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ABSTRACT 
 

Airborne lidar has become a commercially viable remote sensing platform, and can 

provide accurate elevation data about both topographic surfaces and non-terrain objects. 

Its capability of mapping topography and 3-D models of civil objects is uncommon to 

other remote sensing technologies. This dissertation presents a collection of algorithms 

developed for automatically extracting useful information from lidar data exclusively. 

The algorithms focus on automated extraction of DTMs, 3-D roads and buildings 

utilizing single- or multi-return lidar range and intensity data. The hierarchical terrain 

recovery algorithm can intelligently discriminate between terrain and non-terrain lidar 

points by adaptive and robust filtering. It processes the range data bottom up and top 

down to estimate high quality DTMs using the hierarchical strategy. Road ribbons are 

detected by classifying lidar intensity and height data. The 3-D grid road networks are 

reconstructed using a sequential Hough transformation, and are verified using road 

ribbons and lidar-derived DTMs. The attributes of road segments including width, length 

and slope are computed. Building models are created with a high level of accuracy. The 

building boundaries are detected by segmenting lidar height data. A sequential linking 

technique is proposed to reconstruct building boundaries to regular polygons, which are 

then rectified to be of cartographical quality. Then prismatic models are created for flat 

roof buildings, and polyhedral models are created for non-flat roof buildings by the 

incremental selective refining and vertical wall rectification procedures. Many attributes 

of these building models are derived from the lidar data. These algorithms have been 

tested using many lidar datasets of varying terrain type, coverage type and point density. 

The results show that in most areas the lidar-derived DTMs retain most terrain details and 

remove non-terrain objects reliably; the road ribbons and grid road networks are sketched 

well in built-up areas; and the extracted building footprints have high positioning 

accuracy equivalent to ground-truth data surveyed in field. A toolkit, called Lidar Expert, 

has been developed to bundle these algorithms and to offer the capability of performing 

fast information extraction from lidar data. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 BACKGROUND 

 

Topographic data are critical for most uses of information representing the true terrain 

surface. Mapping of flood plains and flood-prone areas, pipeline corridor planning, canal 

or highway engineering, and basic topographic mapping all require elevation data for the 

terrain surface itself, at varying levels of accuracy. Maps represent important media to 

interpret and communicate the environment surrounding us. The geomatics community 

has constantly taken advantage of emerging technologies that offer higher positioning 

accuracy, or are faster and cheaper. The process of collecting topographic data over the 

past thirty years has seen the mapping industry move from brute force approaches (e.g., 

field surveying) to passive sensing approaches (e.g., photogrammetry and remote 

sensing) and, more recently, to active sensing approaches (e.g., lidar and IfSAR).  

 

Airborne lidar is relatively new technology complementary to traditional field surveying 

and photogrammetry approaches. In order to expedite map production from lidar data, 

great effort has been made to minimize the need for expensive manual digitizing and to 

automate the extraction of these features carrying attributes as expected in GIS. However, 

lidar collects data from the first surface with which laser beams interact. The resulting 

DSMs are representative of the elevation of that surface composed of both the “bare 

Earth” surface and aboveground features. While this first surface can be useful for 

applications such as landscape analysis, environmental study or flight simulation, it does 

not provide elevation data required by most users to detect the bare Earth surface.  

 

The bare Earth or ground surface is defined as the continuous and smooth surface that has 

nothing visible below it (Haugerud and Harding, 2001), and is represented by the DTM in 

civil and surveying engineering communities. The bare Earth surface is composed of the 

topsoil or thin pavements (e.g., roads), while the aboveground features include vegetation 
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and artificial objects that are classified as detached objects and attached objects. The 

detached objects (e.g., buildings and trees) rise vertically on all sides above the bare 

Earth; while attached objects (e.g., bridges and viaducts) rise vertically above the bare 

Earth only on some sides but not all (Sithole and Vosselman, 2003).  

 

Photogrammetry has been a standard approach for the production of DTMs or DEMs for 

several decades. Photogrammetric models are formed in stereo-plotters using interior, 

relative and absolute orientation procedures (Mikhail et al., 2001; Egels and Kasser, 

2001). Stereo-compilers manually digitise geomorphic features called hard breaklines 

such as drainage channels, road edges, and bottoms of ditches in one layer. Undulations 

in topography are digitised by so called soft breaklines. Then spot heights are added up at 

regular intervals manually by keeping the floating mark on the ground. Later, the DTM is 

generated from these breaklines and spot heights using interpolation techniques (ISM, 

1997). The digital or softcopy photogrammetric systems first create DSMs by matching 

conjugate points using epipolar resampled stereo images (Greve, 1997; Mikhail et al., 

2001; Egels and Kasser, 2001; Tao, 2002). The DSM is then adjusted by using a 

combination of manual and automatic techniques that look between surface objects such 

as trees or buildings all the way to the ground, where possible, to generate the DTM. The 

contour map becomes a cartographic by-product that provides an impression of the 

terrain (ISM, 1997). To date, these contours have been the standard source of information 

for topographic analyses. 

 

In the past, the mapping industry viewed lidar technology with great suspicion as either 

too complicated, or too expensive. While lidar can provide a very detailed first surface 

model, the large number of points becomes a concern in production. What is worse, the 

lidar data could not readily be processed using existing COTS photogrammetric systems. 

Today, this technology is mainly accepted as a critical monitoring tool by powerful 

geospatial information users that include mapping and disaster management agencies, oil 

and gas exploration companies, telecommunications industry, pipeline companies, and 

environmental agencies (ALM, 2003). Compared with the mature state of lidar systems, 

the processing of lidar data is still in an early phase of development (Ackermanm, 1999; 
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Flood, 2001; Fowler, 2001). Despite the capabilities of direct georeferencing, the largest 

barrier of accepting lidar as a mapping tool has been the limited capability of automated 

extraction of cartographic features (e.g., DTMs, roads and buildings) from lidar data.  

 

Lidar, IfSAR and photogrammetry have their own advantages and disadvantages, and 

their integration may be needed to improve the terrain modeling and to generate 

cartographically accurate contours for large-scale topographic maps (Thompson and 

Maune, 2001; Mercer, 2001; Fowler, 2001; Molander et al., 2002; Veneziano et al., 2002; 

Satale and Kulkarni, 2003). For example, breaklines along roads, bridges, overpasses and 

drainages have to be collected by stereo-compilers using high-resolution stereo images, 

and mass points may be added in areas devoid of lidar points. Mapping firms should 

leverage the strength of these technologies to create a product that meets accuracy, cost 

and schedule requirements in order to maximize benefits. 

 

1.2 AIRBORNE LIDAR TECHNOLOGY 

 

Airborne lidar or ladar represents a promising and relatively new technology for the 

highly automated acquisition of DSMs with high accuracy comparable with traditional 

land surveys and photogrammetry, but faster, denser and more economical (Fowler, 2001; 

Flood, 2001). The first experiments using lasers to measure distances to the Earth’s 

surface began in the 1970s. This technology has evolved into two distinct lidar sensors: 

small footprint, time-of-flight laser altimetry, and large footprint, waveform-digitizing 

technique that analyses the full return waveform to capture a complete elevation profile 

within the target footprint (Flood, 2001). This thesis only discusses the processing of data 

acquired by small footprint range finders (see Appendix A). 

 

A lidar system is often mounted in an aircraft, and uses a laser scanner, a geodetic-quality 

GPS receiver and an INS unit (see Figure A.1). It is an active, airborne sensor that works 

by rapidly firing laser beams downwards the ground and measuring the time the light 

takes to reflect from the ground objects and to return to the laser scanner (Wehr and Lohr, 

1999). Modern lidar systems are capable of scanning large areas quickly and producing 
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accurate point clouds with planimetric accuracy within 1 m and vertical accuracy around 

15~20 cm (see Table A.1). Besides range data, many lidar systems collect the intensity of 

the reflected signal, multiple (up to five) returns for each pulse, and images taken by 

digital cameras (Mohamed et al., 2001; Optech, 2003). 

 

A sample first-return lidar dataset collected at a village is shown in Figure 1.1, where the 

cross-section is coloured by elevation and the range and intensity images have a GSD of 

0.6 m. The amount of information contained in such high-density 3-D point clouds is 

enormous. A number of natural and manmade features, such as bare topsoil, tree, road, 

building, waterway, power line, bridge and ramp, are all easily discernable to the human 

eye in cross sections and range and intensity images. However, computers cannot 

perform visual interpretations like the human eye to discriminate these features. 

Extracting the above features using lidar data not only is of great practical importance for 

engineering applications but also provides an excellent testbed for developing techniques 

for understanding complex scenes (Tao and Hu, 2001). 

 

(a) The cross-section of raw lidar points (south to north looking) 
 

   
(b) Range image        (c) Intensity image 

 
Figure 1.1. A sample lidar dataset (Village site) 

 N  N 
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1.3 ISSUES IN AUTOMATED INFORMATION EXTRACTION 

 

The early efforts of research and development of lidar technology have been placed on 

the improvement of lidar systems in terms of system performance, positioning accuracy 

and sensor calibration. Although mapping applications using lidar data are of great 

importance for largely developing this market, currently no COTS software packages are 

satisfactory for automated information extraction from lidar data (Flood, 2001; Tao and 

Hu, 2001). Most modeling tasks are done by human operators, and the production 

procedures depend heavily on manual operations, which are very time-consuming.  

 

Lidar data can be used to generate DTMs, which are important for many applications 

such as terrain analysis and hydrology. Extracting thematic features, including road, 

building and vegetation, from these 3-D point clouds are paid much attention recently. 

However, lidar data provides coordinates only, and thus its interpretability is limited at 

many aspects (Ackermanm, 1999). The processing of lidar data is still in an early phase 

of development although lidar systems are already in a mature state (Ackermanm, 1999; 

Flood, 2001, ALM, 2003). Existing algorithms often exploit only part of information 

contained in lidar data, or just focus on processing specific scenes, for example, urban or 

forested areas (Tao and Hu, 2001). In addition, researchers often reported processing 

results using relatively small datasets. 

 

The penetrable vegetation or solid surfaces can be detected if multi-return lidar range 

data are available (Kraus and Rieger, 1999). Laser beams are capable of penetrating 

foliage especially in the off-leaf condition (Sapeta, 2000; Optech, 2003). The differences 

between the first and last pulses at the same spots show how far laser pulses may 

penetrate into the vegetation on a point-to-point base rather than for a whole area, and 

thus provide a clean map indicating the existence of tall vegetation (Elberink and Maas, 

2000; Zhan et al., 2002b; Hu and Tao, 2003; Alharthy and Bethel, 2003). 

 

DTM generation is among one of the most direct applications for lidar data processing. 

Because the sampled lidar points are collected from the top of the Earth’s surface partly 
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covered by aboveground features, the DTM generation needs to identify the terrain points 

on the bare Earth, and to remove non-terrain points hit on trees, buildings and other 

constructions based on terrain points. In academic community, many algorithms have 

been developed to process relatively flat, urban, forested, mountainous areas, or in a few 

cases, hybrid areas (Weidner and Forstner, 1995; Kilian et al., 1996; Hug and Wehr, 1997; 

Kraus and Pfeifer, 1998; Petzold et al., 1999; Vosselman, 2000; Axelsson, 1999; 

Axelsson, 2000; Kraus and Rieger, 2000; Wang et al., 2001; Tao et al., 2001; Pfeifer et 

al., 2001; Elmqvist, 2001; Schickler and Thorpe, 2001; Lee and Schenk, 2001; Fraser and 

Jonas, 2001; Sithole, 2002; Brovelli et al., 2002; Masaharu and Ohtsubo, 2002; Rabor et 

al., 2002; Schiewe, 2003; Hu and Tao, 2003; Sithole and Vosselman, 2003). However, 

these algorithms usually use single-return range data only, and omit the valuable 

information contained in multi-return range data or intensity data.  

 

The bare Earth may be estimated with low quality in complex areas due to various 

combinations of terrain type, coverage type and point density. For example, algorithms 

designed to process forested areas likely perform poor when processing urban areas 

(Kraus and Pfeifer, 1998), or vice visa (Wang et al., 2001). Thus, researchers have to 

customize different versions of these algorithms for different situations. For example, 

Schickler and Thorpe (2001) and Pfeifer et al. (2001) have modified Kraus and Pfeifer’s 

(1998) filtering method in several ways to process urban areas. In industry community, 

the adaptive filtering algorithm based on TINs was developed by Axelsson (2000), and 

has been implemented in the COTS software TerraScan TM from TerraSolid (2001). To 

my knowledge, this is the only algorithm that is widely used for practical production of 

DTMs. But, the production procedure needs interactive inputs from operators, and 

heavily depends on manual operations to generate high-quality DTMs. 

 

Lidar range data is able to improve the analysis of optical images for detecting roads in 

urban areas (Hofmann, 2001). Lidar intensity data has good separability if the wavelength 

of the laser is suitable for ground materials (Song et al., 2002). Roads have homogeneous 

reflectivity in lidar intensity and the same height as bare surface in elevation. Initial 

results on classifying intensity and range data for the detection of road ribbons have been 
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given, but with low quality. That is, the roads are represented as only rough centerlines 

(Hu and Tao, 2003) or binary images (Alharthy and Bethel, 2003) instead of vectors. 

Most of the road extraction algorithms are quite different in nature due to the differences 

in data sources, assumptions about road models and human interaction (Laptev, 1997; 

Park and Saleh, 2001). Most of them focus on the extraction of free-form curvilinear 

roads. To process the special case of grid road networks in urban areas, Price (1999) 

applied a local grid constraint to reconstruct these street grids starting with an initial seed 

intersection that provides the size and orientation of the regular grid. 

 

Lidar data contains much 3-D information about buildings. But buildings are highly 

unstructured segments with very complex contents and elevation variations in range data. 

Buildings can be located at any places, and may be surrounded by other objects with 

similar radiometric properties in intensity such as roads. The geometric resolution of lidar 

data may be limited due to irregular sampling patterns, and tall trees may occlude parts of 

building or house roofs in densely vegetated and built-up areas.  

 

Many algorithms focus on the detection of building footprints because the reconstruction 

of complex building roofs in 3-D is very difficult (Baltsavias et al., 1995; Hug, 1997; 

Yoon et al., 1999; Zhan et al., 2002a). The use of lidar intensity or range data can benefit 

the separation of buildings and vegetation (Henricson et al., 1996; Brunn and Weidner, 

1998; Elberink and Maas, 2000; Hofmann, 2001; Hu et al., 2003). But building footprints 

cannot be detected fully automatically and reliably, and are often assumed to be of simple 

shapes with orthogonal corners such as rectangles or low-quality polygons (Weidner, 

1995; Vosselman, 1999; Wang and Schenk, 2000; Vestri and Devernay, 2001). The 

reconstruction of 3-D building models is more difficult and is often limited to simple and 

specific cases assuming rectilinear footprints, parametric shapes, flat or symmetric sloped 

roofs (Weidner and Forstner, 1995; Lin and Nevatia, 1998; Maas and Vosselman, 1999; 

Vosselman, 1999; Wang and Schenk, 2000; Vosselman and Dijkman, 2001; Elaksher and 

Bethel, 2002). Since the building detection is not reliable enough, extra data such as 

ground plans have to be used to exactly define the building boundaries (Haala and Anders, 

1997; Lemmens et al., 1997; Haala et al., 1998; Haala and Brenner, 1999; Brenner, 2000; 
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Vosselman and Dijkman, 2001). The reported results are often a few separate or small 

groups of buildings (Weidner and Forstner, 1995; Maas and Vosselman, 1999; Wang and 

Schenk, 2000; Elaksher and Bethel, 2002). To date, 3-D building models for the use in 

GIS are mainly produced by semi-automatic procedures (Rottensteiner, 2001). 

 

1.4 RESEARCH OBJECTIVES AND METHOGOLOGY 

 

1.4.1 Research Objectives 

The results of this work will serve the increased demand of automation for 3-D 

information extraction using remotely sensed large datasets. The research is aimed to 

develop and improve the capabilities of automated feature extraction from lidar data by 

addressing following questions: 

 

- How much information can be exploited from lidar data by analysing its 

geometric and radiometric properties, which are unique compared to other remote 

sensing data sources? 

- How can the combination and fusion of single- or multi-return lidar range and 

intensity data be used to efficiently exploit different feature information? 

- How many cartographic features can be extracted automatically by applying 

computer vision and digital photogrammetry techniques? 

- How the automation of feature extraction can be achieved or improved by 

applying effective strategies or constraints? 

 

The scope of the research is centred on developing and implementing intelligent 

algorithms for automated extraction of three major types of cartographic features for 

scenes with varying terrain and coverage types. The automation, robustness and 

performance of these feature extraction algorithms are particularly emphasized. 

Employment of effective processing strategies to improve the automation is a key to the 

implementation of these algorithms. There are three problems tackled in this research: 

 

- Generate DTMs for complex scenes using either single-return range data or multi- 
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return range and intensity data for large datasets. 

- Detect road ribbons for complex scenes, and reconstruct grid road networks in 

urban areas, using both intensity and range data. 

- Detect buildings in urban area, and reconstruct prismatic or polyhedral building 

models for large datasets, using multi-return range and intensity data. 

 

It is expected that the developed methods be of practical value to and impact in 

improving the automation capabilities in feature extraction from lidar data. 

 

1.4.2 The Methodology 

Figure 1.2 illustrates subsequent processes proposed in this thesis and the interrelations 

among the major components for automated information extraction from lidar data. The 

proposed components form a general framework, in which three types of major 

cartographic features are exploited. After analysing the geometric and radiometric 

characteristics of lidar range and intensity data, I intend to focus on the extraction of 

DTMs, roads and buildings, using single- or multi-return lidar range and intensity data. 

 

Based on extensive and critical literature review, the problems in current feature 

extraction algorithms are analyzed. I will improve those algorithms by combining related 

data processing techniques or developing new techniques under the hypothesis and 

Processing techniques 

-  Filtering       -  Segmentation 

-  Classification   -  Interpolation 

-  Modeling     -  Smoothing 

Lidar data 

-  Single-return range 

-  Multi-return range 

-  Intensity 

Automated information extraction 

 

Strategy 

-  Hypothesis  

-  Verification 

-  Refinement 

Figure 1.2. Proposed overall methodology 

DTMs 
Buildings 

Roads 
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verification paradigm. The extracted features may be further refined according to specific 

assumptions or constraints about them. In any event, DTMs are generated first to describe 

the bare Earth. The reliable extraction of roads and buildings needs to know the height 

information relative the bare Earth that has removed the terrain relief. This height data 

puts all the features on a flat reference plane, and can be obtained by subtracting the 

derived DTM from the lidar DSM. These algorithms will be tested for complex scenes. 

 

1.5 CONTRIBUTIONS 

 

The following contributions are included to achieve the above objectives: 

 

• 1 I developed the hierarchical terrain recovery algorithm, which builds a novel 

technical framework of data-driven DTM generation for single- or multi-return lidar 

data. I proposed to integrate information about terrain relief, slope and data density in 

a new formula of the smooth condition to identify non-terrain points based on 

hypothesized terrain points (i.e., local minima) in a hierarchical approach. Thus, a 

single algorithm is suited to efficiently process different scenes of varying 

complexities. I proposed to use four evidences to identify road points, which add 

denser terrain points. I also proposed to adaptively adjust the parameters in the 

smooth condition by assimilating information about vegetation and roads. 

 

• 2 I proposed to detect road ribbons by classifying multi-return intensity and height 

information and generate road centerline models by applying morphological 

operations and image thinning. In urban areas where roads are in a regular grid layout, 

I proposed a new model-driven method to automatically reconstruct 3-D grid streets 

by applying a global grid constraint and making hypothesis verification based on road 

segments. The grid road model in vector format is expressed as road crossings and 

segments holding the connectivity topology. The width of a road segment is also 

calculated automatically. 

                                                           
1 This algorithm has been discussed briefly in Hu and Tao (2003). 
2 These algorithms have been discussed briefly in Hu and Tao (2003). The detection of road ribbons using 
multi-return intensity and height data is developed independently in Alharthy and Bethel (2003). 
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• 3 I proposed a data-driven workflow to automatically reconstruct complex building 

boundaries as rectangles, quadrangles, or regular polygons. I first detect building 

boundaries by classifying object boundaries using shape measures. Then I applied the 

new algorithms, including the constrained searching, enhanced Hough transformation 

and sequential linking technique, all follow the hypothesis verification paradigm and 

an optional refinement. I proposed to classify building roofs into flat and non-flat 

classes by statistical testing. Finally I used the selective refinement technique to 

model non-flat roofs and rectify building walls by applying the vertical wall 

constraint, which is used to define three new types of ridge vertices. 

 

1.6 OUTLINE OF THE THESIS 

 

This thesis is divided into six chapters and three appendices that are organized following 

the proposed framework shown in Figure 1.2. An overview of these chapters and 

appendices is given in this section. 

 

Chapter 1 briefly introduces airborne lidar technology, reviews information extraction 

status using lidar data, and discusses research objectives. 

 

Chapter 2 gives a literature review on related processing techniques and representative 

algorithms on the extraction of DTMs, roads and buildings focusing on using lidar data. 

 

Chapter 3 discusses a hierarchical terrain recovery algorithm for data-driven DTM 

generation. The methodology for processing single-return range data is outlined first, and 

is then modified by assimilating road or vegetation information derived from intensity 

data or multi-return range data. The algorithm has four major steps: generation of image 

pyramids, establishment of the smooth condition, identification of topographic points, 

and interpolation at non-terrain points. Finally DTMs are refined by correcting 

problematic areas and smoothing non-terrain undulations. 

                                                           
3 These algorithms have been discussed in detail in Hu et al., (2003). 
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Chapter 4 presents the detection of road ribbons by classifying both intensity and height 

data. The emphasis is given to the model-driven reconstruction of 3-D grid streets in 

urban areas by applying a global grid constraint and utilizing the road segment based 

hypothesis verification. The attributes of road segments, including width, length and 

slope, are also calculated automatically. 

 

Chapter 5 deals with a data-driven workflow for building detection and reconstruction 

from lidar data. Building boundaries are divided into groups of edge segments using the 

enhanced Hough transformation, and the edge segments are permuted in correct order 

using the sequential linking technique to form regular polygons. Finally the flat and non-

flat roof buildings are modeled as prismatic and polyhedral shapes, respectively.  

 

Chapter 6 summarizes the contributions of the research work, and recommends research 

topics of future work. 

 

Appendix A gives a detailed description of airborne lidar technology and its applications.  

 

Appendix B contains general knowledge about image processing, computational 

geometry, numerical analysis and quality measures. 

 

Appendix C demonstrates three applications of the information extracted from lidar data 

using the proposed algorithms. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

The task in photogrammetry and remote sensing community is to collect data about the 

Earth’s surface and derive an interpretation to complete certain mapping or engineering 

projects. Data sources to support such tasks are increasingly available from a wide variety 

of platforms and sensors. The primary data sources include optical and radar images, 

IfSAR data and lidar data. Many techniques have been developed to interpret lidar point 

clouds into useful representation for many applications such as 3-D landscape modeling.  

 

Airborne lidar systems use accurate direct geo-referencing technology and collect the 

surface elevation data digitally (Burtch, 2002; Optech, 2003). Lidar DSMs are composed 

of point clouds returned from the top of the Earth’s surface that is partly covered by 

manmade and natural ground objects such as trees and buildings (Ackermanm, 1999; 

Flood, 2002). In addition to range data, some lidar systems collect information on the 

intensity of the reflected signal and information of multiple returns for each pulse. The 

high point sampling densities, fast turn-around time and lower cost are among the most 

attractive characteristics for various mapping applications. In recent years, lidar data are 

rapidly becoming the standard and preferred data source, and has triggered numerous 

investigations into feature extraction that may be difficult or expensive when using 

traditional remote sensing data (Hill et al., 2000; Fraser and Jonas, 2001; Fowler, 2001; 

Tao and Hu, 2001; Veneziano et al., 2002; ALM, 2003). 

 

“Lidar range data provides coordinates and coordinates only. On one hand, this allows 

fast and highly automated data processing. On the other hand, the interpretability of data 

is limited because no object information is provided because laser scanning is not capable 

of any direct pointing to particular objects or object features” (Ackermanm, 1999). For 

example, buildings, dense tree stands, dam walls, bridges and large rock outcroppings 

may have similar elevation cross-sections. Ancillary data have to be used to develop a 

general post-processing approach, such data are intensity image, multi-spectral or hyper-
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spectral imagery, and GIS data such as ground plans (Tao and Hu, 2001). The systematic 

integration of lidar data and optical imagery data will constitute an effective fusion with 

photogrammetry, from a methodical and technological point of view (Ackermanm, 

1999). In this way, the integration with photogrammetry would be extended to geospatial 

applications in a wide range (Thompson and Maune, 2001; Molander et al., 2002). 

 

Over the past ten years, many techniques have been developed to interpret and model 

lidar collected irregular 3-D point clouds into useful representations for use in GIS as 

partly reviewed in Tao and Hu (2001). Some techniques obtain more cues by integrating 

lidar data with other data sources to ease certain processing. For example, lidar intensity 

data can be used for visualization of the surface, and to improve classification of objects 

in combination with the range data (Hoffman, 2001; Hu and Tao, 2003; Alharthy and 

Bethel, 2003). The DTM generation is the most direct application of lidar data. Since the 

lidar beams are hit on the top of the Earth’s surface, removing aboveground obstructions 

such as trees and buildings in the DSM is one of the most critical steps. Automated 

analysis and classification of various application-specific features (e.g., road and power 

lines) are also of particular interests and are paid more attentions recently. 

 

The software tools available to the entire community will be one of the most significant 

areas of change in lidar industry (Flood, 2001). To date, the vast majority of lidar data 

processing is conducted using proprietary software developed independently by 

researchers, data providers, or provided by the sensor manufacturer to its clients but not 

available as separate packages, including Optech’s REALM, SAIC’s LIDAR Toolkit, 

Sanborn’s FASE. “This situation presents a significant barrier to end users as lidar 

processing is presented as a black box with limited insight into the actual manipulation of 

the data and a very limited ability of the end user to recreate, reclassify, manipulate or 

modify the datasets. The fact that few of these proprietary algorithms are published is 

also a concern among researchers. Currently, there are only a few software products (e.g., 

TerraSolid’s TerraScan) on the market that can efficiently handle the large point densities 

generated by lidar sensors, but this situation is changing rapidly” (Flood, 2001). Third-

party products specifically designed for visualizing and manipulating lidar point clouds  
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are starting to appear, such as APL’s QT Viewer and Mensi’s RealWorks Viewer. 

 

This chapter organizes recent publications pertaining to information extraction from lidar 

data and ancillary remote sensing data by presenting an overview of these techniques 

developed toward highly detailed and accurate digital modeling for earth surface in 3-D. 

The algorithms are classified into several groups according to the basic subtasks, which 

are DTM generation, road extraction and building extraction. Representive examples of 

various methods are summarized for each subtask. The problems around the issues 

pertaining to these methods are also discussed.  

 

2.1 RELATED TECHNIQUES 

 

Existing airborne lidar technology does not provide a real-time solution to services; it 

needs a large amount of work in the post-processing stage (Ackermanm, 1999). There are 

many algorithms developed for information extraction from lidar data or optional 

ancillary data. Some algorithms are purely based on range data itself; others are based on 

range and ancillary data (Tao and Hu, 2001). Automatic or semi-automatic analysis and 

classification of various specific ground features (e.g., power line and railroad) are also 

being developed (TerraSolid, 2001). Most algorithms use a few basic techniques 

described below (Tao and Hu, 2001), some of which have no definitive boundaries until 

they are used in specific data processing procedures.  

 

- Filtering usually means removing unwanted measurements, or finding ground 

surfaces from a mixture of ground and aboveground measurements (Petzold et al., 

1999). To distinguish points located on buildings and tree canopies from those 

that are expected to be on the ground, order statistics and morphological filters or 

weighting functions are often applied (Weidner and Forstner, 1995; Hug and 

Wehr, 1997; Kraus and Pfeifer, 1998; Vosselman, 2000; Wang et al., 2001; Tao et 

al., 2001; Fraser and Jonas, 2001; Wack and Wimmer, 2002). Raw lidar point 

clouds may be processed to remove blunders, yet preserving the discontinuities 

between the surfaces (Umasuthan and Wallace, 1996; Zinger et al., 2002). 
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- Segmentation means the separation of a point cloud into homographic patches 

describing different geometric, radiometric or texture structures (e.g., road, 

building and vegetation) by applying thresholding, clustering, boundary detection 

or perceptual organization algorithms (Weidner, 1995; Ruskone, 1996; Lee and 

Schenk, 2001; Brovelli et al., 2002; Sithole, 2002; Schiewe, 2003; Hu et al., 2003; 

Hu and Tao; 2003; Alharthy and Bethel; 2003). Building segments can be 

detected by comparing elevation slices (Zhan et al., 2002a). 

- Classification is used to discriminate among several categories of ground objects 

(e.g., buildings, roads, grasslands and trees) to group into different classes of 

point clusters by applying pattern recognition algorithms, such as ISODATA, 

Bayes classifier, and k-means (Henricson et al., 1996; Hug, 1997; Haala and 

Brenner, 1999; Elberink and Maas, 2000; Song et al., 2002; Alharthy and Bethel, 

2003). Shape measures can be used to distinguish between vegetation and 

building boundaries (Parker, 1993; Wang and Schenk, 2000). 

- Interpolation estimates the elevation at some location (Pfeifer et al., 2001; Wang 

et al., 2001). There are many methods to interpolate using the scattered points or a 

raster format surface. The most commonly used interpolation methods are IDW, 

TIN and Kriging (Axelsson, 2000; Zinger et al., 2002; Song et al., 2002). The 

most popular interpolation methods for raster images are nearest neighbor, 

bilinear interpolation and cubic convolution (El-Sheimy, 1998). Zinger et al. 

(2002) proposed an energy minimization approach to avoid drawbacks relevant to 

three well-known interpolation methods in resampling lidar data in urban areas.  

- Modeling reconstructs the ground surface or an object based on geometric 

properties of its shape. The ground surfaces are approximated as piece-wise 

smooth patches or TINs (Axelsson, 2000; Elmqvist, 2001; Wang et al., 2001; 

Masaharu and Ohtsubo, 2002). Different combinations of basic road 

characteristics can be used to model roads in different resolution levels and 

contexts for different scene types by applying varying strategies (Garnesson et al., 

1990; Vosselman and de Knecht, 1995; Steger et al., 1995; Barzohar and Cooper, 

1996; Baumgartner et al., 1997; Laptev, 1997; Mayer et al., 1997; Fischler and 

Heller, 1998; Price, 1999; Couloigner and Ranchin, 2000; Hinz and Baumgartner, 
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2000; Park and Saleh, 2001). Objects are described in terms of their constituent 

shape features using parametric, prismatic and polyhedral models, which can be 

converted into wire frame or CSG models combining various primitives (Maas 

and Vosselman, 1999; Weidner and Forster; 1995; Wang and Schenk; 2000; 

Vosselman and Dijkman, 2001; Rottensteiner, 2001; Hu et al., 2003). 

- Smoothing can remove random noise and produce a smoother surface so that the 

contours may look nicer. It is often an iterative process, comparing a point with 

nearby points and adjusting its elevation (Tao et al., 2001). Usually, a best-fit 

facet model is computed for a group of points, and the elevation of the centre 

point is adjusted to better match the facet (Besl and Jain, 1988; Wang et al., 2001). 

- Human interaction is a mechanism to utilize human knowledge through human-

computer interfaces. Fully automatic systems may fail in extracting features due 

to the complexity of the inverse engineering tasks and the shortages of lidar data 

(Hu et al., 2003). Instead, human operators can easily classify different terrain 

types (Sithole, 2002; Sithole and Vosselman, 2003), select seed points (Gruen and 

Li, 1994; Park and Saleh, 2001; Hu and Tao, 2003a), or delineate building 

positions and shapes (Brenner, 1999; Rottensteiner, 2001).  

 

2.2 ALGORITHMS FOR DTM GENERATION  

 

As lidar acquires first surface elevation data including non-terrain features, the core task 

first involves the separation of lidar returns that hit on the terrain surface from non-terrain 

returns. Data-driven techniques are often used for this task (Tao and Hu, 2001), and a few 

model-driven techniques are developed (Elmqvist, 2001; Brovelli et al, 2002). A number 

of algorithms have been reported in the literature, but most of them are not yet proved 

competent for industry production because of the complexity of the task and the need of 

much manual editing. Various combinations of terrain type (e.g., flat to mountainous), 

coverage type (e.g., low to high density vegetation, natural and cultural features) and 

(median to high) point density may cause DTM generation algorithms to fail in certain 

areas (Tao and Hu, 2001; Sithole, 2002; Sithole and Vosselman, 2003).  
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Aside from the systematic and accidental errors in lidar systems, the error sources 

influencing the quality of the final DTMs usually have four parts (Hu and Tao, 2003): 

 

- Type I error results from the misclassification of terrain points as non-terrain ones. 

- Type II error results from the misclassification of non-terrain points as terrain ones. 

- Representation error results from the use of vector or raster data structures. 

- Interpolation error results from the use of different data interpolation techniques. 

 

The first two errors are the main sources resulting in a DTM of poor quality (Hu and Tao,  

2003). Type I error discards true terrain points, and will lose details around the 

neighboring regions because no sufficient terrain points are identified. While Type II 

error attracts non-terrain points to participate in the DTM recovering, and this will 

definitely deteriorate the quality of the derived DTM around the neighboring regions. 

Obviously, Type II error will lead to worse results than the first one. Two factors 

resulting in Type I and Type II errors are analyzed in Sithole (2002). One factor is due to 

the characteristics of the scene, that is, the complex nature of terrain and arrangement of 

objects (e.g., buildings and vegetation); another factor concerns the characteristics of the 

data (e.g., point density, outliers, data gaps, etc.). These characteristics are then used to 

search for unclassifiable regions that cannot be classified with certainty. For example, the 

closer and larger an object is in relation to the terrain, the more difficult to separate it 

from the terrain. The classification of bridges and overpasses as terrain or non-terrain is 

not clear-cut, usually depending on specific applications (Sithole, 2002).  

 

The last two errors are less important than the first two errors. The use of interpolation 

techniques depends on the use of data structures as described in Section 2.1. Some DTM 

generation algorithms process the raw lidar point clouds directly, while others process 

grid-based images. However, choosing a vector, a raster or a hybrid data structure would 

not result in significant differences in quality (Hu and Tao, 2003). Although it is expected 

to be able to achieve higher accuracy and scalability by processing lidar points directly, 

raster-based approaches have the extra advantage of allowing for using many image 

processing algorithms readily (Wack and Wimmer, 2002).  
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The identification of terrain or non-terrain points mainly relies on the local geomorphology. In 

moving filtering windows of varying sizes, local lowest points are usually the candidate terrain 

points, and local highest points are likely building roof or tree points. Weidner and Forstner 

(1995) presented a morphological filter based on gray values. It consists of an opening 

operator for extracting the DTM. In Kilian et al. (1996), morphological filters are used to 

eliminate non-terrain points, and then a weighted smoothing is performed based on the 

distance of lidar points to the opened surface. Hug and Wehr (1997) applied a morphological 

filter to separate terrain and non-terrain points by iteratively computing the probability values 

of each point to be a terrain point. In each window, the lowest point is identified and also other 

points that are higher within a certain range. Probability values are assigned to these identified 

points according to their relative height compared with the lowest points. That is, the lower the 

point, the larger probability to be a terrain point. Moreover, the lowest point in a large window 

has a larger probability than that in a small window to be a terrain point. Fraser and Jonas 

(2001) developed a recursive algorithm based on changes in the slope defined by points 

categorized as the terrain class. Four types of terrain type (i.e., flat, hilly, mountainous and 

steep mountainous) and three classes of vegetation (i.e., none, light and dense) are used to 

define twelve different morphological filters. These filters are decided upon from local site 

knowledge, aerial photography, maps, or from the examination of on-board video data. 

 

Based on the fact that laser footprints often are on the treetops in wooded areas, Kraus and 

Pfeifer (1998) formulated an asymmetric weight function by statistical analysis to filter the 

lidar data. The algorithm is based on the linear prediction with an individual accuracy for each 

point, and works iteratively. “The surface is firstly computed with equal weights for the 

elevation values of all points, and thus runs in an averaging way between terrain points and 

vegetation points. Then the weights are re-calculated based on the residuals relative to the 

surface, and are used for the next computation of the surface” (Kraus and Pfeifer, 1998). Since 

the weight function is not symmetrical, this allows a sharper decline for values above its origin, 

and a slower decline or no decline at all for ground points. Points with large negative residuals 

have maximal weights and they attract the surface. Points with large positive residuals are 

eliminated. Above processing is repeated until a stable surface is obtained.  
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Petzold et al. (1999) proposed a filtering algorithm to distinguish points situated on buildings 

and on the vegetation from those expected to be on the ground. First, a rough terrain model is 

calculated using the lowest points found in a moving window of a rather large size that is 

based on the largest building size in region of interest. Then all points with a height difference 

exceeding a given threshold are filtered out and a more precise DTM is calculated. This step is 

repeated several times, reducing the window size and leading to the final DTM. The results 

are good, especially for wooded areas. The results are influenced by the final window size and 

the final threshold below which points are expected to be terrain points. A small window size 

or a large height threshold leads to misclassification of points on large buildings as ground 

points; a fairly large window size or a small height threshold removes small terrain 

discontinuities. Therefore, the parameters used depend on the terrain morphology and thus are 

different for flat, hilly and mountainous regions. “Breaklines are needed to avoid elimination 

of points that are situated on steep embankments along roads and railways or on steep slopes 

along ridges, or the geomorphologic structures are compiled in advance and used to achieve 

better results concerning the classification of ground points” (Petzold et al., 1999). The 

concept of finding lowest points in this algorithm has been the basis of many other algorithms 

(Axelsson, 2000; Wang et al., 2001; Masaharu and Ohtsubo, 2002). 

 

Axelsson (1999) described an adaptive filtering method to process one scan line at a time. The 

basic idea is to start with a line beneath all the scan line points. This line is then connected to 

ground points from below, and the connection is controlled by the MDL principle. The MDL 

delimits the possible shapes and hence fluctuations of the resultant surface in some way. In 

Axelsson (2000), the above algorithm is implemented in 2-D to process dense urban areas 

where discontinuities may appear. A sparse TIN is created from seed points and densified in 

an iterative process. The TIN adapts to lidar points from below and is constrained in its 

curvature by data derived parameters. Since the seed points in the TIN constitute a subset of 

the actual lidar points, those true ground points will represent the real terrain surface with the 

accuracy equal to that of the lidar data. The main strength of the filter lies in the ability of 

handling surfaces with discontinuities, which is particularly useful in urban areas. This 2-D 

version has been implemented in TerraScan TM from TerraSolid (2001). 
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Masaharu and Ohtsubo (2002) developed a two-stage filtering method suitable for highly 

developed urban areas. The primary selection use the lowest point in regularly divided patches 

of the area, and a secondary selection is recursively applied to these points to remove points on 

building roofs and at the bottom of underground tunnels that may be remained in the primary 

selection. The secondary selection is based on whether the points in the primary selection are 

within one sigma from the mean of the neighboring lowest points of patches. If the point is 

judged out of the range by this statistical test, it is removed. 

 

The sole use of lowest points often results in an under-estimated surface on average. Some 

algorithms explicitly use slope information to conquer the terrain relief in filtering. Vosselman 

(2000) developed a slope-based filter, which is proved to be equivalent to the erosion operator 

in mathematical morphology. In this approach, the ground is defined as points within a given 

slope range. The thresholds are determined by a stochastic approach that needs training. This 

slope-based filter was modified by Sithole (2001) to reduce Type I error happening on steeply 

sloped terrain. The modified method determines the thresholds with respect to the slope of the 

terrain. Schickler and Thorpe (2001) modified Kraus and Pfeifer’s (1998) method in several 

ways. They use a triangulation of the surface instead of grid format, include independently 

measured mass points and breaklines in the estimation with appropriate weighting, add 

additional curvature constraints and slope constraints to control the shape, and employ the 

concept of surface classes to guide the estimation process.  

 

Many researchers use a hierarchical strategy to assemble topographic details in a coarse-to-

fine manner. Moreover, such processing algorithms are often robust and efficient, and are 

suitable for processing areas with complex terrain and coverage types. A hierarchical robust 

interpolation method has been implemented in SCOP++ (Pfeifer et al., 2001). This method 

actually extends Kraus and Pfeifer’s (1998) filtering algorithm and applies it in a hierarchical 

manner to process built-up areas. It creates a data pyramid, filters the lower resolution data to 

generate a rough DTM, and accepts points within a certain tolerance band by comparing the 

derived DTM to the data of higher resolution. The latter two steps need iteration for each finer 

pyramid level. In Wack and Wimmer (2002), an approach based on the rasterization of lidar 
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points is presented. The algorithm consists of a hierarchical approach in combination with a 

weighting function for detecting non-terrain raster elements. The weighting function considers 

the terrain relief as well as the distribution within each raster element.  

 

A surface fitting approach is developed to generate DTMs from DSMs acquired by the STAR-

3i IfSAR system (Wang et al., 2001; Tao et al., 2001), and has been implemented in 

TerrainFit® by Intermap (Coleman, 2001). This method is designed to address open urban and 

rural areas of flat to mountainous terrain types. It does not address heavily forested areas. The 

approach consists of the creation of image pyramids, approximation of the DTM to the actual 

terrain, localization of problematic areas especially in mountainous regions, and the terrain 

smoothing. During the pyramid generation, non-terrain points are eliminated gradually, and 

the remaining points at the top level should be all true terrain points. Then a higher-level 

image is treated as the reference surface. At a lower-level image with higher resolution, 

multiple types of terrain points, such as points on the slopes and flat areas, are identified to 

retain the terrain details, and are used to interpolate a more accurate surface. This processing is 

repeated until the bottom level is reached. A self-diagnosis process is proposed to detect 

mountainous areas where the DTM is under-estimated because hills may be cut. 

 

A number of algorithms based on segmentation (Hoover et al., 1996) and energy minimizing  

(Elmqvist, 2001) have been developed to segment gray images and close-range range data in 

computer vision for decades, and some of them have been extended to divide lidar data into 

homogeneous groups of different coverage types, including ground, building, tree, etc. Besl 

and Jain (1988) used the surface-curvature-sign to label eight fundamental surface types that 

correspond to eight classes of topographic points. That is each point on a piece-wise smooth 

surface can be characterized by the spatial properties of other points on the surface in l x l (e.g., 

l=7) neighborhoods surrounding the given point. However, the surface-curvature-sign labeling 

algorithm needs to fit a set of approximating functions (e.g., planar, bi-quadratic, bi-cubic and 

bi-quartic polynomials) incrementally to find the best form (a few seconds per fit on a VAX 

11-780); then it calculates the mean and Gaussian curvature signs, which are viewpoint 

invariant, using the first- and second-order partial derivative estimates in image form.  
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Lee and Schenk (2001) used a 3-D perceptual organization of the point cloud into distinct 

surfaces. The method is intended to mimic the grouping of points in the way human 

perception would behave. Elmqvist (2001) developed an active shape model, which is an 

extension of the active contour model to higher dimensions, to estimate the ground surface by 

energy minimizing. The active shape model acts like a rubber cloth with elasticity and rigidity. 

The model is glued against the measured points from underneath with constraint forces, 

forming the envelop of the point cloud. The stiffness of the shape model stretches it out to a 

continuous surface between the ground points.  

 

Brovelli et al. (2002) implemented a filtering algorithm based on spline interpolation and 

region growing techniques. This algorithm was designed for processing lidar data in urban 

areas, and has been implemented in the open source GIS - GRASS (see http://grass.itc.it/). The 

filter consists of five steps: preprocessing, edge detection, object region growing, problematic 

classification results correction, and interpolation. “It classifies multiple returns lidar data into 

terrain and non-terrain points. If points with uncertain classification remain, they are not used 

in the final DTM interpolation” (Brovelli et al., 2002). The validation of the filter was 

performed on an Italian dataset by means of topographic, geodetic and photogrammetric 

independent information, and presented good processing quality. 

 

An alternative for conquering the difficulties in distinguishing terrain from non-terrain points 

solely using the first surface elevation data is to fuse auxiliary data such as multi-return lidar 

range and intensity data, or hyper-spectral images for land-cover classification. Kraus and 

Rieger (2000) presented a technique to separate wooded from non-wooded areas using multi-

return range data to solve a special case. That is, the size of rock needles within the forested 

areas often does not exceed the size of a single tree, thus rock points are normally eliminated 

in the DTM along with vegetation points when using single-return range data only. The 

difference between first and last returns is of great help in that case since rocks exhibit 

differences close to zero in contrast to vegetation. The usage of aerial or satellite imagery may 

be of great help to better distinct between vegetation and non-vegetation. 

 

In Hofmann (2001), the lidar range data is used to improve the analysis of high-resolution  
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images for detecting roads and buildings in urban areas. Rabor et al. (2002) developed an 

adaptive vegetation removal procedure to process lidar data mixed with multiple returns. They 

utilize a vegetation point removal algorithm in which the parameters are adaptively adjusted 

based on a vegetation map. The vegetation map is derived through the exclusive use of the 

lidar dataset, making the processing independent of ancillary data. Schiewe (2003) proposed a 

region-based and multi-scale approach. It consists of segmentation and follow-up fuzzy logic 

classification based on several features derived from DSM and multi-spectral images. 

 

Sithole and Vosselman (2003) conducted a study to evaluate the performance of eight 

filtering algorithms. Seven characteristics, including data structure, test neighborhood, 

discontinuity, filter concept, single vs. iterative processing, replacement vs. culling and 

use of first pulse and reflectance data, are used to understand the behaviour of those filter 

algorithms. The filtering results are compared against reference data that are generated by 

manually filtering raw lidar data. It is found that in general the filters perform well in 

landscapes of low complexity. However, complex landscapes as can be found in city 

areas and discontinuities in bare Earth surfaces still pose challenges. It is suggested that 

future research be directed at heuristic classification of point clouds based on external 

data, quality reporting, improving the efficiency of filter strategies. 

 

The quality evaluation of the generated DTMs is often based on comparisons against 

ground observations (Axelsson, 2000; Pfeifer et al., 2001; Fraser and Jonas, 2001), 

topographic maps (Kraus and Pfeifer, 1998), or reference DTMs (Axelsson, 2000; Wang 

et al., 2001; Brovelli et al., 2002), but has not been investigated systematically in the past. 

It is difficult to get the terrain elevations under buildings or directly measure them using 

surveying methods. The reference DTMs are usually interpolated from manually edited 

lidar points (Axelsson, 2000; Sithole and Vosselman, 2003), using propriety or expensive 

software tools. Pfeifer et al. (2001) reported absolute accuracies of derived DTMs for two 

datasets. The GCPs are measured using a GPS receiver or manually from photography. 

The vertical accuracy is from 8 cm to 11 cm RMSE for flat, sloped areas and railway 

ramp in Vaihingen dataset (relatively flat terrain), and is 10.5 cm RMSE for the overall 

area in Vienna dataset (flat terrain). 
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2.3 ALGORITHMS FOR ROAD EXTRACTION 

 

Extraction of curvilinear features, especially roads, has been a popular research topic in the 

computer vision and remote sensing communities. During the last three decades, many 

approaches for road extraction have been developed in the literature. Most of them are quite 

different in nature due to the differences in available data sources, assumptions about road 

models, and human interaction (Laptev, 1997; Park and Saleh, 2001). These methods usually 

assume relatively simplistic road models and make little use of a priori knowledge. They are 

thus sensitive to disturbances like shadows, occlusions and varying resolutions. Park and 

Saleh (2001) made a comprehensive survey of automated and semi-automated extraction 

techniques of linear features from panchromatic and multispectral aerial and satellite 

imagery. The techniques are evaluated with respect to methodology, strengths, drawbacks, and 

implementation approach. The viability of hyper-spectral data is extrapolated for same 

purpose of utilization. The most important factors influencing the nature of a road extraction 

approach are the data sources available and the need of an operator to provide control 

information (Laptev, 1997). 

 

The existing road extraction approaches utilize a wide variety of data sources largely to 

eliminate the uncertainty of road classification. The main data sources include aerial and 

satellite images with different resolution and spectral characteristics, and DTMs sometimes. 

Some automatic methods use existing GIS data as cues to improve extraction accuracy and 

reliability or to detect changes for updating (Zhang et al., 2001). Contextual information is 

taken into account to guide the extraction of roads (Ruskone, 1996). Much of the work is 

concentrated on low resolution (a few pixels in width), primarily rural areas rather than urban 

areas due to the complexity of urban scenes (Price, 1999; Hinz and Baumgartner, 2000).  

 

As has been demonstrated in prior research, the reflectance or spectral response as the only 

resource for road extraction is not sufficient, especially in urban areas. The limiting factors are 

reflectance depending on viewing conditions and illumination, variability of the surface 

materials occlusion and resolution (Price, 1999). The similarity in reflectance between objects 
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leads to a high rate of misclassification. For example, in aerial and high-resolution satellite 

imagery, the roads are hardly distinguishable clearly from buildings when they are coated with 

same materials and thus similar gray patterns present. The situation becomes worse when 

roofs or walls of tall buildings occlude or cast a shadow on the streets in built-up urban areas 

where neither automatic nor semi-automatic road detection methods could work reliably. In 

addition, most existing approaches work in 2-D images, thus neglecting valuable information 

inherent in 3-D processing when using elevation data.  

 

A successful strategy should use specific techniques and fuse most fruitful data to handle 

different tasks with different road types and contextual complexity in the scene. Using a DSM, 

the occluded or shadowed areas aforementioned can be derived with the sun position known. 

This will provide useful information to explain and then bridge the gaps between broken road 

segments. Zhang et al. (2001) used height information derived by subtracting the DTM from 

the DSM to reason if a region is on the ground and to compensate the missing information in 

classification of aerial color images. With increasing availability of lidar data, exploiting lidar 

elevation information and imagery for road extraction has also been initially investigated. The 

lidar data is found to be able to improve the analysis of high-resolution image data for 

detecting buildings and roads especially in urban areas. In cases when shadows cover objects 

of interest, their shape can be well described due to height information (Hofmann, 2001).  

 

Lidar intensity data has good separability if the wavelength of the laser used is suitable for 

ground materials. Song et al. (2002) calculated a transformed divergence measure for intensity 

data to compare relative separabilities between object classes including asphalt road, grass, 

building roof and tree. In particular, the separabilities for asphalt road vs. grass and asphalt vs. 

tree are rather high. By fusing elevation information, the intensity data is a valuable data 

source for road classification (Hu and Tao, 2003). The use of multi-return range data can ease 

the deletion of penetrable vegetation. Alharthy and Bethel (2003) developed a similar 

algorithm to detect roads in urban areas using the intensity data and range data. However, the 

intensity data is usually very noisy due to the continuously varying reflection angles. Some 

materials appear with different reflectivity as the inclination angle and thus the reflection angle 

changes. To better represent the material’s reflectance characteristics, the intensity values have 
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to be normalized by the laser reflection angles (Song et al., 2002). However, this is not 

practical for end users because the normalization requires knowing the orientation information 

at the time of acquisition. 

 

Another major factor influencing road extraction is the requirement of interaction between the 

algorithm and an operator. The semi-automatic strategy requires a human operator to input 

seed points interactively and optional information such as road width etc. to guide the 

extraction procedure. The optimal paths between seed points are then found by profile or 

template matching (Airault et al., 1996; Vosselman and de Gunst, 1997; Hu and Tao, 2003a), 

multi-resolution approach (Couloigner and Ranchin, 2000), Snakes or energy minimizing 

approaches (Laptev, 1997; Gruen and Li, 1997), dynamic programming (Fischler et al., 1981; 

Guen and Li, 1994; Mertlet and Zerubia, 1996), cooperative algorithms (McKeown and 

Denlinger, 1988), or Kalman filtering (Vosselman and de Knecht, 1995). The Snakes or 

energy minimizing approaches work by defining appropriate energy functions based on 

radiometric and geometric assumptions for features of interest. They refine the solution to 

minimize the energy function beginning with an initial estimate of the feature. To extract 

meaningful features successfully, template matching technique requires that the features 

possess similar gray patterns. Additional geometry constraints are often utilized to guide the 

matching. If more than one image are used, this can be done in 3-D (Gruen and Li, 1997). 

 

Great effort has been paid for increasing the automation of road extraction. The automatic 

strategy finds candidate road segments by edge or line detection methods, and then tracks, 

verifies and links accepted segments by perceptional organization methods (Wang and 

Trinder, 2000; Hu and Tao, 2003b) or knowledge based methods (Stilla and Hajdu, 1994; 

Trinder et al., 1997) to form a complete road network. Although the full automation is likely 

not reliable in many cases, it is the ultimate goal. Some semi-automatic approaches can be 

extended to fully automatic ones by means of automatic seed point detection (Zlotnick and 

Carnine, 1993; Mayer et al., 1997). 

 

The roads extracted automatically may have a low qualified representation at various 

aspects, and should be refined. In Vestri and Devernay (2001), all the junctions are 
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processed at the same time. For each type of junction, they randomly sample two points 

in the different braches, estimate the position of the junction and compute residuals for all 

random sets. Then the solution that minimizes the median of residuals is selected. 

Wiedemann (2002) presented an approach for improving the extracted road crossings as 

well as a scheme for the quality evaluation of the results. The topology reconstruction 

detects and removes all cycles within the crossing areas. The geometry reconstruction 

examines all combinations of main and branching roads, which are possible according to 

the given road segments and typical road crossing models. The combination of main and 

branching roads that reaches the best score is selected as the final road crossing. 

 

Many road models have been developed utilizing some basic road characteristics. Road 

characteristics can be classified into five groups: geometric, radiometric, topological, 

functional and contextual properties (Garnesson et al., 1990). Example characteristics are large 

length, small width variance, directional consistency, symmetry, homogeneous gray levels, 

good contrasts with both sides, intersecting each other, and so on (Vosselman and de Knecht, 

1995; Barzohar and Cooper, 1996; Fischler and Heller, 1998). Different combinations of the 

above characteristics should be used to model roads in different resolution levels and contexts 

(Baumgartner et al., 1997; Mayer et al., 1997; Price, 1999; Wang and Trinder, 2000). Hinz 

and Baumgartner’s (2000) strategy is based on a detailed road model including lanes, road 

markings and their context using both image and DSM information so that the inherently high 

complexity of urban scenes is reduced. 

 

In high-resolution imagery, a road is often modeled as a continuous and homogeneous ribbon, 

which has internal structures such as lane markings and roadsides. Existing experiences show 

that the use of road models and varying strategies for different types of scenes are promising. 

The fusion of centerlines from low resolution and roadside edges from high resolution (<1 m) 

has proven to be very helpful in inferring more reliable results (Steger et al., 1995; Trinder and 

Wang, 1998). In Couloigner and Ranchin (2000), a novel multi-resolution approach is 

developed for semi-automatic extraction of streets. The accurate positions of roadsides and 

central reservations are determined through the analysis of multi-level wavelet coefficients. 
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Instead of utilizing the above characteristics describing individual road segments, local or 

global geometric and topological constraints can discover grid layouts of road networks. Price 

(1999) designed a feature-based hypothesis and verification paradigm to find urban street 

grids from single or multiple aerial images by applying a local grid constraint. The method 

assumes that roads have visible edges without significant occlusions. An initial seed 

intersection that provides the size and orientation of the regular grid is selected manually. 

Road crossings are junctions of individual road segments of approximately constant width and 

height. Then the grid is iteratively expanded by adding new units. “In each iteration, the new 

segments are refined and evaluated by simultaneously matching their sides to image edges. 

Thus longer portions of the roadsides must be visible at least in one of different overlapping 

images” (Price, 1999). During final verification, height information and contextual knowledge 

are used to adjust the positions of several consecutive road segments and to remove short 

portions. By applying a global grid constraint, Hu and Tao (2003) proposed a procedure to 

reconstruct the street grids of the 3-D grid road network in urban areas from lidar data also 

utilizing a road segment based hypothesis and verification paradigm. 

 

2.4 ALGORITHMS FOR BUILDING EXTRACTION  

 

Buildings are the most important artificial objects consisting of piece-wise and continuous 

surface segments over the ground. Different data sources have been used for the building 

extraction task. These data sources include aerial and satellite images, 2-D building ground 

plans from GIS databases, and high-quality DSMs. The task of building extraction is to 

determine building locations, ground elevation, orientations, building size, rooftop heights, etc. 

Most buildings can be described to sufficient details in terms of general polyhedra, i.e., their 

boundaries can be represented by a set of planar surfaces and straight lines. Further processing 

such as expressing building footprints as polygons is preferable for storing in GIS databases.  

 

Like most feature extraction tasks, building extraction can be implemented in either semi-

automatic or automatic strategies, and data-driven and model-driven techniques are commonly 

used. Some algorithms process the raw lidar point clouds directly or grid-based images 

converted from lidar data; others algorithms use these two data structures at different  
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processing stages. I concentrate on algorithms processing the data acquired by lidar systems. 

 

The semi-automatic building extraction approaches often prepare a set of building 

primitives for typical house types and roof shapes. Human operators place appropriate 

primitives and combine them to model complex structures. Various automated methods 

could assist operators in measuring and refining 3-D wire frame models. Brenner (1999) 

reviewed several interactive modeling tools for 3-D building reconstruction including 

ObEx, the so-called Stuttgart approach and CC-Modeller. The former two measure 

building primitives using several (monoscopic view) aerial images or lidar data and 2-D 

ground plans. While the latter uses stereo measurement of points in aerial images and 

uses two steps. In the first step, a structured point cloud containing all eaves and ridge 

points is obtained using strictly manual point measurement. The second step is automatic 

and consists of grouping points into planar faces and the generation of roof and wall faces.  

 

In Rottensteiner (2001), a method for semi-automatic building extraction together with a 

concept for storing building models alongside with terrain and other topographic data in a 

topographical information system is presented. His approach is based on the integration 

of building parameter estimation into the photogrammetric process applying a hybrid 

modeling scheme. A building is decomposed into a set of simple primitives that are 

reconstructed individually and are then combined by Boolean operators. The internal data 

structure of both the primitives and the compound building models is based on the 

boundary representation methods. 

 

The automatic building extraction methods can be fulfilled by two sub-procedures, i.e., 

building detection and building reconstruction (Weidner, 1995), which may not be clearly 

distinguishable. Full automation of building reconstruction is not yet reliable enough for 

practical production in most cases due to the great complexity of building architecture. 

Automatic extraction of buildings would go a long way to making more wide use of 

available geo-spatial data sources possible such as ground plans.  

 

Some researchers have focused on the automatic extraction solely or mainly based on  
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DSMs. The methods using only lidar data mainly utilize the geometric properties of 

buildings, and have to go through the building detection and reconstruction steps. In 

Weidner and Forstner (1995), the DSM is computed using image and feature pyramids 

and the final surface is then refined by means of local adaptive regularization techniques. 

Building detection is based on the fact that buildings are higher than the topographic 

surface, which is estimated using mathematical morphology on the DSM. The window 

size requires a priori knowledge of the maximum building size in the scene. Buildings are 

reconstructed depending on their complexity. Two kinds of parametric models are used 

for simple buildings with either a flat or a symmetric sloped roof. Prismatic models are 

used for complex or connected buildings.  

 

In Maas and Vosselman (1999), two techniques for the determination of building models 

are developed. Based on the analysis of invariant moments of point clouds, closed 

solutions for the parameters of a standard gable roof building model with a rectangular 

ground plan are derived from 0th, 1st and 2nd order moments. Asymmetric deviations like 

dorms on roofs can be modeled too. Inhomogeneity in the point distribution will lead to 

biased parameters. Models of more complex buildings are determined using a data driven 

technique based on intersecting planes that are fitted to triangulated point clouds. Most 

problems occur in the determination of the outline of the building, especially when trees 

are near the building. Vosselman (1999) presented an approach based on the detection 

and outlining of planar faces. The planes of the faces are determined by clustering points. 

The outlines are determined by a connected component analysis assuming that all the 

edges are either parallel or perpendicular to the main building orientation.  

 

Building surfaces including roofs and walls can be roughly approximated by constructing 

a TIN for points composing a building. The TINs of 3-D points sampled on object 

surfaces and the simplification and refinement methods have been extensively studied for 

approximating object surfaces (Heckbert and Garland, 1997). The simplification method 

is a fine-to-coarse approach, and starts with an exact fit, and creates approximations with 

less and less details (Wang and Schenk, 2000); while the refinement method is a coarse-

to-fine approach and starts with a minimal approximation, and generates more and more 
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accurate ones (Hu et al., 2003). Most existing roof reconstruction methods are based on 

the simplification concept. They first try to aggregate the points that possibly belong to 

separate patches of a complex roof, and a plane fitting is then performed to get parameter 

values for each planar patch. The plane detection methods reported in literature include 

clustering of triangles, 3-D Hough transformation, and clustering of 3-D points with or 

without using ground plans (Maas and Vosselman, 1999; Vosselman and Dijkman, 2001; 

Gamba and Houshmand, 2002). Those adjacent triangles with close normal directions 

may be grouped, and a plane equation is fitted to the vertices of the grouped triangles. 

Then the fine wire-frame model of a building’s surface can be obtained by calculating 

and organizing the intersection lines between planes. 

 

Wang and Schenk (2000) proposed an edge-based building detection and a TIN-based 

building reconstruction. The building models are reconstructed by triangulating each 

cluster of identified building points and grouping those fragmentary triangles into piece-

wise planes. Finally, the tri-intersections of those average planes are used to derive 

building corners and their relative orientations. The study area has nine buildings ranging 

from large to median to small sizes (Wang and Schenk, 2000). All the buildings in the 

area have rectangular or near rectangular shape with peaked roof, flat roof and multiple 

level flat roof, respectively. The range data play a major role in the building extraction 

although it may be not enough to complete the processing in many cases using only range 

data. The combination of geometric measures is proven effective to classify buildings. 

 

The 3-D Hough transformation is used to extract planar faces in Vosselman and Dijkman  

(2001). However, plane extraction with 3-D HT has a high computational complexity 

determined by the number of 3-D points and the size of a discretization of the two angles. 

In Elaksher and Bethel (2002), the parameter space of the 3-D HT is reduced from three 

to two by using a simplified model assuming that only one of the roof slopes is not zero 

along or perpendicular to the main building orientation. 

 

Some methods focus on the building detection stage. The derived building footprints or 

polygons can be used to update the building basemap that is an integral part in spatial 
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databases of GIS. Baltsavias et al. (1995) used an edge operator, mathematical 

morphology, and height bins for the detection of objects higher than the surrounding 

topographic surfaces. Hug (1997) showed the detection and segmentation of houses from 

ScaLARS height and intensity data based on morphological filtering with successive 

progressive local histogram analysis; in addition, they use the laser reflectivity measure 

for discerning manmade objects from vegetation via binary classifications. In Hu et al. 

(2003), several algorithms, including the constrained searching in Hough space, enhanced 

Hough transformation and sequential linking technique, are developed to reliably express 

building footprints as rectangles, quadrangles or polygons. These algorithms utilize the 

hypothesis verification paradigm and a final refinement. 

 

The active contour model (see Section B.1.11) is used to locate the boundary of a 

building in Yoon et al. (1999). Hu and Tao (2002) also tested the active contour model to 

locate building boundaries using greedy algorithm, and found several drawbacks, 

including the requirement of initial boundary position, possible shift to neighboring 

buildings during iterations and the difficulty of reconstructing regular shapes using a 

priori knowledge (e.g., orthogonality). Research effort has been made to rectify building 

boundaries detected automatically. Sester (2000) presented solutions for generalization 

problems using least-squares adjustment, focusing on the scale dependent representations. 

In Vestri and Devernay (2001), angle constraints are applied to refine the corners and 

junctions of polygon models, and the problem is solved by optimising an objective 

function to preserve the global consistency. 

 

An important task in building detection is to distinguish between buildings and vegetation. 

The discrimination between buildings and vegetation based on a Bayesian nets 

classification algorithm using local geometric properties is discussed in Brunn and 

Weidner (1998). Zhan et al. (2002a) applied an object-based classification to detect 

building footprints. First, the image segments belonging to the building class are 

identified by the vertical wall analysis, which is to examine the sliced lidar DSMs; then 

colour infrared imagery is used to calculate the NDVI, which is then assimilated to refine 

the identified building segments (Zhan et al., 2002b). 
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Rottensteiner (2001) found that roof structures could be extracted as a first step toward 

the reconstruction of polyhedral building descriptions. The use of shape measures based 

on differential geometric properties of range data for building detection is not sufficient 

and also poses high requirements on the resolution and quality of the data. In this 

situation, multiple returns and lidar intensity data could help much. Elberink and Maas 

(2000) presented their work on segmenting 0.5-m to 1-m lidar data in an unsupervised k-

means classification of objects (e.g., buildings and trees) using anisotropic height texture 

measures. The texture is defined quantitatively and qualitatively by height, variation of 

height in local windows and measures such as contrast and homogeneity. An important 

aspect of the work is the analysis of the benefit of intensity data as well as first and last 

returns range data. In Hu et al. (2003), the first and last returns lidar range data are used 

to produce the VSM that represents penetrable high vegetation objects such as trees; then 

the binary objects in the up segmented DNM that have non-empty intersections with the  

VSM are deleted with only buildings retained.  

 

The methods using both DSMs and auxiliary data such as GIS maps and multi-spectral 

images could overcome the drawbacks of specific imaging sensors. The integration of 

lidar data and ground plans are shown to be successful, and detailed reconstruction of 

buildings can be obtained automatically even for lidar data with relatively low point 

densities. This type of approach has the advantage of skipping the building detection step 

with ground plans known and focusing on building reconstruction stage. Henricson et al. 

(1996) used information from CIR images to separate elevation blobs detected in a DSM 

from stereo image matching into the classes of buildings and trees. Lemmens et al. (1997) 

showed the fusion of lidar altimeter data with 2-D digital maps in a topographical 

database to derive heights for roofless cube type building primitives.  

 

Haala and Anders (1997) demonstrated two approaches aiming on the combination of  

DSMs, aerial images and ground plans for the reconstruction of 3-D buildings.  

The ground plans provide very precise information about the building outlines. The first 

approach extracts breaklines from both DSMs and image data. Then the breaklines of 
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high reliability are combined with the gray value edges of high geometric accuracy to 

reconstruct a rather simple type of buildings. The second approach extracts planar 

surfaces likely to be roof planes from the DSMs and uses polyhedron as the building 

model to reconstruct very general type of buildings. It utilizes given ground plans as a 

priori information and extracts planar surfaces likely to be roof planes from DSMs.  

 

Haala et al. (1998) derived parameters for 3-D CAD models of basic building primitives 

by least-squares adjustment minimizing the distance between a laser DSM and 

corresponding points on a building primitive. The building boundaries were derived from 

ground plans. The implementation was limited to four standard building primitives and 

their combinations. Further refinement has to be performed interactively. Haala and 

Brenner (1999) combined multi-spectral information provided by an aerial CIR image 

with geometric information from a lidar DSM. A pixel-based classification is applied for 

the extraction of buildings, trees and grass-covered areas, whereby the normalized DSM 

is used as an additional channel in combination with three spectral bands. Additional 

constraints are obtained for reconstruction by using the assumption that the given ground 

plan is correct and exactly defines the borders of the roof. 

 

Brenner (2000) also presented the reconstruction of building of complex structures using 

lidar DSMs and ground plans. Roof surface primitives are segmented, and a rule-based 

approach decides which segments can be explained by the chosen building model. Finally, 

the roof is built from the primitives that have been accepted, closing gaps that are caused 

by the deletion of unexplainable regions. In Ameri (2000), building models are firstly 

created based on DSMs, and are then verified by back-projecting them to images. 

Matching the model edges with image edges, the accuracy of the model parameters can 

be increased especially with respect to the building outlines. 

 

The quality evaluation for building detection results has been initially addressed. Geibel 

and Stilla (2000) compared four segmentation procedures using lidar data with a density 

of four points/m2, and proposed an evaluation function to estimate the segmentation 

quality of a complete scene. The evaluation function subjectively weights measures for 
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the over-segmentation and under-segmentation. However, at present there is a lack of 

objective measures concerning reconstruction times, success rates and reconstruction 

quality, especial when a human operator is the part of a semiautomatic system and 

different ancillary data are used (Brenner, 1999; Rottensteiner, 2001; Lemmens et al., 

1997; Vosselman and Dijkman, 2001).  

 

2.5 SUMMARY 

 

Wide-area lidar data is rapidly becoming the standard data source for many mapping 

applications. Research effort has been made to investigate areas where lidar technology 

may provide significant advantages such as allowing value-added products to be 

generated and offering great cost reduction over traditional methods. In this section, I 

introduced various representative algorithms developed for analysing lidar data and 

possibly other remote sensing data for extraction of DTMs, roads and buildings. 

Automated feature extraction would go a long way to making more wide use of geo-

spatial data sources available.  

 

The availability of a suite of COTS software tools will eventually replace the proprietary 

solutions common today. This will open up the processing workflow and change the 

existing value chain, and thus shift the primary product from lidar point clouds to the 

more basic geo-referenced features. Lidar technology will certainly continue to proceed 

technically and to find its new applications. The potential integration with other imaging 

sensors is expected to put lidar technology on a new level in terms of system performance 

and mapping capabilities. 
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CHAPTER THREE  

DIGITAL TERRAIN MODEL GENERATION 

 

The foundation of most mapping products are DTMs, which are required for many 

geospatial applications. In this chapter, a hierarchical terrain recovery algorithm is 

developed for DTM generation using lidar data. The method for processing single-return 

range data is described in Sections 3.2 to 3.4. In Section 3.5, the above methodology is 

modified to utilize more information contained in multi-return range and intensity data. 

In Section 3.6, I discuss the quality of testing results for several lidar datasets, and assess 

the performance of the algorithm. 

 

3.1 INTRODUCTION 

 

Highly detailed and accurate terrain data is one of the most critical components of many 

mapping, engineering and natural resource management projects. The demand for high-

quality DTMs is increasing significantly as the GIS community advances toward 3-D 

technology and virtual-reality environments. Many geospatial applications, such as urban 

planning, landscape analysis, transportation and hydrological watershed analysis, need to 

use DTMs. The primary remote sensing data for DTM production include aerial and 

satellite images, IfSAR data, lidar data, and GIS data. To generate a DTM from lidar data, 

one has to remove points falling on aboveground features, and to interpolate between the 

remaining terrain points falling on the bare Earth surface. 

 

As reviewed in Sections 1.3 and 2.2, many algorithms have been developed to generate 

DTMs using lidar data in the last decade 4. Related techniques have been extensively 

researched for exploiting terrain information contained in lidar data. I can say that a 

reliable and efficient algorithm for DTM generation from wide-area lidar data should take 

following empirical rules into account to process complex scenes. 

 

                                                 
4 I may include a minimum repetition necessary for further analysis.  
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- The local lowest points (excluding blunders) in a moving window of large size are 

most reliable terrain points (Weidner and Forstner, 1995; Kilian et al., 1996; Hug 

and Wehr, 1997; Petzold et al., 1999; Axelsson, 2000; Masaharu and Ohtsubo, 

2002; Wang et al., 2001). The window size has to be large enough so that there 

must exist at least one point hit on the topographic surface in any window. The 

terrain surface may be approximated by an interpolation of these terrain points, 

and obviously, has lower elevations compared with the ground truth on average. 

- The topographic (e.g., ridge, slope and valley) points in filtering windows of 

varying sizes are preferable terrain points, which are identified by estimating 

surface curvature based on the local geomorphology. These terrain points will 

retain more details of the terrain surface (Fraser and Jonas, 2001; Wang et al., 

2001; Tao et al., 2001; Schickler and Thorpe, 2001).  

- The natural terrain surface could be approximated using piece-wise smooth facets 

(Haugerud and Harding, 2001). This smooth condition is used to identify non-

terrain points based on terrain points utilizing terrain slope and/or relief 

information (Vosselman, 2000; Fraser and Jonas, 2001; Sithole, 2001). The use of 

extra data such as breaklines could help to identify terrain points at a larger scale 

and thus avoid Type I error at places where geomorphological structures occur 

(Petzold et al., 1999; Schickler and Thorpe, 2001; Sithole and Vosselman, 2003). 

- The coarse surface obtained by interpolating terrain points with insufficient 

density is under-estimated, thus iterations are necessary (Hug and Wehr, 1997; 

Kraus and Pfeifer, 1998; Axelsson, 2000; Fraser and Jonas, 2001; Wang et al., 

2001). During iterations, the coarse surface will be refined by subsequent 

introduction of denser terrain points by comparing information between the finer 

data and the coarse surface and also by the recursively refined knowledge about 

the ground coverage, which allows for improving the estimation of parameter 

thresholds. The data structure suitable for this multi-resolution and terrain 

adaptive strategy is a pyramid (Tao et al., 2001; Wack and Wimmer, 2002). 

 

The first rule is a common idea for all of existing algorithms, and the latter three are 

supported partly by them. But none of these algorithms support all the four rules due to  
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different goals and strategies. I address the DTM generation task from two aspects:  

 

• Scene complexity. The bare Earth is composed of smoothly or abruptly changing 

terrain surfaces, and is partly covered by low- to high- density natural and cultural 

features. Different terrain and coverage types in a scene lead to the difficulty in 

recovering the bare Earth from sampled lidar points. Existing DTM generation 

algorithms are not yet competent for practical industry production, and may fail in 

certain areas due to the complexity of scenes with varying terrain and coverage types. 

- These algorithms perform well in scenes of low complexity (Sithole and 

Vosselman, 2003), but extensive manual editing is required to obtain a clean 

representation of the ground surface in complex scenes (Tao and Hu, 2001). 

- These algorithms are intended to process certain scenes with expected terrain 

and/or coverage types. Algorithms designed to process forested areas likely 

perform poor when processing urban areas, or vice visa. Thus different versions 

of these algorithms have to be customized for processing different situations. For 

example, Kraus and Pfeifer’s (1998) filtering method is originally designed to 

process forested areas, and has been modified to process urban areas in Schickler 

and Thorpe (2001) and Pfeifer et al., (2001). I will develop the capability of 

processing complex scenes in a single workflow. 

- Some algorithms have a low efficiency in their workflows to process slightly 

complex scenes with terrain and coverage variations. In Wang et al. (2001), the 

basic algorithm is suited to process urban areas due to the use of fixed thresholds 

in identifying non-terrain points. Then a self-diagnosis procedure is designed to 

be able to process both urban and mountainous areas in one scene. It applies the 

urban-oriented algorithm one more time to detect the hills removed in the first 

pass and one more time again to recover them. To conquer this drawback, I will 

determine the thresholds assimilating both terrain relief and slope information. 

- Most algorithms are data driven techniques and are flexible for processing lidar 

data acquired by ever-improving lidar systems (Tao and Hu, 2001). The model-

driven techniques are more limited to scenes of lower complexity since they often 

make some unrealistic assumptions about contents of the scenes (Elmqvist, 2001). 
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• Data fusion. Current lidar systems provide information about multiple returns of each 

pulse and the reflectivity properties of ground materials (Optech, 2003). However, 

exiting DTM generation algorithms focus on processing single-return range data only 

(Tao and Hu, 2001; Sithole and Vosselman, 2003). Actually, multi-return range data 

can be used to detect penetrable vegetation (mainly tree) points, which are obviously 

non-terrain points (Hu and Tao, 2003; Alharthy and Bethel, 2003). Intensity data can 

be used to classify land-cover classes such as asphalt road vs. grass and asphalt vs. 

tree (Song et al., 2002), and road points are obviously terrain points. The above 

information is valuable for reliably identify terrain and non-terrain points, but is 

omitted by existing algorithms. I will also show that such information has an 

exceptional use for adaptively adjusting parameter values in my algorithm. 

 

In this chapter, a hierarchical terrain recovery algorithm (HTRA) is developed to build an 

efficient framework of data-driven DTM generation for single- or multi-return range and 

intensity data. The HTRA generates DTMs fully automatically for complex scenes by 

using adaptive and robust filtering and interpolation techniques. It generates range 

pyramids, identifies topographic points, and interpolates terrain elevations at non-terrain 

points in a hierarchical approach. The smooth condition improves the processing 

efficiency by integrating information about terrain relief, slope and data density. When 

road points are detected using intensity data and VSMs are derived using multi-return 

range data, the algorithm is able to adaptively adjust parameter values in the smooth 

condition to be suited to process changing contents in a scene. 

 

3.2 DTM GENERATION FOR SINGLE-RETURN RANGE DATA 

 

I first develop the HTRA to automate DTM generation for single-return range data, 

which is the dataset available in most cases. 

 

3.2.1 Overview of the Proposed Methodology 

The algorithm will identify terrain points by finding local minima and other topographic  
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points, and recover the terrain surface in a coarse-to-fine manner. First, after screening 

the blunders, the scattered 3-D points are transformed into a grid-based range image by 

selecting the point of lowest elevation in each grid. Then, an image pyramid is generated. 

The top-level image is hypothesized to be a coarse DTM if its grid size is larger than the 

largest non-terrain object. Finally, the coarse DTM is refined hierarchically from the top 

level to the bottom level. At each level, denser terrain points are identified, and the non-

terrain points are replaced by interpolated elevations using surrounding terrain points. 

The bottom-level image represents the expected bare Earth surface. 

 

3.2.2 Workflow of DTM Generation 

The method can be divided into four steps: 

 

Step1: lidar data pre-processing. The raw lidar data are filtered to discard blunder points, 

which have too low or too high elevation values, or very large intensity values that do not 

match their surroundings (see Section 4.2.2). Many blunder points can be discarded 

promptly if a priori knowledge about the terrain relief of the ROI is available.  

 

Step 2: lidar image processing. The filtered lidar points are transformed to a grid-based 

range image, in which each grid is assigned the elevation of the lowest point in that grid. 

Then the raw range image is processed to fill void areas and correct distortions.  

 

Step 3: hierarchical terrain recovery algorithm. This is the core step. First, the raw range 

image is used to generate an image pyramid, the top-level of which is a coarse DTM. 

This coarse DTM is refined hierarchically by processing image levels top down in the 

pyramid. When processing a level, its immediate higher level is treated as the reference 

surface, based on which the terrain points are identified using the smooth condition, and 

the elevations at non-terrain points are interpolated from surrounding terrain points. 

 

Step 4: DTM refinement. Post-filtering is performed on the resultant DTM to improve its 

quality for mapping purposes. This smoothing attempts to correct the influence of 

speckles and undesired non-terrain undulations of the DTM. At last, the void areas in the  
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raw range image may be duplicated to preserve water regions. 

 

The quality of the derived DTM is subject to thresholding parameters used in the 

algorithms. The optimal values of these parameters may vary with the scene complexity. 

I use a priori knowledge, if available, including the terrain relief range, the maximum and 

minimum building sizes, heights and areas, the maximal tree height, etc to determine the 

parameters empirically first, and then adjust them adaptively if multi-return or intensity 

data is available.  

 

3.3 LIDAR IMAGE PROCESSING  
 

3.3.1 Create Grid Images 

The MBR of the ROI is calculated first. Then the ROI is divided into regularly spaced 

grid cells. To make full use of the data resolution, each grid cell contains one point on 

average. The grid size is estimated by  

 

ROIROIc nAs /=                  (3.1a) 

 

where nROI is the number of points and AROI is the covered area. The center of each grid is 

assigned the elevation or intensity value of the lowest point in that grid. This is equivalent 

to shifting the selected point to the grid center while preserving its elevation. Range or 

intensity images in grid format are thus created. The void grids are assigned a special 

value outside of the possible terrain relief range, that is -9999 for the ESRI null value.  

 

3.3.2 Process Lidar Images 

The void areas in the raw range or intensity image are recursively filled up to a certain 

gap. A void pixel is updated to the minimum of the valid pixels in its neighborhood if 

more than a half of pixels are valid in that neighborhood. The gap is estimated by  

 

αtanmax ⋅= hsgap                  (3.1b) 
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where hmax is the maximal building height, and α  is half of the scan angle (e.g., 16o). So 

only small holes with valid data around are filled, and big holes such as large water areas 

are reserved. Because only one point is selected in each grid cell during the creation of 

raster images, possible zigzags can occur at places where the elevations change suddenly, 

especially around building boundaries and corners. These alias effects and random noises 

are suppressed by applying a multi-stage median filter (see Section B.1.4). 

 

3.3.3 Determine the Largest Window Size 

The largest window size should be not less than the smaller dimension of any non-terrain 

object in the ROI, ensuring that there must exist at least one terrain point in any window. 

If an object is larger than the largest filtering window, then the inner parts of that object 

will be wrongly treated as terrain level. Using the largest dimension of all the buildings is 

not appropriate because this often overestimates the optimum size. I detect edges in the 

range image and encode the connected edge pixels into individual object contours (see 

Section B.1.11). The window size in pixels is estimated by  

 

)4/,min( oow PAs =                (3.1c) 

 

where Ao and Po are the area and the perimeter, respectively, of the object whose area is 

largest among all the contours. Here, ws  is also limited to 120 m that is suitable for 

datasets tested in this thesis. 

 

3.4 HIERARCHICAL TERRAIN RECOVERY ALGORITHM  

 

The algorithm generates an image pyramid from the range image, identifies terrain 

points, and interpolates terrain surfaces at non-terrain regions in a hierarchical approach. 

 

3.4.1 Generation of Image Pyramids  

The data structure used to represent image information can be critical to the successful 

completion of a data processing task. One structure that has gained considerable attention 

is the pyramid (see Section B.1.2). The number of pyramid levels is determined by  
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  1ln/ln += ksn w                 (3.1d) 

 

where k is the pyramid scale that is determined by the size of the smallest object. Thus, 

the actual grid size of the top level tops  is equal to 1−nk  pixels, which is not less than the 

largest window size ws . A small pyramid scale will result in more levels, which allow for 

smoother interpolation with the price of heavier computational burden. 

 

The first level (i.e., bottom level) duplicates the processed range image. The different 

pyramid levels are created by selecting lowest points in image grids. The pyramid 

generated for the Village data consists of three levels that are shown in Figure 3.1. 

 
(a) The bottom level, 315 x 474 

 

 
(b) The intermediate level, 53 x 79 (enlarged 3 times) 

 

 
(c) The top level, 9 x 14 (enlarged 9 times) 

 
Figure 3.1. Image pyramid generation (Village site) 

 N 
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Starting from the bottom (i.e., the first) level (see Figure 3.1a), the lowest point in each 

distinct k x k window is assigned to the corresponding grid at a higher level until the top 

(i.e., the nth) level is reached. During the creation of pyramidal images, non-terrain points 

are removed gradually, and the top-level image (see Figure 3.1c) is a coarse 

approximation of the bare Earth surface when its grid size is large enough to see on 

terrain at any place. Obviously, the DTM interpolated from the top-level image will result 

in a lower terrain surface than the bare Earth surface on average. 

 

3.4.2 Hierarchical Recovery of Terrain Surfaces 

The terrain surface is recovered hierarchically from the top level to the bottom level of 

the pyramid. During the iterations, more terrain points are identified, and the non-terrain 

points are replaced by interpolated points using those already identified terrain points. 

 
(a) The DTM at the top level (enlarged 9 times) 

 

 
(b) The intermediate level (enlarged 3 times) 

 

 
(c) The DTM at the bottom level 

 
Figure 3.2. Hierarchical terrain recovery (Village) 

 N 
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Figure 3.2 shows the three levels during the terrain recovery procedure. The coarse DTM 

in Figure 3.2a is exactly the same as in Figure 3.1c. The procedure starts from the (n-1) th 

level that is called the current level under processing, and its immediate higher level, here 

the top level, is treated as the reference level. The bare surface can be recovered by 

comparing elevations between the current level and the coarse surface interpolated from 

the reference level. The bottom-level image (see Figure 3.2c) is an initial DTM. 

 

In the iteration, a grid cell at the reference level is expanded to a surface patch with k x k 

grids at the current level. In Figure 3.3a, the four small circles represent the centers of 

four grids pu (u=1…4) at the reference level, and Zu (u=1…4) denote their elevations. 

These four points are assumed to be on the true terrain surface and are used as reference 

points at the current level. The shaded square formed by these four points corresponds to 

a k x k window at current level as shown in Figure 3.3b. This window is mapped to the 

shaded area in Figure 3.3c or Figure 3.3d depending on the parity of k.  

 

To obtain an approximation to the terrain surface at a higher resolution, I assume that a 

simple facet may fit the 2.5-D surface patch within the current k x k window. To be able 

to interpolate grids around the boundary of the current level, I extend and duplicate two 

rows (columns) outside the first and last rows (columns) at each reference level. Let pij 

( 1,0 −≤≤ kji ) denote a point at position (i, j), which is interpreted as integer row and 

column coordinates relative to the top-left corner of the current window as shown in 

Figure 3.3b. The elevation at pij is estimated from the reference points by bilinear 

interpolation using Equation 3.2a if k is even or Equation 3.2b if k is odd.  
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If the current window contains a topographic patch, then the elevations are assumed to 

change smoothly and no further processing, such as the interpolation described in Section 

3.4.2.3, is needed. The premise is that a smooth condition has been established to validate 

that the elevation at the current level and the estimated elevation from the reference level 

are reasonably close at every point of that patch. If any point in the current window 

violates the smooth condition, then that point is classified as a non-terrain point. The 

Figure 3.3. Structure of the k x k window 

(e) The profile connecting pij and pu 

Zu  pij 

Zij 

 pu 
 θ   

(a) Four grids at the reference level     (b) k x k window at the current level 

(c) The current window (k is even)            (d) The current window (k is odd) 
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elevation of a non-terrain point should be replaced by a value derived from surrounding 

terrain points in that window. However, it is hard to estimate a good elevation, which is 

consistent with the terrain in vicinity, solely using a few terrain points such as the 

reference points. To recover the terrain details at non-terrain points, topographic points 

on that surface patch have to be identified to prepare for the interpolation.  

 

3.4.2.1 Establishment of the Smooth Condition 

Let Zij denote the elevation of the point pij at the current level. The smooth condition 

compares Zij with respect to terrain points at the reference level. That is, the difference 

between Zij and ijẐ  (Equation 3.2a or 3.2b) at any terrain point should be not larger than 

a certain threshold as given by  

 

ThZZZ ijijij ≤−=∆ ˆ                 (3.3) 

 

where Th is the height threshold that is vital for reducing both types of misclassifications. 

The height threshold takes both local terrain relief and slope information into account, 

and is defined by Equation 3.4, where R∆  is the range resolution defining the relative 

accuracy of lidar points in Z direction (e.g., 5 cm, see Table A.1). 

 

( ) RThThTh ∆+= 21,min                (3.4) 

 

with 

 

nuhcTh /)1ln(11 +⋅⋅=                 (3.5a) 

 

( ) csccTh ⋅+⋅= 322 |,tan|1min θ              (3.5b) 

 

The smooth condition utilizes relief information as defined in Equation 3.5a, where c1 is a 

parameter default to 1.2, which is an empirical value obtained based on multiple testing 

results; h  is the extreme elevation difference among all the points in the current k x k 
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window; u ( nu ≤≤1 ) is the pyramid level number. The rational behind Equation 3.5a is 

that local lowest points in windows of varying sizes are more possible to be on the bare 

surface and local highest points are likely reflected from aboveground features. This 

relief threshold adaptively changes to be suitable for different resolutions at different 

pyramid levels. It gives a larger threshold for a lower resolution since non-terrain points 

have been largely eliminated in that situation. 

 

The smooth condition also considers slope information as defined in Equation 3.5b, 

where c2 and c3 are parameters default to 1 and 3, respectively, also based on multiple 

testing results; θ  is the slope angle at pij relative to the local topography in the current 

window. The slope angle θ  is selected among four (or three at the left-top point p11 for 

an odd pyramid scale k) components, each of which calculates a slope of pij relative to a 

reference point as shown in Figure 3.3e. Similarly, the computation of θ  also has two 

forms relying on the parity of k as given in Equation 3.6a for an even k and Equation 3.6b 

for an odd k. The rational behind Equation 3.5b is that the terrain elevations usually 

change following the overall geomorphologic trend in a piece of Earth surface. This slope 

threshold adaptively changes according to the density of the raw dataset. It calculates a 

larger threshold when the Earth’s surface has been sampled more coarsely and thus more 

details about non-terrain objects are already lost. 
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The smooth condition can be suited to adaptively process most situations occurred in 

typical lidar datasets. The combination of both relief and slope thresholds by a 

minimization serves the purpose of minimizing Type II error. Generally speaking, the 

relief threshold Th1 is usually selected when processing flat and mountainous areas; while 

the slope threshold Th2 is likely selected when processing building roof points and tree 

points. Therefore, flat grounds as well as hills with smoothly changing slopes will be kept 

in the DTM correctly all the time.  

 

3.4.2.2 Identification of Topographic Points 

Besides local lowest points, I have to identify other topographic points, which may be 

sited on the slope, ridge, valley or flat surface. To save computational time, I directly use 

digital differences to identify six types of topographic points (see Figure 3.4, Li, 1999) 

without fitting the set of piece-wise smooth functions used by Besl and Jain (1988, see 

Section B.2.1). It is should be noted that only points satisfying the smooth condition are 

hypothesized to candidate topographic points, which are then verified by checking the 

surface geometry formulated in Equations 3.7a to 3.7c, where 'xZ  and ''xZ  are the first- 

and second-order elevation differences in x direction, respectively; 'yZ  and ''yZ  are the 

first- and second-order elevation differences in y direction, respectively. 

 
 

Figure 3.4. Six types of topographic points 
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- Pit and valley conditions. 

 

( ))0''0''()0''0''()0''0''(0'' =∧>∨>∧=∨>∧>∧== yxyxyxyx ZZZZZZZZ    (3.7a) 

 

- Ridge and peak conditions. 

 

( ))0''0''()0''0''()0''0''(0'' =∧<∨<∧=∨<∧<∧== yxyxyxyx ZZZZZZZZ     (3.7b) 

 

- Flat and slope conditions. 

 

0''0'' =∧= yx ZZ                 (3.7c) 

 

The pit and valley points have the highest priority. The equations describing above 

conditions are not rigorous in mathematics (Shen et al., 1992; Li, 1999), but are good 

enough for practical applications. The topographic points identified for Village site are 

evenly distributed over the whole scene as shown in Figure 3.5. 

 

In Equations 3.7a to 3.7c, the first-order derivatives are calculated in 3 x 3 windows using 

1-D Prewitt operators, and the second-order derivatives are calculated using 1-D 

Laplacian operators (Pratt, 1991). The signs of the elevation differences are determined 

using a positive zero threshold ε  as given by 
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with 

 

Rc ∆= 4ε                    (3.8b) 
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where the parameter c4 is default to 1 for first-order differences and 2  for second-order 

differences, respectively, since R∆  represents the range resolution (see Table A.1).  

 

3.4.2.3 Interpolation at Non-terrain Points 

If only a few (six or less) terrain points can be identified in the current window, I fit a 

plane equation to these topographic points and, if necessary, the reference points. This 

situation often occurs when the current window is located on the building roof or at the 

boundary of a large building. The plane is given by Equation 3.9, where i and j are point 

coordinates; bu (u=0…2) are coefficients solved by linear regression (see Section B.2.5). 

 

jbibbZ ⋅+⋅+= 210                 (3.9) 

 

If more than six terrain points are identified in the current widow, a second-order 

polynomial facet is used to fit these terrain points to estimate the elevation at a non-

terrain point. Compared to a plane equation, the second-order polynomials may keep the 

fidelity of pits, ridges and valleys especially in mountainous areas. The bivariate 

polynomial is given by  

 
2

54
2

3210 jajiaiajaiaaZ ⋅+⋅⋅+⋅+⋅+⋅+=          (3.10) 

 
 

Figure 3.5. Topographic points overlaid on range image 

 N 
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where i and j are point coordinates; au (u=0…5) are coefficients also solved by the least-

squares method with equal weighting. The error equations in matrix form is given by  
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where m is the number of points; ru and Zu (u=1…m) are residuals and elevations, 

respectively, at the terrain points. 

 

3.4.3 Refinement of DTMs 

In the initial DTM, Type I error will occur if hill peaks are wrongly cut or pits are filled 

due to interpolation using their surrounding points. The HTRA can recover most terrain 

details since the smooth condition has incorporated geomorphologic information to allow 

for identification of terrain points on hill slopes and non-terrain points on the 

aboveground objects. In this section, I locate over-estimated areas where the elevations in 

the DTM are higher than those in the DSM. This is to detect negative values in the digital 

non-terrain model (DNM or DNTM) 5. The DNM refers to the height representation of 

non-terrain objects, including vegetation, buildings and other objects that stand upon the 

bare Earth surface. The DNM represents all these aboveground objects upon a flat 

reference plane, and is the subtraction between the lidar DSM and the DTM. In this sense, 

the DNM is also called height data in this thesis. 

 

All the positive values in the DNM are reset to zero first, and the sign of negative values 

are then reserved to obtain an error image that represents the over-interpolated areas in 

the DTM. The error image is smoothed using moving planes. The plane coefficients are 

                                                 
5 The DNM is called normalized DSM in Weidner and Forstner (1995). 
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solved using points within 7 x 7 windows by least-squares adjustment. Once the plane 

equation is fitted, the elevation of the center point is calculated, and is simply b0 if the 

origin has been moved to the center point before fitting. Finally, the DTM is corrected by 

subtracting the smoothed error image. Figure 3.6a shows the smoothed over-interpolation  

error image for Village site, which has the maximal elevation difference of 32 cm. 

 

Since the DTM is recovered patch by patch at each level, there may exist inconsistencies 

at patch boundaries. To smooth the DTM, a plane (Equation 3.9) is fitted in each 5 x 5 

window excluding the center point by least-squares adjustment. The RMS error for the 

fitted plane is denoted as Zσ̂ . To minimize the introduction of Type II error, the points 

with large positive residuals as given by  

 
(a) The smoothed over-interpolation error image 

 

 
(b) The final DTM with 1-m contours 

 
Figure 3.6. DTM refinement (Village site) 

 N 

 N 
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ZZZ σ̂5.2ˆ >−                  (3.12) 

 

are discarded as non-terrain points, and the plane is fitted again using remaining points. 

Let Zc denote the elevation of the center point and cẐ  its estimated elevation. Then Zc is 

replaced by cẐ  if their difference is larger than a pre-selected threshold. This condition is 

given by Equation 3.13, where 2
DTMσ  is the noise variance of the DTM, and is equal to 

the mean squared difference between the DTM and its median filtered version. 

 

DTMcc ZZ σ2|ˆ| >−                  (3.13) 

 

Figure 3.6b shows the refined DTM for Village site. Compared with the DSM shown in 

Figure 3.1a, the non-terrain objects including buildings and trees are successfully 

removed and the bare surface looks perfect and smooth with terrain details remaining. 

Other surface fitting and smoothing techniques, such as the variable-order surface fitting 

(Besl and Jain, 1988), may be needed to provide an accurate smoothing depending on the 

terrain complexity. In addition, the raw lidar points within certain buffer of the raster 

DTM could be labeled as terrain points, which are used to create TINs thereafter. 

 

3.5 DTM GENERATION FOR BI-RETURN LIDAR DATA 

 

The above methodology is proposed to generate DTMs for single-return range data. It has 

to be modified to utilize the information from first and last returns range and intensity 

data. The classification of intensity data can identify pavements on the topographic 

surface according to the separability of various materials on ground and the surface 

geometry; while bi-return range data ease the identification of non-terrain vegetated areas. 

This enables the simultaneous usage of geometric and radiometric information for 

analysis and processing of lidar data (Hu and Tao, 2003).  

 

3.5.1 Identification of Road Points 

Roads are usually coated by homogeneous materials (e.g., asphalt with pebbles or  
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concrete) over the natural terrain, have low heights, are in general very smooth, and are 

separated by distinct patches in either reflectivity (e.g., vegetated areas) or height relative 

to the bare surface (e.g., buildings). Road points can be identified based on four 

evidences in reflectivity, height, surface geometry and solidness. 

 

- In reflectivity, the spectral signature of asphalt roads significantly differs from 

vegetation and most construction materials. The intensity image can be segmented 

using dual thresholds, denoted by [ lTi , hTi ], which enclose the intensity range of 

the road class (see Section 4.3.1 for details). 

- In height, roads are thin coats over topographic surfaces and thus have zero height 

in the DNM. But the height data itself is the byproduct of the expected DTM.  

 
(a) Road points classified using intensity image 

 

 
(b) Road points overlaid on intensity image 

 
Figure 3.7. Identification of road points (Village site) 

 N 

 N 
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- In surface geometry, roads usually are composed of flat or sloped planes, and are 

very smooth surface patches. 

- In surface solidness, roads are un-penetrable to laser beams, and thus have no 

difference between the first-return and the last-return range values. This evidence 

can be applied to multi-return lidar data to clean penetrable vegetation. 

 

To this end, I apply to the intensity image and the current level of the pyramid an 

identification algorithm to detect road points by integrating reflectance property, surface 

geometry and smooth condition. The above evidences are expressed as four criteria used 

to identify road points. 

 

- Reflectivity condition. The point intensity is larger than lTi  and less than hTi .  

- Height condition. The smooth condition is used here instead of the stronger zero 

height constraint. Thus the point satisfies the smooth condition (i.e., Equation 3.3). 

- Geometry condition. The point is on a flat or sloped plane (i.e., Equation 3.7c). 

- Solidness condition. The elevation difference between the first and last returns 

elevation values is close to zero (see Section 3.5.2). 

 

I manually select an intensity range (i.e., 31 to 42) to classify the intensity image for 

Village site (see Figure 3.7a); then perform a morphological opening to separate objects 

weakly connected to road ribbons and remove connected components smaller than 500 

pixels; finally, the geometric and height conditions are applied to discard non-terrain 

points. Figure 3.7b shows the road points (green, in total 22149) overlaid on the intensity 

image (red). Similarly, other data may be used to classify terrain points on mountains. 

However, this helps little in forested or mountainous areas where no or only few roads 

are paved with asphalt or same materials.  

 

3.5.2 Derivation of Vegetation Height Models 

The vegetation height model (VHM) is defined as the representation of penetrable 

vegetation (such as trees and bushes) and related properties such as height values (Hu and 

Tao, 2003). Separate returns of a laser pulse can be digitized when the vertical profile of 
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an object has multiple parts (e.g., the highest and lowest parts) within the laser footprint 

in decimeter level (see Section A.1.1). Recording of multiple returns is useful especially 

in case of trees. In the off-leaf condition, the last return for each pulse may hit on the 

ground. The ability of the laser to penetrate foliages makes it possible to distinguish 

vegetated areas from non-penetrable solid surfaces such as pavements, buildings and 

even grasslands. The VHM is generated using four steps. 

 
(a) Rough VSM (green) overlaid on range image (red) 

 

 
(b) Refined VSM (green) overlaid on range image (red) 

 
Figure 3.8. Vegetation support models (Downtown Toronto) 

 N 

 N 
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- Rough height model. First, the Z value of each first-return point is replaced by the 

difference between its first-return and the last-return elevations, and the horizontal 

position of each point is taken from the first return. Then, the modified point 

cloud is transformed into an image. It should be noted that the grasslands have 

zero height. 

- Rough support model. The rough height model is segmented using dual height 

thresholds, which are determined according to a priori knowledge about the height 

ranges of the lowest bush and the tallest tree, respectively. An iterative selection 

method (see Section B.1.6) is used to adjust these thresholds. Only those pixels 

whose heights are between these two thresholds are considered to be candidate 

high vegetation. This produces a binary representation of vegetation points, called 

vegetation support model (VSM), in which 1-valued pixels indicate the presence 

of penetrable vegetation. In Figure 3.8a, a rough support model (green layer) is 

generated for downtown Toronto. 

- Refined support model. Because the footprint of a laser shot is in decimeter order 

when reaching the ground, multiple returns may happen at building walls and 

boundaries where elevations change very fast. In general, these flaw effects 

resulted from steep walls and complex roof structures of buildings appear as slim 

strips of 1 to 3 pixels wide (see green layer in Figure 3.8a). Morphological 

opening and closing operations (see Section B.1.3) are applied to eliminate these 

thin strips and tiny blocks that are possible speckles. The refined model is shown 

in Figure 3.8b (green layer). The DNM, if available, can be used to promptly 

discard points higher than the known tallest tree in the ROI. 

- Refined height model. Since last returns do not always hit on the ground surface in 

forested areas, and thus the tree heights are likely underestimated if only the first 

and last returns data are used. The height values of vegetation points in the rough 

height model can be refined by retrieving values from the subtraction between the 

first-return DSM and the derived DTM for those 1-valued pixels in the refined 

support model (see Figure C.4 for an instance of Whitecourt area). 
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 Lidar range and intensity data  
(Single- or multi-return) 

DTM refinement 
• Correct problematic areas  
• Smooth non-terrain undulations 

Lidar image processing 
• Rasterize point clouds 
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Hierarchical terrain recovery algorithm 
• Generate image pyramid 
• Recover bare surface hierarchically 

- Establish smooth condition 
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- Interpolate at non-terrain points 
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Figure 3.9. Flowchart of the hierarchical 
terrain recovery algorithm 

Last-return 
range image 

Road point 
identification 

VSM 
derivation 

Tree points 

First-return 
intensity image 

Bi-return range 
data/images 

Road points 

DNM=DSM-DTM 



· 61 · 

3.5.3 The Modified Methodology 

The workflow of the modified methodology for multi-return lidar data is illustrated in 

Figure 3.9, where the bold arrows give the workflow of the methodology using single-

return data (see Section 3.2).  

 

The HTRA is applied to generate DTM first using the (last-return) range image. It 

generates an image pyramid with varying detail levels from the raw range image by 

selecting local lowest points in image grids, and then recovers the bare surface 

hierarchically from the top level to the bottom level.  

 

At each level, the terrain relief and slope information is used to establish the smooth 

condition, which determines the height thresholds used for screening out non-terrain 

points. In general, the relief threshold is usually selected when processing flat and 

mountainous areas; while the slope threshold is likely selected when processing building 

roof points and tree points. Part of non-terrain points can be identified rapidly when the 

VSM is available. The algorithm interpolates at these non-terrain points by fitting a first- 

or second-order polynomial using surrounding terrain points, including road points and 

other topographic points. More terrain points have to be identified using surface 

geometry if the road points are not enough at, for example, mountainous areas.  

 

The processing is repeated until the bottom level is reached, and the bottom-level image 

is an initial estimation to the expected DTM. The VSM provides reliable evidence for 

reporting the presence of non-terrain points when processing the bottom level. For 

example, the parameter c2 can be tuned automatically in windows containing tree and 

road points, so that the tree points must be classified as non-terrain ones and the road 

points must be classified as terrain points under the smooth condition.  

 

Finally, the initial DTM is refined by correcting problematic areas and by moderate 

smoothing. An estimate of the DNM is the subtraction between the raw range image and 

the final DTM, and will be used for extraction of roads and buildings in next chapters. 

 



· 62 · 

Table 3.1. Information about five lidar datasets 

Properties Village Osaka Toronto Whitecourt  Santa Barbara 

Area type Residential Suburban Urban Forested  Mountainous 

Laser returns First Last First & last First & last  First 

Point number nROI (x106) 0.15 0.63 10.6 20.9 11.3 

Coverage area AROI (km2) 0.054 0.5 3.8 30 26 

Raw [158.68, 206.72] [-20.34, 90.97] [-399.78, 398.41] [733.11, 970.19] [0.31, 148.51] DSM Elevation 

range (m) Filtered [167.25, 205.61] [30.65, 86.85] [21.02, 343.51] [733.54, 967.8] [0.42, 147.72] 

Raw [1, 116] [0, 6420] [0, 8160]  [1, 640] [0, 297.6] Intensity range 

Filtered [5, 86] [0, 384] [2, 199] [2, 146] [0, 163.2] 

 

Table 3.2. Information related with DTM generation 

Quantities Village Osaka Toronto Whitecourt Santa Barbara 

GSD sc (m) 0.6 1 1 1.2 1.6 

Image size (rows x columns) 315 x 474 744 x 656 2811 x 2292 3918 x 5318 3674 x 6971 

Window size sw (pixels) 28 99 120 100 75 

Pyramid scale k 6 5 5 5 5 

Pyramid levels n 3 4 4 4 4 

DTM elevation range (m) [167.3, 181.45] [30.65, 46.36] [21.07, 71.78] [733.54, 943.34] [0.42, 145.56] 

Maximal DNM height (m) 26.7 47.3 301.52 26.73 58.39 
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3.6 EXPERIMENTS AND EVALUATION 

 

To provide a comprehensive evaluation of the performance of the HTRA, I test five lidar 

datasets acquired at residential, suburban, urban, forested or mountainous areas, 

respectively. Table 3.1 gives the major information about these datasets. 

 

3.6.1 DTM Generation Results 

In Table 3.2, information related with the DTM generation procedure and the results is 

given for these five lidar datasets. In Figures 3.10 to 3.14, the contour lines are generated 

from the derived DTMs, and the profiles are delineated along the positions as indicated 

by dotted lines on original datasets showing the elevations in both the lidar DSMs (red) 

and the derived DTMs (green).  

 
3.6.1.1 Village Site: Residential Area 

Dataset. This is a sample data file provided with TerraSolid’s TerraScan software 

(TerraSolid, 2001). In the village, the houses are larger but lower than the trees, and the 

buildings and trees are loosely sited. So this scene has low complexity. The data file is in 

simple ASCII format with three ground coordinates and intensity values for a single 

return. In Figure 3.10a, the raw lidar points have been classified into three classes, 

including bare surface (brown), building (red) and tree (green).  

 

Results. Figure 3.10b shows the DTM with a three-time exaggeration in vertical 

direction. The light gray indicates the low elevation. The result looks good since the 

terrain elevations change gently in the whole study area. The maximum height of 26.7 m 

in the DNM occurs at a cluster of dense trees within the circle in Figure 3.10a, and this 

height may be the height of the tallest treetop.  

 

3.6.1.2 Osaka City: Suburban and Urban Area 

Dataset. The Osaka data was acquired in Osaka, Japan by Optech in 2002. There are 

bridges and viaducts. This scene is relatively flat. In the urban region, there are many 

small to large buildings, but few trees. The dataset is composed of 4 strips, and the 
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overlap between two adjacent strips is about 40%. Some points with extremely large 

intensity values are discarded during pre-processing. The lidar points are rendered by 

elevation as shown in Figure 3.11a, where the white strips in the scene are water areas. 

 

Results. Figure 3.11b shows the generated DTM with exaggeration of four times in 

vertical direction. The quality of the DTM is good. The bridges and viaducts are removed, 

and most water bodies are kept. The small terrain relief of the DTM indicates that the test 

field is very flat, but the terrain coverage appears more complex. The maximum height in 

the DNM is 47.3 m, and it occurs at one tall building within the ellipse in Figure 3.11a. 

 

3.6.1.3 Downtown Toronto: Urban Area 

Dataset. The bi-return lidar dataset was collected at downtown Toronto using ALTM 

3020 in early 2002. This is a typical urban scene. This study area has relatively gentle 

variations in elevation. It contains many big buildings that are larger and taller than 

surrounding trees, viaducts and cars on roads and parking lots. The dataset consists of six 

strips all along the north-south direction. In total, about 66 thousands of blunder points 

are eliminated during pre-processing. The filtered lidar points rendered by elevation are 

shown in Figure 3.12a, where the building enclosed in the circle is First Canadian Place 6. 

The Map Library 7 at York University provided four digital aerial color DOQs and a 

hardcopy of the topographic map (in the scale of 1:50,000) covering the study area. The 

index number of the map is 30M/11 in the National Topographic System. 

 

Results. The largest window size is 306 m when using the area and perimeter properties 

because multiple large buildings are melt together. To reveal the terrain details, the DTM 

is visualized in 3-D with 5-meter contours in Figure 3.12b. The buildings, trees and cars 

are all removed correctly. The overall terrain surface is like a sloped plane, and the 

elevation is reduced gradually from 72 m at north to 21 m at south. The pits are found to 

be water pools or subway entrances by an investigation in field. The maximum height of 

301.52 m is located on the roof of the First Canadian Place. 

                                                 
6 First Canadian Place is 298 m high at its roof and reaches 355 m with a structure on its roof. It has been 
the tallest building in Canada since 1975 (see URL: http://www.skyscrapers.com/re/en/wm/bu/112676/). 
7 Ms. Trudy Bodak (Email: tbodak@yorku.ca) is the Librarian from Map Library, York University. 
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3.6.1.4 Whitecourt: Forested and Mountainous Area 

Dataset. The bi-return lidar data was collected in August 2002 along a pipeline near 

Whitecourt, Alberta, using an ALTM 2050. This is a typical forested area with large 

terrain relief. Dense trees cover most area since the data was acquired in summer. The 

pipeline runs SE to NW through the centre of the region with large elevation changes. A 

ridge crosses the northwest portion. A patchwork of clear-cut was done to remove trees 

within about 42 meters along both sides of the pipeline’s route. In Figure 3.13a, the lidar 

points are rendered by elevation. The Map Library 7 provided the hardcopies of the two 

adjoining topographic maps (in the scale of 1:50,000) covering the study area. Their 

index numbers are 83J4 and 83J3 in the National Topographic System. 

 

Results. Figure 3.13b shows the generated DTM that is exaggerated two times in 

elevation. The lighter the gray, the lower is the elevation. The middle portion is highest, 

and this results in elevation difference along the pipeline route. To successfully remove 

tree points close to the terrain surface, the parameter c2 is tuned to be 0.6.  

 

3.6.1.5 Santa Barbara Airport: Mountainous, Suburban and Forested Area 

Dataset. This area has buildings, houses and dense forests. In between trees, the houses 

are smaller and lower. In the center, the airport has three runways and very large waiting 

rooms. At the north part, there are hills with large undulations. The lidar dataset has two 

parts, between which there is a void narrow strip about five meters wide. The point 

density at the upper portion is larger than that at the middle portion, and the bottom 

portion is water body. Figure 3.14a shows the lidar points rendered by elevation. An 

aerial color DOQ with a GSD of 1 m is also available, and covers the whole region.  

 

Results. The generated DTM is shown in Figure 3.14b, where the light gray indicates the 

low elevation. The void stripe is filled. Buildings and forests are removed correctly, and 

the mountains at the north portion are successfully retained. At the highest mountain peak 

as enclosed in the circle in Figure 3.14a, the peak elevation in the DTM is 145.56 m, and 

is lower by 2.16 m compared to the true peak elevation of 147.72 m in the DSM. 
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(a) Raw lidar data 

 

 
(b) The DTM with 1-m contours 

 

 
 

Figure 3.10. Village site (residential area) 
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 (a) Raw lidar data 

 

 
(b) The DTM with 2-m contours 

 

 

 
 

Figure 3.11. Osaka city (suburban and urban area) 
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(a) Filtered lidar data 

 

 
(b) The DTM with 5-m contours 

 

 

 
 

Figure 3.12. Downtown Toronto (urban area) 
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 (a) Raw lidar data 

 

 
(b) The DTM with 10-m contours 

 

 

 
 

Figure 3.13. Whitecourt pipeline (forested and mountainous area) 
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 (a) Raw lidar data 

 

 
(b) The DTM with 10-m contours 

 

 

 
 

Figure 3.14. Santa Barbara airport (mountainous, suburban and forested area) 
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3.6.2 Quality Assessment 

The quality of the experimental results and the performance of the HTRA are assessed 

from following four aspects: 

 

Profile analysis 

 

It is observed that the derived DTMs are close to the expected bare Earth surfaces as can 

be visually inferred from corresponding DSMs in Figures 3.10 to 3.14. I will make a 

closer exam by analyzing a series of representative profiles. 

 

• Village site (Figure 3.10). The profile has gentle terrain relief, and crosses buildings, 

topsoil, roads, trees and bushes.  

- The DTM runs smoothly on roads and topsoil, and under buildings and trees. 

Buildings and trees in the scene are all removed correctly. 

- The DTM patches interpolated under buildings and trees bridge their surrounding 

roads and topsoil smoothly since the bare surface has little elevation variations.  

- The DTM is slightly under-estimated at some building and bush surroundings, is 

perfectly estimated at tree surroundings, on roads and on topsoil. 

 

• Osaka city (Figure 3.11). The first profile crosses buildings, roads and trees in the 

scene center, and the second profile crosses buildings, trees, viaducts and waterways.  

- In both profiles, the terrain relief is small. Buildings and trees are all removed 

correctly, and the interpolated patches under buildings and trees bridge their 

surroundings well. 

- In both profiles, the DTM is under-estimated up to about 0.5 m as enclosed in the 

ellipsoids. This is because some road points are not identified correctly when 

classifying intensity data and are discarded as non-terrain points. Then their 

elevations are interpolated from lower surroundings. 

- In the second profile, the wide waterway is kept correctly, but the narrow one is 

filled up. But if the void areas are not filled to some gap, the occluded building 

surroundings cannot be recovered. 
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• Downtown Toronto (Figure 3.12). The first profile crosses low to tall buildings, roads, 

and trees horizontally, and the second profile crosses low to tall buildings, trees, and 

viaducts vertically in the scene center. 

- In both profiles, buildings and trees are all removed correctly, and the interpolated 

patches under buildings and trees bridge their surrounding well in most segments. 

- In both profiles, the DTM is over-estimated up to about 0.5 m as enclosed in the 

ellipsoids. The reason is that the outdoor parking lots beside are full of cars. 

- In both profiles, the DTM is under-estimated up to about 2 m under the building 

as enclosed in the rectangles. The reason is that some low points in those areas are 

not removed in the pre-processing step. In the second profile, this results in lower 

elevations partly due to the use of second-order polynomials. 

 

• Whitecourt (Figure 3.13). Both profiles have large elevation changes, crossing topsoil, 

dense trees and grasslands. This scene contains flat to mountainous areas. The last 

return may not hit on the ground under trees since the dataset was collected in 

summer when the foliage is most dense in a year. 

- In both profiles, the DTM runs on the topsoil perfectly, and the thin tree stripes 

enclosed in the ellipsoids are removed correctly. 

- In the first profile, the DTM runs smoothly from the summit down the flat region. 

- In the second profile, the elevation difference in the middle is about 27 m. I am 

not sure if the summit has been cut wrongly since trees may be taller than 27 m. 

 

• Santa Barbara airport (Figure 3.14). The first profile has large elevation changes 

crossing bare mountains, valleys, trees and buildings; the second profile crosses large 

buildings, trees, runways, waterways and waiting halls at the airport. 

- In the first profile, the fidelity of mountain ridges, valleys and slopes enclosed in 

the ellipsoids are retained well. This is due to the use of second-order polynomials 

when performing the interpolation. 

- In the first profile, the DTM runs closely under mountains. The summits and 

ridges enclosed in the rectangles are cut a lot up to about 2.5 m. This is because 
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the largest window size (i.e., 120 m) is too large, resulting in the difficulty to 

identify topographic points based on those local lowest points at discontinuities 

where elevations change abruptly.  

- In the second profile, the steep ramp enclosed in the circle is smoothed to some 

extent. The top edge is about 4 m lower than its observed elevation. To conquer 

this drawback, extra data such breaklines have to be used to limit the interpolation 

to either side.  

- In the second profile, the DTM is over-estimated at the airport waiting halls as 

enclosed in the rectangle. The size in any dimension of the waiting halls is larger 

than 120 m. The result is that the roof points in its middle are treated as terrain 

points at the top level of the pyramid, and are kept during the whole procedure.  

* One way to solve this problem is to increase the largest window size to 200 m. 

but this will result in another drawback occurred in the first profile. That is, 

the mountains will be under-estimated more severely. 

* Another way is to divide this scene into multiple overlapping sections so that 

each section is a scene with lower complexity with homogenous terrain and 

coverage types. Then different largest window sizes are used for different 

scenes. But this method has not been evaluated. 

 

Contour analysis 

 

As shown in Figures 3.10 to 3.14, the derived contours are smoother in areas with fewer 

buildings and other constructions, and have more undesirable isolations and depressions 

especially at built-up areas in cities. 

 

Table 3.3. Geoid heights relative to WGS84 ellipsoid (downtown Toronto) 

Point number 1 2 3 4 5 

Latitude (North) 43o 39.8’ 43o 39.8’ 43o 38.3’ 43o 38.3’ 43o 39.05’ 

Longitude (West) 79o 23.6’ 79o 23.2’ 79o 23.2’ 79o 23.6’ 79o 23.4’ 

Geoid height (m) -36.438 -36.439 -36.458 -36.457 -36.449 
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       (a) The reference contours in the map       (b) The contours generated from the DTM 

 
Figure 3.15. The reference and generated contour lines (downtown Toronto) 

 N  N 

70 

80 

90 

100 

90 

80 
70 

100 

70 

80 

90 

100 

75 



· 75 · 
 

• Downtown Toronto. Figure 3.15a shows the topographic map produced from aerial 

photographs taken in 1980 and the dashed quadrangle enclosing the ROI. In the map, 

the elevations are in meters above mean sea level (MSL) referenced to North 

American Datum of 1927 (NAD27), and the contour lines have the interval of 10 m. 

But the elevations in the lidar dataset are referenced to WGS84 ellipsoid. First, I 

measured the geographic coordinates of the four corners and the center point of the 

ROI on the map, and used GPS·H 8 to calculate their geoid heights referenced to 

WGS84 ellipsoid (see Table 3.3). The accuracy of the calculated geoid heights is 5-

cm LE95 in the southern regions of Canada. The differences among these geoid 

heights are at centimeter level, and are significantly smaller than the contour interval. 

So I simply shifted all the grid points in the derived DTM vertically by subtracting 

the average geoid height (i.e., -36.4482 m) to convert the ellipsoidal elevations to 

heights above MSL. Then, contour lines in the interval of 10 m were generated for the 

shifted DTM (see Figure 3.15b). 

- At the heights of 80 m, 90 m and 100 m, the generated and reference contours are 

situated at close locations and represent similar trend of terrain relief overall with 

some differences.  

- There are unreasonable oscillations along the generated contours. They are 

situated in the six overlapping strips oriented in north-south direction, and show 

discrepancies in elevation. To reduce this effect, a supplemental block adjustment 

of lidar strips is needed. Also, the automated generation of contours cannot work 

better than the manual compilation in photogrammetry. 

- The reference contour at the height of 70 m as indicated by the arrow in Figure 

3.15a looks like a tripe and does not present in the generated ones. The contour at 

the height of 75 m was generated and shown in Figure 3.15b (also see Figure 

3.12b). It is observed that this auxiliary contour loses its way at the bottom. Two 

reasons result in this effect: 

                                                 
8 GPS·H is a height transformation package supplied by the Canadian Geodetic Survey Division. It allows 
GPS and DGPS users in Canada to convert NAD83 (CSRS98) or ITRF96 ellipsoidal heights to heights 
above mean sea level. WGS84 was compatible with NAD83 in the past, but has been redefined and it is 
now compatible with ITRF (URL: http://www.geod.nrcan.gc.ca/). 



· 76 · 
* Lidar points reflected from the neighboring viaducts/overpasses are removed 

as non-terrain points and the terrain surface under those objects were 

interpolated from points reflected from the surrounding objects.  

* The terrain along that strip is over-interpolated because the metro station 

therein is partly attached to ground as also can be observed from the right 

circle in the second profile in Figure 3.12. 

- The DTM has a few isolations and more artificial depressions. Most depression 

contours are at water pools (large depressions) and subway entrances (small 

depressions). This is because points lower than the feature surroundings are 

reflected and are not removed in the pre-processing step. 

- The generated contours at the bottom are due to water features in Ontario Lake. 

Many lidar points may be reflected from the boats parking in that region (by a 

field investigation), and thus present higher elevations. But these points cannot be 

reliably removed if the water boundaries are not used. 

 

Table 3.4. Geoid heights relative to WGS84 ellipsoid (Whitecourt) 

Point number 1 2 3 4 5 

Latitude (North) 54o 6.5’ 54o 7.5’ 54o 5.9’ 54o 4.9’ 54o 6.2’ 

Longitude (West) 115o 31.6’ 115o 30.6’ 115o 25.9’ 115o 24.9’ 115o 28.25’ 

Geoid height (m) -17.911 -17.942 -17.976 -17.978 -17.938 

 

• Whitecourt. In Figure 3.16a, the topographic map is mosaicked from the two 

adjoining maps (left: 83J4; right: 83J3), both of which were produced from aerial 

photographs taken in 1978, and the arrow indicates the boundary; the dashed 

quadrangle encloses the ROI. In the map, the elevations are in feet above MSL 

referenced to NAD27, and the interval of the contour lines is 50 feet. Similarly, I 

measured five points in the map (see Table 3.4), and shift the derived DTM vertically 

by subtracting the average geoid height (i.e., -17.949 m) to convert the ellipsoidal 

elevations to heights above MSL. Multiplied by 3.28, the heights in meters were 

converted to values in feet. Then, contour lines in the interval of 50 feet were 

generated for the shifted and scaled DTM (see Figure 3.16b). 
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(a) The reference contours in the map 

 

 
(b) The contours generated from the DTM 

 
Figure 3.16. The reference and generated contour lines (Whitecourt) 
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- The generated contours have similar shape but are smoother compared to the 

reference ones. Most of them are situated at positions close to their counterparts in 

the map. But the DTM is not good in geomorphological detail upon a close 

inspection. For example, the three contours at the height of 3000 feet are separate 

in the map, but are wrongly connected at places enclosed in the ellipsoids as 

shown in Figure 3.16b. There are three reasons: 

* The last return lidar points may not hit on the ground at densely wooded areas, 

thus losing information about some geomorphological structures. The result is 

that generated contours at those areas will likely lose their way. 

* Some important geomorphological structures (e.g., ditches and ridges) have 

been smoothed or even eliminated by the algorithm.  

* The reference contours produced from aerial photographs may be not very 

accurate or reliable especially at densely wooded areas since only a small 

number of ground points are visible on stereo pairs. Moreover, the ground 

may be covered with very dark shadows that prevent accurate measurements 

in the passive photogrammetry. 

- Along water streams and valleys, the generated contours present more similar 

shapes as their counterparts in the map because there are fewer trees grown along 

them as observed in Figure 3.13. 

 

Accuracy analysis 

 

I check the relative elevation differences between the raw range images and the derived 

DTMs at building surroundings, tree surroundings, mountains, roads, grasslands and 

other open areas. The checkpoints are selected with even distributions in the ROIs. The 

quality of the derived DTMs under buildings and trees can be checked by inferring from 

their surroundings. This is because the surroundings are used to interpolate the terrain 

surfaces under building and trees in my algorithm. If buildings and trees are not removed 

correctly, their surroundings are likely over-interpolated. The quality at bare areas, 

including mountains, wide roads, and open areas, will check the capability of retaining 

terrain details at bare surfaces.  
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These areas are located visually from the range and intensity images, and, if available, 

DOQs. The accuracy check is equivalent to measure the height values in DNMs. Table 

3.5 gives some statistics about the overall accuracy for above five datasets. The 

accuracies at building and tree surroundings are given in Table 3.6. The Whitecourt 

dataset is not included because it contains no buildings and it is difficult to visually 

discriminate if a checkpoint is beside a tree or not in dense forest. The accuracies at bare 

areas are better than –4.5-cm mean error and 10-cm Std in the first four datasets, and –8-

cm mean error and 11-cm Std in Santa Barbara dataset. 

 

Table 3.5. Overall accuracies for generated DTMs  

 Village Osaka Toronto Whitecourt Santa Barbara 

Check points 40 60 100 120 152 

Mean (cm) -2.2 -4.4 -1.8 -3.9 -7.9 

Std (cm) 5.3 7.9 9.9 7.6 10.9 

RMSE (cm) 5.8 9.1 10.1 8.6 13.4 

LE90 (cm) 9.9 15.7 18 13.5 23.2 

Worst error (cm) -17 -56 +50 -39 -253 

 

Table 3.6. Accuracies at building and tree surroundings 

 Village Osaka Toronto Santa Barbara 

Check points 8 21 32 20 

Mean (cm) -7.6 -8.5 -5.7 -8.3 

Std (cm) 10 11.5 14.6 12.4 

Worst error (cm) -17 -56 50 -69 

 

• The DTMs have good accuracies at feature surrounds and bare areas. The worst-case 

error, at the confidence level of 90%, is below 25 cm in the above five datasets. 

- The DTMs are slightly under-estimated in overall, but are under-estimated more 

severely at building and tree surroundings in most situations (except downtown 

Toronto dataset). The reason resulting in the under-estimation is that the smooth 
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condition has been configured to minimize Type II error and the final refinement 

also has removed all the possible over-estimations at checked areas. 

- The accuracies at bare areas are very close to the range resolution (i.e., 5 cm) in 

the first four datasets. It is believed that these errors are due to the smoothing of 

those detailed undulations on the bare terrain surfaces. 

- The accuracies at feature surroundings are inferior to those at bare areas in the 

first three datasets. This is reasonable since there are often many small structures 

and objects attached or detached to those features at their surroundings. 

- The accuracies are worst at mountain areas, and are –57.1-cm mean error and 

29.6-cm Std in Santa Barbara dataset. This has led to worse accuracies at bare 

areas than other datasets. The reason is that the mountain summits, ridges and 

steep ramps may be under-estimated a lot. 

 

• Some researchers reported the quality evaluation of derived DTMs. But they have 

used significantly smaller datasets. 

- Axelsson (2000) reported absolute and relative accuracies for two datasets. It is 

repeated here that his algorithm is implemented in TerraScan TM - the most widely 

used COTS software for lidar data processing. 

* The absolute accuracies are 19-cm mean error and 8-cm Std for dense bushes 

in the Kymlinge dataset (with 216k points in total). 

* The relative accuracies are 2-cm mean error and 6-cm Std for flat areas, and 

are 14-cm mean error and 3-cm Std for mixed areas (with bushes, roads and 

paved areas) in Arlanda airport dataset (with 273k points). 

* The relative accuracies are 9-cm mean error for road surface, and 2.6-cm 

mean error for dense forested areas in the Kymlinge dataset. 

- My results are close to the relative accuracies reported by Axelsson (2000) in 

overall, and the performance changes with respect to different areas.  

* My algorithm often under-estimates the bare Earth since the mean errors are 

negative, while Axelsson’s always over-estimates it resulting positive errors. 

* My algorithm obtains slightly less mean errors than Axelsson’s at road 

surfaces (-2.2 cm vs. 9 cm) and mixed areas (-2.2 cm to –7.9 cm vs. 14 cm), 
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but obtains slightly worse accuracies at flat areas (-4.4 cm vs. 2 cm) and 

densely forested areas (-3.9 cm vs. 2.6 cm). 

* My algorithm has larger standard deviations than Axelsson’s at flat areas (7.9 

cm vs. 6 cm), mixed areas (5.3 cm to 10.9 cm vs. 3 cm). This shows that the 

algorithm needs an improvement to work more consistently. 

- No experimental results of lidar-derived DTMs have been reported for lidar 

datasets acquired at mountainous areas. But in Wang et al. (2001), the DTM 

derived from the IfSAR data with a 5-m GSD, which is acquired at Morrison, 

Alberta is compared with the bare surface that is manually edited from a lidar 

dataset covering the same region. The vertical accuracy is about 2.2-m RMSE at 

mountainous areas. My results are better since the vertical accuracy is 0.64-m 

RMSE at mountainous areas in Santa Barbara dataset. But it is should be noted 

that the vertical accuracy is 1-m RMSE and 0.2-m RMSE, respectively in the 

IfSAR and lidar datasets. 

 

Algorithm analysis 

 

The performance of the HTRA is subject to its component techniques and their efficient 

combination, and is analyzed based on the above qualitative and quantitative assessments. 

 

• My algorithm is suited to process complex scenes sampled in different densities under 

a uniform technical framework. No other algorithms have reported such a capability. 

- The testing datasets are comprehensive and are acquired at residential, urban, 

forested and mountainous areas, which contain different combinations of many 

typical terrain and coverage types. 

- The point density of these datasets changes from 0.43 to 2.8 points/m2. This 

shows that the algorithm is suited to process median- to high-density data. 

- The algorithm works well at feature surroundings and bare grounds. But the 

derived DTMs are under-estimated. A part of errors are due to two factors: the 

interpolation and smoothing operations at places, such as ridges, where 

discontinuities on the bare Earth occur; and the smoothing of detailed terrain 
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undulations. To avoid the smoothing along geomorphologic features, breaklines 

and spot heights from photogrammetry have to be introduced. 

- The last-return data is more preferable than the first return as the tests show that 

the former can be used to generate slightly better results at forested areas. 

- The algorithm has to be improved to reliably avoid eliminating lidar points that 

are situated on steep embankments, slopes and cliffs to retain the 

geomorphological detail. One way to automate this processing is to incorporate 

ancillary data such as breaklines and/or spot heights into the DTM generation 

workflow. But this has not been implemented. 

- If a dataset contains many blunders such as very low or high points and unreliable 

points reflected from water features, the algorithm cannot produce reliable results 

at neighboring regions. Therefore, the preprocessing needs more improvements, 

for example, using water boundaries to remove reflections from water features. 

 

• The algorithm effectively combines multiple component techniques: the hierarchical 

approach, smooth condition, data fusion, and interpolation methods. 

- The hierarchical approach enables the gradual addition of denser terrain points 

and the recursive refinement of knowledge about ground coverage since it is only 

possible to find a part of terrain points at a first glance. Therefore, the algorithm is 

robust and efficient, and can be adapted to complex contents in one scene. 

- The smooth condition intelligently integrates both terrain relief and slope 

information in a single formula. Therefore, the algorithm can intelligently 

distinguish between terrain and non-terrain points in a single pass, and also 

minimizes the overall misclassification. It also adaptively changes with different 

sampling densities and different resolutions at different pyramid levels. The 

rational is that larger thresholds can minimize Type I error when less feature 

details are sampled and more terrain points with relatively lower elevations have 

been identified.  

- A typical scene often contains trees and/or roads. The use of multi-return range 

data can reliably identify tree points, and intensity data can be used to identify 

road points with the aid of evidences in height, surface geometry and solidness. 
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This has three advantages: the reliable deletion of non-terrain points in the VSM, 

the addition of denser terrain points, and the adaptive adjustment of the threshold 

parameters in the smooth condition. Therefore, the algorithm can produce good 

results for scenes with trees and/or roads using multi-return data. 

- First- or second-order bivariate polynomials can approximate natural terrain 

facets and have an additional function of moderate smoothing. The identification 

of denser topographic points makes the interpolated surfaces keeping the fidelity 

of natural terrain especially in mountainous areas. But first-order polynomials are 

more stable than second-order ones. 

 

• The algorithm is based on a hypothesis of finding initial terrain points. That is, lowest 

points at the top level of the pyramid are assumed to be on the bare Earth.  

- The use of local lowest points as the first set of terrain points may result in Type I 

error at terrain discontinuities, which may make the bare Earth under-estimated. 

The later interpolation and smoothing operations remove some terrain details such 

as road curbs. 

- This hypothesis may fail if the above assumption is not fully satisfied in the 

following two conditions. 

* The largest window size (i.e., the grid size at the top level of the pyramid) is 

smaller than the smaller dimension of some object in the scene. In this 

situation, Type II error will be very severe near those objects since some 

object points are wrongly accepted as terrain points in the coarse DTM, and 

this error cannot be recognized in subsequent processing steps. This failure 

can be eliminated if the largest window size is increased appropriately to be 

able to see on the terrain at any grid of the top level. 

* At densely forested areas, lidar beams seldom penetrate the foliages and thus 

cannot hit on the terrain surface. In this situation, the algorithm has no way to 

accurately estimate or predicate the bare Earth surface beneath the tree 

canopies, and always produce an over-estimated DTM. It is recommended that 

the data acquisition be done in off-leaf condition for forested areas. 
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3.7 SUMMARY 

 

I developed the HTRA to generate DTMs for single- or multi-return range and intensity 

data. The algorithm can intelligently discriminate between terrain and non-terrain points 

for complex scenes, and has been tested using multiple median- and high-resolution lidar 

datasets. The results show that the non-terrain objects are removed reliably while 

retaining most terrain details on generated DTMs.  

 

I use a hybrid data structure that relies on the grid format. After filtering out the blunders 

with odd elevation or intensity values, the scattered 3-D points are transformed into grid-

based range and intensity images by selecting the lowest point in each grid. Then, the 

HTRA is applied to generate DTMs using last-return range image. It applies the 

hierarchical strategy two times to estimate a high-quality terrain surface from lidar data 

with varying scene complexities. First, a rough DTM is obtained by generating the image 

pyramid bottom up with local minima selected. Second, the rough DTM is refined top 

down by identifying dense terrain points. Road points are identified by using multiple 

conditions, and vegetation points are discarded reliably using multi-return range data. 

The information about vegetation and roads can be used to adaptively adjust the 

parameters in the smooth condition so that one formula can be more suited to process 

different coverage and terrain types. The terrain elevation at a non-terrain point is 

interpolated using surrounding terrain points. 
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CHAPTER FOUR  

ROAD EXTRACTION 

 

Road extraction is one of the challenging tasks in digital photogrammetry and remote 

sensing. In this chapter, an approach is developed to automatically extract roads 

especially in urban areas using lidar data. Section 4.2 briefly describes the lidar dataset 

and related processing. The detection of road ribbons is discussed in Section 4.3. The 

reconstruction of grid road networks is discussed in Section 4.4. In Section 4.5, I evaluate 

the quality of results, and evaluate the performance of the method. 

 

4.1 INTRODUCTION 

 

Roads are critical components of the infrastructure. The correct and accurate information 

about their location, width and topology is important for various applications that support 

urban planning, traffic control, emergency response, and forest fragmentation models. 

The road information is usually stored in GIS, and is updated periodically, about every 1 

to 5 years. Traditionally, road networks are digitized from ortho-photos and topographic 

maps manually or semi-automatically, or surveyed in site during engineering projects. 

This is time-consuming and expensive since extensive human labor is needed. The most 

used 2-D images also lack direct 3-D information. The increased demand for rapid and 

affordable production of road networks has triggered more research effort in exploiting 

new data sources especially when lidar and IfSAR data have lower pricing.  

 

As reviewed in Sections 1.3 and 2.3, many algorithms have been developed for road 

extraction during the last three decades 4. I address this task from two aspects: 

 

• The detection of roads using lidar data. Researchers have investigated the extraction 

of roads using lidar data and/or ancillary imagery (Hofmann 2001; Song et al., 2002; 

Alharthy and Bethel, 2003). Roads are connected ribbons, which have certain width, 

are covered by homogeneous materials and are attached to the natural terrain. Roads 
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often have stable reflectance property and low heights in the DNM, are in general 

very smooth, and are separated by distinct patches in either reflectivity (e.g., 

vegetation) or height (e.g., buildings) relative to the bare surface (Hu and Tao, 2003). 

- Lidar range data can be used to improve the analysis of image data for detecting 

roads in urban areas and help detect the objects covered by shadows (Hofmann, 

2001). But this method requires that the urban areas be relatively flat. This 

drawback can be eliminated by using DNMs in my algorithm (see Section 3.4.3). 

- The relative separations between ground features (i.e., asphalt road, grass, 

building and tree) have been compared using intensity data. It is found that the 

separabilities are very high for road vs. grass and road vs. tree (Song et al., 2002). 

 

• The modeling of 3-D grid road networks (GRNs). In many cities, road networks are 

arranged in a grid style in urban areas (Price, 1999; Hu and Tao, 2003). These GRNs 

are mainly composed of parallel and orthogonal straight roads with respect to the 

main orientation of the network. This simple geometry and topology constraint 

among grid streets may be used for road network reconstruction. 

- Most algorithms extract 2-D free-form curvilinear roads, and are quite different in 

nature due to the differences in data sources, assumptions about road models and 

human interaction (Laptev, 1997, Park and Saleh, 2001). 

- The 2-D roads detected using lidar data are represented as rough centerlines (Hu 

and Tao, 2003) or binary images (Alharthy and Bethel, 2003), which have very 

low quality and cannot be processed efficiently in GIS. 

- A local grid constraint is applied to reconstruct 2-D street grids in Price (1999). 

But this method needs to manually select an initial seed intersection to provide the 

size and orientation of the GRN, and also assumes that road crossings be junctions 

of road segments of approximately constant width and height. My algorithm will 

achieve full automation by developing a global grid constraint. 

 

In this chapter, I proposed automated approaches to detect road ribbons for complex 

scenes and reconstruct 3-D GRNs in built-up areas using multi-return intensity and range 

data. My method neither assumes a flat terrain, nor constant road width and height. First, 
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the range data is used to generate the DNM that provides height data. Then road ribbons 

are detected by a classification using intensity and height data. Finally the GRN is 

expressed by a 3-D grid road model (GRM) by detecting straight roads. 

 

4.2 DATA ACQUISITION AND PROCESSING 

 

4.2.1 Study Area 

This research focuses on downtown Toronto as a case study area for 3-D road extraction. 

In early 2002, Optech completed a flight mission of acquiring lidar data of Toronto urban 

 
(a) The lidar DSM draped by an orthoimage (north to south looking) 

 

  
(b) Intensity data                    (c) Height data (the DNM) 

 
Figure 4.1. Lidar dataset (Downtown Toronto) 

First Canadian Place 

 N  N 



· 88 · 

area using its ALTM 3020. The dataset provided is around the downtown region. Figure 

4.1a shows an airscape of the lidar DSM draped by an orthoimage. The roads in the study 

area are coated with asphalt with pebbles or concrete. The first and last returns lidar range 

and intensity data were collected. The dataset consists of six strips each with about 1.75 

million bi-return points and a density of 1.1 point/m2. The overlap between two adjacent 

strips is about 40%. All the strips are combined into one data file containing about 10.6 

million points. Table 4.1a lists the ranges of the raw elevation and intensity values.  

 

A part of buildings and the complete road network were surveyed in field and delineated 

in 2-D. The Map Library at York University provided the DLGs and four aerial color 

DOQs with a 0.5-m GSD, which cover the study area. These photographs were flown in 

April 1999, and have a nominal scale of 1:20,000. Some road segments that are clearly 

discernible in the DOQs but not contained in the DLGs have been digitized manually. 

 

Table 4.1. Information of the lidar dataset (Downtown Toronto) 

 
Number of 

points 

Laser 

return 

Elevation range 

(meters) 

Intensity 

range 

Last-return [-399.78, 398.41] [1, 8160] 
(a) 

Raw 

data 
10,666,043 

First-return [-399.72, 398.63] [0, 8160] 

Last-return [20.04, 344.2] [1, 288] 
(b) 

Filtered 

data 
10,632,257 

First-return [20.6, 350.7] [0, 288] 

Last-return [21.02, 343.51] [2, 199] 
(c) 

Grid 

images 
2811 x 2292 

First-return [21.2, 349.99] [2, 199] 

 

4.2.2 Lidar Data Pre-processing 

The lidar data appears very noisy for both the intensity and the range data as revealed by 

their histograms. It is found that most points fall in significantly narrower intensity and 

elevation ranges than those counted for raw data. From the topographical map, I know 

that the minimum elevation should not be lower than 20-m ellipsoidal height in 

downtown Toronto.  
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In Figure 4.2, the odd points with too high (> 355 m) or low (< 20 m) elevations, or with 

too large intensity values (> 300) for either return of a pulse are identified, and then are 

analyzed in DOQs. The high points are all located on the roof of First Canadian Place 6 as 

annotated in Figure 4.1a. While the low points are located at a few spots beside which 

there are tall buildings. It is believed that these laser beams be reflected several times 

among the glasses of those buildings before they are detected, just like the multi-path 

effect of GPS. These specular reflections result in a longer travel time of the laser beam, 

and thus a lower elevation is calculated during post-flight processing. The large intensity 

points are distributed over the whole region mainly beside streets and in parking lots. 

This is due to the super reflectivity of power lines, metal structures of cars and 

constructions, or specular effects of glass. However, it is not sure which effect is most 

significant. These blunder points are screened out, including 781 high points, 268 low 

points and 32737 large intensity points. The new statistics for the filtered data are listed 

in Table 1b. Figure 3.12a shows a color rendering for the filtered dataset. 

 
 

Figure 4.2. Blunder lidar points 

 N 
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4.2.3 Generation of the DTM, VSM and DNM 

The first and last returns range and intensity data are used to generate the DTM using the 

HTRA. Specifying a 1-m GSD, intensity and range images are created spanning the study 

area. Some filters are used to further process these intensity and range images (see 

Section 3.2.2), and this deletes about 2,116 points with intensity values between 200 and 

300. Figure 4.1b shows the intensity image for the filtered first-return data. The statistics 

for these range and intensity images are listed in Table 1c. Then the HTRA is applied to 

generate the DTM using last-return range data and also to obtain the height data (i.e., the 

DNM, see Figure 4.1c). The bi-return range data is also used to generate the VSM (see 

the green layer in Figure 4.3). Many tree points are removed rapidly using the VSM.  

 

4.3 DETECTION OF ROAD RIBBONS 

 

In reflectivity, the spectral signature of asphalt roads significantly differs from vegetation 

and most construction materials. The reflectivity rate of asphalt with pebbles is 17% for 

the infrared laser as indicated in Table A.2, and no other major materials have a close 

reflectivity rate. In height, pavements are attached to the bare surface and appear as 

smooth ribbons separating the street blocks in a city. Thus roads can be roughly described 

by cross-connected ribbons that are of constant reflectance and very low height. To this 

end, I apply to intensity and height data a classification to detect road ribbons and road 

centerline models (RCMs) in urban areas.  

 

4.3.1 Road Ribbons Detection Using Intensity Data 

The intensity data is usually very noisy, and the moving objects (e.g., cars) and (white or 

yellow) lane markings on roads also result in intensity speckles. In intensity image, the 

asphalt roads appear as dark ribbons. Besides asphalt, concrete is another paving material. 

Concrete and asphalt have different but very close reflectivity (see Table A.2). In ideal 

condition, it is possible to distinguish one from another, and thus the road class would 

have two clusters. But, if these materials are used in roads, due to wearing of vehicle 

tires, black colored rubber particles begin to stick on their surface after the road become 

operational. As a result, concrete road surface gives similar kind of reflectance as asphalt 
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(Hazarika et al., 1999). This is also true for infrared laser as proved by the classification 

results (Song et al., 2002). I first depress the negative effect of noise using the adaptive 

smoothing algorithm (see Section B.1.5). 

 

If a point passes the test formulation in a decision function for the road class, then it will 

be a road pixel. To extract asphalt roads, the intensity image is segmented using dual 

thresholds enclosing the intensity range of the road class. A membership function is 

needed to calculate the degree to which a pixel has to meet to be classified as the road 

class, and is defined as  
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where lTi  and hTi  are the low and high thresholds, respectively; )( pI  is the intensity 

value of the point p; Si is the intensity scale (e.g., ( hTi - lTi )/2). Since the reflectivity of 

asphalt is fixed, a base threshold Ti can be determined from a priori reflectivity rate or in 

a supervised manner by selecting some road pixels in the intensity image. Then histogram 

analysis is used to calculate an allowable intensity range so that each threshold is the 

closest local minimum at either side of the base threshold (Papamarkos and Gatos, 1994). 

 

In Figure 4.3, the segmented results of the intensity image are displayed in the red layer 

(last-return) and the blue layer (first-return) with the VSM placed in the green layer. The 

low and high thresholds are 10.4 and 23.7, respectively. The magenta pixels indicate the 

presence of roads, and black pixels represent the background. I also tried the ISODATA 

classification in ERDAS IMAGINE 8.5 Classifier to verify this segmentation. The 

resulting intensity range for the pavements is [11.3, 21.6] 9. That is, the thresholding  

approach and the ISODATA classification get very close segmentation results.  
                                                 
9 In the unsupervised ISODATA classification, the number of classes is 10, the number of iterations is 8, 
the convergence threshold is 0.95, and the standard deviations are determined automatically. Then the 
generated signatures are analyzed with respect to selected road pixels to obtain the thresholds. 
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As illustrated in Figure 4.3, the last return may hit on the ground in forested areas and 

thus mis-classify some vegetation into pavements, while the first-return can correctly 

classify the vegetation. So the first-return intensity data is more suitable for the 

classification in forested areas. But the misclassification of the last return may be 

eliminated with the aid of the VSM. The small black holes surrounded by roads are 

usually trees in the streets. At the bottom, a part of water bodies are wrongly classified as 

roads. The misclassification in other areas is neglectable and also does not influence the 

detection of terrain points because those points in water areas represent close terrain 

elevations slightly smaller the bank. Because road ribbons form a network of connected 

components, the isolated building roofs covered by the same material will be removed 

rapidly when performing connected component analysis (see Section B.1.7) and deleting 

those objects whose areas are smaller than a large threshold (say 10000 m2). Although 

not all the pavements are detected and some misclassifications occur, the result is 

sufficient for serving as auxiliary information for detecting candidate road points. 

 
 

Figure 4.3. Road ribbons by classifying intensity data 

 N 
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4.3.2 Road Ribbons Detection Using Height Data 

It is a fact that roads are thin pavements over the terrain surface. Once the DNM is 

created, I can obtain a rough model for road ribbons by detecting those areas with low 

DNM heights. The membership function for the road class is defined as 
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where Th is the height threshold; )( pH  is value of the point p in the DNM; Sh is the 

height scale (e.g., 3 m). Figure 4.4a shows the segmented result with Th equal to 1.8 m 

that is calculated by an iterative selection method (see Section B.1.6). Figure 4.4b shows 

a result with isolated objects removed by a connected component analysis, and the area 

threshold is 20000 pixels. The road ribbons obtained this way are of unsatisfactory 

quality because open areas including grasslands are also included. So the results may be 

used as auxiliary information to refine the intensity based classification results. 

  
       (a) DNM Segmentation                             (b) Isolated objects removed 

 
Figure 4.4. Road ribbons by classifying the height data 

 N  N 
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4.3.3 Road Ribbons Detection Integrating Intensity and Height Data 

It can be easily found that integrating intensity and height data may produce more reliable 

road detection results. The workflow of the road detection procedure is illustrated in 

Figure 4.5. On the one hand, the intensity provides the spectral reflectivity, which can 

help identify most roads even if the objects coated by the same material are also included. 

On the other hand, the height data can help identify most non-building and non-forest 

areas even if those low open areas such as grasslands are also included. Using height 

information, the built-up areas with higher elevations than their surroundings will be 

safely removed; while using the (first-return) intensity information, the vegetated areas 

are easily removed. So it is possible to separate roads from trees, buildings and grasslands 

with minimum misclassification when fusing the intensity and height data. In detail, 

compared to roads, grasslands have different intensity although they have low elevation, 

trees have different values in both intensity and height, and buildings have high structures 

with elevation jumps although they may be coated rainproof asphalt.  

 

The membership function for integrated road classification is a weighted sum of two  

Figure 4.5. Flowchart of the road 
detection algorithm 

DNM Intensity image 

Intensity 
membership 

Combined classification 

Road ribbons 

Height 
membership 

VSM 
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components given in Equations 4.1 and 4.2, and is defined as  

 

hHiIIH wpRCwpRCpRC ⋅+⋅= )()()( , w.r.t.  1=+ hi ww      (4.3) 

 

where iw  and hw  are weights for intensity and height information, respectively. However, 

parking lots are still kept because of same reflectance and low heights as roads, and 

bridges and viaducts are removed because of their large heights. In Figure 4.6, the 

classification results are placed in the red layer (last-return) and blue layer (first-return) 

with the VSM in the green layer. It is observed that only neglectable differences exist 

because the tall vegetation areas from classifying the last-return intensity have been 

removed using the height information from the DNM.  

 

The segmented results are further processed to produce a clean shape. First, the initial 

road ribbons are refined by subtracting the VSM (see Section 3.5) if the classification is 

 
 

Figure 4.6. Road ribbons by classifying  
both intensity and height data 

 N 
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performed on the last-return intensity, and this step is skipped when using the first-return 

intensity. Next, the objects not connected to the road ribbons are deleted. This is to label 

connected components in the road image and to clean small objects (e.g., < 10000 pixels). 

Finally, the morphological opening and closing operations are applied on the image. The 

effects of these operations are to isolate the buildings weakly connected to road ribbons 

and to fill small void spots in the middle of roads due to the disturbance of trees. Again, 

the isolated blocks are removed by connected component analysis.  

 

As shown in Figure 4.7, the final roads (green layer) match the road structures in the 

DOQ (red layer) well at the upper part since the ribbons are correctly overlaid on most 

 
 

Figure 4.7. Final road ribbons overlaid on the DOQ 

Main road 

(631752, 
4833329) 

(630320, 
4833009) 

(629462, 
4835362) 

(630893, 
4835820)  N 
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road stripes. But at the lower part, some water regions are still wrongly classified as roads, 

and outdoor parking lots connected with the roads are kept yet. More results about the 

detection of road ribbons are illustrated in Figure 3.7 (Village site) and Figure C.1 (Santa 

Barbara airport). Extra information can be derived about the study area from these road 

ribbons. For example, the area covered by the road class (including roads and parking lots) 

is 1.05 km2, which is 27.9% of the study area (about 3.76 km2) enclosed by the dashed 

quadrangle in Figure 4.7. This indicates a dense road construction in downtown.  

 

Table 4.2. Number of road pixels during road classification 

Figure 4.3 4.4b 4.6 4.7 4.8a 

Number 1662220 2058315 1195092 1050172 84601 

 

4.3.4 Rough Road Network Generation 

The road ribbons give a representation about the layout of pavements, and cannot well 

delineate the road network. The results also cannot be efficiently processed in GIS. A 

rough description of road centerlines (see Figure 4.8a) is obtained by thinning (see 

  
    (a) Thinned road ribbons         (b) Highlighted nodes  

 
Figure 4.8. Rough road centerlines  

 N  N 
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Section B.1.8) these road ribbons. This road centerline model (RCM) will reduce 

computational burden and avoid confusion afterwards. The road crossings having more 

than three 8-neighbors are highlighted in Figures 4.8b. However, such a RCM is 

geometrically inaccurate and cartographically unusable. Table 4.2 shows the number of 

road pixels obtained during the road classification procedure.  

 

4.4 RECONSTRUCTION OF GRID ROAD NETWORKS 

 

To reconstruct grid streets automatically from the RCM, a novel procedure has been 

developed. First, a rough GRM composing of all the possible road primitives (i.e., road 

segments and crossings) is generated by applying the global grid constraint. Then, a 

verification processing is deployed to validate segments and form the final GRM.  

 

4.4.1 Sequential Hough Transformation 

After image pixels are transformed to Hough space using the 2-D HT (see Section 

B.1.12), lines can be found by detecting peaks in the parameter domain. The coordinates 

),( yx  of the intersection of two non-parallel lines can be calculated by  
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where ),( 11 θρ  and ),( 22 θρ  are parameters of the two Hough lines. In conventional 

Hough transformation, the search of the second maximal position is problematic since we 

do not know how to perfectly remove the neighbors of the first peak in Hough space. 

Zhang and Burkhardt (2000) proposed a sequential grouping method to form lines from 

edge points. The main idea is to find and delete the lines one by one. First, from the 

position of the global peak, the points belong to that line can be grouped. Then those 

points that are grouped from this peak are deleted in both Hough space and image space. 

This inverse Hough operation eliminates the contribution of the points belonging to the 
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found line; thus we can reliably find the next global peak from remaining points. This 

processing is repeated until all the lines are detected. This sequential HT (SHT) may be 

enhanced by processing oriented pixels instead of pixel positions only to allow for more 

rigorous grouping for complex pattern recognition as discussed in the next chapter. 

 

Table 4.3. Information about the grid road models 

Primitive 

type 
Properties (a) 

Rough 

GRM 
(b) 

Validated 

GRM 

Total number 1214 402 

Width range (m) [0, 52.7] [3.9, 52.7] 

Average width (m) 8.72 16.11 

Length range (m) [0.4, 203.9] [11.4, 203.9] 

Average / total length (m) 74.7 / 90726 118.4 / 47602 

Road 

segments 

Maximal slope (degrees) 14.25 8.28 

Total number 649 302 Road 

crossings Elevation range (m) [21.1, 67.7] [36.2, 64.5] 

 

4.4.2 Procedure for Reconstructing Grid Roads  

As can be observed from Figure 4.7, the road network is composed of cross-connected 

long streets in grid arrangement except the bottom part below the green dashed line, 

which is kept in the processing to test the robustness of the algorithm. When transforming 

the road centerlines to the Hough space, there will present a number of peaks mainly 

distributed inside two slim zones that are shifted by 90o in the Hough accumulator. Based 

on this fact, the GRM extraction procedure is divided into four steps:  

 

1. Find out all the main road lines guided by the global grid constraint. A 

constrained searching in Hough space is developed using the SHT.  

1.1. Detect the main street. The global peak ),( 00 θρ  indicates the main road of 

the whole network, and it accumulates to 2288 in Hough space. As pointed 

out by an arrow in Figure 4.7, the main angle 0θ  is 18o, and thus the main  
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orientation of the whole network is 108o. 

1.2. Detect all the lines parallel to the main street. This is to search local peaks 

within a slim buffer along the main angle. 

1.3. Detect all the lines perpendicular to the main street if the layout of the road 

network likes a chessboard. This will search local peaks within a buffer along 

the angle of o900 +θ  or o900 −θ , whichever is between 0o and 180o.  

1.4. Detect tilt roads that are neither parallel nor perpendicular to the main 

orientation by detecting remaining peaks. 

The street details are controlled by several thresholds, including the minimum 

road width, minimum road length and maximum angle tolerance. For example, 

more road segments will be detected if a small width threshold is used. 

2. Produce a rough GRM, which is expressed as connected road segments.  

2.1.The grid crossings are calculated by intersecting all the parallel lines with all 

the orthogonal lines via Equation 4.5, and road segments connecting each pair 

of immediately adjacent crossings are created.  

2.2. The tilt lines are also intersected with main lines having a convergence angle 

larger than 45o, and tilt road segments are created by connecting each pair of 

adjacent crossings on the tilt lines. 

2.3. Each road crossing is a node in the GRM, and is assigned with a counter that 

is the number of segments connected to it. 

Figure 4.9a shows such a GRM (red layer) generated using the road centerlines 

(white layer). The GRM is of good quality even if the bottom part does not shape 

well and adds some in-determinacy to the algorithm. Table 4.3a lists some 

statistics of the model. 

3. Validate the GRM. The road crossings and segments in the rough GRM are 

overlaid on the binary road ribbons. Each segment is verified separately.  

3.1. Early skipping. If the length of the segment is smaller than a threshold (e.g., 

10 m), then reduce the counters of its two associated nodes and jump to 

process the next one. 

3.2. Interpolate multiple (e.g., 3 to 9) vertices between the two nodes depending 

on its length, and verify if each node or inter-median vertices is valid. A  
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vertex is said valid if it has enough neighboring road pixels. 

- If most vertices are invalid, then this segment is discarded, the counters of 

both associated nodes are reduce by one, and jump to process next one. 

- If more than a half of vertices are valid, then it is labeled as a candidate 

road segment. 

3.3. Compute width for each candidate road segment.  

- At each inter-median vertex, a width is calculated by analyzing the 01 and 

10 patterns along the perpendicular direction.  

- The overall width is calculated as the alpha-trimmed mean of all the 

widths at those inter-median vertices.  

- A segment is discarded if its width is less than a threshold (e.g., 3 m). 

Figure 4.10 shows road segments for four cases (green), and their properties 

including width, length and slope. If a segment displaces the road centerline, 

then it is refined by a simple translation. 

3.4. Check the connectivity topology of road crossings. The counter of a node 

indicates its connectivity strength, and is processed as below. 

- If the counter of a node has been reduced to zero, then delete it.  

- If the counter of a node is equal to 2 and the two associated segments have 

same orientation, then merge the two segments and delete the node, or 

convert the node to an inter-mediate vertex of the merged segment.  

In Figure 4.9a, the numbers of the first class and the second class of nodes is 128 

and 219, respectively. The validated GRM (red layer) is shown in Figure 4.9b, 

and it fits those centerlines (white layer) well in most cases. Table 4.3b lists some 

statistics about the validated GRM. 

4. Output 3-D road network. The image coordinates of the nodes are transformed to 

coordinates in the UTM map projection coordinate system.  

4.1. Retrieve elevation for each node of the validated GRM from the derived 

DTM, and discard those falling in void areas of the lidar data. 

4.2. Compute the road slope. A segment becomes a polyline when inserting inter-

mediate vertices at places where the slope changes significantly. 
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    (a) The rough GRM                (b) The validated GRM 

 
Figure 4.9. The grid roads overlaid on the road centerlines 

 N  N 
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4.4.3 3-D Reconstruction Results 

Assuming a maximum road width of 60 m, an instance of the 3-D GRN of downtown 

Toronto is shown in Figure 4.11, where the road segments (blue lines) and road crossings 

(red crosses) are overlaid on the DOQ draped on the derived DTM. The roads are plotted 

according to their relative widths. The DTM is displayed at 50% transparency. The street 

blocks reconstructed using the sequential linking technique (see Section 5.6) are also 

depicted. In Figure 4.12, a part of another extraction instance assuming a maximum road 

width of 40 m is compared with the surveyed street elements in the DLGs. The extracted 

road crossings and segments are rendered in green and red, respectively. The surveyed 

road crossings and segments are rendered in cyan and blue, respectively. Compared with 

the surveyed vector data, the extraction results show the reliability of the method for 

reconstructing 3-D GRNs.

     
       (a) Width: 14.4 m / 16.2 m         (b) Width: 17 m 
             Length: 85.2 m / 85.5 m          Length: 80 m 
             Slope: 0.85o / 0.85o                Slope: 0.91o 

 

     
       (c) Width: 11 m               (d) Width: 13.5 m 

Length: 195 m          Length: 134.6 m 
Slope: 0.37o                Slope: 0.54o 

 
Figure 4.10. Four cases for road segments 
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Figure 4.11. 3-D road network overlaid on the DOQ draped on the DTM 

N 

 
 

Figure 4.12. The extracted roads and the reference map 

 N 
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4.5 RESULTS EVALUATION 

 

The quality of the extracted roads and the performance of the proposed algorithms are 

evaluated for the two major works:  

 

The detection of road ribbons 

 

This algorithm has been tested using datasets acquired at residential (Village site), urban 

(downtown Toronto), mountainous, suburban and forested (Santa Barbara airport) areas.  

 

• The integration of both the radiometry property of intensity data and the height 

information of the DNM is highly feasible in reducing the misclassification of the 

road class as shown in Figures 3.7, 4.7 and C.1. 

- The road ribbons match the actual roads well as found by overlaying them in 

DOQs or lidar images and comparing them with corresponding road patterns. 

- The first-return intensity data is more suited to characterize the road class to avoid 

the misclassification of some vegetated areas into roads since the last return may 

hit on the ground under trees (see Figure 4.3). 

- The classification results using the last-return intensity data can be refined by 

subtracting the VSM derived from multi-return range data, while the classification 

results using the first-return intensity data do not need this refinement since 

vegetation has different reflection rates than asphalt (see Figure 4.3). 

 

• The resulting road ribbons are not perfectly complete due to some classification errors 

(see Figures 3.7, 4.7 and C.1).  

- Some roads are newly paved with concrete that has a larger although close 

reflection rate than asphalt. This can be solved by human interaction to determine 

a slightly wider intensity range for the road class if the road situations are known.  

- The bridges and viaducts are not detected because they have large heights. This 

needs ancillary data to solve this problem.  

- In the situation where the roads are coated with materials other than asphalt, the  
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reflection properties of those materials in the intensity data should be analyzed in 

the same way as done for asphalt. 

 

• The resulting road ribbons contain non-road areas, including outdoor parking lots and 

some water areas (see Figures 4.7 and C.1). The reason is that they give similar 

reflection rate as asphalt and nearly zero height as roads. This need ancillary data, and 

is also difficult to be solved using lidar data only. 

 

• My results are very close to those given in Alharthy and Bethel (2003) by a visual 

comparison since very similar procedures have been developed for road classification 

using multi-return intensity and range data. Alharthy and Bethel’s (2003) road 

detection algorithm works well with a limited set of characteristics, and may fail 

when these characteristics change beyond the expected limits. For example, it might 

fail in areas where the road materials vary. This is also true for my algorithm as 

discussed above. 

 

The reconstruction of 3-D GRNs 

 

This algorithm has been tested for downtown Toronto. The road primitives in the 

validated GRM are compared with surveyed street elements used as the reference model. 

Instead of matching the primitives included in the reference map and those in the GRM 

automatically as proposed by Wiedemann (2002), I chose to count the matches manually 

to avoid introducing new uncertainties. A road segment is matched if its centerline is 

falling in the closest road stripe in the DOQ. A road crossing is matched if its 

connectivity relations are same in the GRM and the reference map, and it is falling in the 

closest road intersection in the DOQ.  

 

Table 4.4 shows the evaluation results for the upper part of the GRM (see Figure 4.7), 

which has 391 road segments and 285 road crossings in total. The average length of these 

road segments is 115.7 m. The bottom part is excluded from evaluation because it is kept 

mainly for robustness testing as claimed before. The definition of the quality measures  
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used in Table 4.4 can be found in Section B.3.  

 

Table 4.4. System performance evaluation 

  Road segments Road crossings 

TP 358 223 

FP 33 62 Quantities 

FN 68 46 

Completeness 84 83 Quality 

measures (%) Correctness 91.6 78 

 

• The GRM matches the actual GRN well in urban areas with regular street grids.  

- The road centerlines obtained by thinning road ribbons give a rough but clean 

description of the actual road centerlines although they geometrically inaccurate 

and cartographically unusable (see Figures 4.8 and 4.9). These rough road 

centerlines reduce the computational burden in Hough space and greatly eliminate 

the confusing when detecting peaks. 

- The road segments and crossings have the completeness of 84% and 83%, 

respectively, and the correctness of 91.6% and 78%, respectively.  

 

• The road segment based hypothesis and verification strategy leads to efficient, robust and 

automatic reconstruction of 3-D GRMs. 

- The algorithm can reconstruct GRNs robustly even if the grid constraint is not fully 

satisfied. That is, some parts of the road network may be in irregular patterns (see the 

bottom part in Figures 4.7 and 4.9b).  

- Besides grid roads, 8 main tilt roads are correctly detected (see Figure 4.9b). This 

again shows that the algorithm is robust to the non-grid roads to some extent. 

- The resulting GRMs hold topology information of the road network that is useful for 

network analysis in GIS (see Figures 4.9b and 4.11).  

- The algorithm is limited to process a special case because of the use of the global grid 

constraint. Therefore, a premise of the use of this algorithm is the automatic 

determination of grid areas.  
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• For road segments, the average lengths are 118.7 m, 82.6 m, 78.7 m, respectively for TPs, 

FPs and FNs. This shows that the redundant and missed road segments are relatively 

shorter than the true positives. 

 

• For true positive road segments, their three properties are calculated. 

- The length differences in both the GRM and the reference map are used to compute 

two statistics: 0.95-m mean error and 1.3-m RMSE.  

- The visual checking shows that the calculated road widths are proportional to the road 

patterns in DOQs (see Figure 4.12).  

- The road slopes are not checked because the surveyed streets give only 2-D road 

centerlines, and thus no slopes can be calculated for segments in the reference data. 

 

• For false positive road segments, most are grid roads and occur at some short tilt roads 

where the grid constraint is not well satisfied; and remainings are tilt roads wrongly 

introduced when detecting peaks of tilt roads in Hough space but they are not removed 

utilizing information contained in road ribbons (see Figure 4.9b and 4.12). If the 

thresholds for detecting these peaks are increased to avoid introducing corresponding FPs, 

then more FNs will occur. 

 

• For false negative road segments, most are grid or tilt roads that are relatively short (see 

Figure 4.12), and their peaks are unlikely detected reliably in Hough space. If the 

thresholds for detecting peaks are decreased to find those short grid and tilt roads, then 

more FPs will occur. That is, the algorithm needs a good trade-off in setting appropriate 

thresholds to minimize FPs and FNs. 

 

• For true positive road crossings, the 2-D positions have a 0.9 m RMSE by comparing the 

GRM and the reference model. This shows that these road crossings are located correctly 

and accurately since the real road intersections have diameters not less than 10 m. 

 

• My algorithm can output 3-D street grids, while Price (1999) demonstrated the extracted 

2-D street grids for a district of Washington DC. The road segments are often misplaced 
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by the road width in Price (1999). While this problem happens in a few conditions in my 

results, the displacements are removed during computing the width attribute. 

 

4.6 SUMMARY 

 

I developed new algorithms for automated detection of road ribbons for complex scenes 

and reconstruction of 3-D GRNs in urban areas using multi-return intensity and range 

data. The detected road ribbons match the actual roads well in most areas as found by 

comparing against the road textures in DOQs. The comparisons between the extracted 

road primitives and the surveyed streets show the reliability of the method for 

reconstructing 3-D GRNs and that the GRMs match the GRNs well in urban areas.  

 

Integrating both the radiometry property of intensity data and the height information of 

range data reduces the misclassification of the road class, and is highly feasible for the 

detection of road ribbons. Rough road centerlines are obtained by thinning detected road 

ribbons. This algorithm has been tested using several lidar datasets acquired at urban, 

mountainous or forested areas and obtained good results. In urban areas where the road 

networks are arranged in grid style, a new method is proposed to utilize global geometry 

and topology constraints to reliably reconstruct GRNs. The basic idea is to use the grid 

constraint to formulate hypothesis for the presence of road primitives and to verify this by 

checking multiple criteria. The rough centerlines can be refined by detecting straight lines 

using the SHT and calculating intersections among lines. The attribute values of road 

segments including length and width should not violate their a priori ranges, and are used 

as evidences indicating the presence of roads. The presence of a road crossing relies on 

the evidence about the presence of road segments, one of whose end nodes is this 

crossing. The vertical coordinates of road crossings are retrieved from the lidar-derived 

DTM. The major attributes about each road segment including its width, length, and 

slope are calculated. The produced GRM is composed of 3-D road segments and road 

crossings hold the connectivity topology.  
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CHAPTER FIVE 

BUILDING EXTRACTION 

 

Building extraction is one of the main research topics of the photogrammetry community. 

This chapter presents algorithms for building extraction from lidar data. The workflow of 

the methodology is briefly described in Section 5.2. Sections 5.3 to 5.8 discuss the 

proposed algorithms in detail. In Section 5.9, I show results using three datasets, evaluate 

the quality of results, and discuss the performance of the algorithms. 

 

5.1 INTRODUCTION 

 

Automatic extraction of man-made structures such as buildings from geospatial data is of 

great practical interest for a number of applications. Sample applications include urban 

planning, environmental studies, wireless communication, marketing, and change 

detection. The primary data sources used for building extraction are becoming 

increasingly available from a variety of platforms and sensors, such as aerial and satellite 

images, radar images, IfSAR data, and lidar data.  

 

As reviewed in Sections 1.3 and 2.4, many algorithms have been developed for semi-

automatic or automatic extraction of buildings using lidar data in the last decade 4. The 

building models used in GIS are mainly produced by semi-automatic approaches 

(Rottensteiner, 2001). The task of automated building extraction is difficult due to many 

reasons. I address this task based on its two sub-procedures: 

 

• Building detection. Building detection determines the locations of building footprints, 

which are used by subsequent reconstruction (Weidner, 1995). This step should 

distinguish buildings from vegetated regions. To date, general building footprints 

cannot be reliably detected automatically.  

- Buildings may be detected by slicing range data and analysing the hierarchy of 

consecutive object segments (Zhan et al., 2002a; Baltsavias et al., 1995).) The 
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range data can be used to improve the analysis of image data for detecting 

buildings in urban areas and help detect the objects covered by shadows 

(Hofmann, 2001). But this method requires that the urban areas be relatively flat. 

To avoid the disturbance of terrain relief in a large scene, some researchers have 

used height information obtained by subtracting the lidar-derived DTM from lidar 

DSM (Weidner and Forstner, 1995; Haala and Brenner, 1999; Gamba and 

Houshmand, 2002; Rottensteiner and Briese, 2002; Hu et al., 2003). But most of 

this type of algorithms used simple DTM generation algorithms and thus obtained 

in-accurate height data. This problem has been well solved by developing the 

HTRA (see Chapter 3) to generate accurate DTMs for complex scenes. 

- The reliable reconstruction of complex footprint boundaries is a key step, but is 

seldom discussed in detail. Most algorithms works well only under specific 

assumptions, which limit footprints to simple shapes such as rectangles or low-

quality polygons (Weidner, 1995; Vosselman, 1999; Wang and Schenk, 2000). 

Other algorithms, which do not make such assumptions, often got distorted 

boundaries expressed by edges detected from lidar DSMs or DNMs (Baltsavias, 

1995; Weidner, 1995; Yoon et al., 1999; Wang and Schenk, 2000; Rottensteiner 

and Briese, 2002). These boundaries need to be refined using a set of geometric 

regularity constraints (Vestri and Devernay, 2001). At present, there are no solid 

algorithms available at this processing stage. I will improve this situation by 

developing robust and efficient algorithms based on Hough transformation.  

- To distinguish building footprints from vegetated regions, the classification is 

often based on shape measures assuming some geometric regularity constraints 

(Wang and Schenk, 2000) or the roughness of the point clouds. These measures 

limit the detectable buildings to a narrower spectrum, and also are not very 

reliable for complex scenes such as densely forested areas.  The shape measures 

often make use of 2-D properties such as area and perimeter; while complex 

building roofs may present close values when calculating the roughness measures. 

The use of multi-return range data can benefit the separation of buildings and 

vegetation since building roofs must be solid surface (Zhan et al., 2002b; Hu et al., 

2003). Lidar cannot penetrate solid surfaces and will get a single return only for 
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them. That is, the first and last returns are same in elevation at solid surfaces but 

are different at vegetated regions. However, lidar gets the similar effect at 

building boundaries as that at vegetated areas. This problem has been well solved 

in Section 3.5.2. 

 

• Building reconstruction. Building reconstruction recovers the geometrical parameters 

of the roof and walls of a located building (Weidner, 1995). The non-buildings 

misclassified as buildings at previous detection stage may be found when 

dissimilating more information at this stage. Many algorithms use extra data such as 

ground plans to improve the reliability of building boundaries (Haala and Anders, 

1997; Lemmens et al., 1997; Haala et al., 1998; Haala and Brenner, 1999; Brenner, 

2000; Vosselman and Dijkman, 2001). 

- The model-driven algorithms are limited to process simple and specific roofs 

assuming flat, symmetric sloped, parametric shapes. The shape and position 

parameters are determined by fitting models to lidar point clouds (Weidner and 

Forstner, 1995; Haala et al., 1998; Maas and Vosselman, 1999). These algorithms 

will lead to a reliable reconstruction if all the constraints in building models are 

well satisfied and produce pretty results. For instance, an algorithm may assume 

that there exists a main orientation of the building and all edges are either parallel 

or perpendicular to that orientation. Actually more unrealistic constraints have 

been used (Vosselman, 1999; Elaksher and Bethel, 2002). But modern buildings 

often have structures much more complex than those models.  

- The data-driven algorithms do not assume specific building shapes for a scene, 

only making a few realistic assumptions such as the vertical wall constraint. A 

building can be expressed by bounding surfaces that may be described as planar 

surfaces or triangles. Although some algorithms can produce good building 

shapes, they often use complex plane detection techniques such as clustering of 

triangles based on TINs, 3-D Hough transformation and clustering of 3-D points, 

which often result in a heavy computational burden (Maas and Vosselman, 1999; 

Wang and Schenk, 2000; Vosselman and Dijkman, 2001). Some algorithms 

produced polyhedral models with low quality in shape (Gamba and Houshmand, 
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2002). My algorithm will approximate building roofs using less roof points and 

utilize the vertical wall constraint to polish such polyhedral models.  

 

This chapter presents an approach for automated extraction of buildings from large lidar 

datasets. The basic idea is to use the geometric and radiometric information contained in 

lidar data to make hypothesis for the presence of buildings and to verify this using 2-D 

and 3-D evidences. The building extraction begins with the segmentation on the derived 

DNM. By developing powerful algorithms, building boundaries are reconstructed as 

rectangles, quadrangles or regular polygons. The buildings with flat roofs are modeled as 

prismatic shapes, and buildings with complex roofs are modeled as polyhedrons. 

 
Lidar range and intensity data 

(Single- or multi-return) 

Building boundary detection 
• Detect oriented boundaries  
• Identify candidate buildings 

Building boundary reconstruction 
• Reconstruct rectangles 
• Reconstruct polygons 
• Simplify complex boundaries 
• Rectify polygon edges  

Building reconstruction  
(i.e., prismatic and polyhedral modeling) 

• Reconstruct flat roofs 
• Reconstruct non-flat roofs 
• Rectify building walls 

Generation of the DTM, DNM and VSM 

3-D building models 
with attributes 

Figure 5.1. Flowchart of the building 
extraction methodology 
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5.2 METHODOLOGY OVERVIEW 

 

Figure 5.1 shows the workflow of my methodology for building extraction. Building 

detection and reconstruction are the two core steps, and building detection is composed of 

boundary detection and reconstruction.  

 

First, the DNM and VSM are generated from lidar data (see Chapter 3). The DTM is 

derived from last-return range data and intensity data using the HTRA, and the DNM is 

obtained. The VSM is derived from first- and last-return range data. 

 

Second, object footprints are obtained by segmenting the DNM and their boundaries are 

detected. A boundary is represented by a chain of oriented edge pixels. Then candidate 

buildings are determined by a classification using shape measures.  

 

Third, the boundaries of candidate buildings are reconstructed as polygons. A constrained 

searching technique is employed to find out if a rectangle represents a boundary. If not 

true, a sequential linking technique (SLT) is used to reconstruct the boundary as a regular 

polygon using an enhanced Hough transformation (EHT). These algorithms follow the 

hypothesis verification using 2-D cues and an optional refinement. The complex 

boundaries that can be reconstructed by the STL are simplified. Geometric regularity 

constrains are then applied to re-shape these polygons. Iterations may be needed with 

adaptively changed parameter values. 

 

Finally, the flat and non-flat roof hypotheses are tested. A prismatic model is created for 

a flat roof building with its average roof elevation computed. Employing mathematical 

algorithms, numerous attributes for each building model, including area, perimeter, 

footprint type, footprint elevation, average or maximum roof elevation, building 

orientation, MBR, etc., are calculated. These candidate buildings are further verified by 

examining criteria of 3-D cues such as the existents of vertical walls. Non-flat roof 

buildings are modeled as polyhedrons by a selective refining procedure and by the 

rectification of building walls.  
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The quality of the extracted buildings is subject to some parameters used in the 

algorithms. The optimal values of these parameters are difficult to be determined in 

advance, and vary with the terrain type, coverage type and building geometry. These 

parameters are determined in a flexible and adaptive manner throughout the processing 

procedure. Their basic values are obtained by using a priori knowledge about the 

geometric and radiometric properties of buildings and by analyzing running results. The 

technical aspects are discussed further in subsequent sections.  

   
      (a) DNM image        (b) Segmented object footprints 

 

   
   (c) Morphological filtering      (d) Connect component analysis 

 

   
(e) Large objects         (f) Oriented edges 

 
Figure 5.2. Object boundary detection 

 N 
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5.3 BUILDING BOUNDARY DETECTION 

 

Buildings are detached objects rising vertically on all sides above the bare Earth. In 

geometry, building footprints are bounded by distinct edges of regular shapes relative to 

natural objects. Most building surfaces can be approximated by simple geometric shapes 

(i.e., triangles and rectangles). In contrast, vegetation clusters have extremely irregular 

structures and shapes. Therefore, buildings may be distinguished from vegetation objects 

by evaluating shape measures for their footprints (Wang and Schenk, 2000) or the 

roughness of point clusters (Elberink and Maas, 2000). 

 

5.3.1 Detection of Object Boundaries 

The detection of object boundaries is divided into four steps:  

 

- Object footprint location. The DNM (see Figure 5.2a) is segmented into clusters 

that describe separate footprints of buildings and trees. The height threshold is set 

based on a priori knowledge (e.g., 5 m) or is calculated by an iterative selection 

method. The 1-valued pixels indicate the existence of objects (see Figure 5.2b). 

Morphological operations are applied to smooth boundaries and break the weakly 

connected clusters into pieces (see Figure 5.2c). Most trees may be deleted by 

removing those components that have relatively large intersections with the VSM 

(see Figure 3.8). If so, only building footprints are retained, and the shape 

measures based classification (see Section 5.3.2) is not necessary. 

- Small object removal. The binary footprints are labeled by an incremental 

connected component analysis. Small footprints less than the a priori minimum 

building area are deleted to remove those small stand objects such as individual 

trees and trucks. Figure 5.2d shows the objects shaded by labeling values, and 

Figure 5.2e show the objects whose areas are larger than 70 m2.  

- Oriented boundary detection. The footprint boundary can be easily traced but 

with frequently changing directions. Here, I apply a synthesized edge detection 

algorithm (see Section B.1.9) to detect oriented boundaries, which are composing 

of oriented edge pixels as shown in Figure 5.2f. An oriented edge pixel is denoted 



 

· 117 · 

as ),,( βyxp = , which has both position (red layer) and gradient direction (green 

layer). The direction is calculated using Equation B.5b, and the angle is larger for 

a lighter gray value and is in the interval of [0o, 180o). 

- Oriented boundary encoding. Each boundary is encoded in 8-connected 

neighborhood by chain coding (see Section B.1.10). An oriented boundary is 

expressed by a closed chain of orientated pixels, i.e., },...,1|),,({ Bio niyxpB == β , 

where nB is the number of edge pixels.  

 

An outer chain and possibly several inner parts describe a compound footprint boundary. 

A polygon falls inside another polygon if all of its vertices fall inside that one. In this 

chapter, I treat inner chains as separate boundaries.  

 

5.3.2 Classification of Building and Vegetation Objects 

Two shape measures, i.e., reducibility and circularity, are used for fast classification 

focusing on discarding non-building objects (mainly trees).  

 

• Reducibility measure is the ratio of the number of points Gn  in the generalized chain 

and the number of points Bn  in the original chain as given by Equation 5.1a. A 

smaller value indicates a higher possibility of belonging to the building class.  

 

B

G
tyreducibili n

n
BSM =)(                (5.1a) 

 

• Circularity measure is the ratio of the squared perimeter of the chain over its area as 

given by Equation 5.1b (Parker, 1993; Wang and Schenk, 2000). For a circle, the 

ratio is π4 , and for a square, it is 16. A larger value indicates a higher possibility of 

belonging to the building class. 
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The membership function of a boundary to be classified to the building class is obtained 

by combining the above two shape measures as given by 
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where Tr and Tc are thresholds that are computed by iterative selecting method over the 

reducibility and circularity measures, respectively, of all the boundaries. Except the 

reducibility and circularity measures, other shape measures such as symmetry could be 

used to classify specific shape types. If a building is occluded partly by trees, it is may be 

wrongly classified to the tree class as shown in see Figure 5.5a (the green polygon). 

 

5.4 RECTANGULAR BOUNDARY RECONSTRUCTION 

 

A rectangle consists of two pairs of parallel lines, and one pair of parallel lines must be 

perpendicular to the other pair. When the edge points of the boundary are processed using 

Hough transformation, this geometric constraint appears as two pairs of peaks located 

inside two slim zones along two angles in Hough space, and the angle difference is 90o. 

So I design a constrained searching procedure to detect a rectangle reliably using the SHT 

(see Section 4.4.1). A part of edge map in Figure 5.2f is magnified in Figure 5.3a, where 

the white pixels represent the footprint boundary. The Hough transformation result of the 

boundary in the center is shown in Figure 5.3b. 

 

First, four lines 4,...,1),,( =iii θρ are detected in both Hough space and image space using 

the rectangle constraint and form the rectangle hypothesis. The first line corresponds to 

the largest peak, which is detected as shown in Figure 5.3c. The second line is parallel to 

the first line, and its corresponding peak must lie inside a slim buffer along the first line’s 

angle, and is deleted in Figure 5.3d. The third line and the fourth line are similarly 

searched in a slim buffer along an angle that is shifted 90o from the mean angle of 

previous two lines as shown in Figure 5.3e, where the third peak is deleted. Occasionally, 
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two lines that are parallel to the y-axis may present a spurious and inconsistent condition. 

That is, one line’s angle is close to 0o, while another is close to 180o. In this situation, 

both angles are corrected to a mean angle that is shifted 90o from other two lines. The 

four corners are obtained by intersecting those four Hough lines using Equation 4.5. 

 

Next, the hypothesized rectangle model is verified. A complex check regarding several 

evidences is performed to judge if the four lines form a rectangle of good quality.  

 

- Area evidence is measured by the ratio between the area values computed for the 

hypothesized rectangle and the raw boundary chain, which should be close to 1.  

 
(a) Building boundaries 

 

           
 

     (b) Hough accumulator       (c) The first peak removed 
 

           
 

(d) The second peak removed       (e) The third peak removed 
 

Figure 5.3. Rectangular boundary reconstruction 
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- Perimeter evidence is measured by the ratio between the two perimeter values 

computed for the hypothesized rectangle and the original boundary chain, which 

should be close to 1. 

- Dimension evidence is the measurement of length differences, which should be 

less than certain thresholds. There are three types of quantities available for the 

length (or width): the absolute difference between the distance parameters of the 

third and the forth lines (or of the first and the second lines), the average peak 

values in Hough space for the first and the second peaks (or for the third and the 

fourth peaks), and the average number of grouped points for the first and the 

second lines (or for the third and the fourth lines) because each line contains a 

sequence of edge points connected in 8-neighborhoods. 

 

Finally, a validated rectangle model is rectified by adjusting the parameters of its four 

lines to make them form a perfect rectangle with four internal right angles. The weighting 

factors in least-squares adjustment are determined according to length and width 

attributes. Several rectangular boundaries are shown in Figure 5.3a, where the red 

rectangles are reconstruction results. 

 

A rectangle reconstructed this way does not need any additional rectification (see Section 

5.7). The rectangle model may be created in alternative approaches. For example, I can 

detect the first largest four peaks to form the hypothesized rectangle; then the parallelism 

constraint and the above evidences are verified. In addition, a footprint with four lines 

can also be reconstructed using the SLT described in Section 5.6. 

 

5.5 ENHANCED HOUGH TRANSFORMATION 

 

The 2-D HT transforms each pixel from the image domain into a curve in Hough space 

(see Section B.1.12). Usually there are many types of buildings whose boundaries can be 

divided into many pieces of line segments. So the Hough accumulator may present many 

peaks. The detection of these peaks is equivalent to the division of the boundary points 

into different groups of line points. Since an oriented boundary is composed of a chain of 
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successively connected oriented edge points (see Figure 5.4a), the SHT can be enhanced 

to reduce the possibility of wrong grouping by using the direction information. In this 

section, I will propose an enhanced Hough transformation, which is composed of three 

processing steps, i.e., grouping, merging and splitting. After analysing a boundary using 

the EHT, a building boundary will be divided into a set of edge segments each attached 

with a group of edge points. 

 

5.5.1 Grouping Line Points  

With the peak parameters ),( θρ , the buffer of points belonging to a line is determined by 

),( θρ σθσρ ±−  and ),( θρ σθσρ ±+ , where ρσ  and θσ  are distance and angle 

tolerances (Zhang and Burkhardt, 2000). In my experiments, the buffer is limited to be a 

slim zone around the detected Hough line with the angle tolerance omitted. But another 

tolerance regarding the direction constraint is introduced. In a word, the line points 

should fall inside this buffer and have close gradient direction. In addition, to reduce the 

computational burden, only a sub-range of  [0o, 180o) around a point’s direction is 

accumulated. Let ),,( βyxp  denote an oriented point of the raw boundary B, and ),( θρl  

a line. The distance between p and l  is given by 

 

|sincos|),( ρθθ −+= yxlpd               (5.3) 

 

The following criteria are used to search associated points in the boundary: 

 

- If ),( lpd  is smaller than a small threshold (e.g., 1 pixel), the difference between 

the point’s gradient direction and the line’s angle should not be close to 90o, i.e., 

βσθβ −<− o90||  or βσθβ +>− o90|| , where βσ  is a small tolerance (e.g., 15o). 

- If ),( lpd  is larger than the small threshold but smaller than a larger threshold 

(e.g., 2 pixels), the point’s direction should be close to the line’s angle, i.e., 

'90|| βσθβ −<− o  or '90|| βσθβ +>− o , where 'βσ  is a large tolerance (e.g., 

45o). This will find distorted pixels in edge detection for non-idea straight lines.  
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By introducing direction information, an edge point would not be assigned to a Hough 

line if the angle deviation were large. As shown in Figure 5.4b, the Hough line pointed by 

the arrow will include the points enclosed in both the two ellipses and the two circles by 

the conventional searching method. While the points in the two circles actually belong to 

5s  and 6s , respectively. My method will group only the points in the ellipses according 

the above criteria since the direction of the points in the circles (i.e., 145o) is significantly 

different from the angle of that Hough line (55o). This precise grouping is very beneficial 

for obtaining correct linking order in subsequent permutation of edge segments.  

 

The grouping procedure is continued until the termination condition is met. Multiple 

criteria combining several conditions are used to check if this sequence of Hough lines 

approximates the original boundary well. For example, the remaining points in the chain 

are below a certain percentage, the line detected recently is longer than a predefined 

threshold and comparable with previously detected lines. These thresholds are 

determined according to the number of lines and the footprint type. 

 

For a long line, its parameters can be refined by fitting grouped points to a line equation 

as given in Equation 5.4a or 5.4b depending on to its angle. The line parameters searched 

in Hough space are replace with the fitted parameters if they are very close, for example, 

the angle and distance differences are smaller than 2.5o and 5 m, respectively. In addition, 

line points can be re-grouped in image space using the updated line parameters. 

 
ooabyxa 13545),1(0 111 <≤≤=++ θ            (5.4a) 

ooabyax 13545),1(0 222 ≥∨<≤=++ θθ           (5.4b) 

 

5.5.2 Merging Lines 

An over-division of the boundary may happen when the grouping procedure detects more 

lines than those actually exist in the boundary. To tackle this problem, each line detected 

recently is compared with all the lines detected before. Two lines that are close will be 

merged to eliminate the confusing, and their edge points are also merged. The angle 

parameter θ  of the new line is determined by a LSs adjustment weighted by the lengths 
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of its two components; then the distance parameter ρ  is re-calculated by averaging the 

distance values computed using Equation 5.2 for all the associated points. The following 

two criteria determine two close or collinear lines: 

 

- Angle evidence is measured by the difference between their angle parameters. 

- Distance evidence is measured by the difference between their distance parameters.  

 

The difference for each parameter should be smaller than a given tolerance, that is, 7.5o 

for θσ  and 5 m for ρσ . To ensure that the edge points in a merged segment are still 

sequential, they are re-permuted so that their coordinates change monotonously. 

 

5.5.3 Splitting Edge Segments 

It is easily observable that the points of a Hough line may contain multiple separate edge 

segments that are collinear as shown in Figure 5.4b, where the Hough line pointed by an 

arrow is composed of two edge segments 7s  and 8s  that have a same pair of line 

parameters. Because the points are grouped following the coding order, the edge points 

associated with a line must follow the same successive order of the original chain. It is 

reasonable to require that these successive points belong to a separate edge segment 

should be all connected in 8-neighbourhood or only have a small distance (e.g., 5 m) 

between them, or they belong to two different segments. Therefore, a line can be divided 

into multiple shorter segments by carefully checking the internal structures of those 

points. An edge segment s  is represented by its parameters ),( θρ , and the associated 

edge points ),,( uuu yx β , mu ,...,1= , where m  is the number of edge points of that 

segment. Those segments having only a few (e.g., 3 or less) points are discarded. 

 

5.6 POLYGONAL BOUNDARY RECONSTRUCTION 

 

The non-rectangular building boundaries can be represented as simple polygons using a 

sequential linking technique as shown in Figure 5.4. This linking procedure employs the 

EHT to detect edge segments, and works as follows: 



 

· 124 · 

 

1. Detect all the edge segments for an oriented boundary using the EHT, i.e., 

},...,1,{ nisB io == , where n  is the number of segments in the boundary. For 

 

Sequential 
linking 

technique 

The polygon 
model 

Figure 5.4. Polygonal boundary reconstruction 

(b) 

(c) 

Edge Direction 

(d) 

(a) The oriented 
boundary 

Enhanced 
Hough 

transformation 
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example, the boundary shown in Figure 5.4 has twelve edge segments. The 

distance between two segments is  and js  is defined as the smallest distance 

among the two point sets associated to them, and is given by Equation 5.5, where 

),( vu ppd  is the Euclidian distance between two points up  and vp . 

 

),(min),( vuspspji ppdssd
jviu ∈∧∈=           (5.5) 

 

2. Form a complete boundary by linking the edge segments. Some quantities are 

recorded during the linking procedure, including the minimum and second 

minimum distances and angle differences between adjacent segments (including 

the last and first segments). An empty linking list is initialised at the beginning.  

2.1. Find the first reference segment. It is the longest segment, and is placed into 

the head of the linking list. The orientation of this segment is often the main 

orientation of a building, and is 139o for 1s  in Figure 5.4b.  

2.2. Search the next reference segment based on the current one until all the 

segments are linked one by one. 

2.2.1. Remove the current reference segment from the set of segments in oB . 

2.2.2. Calculate the distances between the reference segment and the 

remaining segments in oB  using Equation 5.5. Following criteria are 

applied to select the next reference segment. 

- Early skipping. If the minimum distance is larger than a small 

threshold (e.g., 3 m) and the second minimum distance is larger 

than a large threshold (e.g., 5 m), then exit the linking procedure. 

- If the minimum distance is unique, then the corresponding segment 

is selected. 

- If several distances are equally small or less than the small 

threshold, then the segment most perpendicular to the reference 

one is selected.  

2.2.3. Append the selected segment into the linking list. 

At this point, a boundary is expressed as a sequence of edge segments, which are  
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numbered in correct order, for example, as shown in Figure 5.4c. 

3. Form the polygon hypothesis (see Figure 5.4d). The polygon vertices are obtained 

by intersecting all pairs of adjacent segments in the linking list using Equation 

4.5. The first and the last segments are also intersected. Two adjacent vertices 

whose distance is smaller than a threshold (e.g., 3 m) are merged. 

4. Verify the hypothesized polygon. A qualified polygon satisfies two conditions: 

- Simplicity. The polygon is not valid if it is self-intersected or there are 

intersected vertices outside of a buffer of the MBR of that footprint. 

- Integrity. Besides the area and perimeter evidences (see Section 5.4), a few 

more criteria are used: 

* Angle evidence is measured by the minimum internal angle of the 

hypothesized polygon, which should be larger than a predefined angle 

threshold (e.g., 15o) for a qualified polygon.  

* Linkage evidence is given by the maximum and the secondary maximum 

distance between all the pairs of adjacent segments, which should be is 

less than a threshold (e.g., 5 m). 

* Distance evidence is measured by the Hausdorff distance (Rucklidge, 

1997; Jian et al., 1998) between the hypothesized polygon and the original 

boundary, which should be less than a threshold (e.g., 8 m). 

 

Figures 5.5b to 5.5e show some linked polygons. For a quadrangle, this linking procedure 

is not necessary. An alternative way to determine a proper linking order of its four 

segments is to find out the two most parallel segments first and then re-permute the other 

two segments.  

 

5.7 POLYGONAL BOUNDARY RECTIFICATION 

 

Complex building boundaries that cannot be reconstructed by the constrained searching 

or the SLT are still represented by pixel chains with very low cartographic quality. I 

generalize these boundaries by enforcing some distance and angle constraints using the 

improved Douglas-Peucker simplification based on convex hull (see Section B.2.3) and 
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straight-line detection techniques (Zhang, 1993). The termination condition for the 

simplification is that the area of the generalized polygon be close to that of the boundary.  

 

Before this point, no specific a priori knowledge about the geometric regularity 

characteristics (e.g., parallelism, orthogonality and collinearity) of typical building shapes 

is systematically applied to individual structures of a polygon model. The polygons may 

 
(a) Village site 

 

    
         (b) U-structures          (c) L-structures 

 

    
    (d) Mixed U- and L-structures       (e) Mis-linkage 

 
Figure 5.5. Building boundary models 

 N 
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have arbitrary angles and segment lengths. In man-made environments, however, long 

straight segments and right angles are often the realism. I try to rectify those polygons 

with five or more vertices by imposing multiple angle and length constraints, still 

allowing for non-orthogonal, non-straight angles and short segments. The following rules 

try to recover aforementioned geometric regularity characteristics and are iteratively 

applied to all the structures of a polygon. 

 

• U-structures are every three consecutive segments in a polygon. Both parameters 

),( θρ  of the segments will be updated during the adjustment, and the related vertices 

are accordingly replaced by new intersections of updated lines. 

- Parallelism, i.e., the angle difference between first and the third segments is 

smaller than a threshold (e.g., 3o). 

* Rectangular corners. If both internal angles are nearly 90o, then the angles of 

these segments are adjusted according to their lengths so that the first and the 

third segments becomes parallel and the second one is perpendicular to them. 

* Non-rectangular corners. If neither angle is 90o, then the first and the third 

segments are adjusted to be parallel weighted by their lengths. 

- Corner distortion. This assumes that the second segment is shorter than a 

predefined length threshold (e.g., 5 m) or a rate of the longest segment.  

* Orthogonality. That is, the angle between the first and the third segments is 

nearly 90o. The first and the third segments are adjusted to become exactly 

orthogonal and the second is dropped. This case corrects distorted round 

corners due to the smoothing effect in edge detection.  

* Collinearity. If the angle between the first and the third segments is far away 

from a right angle and the angle between the second and either longer segment 

is approximately 180o, then the short one is dropped and the longer one is 

extended with its orientation slightly adjusted. 

 

• L-structures are every two consecutive segments in the polygon. 

- Orthogonality. If the angle is nearly right, then adjust the two segments to make 

them orthogonal and intersect a new vertex to replace the old one. 
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- Collinearity. If the internal angle is approximately 180o, then drop the 

intermediate vertex. 

 

• Quadrangles. If a rectified polygon has four vertices, then try the rectangle 

reconstruction for the corresponding boundary with larger thresholds. A few 

rectangles missed before may be detected. 

 

Figure 5.5 shows some rectified cases. The rectified polygons in Figure 5.5a correspond 

to the boundaries in Figure 5.2. The rectification cannot correct errors resulted in the 

sequential linking as shown in Figure 5.5e, where occasionally, the reconstructed 

polygons may be mis-linked in wrong order. 

 

5.8 BUILDING RECONSTRUCTION 

 

The lidar points hit on a building’s roof can be retrieved from the raw lidar points by 

doing point-in-polygon tests (see Section B.2.2) using its polygon model. Figure 5.6 

gives a 3-D view of roof points inside the polygons shown in Figure 5.5a. At this point, a 

building model consists of a polygonal boundary and a number of roof points, which can 

be triangulated to give a rough delineation of the whole outer surface of a building 

including its footprint, roof and walls. TIN is widely used to model surfaces (see Section 

 
 

Figure 5.6. 3-D view of roof points (Village site) 

N 
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B.2.4). Two buildings are triangulated in 2-D and are then visualized in 3-D as shown in 

Figure 5.7a. To represent the building’s surface, I remove redundant edges, a part of 

which are outside the polygon in 2-D. Figure 5.7b shows the corresponding constrained 

TIN representations. However, this kind of approximation still exhibits too many vertices 

and facets, and their direct use in GIS will lead to inefficient manipulations.  

 

5.8.1 Roof Hypotheses Tests 

I classify building roofs into two classes, i.e., flat and non-flat, which correspond to two 

generic shapes, i.e., prismatic and polyhedral models. The prismatic model represents a 

building as one flat roof polygon and one footprint polygon with a set of vertical walls. 

The polyhedral model approximates a building using bounding surfaces together with 

their intersections and topology relations.  

 

The flat hypothesis is firstly tested for each building. I perform the a-trim operation over 

all the roof points to remove spurious points not returned from the roof, including those 

   
(a) TINs of building surface points 

 

   
(b) Constrained TINs 

 
Figure 5.7. Triangulated building surface models 
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hit on walls, on temporary structures erected over the roof and occasional on the ground. 

The roof points are assumed to have a homogeneous 2-D distribution, and their elevations 

are assumed to belong to a normal distribution for a flat roof, that is, ),(~ 2σξ aN , where 

a  and 2σ  are the unknown mean and variance. The test statistic 2χ
T , the null hypothesis 

H0, and the alternative hypothesis H1 are given by (Migon and Garmerman, 1999) 
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where 2
0σ  is the population variance factor, ξ  is the sample mean, 2s  is the sample 

variance, m  is the number of roof points, and 2χ  denotes the chi-square distribution. 

 

The null hypothesis H0 claims that the roof is flat with trivial undulations. The variance 

factor 2
0σ  can be adaptively modified by enforcing some rules. If the details of a big and 

tall building are not important, then I may allow for larger roof undulations. For example, 

it could be 1 m2 when considering the necessary superstructures placed on the roof. Extra 

conditions may be combined to help discriminate if a roof is flat. For example, the 

sample range of the roof points should be less than a threshold that is determined by a 

ratio of the building’s average height and the median height of all the buildings in the 

whole region. The flat roof hypothesis can also be tested by fit a plane equation to the 

roof points and check the standard deviation of the residuals. This is also suited to test 

sloping roofs. If the roof elevation is known to be 0a , the test statistic Tt, the null 

hypothesis H0, and the alternative hypothesis H1 are given by Equation 5.7, where t  

denotes the Student distribution (Zhang, 1993). 
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(a) Shaded lidar DSMs 

 

    
(b) Building roof points 

 

    
(b) Prismatic models 

 

    
(c) Prismatic models embedded into the DSM 

 
Figure 5.8. Prismatic models for flat roof buildings 
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(a) Shaded lidar DSMs  

 

    
(b) Roof points, polygon vertexes and interpolated vertexes  

 

    
(c) Polyhedral models 

 

    
(d) Finer polyhedral models 

 
Figure 5.9. Polyhedral models for non-flat roof buildings  
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5.8.2 Prismatic and Polyhedral Model Generation 

If the null hypothesis H0 in Equation 5.6b is accepted at the significance level of 10%, 

then the building is modeled by a prismatic shape. The building roof has the same shape 

with the footprint with all the vertices offset to the average roof elevation. The walls are 

vertical trapeziums each formed by two consecutive vertices of the footprint polygon and 

their corresponding vertices of the roof polygon. The wall evidence is the presence of 

wall points that fall inside the buffers of some hypothesized wall polygons. Additional 

conditions may be used. For example in a single strip of lidar points, one or two adjacent 

walls among the four walls of a rectangular building may find wall points; while their 

opposite walls must have no wall points. Figure 5.8 shows the reconstruction of prismatic 

models for two flat roof buildings. 

 

If the alternative hypothesis H1 in Equation 5.6b is accepted at the significance level of 

10%, then the building has a polyhedral shape. I reconstruct the roofs and walls using a 

selective refining approach. The reconstruction begins with a simplified model with only 

essential points, and iteratively refines the model by selecting the best points.  

 

First, a rough model is created to include the highest roof point, the vertices of the 

footprint polygon and intermediate vertices interpolated on the polygon’s edges. The 

number of intermediate vertices depends on the ratio between the length of an edge and 

the GSD. Using an incremental Delaunay triangulation algorithm, a constrained TIN is 

generating in 2-D. Then the edges connecting consecutive vertices on the boundary (i.e., 

polygon vertices and interpolated inter-mediate vertices) are inserted first, and the roof 

point is inserted thereafter. The details of this algorithm are described in Vigo (1997). 

 

Next, the rough model is refined by inserting best points iteratively. For each triangle in 

the constrained TIN, a critical point is identified. It is a roof point whose 3-D distance 

from the triangle’s plane is largest among all the roof points falling inside this triangle in 

ground plane. The critical point is inserted as a new vertex in the TIN only if the distance 

is larger than a threshold. The threshold may be determined adaptively according to the 

relative size between the building and the median size of all the buildings in the whole 
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region. As before, a larger threshold may be used for a big building to omit unnecessary 

details. Only triangles newly added are considered. This step is repeated until no more 

critical points can be added. In addition, one iteration is enough if the inter-mediate 

vertices are interpolated densely. So a polyhedral model with moderate details is 

generated to approximate the building surfaces. Figure 5.9 shows the reconstruction of 

two polyhedral building models for Village data.  

 

Finally, the rough polyhedral models are rectified by imposing multiple constraints to 

recover the geometric regularity of typical buildings. My method is to adjust the 

coordinates of ridge vertices in the TIN according to the vertical wall constraint. A roof 

point is defined as the ridge vertex if there are one or more edges connecting that roof 

vertex and boundary vertices. In this situation, I say that the ridge vertex and the 

connected boundary vertices are visible. In Figure 5.10, three types of ridge vertices, 

including I-vertex (red dot), V-vertex (blue dot) and Y-vertex (yellow dot), are identified 

around one corner of a building from Village data. 

 

- I-vertex is a ridge vertex visible with only one boundary vertex. Its coordinates 

are replaced by those of the intersection point between a vertical line passing 

through the associate boundary vertex and a roof triangle. The selected roof 

triangle has three roof vertices including the I-vertex. When a boundary vertex is 

visible with multiple I-vertices, only the first I-vertex is kept and others are 

removed. The edges associated with other I-vertices are changed to connect to the 

first one, and duplicate edges are also removed. 

    
 

Figure 5.10. Three types of ridge vertices 
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- V- vertex is a ridge vertex visible with two adjacent boundary vertices. Its position 

will move to that of an intersection point between a vertical line and a selected 

roof triangle. The vertical line passes through the centre of the edge connecting 

the two boundary vertices. 

- Y- vertex is a ridge vertex visible with three consecutive boundary vertices. It 

usually occurs around right corners, and the second boundary vertex is sited at the 

corner. A Y-vertex will move to the intersection point between a vertical line and 

a selected roof triangle. The line passes through the second boundary vertex.  

 

The two buildings shown in Figure 5.9 are rectified, and their different views are shown 

in Figure 5.11. The rectified polyhedrons have good shape for most walls except few 

distortions, for example, at corners. However, these polyhedral models are sufficient for  

    
 

    
 

    
        (a) Gable roof         (b) Complex roof 

 
Figure 5.11. Different views of rectified polyhedral models 
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many applications such as telecommunications. 

 

5.9 TEST RESULTS AND EVALUATION 

 

Three datasets collected at residual and urban areas, including Village site (see Section 

3.6.1.1), Osaka city (see Section 3.6.1.2) and downtown Toronto (see Sections 3.6.1.3 

and 4.2.1), are used to test the proposed building extraction algorithms. 

 

5.9.1 Building Extraction Results 

Same rules are used to obtain all the threshold parameters with fixed initial or adaptively 

changing values. That is, I do not set special parameter values different for one dataset 

from that for another. 

 

5.9.1.1 Results of Village Site 

In Figure 5.12, the prismatic building models together with the lidar DSM are shown with 

three-time exaggeration in vertical direction. Most buildings are correctly extracted and 

are coloured by their footprint types, including rectangle, quadrangle, polygon and 

complex. All the building roofs are classified as non-flat surfaces.  

 

5.9.1.2 Results of Osaka City 

In Figure 5.13, the prismatic buildings together with the lidar DSM at the bottom part of 

the scene are shown. The building models are coloured by their roof types, including 33 

flat roofs and 150 non-flat roofs. Most building footprints are modeled by rectangles and 

regular polygons. 

 

5.9.1.3 Results of Downtown Toronto 

In Figure 5.14, the building polygons detected (green lines) and those surveyed polygons 

in the DLGs (red lines) are overlaid on the DOQs and the DNM, respectively. The 

prismatic building models overlaid upon the derived DTM are shown in Figure 5.15, 

where the models are coloured by their footprint types. 
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Figure 5.12. 3-D building models (Village site) 

N 

 
 

Figure 5.13. 3-D building models (Osaka city) 

N 
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(a) Building footprint polygons overlaid on DOQs 

 

 
 

(b) Building footprint polygons overlaid on the DNM 
 

Figure 5.14. Comparison between detected and surveyed polygons 

 N 

 N 

No.1 

No.2 

No.1 

No.2 
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Table 5.1. System performance evaluation 

Stage Performance indexes 
Village 

site 

Osaka 

city 

Downtown 

Toronto 

TP 33 170 403 

FP 0 16 16 Quantities 

FN 1 > 30 > 33 

Completeness 97 < 85 < 92 

Building 

detection 
Quality 

measures (%) Correctness 100 91 96 

TP 33 168 402 

FP 0 15 11 Quantities 

FN 1 > 32 > 34 

Completeness 97 < 84 < 92 

Building 

reconstruction 
Quality 

measures (%) Correctness 100 92 97 

 

 
 

Figure 5.15. 3-D building models (Downtown Toronto) 

N 
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5.9.2 Performance Evaluation 

Table 5.1 gives the quantities and quality measures (see Section B.3) for above building 

extraction results. Three men 10 helped me to visually compare these building models 

with their corresponding patterns in DOQs or lidar images. The rule for determining a 

match is that the polygon model has an overlap larger than about 75% with the observed 

building patterns. A building model is considered to be detected correctly if it gets two or 

three votes. The buildings sited on the boundaries of the study areas are not counted since 

it is difficult to detect them due to the shortage of complete information.  

 

Table 5.2. Statistical data of building extraction results 

 Quantities 
Village 

site 

Osaka 

city 

Downtown 

Toronto 

Observed buildings 34 > 200 > 436 

Buildings by classification 33 186 419 

Rectangles by searching 24 / 21 99 / 88 87 / 82 

Quadrangles by linking 1 13 52 

Polygons by linking 4 24 111 

Building 

detection 

Polygons by simplification 5 50 169 

Final building models 33 183 413 

Prismatic models 0 / 0 33 / 32 14 / 14 
Building 

reconstruction 
Polyhedral models 33 / 33 150 399 

Area range (m2) [72, 298] [82, 9944] [81, 93898] 

Average area (m2) 154 598 3244 

Total area (m2) 5083 109376 1339605 

Average height range (m) [4, 7.6] [3.7, 32.7] [3.4, 175] 

95% maximal height range (m) [5, 9.4] [5.2, 46.7] [6, 297] 

Boundary perimeter range (m) [33, 83] [37, 913] [39, 3304] 

Attributes of 

reconstructed 

Buildings  

Boundary vertex number range [4, 8] [4, 54] [4, 89] 

                                                           
10 They are Mr. Jeff Xu (M.Sc. student in Photogrammetry), Mr. Ming Zhong (Undergraduate student in 
Computer Science), and Mr. Chris Wang (M.Sc. student in GIS), from York University. 
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Table 5.2 summarizes detailed statistical data about individual algorithms composing the 

overall methodology for above building extraction results. Some real situations have been 

observed from lidar DSMs and are listed as the denominators. 

 

The quality of the extracted buildings and the proposed algorithms are assessed from 

following two aspects: 

 

Quality analysis 

 

• Village site (Figure 5.12). The building extraction results are very good since this 

scene is of low complexity. The completeness and correctness are as high as 97% and 

100%, respectively.  

- No vegetation objects are classified as buildings. The vegetated objects are 

identified correctly either by shape measures or by the removal of small objects. 

- One house as indicated by the arrow is not detected. A part of its roof is occluded 

by adjacent trees. This corruption cannot be eliminated because only single-return 

data is available. 

 

• Osaka city (Figure 5.13). Most buildings are correctly detected partly because tall 

trees seldom stand by them closely. The completeness and correctness are 84% and 

92%, respectively.  

- The shortage of multi-return information leads to lower detection performance. 

About 11 vegetation-corrupted buildings are misclassified as vegetation.  

- About 19 building are missed because their areas are smaller than the area 

threshold (70 m2). If I decrease the threshold, the correctness will decrease too.  

- Some small and low buildings are closely located with trees between them, and 

they are discriminated as a single building. This is one reason why the number of 

detected buildings is less than the observed number. 

- About 16 vegetated objects are misclassified as buildings. This show that the 

shape measures need to be improved or ancillary data have to be used. 
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• Downtown Toronto (Figures 5.14 and 5.15). The majority of buildings are detected 

correctly. The completeness and correctness are 92% and 97%, respectively.  

- It is observed that the reconstructed building boundaries are close to those 

obtained by filed surveyed in 2-D position (see Figure 5.14). Many reconstructed 

polygons give a better delineation of building boundaries than surveyed ones as 

enclosed in the first rectangle. But some reconstructed polygons are distorted a bit 

as enclosed in the second rectangle. 

- About 25 buildings with very complex boundaries are misclassified as vegetated 

regions. It is difficult to eliminate this misclassification by improving shape 

measures. Ancillary data have to be used. 

- Some thin strips of trees alongside streets are misclassified as buildings because 

their footprints have the rectangular shape. They are not removed even if the first 

and last returns are used. These thin tree strips are wrongly removed during the 

generation of the VSM because they are several meters wide and are very similar 

to the thin strips occurred at building boundaries (see Section 3.5.2). 

- Several tall buildings are detected as on melt building because they are connected 

via bridges larger than the segmentation threshold. Again, this is one reason why 

the number of detected buildings is less than the observed number. 

 

Algorithm analysis 

 

The performance of the methodology can be analyzed based on its component algorithms. 

 

• The building boundary detection can reliably locate building footprints and express 

them as oriented boundaries by combining simple algorithms (see Figure 5.2). 

- The DNM excludes negative effects of terrain relief in a large scene, and put both 

buildings and vegetation objects on a flat reference plane. Object footprints are 

located first by a segmentation of the DNM and later by a connected component 

analysis. Processing the DNM has both advantages and disadvantages over 

processing the lidar DSM: 
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* Advantages. The object boundaries are detected more reliably and efficiently 

using footprints rather than the DSM. The architectural details on building 

roofs and tree canopies in the lidar DSM will result in many disordered edges, 

and it is more difficult to reliably find the positions of their boundaries.  

* Disadvantages. Since the detailed edges are lost in the segmented DNM, 

several buildings may be recognized as one melt building if they are 

connected via bridges at the height larger than the segmentation threshold 

even the bridges are significantly lower than building roofs. If a larger height 

threshold is used, then some low buildings will be missed. A way is to slice 

the DNM and analyse the hierarchy of those segments, but has not tested. 

In addition, the representation of a boundary as a chain of oriented pixels is very 

useful for subsequent footprint reconstruction. 

- Buildings are distinguished from vegetated regions using the shape measures 

based object classification scheme successful to some extent. But this may 

misclassify some buildings as vegetation objects when solely using single-return 

range data especially at forested areas (see the green polygon in Figure 5.5a). This 

is because tall trees may occlude low buildings and houses and result in distorted 

object footprints. This problem has been solved successfully by using the VSM.  

- A difficulty encountered in the shape classification is the incapability of 

distinguishing buildings from aboveground long strip objects (e.g., bridges and 

viaducts as indicated by red arrows in Figures 5.13 and 5.15). To conquer this 

problem, extra geometric constraints or extra data have to be used. 

- Most building footprints can be detected, and the completeness measures are 97%, 

85% and 92%, respectively in Village site, Osaka and downtown Toronto datasets. 

Also, most building footprints are correctly detected, and the correctness 

measures are 100%, 91% and 96%, respectively in these three datasets. It is 

should be noted that the vegetation density is smaller in Osaka dataset than in 

downtown Toronto dataset. But the quality measures are larger for downtown 

Toronto than for Osaka. This is due the use of the VSM for downtown Toronto 

since that dataset has first and last returns. This shows that the use of the VSM 

can reliably eliminate vegetated regions, and thus improve the quality of building  
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detection in a typical scene with trees.  

 

• The building boundary reconstruction can robustly transform complex bounding 

boundaries into rectangle, quadrangles or regular polygons using the proposed 

algorithms, including the constrained searching, the EHT and the SLT, and following 

the hypothesis verification paradigm and an optional refinement. 

- This workflow is data driven because it is not based on specific models, rather 

than complex shapes at the beginning. The rectangles, quadrangles and regular 

polygons are found step by step. The geometric regularity constraints are applied 

at last to refine the found polygons. 

- The constrained searching technique can detect rectangles reliably and robustly 

(see Figures 5.3 and 5.5a). This technique does not miss any rectangles for three 

datasets. But it accepts some non-rectangular shapes as rectangles, and the 

numbers are 3, 11 and 5, respectively, in Village, Osaka and downtown Toronto 

datasets. The misclassification rates are 14.3%, 12.5% and 6.1%, respectively. 

Downtown Toronto has obtained best result. This is because the multi-return 

information has helped to remove boundary corruptions from surrounding trees.  

- The EHT is composed of three processing steps, including grouping, merging and 

splitting. It can robustly and reliably divide a building boundary into a set of edge 

segments each associated with a group of successive edge points (see Figure 5.4b). 

The EHT improves the conventional HT and the SHT in three aspects.  

* First, the introduction of edge direction information improves the reliability 

when grouping line points compared to the SHT, and also reduces the 

computational burden by limiting the angle parameter to a sub-range around 

the edge direction. The precise grouping provides the possibility to permute 

edge segments according to distance measures. 

* Second, the merging operation effectively solves the problem of over-dividing 

a boundary based on the angle and distance evidences. 

* Third, the splitting operation successfully finds multiple separate edge 

segments along a straight line based on the connectivity information contained 

in the pixel chains. 
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- The SLT can reliably reconstruct polygonal boundaries based on hypothesis 

verification (see Figure 5.4c). It input the edge segments from the EHT, and link 

them in successive order to form the polygon. A hypothesized polygon is verified 

using multiple 2-D evidences about its simplicity and integrity. This procedure is 

very reliable, and only result in mis-linkage occasionally as enclosed in the circle 

in Figure 5.5e. 

- The boundary reconstruction rates by constrained searching and sequential linking 

are 88%, 73% and 60%, respectively, in Village site, Osaka city and downtown 

Toronto datasets; and remaining building footprints are represented by simplified 

polygons. This is reasonable since Village site is simplest in content and 

downtown Toronto is most complex as observed from Figures 3.10 to 3.12. 

- The boundary rectification systematically applies geometric regularity constraints 

about typical building shapes to individual U- and L-structures of reconstructed 

polygon model, and has achieved cartographical quality in many cases. As 

observed in Figure 5.5, the parallel edges and right corners are well modeled. But 

these regularity constraints may result in wrong re-shaping as enclosed in the 

circles in Figure 5.14. 

- A footprint polygon can be verified using 1-D and 2-D evidences such as the 

allowable ranges of building attributes (see Table 5.2). The derived DTMs also 

provide valuable information for reconstructed polygon models since the 

elevations of their vertices can be retrieved from the DTM. This information is 

valuable because new constraints can be developed. That is, the maximum 

elevation difference of a footprint should be less than some height threshold. 

 

• The building reconstruction can create prismatic models for flat roof buildings (see 

Figure 5.8) and polyhedral models for non-flat roof buildings (see Figure 5.9). 

- The selective refinement technique can approximate a complex building roof 

efficiently using a minimum set of most significant roof points. The vertical wall 

constraint has been used to identify three types of ridge vertices in the polyhedral 

model to produce a more regular shape. But some corner points are not well 

rectified yet (see Figure 5.11). 
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- The statistical testing is efficient for classifying flat roofs from non-flat roofs 

because lidar points often have a homogenous spacing on ground. No flat roofs 

are discriminated as non-flat ones, and only one non-flat roof is misclassified to 

be flat in all the three datasets (see Table 5.2). 

- A building model can be verified by examining 3-D evidences such as the 

existence of vertical walls. The correctness slightly increases from 91% to 92% in 

Osaka dataset, and from 96% to 97% in downtown Toronto dataset. The 

completeness for downtown Toronto keeps same, and is 92%. While the 

completeness for Osaka slightly decreased from 85% to 84% since two buildings 

are discarded wrongly at this stage. This also shows the high reliability of the 

building detection algorithms. 

 

• The quality evaluation for automatically extracted buildings is seldom discussed or 

even omitted in the literature. Most researchers given emphases on their algorithms 

only, and reported their results using small datasets, showing a few separate or small 

groups of buildings. In addition, they have processed scenes with only specific types 

of buildings such as rectangle (Weidner, 1995; Jaynes et al., 1997; Wang and Schenk, 

2000; Gamba and Houshmand, 2002), or used ground plans (Haala et al., 1998). To 

my knowledge, no other algorithms in the literature have presented the similar 

capability of automated reconstruction of complex footprints. 

 

5.10 SUMMARY 

 

I developed a data-driven methodology for automated extraction of buildings using lidar 

height data and multi-return information. The proposed algorithms have produced good 

results when testing several lidar datasets with varying complexities and manually 

checking the extracted results against ground observations. 

 

Using height data, building detection turns into locating footprints of objects that are 

above the terrain surface and have regular shapes. Using the VSM, the footprints of most 

non-building objects can be reliably identified and deleted. The object boundaries are 
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expressed as closed chains of oriented edge pixels. The candidate building boundaries are 

distinguished from non-building ones by examining their shape measures. Rectangular 

boundaries are reconstructed by employing a constrained searching in Hough space that 

is very robust. If an oriented boundary does not have the rectangular shape, it is robustly 

divided into edge segments each with a group of edge pixels by applying the EHT. These 

edge segments are further permuted in correct order using the SLT to form a closed 

polygon. Some geometric regularity constrains are then applied to produce regular 

polygonal shapes for buildings.  

 

The average roof height of a candidate building is computed by collecting lidar points 

falling inside its polygonal shape, and prismatic models are created for flat roof buildings. 

Complex roof buildings are modeled as polyhedral shapes, which are reconstructed by a 

selective refining procedure and are rectified by applying the vertical wall constraint. 

This refining procedure selects and adds most significant roof points iteratively to obtain 

the best roof shape. A candidate building may be discarded by examining multiple 

criteria such as point density and roof height at this stage. The major properties about 

each building, including its area, main orientation etc., are calculated. 
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Figure 6.1. Overall framework of automated extraction of 
DTMs, roads and buildings using airborne lidar data 
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CHAPTER SIX  

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 CONCLUSIONS 
 

The algorithms developed in Chapters 3 to 5 have implemented automated, robust and 

efficient information extraction using single- or multi-return lidar range and intensity 

data. Figure 6.1 gives the overall framework of the proposed processes for automated 

extraction of DTMs, roads and buildings from airborne lidar data. The individual 

processes and their interrelations have been described and evaluated in previous chapters. 

The integration of range and intensity data makes use of geometry and radiometry 

information about ground features, and thus provides the possibility for understanding 

complex scenes. The employment of effective processing strategies has improved the 

automation capabilities in feature extraction from lidar data. Following conclusions can 

be drawn from this research: 

 

• DTM generation. An efficient framework (see the middle part of Figure 6.1) has been 

developed to generate DTMs automatically for single- or multi-return range and 

intensity data in large datasets. 

- The HTRA is data driven, and does not assume a priori knowledge about the 

scene complexity. It is suited to process complex scenes sampled in different 

densities under a uniform technical framework. 

- The success of the algorithm is achieved by the effective combination of multiple 

component techniques including the hierarchical approach, smooth condition, data 

fusion, and interpolation methods. The success of the algorithm is also verified by 

the success of the automated extraction of roads and buildings, which needs 

height information derived by it. 

- The algorithm is based on the assumption: local lowest points in moving windows 

are sited on the bare Earth. To ensure the success generation of DTMs, the largest 

window size should be larger than the smaller dimension of any non-terrain object,  
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and the lidar data should be acquired in the leaf-off condition at forested areas. 

- The worst-case relative accuracy, at the confidence level of 90%, is better than 25 

cm at building and tree surroundings and bare surfaces for datasets acquired at 

residential, suburban, urban, forested or mountainous areas. 

 

• Road extraction. New algorithms (see the left part of Figure 6.1) have been developed 

for automated detection of road ribbons for complex scenes and reconstruction of 3-D 

grid road networks in built-up areas using multi-return intensity and range data. 

- The integration of both the radiometry property of intensity data and the height 

information of the digital non-terrain model is highly feasible in reducing the 

misclassification of the road class. 

- The resulting road ribbons are not perfectly complete due to three reasons: the 

new pavement with concrete, the undetected bridges and viaduct, and different 

material other than asphalt. They may contain non-road areas, including outdoor 

parking lots and some water areas due to similar reflection rate as asphalt and 

nearly zero height as roads. 

- The reconstruction of grid road networks in urban areas is model driven, and is 

based on the global grid constraint. Therefore, the premise is the automatic 

detection of areas with grid networks. 

- The road segment based hypothesis and verification strategy leads to efficient, 

robust, and automatic reconstruction of 3-D grid road models. The algorithm is 

robust to some irregular road patterns in the road network. 

- The grid road models match the grid road networks well in urban areas with 

regular street grids. The road segments and crossings have the completeness of 

84% and 83%, respectively, and the correctness of 91.6% and 78%, respectively, 

in downtown Toronto dataset. The redundant and undetected road segments are 

relatively shorter than correctly detected ones, and correctly detected road 

crossings are located accurately. 

 

• Building extraction. New algorithms (see the right part of Figure 6.1) have been 

developed to implement a data driven methodology for automated extraction of  
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buildings using lidar height data and multi-return information in large datasets. 

- The boundary detection can reliably locate buildings from the height data and the 

vegetation support model. The representation of building boundaries using 

oriented boundaries is very useful for subsequent boundary reconstruction. The 

building detection rates are 97%, 85% and 92%, respectively in Village site, 

Osaka and downtown Toronto datasets. 

- The reconstruction of building boundaries is data driven, and is not based on 

specific footprint models, but rather on complex footprint shapes. This processing 

can robustly transform complex building boundaries as rectangle, quadrangles or 

regular polygons using the constrained searching and the sequential linking 

technique and following the hypothesis verification paradigm and further 

refinements. The boundary reconstruction rates by constrained searching and 

sequential linking are 88%, 73% and 60%, respectively in Village site, Osaka city 

and downtown Toronto datasets. 

- The building reconstruction can create prismatic models for flat roof buildings 

and polyhedral models for non-flat roof buildings. The selective refinement 

technique can approximate complex building roof efficiently using a minimum set 

of most significant roof points. The vertical wall constraint can be used to identify 

three types of ridge vertices in the polyhedral model to obtain a better shape. 

 

6.2 RECOMMENDATIONS FOR FUTURE WORK 

 

This work also unveils a number of new topics worth of further research efforts. The 

recommended research contents are addressed below. Solving these problems will make  

the information extraction from lidar data more practical for industry production. 

 

• I could manually label some terrain and non-terrain points in a lidar dataset before 

processing them using the algorithm. Fusing ancillary data including the GIS data and 

multi-spectral images also could largely eliminate the uncertainty in identifying road 

or terrain points. For example, to avoid smoothing abrupt terrain changes at cliffs, and 

dams, I could incorporate breaklines and mass points from photogrammetry or GPS 
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for DTM generation. The problem is how to efficiently incorporate additional 

information into the DTM generation procedure. In addition, I could directly use the 

3-D points instead of creating and processing rasterized images. This may make the 

facet models and slope estimates better approximate the local geomorphology and 

retain accurate details when performing interpolation. To process extremely large 

datasets that cannot be processed in the memory as a whole, a solution is to divide the 

whole scene into multiple overlapping sections, and the individual processing results 

are then merged. 

 

• The road ribbons or rough centerlines produced from lidar data could be useful cues 

to guide road extraction in high-resolution optical imagery. The rough centerlines are 

expected to be able to be refined by analyzing the standard road crossing models. In a 

large dataset covering areas with grid and non-grid road networks, the automatic 

determination of grid areas is also needed before applying the proposed algorithm. 

 

• The difficulty of the building extraction task could be greatly reduced when utilizing 

application specific assumptions. For example, the model-based recognition is 

feasible if the region of interest has only buildings with rectangular footprints and flat 

or gable roofs. Building detection could be enhanced by classifying lidar intensity 

data and multi-spectral images. In the rectification of polyhedral models using the 

vertical wall constraint, further refinement is to correct distortions around corners 

using the geometric regularity constraints of footprints. I am also interested in 

modeling compound building boundaries with inner structures.  
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APPENDIX A 

AIRBORNE LIDAR TECHNOLOGY 

 

Airborne lidar is an aircraft-mounted laser system designed to collect elevation data of 

the Earth’s surface directly and digitally. The lidar instrument transmits laser light out to 

a target. Some of this light is reflected back to the instrument where it is analyzed. There 

are three basic types of lidar: the range finder, DIAL and Doppler lidar (NASA, 1999). 

Range finder lidar is used to measure the distance from the lidar instrument to a target. 

The time for the light to travel out and back to the lidar is used to determine the range to 

the target (Optech, 2003). “Range finder lidar uses the same principle as radar. It operates 

in the ultraviolet, visible or infrared region of the electromagnetic spectrum, whose 

wavelengths are much shorter than those used by conventional radar. Lidar may be 

continuous-wave (CW) or pulsed, focused or collimated. The CW lidar is used when the 

signal may be integrated over long time periods and when the target is nearby. They are 

convenient to use when measuring average properties of the path to the target. Focusing 

is mainly used with CW lidar to permit them to make a more sensitive measurement over 

a smaller span of ranges. Pulsed lidar uses much higher power levels during the laser 

pulse than can be maintained with a CW laser, producing higher signal-to-noise ratios for 

the collected radiation. Pulsed lidar is usually chosen for long-range remote sensing and 

when long signal integration is impractical” (NASA, 1999). 

 

A.1 AIRBORNE LIDAR MAPPING 

 

A typical airborne lidar system (see Figure A.1, URL: http://gis.esri.com/library/) is 

composed of a LRF, a POS, realized by the integration of a DGPS, an IMU and control 

units (Wehr and Lohr, 1999). Most lidar systems use a scanning mirror to generate a 

swath of light pulses. Swath width depends on the mirror's angle of oscillation and flight 

height, and the ground-point density depends on factors such as the aircraft speed, the 

oscillation rate of mirror, the laser pulse rate and the flying height (Baltsavias, 1999b; 

Sapeta, 2000). The laser measures the range to the ground surface or objects, and yields 
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the 3-D position when combined with the position and orientation of the sensor. The 

major characteristics of typical airborne lidar systems are summarized in Table A.1 

(Baltsavias, 1999a; Fowler, 2001; Flood, 2001; Optech, 2003). 

 

Table A.1. Major characteristics of typical lidar systems 

Parameters Min. & Max. values Typical values 

Laser wavelength (nm) 810 - 1550 1000-1200 

Scan angle (degrees) 14 - 75 20-40 

Pulse rate (kHz) 5 - 83 5-15 

Scan rate (Hz) 20 - 630 25-40 

Flying Height - h (m) 20 - 6100 200-300 (H) / 500-1000 (A)* 

Swath width (m) 0.25 h - 1.5 h 0.35 h - 0.7 h 

GPS frequency (Hz) 1 - 10 1-2 

IMU frequency (Hz) 40 - 200 50 

Beam divergence (mrad) 0.05 - 4 0.25-2 

Footprint diameter  (m) 0.05 - 2  0.25-1 (h = 1000 m) 

Across-track spacing (m) 0.1 - 10 0.5-2 

Along-track spacing (m) 0.06 - 10 0.3-1 

Range accuracy (cm) 2 - 30 5-15 

Elevation accuracy (cm) 10 - 60 15-20 

 
 

Figure A.1. A typical airborne lidar system 
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Planimetric accuracy (m) 0.1 - 3 0.3-1 
* H = helicopter, A = airplane. 

 

A.1.1 Principle of Ranging Lidar 

During a flight mission, an aircraft rotates on three different axes, commonly known as 

roll, pitch and yaw. The simplified relationship among the position and attitude of the 

laser scanner, the instantaneous mirror angle and the measured range is shown in Figure 

A.2 (Baltsavias, 1999b). The detailed and rigorous formulae can be found in El-Sheimy  

(1996), and PE&RS (2001), but are outside the research scope of this thesis. 

 

The LRF works a lot like ordinary radar, except that it sends out narrow pulses or beams of 

light rather than broad radio waves. It consists of two units: an opto-mechanical scanner and a 

laser ranging unit (Wehr and Lohr, 1999). The scanner comprises the laser transmitter and the 

electro-optical receiver. The LRF works as follows: the laser scanner generates an optical 

pulse; the pulse is reflected off an object and returns to the receiver; a high-speed counter 

measures the time of flight from the start pulse to the return pulse; and finally the time 

measurement is converted to the range D from the scanner to the object. 

 

The integrated position and orientation system consists of a DGPS and an IMU (Wehr 

and Lohr, 1999; Mohamed and Price, 2002). The GPS is a constellation of 24 satellites 

that orbit the Earth and transmit signals. It allows one to calculate one's position on the 

 
 

Figure A.2. The laser range, the scanner 
position and rotation angles 
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Earth to the accuracy of better than 10 cm in differential mode. The IMU consists of two 

trials of accelerators and gyroscopes, sensing incremental linear and angular velocities of 

a platform-fixed coordinate system. Inertial techniques are based on integrating the linear 

and angular velocities, which can then be used to calculate the platform position and 

three rotation angles (Mohamed, 2003). As shown in Figures A.1 and A.2, the scanner 

position (X0, Y0, Z0) is provided by the GPS; and the IMU provides the platform rotation 

angles ω  (the angle around the flight direction), ψ  (the angle around the across-track 

direction) and κ  (the angle around the perpendicular axis). 

 

The control units manage the digital interfaces between LRF and POS (Wehr and Lohr, 

1999). Geocoding of laser scanner measurements requires an exact synchronisation of 

both LRF and POS. The LRF measures only the spatial vector from the laser scanner to a 

ground point on the Earth's surface shot by a laser beam. Combining GPS and IMU 

information using advanced Kalman filtering techniques allows for the determination of 

position and attitude that are more accurate (Sapeta, 2000). The outcome is a complete set 

of exterior orientation data (i.e., X0, Y0, Z0, ω , ψ , κ ). To compute the 3-D position of a 

point, a recording-unit combines measured ranges, mirror scan angles, GPS positions and 

IMU orientation information at the epoch of each laser shot, and then performs a series of 

transformations to rotate and translate the laser range from a local aircraft coordinate 

system to WGS84 (Baltsavias, 1999b; Wehr and Lohr, 1999; Sapeta, 2000). 

 

A.1.2 Lidar Data Acquisition 

Today, there are many commercial lidar systems in the market delivering a variety of 

lidar mapping services (Baltsavias, 1999a; ALM, 2003). The entire process of airborne 

lidar mapping is highly automated, from flight planning, to data acquisition, to the 

production of DSMs. The parameters of flying height, swath angle, scanning rate, flight-

strip side lap and aircraft velocity determine the point density, and these parameters are 

tailored to accommodate the project requirements (Baltsavias, 1999b; Sapeta, 2000). The 

accuracy of range data depends on the specific configuration of a lidar system. At 

present, claimed accuracies of commercial lidar systems are on the order of 15 cm 

vertically and 0.3~1 m horizontally (Flood, 2001; Fowler, 2001). Recent studies reveal 
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that vertical errors of less than 10 cm can be obtained at a low flying height (e.g., 400 m). 

In this case, DGPS and laser range noise dominate the error budget, and errors due to the 

IMU are secondary (Mohamed, 2003). 

 

The need for accuracy validation and possible adjustment is due to the existence of 

residual systematic biases in the DGPS, IMU and ranging systems (Sapeta, 2000). 

“Adjustment techniques vary in sophistication, depending on the application and size of 

the project. Techniques range from simple vertical translations of mass points to remove 

vertical bias to complex block adjustments that involve ties among strips, ground controls 

and modeling systematic errors on a time-varying basis. Further, for high accuracy 

applications such as two-foot contouring, an adjustment to a network of GCPs may be 

required to guarantee a desired accuracy” (Sapeta, 2000). 

 

In addition to range data, some lidar systems provide information on the intensity of the 

recorded signal, information for multiple parts of an object (see Figure A.3) within the 

laser footprint of a single pulse, and images taken by video cameras (Ackermanm, 1999; 

Mohamed et al., 2001; Optech, 2003; ALM, 2003). Figure 1.1 shows a sample lidar range 

 
 

Figure A.3. Multi-return lidar data 
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and intensity dataset collected at a village. Intensity capture of the returned pulse, through 

either waveform digitization or return pulse peak capture, is becoming increasingly 

common on commercial instruments (Flood, 2001; ALM, 2003). The intensity feature 

records how much energy is returned from the objects. The reflectivity rates of typical 

materials are listed in Table A.2 (Song et al., 2002). The multiple returns are especially 

useful in discriminating vegetation. When a beam has distended to a foot in diameter by 

the time it reaches objects, a unit may record the reflection of the canopy of a tree or the 

roof of a house and the reflection from the ground as two different elevations from the 

single pulse (Sapeta, 2000; Optech, 2003). As algorithm development continues, intensity 

and multi-return information will enable users to differentiate between different object 

classes and eventually help to automate the extraction of more features (Tao and Hu, 

2001; Song et al., 2002; ALM, 2003). 

 

Table A.2. Reflectivity of infrared laser  

Material Reflectivity (%) 

White paper Up to 100 

Snow 80-90 

Beer foam 88 

Limestone Up to 75 

Deciduous trees 60 

Toilet paper 60 

Dry sand 57 

Wet sand 41 

Coniferous trees 30 

Concrete 24 

Asphalt with pebbles 17 

Black neoprene 5 

 

A.1.3 Lidar vs. Photogrammetry 

The capabilities and limitations of lidar are often compared with the passive 

photogrammetry. Lidar has both advantages and disadvantages over photogrammetry.  
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• Advantages of lidar over photogrammetry: 

- Lidar is less expensive of producing the same data than photogrammetry 

especially for linear corridors (Sapeta, 2000; Fowler, 2001; Burst, 2002). 

Obtaining field measured terrain models using ground-based techniques may be 

more accurate, but are also more costly for a wide area (ALM, 2003). 

- Lidar can acquire accurate elevation data in decimetre while flying from a high 

altitude (Optech, 2003). “The accuracy of photogrammetric data is inversely 

proportional to the flying height, whereas lidar accuracy degrades less 

significantly with increased flying heights” (Thompson and Maune, 2001).  

- Lidar needs only a single laser pulse to measure the ground elevation, whereas 

photogrammetry requires two different lines of sight to both “see” the same points 

on the ground from two different perspectives (Thompson and Maune, 2001; 

Burst, 2002; Optech, 2003). Therefore, lidar has far fewer areas where the terrain 

is obscured by trees that block the lines of sight. 

- Lidar can collect both first and last returns with the capability to penetrate 

between foliage (Sapeta, 2000; Optech, 2003). Photogrammetry can generate 

high-density elevation points also, but only by expensive manual compilation of 

individual points, or by automated image correlation, but normally of treetops 

instead of the ground below (Thompson and Maune, 2001).  

- Lidar systems are less sensitive to environmental conditions such as weather, sun 

angle, leaf on/off condition (Fowler, 2001). Lidar can also work at night without 

the degradation in performance (Optech, 2003). 

 

• Disadvantages of lidar over photogrammetry: 

- “Lidar is a relatively new technology, and standard procedures have not yet been 

developed to yield data with predictable accuracy comparable to that from 

photogrammetry” (Thompson and Maune, 2001; Vonderohe, 2003). 

- Infrared laser pulses are often absorbed by water except the use of blue-green 

lights (Optech, 2003). Normally, digital orthophotos are used to determine the 

limits of water boundaries (Thompson and Maune, 2001).  
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- Lidar data are not well suited to determine breaklines (Fowler, 2001; Burst, 2002). 

Breaklines compiled photogrammetrically are often used to augment the lidar data 

as needed for improving terrain modeling (Veneziano et al., 2002). 

- Contours generated automatically from lidar data are more jagged, whereas 

contour lines produced manually by photogrammetric compilation are normally 

smooth to reflect the actual representation of the terrain and to depict the flow of 

water downstream (Thompson and Maune, 2001; Burst, 2002).  

 

A.2 LIDAR MAPPING APPLICATIONS 

 

The high point sampling densities, fast turn-around time and lower cost are among the 

most attractive characteristics of lidar for many mapping applications (Tao and Hu, 

2001). There are many applications in favour of lidar data as described below: 

 

- Topography. The DTM generation is the most direct application of lidar data 

(Fowler, 2001). It provides a cost-effective source of high-density elevation data 

for calculating terrain parameters and DTM derivatives in engineering mapping. 

These terrain parameters can be used to locate steep slopes, which could endanger 

nearby infrastructures (Tao and Hu, 2002). It also allows large area topographic 

surveys to be completed significantly faster and at a reduced cost compared to 

traditional mapping methods (Souleyrette and Hallmark, 2003). There are other 

cases where terrain structures are discernible and can be derived from the 

geometric information contained in high-density lidar data (Kraus and Pfeifer, 

1998; Kraus and Rieger, 2000; Fraser and Jonas, 2001). For instance, breaklines 

of the terrain can be extracted to some extent (Wild and Krzystek, 1996). 

- Urban modeling. Since lidar systems provide dense measurements, the extraction 

of 3-D features with sharp discontinuities, especially buildings, is easier than in 

surface models obtained by stereo matching, or faster than manual compilation 

(Ackermanm, 1999; Tao and Hu, 2001). Different perspective views can be 

generated from different positions and directions for a variety of applications 

including landscape analysis, wireless communication, urban planning, pilot 



 

· 175 · 
simulation, microclimate modeling, disaster response and propagation of noise 

and pollutants (ALM, 2003; Optech, 2003). 

- Right-of-way. A major market is the transportation industry. Since lidar has a 

narrower swath in comparison to optical sensors, it is more cost-effective in 

capturing information for linear features (Veneziano, 2002; ALM, 2003). Lidar 

provides rapid range data collection of long, linear objects such as roads, railway 

tracks, pipelines, waterways, coastal zone and power lines (Hill et al., 2000; Burst, 

2002; Optech, 2003). The power line corridor mapping allows for proper 

modeling of conductor catenary curves, encroachment and accurate determination 

of tower locations (TerraSolid, 2001). 

- Forestry. Accurate information on the terrain and topography beneath the tree 

canopy is extremely important to both the forestry industry and natural resource 

management (ALM, 2003). Tree heights, crown diameter and density information 

may be produced from multi-return lidar data, while they are difficult to be 

collected using traditional methods (Optech, 2003). The derivation of other 

important parameters like biomass estimation, tree type etc. is also possible. 

- Change detection. Lidar can be used to efficiently locate areas of change, which 

are invaluable information for subsequent map updating. Lidar data taken during 

the first mapping phase are compared to later datasets, and areas of change can be 

quickly detected by simply computing and thresholding a difference image 

(Murakami et al., 1999; Sapeta, 2000). This is important when terrain surfaces 

change during natural disasters such as landslide. 

 

Since lidar is a relatively new technology, applications are still being identified as users start to 

work with the data. Industrial and scientific advances in lidar systems and data processing 

techniques are opening new technological opportunities to develop an increased capability to 

accomplish many geospatial and engineering applications.  
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APPENDIX B 

BASIC ALGORITHMS AND CONCEPTS 

 

This appendix describes algorithms and concepts for image processing, computational 

geometry, numerical analysis and quality measures. I developed two new algorithms, i.e., 

the synthesized edge detection and the incremental connected component labelling.  

 

B.1 IMAGE PROCESSING ALGORITHMS 

 

B.1.1 Introduction 

The image can be represented by a continuous function I (x, y), where x and y denote 

coordinates in a 2-D Cartesian system 2ℜ  as shown in Figure B.1a. The digital number 

(DN) I at a point (x, y) is proportional to certain property (e.g., the light intensity and 

terrain elevation) of the scene at that point (Gonzalez and Woods, 2002). A digital image 

with M rows and N columns is an image that has been discretized in spatial coordinates 

and the DN, and maybe denoted as I (i, j), where i ( Mi <≤0 ) and j ( Nj <≤0 ) are zero-

based integer row and column indices as shown in Figure B.1b. In this thesis, the pixel 

coordinate (M-1, 0) corresponds to the point (0.5, 0.5) in spatial coordinate system.  

 

Many algorithms have to formulate an adjacency criterion for pixel connectivity. For a 

pixel p with the coordinates (i, j), the set of pixels given by (Gonzalez and Woods, 2002) 

 

)},1(),1,(),,1(),1,{()(4 jijijijipN +−−+=           (B.1a) 

 

is called its 4-neightborhood, that is the red cells for p(3, 3) in Figure B.1b. The 8-

neighborhood (see green cells for p(7, 7) in Figure B.1b) is defined as 
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Two pixels p and q are called 4-connected if q is from )(4 pN , or 8-connected if q is from  

)(8 pN . In a binary image, it is reasonable to define the connectivity as 4-connected for  

(0-valued) background regions and 8-connected for (1-valued) object regions. 

 

B.1.2 Image Pyramid 

The image pyramid is a stack of images of decreasing resolutions, each representing 

pattern information at a different scale. The basic idea is to gradually reduce the spatial 

resolution of the image and decrease the amount of information by following filters.  

 

- “Linear filters convolve an image with linear filter kernels, and thus output the 

pixel value as a linear combination (e.g., a weighted average) of the values of the 

pixels in certain neighborhood” (Pitas and Venetsanopoulos, 1990).  

- Non-linear filters calculate a non-linear function of the pixel values using order 

statistic, homomorphic, or polynomial filters (Pitas and Venetsanopoulos, 1990). 

- Morphological filters are a special type of non-linear filters applied to the image, 

and then the filtered image is sub-sampled to the reduced size (Pitas and 

Venetsanopoulos, 1990). They are often closely related to order statistic filters. 

- Wavelet filters produce a hierarchical decomposition of functions, here images. 

Wavelets provide means of frequency and space analysis. A function is described 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    (a) Spatial coordinate system       (b) Pixel coordinate system 

 
Figure B.1. Image coordinate systems 
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by means of a low-resolution function plus a series of details from low to high 

resolution based on wavelet coefficients (Mallat, 1989).  

 

B.1.3 Morphological Filters 

Morphological operations tend to simplify, enhance, extract or describe images using set 

theory (Li, 1999). The set represents a binary or gray image. Morphological filters extract 

information about the geometrical structure of an image object by filtering it with a 

structuring element, which is of simpler shape than the original object. Information about 

size, spatial distribution, shape, connectivity, convexity, smoothness, and orientation can 

be obtained by transforming the image object using different structuring elements (Pitas, 

2000). Symmetrical and circular structuring elements play a central role in mathematical 

morphology in the continuous plane, because they provide an isotropic treatment of the 

image. A large number of task-oriented procedures can be built with morphological 

operators. These tasks include noise suppression, boundary detection, skeletonization, 

thicken, feeler pruning, the convex hull and region filling techniques (Gonzalez and 

Woods, 2002). For digital images, rectangular windows are often used because they are 

easier and faster to implement. Basic morphological operators include erosion, dilation, 

opening and closing, which are defined below (Pitas and Venetsanopoulos, 1990). 

 

The dilation of a set of points A by a structuring element S is defined by Equation B.2a, 

where St is a translation operation of S by a vector t 2ℜ∈ , i.e., }|{ SstsSt ∈∀+= . 

 

}|{ Φ≠∩=⊕ AStSA t                (B.2a) 

 

The erosion is the opposite of dilation, and is defined as 

 

}|{ AStSA t ⊂=Θ                 (B.2b) 

 

The opening, denoted as SAo , and closing, SA• , are given by Equations B.2c and B.2d, 

respectively, where S
(

 is the reflection operation defined as }|{ SssS ∈∀−=
(

. 
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(
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SSASA
(
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B.1.4 Median and Multi-stage Median Filters 

Noise usually appears in the high frequencies of the image spectrum. Therefore, a low-

pass digital filter may be used for noise removal. Such a filter is the moving average 

filter. However, linear low-pass filters tend to smear image details (e.g., lines, corners), 

whose power is in the high frequencies as well. Furthermore, they tend to blur the image 

edge for similar reasons, thus degrading the image quality. One way to keep the edges 

intact is to use a median filter, in which the median value over a small neighborhood is 

used to replace the central pixel. Median filters have low-pass characteristics to remove 

additive white noise (Pitas and Venetsanopoulos, 1990). They are very efficient in the 

removal of noise having a long-tailed (e.g., Laplacian) distribution. The robustness 

properties of the median filter make it very suitable for edge-preserving filtering. 

 

In the theoretical analysis of median filters, it is assumed that the image consists of 

constant neighborhoods and edges (Pitas and Venetsanopoulos, 1990). In reality, the 

images have fine details, for example, lines and sharp corners, which are very valuable 

for human perception. These details are usually destroyed by medians having relatively 

large windows. It is the ordering process that destroys the structural and spatial 

neighborhood information. The multi-stage median filter can preserve details in 

horizontal, vertical and diagonal directions, because they use sub-filters that are sensitive 

to these directions (Arce and Foster, 1989). 

 

B.1.5 Adaptive Smoothing 

Smoothing is needed to filter out local fluctuations in the data due to measurement noise 

to obtain reasonable differential geometric quantities from a digital surface. The linear 

smoothing often makes sharp discontinuities in range and orientation blurred. Research 

has explored the idea that the unwanted effects of smoothing can be eliminated, or at least 

significantly attenuated, by using adaptive smoothing and derivative estimation operators. 

That is, window operators may change shape and size depending on local data variations 
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(Besl, 1988). Several techniques, such as adaptive smoothing or anisotropic diffusion 

deal with the task of local smoothing. Unfortunately, these types of iterative techniques 

have one main drawback, i.e., the determination of the threshold on the gradient. There is 

no way to control it easily and researchers often fall into a trial-and-error procedure.  

 

Saint-Marc et al. (1991) developed a method to smooth a signal while preserving 

discontinuities. This is achieved by repeatedly convolving the signal with a 3 x 3 

averaging mask weighted by a measure of the signal continuity at each point. Edge 

detection can be performed after a few iterations, and features extracted from the 

smoothed signal are correctly localized (hence, no tracking is needed). This last property 

allows the derivation of a scale-space representation of a signal using the adaptive 

smoothing parameter k as the scale dimension. A scheme to preserve higher-order 

discontinuities and results on range images is proposed. The algorithm iteratively 

performs weighted averaging defined by (Saint-Marc et al., 1991) 
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where t is the iteration number; k is the smoothing parameter; I is the image; w is the 

weighting factor. Only discontinuities larger than k will be enhanced during iterations. 

 

B.1.6 Segmentation and Thresholding 

The purpose of segmentation is to separate an image into regions corresponding to 

objects, that is, to divide the image into homogeneous regions, which have common 
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properties (Geiger and Yuille, 1991). Image regions are expected to have homogeneous 

characteristics (e.g. grey level, or colour), which may indicate that they belong to the 

same object or facet of an object. Segmentation by thresholding has been refined into a 

set of mature procedures and the outstanding problem is how to devise an automatic 

procedure for determining optimal thresholds. 

 

Thresholding is useful in discriminating objects from the background in many classes of 

a scene. Most thresholding techniques indirectly utilize the shape information of an 

image histogram. The ideal case is a bimodal shape of histogram because grey level at the 

valley can be directly selected as threshold value for segmentation, but such bimodality 

histogram is usually unavailable in real applications (Parker, 1993). In general, an image 

grey level can be divided into several sub-ranges to perform thresholding but these ranges 

usually overlap one with another and make thresholding difficult. Glasbey (1993) 

described an iterative selection method to calculate thresholds. The initial threshold T is 

the average gray level of the whole image. The average levels of both the background (Tb) 

and the objects (To) defined by T are calculated. The threshold T is recalculated to be half 

way between these two means, that is the integer part of (Tb + To) / 2. Then Tb and To are 

recalculated, and a new value of T is obtained. This is repeated until a repeat of the same 

value of T on two consecutive iterations (Glasbey, 1993). Papamarkos and Gatos (1994) 

proposed an approach for multilevel threshold selection. 

 

B.1.7 Connected Component Analysis 

For binary image, individual connected components of each region can be identified and 

labeled. Connected component labeling counts the objects that exist in a binary image. It 

assigns a unique number to each block of object pixels. Labelling algorithms can be 

divided into two large categories: local neighborhood algorithms and divide-and-conquer 

algorithms (Pitas, 2000). “The algorithms belonging to the first class perform iterative 

local operations. They use the grassfire concept implemented in a recursive manner. The 

image is scanned in a row-wise manner until the first object pixel is hit. The connected 

component is set at the first pixel that propagates to all object pixels belonging to a 

neighborhood of the current pixel. The operation is continued recursively until all object 
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pixels are burnt and the fire is extinguished. At the end of this operation, all pixels 

belonging to this object have the same value” (Pitas, 2000). If the object is very large, it 

is likely to result in a stack overflow during recursive labeling procedure. To avoid stack 

overflow, I develop an incremental labeling algorithm by integrating both local 

neighborhood and divide-and-conquer operations. The incremental method labels only a 

limited number (e.g., 256) of pixels at a time; then those connected components having 

different labeling values are merged using a same value. 

 

B.1.8 Thinning 

Image thinning methods can be divided into two categories based on the type of image 

they are designed to thin: binary or gray scale. Since binary image thinning methods 

cannot be directly applied to gray images, gray images are often thresholded to create a 

binary counterpart to which a binary method may be applied. Binary image thinning can 

be defined heuristically as a set of erosions of the outermost layers of a binary shape, 

until a connected unit-width set of lines is obtained. Zhang & Suen (1984) proposed a fast 

parallel thinning algorithm that requires two successive iterative passes. At Step 1, a 

logical rule is applied locally in a 3 x 3 neighborhood to flag border pixels that can be 

deleted. These pixels are only flagged until the entire image is scanned. Deletion of all 

flagged pixels is performed afterward. At Step 2, another logical rule is applied locally in 

3 x 3 windows to flag border pixels for deletion. After the entire image has been scanned, 

the flagged pixels are again deleted. This procedure is repeated until no more pixel 

deleting can be performed. End points and pixel connectivity are preserved. 

 

B.1.9 Synthesized Edge Detection 

Edges maybe the most important low-level feature. Edge operators usually detect local 

maxima or zero crossings after applying first- or second-order derivative filters. Optimal 

edge operators focusing the step edge model and the additive white noise model have 

been developed. Canny (1986) proposed three criteria including sensibility, localization 

and immunity for evaluating the performance of edge operators. The sensibility criterion 

expresses the fact that important edges should not be missed, and that there should be no 

spurious responses. The localization criterion says that the distance between the actual 



 

· 183 · 
and located position of the edge should be minimal. The immunity criterion minimizes 

multiple responses to a single edge. Canny operator is the result of solving an 

optimisation problem with above constraints using variation principle.  

 

In general, we have to use multiple Gaussian operators with different standard deviations 

because the signal-to-noise ratio is likely different for edges in the image. Canny (1986) 

proposed to aggregate the final information about edges at multiple scales using the 

feature synthesis approach. The response of a larger operator can be predicated from 

responses of smaller operators. If the response of the larger operator is significantly 

different from the predicated value, then it is discriminated as new edge points. In most 

cases, most edges are detected by small operators, and large operators detect edges at 

shadows or between texture regions. The feature synthesis approach usually produces a 

map of dense edge points and the edge points detected from smaller operators also 

present shifts in large scale. Bergholm (1987) proposed an edge focusing method to 

merge edges in coarse-to-fine manner, but distortions happens for some blurred edges at 

small scales. Both methods cannot determine which scale is best in different situations. 

 

I modify the feature synthesis approach to detect edges by directly synthesizing multi-

scale information. This synthesized edge detection uses the following two steps to 

compute the magnitude of edge strength and to estimate local edge normal directions. Let 

the 2-D Gaussian function with a standard deviation σ  be (Canny, 1986; Zhang, 1993) 
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- Compute edge strengths in x and y directions using 1-D Gaussian operators for n 

different scales iσ  (i=1…n). The sizes of Gaussian masks are 122 +iσ . 
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with 
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- Accumulate edge strengths at multiple scales to obtain the synthesized edge 

strength E and the gradient or normal direction β  at point (x, y). 
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The experimental results show that the large and small operators give similar responses at 

places where strong discontinuities occurs; while large operators play the dominated role 

at relatively smooth areas. Most edges are detected by large operators in my method, and 

small operators mainly make the edge location more accurate and find some details. The 

number of edge points is also reduced. This is contrary to the feature synthesis approach. 

The synthesized edges are composed of both contours in large scale and details in small 

scale. Moreover, the responses from small operators can rectify the location shift resulted 

due to large operators, and the large operators can depress redundant details. Therefore, 

the edge distortion and location shift when applying the coarse-to-fine merging 

(Bergholm, 1987) and fine-to-coarse prediction (Canny, 1986; Lacroix, 1990) are both 
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conquered. In addition, more details can be obtained if larger weights are assigned to 

small operators when synthesizing edge strengths.  

 

B.1.10 Chain Coding 

Chain coding is a popular and efficient method permitting lossless contour or boundary 

representation. A curve is represented by the absolute image coordinates of its starting pixel 

followed by an ordered chain of vectors connecting between successive boundary pixels with 

a limited set of possible directions. The directional vectors are encoded as the digits from 0 to 

7 or 0 to 3, assigned to the 8- or 4-neighboring pixels in counter-clockwise as defined in 

Equation B.1a or B.1b. Each digit is coded according to the relative position of a pixel to its 

predecessor. In an image with size M by N, a chain of length n needs bits defined by nbits = 

log(M) + log(N) + (n-1) log(k), where k represents 4- or 8- neighboring. The required bits can 

be reduced by expressing the chain by the derivative chain code, which is based on the fact 

that, starting from a given pixel, there are only a limited number of possibilities to continue a 

chain. Then various characteristics, such as area, length, size, centroid, shape regularity, etc. 

can be calculated for a closed chain, which may represent a building boundary (Parker, 1993). 

 

The derivative chain code method has many applications. Kaneko and Okudaira (1985) 

described a chain segmentation algorithm. The encoding scheme takes advantage of the 

property that a curve with smooth curvature can be divided into segments, each of which is 

represented by a sequence of two adjacent-direction derivative codes. In each segment, the 

derivative code is only composed of two symbols, reducing the per segment entropy. This is 

possible because of the hypothesis of smooth curvature within one segment. Therefore, the 

coding efficiency of the scheme becomes higher as the segments become longer. A similar 

approach is used in Baruch and Loew (1988), where the contour lines are segmented into 

segments with constant curvature, i.e. segments that are either straight lines or circular arcs.  

 

B.1.11 Active Contour Models 

A chain encoded from edge points may be open at both ends, and have to be closed to 

represent the object boundary. The active contour model, also known as snakes, can 

model a closed contour to the boundary of an object in an image. The contour may be 
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initialized using the encoded object edge points with a distance between adjacent vertices 

of a few pixels. The snake model is an energy-minimizing contour that deforms under the 

influence of internal forces, image forces, and external constraint forces (Kass et al., 

1987). A snake is represented as a parametric curve, i.e., v(s) = (x(s), y(s)), where s runs 

from 0 to 1 over the perimeter of the snake.  

 

Snake is controlled by minimizing a function, which converts high-level contour 

information like curvature and discontinuities and low-level image information like edge 

gradients and terminations into energies. Williams and Shah (1992) developed a greedy 

algorithm, which allows a contour with controlled first and second order continuity to 

converge in areas with high image energy. The energy function is defined as  
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where γβα ,,  are parameters used to control the sensitivity between three energy terms. 

The continuity force || 1−−−= iicontinuity vvdE  requires even spacing of vertices, where d  

is the average distance between vertices. The curvature force 2
11 |2| +− +−= iiicurvature vvvE  

gives a reasonable curvature estimate. The shift towards areas where the gradient in the 

image is large is encouraged by the image force )/()( minmaxmin GGGGE magimage −−= , 

where Gmax and Gmin are the maximum and minimum gradient in a neighborhood, and 

Gmag is the gradient of the vertex. The energy function is calculated at each vertex vi and 

its neighbours. The new position of vi is the location achieving the smallest energy. 

 

I adaptively decrease the values of the curvature coefficient β  when a right angle at 

some vertex is present. This is because a right angle indicates a corner in the contour at 

that vertex. Self-intersection of the contour is prohibited by increasing the curvature 

coefficient value to a very large value. This process closes the labelled open edge chains 

but with low modeling quality (Hu and Tao, 2002). By examining all the contours, the 

size of the largest buildings can be determined. 
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B.1.12 Hough Transformation 

Hough transform (HT) allows for detecting the best fitting line/plane from a set of 2-D/3-

D points, and is very robust to noise due to occlusions and false positives. The 2-D HT is 

applied to every 2-D point (x, y) for line detection as given by (Duda and Hart, 1972) 

 

θθρ sincos yx +=                 (B.7) 

 

where θ  is the angle of the line’s normal with the x -axis; ρ  is the algebraic distance 

from the origin to the line. Usually the angle is restricted to the interval of [0o, 180o), thus 

the orientation of a line is unique. Usually there are many types of edges in an image, and 

edges can be divided into many pieces of line segments. After pixels are transformed to 

Hough space, the computed accumulator may present several peaks. Lines can be found 

by detecting these peaks in the parameter domain. This is equivalent to the classification 

of the points into different groups of line points (Zhang and Burkhardt, 2000).  

 

B.2 GEOMETRY AND NUMERICAL ALGORITHMS 

 

B.2.1 Surface-Curvature-Sign Labeling 

Differential geometry states that local surface shape is uniquely determined by the first 

and second fundamental forms (Besl, 1988). The mean and Guassian curvatures combine 

these first and second fundamental forms in two different ways to obtain scalar surface 

features that are invariant to translation, rotation, and change in parameterisation. 

Therefore, visible surfaces in range images have the same mean and Guassian curvatures 

from any viewpoint under orthographic projection. Eight fundamental viewpoint 

independent surface types can be characterised using only the sign of the mean curvature 

and Guassian curvature, including peak, pit, ridge, valley, saddle ridge, saddle valley, flat 

and minimal (Besl and Jain, 1988).  

 

The mean curvature uniquely determines the shape of graph surfaces if a boundary curve 

is also specified while Guassian curvature uniquely determines the shape of convex 

surfaces and convex regions of non-convex surfaces. The mean and Guassian curvatures 
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can be computed directly from a range image using window operators that yield least 

squares estimates of first and second order partial derivatives (Besl and Jain, 1988). The 

key point is that every pixel can be given a surface type label based on the values of the 

pixels in a small neighborhood of that pixel. 

 

B.2.2  Polygon 

A polygon is a two-dimensional surface stored as a sequence of points defining its 

exterior bounding ring and zero or more interior rings. Polygons by definition are always 

simple, that is, not self-intersected. The exterior and any interior rings define the 

boundary of a polygon, and the space enclosed between the rings defines the polygons 

interior. The rings of a polygon can intersect at a tangent point but never cross. A number 

of different methods can be applied to compute the area of a polygon with vertex 

coordinates. The origin of the coordinate system is often translated to the centre of 

gravity of the dataset, to improve the numerical condition by avoiding subtraction and 

multiplication of large numbers (O’Rourke, 1998; Parker, 1993). 

 

The 2-D point-in-polygon test is to determine if a point falls inside a given polygon. The 

popular algorithm uses the parity rule, in which a line is drawn from the point to some 

point that is guaranteed to lie outside the polygon. If the line crosses the polygon edges 

an odd number of times, the point is inside the polygon, otherwise it is outside (O’Rourke, 

1998). The second algorithm is based on the winding number of the point, which is the 

number of revolutions made around that point while travelling once along the polygon. 

The point is inside the polygon if the winding number is nonzero (Wu et al., 2001). 

 

B.2.3 Douglas-Peucker Curve Simplification 

The most widely used high-quality curve simplification algorithm is probably the 

heuristic method called Douglas and Peucker algorithm. “At each step, the algorithm 

attempts to approximate a sequence of points by a line segment from the first point to the 

last point. The point farthest from this line segment is found, and if the distance is below 

a predefined threshold, the approximation is accepted, otherwise the algorithm is 

recursively applied to the two sub-sequences before and after the chosen point. This 
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algorithm has generally produced better approximations when compared with many other 

simplification algorithms” (Heckbert and Garland, 1997). The worst-case complexity is 

)log(nn ⋅  using the geometric structure based on convex hulls, where n is the number of 

points (Hershberger and Snoeyink, 1992). A potential problem is that the simplification 

may cause a simple polygon to become self-intersecting. 

 

B.2.4  Triangulated Irregular Networks 

The most popular triangulation method is the Delaunay triangulation (DT), which does 

not use height values and is a 2-D method. DT finds the triangulation that maximizes the 

minimum angle of all triangles, among all triangulated irregular networks (TINs) of a 

given point set (De Berg et al., 2000). This helps to minimize the occurrence of very thin 

triangles. DT has many nice properties that make it very popular in surface modeling. In 

a DT, the circum circle of each triangle contains no vertices in its interior. DTs can be 

computed using the incremental insertion algorithm, the divide-and-conquer algorithm, 

and the plane-sweep algorithm (O’Rourke, 1998). Vigo (1997) developed an algorithm 

for constructing the constrained DT of a generalized planar graph. The algorithm works 

incrementally, and allows for the addition of a point to the constrained DT as well as the 

addition of an edge that constraints it. 

 

B.2.5  Linear and Non-linear Regressions 

Let the following linear system describe the parametric model (Shen et al., 1992): 

 

vAxl +=                    (B.8) 

 

where l is a vector of observations; A is the design matrix; x is a vector of unknown 

parameters; v is the error vector that are assumed to be independently and identically 

distributed. The solution to the unknowns can be obtained by a conventional least-squares 

(LSs) method (Shen et al., 1992): 
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where lC  expresses the a priori variance-covariance matrix of the observation vector. For 

the non-linear system, a Taylor expansion is often used to perform a linearization on 

those observation equations toward those unknowns. Then the parameter corrections are 

computed by applying the linear regression. The a priori values of the unknowns are 

corrected iteratively until certain termination condition is satisfied. 

 

B.3 QUALITY MEASURES 

 

Several quality measures are defined to assess the performance of a feature extraction 

algorithm based on the following quantities (Fischler and Heller, 1998; Wiedemann, 2002): 

 

- True positives: primitives in both the extracted results and the reference data. 

- False positives: primitives in the extracted results but not in the reference data. 

- False negatives: primitives in the reference data but not in the extracted results. 

 

The quality measures, i.e., completeness and correctness, are (Fischler and Heller, 1998; 

Wiedemann, 2002): 

 

- Completeness measure: the percentage of the reference primitives that are 

extracted by the algorithm, i.e., 
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- Correctness measure: the percentage of correctly extracted primitives with 

respect to all extracted ones, i.e., 
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APPENDIX C 

LIDAR EXPERT AND ITS APPLICATIONS 

 

This appendix first describes Lidar Expert, a software package that was developed by me 

for the thesis work. Then three mapping applications using features extracted by Lidar 

Expert are presented.  

 

C.1 LIDAR EXPERT 

 

Lidar Expert has implemented most algorithms presented in previous chapters for 

extracting cartographic features from lidar range and intensity data. It now includes 

automated tools for pre-processing raw lidar data, generating bald earth terrain models, 

detecting road ribbons, reconstructing grid road networks, detecting building footprints, 

creating building models, mapping forested areas, computing pipeline risks, perform 

image processing, exporting extracted results, converting between different data formats 

and conducting other analyses. Users can configure the system by setting values for the 

parameters used by above tools. 

 

The pre-processing tools perform blunder detection, point density determination, points 

thinning, vector to raster conversion etc. The DTM generation tool utilizes a hierarchical 

terrain recovery algorithm to intelligently discriminate between terrain and non-terrain 

points and produces bare Earth models with a high accuracy for scenes with typical 

terrain and coverage types. The road detection tool outputs road ribbons by classification 

lidar intensity and height data. Especially in built-up areas, it can reconstruct grid road 

networks with cartographical quality and calculate their attributes, including height of 

road crossings, and width, length and slope of road segments. The building extraction 

tool has two sub-procedures, i.e., building detection and building reconstruction. The 

detection step locates building footprints from lidar height data by segmentation; then 

computes orthogonally rectified polygonal boundaries. The reconstruction step creates 

prismatic models for flat roof buildings and polyhedral models for non-flat roof buildings. 
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This process also calculates the attributes of building models, including orientation, area, 

perimeter, size, average/maximum height, footprint type, roof type and so on.  

 

Lidar Expert can import single- and bi-return lidar data in ASCII and binary formats 

including TIFF with world files, ArcView grid, PNG, PPM and PIX. It exports results in 

image formats such as TIFF, PNG and PIX for grid data, in vectors formats such as ESRI 

Shapefile for 3-D building models and road networks, and in ASCII format for TIN 

representation. However, Lidar Expert itself does not display the results at present. To 

visualize the extracted results, users have to use other commercial systems, such as 

ArcGIS, PCI Geomatica, or ERDAS IMAGINE, to combine exported files.  

 

The tools included in Lidar Expert have been tested using many lidar datasets collected at 

areas of varying scene complexities. The point densities change from 0.43 to 2.8 

points/m2. The results show that in most areas the lidar-derived DTMs retain most terrain 

details and remove non-terrain objects reliably; the road ribbons and grid road networks 

are sketched well in urban areas; and the extracted building footprints have high 

positioning accuracy equivalent to ground observations.  

 

C.2 3-D CITY MODELS  

 

C.2.1 Introduction 

The production and use of 3-D city models are important tasks for a variety of geospatial 

applications, including urban planning, traffic control, environmental studies, marketing, 

telecommunication, battlefield simulation, and propagation of pollutants (Haala and 

Anders, 1997; Brenner, 2000; Tao and Hu, 2001). With 3-D city models, different 

perspective views can be generated from different positions and directions for landscape 

analysis. Telecommunication companies can optimize the distribution of base station and 

antenna sites with the line-of-sight analysis between transmitters and receivers. As air 

movements are better understood with building obstructions known, the behaviours of 

pollution plumes can be studied in urban areas.  
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To generate a 3-D city model, accurate information about many features, such as DTMs, 

road networks, street blocks, buildings, trees and bridges, have to be acquired. Primary 

data to support feature extraction are aerial and satellite images and digital surface data 

collected by a variety of sensors. Airborne lidar can acquire digital surface data with high 

accuracy, fast turn-around time and reduced price. These characteristics have attracted 

much attention for various feature extraction tasks. While these tasks may be difficult or 

expensive to be completed when using traditional remote sensing data.  

 

C.2.2 3-D Information Extraction 

Lidar Expert can intelligently discriminate between terrain and non-terrain points, and 

have produced DTMs automatically using a hierarchical terrain recovery algorithm for 

typical areas with different terrain and coverage types. Some non-terrain points can be 

removed rapidly when the VSM is available, which is derived by thresholding the 

difference between first and last returns range data. Using intensity data can identify most 

pavements according to the reflectance properties and separability of various materials on 

ground. Thus, many hypothesized terrain points may be found easily.  

 

Lidar Expert can reliably detect road ribbons and reduce the misclassification of the road 

class by integrating both the radiometry property of the intensity data and the height 

information of the DNM. The road ribbons detected for the Santa Barbara airport are 

 
 

Figure C.1. Road ribbons overlaid on the DOQ (Santa Barbara airport) 

 N 
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shown in Figure C.1, where the DOQ is placed on the red layer; the road ribbons are on 

the green layer; and at the right bottom part, it is a small scale picture of these road 

ribbons. In built-up areas where the road networks are arranged in grid format, a global 

grid constraint is used to formulate hypothesis for the presence of road primitives and to 

verify this by checking multiple criteria. The 3-D road segments and crossings hold the 

connectivity topology suitable for network analysis. The major attributes about each road 

segment including its width, length, and slope are also calculated.  

 

Lidar Expert detects object footprints by segmenting the DNM and then refining them 

using morphological operations. The footprints of non-building objects (mainly trees) can 

be reliably deleted if the VSM is available. Building boundaries are distinguished from 

non-building ones by examining shape measures, and are modeled as rectangles, 

quadrangles, or regular polygons. Lidar Expert can produce regular shapes by enforcing 

the geometric regularity constraints such as orthogonality, parallelism and collinearity. 

Prismatic models are created for flat roof buildings by computing their average heights. 

Polyhedral models with vertical walls represent non-flat roof buildings. Many attributes, 

including orientation, height, width, length, and area, are calculated for each building. 

 
 

Figure C.2. 3-D city model (Downtown Toronto) 

N 
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C.2.3 Results 

A case study is performed for downtown Toronto, which covers about 3.76 km2 (see 

Section 4.2). Figure C.2 shows a screen shot of the 3-D city model visualized using 

ArcView GIS. The grid road model and prismatic building models are overlaid on the 

ortho-image draped on the lidar-derived DTM. The building shapes are classified into 

four types: rectangle, quadrangle, polygon and complex. The DTM is displayed at the 

transparency of 50%. The grid road model consists of 402 road segments and 302 road 

crossings. The area covered by the road class is 1.05 km2, which is about 27.9% of the 

study area. The completeness and correctness of road segments are 84% and 91.6%, 

respectively. The area of all the building footprints amounts to 1.34 km2, which is 35.6% 

of the study area. About 413 building models are created with the completeness and 

correctness around 92% and 97%, respectively.  

 

C.2.4 Summary 

The use of single- or multi-return range and intensity data enables the simultaneous usage 

of geometric and radiometric information for feature extraction. Lidar Expert is suitable 

for fast extraction of DTMs, roads and buildings.  

 

C.3 PIPELINE SAFETY MANAGEMENT 

 

C.3.1 Introduction 

Demand for gas is being driven by growing worldwide demand for gas-fired electric 

power generation, and by growing industrial and commercial demands (NPMS, 2002). 

Natural gas distribution pipeline systems are being built, expanded, replaced, and planned 

worldwide (PLGI, 2002). Although pipelines are the best way to transport gas and energy 

resources, major excavation damage and natural disasters such as landslides and floods 

stress an emergency response organization’s abilities to plan and response. There are 

hundreds of natural gas and hazardous liquid pipeline accidents each year happened, 

resulting huge injuries, property loss and environmental damage (OPS, 2002).  
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As today’s pipeline engineering and operations are more reliant on geospatial data for 

safety throughout a pipeline’s life cycle of design, construction, operation, maintenance, 

emergency response, and post-disaster restoration, the rapid and cost-affordable 

acquisition of terrain data along the pipeline corridor becomes increasingly critical 

(NPMS, 2002; PLGI, 2002). Rapid and affordable acquisition of physical and ecological 

data along the pipeline corridor is critical for analyzing risks. Remote sensing 

technologies help identify risks to pipelines and provide cost-effective solutions.  

 

Because of its narrow scanning swath in comparison to other sensors, airborne lidar is 

particularly suitable for rapid elevation data collection of pipeline routes in a cost-

effective way compared with other elevation data collection systems (Hill et al., 2000; 

Optech, 2003), and should be considered for accurate pipeline mapping projects. The 

potential integration with other imaging technologies, such as optical, infrared, and SAR 

sensors, lidar data is expected to help pipeline risk managers solve safety problems and 

make decisions (Tao and Hu, 2002).  

 

C.3.2 Pipeline Mapping and Risk Modeling 

Pipeline safety problem starts before the actual construction begins and exists in the all 

life cycle of a pipeline. Since a pipeline has been built and placed into services, geologic 

hazards, corrosions and third-party damages all pose cumulative environmental and 

internal risks to its integrity (COB, 1999). In an effort to remove the guesswork from 

pipeline operations and reduce costs, new techniques have been employed to analyze 

pipeline risks and maintenance needs in a scientific fashion (NPMS, 2002; OPS, 2002).  

 

Pipeline maps are produced to visualize the relationship among objects, and are initially 

generated to construct a pipeline (BTS, 2002). Gas and pipeline industry needs precise 

information when planning the most efficient and economical pipeline routes and quickly 

assessing the feasibility of construction in certain areas such as valleys between 

mountains. High-quality location maps are vital for safety reasons and in order to monitor 

any ground movement around the pipelines. During the construction of a pipeline, a route 

is established to go from the beginning of the pipeline project to the end of the pipeline 
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project. This procedure usually includes several steps including initial design, initial 

survey, pre-construction survey, construction survey, and as-built survey (BTS, 2002).  

 

Lidar range data can be used to generate DTMs, produce tree canopy models if the data 

have multiple returns, and produce high quality orthoimages. Orthoimages can be used as 

maps to establish accurate geographic locations of pipelines. The aerial photographs can 

help to visualize accurate locations of pipelines with nearby environments, and may be 

used to extract breaklines after careful interpretation. The lidar intensity or thermal 

infrared images can be used to determine the 2-D location of the above or under ground 

pipelines, and are suitable for gas leakage detection according to the thermal anomalies. 

When multispectral images are available, different features may be distinguished by the 

supervised classification. Biomass prediction algorithms based on the NDVI and the 

SAVI also make use of these spectral bands. Moreover, improved biomass prediction is 

possible using the vegetation height data contained in multi-return lidar data. 

 

However, lidar data may not replace photogrammetric mapping in some cases, for 

example, in the final design stage of the highway location and design process. 

Photogrammetric mapping is still required to produce highly accurate DTMs, as well as 

breaklines (Veneziano et al., 2002). So lidar can be used to collect large area or long 

corridors, providing designers with the terrain information enough to identify favourable 

alignments at planning stage. Once such alignments have been identified, detailed 

photogrammetric mapping can then be conducted for a lesser area or shorter corridor. 

 

The penetration rate of laser beams mainly depends on the types of trees and season. 

Multiple returns allow the data to be analyzed and classified as vegetation, while the 

ground return allows DTMs of the bare ground to be generated and tree heights to be 

calculated (ALM, 2003; Optech, 2003). Lidar-derived DTMs can be used to calculate 

terrain parameters such as slope, aspect and curvature, and to produce DTM derivatives 

such as contours, profiles, watershed and drainage networks (Tao and Hu, 2002). The 

terrain parameters can help locate steep slopes, which could endanger the pipeline 

structure. The derivatives can identify segments having the highest risk factors. 
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To determine the high-risk segments of a pipeline from the viewpoint of natural disasters 

such as forest fire, some factors, such as sliding and fire risks, have to be considered. The 

sliding risk is subject to the slope. We can assume that a slope of 90o is most dangerous, 

and a slope of zero has no danger. The fire risk is defined by the direction of prevailing 

winds, by the slopes that trend up from that direction, and by the vegetation biomass on 

those slopes. Slopes facing the prevailing wind and having high vegetation biomass are at 

high risk. Also, steeper slopes are at higher risk, as the flame front can travel quickly up 

the slope. So the pipeline risks are determined by slope, aspect, and biomass. Putting all 

these factors together, the risk rates can be estimated for each pipeline segments.  

 

Risk-rating maps can be created using a set of risk models by integrating the predicted 

risks due to fire, SCC, internal corrosion, surface erosion and terrain stability into one 

unified model (Tao and Hu, 2002). A risk-rating system along the pipeline would 

predicate potential trouble spots or estimate the potential risk posed by vegetation and 

features adjacent to the pipeline. This information could help maintenance supervisors 

better prioritize their work schedules to emphasize monitoring of the highest risk zones 

and assist risk management to assure safety in the pipeline’s life cycle. For example, it 

can decide safer routes for placement of a new pipeline, and improve the fast response  

 
 

Figure C.3. The vegetation height model (Whitecourt) 

 N 
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ability in case of an accident (COB, 1999; NPMS, 2002). 

 

C.3.3 A Risk Rating Example 

The pipeline data was collected in August near Whitecourt, Alberta, using an ALTM 

2050. The pipeline runs SE to NW through the centre of the ROI. The area contains of 

forested areas and a ridge crossing the northwest portion. The dataset consists of 20.9 

million first and last returns lidar points covering a rectangular area of about 30 km2. The 

study area has an elevation range from 733 m to 965 m. A patchwork of clear-cut was 

done to remove trees within about 42 meters along both sides of the pipeline’s route. The 

range and intensity images converted from lidar data have a 1.2-m GSD resolution. 

 

The pipeline route is digitized on intensity image in 2-D according to the sketch map, and 

the vertex elevations are retrieved from the lidar-derived DTM using Lidar Expert. The 

terrain relief is small for most segments of the pipeline’s route except the middle of the 

pipeline where the slope is about 17 degrees. The total risk index (RI) at a point of the 

pipeline is a linear combination of two risk factors, i.e.,   

 

bbiomasssslopepipeline wRwRRI ⋅+⋅= ,  w.r.t. 1=+ bs ww       (C.1) 

 
 

Figure C.4. Pipeline risk-rating map (Whitecourt) 
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where slopeR  is the slope risk; biomassR  is the biomass risk; ws (=0.6) and wb (=0.4) are 

corresponding weights.  

 

The slope risk is calculated along the pipeline route and is measured by the slope at that 

point. The vegetation heights are accumulated on the VHM along the perpendicular 

direction of the pipeline up to a depth of 100 m wide, and are then averaged to estimate 

the biomass risk. The VHM is a subtraction between the first-return lidar DSM and the 

derived DTM using the last-return lidar data as shown in Figure C.3, where a light gray 

stands for a larger height. Both risk factors are reclassified to a common scale, within the 

range of 0 to 25, giving higher scores to larger slopes and biomass. In Figure C.4, the 3-D 

pipeline is overlaid upon the lidar DSM, and is coloured by risk scores. Red segments are 

of high-risk, and may be damaged severely by a geologic hazard. The results show that 

lidar data contains plenty of information for estimating pipeline risks. 

 

C.3.4 Summary 

Safe pipeline transportation of energy resources is a major concern for the public. The 

virtual picture of a risk rating system to evaluate the risk levels of different segments of a 

pipeline route can be created by fusing information extracted from lidar data and other 

remote sensing data. This information can be used to improve the safe transmission of 

gas and liquid energy, and assist risk modeling to assure safety.  

 

C.4 AIRFIELD SAFETY MANAGEMENT  

 

C.4.1 Introduction 

Today, there are more airplanes competing for airspace. To ensure the air safety, many 

factors have to be considered. The aeronautical community has recognized the acute need 

for accurate geospatial information in and around the airfield critical to flight safety, 

specifically for accurate runway positions, obstruction locations and heights, and 

topography around airfields. Knowing the location of an aircraft is only half of the 

solution. To bring an aircraft safely onto the runway with little else than satellite 
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navigation, the pilot will need very accurate and reliable geodetic coordinates for the 

landing runway. Currently, pilots are still expected to use conventional navigation aids or 

visual contact to direct the aircraft to the runway.  

 

Airborne lidar is suitable for collecting accurate terrain data and providing feature 

information for airport safety management. In addition to identifying obstructions and 

designing approach procedures, pilots will be able to use the generated 3-D airfield 

models for flight training, pre-flight flythrough familiarizations, as well as increasing 

overall aircrew situational awareness relating to mission planning. 

 

The airfield initiative document (AID) is a newly published specification for airfield 

obstruction identification (NIMA, 2001). It describes the use of 3-D OISs to survey glide 

slope obstructions, and puts new requirements for a safer flying environment. “The 

obstruction identification surface (OIS) consists of several surfaces with certain 

dimensions related to a specific runway approach, including primary surface (PS), 

approach surface (AS), primary/approach transitional surface (P/ATS), inner horizontal 

surface (IHA), conical surface (CS), outer horizontal surface (OHS), and conical/outer 

horizontal approach transition surface (C/OHATS)” (NIMA, 2001). When approaches 

share the exact surface, only one OIS is required. An obstruction is any object that 

penetrates an OIS, except where no obstruction penetrates the OIS; it shall be the highest 

object within the area. The obstructions are often extracted from photogrammetric and 

survey data. In addition, to avoid airport incursion, the surface of vehicular traverse ways  

(SVTW) is also needed (NIMA, 2001). 

 

“The geospatial data required for obstruction identification around an airfield include the 

AEM, airfield features, and different combinations of the highest, the most penetrating, 

the highest approach and the highest non man-made obstructions/objects for analyzing 

each type of OIS surface” (NIMA, 2001). The AEM is in one arc second spacing each 

post having an absolute vertical accuracy of ±30.0 meters with respect to reflective 

surface. This vertical accuracy is required throughout the entire project area except for 

those posts that fall within the primary, primary approach, and primary/approach 
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transitional surfaces (NIMA, 2001). Airfield features, such as runway ends, must be 

surveyed to achieve high accuracy, for example, 0.3 m CE90 and 0.07 m LE90 for 

runway points. The required accuracy within OIS is lower. For example, within the PS, it 

is 6 m CE90 horizontally and 1 m LE90 vertically for the highest obstruction and the 

highest non man-made obstruction/object in each 912-m section of the primary area on 

each side of the runway. The required accuracies for other surfaces are normally lower.  

 

C.4.2 Study Area 

Santa Barbara airport has three runways (see Figure C.5). One is in east-west direction; 

another two are in the direction from southeast to northwest. At the north part, there are 

hills with varying heights. There are only a few large buildings around the airport, and 

most residential buildings are both smaller and lower than forested clusters. The airfield 

features are surveyed in field, including runway polygon and end points, taxiway, 

touchdown zone, overrun stop way, apron hardstand, buildings, roads, inland water areas, 

airfield elevation points, and many obstructions. The lidar dataset consists of 11.3 million 

first-return lidar points covering an area of 26 km2. The terrain relief is from 0.31 m to 

148.51 m. An aerial colour DOQ with a 1-m GSD covers the whole airfield.  

 
 

Figure C.5. 3-D airfield model (Santa Barbara airport) 
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C.4.3 Vertical Object Extraction 

Lidar Expert derives a DTM with a 1.6-m GSD. Because last-return lidar data is not 

provided, it is impossible to reliably distinguish buildings from forested areas solely 

using shape measures. Some important objects, such as light poles, antennas, signs, small 

objects within airfield and large objects outside the HIS cannot be extracted using lidar 

data because of its limited resolution. So I manually digitize the 2-D outlines of 1,120 

large buildings, 533 residential areas and forested areas around the airfield using the 

aerial orthophoto. A residential area is composed of multiple closely located houses with 

close roof heights. Lidar Expert then calculates the maximum object heights using object 

outlines, raw lidar points and the derived DTM. Some critical objects important for 

aviation protection, such as those sited on the runway and the control tower, are obtained 

in a same way. The 3-D airfield model is shown in Figure C.5, where 3-D features are 

extruded on the DOQ draped on the DTM. The measured features and extracted data 

include all the required data for the OIS analysis, and their accuracies are better than the 

accuracy required for obstruction identification.  

 

C.4.4 Obstruction Identification and Risk-Rating  

All the surfaces of two OISs are created following the AID as shown in Figure C.6. One 

runway has an OIS, and another two use a second OIS because their approaches share the 

 
 

Figure C.6. Obstructions protruding OIS surfaces 
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exact surface. All the digitized airfield objects that protrude the OISs are identified to 

support a safe flying environment (see Figure C.6). These identification results can help 

airport managers to check if their airfields meet the new safety requirements. To provide 

a clear view of the priorities of airfield obstructions to airport managers, the identified 

obstructions are classified into three risk categories by assessing risk index scores.  

 

A RI is computed for each obstruction as a weighted sum of four risk factors, each 

corresponding to evidence upon which the risk evaluation is based. A larger RI score 

implies that the obstruction is more dangerous. The equation reads (Wang et al., 2003) 

 

RIobstruction = w1 R1 + w2 R2 + w3 R3 + w4 R4,   w.r.t. w1+w2+w3+w4=1  (C.2) 

 

where Ri is the risk score of factor i ( 4i1 ≤≤ ); wi is the weight of factor i. The higher the 

weight, the more influence a particular factor will have in the index model. 

 

Table C.1.  Risk levels of four risk factors 

Low Median High 
Risk levels 

1 2 3 4 5 

Distance (m) < 2286 < 1000 < 600 < 300 < 100 

Location 
OHS, 

C/OHATS  
CS PS 

IHS, 

P/ATS  
AS 

Type Mountains 
Residential 

houses 

Objects within 

SVTW 
Trees 

Towers, 

buildings 

Protrusion N/A 
OHS, 

C/OHATS 
PS, CS 

AS, IHS, 

P/ATS 

 

Four risk factors are evaluated to take into account distance, location, type and protruding 

condition as described below: 

 

- Distance factor R1 is measured by the distance of an obstruction from the 

centreline of a runway. The risk levels are determined by the distance from the  
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HIS layer within 2,286 meters.  

- Location factor R2 is measured by the position of an obstruction related to OIS. 

Different OIS layers are assigned with different risk levels.  

- Type factor R3 is measured by the obstruction types, including buildings, trees, 

houses, mountains etc. For example, buildings are more dangerous than trees. 

- Protrusion factor R4 is the measurement of the protruding condition. An 

obstruction protrudes any OIS has a risk level of no less than 3. 

 

Table C.2.  Pair-wise comparison of the relative importance of factors 

Risk 

factors 
R1 R2 R3 R4 

Row 

sum 
Weight 

R1 1 1/2 3 1/5 4.70 0.14 

R2 2 1 5 1/3 8.33 0.26 

R3 1/3 1/5 1 1/9 1.65 0.05 

R4 5 3 9 1 18.00 0.55 

Sum     32.68 1.00 

 

Each risk factor is assessed a score within the range of 1 to 5 as shown in Table C.1. The 

weights in Equation C.2 can be approximated by dividing the sum of values at that row 

by the total sum (i.e., the shaded cell in Table C.2). Saaty (1980) determined the weights 

using the analytic hierarchy process, which makes a series of pair-wise comparisons to 

determine the relative importance and ensures consistency between all the factors in a 

multi-criteria evaluation. In Table C.2, a pair-wise comparison matrix is constructed, 

where each factor is compared with the other factor, relative to its importance, on a scale 

from 1 to 9. The empirical values about the comparative importance between every two 

factors are shown in Table C.2. The weights are obtained by scaling the principal 

eigenvector of the matrix, that is, (0.13, 0.23, 0.05, 0.59). For example, the mountain 

summits sited at the northwest corner are about 1700 m from the HIS and protrude the 

C/OHATS (see Figure C.6). Their risk index is equal to 2.09 as calculated using Equation 

C.2 with weights substituted. 
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Saaty (1980) calculates a consistency ratio (CR) to check the probability that the ratings 

are randomly generated. The CR is defined by Equation C.3, where maxλ  is the principal 

eigenvalue of the matrix; n is the number of factors. A matrix with the CR value greater 

than 0.1 should be re-evaluated, and the process is repeated until the CR is less than this 

threshold. The CR is 0.0123 for the matrix in Table C.2. 

 

CR = ( maxλ - n) / (n - 1)               (C.3) 

 

A risk level for each obstruction is assessed, and a part of the risk-rating map is shown in 

Figure C.7. The high-risk obstructions pose a severe threat to aircrafts and should be 

removed to conform to the AID. The median-risk obstructions may be kept, but should be 

inspected periodically.  

 

C.4.5 Summary 

This work makes a case study for obstruction identification following the new 

requirements described in the AID. By combining advanced lidar data processing 

techniques with traditional photogrammetric mapping services, new toolsets help airfield 

monitors solve problems and make decisions. 

 

 
 

Figure C.7. Obstructions risk-rating map 
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