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Abstract 

Scoliosis is a deformity of the human spine most commonly encountered with children. 

After being detected, periodic examinations via x-rays are traditionally used to measure 

its progression. However, due to the increased risk of cancer, a non-invasive and 

radiation-free scoliosis detection and progression monitoring methodology is needed. 

Quantifying the scoliotic deformity through the torso surface is a valid alternative, 

because of its high correlation with the internal spine curvature. This work proposes a 

low-cost multi-camera photogrammetric system for semi-automated 3D reconstruction of 

a torso surface with sub-millimetre level accuracy. The thesis describes the system design 

and calibration for optimal accuracy. It also covers the methodology behind the 

reconstruction and registration procedures. The experimental results include the complete 

reconstruction of a scoliotic torso mannequin. The final accuracy is evaluated through the 

goodness of fit between the reconstructed surface and a more accurate set of points 

measured by a coordinate measuring machine. 
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Chapter One: Introduction 

 

“Every valley shall be filled, and every mountain and hill 

shall be brought low; and the crooked shall be made 

straight, and the rough ways shall be made smooth;”  

Luke 3:5, KJV 

 

1.1 Background information on scoliosis 

Scoliosis is an abnormal lateral curvature of the human spine (Roach, 1999). The 

spine is a flexible backbone column, which consists of 33 vertebrae. The vertebrae are 

divided into five regions: cervical, thoracic, lumbar, sacrum, and coccyx (see Figure 1.1).  

 

Figure 1.1 Lateral (left) and posterior (right) views for the regions of the spine 

Source: http://bioliscious.blogspot.com/2008/04/compendium-iii-chapter-11-skeletal.html 

The name for the disease comes from the Greek word σκολιός (transliteration: skolios; 

pronunciation: skol-ee-os'), which means crooked. In essence, while a normal spine 

appears straight when seen from behind, a scoliotic spine appears “S” or “C” shaped (see 

Figure 1.2). Other than being simply curved, the scoliotic spine might also be rotated, 

which causes a deformity of the rib cage in three dimensions (see Figure 1.3a). This 
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deformity is also known as a rib hump (Roach, 1999). Other visible symptoms of 

scoliosis are unevenness in the hips and in the shoulders (see Figure 1.3b). 

 

Figure 1.2 Scoliotic spine (left) vs. normal spine (right) 

Source: http://www.nlm.nih.gov/medlineplus/ency/imagepages/1114.htm 

 

  

(a) (b) 

Figure 1.3 Rib cage deformity (a), and other visible symptoms of scoliosis (b) 

Source for (a): http://z.about.com/d/p/440/e/f/19465.jpg 

Source for (b): http://www.nlm.nih.gov/medlineplus/ency/imagepages/19466.htm 

 A person is diagnosed with scoliosis if their posterior spinal curvature exceeds 

10º (Kane, 1977). The magnitude of the curvature is evaluated from an x-ray procedure, 

which is explained later in this chapter. In most cases, the cause of scoliosis is unknown, 
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and thus it is referred to as an idiopathic disease. It affects about 2-3% of the population, 

and it is more common in females than in males (Rogala et al., 1978; Weinstein, 1999). 

The disease is most commonly found in children between the ages of ten to sixteen, i.e. it 

appears at the onset of puberty, and then it progresses during the periods of rapid growth. 

If it is left untreated, scoliosis can negatively impact the patient’s quality of life. For 

example, it can cause chronic back pain, respiratory problems, and impeded heart 

function (Nachemson, 1968). It is thus important to detect abnormal spinal curvatures as 

early as possible, and then to monitor the progression of the disease as closely as 

possible. 

Scoliosis is usually first detected, or at least suspected, during a school screening 

session. The method most widely practiced during such a session is the Adams forward 

bend test (Adams, 1882). This test involves the child bending forward, while dangling 

arms and keeping feet together and having knees straight (see Figure 1.4a). This way the 

examiner could qualitatively indicate the presence or absence of any trunk asymmetry. 

The presence of any visible asymmetry is often quantified by measuring the angle of 

trunk rotation. This is the angle between the horizontal plane and the line across the back 

going through the point with maximum deformity. The angle of trunk rotation is usually 

estimated with a surface measuring device called a scoliometer (see Figure 1.4b) 

(Bunnell, 1984). Even though the scoliometer measurements are not considered accurate 

and reliable enough to guide scoliosis treatment, the instrument is still useful as a tool for 

preliminary diagnosis and further x-ray referral (Côté et al., 1998). So, once scoliosis is 

detected, or at least suspected, at the screening stage, a full-length standing spinal x-ray is 

taken in order to better quantify the spinal curvature (see Figure 1.5a). This is done by 
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measuring what is referred to as the Cobb angle (Cobb, 1948). The measurement involves 

drawing two lines. The first line is the one tangential to the superior endplate of the 

superior end vertebra (i.e. the top part of the top most angled vertebra). The second line is 

the one tangential to the inferior endplate of the inferior end vertebra (i.e. the lower part 

of the lowest most angled vertebra). The Cobb angle is the angle of intersection between 

the two lines (see Figure 1.5b). 

 
 

(a) (b) 

Figure 1.4 Adams forward bend test (a), and the use of a scoliometer (b) 

Source for (a): http://www.britscoliosissoc.org.uk/images/uploaded/scoliosis1.jpg 

Source for (b): http://www.uthscsa.edu/scoliosis/images/Scoliometer.jpg 

The degree of the curvature and the speed of its progression are essential factors 

for assigning optimal scoliosis treatment. A curvature between 25º and 40º could be 

treated conservatively with exercises or bracing (see Figure 1.6). However, rapidly 

changing curvature or curvature exceeding 40º-50º requires surgery (Roach, 1999). This 

is why the disease progression must be monitored by periodic examinations 

(Montgomery and Willner, 1993; Torell et al., 1981). Unfortunately, these examinations 

involve taking additional spinal x-rays. Usually, a series of radiographs needs to be 

obtained as often as every three to four months for a period of time as long as five to six 
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years. This may amount to a significant exposure to ionizing radiation and a potential risk 

of cancer (Doody et al., 2000; Levy et al., 1996).  

  

(a) (b) 

Figure 1.5 Spinal x-ray (a), and measurement of the Cobb angle (b) 

Source for (a): http://www.planetc1.com/images/scoliosis-xray-female.jpg 

Source for (b): http://www.e-radiography.net/radpath/c/cobb-angle.jpg 

 

 
 

(a) (b) 

Figure 1.6 Examples of a Boston brace (a), and a Milwaukee brace (b) 

Source for (a): http://www.prosthetics-orthotics.net/scoliosis.jpg 

Source for (b): http://transabled.org/wp-content/uploads/2007/04/milwaukee.jpg 
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For this reason, it is imperative to minimize the use of radiographs and introduce a 

radiation-free methodology for monitoring the progression of scoliosis. Also, even 

though the Cobb angle method is the standard way of quantifying the curvature of the 

scoliotic spine, it is difficult to detect small changes in curvature due to errors in the 

measurements. Intraobserver variability of 5º (i.e. measurements repeatedly made by the 

same observer) and interobserver variability of 10º (i.e. measurements performed by 

different observers) at 95% confidence have been reported for Cobb angle measurements 

by qualified professionals (Goldberg et al., 1988; Morrissy et al., 1990). This is another 

reason why the Cobb angle method is not ideal for monitoring the progression of 

scoliosis. In addition, the traditional x-ray method for quantifying the spinal curvature 

and for monitoring the progression of the disease produces 2D images. It thus ignores the 

3D nature of the scoliotic deformity, which includes both lateral and rotational 

distortions. In fact, the rotational component of scoliosis is a key factor in the progression 

of the spinal curve (Brown et al., 1976). An example of a non-radiographic 3D scanning 

technology is the magnetic resonance imaging (MRI). However, it is not suitable for the 

detection and monitoring of scoliosis, because the imaging is performed with the patient 

lying down instead of standing up, which neglects the effects of gravity on the spinal 

curvature. Furthermore, MRI would not be realistic for monitoring the disease 

progression because it is very expensive and often unavailable (Kotwicki, 2008). 

However, the fact that the internal spine curvature and the torso surface deformity 

are highly correlated, makes quantifying the scoliotic deformity of the torso surface a 

valid monitoring alternative (Jaremko et al., 2002c). This already established correlation 
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motivated the current study, which deals with the design and implementation of a low-

cost photogrammetric system for the 3D surface reconstruction of scoliotic torsos.  

 

1.2 Research objectives 

The ultimate goal of this research project is to have a 3D measurement system, 

which could be of aid during the monitoring of the progression of scoliosis. In order for 

the system to be successfully used for routine scoliosis examinations in clinical 

environments, it must to fulfill the following requirements:  

• The system must be non-invasive, radiation-free, and non-contact (i.e. no markers 

should be needed on the patient’s body, other than for system validation); 

• The system should provide high-precision 3D measurements (i.e. accurate to the 

millimetre or even sub-millimetre level); 

• The system should be inexpensive – ideally, it should be built from low-cost and 

off-the-shelf hardware components, which could be easily replaced if broken; 

• The system should have the capability to reconstruct homogeneous surfaces (i.e. 

the surface of a human torso), kinematic objects (i.e. the patients should not have 

to worry about staying absolutely still during data acquisition), and entire 3D 

objects (i.e. the full torso surface – the back, the front, and the two sides – should 

be measured); 

• The system should be automated, i.e. the final product should be delivered 

quickly, without the requirement of a high level of expertise while the data is 

being processed.  
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In addition, it would be beneficial if the system could have the flexibility to be extended 

to dealing with other applications. For example, applications other than biomedical 

imaging may include structural deformation monitoring and cultural heritage 

documentation.  

 

1.3 Thesis outline 

As a summary, this chapter first defined scoliosis, and listed some basic facts 

about the disease. Then, the options of treatment and the traditional ways of detecting and 

monitoring the progression of the disease were explained. After that, the necessity for 

minimizing radiation exposure by taking advantage of the correlation between the spinal 

deformity and the torso surface asymmetry were described. The last section concluded 

with a list of desired specifications for a 3D surface reconstruction system that could be 

used for routine scoliosis checks in a clinical environment. 

The rest of the chapters in this thesis work are organized as follows: 

• Chapter Two includes a literature review of commercial systems for 3D surface 

reconstruction and also custom built photogrammetric systems; 

• Chapter Three explains the proposed system design, and describes the necessary 

prerequisites for the system to be functional as desired; 

• Chapter Four describes the processing methodology for the generation of the torso 

model; 

• Chapter Five discusses the current system implementation and lists the 

experimental results to date; and 
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• Chapter Six summarizes the thesis by including conclusions and 

recommendations for future work. 
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Chapter Two: Literature Review 

 

This chapter addresses the necessity of having an alternative to the traditional way 

of quantifying spinal deformity, i.e. it is suggested that torso surface measurements 

should complement or replace the estimation of the Cobb angle from radiographs. After 

that a brief history of surface measurements for scoliotic torsos is given, and some of the 

most recent commercially available scanners and custom built photogrammetric systems 

for 3D reconstruction are reviewed. 

 

2.1 Torso surface measurements for estimating the spinal deformity 

The traditional methodology to diagnose, and later on, to monitor the progression 

of scoliosis involves measuring the so called Cobb angle from a single full-length 

standing spinal x-ray. If the particular patient has a spinal curvature of 10º or more, he or 

she is diagnosed with scoliosis, and a series of additional periodic x-ray examinations is 

undertaken in order to monitor the progression of the disease. The most important 

problems of the traditional Cobb angle method for monitoring the progression of scoliosis 

are:  

• the estimated spinal curvature is in 2D instead of 3D,  

• small changes showing the disease progression cannot be detected confidently due 

to errors and large variability in the Cobb angle measurements, and  

• the total amount of ionizing radiation accumulates over time and increases the 

potential risk of cancer.  
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The use of stereo radiographs makes it possible to reconstruct and visualize the 

spinal deformity in 3D (Hindmarsh et al., 1980; Howell and Dickson, 1989; Kratky, 

1975; Suh, 1974). However, taking more than one x-ray at every examination involves 

exposure to even more ionizing radiation. An alternative to this traditional way of 

monitoring the progression of scoliosis is to take advantage of the high correlation 

between the torso surface deformity and the internal spinal curvature (see Figure 2.1). 

This approach works by creating indices of the torso asymmetry, which relate to the 

spinal deformity (Jaremko et al., 2002c). The idea is to first complement and eventually, 

if possible, to completely replace the radiographic Cobb angle method with equivalent 

surface measurements.  

There was a research project at the University of Calgary, where 3D torso surface 

measurements from optical range sensors were combined in a single digital model with 

spine and rib cage computer measurements from stereo x-rays (Poncet et al., 2000). One 

of the goals of that research project was to evaluate whether using 3D surface 

measurements, which depict the torso surface asymmetry, can be used to predict the 

spinal deformity (Jaremko et al., 2001). First, cross-sectional indices of the torso surface 

asymmetry were computed from the combined digital model, and then, these indices were 

used as input to a mathematical model based on artificial neural networks (ANN), in 

order to estimate the spinal deformity (Jaremko et al., 2000; Jaremko et al., 2002b). The 

results from the ANN approach were comparable to the manual measurements of the 

Cobb angle from a single x-ray. Moreover, they were considered better, because they had 

reduced measurement variability. So, it was concluded that the torso surface asymmetry 

can be used to reliably predict the spinal deformity (Jaremko et al., 2002a). Some of the 
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most recent work of this research was published by Swanson (2008). Naturally, the 

higher the quality of the 3D torso surface reconstruction, the better the results will be 

from the ANN method. The inner workings of the ANN algorithm are not within the 

scope of this thesis work, however, improving the 3D torso surface reconstruction is. The 

rest of this chapter will attempt to summarize some available systems, which provide 

radiation-free non-contact 3D measurements that might be suitable for scoliotic torso 

reconstruction.  

  

(a) (b) 

  

(c) (d) 

Figure 2.1 Two examples of the correlation between the torso surface deformity (a, 

c) and the internal spinal curvature (b, d) 

Source for (a): http://www.nlm.nih.gov/medlineplus/ency/images/ency/fullsize/1728.jpg 

Source for (b): http://img.medscape.com/pi/emed/ckb/radiology/10295.jpg 

Source for (c): http://www.bundesverband-skoliose.de/img/skoliose_bild.jpg 

Source for (d): http://medicineworld.org/images/blogs/6-2007/scoliosis-2020.jpg 
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2.2 Brief history of surface measurements for scoliotic torsos 

Methodologies for measuring the surface of scoliotic torsos have been published 

since the late 19
th

 century. From the end of the 19
th

 century until the 1920s, mostly 

inclinometer-type instruments were used (D'Osualdo et al., 2002). These instruments 

were simple, hand-held and obviously radiation-free, but they required contact with the 

patient. After World War I, the use of radiographs became popular, so torso surface 

measurements were ignored until the late 1950s (D'Osualdo et al., 2002). In the 1960s, 

due to the awareness of the potential negative effects of ionizing radiation, simple hand-

held instruments were once again designed for widespread screening programs. Since the 

1970s and 1980s, with the introduction of computers, and the advancements in projectors 

and cameras, new radiation-free systems were developed for performing non-contact 

measurements (D'Osualdo et al., 2002). Some of the more notable techniques included 

Moiré topography (Adair et al., 1977; Willner, 1979), rasterstereography (Drerup and 

Hierholzer, 1994; Frobin and Hierholzer, 1982), and optical triangulation scanning using 

incoherent light (Dawson et al., 1993; Turner-Smith et al., 1988; Weisz et al., 1988) and 

coherent light, i.e. laser (Ishida et al., 1982).  

Moiré topography is a technique, which allows for a permanent record of body 

contour lines. This method works by illuminating the subject of interest with a spot light 

through a specially designed screen. The interference between the screen and its shadow 

creates a fringe pattern, which appears as contour lines on the back of the patient (see 

Figure 2.2a). These contour lines are then photographed by a camera (typically a film 

single-lens reflex was used) in order to be further analyzed for body 
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asymmetries/deformities (Adair et al., 1977; Willner, 1979). One of the major 

disadvantages of this technique is that the appearance of the contour lines depends on the 

position and orientation of the subject with respect to the screen and the spot light. 

In rasterstereography, a grid pattern (see Figure 2.2b) is projected onto the back 

surface of the patient, and a still or video camera is used to capture the resulting 

projection. The camera must be positioned and oriented at a known displacement and 

rotation from the projector. Such known geometry is necessary in order to be able to 

compute the spatial coordinates of points on the surface of the patient’s back via a 

triangulation algorithm. Thus, this method performs a 3D reconstruction in the form of a 

point cloud (Drerup and Hierholzer, 1994). Traditionally, slide projectors loaded with 

diapositives, and film or analogue video cameras were used. 

  

(a) (b) 

Figure 2.2 Examples of Moiré topography (a), and rasterstereography (b) 

Source for (a): http://biomech.ftvs.cuni.cz/pbpk/kompendium/rhbengn/img/zada.gif 

Source for (b): Frobin and Hierholzer (1982) 

Optical triangulation scanning is very similar to rasterstereography. One of the 

differences is that instead of a grid pattern, usually a single line is projected by an 
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incoherent light source or a laser emitter. Another difference is that a mechanical 

apparatus is needed to perform a sweeping motion so that the projected line can scan the 

full field of view of the camera (Ishida et al., 1982; Turner-Smith, 1988). See section 

2.3.1 for an expanded description of triangulation scanners.  

For more details on Moiré topography and rasterstereography, and for an 

evaluation of their performance for torso surface measurements please refer to Robu 

(2006) and Chang (2008). The next section will emphasize the more up-to-date 3D 

reconstruction systems that are currently commercially available. 

 

2.3 Commercially available systems for 3D reconstruction 

There is a vast number of systems for 3D reconstruction, which are currently 

available on the market. Since it is not possible to list them all, the basic range 

measurement principles are explained first, and then examples are given for each type of 

system right after. The section first covers time-of-flight systems (generally based on 

coherent light), and then covers triangulation-based system (based either on coherent or 

incoherent light). At the end of the section, a summary regarding the suitability of these 

systems for scoliotic torso measurements is given. 

2.3.1 Time-of-flight systems 

One category of commercially available 3D reconstruction systems, based on the 

range measurement principle, is the time-of-flight (TOF) instruments. TOF instruments 

are primarily laser scanners, and they could be either pulse-based or phase-based. Please 

note that in some literature, e.g. Fröhlich and Mettenleiter (2004), phase-based 

instruments are not categorized under TOF systems, but as a separate category. The 
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pulse-based instruments emit a pulse at time tE, and receive its echo reflected from the 

scanned object at time tR (see Figure 2.3a). The range (or slope distance), ρ, can be 

computed by using equation (2.1) (Petrie and Toth, 2009). The range accuracy of pulse-

based laser scanners is usually on the order of 0.5cm to 1cm (Blais, 2004).  

2

t∆c
ρ

⋅
=  (2.1) 

where: 

c = speed of light ( ≈ 3x10
8
 m/s), and 

 ∆t = tR - tE, is the time elapsed between emitting and receiving the pulse 

An example of a pulse-based laser scanner is the Trimble GX 3D Scanner (see Figure 

2.4a). It has a field of view of 360º (horizontal) x 60º (vertical), and range from 2m to 

200m with accuracy of 1.4mm to 6.5mm, respectively. It is capable of collecting 5,000 

points per second with a density of 3mm at 100m or 32 µrad increments (Trimble, 2009). 

The phase-based instruments emit and receive a continuous wave (as opposed to a 

pulse) (see Figure 2.3b). The required measurements for the instrument include the 

number of complete wavelengths (or the integer ambiguity), n, and the phase difference 

angle, φ, between the emitted signal and the signal received after its reflection from the 

object being scanned (see Figure 2.3c). The range, ρ, can be computed by using equation 

(2.2) (Petrie and Toth, 2009). The range accuracy of phase-based laser scanners is usually 

on the order of 3mm to 5mm or much better depending on whether amplitude or 

frequency modulation is used (Blais, 2004).  

2

λ∆λn
ρ

+⋅
=  (2.2) 
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where: 

cTc
f

1
λ ⋅=⋅= , is the wavelength, which is inversely proportional to the 

frequency, f, and proportional to the period, T, and 

 λ
π2

φ
λ∆ ⋅

⋅
= , is the fractional part of the wavelength, λ 

An example of a phase-based laser scanner is the Leica HDS6100 (see Figure 2.4b). It 

has a dual-axis tilt sensor with a field of view of 360º (horizontal) x 310º (vertical), and 

range from 1m to 50m with accuracy of 5mm and 9mm, respectively. It is capable of 

collecting 500,000 points per second with density of 2mm at 10m or 8mm at 50m (Leica, 

2009).  

  

(a) (b) 

 

(c) 

Figure 2.3 Examples of pulse-based (a), and phase-based (b, c) laser ranging 

Source: Petrie and Toth (2009) 
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TOF systems, both pulse-based and phase-based, are mainly preferred for 

measurements of long ranges, because the range precision remains almost constant for 

the entire volume of measurements (Blais, 2004). Exceptions to this rule are the newly 

developed range cameras. For example, the SwissRanger SR4000 (see Figure 2.4c) 

supports ranges of either 0.8m to 5m or 0.8m to 10m at 54 frames per second, with 

typical absolute accuracy of 10mm and 15mm, respectively. However, other than the low 

accuracy, these cameras have a relatively narrow field of view – 43.6º (horizontally) and 

34.6º (vertically) – with a sensor matrix of only 176 pixels by 144 pixels. The pixel size 

is 40µm, and the nominal focal length is 10mm (Lewis and Waizenegger, 2010). 

  

 

(a) (b) (c) 

Figure 2.4 Trimble GX 3D Scanner (a), Leica HDS6100 (b), and SwissRanger 

SR4000 (c) 

Source for (a): http://www.pobonline.com/Files/Images/TrimbleGX3DScanner.JPG 

Source for (b): http://hds.leica-geosystems.com/thumbs/originals/ADEI_1949.JPG 

Source for (c): http://www.acroname.com/robotics/parts/R317-SR4000-CW.jpg 

2.3.2 Triangulation systems 

Another category of commercially available 3D reconstruction systems, based on 

the range measurement principle, is the geometric or active optical triangulation 

instruments (also referred to as digitizers). In optical triangulation, a minimum of two 
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sensors (see Figure 2.5) with known relative location and orientation, also referred to as 

exterior orientation parameters (EOPs), are needed. One of the sensors is a source of light 

(either a laser emitting coherent light, or a projector emitting incoherent light). This light 

source projects a point, a line or a block pattern, which is displaced onto the surface of 

interest or the object being scanned. The other sensor is a camera with known interior 

orientation parameters (IOPs). The camera captures the generated light, and the 

deformation of this light onto the surface or object of interest is used as a direct function 

to derive the range and to calculate the 3D object coordinates (Blais, 2004).  

 

Figure 2.5 Setup of a triangulation scanning system 

 

Triangulation systems are most suitable for close range reconstruction, and are generally 

a lot more accurate than TOF laser scanners. However, one limitation of these systems is 

that the baseline distance between the source of light and the camera has a fixed length, 

and the precision of the reconstructed 3D coordinates in the depth direction decreases as 

the object of interest moves away from the system. 
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There is an immense variety of such optical triangulation systems, but they can be 

generally categorized into three types: single point scanners, slit or line scanners and 

block pattern systems:  

• The single point scanners operate with coherent light (i.e. laser). They have high 

resolution and very good accuracy, because of the large depth of focus. However, 

they require special scanning mechanisms in order to operate appropriately (Blais, 

2004).  

• The slit scanners project a line instead of a single point, so complete profiles are 

detected at a time (see Figure 2.6a). They operate with either coherent or 

incoherent light. They are mechanically and optically simpler and less costly than 

the single point scanners, but there is a compromise between the depth resolution 

and the field of view, and also they have poorer immunity to ambient light (Blais, 

2004).  

• The block pattern systems project either Moiré fringes or encoded/structured 

patterns (see Figure 2.6b). Generally, there is no need for a mechanical apparatus 

and incoherent light is used. However, they are most appropriate for large smooth 

surfaces with small depth variation, because compared to single point and line 

scanners, they have smaller depth of focus, and reduced dynamic range in 

intensity (Blais, 2004).  

Examples of 3D reconstruction triangulation systems are the InSpeck 3D Mega 

Capturor II (see Figure 2.7a) and the Konica Minolta VIVID 9i Non-Contact 3D Digitizer 

(see Figure 2.7b). The InSpeck system is a block pattern system, and it projects a 

changing sinusoidal fringe pattern, which is captured by a digital camera in a few frames. 
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It has a field of view of 1.19m x 0.95m, and depth of field of 1m. At a distance of 1m to 

1.5m, points are collected every 1mm. In less than one second the system can collect data 

that, after post processing, would yield up to 1.3 million points (InSpeck, 2009). The 

Minolta system is a laser line scanner. It has three lenses: 8mm (wide angle), 14mm 

(standard), and 25mm (telephoto). The projected laser line sweeps across the object being 

scanned, while being captured by a 640 pixels x 480 pixels digital camera. Its range is 

either from 0.6m to 1m or 0.5m to 2.5m. It takes 2.5 seconds to collect a point cloud, 

which is accurate to 50µm (Minolta, 2007).  

 
 

(a) (b) 

Figure 2.6 Linear scanner setup (a) and an encoded block pattern with a different 

resolution (b) 

Source: Blais (2004) 

Both the InSpeck and the Minolta systems are quite heavy duty. An example of a lighter 

weight triangulation unit is the hand-held Polhemus FastSCAN Scorpion (see Figure 

2.7c). This is a trigger-operated laser line scanner. It is capable of scanning 50 lines per 

second. At a distance of 20cm from the object of interest, each line has a swath of up to 

75cm, and the resolution and point accuracy are about 0.5mm and 0.75mm, respectively. 
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The downside of this scanner is that it is very sensitive to any metal objects nearby 

(Polhemus, 2008). 

 

  

(a) (b) (c) 

Figure 2.7 InSpeck 3D Mega Capturor II (a), Konica Minolta VIVID 9i (b), and 

Polhemus FastSCAN Scorpion (c) 

Source for (a): http://www.inspeck.com/pages/product_pictures/MegaCapturorII.jpg 

Source for (b): http://www.moreframes.com/storage/KonicaMinoltaVivid9i.jpg 

Source for (c): http://www.polhemus.com/polhemus/assets/FastSCANScorpion.jpg 

2.3.3 Summary of the commercially available systems for 3D reconstruction 

The previously mentioned commercially available systems for 3D reconstruction 

differ in performance, so this subsection is an attempt to compare them according to their 

suitability to be used for scoliotic torso measurements. The main criteria for comparison 

are accuracy of reconstruction, cost of the system, and ability to perform entire 360º 

reconstruction of kinematic human subjects. Please note that acquiring the price for a 3D 

reconstruction system, without the intension of purchasing one, is not a trivial matter, so 

the given cost ranges are approximate estimates. As it could be seen in Table 2.1 there is 

a trade-off between the cost of the system and the accuracy or the speed of the 

reconstruction process. For example, the SwissRanger SR4100 is the most affordable 

system, however, it has the worst accuracy. On the other hand, the Konica Minolta 
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VIVID 9i has the best accuracy, but it is fairly expensive. Since a single system could 

only map one surface at a time, at least four units would be needed to acquire the entire 

human torso, i.e. one each for the back, the front and the two sides. This would set the 

cost for a full scoliosis detection and monitoring system even higher. Actually, one of the 

main drawbacks of commercial 3D reconstruction systems is their extremely high cost 

(e.g. the Trimble GX 3D Scanner and the Leica HDS6100 could cost up to a couple of 

hundred thousand dollars).  

Table 2.1 Comparison of commercially available systems regarding the 3D 

reconstruction of a human torso 

System 

Unit Cost Range 

[$ x 1000]
 
 

Accuracy 

[mm] 

Speed 

[sec] 

GX 3D Scanner 100-200 1.4 ~3-4 

HDS6100 100-200 5 ~1-2 

SR4000 10-20 10 <1 

3D Mega Capturor II 50-100 1-2 1 

VIVID 9i 50-100 0.050 2.5 

FastSCAN Scorpion 20-50 0.75 ~1-2 

 

Also, the Polhemus FastSCAN Scorpion is on the low end in the price range and at the 

same time it has sub-millimetre accuracy, but due to the nature of its data acquisitioning 

(i.e. being a hand-held instrument), it is not suitable for reconstruction of kinematic 

human subjects. In fact, the speed of data acquisitioning and the capability of 

synchronizing all the necessary units, are two of the most important factors in choosing 
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the desired scoliosis system. This is because a system, which takes a relatively long time 

to obtain a dense torso point cloud, might introduce 3D reconstruction errors due to the 

patient’s breathing and movement. In this regard, even though any of the listed systems 

could be capable of producing a full 360° reconstruction of a static object with four units, 

only the SwissRanger SR4100 and the InSpeck 3D Mega Capturor II are suitable for the 

reconstruction of kinematic human torsos. 

Another major disadvantage of some of these commercial ranging systems is that 

they are effectively black boxes due to several reasons. First, the data could usually only 

be processed with the provided proprietary software – this is especially the case with the 

InSpeck 3D Mega Capturor II. Second, the final output does not always come with any 

precision measures, and the accuracy of the reconstructed 3D coordinates might not be as 

optimistic as listed in the manufacturer’s specifications. Lastly, since limited or no 

specific information is given about the system sensors or the mathematical model behind 

the reconstruction model, the end user cannot always interpret the outcome or interfere in 

the reconstruction process. For example, in case of a problem with the final results, the 

user might not be capable of resolving the issue due to lack of knowledge as to which 

step of the processing was erroneous. Sometimes, even with knowledge, the user might 

not be able to interfere in the processing, because the file formats used are proprietary. 

Due to these reasons, despite their good potential, commercial systems for 3D 

reconstruction are not recommended for measuring scoliotic torsos. 
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2.4 Custom-built photogrammetric systems for 3D reconstruction 

Other than commercial systems for 3D reconstruction, custom-built 

photogrammetric systems, based on multiple cameras, also have the potential to be used 

for scoliotic torso measurements. Photogrammetry could be defined as the inverse 

process of photography. In photography a 3D object is captured in 2D images, and in 

photogrammetry multiple 2D images taken at different orientations are used to build a 3D 

model. The classic example of photogrammetric reconstruction is the stereo photography 

scenario (see Figure 2.8).  

 

Figure 2.8 Traditional stereo photography setup 

 

Here, after the IOPs and the EOPs are established, conjugate points are identified in the 

left and in the right images, and together with the knowledge of the locations of the left 

and the right camera perspective centres, and the orientation of the left and the right light 

rays, the location of the point of interest is intersected in the object space. The difference 

between the previously described active triangulation technique (implemented by most 

commercial instruments) and this classic stereo photography setup, is that the light source 
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is replaced by another camera. Traditional photogrammetric systems, which are 

frequently used for 3D surface reconstruction, have a few advantages over the previously 

listed commercial systems. First, they can collect images in fractions of a second, so in 

essence they do not need the patient to stay absolutely still, i.e. there is no motion 

problem (Mitchell and Newton, 2002). Second, a major advantage of photogrammetric 

systems is their high reconstruction accuracy due to the use of rigorous geometric 

modelling, i.e. implementing the collinearity equations rather than a simplified model 

such as the direct linear transformation (DLT) (Patias, 2002). Last but not least, low-cost 

off-the-shelf digital cameras and short-throw digital projectors are now flooding the 

electronics market and they are replacing the expensive analogue metric cameras and the 

custom made slide projectors used in traditional close-range photogrammetry. The use of 

such digital cameras and projectors is becoming a convenient and an inexpensive 

alternative for 3D reconstruction applications including biomedical imaging. In addition, 

the need for the movements of any parts in the system to be mechanically controlled 

during the data collection is negated through the use of multiple cameras (Siebert and 

Marshall, 2000). Remondino and El-Hakim (2006) also consider photogrammetric image 

based 3D modelling to be more complete, economical, portable, flexible and widely used 

compared to 3D commercial scanners. This study is thus motivated to investigate the 

potential for 3D reconstruction of scoliotic torsos using a photogrammetric system based 

on multiple digital cameras and projectors. There have recently been a few attempts to 

perform 3D human torso measurements with photogrammetric cameras. For example, 

Chong et al. (2009) successfully measured certain properties of the human spine with 

high precision. However, a full torso surface was not provided, rather only several 
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artificial markings, referred to as anthropometric landmarks, were reconstructed. 

Remondino (2004) reconstructed the full body, but the object space standard deviations 

were on the order of several millimetres. This was due to the fact that uncalibrated 

cameras had to be used, and it was not possible to solve for the position of the principal 

point in the self-calibration procedure. D’Apuzzo (2002) claimed high precision for 

modelling the surface of a human face, and managed to track certain body motions. 

However, only partial reconstruction of the torso was provided. In particular, only the 

front side of the subject of interest was imaged.  

The goal of this research project is to use the available know-how in the field of 

photogrammetry, and build a 3D reconstruction system, which could be used in the 

routine clinical examinations for scoliosis. Since digital cameras and projectors are 

radiation-free and also inexpensive, the main focus of this study is to have the system 

perform precise and full 360º reconstruction of kinematic objects with homogenious 

surface texture.  

 

2.5 Summary of the literature review 

In this chapter, it was first recommended that torso surface measurements should 

be used to complement or replace the traditional way of spinal deformity quantification, 

i.e. the estimation of the Cobb angle from radiographs. After that a brief chronology of 

the radiation-free alternatives for scoliosis torso measurements was given. Then, there 

was a discussion on some of the current commercially available systems for 3D 

reconstruction. The systems were classified primarily on the range measurement 

principle, i.e. they were divided as either time-of-flight or triangulation-based systems. It 
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was decided that none of the example systems were adequate for torso surface 

measurements, because they were too expensive, not accurate enough, or too slow in 

order to be able to measure kinematic subjects. The suggested solution is to have a low-

cost photogrammetric system, which does not have any motion problems, and uses 

rigorous sensor modelling so that the optimal accuracy is achieved. The next chapter 

describes the proposed system design.  
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Chapter Three: Proposed System Design 

 

This chapter focuses on the design of a photogrammetric system for the 3D 

reconstruction of the torso surface of scoliotic patients. The desired system must be able 

to perform high precision full 360º surface measurements of kinematic objects with 

homogeneous surfaces. It also has to be inexpensive and it should deliver the final results 

as quickly as possible. In order for it to meet these criteria, some key issues are carefully 

considered. First, the proposed system setup is described. Then, prerequisites for the 

optimal functionality of the system are explained. They include camera calibration and 

stability analysis, exterior orientation parameter (EOP) estimation, camera 

synchronization and pattern projection. Finally, the balance between intersection 

accuracy and matching reliability is addressed.  

 

3.1 Proposed system setup 

The proposed system for performing scoliotic torso surface measurements is 

based on photogrammetric principles. Thus, it uses images to carry out the computation 

of 3D coordinates. In order to do that, multiple cameras are first used to photograph 

different areas of the torso surface.  So, in the proposed system, several low-cost off-the-

shelf cameras together with an accompanying projector, used for projecting a pattern, are 

mounted on a metal support. This constitutes one sensor arm (see Figure 3.1a). Four of 

these sensor arms are located around the patient, so that the entire torso surface may be 

observed at the same time (see Figure 3.1b). Note that the metal piece holding the 

cameras for each sensor arm can rotate vertically through a swivel mechanism. This 
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function of the sensor arms is not needed for the image collection, i.e. there is no 

scanning involved. However, it allows the patients to easily get into position for data 

acquisition. They are able to do that by rotating one or two of the sensor arms (see Figure 

3.2).  

  

(a) (b) 

Figure 3.1 Sensor arm prototype comprised of a projector and multiple cameras 

rotating vertically through a swivel mechanism (a); design of system setup 

comprised of four sensor arms (b) 

 

The four sets of cameras are synchronized to operate simultaneously thus 

producing four surface models, i.e. one partial model of the torso from each sensor arm. 

The entire 3D torso model is then built through combining the four pieces by taking 

advantage of the overlap between them. In order for 3D reconstruction by a 

photogrammetric system to take place, there are a number of prerequisites that must be 

met. They are the following:  

• The internal and external characteristics of the cameras must be estimated, 

• Landmarks or conjugate points must be identified in the overlapping images, and 
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• The two steps above must be implemented in such a way that the best possible 

reconstruction quality would be achieved. 

The following three sections, which deal with the necessity for system calibration, the use 

of a projected pattern, and the justification for having multiple cameras in each sensor 

arm, address in detail these prerequisites for the design of the proposed system.  

  

(a) (b) 

Figure 3.2 Patient entering the system (a), and patient being ready for data 

acquisitioning (b) 

Source: Chang et al. (2009) 

 

3.2 System calibration 

The term system calibration refers to the estimation of both the internal and the 

external characteristics of the cameras employed. System calibration must be done before 

the cameras are used for the torso surface reconstruction. This is an important condition 

in order to achieve the highest reconstruction accuracy possible.   

3.2.1 Camera calibration and stability analysis 

The objective of estimating the internal characteristics of the cameras, a process 

also known as camera calibration, is to obtain the camera’s interior orientation 

parameters (IOPs). They include the principal point coordinates (xpp, ypp), the principal 
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distance, c, and the lens distortion parameters. The principal point (pp) is the projection 

of the camera’s perspective centre (PC) onto the image plane. The principal distance is 

the distance between the principal point and the perspective centre. Note (in Figure 3.3a) 

that the principal point does not necessarily coincide with the centre of the image, or with 

the fiducial centre (fc) in the case of analogue metric cameras. The lens distortion 

parameters describe any deviations from the collinearity condition, i.e. the assumption 

that the perspective centre, any image space point and its corresponding object space 

point lie on a straight line. The IOPs are necessary in order to compute the distortion-free 

coordinates of any image points, which together with the location of the perspective 

centre, are used to define the bundles of light rays at the moment of exposure.  

 

 

(a) (b) 

Figure 3.3 Illustration of the principal point offset (a); example of the collinearity 

condition and the relation between the object and the image space coordinate 

systems (b) 

 

Bundle adjustment with self-calibration is commonly used for camera calibration. 

Other than estimating for the desired IOPs, the EOPs of the images involved, and the 

object space coordinates on any tie points involved, are also solved for in the bundle 
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adjustment with self-calibration procedure. The EOPs include the location (or the 

position) of the camera perspective centre and the orientation of the image coordinate 

system with respect to the object space coordinate system. In this way, the EOPs simulate 

the position and orientation of the camera at the moment of exposure. In order for the 

EOPs to be estimated a calibration field having targets with known object space 

coordinates is necessary. The observations involved are the image coordinates of the 

measured calibration targets. The mathematical model for the photogrammetric bundle 

adjustment is the collinearity equations (Kraus, 1993): 
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(3.1) 

where: 

(xp, yp) are the observed image coordinates for point p, 

(XP, YP, ZP) are the corresponding object space coordinates for point P, 

r11 to r33 are the elements of the 3D rotation matrix, R, which relates the object to 

the image coordinate systems, and is based on the angles ω, φ, and κ, 

(X0, Y0, Z0) are the object space coordinates of camera perspective centre PC, and 

(∆xp, ∆yp) are the distortions in image space for point p. 

The above terminology involved in the collinearity condition is visually described in 

Figure 3.3b. In addition, the distortions in image space may be divided into radial lens 

distortion, decentric lens distortion, affine deformation, and others. Radial lens distortion 

may follow either a pincushion (see Figure 3.4a) or a barrel (see Figure 3.4b) pattern. 
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(a) (b) 

Figure 3.4 Examples of pincushion (a), and barrel (b) lens distortion 

Source for (a): http://commons.wikimedia.org/wiki/File:Pincushion_distortion.svg 

Source for (b): http://commons.wikimedia.org/wiki/File:Barrel_distortion.svg 

There are many existing mathematical models, which attempt to describe these deviations 

from the collinearity condition. Some examples are the Brown-Conrady model (Brown, 

1971), the USGS simultaneous multiframe analysis calibration (SMAC) (Light, 1992), 

and the Chebyshev normalized orthogonal polynomials model (Smith et al., 1992). The 

model used in this research project falls under the Brown-Conrady category, and is 

defined as follows (Kraus, 1997): 
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where: 

k1 and k2 are the radial lens distortion parameters, 

p1 and p2 are the decentric lens distortion parameters, 

a1 and a2 are the affine deformation parameters, 

r is the radial distance, r
2
 = (x′)

2 
+ (y′)

2
, and  x′ = xp – xpp, and y′ = yp – ypp, and 
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r0 is the radial distance with zero radial lens distortion (other than the principal 

point). 

Generally, the precision of the estimated IOPs during the camera calibration 

procedure depends on the camera station geometry (such that any potentially correlated 

parameters may be decoupled as much as possible), the precision of the image coordinate 

measurements, and the method of datum definition (Clarke and Fryer, 1998; Fraser, 

1997). The camera station geometry during the image acquisition defines how strong the 

bundle adjustment solution would be, so it is important to take it under serious 

consideration. It is preferred that the bundles of light rays from the cameras to the 

calibration targets intersect at an angle as close to 90º as possible in both the horizontal 

(i.e. between left and right camera stations) and the vertical (i.e. between the low and 

high camera stations) planes. Ideally, all targets should be present in all images, and the 

entire image format should be filled with targets as much as possible. Also, photographs 

in both landscape and portrait orientation must be taken in order to decouple the IOPs and 

the EOPs (Remondino and Fraser, 2006). The image measurement precision depends on 

whether natural or signalized targets are used, and whether the targets are measured 

manually or automatically. Some examples of signalized targets are crosses, circles or 

checker-board squares (see Figure 3.5). The two most common ways of datum definition 

are by either using pre-surveyed control points, or by fixing the object coordinates of 

certain points and using distance constraints. Other methods include minimally 

controlling the datum, e.g. performing inner constraints or a free-network adjustment. In 

the case of the former methods, the control points or distance measurements must be well 

distributed and encompass the entire image space as much as possible (see Figure 3.6 for 
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visual examples). In all cases, tie points are necessary to increase the redundancy and 

strengthen the bundle adjustment solution.  

   

(a) (b) (c) 

Figure 3.5 Examples of cross (a), circle (b), and checker-board (c) signalized targets 

Source: Detchev et al. (2010) 

 

    

(a) (b) (c) (d) 

Figure 3.6 Examples of control point (a-b), and distance measurement (c-d) 

distribution in the image format 

Source: Detchev et al. (2010) 

Indoor test fields for calibrating close-range photogrammetric cameras could be 

either 2D or 3D (see Figure 3.7). Examples for a 2D field are a single wall in a room or a 

portable flat board. Examples for a 3D test field are an inside corner of a room, a cube or 

a cage. Depending on whether a 2D or a 3D test field is chosen, different data acquisition 

procedures are required. The ideal option for such an indoor test field is a 3D cage. In this 

case, the observed points fill up a 3D volume, so a relatively simple image configuration 
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is needed during the data acquisition procedure. However, it is very difficult and/or 

expensive to secure space that is large enough for such a calibration cage, so a 2D test 

field is often more convenient to have. The downside of this option is that the observed 

points lie on a relatively flat surface, so a more stringent image configuration is needed. 

 
 

 

(a) (b) (c) 

Figure 3.7 Examples of 2D (a), and 3D (b-c) calibration test fields 

Source: Detchev et al. (2010) 

Also, the target points within the test field need to be surveyed. Conventionally, this is 

done with specialized surveying instruments (e.g. a total station). Again, this could be 

quite an expensive procedure, because a competent survey crew and high grade 

equipment must be available, so a less complex alternative to this is to measure distances 

between certain points in the test field with a measuring tape.  

Since consumer grade (i.e. inexpensive) cameras are being used for this research 

project, their calibration should be as simple and as practical as possible, so that the cost 

of the calibration is proportional to the cost of the cameras. So bearing this in mind, i.e. to 

avoid high cost, an easy-to-establish test field for the purpose of semi-automated indoor 

calibration is being used in this research project. The test field is comprised of a portable 

flat board (1.5m x 1.2m) with attached point targets and linear features (see Figure 3.8). 

The choice of target design fell on the checkerboard one, because it is suitable for 
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automatically detecting the target centres, and at the same time, it is practical when 

pointing and focusing on the targets with a total station (in cases whenever a total station 

needs to be used). The board was built with common construction materials and tools. It 

is sturdy enough so that it does not warp, but at the same time, it is light enough so that it 

could be moved from one location to another. Thus, its major advantages are its 

portability and compactness (Detchev et al., 2010). 

 

(b) 

  

(a) (c) 

Figure 3.8 Example of a portable calibration board (a), with collected points (b) and 

linear features (c) 

Source: Detchev et al. (2010) 

In addition, it needs a moderate number of target points, because the linear 

features are used in the estimation of the lens distortion parameters. In absence of any 

distortion, straight features, should also appear straight in the image space. Any deviation 

from straightness in the image space is attributed to the lens distortion parameters (Habib 
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and Morgan, 2003). The linear features in image space are represented by two end points 

and a number of intermediate points along the line of interest. The end points need to be 

identified in only one image, i.e. they do not need to be visible in the rest of the images, 

and their image coordinate measurements are included in the collinearity equations. The 

mathematical constraint used in order to incorporate the intermediate points as 

observations in the bundle adjustment follows the idea that the vector from the 

perspective centre to any intermediate image point is contained within the plane defined 

by the perspective centre of that image and the two points that define the straight line in 

object space (see Figure 3.9). This constraint incorporates the image coordinates of any 

intermediate points, the EOPs, the IOPs (including the distortion parameters), and the 

object space coordinates of the points that define the object space line. Thus, the 

constraint does not introduce any new parameters, and it could be written for the 

intermediate points along each line in the imagery. The equation used is the following 

(Habib et al., 2002): 

0V)VV( pBA =•×
rrr

 (3.3) 

where: 

AV
r

is the vector which connects the perspective centre of one of the images to the 

first end point, A, along the object space line, 

BV
r

is another vector which connects the same perspective centre to the second end 

point, B, along the object space line, and 

pV
r

is the vector which connects the perspective centre to the intermediate point, p, 

along the corresponding image line. 
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Figure 3.9 Perspective transformation between image and object space straight lines 

Sources: Habib et al. (2002), and Habib and Morgan (2003) 

An extension of the camera calibration is the stability analysis procedure. The 

cameras should go through such a procedure in order to verify that the estimated IOPs do 

not change significantly over time. The IOPs define the bundle of light rays for the 

camera, so it is important that the IOPs from different calibrations define bundles of light 

rays that are similar. This is necessary, because the cameras used are amateur ones (i.e. 

they were simply bought off-the-shelf), and they are not designed specifically for metric 

applications (Habib and Morgan, 2005). Checking the stability between two IOP sets for 

the same camera cannot be done by simply comparing the numerical values for the 

parameters, because the IOPs are correlated. Thus, the comparison must be done by 

estimating the similarity between the bundles of light rays defined by the two IOP sets. 

The bundle similarity method used in this research project is referred to as ROT, which 

stands for “rotation”. In the ROT method, two bundles of light rays share the same 

perspective centre, but they have different orientations in space, i.e. the two bundles are 
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rotated to reduce the angular offset between the conjugate light rays (see Figure 3.10). In 

order to evaluate the degree of similarity between the two bundles, a root mean square 

(RMS) value is computed for a simulated grid of points. The RMS value represents the 

average spatial offset along the image plane between the conjugate light rays of the two 

bundles. The bundles are deemed similar if the computed RMS value is within the 

expected image measurement accuracy (e.g. half a pixel to one pixel) (Habib et al., 2008; 

Habib et al., 2005).  

 

Figure 3.10 Visual representation of the ROT bundle similarity method 

Sources: Habib et al. (2006) 

3.2.2 Exterior orientation parameter estimation 

The camera calibration procedure is not performed while the cameras are 

mounted to their respective sensor arms. Due to the stringent requirements for the camera 

station geometry, imposed by having a 2D calibration test field, every camera is 

calibrated individually before being mounted on its corresponding sensor arm. So once 

each camera is first calibrated and mounted to the metal frames, then the relative EOPs of 

the cameras used for each sensor arm must be estimated with respect to a separate local 

coordinate system. This is achieved through another bundle adjustment procedure using a 

test field with target points, where the distances between some of the points have been 

previously measured. One of the cameras (e.g. the central one) for each of the sensor 
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arms is chosen to define its corresponding local reference frame. Since the cameras are 

rigidly mounted on the metal arms, the relative orientation parameters for the cameras on 

each of the sensor arms should stay the same. Thus, the bundle adjustment for each 

sensor arm is required to be done only once.  

 

3.3 Camera synchronization and pattern projection 

Once the system has been calibrated, the cameras are in place and are ready to be 

used. The shutter release on each camera could be controlled remotely, so that there is no 

contact with any of the cameras. In order for all the cameras to operate at the same time, 

only one remote trigger should be used. To achieve synchronization, the wire for the 

remote trigger must be split for all the cameras (see Figure 3.11). 

Another prerequisite for the proposed system is the use of projectors. The purpose 

of having them is to project a pattern (see Figure 3.12) onto the torso in order to provide 

artificial markers on its surface. This is necessary, because the torso surface is relatively 

homogeneous. With no artificial markers, it would be impossible to identify conjugate 

points in the captured imagery (see Figure 3.13).  

 

Figure 3.11 Example of a cable splitter for the camera remote trigger 
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Figure 3.12 Excerpt from the designed pattern for projection 

 

  

(a) (b) 

Figure 3.13 Example of an artificial torso mannequin imaged without (a) and with 

(b) a projected pattern 

Source: Chang et al. (2009) 
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Also, by regulating the resolution of the projected pattern, the density of the final 

generated point cloud could be controlled. The projected pattern is generated by 

randomly arranging eleven unique 3 x 3 pixel blocks (see Table 3.1). However, to 

minimize any matching ambiguity, no pixel block is repeated within a radius of six pixels 

within the pattern. During the projection of the pattern, the lighting must be managed so 

that optimal contrast of the artificial features is achieved on the surface of the subject of 

interest. Please note that the pattern is currently only used for projection, and not for 

calibrating the actual projector.  

Table 3.1 Binary encoding and corresponding images for the 3 x 3 pixel block 

patterns used 

 

Pattern ID 

 

 

Binary Encoding 

 

 

Corresponding Image 

 

  1 

 

1 1 1 

 

1 0 1 

 

1 1 1 

  

  2 

 

0  1  0 

 

1 1 1 

 

0 1 0 

  

  3 

 

1  0  1 

 

0 1 0 

 

1 0 1 
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  4 

 

1  1  1 

 

1 0 0 

 

1 0 0 

  

  5 

 

1  1  1 

 

0 0 1 

 

0 0 1 

  

  6 

 

1  0  0 

 

1 0 0 

 

1 1 1 

  

  7 

 

0  0  1 

 

0 0 1 

 

1 1 1 

  

  8 

 

1  1  1 

 

1 1 0 

 

1 0 1 

  

  9 

 

1  1  1 

 

0 1 1 

 

1 0 1 
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10 

 

1  0  1 

 

1 1 0 

 

1 1 1 

  

11 

 

1  0  1 

 

0 1 1 

 

1 1 1 

  

 

Figure 3.14 shows another example of a human face imaged without and with a 

projected pattern. In the stereo pairs without the projected pattern, it would be difficult to 

identify conjugate points, because the face has homogeneous surface texture. However, 

by projecting the pattern on the surface, there would be thousands of conjugate points 

that could be identified reliably. 

    

(a) (b) (c) (d) 

Figure 3.14 Example stereo pairs of a human face taken without (a-b), and with (c-

d) a projected pattern 
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3.4 Balance between intersection accuracy and matching reliability 

The previous two sections discussed the necessary system prerequisites prior to 

and during the data collection. This section addresses the prerequisite for optimal 

processing. In particular, the geometric setup of the cameras must be taken into 

consideration so that the system can achieve an accurate and reliable reconstruction 

solution. In order to solve for the 3D object space coordinates of points on the torso 

surface, these points must be first identified in image space. The identification of 

conjugate points in overlapping images is preferably done through an automated 

matching procedure in order to speed up the processing time and also to minimize the 

level of expertise required. In automatic image matching, conjugate points are identified 

through a measure that quantifies the degree of similarity between regions in the 

overlapping areas of the images. Therefore, the closer two camera stations are positioned, 

the more similar the two images would appear (see Figure 3.15a and Figure 3.15b), and 

the more reliable the automated matching procedure would become. This is why a short 

baseline between two cameras is ideal when it comes to automated image matching.  

  

(a) (b) 
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(c) (d) 

Figure 3.15 Small differences in relief displacement between images with a short 

baseline (a-b); significant differences in relief displacement between images with a 

large baseline (c-d);  

Source: Chang (2008) 

On the other hand, the baseline between two camera stations in stereo photogrammetry 

must be sufficiently large so that the intersection angle of two conjugate light rays is as 

close to 90° as possible. According to equation (3.4), at a constant depth (i.e. the distance 

between the cameras and the object to be reconstructed), Z, the depth precision, σZ, 

improves with the increase of the baseline distance, B, until the light rays coming from 

the perspective centres of the two cameras form a right angle triangle (see also Figure 

3.16a and Figure 3.16b) (Förstner et al., 2004).  

xyZ σ
Z/B

s
2σ ⋅⋅=  (3.4) 

where: 

c

Z
s = , is the image scale, and 

σxy is the image point measurement precision 
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(a) (b) (c) 

Figure 3.16 Intersection of conjugate light rays with a short baseline between the 

two camera perspective centres (a); intersection of two conjugate light rays at an 

angle close to 90° (b); multiple light ray intersection (c) 

 

Thus, this large baseline camera station geometry optimizes the intersection accuracy. 

For example, in Figure 3.17, notice how the surface reconstruction in the case of a large 

baseline has less noise and clearer features compared to the one in the case of a short 

baseline. However, in the large baseline scenario, significant relief displacement is 

usually present, and this causes occlusion problems in the images. For example, see how 

the right side of the nose is not visible in the left image in Figure 3.15c and vice versa in 

Figure 3.15d. Thus, the automated image matching could become quite problematic 

(Okutomi and Kanade, 1993). In such cases, undesired manual operator intervention is 

required to double-check the reliability of the results. This is why, in the proposed 

system, the torso is simultaneously photographed using multiple cameras from different 

viewpoints, which are close together, and automatic image matching is performed 

between the adjacent exposure stations with short baselines. After that, conjugate points 

are tracked through all images, and every point is reconstructed through a conjugate light 

ray intersection from multiple images (see Figure 3.16c). In this manner, the procedure 

generates a surface model by taking advantage of the reliable matching in the images 
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with a short baseline and the accurate multiple light ray intersection from the images with 

a large baseline. In addition, multiple light ray intersection increases the redundancy and 

it improves the ability to detect blunders in the 3D coordinate computations.  

 

 

(a) (b) 

Figure 3.17 Surface reconstructed using a stereo pair with an intersection angle 

smaller than 45° (B = 0.3m, and Z = 1.6m) (a); surface reconstructed using a stereo 

pair with a larger baseline (B = 1.3m, and Z = 1.4m) (b) 

Source: Chang (2008) 

3.5 Summary of the proposed system design 

This chapter explained the design of the proposed photogrammetric system for 3D 

reconstruction of the torso surface of a scoliotic patient. First, the system setup was 

described. Then, the prerequisites for optimal functionality, such as system calibration, 

camera synchronization and pattern projection, were explained. The section on the 

system calibration included an explanation of camera calibration, camera stability 

analysis, and exterior orientation parameter determination. The chapter ended with a 

discussion on the balance between intersection accuracy and matching reliability. It was 

concluded that multiple light ray intersection is necessary in order to have high accuracy 
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and reliable automatic image matching at the same time. The next chapter discusses the 

proposed processing methodology in more detail. 
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Chapter Four: Processing Methodology 

 

This chapter addresses the necessary components of the processing methodology, 

i.e. how the image data is processed once it is collected by the system, in order to 

generate the desired 3D surface model of the entire torso. The first major processing task 

is to perform the partial reconstruction of the torso surface model for each of the four 

sensor arms. This is achieved by:  

• carrying out corner detection on every image,  

• doing image matching for every stereopair in order to identify conjugate corner 

points,  

• tracking the same matched corners through the neighbouring stereopairs, and  

• finally, intersecting the multiple light rays coming from the tracked corners.  

Each piece of the partial torso surface model is defined in the reference frame of its 

corresponding sensor arm. Therefore, the four reconstructed surface models are in four 

different reference frames. Also, the relationship between these reference frames cannot 

be assumed to be rigid. This is, because one or two of the sensor arms would be moving 

up and down whenever a patient enters the system for data collection. This is why the 

second major processing task is to register these four surface models in the same 

reference frame. The surface registration is achieved in two phases. First, the 

neighbouring surfaces are initially registered to each other through a pairwise surface 

registration process, which establishes the initial transformation parameters between the 

involved surfaces and also the correspondence between conjugate surface elements in the 

overlapping areas. Then, global fine tuning of the alignment between all the surfaces is 
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performed through a multiple surface registration process. The proposed procedure for 

the 3D torso model generation is summarized in Figure 4.1 and is explained further in the 

following sections. 

 

Figure 4.1 The proposed procedure for 3D surface reconstruction 

 

4.1 Surface reconstruction 

In order to optimize the total processing time, the corner detection and the image 

matching are restricted to a region of interest (ROI), i.e. the region occupied by the torso, 

and the image space outside of this region is ignored. The region of interest is manually 

defined by the user though a digitization process, and the output is a binary mask (see 

Figure 4.2). The rest of the surface reconstruction processing is automated. 
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(a) (b) 

Figure 4.2 Example of an original image of an artificial torso mannequin (a), and a 

region of interest mask (b) 

 

4.1.1 Corner detection and image matching 

The first step in the surface reconstruction processing is identifying features of 

interest in every image. In the case of the proposed system, the features of interest are the 

corners in the projected pattern, and they are extracted using the Harris operator (Harris 

and Stephens, 1988). The parameters involved in the Harris operator include a corner 

strength threshold, a sigma value for generating a Gaussian smoothing filter, and a radius 

value for non-maximal suppression. Further on, the image matching algorithm of choice 

for the proposed system is based on normalized cross correlation (NCC), which is an 

efficient technique for performing area-based matching. The idea is that a template in one 

image is compared to a matching window in another image (see Figure 4.3). The 

matching window moves within a search window, and the location with highest 

normalized cross correlation coefficient is considered the correct match (Schenk, 1999). 
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Figure 4.3 Illustration of area-based image matching 

 

In the proposed system, the template is centred at a detected corner in the left image, and 

the moving matching window jumps through the detected corners within the search 

window in the right image. Without any a-priori information, the location and the size of 

the search window are only constrained to the previously selected ROI. In cases when 

high megapixel cameras are used, this ROI could end up being fairly large. This would 

prolong the time necessary for processing, and at the same time create potential risk of 

matching ambiguities. Therefore, in order to decrease computational time and to avoid 

any matching ambiguities, it is necessary to reduce the search window as much as 

possible. This is accomplished by applying two preprocessing steps: first, the y-parallax 

is eliminated to constrain the search window in the row direction, and second, the x-

parallax is predicted in order to constrain the search window in the column direction. The 

former is accomplished by performing epipolar resampling, and the latter by employing a 

hierarchical matching strategy. These two concepts are explained in the following two 

subsections. 
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4.1.1.1 Epipolar resampling 

Raw stereo image pairs contain y-parallax. This means that the y-pixel values of 

points in the left image would not equal the y-pixel values of the same points in the right 

image. Figure 4.4a visually describes this problem. The objective of the epipolar 

resampling is to generate normalized image pairs where corresponding points appear on 

the same row of the two images (see Figure 4.4b), i.e. the y-parallax is removed (Cho et 

al., 1992; Morgan et al., 2006). The required pieces of information for the epipolar 

resampling include the EOPs of the exposure stations and the IOPs of the involved 

cameras and are estimated from the system calibration. In order for the proposed system 

to be able to handle the impact of potential errors in the IOPs and EOPs, the size of the 

search window in the row direction is chosen to be slightly larger than the size of the 

template. 

 

(a) 
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(b) 

Figure 4.4 Conjugate points appear on different rows in the original stereopair (a), 

and on the same row after normalization according to epipolar geometry (b) 

 

4.1.1.2 Hierarchical matching strategy 

After the epipolar transformation, the normalized image pairs would not have y-

parallax any longer. However, they would still contain x-parallax. This means that the x-

pixel values for points in the left image would not equal the x-pixel values of their 

corresponding points in the right image. For example, if a normalized image pair is 

examined manually, it could be noticed that there is a wide range of x-parallax values for 

conjugate points. Figure 4.5 shows that on the left side of the imaged object the x-

parallax value of a conjugate point pair is more than 100 pixels, at the centre of the 

imaged object the x-parallax value is close to zero pixels, and on the right side – it is over 

200 pixels. The idea behind a hierarchical matching strategy is to perform the matching 

process iteratively. More specifically, at each iteration, the x-parallax of any matched 

conjugate points is calculated, and its value is used as a prediction to aid the matching 

process in the subsequent iteration. The hierarchical matching strategy proposed in this 

research work is similar to the use of image pyramids for the matching of aerial 
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photographs, which is a common way of speeding up the generation of digital surface 

models (Ackermann and Hahn, 1991). However, instead of resampling the images from 

coarse to fine resolution, the density of the corner detection at every matching iteration is 

controlled.  

 

Figure 4.5 Example of a normalized stereo pair, where sample corresponding points 

in the left and right images have significantly different x-parallax values 

 

In the first iteration, without any knowledge of the x-parallax, a value of zero is 

assumed. This means that the search window in the right image is centred at the same 

location as the template in the left image. However, the two images are not taken from 

the same position, i.e. the x-parallax is not zero. This is why a large search window must 

be used to compensate for its incorrect location, and also a large template window must 

be used to avoid any potential matching ambiguities. Having large search and template 

windows increases the time necessary to perform computations, so this is why fewer 

points or lower corner density must be used initially. After the matching process in the 

first iteration is finished, the x-parallax between any matched corners could be used to 

better approximate the location of the search window for corners to be matched in the 
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next iteration. More points or higher corner density is used for the subsequent iteration, 

but since the approximate location of the search window is now better known, its size and 

the size of the template window, are reduced to optimize the processing time. The 

sequence of operations in the algorithm is the following: 

1. Detect a few very reliable corners by increasing the corner strength threshold, the 

radius for non-maximal suppression and the Gaussian smoothing parameters (see 

Figure 4.6a and Figure 4.6b); 

2. Match detected corners assuming zero x-parallax and using large search and 

template windows (see Figure 4.6c and Figure 4.6d); 

3. Estimate the x-parallax of the matched corners, and record the values in a look-up 

table (see Figure 4.7a for a visual example of x-parallax values); 

4. Detect more corners by relaxing the Harris operator parameters (see Figure 4.6e 

and Figure 4.6f); 

5. Assign approximate x-parallax values to the detected corners based on the 

established look-up table in step three; 

6. Match again by using the approximate x-parallax values and smaller search and 

template windows (see Figure 4.6g and Figure 4.6h). 

7. Repeat steps three to six until enough point density to represent the torso is 

reached (see Figure 4.7b for an example of the increased density of x-parallax 

values). 
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(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 4.6 Hierarchical image matching examples for a given stereopair: first 

iteration – detected corners in the left (a) and right (b) images, and matched corners 

in the left (c) and right (d) images; second iteration – detected corners in the left (e) 

and right (f) images, and matched corners in the left (g) and right (h) images 

 

 

(a) 
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(b) 

Figure 4.7 Sample look-up tables of x-parallax values: after first iteration (a), and 

after second iteration (b) 

 

4.1.2 Tracking and intersection 

After the image matching is performed for a given sensor arm, corner tracking is 

done to identify the same corners in all the images they appear in. Effectively, the 

tracking procedure yields the image coordinates of conjugate corners in the overlapping 

imagery, which are needed for the multiple light ray intersection. Using the IOPs of the 

involved cameras and the EOPs of the involved images, these image coordinates are 

included in a least squares adjustment to determine the object coordinates of the 

corresponding points on the torso surface. There are two filters that are currently 

incorporated in the algorithm. The first one removes any blunders or outliers (i.e. average 

image coordinate residuals larger than two pixels), and the second one removes points 

with low intersection precision (i.e. the number of images for a tracked point should be at 
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least three). Figure 4.8 shows an example for the reconstruction results from one of the 

sensor arms in the proposed system. This same process is then repeated for the other three 

sensor arms. 

 

Figure 4.8 Example of a reconstructed surface, i.e. the back side of an artificial torso 

mannequin, from one of the sensor arms 

Source: Habib et al. (2010a) 

 

4.2 Surface registration 

As stated in the proposed system design, each of the four sensor arms yields a 

surface model in its corresponding reference frame. Also, at least one of the sensor arms 

is rotated up and down in order for the patient to be able to enter the system for data 

acquisitioning. This is why a rigid relationship between the sensor arms cannot be 

assumed. In order to reconstruct the entire torso, the four surface models have to be 

registered in a common reference frame. Thus, the integration of the multiple surface 

models, is a registration procedure. In general, the elements of the registration paradigm 

could be classified in four categories (Fonseca and Manjunath, 1996):  

• geometric primitives,  
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• transformation function,  

• similarity measure, and  

• matching strategy.  

The primitives are the domain in which information is extracted from the input data, e.g. 

points, lines, planes, triangular patches, etc. The transformation function is what 

mathematically describes the mapping process between the reference frames of the 

datasets being registered, e.g. a 3D similarity transformation. The similarity measure is 

the necessary constraint for ensuring the correspondence of conjugate primitives. Finally, 

the matching strategy is the controlling framework that uses the primitives, the 

transformation function, and the similarity measure to solve the registration problem 

(Brown, 1992).  

A well-known algorithm for registering point clouds is the iterative closest point, 

also know as ICP (Besl and McKay, 1992). In the light of registration paradigm 

definitions, the ICP method uses points as the geometric primitives, it applies a 3D 

similarity transformation as the transformation function, and in terms of the similarity 

measure, it minimizes Euclidean distances between conjugate points in two overlapping 

surface models (see Figure 4.9a).  

 

(a) 
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(b) 

 

(c) 

Figure 4.9 Examples of point cloud registration algorithms in 2D: minimizing 

distances between points and points (i.e. ICPoint) (a), points and planes (i.e. 

ICPlane) (b), and points and triangular patches (i.e. ICPatch) (c) 

 

The matching strategy is implemented in an iterative manner. More specifically, starting 

from an approximate estimate of the parameters of the transformation function relating 

two point clouds, hypothesized conjugate points are made by identifying the closest point 

in one of the datasets to a transformed point from the second one. Hypothesized matches 

are generated for all the points in the overlap area. These matches are then used to 

estimate a refined estimate of the transformation function parameters, which are then 

used to derive a new set of hypothesized matches. The process of hypothesized-match 

generation and parameters estimation are repeated until the transformation parameters 

converge. However, when dealing with irregular point clouds exact point-to-point 
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correspondences between surface models cannot be guaranteed. Some variations of the 

ICP algorithm, which employ more appropriate geometric primitives, exist. For example, 

Chen and Medioni (1992) minimized the normal distance between points in one surface 

model and planes in another surface model (see Figure 4.9b). Such point-to-plane 

correspondence may be assumed to exist, however, the algorithm requires local plane 

fitting.  

This research work uses another algorithm for performing surface registration of 

irregular point clouds. It uses point-to-patch correspondence, where points in one surface 

model and triangular irregular network (TIN) patches in another surface model serve as 

the geometric primitives (see Figure 4.9c). This choice of geometric primitives does not 

assume existing point-to-point correspondence, and at the same time, it does not require 

any local fitting. The only preprocessing that is necessary is the generation of the TIN 

patches, which is a common function in most geographical information systems (GIS). 

This algorithm could be implemented in two ways. Both approaches use the same 

geometric primitives, transformation function and matching strategy. The only difference 

is the similarity measure used in the implementation of the least-squares algorithm when 

solving for the registration transformation parameters. These two methods are referred to 

as the coplanarity constraint and the modified weight matrix, and the rest of this section 

describes them in detail. In addition, the section also explains how the two methods are 

extended to handle not only pairwise registration between two overlapping surface 

models, but also multiple surface registration in a network mode. Such multiple surface 

registration is necessary in order to minimize any error propagating from the pairwise 

surface registration. 
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4.2.1 Pairwise surface registration 

Due to the irregular nature of point clouds describing surface models generated 

from close range photogrammetry, exact point-to-point correspondence cannot be 

assumed. In this research work, the geometric primitives chosen for the registration of 

point clouds are points and triangular patches. Thus, for any two overlapping surface 

models, one of the point clouds is kept as is, and the other one is converted to a TIN, i.e. 

one of the surface models is represented by the original points, and the other surface 

model is represented by the triangular patches from the TIN. It is important to note that 

the TIN patches are an acceptable primitive only in the cases when the TIN model 

represents the true physical surface of the reconstructed object of interest (Habib et al., 

2010b). This means that the surface models have to have point density high enough that 

no triangles are built across what would be a breakline. If this is true, then it can be 

assumed that point-to-patch correspondence between the overlapping surface models 

does exist (see Figure 4.10). In order to deal with cases where the TIN does not represent 

the physical surface (e.g. sparse areas in the point clouds), a threshold is implemented in 

the matching strategy (explained later on in this subsection). So, if it is safe to assume 

that point P in surface one (S1) corresponds to the triangular patch with vertices V1, V2, 

and V3 in surface two (S2), then this point should coincide with the patch after applying 

the transformation parameters in equation (4.1). 
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where: 
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XP, YP, ZP are the coordinates of point P 

XT, YT, ZT are the translation parameters 

R is the rotation matrix defined by angles ω, φ, κ 

s is the scale factor 

XP', YP', ZP' are the coordinates of the transformed point P' 

 

(a) (b) 

Figure 4.10 Surface model representation (a), and criteria for accepting 

correspondence between conjugate primitives (b) 

Source: Habib et al. (2010a) 

The correct correspondence between points in surface S1 and triangular patches in 

surface S2 is established through an iterative procedure. A point-patch pair is considered a 

valid conjugate match under three conditions (see Figure 4.10b). First, the particular 

triangular patch, ∆V1V2V3, must be the closest to the transformed point of interest, P'. 

Second, the normal distance, n, from the transformed point, P', to the patch must be 

within a certain threshold. This is the threshold mentioned earlier, which is incorporated 

in order to be able to deal with cases where the TIN patches does not represent the 

physical surface. Lastly, the projection of the transformed point onto the patch, P'', must 

be inside the patch. The iterative procedure progresses as follows: first, initial point-patch 



68 

 

pairs are determined after applying approximate transformation parameters, which bring 

S1 in the reference frame of S2 (see Figure 4.10a); then, these initial point-patch pairs are 

used to calculate a better estimate of the transformation parameters between S1 and S2; 

and the updated transformation parameters are used to determine a new set of point-patch 

pairs. The procedure is repeated until the transformation parameters converge, and there 

is no change in the point-patch correspondence. At the end of this registration procedure 

the goodness of fit between the two surfaces is evaluated by calculating the average 

normal distance for all the matched point-patch pairs (Habib et al., 2009). So far, the 

choice of geometric primitives, the transformation function, and the matching strategy for 

the pairwise surface registration has been described. The rest of this section explains the 

similarity measures used in the calculation of the registration transformation parameters 

for the coplanarity constraint and the modified weight matrix methods in the pairwise 

surface registration. 

 

4.2.1.1 Coplanarity constraint method for the pairwise surface registration 

In the coplanarity constraint method, P', V1, V2, and V3 are assumed to be 

coplanar. This means that the volume of the pyramid, whose vertices are P', V1, V2, and 

V3 in Figure 4.10b, should be zero. This can be mathematically expressed as the 

determinant in equation (4.2). 
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Equation (4.2) is a function of the vector of unknown parameters, x (i.e. the 

transformation parameters), and the vector of observations, ℓ (i.e. the coordinates of P', 

V1, V2, and V3), with an assumed known variance-covariance matrix for the observations, 

Cℓ, and an unknown variance-covariance matrix for the unknowns, Cx = 0:  

0)r̂,δ̂ƒ(x0 =++ l , Cℓ (4.3) 

where the variance-covariance matrix of the observations is the product of the a-

priori variance factor and the inverse of the weight matrix for the observations, i.e. 

12

0 PσC
−

⋅=
ll

 

The least squares problem is to minimize the sum of the squared observation residuals: 

( )r̂Pr̂min
T ⋅⋅

l
 (4.4) 

subject to: 

0wr̂Bδ̂A =+⋅+⋅ , (4.5) 

where: 

A is the design matrix of partial derivatives with respect to the unknown 

parameters, i.e. 
x

ƒ
A

∂

∂
= ,  

δ̂  is the vector of corrections for the approximate values of the unknown 

parameters, x
0
, i.e.  δ̂xx̂ 0 += , 

B is the design matrix of partial derivatives with respect to the observations, i.e. 

l∂

∂
=

ƒ
B , and 
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w is the misclosure vector evaluated with the approximate values of the unknown 

parameters and the observations, i.e. ),ƒ(xw 0
l= . 

The corrections for the approximate values of the unknown parameters are solved by 

using the following expression: 

1mx

1

mxm1mx
uNδ̂ ⋅−=

−
, (4.6) 

where: 

m is the number of unknowns, which in this case equals seven (i.e. m = 7) 

N is the normal matrix, and 

u is the normal vector. 

The normal matrix, N, and the normal vector, u, are populated through a process known 

as the summation of normals: 
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where: 

n is the number of observation equations, i.e. the number of conjugate point-patch 

pairs, and i is the particular point-patch pair used for populating Ai, Bi and wi. 

The solution iterates until there is no significant change in the value for the a-posteriori 

variance factor between consecutive iterations. The a-posteriori variance factor is 

calculated as follows: 
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By using numerous point-patch pairs, which satisfy this coplanarity constraint, the 

transformation parameters relating the two surface models can be estimated through the 

above described least squares adjustment. In order to obtain reliable estimates of these 

transformation parameters, variations in the topography of the surfaces are needed so that 

there are constraints in as many directions as possible.  

 

4.2.1.2 Modified weight matrix method for the pairwise surface registration 

In the modified weight matrix method, the transformation function in equation 

(4.1) is used together with the similarity measure (or the functional model) shown in 

equation (4.10) as the basis for the complete stochastic model used in the adjustment. 
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So if equation (4.1) is substituted in equation (4.10), the complete stochastic model is 

given in equation (4.11).  
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The least squares adjustment for this case follows the concepts explained in equations 

(4.3) to (4.6), and the normal matrix, N, and the normal vector, u, are populated in the 

following manner: 
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As seen from equation (4.10), the similarity measure for this surface registration 

method is a point-based approach, where it is assumed that one of the triangular patch 

vertices is conjugate to the transformed point P'. However, such correspondence is not 

necessarily true. To compensate for the fact that we are using a point-based procedure 

while using non-conjugate points in a point-patch pair, the weights associated with the 

similarity measure in equation (4.10) are modified. More specifically, the weight matrix 

is modified to ensure the minimization of the combined residual vector in a direction 

normal to the TIN patch in question. In other words, due to the lack of point-to-point 

correspondence, there would be a spatial offset between point P' in S1 and vertex V1 in S2 

in all three directions. However, the weights in the least-squares adjustment are modified 

in such a way that the transformation parameters are estimated to minimize the spatial 

offset normal to the triangular patch. This is accomplished by the following sequence of 

operations (Aldelgawy et al., 2008): 

1. Compute the rotation matrix, M, which transforms the coordinates of the point 

from the original coordinate system (X,Y,Z) to the local coordinate system of the 
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triangular patch (U,V,W), where the U and V axes are within the patch plane and 

the W axis is normal to the patch plane (see Figure 4.11) 

 

Figure 4.11 Illustration of the transformation between the (X,Y,Z) and the (U,V,W) 

coordinate systems 

 

2. Compute the weight matrix in the (U,V,W) coordinate system according to the 

law of error propagation: 

T

XYZUVW MPMP ⋅⋅=  (4.14) 

where: 

PXYZ is the weight matrix in the (X,Y,Z) coordinate system, and 

PUVW is the weight matrix in the (U,V,W) coordinate system 

3. Modify the weight matrix in the (U,V,W) coordinate system by assigning zeros 

for the weights along the triangular patch: 
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4. Compute the modified weight matrix in the (X,Y,Z) coordinate system: 
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MP'MP' UVW

T

XYZ ⋅⋅=  (4.16) 

5. Apply a point-based solution using least squares with the modified weight matrix, 

P'XYZ. 

Essentially, in the modified weight matrix method, the sum of the squared random 

residuals along the triangular patch normal, are minimized. Here follows the proof: 

• First, assume that the combined residual vector rXYZ has a random and systematic 

component: 
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• Then, apply the target function of the least squares adjustment using the modified 

weight matrix: 
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• and substitute equations (4.16) and (4.17) in (4.18): 
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• After that, expand (4.19): 
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• and note that 
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which means that 
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and the only term left in (4.20) is one that contains only the random component of the 

residuals: 
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• Finally, simplify (4.23) to: 
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It is important to note that even though it seems as if there are three observations 

equations for every point-patch pair, the net contribution of the constraint towards the 

redundancy estimation is one, because the rank of the modified weight matrix is one. 

Therefore, the redundancy for this method equals the redundancy of the coplanarity 

constraint one. Again, as with the coplanarity constraint, in order to obtain reliable 

estimates of the transformation parameters, variations in the topography of the surfaces 

are needed so that there are constraints in as many directions as possible. Figure 4.12 

illustrates an example of the alignment outcome from the pairwise registration between 

the reconstructed surface models from two of the sensor arms.  
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Figure 4.12 Example of a pairwise registration of two overlapping surfaces (light 

gray: non-matched area in the TIN surface; black: matched area in the overlap 

between the point cloud and the TIN surface; dark gray: non-matched area in the 

point cloud) 

 

4.2.2 Multiple surface registration 

The previous subsection explained two approaches for registering two 

overlapping surface models, a procedure referred to as pairwise registration. However, in 

the case of a full 360º reconstruction of an object, there are multiple surface models 

covering the volume of interest. Each surface model is in a different reference frame, so it 

is necessary to register the multiple surfaces in a common reference frame. One way of 

achieving this is to choose the reference frame of one of the surface models as the 

common one, and then to sequentially register the rest of the surface models in the 

pairwise manner described before. However, the first and the last surface models might 

exhibit incompatibility due to errors propagated through the sequential registration 

process (see Figure 4.13b). This is similar to a closed loop traverse in surveying, where 

the constraint that the first and last point coincide, has not been used. To avoid such an 
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incompatibility and to have a seamless final product, the multiple surface registration has 

to be performed simultaneously, i.e. in a network mode (see Figure 4.13c).  

 
 

 

(a) (b) (c) 

Figure 4.13 Illustrations of the torso surface (a), sequential pair-wise surface 

registration (b), and simultaneous multiple surface registration (c) in 2D 

 

This procedure can be viewed as an extension to the pairwise registration. In particular, 

the pairwise registration procedure is used to establish a list of the corresponding point-

patch pairs and estimate the transformation parameters between any two overlapping 

surface models. The multiple surface registration, on the other hand, uses these 

corresponding point-patch pairs, and applies the transformation parameters from the 

pairwise surface registration as initial approximations, to simultaneously solve for all the 

final surface transformation parameters. This is done in a least-squares adjustment, where 

each surface is iteratively transformed to a common reference frame until the sum of the 

squared normal distances between the conjugate point-patch pairs is minimized. This 

procedure is highly non-linear, so that is why the initial approximates from the pairwise 

surface registration are necessary. It is also important to note that the transformation 

parameters for one of the surface models are kept fixed in order to define the datum for 

the final surface model. The transformation function for the multiple surface registration 

is similar to the one in the pairwise surface registration, except both point P, and 
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triangular patch vertices V1, V2, and V3 for a given conjugate point-patch pair are 

transformed to the reference frame of choice as shown in equations (4.25) and (4.26). 
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where: 

‘i’ denotes the transformation parameters between the surface represented by 

points and the common reference frame, and 

‘j’ denotes the transformation parameters between the surface represented by 

triangular patches and common reference frame 

The rest of this section explains how the coplanarity constraint and the modified weight 

matrix methods are applied to solve for the final surface transformation parameters in the 

multiple surface registration. 

 

4.2.2.1 Coplanarity constraint method for the multiple surface registration 

The mathematical model describing the coplanarity constraint for the multiple 

surface registration is similar to equation (4.2), except that both point P and vertices V1, 

V2, and V3 are transformed to the common reference frame. So, in this case, the volume 

of the pyramid with vertices P', V1', V2', and V3' should be zero. Mathematically, this is 

expressed as the determinant in equation (4.27). 
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The least squares adjustment for the solution of this problem follows the concepts 

explained in equations (4.3) to (4.8), except this time the number of unknowns, m, is 

different (e.g. in the case of four sensor arms m = 4 x 7 = 28 assuming all seven 

transformation parameters are solved for). 

 

4.2.2.2 Modified weight matrix method for the multiple surface registration 

In the modified weight matrix method for the multiple surface registration, the 

transformation functions in equations (4.25) and (4.26) are used together with the 

similarity measure (or the functional model) shown in equation (4.28) as the basis for the 

complete stochastic model used in the adjustment. 
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So if equations (4.25) and (4.26) are substituted in equation (4.28), the complete 

stochastic model is given in equation (4.29). 
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where: 
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r is the combined vector of observation residuals, 
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The least squares adjustment for this case follows the concepts explained in equations 

(4.3) to (4.6), and (4.12) and (4.13), except the number of unknowns, m, again equals 28 

in the case of four sensor arms. 

Again, due to the lack of point-to-point correspondence, there would be a spatial 

offset between point P in S1 and vertex V1 in S2 in all three directions. However, the 

weights in the least-squares adjustment are modified in such a way that the 

transformation parameters are estimated through minimizing the component of the spatial 

offset between non-conjugate points within a point-patch pair along the normal to the 

triangular patch. This is accomplished by implementing the procedure defined in the 

previous subsection. 

 

4.3 Summary of the processing methodology 

This chapter covered the necessary components of the processing methodology in 

order for the proposed system to generate the desired 3D surface model of the entire 

torso. The two major processing tasks, i.e. the surface reconstruction and the surface 

registration, were described in detail. The main emphasis in the surface reconstruction 

section was the use of a hierarchical matching strategy in the corner detection and image 

matching workflow, in order to reduce computational time and increase matching 

reliability. The highlight of the surface registration section was the explanation of the 

mathematical models behind the coplanarity constraint and especially behind the 
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modified weight matrix methods for the pairwise and the multiple surface registration. 

The multiple surface registration procedure completes the data processing steps for the 

proposed system, and the final result is the entire 3D torso surface model. The next 

chapter shows the current system implementation, and discusses the experimental results 

conducted to date.  
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Chapter Five: System Implementation and Experimental Results 

 

This chapter first shows results from the system calibration, which includes the 

camera calibration, stability analysis, and the EOP determination. Tests on the type of 

distortion model, the choice of image space observations, and the options for datum 

definition are shown as part of the camera calibration. Then, the experimental results 

comprise the surface reconstruction (by using the currently implemented single sensor 

arm) of a flat metal plate, two human faces, and most importantly – an artificial torso 

mannequin. The objectives of the experiments are to test the feasibility of the proposed 

system for different applications, and to estimate the relative and absolute accuracy of the 

reconstruction quality. A test on the pattern size, a comparison between using a single 

and a dual projector setup, and an evaluation between the coplanarity constraint and the 

modified weight matrix methods for pairwise and multiple surface registration, are 

incorporated as part of the reconstruction experiments.  

 

5.1 Camera calibration 

There were two data collection sessions for the camera calibration experiments. 

The purpose of the first session was to survey the targets on a portable calibration board. 

After that, the second session involved photographing the board with all the cameras that 

would be used for the project. After all the necessary data was collected, there were three 

calibration experiments conducted for one of the cameras. They dealt with the choices for 

a distortion model, image space observations and datum definition. Generally, a lens 

distortion model can be categorized as inadequate, adequate or over-parameterized. An 
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adequate model has the minimum number of distortion parameters needed to sufficiently 

describe the inherent distortions for the implemented camera. Insufficient and over-

parameterized models should be avoided, because they might have an adverse effect on 

the reconstructed object space. Thus, the first experiment was to test the necessity of 

solving for all the lens distortions as opposed to solving for only the first coefficient of 

radial lens distortion. The second experiment was to test the use of points only against the 

use of points and linear features as image space observations. Lastly, the third experiment 

was to test using control points against fixing the coordinates for a few points (in order to 

define the datum position and orientation) and using distance constraints (in order to 

define the datum scale). Once the three tests were run, the most efficient technique to 

calibrate the rest of the cameras was chosen. The rest of this section describes the data 

collection procedures and the tests that were run in more detail. 

5.1.1 Surveying the portable calibration board 

The surveying of the targets on the calibration board was first done using a high 

precision total station (see Figure 5.1), and two reflector prisms. According to the 

manufacturer specifications, the measurement capabilities of the total station were 0.5” 

for the horizontal and vertical circle readings, and 1mm ± 1ppm for the electronic 

distance measurement (EDM) device. Note that the two reflector prisms have had their 

zero errors previously estimated. The observation points at which the total station was set 

up were two stable pillars. The portable target board was placed in such a way that the 

intersection angle between the directions from the two pillars was as close to 90º as 

possible. Horizontal directions, zenith angles, and slope distances from each pillar to the 

35 target points on the board (and to the other pillar) were observed in two rounds. Note 
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that temperature, atmospheric pressure and humidity were not measured, because the 

slope distances measured were too short for any atmospheric corrections to have a 

significant contribution to the measurements. Each round involved both face left (direct), 

and face right (reverse) observations. The face left and face right observations were 

reduced for each round, and the two rounds were averaged after verifying that the 

observations were within the allowable discrepancies. After that, the averaged 

observations were fed into a surveying network adjustment in order to solve for the 3D 

coordinates of the target points. The standard deviations for the 3D coordinates were 

±0.1mm for X, Y and Z. This method for surveying the target points was very 

cumbersome, and the combined time for data collection and processing took over two 

days. Another approach to survey the calibration board was to simply measure distances 

between selected points. Thus, ten distances between nine of the target points were 

measured using a construction quality tape measure, which had smallest graduation of 

1mm. This was done twice by two different operators in order to avoid any reading 

blunders. However, note that neither the zero, nor the scale errors of the tape were 

estimated in order to keep this part of the experiment as simple as possible. The total time 

did not exceed 10-15 minutes, and the average of the differences in the distances 

measured with the tape measure and the ones calculated from the total station coordinates 

was 0.6mm with a standard deviation of ±0.3mm.  

5.1.2 Image collection for the camera calibration 

During the second data collection session the portable calibration board was 

photographed by the seven cameras currently available for the system. The cameras used 

were entry level digital single-lens reflex (DSLR) ones. The make and the model of the 
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cameras was Canon Rebel XS (also known as EOS 1000D). Each camera had a 22.2mm 

x 14.8mm complimentary metal oxide semiconductor (CMOS) solid state sensor. The 

output images had 3888 rows and 2592 columns or 10.1 effective megapixels, where the 

pixel size was 5.7µm. The camera lenses had a nominal focal length of 35mm. The image 

stabilization, the automatic focus, and the sensor cleaning functions of the cameras were 

turned off to ensure the validity of the established parameters for subsequent datasets. In 

addition, the zoom and focus rings were taped so that the focal length stayed fixed. 

Images were taken from three locations – left, centre, and right of the board. At each 

location, there was a low camera station (i.e. a tripod set at a height of 50cm), and a high 

camera station (i.e. a tripod set at a height of 180cm). At each camera station, landscape 

and portrait orientation photos were taken (see Figure 5.2). The origin of the coordinate 

system was chosen as the bottom left corner of the target board. Also, the sets of three 

orthogonal lines at each exposure station represent the orientation of the image coordinate 

system as defined by the ω, φ, and κ angles, i.e. the camera x, y, and z axes. 

  

(a) (b) 

Figure 5.1 Observing of the targets on the portable calibration board (a) with a high 

precision total station (b) 
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Figure 5.2 Camera calibration setup: camera stations (circles) and board targets 

(crosses) 

Source: Detchev et al. (2010) 

5.1.3 Test on the choice for a distortion model 

The first test that was performed was to verify whether it is necessary to solve for 

all the lens distortion parameters, or to just use the first radial lens distortion coefficient 

(i.e. k1) in the bundle adjustment with self-calibration as shown in equation (5.1).  
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where as explained in Chapter Three: 

k1 and k2 are the radial lens distortion parameters, 

p1 and p2 are the decentric lens distortion parameters, 

a1 and a2 are the affine deformation parameters, 

r is the radial distance, r
2
 = (x′)

2 
+ (y′)

2
, and  x′ = xp – xpp, and y′ = yp – ypp, and 
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r0 is the radial distance with zero radial lens distortion (other than the principal 

point). 

The adjustments were run by fixing six coordinates (e.g. the X, Y, Z for one, the Y, Z for 

another, and the Y for a third point), and using the distances measured with the tape as 

control. The standard deviation used for all the distances was ±1mm. The adequacy of 

lens distortion models used in bundle adjustment with self-calibration procedures for this 

test was evaluated in three ways: 

• by checking the a-posteriori variance factors for the bundle adjustments (i.e. the 

overall precision values) (see Table 5.1),  

• by estimating the similarity between the bundles of light rays defined by the 

different IOP sets (see Table 5.1), and  

• by checking the reconstruction accuracy in object space (i.e. performing a check 

point analysis) (see Table 5.2).  

Table 5.1 A-posteriori variance factors and RMSE of the bundle similarity in the 

calibration results for using all six distortion parameters against using only k1 

Datum definition 

(and distortion model) 

2

0σ̂  

(µm) 

ROT RMSE 

(µm) 

Distance constraints 

(all six parameters) 
(0.7)

2
 

Distance constraints  

(only k1) 
(0.9)

2
 

1.0 
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Table 5.2 RMSE between photogrammetric reconstruction and surveying 

measurements for calibration results when using all six distortion parameters 

against using only k1; all units are mm 

Datum definition 

(and distortion 

model) 

Mean 

∆X  

± σ ∆X 

Mean 

∆Y  

± σ ∆Y 

Mean 

∆Z 

 ± σ ∆Z 

RMS 

X 

RMS 

Y 

RMS 

Z 

Total 

RMSE 

Distance 

constraints 

(all six 

parameters) 

  0.00 

±0.09 

  0.00 

±0.10 

  0.00 

±0.05 
0.09 0.10 0.05 0.14 

Distance 

constraints  

(only k1) 

  0.00 

±0.11 

  0.00 

±0.12 

  0.00 

±0.06 
0.11 0.11 0.06 0.17 

 

Note that the bundle similarity method used here was the rotation one (i.e. ROT). The 

ROT method was also used to investigate the equivalency of IOP sets resulting from 

different camera calibration configurations in the rest of the experiments. The ROT 

bundle similarity technique was necessary, because the comparison between any two sets 

of IOPs was not undertaken directly. That is, as explained in Chapter Three, the 

comparison was not accomplished by simply contrasting the estimated values for the 

individual calibration parameters, because the parameters were correlated. Rather – a grid 

simulation was used to compare a bundle of light rays defined by the first set of 

calibration parameters with a bundle of light rays defined by the second set (Habib et al., 

2005). 

So if the square root of the a-posteriori variance factor for the bundle adjustment 

using all six distortion parameters was compared against the bundle adjustment using 
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only the k1 parameter, it could be noticed that the difference was in the vicinity of 0.2µm 

(see the first two data columns in Table 5.1). This value was much less than the expected 

image coordinate measurement accuracy of half a pixel size (i.e. ½ of 5.7µm), so the 

difference could be considered insignificant. Also, the calibration results for the two 

types of distortion models were regarded as equivalent, because the RMS value between 

the bundle of light rays defined with all six distortion parameters and the one defined 

with only k1 was also under half a pixel size (see the last column in Table 5.1). In 

addition, the object space reconstructions for the two distortion models only 

demonstrated differences at a level of less than 0.1mm, i.e. less than what could be 

trustfully measured with the total station (i.e. 1mm ± 1ppm) (see Table 5.2). Since 

solving for all six distortion parameters did not seem to be crucial, the rest of the 

experiments involved only solving for k1. 

5.1.4 Test on the choice for image space observations 

The second test was to perform a bundle adjustment with self-calibration using 

only points, and points and linear features as observations in image space. Previous 

research had shown that including linear features as observations improved the standard 

deviations for the estimated IOPs (Habib and Morgan, 2005). The differences in the IOP 

results between the two adjustments for this experiment were summarized in Table 5.3. It 

could be noticed that the results were quite similar. In fact, the ROT RMSE between the 

bundles of light rays for both calibration results was 1.6µm (i.e. less than half a pixel 

size), which deemed them equivalent. However, the IOPs for the solution with linear 

features do have better standard deviations. Also, so do the EOPs for the same solution. 

Most likely, the reason for this was that, because more observations were used in the least 
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squares adjustment, the redundancy was much higher. This test supported the finding 

previously published.  

Table 5.3 IOP differences for using tie points only against using tie points and linear 

features 

Image space  

observations 

xP ± σxP 

(µm) 

yP ± σyP 

(µm) 

c (mm)  

± σc (µm) 

k1 ± σk1 

(mm
-2

) 

ROT RMSE 

(µm) 

Distance constraints 
-20.7 

±4.4 

-191.5 

±4.6 

34.920 

±4.8 

-1.65e-5 

±1.18e-6 

Distance constraints  

(with linear features) 

-21.6 

±1.6 

-188.0 

±1.8 

34.910 

±2.1 

-1.68e-5 

±1.78e-7 

1.6 

In addition, Table 5.4 lists the RMS values between the two photogrammetric 

reconstructions (using distance constraints without or with linear features) and the total 

station survey. It is worth mentioning that the quality of the 3D reconstruction for the 

board targets was equivalent. 

Table 5.4 RMSE between photogrammetric reconstruction and surveying 

measurements for calibration results when using points only against using points 

and linear features as observations; all units are mm 

Image space 

observations 

Mean 

∆X ± σ 

∆X 

Mean 

∆Y ± σ 

∆Y 

Mean 

∆Z ± σ 

∆Z 

RMS 

X 

RMS 

Y 

RMS 

Z 

Total 

RMSE 

Distance 

constraints 

(w/out linear 

features) 

0.00 

±0.12 

0.00 

±0.12 

0.00 

±0.06 
0.12 0.12 0.06 0.17 

Distance 

constraints 

(w/ linear 

features) 

0.00 

±0.11 

0.00 

±0.12 

0.00 

±0.06 
0.11 0.11 0.06 0.17 
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5.1.5 Test on the choice for datum definition 

The third test was to perform a bundle adjustment with self-calibration using 

control points and using distance constraints in order to define the object coordinate 

datum. In the cases when the adjustment was run with the surveyed points as the chosen 

control, the standard deviation used for each X, Y, Z coordinate was ±0.1mm, which 

came from the output of the network adjustment. The resulted IOP parameters for this 

experiment are summarized in Table 5.5.  

Table 5.5 IOP differences for using control points against using distance constraints 

Datum definition 

(and observations) 

xP ± σxP 

(µm) 

yP ± σyP 

(µm) 

c (mm) 

± σc (µm) 

k1 ± σk1 

(mm
-2

) 

ROT RMSE 

(µm) 

Control points only 
-22.0 

±4.0 

-177.6 

±4.4 

34.902 

±4.8 

-1.70e-5 

±6.45e-7 

Distance constraints 
-20.7 

±4.4 

-191.5 

±4.6 

34.920 

±4.8 

-1.65e-5 

±1.18e-6 

2.8 

Control points 

(with linear features) 

-21.4 

±1.6 

-186.5 

±1.7 

34.908 

±2.1 

-1.68e-5 

±1.75e-7 

Distance constraints 

(with linear features) 

-21.6 

±1.6 

-188.0 

±1.8 

34.910 

±2.1 

-1.68e-5 

±1.78e-7 

0.3 

 

From the first two rows of the table, it is noticeable that there were some differences in 

the results, especially for the estimates of yP and the principal distance, c. However, the 

ROT RMSE between the bundles of light rays for these two sets of IOPs was 2.8µm, 

which was only half a pixel. Moreover, if linear features were added as observations in 

the image space (see last two rows of the table), the results from the two adjustments 

became almost identical, with a ROT RMSE of 0.3µm. That is, if only points were used 



92 

 

as image space observations, the solution seemed to be sensitive to the way the datum 

was defined, while if points and linear features were used as image space observations, 

the solution was more robust against the datum definition procedure. 

5.1.6 Camera calibration findings 

In summary, there were three findings for the camera calibration experiments. 

The first finding was that it was not necessary to solve for all the six lens distortion 

parameters for the implemented camera, i.e. estimating only k1 yielded an adequate set of 

IOPs – the bundle adjustment had sub-pixel level precision in image space, and sub-

millimetre accuracy in object space. The second finding (or rather – confirmation) was 

that adding linear features to the calibration procedure did not increase the accuracy in 

object space, but seemed to improve the precision of the estimated IOPs (due to increased 

redundancy). The last finding was that whether control points or distance constraints 

were used to define the datum, the output IOP sets were equivalent. This was especially 

true if linear features were used as observations, i.e. they seemed to improve the 

robustness of the solution against the datum definition procedure. Thus, the most 

practical way to do the calibration for the rest of the cameras as far as choices for a 

distortion model, image space observations and datum definition, was to solve only for k1 

as opposed to all the lens distortion parameters, use linear features in addition to points, 

and use distance constraints as opposed to control points, respectively.  

 

5.2 Camera stability analysis 

In order to assess whether the cameras were stable or not, every camera had to be 

calibrated again (see Table 5.6). Before the second calibration dataset was collected for 
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each camera, the lenses were removed and then reattached in order to simulate the typical 

use of DSLRs. The results from the two calibration sets were then compared by using the 

previously described ROT bundle similarity method, in order to verify that the IOPs for 

the cameras did not change significantly. The cameras were deemed stable, because the 

overall RMS error between the reconstructed light ray bundles varied from 1 to 4.5µm, 

which was below the size of one pixel (see Table 5.7). 

Table 5.6 Example of two sets of camera calibration results for the same camera 

Dataset 
xP ± σxP 

(µm) 

yP ± σyP 

(µm) 

c (mm)  

± σc (µm) 

k1 ± σk1 

(mm
-2

) 

Set 1 

April 17, 2009 

29.9 

±1.6 

32.5 

±1.9 

34.589 

±2.2 

-2.09e-5 

±1.77e-7 

Set 2 

April 22, 2009 

34.3 

±1.5 

42.0 

±1.7 

34.603 

±2.0 

-2.18e-5 

±1.76e-7 

 

Table 5.7 Stability results for the two calibration sets for all the cameras 

Camera ID 1 2 3 4 5 6 7 

ROT RMSE (µm) 3.11 3.35 1.65 2.36 0.96 2.11 4.51 

 

5.3 Sensor arm setup and exterior orientation parameters determination 

Once the camera calibration and the stability analysis were completed, the 

cameras were ready to be positioned for image acquisition. The seven DSLRs were 

rigidly mounted to a wooden frame (see Figure 5.3). The camera positions were evenly 

spaced, and the baseline distance between neighbouring exposure stations was 

approximately 0.4m. In addition, the cameras were accompanied by a short throw 

projector. The projector of choice was the single-chip digital light processing (DLP) 
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BenQ MP522 ST, which had an extended graphics array (XGA) with a resolution of 1024 

pixels x 768 pixels. The cameras together with the projector represented one sensor arm. 

 

Figure 5.3 Sensor arm setup showing all the cameras pointed towards a target board 

 

The next step in the system calibration was to determine the EOPs for the camera 

stations. This was achieved through a bundle adjustment procedure using a target board 

(similar to the one used for the camera calibration), where the distances between some of 

the points had been previously measured. The target board had 48 targets, and after it was 

placed approximately 1.2m away from the cameras (see Figure 5.3), one photograph was 

collected from each camera. The bundle adjustment had 664 observations and 249 

unknowns, and the solution converged in six iterations. The a-posteriori standard 

deviation was 2.2µm, which was quite acceptable, because it was under half pixel size. 

The image coordinate residuals ranged from -6.9 µm to +6.7µm with a mean of zero and 

a standard deviation (i.e. 1·σ) of ±1.8µm for x, and ±1.9µm for y (see Figure 5.4).  
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(a) (b) 

Figure 5.4 Histogram plots showing image coordinate residuals in x (a), and y (b) for 

the bundle adjustment to establish the EOPs of the camera exposure stations 

 

The results for the EOP determination for the seven exposure stations are visually 

displayed in Figure 5.5. The origin of the coordinate system was chosen as the bottom 

left corner of the target board. Also, the sets of three orthogonal lines at each exposure 

station represent the orientation of the image coordinate system as defined by the ω, φ, 

and κ angles, i.e. the x, y, and z axes for each camera. 

 

Figure 5.5 EOP determination: the camera positions shown with circles and the 

targets on the board with crosses 
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5.4 Flat metal plate reconstruction 

The first surface reconstruction experiment was performed on a white flat metal 

plate with dimensions 50cm x 50cm as seen in Figure 5.6a and Figure 5.6b. The purpose 

of this experiment was to verify that the system was fit to perform high precision 

reconstructions. Other than biomedical imaging, this could be useful for industrial quality 

control and infrastructure monitoring (e.g. beams under different loading conditions). The 

test was done in two independent sessions one month apart. The plate was placed 1.1m 

away from the exposure stations of the constructed sensor arm. The cameras were 

synchronized with a remote control, and the images for each of the seven cameras were 

taken simultaneously. The total number of reconstructed points was 29,590 for the first 

session, and 28,340 for the second session (see Figure 5.6c). This amounted to an average 

point density on the order of 12 points/cm
2
. A mathematical model for a plane was fitted 

to both datasets. The normal distances to the plane ranged from -1.60mm to +1.58mm for 

the first dataset, and from -1.53 to +1.53mm for the second dataset (see Figure 5.7). The 

average normal distances were zero millimetres in both cases, and the respective standard 

deviations (i.e. 1·σ) were ±0.48mm and ±0.46mm. It is important to note that these 

standard deviations do not represent the system noise, but the deviation between the 

reconstructed and the fitted plane. It could be noticed that the histogram shown in Figure 

5.7a is skewed, i.e. the normal distances were not normally distributed. This was due to 

the fact that the metal plate was not perfectly flat as seen in Figure 5.7b. This means that 

if a more suitable model (e.g. 3D surface as opposed to a 2D plane) was fitted to the 

current data or a flatter surface was reconstructed, the standard deviations of the normal 
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distances would be even less than the current values. Based on the range of the noise in 

Figure 5.7b, the surface reconstruction accuracy can be estimated to be less than 1mm.  

  

 

(a) (b) (c) 

Figure 5.6 Example photo of the flat metal plate used in the experiment (a); the 

same plate imaged with a pattern projection (b); final 3D reconstruction of the flat 

metal plate (c) 

 

The execution for the reconstruction of the plate surface model took over three hours in 

both experiments. The bulk of the processing time, i.e. 30 minutes per stereo pair on 

average, was spent on the hierarchical image matching. Speeding up this process would 

be the focus of future work. 

 

(a) 
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(b) 

Figure 5.7 Histogram of the normal distances for the plane fitting of the flat metal 

plate reconstruction (a); Z-X plot of the normal distances above (black) and below 

(gray) the fitted plane (b) 

 

5.5 Human face reconstruction 

The next experiment was done on human subjects. Its purpose was to verify that 

the system could be used for facial reconstruction and related applications (e.g. cosmetic 

surgery and facial asymmetry measurements). The experiment was similar to the one that 

had been done by (Cheng and Habib, 2007), except they had used only two cameras and a 

simple grid pattern, and the conjugate point identification and collection had been done 

manually. The faces of two subjects (see Figure 5.8a and Figure 5.8b) were reconstructed 

twice while varying the size of the projected patterns (as varying the size of the projected 

pattern was one of the experiment objectives). Just as with the metal plate experiment, the 

subjects were asked to sit approximately 1.1m away from the sensor arm cameras, and 

the shutter release of the cameras was controlled with a remote trigger. The face 

reconstruction of the first subject had 2710 points after using a large (coarse) pattern, and 

5770 after using a small (fine) pattern (see Figure 5.8c). Similarly, the face reconstruction 

of the second subject constituted of 2360 and 4950 points after using a large (coarse), and 

a small (fine) pattern (see Figure 5.8d), respectfully.  
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(a) (b) 

  

(c) (d) 

Figure 5.8 The first (a) and second (b) subjects, and the irregular point clouds of 

their respectful face reconstructions (c), and (d) using the small (fine) pattern 

 

It can be noted that there were approximately 15% more points in the face reconstruction 

of the first subject. This is most likely because the face of the first subject had smoother 

features and a fair complexion, while the second subject had more pronounced facial 

characteristics, and at the same time – a darker skin tone. Using the surface registration 

technique explained in Chapter Four, the two reconstructions for each subject were 

registered by keeping the large (coarse) pattern irregular point cloud as points, and 

converting the smaller (finer) pattern irregular point cloud to triangular irregular 
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networks (TINs). The datasets for the face of the first subject registered with an average 

normal distance of 0.38mm, where 93.5% of the points found matching TIN patches, and 

the datasets for the face of the second subject registered with an average normal distance 

of 0.34mm, where 93.3% of the points found matching TIN patches (see plots of the 

convergence of the transformation parameters in Figure 5.9). Note that the convergence 

of the transformation parameters for the second subject (Figure 5.9b) was better than the 

one for the first subject (Figure 5.9a). This could be credited to the more pronounced 

facial features of the second subject.  

 

(a) 
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(b) 

Figure 5.9 Iterative solution for the transformation parameters for the facial 

reconstruction of the first (a) and the second (b) subject 

 

Thus, it could be concluded that other than the fewer number of points for the second 

subject, the reconstructed 3D models for the two subjects were equally reliable. The 

execution for the face reconstruction using the small (fine) pattern took over one hour per 

subject. The bulk of the processing time, i.e. 10 minutes per stereo pair on average, was 

again spent on the hierarchical image matching. The reason why the execution time for 

this experiment was less than the one for the metal plate was due to the much smaller 

area of interest, i.e. the faces of the human subjects did not fill the full format of the 

collected images. 
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5.6 Artificial torso mannequin reconstruction 

The third and most important application that the system was tested on was a 360° 

scoliotic torso reconstruction. There were three types of experiments carried out. The first 

experiment involved a single projector as part of the system setup. The second 

experiment involved a dual projector setup, and the effect of the pattern overlap from the 

two projectors on the surface reconstruction was assessed. In the first two experiments 

only the coplanarity constraint method was used for the surface registration, so that the 

results could be compared to the ones from previous work. Thus, the third experiment 

was to specifically compare the coplanarity constraint and the modified weight matrix 

methods for the surface registration. The following subsections show detailed results for 

these experiments.  

5.6.1 Single projector torso reconstruction 

The two previously described experiments only required a single sensor arm, 

because they did not deal with 360° reconstruction. Note that since only seven cameras 

were available at the time of the experiments, just one out of the four sensor arms for the 

designed system was implemented. In order to simulate the four necessary sensor arms 

for reconstructing a human torso as per the design setup in Chapter Three, an artificial 

scoliotic torso mannequin was used. This way, even though only one sensor arm was 

available (see Figure 5.10), motion problems were avoided. The approximate dimensions 

of the mannequin were a height of 60cm, a width of 40cm, and a depth of 25cm. During 

the data collection, the torso mannequin had to be rotated three times, producing four sets 

of images – one each for the front, the right side, the back, and the left side (see Figure 

5.11). The four sets of images, that were acquired, were used to reconstruct four partial 
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pieces of the full torso (see Figure 5.12). Since these four partial pieces were theoretically 

in four different reference frames (due to the fact that the torso was rotated), they had to 

be registered to a common reference frame as explained in Chapter Four. After all the 

processing was finished, the final torso model was evaluated both qualitatively and 

quantitatively. The qualitative evaluation was done by examining the completeness of the 

reconstruction, and the quantitative one – by first checking the goodness of fit for the 

surface registration of the four surfaces and second by matching targets on the 

reconstructed torso model to “ground truth” acquired from the coordinate measuring 

machine (CMM) FaroArm (FARO Technologies Inc., Lake Mary, Florida – see Figure 

5.13). In addition, the results for this experiment (i.e. June 2009) were compared to the 

results of two previous reconstruction datasets of the same torso mannequin. These 

previous datasets were acquired and processed in May and September 2008, and their 

results were published in Chang (2008) and Chang et al. (2009). The May and September 

2008 experiments were conducted similarly to the ones described in this research work 

except for a few notable differences. In terms of the data collection, only one camera and 

a tripod were available at the time, so each sensor arm had to be simulated by manually 

moving the camera to each of the desired exposure stations. Also, the distance between 

the exposure stations and the object of interest were much longer, so the object of interest 

did not fill out the image format. In terms of the surface reconstruction, the hierarchical 

image matching was not yet implemented. 



104 

 

 

Figure 5.10 Sensor arm setup showing all the cameras pointed towards the torso 

mannequin 

 

    

(a) (b) (c) (d) 

Figure 5.11 The central images from the sensor arm for the four torso mannequin 

surfaces – the front/S1 (a), the right side/S2 (b), the back/S3 (c), and the left side/S4 

(d) 
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(a) (b) 

 
 

(c) (d) 

Figure 5.12 The reconstructed torso front/S1 (a), right side/S2 (b), back/S3 (c), and 

left side/S4 (d) surfaces 

 

Figure 5.13 FaroArm 

Source: http://pss-corp.com/FaroArm.jpg 
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In this experiment, the cross section of the reconstructed torso (see Figure 5.14) 

visually shows that the four partial surfaces were combined well – there were no major 

gaps or inconsistencies. Also, the cross section point density was high enough to 

visualize the torso asymmetry, which could be used when reconstructing the scoliotic 

spine. 

 

  

Figure 5.14 3D model of the entire reconstructed torso mannequin (left), and 

example cross section profile (right) 

 

The number of points in the four reconstructed surfaces for this experiment (i.e. 

June 2009) varied from 14,000 to 20,000. As seen in Table 5.8, this was an improvement 

compared to the two previous datasets. This improvement was due to that fact that the 

full image format was used in the current experiment, and also the implemented 

hierarchical image matching improved the matching reliability. The average normal 

distances between the matched point-patch pairs in the transformed surfaces were on the 

order of 0.3mm for both the pairwise and the multiple surface registrations as seen in 

Table 5.9 and Table 5.10. 
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Table 5.8 Number of points in the four reconstructed surfaces for the new dataset 

compared to the ones published in Chang (2008) and Chang et al. (2009) 

Dataset 
Front 

S1 

Right side 

S2 

Back 

S3 

Left side 

S4 

May 2008 15,240 10,160 15,260 8,600 

Sept 2008 11,190 9,040 11,350 6,780 

June 2009 18,530 14,810 20,510 14,610 

 

Table 5.9 Goodness of fit after the pairwise registration for the four reconstructed 

surfaces in the new dataset compared to the ones published in Chang (2008) and 

Chang et al. (2009); the number of matched point-patch pairs in the overlapping 

areas is shown in brackets 

Average normal distance (mm) 

Surface pairs May 2008 

dataset 

Sept 2008 

dataset 

June 2009 

dataset 

S2 to S1 0.50 (3,750) 0.70 (3,940) 0.34 (4,850) 

S3 to S2 0.51 (4,620) 0.83 (4,000) 0.34 (5,570) 

S4 to S3 0.45 (2,000) 0.76 (2,760) 0.32 (5,150) 

S4 to S1 0.45 (2,000) 0.84 (2,510) 0.29 (5,260) 

 

Table 5.10 Goodness of fit after the multiple-surface registration for the four 

reconstructed surfaces in the new dataset compared to the ones published in Chang 

(2008) and Chang et al. (2009) 

Average normal distance (mm) 

Surface pairs May 2008 

dataset 

Sept 2008 

dataset 

June 2009 

dataset 

S2 to S1 0.50 0.70 0.34 

S3 to S2 0.58 0.85 0.32 

S4 to S3 0.47 0.77 0.32 

S4 to S1 0.45 0.85 0.29 
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As explained at the beginning of this subsection, in both cases the coplanarity constraint 

method was used in the registration process, because this was the similarity measure 

implemented for the work published in Chang (2008) and Chang et al. (2009). This way 

the results from the new dataset (i.e. June 2009) were comparable to ones from the 

previous datasets (i.e. May and September 2008). In this regard, it could be noticed (in 

Table 5.9 and Table 5.10) that the new dataset had an improved goodness of fit for the 

four reconstructed surfaces. This could be credited to the much higher number of points 

in the surface point clouds, causing an increased number of points in the overlapping 

areas. In addition, Figure 5.15 shows plots of the convergence of the transformation 

parameters for the four surfaces, and Figure 5.16 shows the overlap areas between them 

in the pairwise surface registration for the new dataset.  

To test the accuracy of the final torso model the centroids of 25 well distributed 

torso targets (#1 to #16, and #18 to #26) were measured with the FaroArm (25µm 

measurement accuracy). In addition, using the same robotic coordinate measuring 

machine, 20 control points were collected on the surface of the targets, and 20 other 

control points were collected on the surface of the torso around the targets (see Figure 

5.17). In this way, there were 41 points defining each of the 25 localized control areas, 

i.e. one control area for each torso target.  The points belonging to these control areas 

were then registered to the reconstructed torso model using the previously described 

surface registration technique. The estimated average normal distance was 0.42mm, 

where 97.8% of the 1025 control points (25 targets x 41 points per target) were matched 

to the reconstructed torso model (see Figure 5.18).  
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5.15 Iterative solution for the transformation parameters in the pairwise 

surface registration between S2 and S1 (a), S3 and S2 (b), S4 and S3 (c), and S4 and S1 

(d) for the new dataset 
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(a) (b) 

  

(c) (d) 

Figure 5.16 Visual aid for the pairwise surface registration of S2 and S1 (a), S3 and 

S2 (b), S4 and S3 (c), and S4 and S1 (d) for the new dataset (light gray: non-matched 

area in the TIN surface; black: matched area in the overlap between the point cloud 

and the TIN surface; dark gray: non-matched area in the point cloud) 

 

  

(a) (b) 

Figure 5.17 Example of a torso target (a), and the approximate distribution of 

measured control points (b) 
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Figure 5.18 Registration of the FaroArm control points to the fully reconstructed 3D 

torso model 

 

Again, this was an improvement compared to the results from the previous datasets, 

where the average normal distance was 0.52mm for the May 2008 dataset, and 0.58mm 

for the September 2008 dataset. Also, in the new dataset, one out of the 25 centroid 

targets did not find a matching patch, and one of them had a normal distance larger than 

0.5mm (see Table 5.11). In the previous work, three centroid targets did not find a 

matching patch in the May 2008 dataset, and two in the September 2008 dataset. Also, in 

the previous datasets, five from the centroid targets had normal distances of over 1mm 

(Chang, 2008; Chang et al., 2009). These results are summarized in Table 5.12. 
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Table 5.11 Estimated normal distances between the 25 centroid targets and their 

corresponding patches 

  Target ID Normal distance (mm) Target ID Normal distance (mm) 

  1 0.27 14 0.28 

  2 0.42 15 0.21 

  3 0.30 16 0.41 

  4 0.00   

  5 0.25 18 0.36 

  6 0.21 19 0.27 

  7 0.37 20 0.26 

  8 0.58 21 0.15 

  9 0.36 22 0.31 

10 0.03 23 0.37 

11 0.02 24 0.06 

12 0.10 25 0.25 

13 0.15 26 Non-matched 

 

Table 5.12 Summary of the absolute accuracy evaluation for the new dataset 

compared to the previous ones published in Chang (2008) and Chang et al. (2009) 

Dataset 

Average normal 

distance (mm) 

Number of centroid 

targets with normal 

distance over 1mm 

Number of non-

matched centroid 

targets 

May 2008  0.52 5 3 

Sept 2008  0.58 5 2 

June 2009 0.42 0 1 

 

In addition, Figure 5.19 shows plots for the convergence of the transformation parameters 

for the registration between the FaroArm control points and the reconstructed torso.  
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Figure 5.19 Iterative solution for the transformation parameters in the registration 

between the FaroArm control points and the fully reconstructed 3D torso model 

 

In this experiment, the execution time for the reconstruction of a surface model for one 

sensor arm was two hours on average. The manual part of the processing, i.e. tracing the 

ROI, took about three minutes per stereo pair or around 15 minutes for each sensor arm. 

The rest of the surface reconstruction processing was done automatically. The bulk of the 

processing time, i.e. 15 minutes per stereo pair on average, was spent on the hierarchical 

image matching. 

5.6.2 Dual projector torso reconstruction 

The second experiment on the torso reconstruction involved a dual projector 

setup. So, another DLP BenQ MP522 ST short-throw projector was installed to the side 

of the previously setup sensor arm (see Figure 5.20), and two datasets were collected and 

processed in July and October 2009. The purpose of the second projector was to test the 

effect of the pattern overlap from the two projectors on the quality of the torso 
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reconstruction. Figure 5.21 shows an example of the presence of this overlap in the 

collected images.  

 

Figure 5.20 Dual projector sensor arm setup showing all the cameras pointed 

towards the torso mannequin 

 

  

(a) (b) 
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(c) (d) 

Figure 5.21 Example images without (a) and with (b) a pattern overlap; zoomed in 

example view without (c) and with (d) the pattern overlap 

 

The interference between the patterns projected by the two projectors did not have a 

negative, but rather a positive effect on the torso reconstruction. Specifically, compared 

to the single projector dataset there were more points in the reconstructed surfaces in the 

dual projector datasets (see Table 5.13). Also, there were more points matched in the 

pattern overlapping areas, which seemed to slightly strengthen the surface registration 

(see Table 5.14 and Table 5.15).  

Table 5.13 Number of points in the reconstructed surfaces for the datasets with dual 

projector compared to the one with a single projector 

Dataset 
Front 

S1 

Right side 

S2 

Back 

S3 

Left side 

S4 

Single projector 

June 2009 
18,530 14,810 20,510 14,610 

Dual projector 

July 2009 
20,910 17,220 21,870 17,830 

Dual projector 

Oct 2009 
20,480 16,910 21,120 17,340 
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Table 5.14 Goodness of fit after the pairwise registration for the four reconstructed 

surfaces in the datasets with dual projector compared to the ones with a single 

projector; the number of matched point-patch pairs in the overlapping areas is 

shown in brackets 

Average normal distance (mm) 

Surface pairs June 2009 

(single projector) 

July 2009 

(dual projector) 

Oct 2009 

(dual projector) 

S2 to S1 0.34 (4,850) 0.29 (6,700) 0.28 (6,730) 

S3 to S2 0.34 (5,570) 0.29 (6,570) 0.30 (6,330) 

S3 to S4 0.32 (5,150) 0.29 (6,320) 0.28 (5,890) 

S4 to S1 0.29 (5,260) 0.27 (6,540) 0.27 (6,480) 

 

Table 5.15 Goodness of fit after the multiple-surface registration for the four 

reconstructed surfaces in the datasets with dual projector compared to the ones with 

a single projector 

Average normal distance (mm) 

Surface pairs June 2009 

(single projector) 

July 2009 

(dual projector) 

Oct 2009 

(dual projector) 

S2 to S1 0.34 0.29 0.28 

S3 to S2 0.32 0.28 0.28 

S3 to S4 0.32 0.29 0.28 

S4 to S1 0.29 0.27 0.28 

 

In terms of absolute accuracy, 98.6% and 98.1% of the 1025 FaroArm control points (25 

targets x 41 points per target) found corresponding patches in the July and October 2009 

datasets with estimated average normal distances of 0.29mm and 0.32mm, respectively 

(see Table 5.16). In both cases, there was only one out of the 25 centroid targets with a 

normal distance of just over 0.5mm (see Table 5.17). Figure 5.22 shows plots for the 

convergence of the transformation parameters for the registration between the FaroArm 
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control points and the two reconstructed torso models. In order to check the repeatability, 

the two torso models were registered to each other and the average normal distance was 

0.19mm, where 99.1% of the points from the October 2009 dataset were matched to the 

patches from the July 2009 dataset. Figure 5.23 shows the plots for the convergence of 

the transformation parameters for this repeatability test.  

Table 5.16 Summary of the absolute accuracy evaluation for the dual projector 

datasets compared to the one with a single projector 

Dataset 

Average normal 

distance (mm) 

Number of centroid 

targets with normal 

distance over 0.5mm 

Percentage of 

matched control 

points 

June 2009 0.42 1 97.8 

July 2009 0.29 1 98.6 

Oct 2009 0.32 1 98.1 

 

Table 5.17 Estimated normal distances between the 25 centroid targets and their 

corresponding patches for the dual projector datasets 

Normal distance (mm) Normal distance (mm) 
  Target ID 

July 2009 Oct 2009 
Target ID 

July 2009 Oct 2009 

  1 0.06 0.08 14 0.23 0.06 

  2 0.16 0.16 15 0.15 0.15 

  3 0.06 0.40 16 0.10 0.13 

  4 0.29 0.21    

  5 0.14 0.11 18 0.13 0.22 

  6 0.08 0.27 19 0.20 0.09 

  7 0.06 0.19 20 0.25 0.04 

  8 0.28 0.39 21 0.04 0.13 

  9 0.24 0.24 22 0.28 0.15 

10 0.06 0.05 23 0.10 0.55 
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11 0.46 0.03 24 0.54 0.03 

12 0.34 0.23 25 0.01 0.08 

13 0.09 0.24 26 0.11 0.16 

 

 

(a) 

 

(b) 

Figure 5.22 Iterative solution for the transformation parameters in the registration 

between the FaroArm control points and the fully reconstructed torso models in the 

July (a) and the October (b) 2009 datasets 
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Figure 5.23 Iterative solution for the transformation parameters in the registration 

between the July and the October 2009 datasets 

 

5.6.3 Test on the coplanarity constraint vs. the modified weight matrix methods 

In Chapter Four two approaches for performing pairwise and multiple-surface 

registration of overlapping point clouds were presented. The two approaches share the 

same geometric primitives, transformation function and matching strategy, but they differ 

in the similarity measure. In the coplanarity constraint method, the volume between 

conjugate points and triangular patches from the overlapping surfaces is minimized. 

Thus, this is a triangular patch based method.  In the modified weight matrix method, for 

every conjugate point-patch pair, the distance between the point and one of the vertices of 

the triangular patch is minimized in the direction normal to the patch. Thus, in terms of 

the implementation, this is a point based method. The previous two experiments only 

used the coplanarity constraint method so that the results could be comparable to 
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previously published work. Now, the two approaches were tested with the point clouds 

from the July and October 2009 datasets in order to verify their equivalency. First, the 

pairwise registration using the coplanarity constraint and the modified weight matrix 

methods was performed between all the overlapping surfaces (e.g. S2→S1, S3→S2, 

S3→S4, and S4→S1) for both datasets. The output from the pairwise registration was the 

set of transformation parameters between the neighbouring surfaces and the conjugate 

point-patch pairs in the overlapping regions. 

 The output from the pairwise-surface registration served as the input for the 

multiple-surface registration. That is, the final transformation parameters from the 

pairwise registration were used as the initial transformation parameters for the multiple-

surface registration, and the detected conjugate point-patch pairs from the pairwise 

registration were used for both the coplanarity constraint and modified weight matrix 

methods for multiple-surface registration. In both datasets, the first surface was chosen as 

the common reference frame, so its transformation parameters were fixed as zeros for the 

translations and the rotations. Also, in all cases, the scale for the 3D similarity 

transformation was fixed as one, so technically a rigid body transformation was 

implemented. Table 5.18 shows the final transformation parameters and their standard 

deviations resulted from the multiple-surface registration for the July dataset using the 

coplanarity constraint method. Table 5.19 shows the same results for the modified weight 

matrix method. The average normal distances between the matched point-patch pairs for 

the transformed surfaces were approximately 0.3mm for both methods. 
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Table 5.18 Transformation parameters and their standard deviations after multiple 

surface registration using the coplanarity constraint for the July dataset 

 
XT 

(mm) 

YT 

(mm) 

ZT 

(mm) 

ω 

(°) 

φ 

(°) 

κ 

(°) 

S2 
291.49 

±0.04 

-26.56 

±0.02 

265.07 

±0.02 

93.1381 

±0.1412 

92.8342 

±0.0029 

-87.5881 

±0.1415 

S3 
556.89 

±0.02 

-11.38 

±0.02 

-27.01 

±0.03 

8.3861 

±0.0018 

-179.8875 

±0.0056 

2.7046 

±0.0023 

S4 
267.31 

±0.05 

14.90 

±0.02 

-290.76 

±0.02 

-89.2218 

±0.0886 

-84.4278 

±0.0029 

-92.1119 

±0.0893 

 

Table 5.19 Transformation parameters and their standard deviations after multiple 

surface registration using the modified weight matrix constraint for the July dataset 

 
XT 

(mm) 

YT 

(mm) 

ZT 

(mm) 

ω 

(°) 

φ 

(°) 

κ 

(°) 

S2 
291.52 

±0.04 

-26.47 

±0.03 

265.08 

±0.02 

92.9025 

±0.1511 

92.8200 

±0.0036 

-87.3628 

±0.1511 

S3 
556.91 

±0.03 

-11.31 

±0.03 

-26.93 

±0.05 

8.3631 

±0.0039 

-179.8912 

±0.0081 

2.7045 

±0.0044 

S4 
267.36 

±0.05 

15.06 

±0.02 

-290.71 

±0.02 

-89.0894 

±0.0955 

-84.4547 

±0.0034 

-91.9619 

±0.0960 

 

It could be noticed that, even though quite close, the two sets of transformation 

parameters were not identical. In order to test their equivalency, the original points of 

surfaces S2, S3, and S4 were transformed with both sets. Then, the root mean squared 

error (RMSE) between the resulted pairs of transformed points was calculated. As seen 

from Table 5.20, the total RMS values were less than the average normal distances of 

0.3mm between the transformed surfaces. This means that the RMS values were less than 



123 

 

the measurement noise, and the two sets of transformation parameters were deemed 

equivalent. Similarly, Table 5.21 shows the final transformation parameters and their 

standard deviations for the multiple-surface registration using the coplanarity constraint 

for the October dataset. Table 5.22 shows the same results for the modified weight matrix 

method. Again, the average normal distances between the transformed surfaces were 

approximately 0.3mm, and the total RMS values showing the equivalency between the 

estimated transformation parameters by the coplanarity constraint and the modified 

weight matrix methods were at the 0.1mm level (see Table 5.23). The only differences 

between the coplanarity constraint and the modified weight matrix approaches for 

multiple-surface registration was in terms of computing performance. More specifically, 

the coplanarity constraint method took about 30 iterations for the a-posteriori variance 

factor to converge to 1x10
-10

mm
6
, while the modified weight matrix method took about 

five iterations for the a-posteriori variance factor to converge to 1x10
-15

mm
2
. This 

difference was due to the fact that in the former case the errors minimized were 

volumetric, while in the latter case the errors were linear. 

Table 5.20 RMSE between point clouds registered by the coplanarity constraint and 

the modified weight matrix methods for the July dataset 

 
RMSEX 

(mm) 

RMSEY 

(mm) 

RMSEZ 

(mm) 

RMSEXYZ 

(mm) 

S2 0.08 0.02 0.09 0.13 

S3 0.03 0.05 0.13 0.14 

S4 0.09 0.20 0.06 0.22 
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Table 5.21 Transformation parameters and their standard deviations after multiple 

surface registration using the coplanarity constraint for the October dataset 

 
XT 

(mm) 

YT 

(mm) 

ZT 

(mm) 

ω 

(°) 

φ 

(°) 

κ 

(°) 

S2 
270.19 

±0.04 

-34.52 

±0.02 

257.08 

±0.02 

-260.4508 

±0.0853 

94.8686 

±0.0030 

268.0451 

±0.0857 

S3 
529.99 

±0.02 

-11.16 

±0.02 

-13.09 

±0.03 

12.4952 

±0.0019 

179.6588 

±0.0060 

2.6986 

±0.0025 

S4 
259.44 

±0.05 

23.37 

±0.02 

-270.17 

±0.02 

-85.3906 

±0.0709 

-82.4158 

±0.0031 

-90.2563 

±0.0717 

 

Table 5.22 Transformation parameters and their standard deviations after multiple 

surface registration using the modified weight matrix constraint for the October 

dataset 

 
XT 

(mm) 

YT 

(mm) 

ZT 

(mm) 

ω 

(°) 

φ 

(°) 

κ 

(°) 

S2 
270.24 

±0.04 

-34.64 

±0.03 

256.94 

±0.03 

-260.2167 

±0.0900 

94.8807 

±0.0037 

267.8190 

±0.0902 

S3 
529.93 

±0.03 

-11.25 

±0.03 

-13.34 

±0.05 

12.5194 

±0.0041 

179.6655 

±0.0085 

2.7141 

±0.0046 

S4 
259.32 

±0.05 

23.46 

±0.02 

-270.33 

±0.02 

-85.4204 

±0.0747 

-82.3940 

±0.0036 

-90.3120 

±0.0755 

 

Table 5.23 RMSE between point clouds registered by the coplanarity constraint and 

the modified weight matrix methods for the October dataset 

 
RMSEX 

(mm) 

RMSEY 

(mm) 

RMSEZ 

(mm) 

RMSEXYZ 

(mm) 

S2 0.07 0.07 0.04 0.11 

S3 0.06 0.03 0.08 0.10 

S4 0.06 0.03 0.08 0.10 

 



125 

 

5.7 Summary of the experimental results 

The experimental results shown in this chapter covered the system calibration, the 

surface reconstruction and the surface registration procedures. The system calibration 

included results on the camera calibration, the camera stability analysis, and the 

estimation of the EOPs. The camera calibration tests consisted of experiments on the type 

of distortion model, the choice of image space observations and the options for datum 

definition. It was concluded that a distortion model which only had the first coefficient 

for radial lens distortion (i.e. k1) was sufficient, and also that when linear features were 

used together with distance constraints, it was not necessary to use any surveyed target 

points to define the datum. The IOPs of the cameras were deemed stable after two 

calibration campaigns, so the cameras were set up on a wooden frame, and together with 

a projector they were used as one sensor arm. After the EOPs for the cameras were 

estimated, three different types of objects were reconstructed – a flat metal plate, human 

faces, and an artificial torso mannequin. The flat metal plate was reconstructed at the sub-

millimetre level, the human faces were reconstructed while varying the pattern size, and 

the torso mannequin was reconstructed with a relative and absolute accuracy of 0.3mm 

without and with a pattern overlap from a second projector. The torso mannequin 

experiments also required a registration procedure in order to combine partial pieces of 

the full surface model into a common reference frame. Two types of similarity measures, 

namely the coplanarity constraint and the modified weight matrix method, were used for 

both the pairwise and the multiple surface registration. The results they yielded were 

equivalent, so in the future any one of them could be used for the registration. 

Nevertheless, the modified weight matrix method would be the preferred one, because it 
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takes fewer iterations for the convergence of the transformation parameters, i.e. it is 

computationally more efficient. At the same time, it is also simpler, because the partial 

derivatives are easier to implement. All in all, these successful experiments showed that 

the camera system has the potential to be used for a variety of applications such as 

change detection, infrastructure deformation monitoring, biomedical imaging, and 

cultural heritage documentation to name a few. 
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Chapter Six: Conclusions and Recommendations for Future Work 

 

This thesis started out by defining scoliosis, and some of the risks associated with 

the disease progression for growing children were described. They included chronic back 

pain, respiratory problems, and impeded heart function. It was noted that an early 

detection of abnormal spine curvature is crucial so that the disease could be monitored 

closely, and an adequate treatment could be assigned to the patient. Then, it was pointed 

out that the current methodologies for scoliosis assessment and monitoring employ x-ray 

imaging, which over time exposes the patients to a significant amount of ionizing 

radiation leading to an increased risk of cancer. Since there is a high correlation between 

the internal spine curvature and the torso surface deformation, quantifying the scoliotic 

deformity of the torso surface is an alternative method for scoliosis assessment and 

monitoring. Some of the most recent work on establishing this correlation was published 

by Swanson (2008). This was why a brief review of some of the current commercially 

available systems for 3D reconstruction was carried on. However, it was decided that 

none of these systems were adequate for torso surface measurements, because they were 

too expensive, not accurate enough, or too slow in order to be able to measure kinematic 

objects. On the other hand, off-the-shelf digital cameras are now readily available at low 

cost. Moreover, they could be rigorously modelled to achieve optimal accuracy, and they 

could also be set at a fast shutter speed to avoid any motion problems. This was why this 

research proposed a photogrammetric system as a radiation-free replacement of x-ray 

imaging for providing 3D surface models of scoliotic torsos. In addition, the system must 

be designed in such a way that it could reconstruct surfaces with homogenous texture and 
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entire 3D objects. Ideally, it should also be fairly automated so that the final product 

could be delivered as quickly as possible, and finally, it should be flexible enough to be 

used for other 3D reconstruction applications. The ground work on this project, i.e. the 

initial experiments using a single camera for the proof of concept were published by 

Chang (2008). 

The proposed system is based on a low-cost multiple-camera and multiple-

projector setup. The prerequisites for optimal functionality include system calibration 

(i.e. camera calibration, camera stability analysis and exterior orientation parameter 

determination), camera synchronization and pattern projection. The processing 

procedures include semi-automated surface reconstruction, and fully automated surface 

registration, where the only manual involvement in the surface reconstruction is selecting 

a region of interest for the corner detection and matching. The performance of the 

implemented sensor arm as part of the designed system was assessed by repeatedly 

reconstructing a flat metal plate, two human faces, and a full 360º model of an artificial 

torso mannequin. The final reconstructed models exhibited sub-millimetre relative and 

absolute accuracy, which was at the desired quality level. Currently, the pairwise surface 

registration seems to perform quite well, but the multiple surface registration is still 

highly recommended so that the registration quality of the final torso model could be 

trusted in cases of less overlap between the involved surfaces. 

The main contributions of the work presented here included improvements in the 

system calibration, the data collection, the processing, and the results assessment. In 

terms of the system calibration and the data collection, the major contribution was the 

actual implementation of one of the sensor arms in the proposed system, i.e. the camera 
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calibration, the camera stability analysis, the setup, and the operation of multiple 

cameras. In terms of the data processing, the focus was on improving the system 

automation and reliability. This was why the hierarchical image matching algorithm, and 

the pairwise and multiple surface registration techniques using the modified weight 

matrix method were introduced in the processing workflow. Finally, in terms of 

improvements in the results assessment, the 1025-set of FaroArm control points were 

collected, and a repeatability study was also performed. 

 

6.1 Conclusions 

There were three findings during the camera calibration experiments. The first 

one was that it was not necessary to solve for all the six lens distortion parameters for the 

tested camera. This was concluded, because estimating only the first coefficient for radial 

lens distortion yielded an adequate set of IOPs, i.e. the bundle adjustment had sub-pixel 

level precision in image space, and sub-millimetre accuracy in object space. The second 

point was that adding linear features to the calibration procedure improved the precision 

of the estimated IOPs due to increased redundancy. The last finding was that whether 

control points or distance constraints were used to define the datum, the output IOP sets 

were equivalent, especially if linear features were used as observations. This was to say 

that including linear features in the bundle adjustment with self-calibration improved the 

robustness of the solution against the datum definition procedure. Thus, it was concluded 

that the most practical way to do camera calibration as far as choices for a distortion 

model, image space observations and datum definition, was to solve only for k1 as 
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opposed to all the lens distortion parameters, use linear features in addition to points, and 

use distance constraints as opposed to control points, respectively. 

During the data processing, there was a new implementation of a hierarchical 

image matching procedure. Traditionally, hierarchical image matching for aerial 

photographs is done by resampling the images from coarse to fine resolution. In this case, 

the hierarchical image matching was carried out for a close range photogrammetry 

application. It was done by controlling the density of the corner detection at every 

matching iteration, and by using a look-up table for the x-parallax. 

There was another finding during the comparative analysis of the coplanarity 

constraint and the modified weight matrix method for irregular point cloud registration. 

The two methods produced equivalent results, however, the modified weight matrix 

method was more efficient in terms of computing performance. This was because the 

coplanarity constraint method was a point-patch approach and the errors that were 

minimized were volumetric, while the modified weight matrix was effectively a point-to-

point approach and the errors that were minimized were linear. 

In terms of overall conclusions, the experimental results were quite encouraging, 

and the proposed system is thought to be sufficiently accurate for clinical applications. 

Also, since it is economical, it has the potential to be used for scoliosis assessment and 

monitoring. In addition, since the relative orientation for the cameras in each sensor arm 

is computed by simply using a target board with measured distances, this part of the 

system calibration could easily be done by the end user. The proposed system could also 

be modified so that it could be used for other applications such as structural deformation 

monitoring or cultural heritage documentation.  
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6.2 Recommendations for future work 

All in all, the implemented system met all original objectives, except that 

processing the data takes longer than desired. Thus, current work is focusing on 

optimizing the system, i.e. speeding up the required time for processing. Future work will 

include building the full four sensor arm prototype of the proposed system, and 

performing experiments on real subjects in a clinical environment after receiving ethics 

approval. Also, there will be more involvement in the actual analysis of the reconstructed 

torso for the purpose of monitoring the disease progression. For example, indices which 

quantify the torso surface asymmetry well enough to be able to estimate the degree of 

spinal deformity will be worked on. Finally, the system will be used for the deformation 

monitoring of beams and trusses during static and dynamic load testing.  
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