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Abstract

Recent advances in GPS collar technologies for Grizzly bear tracking have produced a

drastic increase in the volume of data available for scientific analysis. Machine learning

methods seem suited to process this ever-increasing volume of data. Comprehensive

understanding of the datasets, machine learning methods and similarity measures is

fundamental for research of this kind.

To automatically detect frequent movement patterns, the current work implemented

three machine learning methods, a Location-Based Services (LBS), a simulated annealing,

and a hybrid local alignment approach. Several dataset segmentations were tested to

reduce the amount of calculations for similarity measures, without losing relevant data

relationships.

Mostly based on my fifteen years of professional experience in the industry of database

administration and development, I found the current state of commercial database man-

agement systems (DBMS) mature enough to conduct fully integrated implementations.

In my judgment, that assumption was validated by the results of the local alignment

method.
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Calgary, Canada.

December, 2011.



vii

Dedication

With all my love, to the memory of my mother,

Maria Margarita Villagómez Estrada.
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Chapter 1

Introduction

In order to gain a better understanding of the activities and preferences of wildlife

species, scientific studies have made use of the best technologies of their time to track in-

dividuals in the studied population. The overall objective of this work is the identification

of specific behavior patterns of tracked individuals.

In the past six decades, the tracking methods have improved from the manual efforts

of the ’50s and ’60s, to today’s capturing, collaring and release practices. These im-

provements imposed the need to eliminate many subjective analysis decisions used in the

early studies. As a consequence, improving the objectivity of the analysis improved the

objectivity of the conclusions of the studies themselves [75]. In practical terms, objective

improvement meant an increase in precision, accuracy and frequency of the tracking data

available for study, automatically increasing the overall amount of data to examine.

Since human factors involved in data analysis are also questionable in terms of their

objectivity, and human reliability decreases significantly in the face of large volumes of

repetitive tasks [145], the use of special purpose machines for capture and analysis of

tracking datasets became necessary.

As it pertains to the tracking of wild grizzly bears (Ursus arctos), the contemporary

Global Positioning System (GPS) collar has proved to be more reliable and offers more

detailed data, when compared to previous “on-the-ground” and radio tag collar tracking

methods of past decades. Given the large volume of data resulting from the new tracking

practices, the general purpose programmable computer represents the best alternative

currently available for analysis.

This chapter includes descriptions of this research work in terms of its problem defini-
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tion, significance, objectives, methodology, scope and limitations. The last two sections

of this chapter include a description of the rest of this thesis.

1.1 Problem definition.

As will be examined in more detail in section 2.1, the improvements in GPS technol-

ogy, both in the constellation of satellites, and in the receivers themselves, have allowed

scientists to equip grizzly bears with smaller, lighter and more reliable instruments that

are capable of acquiring consecutive GPS fixes more frequently over longer periods.

Comparing the collars that were programmed to acquire a satellite fix every hour to

the collars that acquire a position every twenty minutes, the volume of captured data

has increased three-fold. Translating this increase over the entire tracking season for all

bears included in a study, means tens of thousands of individual position fixes per year.

As such, efficient analysis of this volume of data to detect repeated movement patterns

across the entire population of bears, can only be undertaken with automated computer

methods.

The problem then becomes one of creating computer programs that need a minimum

amount of input from the user, that analyze a variety of patterns (e.g. statistically rare

and common alike), and that are reasonably scalable to be applied to datasets of any

size. In other words, the key problem is to create analysis programs that need the bare

minimum of user parameters, that simultaneously test for different patterns in the data,

and that are reasonably scalable, both, in terms of execution time, and required Random

Access Memory (RAM) and secondary storage space.
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1.2 Significance.

Compared to the previous generation of computational search algorithms, machine

learning and data mining methods expand the search parameters from a single hard-coded

pattern (some times several patterns searched in serial manner) to a range of patterns

defined with abstract mathematical formulas (e.g. cost functions, geographic proximity,

direction of travel, entropy) [128]. Therefore, the effectiveness of these methods depends

on the specific similarity measure employed [128]. Comprehensive understanding of the

datasets, computational methods, and similarity measures, is fundamental for all research

of this kind.

The population of grizzly bears in western Canada is under intense study. The

main reason for this level of attention is that ecologists and environmental experts have

identified the grizzly bear as a species highly susceptible to modifications in its habi-

tat [73, 112, 114]. Therefore, a measure of how well or poorly the grizzly bear population

is doing at any given time gives a strong indication of how the entire ecosystem is do-

ing [129, 165, 176, 193].

Identifying frequent movement patterns for grizzly bears will provide strong indi-

cations for provincial administrators and conservation organizations so that they can

determine the most effective measures to regulate and protect the ecosystem, and grizzly

bears specifically. In terms of governance, it will allow taxpayers’s money to be spent

on specific protection and conservation initiatives with a reasonable amount of objective

justification, and as a consequence, with a reasonable expectation of success.

Once validated, the analysis methods resulting from this type of study can be adapted

to other wildlife species tracked in similar ways. Furthermore, once algorithms have been

developed that identify the special conditions for grizzly bears in specific geographical
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regions, modifications to algorithms for other geographic areas and other species should

require less effort.

The re-utilization of these methods will help determine the quality and relevance of

the original programs in conditions other than their initial intended application. From

these “learned lessons”, the programs can be deemed useful and improved, or labeled as

ineffective and discarded as irrelevant and/or unnecessary.

1.3 Objectives of this research.

1. Find frequent movement patterns in a multi-year grizzly bear tracking dataset.

2. Identify environmental factors that have a larger influence on grizzly bear activities

and geographical preference, in order to include them as part of the method’s

evaluation criteria to obtain a more comprehensive analysis tool.

3. Identify at least one machine learning method suitable for the analysis of grizzly

bear tracking data.

4. Implement the entire method using only the internal resources of a Relational

Database Management System (RDBMS).

5. Describe the method in simplified terms, preferably with graphical illustrations of

its most complex concepts.

6. Find a topological analysis theory capable of explaining all aspects of moving object

patterns based on fundamental movement characteristics (e.g. velocity, direction

of travel).
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Clarifying point number 4 of the previous list, adopt a minimalistic implementation

philosophy as defined by the American National Standards Institute (ANSI) / Interna-

tional Organization for Standardization (ISO) / International Electromechanical Com-

mission (IEC) Structured Query Language (SQL) specifications [13, 14, 15, 16, 17, 18,

19, 20, 21, 22].

1.4 Research questions.

1. What are the environmental factors that have a greater influence on grizzly bear

activities?

2. Is there a machine learning method that can do all of the following at the same

time?

(a) Analyze a combination of patterns, statistically prevalent and rare, all at once?

(b) Can the method be easily modified to exclude the common patterns?

(c) Can the method be easily modified to include only special patterns?

(d) Can the method be easily modified to include only common patterns?

(e) Does the method have enough sensitivity to detect specific patterns at different

temporal and spatial resolutions?

(f) Is the method easily modified to include multicriteria similarity evaluations?

(g) Is the method scalable?

(h) What are its RAM and secondary storage space requirements?

(i) What is the expected execution time for different combinations and quantities

of patterns to detect, and total volume of data to analyze?
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3. Can a modern RDBMS support this type of analysis tools (i.e. efficient and scal-

able) using only internal resources?

4. Can the method be explained in graphical form to make it more accessible to other

developers and researchers?

5. Is there a topological analysis theory capable of explaining all aspects of moving

object patterns based on fundamental movement characteristics (e.g. velocity, di-

rection of travel)?

1.5 Research methodology.

To answer the proposed questions, two initial concurrent tasks were undertaken,

namely the review of studies of grizzly bears from a natural sciences perspective (i.e.

ecological and environmental studies), and the evaluation of different RDBMS. The first,

in order to identify the factors that ecologists and biologists have found to be relevant in

the determination of grizzly bear behavior. The second, in order to find the most flexible

and feature rich RDBMS that can be used for the implementation of the analysis tools

under one budgetary restriction, it had to be open source or provided free of charge from

the manufacturer.

Subsequently, basic concepts in the computer sciences literature were considered to

determine which research results were more relevant to the minimalistic standard ANSI /

ISO / IEC SQL implementation philosophy adopted for this work [13, 14, 15, 16, 17, 18,

19, 20, 21, 22]. This process further informed the selection of the RDBMS, and identified

particular limitations and technical areas that had to be avoided, or compensated for, to

ensure a successful implementation. Additionally, the same process identified program-
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ming tasks in which the RDBMS excels and that should be taken advantage of to produce

better analysis tools.

Next, identification of the specific technical characteristics of the candidate computa-

tional methods were examined in conjunction with the details of the tracking dataset to

determine their compatibility. In particular, specific tests and statistical measures were

applied to the dataset to determine this compatibility. Another benefit of this dataset

examination allowed the exclusion of incomplete and inconsistent data that would not

contribute to finding substantial answers to the research questions (see subsection 3.3 for

a detailed description of these inconsistencies).

Once the candidate methods were selected, the initial implementation began by se-

lecting a small portion of the full dataset to serve as calibration data. After the initial

programming and unit testing of the methods, the calibration dataset was processed mul-

tiple times to find portions of the programs that could be improved in terms of execution

time or secondary storage space utilization.

When the calibration tests were finished, the adequate methods were applied to the

full dataset to examine all aspects of its application. The level of success of each method

was assessed before full sensitivity, multi-scale analysis, and comprehensive performance

analysis were conducted. More details of this process will be presented along with the

different implemented methods.

Finally, the results from the methods were examined to determine their relevance,

usefulness and novelty, in contrast to the characteristics expected of a successful compu-

tational method.

1.6 Scope and limitations.

As stated in the above objectives and questions (1.3 and 1.4 respectively), the current
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implementation was limited to the internal resources of the selected RDBMS system.

However, any and all resources, including advanced methods and intricate administration

strategies native to the database management system were employed in order to increase

the performance of the adopted solution. To be more precise, any and all software tools

made available by the original manufacturer inside or as part of the RDBMS system

itself, were considered as an internal resource. This definition excluded all function and

data structure libraries external to the RDBMS system that have to make direct use of

operating system resources, or that need special modules or agents (such as a listener or

similar interface tasks) to interact with other internal parts of the database.

Given the considerable amount of resources necessary to design, construct and test any

embedded system, in this case, the tracking GPS collar for grizzly bears, the current work

did not develop any part of this important component of the tracking system. Instead,

this research focused its efforts on answering the research questions from a comprehensive

analysis of an existing grizzly bear tracking dataset.

To fulfill the comprehensive requirement, this research employed fundamental analysis

of the tracking dataset from several perspectives (e.g. statistical, topological), as well as

applied methods for automated pattern detection.

Any other limitations imposed during the project development were a direct result of

the analysis, and will be clearly stated as they are presented to the reader.

1.7 Thesis organization.

Chapter 2 contains a chronological review of literature relevant to this project, divided

in two main approaches. Section 2.1 includes environmental studies of grizzly bears in

an effort to identify relevant factors that determine their habitat use and behavior. The

rest of the chapter includes past studies that analyze and propose solutions to technical
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aspects of the analysis of moving object datasets in general, and grizzly bear studies in

particular (when available).

Chapter 3 includes a non-chronological description of the individual tasks conducted

to process this project’s dataset and implement its machine learning methods. Important

algorithms and programming details will be presented in the text, but full source code

lists will not be included in this document. For full source code review, the reader

is referred to the accompanying digital media or the project wiki [Specific page to be

defined at this time].

Chapter 4 presents the results from each one of the fully implemented methods, and

highlights some of the positive and negative characteristics of the resulting programs. In

each case, additional limitations and their reasons are included as part of the examination

of each method. The results include the main memory and secondary space requirements,

performance, scalability, and sensitivity characteristics of the methods.

Finally, chapter 5 contains concise lists of the answers to the research questions, along

with brief discussions of their limitations, if any. Also in this chapter, specific scientific

and technical contributions are listed, as well as selected specialized areas that can be

further examined as a direct result of the conclusions of this work (in an effort to find

additional improvements). In other words, that chapter includes the conclusions derived

from this research, its contributions (section 5.2) and its future work (section 5.3).

Additional supplementary material is included in the appendices. The reasons for

each of them, and a brief description of their contents, will be presented in the text

at the point where the work generated that material. Except for appendix ??, which

constitutes a summary of the actual working hours that were employed to bring this

research to its current state of completion.
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1.8 Chapter summary.

This chapter has presented a detailed definition of the reasons for scientific under-

standing of movement patterns and geographic preferences for grizzly bears. Its argument

comprises the major aspects of the problem definition, which include the increasing vol-

ume of tracking data, the minimization of subjective analysis values, and the efficiency of

the analysis itself (execution time and statistical relevance). The objectives and research

questions were formulated in parallel towards five main goals, the integration of multiple

environmental factors for the automated analysis, the desired technical characteristics

of the resulting algorithms, the relevance of the algorithm’s results in statistical terms,

the computational restrictions of the adopted implementation philosophy (i.e. its mini-

malistic approach), and the existence of a theoretical framework to facilitate topological

analysis of fundamental aspects of moving object patterns.

From the software engineering point of view, this is the equivalent of a competing multi

objective problem [27, 68, 100, 102, 252], where all aspects have to be carefully balanced

in order to arrive at a reasonable compromise between thoroughness and practicality, to

produce the most convenient and efficient solution possible.
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Chapter 2

Literature review

The purpose of this chapter is to identify important environmental factors that de-

termine movement patterns for grizzly bears, limitations and features of the hardware

and software intended for this analysis, conceptual aspects of suitable computer-based

analysis methods, and theoretical findings that can assist the current work to answer its

research questions.

One of the basic principles of science is to take any problem and divide it into increas-

ingly smaller problems [192]. This process is iterative, and its main goal is to arrive at

fundamental aspects of the original problem which should be easier to analyze. After the

study of each part, the initial sub-division process is reversed into an integration effort and

all of the insights of the smaller aspects are used to explain the original phenomenon [192].

For many problems this has worked remarkably well, but for highly complex problems

where all the individual parts have intricate interdependencies, and especially for those

problems that have a geographical component, more and more studies are finding that

this approach is not the best [45]. Modern studies of wildlife, including studies on grizzly

bears, have to include more factors and more interactions amongst them, otherwise the

practical application of their results can be severely limited [44, 45, 50].

The understanding of the dynamics of the grizzly bear population in western Alberta,

including their habitat preferences and movement patterns, requires a multi-disciplinary

approach [195, 204].

One consequence of the increased complexity in the analysis of grizzly bear habitat

and behavior data is that the technological tools needed to acquire, represent, store,

manage, analyze and manipulate the associated data had to evolve with the studies, and
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become more complex themselves. The great majority of these changes however, have

been introduced in the computer science literature, with little or no effort given to explain

the behavior of wildlife.

The rest of this chapter examines aspects of this complex problem from two main

points of view. First, section 2.1 reviews studies on grizzly bears from an environmental

perspective to identify relevant factors to explain behavior, habitat selection, and move-

ment patterns. Then, the rest of the sections in the chapter analyze technical challenges

and solutions to similar problems from the computer sciences perspective.

Section 2.2 presents a brief description of the historical evolution of Database Man-

agement System (DBMS) in an effort to identify that technology as a mature and vi-

able solution platform for complex analysis tasks of very large datasets. Section 2.3

presents the knowledge discovery methodology as a comprehensive analysis process for

large datasets, making it a suitable alternative for the objectives of this work.

As exploratory steps, this work considered analysis algorithms from the Location-

Based Services (LBS) specialty as well as a simulated annealing solution. Although their

fully integrated implementation was successful, their scalability limitations characterized

them as unsuitable for the analysis or the current grizzly bear tracking dataset. The

material is included as additional support of the maturity of the DBMS. The observed

details in theoretical, implementation and initial result terms are included in appendix A.

Section 2.4 presents details and previous application publications of the local align-

ment method, that after the exploration mentioned in the previous paragraph, seemed

better suited to handle the analysis of the grizzly dataset.

The material originally destined for section 2.5, and ultimately diverted to appendix B

because of their limitations, contains several theoretical analysis frameworks for moving

objects. Finally, section 2.6 presents a brief summary of this chapter.
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2.1 Grizzly bear tracking, habitat, and behavior.

This section is a summary of studies on grizzly bears from an environmental point

of view. Each subsection groups studies based on the main innovations that each one

contributed to the understanding of the bears’ habitat and behavior, starting with the

improvements of tracking and habitat mapping methods.

2.1.1 Tracking and habitat mapping studies.

The early attempts at scientific study of grizzly bear habitat were very subjective

and lacked large area coverage, almost to the point of being nearly anecdotal accounts

(e.g. [75]). But the researchers themselves recognized those shortcomings and tried to

compensate for them by incorporating more detailed data with larger geographical cov-

erage (i.e. satellite data, [74, 76]). As satellite technology improved and the scientific

community gained access to a wider range of satellite images, more formal studies of

grizzly bear habitat were undertaken. Since the technology was new, there were still

many unknowns about the correct way to use it, specifically about how to classify differ-

ent measurements in the image into unique terrain features (e.g. rocks, barren soil, urban

areas) or plant species. Part of the problem was that the spatial resolution of the images

was still very coarse (79 m for Landsat-2, [240]). As technology improved, more sophisti-

cated classification strategies were introduced that used more data sources (e.g. additional

spectral bands), improving accuracy and reliability of large scale maps of grizzly bear

habitat (e.g. [110]). At the same time, as old satellites were gradually replaced by newer

and improved versions with increased spatial resolution and more spectral bands captured

simultaneously, the data available to researchers was made more convenient by including

georeferencing and corrections of many kinds that the users themselves had to apply
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in the past (e.g. radiometric, noise and atmospheric corrections). Some recent efforts

using remotely sensed data are aimed at detecting habitat modifications by analyzing

time-series images of the same geographical area (e.g. [203]).

Additional studies in habitat identification have focused on different aspects. Beier and

Noss [38] conducted a review of studies on habitat corridors. Their findings were that

generalization of benefits to all species is rather difficult because, each species and ge-

ographical area has particular needs and characteristics that have to be evaluated and

tested for. However, they also found that the better-designed studies (those that recog-

nized, accounted and corrected for their own limitations) strongly suggest that corridors

are valuable for ecosystem conservation efforts. The researchers remind decision mak-

ers in charge of administering resources for wildlife and humans alike that any effort to

change the use of current wildlife habitat should first conduct proper scientific studies in

order to prove that said changes will not affect any target species negatively.

Concurrent with the improvements in habitat mapping and identification, observation

and recording methods for the actual movements of the bears went from individual bear

tracking on foot, passing to capture and tagging methods (radio telemetry), to the current

dominant capture and collaring method using Global Positioning System instruments.

These changes increased the amount and accuracy of the movement data available to such

an extent that, its analysis required a shift from manual log examinations to computer-

based methods.

2.1.2 Habitat, movement and activities.

Modern studies of the movement and activities of grizzly bears have found different

determining factors for specific behaviors.

Gibeau [114] found that female bears preferred certain areas out of habit, ignoring

nearby higher quality areas. The study also found that bears residing in regions with
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restricted human access consistently used higher quality areas compared to bears where

human activities were unrestricted.

In a study by Munro et al. [183], the activities of grizzly bears in west-central Alberta

were analyzed in direct comparison to available seasonal food sources in order to deter-

mine the importance that said sources have on the activity selection of the bears. The

study did not find major differences in the use of specific food sources for this population

as compared to other grizzly populations in the central Rocky mountains. It also found

that activity selection is directly dependent on local habitats and time of day (e.g. bed-

ding occurred predominantly in forested areas and at night). Significant local variations

were explained in terms of a segmentation of the population of bears based on elevation

of their core home ranges. Mountain bears were defined as those for which 80% or more

of their core home range was above an elevation of 1,700 m, while the rest of the animals

were categorized as Foothills bears.

Excluding conventional habitat quality measurements (i.e. subjective habitat qual-

ity and connectedness), and using a Resource Selection Function (RSF) [46] and a Step

Selection Function (SSF) [217], Chetkiewicz [57] analyzed GPS data to identify move-

ment corridors. Results indicate seasonal variations of said corridors according to food

availability.

All these examples point to the fact that habitat preferences and movement patterns

for grizzly bears are influenced by many factors such as intensity of human activity, avail-

able resources (i.e. food and water), season, age, gender, presence of offspring, geography

of the terrain, and time of day, just to name a few.

2.1.3 Tracking with GPS instruments.

Even ten years ago, the technology for wildlife tracking was not developed enough

to provide the level of detail that is apparently needed to analyze this problem [114].
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However, through the efforts of many scientists in this field, researchers now have some

highly detailed datasets that can be analyzed in different ways. In the research by

Hunter [139], a new instrument was developed and deployed to take advantage of new

technologies such as accelerometers to acquire a very detailed dataset of grizzly bear

movement. Carra [52], analyzes a dataset of GPS points for five grizzly bears acquired at

20 minute intervals in which scale effects are significant. In both of these studies practical

considerations are identified as limiting factors in the use of the new devices, e.g. the cost

of capturing large carnivores, the cost of developing the devices themselves, the mass and

volume of the collars, the balance between the amount of data to be captured and the

life of the batteries, etc.

Frair et al. [109] analyzed trial generated GPS location data in conjunction with an

RSF in order to find and correct statistical biases, such as position acquisition failures

due to terrain and vegetation obscuring of satellite signals, and GPS equipment orienta-

tion. Their results indicate that it is possible to generate a mathematical error model in

order to minimize the errors introduced by environmental and equipment factors. They

also conclude that the error model used has to be designed specifically for each collar

model (including sampling characteristics), the wildlife species studied, and the land

cover characteristics of the geographical area in which it lives.

As Heard et al. [130] found, because of the technical limitations of GPS tracking equip-

ment (i.e. position fix failures), an additional factor to take into account in this type of

study is the possible underrepresentation of the use of dense canopy cover sites. A possi-

ble correction for this problem is the improvement of the satellite constellation available,

and the tracking equipment itself (hardware and software). Both of these require a mas-

sive amount of effort, both financially and in man-hours, and cannot be easily undertaken

by a single study; rather, the benefits of gradual technological advancement have to be

adopted as they become available. In the meantime, the software tools, statistical or
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otherwise, selected to analyze these datasets have to explicitly address these difficulties

as well as examine the possible presence of autocorrelation (positive or negative, [108])

in order to improve the quality of their results.

2.1.4 Mathematical models.

A separate, but closely related line of studies, consists of integrating all of the previous

findings on the subject of grizzly bear behavior (i.e. movement tracking) and habitat

preference in order to generate computer and mathematical models as tools for land

managers, conservation organizations and policy makers in an effort to inform them of

the best strategies to balance the human and the bear needs.

The goal of Nielsen [188] was to generate a two-dimensional model to predict the

population viability of grizzly bears in west-central Alberta, Canada. Using GPS tracking

data and geographic methods, the research integrated seasonal food sources, human-

caused mortality, competition for resources, genetic factors, segmentation by gender and

age, and habitat loss to generate a model used to predict the density and viability of the

bears in a 100 year period. One of the conclusions of the study states that grizzly bears

currently use food sources in human-created forest clearings (clearcuts) because of their

lack of risk indicators. The research also concludes that despite a 10% population increase

factor (hardcoded in the simulation software), by the 30 year mark, a substantial decrease

of the foothills population is evident, while at the end of the 100 years simulation, the

safe territory areas had been reduced between 54% and 67%.

Negative interactions with grizzly bears increase in frequency as human expansion

increases, forcing the bears to move into lower quality habitats and increasing their

mortality rates [39, 40, 58, 190].

In the province of Alberta, outside of national and provincial parks, most of the

interactions between grizzly bears and humans take place on agricultural lands. To better
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understand the presence of grizzly bears in those areas, Collingwood el al. [70] conducted

a study in which they devised three new methods for classifying Landsat-5 Thematic

Mapper images in order to identify specific crops. The bands used were one through five

and seven at 30 meter spatial resolution. Their work improved on previous remote sensing

data processing methods because the older techniques only returned generic classes for all

herbaceous and agricultural areas. Once the new crop maps were generated and validated,

the researchers used grizzly bear GPS positioning data to identify the areas the bears

visited with the highest frequency. The study found that the bears’ presence was mostly

during the summer months, 77% of the time was in grass/forage areas (i.e. grass or crop

residue) and the rest of the time in small grain areas or unplanted fields (i.e. small grains

or fallow fields).

Integrating habitat and human disturbance factors at the same time, Apps et al. [24]

conducted a study in British Columbia, Canada, where grizzly bear presence was es-

tablished with hair-trap sampling and Nuclear Deoxyribonucleic Acid (nDNA) analysis.

The researchers conducted extensive statistical analysis at various spatial scales to test

the correlation between the density and distribution of grizzly bears and variables re-

flecting terrain, vegetation, land cover and human influence. Their overall goal was to

generate a model to predict multi-year distribution and abundance of the bears in their

extended study area. Their general conclusion integrates the fact that for the past two

hundred years human activity has forced the grizzly bear population in British Columbia

to move towards areas with steeper slopes and more rugged terrain. Comparing these

results with the study by McLellan and Hovey [173], where high value habitat areas

are present and preferred by bears, but have no permanent population centers and re-

quire more than two hours of travel on unpaved roads to access, their recommendation

to wildlife managers is clear, the intensity of human activity is a major negative factor

(i.e. bears will endure harsher conditions in order to avoid humans).
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2.1.5 Conservation.

From a conservation focused perspective, the study by Molitor [180] measures the

effectiveness of information programs for back country visitors designed to avoid un-

necessary human confrontations with grizzly bears. The research was conducted at the

Flathead’s National Forest, Jewel Basin Hiking Area, Northeast Montana, USA (on the

USA border with Canada). The objective was to identify which of several message-

persuasion programs being introduced was most effective in educating visitors to adopt

safe practices (e.g. make appropriate noise while hiking, hang food) to avoid negative

encounters with bears. The study established test and control groups and found that all

written messages delivered directly to visitors were of almost equivalent effectiveness.

2.2 Overview of the evolution of databases and database servers.

This section is primarily based on my fifteen years of professional experience in the

industry of database administration and development. The section considers some of

the major changes in relational database technologies looking to advance the notion that

such systems represent a mature enough platform for fully integrated implementation

of complicated analysis tasks. Particularly for implementations of the standard ANSI /

ISO / IEC SQL specifications [13, 14, 15, 16, 17, 18, 19, 20, 21, 22] that would allow the

same executable code to be ported to other commercial RDBMS systems with minimum

changes.

As presented in section 2.1, the rapid increase in the size of the wildlife tracking

datasets made manual analysis methods very impractical for researchers, if not impos-

sible. The use of automatic analysis tools was imperative, and the modern electronic

computer was perfectly suited for such tasks.
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The problem of processing high volumes of wildlife tracking data in a timely man-

ner was approached from very different perspectives, and was concurrent with the size

increase of other datasets (e.g. enterprise-wide sales data, historical bank transactions).

After a few years of their introduction, relational databases established themselves in

the industry as the de facto standard for storage and management of large volumes of

alphanumeric data [234]. Almost at the same time, business managers and company

executives started asking for complex business reports that included increasingly larger

amounts of detailed data (e.g. several weeks of store-wide item-level sales data). To satisfy

these needs, specialized reporting tools were developed and some support structures for

those were integrated by the developers of the relational database management systems

themselves. Two years or so after that, a further data volume and reporting power ex-

pansion demanded even larger amounts of data, presentation methods (e.g. quarterly and

annual enterprise-wide reports by state, province, region, sales district), and almost con-

stant processing (e.g. by-the-second stock market quotes, daily enterprise-wide reports).

These new demands on storage space and performance revealed important limitations of

the existing class of relational databases. A new type of relational database had to be

created to handle these special requirements, the data warehouse [247].

To make a proper distinction between the two different kinds of databases that a

single company could have, the initial databases that were designed to take care of

the day-to-day operations of the company were defined as transactional. Making direct

reference to their function as the tool with which each individual transaction in the entire

company was registered, tracked and resolved in case of any conflicts (i.e. every item sold,

every bill paid, every employee hired). While the newer databases designed to support

the generation of complex reports from the company-wide datasets were named data

warehouses.

As the name implies, a data warehouse is a repository of very large amounts of old
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company transactions whose primary tasks consist of the production of reports and data

analysis. At the very beginning of their evolution, data warehouses were little more

than a copy of the contents of the transactional databases in separated servers, with the

sole purpose of not slowing down the operation of the entire company when a complex

set of reports needed to be generated. As time passed, and the specialists in charge of

maintaining data warehouses (i.e. the database administrator) identified several types

of cycles in their use (e.g. bi-weekly payroll cycles, monthly inventory cycles, quarterly

reporting cycles), data warehouses became more specialized and efficient [211].

This separation of functions allowed the independent evolution of both kinds of

database platforms.

The transactional databases remained the heart of the daily operation of the company,

emphasizing speed and availability of relatively recent and relatively small data elements.

The time interval of transactions kept directly in the transactional database mainly

depends on five factors.

1. The business model, i.e. how many transactions are generated in the company per

unit of time, and how many of these units have to be directly available to allow for the

efficient operation of the company.

2. The server’s secondary storage capacity, i.e. the size of its hard drive arrays.

3. The level of acceptable risk of loosing any amount of data before a copy is made

into an independent machine (data warehouse or otherwise).

4. The speed and capacity of off-server secondary and tertiary storage platforms (data

warehouses and backup systems such as tape units).

5. The legal regulations concerning the time span of operational data that each

company has to have instantly available at all times.

There are two main approaches to satisfy the demand of the modern transactional

database server, the monolithic and the distributed server [212].
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The first type is a very large machine with many hot-swappable modular redundan-

cies built-in, such as Central Processing Units (CPUs), RAM memory banks, on-the-fly

replicated hard drive units (RAID 5 is the industry standard), and power sources. Some

of the most sophisticated (DBMSs) support this kind of server by allowing the concurrent

operation of several identical servers with simultaneous replication of transactions. Only

one of the servers is the active server, while the others are the standby servers. In the

case of a failure of the active server, by a preprogrammed arbitration method, one of the

standby servers will automatically become the active server taking over all operations

without any disruption of the business user’s activities.

The distributed server is a group of smaller machines (as compared to their monolithic

counterpart) that work cooperatively to satisfy the demands of their users. As a conse-

quence, each server can be located in a different geographical location if it is connected

via a network of sufficient speed. In this type of architecture, a special program called

the scheduler is responsible for receiving all the data requests from the users, assign the

tasks to individual servers by a load balancing algorithm, and for sending the results back

to the user processes [244]. The industry leaders in the DBMS market have included in

their software the possibility of having more than one scheduler process active at any

given time; in fact it is recommended in their manuals to avoid a single point of failure

in this regard [104]. With several schedulers active per server, database administrators

are responsible for programming additional load-balancing policies under normal and

failure circumstances so that only one scheduler per server acts as the communications

link between cooperative servers. This main scheduler process is designated the primary

scheduler of the server. To make the operation of the entire system as fast as possible, it

is recommended that the main scheduler processes of all servers get connected amongst

themselves by special network connections of higher speeds than those used to connect

user processes.
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The modern servers designed for transactional databases typically have multi core and

multi thread processor units∗, large amounts of random access memory (64 GB of RAM

is common) [199], high-speed network modules (10 Gigabit Ethernet) [197], real time

replicated disk storage in a different set of cabinets (1 TB of RAID 5 is typical), hardware

integrated encryption support [198], and in some cases, direct hardware structures to

support specific manufacturers’ solutions (Oracle/Sun Microsystems SPARC data blades

with Oracle Solaris Containers’ support) [196].

Returning for a moment to the evolution of data warehouses, their first operational

improvement originated from the level of aggregation that the most common types of

reports required, i.e. if the most commonly generated report included regional level sales

data, the most detailed level of data stored in the data warehouse was at the regional

level. For those early implementations, the data warehouse read from the transactional

databases (always after hours), and aggregated sales data by store, region, etc., before

writing it to its repository. Later improvements were introduced to make the report gen-

eration process more efficient [211]. Modern data warehouse servers are slower compared

with their transactional counterparts, typically having only half the RAM and half the

cores and threads, but with many times the secondary storage capacity (100 TB of non-

RAID disk space is common), and practically unlimited tertiary storage (i.e. tape units).

The reporting software uses the additional secondary storage to maintain intermediate

and final results instead of making heavy use of the server’s main memory.

After approximately three to five years of deployment, data warehouses became so

large, and included data from such heterogeneous sources that, traditional reporting

methods proved to be ineffective in finding new facts about the companies [211, 212, 234].

One of the reasons for this limitation turned out to be the parametric formulation of the

reporting tools, i.e. a reporting program will only include data for which it has its values

∗To support large quantities of concurrent users and to improve multitasking speeds.
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directly included in its program, ignoring any other values. To minimize this limitation,

machine learning and data mining methods were created.

2.3 Knowledge discovery and data mining.

As Han and Kamber point out in their text [128], strictly speaking, data mining is just

one of the steps necessary to analyze large amounts of data in order to extract valuable

knowledge. Therefore, the more comprehensive process of analyzing large datasets in

order to extract valuable knowledge, is defined as Knowledge Discovery in Databases

(KDD).

Specifics of the KDD process differ from one author to another, but in general terms

they all agree that some level of interpretation has to be included in order to extract real

value from the facts uncovered by the computer methods alone. Fayyad et al. [101], Qi

and Zhu [206], and Miller and Han [179] consider the acquisition of expert knowledge

in the domain of interest an integral part of the process, and in order to minimize its

subjectivity, include a first step, “Framework integration”. Adding step number zero (0)

to the methodology of Han and Kamber, produces the following set of steps for the KDD

process (paraphrasing and combining from all the texts cited so far in this subsection):

0. Framework integration. To acquire an expert background in the domain of interest.

1. Data cleaning. To remove noise and inconsistent data.

2. Data integration. Where multiple data sources may be combined, usually in a data

warehouse.

3. Data selection. Where data relevant to the analysis task is retrieved from the

database.

4. Data transformation. Where data is transformed or consolidated into forms ap-

propriate for mining by performing summary or aggregation operations.
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5. Data mining. Where intelligent methods are applied in order to extract data

patterns.

6. Pattern evaluation. Where the experts in the subject make educated interpreta-

tions, to identify the truly interesting patterns representing knowledge based on some

objective measure. This step is where information is transformed into knowledge.

7. Knowledge presentation. Where visualization and knowledge representation tech-

niques are used to present the mined knowledge to the user.

This integrated and more comprehensive approach will be used during this work.

Going back to the data mining process, it can be described as a computer program

designed to analyze large amounts of data based on one or more mathematical measure-

ments (e.g. correlation, entropy, information contents, geometrical similarity) in order to

extract patterns [179]. Han and Kamber [128] define data mining methods to be of three

basic types, data classification, clustering, and time series characterization, each type is

defined as follows:

Data classification methods generate a relatively small number of groups of data

(i.e. the classes) in which variation within the group is minimized, while variation between

groups is maximized [128].

The definition of clustering methods is very similar to the classification methods.

The main difference is that clustering methods involves geometric or geographic objects

(e.g. polylines, polygons), while classification methods are almost always applied to ab-

stract data (e.g. reflectance values, hysteresis thresholds) [128].

The time series characterization methods can be used with any kind of data as long

as a time component is present. The time component will then be used to divide the

data in smaller subsets. These methods are used to identify changes or similarities in the

subsets from one point in time to another.

Based on the characteristics of the data mining methods and the size of the modern
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wildlife tracking datasets, data mining appears to be well suited to analyze the latter in

order to discover new knowledge.

2.4 Pattern identification with data mining methods.

One of the fundamental concepts in all data mining methods applied to geographic

applications consists of analyzing a set of trajectories to identify the longest common

subsequence amongst them. Translated into computer tasks, there are two different

approaches to find these common subsequences, exact matches and approximate matches.

In general, the exact matches are faster than their approximate counterparts, but they

are also more restricted because the typical exact matching method has to search for

smaller common subsections of trajectories (e.g. small numbers of consecutive positions

from different trajectories that are at a given maximum distance from each other).

Relaxing the geographic requirements of distance, i.e. momentarily ignoring the “near”

and “far” thresholds, and converting the consecutive trajectory positions into concate-

nations of abstract symbols of an alphabet, these trajectory subsequences can be seen

as small sections of text (a.k.a. patterns, sequences, etc.) as compared to a much larger

databases of full texts (e.g. the database of the Human Genome Project, the entire works

of William Shakespeare, etc). With this re-definition in mind, many other scientific areas

have produced algorithms to solve specialized versions of this same problem applied to

their respective specialties.

According to the most recent version of the taxonomy proposed by Cleophas et al. [65],

almost all of these solutions can be related to each other according to their specific tech-

nical details, the order in which the details are applied, the type of data structures

they use, and the mechanisms with which the methods manipulate their data struc-

tures. The main goals of the taxonomy are to provide a classification tool to facilitate
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the comparison between specific implementations, and to serve as a didactic tool. The

algorithm comparisons included structural and performance aspects, while the didactic

goals have the added benefit of being able to automatically generate many variations

of the same main algorithm for additional studies (computational complexity, complete-

ness, correctness, main memory requirements, secondary storage space requirements, and

performance) [65].

Earlier work on the subject by Cleophas [63] started with the mathematical analysis

of some classic pattern matching algorithms, emphasizing the relevance and equivalence

of pattern matching trees, finite state automatons, and regular grammars, until the

main branches of the taxonomy could be identified [63]. In subsequent work, also by

Cleophas [64], additional refinements to the algorithm analysis methodology were in-

cluded, and the taxonomy structure was refined. Many more algorithms originating from

academic and empirical domains were mentioned as candidates for analysis (e.g. Aho-

Ganapathi, Aho-Ganapathi-Tjiang, Cole-Hariharan, Commentz-Walter, Dubiner-Galil-

Magen, Hoffmann-ODonnell, Kosaraju, Watson). But the author reminded the reader

that, in contrast to biological taxonomies that are defined by ancestry, this algorithm

taxonomy is driven by functionality details, and that the specific order in which every

scientist decides to introduce each detail might produce a different taxonomy. In other

words, that there is still a subjective factor in the production of the proposed algorithm

taxonomy, and that there is still more research to conduct in that regard to minimize or

eliminate that subjectivity.

The main conclusion of the taxonomy studies could be interpreted to be the relevance

that pattern matching algorithms have in academic and empirical terms, giving empha-

sis to the understanding of their parts, variations and efficiencies (or lack thereof). A

secondary conclusion, directly derived from the taxonomy itself, can also be identified

as the recognition of two main families of algorithms, the exact matching group and the
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approximate matching group. The work by this group of researches was focused mainly

on the exact matching algorithms.

Two independent reviews on approximate matching methods can be found in [185]

and [49]. The first review, by Navarro [185], focused exclusively on the online processing

of long texts compared to relatively short patterns, and only on the matching methods

that allow for a certain number of errors (i.e. approximate matching). It explained

the basic mathematical and practical concepts of the problem, some of the application

areas, and compared the main versions of each solution with empirical measurements.

To explain each one, the document divided the solutions into dynamic programming,

algorithms based on deterministic automata, bit-parallelism techniques, and filtering

algorithms [185]. The first two solutions being the oldest and most fundamental to the

problem, while the later two are more contemporary refinements to those.

The review by Boytsov [49] presented approximate search algorithms divided into

two major categories, direct and sequence-based filtering methods. The study focused

on retrieval operations of infrequently updated dictionaries for natural English and Rus-

sian (synthetic and extracted from a large database), and Deoxyribonucleic Acid (DNA)

sequences. The author defined the direct methods as algorithms looking for complete

patterns, and included all theoretical and implementation details of prefix trees, neigh-

borhood generation, and metric space search methods. Sequence-based filtering methods

were defined in operational form as those having at least one filtering step and one check-

ing step. The main characteristics of the filtering methods being the computation of the

edit distance between the search pattern and a candidate string, and their filtering effi-

ciency, which is a measure of how many dictionary strings are discarded in the filtering

operation [49]. From those definitions it followed that the direct searching methods, im-

plemented with exact searching algorithms, are more appropriate for the identification

of patterns from a dictionary set as compared to candidate strings (or texts).
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With an exact matching philosophy as their central point, subsections A.1, A.2 and

2.4.1 present methods originating from the mathematical optimization, telecommunica-

tions and the biotechnology specialties, respectively.

2.4.1 Sequence alignment.

Using the basic principles defined by Hamming for binary alphabets [126, 127, 181],

Levenshtein [163] studied the mathematical characteristics of all binary codes capable

of detecting and correcting word transformations consisting of insertions, deletions and

reversals. The objective of the work was to determine how many additional characters

per word would have to be added on one end of a telecommunication’s channel, in order

to detect and correct a given number of errors at the other end, introduced by the trans-

mission media. In other words, create an automated process that can uniquely identify

all the individual changes needed to transform one binary word into a second word, not

necessarily of the same length. Figure 2.1 shows two possible sequence alignments be-

tween one pattern subsequence and one text section. Which of the possible alignments

is correct, depends on the objectives of each process.

Independently of those efforts, Needleman and Wunsch [187] defined a method of

global alignment for two amino acid sequences that proposed the minimum number of

cumulative edits to one of the words until it was transformed into the second. The

alphabet in this case consisted of the twenty different amino acid residue characters (a.k.a.

residues, amino acid elements, amino acid symbols, subsequence characters, symbols,

etc.), and the individual character changes included insertion, deletion and replacement

of one character by another. The method defined the concept of minimum edit distance

as the smallest sum of all single-character changes to achieve the full transformation from

one word into the other, and vice versa. An important theoretical detail of this method

was developed by Huang [138], who identified the execution time of this solution to be
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of order O(n2).

Figure 2.1: Sequence alignment.

A few years later, and almost unaware of the implication, Sellers [222] unified both

theories by demonstrating that the changes in Levenshtein’s method were exactly the

same as the edit distance in the work by Needleman and Wunsch, only applied to different

alphabets.

2.4.1.1 Local alignment.

To reduce the amount of work, as compared to global alignment, local alignment

methods look for exact matches of very small subsequences throughout the larger symbol

sequences. Early work on the subject by Morrison [182] established execution improve-

ments applied to retrieval of short text sections from large flat files of alphanumerical

data by utilizing an auxiliary indexing structure. The study provided specific algorithms

to build, maintain and use the indexing structure to find all occurrences in the flat file

of a single keyword. Intrinsically, the work used the concepts of prefixes and suffixes to

build the index and to speed up the keyword searches.
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Subsequent work on the subject by Boyer and Moore [47, 48] produced one of the

first semi-linear execution time algorithms. The method explicitly used the concepts of

proper suffixes, and the counter intuitive notion of exploring individual character matches

starting from the extreme right side of the pattern. This “backwards” exploration was

justified by the idea that the farther right a mismatch of text and pattern occurs, the

larger the possible displacement of the pattern in relation to the text. This displacement,

or slide as it is commonly referred to, would be limited only by the proper suffixes of the

characters previously matched from the pattern that exactly repeat farther left in the

pattern itself. The authors also explored the implications of such facts, finding boundary

values for the best and worst execution cases, stating that the length of the searched

pattern and the number of symbols in the utilized alphabet were determining factors

in the performance of the method. Somewhat surprisingly, the authors also determined

that the structure and contents of the text do not represent determining factors for the

performance of the algorithm.

An alternative sub-linear algorithm, independently proposed by Knuth, Morris and

Pratt [147] utilized virtually the same ideas as the Boyer-Moore algorithm, but instead

of suffixes, used the opposite concept of prefixes, and examined the text and the pattern

starting from their left-hand end. The work also presented several empirical improve-

ments aimed at increasing the efficiency of the average cases (mid-size patterns and

reasonably large alphabets), and provided possible modifications to the Boyer-Moore al-

gorithm to make it faster. Those ideas, along with further refinements, were used by the

same authors in a later version of their algorithm [148].

Developed at the same time as the Boyer-Moore algorithm, the work of Aho and

Corasick [1] explored possible solutions to the problem of finding all occurrences of a

set of different patterns, referred as the dictionary set in the study (a.k.a. keyword set,

pattern set, etc.), inside very large text blocks. The proposed algorithm employed a
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preprocessing step that constructed a finite state automata to organize all patterns, and

identified the largest common suffixes of each execution path as compared to every other

execution path in the conceptual machine. The individual character comparisons of the

method followed the straight forward approach of comparing text and patterns starting

from their far left end, and was measured to perform in sub-linear time for bibliographic

searches.

Figure 2.2 shows the key conceptual structures of the Boyer-Moore (without failure

links for the pattern subsequence, explained below) and the Aho-Corasick algorithms,

mainly to illustrate the individual character matching direction, and the pattern sliding

directions. Please note that the Aho-Corasick concepts are not presented in its original

finite state automata formulation, but in its equivalent hierarchical tree representation,

in order to make subsequent comparisons between methods easier to explain in this work.

Fundamental to these approaches is the concept of failure links as applied to the

dictionary set, which is a mechanism for preserving the maximum amount of already

matched characters immediately after a mismatch [124]. To better illustrate this concept

let us consider an example. Figure 2.2.b shows the hierarchical tree structure for the

dictionary set composed of {020, 0221, 2002, 201, 20221}. Let us imagine that the tree

has been traversed with the text characters “202”. For the straightforward approach,

if the next character in the text is not a 2, a mismatch will occur, the tree will be re-

aligned with the text one position to the right, and the matching process would begin

again from the root node. In the Boyer-Moore and Aho-Corasick solutions, the pattern

data structures contain pointers to other places in the pattern where proper suffixes

(shorter sections of common characters) can be found [124].

Returning to the example of the Aho-Corasick approach, after the mismatch is de-

tected (traversing the tree with “202”), the process will transfer the matching (via the

appropriate failure link) to the tree branch containing patterns {020, 0221}, the tree will
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Figure 2.2: Key concepts of two exact string matching algorithms. a) Boyer-Moore (1975,
1977) and b) Aho-Corasick (1975).

be re-aligned with the text one position to the right, and the matching process would

resume from the corresponding node as if the text characters “02” had been traversed

from the root, i.e. saving the process to have to match the first two characters in the

possible matching subsequence.

In essence, the use of failure links in this way minimizes the number of times every

character in the text will have to be examined to identify all overlapping pattern matches.

Complementary analyses to the Boyer-Moore approach followed in order to prove its

correctness in mathematical terms, and to provide complexity analysis aimed at defining

its lower and upper bounds [69, 123, 207, 231].

The work by Horspool, [137], compared the performance of a slightly improved version

of this algorithm against the direct use of microprocessor built-in character-searching

instructions of some computers of the time, e.g. the “Search Equal” instruction of the



34 Chapter 2. Literature review

Universal Automatic Computer (UNIVAC) 1100. The major conclusion of the work

stated that the Boyer-Moore method outperforms these special-purpose instructions for

all cases, except when the searched patterns are very short.

Additional improvements to the Boyer-Moore algorithm were proposed by Apostolico

and Giancarlo [23] by observing that, if the search method keeps a running record of the

examined characters, in terms of the repetitive suffixes that occur in those characters, the

algorithm minimizes the number of times that each text character has to be examined.

The method used a linear-time execution method to preprocess the pattern, and had

a worst case execution time proportional to twice the number of characters in the text

(linear).

2.4.1.2 Local alignment in Biotechnology.

Returning to the objective of detecting common subsequences between two larger sym-

bol sequences, the study of Smith and Waterman [228] proposed a dynamic programming

solution that ranked all possible alignments of one full sequence against another, includ-

ing the option of symbol deletions via a statistically quantified “deletion weight” value

(their major contribution as compared to the Needleman and Wunsch method described

above). The work employed a bidimensional matrix to determine all possible sequence

alignments ending at the symbols represented by each matrix cell, and a simple similar-

ity formula, which is the essence of local alignment. The method has a quadratic upper

bound, and to be of practical use requires the length of one of the compared sequences

to be small in relation to the other(s).

In biotechnology research, the restriction on the size of one of the subsequences is

not critical, and the Smith and Waterman algorithm was adapted for many studies

(as described in the rest of this subsection). In such studies, the overall objective is

to find long DNA sequences (i.e. entire molecule formulas) that contain short functional
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groups that determine specific physical and/or chemical characteristics (e.g. hydrophobic,

hydrophilic, polar). The biotechnologists start with a small amino acid subsequence (four

to seven symbols) of a known molecular function, identify all the individual amino acids

that can be replaced by a functional equivalent, and generate all possible subsequences

with the same number of symbols. The set of equivalent subsequences is then ranked,

generally with the use of a pair substitution matrix that reflects the relative abundance

(i.e. frequency) of all pairs of amino acids. The highest ranked subsequences are selected,

and exact match searches are conducted against entire molecule databases [37].

Another early effort with this overall goal can be found in [167], where an amino

acid replacement matrix was defined to give higher rankings to likely evolutive pair re-

placements when comparing protein subsequences. The search method known as Protein

Sequence Alignment Software (FASTP), employed a lookup table to establish positional

identities amongst individual residues, and a “diagonal similarity region” technique (as

described in [245]) to establish the starting and ending positions of all consecutive sub-

sequence identities. The method was limited because it did not allow direct insertions or

deletions of residues at the matching stage, instead it allowed them after the maximum

similarity diagonal regions were established, at the final ranking stage. Later improve-

ments to the same method by the same authors [205] produced the computer program

known as FASTA, which uses a lookup table and a diagonal similarity search strategy

(a.k.a. band alignment) just like its predecessor, but adds three major steps. First,

the band alignment was modified to allow a limited number of gaps (16-32) amongst

the residues. Second, a translation step was added to allow the comparison of protein

subsequences to DNA databases; and third, an empirically based approximate gapped cal-

culation was incorporated for segments containing multiple non-overlapping alignments.

The publication by Altschul et al. [8]∗ presented a very popular approach to this kind

∗re-explained in simplified form in [6].
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of functional search, that had the additional objective of finding molecules with multiple

non-overlapping subsequence matches (the BLAST method). The publication also pro-

vided theoretical statistical details that proved the efficiency of the overall method and

the amino acid pair substitution matrix. One of its most relevant results, equation 2.1,

defined the relative ranking of any pair of amino acid residues in terms of the relative

abundance of the pair itself compared against the abundance of its individual component

residues.

sssij =
1

λ
log

(

qqqij

pppipppj

)

(2.1)

Where:

qqqij is the target frequency of the pair of amino acids, and

pppipppj are the frequencies of the individual residues (the pair’s background frequency).

Equation 2.1 implicitly shows that the method is limited by the amount of data

available to generate the log-likelihood values, however, in the case of biotechnology

where there are already millions of sequenced molecules (with thousands of amino acid

residues per molecule), this limitation is irrelevant. Additional statistical considerations

to prove the relevance of the method were presented in [142], and [143].

This approach is equivalent to the Mutation Probability Matrix (PAM) defined by

Dayhoff [77], also known as a log-likelihood matrix. The main difference between the

work of Dayhoff and Altschul is that Dayhoff’s work was almost exclusively based on

empirical notions, while Altschul’s included the fundamental mathematical principles

that make it relevant. Aware of these facts, the work of Altschul et al. [5] examined the

relative sensitivity of the PAM substitution matrices at different evolutionary distances

(i.e. statistical frequency-change estimations), and concluded that the validity of the

matrices decreases as the evolutionary distance increases (e.g. from 1-PAM to 250-PAMs).
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For application in biotechnology, the symmetry of the log-likelihood matrix is irrele-

vant because the molecular functional groups can appear in the longer molecular formulas

in any order and permutation, as long as they are contiguous to each other [77]. To elim-

inate the possibility of improper use in biotechnology applications, the log-likelihood

matrices are generated in symmetric form, i.e. for pairs of residues, each pair is counted

twice, accumulating their frequency into the two corresponding symmetrical cells of the

matrix. Transforming the lambda factor in equation 2.1 into a general scaling factor for

the entire matrix.

Henikoff and Henikoff [131] explored a different formulation of substitution matrix,

seeking to improve the results of searches of proteins containing functionally similar

subsequences. In direct contrast to all previous definitions of substitution matrices,

which only included pairs of amino acids, this work defined the Blocks Substitution

Matrix (BLOSUM) as the probability of entire subsequences (of more than two residues)

against the combined background frequencies of all the residues in the block. Henikoff’s

work compared the performance of the Basic Local Alignment Search Tool (BLAST),

FASTA and S-W∗ search methods employing BLOSUM and PAM matrices of different

evolutionary distances, matched by their respective entropy value. Their main conclusion

determined that the BLOSUM matrices improved the quality of results when searching

for full functional subsequences as compared to the equivalent pair substitution matrices

(i.e. PAM matrices). This work suggests the direct extension of the log-likelihood matrix

to subsequences with any number of residues.

This in turns requires the log-likelihood matrices of any dimensionality to contain

symmetrical cells for each permutation of the evaluated functional group. The level of

symmetry of the matrix is defined by its generation procedure and could include “no

symmetry”, “forwards-to-backwards symmetry”, and “full permutation symmetry”. No

∗The Smith-Waterman method.
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symmetry means that the subsequence “678” is considered different from all its possible

permutations. Forwards-to-backwards symmetry defines the case in which “678” is only

symmetrical to “876”, and full permutation symmetry is defined when “678”, “876”,

“687”, “786”, “867”, and “768” are all considered symmetric to each other (which can

be considered a further generalization of the forwards-to-backwards symmetry).

Figure 2.3 shows a decomposition of the three dimensional forwards-to-backwards

symmetry for abstract functional groups generated with four symbols (Σ = {6, 7, 8, 9}),

starting with the full matrix (2.3.a). Figure 2.3.b shows the three symbol subsequences

that are a direct equivalent to the diagonal elements of a 2D matrix, while figure 2.3.c

expands the diagonal concept to a two dimensional plane containing all the palindromes∗

of the three symbol subsequences. To analyze its symmetry, imagine a uniform vector

field perpendicular to the diagonal plane starting at the upper right corner of the matrix

(the cell labeled “699”) and pointing towards the lower right corner of the matrix (the

cell labeled “996”). Any pair of symmetrical forwards-to-backwards cells will be located

along one of the uniform vectors at the same distance to the diagonal plane (figure 2.3.d,

e and f).

More recent improvements to this method have been presented by the same group of

researchers (e.g. [7, 9, 10]), where past theoretical assumptions and limitations have been

fully explored and validated, or modified and expanded in some rare cases (e.g. [248]).

In those projects, statistical principles and limitations were examined, and important

theoretical and empirical modifications were applied. Particularly to the construction of

log-likelihood matrices and to the rapid identification of sequences with multiple non-

overlapping subsequence matches [221, 250].

In order to apply only one operational version of the log-likelihood ranking system to

the grizzly bear tracking dataset, as described above, a similar rule to establish equiva-

∗The subsequences that are written exactly the same way forwards and backwards, e.g. “787”.
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Figure 2.3: Log-likelihood matrix of 3-symbol words, 3D symmetry analysis. a) Full
matrix, b) Diagonal, c) Palindromes (including diagonal words), d), e) and f) Forward-
s-to-backwards word symmetry.

lence between any symbol subsequence permutations would have to be identified. How-

ever, such rule has not yet been defined, then at least two versions of the matrix will

have to be applied, an asymmetric and a symmetric version.

2.4.1.3 Keyword trees.

As analyzed in the work by Aho & Corasick [1], the computer representation of a

set of patterns to be found in a given text (or set of longer strings) determines the

overall performance of the searching operation. Several structures have been designed to

optimize specific aspects of the process based on the grammatical characteristics of the
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dictionary set. Amongst them, prefix trees, postfix trees, trie trees and keyword trees have

found the widest acceptance and application [35, 49, 147, 182]. Additional performance

gains have also been identified from careful design of abstract data structures manipulated

with computer systems [185, 236].

Given the results of Aho & Corasick [1], and the characteristics of the segmenta-

tions employed in this work (sec. 3.6.1), keyword trees were determined to be the best

candidates for this application.

Without the loss of generality, this analysis continues for the reduced alphabet given

by Σ = {0, 1, 2, 3}, and for dictionary sequences with only five characters (shortened

to improve clarity in some of the illustrations). Generalization of the results from this

analysis can easily be achieved by expanding the alphabet to include additional characters

and by increasing the length of the dictionary sequences. Please note that the analysis

does not restrict the alphabet of the text itself, only of the dictionary sequences, i.e. the

text might contain many more characters than the dictionary sequences, but the valid

dictionary words will be comprised exclusively of the characters in Σ.

In regular grammar jargon [3, 4, 103], the alphabet Σ is the set of terminal symbols.

Table 2.1 shows the common terminal symbols for the keyword trees.

Table 2.1: Keyword trees’ common terminal symbols (alphabet).
Symbol Interpretation
0 Generic abstract class
1 Generic abstract class
2 Generic abstract class
3 Generic abstract class

For the rest of this work, the terms keyword tree and dictionary tree are used as

synonyms.

Once keyword trees were selected, the following step was to analyze the structural and

performance behavior of the trees constructed for several sets of dictionary sequences with
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specific grammatical characteristics. The analysis followed the approach of comparing

one character at a time from the pattern and the text, starting from the left end of both

strings. The following cases, listed in order of increased specialization, were included:

I. Fully populated keyword tree (F ). Where any combination of the alphabet characters

is accepted. Fig. 2.4.

II. Uniformly populated keyword tree (U). Where only a subset of alphabet symbols

are accepted after a particular character has being chosen. Only {0, 1} after {0, 2}

AND only {2, 3} after {1, 3}.∗ Fig. 2.7.

III. Sparsely populated keyword tree (S). Based on the uniformly populated keyword

tree, but excluding entire sub-branches. Fig. 2.10.

IV. Distinctively populated keyword tree (D). Where contiguous repetition of the same

character is not allowed. Fig. 2.15.

To understand the structural needs of these keyword trees, their full set of failure

links had to be determined.

I. Fully populated keyword tree (F ).

To improve clarity in the illustrations, figure 2.5 shows only the right-pointing failure

links for the fully populated keyword tree (figure 2.4). Figure 2.6 shows the corresponding

left-pointing failure links. As expected, all failure links in this version of the tree point

to an adjacent branch, and backtrack the process only one tree level.

The individual tree analysis ends with the generation of the production rules of each

case [3, 4, 51, 72, 79, 80, 103, 118, 134, 140, 141, 174, 175, 226]. Table 2.2 contains

the non-normalized production rules for the generation of the fully populated keyword

tree (F ).

∗Which is equivalent to say: “No consecutive ones, and no consecutive twos”.
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Figure 2.4: Fully populated keyword tree, height = 3.

Figure 2.5: Fully populated keyword tree with right-pointing failure links.
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Figure 2.6: Fully populated keyword tree with left-pointing failure links.

Table 2.2: Production rules for the fully populated keyword tree (F ).
Production rules
F0 → 0
F1 → 1
F2 → 2
F3 → 3
F4 → F0 | F1 | F2 | F3

F5 → F4 F4 F4

II. Uniformly populated keyword tree (U).

Following the same steps, figure 2.7 shows the general structure of the uniformly

populated keyword tree, while figures 2.8 and 2.9 show the right-pointing and left-pointing

failure links for the same case, respectively.

Since this is a special case of the fully populated tree, it is no surprise to find the

failure links following the same pattern as those of the previous case, i.e. pointing to the

closest adjacent branch and backtracking one level only.
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Figure 2.7: Uniformly populated keyword tree, height = 5.

Figure 2.8: Uniformly populated keyword tree with right-pointing failure links.
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Figure 2.9: Uniformly populated keyword tree with left-pointing failure links.

Table 2.3: Production rules for the uniformly populated keyword tree (U).
Production rules Production rules (cont.)
U0 → 0 U6 → U0 U4 | U1 U5

U1 → 1 U7 → U2 U4 | U3 U5

U2 → 2 U8 → U0 U6 | U1 U7

U3 → 3 U9 → U2 U6 | U3 U7

U4 → U0 | U1 U10 → U0 U8 | U1 U9

U5 → U2 | U3 U11 → U2 U8 | U3 U9

U12 → U0 U10 | U1 U11

U13 → U2 U10 | U3 U11

U14 → U12 | U13

Table 2.3 shows the non-normalized production rules for the uniformly populated

keyword tree (U).
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III. Sparsely populated keyword tree (S).

Figure 2.10 shows the general structure of the sparsely populated keyword tree. As

stated above, this is a cumulative version of the uniformly populated tree with entire sub-

branches excluded. As a consequence, some of the failure links for this version traverse

more than one tree level.

Figure 2.11 shows the single-level right-pointing failure links, figure 2.12 shows the

single-level left-pointing failure links, figure 2.13 shows the multi-level right-pointing fail-

ure links, and figure 2.14 shows the multi-level left-pointing failure links for this keyword

tree version.

Table 2.4 shows the non-normalized production rules for the sparsely populated key-

word tree (S).

Figure 2.10: Sparsely populated keyword tree, height = 5.
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Figure 2.11: Sparsely populated keyword tree with single-level right-pointing failure links.

Figure 2.12: Sparsely populated keyword tree with single-level left-pointing failure links.
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Figure 2.13: Sparsely populated keyword tree with multi-level right-pointing failure links.

Figure 2.14: Sparsely populated keyword tree with multi-level left-pointing failure links.
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Table 2.4: Production rules for the sparsely populated keyword tree (S).
Production rules Production rules (cont.)
S0 → 0 S10 → S0 S0 S0 S0 S4

S1 → 1 S11 → S0 S0 S1 S7

S2 → 2 S12 → S0 S1 S3 S7

S3 → 3 S13 → S1 S2 S8

S4 → S0 | S1 S14 → S2 S0 S0 S1 S5

S5 → S2 | S3 S15 → S2 S1 S9

S6 → S0 S4 | S1 S5 S16 → S3 S3 S9

S7 → S2 S4 | S3 S5 S17 → S10 | S11 | S12 | S13 | S14 | S15 | S16

S8 → S0 S6 | S1 S7

S9 → S2 S6 | S3 S7

IV. Distinctively populated keyword tree (D).

Figure 2.15 shows the general structure of the distinctively populated keyword tree.

Once more, since this is a special case of a fully populated keyword tree, and no specific

sub-branches have being omitted, the failure links return to the pattern of pointing to

the nearest adjacent branch and to backtrack the process by only one tree level as shown

in figures 2.16 and 2.17, respectively.

Table 2.5 shows the non-normalized production rules for the distinctively populated

keyword tree (D).

Table 2.5: Production rules for the distinctively populated keyword tree (D).
Production rules Production rules (cont.)
D0 → 0 D12 → D0 D11 | D1 D10 | D2 D9

D1 → 1 D13 → D0 D11 | D1 D10 | D3 D8

D2 → 2 D14 → D0 D11 | D2 D9 | D3 D8

D3 → 3 D15 → D1 D10 | D2 D9 | D3 D8

D4 → D0 | D1 | D2 D16 → D0 D15 | D1 D14 | D2 D13

D5 → D0 | D1 | D3 D17 → D0 D15 | D1 D14 | D3 D12

D6 → D0 | D2 | D3 D18 → D0 D15 | D2 D13 | D3 D12

D7 → D1 | D2 | D3 D19 → D1 D14 | D2 D13 | D3 D12

D8 → D0 D7 | D1 D6 | D2 D5 D20 → D0 D19 | D1 D18 | D2 D17

D9 → D0 D7 | D1 D6 | D3 D4 D21 → D0 D19 | D1 D18 | D3 D16

D10 → D0 D7 | D2 D5 | D3 D4 D22 → D0 D19 | D2 D17 | D3 D16

D11 → D1 D6 | D2 D5 | D3 D4 D23 → D1 D18 | D2 D17 | D3 D16

D24 → D20 | D21 | D22 | D23
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Figure 2.15: Distinctively populated keyword tree, height = 3.

Figure 2.16: Distinctively populated keyword tree with right-pointing failure links.
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Figure 2.17: Distinctively populated keyword tree with left-pointing failure links.

V. Generalizing.

Consider for a moment the case in which all keyword trees should accept words of the

same length (i.e. subsequences composed of the same quantity of individual characters

or symbols). From the computer sciences perspective, this is the equivalent of having

search trees in which all paths from the root to any leaf have the same height.

Notice that all production rules for the trees presented so far have the same height,

except for the fully populated tree. To make it the same height as all the rest, simply

witch rule F5 in table 2.2 for the following new rule: F5 → F4 F4 F4 F4 F4

From a side-by-side comparison of the production rules necessary to generate each one

of the keyword trees described above, it can be observed that, as the specialization of the

tree increases, the number of production rules required to specify their respective regular

grammar increases as well. This fact agrees with the notion that, each new version of the

keyword tree presented thus far requires a higher level of control on what terminal symbol

could follow a previously selected terminal symbol. Therefore, as the selectivity of the
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tree increases, it is expected that the regular grammar to describe it should increase in

complexity. This is equivalent to saying that while the set of individual words accepted

by the grammar decreases (i.e the dictionary set decreases), the number of production

rules to represent this higher level of specialization increases.

At some point, this increased complexity could reach a degree where it is no longer

practical or efficient to use a set of production rules to analyze any given text, in order

to find the words from a dictionary set. Then, in practical implementation terms, it will

be much easier to construct the corresponding tree directly from the dictionary set, and

transform the identification task into a matching problem between the text of interest

and the newly created keyword tree. This will be done by taking one character from the

text at a time, and traversing the keyword tree for the corresponding match or mismatch

(as stated at the beginning of this subsection).

2.5 Analysis theories of moving objects.

After careful consideration of all the bibliographic references included in appendix B,

it was decided that the theoretical frameworks for analysis of moving object patterns

are still limited to special cases. In consequence, none of them were used in the present

work (directly or indirectly). Additional details of the advancement achievements of each

framework, along with limitations identified by their creators, appear in appendix B.

2.6 Chapter summary.

This chapter has presented past studies whose conclusions are considered relevant to

the objectives of the current work.

First, environmental studies on grizzly bears were examined to identify some of the
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factors that influence their habitat choices and some of their behaviors (section 2.1).

Particular attention was given to technical considerations that have improved the ob-

jectivity of the conclusions of this type of studies such as the use of GPS collars for

tracking purposes and satellite imagery to generate digital maps of the study areas (e.g.

land cover maps, digital elevation maps). Some of the studies contributed theoretical

and empirical results to compensate for over and under representation of certain location

types (e.g. shrub vs. high density canopy, respectively), while some others considered

mathematical models to artificially supplement the acquired movement data with what

can be considered interpolation methods.

Section 2.2 identified some of the major historical changes on relational database

technologies, to propose contemporary RDBMS systems as robust and mature solution

platforms. Some recent studies on implementation of complex indexing methods and

similarity searches in very large databases, e.g. [209, 210], have concluded that exter-

nal function libraries are an excellent option when complex data structures have to be

implemented, because despite their efficiencies, RDBMSs offer limited programming al-

ternatives for fully integrated equivalents. These studies identify the performance gains

derived from full integration, i.e. pinning, buffering, etc., as unaccessible to the external

libraries. This research believes that those same performance enhancement techniques

are a potential advantage for a fully integrated implementation.

As a first approach, methods coming from the LBS specialty were presented as can-

didate solutions, based solely in their ability to detect frequent common subsequences in

large collections of longer trajectories (see appendix A).

Then, the general conceptual structure of the KDD methodology was presented in

section 2.3 as the preferred method for this work, based mainly on its flexibility as an

iterative process. After the consideration of a simulated annealing solution conforming

to this framework (see section A.2), section 2.4 identified the local alignment approach
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as a generally suitable method for the objectives of the current work, embedded as part

of the KDD process.

Additional performance gains can be attained via carefully analyzed and implemented

data structures, supporting the notion that whatever the method selected to process

large and complex datasets, it has to be flexible and comprehensive. Flexibility has to be

passed on to the user in terms of control parameters to allow the researchers to include

or exclude any number of predefined patterns in their analysis, leaving the method to

create a comprehensive catalog of the rest of the patterns present in the data that the

researchers did not expressly include or exclude.

Most of the conclusions of the computer science studies in this chapter can be sum-

marized in the following common points:

• The larger the amount of individual factors included in the studies, the longer it

will take to process the entire dataset with increasingly more complex methods.

• The larger the dataset, the larger the efficiency gains from careful design of the

data structures to store and process the data.

This chapter included studies on grizzly bear environment and behavior (section 2.1),

to identify the dominant factors that influence the preferences of the species, in order

to answer the first objective of this work. The rest of this chapter reviewed technical

specifications and computer sciences’ studies that helped in refining the requirements,

constraints and expected features of the automated solution generally defined by the

objectives of this work.

Finally, mainly because of their limitations as solutions for special cases, analytical

moving object frameworks were moved from section 2.5 to appendix B, and were no longer

considered in any other form in the implementation of this work. The included publica-

tions in appendix B helped to answer the sixth objective of this work (see section 5.1 for



2.6. Chapter summary. 55

further details).
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Chapter 3

Methods

With the exception of sections 3.1, 3.2, and 3.7.1, the concepts presented in this

chapter follow the KDD methodology proposed by Han and Kamber [128] (detailed in

section 2.3). Its objective is to determine all technical aspects of the necessary tasks to

analyze the grizzly bear tracking dataset with machine learning methods.

All methods in this work were implemented using Microsoft SQL Server 2005 Express.

The DBMS is fully featured, but limited to a total database size of 4 GB.

All DBMS programming was done in Transact-SQL (T-SQL), and all data, including

temporary data structures for all methods, were stored in relational table form.

As stated in section 2.3, data mining is an iterative method that requires repeated

experimentation not only to calibrate the software tools, but also to achieve convergence

depending on the needs of the individual approaches. As such, some of the tasks in the

different subsections were added as part of the implementation of the various machine

learning methods, specially in the segmentations’ section 3.6.1. However, because of the

hierarchical organization of the KDD process by Han and Kamber [128], all of those

additions are presented in their corresponding section, and not in chronological order.

3.1 The overall approach.

Once the unsuitability of the location-based approach (subsection A.1.1) and simu-

lated annealing (subsection A.2.1) methods were established, this work focused on the

implementation of the method by Altschul et al. (see subsection 2.4.1.2).

This method requires an initial set of small subsequences to start the search against
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the database. In Biotechnology, these usually correspond to amino acid groups of known

physical or chemical properties. In the case of grizzly bears, no equivalent movement

subsequences are known, instead the following analysis steps were taken for the five

variations of the daily segmentations (subsection 3.6.1.4) combined with two versions

of the log-likelihood ranking matrix (asymmetric and symmetric, subsection 2.4.1.2) to

determine subsequences of interest.

• Take up to seven random samples per segment.

• Retain only unique subsequences (discard all but one repetition of the same subse-

quence).

• Rank the unique subsequences with the log-likelihood matrix.

• Choose the upper quartile (by log-likelihood rank) as the initial subsequence set.

• Create the Reversed Keyword Tree (RKT) for the set (see subsection 3.7.2.3).

• Create the corresponding mismatch matrix.

• Find all matches (including overlapping).

• Find the segments with multiple non-overlapping matches (clustering).

To determine sensitivity of the method, nine subsequence sizes (3, 6, 9, 12, 15, 20,

25, 30 and 40 symbols) were processed by repeating all the steps in the previous list.

3.2 Study area and tracking dataset.

The dataset used for this work was provided by the Foothills Research Institute [107]

and includes tracking data of grizzly bears in the province of Alberta, Canada. Specif-

ically, a subset of tracking collar positions (GPS collar position fixes) corresponding to



3.2. Study area and tracking dataset. 59

the Foothills region of the Canadian Rocky Mountains. The data was acquired between

the years of 1999 and 2008 including biological indicators from direct examinations of

the tracked individuals (e.g. age, gender, reproductive status, weight, size measurements,

blood samples).

Figure 3.1 highlights the geographical location of the province of Alberta in relation-

ship to the rest of the Canadian provinces and territories, as well as the 48 contiguous

states of the USA. In order to show the entire extension of Canada, the Universal Trans-

verse Mercator N15 (UTM N15) projection was used to generate this map. Due to the

projection’s limitations, the outline of the USA’s state of Alaska is missing from this

representation (to the Northwest of the Yukon territory). The rest of the maps in this

thesis were generated using the UTM N11 projection.

The collar models changed from year to year and included instruments that were

programmed to acquire GPS fixes every one, two or four hours, and with most newer

systems collecting data every 20 minutes. Throughout these years, some collars were

programmed to acquire position fixes at irregular intervals.

Spatial datasets included digital maps of the same geographic region obtained from

either previous studies on the same subject (e.g. categorized land cover raster at 30m of

spatial resolution by Franklin et al. [110]) or from the Canadian government (e.g. shapefile

of major towns). Figure 3.2.a shows the extension of the study area in the context of the

province including its major towns, rivers and roads, while figure 3.2.b shows the natural

regions in the province as defined by the Natural Regions Committee [184].

3.2.1 Physical description.

The study area has a total extent of 259,964 km2 including five of the six natural

regions defined by the Natural Regions Committee of Alberta [184]. The “Canadian

Shield” is the only natural region not included in the study area.
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Figure 3.1: Geographical location of the province of Alberta, Canada.

Table 3.1 includes the natural regions and subregions as defined by the Natural

Regions Committee [184] and their equivalent ecoregion in the earlier classification by

Strong [233], showing that the newer subregions are environmental classification refine-

ments from the earlier studies.

According to the Natural Regions Committee [184] each of the natural regions in the

study area is characterized in the following way.

Boreal Forest: “Aspen forests with shrubby understories, coniferous forests, white

spruce, jack pine on dry and sandy sites, closed-canopy mixedwood, and dry jack pine

forests. Dune areas are largely unvegetated. Black spruce (tamarack stands), balsam

poplar, paper birch, lodgepole pine, jack pine hybrids. Peatlands, graminoid marshes and
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Figure 3.2: Province of Alberta, Canada, with a) main towns, roads, rivers and outline
of the study area, and b) natural regions (based on [184]).

willow/marsh reed grass wetlands, sedge meadows and sedge fens. Aquatic, shoreline,

meadow, shrub and marsh vegetation in the lowlands. Upland forests and shrubs on

terraces, islands and levees.” [184]

Foothills: “Mixedwood forests and closed coniferous forests. Aspen, lodgepole pine,

white spruce and black spruce.” [184]

Rocky Mountain: “Pure aspen forests, mixed aspen forests, mixed conifer forests,

herbaceous meadows and shrublands. Aspen, lodgepole pine, Douglas fir, white spruce,

and Engelmann spruce. Grasslands and largely non-vegetated areas.” [184]

Parkland: “Aspen clones interspersed with grasslands dominated by plains rough

fescue and remnant aspen clones and continuous forest. Aspen forests (continuous and

clones), some areas of dense tall willow (north), California oatgrass, porcupine grass and
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Table 3.1: Natural regions, subregions and ecoregions of the study area.
Natural region Natural subregion Ecoregion
Canadian Shield Kazan Uplands High Boreal Mixedwood
Boreal Forest Athabasca Plain

Boreal Subarctic Boreal Subarctic
Central Mixedwood Mid Boreal Mixedwood
Dry Mixedwood Low Boreal Mixedwood
Lower Boreal Highlands
Northern Mixedwood
Peace-Athabasca Delta
Upper Boreal Highlands

Foothills Lower Foothills Lower Boreal-Cordilleran
Upper Foothills Upper Boreal-Cordilleran

Rocky Mountain Montane Montane
Subalpine Subalpine
Alpine Alpine

Parkland Central Parkland Aspen Parkland
Foothills Parkland
Peace River Parkland

Grassland Dry Mixedgrass Dry Mixed Grass
Foothills Fescue Fescue Grass
Mixedgrass Mixed Grass
Northern Fescue

jack pine on sands. Extensively cultivated, graminoid wetlands often ringed by willow.

Grasslands more common on southerly slopes.” [184]

Grassland: “Blue grama, needle, thread, porcupine grass, western porcupine grass

(drier), northern and western wheatgrass (on drier sites). Shrublands in moister locales,

plains rough fescue (moist), and mountain rough fescue on moister sites. Mainly agricul-

tural, buckbrush, rose shrublands, graminoid wetlands and wet areas often shrubby.” [184]

3.3 Data cleaning.

After a first analysis of the GPS positions’ database, it was established that only some

bears were tracked during several years. Figure 3.3 shows the multi-year tracking data
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Figure 3.3: Trajectories for bear G001 a) Multi-year, b) Detail.

for bear G001 of the study. The individual consecutive positions have been connected

by a straight line for an initial assessment of the complexity of the trajectories and the

distance between points.

This data was provided in database form with a single table containing all the details

of each GPS position.

This analysis identified the following list of major inconsistencies in the data.

• Invalid timestamp (e.g. no timestamp at all, nonexistent date or time).

• Annual trajectories with more than one point with the same timestamp.

• Annual trajectories with 10 or less points per year.

• Temporal discontinuities between consecutive points of more than five times the
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mean temporal resolution of the annual trajectory∗.

For the first two problems in the list, the erroneous individual positions were excluded

from the trajectories and the analysis continued.

The data that presented the last two inconsistencies in the previous list constituted

1.05% of the uncleaned dataset, making it a comparativelly small portion of the data,

therefore defining special cases. The inclusion of those special cases in the automated

solution would have required special sections of executable code for their analysis, in

addition to the necessary code for the analysis of the majority of the data.

Since one of the main objectives of the analysis included identifying frequent move-

ment patterns, in contrast to uncommon ones, this work judged their temporary exclusion

as a measure to arrive at a general analysis tool in a shorter amount of time.

To detect the fourth problem in the list, annual trajectories for each bear were ana-

lyzed individually. The mean time interval between consecutive positions of each annual

trajectory (a.k.a. the mean temporal resolution of the annual trajectory) was calculated

independently, and that value was compared against the time interval between every pair

of consecutive GPS positions. Every annual trajectory with at least one pair of points

with a time interval greater than five times the mean temporal resolution of the annual

trajectory was flagged for further analysis.

For the flagged annual trajectories, two more metrics were calculated. The percentage

of the points with discontinuities against the total number of points in the trajectory,

and the percentage of time contributed by the points with discontinuities against the

total time duration of the trajectory. If the percentage of points with discontinuities was

1% or less, and if those points contributed 20% or more of the total trajectory time, that

trajectory was excluded from the cleaned dataset, otherwise the trajectory was manually

analized for a final decision.

∗E.g. more than 20 hours for collars programmed to acquire a GPS fix every four hours.
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39 annual trajectories presented the forth problem of the list. Of those, 3 were

automatically excluded from the cleaned dataset by the combined rule of the previous

paragraphs. The remaining 36 trajectories were analyzed manually, and 32 of them were

still accepted in the cleaned dataset because there was no clear indication of systematic

errors in them. Summarizing, only 7 annual trajectories in total were excluded from the

cleaned dataset because of the fourth inconsistency of the list.

3.3.1 Conceptual temporal resolution of the cleaned dataset.

Analyzing the distribution of time intervals between consecutive positions in the entire

cleaned dataset, as shown in figure 3.4, a few observations are in order.

• There are relatively minor accumulations of points, of a few thousand points per

measure, for intervals of 3 and for every interval between 5 and 16 hours.

• Except for the 3 hours interval, these minor accumulations decrease in frequency

as the time interval increases.

• An intermediate accumulation of 8,835 points, occurs at the 2 hours interval.

• Major accumulations of 17,355 and 33,654, occur at 4 and 1 hour intervals, respec-

tively.

• The largest accumulation of points, 43,608, occurs at the 20 minutes interval.

This distribution is generally consistent with the GPS collar model progression and

position acquisition programming described in section 3.2.

Based on these observations, it can be concluded that the highest temporal resolu-

tion data in the dataset was captured with intervals of 20 minutes between consecutive

position fixes. Which can be used as the conceptual temporal resolution of the cleaned
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Figure 3.4: Frequency distribution of time intervals between consecutive trajectory po-
sition fixes.

dataset for the purposes of subsection 3.6.1. It also has the added advantage of being

an integer sub multiple of all the other time intervals at which high concentrations of

consecutive positions were acquired.

3.4 Data integration.

Simple geographical intersections of the GPS positions and the digital maps (one at

a time) were calculated using ESRI ArcCatalog 9.3 and ArcMap 9.3 (“n/a” ≡ 0, for no

intersection). The resulting data was stored in the original GPS position table adding

one column to store the matched supplementary data (e.g. the elevation at which every

GPS position was acquired). Figure 3.5 shows a Digital Elevation Model (DEM) and

a categorized land cover map matched to the geographical extent of the study area as
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Figure 3.5: Study area, a) Elevation, b) Land cover categories.

closely as possible. The land cover categories were specifically generated by Franklin et

al. [110] to reflect the terrain usage of grizzly bears.

Please note the legend in figure 3.5.b that shows the total area occupied by each land

cover class in the full extent of the study area. Similar totals can be obtained by matching

the GPS positions with the land cover map to establish relative abundance of each land

cover class, table 3.2 shows both relative percentages. From the side-by-side comparison

of these percentages it can be observed that the “Shrub” land cover is over-represented

in the GPS positions in relation to its abundance in the full study area. In contrast, the

“Water” class is under-represented in the GPS data by a factor of approximately 11.

Using the percentages in table 3.2, combined with the total size of the cleaned and inte-

grated dataset of 199,223 individual positions, returned a χ2 [78, 108] value of 57,829.05∗.

∗See appendix C.2 for the tabular results of this test.
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Table 3.2: Relative abundance of land cover classes.
Symbol Land cover Full study area (%) GPS positions (%)
1 Upland trees 54.7318 53.2899
2 Wetland trees 6.1725 1.8844
3 Upland herb 13.5581 10.9417
4 Wetland herb 0.9159 0.5407
5 Shrub 8.6798 22.5710
6 Water 1.7615 0.1639
7 Barren 12.5657 10.3703
8 Snow / Ice 1.1801 0.0822
9 Cloud 0.0314 0.0030
A Shadow 0.4032 0.1528

Total 100.0000 100.0000

Including the “n/a” class (not shown in table 3.2), comparing this value with the tabu-

lated χ2 values for ten degrees of freedom (29.59 for p = 0.001), it was observed that over

and under-representation of classes was to be fully expected in this analysis. In other

words, that the observed GPS-land cover matched position’s distribution did not agree

with the study area’s land cover distribution.

The machine learning methods used to analyze this dataset had to offer options to

compensate for such conditions.

All other supplementary data provided in tabular form (spreadsheet or database ta-

ble), e.g. gender and reproductive status data, was integrated by database inner joins.

3.5 Data selection.

Detailed analysis on the temporal dimension of the GPS positions revealed the near

absence of data for the months of January, February, March and December of every

year, which coincides with the denning period of the species, when all individuals remain

static [40, 46, 58, 115, 183, 190]. Figure 3.6 shows a daily count of GPS points from

all bears, while figure 3.7 shows a monthly accumulation. Both figures also show a
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maximum density of GPS points between the months of June and September of every

year (inclusive), which coincide with the period of the year when most grizzly bear food

sources are at maximum production [40, 46, 58, 115, 183, 190].

The dataset was divided in two parts, a calibration dataset for software implementa-

tion and testing purposes, and the rest of the data for validation.

As far as this research is aware, there is no single recommendation about the best

size for the calibration dataset on research of this nature, but some projects with ge-

ographically referenced data select as little as 5% of their dataset for calibration tasks

(e.g. [44, 45]). The following subjective method was followed to select the calibration

dataset with two simultaneous objectives, make the calibration dataset as close as pos-

sible to 20% of the entire dataset to make software development as fast as possible, and

include more than one trajectory of each “size class” per year.

As described in section 3.3, two metrics were calculated for each annual bear trajec-

tory, the total number of individual GPS points, and the mean time interval between

consecutive position fixes (i.e. the mean temporal resolution of the annual trajectory).

For each year, all trajectories were sorted by their total number of positions, and the

maximum, minimum and yearly mean number of positions were calculated. Using these

values, three “size classes” were roughly defined as, “trajectories with the most num-

ber of positions” (large), “trajectories with the least number of positions” (small), and

“trajectories with the mean number of positions” (mean), without any formal transition

value between them.

The calibration dataset was chosen to include entire trajectories from each year with

iterative algorithm 3.1.

The average temporal resolution of the annual trajectories was used in the search

processes to avoid, as much as possible, the inclusion of multiple trajectories for the

same year with the same temporal resolution. This additional selectivity was imple-
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Figure 3.6: GPS points by day of the year.

Figure 3.7: GPS points by month of the year.
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Algorithm 3.1 Calibration dataset selection
Input: The full dataset of trajectories, desired size
Output: The list of calibration trajectories or an error code.
1: Mark all trajectories as unexamined.
2: Current Size← 0
3: repeat

4: Choose one of the years of the full dataset (in circular fashion).
5:
6: Find the next unexamined large trajectory. ⊲ Downwards search
7: if Found then

8: Mark the trajectory as included.
9: Current Size← current size of the calibration dataset.
10: if Current Size = (desired size± 2%) then
11: Break.
12: else if Current Size > (desired size+ 2%) then
13: Mark the trajectory as excluded.
14: end if

15: end if

16:
17: Find the next unexamined mean trajectory. ⊲ Downwards search
18: if Found then

19: Mark the trajectory as included.
20: Current Size← current size of the calibration dataset.
21: if Current Size = (desired size± 2%) then
22: Break.
23: else if Current Size > (desired size+ 2%) then
24: Mark the trajectory as excluded.
25: end if

26: end if

27:
28: Find the next unexamined small trajectory. ⊲ Upwards search
29: if Found then

30: Mark the trajectory as included.
31: Current Size← current size of the calibration dataset.
32: if Current Size = (desired size± 2%) then
33: Break.
34: else if Current Size > (desired size+ 2%) then
35: Mark the trajectory as excluded.
36: end if

37: end if

38: until (The calibration dataset is of the desired size (±2%)) OR (There are no more unexamined trajectories)
39:
40: if (The calibration dataset is of the desired size (±2%)) then
41: Error Code← 0
42: else

43: Error Code← 1
44: end if

45: return Error Code

mented using a record set of yearly flags that started active for all years, and gradually

deactivated to reflect the temporal resolution of the remaining unexplored trajectories.

Since this mechanism is part of secondary functions of the process, it was excluded from
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algorithm 3.1. Appendix C presents the detailed identification of the calibration dataset,

along with the results of the temporal analysis of this dataset (in tabular form).

3.6 Data transformation.

As described in section 3.4, simple geographical intersections were used to match the

main GPS data with the various digital maps described in section 3.2. In essence this

is a transformation from the geographical dimension to a purely abstract classification.

Apart from the various segmentations included in this section, no other transformations

were applied to the original dataset.

3.6.1 Segmentations.

Segmentation of long trajectories originated from the hierarchical subdivision of com-

plex problems [192], however, research standards require a consistent segmentation for

all trajectories in the dataset.

According to the sampling theorem by Nyquist from 1928 [194], and proved to be

theoretically and practically correct by Shannon in 1949 [223], the repetitive movement

patterns of any species that can be detected by the acquisition of movement sampling

data, in this case GPS position fixes, are limited to those patterns repeated at twice the

time interval of the finest time scale instruments. In other words, if the best GPS collar

used to monitor the movement of a grizzly bear was programmed to acquire a position

every 20 minutes, the research will only be able to detect movement patterns repeated

every 40 minutes.

Quality of results from studies that utilize geographically referenced data can be

increased with consecutive analysis at different spatial scales, but it is better to limit the

inference of global rules based on local-area results [213].
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The following are the segmentations used in this work, and represent just a few of

the possible segmentations for grizzly bear tracking datasets.

3.6.1.1 Annual and seasonal.

Multi-year trajectories were separated by year because of the large temporal discon-

tinuity between the last point in one year and the first point in the subsequent year.

This is supported by the annual biological period of grizzly bear hibernation (a.k.a den-

ning) [40, 46, 58, 115, 183, 190].

3.6.1.2 Monthly.

Based on some of the behavioral studies in section 2.1 (e.g. [40, 76, 70, 130, 217]),

and in an effort to reduce the processing time of all machine learning methods, the yearly

trajectories were subdivided into monthly sections∗.

3.6.1.3 Weekly.

Given the dynamic nature of the straightforward trajectory similarity methods (sec-

tion 2.4.1), a reduction on the individual trajectory segments was applied to reduce the

overall execution time. With this finer scale approach it was also hoped that all machine

learning methods in this work could identify a greater quantity of unique movement

patterns in a reasonable amount of time.

3.6.1.4 Circadian and diel.

The proposed segmentation of this subsection responds to two main objectives, the

simplification of geographic representation to speed up similarity calculations, and the

conservation of topological relationships between trajectories and land cover areas.

∗Julian calendar months, i.e. January, February, etc.
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Including data acquired at different temporal scales into a single analytical tool re-

quires careful consideration of the facts represented by each scale. The conclusions de-

rived from such a tool will only be valid if the differences in the data are recognized and

handled appropriately from the first analysis step.

Consider for a moment the matching of consecutive GPS positions acquired the same

day of the year, and the categorical land cover map from section 3.4. Dividing the 24 hours

of the day into regular intervals of the same size as their respective collar resolution will

result in the conceptual temporal “coverage” shown in figure 3.8.a. In other words, this

matching represents the type of habitat in which the bear is assumed to have stayed for

the entire temporal period. Figure 3.8.b shows an alternative matching conceptualization

with shorter time periods, of 20 minutes, based on the frequency distribution of the time

intervals between consecutive trajectory positions, as shown in subsection 3.3.1.

Please note that the figure also shows periods of the day in which positions were not

recorded. This is a natural result of the difficulty of acquiring GPS fixes for wildlife

species and a limitation of the entire dataset.

Where more than one position fix was recorded in the same 20 minutes interval, the

matching land cover classes determined the course of action. If all position fixes matched

with the same land cover class, only the first position in the time period was considered

for additional analysis (the rest were excluded from the final symbol concatenations

described bellow). If the positions matched with different land cover classes, only the

first position in the time period was considered for additional analysis for the following

reasons.

The difference in the character of these decisions resides in the amount of information

that the analysis might lose from each of them. In the first case, the land cover infor-

mation is identical for each time period, then including multiple positions contributes

no addition data for the analysis. The second case happens 2,237 times in the cleaned
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Figure 3.8: Circadian segmentation of multi-temporal resolution GPS data, matching
with land cover map’s classes a) at the original GPS resolution, b) at the resolution of
the 20 minute interval data.

dataset for 9 different bears. The involved trajectories were analyzed to determine if the

overall finer time period had to be changed, but their mean time interval was more than

23 minutes in each case. Comparing this inconsistencies with the total size of the cleaned

dataset of 199,223 individual positions, the second case represents 1.12%, correspondond-

ing to some of the special cases aluded to in section 3.3, and which were originally ignored

in order to arrive at an initial general analysis tool.

Being strict in the use of the GPS data, each position fix occurs at a temporal instant.

All other positions are unknown until the next GPS fix is acquired and can only be

approximated∗.

∗Some “interpolation” methods to do this have already been mentioned in subsection 2.1.2
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To allow the model to conduct a simultaneous multi-temporal analysis without having

to divide every 24 hour period down to minute (second, millisecond, etc.) intervals,

a reasonable compromise is to define “temporal coverage” as the period of the most

detailed data in the dataset. In this case 20 minutes, as described in subsection 3.3.1 and

illustrated in figure 3.8.b. This approach allows direct temporal comparison amongst all

daily trajectories using only 72 pieces of information for each one.

Considering once more the alternative of dividing every 24 hours period into smaller

temporal coverage periods, for example one minute each, every resulting daily trajectory

would contain 1,440 pieces of information. Remembering that the straightforward simi-

larity measurement methods perform in quadratic order (in the worst case), an increase

from 72 to 1,440 pieces of information represents an increase in execution time from 5,148

comparisons to 2,073,600 comparisons per trajectory pair. Additionally, only 92 individ-

ual GPS positions in the entire cleaned dataset were acquired at ten minute intervals

(or less), which would mean that for this version of the “completed” concatenation (as

defined bellow), every segment would mostly contain “n/a” values. From the point of

view of this work, the analysis of such data would take much longer than the proposed

20 minute temporal coverage alternative without adding any useful information either to

the process or to the end results.

This matching and segmentation is the equivalent of assuming that the bear stays

in the matched land cover terrain type for the entire 20 minutes period. This is an

important limitation of this work and will be mentioned once again in the concluding

chapter of this document.

As a direct consequence of this segmentation, the longest possible sequence consists

of 72 consecutive GPS points, i.e. 3 fixes per hour, for 24 hours.

Analyzing the representation of the GPS points in terms of their matched abstract

land cover classes, the daily sequences can be represented by concatenations of the ab-
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stract symbols in alphabet Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A} (see table 3.2 for the

class-land cover equivalences). When only land cover classes are involved, these concate-

nations can be seen as representations of bear transitions from one land cover to another

(or the same class).

The same sequence can vary in its presentation depending on the three restrictive

rules:

1. The consecutive repetition of the same symbol.

2. The exclusion of classes that represent absence of data (i.e. unknown values,

σ = {0, 9, A}, “n/a”, “cloud” and “shadow” respectively).

3. The level of attention given to the temporal dimension (i.e. the temporal “coverage”

mentioned above).

From the possible combinations of these factors there are five representations of in-

terest for the automatic analysis of abstract land cover transitions. With the correct

restrictions, some of these concatenations can be defined as representing topological re-

lationships of the individual trajectory with the different land cover areas. Other repre-

sentations are possible, but this research judged the current ones as the most useful for

automatic movement pattern detection.

I. Original. Ignore gaps in the temporal scale (allow rule 1, above).

II. Distinct. Original, but excluding consecutive symbol repetitions (restrict rule 1).

III. Artificial, repeated. Original minus “no data” symbols (rule 2).

IV. Artificial, distinct. Distinct minus “no data” symbols (II with rule 2).

V. Completed. Include all symbols. Add symbol “n/a” in every gap of the temporal

scale (rule 3).
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Table 3.3: Land cover class equivalents’ concatenation, circadian segmentation.
Original Distinct Artificial, repeated Artificial, distinct
5355141151111111111115 535141515 5355141151111111111115 535141515

411771111611111115115151 417161515151 411771111611111115115151 417161515151

111111111111111111113 13 111111111111111111113 13

000000007003313113333 07031313 73313113333 731313

373373389331 373738931 37337338331 37373831

66A6666666666666A666AA66 6A6A6A6 66666666666666666666 6

Table 3.4: Land cover class equivalents’ concatenation, circadian segmentation (cont.).
Completed
500300500500100400100100500100100000100100100100100000100100100100100500

400100100700700100100100100600100100100100100100100500100100500100500100

100100100100100100100100100100100100100000100100000000100100100100100300

000000000000000000000000700000000300300100300000000100100300300300000300

300000700000300000300000700000300000300000800000900000300000300000100000

600000600000A00600606600606600606600600600600A00000600606A0000A600600000

To clarify these combinations, tables 3.3 and 3.4 show examples of some of the con-

catenations present in the cleaned grizzly bear tracking dataset.

The distinct combinations (II and IV), will only concatenate different symbols next

to each other, therefore, these are the closest representations to topological relationships.

3.7 Data mining.

In the context of this work, the term “machine learning” is better suited to describe

the undertaken technical approaches, however, the term “data mining” is consistent with

the KDD methodology proposed by Han and Kamber [128] (section 2.3), and kept for

the rest of this document only where no ambiguity is possible.

3.7.1 Local alignment.

To help minimize the increase in execution time as the size of the analyzed datasets
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increase (i.e. scalability problems), as experienced with previous approaches (see ap-

pendix A), a hybrid local alignment method was considered for this analysis as presented

in subsections 2.4.1.1 and 2.4.1.2. As compared to the original method developed for

Biotechnology applications, the main departure of this work’s method consists in the

replacement of the original dynamic programming exploration of the set of candidate

functional groups against the full molecule formulas (i.e. the matrix-based comparisons

of every symbol in the functional groups against every symbol in the molecule sequences),

by the exact matching of a set of relatively short subsequences. In other words, this

hybrid approach was selected because, with its proposed structure it was reasonably ex-

pected to avoid most scalability and conceptual problems encountered with the methods

implemented above.

The following subsection includes a brief description of the manual exploration process

that allowed the conceptual combination of the theoretical details necessary to arrive at

the combined analysis method presented in the rest of this document.

3.7.1.1 The initial conceptual diagram.

The process started with the idea of generating the production rules of the regular

grammar that could describe the hierarchical tree defined by the single rule: “No con-

secutive repetitions of the same symbol”. The first manual graphical assessment was

conducted for a limited subtree with full failure links for all nodes, except the root and

level-one nodes, which by definition do not have anywhere to fail to. The limitations of

the tree consisted of a single starting symbol (0 in this case), three levels in total, and

an alphabet of four symbols (Σ = {0, 1, 2, 3}).

Two tree expansions were conducted with full failure links for all nodes. Figure 3.9

shows a simplified diagram of the construction steps of these expansions. The first

expansion introduced an additional starting symbol (1), and a level expansion to four
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Figure 3.9: Construction of the initial conceptual diagram.

levels in both subtrees. Instead of drawing tree expansions in side-by-side subtrees as it

is customary, the first expansion was constructed by drawing the corresponding subtree

rotated 90o counter-clockwise in relation to the original subtree. The second expansion

introduced the remaining two starting symbols (2 and 3) and a level expansion of all

subtrees to five levels in total. The expansion to five levels was constructed by drawing

the necessary additional subtrees at consecutive 90o counter-clockwise rotation angles

from the second subtree introduced in the previous expansion.

The tree expansions can also be conceptualized as contiguously rotated triangular

configurations as opposed to the customary parallel representation. Figure 3.10 shows

this concept with complete analysis of its full failure links. In the judgment of the current

project, this rotated contiguity shows the symmetrical behavior of the full failure links
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Figure 3.10: Initial conceptual diagram with full failure links, height = 5.

better than their corresponding side-by-side representation. Two other advantages of this

representation include space economy, and direct visualization of tree rotations (useful

for the conceptualization of tree matching processes).

Note that the symmetry axis for the full failure links in figure 3.10 (not shown in

the figure), runs at an angle of 45o from the upper right corner to the lower left corner

of the square. The symmetry of the configuration is significant because, the equivalent

data structure represented internally in any computer system could use these character-

istics for detection of tree corruption and/or performance enhancements (e.g. partitions,

supplementary indexes).

Table 3.5 shows the set of non-normalized production rules that describe the equiva-
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Table 3.5: Production rules for the initial conceptual tree (I).
Production rules Production rules (cont.) Production rules (cont.)
I0 → 0 I12 → I8 | I9 | I10 I24 → I0 I23
I1 → 1 I13 → I8 | I9 | I11 I25 → I1 I22
I2 → 2 I14 → I8 | I10 | I11 I26 → I2 I21
I3 → 3 I15 → I9 | I10 | I11 I27 → I3 I20
I4 → I0 | I1 | I2 I16 → I0 I15 I28 → I24 | I25 | I26
I5 → I0 | I1 | I3 I17 → I1 I14 I29 → I24 | I25 | I27
I6 → I0 | I2 | I3 I18 → I2 I13 I30 → I24 | I26 | I27
I7 → I1 | I2 | I3 I19 → I3 I12 I31 → I25 | I26 | I27
I8 → I0 I7 I20 → I16 | I17 | I18 I32 → I0 I31
I9 → I1 I6 I21 → I16 | I17 | I19 I33 → I1 I30
I10 → I2 I5 I22 → I16 | I18 | I19 I34 → I2 I29
I11 → I3 I4 I23 → I17 | I18 | I19 I35 → I3 I28

I36 → I32 | I33 | I34 | I35

lent regular grammar for this tree (I).

3.7.2 The proposed new algorithm.

Following extensive bibliographic research and from the experiences gained from the

implementation of the LBS and simulated annealing methods, this work judged the con-

ceptual combination of keyword tree structures with one of the fastest string matching

algorithms [1, 23, 47, 48, 69, 123, 124, 137, 147, 148, 207, 231, 235], as a good alternative

for automatic detection of movement patterns. Figure 3.11 shows the different parts of

some previous methods that needed to be integrated for such an implementation.

From the Boyer-Moore [47, 48] method, the new algorithm adopted the concepts of

examining the text from left to right and the pattern from right to left, with the purpose

of maximizing the pattern slides. Combining this premise with the concept from the Aho-

Corasick [1] method of simultaneous matching of a set of keywords, of any size, with the

use of a hierarchical tree structure, the proposed algorithm implemented one of the fastest

possible matching processes [1, 23, 47, 48, 69, 123, 124, 137, 147, 148, 207, 231, 235].

From the Apostolico-Giancarlo [23] method, the algorithm incorporated the suffix aware
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Figure 3.11: Key conceptual sources for the proposed new matching algorithm.

matching directly in its keyword tree structure, to reduce tree traversal as much as

possible (i.e. the individual character examinations). To speed up tree traversal recovery

and tree realignment after a character mismatch, the algorithm adapted the mismatch

matrix structure and mechanism from the Knuth-Morris-Pratt [147, 148] method.

At the time of implementation, two other empirical areas of improvement were iden-

tified and incorporated, the tree’s backtrack and forwardtrack, as described in subsec-

tion 3.7.2.1.

Summarizing, after an individual character mismatch, the main goal of this combina-

tion of methodological concepts is to preserve the maximum possible number of characters

already matched. In other words, use the tree’s own structure and its auxiliary struc-

tures, i.e. the list of full failure links and the corresponding mismatch matrix, to examine
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each text character as few times as possible.

3.7.2.1 Additional improvements.

Even after the combination of the theoretical studies mentioned in the previous sub-

section, the critical part of the algorithm, and the most time consuming, remains the

realignment of the searched pattern with the text after a character mismatch. The cur-

rent method adds the following empirical measures to improve the response time in such

conditions:

1. Forwardtrack. [82, 146, 169, 220] Based on the knowledge of “the next character”.

For creation and exploration of failure links, and detection of “same character”

subsequences.

2. Backtrack. [146, 169, 220, 229]Backwards tree traversal. To avoid recursive pro-

gramming.

The concept of Forwardtrack will be further explained in subsection 3.7.2.5.

3.7.2.2 Design subsequences.

The first step in the implementation was to select a set of design subsequences that

contained the largest possible repetition of suffixes without repeating the same full sub-

sequence.

Table 3.6 shows the subsequences chosen for this work with two sets of Record Iden-

tifiers (Rids). The “Sorted Rid” corresponds to a regular alphabetical sorting, while

“Reversed Rid” is assigned after an alphabetical sorting that analyzes the subsequence

from right to left. This was done for clarity of the following analysis and to conform with

the Boyer-Moore method (see figure 2.2).

Table 3.7 shows the same information, but with the subsequences written in reverse



3.7. Data mining. 85

Table 3.6: Sorted design subsequences.
Sorted Rid Subsequence Reversed Rid
1001 000000000 1
1002 000010000 4
1003 001002001 11
1004 001010200 8
1005 001032001 12
1006 013200120 10
1007 020010200 7
1008 032003020 9
1009 100000000 2
1010 100001000 6
1011 100010000 5
1012 100100000 3

Table 3.7: Reversed design subsequences (sorted).
Sorted Rid Reversed subsequence Reversed Rid
1001 000000000 1
1009 000000001 2
1012 000001001 3
1002 000010000 4
1011 000010001 5
1010 000100001 6
1007 002010020 7
1004 002010100 8
1008 020300230 9
1006 021002310 10
1003 100200100 11
1005 100230100 12

order. With the subsequences reversed, a regular alphabetical sort can be used to generate

the order in this table.

The generation of the corresponding production rules for this set of subsequences is

left to the reader [3, 4, 43, 51, 72, 79, 80, 103, 118, 134, 140, 141, 174, 175, 226, 230, 249].

3.7.2.3 Reversed keyword trees for the matching algorithm.

Using the subsequences of the previous two tables, two hierarchical search trees can
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Figure 3.12: Keyword trees for the design subsequences, height = 9. a) Original keyword
tree, and b) Reversed subsequence keyword tree.

be created, one character at a time, as shown in figure 3.12. Note the rotation arrows

in both trees that will allow a better conceptualization of the matching of the tree with

the text, and of the “sliding” of the tree (i.e. realignment). In these positions, the

tree traversals of the rotated structures directly correspond to the individual character

matching mechanisms of the search methods [1, 23, 47, 48, 147, 148]. Additionally, the

tree sliding can be performed physically with the help of a printed copy of figure 3.12.

All remaining illustrations of keyword trees in this thesis adopt the rotated presenta-

tion.

Because the conceptual advantages of the tree rotation mentioned above, and the

direction of the pattern examination of the Boyer-Moore method (i.e. from right to left),



3.7. Data mining. 87

Figure 3.13: Reversed keyword tree for the design subsequences, height = 9.

the Reversed Keyword Tree (RKT) represents an adequate approach for this method. In

other words, the traversal of the tree from right to left, as shown in figure 3.13, makes

it conceptually (and geometrically) compatible with the Boyer-Moore method. Note the

Arabic numerals between squared brackets placed at the far left of the figure. These

numbers are the “Reversed Rid” values of tables 3.6 and 3.7, and will be present in all

remaining illustrations of keyword trees in this document.

Figure 3.14 shows the same tree with additional structural details, whose utility will

be explained momentarily. For now, let us just define the meaning of two of them (the

rest are explained in the legend of the figure).

Attached to the upper-left corner of each node, a smaller rectangle shows the machine-

assigned node identifier for the individual symbol. The rectangle attached to the bottom
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Figure 3.14: Reversed keyword tree for the design subsequences with table’s Rids, and
accumulated symbol concatenations.

of each node contains the accumulated concatenation of symbols resulting from traversing

the tree from its root until reaching each node.

The failure links of all trees in subsection 2.4.1.3 slide the tree to the right of the

text (imagine the trees in that subsection rotated as indicated in figure 3.12.a). For the

reversed keyword tree, failure links calculated in the same manner would slide the tree to

the left of the text, which is the opposite of what is needed for this method. Such links

(right-pointing) can’t be accepted because they imply one of two cases. If the matching

has just started, such a link would slide the tree past the left end of the text, or, the tree

has to slide to the left because the method missed a pattern in an earlier alignment.

Calculating the failure links for the reversed keyword tree in the opposite direction

introduces the possibility of more than one valid link per node, and the need for additional
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storage structures for this list (potentially one list for each node in the tree).

Figure 3.15: Left-pointing failure links for four example nodes (11, 37, 49, 55).

An example, with the assistance of figure 3.15, should clarify this concept. Let us

imagine that the tree is aligned with the middle of the text∗ in such a way that the tree

traversal has arrived at node 55 (reversed subsequence “1002”). If the next symbol in

the text (to the left) is 1, then there will be a mismatch in this part of the tree (neither

of the successor nodes of 55 contain a 1).

To preserve the maximum amount of work, the method has to look for alternative

branches where the reversed subsequence “1002” is present, in this case, nodes 32 and 48.

Both alternatives contain the entire reversed subsequence from node 55 in the exact same

order, and can be considered valid “jump” points. Both of them are equally likely to

∗I.e. far from any of its two ends.
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allow the method to continue with a successful analysis, and from now on will be referred

to as equivalent full failure links or equivalent failure links. However, in implementation

terms, the node that is closer to the current node should be preferred. Distance in this

type of tree is measured first by the difference of the tree levels between nodes, and

then by the hierarchical position of the node (its absolute presentation order when the

tree needs to be transformed into a two-dimensional graph). This definition of distance

should be used to determine the absolute order in which exploration of the equivalent

failure links will proceed.

Note that node 42 is a partial match to node 55 with the reversed subsequence “002”.

Lets analyze what would happen if this partial failure link would be accepted in the list

of valid “jump” points for node 55. First, lets assume that all other valid failure links

for node 55 have already been explored and discarded, then node 42 is considered.

The jump from node 55 to node 42 has three symbols in common (“002”), therefore,

the rest of the symbols to the right of node 40 in the branch containing node 42 have

to be examined. This is the main use of the backtrack mechanism in this method. The

symbol in node 39 is a 3, but this process already knew that the equivalent node in the

original branch (node 52 in the branch that includes node 55) contains the symbol 1,

which would produce an immediate mismatch. Since the process knew these facts from

the moment the tree was constructed, it is useless to include partial links to the left of

the current node in the list of valid failure links for any node. Since all right-pointing

partial failure links had already being discarded, this statement discards partial failure

links from this method altogether.

Apart from the sliding direction of the tree mentioned above, two more things have

to be said about full failure links. First, no full failure links can occur at any tree level

that is farther right than the current node. Since tree levels to the right of any given

node contain less concatenated symbols, it is literally impossible to find a full failure link
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in any of those nodes. Finally, if a full failure link were to exist at the same tree level as

the current node, because of the structure of the tree, it would have to be the current

node itself. Since this process is interested in continuing the search after a character

mismatch, “jumping in place” would only result in an infinite loop. In other words, no

self joins should be allowed in terms of the list of equivalent full failure links.

This analysis implies that any other case of failure links for hierarchical keyword trees,

full or partial, can be decomposed into a combination of the cases presented up to this

point [3, 4, 51, 72, 79, 80, 103, 118, 134, 140, 141, 174, 175, 226].

Considering at the same time the concept of equivalent full failure links and node

distance, as defined in the previous paragraphs, each node will have a best full failure

link. This concept is illustrated in figure 3.16 for the example nodes, while figure 3.17

presents the same information for the entire tree.

In operational terms, this is almost irrelevant because once a mismatch has been

detected, all alternative branches have to be considered until one is found to be adequate,

or all alternatives have been exhausted. This means that a simple flag can take the place

of the best equivalent full failure link in the data structure, but in terms of graphical

presentation it is easier to understand a directed line between two nodes.

3.7.2.4 Mismatch matrix.

Adding the improvements from the Knuth-Morris-Pratt [147, 148] method to the

current implementation took the form of a mismatch matrix, which is a completely

independent structure from the keyword tree.

The role of the mismatch matrix is to determine the number of characters to slide

the keyword tree, and the new tree cell, if it exists, at which the matching process can

be restarted (discarding all previous matches, except the mismatch symbol). Once a
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Figure 3.16: Best equivalent full failure links for four example nodes. No link of this type
for node 49.

Figure 3.17: Reversed keyword tree for the design subsequences with best full failure
links for all nodes.
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Table 3.8: Bad character rule matrix, mismatch matrix, or slide matrix.
Tree level Symbol
(Pattern position) 0 1 2 3 4 5 6 7 8 A 10
1 (9) 0 0 1 3 9 9 9 9 9 9 9

/ / 37 39 / / / / / / /
2 (8) 0 1 0 2 8 8 8 8 8 8 8

/ 45 / 39 / / / / / / /
3 (7) 0 0 0 1 7 7 7 7 7 7 7

/ / / 39 / / / / / / /
4 (6) 0 0 0 0 6 6 6 6 6 6 6

/ / / / / / / / / / /
5 (5) 0 0 1 0 5 5 5 5 5 5 5

/ / 48 / / / / / / / /
6 (4) 0 0 0 1 4 4 4 4 4 4 4

/ / / 49 / / / / / / /
7 (3) 0 0 0 0 3 3 3 3 3 3 3

/ / / / / / / / / / /
8 (2) 0 0 0 0 2 2 2 2 2 2 2

/ / / / / / / / / / /
9 (1) 0 0 1 1 1 1 1 1 1 1 1

/ / / / / / / / / / /

character mismatch has been detected, and after verifying the incompatibility of all the

equivalent full failure links of the corresponding tree node, the matching method finds

the mismatch matrix cell corresponding to the combination of the tree level (conversely,

the pattern position) and the mismatch symbol. Table 3.8 shows the mismatch matrix of

the design RKT (figures 3.13 to 3.17) considering all the symbols of the original alphabet

(Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A}).

As an example, let us imagine that the traversal of the RKT in figure 3.17 has arrived

to node 22. If the next symbol in the text were a “3” there would not be anywhere to jump

in the tree to continue the matching process. In this case, the symbol “3” would have to

be searched in the mismatch matrix (table 3.8), combined with the relative position in

the text where it occurred (tree level 6 or pattern position 4). The corresponding cell in

the matrix indicates that a slide of 1 position can be applied immediately to the entire
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process, and that the tree traversal can be restarted in backtrack mode from node 49.

For the symbols not included in the design subsequences (4, 5, 6, 7, 8, 9 and A),

the corresponding tree slides are stored in the matrix cells and a NULL pointer (graphic

symbol “/”) denotes the restart of the tree traverse from the root.

This matrix is most effective for moderately dense to sparse keyword trees, combined

with mid to large size alphabets [124, 147, 148].

3.7.2.5 Forwardtrack.

This work defines Forwardtrack as an empirical optimization principle based on the

concept of “the next symbol” [82, 146, 169, 220].

To reduce the size of the result set of any combinational query, it employs the next

symbol (from the current node) and the equal or “not equal” relationship. It was used

in the following parts of the matching algorithm (illustrated in T-SQL code):

• Creation of the full failure links for each node (algorithm 3.2).

• Loading of the equivalent full failure links that have the mismatch symbol as their

“next symbol” (algorithm 3.3).

• Detection of consecutive overlapping subsequences composed entirely of repetitions

of the same symbol (e.g. “555555555”, algorithm 3.4).

3.7.2.6 Matching algorithm.

To meet the objective of a minimalistic approach, and considering once more that

standard ANSI / ISO / IEC SQL-2010 does not provide integrated support for complex

or user-defined data types [13, 14, 15, 16, 17, 18, 19, 20, 21, 22], the subsequence matching
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Algorithm 3.2 Creation of equivalent full failure links with Forwardtrack, SQL
1: SELECT Tgt.Rid, Tgt.Tree Level
2: FROM FROM dbo.Reverse KeyTree Orig Asy As Tgt
3: INNER JOIN dbo.Reverse KeyTree Orig Asy As Orig Suc ⊲ Successors of the current node.
4: ON Orig Suc.Parent Rid = @Current Node Rid
5: LEFT OUTER JOIN dbo.Reverse KeyTree Orig Asy As Tgt Suc ⊲ Targets’ successors.
6: ON Tgt.Rid = Tgt Suc.Parent Rid
7: WHERE Tgt.Tree Level = @Exploring Tree Level
8: AND Tgt.Rid <> @Current Node Rid ⊲ No self-joins.
9: AND Substring(Tgt.Sub Sequence, (Tgt.Tree Level−@Current Node Tree Level+1),
10: @Current Node Tree Level) = @Current Node SubSequence
11: AND isNull(Tgt Suc.Symbol,−1) <> Orig Suc.Symbol ⊲ No equal successors.
12: GROUP BY Tgt.Rid, Tgt.Tree Level
13: ORDER BY Tgt.Rid;

Algorithm 3.3 Loading of equivalent full failure links with Forwardtrack, SQL
1: SELECT Eq.Target Rid, Eq.Matching Symbols,
2: (Eq.Target Tree Level − Eq.Source Tree Level) As Tree Level Diff
3: FROM dbo.Equivalent Links Orig Asy As Eq
4: LEFT OUTER JOIN dbo.Reverse KeyTree Orig Asy As Tgt Suc
5: ON Eq.Target Rid = Tgt Suc.Parent Rid ⊲ Targets’ successors.
6: WHERE Eq.Source Rid = @Current Node Rid
7: AND isNull(Tgt Suc.Symbol, @Mismatch Text Symbol) = @Mismatch Text Symbol
8: ORDER BY 2 DESC, 3, 1;

Algorithm 3.4 Same character detection. Forwardtrack, SQL
1: SET @Current Text Position = @Current Text Position + 1;
2:
3: SELECT @Same Symbol F lag =(CASE isNull(Rid,−1) WHEN -1 THEN 0 ELSE 1 END)
4: FROM dbo.Reverse KeyTree Orig Asy
5: WHERE Rid = @Current Node Rid
6: AND Sub Sequence = Replicate(@Text Symbol,@Keyword Max Len);
7:
8: SET @Full Seq Symbol = @Text Symbol;
9: WHILE ((@Same Symbol F lag = 1)AND(@Current Text Position <= @Text Len)) BEGIN

10: SET @Current Symbol = Substring(@Text Sequence,@Current Text Position, 1);
11:
12: IF (@Current Symbol = @Full Seq Symbol) BEGIN

13: INSERT INTO dbo.Matches Orig Asy(Tree Rid, Text Rid, Text End Position)
14: VALUES(@Current Node Rid, @Text Rid, @Current Text Position);
15:
16: SET @Current Text Position = @Current Text Position + 1;
17: END ELSE BEGIN

18: SET @Same Symbol F lag = 0;
19: END;

20: END;
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Algorithm 3.5 Examine FLinks
Input: EquivalentFLinks, NumIgnoreSymbols

Output: FailureLinkF lag

1: FailureLinkF lag ← 0

2: while ((FailureLinkFlag = 0) AND (NOT End EquivalentFLinks)) do

3: Traverse backward ReversedKeywordTree(NumIgnoreSymbols) ⊲ Ignore these.

4: while ((FailureLinkFlag = 0) AND (NOT at Root node)) do

5: SymbolMatch← Traverse backward ReversedKeywordTree ⊲ Backtrack.

6: if ((SymbolMatch = 1) AND (At Root node)) then

7: FailureLinkF lag ← 1

8: end if

9: end while

10: end while

Algorithm 3.6 Examine Earlier FLinks
Input: EquivalentFLinks, NumIgnoreSymbols

Output: FailureLinkF lag, MismatchShiftDistance

1: FailureLinkF lag ← 0

2: while ((FailureLinkFlag = 0) AND (NOT at Root node)) do

3: MismatchShiftDistance←MismatchShiftDistance+ 1

4: Traverse backward ReversedKeywordTree ⊲ Backtrack.

5: Load EquivalentFLinks ⊲ From new current node.

6: FailureLinkF lag ← Examine FLinks(EquivalentFLinks)

7: end while

method had to be implemented as an iterative program without complex RAM data

structures.

Recursion was also consciously avoided because of all the unknown factors in its use

inside a relational database system. As a consequence, the final program is long and

relatively complicated, with several nested loops for different tasks and a minimum of

sub procedure calls (algorithms 3.5, 3.6 and 3.7).

3.7.2.7 Computational complexity.

There are three major components that determine the space requirements for this

method, the Reversed Keyword Tree (RKT), the lists of equivalent failure links, and the
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Algorithm 3.7 Dictionary Exact Matches
Input: Text, ReversedKeywordTree, MismatchMatrix, EquivalentFLinks
Output: KeywordMatches
1: repeat

2: CurrentTextSection← Load next Text section
3: repeat

4: MismatchF lag ← 0
5: MismatchShiftDistance← 1
6: CurrentKeywordPosition←MaxKeywordLength
7: while ((No Keyword match detected) AND (NOT End CurrentTextSection)) do

8: MismatchF lag ← Traverse forward ReversedKeywordTree

9: if (MismatchFlag = 0) then ⊲ Symbol match.
10: NumIgnoreSymbols← NumIgnoreSymbols+ 1
11: CurrentKeywordPosition← CurrentKeywordPosition− 1
12: else ⊲ Symbol mismatch.

13: MismatchShiftDistance← Retrieve MismatchMatrix value

14: if (MismatchShiftDistance = 0) then
15: FailureLinkF lag ← 0
16: if (Valid link at current node) then ⊲ Forwardtrack.

17: Load EquivalentFLinks with Forwardtrack

18: FailureLinkF lag ← Examine FLinksExamine FLinksExamine FLinks(EquivalentFLinks)
19: if (FailureLinkFlag = 0) then ⊲ Backtrack.
20: FailureLinkF lag ← Examine Earlier FLinksExamine Earlier FLinksExamine Earlier FLinks(EquivalentFLinks)
21: if (FailureLinkFlag = 0) then ⊲ All links explored.
22: MismatchShiftDistance←MaxKeywordLength
23: end if

24: end if

25: else ⊲ Backtrack.
26: FailureLinkF lag ← Examine Earlier FLinksExamine Earlier FLinksExamine Earlier FLinks(EquivalentFLinks)
27: if (FailureLinkFlag = 0) then ⊲ All links explored.
28: MismatchShiftDistance←MaxKeywordLength
29: end if

30: end if

31:
32: if (FailureLinkFlag = 1) then ⊲ Successful jump to different tree branch.
33: CurrentTextPosition← CurrentTextPosition+MismatchShiftDistance

34: Adjust all other counters and pointers.

35: end if

36: end if

37: end if

38: end while

39:
40: if (Keyword match detected) then

41: Register match in KeywordMatches

42: CurrentTextPosition← CurrentTextPosition+ 1
43: if (Matched keyword is all the same symbol) then ⊲ Forwardtrack
44: SeqSymbol← Current symbol of matched keyword
45: while ((Same symbol at CurrentTextPosition) AND (NOT End CurrentTextSection)) do

46: Register match in KeywordMatches

47: CurrentTextPosition← CurrentTextPosition+ 1
48: end while

49: end if

50: else

51: CurrentTextPosition← CurrentTextPosition+MismatchShiftDistance
52: end if

53: until (All CurrentTextSection has been examined)
54: until (All Text has been examined)
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mismatch matrix.

The space required to store the RKT is given by the size of the alphabet (Σ = {0, 1, 2,

3, 4, 5, 6, 7, 8, 9, A}; | Σ | = l), the number of symbols in the longest subsequence (n),

and the number of subsequences to search for (β), and has an upper bound of O(ln).

The amount of space required to store all the lists of full failure links depends on the

number of symbols to look for (from one level to another), the tree density (i.e. keyword

density), and the length of the longest subsequence (n). For one symbol at tree level one,

it has an upper bound of O(ln). For two symbols at level two, it has an upper bound of

O((n − 2)ln−2), etc∗. In practice however, it would be very rare to encounter a tree so

dense that the upper bound would be reached.

The mismatch matrix (subsection 3.7.2.4), has a fixed space requirement of O(n ∗ l).

3.8 Pattern evaluation.

The most frequent subsequences at the end of the matching process, presented in

subsection 3.7.2.6, were clustered using two different algorithms.

The first approach followed the improved method in [221], first defined by Altschul

et al. in [8]. The fundamental concept of the molecule formula’s (i.e. text segments)

clustering, groups all those molecules that contain several non-overlapping subsequences

from the searched set. Because of their original dynamic programming implementation,

the concept is referred to as the detection of molecules with multiple non-overlapping

subsequence hits contained in the same matrix diagonal. The equivalent in the case

of this work is simply the trajectory segments that contain multiple non-overlapping

subsequences.

In essence, this first clustering method highlights the trajectory segments that contain

∗The rest of this analysis is of combinatorial nature [25, 117], and falls outside the scope of this
document.
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similar structural subsequences. However, this fact might appear clearer when the results

of the clustering are presented in two dimensional graphical form (i.e. when identified in

the geographic maps of the corresponding trajectories). This approach was applied across

all the analyzed subsequence sizes, returning similar results for all sensitivity levels with

one special provision, the relevance of the different trajectory segments was relatively

maintained as the subsequence size increased. For example, a trajectory segment of

70 symbols, contained four subsequences of 15 symbols each, while the same trajectory

segment contained only two subsequences of 30 symbols each. Further details of the

result of this clustering technique will be discussed in subsection 4.2.6.

For the second clustering approach, this work used a slightly modified implementation

of the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) method,

as described in the text by Han and Kamber ([128], pg. 418). The current work substi-

tuted the original concept of the “point in space” for the corresponding centroid of the two

dimensional Minimum Binding Rectangle (MBR) of each of the matched subsequences

(subsection 3.7.2.6). Otherwise, the process was allowed to cluster the subsequences as

originally designed, varying only the ε and MinPts parameters.

As with the first clustering approach described above, the results from this cluster-

ing method were compared across sensitivity levels to determine their relevance. Some

subsequences were identified as similar in terms of their geographic location, and some

of their geographic uses of space, but as it is expected of a geometrically-aware method,

its results might be better explained when presented in map form (as will be discussed

in subsection 4.2.6).

3.9 Knowledge presentation.

After the matching process, the most frequent subsequences of all sizes were plot-
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ted on top of the original land cover raster. This approach proved to be adequate for

further visual exploration, as well as an alternative to reflect the geographic nature of

the original dataset and its supplementary data sources. Furthermore, the results of the

clustering methods described in the previous section might be better analyzed in a two

dimensional representation, as contrasted with a pure numerical evaluation (e.g. mean

distance between cluster centroids, mean distance between individual GPS positions and

the edge of their corresponding vegetation patch).

The different nature of the interpretations of the purely tabular results (i.e. numeric),

compared with their geographic equivalents, seem to support the value and relevance of

the decision to present the results of the current work in bidimensional representation.

In practical terms however, this representation is limited by the geographic extension of

the study area, and might only be effective as a set of computer files fit for manipulation

and further exploration by other researchers, with tools such as ESRI ArcCatalog 9.3.

Alternatively, these results could be presented with the use of interactive multimedia

representations.

3.10 Chapter summary.

This chapter presented the detailed application of the process known as KDD, slightly

modified from the methodology proposed by Han and Kamber [128] (subsection 2.3),

applied to a grizzly bear tracking dataset.

The chapter started with a description of the overall application approach for the

suitable method in this work (section 3.1).

Section 3.2 described the study area, as well as the main dataset and the supple-

mentary data sources used in this analysis, including a brief description of the dominant

vegetation of the natural regions included in the study area.
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To present consistent data to the machine learning methods, cleaning tasks were

undertaken and described in sections 3.3, 3.4 and 3.5. Subsection 3.3.1 analyzed the

distribution of the temporal intervals between consecutive pairs of trajectory positions of

the cleaned dataset, to define its maximum conceptual temporal resolution (20 minutes).

The following section (3.6) centered on some appropriate segmentations for grizzly

bear movement that allowed an overall reduction of complexity for the analysis tasks.

In this case, a reduction on the size of the movement sequences presented to the min-

ing methods ensuring at the same time that topological relationships and statistically

significant details were not lost because of this reduction.

Ignoring the concept of time context, section A.1.1 presented the details of an LBS

method intended to automatically detect trajectory segments containing multiple similar

subsequences.

The data mining methods in this work, employed two solutions, a simulated annealing

algorithm (section A.2), and a local alignment approach (section 3.7.1). One of the

aspects of the local alignment method motivated an extensive step-by-step geometric

analysis of the use of failure links for keyword trees employed in the exact matching

searches included in this work (3.7.2.3). The section paid particular attention to the

modification of previous string matching and amino acid sequence searching methods

that were combined to generate the current hybrid program (3.7.2), including its main

algorithmic expression (3.7.2.6).

The chapter closed with a brief description of the pattern evaluation and knowledge

presentation decisions adopted for analysis of results, sections 3.8 and 3.9 respectively.

In order to fulfill its research objectives (section 1.3), the current chapter included de-

tailed analysis of theoretical and empirical aspects of potential analysis algorithms for the

automatic detection of frequent patterns from movement tracking datasets (appendix A,

and section 3.7). The included details explored the technical features and flexibility of
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the candidate methods, their level of compliance to the ANSI / ISO / IEC SQL spec-

ifications [13, 14, 15, 16, 17, 18, 19, 20, 21, 22] standards, and the detailed graphical

representation of the local alignment approach. Even when the methods included in ap-

pendix A where ultimately determined unsuitable for the effective analysis of the grizzly

bear dataset, their successful fully integrated implementation advanced the notions of

robustness and maturity of contemporary RDBMS platforms.

Additionally, other general aspects of the research were presented to identify necessary

preparatory or subsequent tasks for the analysis, such as data cleaning, data integration,

data segmentation, pattern evaluation and knowledge presentation, as well as a general

description of where the machine learning methods fit in terms of the overall analysis

process.
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Chapter 4

Results and analysis

Although, in their present formulation, the LBS and the simulated annealing ap-

proaches are considered unsuitable for the effective analysis of grizzly bear tracking data,

their fully integrated implementation serves to support RDBMSs as robust and mature,

therefore, viable solution platforms. The implementation details of both methods are

included in this document as peripherally relevant material in appendix A.

At this point in the project, the only implemented method that is considered suitable

for the effective analysis of grizzly bear tracking data is the local alignment approach.

The rest of this chapter presents and discusses averaged results of ten executions of the

local alignment method, rounded to the nearest integer.

4.1 Benchmark platform.

All experiments in this work were conducted using a desktop computer equipped

with an Intel Core 2 Quad processor at 3.00 GHz, with 8 GB of RAM, running Microsoft

Windows XP Professional (2002) with service pack 3, and Microsoft SQL Server 2005

Express edition.

4.2 Local alignment.

Initial implementation of this method was conducted for multiple keywords of nine

symbols in length (subsequences, n = 9) using the overall process detailed in section 3.1.

Once the unit testing of the implementation was finished, five daily segmentation
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alternatives (subsection 3.6.1.4) were combined with two versions of the log-likelihood

ranking matrix (subsection 2.4.1.2) to generate ten different candidate subsequence sets.

• Original segmentation, asymmetric log-likelihood ranking. (Orig Asy)

• Original segmentation, symmetric log-likelihood ranking. (Orig Sym)

• Distinct segmentation, asymmetric log-likelihood ranking. (Dist Asy)

• Distinct segmentation, symmetric log-likelihood ranking. (Dist Sym)

• Artificial, repeated segmentation, asymmetric log-likelihood ranking. (ArtR Asy)

• Artificial, repeated segmentation, symmetric log-likelihood ranking. (ArtR Sym)

• Artificial, distinct segmentation, asymmetric log-likelihood ranking. (ArtD Asy)

• Artificial, distinct segmentation, symmetric log-likelihood ranking. (ArtD Sym)

• Completed segmentation, asymmetric log-likelihood ranking. (Comp Asy)

• Completed segmentation, symmetric log-likelihood ranking. (Comp Sym)

In turn, these candidate sets were used to construct the corresponding ten versions

of the RKTs with all other auxiliary structures (henceforward referred to as tree types).

For each segmentation and log-likelihood ranking combination, i.e. for each tree type,

subsequences of 3, 6, 9, 12, 15, 20, 25, 30 and 40 symbols in length were processed to assess

the level of multi scale sensitivity of the method. Because of the characteristics of the

diel segmentations of the data (subsection 3.6.1.4), except for the case of the “completed”

sub variations, these subsequence lengths do not reflect an actual time interval. However,

these were deemed adequate for this analysis because they cover, from a small section, to

more than half of the maximum 72 symbols per daily segment. Making them uniformly

applicable for all segmentations.
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4.2.1 Memory and secondary storage space requirements.

For this subsection, any use of the term “space” without any other qualifier refers to

computer RAM and secondary storage space, not to the concept of geographic or three

dimensional space.

Disregarding the pagination needs of the RDBMS, there are three major components

that determine the space requirements for this method; the Reversed Keyword Tree

(RKT), the lists of equivalent failure links, and the mismatch matrix.

The space required to store the RKT is given by the size of the alphabet (Σ = {0, 1, 2,

3, 4, 5, 6, 7, 8, 9, A}; | Σ | = l), the number of symbols in the longest subsequence (n),

and the number of subsequences to search for (β), and has an upper bound of O(ln).

The amount of space required to store all the lists of full failure links depends on the

number of symbols to look for (from one level to another), the tree density∗, and the

total number of levels in the tree (n, the length of the longest subsequence). For one

symbol at tree level one, it has an upper bound of O(ln). For two symbols at level two,

it has an upper bound of O((n− 2)ln−2), etc†. In practice however, it would be very rare

to encounter a tree so dense that the upper bound would be reached.

As an example of such empirical conditions, table 4.1 shows the number of nodes per

level in the reversed keyword tree that have at least one valid full failure link at a higher

tree level, and the total number of equivalent full failure links per tree level (stored in a

different database table).

Figure 4.1 shows the same information in graphical form for the nodes in the tree with

at least one valid full failure link, while figure 4.2 shows the total number of equivalent

full failure links in the associated table.

The second figure, 4.2, shows a decreasing number of full failure links as the number of

∗Which is the same as the keyword density.
†The rest of this analysis is of combinatorial nature, and falls outside the scope of this document.
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Table 4.1: Full failure links by number of matching symbols, original asymmetric tree,
n = 9.

Tree Equivalent
Symbols All records Full failure links Full failure links
1 11 10 5,138
2 53 50 4,954
3 158 135 4,469
4 323 244 3,624
5 540 344 2,557
6 769 360 1,520
7 954 329 830
8 1,111 254 375
9 1,230 0 0

Total 5,149 1,726 23,467

consecutive symbols increases, i.e. it will be more rare to find an eight symbol substring

(e.g. “29476831”), than it would be to find a two symbol substring (e.g. “82”).

The third component of the algorithm, the mismatch matrix (subsection 3.7.2.4), has

a fixed space requirement of O(n ∗ l).

4.2.2 Performance.

As stated in subsection 3.7.1, only the daily segmentation of the dataset was processed

with this method. Tables 4.2 to 4.6 show all relevant details of the execution of all five

trajectory-derived symbol concatenations from subsection 3.6.1.4, and both versions of

the log-likelihood ranking matrix (asymmetric and symmetric, subsection 2.4.1.2).

From an analysis of the data contained in the tables, four facts are observed in direct

relation to the increase of the keyword length:

1. The number of potential candidate segments decreases.

2. The number of keywords searched increases, with certain boundaries.

3. The number of exact overlapping matches found increases, with boundaries as well.

4. The execution time increases.
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Figure 4.1: Tree nodes with valid full failure links by tree type and level, n = 9.

Figure 4.2: Equivalent full failure links by tree type and number of matching symbols,
n = 9.
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Table 4.2: Performance, original symbols.
Asymmetric Symmetric

Keyword Available Keywords Matches Execution Keywords Matches Execution
length segments searched found time (sec) searched found time (sec)

3 17,808 90 2,446 54 92 2,453 56
6 7,801 749 24,778 89 762 25,439 90
9 5,508 1,375 16,076 89 1,376 16,008 91
12 4,520 1,312 9,622 132 1,317 9,340 129
15 3,688 1,192 6,011 134 1,173 5,952 136
20 2,174 797 2,909 117 804 2,920 124
25 1,022 418 1,737 154 418 1,734 165
30 996 385 1,380 127 387 1,382 121
40 967 231 825 123 232 826 137

Table 4.3: Performance, distinct symbols.
Asymmetric Symmetric

Keyword Available Keywords Matches Execution Keywords Matches Execution
length segments searched found time (sec) searched found time (sec)

3 10,577 70 739 11 72 757 10
6 3,329 360 2,650 29 355 2,576 28
9 1,782 444 1,090 11 451 1,103 12
12 969 268 375 18 267 374 17
15 673 172 192 11 172 192 11
20 406 101 108 4 103 110 4
25 182 46 46 1 46 46 1
30 47 12 12 0.05 12 12 0.05
40 0 0 0 0 0 0 0

Table 4.4: Performance, artificial repeated symbols.
Asymmetric Symmetric

Keyword Available Keywords Matches Execution Keywords Matches Execution
length segments searched found time (sec) searched found time (sec)

3 17,692 75 2,801 49 75 2,806 48
6 7,760 689 24,732 77 700 25,386 79
9 5,496 1,287 16,072 108 1,298 16,003 106
12 4,510 1,295 9,661 120 1,263 9,305 116
15 3,683 1,198 6,013 129 1,163 5,901 126
20 2,163 800 3,037 138 803 3,023 136
25 1,021 414 1,786 126 409 1,768 133
30 996 390 1,398 243 392 1,379 241
40 967 232 829 249 233 830 271
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Table 4.5: Performance, artificial distinct symbols.
Asymmetric Symmetric

Keyword Available Keywords Matches Execution Keywords Matches Execution
length segments searched found time (sec) searched found time (sec)

3 10,511 60 1,623 11 57 1,585 11
6 3,304 356 3,448 25 360 3,555 24
9 1,776 436 1,060 10 445 1,073 11
12 967 269 352 19 276 360 9
15 673 171 193 11 173 195 11
20 406 101 105 4 101 105 4
25 180 46 46 1 45 45 1
30 47 12 12 0.05 12 12 0.05
40 0 0 0 0 0 0 0

Table 4.6: Performance, completed symbols.
Asymmetric Symmetric

Keyword Available Keywords Matches Execution Keywords Matches Execution
length segments searched found time (sec) searched found time (sec)

3 23,336 65 1,248,143 282 64 1,248,142 282
6 23,336 612 1,220,162 502 614 1,220,156 496
9 23,336 1,313 1,274,290 747 1,303 1,273,739 753
12 23,336 1,871 1,197,705 780 1,902 1,197,708 796
15 23,336 2,100 1,124,637 856 2,106 1,124,733 861
20 23,336 2,662 973,450 1304 2,698 973,568 1306
25 23,336 2,472 835,831 1509 2,472 835,831 1518
30 23,336 3,140 686,923 2148 3,164 687,196 2061
40 23,336 2,447 377,290 2228 2,446 377,289 2246

The decrease in potential candidate segments is valid for all tree types, except the

“completed” variations. This can be explained because, in this segmentation every seg-

ment is forced to have exactly 72 symbols, corresponding to a regular division of a 24 hour

period in 20 minute intervals (see subsection 3.6.1.4). This tendency is better observed

in figure 4.3.

The bounded increase in the number of keywords searched can be explained by the

empirical limitations of the dataset. In other words, not all possible subsequences occur

in the dataset (e.g. “01234567890123456789” can’t be found in the tracking dataset).

Figure 4.4 illustrates this characteristic. Please note the sharp decrease in this metric

at 9 symbols per keyword for all tree variations except the “completed” variants. This
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Figure 4.3: Number of eligible text subsequences (segments) by tree type and keyword
size.

Figure 4.4: Number of keywords searched by tree type and keyword size.
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behavior suggests that the higher concentration of information in the dataset exists for

subsequences between 6 and 12 symbols in length. Further statistical tests can be con-

ducted to confirm or refute this observation, but this is also out of the scope for this

project.

To better explain the bounded increase in the number of exact overlapping matches

found, its results have been divided into two illustrations. Figure 4.5 contains the graph

for all variations except the “completed” trees. In this figure, there is a perceptible inflec-

tion point for keywords of 6 symbols in length, that can be explained by the combination

of the bounded candidate segment decrease and the bounded searched keywords increase

described above. The case of the “completed” trees, figure 4.6, can be seen as the empir-

ical worst case scenario of the factors just described. Note that this data also contains

an inflection point for keywords of 6 symbols in length, however, its direction is opposite

from those of all the other tree types.

The execution time increase in figure 4.7 shows a predominantly linear behavior by

tree type, even for the “completed” versions, the major difference amongst these linear

tendencies being the slope of the fitted straight lines (not included in the figure). This

empirical result agrees with previous analysis of the Boyer-Moore and the Aho-Corasick

methods, including all variations and improvements used in this work [1, 23, 47, 48, 69,

123, 124, 137, 147, 148, 207, 231] (see subsection 2.4.1.1).

4.2.3 Performance improvement.

Once the comprehensive executions were finished, it was determined that additional

Database Administrator (DBA) techniques could be used to improve the performance of

the method. Keywords with 9 symbols were selected as a case study for this purpose.

Since the specific DBA techniques used for this part of the work are not of a program-
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Figure 4.5: Number of overlapping matches found by tree type and keyword size.

Figure 4.6: Number of overlapping matches found by tree type and keyword size (cont.).
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Figure 4.7: Execution times for the matching algorithm (in minutes) by tree type and
keyword size.

ming nature, and will be different for almost every benchmark platform, their details are

considered to fall outside the scope of this thesis and will not be presented. However,

these administration techniques include complementary indexes [104], pinning [244], ma-

terialized views [244], on-the-fly views [104], pagination [244], temporary tablespace to

table block synchronization [244], partitions [104], subpartitions [104], etc.

For each tree type, table 4.7 shows the total amount of individual character matches

to perform in the worst case scenario. The values in column α correspond to the maxi-

mum number of available segments per keyword length (column “Available segments” in

tables 4.2 to 4.6), which are constant for the cleaned dataset.

The number of characters in table 4.7 (column m) were measured directly from the

database at the time of each algorithm execution. These values are lower than the total

number of individual GPS positions for the cleaned dataset (1999,223, see section C.1),
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Table 4.7: Number of individual elements to process, n = 9.
Available segments Keywords Total elements Total characters

Main variation α (characters) m Sub variation β o = β ∗ n α * β m * o

Original 5,508 136,256
Asymmetric 1,230 11,070 6,774,840 1,508,353,920
Symmetric 1,218 10,962 6,708,744 1,493,638,272

Distinct 1,782 26,278
Asymmetric 466 4,194 830,412 110,209,932
Symmetric 465 4,185 828,630 109,973,430

Artificial, repeated 5,496 135,999
Asymmetric 1,207 10,863 6,633,672 1,477,357,137
Symmetric 1,195 10,755 6,567,720 1,462,669,245

Artificial, distinct 1,776 26,184
Asymmetric 462 4,158 820,512 108,873,072
Symmetric 454 4,086 806,304 106,987,824

Completed 23,336 1,680,192
Asymmetric 2,134 19,206 49,799,024 32,269,767,552
Symmetric 2,134 19,206 49,799,024 32,269,767,552

in all cases except for the “completed” tree types, because only circadian segmentations

with a minimum of 9 symbols were considered, and that quantity has been shown to

diminish with the increase in keyword length (subsection 4.2.2 and figure 4.3).

The values in column β in table 4.7 include the average number of subsequences

matched by the ten experiment executions. These values are the equivalent to column

“Keywords searched” in tables 4.2 to 4.6 for keywords of length 9, but are numerically

different as a consequence of the random nature of the candidate keyword sampling.

Table 4.8 shows the execution times of the matching algorithm (in seconds) before

and after additional DBA optimizations. The execution times before optimizations were

taken from the corresponding cells in tables 4.2 to 4.6.

Only the “distinct asymmetric” sub variation does not register any percentage change

in table 4.8. The rest of the sub variations register a negative percentage change (“artifi-

cial, distinct asymmetric” and “artificial, distinct symmetric”), or a positive percentage

change (all other seven sub variations).

The sub variations that show the smallest percentage changes in table 4.8 (the four

“distinct” sub variations, i.e. “distinct asymmetric”, “distinct symmetric”, “artificial,

distinct asymmetric” and “artificial, distinct symmetric”) correspond to the sub varia-

tions with the smallest amounts of total characters to process in table 4.7. The opposite

is true of the sub variations that show the largest execution improvements, i.e. the sub
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Table 4.8: Execution times for the matching algorithm (before and after further improve-
ments), n = 9.

Execution time Percentage
Main variation Sub variation Before After change

Original
Asymmetric 89 61 31.46
Symmetric 91 63 30.77

Distinct
Asymmetric 11 11 0.00
Symmetric 12 11 8.33

Artificial, repeated
Asymmetric 108 67 37.96
Symmetric 106 64 39.62

Artificial, distinct
Asymmetric 10 12 -20.00
Symmetric 11 12 -9.09

Completed
Asymmetric 747 414 44.58
Symmetric 753 416 44.75

variations in table 4.8 with the largest performance improvements correspond to the sub

variations in table 4.7 with the largest amounts of total characters to process.

Clarifying in absolute execution time terms, the worst change in the performance of

the algorithm after DBA modifications, the “artificial, distinct asymmetric” sub varia-

tion, only adds 2 seconds to the total execution time of the process. In contrast, the best

performance change of the algorithm, the “completed symmetric” sub variation, reduces

the entire processing time by 5 minutes and 37 seconds per execution.

All performance changes in table 4.8 are consistent with the tendency of the Boyer-

Moore algorithm to perform worst for shorter keyword/text lengths, and better for larger

keyword/text lengths [124, 137]. Therefore, it is expected that the algorithm/database

incorporating DBA fine tunning techniques shall execute faster as compared to the version

without DBA modifications.

4.2.4 Most frequent patterns.

The results from all variations are different, particularly between main variations,

but all results show some of the same tendencies. For a brief detailed analysis, only
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the results from the “original asymmetric” variation will be presented here (tables 4.10

to 4.13), appendix D contains the equivalent tables for the other nine tree sub variations.

For this explanation, the term n-repetition will be used to denote all patterns of

any size which are composed entirely of consecutive repetitions of the symbol “n”,

e.g. 4-repetition denotes “44”, “444”, “4444”, “44444”, “444444”, etc. With the same

purpose, the symbol “x” means “any number and configuration of symbols” before or

after its occurrence, e.g. x4x denotes “04”, “35724765”, “55555555547777777”, etc.

To make this analysis easier, the equivalences between the abstract symbols of the

method and the land covers classes of the original digital map (figure 3.5.b, and table 3.2)

are reproduced in table 4.9.

Table 4.9: Equivalents, land cover symbols to land cover classes.
Symbol Land cover
0 “n/a”
1 Upland trees
2 Wetland trees
3 Upland herb
4 Wetland herb
5 Shrub
6 Water
7 Barren
8 Snow / Ice
9 Cloud
A Shadow

The following general tendencies can be observed in tables 4.10 to 4.13:

1. All pattern frequencies (support) decrease as n increases.

2. At n = 3, the most unique patterns take place.

3. The 5-repetition pattern (Shrub) is the most frequent of the n-repetition patterns,

except at n = 3.
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4. The n-repetition patterns maintain the same frequency order from n = 6 to n = 20

(inclusive).

5. At n = 25, the 2-repetition pattern (Wetland trees) disappears.

6. At n = 30, the 3-repetition (Upland herb) and the 7-repetition (Barren) patterns

swap order.

7. Ignoring the n-repetition patterns, the patterns x51x (Shrub-Upland trees), x35x

(Upland herb-Shrub), x71x (Barren-Upland trees), and their symmetrics, occur

with the highest frequency.

The same tendencies can be observed in the tables presented in appendix D, with the

exception of the tendencies specifically identified for n-repetition patterns that do not

appear for the “distinct” variations. This is correct, and an independent validation of

the segmentation rules presented in subsection 3.6.1.4.

The first observation of the list, the pattern frequency decrease as n increases, can be

explained by the fact that it is statistically more likely to find shorter subsequences as

compared to a longer subsequences [78, 157]. In other words, it is more likely to find the

pattern “555551”, than it is to find the pattern “555555555555555555555555555551”, etc.

See subsection 4.2.1 for a related discussion under empirical conditions on tree density

and full failure links.

Figure 4.8 shows the histogram of the most frequent patterns at n = 3, which is

consistent in general tendency for all values of n in all the results of this work (tables 4.10

to 4.13, and D.1 to D.32). Please note that almost all cases show one order of magnitude

decrease in frequency (i.e. support) between the most frequent pattern and the second

most frequent pattern.

To help explain the rest of the observations of the list, starting with the second, the

most unique patterns occurring at n = 3, let us consider the relative abundance of each
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Table 4.10: Original asymmetric, most frequent patterns, n = {3, 6, 9, 12}
n = 3 n = 6 n = 9 n = 12

Pattern Support Pattern Support Pattern Support Pattern Support
222 1,042 555555 7,016 555555555 4,185 555555555555 2,887
444 345 333333 2,695 333333333 1,388 333333333333 779
000 165 777777 2,132 777777777 1,070 777777777777 593
141 86 222222 440 555555551 292 555555555551 135
666 59 333335 270 155555555 270 222222222222 125
161 53 533333 231 222222222 227 155555555555 113
244 52 777771 226 333333335 135 555555555511 86
442 47 333331 224 533333333 106 115555555555 84
144 46 177777 223 555555557 94 333333333335 77
441 45 111777 216 444444444 91 555555155555 63
422 36 133333 205 777777771 86 533333333333 47
224 34 111333 200 177777777 84 555555555557 45
414 26 333111 199 111117777 75 777777777771 39
142 25 117777 183 333333353 75 177777777777 37
1A1 23 333311 183 755555555 75 333333333355 37
241 16 113333 174 133333333 73 755555555555 35

Table 4.11: Original asymmetric, most frequent patterns, n = {15, 20}
n = 15 n = 20

Pattern Support Pattern Support
555555555555555 2,161 55555555555555555555 1,456
333333333333333 435 33333333333333333333 167
777777777777777 340 77777777777777777777 143
222222222222222 72 22222222222222222222 33
555555555555551 72 15555555555555555555 25
155555555555555 57 55555555555555555511 23
333333333333335 49 55555555555555555553 21
555555555555553 44 35555555555555555555 17
355555555555555 41 11155555555555555555 14
115555555555555 37 53333333333333333333 11
555555555555511 36 55555555555555155555 10

Table 4.12: Original asymmetric, most frequent patterns, n = {25, 30}
n = 25 n = 30

Pattern Support Pattern Support
5555555555555555555555555 1,099 555555555555555555555555555555 873
3333333333333333333333333 86 777777777777777777777777777777 52
7777777777777777777777777 74 333333333333333333333333333333 47
5555555555555555555555511 13
5555555555555555555555553 11
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Table 4.13: Original asymmetric, most frequent patterns, n = 40
n = 40

Pattern Support
5555555555555555555555555555555555555555 559
7777777777777777777777777777777777777777 33

Figure 4.8: Most frequent patterns, original asymmetric, n = 3.

symbol in the context of the full cleaned dataset. To do so, the percentage data from

table 3.2 (section 3.4) is presented in table 4.14 in individual symbol frequency terms for

all segmentations (subsection 3.6.1.4), and with the explicit addition of the “n/a” class.

The uniqueness of the patterns at n = 3 can be explained by the relative abundance

of their individual symbols as the size of the searched patterns increase, i.e. observing

that symbol “4” in table 4.14 (“Wetland herb”), column “Original”, is the sixth most

abundant symbol with only 1,072 occurrences in total, it is to be expected that its

individual relevance would be seriously attenuated as n increases. In other words, it

is statistically expected that the frequencies of relatively rare symbols measured with a
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Table 4.14: Individual symbol frequencies by segmentation type.
Symbol Land cover Original Distinct Artificial, repeated Artificial, distinct Completed
0 “n/a” 484 183 0 0 1,481,933
1 Upland trees 105,793 33,514 105,793 33,482 105,793
2 Wetland trees 3,736 2,060 3,736 2,060 3,736
3 Upland herb 21,693 11,389 21,693 11,385 21,693
4 Wetland herb 1,072 571 1,072 571 1,072
5 Shrub 44,975 20,638 44,975 20,625 44,975
6 Water 325 222 325 216 325
7 Barren 20,673 11,534 20,673 11,525 20,673
8 Snow / Ice 163 130 163 130 163
9 Cloud 6 6 0 0 6
A Shadow 303 250 0 0 303

Total 199,223 80,497 198,430 79,994 1,680,672

log-likelihood function would be more relevant at high sensitivity levels (e.g. n =3), as

compared to their prominence at low sensitivity levels (e.g. n =25) [10, 78, 157].

This is particularly evident in table 4.10 at n = 3 in the cases of the 6-repetition

pattern and patterns “161” and “1A1”, that disappear from the rest of the tables of

most frequent patterns. Their unique symbols, “6” (“Water”), and “A” (“Shadow”)

occupying places eighth and ninth in table 4.14. The 0-repetition pattern (“n/a”) is a

perfect example of this phenomenon because its individual symbol occupies the seventh

place in the list of most frequent symbols, and it only appears as frequent at n = 3. The

rest of the most frequent patterns at this sensitivity level are composed by combinations

of symbols “1” (“Upland trees”), “2” (“Wetland trees”), and “4” (“Wetland herb”),

which are expected to lose statistical relevance as n increases, as stated above.

One last explanation about this observation constitutes the reappearance of the

4-repetition pattern at n = 9 in table 4.10, but nowhere else. Considering that symbol

“4” occupies the sixth place in the list of most abundant individual symbols (table 4.14),

this could be due to Tobler’s first law of Geography [239].

The third observation of the previous list, the 5-repetition pattern (“Shrub”) be-

ing the most frequent pattern at n =[6, ... 40], points to the effectiveness of the log-

likelihood ranking method (subsection 2.4.1.2) to compensate for under-represented sym-
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bols (classes) in the data. Symbol “5”, “Shrub” terrain in the land cover map of the study

area (figure 3.5.b, and table 3.2), is the fourth most abundant class (table 4.14). The

unique patterns at n = 3 are additional indications of this feature of the method.

With the same logic, the method demonstrates its effectiveness to compensate for

over-represented symbols by excluding the 1-repetition pattern (“Upland trees”) from

the lists of results at all sensitivity levels. In other words, the 1-repetition pattern is

trivial or uninteresting for this analysis.

An additional effect of the properties of the log-likelihood ranking matrix is the fre-

quency proximity of patterns such as “333335” and their symmetric “533333”, meaning

that, for the log-likelihood ranking matrix it appears to be the same to present the

pattern forwards or backwards judging by the contents of tables 4.10 to 4.13, and D.1

to D.32.

Observations 4 to 6 of the previous list can be explained by the combined effect

of the relative abundance of each individual symbol, the mathematical expression of

the log-likelihood ranking matrix, and the first law of Geography [239], as n increases

(i.e. as the level of sensitivity of the method decreases). All other position changes of

equivalent patterns can also be explained by this combination of factors. For example,

the downwards “movement” of pattern “777771”, originally at eleventh place at n = 6

to thirteenth place at n = 12.

The high frequency of patterns x51x, x35x, x71x, and their symmetrics can also be

explained by the combined effect of the first law of Geography [239], the relative abun-

dance of symbols “1” (“Upland trees”), “5” (“Shrub”), “3” (“Upland herb”), and “7”

(“Barren”), first to fourth most abundant symbols respectively, and the compensations

introduced by the log-likelihood ranking matrix for under and over-represented symbols

(subsection 2.4.1.2).
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4.2.5 Behavioral interpretation of some frequent patterns.

The prevalence of patterns containing a high quantity of one symbol, followed by a

few occurrences of another symbol, and their symmetrics, seems to indicate behavior

patterns identified in previous studies (e.g [114, 183, 46]). For example, the pattern

“333333333335” (Upland herb - Shrub, table 4.10 at n = 12), appears to reflect the

preference of grizzly bears to spend considerable amounts of time in areas of high canopy

cover, followed by short excursions to areas of lower canopy vegetation [24, 109, 217].

Other frequent patterns, such as “555555555551” (Shrub - Upland trees, table 4.10

at n = 12) indicate what could be foraging behaviors [70, 130, 188]. Additionally, similar

patterns involving relatively extended periods of barren terrain use, followed by the use

of high canopy areas, for example “777777777771” (Barren - Upland trees, table 4.10 at

n = 12), appear to indicate travel and/or foraging behaviors [52, 139].

These three examples agree with previous studies that have identified the preference of

grizzly bears to use the edges of highly vegetated areas for the majority of their activities,

with occasional visits to lower canopy vegetation areas and barren terrain [39, 40, 58,

166, 173, 189, 190].

To make further distinctions between these patterns, the addition and analysis of

time intervals between consecutive GPS positions should offer more detailed information.

Seasonal food availability should help explain some small differences between similar

behaviors at different times of the year, for example, foraging between upland trees and

upland herbs, as compared to foraging between upland herbs and shrub.

4.2.6 Graphic representation of some frequent patterns.

As an example of the results of the clustering step in the method (section 3.8), fig-

ure 4.9 shows three patterns detected in the trajectories for the example bear of section 3.3
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Figure 4.9: Most frequent patterns identified for bear G001 at keyword length = 6,
a) 555555 (Shrub) twice consecutive, b) 113331 (Upland trees - Upland herb - Upland
trees), and c) 333355 (Upland herb - Shrub)

(G001). Please note the different scales at which each sub figure is presented.

Figure 4.9.a shows two consecutive occurrences of pattern “555555” (Shrub), that

was detected with the clustering method defined in [221], the so called “multiple non-

overlapping subsequences in the same diagonal” (see section 3.9). Figure 4.9.b shows

pattern “113331” (Upland trees - Upland herb - Upland trees), which was detected with

DBSCAN [128], and could be interpreted as a foraging behavior (see previous subsection),

and figure 4.9.c (also detected with DBSCAN), shows pattern “333355” (Upland herb

- Shrub), which could be a different expression of foraging, probably due to seasonal

changes (see previous subsection as well).

Technically speaking, these sub figures serve as examples of the effectiveness of the,
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“multiple non-overlapping hits in the same diagonal segment” step in the method de-

veloped by Altschul et al. [7, 9, 10] (subsections 2.4.1.2, and 3.8). The detection of the

tendency of grizzly bears to predominantly utilize the edges of relatively small vegetated

patches, which was previously detected in past studies (e.g. [166, 189]), can be attributed

to the visual exploration of the bidimensional representation of the results of the current

work, and further supports the decision of sections 3.8 and 3.9 to evaluate and present

the results of this work in map form.

4.2.7 Comparison with other methods.

To compare the results and performance of this method with other solutions, fully

integrated or not, there are two immediate approaches. Process the cleaned grizzly bear

dataset from this work with the applications from the previous solutions, or take the

datasets from those previous approaches and process them with the current solution.

As far as this work is aware, there is no source code freely available from previous

methods that accomplish a similar task as the current implementation, or their objectives

are not to detect frequent movement patterns. In practical terms, these dissimilarities

would require to either re-tool the previous implementations in a fully integrated solution

with altered objectives (to detect frequent movement patterns), or changing the current

application to fit the objectives of the previous solutions. In either case, each alternative

represents several months of additional programming work that are not available for the

current project.

Instead, the best performance of the current solution is given in table 4.15 for keywords

of nine symbols in length (i.e. n = 9). These quantities were obtained by dividing

the total number of characters to process in the worst case scenario (table 4.7, column

“Total characters”) by the execution times after DBA improvements (table 4.8, column
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Table 4.15: Best performance of the current solution, n = 9.
Main variation Sub variation Best performance (MOPS)

Original
Asymmetric 24.73
Symmetric 23.71

Distinct
Asymmetric 10.02
Symmetric 10.00

Artificial, repeated
Asymmetric 22.05
Symmetric 22.85

Artificial, distinct
Asymmetric 9.07
Symmetric 8.92

Completed
Asymmetric 77.95
Symmetric 77.57

“Execution time after”). These performances are given in Millions of Operations Per

Second (MOPS).

4.3 Chapter summary.

This chapter presented extensive results and analysis of the local alignment approach

to, from the point of view of the current work, solidify its suitability as an effectively

analysis tool for the studied grizzly bear tracking dataset. Included are its main and sec-

ondary memory space requirements, and its performance profile, including its sensitivity

response.

The results from this method were presented in tabular and graphical form with a

list of their main characteristics, explanations of their main tendencies, and analysis of

some of their most apparent exceptions. The presented results, their analysis, and some

of its major implications were identified as agreeing with some previous ecological and

behavioral studies of grizzly bears.
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Chapter 5

Conclusions

The following conclusions can be directly derived from the implementation of all

methods, unsuitable and suitable alike, as described in the previous chapters and com-

plementary appendixes:

• Avoid dynamic programming to achieve linear-time processing algorithms.

In general terms, dynamic programming methods have a worst case execution time

of O(n2), while other methods have lower execution times. [1, 23, 47, 48, 69, 123, 124,

137, 138, 147, 148, 182, 187, 207, 209, 210, 228, 231, 235]

• Eliminate trivial patterns from the dataset as early as possible∗.

The reduction of the size of the dataset to process, directly translates into shorter

execution times. [5, 6, 7, 8, 9, 10, 28, 37, 77, 122, 131, 142, 143, 167, 168, 201, 205, 219,

221, 245, 248, 250]

• Hierarchical search trees have demonstrated to be good alternatives to organize

collections of patterns for exact matching searches.

Since the mid ’60s, many data structures used to organize large collections of data

have been evaluated. Over the years, hierarchical tree structures have proven to be the

fastest and most versatile. [2, 3, 4, 29, 30, 31, 32, 33, 34, 35, 41, 49, 53, 56, 63, 64, 65,

66, 67, 71, 99, 113, 119, 121, 125, 133, 144, 156, 170, 171, 172, 191, 200, 202, 220]

∗This will mostly depend on the analyst’s level of experience.
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• From the point of view of this work, full RDBMS integration has demonstrated its

viability.

The RDBMS integration has shown that implementing complicated data structures

and manipulation algorithms does not have to be at the cost of diminished performance.

See sections 3.7.1 and 4.2.

An additional advantage of a fully integrated solution is the availability of advanced

DBA techniques to increase performance. These techniques are not available to external

libraries, and severely limited to solutions that employ add-on RDBMS libraries [13, 14,

15, 16, 17, 18, 19, 20, 21, 22]. See subsection 4.2.3.

5.1 Answers to the research questions.

1. What are the environmental factors that have a greater influence on grizzly bear

activities?

Human activity, seasonal food availability, and competition, amongst others.

See sections 2.1, 3.2 and 3.4 for further details.

2. Is there a machine learning method that can do all of the following at the same

time?

Local alignment.

Inclusion and/or exclusion of specific patterns can be conducted in a convenient

manner, without requiring programming modifications to the analysis tools. Since the

method was implemented as an incremental process, including and excluding specific

subsequences of interest is a trivial matter. The researcher only needs to make a pause

after the set of candidate subsequences has been generated, insert or delete the subse-

quences of special interest, and let the process continue from that point with no need for
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additional programming changes.

The scalability and sensitivity of the method has been established with repeated

execution of the same operational code with variations on the segmentation, keyword

length and ranking method. See section 4.2.

The inclusion of multicriteria similarity evaluations is easily accomplished by chang-

ing the definition and construction of the log-likelihood ranking matrices. See subsec-

tion 2.4.1.2.

The RAM and secondary storage space requirements of the method were established

under empirical conditions and are of modest demands as compared to its theoretical

worst case scenario. See subsection 4.2.1.

In a similar manner, the execution times of the matching algorithm were established

under several empirical conditions, including its empirical worst case scenario. Under

such conditions, the execution of the method is expected to follow a linear behavior. See

subsections 4.2.2 and 4.2.3.

See sections 2.4.1.1, 3.7.1 and 4.2 for additional detailed descriptions of the operational

parts and results of the local alignment method implementation.

3. Can a modern RDBMS support this type of analysis tools (i.e. efficient and

scalable) using only internal resources?

Yes. The successful fully integrated implementation of all three machine learning

methods (sections 2.4.1.1, 3.7.1 and 3.7.2, chapter 4, and appendix A), regardless of their

suitability status, helps support the robustness and maturity of RDBMSs as a viable

solution platform. In particular, the suitability of the local alignment method has shown

that a modern (i.e. fully featured) RDBMS provides the necessary programming elements

to fully support a complex integrated solution of this type, without necessarily having to

reduce its performance.
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The adoption of the minimalistic approach simplified some of the usual programming

decisions (e.g. in the case of the local alignment method, not to use recursion), reducing

at the same time the spectrum of applicable programming techniques, without severely

limiting the availability of performance enhancement techniques [13, 14, 15, 16, 17, 18,

19, 20, 21, 22]. See subsections 2.2, 3.7.1 and 4.2 for additional details.

4. Can the method be explained in graphical form to make it more accessible to other

developers and researchers?

Yes. If the reader is not familiar with the use of hierarchical tree structures for exact

matching purposes, subsections 2.4.1 and 3.7.1 should serve as a general introduction

to the task at hand. Otherwise, subsection 3.7.2 on its own, presented an extensive

graphical representation of all the details and programming decisions necessary to arrive

at an efficient implementation of this method.

5. Is there a topological analysis theory capable of explaining all aspects of moving

object patterns based on fundamental movement characteristics (e.g. velocity, direction

of travel)?

No. The proposed frameworks are either solutions to special cases that restrict their

validity to a small portion of similar cases, or theoretical starting points that include

generic cases with very restricted conditions. In both cases, the proposed frameworks are

works in progress that do not offer comprehensive coverage of all possible moving object

cases. See appendix B for extensive additional details on these frameworks.

5.2 Contributions.

The contributions of this work originate mostly from the implementation of the suit-
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able method, the local alignment approach (sections 2.4.1.1, 3.7.1, 3.7.2, and 4.2):

• Automatic detection of rare movement patterns at different sensitivity levels across

temporal resolutions.

Based on the over and under-representation of land cover classes in the set of GPS

positions (section 3.4, table 3.2), and the set of frequent patterns found by the local

alignment analysis tool implemented (subsection 4.2.4, and appendix D), it is the opinion

of this work that the log-likelihood ranking method (subsection 2.4.1.2, equation 2.1)

has demonstrated its effectiveness in highlighting rare movement patterns at different

sensitivity levels (i.e with sets of keywords of different length), without the need for

separate analysis of data acquired at different temporal resolutions.

• Fully integrated implementation of methods inside an RDBMS.

Regardless of their suitability for the grizzly bear dataset, in the opinion of this

work, the success in the implementation of its three methods, helps support the notion

that RDBMSs have achieved a level of robustness and flexibility that will allow them

to efficiently support any fully integrated complex analysis tool (i.e. any complex data

structure and programming method).

For the RKT implementation in particular, as previously discussed, the minimalis-

tic implementation philosophy adopted for the current work reduced the programming

techniques available for this solution, particularly the selection of abstract RAM data

structures [13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

To make the application’s source code adhere to these demands, the empirical portion

of the work determined that it was best not to utilize complex RAM data structures for

the storage or manipulation of the tracking dataset. Instead, relatively simple relational

tables, combined with relatively complicated procedural manipulation techniques, were
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employed to solve the needs of the process, including the full implementation of RKTs.

See sections 3.7.1 and 3.7.2 for additional details.

• Graphical representation of the exact matching process of a keyword set.

The modified graphical representation developed in this work to illustrate the exact

matching processes, and the abstract data structures required to conduct a simultaneous

search of a set of keywords (of any length), against a relatively longer text, enriches the

available didactic tools to explain these advanced concepts.

To overcome some of the conceptual difficulties of understanding the counterintuitive

nature of the Boyer-Moore method [47, 48], that analyzes the text from left-to-right and

the pattern from right-to-left, combined with the multitude of simultaneous demands

of matching an entire set of keyword subsequences from the Aho-Corasick method [1],

subsection 3.7.2 presented a step-by-step graphical representation of all the special cases,

multiple conditions that a combined implementation requires, and some of the viable

solutions to simultaneously satisfy all needs.

• Comprehensive performance analysis of the exact matching process.

The repeated execution of the entire process with different combinations of keyword

length, circadian segmentation, and log-likelihood ranking method, allowed the construc-

tion of detailed tabular summaries of the behavior of the local alignment method (see

section 4.2). The empirical results of these experimentations strongly suggest that the

empirical worst case for RAM and secondary storage space requirements are much lower

than the upper bound of their theoretical equivalents (subsections 4.2.1 and 4.2.2).

The strongly linear behavior of the execution times of the method (figure 4.7), consid-

ering the volume of text segments available (figure 4.3), and the quantity of keywords to

search for at each keyword length (figure 4.4), indicate a predictable response in execution
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as the volume of processed data increases, i.e. a reasonably scalable response.

The analysis of the most frequent patterns at different keyword lengths, illustrates

the level of sensitivity of the overall process. The integrated compensation mechanism,

the formulation of the log-likelihood matrices, demonstrates its efficiency to minimize

the relevance of over-represented classes at all sensitivity levels, as well as its ability to

highlight the uniqueness of under-represented classes at high levels of sensitivity. See

subsection 4.2.4 for additional explanations.

• Modified use of Forwardtrack.

As far as this work is aware, forwardtrack has not been used in this way before, or in

a fully integrated solution, as it was done for the current implementation.

The empirical concept of forwardtrack, based on the knowledge of “the next character

from the current tree node”, helps speed up the process in three different places in the

algorithm. At the construction time of the RKT, it helps minimize the set of equivalent

full failure links for every node in the tree (algorithm 3.2). After a mismatch, it helps

minimize the set of candidate nodes for “branch jumping” (algorithm 3.3), and once an

n-repetition subsequence has been detected in the text, it efficiently registers all other

subsequent overlapping n-repetitions (algorithm 3.4). See subsections 3.7.2.5 and 4.2.2

for additional details.

• Modified use of Backtrack.

To the best knowledge of this work, the concept of backtrack tree traversal has not

been implemented before as part of the tree itself, or in a fully integrated method, as

presented in this document.

The need to preserve the maximum number of matches after a mismatch, com-

bined with the use of hierarchical tree data structures, requires tree traversal (down-
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wards and upwards). Two alternatives are immediately available for this, recursion and

position-aware traversal with the use of a stack. Both methods are available inside an

RDBMS [13, 14, 15, 16, 17, 18, 19, 20, 21, 22], but the use of recursion incorporates

additional unpredictable factors for a concurrent system, such as the amount of mem-

ory needed for successive recursive calls for each user, the switching speed between user

environments (RAM image switching), pagination, buffering, etc.

To supply the backwards traversal functionality, avoiding the additional complications

of using recursion or an independent stack structure, the current work utilized a fully

incorporated backtrack mechanism that combines the information already available in the

tree structure with purpose-specific markers (i.e. additional columns in the corresponding

relational tables). In essence, solving these needs with a relatively complex iterative

approach. See algorithm 3.7 for the particulars.

From the previous supporting results, I believe that the research objectives have been

met.

5.3 Future work.

In the judgment of this work, the included areas of future research in this section are

considered of special interest because, they will either offer important complementary

empirical characteristics of the local alignment method, or have the potential to improve

its performance even further. The major limiting factor that forced this work to leave

these alternatives pending, was their additional development time, estimated to vary

from a few weeks, to more than six months in each case.

Without changes to the existing code, additional sensitivity tests for all values of n
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from 2 to 11 (inclusive), can be conducted to establish an even more detailed sensitivity

response profile for the local alignment method, than the one already included in this

work. Approximately three weeks of work should be required to execute all the necessary

processes for this task.

Generalization to collections of patterns with different number of characters per key-

word is supported by the same processing algorithms, requiring minimum programming

changes to the implementation. One week of modifications, and one additional week of

unit testing are judged to be enough to implement this enhancement. Between four and

five weeks of additional processing should be required to confirm the correctness and

advantages of this generalization for all the scenarios presented in section 4.2.

The 20 minutes temporal coverage concept from subsection 3.6.1.4, reflecting the

time interval frequency distribution of the dataset (subsection 3.3.1), proved to be an

effective method of minimizing the subsequence sizes to analyze, maintaining at the

same time all the topological relationships of the original data. However, other temporal

coverage definitions are possible that still maintain the characteristic of being an integer

sub multiple of all the time intervals with high frequency in figure 3.4, including the 20

minutes interval, e.g. 10 minutes, 5 minutes, 2 minutes. Additional development time in

the range of five to seven months, would be required to implement these alternatives to

determine the relative advantages and disadvantages of each one of them.

Significant additional development time, initially estimated in the range of seven to

nine months, prevented a full exploration of an integrated multicriteria technique that

would combine the log-likelihood ranking method with several other data sources such as

gender, elevation, distance to roads (as a surrogate of the intensity of human activity),

grizzly bear density maps (as a surrogate of competition), etc.

Similarly, additional development time in the order of three to six months, would have

been needed to test all the similarity formulas, single and multicriteria alike, combined
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with full analysis of GPS points at individual temporal resolutions (i.e. 4 hrs, 2 hrs, 1 hr

and 20 minutes, plus any other implemented temporal coverage intervals).

Additional improving concepts, academic and practical, such as the full development

of the Reorganized Reversed Keyword Trees (RRKTs) and Override Comparison Vectors

(OCVs), as briefly described in the following subsections, can be applied to the current

implementation in order to increase its flexibility and/or performance. The RRKT and

OCV concepts were initially explored in this work, but suspended because of the already

mentioned lack of development time. The details of the achieved exploration can be

found in the following subsection (5.3.1).

Implementation of an end-user interface would require from four to seven months, but

would transform the current solution into a user friendly application more attractive to

other research groups. Making it possible for other experts in the field to easily evaluate,

and possibly improve the current code, when applied to other datasets and objectives.

5.3.1 Reorganized reversed keyword trees (RRKTs).

To improve the performance of the original string matching problem, Sunday [235]

preprocessed the text to produce a simple table of individual symbol probabilities that

can be used to generate a scanning order vector for the pattern to search for. The purpose

of this vector is to match the rarest character in the pattern with the corresponding initial

position of the text, in order to find a mismatch as early in the process as possible, and to

slide the pattern accordingly. In the other hand, if a match is found, the process continues

with the second rarest character in the pattern, and so on. With each successive character

match, the overall probability of a successful match increases as well.

This principle can easily be applied to any set of keyword subsequences to generate a

single scanning order vector, provided two conditions. First, whatever the selected eval-

uation criteria, it has to be applied uniformly to all keyword subsequences. Second, the
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resulting scanning order vector will be used to build a new keyword tree, a Reorganized

Reversed Keyword Tree (RRKT), to make the matching of the entire keyword set the

most efficient process possible.

5.3.1.1 RRKTs for the design subsequences.

As presented since figure 3.13, the set of design subsequences (reversed or not) can

be conceptualized as a sorted set of contiguous rows aligned by the position of their

individual symbols (i.e. a two-dimensional matrix). As a consequence, any evaluation

criteria can be applied with two direction components, horizontal and vertical. When the

criteria lacks the vertical component, the evaluation can be said to be purely horizontal

(i.e. by full subsequence). Conversely, when the criteria does not have a horizontal

component, the evaluation operates exclusively within each tree level (i.e. by column).

There are as many evaluation criteria available as specific application objectives.

Purely based on probabilities and the overall speed of the evaluation itself, the following

alternatives were studied:

1. Subsequences by rarest symbol and tree node closer to the root. Figure 5.1.

2. Subsequences by full subsequence probability. Figure 5.2.

3. Tree levels by combined probabilities of symbols contained in each level. Figure 5.3.

4. Tree levels by rarest symbol. Figure 5.4.

5. Tree levels by most common symbol. Figure 5.5.

6. Tree levels by hierarchical individual probabilities from most common to rarest.

Figure 5.6.

Figures 5.1 to 5.6 show each one of the RRKTs resulting by the application of the

criteria described above (respectively).
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Figure 5.1: Reorganized reversed keyword tree with levels sorted by rarest symbol and
closer node to the root.

Figure 5.2: RRKT by full subsequence probability.
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Figure 5.3: RRKT by tree level and combined probability of all symbols.

Figure 5.4: RRKT by tree level and probability of the individual rarest symbols.
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Figure 5.5: RRKT by tree level and the probability of the most common symbol.

Figure 5.6: RRKT by tree level and symbols’ probability (most common to rarest).
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As far as this research is aware, there is no mathematical theory that provides an

absolute best solution for this case. However, the objective remains to make the matching

process as efficient as possible. Therefore, following the concept by Sunday, testing early

for the rarest symbol in a single pattern, appears to be the best alternative.

The information from the comparison vector for each tree can be easily incorporated

in the matching process. Table 5.1 shows the full set of Override Comparison Vectors

(OCVs) for this case, in which, a one (1) value means “match as usual” (i.e. keep

traversing the tree), while a zero (0) means “automatic match” (i.e. skip this tree level

match).

Table 5.1: Override comparison vectors (sorted).
Order Original Reversed
a 000000000 000000000
b 000001000 000100000
c 010001000 000100010
d 010001010 010100010
e 011001010 010100110
f 011001011 110100110
g 011001111 111100110
h 011011111 111110110
i 011111111 111111110
j 111111111 111111111

5.3.1.2 Failure links for RRKTs.

This development continued until a prototype algorithm for the calculation of the full

failure links for the RRKTs was achieved, but the lack of overall time forced these efforts

to be abandoned at this stage. Figure 5.7 shows the first RRKT presented in this section

(figure 5.1) with each node including its corresponding accumulated subsequence, while

figure 5.8 shows the best full failure links found for this case.

The calculation of the full failure links for this type of trees involves the evaluation
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Figure 5.7: Cumulative subsequences for the first variation of the RRKT (figure 5.1).

Figure 5.8: Full failure links for the first variation of the RRKT (figure 5.1).
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of all possible alignments of the partial subsequences with all potential target nodes.

This implies that this calculation can quickly become a combinatorial problem with

exponential geometric growth. This is the case of the achieved prototype calculation

algorithm in the current work, and an additional area of potential improvement.

For such development, this work recommends the use of the forwardtrack principle

(subsection 3.7.2.5) as a first refinement method to reduce the potential target set of each

node.
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[219] S. Šaltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez, “Indexing the

positions of continuously moving objects,” in Proceedings of the 2000 ACM Special

Interest Group on Management of Data (SIGMOD), International Conference on

Management of Data, vol. 29(2). New York, NY, USA: Association for Computing

Machinery (ACM), June 2000, pp. 331–342.

[220] H. Samet, Foundations of Multidimensional and Metric Data Structures, 1st ed.

San Francisco, CA, USA: Morgan Kaufmann (Elsevier), September 2006.
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Appendix A

Initial analysis methods.

As part of the research activities of the current work, several computerized solution

methods were considered (e.g. Voronoi polygon analysis), and the two included in this

appendix, the LBS and the simulated annealing methods, were explored to the point of

implementation, to determine their effectiveness as an analysis tool for the grizzly bear

tracking data in this project (i.e. fully integrated and with reasonable performance and

scalability).

The fully integrated implementation details shown in this appendix highlight some

of the flexibility and robustness of a contemporary RDBMS platform. However, the

individual technical and/or conceptual limitations of these two methods, as detailed in

sections A.1.2 and A.2.2, rendered them as unsuitable for the purposes of this work.

A.1 Location-Based Services (LBS).

In order to provide a definition of LBS, the text by Küpper [150] starts by saying:

“Although Location-Based Services (LBSs) have been an issue in the field of

mobile communications for many years, there exists neither a common defi-

nition nor a common terminology for them. For example, the term location-

based service, location-aware service, location-related service, and location ser-

vice are often interchangeably used. One reason for this dilemma might lie

in the fact that the character and appearance of such services have been de-

termined by different communities, especially the telecommunications sector

and the ubiquitous computing area.”
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Clarifying, the author continues:

“LBSs are always context-aware services... LBSs can be classified into reactive

and proactive LBSs. A reactive LBS is always explicitly activated by the

user... Proactive LBSs, on the other hand, are automatically initialized as

soon as a predefined location event occurs, for example, if the user enters,

approaches, or leaves a certain point of interest or if he approaches, meets, or

leaves another target.”

Providing in essence an operational definition of the term and its specialized vari-

ations, with the use of the concepts of events in time (i.e. instantaneous events), and

proximity to predefined locations (i.e. metric proximity), as expressions of the context of

the events themselves.

In the case of the current work, the concept of events in a specific instant in time was

not analyzed, and the rest of this document considers computational techniques from

the LBS specialty exclusively for their technical ability to analyze large quantities of

trajectories in order to identify similar subtrajectories.

Many studies of human movement patterns in urban environments monitor the ac-

tivities of individual subjects through temporally and geographically tagged service use

logs [164, 168, 177, 178, 179, 243, 251]. In some of those studies, the geographical ex-

tension is restricted to a relatively small regular grid of predefined locations of interest

(e.g. the grid of wireless telephony access points at a shopping mall). This restriction is

the equivalent of a domain transformation from the geographical extension to an abstract

classification. The spatial resolution and total extension of the grid directly determines

the maximum level of detail that can be captured by the monitoring process, and indi-

rectly reduces the overall length of all trajectories. In most cases, the services monitored

in the grid correspond to information sources, both public (e.g. the public bus sched-
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ule serving the venue) and commercial (e.g. the showing’s schedule of a nearby movie

theater). This approach of activity monitoring and its studies are part of the specialty

known as LBS [150]. Figure A.1 shows a simple example of an LBS grid with two dif-

ferent trajectories on it (T1 and T2 ), the horizontal x − y plane represents geographic

position (with the LBS grid defined by the hexagons), while the vertical axis represents

the time dimension.

Drawing an analogy to LBS but with the purpose of detecting movement patterns in

grizzly bear tracking datasets, the grid can be replaced by a digital map with a regular

tessellation (e.g. a digital elevation map). As section 2.1 identified, relevant grizzly bear

data can be used to substitute the human services, and include land cover maps, digital

elevation maps, distance to roads maps, seasonal food availability maps, etc. In other

words, maps of localized features that attract or repel grizzly bears [39, 116, 216]. One

important limitation of this approach is the spatial resolution of the abstract classification

maps, and their associated range of classes, which is very narrow compared to all possible

values for geographical distance, and represents a degradation of spacial resolution.

Continuing towards a more abstract definition of patterns, Tseng et al. (e.g. [242,

243, 168]) have dedicated several works to the study of sub-trajectories of similar charac-

teristics. Their early studies come from the biological sciences, where ordered molecule

sequences in chemistry and genetics are of paramount importance. One of their early

papers [242], describes the validity of data mining methods applied to gene expression

sequences. Their approach considers just the abstract class that each molecule gets as-

signed (i.e., X or O) and the absolute order of the sub-sequences.

Some of their latest LBS work [168] however, employs a complicated multi-criteria

evaluation of both, geographic and abstract information. Their method includes the

initial segmentation of trajectories into individual points in space-time, and the gen-

eration of common portions of multiple points by a maximum support method based
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Figure A.1: Location-based services, including trajectory concepts.

simultaneously on geographical location and service (similar to a voting method). Their

sub-trajectory similarity function incorporates a custom normalization for each pair of

sub-trajectories, based on their total number of locations. The rest of the criteria ele-

ments include reward factors for location and service, and one penalty factor for time

difference between points, as measured against a global time origin for their analysis.

Their algorithm also compensates for the tendency of the compared sub-trajectories to

be mostly different rather than similar by using Rand and Jaccard’s coefficient approaches

([243], pg. 359, [168], pg. 276-277). Additional to their first design, indexing structures

were added to their methods to speed up the process.

A.1.1 Implementation.

Because of the flexibility of its multicriteria integration and its relative simplicity
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(section A.1), a modified implementation of the algorithm proposed by Lu and Tseng [168]

(page 274) was employed in this work. Algorithm A.1 shows the modified version of the

method. The changes to the original were conducted in the form of factor substitutions

or additions, as explained next.

Factor substitutions:

• Gender reward replaced service reward.

• Land cover agreement took the place of service agreement.

• Time of the day shift penalty replaced time shift penalty.

• Land cover frequency reward replaced service frequency reward.

In the original publication, service reward was applied with a set of only 5 services, the

best equivalent factor in the current dataset was gender because it is a general property

of each trajectory, further reducing the set to only two classes, female and male.

For both algorithms, the agreement decision determines a potentially large number of

additional calculations. The set of 11 land cover classes was determined to better reflect

the character of the original decision made with services. The same reason justified

the substitution of the service frequency reward for the land cover frequency reward,

calculated the same way in both versions.

In both algorithms the temporal component of the data is used in the same way, their

only difference is their respective temporal origin points. For the original version, an

absolute origin was defined for the entire database, while the current dataset defined the

start of every 24 hour period as exactly equivalent.

The following penalty factors were added to the similarity calculation in an effort

to increase the comprehensiveness of the method and to better reflect the geographical
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Algorithm A.1 Modified LBS-Alignment similarity measure. Based on [168].
Input: Two mobile transaction sequences s and s′

Output: The similarity between s and s′

1: p← 0.5/(s.Length+ s′.Length) ⊲ Penalty.
2: M0,0 ← 0.5
3: for i← 1 to s.Length do

4: Mi,0 ←Mi−1,0 − p
5: end for

6: for j ← 1 to s′.Length do

7: M0,j ←M0,j−1 − p
8: end for

9: Max Distance← Calc Max Distance(s, s′)
10: Max Elevation Diff ← Calc Max Elevation Diff(s, s′)
11: if s.Gender = s′.Gender then

12: Gender Reward← p
13: else

14: Gender Reward← p ∗ (−1)
15: end if

16: for i← 1 to s.Length do

17: for j ← 1 to s′.Length do

18: if si.LandCover = s′j .LandCover then

19: Location Penalty ← p ∗ (Calc Distance(si, s
′

j)/Max Distance)
20: T ime Penalty ← p ∗ (| s′j .T ime− si.T ime | /T ime Length)
21: Elevation Penalty ← p ∗ (| s′j .Elevation− si.Elevation | /Max Elevation Diff)
22: Distance To Roads Penalty ← Calc Distance Penalty(p, si, s

′

j)
23: Total Penalty ← Location Penalty − T ime Penalty − Elevation Penalty−
24: Distance To Roads Penalty
25:
26: Individual Counts← Ind Counts[si.LandCover] ∗ Ind Counts[s′j .LandCover]
27: LandCover Freq Reward← p∗(Pair Counts[si.LandCover, s′j .LandCover]/Individual Counts)
28: Total Reward← LandCover Freq Reward+Gender Reward
29:
30: Mi,j ←Max((Mi−1,j − p), (Mi,j−1 − p), (Mi−1,j−1 − Total Penalty + Total Reward))
31: else

32: Mi,j ←Max((Mi−1,j − p), (Mi,j−1 − p))
33: end if

34: end for

35: end for

36: return Ms.Length,s′.Length

character of the current dataset. The relevance of each of them has been examined in

more detail in section 2.1.

• Location.

• Elevation.

• Distance to roads.
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A.1.2 Results.

Initial execution with the calibration dataset (section 3.5) finished in 92 seconds,

then it was decided to apply the method to the entire dataset. See subsection A.1.1 for

implementation details.

Total execution time for one repetition of the method was 173.2 hours (7 days, 5.2

hours).

This can be attributed to the complexity of the multicriteria formula chosen to analyze

this case, and the dynamic nature of the programming solution. See algorithm A.1 for

the source of the following calculation.

For a pair of average length trajectories, the execution time for this method is directly

proportional to the cost of calculating the maximum distance between trajectories plus

the cost of calculating the maximum elevation difference between the pairs of trajecto-

ries plus (the square of the average trajectory length times the number of floating point

arithmetic operations needed to evaluate the multicriteria formula). With an average

trajectory length of 1778 points this would be, c1 = (1778)2 + (1778)2 + [(1778)2 ∗ 18)] =

(1778)2 ∗ 20 = 63, 225, 680 floating point operations. For the set of 208 average length

trajectories, the entire number of floating point operations to process is given by equa-

tion A.1 [78].

c = c1

207
∑

i=1

i = (63, 225, 680) ∗∗∗ (21, 528) = 1, 361, 122, 439, 040 (A.1)

The second term in equation A.1 represents the comparison of every trajectory against

every other trajectory in the set. See algorithm A.1 for additional details.

The dynamic nature of the algorithm and the complexity of its multicriteria formula,

were judged significant enough limitations to determine this method as unsuitable for
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this dataset.

A.2 Simulated annealing.

The original method of simulated annealing comes from the numeric optimization

specialty in mathematics. Simulated annealing optimization was originally designed

to search for approximate solutions to Non-deterministic Polynomial Complete (NP-

Complete) problems. In essence, the method comprises a searching algorithm that follows

the slope of a function until an optimal point (minimum or maximum) is reached in a set

amount of iterations (and time in some cases). To avoid local minima (or maxima) the

algorithm uses a random step to switch the function’s searched area, and accept or reject

the new solution based on a decreasing threshold that represents an abstract temperature

range. The objective of simulated annealing is not to arrive at an exact solution, but

rather to a reasonable approximation according to a given maximum number of iterations

and an acceptable error margin.

In the work of Rutenbar [218] the method was presented in full detail, analyzed

for its non-deterministic and probabilistic implications, and exemplified with a pair of

implementations for integrated circuit components’ placement (i.e. internal microchip

“floorplan”). The paper reminded the reader that the applicability of simulated annealing

is not only limited by its mathematical aspects, but also by the developer’s choices in the

conceptual representation of its operational parts. In practice, the number of iterations

and the appropriate abstract temperature range have to be determined in a case-by-

case basis, converting them in additional potential limitations. Comparing simulated

annealing with heuristic-based methods, the work stated that, a badly conceptualized

or implemented simulated annealing can be much worst (i.e. slower, and with larger

error margins) than a correctly carried out heuristic method. However, it remarked its
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particular effectiveness in helping to solve topological domain questions when the essence

of each problem is cleverly reflected in its structures (valid solutions, permutation sets,

cost function and cooling schedule in particular).

In the work by Atkinson [26] additional details of simulated annealing were presented

from a purely statistical point of view. Practical implications of limiting the range of

random configurations, specifically in segmenting the iteration pool, were followed to

two main conclusions. First, when the iterations are evenly segmented over the function

domain, it is reasonable to expect one or more segments to converge in less than the

allowed maximum number of iterations. Second, to increase the quality of the solution

for those segments that converge “early”, their search can be re-started from a random

solution inside its segment’s domain. The paper concluded by reminding the reader

that simulated annealing is not universally applicable, that it will not find an optimal

solution when the function to evaluate has extreme minima, and that it does not offer any

warranty of convergence (not even the segmented version presented in the document).

To preserve the theoretical analysis of the simultaneous multi objective version of

simulated annealing, in contrast to multiple applications of simulated annealing for indi-

vidual independent variables (which weaken the validity of the analysis), Smith et al. [227]

defined a mapping of the competing independent variables to a new common domain in

which all the combinations of the dependent variables (i.e. the objective functions) were

ranked with the use of mathematical dominance. Dominance in this context defines

the abstract concept of quality when comparing two solution combinations, and there-

fore reflects the trade-off relationships of the multiple competing independent variables.

Paraphrasing the original authors, “comparing two solution combinations (f and g), it

is defined that f dominates g , if f is no worse than g for all objective functions and it is

wholly better for at least one objective function”. In essence, a domain transformation

of all independent variables from the parameter space into a single objective space.
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Since simulated annealing requires a perturbation for iteration (random jump to an-

other possible solution), and since the Pareto front of more than one independent vari-

able defines complicated interactions (e.g. curves, surfaces, etc), the authors included the

construction of the attainment surface, evaluation of the energy difference between con-

secutive solutions, and the verification of the non-dominance of the new random solution

by the existing collection of already accepted possible solutions. To promote even cover-

age of as many parts of the front as possible, the independent variables were modified at

random one at a time (from the previous accepted solution), and running statistics kept

about the magnitude of all perturbations from which diminishing rescaling factors for the

entire set of variables were calculated after each iteration (after a minimum number of

iterations to make the statistics more relevant). The application of the rescaling factors

to the generation of the next perturbation promoted the convergence of the annealer to

solutions closer to the true front than a simple random resampling. The temperature

schedule was defined by an initial burn period of algorithm execution, and the initial

temperature set to the value where 50% of the proposed solutions were accepted.

A.2.1 Implementation.

Because its relative simplicity to integrate multicriteria decisions, this work conducted

a direct implementation of the Rutenbar [218] description of the method with the seg-

mentation improvements suggested by Atkinson [26]. Algorithm A.2 shows the imple-

mentation conducted in this work. See subsection A.2 for more details.

Please note that all the terms in algorithm A.2 written in bold type represent multi

dimensional structures that were implemented as relational tables in the RDBMS and

not as RAM data structures.

The cost function in the algorithm was implemented as a simple arithmetic addition of

weighted factors, in which the individual weight multipliers reflected the ratio of relative
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Algorithm A.2 Simulated annealing. Based on [218] and [26].
Input: Solution SetSolution SetSolution Set,Perturbation SetPerturbation SetPerturbation SetMin TMin TMin T ,Max TMax TMax T ,Max Segments,Burn Iterations,Max Iterations

Output: Solution SetSolution SetSolution Set,Min TMin TMin T ,Max TMax TMax T
1: Current Segment← 1
2: Max Segment Iterations←Max Iterations/Max Segments

3: while (Current Segment ≤Max Segments) do

4: Current Solution← select random solution(Solution SetSolution SetSolution Set)

5: Current T ← calc solution T (Current Solution)
6: Current Iteration← 1
7: while (Current Iteration ≤ Burn Iterations) do ⊲ Burn period

8: Current Perturbation← select random perturbation(Perturbation SetPerturbation SetPerturbation Set)
9: New Solution← calc cost function(Current Solution, Current Perturbation)

10: New T ← calc solution T (New Solution)

11: if (| New T − Current T |≤Max TMax TMax T [Current Segment]) then

12: Solution SetSolution SetSolution Set← Solution SetSolution SetSolution Set+New Solution

13: Current Solution← New Solution

14: Current T ← New T
15: end if

16:
17: Current Iteration← Current Iteration+ 1
18: end while

19: Max TMax TMax T [Current Segment]← T at which 50% of solutions were accepted.
20: Cooling ScheduleCooling ScheduleCooling Schedule[Current Segment]← calc cooling schedule(Current Segment,Min TMin TMin T ,Max TMax TMax T )
21: Cooling Schedule TransitionCooling Schedule TransitionCooling Schedule Transition[Current Segment]← calc cooling transitions(Max Segment Iterations)

22:
23: Current Solution← select random solution(Solution SetSolution SetSolution Set) ⊲ Search period

24: Current T ← calc solution T (Current Solution)
25: Current Cooling Index← 1
26: Current Iteration← 1

27: while (Current Iteration ≤Max Segment Iterations) do

28: Current Perturbation← select random perturbation(Perturbation SetPerturbation SetPerturbation Set)
29: New Solution← calc cost function(Current Solution, Current Perturbation)

30: New T ← calc solution T (New Solution)
31: if (| New T − Current T |≤ Cooling ScheduleCooling ScheduleCooling Schedule[Current Segment, Current Cooling Index]) then

32: Solution SetSolution SetSolution Set← Solution SetSolution SetSolution Set+New Solution

33: Current Solution← New Solution
34: Current T ← New T

35: end if

36:
37: Current Iteration← Current Iteration+ 1

38: if (Current Iteration = Cooling Schedule TransitionCooling Schedule TransitionCooling Schedule Transition[Current Segment, Current Cooling Index]) then

39: Current Cooling Index← Current Cooling Index+ 1
40: end if

41: end while

42:
43: Current Segment← Current Segment+ 1

44: end while

abundance of the independent variable value (e.g. the gender) against the total size of

the calibration dataset for all values of that independent variable.

The initial Solution SetSolution SetSolution Set in the implementation was calculated by taking 101 unique

random samples (of each subsequence length, as a starting point suggested in http:

//arep.med.harvard.edu/biclustering/yeast.matrix) and their corresponding solu-

tions were ranked according to their cost function values. The minimum and maximum
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temperature vectors, per segment, were calculated by sorting the cost function values

of the initial random solutions and selecting their minimum and maximum arithmetic

values.

In preparation to calculate the Perturbation SetPerturbation SetPerturbation Set, the domain of each independent

variable was determined from the calibration dataset, i.e. their valid values were deter-

mined. To calculate the Perturbation SetPerturbation SetPerturbation Set, one valid solution was chosen at random, one

of the independent variables was selected in circular fashion and a random perturbation

to that value was generated from its domain of valid values. To avoid duplication, the

new solution was searched against the Solution SetSolution SetSolution Set and only new solutions were fur-

ther considered. If accepted, only the perturbation was added to the Perturbation SetPerturbation SetPerturbation Set

because this part of the algorithm does not require a quality check for the new solution.

The Cooling ScheduleCooling ScheduleCooling Schedule in the algorithm was calculated by successive binary sub-

division of the temperature range of each segment, into 10 subdivisions (rounded to

the nearest integer and hard-coded in function calc cooling schedule). For example, if

the maximum and minimum temperatures of a given segment were 3,000 and 10 re-

spectively, the calc cooling schedule would return a vector containing the values {3000,

1505, 758, 384, 197, 103, 57, 33, 22, 16, 10}. Similarly, the number of iterations ap-

plied to each subsegment was evenly divided into 10 subdivisions, as hard-coded in

function calc cooling transitions (rounded to the nearest integer as well). Please note

that the contents of vector Cooling Schedule TransitionCooling Schedule TransitionCooling Schedule Transition is not the amount of itera-

tions to use for every subsegment, it is rather the exact number at which the itera-

tion counter should change the associated temperature value. To finish this example, if

Max Segment Iterations was calculated to be 1,000, the calc cooling transitions would

return vector {101, 201, 301, 401, 501, 601, 701, 801, 901}.

When the calibration dataset was initially used to test the method with the annual and

monthly segmentations (subsection 3.6.1.1 and 3.6.1.2), the algorithm did not converge.
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To test the correctness of the implementation, two standard datasets were used ∗

†. Minor problems with the logical operations for the cooling schedule transitions were

corrected, until the results of the execution were as expected for these standard datasets.

The corrected algorithm was tested once again with the calibration dataset without any

improvement in convergence.

A.2.2 Results.

As stated in section A.2.1, the fully implemented method was validated with two

independent datasets. But when it was applied to all five versions of the weekly and

circadian segmentations of the calibration dataset, combined with the two log-likelihood

ranking measures, convergence was not obtained with any combination of cooling schedule

(ten different alternatives tested) and iteration budget (1,000, 2,000, 5,000 and 10,000),

revealing the highly cyclic nature of this dataset. In operational terms, the quality of

each successive solution given by the cost function never improved as expected by the

structure of the cooling schedule, no matter how many iterations were allowed for this

dataset.

This is an important limitation for the application of the simulated annealing method

for the tracking dataset.

Alternatively, this lack of convergence could be due to a major conceptual mistake.

Most probably in the calculation of the valid solutions, the permutation sets, and/or the

structure and complexity of the cost function. To detect and correct any problems of

this nature, the researcher needs a considerable amount of additional experience in the

application of this tool.

As a consequence, this method was also deemed unsuitable.

∗http://arep.med.harvard.edu/biclustering/yeast.matrix and
†http://genome-www.stanford.edu/scleroderma/data.shtml
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Appendix B

Generalizing moving objects and patterns.

Beyond specific solutions to special cases, some scientists have started to ask questions

about the fundamental nature of moving objects and the associated datasets used to

capture those movements. Their main objective is to create a standard framework to

formally define those fundamental aspects of moving objects that will serve to better

classify and study them.

At this time, there is no definitive consensus on what are the best metrics for the

study of moving objects or Behavior Monitoring and Interpretation (BMI). As described

in section 2.3, this difficulty is due in part to the variety of specific aspects that each study

focuses on. However, the existence of a solid framework for the study of moving objects

would allow scientists to quickly classify their special cases and then identify the most

appropriate analysis techniques. Additionally, the fundamental elements of movement

can be used to program specific behaviors in specialized applications (e.g. smart home

environments, mobile robots, smart mobile agents in geosimulations) making a natural

language interface available for the end users.

Directly translating the time saved by the use of the framework into a monetary

benefit is important, but the additional benefit would be to free researchers from minor

aspects of their studies, to let them concentrate on more challenging ones. The motivation

to find a standard framework to describe moving objects go beyond the purely academic

domain. Once in place, explaining the complex behaviors of moving objects to the general

public will be easier, and in time, the associated technological advances could be adopted

in a similar way as the Geographic Information System (GIS)-derived technologies have

been assimilated in the past decade.
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The objective of this appendix is to include some recent research efforts towards the

creation of the framework, to use it in this work and expand its definition if possible.

Current scientific studies towards the creation of the framework can be roughly divided

according to their focus, purely topological studies are included in section B.1, studies

that integrate topological and behavioral concepts are presented in section B.2, studies

concentrating on trajectories and patterns for groups of moving objects are discussed in

section B.3, and other approaches are briefly described in section B.4.

B.1 Topological perspective.

An early publication by Egenhofer [84] describes, in mathematical detail, the possible

relationships amongst geometric and geographic entities. The document makes an explicit

definition of the two-dimensional space where the entities exist, keeping it generalized

at the same time to accept any higher dimensionality. Four types of relationships are

identified, topological, spatial order, metric, and fuzzy. The topological relationships are

defined by the characteristics of their parts (i.e. continuity, closure, interior and bound-

ary), and their invariability under topological transformations (i.e. translation, rotation

and scaling). The spatial order relationships are defined in terms of an ordering of the

entire representation space, making them directly dependent on this order (e.g. behind

and in front of ). The metric relationships are defined as geometric consequences of the

use of specific distances and operational values, (e.g. all towns 200 km or less from down-

town Calgary). Fuzzy relationships are defined as consequences of movement of one or

more objects (e.g. through and into), or as loose geometrical consequences that charac-

terize a qualitative condition given by the user of the system (e.g. all municipalities near

Kananaskis Country).

Concentrating on the topological relationships amongst intervals of values in one-
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dimensional space∗ and simple regions† in two-dimensional space, the paper defines a

set of eight relationships according to the intersection of their boundaries and interiors

(disjoint, meet, overlap, inside, contains, covers, coveredBy and equal). A generalization

of the initial concepts was presented to extend their application to the three-dimensional

space. This approach was also implemented using a relational database engine as proof

of the viability of the analysis [89].

Later publications by Egenhofer et al. analyzed additional details of the formal math-

ematical expressions of topological relationships, topological interactions of objects of dif-

ferent dimensionality (e.g. a line interacting with a region), and practical considerations

for the implementation of an expanded query language that would include topological

operations (e.g. [85, 88, 90, 95]). Relevant to this period, publication [94] expanded the

analysis of the topological relationships to include the exteriors of the elements, and pro-

posed the 9-intersection matrix (equation B.1) as a way of summarizing the topological

interactions between any pair of simple regions.

R(A,B) =













A◦ ∩B◦ A◦ ∩ ∂B A◦ ∩ B−

∂A ∩B◦ ∂A ∩ ∂B ∂A ∩B−

A− ∩ B◦ A− ∩ ∂B A− ∩ B−













(B.1)

The 9-intersection matrix for a pair of simple regions, A and B, defines the topo-

logical intersections of their respective interior (◦), boundary (∂), and exterior or com-

plement (−). Each one of the eight relationships (disjoint, meet, overlap, inside, con-

tains, covers, coveredBy and equal) produces a different pattern in the corresponding

9-intersection matrix.

Direct comparison between the 9-intersection matrix and its predecessor, the 4-

∗Simple lines: Lines with only one starting point and one ending point (no branches), and that do
not self-intersect.

†Fully connected regions without holes, with a continuous boundary, and that do not self-intersect.
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intersection matrix [84, 90, 95], was studied in publication [98]. The main difference

between both representations being that, the 9-intersection matrix includes specific in-

tersections of the exterior of the elements, while the predecessor does not. Therefore,

the 4-intersection matrix has important limitations when analyzing topological relation-

ships in two-dimensional space, however, these limitations do not exist when analyzing

elements of co-dimension 0 (i.e. lines with lines, and regions with regions). It is not until

both matrices are used to analyze topological relationships of elements of co-dimension

1 (i.e. lines with regions), that the limitations of the 4-intersection matrix are truly

obvious. As a consequence, the 9-intersection matrix encapsulates more detail about

topological relations. However, when implementing spatial queries for GIS applications

not all the cells in the 9-intersection matrix have to be calculated every time, before the

overall relationship between two objects can be characterized, and an answer generated

for the user.

Subsequent work contributed additional theorems and proofs to the formal definition

of the relationships, some of their properties (i.e. symmetry, composition, uniqueness,

transitivity, completeness, non-orthogonality), characteristics and definitions of the topo-

logical relationships of complex regions (i.e. regions with holes or regions composed of

disconnected areas), metric constraints, implementation guidelines, computational im-

plementation improvements, analysis of the equivalent relations in spherical space, etc.

(e.g. [54, 55, 59, 60, 61, 86, 91, 92, 93, 96, 97, 105, 106, 135, 136, 149, 186, 202, 214, 215,

241]).

To close the gap between purely conceptual analysis and practical applications, some

projects have also studied the topological relationships between trajectories (directed

lines) and regions of different types in two-dimensional space. The publication by Kurata

and Egenhofer [153], proposed the 9+-intersection matrix (equation B.2), an enhanced

version of the original, to represent relationships between simple regions and the starting
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(s) and ending (e) points of LD.

M+(LD, R) =





















L◦D ∩R◦ L◦D ∩ ∂R L◦D ∩R−






∂sLD ∩R◦

∂eLD ∩R◦













∂sLD ∩ ∂R

∂eLD ∩ ∂R













∂sLD ∩R−

∂eLD ∩R−







L−D ∩R◦ L−D ∩ ∂R L−D ∩R−





















(B.2)

Additional studies with this approach expanded the model with complementary theo-

retical treatments, metric constraints, line-line interactions (directed lines), neighborhood

considerations, schematic representations, ontological characteristics, etc. (e.g. [42, 62,

87, 151, 152, 154, 208, 232]).

Also from a topological theoretical point of view, but with the objective to generate

qualitative language descriptions for the control of moving agents (e.g. mobile robots,

multi-agent simulations), the paper by Dylla [83] presented a general description of the

concepts of QSR and how to apply them for control of agents.

The paper started by explaining the different challenges involved in a qualitative

spatial representation of moving entities, namely, formal qualitative quantifications of

orientation, location, distance, motion and change in those quantifiers. i.e. how to for-

mally capture “everyday commonsense knowledge about space with a limited amount of

symbols ... without numerical values”. Next, qualitative spatial reasoning was consid-

ered from a mathematical point of view to define formal inference mechanisms known as

qualitative spatial calculi. Options of which include analysis of operations on topological

relations, constraint-based, and neighborhood-based reasoning and their respective dis-

tinctive requirements (i.e. operands and operations, consistency, and action description).

Considering calculi to represent relative orientation of moving objects, the work an-

alyzed the advantages and limitations of the flip-flop, single/double cross and dipole
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calculi, as well as the strengths and shortcomings of the Dipole Relation Algebra (DRA)

and two versions of the oriented point relation algebra (i.e. OPRAm and OPRA∗m) [83].

In the last section of the study, the author considered a hybrid implementation of the

presented mechanisms for the control of moving agents. Complex cases for the combi-

nation labeled “action-augmented conceptual neighborhood graph (ACNg) for OPRA∗m”

were explored for a single rotating object, simultaneously rotating objects and circular

motion description and analysis. To close the chapter, the developed concepts were used

to implement a moving agent control framework for maritime navigation (composed of

the qualitative scene description, the qualitative rule representation and the symbolic

reasoning modules), employing a stepwise approach (i.e. an iterative, approximate and

refine development), and a back propagation loop between the environment, the qualita-

tive framework, and the action primitives.

The product of the study, the Rule Transition System (RTS), was identified in the

general conclusion of the document as an specialized framework version applicable to

vessel navigation (i.e. an specialized implementation of the framework). The general-

ization of this framework made intrinsically possible by the individual applicability and

presentation of its separate parts.

B.2 Combining topology and behavior.

Integration of topological concepts and behavioral interpretation can be found in [155].

The analysis started with the identification of the 19 topological relationships between

simple lines (non-directed) and simple regions in two-dimensional space using the 9-

intersection matrix (equation B.1). The conceptual neighborhood graph of these rela-

tionships was presented as a two-dimensional organizational device to understand the

possible transitions from one relationship to another, i.e. how a single change in one
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of the 9-intersection matrix’ cells will transform that pattern into another connected

neighboring pattern.

Using the 9+-intersection matrix (equation B.2) for trajectory analysis, 26 unique

topological relations were identified between simple regions and directed lines in two-

dimensional space. In contrast with the case for non-directed lines, the conceptual

neighborhood graph for these relations can be represented in different ways. The au-

thors present three alternatives, as a three-dimensional structure, as two bi-dimensional

graphs that share 12 peripheral patterns, or as the authors prefer, as an iconic structure

with partitioned nodes to represent the upper and lower halves of the three-dimensional

equivalent. Combining the neighborhood graph concept with the classification schema

proposed by Gao et al. [111], the researchers developed the iconic representations of

groups of topological relations that satisfy qualitative conditions (e.g. start from the

inside, start from the border, start from the outside).

Using the IBE-sequence notation from [154], the authors codified the 26 topological re-

lations as an implicit three part regular grammar (S, T, N)∗ [132, 134, 140, 141, 175, 226],

consisting of the intersection of the start point of the directed line with the region (S),

a sequence of transitions of the intersection of the interior of the directed line between

interior, boundary and exterior of the region (T), and the intersection of the end point

of the directed line with the region (N). Defined here as the Start-Transition-eNd (STN)

notation. Table B.1 shows the terminal symbols of the equivalent regular grammar, ta-

ble B.2 contains the generic not-normalized production rules, and table B.3 shows the

valid combinations of the production rules that represent the topological interactions

between the directed line and the region.

After the identification of the unique topological relations, twelve of them were found

to be direction-invariant, while the remaining fourteen were described as direction-variant

∗Modified from the original author’s W, X, Y and Z notation for the more concise presentation of
the production rules included here.
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Table B.1: STN terminal symbols.
Symbol Interpretation
I Intersection of the directed line with the interior of the region
B Intersection of the directed line with the boundary of the region
E Intersection of the directed line with the exterior of the region

Table B.2: STN production rules.
S T N
S1 → I T1 → I N1 → I
S2 → B T2 → B N2 → B
S3 → E T3 → E N3 → E

T4 → T1 | ∅
T5 → T2 | ∅
T6 → T3 | ∅
T7 → T1 T2 | T1 T2 T7

T8 → T2 T1 | T2 T1 T8

T9 → T3 T2 | T3 T2 T9

T10 → T2 T3 | T2 T3 T10

T11 → T1 T2 T3 | T3 T2 T1

T12 → T7 | T9

T13 → T8 | T10

T14 → T12 | T12 T14 | ∅
T15 → T13 | T13 T15 | ∅
T16 → T5 T7 | T8 T5

T17 → T5 T9 | T10 T5

relations.

Moving objects are usually observed for a relatively long period of time, and their

resulting trajectories describe complicated motions. To efficiently detect the actions of the

moving objects in relation to regions, i.e. to detect the STN sequences and the equivalent

of the iconic groups of topological relations, the problem can be decomposed into the

analysis of relatively small sub-trajectories and individual regions. The next section of the

original study briefly considered five segmentation strategies; equal-length, equal-interval,

boundary-based, primitive-based and temporally-adjusted primitive-based. The fourth

and fifth segmentation strategies are the preferred method for computational purposes,

since their definitions allow the assignment of priorities for detection, and in consequence,
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Table B.3: STN representation of topological interactions between a directed line and a
simple region, based on [155].

Direction-Invariant relations Direction-Variant relations
S T N S T N

a S1 T1 N1 m1 S1 T1 N2

b S1 T7 T1 N1 m2 S2 T1 N1

c S1 T1 T2 T14 T3 T15 T2 T1 N1 n1 S1 T7 T4 N2

d S3 T3 T2 T14 T1 T15 T2 T3 N3 n2 S2 T4 T8 N1

e S3 T9 T3 N3 o1 S1 T1 T2 T14 T3 T15 T5 N2

f S3 T3 N3 o2 S2 T5 T14 T3 T15 T2 T1 N1

g S2 T1 N2 p1 S1 T1 T2 T14 T3 N3

h S2 T16 N2 p2 S3 T3 T15 T2 T1 N1

i S2 T5 T14 T11 T15 T5 N2 q1 S2 T5 T14 T1 T15 T2 T3 N3

j S2 T17 N2 q2 S3 T3 T2 T14 T1 T15 T5 N2

k S2 T3 N2 r1 S2 T6 T10 N3

l S2 T2 N2 r2 S3 T9 T6 N2

s1 S2 T3 N3

s2 S3 T3 N2

for implementation.

An implicit restriction in the grammar presented above (included in the production

rules), does not allow the contiguous repetition of the same terminal symbol in the

T rules. If repetition was allowed, or generated by any of the forms of segmentation

described in the preceding paragraph, there would be no change in the interaction between

the directed line and the region. Therefore, that repetition would not contribute any

new topological information to the analysis. If this kind of repetition was present in the

dataset, it would have to be eliminated from the segmentation itself or in one of the

subsequent preprocessing steps.

To expand the application of the 9+-intersection matrix to three-dimensional space,

the authors considered the 45 topological relations between a two-dimensional simple

region and a three-dimensional directed line (first presented in [151]). Of this group of

relations, 26 are equivalent to those in the purely two-dimensional case, and only 19

relations are new in the analysis. As the authors pointed out, the largest limitation of
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their topological analysis can be seen when the directed line does not interact with the

region at all, however, they also suggested complementary analysis strategies [224, 225]

that can account for this situation.

In their conclusion, the authors considered the additional tasks to fully analyze the

interactions between a three-dimensional directed line and a two-dimensional region.

Some of those tasks include the development of a new iconic representation of neighboring

topological relations, the identification of a set of primitive motion patterns to detect

motion intentions, and the definition of the new topological relations in the IBE-sequence

notation.

B.3 Trajectory and pattern perspective.

In the study by Laube and Imfeld [159], relative motion of a group of moving ob-

jects was analyzed in two dimensional space. To find common essential information,

the trajectories for individual moving objects were transformed into a conceptual space

that represents motion azimuth, speed, and change of speed. To simplify the analysis,

an absolute time origin was implied by characterizing the positions as being observed

synchronously. The RElative MOtion (REMO) analysis matrix directly detects patterns

over time, patterns across objects and combined patterns (patterns over time and across

objects). But additional information is needed to differentiate between patterns amongst

objects in close proximity (related) and patterns detected between objects that are sep-

arated by a long distance (not related).

Further refinements in the definitions of the techniques and patterns can be found in

Laube et al. [161]. Different measurements of proximity amongst moving objects were

considered, and the computational cost of the algorithms to solve the flock, leadership,

convergence and encounter patterns was given.
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Gudmundsson et al. [120] studied the same four movement patterns from [161], still

with the synchronous time constraint, and proposed algorithms that find their approx-

imate solutions (faster than their respective exact solutions). Table 1 in the original

publication ([120], pg. 251) shows the computational costs for the four patterns in both

studies ([161] and [120]). The following definitions of the patterns were taken from the

original text ([120], pg. 251).

“Flock Parameters: m > 1 and r > 0. At least m entities are within a circular region

of radius r and they move in the same direction.

Leadership Parameters: m > 1, r > 0, and τ > 0. At least m entities are within

a circular region of radius r, they move in the same direction, and at least one of the

entities was already heading in this direction for at least τ time steps.

Convergence Parameters: m > 1 and r > 0. At least m entities will pass through

the same circular region of radius r (assuming they keep their direction).

Encounter Parameters: m > 1 and r > 0. At least m entities will be simultane-

ously inside the same circular region of radius r (assuming they keep their speed and

direction).”

Figure B.1 shows these patterns in a three dimensional representation with the vertical

axis displaying the time domain.

In the chapter by Laube et al. [160] on analysis of point motion, the REMO transfor-

mation (including the necessary geographic constraints and the synchronous time con-

straint) was proposed as one of the data mining methods for knowledge discovery tech-

niques. The authors emphasized the need for experts in the field of the subjects being

studied through their movement datasets (e.g. experts on grizzly bear behavior). These

experts should define the best way of quantifying the relevance of the patterns in the

data mining process and interpret their meaning. The study also reminded the reader

that scale issues have to be considered carefully to avoid the modifiable areal unit prob-
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Figure B.1: Generic movement patterns of a group of moving points. Combining the
concepts by [81], [120], [159] and [161]

lem, and its newly minted equivalent in the time domain, the modifiable temporal unit

problem [160].

As a departure from the REMO framework, but still in two-dimensional space, An-

dersson et al. [11] re-examined the basic definition of the leadership pattern to make

it more flexible for application in studies of wildlife movement. The paper defined the

pattern in terms of the minimum number of moving objects that have to take part in it

(m), the radius of the influence region of each moving object (r), an apex angle for each

moving object (α), and the absolute angle between the heading vectors of every pair of

moving objects (β). Figure B.2 shows these measurements between two moving objects,

except for m and β that are abstract user-defined parameters.

In the figure, ej is in front of ei, and both are heading towards dj and di, respectively.

If ‖di − dj‖ ≤ β then ei follows ej.
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Figure B.2: Leadership pattern as a function of the geometric relationships between two
moving objects. Adapted from [11] where ej is in front of ei. If ‖di − dj‖ ≤ β then ei
follows ej.

Since the values form, r, α and β depend on the species being studied, the authors only

proposed generic algorithms to solve the pattern. The study divided the identification of

the leadership pattern into three related special cases:

• All time intervals where a single moving object is the leader of at least m other

entities for at least k time units.

• The longest time period (kmax) where the same moving object is the leader of at

least m other entities.

• The largest number of entities (mmax) where the same moving object is their leader

for at least k time units.

Each special case has four different variations according to the combinations of their
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discrete and continuous version and the consistency∗ or variation† of the group of follow-

ers. Analysis included the generic solution for all cases and provided their computational

complexity cost.

The study by Andrienko and Andrienko [12] presented an integration effort towards

the definition of a unified framework for the analysis of moving objects. In this study their

emphasis was the analysis of large collections of movement data and the creation of visual

tools to assist in the research effort. First, they identified the primitive characteristics of

movement data in their environment as:

1. Properties of space (e.g. altitude, slope, obstacles).

2. Properties of time (e.g. cyclic, intensity, working day vs. weekend).

3. Properties and activities of the moving entities (e.g. age, gender, means of trans-

portation).

4. Various spatial and spatio-temporal phenomena (e.g. climate, weather).

Their next step was to describe movement patterns in generic behavioral terms as:

• IMB. Individual movement behavior

• MCB. Momentary collective behavior.

• DCB. Dynamic collective behavior.

The Dynamic Collective Behaviors (DCBs) can be decomposed either as similar Indi-

vidual Movement Behaviors (IMBs) for the entire set of entities or, as similar Momentary

Collective Behaviors (MCBs) at all time moments. Seeing how the IMBs and MCBs are

the essential expressions of behavioral patterns, the researchers defined the similarity

∗The same moving objects for the entire time period.
†Different moving objects but m or mmax in number at all times.
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measures for each one. Similarity between IMBs means similarity in overall characteris-

tics, co-location, synchronization in time, and co-incidence in space and time. Similarity

between MCBs is described over time as constancy, change, fluctuation, pattern change,

repetition, periodicity and symmetry. The study continued by providing general rules for

segmentation and aggregation of movement data and some transformations in space and

time to identify movement characteristics and patterns (IMBs and MCBs). Examination

of IMB clustering and visual presentation of the clustering results was considered next.

The last part of the paper presented general guidelines to use the analysis and presenta-

tion methods developed in their study as interactive and visual techniques. Their con-

clusion stated that all the above levels of abstraction and aggregation can be used in an

integration process to acquire overall knowledge of the underlying phenomena.

The work of Dodge et al. [81] represents a more comprehensive effort towards the def-

inition of a consolidated framework for the classification and analysis of moving objects.

From the start, the authors reminded the reader of the significance of using the correct

scales, spatial and temporal, according to the pattern and behavior they need to capture.

Based partially on the studies presented this far in the appendix, the authors proposed

a classification of datasets according to two levels of patterns (generic and behavioral),

and three types of movement parameters (spatial, temporal and spatio-temporal). The

generic patterns are subdivided into primitive and compound according to the implicit

analysis of individual aspects or subsections of the entire movement, while the behav-

ioral patterns are interpretations of the entire dataset mostly left to experts in each

specialty (i.e. wildlife experts and behavioral ecologists). The subdivision of the generic

patterns continues until one or more fundamental parameters are identified as the pri-

mary aspects of the movement. Primitive parameters are position, instance (purely as a

function of time) and interval. Primary derivatives are those aspects that can be directly

defined as a function of the primitive parameters, such as distance, direction, duration
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and velocity. Secondary derivatives are defined, in an iterative fashion, as functions of

the primary derivatives and include change of direction, change of duration, acceleration

and approaching rate amongst others. The paper includes examples of all the proposed

generic and behavioral patterns in an effort to clearly illustrate the concepts and ap-

plication of the proposed framework. Please refer to table 3 in the original publication

([81], pg. 7) where the proposed generic patterns were compared, and as a consequence

defined, in terms of the primitive parameters, primary derivatives and secondary deriva-

tives. The details of the definition of the example behavioral patterns, in terms of the

proposed framework, can also be found in the original publication ([81], pg. 10). Towards

their conclusions, the authors made an open invitation to other experts in the field to

contribute their own point of view about this framework in a moderated online forum∗.

An additional review of advances on pattern analysis from moving object trajectories

by Laube can be found in [158]. The chapter integrated concepts from the previous works

presented in this section, with the objective of summarizing the best established theories

in the analysis, identification and application of moving object patterns.

The document started by defining five conceptualizations necessary to study mov-

ing object patters. First, the abstraction of representing almost all moving objects as

moving points, to disregard the complications of their spatial extension and change over

time (e.g, storm front evolution, fish school volumetric variations, rush hour car accu-

mulation and spread). Acknowledging the limitations of modern computer platforms to

represent and even store continuous movement paths, the paper continued by justifying

the conversion of the analog moving point path into a digital equivalent (i.e. the use

of the conceptual space-time path constructed from discrete positions in two or three

dimensional space with a time dimension). The publication continued by stating the

existence of several analytical tools for static scene analysis, and the need of equivalent

∗http://movementpatterns.pbwiki.com/Patterns-of-Movement
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tools that explicitly incorporate the time dimension. After these, the research continued

by considering the difficulty of defining universal analysis parameters, specially metric

parameters, for the study of all moving pattern. This difficulty being a reflection of the

specialized nature of the cases that each method has been applied to, and the additional

difficulties brought into play by modifying the method to analyze a different, but similar,

case and dataset. The final consideration of this section highlighted the influences, even

constraints, that the surrounding environment imposes on the behavior of the moving

objects. A consideration that has to be incorporated to some degree into the analysis

tools, to enable them to produce positive identification of a set of standard patterns.

The following section examined some of the subjective factors that have to be repre-

sented into the proposed solutions, and then arrived at the following definition.

“Definition 1. A movement pattern is any high-level description of the movement

of an individual or a group of individuals. This description can but must not relate the

movement to the underlying space.” ([158], p. 48)

The third section of the chapter considered the advantages and disadvantages of six

conceptual spaces for the embedding and analysis of movement models. Euclidean ho-

mogeneous space was defined as an empty environment in R
2, where the space itself does

not impose any influence on where the objects can move to. To enumerate the limitations

of this representation, the chapter defined first order effects as those relations between

environment and moving object, and second order effects as inter-object relations. The

discrete position representations on this space are commonly referred as fixes. The next

representation space was the Constrained Euclidean space, which is the equivalent to the

previous space, but adds physical elements to the environment that restrict the movement

of the objects (e.g. highways, ridges, cattle fences and movement corridors in country-

side and wildlife studies, buildings in urban environments, walls, partitions and furniture

in home environments). The space-time cube was defined as a three-dimensional rep-
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resentation of movement with two axis defining an Euclidean space and the third axis

representing the time dimension. This representation is popular in time geography and

is commonly used for visualization purposes. In this space, movement trajectories take

the form of space-time paths. Heterogeneous field space are a consequence of study area

data being represented as conceptual fields and digital raster forms. This conceptualiza-

tion is preferred in behavioral ecology studies, where the moving agents have to interact

with a heterogeneous environment to determine their next location (most of the time

based on neighborhood resources and cost evaluation processes). Irregular tessellations

are routinely used in LBS studies [150], where these can be constructed from cellular

tower signal strength maps or more commonly, from Voronoi tessellations of the study

area. Network space is mainly used in urban transportation studies, with street and train

track representations in the form of graphs (directed or not). In recent studies, the initial

homogeneity of travel speeds has being adjusted to incorporate velocity vector fields and

cost surfaces (e.g. [178]). Each one of there space representations being most advanta-

geous for analysis with specific goals, and each one being susceptible to topological and

operational transformation from one type to another.

In the following section of the document, Laube identified “signature patterns” using

the analysis structure proposed by Han and Kamber [128]. In broad strokes, summarized

in table 2 of the original publication ([158], pg. 60): Description of patterns was achieved

in terms of summary quantities (i.e. speed, sinuosity, average daily velocity, average daily

direction of travel) that tend to reflect a static perspective not suitable for dynamic con-

ditions (depending on the temporal resolution). The identification of frequent patterns

promises qualitative descriptions with the advantages of intuitive interpretations, but

thus far does not have statistical relevance measures or solid scientific application [158].

The classification and prediction methods offers the possibilities of simulations and con-

trol of moving agents, but its largest limiting factor is the considerable amount of context
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knowledge needed for an efficient implementation. Finally, the clustering of trajectories

(or sub-trajectories) based on similarity measures offers the identification of geographi-

cally referenced regions where specific types of trajectories abound, however, its largest

limiting factor as an exploratory method prevents it from being used beyond a visual

exploration tool [158].

The fifth section of this chapter included detailed descriptions of the specialty disci-

plines in which each type of moving pattern analysis can be used to understand subja-

cent phenomena. The main applications described include prerequisite and implementa-

tion considerations for exploratory data analysis, visualization, moving object databases,

surveillance imagery analysis, and behavioral ecology studies. Section six in the chapter

offered arguments to identify the main limitations for the primitive elements considered

for movement pattern analysis, such as the pattern definitions, first order effects, second

order effects, pattern relevance measurements, scale and granularity repercussions. The

seventh section of the chapter considered some of the improvements that can be achieved

in this specialty with future research work, as well as some of the practical solutions

that can motivate the improvement of these tools (e.g. real time traffic jam avoidance,

automated assisted living environments).

In his conclusion, the author reminds the specialists in this field that the underlying

theory is still incomplete and unproven for commercial and social value.

B.4 Other perspectives.

In the same volume as the previous document, the paper by Wood and Galton [246]

presented a theoretical review of most of the work included in this appendix, plus [237].

The authors analyze all aspects of the previous solutions with particular care of the
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undefined portions of the theoretical framework as it pertains to collective movement,

and then presented their own qualitative framework for the analysis of large volumes

of moving object data. In their conclusion, the chapter acknowledged the preceding

fundamental concepts and methods to describe and analyze moving object data, and the

further need for projects looking to explain and understand collective movement.

From a slightly different perspective, time geographers have been trying to define

a standard analysis framework for movement in the space-time domain. The paper by

Miller [177], amongst other constructs, showed the characteristics of the space-time path

and prism, which are remarkably similar to the definitions of trajectories and regions of

the rest of the papers cited in this appendix, but with explicit treatment for the time

dimension. This relatively early approach is focused to the analysis of human movements

constrained to a urban transportation network. However, in a later work by Miller and

Bridwell [178], those constraints were generalized by the use of velocity fields, and the

study of potential path areas and space-time prisms. Their objective was to define a

theoretical model that can be applied to the prediction of possible movement paths for

different human activities. The final product was a generalized theory to model inter-

actions between objects (in the traditional time geography sense and as network time

prisms) and fields (that describe intensities of time geographic properties for specific loca-

tions). As the authors point out, the later unification of both perspectives can start with

the formal theoretical definition of wildlife movement in terms of the equivalent objects

(e.g. individual GPS locations, individual bear trajectories) and fields (e.g. accumulated

cost surfaces).

From yet another point of view, as detailed in section 2.4, the main task of identifying

patterns in a set of trajectories can be seen as finding the longest common subsequences

amongst trajectories.
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Appendix C

Calibration dataset and tables of Grizzly bear

tracking data.

This appendix includes tabular representations of all significant data used in this

work derived from the raw GPS point data. Section C.1 contains a description of the

calibration dataset, while section C.2 includes the results of the χ2 test on the cleaned

dataset. The tables in section C.3 are simple segmentations of the full dataset based on

previous studies and, section C.4 contains a more detailed presentation of the temporal

distribution of the GPS data.

C.1 Calibration dataset.

The table in this section contains a detailed description of the GPS points selected as

the calibration dataset for this work. The set includes data acquired at different temporal

resolutions, during different years and, as much as possible, from different geographical

locations inside the study area.

The full dataset, after data cleaning and integration (sections 3.3 and 3.4), includes

199,223 individual GPS positions. The subjective process to select the calibration dataset

is detailed in section 3.5 and resulted in 35,850 individual GPS positions, which represents

18% of the larger set. Table C.1 identifies the individual annual grizzly trajectories

included in the calibration dataset.
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Table C.1: Data selected as the calibration dataset.
Year Bear GPS points Year Bear GPS points Year Bear GPS points
1999 G002 835 2003 G003 463 2005 G059 49
1999 G003 10 2003 G010 48 2005 G087 262
1999 G006 15 2003 G023 87 2005 G095 18
1999 G008 22 2003 G028 679 2005 G097 81
1999 G016 641 2003 G040 65 2005 G201 228
1999 G020 187 2003 G043 129 2005 G205 79

2003 G048 74 2005 G207 159
2000 G016 56 2003 G061 102 2005 G208 16
2000 G023 227 2003 G068 22 2005 G216 850
2000 G026 25 2003 G071 152 2005 G217 10
2000 G027 741 2003 G073 24 2005 G218 1,373
2000 G028 17 2003 G074 43 2005 G225 13
2000 G029 122 2003 G100 60 2005 G226 580
2000 G033 126 2003 G106 77 2005 G230 1,172

2001 G004 47 2004 G004 92 2006 G040 391
2001 G016 299 2004 G064 20 2006 G204 126
2001 G024 903 2004 G065 58 2006 G205 143
2001 G029 1,130 2004 G071 29 2006 G218 7,983
2001 G033 189 2004 G072 79 2006 G225 33
2001 G036 106 2004 G073 11 2006 G230 940
2001 G038 98 2004 G075F 68 2006 G236 135
2001 G040 26 2004 G077 397
2001 G100 159 2004 G078 27 2007 G223 2,353

2004 G080 612 2007 G238 161
2002 G003 24 2004 G086 95 2007 G260 526
2002 G008 165 2004 G095 33 2007 G262 104
2002 G012 28 2004 G099 696 2007 G264 83
2002 G023 52 2004 G89K 35 2007 G266 1,712
2002 G027 91
2002 G028 702 2008 G077 3,160
2002 G035 12 2008 G110 92
2002 G037 375 2008 G223 305
2002 G040 73 2008 G224 139

2008 G230 145
2008 G254 175
2008 G265 461
2008 G266 13

Sum 7,503 Sum 4,277 Sum 24,070

Total 35,850
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C.2 χ2 test.

Table C.2 presents the numerical results of the χ2 test from section 3.4, comparing

the land cover occurrence distributions of the full study area against the GPS-land cover

matched positions, with the explicit inclusion of the “n/a” class. See table 4.14 in

subsection 4.2.4) for the observed land cover values (column “Original”).

Table C.2: χ2 test.
Symbol Observed (O) Expected % Expected (E) O - E (O - E)2 (O - E)2 / E
0 484 0.3712 739.52 -255.52 65,288.31 88.29
1 105,793 54.3606 108,298.82 -2,505.82 6,279,124.54 57.98
2 3736.0000 6.1725 12,297.04 -8,561.04 73,291,400.32 5,960.08
3 21,693.00 13.5581 27,010.85 -5,317.85 28,279,566.52 1,046.97
4 1,072.00 0.9159 1,824.68 -752.68 566,532.39 310.48
5 44,975.00 8.6798 17,292.16 27,682.84 766,339,743.74 44,317.18
6 325.00 1.7615 3,509.31 -3,184.31 10,139,850.21 2,889.41
7 20,673 12.5657 25,033.76 -4,360.76 19,016,267.12 759.62
8 163 1.1801 2,351.03 -2,188.03 4,787,478.01 2,036.33
9 6 0.0314 62.56 -56.56 3,198.58 51.13
A 303 0.4032 803.27 -500.27 250,267.21 311.56
Total 199,223 100.0000 199,223.00 0.00 57,829.05

C.3 Simple segmentations.

After data cleaning and integration (as described in sections 3.3 and 3.4), the data in

tables C.3 to C.6 was obtained.

The definition of annual core home range was initially adopted from [238], and was

recalculated for the present work with the application by [162], but ultimately replaced

by the corresponding Voronoi polygons based on a simple geometric centroid equivalent,

better suited for an integrated programmatic solution. All the data presented in this
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appendix was calculated based on the equivalent Voronoi polygons.

The following tables reflect the segmentation by gender identified by Carra [52]. They

also include the rule identified in Munro et al. [183] where Mountain bears were defined

as those for which 80% or more of their core home range∗ was above an elevation of 1,700

m, while the rest of the animals were categorized as Foothills bears.

All elevations are in meters (m), and all areas are given in square kilometers (km2).

Table C.3: Bear population including minimum and maximum elevation and median area
of their geometric area ranges.

Elevation
Bears Min Max Mean Median area
105 218 3145 1606 107.5613

Table C.4: Bear population by gender including minimum and maximum elevation and
median area of their geometric area ranges.

Elevation
Bears Gender Min Max Mean Median area

56 Female 661 3145 1685 70.2418
49 Male 218 3116 1487 198.6406

Table C.5: Bear population by elevation including minimum and maximum elevation and
median area of their geometric area ranges.

Elevation
Bears Bear type Min Max Mean Median area

78 Foothills 218 3034 1376 145.4345
27 Mountain 1087 3145 2096 66.8554

The publication by Munro et al. [183] concentrated on a grizzly bear population on

west-central Alberta, where the minimum elevation was around 700 m. The current work

encompasses a much larger study area (section 3.2) and from additional examination of

the previous tables the classification of Mountain and Foothills bears might not have

∗Calculated for this work with the R geometric area function for collections of points in 2D [36]
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Table C.6: Bear population by gender and elevation including minimum and maximum
elevation and median area of their geometric area ranges.

Elevation
Bears Gender Bear type Min Max Mean Median area

36 Female Foothills 661 2800 1396 87.8906
20 Female Mountain 1121 3145 2112 60.3864
42 Male Foothills 218 3034 1355 233.1173
7 Male Mountain 1087 3116 2045 97.2347

enough classes to properly describe the grizzly bear groups considered in this work. An

alternative classification fell outside the objectives of this work and was not attempted.

C.4 Temporal distribution of GPS data.

The tables in this section (C.7 to C.22) are a summary of the temporal distribution of

all GPS points from all bears included in the study. The dates in the tables aggregating

data by week of the year are all approximated, and meant to reflect the two significant

periods for the collaring effort. The capture period starts in mid-April and ends in mid-

May. The denning period starts in mid-October of one year and ends in mid-March

(emergence) of the following year.
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233

Appendix D

Most frequent patterns, frequency tables for nine

sub variations.

This appendix contains the tables of most frequent patterns for all tree variations

except the original asymmetric and the completed asymmetric, which were included in

subsection 4.2.4 for a more detailed analysis.

D.1 Original symmetric.

Table D.1: Original symmetric, most frequent patterns, n = {3, 6, 9, 12}
n = 3 n = 6 n = 9 n = 12

Pattern Support Pattern Support Pattern Support Pattern Support
222 1,042 555555 7,016 555555555 4,185 555555555555 2,887
444 345 333333 2,695 333333333 1,388 333333333333 779
000 165 777777 2,132 777777777 1,070 777777777777 593
141 86 222222 440 555555551 292 555555555551 135
666 59 333335 270 155555555 270 222222222222 125
161 53 533333 231 222222222 227 155555555555 113
244 52 777771 226 333333335 135 555555555511 86
442 47 333331 224 533333333 106 115555555555 84
144 46 177777 223 555555557 94 333333333335 77
441 45 111777 216 444444444 91 533333333333 47
422 36 133333 205 777777771 86 555555555557 45
224 34 111333 200 177777777 84 111111111121 43
414 26 333111 199 111117777 75 777777777771 39
142 25 211111 189 333333353 75 177777777777 37
1A1 23 111112 184 755555555 75 333333333355 37
241 16 117777 183 133333333 73 755555555555 35
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Table D.2: Original symmetric, most frequent patterns, n = {15, 20}
n = 15 n = 20

Pattern Support Pattern Support
555555555555555 2,161 55555555555555555555 1,456
333333333333333 435 33333333333333333333 167
777777777777777 340 77777777777777777777 143
222222222222222 72 22222222222222222222 33
555555555555551 72 15555555555555555555 25
155555555555555 57 55555555555555555511 23
333333333333335 49 55555555555555555553 21
555555555555553 44 35555555555555555555 17
355555555555555 41 11155555555555555555 14
115555555555555 37 53333333333333333333 11
555555555555511 36 55555555555555155555 10

Table D.3: Original symmetric, most frequent patterns, n = {25, 30}
n = 25 n = 30

Pattern Support Pattern Support
5555555555555555555555555 1,099 555555555555555555555555555555 873
3333333333333333333333333 86 777777777777777777777777777777 52
7777777777777777777777777 74 333333333333333333333333333333 47
5555555555555555555555511 13
5555555555555555555555553 11

Table D.4: Original symmetric, most frequent patterns, n = 40
n = 40

Pattern Support
5555555555555555555555555555555555555555 559
7777777777777777777777777777777777777777 33
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D.2 Distinct asymmetric.

Table D.5: Distinct asymmetric, most frequent patterns, n = {3, 6, 9, 12}
n = 3 n = 6 n = 9 n = 12

Pattern Support Pattern Support Pattern Support Pattern Support
141 110 717171 247 171717171 76 717171717171 29
161 59 171717 240 717171717 70 171717171717 28
424 54 131313 185 131313131 46 313131313131 9
242 52 313131 185 313131313 34 131313131313 7
414 44 171715 74 121212121 19 242424242424 7
142 30 517171 74 151717171 17 515151717171 7
1A1 27 121212 73 171717151 17 717171717173 4
214 26 212121 72 424242424 15 121212121212 3
241 20 171713 44 212121212 14 131313131373 3
412 18 717131 39 717171713 13 171717171737 3
143 16 131317 38 717171737 13 271717171717 3
5A5 13 717173 37 131313151 10 121212151513 2
616 13 317171 36 171717371 10 151717171515 2
316 12 171313 34 717171715 10 151717171713 2
613 11 717175 33 151313131 9 171571717171 2
617 11 713131 32 171717173 9 171717371717 2

Table D.6: Distinct asymmetric, most frequent patterns, n = {15, 20}
n = 15 n = 20

Pattern Support Pattern Support
171717171717171 15 71717171717171717171 5
424242424242424 4 17171717171717171717 4
131313131313131 2 12121241317137317131 1
171271717171717 2 12131315151313131313 1
717171717371713 2 12141213131313131757 1
121212121251717 1 12371251512121515151 1
121212121313157 1 12542121321212121212 1
121212173121752 1 13131312121274121721 1
121213132143232 1 13131313142142424242 1
121213145412171 1 13131373137373131213 1
121215713573731 1 13137315715127171717 1
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Table D.7: Distinct asymmetric, most frequent patterns, n = {25, 30}
n = 25 n = 30

Pattern Support Pattern Support
1241317131217172521712151 1 1241317131217172521712151 1
1313131313131312171217131 1 1313131313131312171217131 1
1317171317131371737173751 1 1317171317131371737173751 1
1371515751745414121213212 1
1417217151717171721512171 1

D.3 Distinct symmetric.

Table D.8: Distinct symmetric, most frequent patterns, n = {3, 6, 9, 12}
n = 3 n = 6 n = 9 n = 12

Pattern Support Pattern Support Pattern Support Pattern Support
141 110 717171 247 171717171 76 717171717171 29
161 59 171717 240 717171717 70 171717171717 28
424 54 131313 185 131313131 46 313131313131 9
242 52 313131 185 313131313 34 131313131313 7
414 44 171715 74 121212121 19 242424242424 7
142 30 517171 74 151717171 17 515151717171 7
1A1 27 121212 73 171717151 17 717171717173 4
214 26 212121 72 424242424 15 121212121212 3
241 20 171713 44 212121212 14 131313131373 3
412 18 717131 39 717171713 13 171717171737 3
143 16 131317 38 717171737 13 271717171717 3
5A5 13 317171 36 131313151 10 121212151513 2
616 13 171313 34 171717371 10 151717171515 2
316 12 717175 33 717171715 10 151717171713 2
613 11 713131 32 151313131 9 171571717171 2
617 11 131717 30 171717173 9 171717371717 2
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Table D.9: Distinct symmetric, most frequent patterns, n = {15, 20}
n = 15 n = 20

Pattern Support Pattern Support
171717171717171 15 171717171717171 15
424242424242424 4 424242424242424 4
131313131313131 2 131313131313131 2
171271717171717 2 171271717171717 2
717171717371713 2 717171717371713 2
121212121251717 1 121212121251717 1
121212121313157 1 121212121313157 1
121212173121752 1 121212173121752 1
121213132143232 1 121213132143232 1
121213145412171 1 121213145412171 1
121215713573731 1 121215713573731 1

Table D.10: Distinct symmetric, most frequent patterns, n = {25, 30}
n = 25 n = 30

Pattern Support Pattern Support
1241317131217172521712151 1 121242321321212123132312135212 1
1313131313131312171217131 1 131312121274121721215312151572 1
1317171317131371737173751 1 171371241317131217172521712151 1
1371515751745414121213212 1
1417217151717171721512171 1
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D.4 Artificial, repeated asymmetric.

Table D.11: Artificial, repeated asymmetric, most frequent patterns, n = {3, 6, 9, 12}
n = 3 n = 6 n = 9 n = 12

Pattern Support Pattern Support Pattern Support Pattern Support
222 1,042 555555 7,020 555555555 4,185 555555555555 2,887
444 345 333333 2,696 333333333 1,389 333333333333 780
221 301 777777 2,138 777777777 1,074 777777777777 594
122 269 222222 440 555555551 292 555555555551 135
141 86 333335 271 155555555 270 222222222222 125
666 71 533333 231 222222222 227 155555555555 113
161 53 777771 227 333333335 136 555555555511 86
244 52 177777 224 533333333 106 115555555555 84
442 47 333331 224 555555557 94 333333333335 78
144 46 111777 216 444444444 91 555555555515 73
441 45 133333 205 777777771 87 555555155555 63
422 36 111333 200 177777777 85 555555515555 62
224 34 333111 200 111117777 75 555555551555 62
424 34 117777 183 333333353 75 555555555155 61
414 26 333311 183 755555555 75 555515555555 59
142 25 113333 174 133333333 73 555551555555 57

Table D.12: Artificial, repeated asymmetric, most frequent patterns, n = {15, 20}
n = 15 n = 20

Pattern Support Pattern Support
555555555555555 2,161 55555555555555555555 1,456
333333333333333 435 33333333333333333333 167
777777777777777 340 77777777777777777777 143
222222222222222 72 22222222222222222222 33
555555555555551 72 55555555555555555551 30
155555555555555 57 15555555555555555555 25
333333333333335 50 55555555555555555511 23
555555555555553 44 55555555555555555553 21
355555555555555 41 55555555555555555111 20
115555555555555 37 11555555555555555555 18
555555555555511 36 33333333333333333335 17
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Table D.13: Artificial, repeated asymmetric, most frequent patterns, n = {25, 30}
n = 25 n = 30

Pattern Support Pattern Support
5555555555555555555555555 1,099 555555555555555555555555555555 873
3333333333333333333333333 86 777777777777777777777777777777 52
7777777777777777777777777 74 333333333333333333333333333333 47
2222222222222222222222222 19
5555555555555555555555111 12

Table D.14: Artificial, repeated asymmetric, most frequent patterns, n = 40
n = 40

Pattern Support
555555555555555555555555555555 873
777777777777777777777777777777 52

D.5 Artificial, repeated symmetric.

Table D.15: Artificial, repeated symmetric, most frequent patterns, n = {3, 6, 9, 12}
n = 3 n = 6 n = 9 n = 12

Pattern Support Pattern Support Pattern Support Pattern Support
222 1,042 555555 7,020 555555555 4,185 555555555555 2,887
444 345 333333 2,696 333333333 1,389 333333333333 780
221 301 777777 2,138 777777777 1,074 777777777777 594
122 269 222222 440 555555551 292 555555555551 135
141 86 333335 271 155555555 270 222222222222 125
666 71 533333 231 222222222 227 155555555555 113
161 53 777771 227 333333335 136 555555555511 86
244 52 177777 224 533333333 106 115555555555 84
442 47 333331 224 555555557 94 333333333335 78
144 46 111777 216 444444444 91 444444444444 51
441 45 133333 205 777777771 87 533333333333 47
422 36 111333 200 177777777 85 555555555557 45
224 34 333111 200 111117777 75 111111111121 43
424 34 211111 189 333333353 75 777777777771 39
414 26 111112 184 755555555 75 177777777777 38
142 25 117777 183 133333333 73 333333333355 38
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Table D.16: Artificial, repeated symmetric, most frequent patterns, n = {15, 20}
n = 15 n = 20

Pattern Support Pattern Support
555555555555555 2,161 55555555555555555555 1,456
333333333333333 435 33333333333333333333 167
777777777777777 340 77777777777777777777 143
222222222222222 72 22222222222222222222 33
555555555555551 72 55555555555555555551 30
155555555555555 57 15555555555555555555 25
333333333333335 50 55555555555555555511 23
555555555555553 44 55555555555555555553 21
355555555555555 41 55555555555555555111 20
115555555555555 37 11555555555555555555 18
555555555555511 36 33333333333333333335 17

Table D.17: Artificial, repeated symmetric, most frequent patterns, n = {25, 30}
n = 25 n = 30

Pattern Support Pattern Support
5555555555555555555555555 1,099 555555555555555555555555555555 873
3333333333333333333333333 86 777777777777777777777777777777 52
7777777777777777777777777 74 333333333333333333333333333333 47
2222222222222222222222222 19
5555555555555555555555111 12

Table D.18: Artificial, repeated symmetric, most frequent patterns, n = 40
n = 40

Pattern Support
5555555555555555555555555555555555555555 559
7777777777777777777777777777777777777777 33
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D.6 Artificial, distinct asymmetric.

Table D.19: Artificial, distinct asymmetric, most frequent patterns, n = {3, 6, 9, 12}
n = 3 n = 6 n = 9 n = 12

Pattern Support Pattern Support Pattern Support Pattern Support
121 597 717171 247 171717171 76 171717171717 28
212 324 171717 240 717171717 70 313131313131 9
141 110 131313 185 131313131 46 424242424242 8
161 59 313131 185 313131313 34 242424242424 7
424 54 171715 74 121212121 19 515151717171 7
242 52 517171 74 151717171 17 717171717173 4
414 44 121212 73 171717151 17 121212121212 3
142 30 212121 72 424242424 15 131313131373 3
615 27 171751 45 212121212 14 171717371713 3
214 26 171713 44 717171713 13 271717171717 3
124 24 157171 43 717171737 13 513131313131 3
241 20 131317 39 131313151 10 151517171715 2
412 18 717131 39 515171717 10 171571717171 2
421 17 317171 37 717171715 10 171717371717 2
143 16 717173 37 151313131 9 212121213131 2
616 13 171313 34 171717173 9 212121515131 2

Table D.20: Artificial, distinct asymmetric, most frequent patterns, n = {15, 20}
n = 15 n = 20

Pattern Support Pattern Support
171717171717171 15 71717171717171717171 5
424242424242424 4 12152521212121252151 1
131313131313131 2 12371251512121515151 1
151513131313131 2 12423213212121231323 1
171271717171717 2 12542121321212121212 1
271717171717171 2 13131212127412172121 1
717171717371713 2 13131313131313121712 1
121212121251717 1 13131313142142424242 1
121212173121752 1 13171717171717537371 1
121213131357175 1 13232142121317151571 1
121213145412171 1 13571315151212121323 1
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Table D.21: Artificial, distinct asymmetric, most frequent patterns, n = {25, 30}
n = 25 n = 30

Pattern Support Pattern Support
1241317131217172521712151 1 121242321321212123132312135212 1
1313131313131312171217131 1 131312121274121721215312151572 1
1317171317131371737173751 1 171371241317131217172521712151 1
1371515751745414121213212 1
1417217151717171721512171 1

D.7 Artificial, distinct symmetric.

Table D.22: Artificial, distinct symmetric, most frequent patterns, n = {3, 6, 9, 12}
n = 3 n = 6 n = 9 n = 12

Pattern Support Pattern Support Pattern Support Pattern Support
121 597 717171 247 171717171 76 171717171717 28
212 324 171717 240 717171717 70 313131313131 9
141 110 131313 185 131313131 46 424242424242 8
161 59 313131 185 313131313 34 242424242424 7
424 54 171715 74 121212121 19 515151717171 7
242 52 517171 74 151717171 17 717171717173 4
414 44 121212 73 171717151 17 121212121212 3
142 30 212121 72 424242424 15 131313131373 3
214 26 131315 52 212121212 14 171717371713 3
124 24 171751 45 717171713 13 271717171717 3
241 20 171713 44 717171737 13 513131313131 3
412 18 157171 43 131313151 10 131515131313 2
421 17 131317 39 515171717 10 151517171715 2
143 16 717131 39 717171715 10 171571717171 2
616 13 513131 38 151313131 9 171717371717 2
316 12 317171 37 171717173 9 212121213131 2
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Table D.23: Artificial, distinct symmetric, most frequent patterns, n = {15, 20}
n = 15 n = 20

Pattern Support Pattern Support
171717171717171 15 71717171717171717171 5
424242424242424 4 12152521212121252151 1
131313131313131 2 12371251512121515151 1
151513131313131 2 12423213212121231323 1
171271717171717 2 12542121321212121212 1
271717171717171 2 13131212127412172121 1
717171717371713 2 13131313131313121712 1
121212121251717 1 13131313142142424242 1
121212173121752 1 13171717171717537371 1
121213131357175 1 13232142121317151571 1
121213145412171 1 13571315151212121323 1

Table D.24: Artificial, distinct symmetric, most frequent patterns, n = {25, 30}
n = 25 n = 30

Pattern Support Pattern Support
1241317131217172521712151 1 121242321321212123132312135212 1
1313131313131312171217131 1 131312121274121721215312151572 1
1371515751745414121213212 1 171371241317131217172521712151 1
1417217151717171721512171 1
1515157175171717571717171 1
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D.8 Completed asymmetric.

Table D.25: Completed asymmetric, most frequent patterns, n = {3, 6, 9, 12}
n = 3 n = 6 n = 9 n = 12

Pattern Support Pattern Support Pattern Support Pattern Support
000 1,175,046 000000 893,234 000000000 676,131 000000000000 484,317
500 29,110 100000 43,407 000100000 36,064 000000000100 30,133
005 28,467 000001 41,864 000010000 34,780 000000100000 29,519
333 3,443 000500 16,809 000001000 34,637 000100000000 29,224
777 3,425 500000 16,503 000000100 33,477 100000000000 29,193
200 1,985 000050 16,404 100000000 32,764 010000000000 29,090
002 1,935 000005 16,396 000000010 32,066 000000000010 29,026
222 655 050000 16,254 010000000 31,979 001000000000 28,981
400 417 005000 16,181 000000001 31,968 000000000001 28,568
004 398 000300 8,015 001000000 31,907 000000010000 28,297
444 295 300000 7,825 000500000 14,028 000000001000 28,157
A00 290 000030 7,787 000050000 13,695 000010000000 27,921
00A 286 000003 7,778 000005000 13,647 000001000000 27,895
600 243 030000 7,745 000000500 13,445 000000000500 12,123
006 234 003000 7,718 000000050 12,927 000000500000 11,969
211 225 000700 7,370 000000005 12,880 000000000050 11,865

Table D.26: Completed asymmetric, most frequent patterns, n = {15, 20}
n = 15 n = 20

Pattern Support Pattern Support
000000000000000 387,070 00000000000000000000 268,907
000000000100000 27,403 00000000010000000000 23,388
000100000000000 26,966 00000000000100000000 23,089
000000000010000 26,401 00000000100000000000 23,085
000000100000000 26,311 00000000001000000000 22,320
000010000000000 26,211 00000000000000100000 12,133
000001000000000 26,141 00000000000010000000 11,718
000000000001000 25,937 00000100000000000000 11,221
000000010000000 25,042 00000000000001000000 10,935
000000001000000 24,909 00000010000000000000 10,723
000000000000100 14,546 00000001000000000000 10,575
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Table D.27: Completed asymmetric, most frequent patterns, n = {25, 30}
n = 25 n = 30

Pattern Support Pattern Support
0000000000000000000000000 180,878 000000000000000000000000000000 127,241
0000000000000010000000000 10,271 000000000000000000100000000000 7,580
0000000000000100000000000 10,124 000000000000000000000100000000 7,169
0000000000100000000000000 9,503
0000000000010000000000000 9,410

Table D.28: Completed asymmetric, most frequent patterns, n = 40
n = 40

Pattern Support
0000000000000000000000000000000000000000 58,295
0000000000000000000000000000010000000000 2,759

D.9 Completed symmetric.

Table D.29: Completed symmetric, most frequent patterns, n = {3, 6, 9, 12}
n = 3 n = 6 n = 9 n = 12

Pattern Support Pattern Support Pattern Support Pattern Support
000 1,175,046 000000 893,234 000000000 676,131 000000000 676,131
500 29,110 100000 43,407 000100000 36,064 000100000 36,064
005 28,467 000001 41,864 000010000 34,780 000010000 34,780
333 3,443 000500 16,809 000001000 34,637 000001000 34,637
777 3,425 500000 16,503 000000100 33,477 000000100 33,477
200 1,985 000050 16,404 100000000 32,764 100000000 32,764
002 1,935 000005 16,396 000000010 32,066 000000010 32,066
222 655 050000 16,254 010000000 31,979 010000000 31,979
400 417 005000 16,181 000000001 31,968 000000001 31,968
004 398 000300 8,015 001000000 31,907 001000000 31,907
444 295 300000 7,825 000500000 14,028 000500000 14,028
A00 290 000030 7,787 000050000 13,695 000050000 13,695
00A 286 000003 7,778 000005000 13,647 000005000 13,647
600 243 030000 7,745 000000500 13,445 000000500 13,445
006 234 003000 7,718 000000050 12,927 000000050 12,927
211 225 000700 7,370 000000005 12,880 000000005 12,880



246 Appendix D. Most frequent patterns, frequency tables for nine sub variations.

Table D.30: Completed symmetric, most frequent patterns, n = {15, 20}
n = 15 n = 20

Pattern Support Pattern Support
000000000000000 387,070 00000000000000000000 268,907
000000000100000 27,403 00000000010000000000 23,388
000100000000000 26,966 00000000000100000000 23,089
000000000010000 26,401 00000000100000000000 23,085
000000100000000 26,311 00000000001000000000 22,320
000010000000000 26,211 00000000000000100000 12,133
000001000000000 26,141 00000000000010000000 11,718
000000000001000 25,937 00000100000000000000 11,221
000000010000000 25,042 00000000000001000000 10,935
000000001000000 24,909 00000010000000000000 10,723
000000000000100 14,546 00000001000000000000 10,575

Table D.31: Completed symmetric, most frequent patterns, n = {25, 30}
n = 25 n = 30

Pattern Support Pattern Support
0000000000000000000000000 180,878 000000000000000000000000000000 127,241
0000000000000010000000000 10,271 000000000000000000100000000000 7,580
0000000000000100000000000 10,124 000000000000000000000100000000 7,169
0000000000100000000000000 9,503
0000000000010000000000000 9,410

Table D.32: Completed symmetric, most frequent patterns, n = 40
n = 40

Pattern Support
0000000000000000000000000000000000000000 58,295
0000000000000000000000000000010000000000 2,759


