to be consistently larger or smaller for

either approach, the individual values are clearly different. The values obtained

using a given approach cannot be considered better than those of the other approach,

however the fact that they differ will play a role in the ambiguity resolution process.

In particular, Equation 3.12 shows that the cross-covariance (correlation) between

the position and ambiguity states is important for reducing the ambiguity search

space when updating the system with position observations.

Figure 7.17 shows the time needed to fix the L1 ambiguities using all integration

strategies after each data outage and for all outage durations. This plot suggests

that the average time to fix shown in Figure 7.15 is actually somewhat pessimistic.

For example, consider the third data outage. In this case, the tight integration

approach can correctly fix ambiguities in ten seconds or less for data outages lasting

up to and including 30 seconds. For the 40 second outage however, the time needed

to resolve the ambiguities increases to 90 seconds. This increases the average time

to fix by ten full seconds. In contrast, the GPS-only performance remains basically
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Figure 7.16: Absolute Correlation Coefficient Between Three PRN’s Ambiguity
States and Position States Using Loose Integration With Seeding and Tight In-
tegration Strategies

constant for all data outage durations. Similar behaviour is also seen in the first

two data outages. The reason for this is that, as shown in Section 7.3.1, after about

30 seconds the inertial system provides about the same amount of information as

does a differential code solution. In other words, after about 30 seconds the INS

does not provide significant improvement over the GPS-only case. As such, the time

needed to resolve the ambiguities using the tight integration tends towards the GPS-

only case. This provides some insight as to the possible limitations of the inertial

system for ambiguity resolution.

A comparison of the relative improvements of the various integration strategies is
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Figure 7.17: Time to Fix L1 Carrier Phase Ambiguities After Each Complete Data
Outage for Run #1 Using Different Integration Strategies

shown in Table 7.6. The table shows the average percent improvement (across all

data outages) in L1 ambiguity resolution times when using the various processing

strategies. In this context, a 100% improvement represents an instantaneous fix. As

expected, the advantage of using either integration approach is high for short data

outages but gradually tends to zero. In this regard, the tightly coupled approach

shows a much slower degradation. In general, the loose integration with seeding can

provide a 50% reduction for data outages lasting up to about 20 seconds, while the

tight integration can extend this performance to 30-second outages. This is also seen

in the rightmost column which shows the relative improvement of the tight over the

loose approach.
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Table 7.6: Average Percent Improvement in L1 Ambiguity Resolution Times After
Complete Data Outages Using Different Approaches for Run #1

Outage Average Percent Improvement
Duration Seeding Over Tight Over Tight Over

[s] GPS-Only GPS-Only Seeding

2 100.0 100.0 0.0
4 95.9 95.9 0.0
6 95.6 96.8 16.7
9 88.7 93.5 44.4
12 67.6 89.9 50.2
16 59.4 84.3 51.8
20 49.3 77.0 46.0
30 11.0 50.8 42.2
40 4.2 12.6 8.8

Figure 7.18 shows the time to fix the widelane ambiguities after all simulated data

outages. All ambiguity fixes were correct in this case. Although both integrated

solutions provide instantaneous fixing after all data outages, the improvement over

the GPS-only case is minimal. Specifically, since GPS-only is capable of resolving the

ambiguities in at most one second at all times, saving one second is not necessarily of

great benefit. However, in applications where GPS coverage is sporadic, the ability

to resolve ambiguities instantly would be desirable.

Partial Data Outages

Before investigating the ambiguity resolution performance after partial data outages,

it is noted that loose integration with seeding has no real meaning in this context.

The reason is that the seeding of the GPS-only filter was intended for use after

complete data outages only. Therefore, both loose integration approaches degenerate

to the GPS-only case.
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Figure 7.18: Time to Fix Widelane Carrier Phase Ambiguities After Each Complete
Data Outage for Run #1 Using Different Integration Strategies

Figure 7.19 shows the L1 ambiguity resolution performance after all partial data

outages. Again, no incorrect fixes occurred. Overall, the results parallel those of the

complete data outage case shown above. One exception appears to be that for the

second data outage, GPS-only performs consistently poorer than in all other data

outages. The reason for this is three-fold

1. Recall from Figure 7.4 that at GPS time 508626 two low-elevation satellites

experienced cycle slips, with a corresponding reduction in the measurement

residuals. Since the data outage in question is simulated at approximately

the same time, these two satellites are removed during the outage and their
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Figure 7.19: Time to Fix L1 Carrier Phase Ambiguities After Each Partial Data
Outage for Run #1 Using Different Integration Strategies

ambiguities must be redetermined afterward. Given their relatively large errors,

this will hinder the ambiguity resolution process.

2. Even after very short data outages, the GPS-only filter is incapable of providing

an accurate position estimate. As such, the GPS-only filter is essentially forced

to re-initialize itself after the data outage. Although some fixed ambiguity

carrier phase measurements may still be available, their usefulness is limited

in providing an accurate three-dimensional position.

3. The threshold value used for deciding when to resolve the ambiguities increases

as the number of ambiguities decreases. This, combined with the increased er-
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rors discussed in the first point, will adversely impact the ambiguity resolution

process.

In contrast, the tight integration approach is capable of bridging the data outage with

decimetre-level accuracy. This improved accuracy, combined the reduced process

noise in the GPS/INS filter provides significant ambiguity resolution improvements.

A summary of the relative improvements of the GPS-only and tight integration

approaches are shown in Table 7.7. As with the complete data outages, the improve-

ment of the tight integration slowly degrades with increasing outage duration.

Finally, resolution the widelane ambiguities after the partial data outages was in-

stantaneous for all cases using both the GPS-only and the tight integration approach

and so no plot is shown.

7.5.2 Results From Second Run

After analyzing the results of the first run, it was decided that fewer outage durations

could be simulated. Consequently, the data outages for this run lasted 2, 5, 10, 15,

20, 30 and 40 seconds.

Complete Data Outages

A plot of the time needed to resolve the L1 ambiguities after all data outages is

shown in Figure 7.20. For the most part, the results show characteristics similar

to those of the first run. However, for data outages four and five, there are some

situations where the GPS-only solution fixes faster than either of the integrated

solutions. To help explain this, Table 7.8 shows the number of times the ambiguities

were either fixed incorrectly or could not be fixed before the end of the data set.
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Table 7.7: Average Percent Improvement in L1 Ambiguity Resolution Times After
Partial Data Outages Using a Tight Integration Versus GPS-Only for Run #1

Outage Average
Duration [s] Percent Improvement

2 100.0
4 100.0
6 99.9
9 96.8
12 85.8
16 79.2
20 72.3
30 48.6
40 20.6

Results demonstrate a tremendous advantage when using either the loose coupling

with seeding or the tight coupling approaches. Specifically, the inertial system is able

to prevent incorrect fixes associated with the GPS-only solution. Unfortunately, only

one of these incorrect fixes is actually replaced with a correct ambiguity fix when

using an integrated approach. Otherwise, the integrated approach typically prevents

the ambiguities from being resolved at all before the end of the data set. Although

this is not the most ideal situation, it is far better than the alternative. There are

also five situations in which the GPS-only solution could not fix the ambiguities

before the end of the data set, that were eliminated using the integrated system.

The GPS-only “problems” listed in Table 7.8 all occurred on data outages four or

Table 7.8: Number of Times the L1 Ambiguities Were Fixed Wrong or Could Not
Be Fixed After Complete Data Outages for Run #2

Integration Strategy
Problem GPS-Only Loose w/ Seed Tight

Wrong Fix 9 0 0
Could Not Fix 5 9 8
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Figure 7.20: Time to Fix L1 Carrier Phase Ambiguities After Each Complete Data
Outage for Run #2 Using Different Integration Strategies

five. These two outages occur the farthest from the base station, at a distance of

about 7 and 5 km respectively. This suggests that perhaps the differential error

sources are playing a role in this regard. From the truth trajectory analysis of this

run, the fixed L1 carrier phase residuals near these outage times (GPS time 511360

and 511450) were at the 2 cm level. This represents about 10% of an L1 cycle and is

therefore not negligible. Unfortunately, this cannot fully explain the results shown.

For clarity, Figure 7.21 shows the ratio used to determine whether the ambiguities

should be fixed as integers, as computed for the 20-second long outage for the fourth

data gap. The graph starts at the first epoch after the data outage is over (i.e. the

first epoch the GPS data becomes available), and continues for five minutes. Also
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Figure 7.21: Ambiguity Ratio for L1 Carrier Phase Ambiguities After Complete Data
Outage #4 Lasting 20 Seconds for Run #2 Using Different Processing Strategies

shown is the ambiguity ratio threshold for the five ambiguities trying to be resolved.

Two important comments can be made about this plot. First, only the GPS-only

ratio exceeds the threshold, and therefore is the only solution to provide an incorrect

ambiguity fix. Second, the ratio using all three approaches shows a clear rise and

fall effect, with the peak occurring shortly after GPS time 511500.

The rise and fall of the ratio values is likely caused by code errors. Figure 7.22 shows

the GPS-only ambiguity ratio from Figure 7.21 along with the pseudorange residuals

for two satellites computed from the truth trajectory. Since the truth solution is

accurate to the centimetre-level, the code residuals can essentially be considered
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Figure 7.22: Code Residuals and GPS-Only L1 Carrier Phase Ambiguity Ratio After
Complete Data Outage #4 Lasting 20 Seconds for Run #2

equivalent to the code errors. This being the case, there appears to be a strong

correlation between the code errors and the increased ambiguity ratio. Normally,

the ratio is considered to decrease with increasing error. However, caution must be

exercised here because the “best” ambiguity set which is driving the ambiguity ratio

higher is already known to be incorrect. With this in mind, the increased code error

can be interpreted as forcing the ambiguities towards the wrong integer values.

This conjecture can be supported in two ways. First, from Figure 7.21, the maximum

ambiguity ratio obtained using the loose and the tight coupled approaches were sig-

nificantly lower than that of GPS alone. This makes sense since these two approaches
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will be less sensitive to code errors because of the additional information provided

by the inertial system. Second, Figure 7.23 compares the L1 ambiguity ratios of the

20-second outage shown in Figure 7.21 with the equivalent results from the 40 second

data outage. Again, the rise and fall of the ratios is evident in both cases. However,

more importantly, the maximum values occur at approximately the same time. This

supports the idea that the peak is correlated with systematic effects. Second, the

difference between the three processing approaches is considerably reduced for the

40-second data outage. This also agrees with the above because as the data outages

increase in duration, the inertial information provides less information to the inte-

grated solutions. In this way, the integrated solutions become more susceptible to

code errors. It can be concluded therefore that the integrated ambiguity resolution

approaches are more robust against code errors than is GPS alone.

A final note regarding Figure 7.21 (or the top plot in Figure 7.23) is that after about

GPS time 511650, the ambiguity ratio for the loose integration with seeding and the

tight integration approaches are larger than of GPS alone. Assuming the increase in

the ratio is due the correct ambiguity set, this suggests that the integrated solutions

would still provide a faster ambiguity resolution time, relative to GPS alone.

A summary of the relative improvements in time needed to fix the L1 ambiguities

is shown in Table 7.9. The results were computed without considering the fourth or

fifth data outages because of the problems resolving the ambiguities with GPS alone.

The results parallel those from the first run and are not be discussed in detail.

The ambiguity resolution results when using widelane carrier phase data are shown

in Figure 7.24. As with the first run, the overall improvements are not as significant

as with the L1 ambiguities. However, there are some situations in the fourth data
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Figure 7.23: Ambiguity Ratios for L1 Carrier Phase Ambiguities After Complete
Data Outage #4 Lasting 20 and 40 Second for Run #2 Using Different Processing
Strategies

outage where significant performance improvements are seen. This further supports

the theory discussed above regarding the effect of the code measurement errors on

the ambiguity resolution process. In particular, while the increased code errors were

not large enough in this case to cause the WL ambiguities to be fixed incorrectly,

they still played a role in the overall ability to identify the true ambiguity set.

Finally, a summary of the improvements in the time needed to fix the WL ambiguities

is shown in Table 7.10. As expected, the results using either of the integrated

approaches is considerably better than when using GPS alone. Note that the negative

improvement of the tight coupling over the loose coupling with seeding (for the 40 s
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outage) is due to one data outage where the two approaches fixed in two and one

seconds respectively. This represents a 100% degradation (relative to the loose case)

which, when averaged across six data outages, gives 16.7%.

Figure 7.24: Time to Fix Widelane Carrier Phase Ambiguities After Each Complete
Data Outage for Run #2 Using Different Integration Strategies
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Table 7.9: Average Percent Improvement in L1 Ambiguity Resolution Times After
Complete Data Outages Using Different Approaches for Run #2

Outage Average Percent Improvement1

Duration Seeding Over Tight Over Tight Over
[s] GPS-Only GPS-Only Seeding

2 100.0 100.0 0.0
5 98.4 98.4 0.0
10 84.7 95.9 62.6
15 47.2 93.7 73.6
20 48.0 86.9 57.4
30 23.0 23.4 4.5
40 23.4 28.7 7.2

1Does not consider data outages four or five.

Table 7.10: Average Percent Improvement in Widelane Ambiguity Resolution Times
After Complete Data Outages Using Different Approaches for Run #2

Outage Average Percent Improvement
Duration Seeding Over Tight Over Tight Over

[s] GPS-Only GPS-Only Seeding

2 50.0 50.0 0.0
5 100.0 100.0 0.0
10 100.0 100.0 0.0
15 100.0 100.0 0.0
20 99.7 99.7 0.0
30 81.9 81.9 0.0
40 81.0 78.6 -16.7

Partial Data Outages

The L1 and widelane ambiguity resolution times after each simulated data outage

are shown in Figures 7.25 and 7.26 respectively. For the L1 ambiguities, similar

problems to those experienced with the complete data outages were experienced. In

this case, the increased code errors did not cause any incorrect fixes, but simply
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Figure 7.25: Time to Fix L1 Carrier Phase Ambiguities After Each Partial Data
Outage for Run #2 Using Different Integration Strategies

prevented ambiguity resolution for all outage durations for gaps four and five. The

WL ambiguity resolution using GPS-only was also hindered by the code errors during

the fourth data outage. However, as before, the tight integration performed better

and more consistently across all outage durations.

7.5.3 Summary

The analysis of the previous sub-sections shows that using the information provided

by the inertial system can dramatically improve ambiguity resolution time and can

improve the reliability of the ambiguity fix, relative to GPS-only. In this regard, the
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Figure 7.26: Time to Fix Widelane Carrier Phase Ambiguities After Each Partial
Data Outage for Run #2 Using Different Integration Strategies

loose integration with INS seeding does not perform as well as the tight integration

approach. The difference is attributed mostly to the reduced process noise in the

tight integration approach. The slightly slower error drift of the tight integration

solution during data outages will also play a role in this regard.

7.6 Statistical Reliability

Statistical reliability parameters can be computed in the absence of actual measure-

ments using only the covariance information from a Kalman filter and an assumed

or expected observation geometry and precision. This approach was not used herein
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because the dynamics matrix of the INS error states is a function of the measured

specific forces. With this in mind, the simulation of a realistic trajectory would

therefore be required to obtain useful reliability information. Such a simulation is

beyond the scope of this dissertation. Instead, the reliability parameters were com-

puted for the two trajectories analyzed in the previous section. While this represents

only a small sample of all possible scenarios, it serves to illustrate the statistical re-

liability parameters obtained using different integration and measurement updating

strategies.

The analysis begins by investigating the internal reliability parameters using GPS-

only and the tight integration strategy. Next, the external reliability parameters for

GPS-only, loose coupling and tight coupling are compared. Finally, a brief compar-

ison of the reliability using sequential versus simultaneous updates is shown. All

analyses assume the following statistical parameters

α = 0.1%

β = 10%

δ0 = 4.57

7.6.1 Internal Reliability

As discussed in Section 6.2, since blunders can only enter the system before the

GPS-only filter in the loose integration strategy, the internal reliability parameters

for that filter apply equally to the GPS-only and loose integration cases. These

values will therefore be referred to as GPS-only values. These will be compared to

the corresponding values from the GPS/INS filter using the tight integration strategy.
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To simplify the following analysis, all reported values in this section were computed

assuming all observations are processed simultaneously. A comparison of the sequen-

tial and simultaneous processing strategies is given in Section 7.6.3.

Marginally Detectable Blunders

Figure 7.27 shows the code, Doppler and L1 phase MDBs for all satellites using GPS-

only and the tight integration approach, for the first run. The results for the second

run are very similar (as shown in Tables 7.11 and 7.12) and are therefore not shown

graphically. The graph is not intended to identify individual satellites, but to show

the relative improvement when using a tight integration approach. The “outlying”

points (e.g. just before 508650) occur when one or more satellites’ ambiguities are

being estimated in the filter, due to signal masking of low satellites or cycle slips. The

advantage of the tight integration approach is minimal when considering the code

measurements (the green dots basically cover all of the blue ones). This is because

of the relatively high measurement noise of the double difference code observations,

which is on the order of 1–2 m. As such, improving the GPS-only filter’s predicted

covariance from the decimetre-level to the centimetre-level by using the tight integra-

tion provides little benefit. The Doppler and carrier phase measurements however,

show considerable reductions in the MDBs when using the inertial system.

To better quantify the improvements on a satellite-by-satellite basis, the RMS MDB

(over time) for all satellites using GPS-only and a tight integration approach is

summarized in Tables 7.11 and 7.12 for the first and second runs respectively. As

implied in Figure 7.27, the code MDBs are identical to the centimetre-level. With

the Doppler, the MDBs are reduced by as little as about 5 cm/s or as much as about

25 cm/s depending on the satellite. Similar improvements are seen with the phase
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Table 7.11: RMS Code, Doppler and Phase MDBs for Each Satellite Using GPS-Only
and a Tight Integration for Run #1

Code [m] Doppler [cm/s] L1 Phase [cm]
PRN GPS Tight GPS Tight GPS Tight

5 4.47 4.47 41.7 27.0 27.9 20.0
7 4.58 4.58 33.5 27.6 22.4 19.8
9 4.53 4.53 32.3 27.3 21.5 19.4
20 5.19 5.19 50.4 31.4 33.7 23.8
24 4.58 4.58 49.6 27.7 33.2 21.2
30 5.22 5.22 46.7 31.6 31.2 23.6

Table 7.12: RMS Code, Doppler and Phase MDBs for Each Satellite Using GPS-Only
and a Tight Integration for Run #2

Code [m] Doppler [cm/s] L1 Phase [cm]
PRN GPS Tight GPS Tight GPS Tight

4 4.23 4.23 32.8 25.5 22.2 18.4
5 4.21 4.20 35.9 25.3 24.0 18.5
7 4.89 4.89 54.3 29.6 37.2 22.5
9 4.80 4.79 53.7 29.0 35.6 22.3
20 5.29 5.29 48.7 32.0 32.6 24.1
24 4.24 4.24 33.1 25.6 22.5 18.5
30 4.88 4.88 48.4 29.6 32.7 22.5
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Figure 7.27: Code, Doppler and L1 Phase MDBs for All Satellites Using GPS-Only
and a Tight Integration Approach for Run #1
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measurements, where reductions of 2–15 cm are evident. These values represent

significant improvements, however their impact on the final solution is ultimately of

interest. This will be investigated in Section 7.6.2.

Cycle Slip Detection

The carrier phase MDBs of Tables 7.11 and 7.12 can be interpreted as the system’s

ability to identify cycle slips. In this regard, the most difficult cycle slip to detect is

a one-cycle cycle slip, or an approximately 19 cm blunder for L1. The results show

that the tight integration approach is capable of detecting blunders on the order of

one cycle. However, a more tangible comparison is still desirable. For this, recall

Equation 2.48, which is reproduced here for convenience

∇MDB
ki

=
δ0√(
C−1

vk

)
ii

This equation is used to compute the MDB for the ith observation, given a non-

centrality parameter and the covariance matrix of the innovations. For the analysis at

hand, the problem is changed such that the non-centrality parameter is the parameter

to be computed assuming a blunder of one cycle and using the innovation covariance

matrix. With the non-centrality parameter computed, and assuming a fixed value

for α, the value of the normal distribution at the (1 − β) point can be computed

from Equation 2.47 as

δ0 = n1−α/2 + n1−β

The above two equations can then be combined to yield

n1−β =

√(
C−1

vk

)
ii
− n1−α/2
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where it noted that the blunder assumes a value of unity (i.e. one cycle). The above

value is then used to compute the corresponding value of (1−β), which represents the

probability of detecting a one-cycle cycle slip. Using this approach, the probability of

detecting a one-cycle L1 cycle slip using GPS-only and the tight integration approach

is shown in Figure 7.28 for the first run. This plot shows a tremendous advantage for

the tight integration strategy. Specifically, cycle slip detection probabilities for all

satellites remain above 50% at all times using the integrated approach. In contrast,

GPS-only has some satellites that have less than a 20% chance of having a cycle

slip detected. Since an undetected cycle slip is equivalent to an incorrect ambiguity

fix, the improved ability to detect a single-cycle cycle slip with the tightly coupled

approach is significant. Results of the second run are similar to those shown and are

therefore not included.

Results for widelane show that GPS alone is capable of detecting single-cycle cycle

slips with better than 99% probability, because of the longer wavelength. While the

integrated approach does improve on this, the improvements are not as significant

as with L1.

7.6.2 External Reliability

This section investigates the impact of the MDBs presented in the previous sec-

tion on the estimated parameters. For the GPS-only blunders, the corresponding

(GPS-only) external reliability parameters will be computed. However, the effect of

these blunders after having passed through the INS-only filter are also computed,

as this represents the external reliability of the loosely integrated system. Finally,

the tightly coupled protection levels are also investigated. As in the previous sec-
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Figure 7.28: Probability of Detecting a One-Cycle L1 Cycle Slip for All Satellites
Using GPS-Only and a Tight Integration Approach for Run #1

tion, the blunders used to compute the protection levels were computed using the

simultaneous updating approach.

Figures 7.29 to 7.31 respectively show the protection levels for the code, Doppler

and carrier phase observations for PRN 5 using GPS-only, loose integration (after

INS-only filter) and tight integration. Each figure breaks the protection levels

down into horizontal and vertical components. Results for this satellite are shown

because they most clearly show (graphically) the difference between the different

approaches. Other satellites exhibit the same general behaviour. The following

subsections investigate this satellite’s PLs for the various observations individually.
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Figure 7.29: Horizontal and Vertical Position Protection Levels for Code MDBs of
PRN 5 Using Different Processing Strategies for Run #1

Code

Despite the fact that the GPS-only and tight integration code MDBs are essentially

the same, Figure 7.29 illustrates that their protection levels are different. Overall,

the PLs are small because of the high accuracy of the carrier phase data. Typical

values are lower than 1 cm for GPS-only. However, the tight integration strategy is

capable of providing better performance with PLs of less than 5 mm. Finally, the

loose and tight integration approaches show very little difference. In general, the

effect of code blunders on the final solution is not very significant, even with GPS

alone.
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Figure 7.30: Horizontal and Vertical Velocity Protection Levels for Doppler MDBs
of PRN 5 Using Different Processing Strategies for Run #1

Doppler

Figure 7.30 shows that the improvement of the velocity protection levels are very

significant when using the inertial system. Note that the loose and tight integra-

tion strategies are indistinguishable at this scale. In fact, both of these implemen-

tations provide protection levels at the millimetre per second level, as shown in

the Tables 7.13 and 7.14. This magnitude of improvement over GPS-only, namely

decimetres per second, can be attributed to the inertial system’s ability to provide

very accurate velocity estimates over short time intervals. As such, any error in the

Doppler measurements can be effectively filtered out.
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Figure 7.31: Horizontal and Vertical Position Protection Levels for L1 Carrier Phase
MDBs of PRN 5 Using Different Processing Strategies for Run #1

Carrier Phase

The L1 phase PLs for the integrated solutions shown in Figure 7.31 also show very

significant improvements relative to the GPS-only case. In particular, the GPS-only

PLs are improved from the decimetre-level to a few centimetres using either integra-

tion approach. Again, the reason for this is that the inertial system can provide very

accurate position differences over the short term. The improvement is not as sig-

nificant as for Doppler measurements because the extra integration introduces more

uncertainty into the inertial positions. Also of note is that the tight integration can

be seen to offer an advantage over the loose integration of up to a few centimetres.
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Summary

To better quantify the protection levels using the different integration strategies,

Tables 7.13 and 7.14 show the RMS horizontal (HPL) and vertical (VPL) protection

levels for all satellites for the first and second runs respectively. Overall, both runs

show similar performance. However, in the second run, the data outage caused by

the highway sign (at GPS Time 511291) does cause the GPS-only reliability values

to increase considerably for some satellites. The RMS PLs for some satellites are

therefore larger than in the first run. For example, the protection levels for PRN 9

show large increases for code, Doppler and carrier phase blunders relative the first

run. Fortunately, the integrated approaches are able to keep these protection levels

down to a more reasonable level, although still larger than in the first run where

fixed ambiguities are maintained throughout.

Otherwise, as stated previously, the protection level for the code observations is gen-

erally not of major concern and will not be discussed further. In terms of the effect of

Doppler errors on the velocity solution, both integrated solutions provide 1 cm/s re-

liability, worst case. Relative to GPS-only, this represents an improvement of almost

two orders of magnitude in some cases, with better than ten-fold improvements being

typical. Also of note is that the tight integration does offer an improvement over the

loose integration. Although the improvement is not typically very large, PRN 9 in

the second run does show a 50% improvement in the HPL. Nevertheless, the tight

integration approach does offer more protection and is therefore more applicable to

safety critical applications.

The effect of L1 carrier phase blunders on the position estimate using the integrated

approaches is also considerably better than the GPS-only case with decimetre-level
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Table 7.13: RMS Code, Doppler and L1 Phase Protection Levels for Each Satellite
Using Different Integrations for Run #1

HPL VPL
PRN GPS Loose Tight GPS Loose Tight

Code Position Protection Levels [cm]

5 0.5 0.2 0.2 0.9 0.2 0.2
7 0.3 0.1 0.1 0.2 0.1 0.1
9 0.3 0.1 0.1 0.2 0.1 0.1
20 0.2 0.1 0.1 0.7 0.2 0.2
24 0.6 0.2 0.2 0.7 0.2 0.2
30 0.2 0.1 0.1 0.7 0.2 0.2

Doppler Velocity Protection Levels [cm/s]

5 28.9 0.7 0.5 50.0 0.2 0.2
7 12.1 0.5 0.4 9.8 0.1 0.0
9 12.0 0.5 0.4 8.8 0.1 0.0
20 13.8 0.8 0.5 40.5 0.3 0.2
24 40.4 0.9 0.5 50.0 0.2 0.1
30 10.7 0.6 0.4 34.2 0.3 0.2

L1 Phase Position Protection Levels [cm]

5 19.4 6.7 4.9 33.4 8.7 6.3
7 8.2 3.6 3.1 7.1 1.7 1.5
9 8.0 3.4 3.1 5.9 1.5 1.4
20 9.2 4.7 3.3 27.3 7.4 5.2
24 27.0 9.8 6.3 33.8 8.6 5.5
30 7.1 3.8 2.9 22.8 6.3 4.8

improvements being common. As with Doppler observations, the tight integration

offers more protection than does the loose integration with improvements of several

centimetres in some cases. For example, PRN 9 in the second run shows an improve-

ment of about 3 cm for each of the horizontal and vertical channels when using the

tight versus the loose integration. Given that the quoted accuracy of the system

under ideal conditions is at the centimetre-level, this level of improvement is not

negligible and represents a significant advantage of the tight integration.
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Table 7.14: RMS Code, Doppler and L1 Phase Protection Levels for Each Satellite
Using Different Integrations for Run #2

HPL VPL
PRN GPS Loose Tight GPS Loose Tight

Code Position Protection Levels [cm]

4 3.7 0.4 0.2 2.8 0.4 0.2
5 0.4 0.1 0.1 0.7 0.2 0.2
7 1.2 0.2 0.1 0.9 0.2 0.2
9 4.7 0.5 0.2 3.4 0.4 0.2
20 0.2 0.1 0.1 0.5 0.2 0.2
24 1.9 0.3 0.2 1.2 0.1 0.1
30 1.3 0.2 0.2 0.8 0.1 0.1

Doppler Velocity Protection Levels [cm/s]

4 13.7 0.5 0.4 25.1 0.2 0.1
5 20.6 0.6 0.4 38.6 0.3 0.2
7 23.5 0.9 0.5 45.7 0.3 0.2
9 35.5 1.0 0.5 45.5 0.3 0.2
20 12.1 0.7 0.5 29.1 0.3 0.2
24 19.5 0.6 0.4 15.4 0.1 0.1
30 27.7 0.9 0.5 24.3 0.2 0.1

L1 Phase Position Protection Levels [cm]

4 10.1 3.7 3.2 19.8 4.7 4.0
5 13.8 5.0 3.8 25.8 7.4 5.8
7 16.3 7.1 4.0 31.9 9.0 5.0
9 23.1 8.6 5.5 30.1 8.4 5.5
20 8.1 4.2 3.2 19.5 5.8 4.4
24 14.7 5.2 4.2 10.2 2.9 2.3
30 19.0 7.7 5.1 17.3 4.7 3.0

7.6.3 Sequential Versus Simultaneous Updates

The previous analysis only considered the case where all observations are processed

simultaneously. This section contrasts the above results with those obtained using a

sequential updating strategy, assuming a tight integration approach.
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Tables 7.15 and 7.16 show the RMS MDBs for all satellites using the different up-

dating strategies. As can be seen, the difference between the two approaches is

negligible, with the maximum differences being 1 mm/s or 1 mm for Doppler and

carrier phase measurements respectively. This being the case, the two approaches are

deemed equivalent in a practical sense. Furthermore, because of the small differences

in the internal reliability parameters, the external reliability parameters are identical

to the millimetre and millimetre per second level and are therefore not shown.

Table 7.15: RMS Code, Doppler and Phase MDBs For Each Satellite Using Sequen-
tial (Seq.) and Simultaneous (Sim.) Updating Strategies For Run #1

Code [m] Doppler [cm/s] L1 Phase [cm]
PRN Seq. Sim. Seq. Sim. Seq. Sim.

5 4.47 4.47 27.0 27.0 20.0 20.0
7 4.58 4.58 27.7 27.6 19.8 19.8
9 4.53 4.53 27.4 27.3 19.4 19.4
20 5.19 5.19 31.5 31.4 23.8 23.8
24 4.58 4.58 27.7 27.7 21.2 21.2
30 5.22 5.22 31.7 31.6 23.6 23.6

Table 7.16: RMS Code, Doppler and Phase MDBs For Each Satellite Using Sequen-
tial (Seq.) and Simultaneous (Sim.) Updating Strategies For Run #2

Code [m] Doppler [cm/s] L1 Phase [cm]
PRN Seq. Sim. Seq. Sim. Seq. Sim.

4 4.23 4.23 25.6 25.5 18.4 18.4
5 4.21 4.20 25.4 25.3 18.5 18.5
7 4.89 4.89 29.7 29.6 22.5 22.5
9 4.79 4.79 29.1 29.0 22.3 22.3
20 5.29 5.29 32.1 32.0 24.1 24.1
24 4.24 4.24 25.6 25.6 18.5 18.5
30 4.88 4.88 29.6 29.6 22.5 22.5
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7.7 Summary

This chapter used real-time algorithms in post-mission mode to analyze the per-

formance of an integrated GPS/INS system. By simulating data outages, position

accuracy during complete data outages was shown to be better than one decimetre

for about five seconds using L1 carrier phase data. Accuracies reached the level of

typical DGPS code accuracies after approximately 30 seconds. This improvement in

accuracy, relative to GPS-only, was found to improve L1 ambiguity resolution times

by up to 50% for data outages lasting up to 30 s when using a tight integration ap-

proach. Ambiguity resolution results using a loosely coupled approach with feedback

also significantly outperformed GPS alone, but were not as good as with the tight

integration approach.

Using either loose integration with feedback or tight integration approaches, the

ability to resist code errors during the ambiguity resolution process was shown. In

particular, the GPS-only solution was shown to produce several incorrect ambiguity

fixes (due to code errors), while the corresponding integrated approaches simply

could not resolve the ambiguities as integers before the end of the data set. While

this is not an ideal situation, it shows that the integrated system is inherently more

robust to code errors and should therefore be considered more reliable.

In terms of system reliability, GPS-only MDBs were reduced considerably when

a tight integration approach was employed. In particular, the ability to detected

one-cycle cycle slips was shown to be both better and more consistent with the

tightly coupled approach. More important than the internal reliability, the external

reliability parameters were shown to be better when using either a loose or tight

integration approach, relative to GPS-only. Code PLs were shown to be basically the
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same in all cases, due primarily to the availability of high accuracy fixed-ambiguity

carrier phase data. In contrast, GPS-only Doppler PLs were reduced dramatically

from decimetres per second to less than one centimetre per second (RMS). Carrier

phase PLs were also shown to be improved considerably, from the decimetre to

centimetre level. Overall, the difference between the loose integration and the tight

integration were not significant, although some differences were found.



Chapter 8

Real-Time Analysis

The description and results of some real-time tests are given in this chapter. The

analysis focuses on assessing the overall system behaviour. Where possible, limi-

tations of the system are also shown and discussed. A comparison of the results

obtained in real-time with those obtained offline using GPS-only is made to illus-

trate the advantage of the integrated system.

8.1 Test Description

The data used for the real-time analysis was collected on January 13, 2003. In total,

two runs were collected. The first run used L1 carrier phase data, while the second

used the widelane linear combination. The equipment used was the same as for the

post-mission data collection, as described in Section 7.1.1. The base station was

setup on the roof of the CCIT building on the University of Calgary campus and its

data was broadcast to the vehicle over a radio transceiver link. Data latencies were

typically on the order of 0.1–0.2 s. The equipment setup was shown in Figure 7.1.

The static initialization period at the start of each run was about 12 minutes long.

The GPS/IMU lever-arm was determined beforehand using the method described in

Section 4.3 and a dedicated test performed in open-sky conditions.

Testing was performed in and around the University of Calgary. The location of

each run was selected to reflect more typical, and therefore adverse, operational

167
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environments than those considered in Chapter 7. Specifically, suburban and pseudo-

urban conditions were selected. In this context, pseudo-urban conditions represent

conditions found around a typical university. Such an environment approximates

urban canyon conditions but with overall lower masking angles and with severe

masking conditions occurring for significantly shorter durations than in a real urban

canyon. The details of the two runs are given in the following sections.

The SAINTTM software described in Section 7.2.1 was used in real-time mode. The

relevant processing parameters were the same as discussed in Chapter 4. The tight

integration approach was used due to its improved performance relative to the loose

integration case, as demonstrated in the previous chapter. All observations were

processed simultaneously.

8.2 Suburban Test

The suburban test was conducted along community roads and some main city routes.

Community roads are typically narrow (one driving and one parking lane in each

direction) and usually include trees on either side of the street. Given the time of

year, the absence of foliage on the trees was beneficial but conditions were still far

from ideal in the context of GPS signal tracking. Main city routes are similar to

freeway conditions and include fairly open-sky conditions with some overpasses and

surrounding concrete structures. As stated above, L1 carrier phase data was used

for this test.

Figure 8.1 shows the plan view of the trajectory, relative to the base station. Baseline

lengths for this run reach a maximum of approximately 2.4 km implying that dif-
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Figure 8.1: Trajectory for First Real-Time Run Relative to Base Station

ferential error sources will be negligible for this case. The run began and ended in

the south parking lot of Market Mall shopping centre and proceeded as shown by

the arrows. The maximum vehicle speed was approximately 90 km/h with 50 km/h

being more common.

Only two complete satellite masking conditions were encountered during the run.

First, passing underneath Crowchild Trail from 40 Avenue to Brisebois Drive, a com-

plete data outage lasting five seconds was experienced. Second, traveling northwest

on Crowchild Trail, an underpass located at the southward extension of Northland

Drive caused a full data outage of three seconds. Otherwise, partial signal masking

was caused by trees on either side of the community roads. Trees were most preva-
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lent along 40 Avenue just east of Shaganappi Trail, at the west end of Northmount

Drive and at the north end of Charleswood Drive. Figure 8.2 shows a picture of

Northmount Drive to give an indication of the tree coverage experienced during the

test. More pictures from throughout the run are included in Appendix E.

Figure 8.2: Northland Drive Looking Northwest

Figure 8.3 shows the number of satellites tracked and the corresponding DOP values

for the horizontal (HDOP) and vertical (VDOP) components. The difference in the
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Figure 8.3: Number of Satellites and Dilution of Precision for First Real-Time Test

number of satellites tracked at the base and remote stations gives an indication of

the signal masking environment. While not severe by some standards, the level of

masking experienced is far from ideal for carrier phase tracking. DOP values were

computed using the University of Calgary’s C3NAVG2TM software, an epoch-to-epoch

single point or differential code processing program. As such, DOPs are not output

when the number of satellites is less than four, which occurred at eight epochs for this

run (about 0.6% of the time). As shown, the HDOP is around one for the majority of

the test but does exceed five in some cases. The VDOP is typically around two with

frequent jumps that exceed three and some as high as eight. Overall, the geometry

for the majority of the test is reasonable with some very poor periods.
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As an initial assessment of the results, Figure 8.4 shows the double difference L1

carrier phase residuals for those satellite’s whose ambiguities are fixed to integers.

For the most part, residuals are at the 1–2 cm level. However, there are some

situations with considerably larger values. Individual residuals above 2 cm are not

of great concern as these could be due to increased multipath effects, which can

reach a theoretical magnitude of one cycle for double difference observations (see

Section 3.1.2). However, around GPS times 150300 and 150450 there are clear trends

where several satellites show increased residuals implying an incorrect ambiguity fix.

These correspond to the periods of fluctuating satellite visibility shown in Figure 8.3

which occur at the west end of Northmount Drive and the north end of Charleswood

Drive respectively.

To confirm that this is indeed an incorrect fix, the tightly integrated solution using

WL carrier phase updates was computed in post-mission. Given the increased wave-

length, the likelihood of fixing the ambiguities correctly is greatly improved, as shown

in the previous chapter. An analysis of the fixed WL residuals showed no systematic

effects, thus supporting the conjecture that the solution is more accurate than the L1

solution. Assuming the WL solution to be correct, the difference between it and the

real-time L1 solution can be interpreted as the error in the latter. The comparison

of the two solutions is shown in Figure 8.5. There are clear periods where the two

solutions are biased relative to each other. In particular, the times with larger L1

carrier phase residuals discussed above show the largest position differences. This

helps confirm that the L1 ambiguity fix during these times is likely incorrect. The

question arises therefore as to why these incorrect fixes occur, especially in light

of the results of the previous chapter that showed the integrated solution as being

capable of providing reliable ambiguity fixes.
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Figure 8.4: Absolute Fixed L1 Carrier Phase Residuals for First Real-Time Test

Unfortunately, this question cannot be answered definitively without further infor-

mation about the actual vehicle trajectory. This being said, the most probable cause

is the increased errors associated with the suburban environment relative to the

open-sky environment used for the post-mission analysis. In particular, the multi-

path in suburban conditions can be severe and highly variable. Furthermore, the

degraded satellite geometry will make these errors harder to detect using reliability

testing, and any errors that pass undetected will have a larger effect on the estimated

parameters than if more satellites were visible. The impact of these effects on the

integrated system will therefore include

• Reduced ability of the system to properly calibrate the inertial navigation
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Figure 8.5: Difference Between Real-Time L1 Integrated Solution and Post-Mission
Widelane Integrated Solution for First Real-Time Test

system. In particular, small biases in the measurements due to multipath will

adversely impact the estimates of the INS error states. While these errors may

not appear large, they could impact system behaviour during data outages,

thus limiting the benefit of the inertial system in recovering the ambiguities.

• Increased system error immediately prior to data outages when multipath er-

rors are likely to be higher as the GPS signals reflect off, or refract around, the

masking object. These errors could then contaminate the estimated parameters

prior to the data outage leading to poorer inertial behaviour.

• More difficulty in resolving the ambiguities after data outages, regardless of
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the accuracy of the inertial solution. Recall that in Section 7.5.2 code errors

were shown to limit the ability of the integrated system to quickly resolve the

ambiguities after a data outage. It follows therefore that if the code errors are

larger (which is highly probable in this case), the benefit of the inertial system

will be reduced.

The above L1 results are clearly not ideal, but serve the important purpose of iden-

tifying a possible limitation of the integrated system. Specifically, it illustrates that

direct resolution of the L1 carrier phase ambiguities in the suburban environment

considered is difficult and may require more accurate inertial sensors.

Although the above results show that the real-time L1 only solution is not always

correct, there is still an advantage to using the inertial system. To illustrate, Fig-

ure 8.6 shows the difference between the GPS-only L1 solution and the WL integrated

solution, both obtained in post-mission. Assuming the difference between the two

solutions is due to the error in the GPS-only L1 solution, its performance is con-

siderably poorer than that of the integrated L1 solution obtained in real-time. The

errors are at the metre-level versus the decimetre-level with the integrated solution.

Furthermore, processing of the data collected in real-time is based on models devel-

oped under considerably more favourable conditions. A better characterization of

the errors in suburban environments may yield even further benefit for the integrated

solution. Unfortunately, such an analysis is beyond the scope of this dissertation.

Assuming the WL solution obtained in post-mission is accurate, its estimated po-

sition covariance can be used to obtain a rough estimate of the overall system per-

formance. Figure 8.7 shows that the estimated standard deviations in each of the

coordinate directions is bounded within 20 cm with typical reported accuracies being
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Figure 8.6: Difference Between Post-Mission L1 GPS-Only and Post-Mission Wide-
lane Integrated Solution for First Real-Time Test

below 10 cm. While an L1 solution could improve upon this, the WL solution would

still meet the sub-decimetre objective set forth in Section 1.3 most of the time.

8.3 Pseudo-Urban Test

As mentioned above, the term “pseudo-urban” is intended to represent conditions

similar to those found in an urban canyon environment, with the difference being

the severity and duration of periods during which satellite visibility is restricted.

For example, in an urban canyon environment three or fewer satellites may remain

visible for periods of several minutes. This, combined with large multipath errors

would make for a very demanding, if not unreasonable, environment for the system

under consideration. As a compromise, the pseudo-urban test was conducted in
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Figure 8.7: Estimated Position Standard Deviations From the Widelane Integrated
Solution for First Real-Time Test

and around the University of Calgary campus. In this way, periods of satellite

signal masking and multipath conducive environments are interlaced with periods of

reasonable satellite visibility. This is considered to be a relatively severe operating

environment given the quality of the inertial sensor used and the high-accuracy of

the desired solution. The test was therefore performed using widelane carrier phase

measurements to improve overall robustness.

The trajectory of the pseudo-urban test is shown in Figure 8.8. Again, the distance

of the vehicle from the base station remained small thus limiting the effects of dif-

ferential errors. The test began in the parking lot in front of the CCIT building and

then proceeded as indicated by the arrows. Vehicle speeds remained below 60 km/h

at all times.

The Calgary research park (north of 32 Avenue) was used for the first part of the test
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Figure 8.8: Trajectory for Second Real-Time Run Relative to Base Station

as it offered tree lined roads. The test then continued onto the University campus.

The locations marked “A” through “D” are areas where the vehicle passed very

close or even between several buildings simultaneously and therefore approximates

an urban canyon environment. Furthermore, all of these locations except “D” are

accessed only after passing under an enclosed walkway which causes a complete

data outage. Otherwise, satellite visibility around campus was reasonable although

partial signal masking from trees was moderate. Figure 8.9 shows a picture of the

masking conditions at the point labeled “B” in Figure 8.8. Other pictures from

various locations within the run are shown in Appendix F.
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Figure 8.9: Point “B” Looking South

The number of visible satellites and the corresponding DOP (when four or more

satellites are visible) is shown in Figure 8.10. Typically, the number of visible satel-

lites is five or greater but there are five periods in which two or fewer satellites remain

visible. Overall, the satellite geometry is reasonable with HDOP and VDOP values

near one and two respectively. This being said, HDOP values of four or higher are

not uncommon. Furthermore, there are 60 epochs for which DOPs could not be

computed due to lack of satellite visibility. This represents approximately 4.4% of

all epochs, implying that satellite masking was significant. Consequently, the geom-

etry for this test is deemed to be considerably poorer than that of the suburban test

analyzed in the previous section.
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Figure 8.10: Number of Satellites and Dilution of Precision for Second Real-Time
Test

The carrier phase residuals for those satellites with fixed ambiguities are shown in

Figure 8.11. Overall, the magnitude of the residuals is lower than about 5 cm. While

considerably higher than the fixed L1 carrier phase residuals (see analysis of post-

mission truth trajectories in Section 7.2.2), this is typical of the increased noise of

the WL carrier phase observations. Furthermore, the filtering effect due to the tight

integration strategy will cause the residuals to appear slightly larger than when using

GPS alone. The above analysis implies that the carrier phase fixes were correct for

the entire data set. Also, since Figure 8.11 only shows residuals for fixed ambiguity

measurements, the percentage of the time that at least one fixed ambiguity carrier

phase measurement exists is seen to be quite high.
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Figure 8.11: Absolute Fixed Widelane Carrier Phase Residuals for Second Real-Time
Test

The difference between the real-time integrated solution and the post-mission GPS-

only solution (also using WL carrier phase) is shown in Figure 8.12. Sustained

position differences between the solutions are as high as one metre in each coordinate

direction. Sporadic differences of several metres were also found but were cut off in

the figure to better illustrate the low-frequency “biases”. The GPS-only carrier

phase residuals did not show any significant problems thus making it difficult to

assess which of the two solutions was correct. To assist in this regard, Figure 8.13

shows the three-dimensional position PL values for the code and WL carrier phase

measurements for the GPS-only and integrated solutions. As can be seen, the code

PLs show large variations with the GPS-only approach. The largest PL values can be
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Figure 8.12: Difference Between Real-Time Integrated Solution and Post-Mission
GPS-Only Solution for Second Real-Time Test

shown to occur after data outages and can reach 30 m or more (not shown to better

show the integrated solution’s code PLs). Also, after such data outages, the code

measurements are used to re-initialize the GPS-only filter since no knowledge of the

ambiguities is available. Given the importance of the code measurements after data

outages and their relatively poor reliability (for the GPS-only filter), it is very likely

that the code observations are biasing the GPS-only solution and possibly causing

an incorrect ambiguity fix. The integrated solution also shows degradation in the

code protection levels after data outages, but to a much smaller degree. The carrier

phase protection levels for the GPS-only solution are also considerably poorer than

with the tightly integrated solution. Finally, cross-referencing the PLs in Figure 8.13

with the position differences in Figure 8.12, it can be seen that changes in position

differences correlate well with large increases in the PL values. Given that the GPS-
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Figure 8.13: Code and Widelane Phase Three-Dimensional Position Protection Lev-
els for GPS-Only and Tight Integration Solution for Second Real-Time Test

only solution is much less reliable than the integrated solution, this supports the idea

that the GPS-only solution is in error.

To further confirm this conjecture, Figure 8.14 shows the code residuals for the two

approaches. Residuals are colour-coded on a PRN-by-PRN basis for convenience.

Overall, both approaches yield reasonable code residuals with some exceptions. First,

around GPS time 154450 the GPS-only solution shows larger code residuals, relative

to the integrated solution. This corresponds with the first major difference between

the two position estimates in Figure 8.12. Second, the time period 154800–155160

also shows some increased residuals. These periods are important as they indirectly
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Figure 8.14: Code Residuals (Colour-Coded by PRN) for Real-Time Integrated So-
lution and Post-Mission GPS-Only Solution For Second Real-Time Test

indicate the quality of the carrier phase solution at those times. Specifically, assuming

the carrier phase ambiguities are fixed correctly, the code residuals will essentially

represent the errors in the code measurements. However, assuming the carrier phase

ambiguities are fixed incorrectly, the resulting error in the position estimate will

also be reflected in the code residuals, along with the actual code errors. It follows

therefore that, on average, if the carrier phase ambiguities are fixed correctly, the code

residuals should be of smaller magnitude than if the ambiguities are fixed incorrectly.

With this concept in mind, Figure 8.15 shows the code residuals during the time

interval 154800–155160 in detail. To begin, consider the graph up to approximately

GPS time 154920. Here, the three satellites’ code residuals (orange, purple and dark

blue) are clearly biased in the GPS-only case, with average values of about one metre

or more. However, these same satellites for the integrated solution have residuals on
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Figure 8.15: Selected Time Period Showing Code Residuals (Colour-Coded by PRN)
for Real-Time Integrated Solution and Post-Mission GPS-Only Solution for Second
Real-Time Test

the order of decimetres. In contrast, the red dots show an increased code residual for

the integrated solution relative to the GPS-only solution. This is not unexpected, as

it implies that that particular satellite is experiencing multipath errors that are being

filtered out. Similar arguments can be made for the interval starting at GPS time

155040. Overall, the above analysis supports the conjecture that it is the GPS-only

solution that is causing the differences seen in Figure 8.12.

While the above analysis is not conclusive, it does indicate that the integrated so-

lution is more correct than that of GPS-only. Under this assumption, the position

differences of Figure 8.12 are interpreted as the error in the GPS-only solution. This

again shows that the integrated system is capable of improving overall accuracy and

eliminating incorrect fixes which contaminate the GPS-only solution. Finally, Fig-

ure 8.16 shows that the estimated standard deviations of the integrated solution are
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at the sub-decimetre level for the majority of the test, with some periods of approxi-

mately half-metre accuracy. Given the relatively adverse conditions under which the

test was performed, these results are quite good and demonstrate that sub-decimetre

positioning is possible under some adverse operational conditions.

Figure 8.16: Estimated Position Standard Deviations From the Widelane Integrated
Solution for Second Real-Time Test

8.4 Summary of Results

In this chapter, the output from two real-time runs were analyzed. The first run,

collected under suburban conditions, showed that accurately resolving the L1 car-

rier phase ambiguities was not possible. However, compared with the GPS-only L1

solution, the integrated approach performed considerably better with a reduction of

errors by over one metre in some cases.
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The second run was collected in a pseudo-urban environment using widelane carrier

phase data. Comparison with the GPS-only solution showed differences of several

metres for extended periods. Although the fixed ambiguity carrier phase residuals

for both solutions appeared reasonable, an analysis of the reliability parameters and

the code residuals strongly suggests that it is the GPS-only solution that is causing

the differences in the two solutions.

In general, results of the real-time testing indicate that the SAINTTM software is

performing well and that sub-decimetre solutions are possible when using widelane

carrier phase data, with exceptions occurring during periods of severe GPS signal

masking.



Chapter 9

Conclusions and Recommendations

The contribution of this research was the thorough assessment of the performance of

a tactical-grade IMU integrated with a GPS receiver for high-accuracy navigation. In

this regard, a comparison of three integration strategies was also performed to assess

their relative performance. In particular, loose integration, loose integration with

INS seeding and tight integration strategies were considered with the latter providing

the best results overall. The system tested used a NovAtel OEM4 GPS receiver and

a Honeywell HG1700 AG11 IMU. A new software program named SAINTTM was

also developed as part of this work and was used to prepare the results presented in

previous chapters.

The performance parameters used to assess the above system included position ac-

curacy during complete and partial GPS data outages, L1 and widelane ambiguity

resolution capability after such data outages, as well as the overall statistical reliabil-

ity of the system. With regard to the statistical reliability, the traditional reliability

equations were reworked for use with more practical systems. Specifically, the equa-

tions for a reliability assessment of cascaded systems and systems using sequential

measurement updates were developed.

The above performance parameters were also evaluated with a consideration for real-

time applications with the ultimate goal being continuous sub-decimetre positioning

capability. Real-time testing showed that this level of performance is possible most of

the time when using widelane carrier phase updates. Other results served to illustrate

188
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the limitations of the system under operational conditions. The following sections

outline the major conclusions found in the course of this research and recommend

possible improvements.

9.1 Conclusions

The integrated system showed better performance than GPS-only in all cases. Fur-

thermore, the tight integration strategy outperformed the loose integration approach,

although in some circumstances these differences were not significant. Below, details

of the major conclusions of this dissertation are summarized in terms of the objectives

set out in Chapter 1.

Accuracy During Data Outages

1. During complete simulated data outages, the integrated system was shown

to provide sub-decimetre three-dimensional accuracy for data outages lasting

up to about five seconds, in a root mean squre sense, when using L1 carrier

phase updates in a tightly coupled system. The accuracy of the integrated

solution degraded to the level of differential code solutions after approximately

30 seconds, and thus presents an significant advantage over GPS-only for data

outages of up to this duration. The Kalman filter’s estimate of this error was

also shown to be a reasonable approximation to the actual system behaviour.

These results were obtained under moderate vehicle dynamics.

2. Positioning accuracy during partial data outages was shown to be better than

one decimetre for data outages lasting approximately 10–12 seconds when using
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L1 carrier phase data in a tight integration approach. After 40 seconds, posi-

tion accuracies degraded to only about 70 cm despite the poor GPS satellite

geometry.

3. The tight integration approach outperformed the loose integration approaches

in terms of overall system accuracy. Improvements of about 10 cm after 40 s

were observed for complete data outages. For partial data outages, this im-

provement increased to about half a metre over the same time interval. This

improvement is attributed to the reduced amount of process noise in the tight

integration Kalman filter.

4. The widelane carrier phase observation provides poorer positioning perfor-

mance than do the L1 observations for both complete and partial data outages.

This is attributed to the increased measurement noise of the widelane measure-

ments.

5. Using a tight integration approach, the velocity accuracy during the complete

and partial data outages was shown to be good to approximately 11 cm/s and

4 cm/s after 40 seconds respectively.

Ambiguity Resolution

1. Using loose coupling with INS seeding significantly reduced the ambiguity res-

olution times after complete data outages relative to using GPS alone. In

particular, 50% or better improvements in L1 ambiguity resolution times were

observed for complete data outages lasting up to 20 seconds for two separate

data collection runs. For widelane ambiguities, the percent improvements were

even larger but the actual time needed to resolve the ambiguities with GPS-
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only was already small and so the improvements are limited in a practical

sense.

2. The tight integration strategy improved upon the L1 ambiguity resolution per-

formance of the loose integration with INS seeding after complete data out-

ages. In general, improvements were negligible for data outages lasting less

than five, and longer than 30, seconds. For intermediate outage durations, the

improvements of the tight integration over the loose integration with seeding

were typically 40–70%. No significant differences were seen between the two

integration strategies in terms of widelane ambiguity resolution, as both ap-

proaches provided instantaneous or near-instantaneous resolution at all times.

3. The integrated solutions are more robust in terms of L1 ambiguity resolution

after complete data outages. Specifically, for one run the GPS-only solution

was shown to incorrectly resolve the L1 carrier phase ambiguities. These in-

correct fixes were mostly influenced by code errors. However, both integrated

approaches were able to mitigate the effect of these errors and maintained a

float ambiguity solution instead of fixing incorrectly. For partial data out-

ages, these same code errors affected the GPS-only L1 and widelane ambiguity

resolution process whereas the tight integration remained basically unaffected.

4. The usefulness of inertial data for ambiguity resolution is significant for data

outages having durations over which the INS can provide more accurate so-

lutions than DGPS alone (approximately 30 s for the system tested). For

such data outages, the integrated approach can significantly improve GPS-

only ambiguity resolution performance. These results are better than what

was originally expected.
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System Reliability

1. Use of tightly coupled GPS/INS system was shown to reduce the MDB of

Doppler and L1 carrier phase measurements by decimetres per second and

several centimetres respectively, relative to GPS alone. The magnitude of

detectable code blunders was the same in both cases.

2. For the L1 carrier phase, the probability of detecting a one-cycle cycle slip was

found to be greater than 50% at all times using the tight integration strategy.

In contrast, using a GPS-only approach, some satellites had less than a 20%

chance of detecting a cycle slip.

3. The effect of a code blunder on the estimated position, when fixed ambiguity

carrier phase data is available, is negligible. Using GPS-only, RMS protection

levels were found to be mostly below 1 cm. However, some satellites showed

RMS protection levels of several centimetres when estimating several ambigu-

ities as real values. Both the loose and tight integration approaches reduced

the RMS protection levels to below 1 cm.

4. The GPS-only protection levels for the Doppler blunders were reduced from

decimetres per second to a few millimetres per second using either integra-

tion strategy. The advantage of the tightly coupled over the loosely coupled

approach was only a few millimetres per second.

5. The GPS-only L1 carrier phase protection levels were reduced by tens of cen-

timetres in some cases when using an integrated approach. The tightly coupled

approach was better than the loosely coupled approach by as much as 3 cm

in each of the horizontal and vertical components. Given the estimated accu-
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racy of the system (i.e. a few centimetres), these differences are significant and

represent a significant advantage of the tight integration approach.

6. The difference in the statistical reliability parameters when using a simultane-

ous or sequential updating strategy was negligible. Maximum differences in the

MDBs were found to be 1 mm or 1 mm/s for code and Doppler measurements

respectively. Protection levels for the two approaches were consequently found

to be identical to the millimetre and millimetre per second level respectively.

Real-Time Performance

1. Direct resolution of the L1 carrier phase ambiguities in a suburban environment

could not be accomplished reliably with the system tested. Some incorrect

fixes were detected yielding differences with respect to the widelane carrier

phase solution of up to several decimetres. However, the L1 GPS-only solution

showed differences at the metre-level indicating that the integrated approach

was still beneficial. Poor characterization of the errors in the suburban setting

is considered the major reason for the incorrect fixes.

2. In a pseudo-urban environment, the difference between the GPS-only and the

integrated solution showed differences at the metre-level. Several wrong fixes

were identified with the GPS-only solution. The absence of a truth trajectory

limited the ability to confidently confirm that the integrated solution produced

correct integer fixes throughout the run, but all indications suggest that the

test was in fact successful.

3. Assuming the estimated widelane solutions are correct, the estimated uncer-

tainty of the position was computed to be better than 10 cm for each coordinate
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component except during complete data outages. A sub-decimetre accuracy

system is therefore possible most of the time using the equipment tested.

9.2 Recommendations

Based on the results and conclusions of this research, the following recommendations

can be made

1. Investigate the benefit of performing a laboratory and/or field calibration of

the IMU prior to data collection. The system tested did not have a calibration

performed in an effort to reduce the number of person-hours needed to prepare

the system for operation. However, if simple calibration procedures were shown

to be effective for high-accuracy applications, they could be implemented in

later versions of the system to improve overall performance.

2. Investigate system performance in the presence of larger differential errors.

Results shown in this dissertation are valid for baseline lengths up to about

7 km and differential errors on the order of 3 ppm, with some satellites showing

effects as large as 9 ppm. By investigating the performance of the integrated

system in the presence of larger error magnitudes, a better overall assessment

will be obtained.

3. Assess the system accuracy during data outages when only float ambiguities

are available prior to the data outages. The results shown herein used fixed

ambiguities prior to data outages and therefore represent the ideal situation.

However, it was also shown that as the observation uncertainty increases, when
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using the widelane observable for example, the performance of the system dur-

ing data outages is adversely affected. Since float ambiguity carrier phase

measurements effectively contain less information than when the ambiguities

are fixed, it follows that the system performance will be lower in this case.

A full characterization of this situation is required to obtain the best overall

assessment of the system.

4. Quantify the accuracy of the various integration approaches during the ambi-

guity resolution process. This dissertation was only concerned with duration of

the ambiguity resolution process, and the veracity of the resulting integer am-

biguities. However, system accuracy during the ambiguity resolution process

is also a critical component of the overall system performance and therefore

needs to be characterized.

5. A more thorough reliability assessment of the integrated system is required.

The work shown herein served only to illustrate the potential benefits of using

an integrated approach over GPS alone. Given the benefits that were identi-

fied, a more rigourous analysis would better characterize these improvements.

In particular, a broader range of satellite geometries and vehicle dynamics

should be tested. Also, an assessment of the reliability during periods when

ambiguities are being estimated as real values should be performed.

6. Given the robustness of the widelane ambiguity resolution process relative to

L1, a cascading approach whereby widelane ambiguities are fixed first, followed

by an attempt to resolve the L1 ambiguities should be investigated. If L1

ambiguity resolution times and/or reliability could be improved by this process,

the integrated system could take advantage of the robust widelane ambiguities
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as a worst case, while maintaining the possibility of having a fixed L1 solution.

Real-time applicability of such an approach should also be considered.

7. Perform a better characterization of the errors in suburban and pseudo-urban

environments. In so doing, the performance of the current system may be im-

proved. Specifically, if the integrated L1 solution could be made more reliable,

the cost savings to the user in terms of GPS hardware could be significant.

8. Compare the integration of a tactical and navigation-grade system to better

assess the INS performance between GPS updates. Such an analysis may

identify means of improving the tactical-grade system beyond its current level.

9. Implement an algorithm to automatically detect and exploit zero-velocity con-

ditions in real-time. This could potentially introduce high-accuracy observa-

tions to the system, even in the absence of good GPS satellite coverage. The

resulting improvement in the INS error state estimation may then extend the

capabilities of the system tested.

10. Investigate the potential benefits of the integrated system for post-mission

applications. This should include an investigation of a backward processing

strategy, the use of optimal smoothing algorithms and methods of interpolating

system error during data outages (e.g. as in Nassar and Schwarz, 2001).

11. Investigate the possibility of lowering the dependence of the integrated solution

on the GPS code observations. It was shown herein that code errors could sig-

nificantly influence the ambiguity resolution process. It follows therefore, that

if the integrated system could reduce its dependence on these measurements,

the overall ambiguity resolution performance may be improved.
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Appendix A

Equivalence of Simultaneous and Sequential

Measurement Updates

This appendix derives the mathematical equivalence of using simultaneous and se-

quential processing strategies to update a Kalman filter. An alternate form of the

Kalman filter is shown for this purpose. Equivalence is first shown using only two

sets of observations before considering the more generic case.

A.1 Alternate Kalman Filter Algorithm

The Kalman filter algorithm shown in Chapter 2 is only one of two forms. The other

form can be summarized using the following equations (Brown and Hwang, 1992)

x̂−k+1 = Φk,k+1x̂k (A.1)

C−
x̂k+1

= Φk,k+1Cx̂k
ΦT

k,k+1 +Qk (A.2)

C+
x̂k

=
(
(C−

x̂k
)−1 +HT

k C
−1
zk
Hk

)−1
(A.3)

Kk = C+
x̂k
HT

k C
−1
zk

(A.4)

x̂+
k = x̂−k +Kk

(
zk −Hkx̂

−
k

)
(A.5)

This algorithm is essentially a combination of least-squares with weighted parameters

and a prediction step. As can be seen, most of the steps are the same as in the

209
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original algorithm. The gain matrix using both approaches is also identical (Brown

and Hwang, 1992) however, both formulations will be used below for convenience.

A.2 Equivalence of Update Strategies

The derivation presented below utilizes the notation developed in Section 6.1. In

this regard, some symbols that did not use this notation before are included here.

At these locations, the symbol is defined, but the notation is not explained in detail

as it is obvious from the context.

A.2.1 Equivalence Using Two Observation Sets

The proof begins by assuming two sets of statistically independent observations

z1 = H1x+ v1

z2 = H2x+ v2

By assuming the observations are processed both simultaneously and sequentially,

the equivalence of the two approaches can be shown.

Sequential Updates

Assume that the first set of observations are processed to give

x̂(1) = x̂(0) +K
(0)
1 ν

(0)
1 (A.6)

= x̂(0) + χ
(0)
1 (A.7)
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where, in general

χ
(j,k,...)
i = K

(j,k,...)
i ν

(j,k,...)
i (A.8)

represents the corrections to the estimated parameters using the ith set of observa-

tions.

Next, assume the second set of observations is processed to yield

x̂(2) = x̂(1) +K
(1)
2 ν

(1)
2 (A.9)

= x̂(1) + χ
(1)
2 (A.10)

where the innovation sequence is given by

ν
(1)
2 = zk −H2x̂

(1)

= zk −H2

(
x̂(0) +K

(1)
2 ν

(0)
1

)
= ν

(0)
2 −H2K

(1)
2 ν

(0)
1 (A.11)

From the above two processing steps, the cumulative correction applied to x̂(0) is

given by

χ
(0)
1,2 = χ

(0)
1 + χ

(1)
2

= K
(0)
1 ν

(0)
1 +K

(1)
2 ν

(1)
2

= K
(0)
1 ν

(0)
1 +K

(1)
2

(
ν

(0)
2 −H2K

(1)
2 ν

(0)
1

)
=

(
I −K

(1)
2 H2

)
K

(0)
1 ν

(0)
1 +K

(1)
2 ν

(0)
2 (A.12)
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Simultaneous Update

In contrast to above, consider the case where both observations are processed simul-

taneously. In this case, the gain matrix is given by

K
(0)
1,2 =

(
(C

(0)
x̂ )−1 +HT

1 C
−1
z1
H1 +HT

2 C
−1
z2
H2

)−1
[
HT

1 C
−1
z1

HT
2 C

−1
z2

]

=
(
(C

(1)
x̂ )−1 +HT

2 C
−1
z2
H2

)−1
[
HT

1 C
−1
z1

HT
2 C

−1
z2

]

= (C
(1,2)
x̂ )−1

[
HT

1 C
−1
z1

HT
2 C

−1
z2

]

where Equation A.3 was used to obtain the second and then the third lines. Next,

assuming the innovation sequences for the two sets of observations can be denoted

ν
(0)
1,2 =

[
ν

(0)
1 ν

(0)
2

]T
, the corrections to the initial state vector can be computed as

χ
(0)
1,2 = K

(0)
1,2ν

(0)
1,2

= C
(1,2)
x̂ HT

1 C
−1
z1
ν

(0)
1 + C

(1,2)
x̂ HT

2 C
−1
z2
ν

(0)
2

=
(
I −K

(1)
2 H2

)
C

(1)
x̂ HT

1 C
−1
z1
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(0)
1 +K

(1)
2 ν

(0)
2

=
(
I −K
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2 H2

)
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(0)
1 ν

(0)
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(1)
2 ν

(0)
2 (A.13)

where the following substitutions were made

• C
(1,2)
x̂ =

(
I −K

(1)
2 H2

)
C

(1)
x̂ from line 2 to 3

• C
(1,2)
x̂ HT

2 C
−1
z2

= K
(1)
2 from line 2 to 3

• C
(1)
x̂ HT

1 C
−1
z1

= K
(0)
1 from lines 3 to 4

Finally, comparing Equations A.12 and A.13, the two approaches are shown to be

identical, as desired.
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A.2.2 Equivalence Using Arbitrary Number of Observation Sets

The previous section only showed the desired equivalence for the case of two obser-

vation sets. To expand this, first consider the case with three observation sets, z1,

z2 and z3. The first two sets of observations can be grouped together as z1,2 and

processed simultaneously without affecting the estimated states, as shown above.

This leaves two observation sets z1,2 and z3 which can also be processed using either

approach to arrive at the same result. Recursive application of the same logic to an

arbitrary number of observation sets proves the that in general, simultaneous and

sequential processing are numerically equivalent.



Appendix B

Dynamics Matrix for INS Error States

The state-space form of the INS error equations is shown in Chapter 4. It is repro-

duced here along with details of the individual matrices as follows

δṙe

δv̇e

ε̇e

δḃb

δḋb


=



0 I 0 0 0

N e −2Ωe
ie −F e Re

b 0

0 0 −Ωe
ie 0 Re

b

0 0 0 −diag(αi) 0

0 0 0 0 −diag(βi)





δre

δve

εe

δbb

δdb



+



0 0 0 0

Re
b 0 0 0

0 Re
b 0 0

0 0 I 0

0 0 0 I





wf

wω

wb

wd



where Re
b is the rotation matrix from the body-frame to the ECEF-frame, diag(αi)

and diag(βi) are diagonal matrices for modeling the bias states are first-order Gauss-

Markov processes. The remaining elements are given by

N e =


kM
R3

(
3r2

x

R2 − 1
)

+ ω2
e
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3rxry
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kM
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3rxrz
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kM
R3

3rxry

R2
kM
R3

(
3r2

y

R2 − 1
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+ ω2
e

kM
R3
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kM
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R2
kM
R3

3ryrz

R2
kM
R3

(
3r2

z

R2 − 1
)


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−Ωe
ie =


0 ωe 0

ωe 0 0

0 0 0



−F e =


0 fz −fy

−fz 0 fx

fy −fx 0


where

k is the gravitational constant,

M is the mass of the Earth,

r is the position along the subscripted axis,

we is the rotation rate of the Earth, and

f is the specific force measured along the subscripted axis.



Appendix C

Matrix Inversion by Partitioning

If a matrix A is invertible and is given by

A =

 A11 A12

A21 A22


then its inverse can be shown to be given by a matrix B with the form

B =

 B11 B12

B21 B22


where (Mikhail, 1976)

B11 =
(
A11 − A12A

−1
22 A21

)−1

B12 = −B11A12A
−1
22

=
(
A12A

−1
22 A21 − A11

)−1
A12A

−1
22

B21 = −A−1
22 A21B11

= A−1
22 A21

(
A12A

−1
22 A21 − A11

)−1

B22 = A−1
22 − A−1

22 A21B12

= A−1
22 + A−1

22 A21B11A12A
−1
22

= A−1
22 + A−1

22 A21

(
A11 − A12A

−1
22 A21

)−1
A12A

−1
22
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Appendix D

Simulated Data Outages

The data outages simulated for post-mission analysis are shown in detail here. Specif-

ically, on each of the following pages, a closeup of the trajectory during the data

outage is shown, along with the approximate accelerations during the data outage.

The trajectories are shown relative to the base station to facilitate baseline length

computations. The accelerations were obtained as the time difference of the velocity

and are thus quite noisy. However, the general trends are sufficient for identifying

the overall dynamics of the vehicle during the data outages.
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Figure D.1: Trajectory During Data Outage #1, Run #1

Figure D.2: Approximate Vehicle Accelerations During Data Outage #1, Run #1



219

Figure D.3: Trajectory During Data Outage #2, Run #1

Figure D.4: Approximate Vehicle Accelerations During Data Outage #2, Run #1
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Figure D.5: Trajectory During Data Outage #3, Run #1

Figure D.6: Approximate Vehicle Accelerations During Data Outage #3, Run #1
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Figure D.7: Trajectory During Data Outage #4, Run #1

Figure D.8: Approximate Vehicle Accelerations During Data Outage #4, Run #1
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Figure D.9: Trajectory During Data Outage #5, Run #1

Figure D.10: Approximate Vehicle Accelerations During Data Outage #5, Run #1



223

Figure D.11: Trajectory During Data Outage #6, Run #1

Figure D.12: Approximate Vehicle Accelerations During Data Outage #6, Run #1
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Figure D.13: Trajectory During Data Outage #1, Run #2

Figure D.14: Approximate Vehicle Accelerations During Data Outage #1, Run #2
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Figure D.15: Trajectory During Data Outage #2, Run #2

Figure D.16: Approximate Vehicle Accelerations During Data Outage #2, Run #2
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Figure D.17: Trajectory During Data Outage #3, Run #2

Figure D.18: Approximate Vehicle Accelerations During Data Outage #3, Run #2
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Figure D.19: Trajectory During Data Outage #4, Run #2

Figure D.20: Approximate Vehicle Accelerations During Data Outage #4, Run #2
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Figure D.21: Trajectory During Data Outage #5, Run #2

Figure D.22: Approximate Vehicle Accelerations During Data Outage #5, Run #2
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Figure D.23: Trajectory During Data Outage #6, Run #2

Figure D.24: Approximate Vehicle Accelerations During Data Outage #6, Run #2



Appendix E

Pictures of First Real-Time Run

This appendix contains pictures taken from various locations along the first real-time

test run. The figures are labeled according to the street names and the direction in

which the camera was pointing when the picture was taken. For convenience, the

overall trajectory is shown in Figure E.1.

Figure E.1: Trajectory of First Real-Time Run Relative to Base Station
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Figure E.2: 49 Street Looking North

Figure E.3: 40 Avenue Just East of Shaganappi Trail Looking East



232

Figure E.4: 40 Avenue Looking Northeast at Crowchild Trail Overpass

Figure E.5: Brisebois Drive Just Northeast of Crowchild Trial Looking Northeast
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Figure E.6: Northmount Drive Looking Northwest

Figure E.7: 52 Avenue Looking East
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Figure E.8: Capri Avenue Looking Southwest

Figure E.9: Charleswood Drive Looking Southeast
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Figure E.10: Brentwood Road Looking Northwest

Figure E.11: Crowchild Trail Looking Northwest at Northland Drive Overpass

Figure E.12: Shaganappi Trail Looking South



Appendix F

Pictures of Second Real-Time Run

This appendix contains pictures taken from various locations along the second real-

time test run. The figures are labeled according to the street names and the direction

in which the camera was pointing when the picture was taken. For convenience, the

overall trajectory is shown in Figure F.1.

Figure F.1: Trajectory of Second Real-Time Run Relative to Base Station
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Figure F.2: 37 Street Looking North

Figure F.3: 36 Street Looking South

Figure F.4: Research Way Looking East
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Figure F.5: 33 Street Looking South

Figure F.6: Campus Drive Near Point “A” Looking East
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Figure F.7: Campus Drive Looking South Towards Point “A”

Figure F.8: Point “A” Looking North
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Figure F.9: Point “B” Looking South

Figure F.10: Point “C” Looking South

Figure F.11: University Way Looking West
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Figure F.12: University Court Near Point “D” Looking Southeast

Figure F.13: Point “D” Looking South

Figure F.14: 24 Avenue Looking West
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Figure F.15: Collegiate Road Looking North
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