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Abstract 

Osteoarthritis (OA) affects cartilage and bones of weight bearing joints.  To understand 

OA, assessments of joint properties and health status are needed.  For these analyses, 

magnetic resonance imaging (MRI) can provide accurate in-vivo 3D surfaces of joint 

structures.  Alignment of these surfaces through a registration process can allow direct 

comparisons between datasets.  Registrations are commonly used in Geomatics 

engineering where temporal geographic data are compared for change detection.  

Therefore, the main objective of this thesis is to translate a Geomatics algorithm to 

register MR joint surfaces for quantitative studies of joint conditions.  Experiments with 

Geomatics and MRI data confirmed that the algorithm could successfully register and 

detect discrepancies between the surfaces.  Validation and repeatability studies showed 

that the algorithm achieved an accuracy of an image pixel size and the digitization and 

registration processes were highly repeatable.  Applications’ results also confirmed the 

feasibility of the algorithm for in-vivo studies of OA. 
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Chapter One: Introduction 

 

1.1 Background 

The knee joint is the largest and most complex joint in our body, and it provides bearing 

of tremendous loads, stability, and mobility for a wide range of locomotive activities.  

The tibiofemoral joint (tibia and femur) and the patellofemoral joint (patella and femur) 

are the main articulations within the joint capsule.  These articulations are surrounded by 

tissues like meniscus, cartilage, ligaments, and muscles that serve to distribute the load of 

the joint, enhance the stability, and control the movements of the knee (Figure 1-1).  Due 

to its complex functions and high load environment, the knee is prone to many injuries 

and disorders, such as anterior cruciate ligament tears, meniscus tears, and patellofemoral 

pain syndrome (Hall, 2003).   

 

Degenerative joint diseases, such as osteoarthritis (OA) that is marked by the 

deterioration of cartilage (Figure 1-2), also affects a large population (1/10 Canadians) 

and is a large burden to the health care system (The Arthritis Society, 2006).  Although 

the exact etiology of OA is not well understood, there is evidence suggesting that genetic 

factors, biomechanical aggravations, and joint injuries play a role in the development of 

OA (Andriacchi et al., 2004, Eckstein et al., 2001, Felson et al., 2000, Holderbaum et al., 
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1999).  A recent review reports that a large percentage of young adults with traumatic 

joint injuries such as anterior cruciate ligament and meniscus tears will develop OA 

(Roos, 2005).  These injuries often lead to instability, joint malalignment, increased load-

bearing, and abnormal knee kinematics, which all are common risk factors that are 

associated with the development of OA.  Therefore, to increase the understanding of the 

etiology and pathology of OA, in-vivo (i.e., inside the living body) quantitative 

assessments of morphological and mechanical properties of cartilage, joint kinematics, 

and joint health status (e.g., the disease stage of OA) are needed.  The insights gained 

with these quantitative assessments can in turn lead to better diagnosis, evaluation, and 

treatments in patients.     

 

Figure 1-1: Anatomy of the knee (The University of Chicago Hospitals, 2005). 
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Figure 1-2: Knee with signs of osteoarthritis (Zimmer, Inc., 2006). 

 

Medical imaging modalities, such as radiography (X-ray), computer tomography (CT), 

and magnetic resonance imaging (MRI) have been utilized for the diagnosis of 

musculoskeletal injuries and diseases, as well as for biomechanics studies and analysis.  

MRI is the preferred modality due to its capability in providing multi-planar cross-

sectional images with superior soft tissue contrast and high spatial resolution, and has 

minimal risk to patients (Disler et al., 2000, Eckstein et al., 2001).  MRI can capture 

accurate and high-density 3D data of joint structures for quantitative evaluation of 

mechanical and morphological properties of cartilage, joint kinematics, and joint health 

status, which can advance the understanding of OA.   

 

Practically, it is difficult (and unlikely) that subjects can be positioned in precisely the 

same location between scans with MR imaging.  Thus, it is typically impossible to 

capture the same cross-sections at identical anatomic locations and orientations.  

Moreover, injuries and disease progression can lead to local morphological changes.  
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Thus for MRI applications where the identifications and analysis of anatomically 

corresponding features are needed, registration is a necessary procedure for aligning two 

or more datasets together for direct comparisons.  

 

Similar to medical imaging, 3D data or surfaces also play an important role in the field of 

Geomatics engineering for photogrammetric and remote sensing applications such as 

change detection, city modeling, and ice sheet monitoring (Habib et al., 2001, Habib et al., 

2004, Wehr and Lohr, 1999).  These geographic data are commonly acquired by ground-

based, air-borne, and/or space-borne sensors, and can be multi-resolution and multi-

temporal.  These data are usually described by randomly distributed points that are 

measured with respect to different reference frames and have unknown correspondences.   

Thus registration is a necessary procedure for applications that require manipulation and 

comparison of these data.   

 

This thesis research introduces a novel idea of translating registration techniques 

originally developed in the field of Geomatics engineering for biomedical applications.  

The proposed registration algorithm, originally developed by Habib et al. (2001), is a 

robust surface matching algorithm that allows simultaneous establishment of 

correspondences and determination of transformation parameters between two sets of 

data.  With the increasing use of imaging in medical applications, research relating to 

medical image registration is a growing discipline that can benefit from ideas and 

knowledge in other fields. 
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1.2 Objective and Specific Aims 

The main objective of this research is to translate and modify the proposed surface 

matching algorithm originally developed in Geomatics engineering to create novel 

approaches that will enable accurate registration of 3D MR data of joint structures, for 

the purpose of quantitative assessment of joint properties and diseases.  This research 

focuses on the modifications of the algorithm, validation of the registration accuracy for 

MR data, and evaluation of repeatability.  Experimentations with MR images of the knee 

joint were performed and the algorithm was employed in different applications to aid in 

disease monitoring and biomechanics studies.  The objective of this thesis research is 

achieved through four specific aims (SA): 

 

SA1) Investigate whether the algorithm can work with high density data in the presence 

of noise, implement necessary modifications, and perform verifications using Geomatics 

engineering applications. 

 

SA2) Apply the modified surface matching algorithm to register 3D MR data of knee 

joint structures acquired at different positions and under different alignment and loading 

conditions. 

 

SA3) Validate the registration accuracy obtained with the algorithm, and analyze the 

repeatability of the digitization and registration algorithm for matching knee joint 

surfaces generated from MR data. 
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SA4) Apply the modified surface matching algorithm to register 3D MR data of healthy 

and pathologic knees to aid in the in-vivo study of joint biomechanics and joint health 

status.  

 

1.3 Thesis Outline 

The thesis is organized into eight chapters.  Chapter two summarizes literature review on 

studies of joint properties and diseases with MRI and presents some fundamentals of MR 

imaging.  It also includes detailed reviews of published registration techniques in the field 

of medical imaging and Geomatics engineering, their experimental results, and the 

strengths and limitations of these methods.  Chapter three provides detailed descriptions 

of the methodology of the proposed surface matching algorithm.  The next four chapters 

represent the research to complete each of the study specific aims.  Chapter four (SA1) 

describes the limitation of the algorithm when working with high density data and 

modifications required to overcome this issue.  This chapter also includes verifications of 

the modified algorithm with three Geomatics engineering applications.  The next chapter 

discusses the datasets, data processing steps (i.e., segmentation and surface modeling), 

and experimental results of the registration of knee joint surfaces generated from 3D MR 

data using the modified algorithm (SA2).  Chapter six includes in-depth explanations of 

the experiments and results for accuracy validation and repeatability studies for the 

modified surface matching algorithm for registering MR data (SA3).  Chapter seven 
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shows the data, procedures, and results for three applications of in-vivo studies of joint 

biomechanics and disease conditions using the modified algorithm, including: 1) 

monitoring changes in cartilage thickness for healthy and OA patients, 2) patellar 

tracking for healthy subjects, and 3) quantifying changes in contact locations of the 

patellar cartilage during knee flexions (SA4).  Finally, the last chapter offers conclusions 

on the thesis research project and recommendations for future directions.   

 

Some of the works described in this thesis have been presented in conferences and 

accepted for publication in peer-reviewed journals.  The modified surface matching 

algorithm and preliminary experimental results with MRI and Light Detection and 

Ranging (LIDAR) data were presented at the International Geoscience and Remote 

Sensing Symposium, Seoul, Korea, July 2005, and at the Workshop Italy – Canada 2005 

“3D Digital Imaging and Modeling: Applications of Heritage, Industry, Medicine, and 

Land”, Padua, Italy, May 2005.  This work will also be published in the Electronics and 

Telecommunications Research Institute Journal, Volume 28 (Number 2), April 2006.  

The methodology and experimental results for the first MRI application in SA3, the 

monitoring of cartilage thickness changes, were presented at the 52nd Annual Meeting of 

the Orthopaedic Research Society, Chicago, USA, March 2006.  This work is also 

accepted to be published in the journal Osteoarthritis and Cartilage.  The second and third 

applications of SA4 were presented at the International Society for Optical Engineering 

Medical Imaging Conference, San Diego, USA, February 2006.      
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Chapter Two: Literature Review 

 

2.1 Introduction 

This chapter first presents background information on traditional technologies for 

assessments of joint diseases and biomechanics studies.  Then, more recent studies using 

magnetic resonance imaging will be introduced along with a brief summary of magnetic 

resonance principles and imaging considerations for knee joint structures.  The need of 

registration will then be emphasized, followed by critical review of existing registration 

techniques in both medical imaging and Geomatics engineering fields.  Based on this 

literature review, this chapter ends with concluding remarks to rationalize the motivations 

and objectives of this research. 

 

2.2 Imaging Applications in Assessment of Joint Injuries and Diseases 

Many imaging techniques are available both clinically and in research for assessments of 

joint conditions and health status.  Conventional radiography (X-ray) is widely used for 

diagnosis of osteoarthritis (OA) by the evaluation of joint space narrowing (narrowing of 

joint space due to thinning of cartilage) (Figure 2-1), and evaluation of pathological 

lesions such as osteophytes and bone sclerosis (Altman et al., 1996, Felson et al., 1997, 

Vignon et al., 1999).  Due to its high variability and low sensitivity, many studies 
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attempted to standardize the clinical protocol and measurement techniques so that 

radiographic diagnosis could be more accurate, reproducible, and reliable (Altman et al., 

1987, Altman et al., 1996, Vignon et al., 1999).  Despite these standardized protocols, 

radiographs only permit an indirect evaluation of cartilage degeneration based on a 2D 

measurement.  Additionally, planar radiography does not display any information about 

soft tissues like cartilage, ligaments, and meniscus.  Studies have also revealed no 

correlation between radiographic and clinical changes for 500 subjects with knee OA 

(Dieppe et al., 1997), and no correlation between longitudinal changes in cartilage 

volume and joint space width (Cicuttini et al., 2005).   Arthroscopy is another gold 

standard tool for diagnosis and surgical instrumentation for joint injuries and OA, which 

can provide magnified and direct viewing of soft tissue conditions (Oakley and Lassere, 

2003, Oakley et al., 2005).  However, only surface details are captured with little 

information for the morphological properties of the soft tissues.   Its invasive manner also 

makes it unfavorable, especially for research. 

 

Figure 2-1: Joint space narrowing observed from radiograph of OA knee (Felson et 
al.,1997) 
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For kinematics studies, numerous groups have reported results on patellar tracking (i.e., 

track the movement of the patella with respect to the femur) to understand normal and 

pathological biomechanics of the patellofemoral joint.  Early studies, which mainly based 

on cadaveric measurements, employed roentgen stereo-photogrammetry analysis (RSA) 

and X-ray photogrammetric techniques (van Kampen and Huiskes, 1990, Veress et al., 

1979).  These techniques utilized traditional photogrammetric principles to measure 3D 

movement of bone-implanted markers during knee flexions.  Hefzy et al. (1992) 

measured the motions of cadaveric joints using the 3-SPACE digitizer and tracking 

system, which utilized low-frequency magnetic field technology to provide 

measurements with six degrees of freedom.  Koh et al. (1992) tracked the in-vivo patellar 

motions with bone-implanted markers in the patella, femur, and tibia for one male subject, 

using video and motion analysis systems for seated and squatting knee flexion/extension 

exercises.  These in-vivo results were in general agreement with cadaveric measurements 

(van Kampen and Huiskes, 1990).  Ahmed et al. (1983) measured contact area and 

pressure distribution of patellofemoral cartilage in-vitro using transducers attached to 24 

amputated limbs.  Their results indicated that the contact area increased from 0° to 60° 

flexion, remained constant between 60° to 90°, and decreased from 90° to 120° flexion.  

A more recent study measured patellar tilt, patellar displacement, and anatomic shapes of 

the joint based on 2D radiographs (lateral and axial views at 35° flexion) to determine 

whether alignment abnormalities were found in subjects with patellofemoral pain 

syndrome (PFPS) (Laprade and Culham, 2003).  These experiments with 33 PFPS 
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subjects matched with 33 controls found no significant differences in patellar tilt and 

displacement between the two groups for loaded and un-loaded conditions.  

Stereophotogrammetry was also employed for accurate in-vitro measurements of 

cartilage topography and thickness maps of articular surfaces (Ateshian et al., 1991).     

 

Although these pioneering studies developed accurate techniques and reported important 

findings on joint structures and kinematics, in-vitro measurements on cadavers likely do 

not reflect the true in-vivo environment and kinematics of viable joints, and the use of 

invasive bone markers might alter normal kinematics.  Furthermore, 2D measurements on 

radiographs cannot capture and represent 3D characteristics of the joint.  With recent 

advancements in magnetic resonance imaging (MRI) technologies, non-invasive in-vivo 

evaluation of joint properties and disease conditions became possible.  Unlike X-ray and 

CT that are based on ionizing radiation, MRI has no known risks to subjects, thus is 

widely accepted for clinical and research applications. 

 

2.3 Magnetic Resonance Imaging 

MRI (Figure 2-2a) is capable of providing multi-planar cross-sectional images of high 

resolution and soft-tissue contrast (Nishimura, 1996) (Figure 2-2b).  It is highly flexible 

for controlling the image content and quality, and can provide both anatomic and 

metabolic information.  This section includes background information about MR 

principles and imaging considerations.  As the focus of this research is on registration, 
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only a brief summary of MR principles is provided here.  Emphasis is placed on why 

MRI is used for quantitative assessment, rather than how MRI works to provide 

quantitative information.  More detailed information about MR fundamentals is provided 

in Nishimura (1996) and Haacke et al. (1999).  MR imaging considerations for the knee 

joint will be presented, as they influence the registration process and the achieved 

accuracy.  This section also includes a review of the accuracy of MRI to measure joint 

properties and studies that used MRI for evaluation of joint diseases and kinematics. 

 

(a)      (b) 

Figure 2-2: 3-telsa General Electric MR unit at the Seaman Family MR Research Centre, 
Calgary (a) and MR image slices (b) 
 

2.3.1 Principles of Magnetic Resonance 

MRI, a tomographic medical imaging technique that is based on the phenomenon of 

nuclear magnetic resonance (NMR), was first proposed by Edward Purcell and Felix 

Bloch in 1946.  In 1973, Paul Lauterbur showed the first MR image obtained based on 

this principle.  The quantum mechanics of NMR describes the nuclear spin angular 
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momentum of atoms.  For MR, the hydrogen proton (1H) is the nucleus of interest, as it is 

most abundant in the human body and gives the largest MR signal. 

 

Three types of magnetic fields influence the nuclear spins of the hydrogen protons to 

produce MR signals: 1) main magnetic field, 2) radiofrequency (RF) field, and 3) linear 

gradient field.  With the presence of he main magnetic field, the magnetic moment 

vectors (originally in random orientation) tends to align in the direction of this main field 

(longitudinal direction), which gives a net moment in the equilibrium state.  The nuclear 

spins also precess at a resonance frequency called the Larmor frequency.  To generate 

MR signal pulses, radiofrequency tuned to the resonant frequency of the spins is applied 

in the transverse plane, exciting the spins out of the equilibrium state.  This excitation 

causes the net magnetization vector of the spins to flip (e.g., by 90°) and lie on the 

transverse plane.  Once the RF excitation is turned off, the spins relax back to their 

equilibrium state and give off an electromotive force.  This electromotive force is 

received by an RF receiver coil and recorded as the MR signal.  The relaxation process is 

characterized by two time constants, known as T1 and T2 relaxation times (Figure 2-3).  

T1 describes the time required for the magnetization vector to return to the longitudinal 

direction (Z axis) while T2 describes the decay of the vector component in the transverse 

direction (X and Y axes).  Different tissues in the human body have different T1 and T2 

values.  Additionally, abnormal tissues also show altered values compared to normal 

tissues.   These relaxation values, along with different atomic densities, provide different 

MR signals (i.e., contrast) for different tissues. 
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Figure 2-3: Trajectory of the tip of the magnetization vector (arrow) showing the return 
to the longitudinal direction or Z axis (T1 relaxation) and the decay of the transverse 
components in the X and Y directions (T2 relaxation) (Haacke et al., 1999). 
 
 

To determine the spatial locations of the received signal, linear gradient magnetic fields 

are used in three directions (slice selection, frequency-encoding, and phase-encoding 

directions) to give varying field strength with respect to location.  This enables the signal 

to be spatially encoded to produce a proper image.  After processing, the received signals 

are stored in a matrix form known as the k-space (spatial-frequency space).  Each point in 

this k-space contains information for all parts of the image.  Fourier transform is 

subsequently performed to form a pixel image with grey scale intensities. 

 

2.3.2 MR Imaging Parameters 

For MR imaging, several parameters must be considered that can affect the image 

resolution, tissue contrast, scan time, and signal to noise ratio (SNR) of the images.  

These parameters provide the flexibility of MR imaging to produce image content that is 
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best suited for different applications, with different parameter combinations resulting in 

different imaging sequences. 

 

The flip angle describes the amount of rotation (angle of excitation) of the magnetization 

vector, and is proportional to the RF power.  Flip angle affects the amount of scan time 

and also the intensity of the signal.  The repetition time (TR) describes the time between 

consecutive RF pulses, and the gradient echo time (TE) describes the time between the 

RF pulse and the echo (signal measurement).  TR and TE are important parameters for 

adjusting image contrast.  Scan time is influenced proportionally by the TR parameter, 

while the TE parameter has no effect.  Number of excitation (NEX) is the number of 

signal measurements, or in practical terms, the number of averages of the signals.  Thus, 

increasing NEX can increase SNR, but can also increase the scan time.  The receiver 

bandwidth is the rate at which the signal is sampled, and it directly affects the SNR.  A 

larger bandwidth will decrease the SNR, but can improve spatial resolution (faster 

sampling).  The acquisition matrix contains the number of data samples acquired in the 

frequency and phase encoding direction, with a larger matrix giving higher resolution but 

also requiring longer scan time.  Field of view (FOV) is defined as the size of the spatial 

encoding area and can also be defined as the sampling rate in k-space.  The FOV should 

be large enough (i.e., sufficient sampling rate) to encompass the object of interest to 

avoid aliasing (wrap around of the object).   To summarize, the relationships between 

SNR and the imaging parameters can be explained by the following equation: 
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Where: ∆x, ∆y, ∆z  are the resolution of the voxel in the x, y, and z directions, and 

 Nx, Ny, Nz are the number of samples/measurements collected.  

 

Clearly all the imaging parameters are interrelated; indicating that a tradeoff between 

parameters may be required to obtain the optimal image.   For example, increasing matrix 

size or decreasing FOV increases spatial resolution, but at the expense of either decreased 

SNR or increased scan time.  To improve SNR, a higher NEX can be used, but this also 

increases the scan time.  Therefore, for each application, it is important to define the 

required resolution and tissue contrast, and the acceptable scan times, in order for the best 

imaging sequence (i.e., combination of parameters) to be chosen to produce the most 

suitable images.  It is also important to keep in mind that image quality is constrained by 

machine and hardware limitations. 

 

2.3.3 MR Imaging Considerations of the Knee 

Quantitative assessments of the complex composition of the knee joint structures and 

properties based on MRI require the tissues of interest to be delineated clearly and 

accurately from their surrounding tissues.  For example, for the monitoring of OA and 

kinematics studies such as patellar tracking, the underlying bone surface, the bone-

cartilage interface, and the cartilage surface should all be clearly presented in the MR 

images.  Achieving high spatial resolution is also important as knee structures such as 
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cartilage is extremely thin, on the order of 0.1 mm to 7 mm, depending on the joint and 

species (Disler et al., 2000).  Therefore, MR imaging sequences employed to acquire the 

images must maximize tissue contrast and spatial resolution while maintaining a 

sufficient SNR and an imaging time that is acceptable for the application (Hardy et al., 

2000).  

 

A T1-weighted 3D spoiled gradient-echo (SPGR) imaging sequence with fat-suppression 

is commonly employed for quantitative assessments of cartilage, as it allows detection of 

cartilage defects with high sensitivity and specificity.  Cartilage appears bright with this 

sequence when compared to surrounding tissues (e.g., bone appears darker), and 

chemical shift artifacts are minimized (Figure 2-4a) (Disler et al., 2000, Eckstein et al., 

2001, Suh et al., 2001).  Although this sequence can provide sufficient SNR and 

resolution, one limitation is that it produces little contrast between cartilage and synovial 

fluid (Hargreaves et al., 2003).  A fat-suppressed intermediate- or T2-weighted fast spin 

echo (FSE) sequence is also commonly used for imaging cartilage of the knee, as it is 

also highly sensitive to cartilage defects (Figure 2-4b) (Disler et al., 2000, Suh et al., 

2001).  Cartilage appears as an intermediate signal for this imaging sequence, with fluid 

brighter and bone darker.  Due to the better contrast between cartilage and fluid, FSE can 

typically reveal cartilage lesions more clearly than the 3D SPGR sequence.  More 

information about gradient echo, spin echo, and image sequences can be found in 

Nishimura (1996) and Haacke et al. (1999). 
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(a)     (b) 

Figure 2-4: MR knee image acquired with the 3D SPGR sequence (a) and with the T2-
weighted FSE sequence (b) (Disler et al., 2000). 
 
 

Recently, with the technological advancement in MR hardware and sequences, a 

balanced steady state free precession (SSFP) sequence has become more popular as it can 

provide fast imaging with strong contrast between tissues and high SNR (Scheffler and 

Lehnhardt, 2003).  For knee imaging, balanced SSFP sequences have shown to increase 

contrast between cartilage and synovial fluid (Figure 2-5), improve SNR, and minimize 

scan times relative to the 3D SPGR and FSE sequences (Hargreaves et al., 2003).  The 

TR has to be kept short as these methods are very sensitive to magnetic field variations 

and susceptibility variations, which can lead to banding artifacts in the acquired images.  

In fact, a shorter TR can increase SNR efficiency (SNR normalized by the square-root of 

scan time) for the balanced SSFP sequences. 
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Figure 2-5: MR knee image acquired with a balanced SSFP sequence (an image from a 
dataset used in this thesis research). 
 
 

The imaging orientations/planes are also important to showcase the tissues of interest.  

Medial and lateral compartments of articular cartilage surfaces are best captured by 

images in the coronal and sagittal planes (Figure 2-6).  The geometry of the 

patellofemoral joint (e.g., patellar surface, contact between patella and femur) can be best 

seen on axial and sagittal images.  Sagittal views can also be used for patellar tracking 

(Stoller, 1997). 

 

Figure 2-6: Sagittal, coronal, and axial planes (San Diego Center for Spinal Disorders, 
2006) 
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MR imaging artifacts can cause errors and mis-interpretations in knee measurements, 

which in turn can lead to errors in the registration.  Artifacts can be caused by hardware 

defects, specific biochemical environments of the object of interest, and may also be 

dependent on the type of imaging sequences used.  Susceptibility artifact is caused by 

variations in the magnetic field strength that occur near the interfaces of substances of 

different magnetic susceptibility (Ruan, 2003), such as the interface of water and air.  The 

effects of this artifact are bright and dark areas (banding) with spatial distortions in the 

surrounding shapes, and are commonly found with gradient-echo sequences.  Lower field 

strength, higher resolution, and shorter TR are some ways to minimize the effects of this 

artifact (Ruan, 2003, Hargreaves et al., 2003).  Chemical shift artifact causes mis-

localization of water and fat pixels in the images due to differences in their resonance 

frequencies (Lamour frequencies) (Disler et al., 2000).  Since protons with different 

precession frequencies are expected to result from different locations (e.g., the effect of 

the gradient fields), spins from fat and water molecules in the same imaging voxel (same 

physical location) can therefore be encoded into different voxels.  This artifact can be 

apparent at the knee cartilage and fat interfaces.  Chemical shift artifact can be eliminated 

using fat-suppression for the imaging sequences (Disler et al., 2000), by imaging at lower 

magnetic field strength, or by decreasing voxel size (Ruan, 2003).  Magic angle artifact is 

found in tissues with highly anisotropic arrangement of molecules, such as the collagen 

fibers in articular cartilage.  When the long axes of the collagen fibers are oriented at 55° 

(the magic angle) to the main magnetic field, the cartilage appears brighter than other 
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tissues (Xia, 2000).  This increase in signal can mimic cartilage defects, especially for T2-

weighted imaging sequences, and can lead to false diagnoses.  Re-imaging by changing 

the relative angles can usually help to detect and avoid this artifact, while a longer TE can 

also give a smaller increase in the signal intensity.  Partial volume artifact describes the 

effect of signal averaging when a large image pixel encompasses more than one type of 

tissue.  This artifact most typically occurs in the slice-direction, which usually has the 

largest voxel dimension (Ruan, 2003).  This artifact can simulate abnormalities and can 

blur the affected tissue.  Decreasing the voxel size and imaging in multiple image planes 

can help to detect and reduce this artifact.  Although these artifacts can be minimized or 

compensated for, they cannot be fully avoided, thus can affect the accuracy of MR 

measurements of joint structures.  

 

2.3.4 Accuracy of MR Measurements of Joint Properties 

With increasing use of MR imaging in clinical examinations and research, studies were 

needed to analyze the accuracy, reproducibility, and reliability of MR measurements of 

joint properties.  Cohen et al. (1999) validated knee cartilage thickness measurement 

based on manual segmentation using MR images of six cadaveric knees (fat-suppression 

spoiled gradient-recalled sequence, resolution: 0.47 mm × 0.47 mm × 1.0 mm) against 

ones obtained using stereophotogrammetry.  An average deviation of 7% between the 

two methods was reported (RMS difference in the thickness between MRI and 

photogrammetry measurements).  The authors also validated surface topography derived 



22 
 

 

from MRI and found root mean square (RMS) errors of 0.23 mm for the cartilage surface 

and 0.14 mm for the bone surface.  Graichen et al. (2004) compared cartilage thickness 

measurements by MRI (T1-weighted 3D SPGR sequence, resolution: 0.31 mm × 0.31 

mm × 1.5 mm) with morphological measurements obtained using an image analysis 

system on surgically removed cartilage.  An absolute difference of 8.9% was found 

between the measurements from each technique, with higher errors for tibial cartilage 

than patellar cartilage.  Stammberger et al. (1999) tested the in-vivo reproducibility of 

cartilage thickness with MRI, and found that the mean thickness was reproducible to 

2.5% for the patella, 2.8% for the lateral tibia, and 3.4% for the medial tibia (RMS 

average of the individual coefficient of variation percent). 

 

For cartilage volumes, Cicuttini et al. (1999) calculated the accuracy of MR measurement 

(T1-weighted fat saturation 3D gradient recall acquisition in the steady state, resolution: 

0.31 mm × 0.31 mm × 1.5 mm) as an average absolute over/under estimation of volume, 

with volume measured by water displacement of surgically retrieved tissue as a reference.  

An average difference of 8.3% for the patella, 9.2% for the femur, and 9.2% for the tibia 

was reported.  The intra-observer reproducibility was found to be 3% (coefficient of 

variation) for the patellar cartilage volume, 2% and 5% for the femoral and tibial volume 

respectively.  Eckstein et al. (2002) investigated long term (up to eight months) and re-

segmentation precisions for MR measurements (sagittal, FLASH-3D sequence, 

resolution: 0.31 mm × 0.31 mm × 1.5 mm).  A long term RMS average coefficient of 

variation (CoV) of 1.4% for cartilage volume was reported for all knee surfaces, and 
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2.4% for mean thickness measurement.  The re-segmentation precisions were found to be 

2.6% and 2.5% respectively for volume and mean thickness. 

 

These results indicate that MR measurements of joint structural properties have shown to 

be accurate, repeatable, and reliable.  Thus, these results further confirm the efficacy of 

MR imaging in research and clinical fields for studying joint injuries and diseases. 

 

2.3.5 Studies of Joint Biomechanics and Diseases with MRI 

Many studies have adapted MRI for kinematics studies and disease monitoring.  Cicuttini 

et al. (2004) compared longitudinal changes of femoral and tibial cartilage volumes for 

117 patients with knee OA to investigate the correlation of the volume changes between 

these two surfaces.  Subjects were imaged and followed up after a 2-years interval.  

Results revealed a cartilage loss of 150 ± 300 mm3/year (mean ± standard deviation) for 

the femur and 100 ± 250 mm3/year for the tibia.  A significant correlation was found for 

the changes of cartilage volume between the femur and the tibia.  This correlation 

suggests that only tibial measurements, which were more reproducible than femoral 

measurements, may be sufficient for assessing OA.  Wluka et al. (2004) determined 

whether joint cartilage in healthy postmenopausal women remained stable or changed 

over time.  Female subjects (29 subjects with estrogen replacement therapy, and 28 non-

users) were imaged with MRI at baseline and at 2.5 years later.  An average annual 

reduction in medial and lateral tibial cartilage volume was recorded as 2.4% and 2.3% 
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respectively.  Studies have also shown that MR-based analyses of OA are highly 

accurate, precise, and highly reliable for test–retest reliability, between-reader agreement, 

and patient positioning reliability (Burgkart et al., 2001, Graichen et al., 2004, Raynauld 

et al., 2003).  Thus MRI is evidently an important tool for diagnosis, monitoring, and 

evaluation of treatment responses for joint diseases.  

 

Knee joint biomechanics have been examined through assessing patellar tracking and 

joint contact patterns under loading conditions measured from images acquired by open 

or closed MR scanners (Cohen et al., 1999, Connolly, 2005, Moss, 2001, Patel et al., 

2003, Scarvell et al., 2004, Tennant et al., 2001).  Tennant et al. (2001) found that 

medial-lateral movements occurred for the patella at normal knee flexion, measured with 

an open MR scanner under normal weight-bearing conditions.  Patel et al. (2003) also 

found medial translations and tilts for normal knee joints at early degrees of flexion under 

loading conditions with a closed MR configuration.  This group also reported increases in 

the patellofemoral cartilage contact areas from 0° to 60° of flexion, and speculated that 

this minimized the higher contact pressure at increased flexion angles.  These results 

agreed with cadaveric studies (Ahmeh et al., 1983).   

 

To understand the effects of injuries on joint biomechanics, the contact patterns between 

normal and anterior cruciate ligament (ACL) deficient subjects were compared during 

knee flexion based on MR measurements (Ronsky, 1994).  For the normal subjects, 

results agreed with various studies that the contact areas increased with increasing flexion 
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angle, and moved proximally relative to the patellar surface.  For ACL deficient subjects, 

the contact did not show consistent increase in areas during flexion, and the proximal 

movements were smaller in magnitude.  Connolly (2005) characterized patellar tracking 

in a recent study between ten healthy and ten PFPS subjects by comparing their 

patellofemoral contact areas and tracking patterns during knee flexion.  Statistically 

significant differences were not found between the two groups from 30° to 45° knee 

flexions.  In the early degrees of flexion, from 15° to 30°, the contact patterns were 

different between the groups.   The normal subjects showed a significant increase in 

contact areas and proximal migration at these early degrees of flexion, but this consistent 

pattern was not observed in the PFPS subjects. 

 

With all of these biomechanical studies based on quantifying medical image, the analyses 

rely heavily on digital image processing techniques, which include segmentation, 3D 

reconstruction, computation, and registration.  By considering all of the potential sources 

of errors associated with the various image processing procedures, the registration has to 

be accurate enough to allow reliable detection of changes (e.g., cartilage thickness) with a 

magnitude of 1~2 mm in the case of disease monitoring, and be sufficient for tracking 

joint surface movements in the range of 1~2 mm for positions and 1~2° for orientations 

in biomechanics studies.  The following sections provide reviews on surface modeling 

and registration techniques. 
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2.4 Surface Modeling 

When working with 3D MR image datasets, analysis and manipulations of anatomical 

surfaces of interest have to be extracted and modeled from the image slices.  The Thin 

Plate Spline (TPS) algorithm for surface modeling of a cloud of 3D points based on 

MATLAB (The Mathworks, Inc., Natick, MA, version 5.1), implemented and used 

within our research group (Boyd et al., 1999), is summarized here.  More information can 

be found in Boyd et al. (1999). 

 

The TPS algorithm models a surface by bending a thin plate of infinite dimensions, such 

that it passes through the original surface points, with the constraint that the bending 

energy is minimized.  The algorithm is applicable for only small deflections of the thin 

plate.  The TPS surface is described by the form z = f(x, y).  A radial basis function of f(x, 

y) = r2 ln(r), where r2 = x2 + y2, is used to interpolate between the data points.   The 

bending energy of the function f(x, y) has the form: 
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Where R2 encompasses the x-y plane. 

 

For a dataset that contains points with xi, yi, and zi coordinates with i = 1, ..., n, there is a 

unique surface function zi = f(xi, yi) where E(f) is minimized.  The bending energy 



27 
 

 

formulation (Equation 2-2) can be expressed in terms of the radial function (f(x, y) = r2 

ln(r)).  Descriptions of the derivatives can be found in Lancaster and Salkauskas (1986). 

 

With a surface equation, new surface points with x, y and z coordinates can then be 

extracted.  Thus, the TPS algorithm can model a scattered point cloud by allowing 

surface re-sampling at a regularly spaced grid with high resolution.  For datasets that are 

noisy, such as MR data, surface smoothing may be needed.  This smoothing can be 

accommodated by incorporating a weighting function with a least squares criterion: 
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Where wi are weights that determine how close the values f(xi, yi) will be to zi. 

 

The weight is defined by a user specified smoothing parameter (λ) and the standard 

deviation of the data (σ): 

2
i

iw
σ
λ

=               (2-4) 

Therefore, for a specific smoothing parameter, a smaller weighting will be used for data 

that contains more noise (i.e., larger standard deviation).  For a small weight or weighing 

close to zero, little attention is placed on the zi of the data points, resulting in a highly 

smoothed surface.  Conversely, larger weights will result in less smoothing.  Therefore, 

the smoothing parameter as specified by the user can assist in determining the amount of 

smoothing of the final TPS surfaces.  In addition to the re-sampling and smoothing 
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capabilities, TPS algorithm can also calculate and provide surface characteristics such as 

surface curvatures and normals at each resampled point.  These measures can be further 

processed to quantify joint properties such as cartilage thickness, surface area, and joint 

contact patterns.  The algorithm was tested by modeling a feline patellofemoral joint 

surface measured by multi-station digital photogrammetry (Ronsky et al., 1999).  Surface 

curvatures and cartilage thickness were also calculated.  One main limitation of TPS as 

implemented was identified.  The algorithm, based on a 2D projection of the radial basis 

function, cannot work with data points that share the same XY coordinates but with 

different Z coordinates.  In other words, it cannot model a surface that curves more than 

180° (e.g., a sphere) over itself.  Another issue is that the curvature fluctuations can occur 

at the data points, especially at the edges of the surface.  Also, dataset with large number 

of points (more than 2000) can lead to numerical problems with solution convergence 

and a long run-time.  However, experience has demonstrated that joint surfaces captured 

using medical imaging techniques can be adequately manipulated to minimize these 

problems (Baker, 2002, Moss, 2001, Connolly, 2005). 

 

Overall, the TPS algorithm is a fast and simple way to model and resample joint surfaces 

that are represented by scattered 3D points in the presence of noise.  It provides a 

numerical representation of the surface and surface characteristics for analysis.  This 

algorithm will be employed to model joint surfaces acquired by MRI in this thesis 

research.   
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2.5 Registration Techniques 

Since this research focuses on registration, this section presents in-depth literature 

reviews of existing techniques in both fields of medical imaging and Geomatics 

engineering. 

 

Registration is a process to align two or more datasets of the same objects, areas, or 

features together, which are typically captured by different sensors, at different times, 

and/or from different viewpoints (Brown, 1992).  Therefore, datasets may have different 

geometric and radiometric characteristics, may be measured with respect to different 

reference frames, and have unknown correspondences between them.  Registration of 

these datasets thus allows for direct qualitative and quantitative comparisons, typically 

enabling better inferences and more information to be extracted from the results.   

 

In general, registration for any application requires the definitions of the four issues of 

the registration paradigm: 1) registration primitives (e.g., points, lines, or surfaces) to 

represent the data of interest; 2) transformation function that mathematically aligns/maps 

the reference frame of one dataset onto another; 3) similarity measure that constrains the 

correspondence of conjugate primitives; and 4) the matching strategy that utilizes the 

above functions to automate and resolve for the best solution (Brown, 1992).  The choices 

for these four issues depend on many factors, including the types of application and 

problem, the modalities involved, associated image distortions and noise, required 

accuracy, and available resources (Maintz and Viergever, 1998). 
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2.5.1 Medical Image Registration 

Medical imaging is a very important tool for diagnosis, surgical planning, monitoring, 

and research activities.  Different imaging modalities such as X-ray, CT, MRI, ultrasound, 

and nuclear medicines can provide different anatomical and functional information about 

the human body.  Data acquired by different modalities are usually complementary in 

nature, thus accurate registration is crucial for many medical research and clinical 

applications.  Accurate registration is also required for manipulation and analysis of data 

that are acquired at different times or under different conditions. 

 

For MR imaging, the registration procedure is challenged by MR imaging artifacts and 

noise, changes in radiometric characteristics due to different scanner configuration, and 

anatomical changes resulting from disease progression.  With these challenges in mind, 

research aims to develop registration approaches that are comparatively fast, semi to fully 

automated, accurate, and reliable for their intended applications (Maintz and Viergever, 

1998).  The remainder of this subsection provides reviews on some existing medical 

image registration techniques, as well as critiques of the validity of these techniques for 

in-vivo studies on joint conditions with MRI. 

 

2.5.1.1 Elastic Registration based on Intensity Variations 

Periaswamy and Farid (2003) developed an elastic registration algorithm that could be 

applied to both 2D and 3D medical images.  This technique used intensity levels of pixels 
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as the primitive for registration, and the formulation was based on motion estimation.  A 

local affine model (linear affine and translations parameters) was chosen as the 

transformation function to model motion between the source and target images.  In 

addition, two parameters were added to capture the spatially-varied contrast and 

brightness.  The parameters allowed a successful registration that accommodated local 

intensity variations.  To avoid a degenerate solution where two images were mapped only 

based on intensity modulation, a global smoothness constraint was employed on the 

contrast and brightness parameters.  An error function, which described the differences 

between the transformed source and target images, was minimized to ensure the 

correspondence of the primitives.  Finally, a Gaussian pyramid (composed of local 

averages of the images at various scales, where each level contained down-sampled 

images of the preceding level) was used as a matching strategy where the algorithm is 

iterated through a coarse-to-fine scheme to warp the source image towards the target 

image.  This elastic registration algorithm consisted of a geometric model that produced a 

locally affine but globally smooth transformation while the intensity model accounted for 

the contrast and brightness differences. 

 

Synthetically transformed images were tested with the algorithm and demonstrated good 

registration results.  Clinical images of different subjects or of subjects at different times 

were also registered using the proposed algorithm.  Images acquired from different 

modalities showed good matches even when there were significant intensity differences 

between images.  Since the results were only visually evaluated, it is difficult to assess 



32 
 

 

the accuracy of the algorithm without having a numerical measure to quantify the validity 

of the registration.  Nonetheless, as a general assessment, the incorporation of the 

intensity variation parameters and smoothness constraint should increase the accuracy of 

the algorithm. 

 

Using pixel intensities as a basis/primitive for registration might not be feasible for MR 

images of knee joint structures.  The quality of the images is frequently altered by 

scanner configurations, MR imaging artifacts, and noise, which can lead to changes in the 

signal intensity of tissues such as cartilage (Disler et al., 2000, Suh et al., 2001).  Another 

issue of an intensity based approach is the required computational effort as reported as 

one of the technique shortcomings. 

 

2.5.1.2 Genetic Algorithm for 3D MR-CT Registration 

Rouet et al. (2000) presented the usage of Genetic Algorithm (GA) as the matching 

strategy and optimization process for a robust 3D MR-CT registration through a three-

step procedure: rigid registration, search space sampling, and local optimization.  GA is 

an optimization procedure that resides on the concepts of natural selection and survival of 

the fittest.  The chosen primitives were classified point sets based on curvature from both 

CT and MRI surfaces, and a Euclidean map of the MRI volume.  A global rigid 

registration (step 1) was performed to provide a good initial approximation for the 

alignment of the surfaces.  GA was used with real numbers in a bounded search space 
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and controlled selection to determine the six transformation parameters (three translations 

and three rotations).  The images used in this study were MR and CT head scans.  As it 

was suspected that rigid registration was not sufficient to model the MR distortions and 

soft tissue structure, a trilinear transformation was selected as the global elastic 

transformation function to perform warping.  24 parameters were estimated with a 

minimum requirement of eight corresponding pairs of points from both scans.  GA was 

used on an indexed search space (step 2) to find eight pairs of points that would result in 

good elastic transformation.  To reduce the size of the search space, only point pairs 

belonging to the same curvature class and having a median error distance (derived from 

step 1) less than a threshold were considered.  Therefore, GA was used in this step to 

sample the search space for a reduced population of point pairs.  The last step of the 

algorithm was to fine tune/optimize the solution by merging and/or removing point pairs 

selected from step 2 until the fitness between the surfaces was maximized. 

 

To assess the quality of the registration, a visual analysis of the superposition of the bone 

and tissue structures and a direct multivolume rendering were performed.  CT scan and 

MRI volume of the head were of different matrix sizes (CT: 256 × 256 × 91; MRI: 256 × 

256 × 68) and artifacts were noticed on the CT images.  The rigid registration step 

achieved a fitness of 74.9%.  For the elastic point-matching step, point-pairs were 

generated based on the stated criterion.  The inclusion of the curvature class resulted in a 

significant improvement in the computation time of the point-pairs generation.  GA 

converged to 100 couples in the final population and gave a fitness of approximately 79%.  
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After fine tuning the solution, the fitness improved to about 80%.  Visual assessments 

showed good alignment of the two surfaces.  To validate the method, registrations were 

performed on the data of Vanderbilt Retrospective Registration Evaluation Project, which 

was designed to provide a database of CT and MR images and for comparison of 

different rigid registration techniques.  The rigid registration step (step 1) gave average 

results when compared to the other techniques that participated in the Vanderbilt project 

(e.g., Hemler et al., 1995, Maintz et al., 1996). 

 

This technique based on GA did not require the use of landmarks for aligning the 

surfaces, which could be advantageous for the knee joint with its lack of clear anatomical 

point landmarks.  Despite the fact that GA produced good registration of MR-CT head 

images, it has its limitations.  GA has the risk of premature convergence to local maxima 

but could be avoided by having good initial approximations and an adequate control of 

the search space.  Also, GA requires a tuning of different parameters (e.g., stopping 

criteria, population size, and mutation and crossover parameters) which might lead to 

different results.  Although the authors reported that changing the parameters could only 

influence the processing time, further validations on the sensitivity of GA are required for 

the registration of MR images of joint structures.  Sanden and Ronsky (2003) looked at 

using GA to register patellar cartilage surfaces generated from MR image slices.  

However, the algorithm failed to perform due to the large number of sampled points.  

Decreasing the number of points could result in inaccurate representation of the cartilage 

surfaces.  Also, because cartilage surfaces are generally of low curvature, the use of 
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curvature classes to reduce the search space might not be as effective as for other 

anatomical structures. 

 

2.5.1.3 Elastic Registration for Detecting Cartilage Changes 

Stammberger et al. (2000) developed a 3D elastic registration method for measuring local 

changes in patella cartilage thickness.  They also validated the performance and 

reproducibility of their technique with artificial and in-vivo MR image data.  The 

cartilage surfaces were first segmented with a B-spline snake segmentation algorithm.  

These contours were processed to form a 3D surface consisting of a network of triangles.  

Elastic registration was subsequently performed, using a two-stage approach.  First, the 

surfaces of the bone-cartilage interfaces were aligned using a rigid registration.  In this 

step, the primitives were the vertices of the network of triangles and the 3D similarity 

transformation (three translations and three rotations) was used to map the surfaces.  The 

similarity measure was to align the principal axes with the use of eigenvalue 

decomposition of the geometric inertia matrices of both surfaces.  Elastic registration was 

performed following the rigid matching step.  In this process, the vertices of one surface 

and surface patches of the other were used as the registration primitives.  The similarity 

measures were based on the Euclidean distance between a vertex and a surface patch, as 

well as the orientation compatibility of the two patches (quantified the comparison 

between the normal vectors of the vertices from the two surfaces).  The weighted sum of 

these two measures formed generalized distances.  A force field utilized the primitives 
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and the similarity measures to deform the surfaces, globally then locally, until the mean 

generalized distance was less than a threshold value.  Following registration, 

corresponding points could be identified on the aligned surfaces.  The cartilage 

thicknesses were measured at the locations of these corresponding points on the original 

cartilage surfaces (before deformation).   Local changes were then determined by 

calculating the thickness differences between the corresponding locations.  

 

The robustness of the method was tested with artificially corrupted cartilage surfaces at 

different SNRs and also at different surface resolutions.  The results indicated that with a 

low SNR, the method could detect 67% of the corresponding vertices.  Altering surface 

resolutions (600 versus 2400 triangles) did not produce any significant difference.  In fact, 

the percentage of correctly identified points was slightly less for a higher resolution than 

a lower one possibly due to over-sampling of points on the surfaces.  In-vivo MR data 

were also acquired for ten healthy subjects with the knee repositioned between datasets, 

and also with the subjects performing 30 knee bends outside the MR scanners.  The 

measured cartilage thickness differences using the registration were compared to 

numerical results obtained from the Euclidean distance transformation algorithm 

(Stammberger et al., 1999), and a high correlation was reported for all cases.  It also 

detected cartilage compression after the knee bend exercises.  The authors concluded that 

local differences in cartilage thickness of approximately 1.0 mm could be reliably 

detected with this technique (based on image resolution of 0.31 mm × 0.31 mm × 1.5 

mm). 
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Although the results showed successful registration with this elastic method, deforming 

the cartilage surfaces to impose a fit might pose problem especially when deformations or 

changes of these surfaces are of interest for studies of degenerative diseases such as OA.  

Elastic registration could force two surfaces to deform and align with each other even 

though they could be two different surfaces or contain different local features.  However, 

this should not be an issue with using the bone-cartilage interface as it is valid to assume 

that this surface remains rigid within the scanning session.  The author tested the 

robustness of the algorithm using simulated data and validated the cartilage thickness 

values by comparing to a numeric algorithm (Stammberger et al., 1999).  However, no 

direct measure to quantify registration accuracy based on the two sets of MR data was 

reported by the authors. 

 

2.5.2 Geomatics Registration 

In the fields of photogrammetry and remote sensing, accurate surface matching strategies 

are crucial for the registration of 3D datasets.  With advancing technologies in the 

hardware and software of data acquisition systems (e.g., earth-observation satellites, 

photogrammetric sensors, Light Detection and Ranging (LIDAR) systems), more 

accurate, robust, and automated registration approaches are required to handle these 

multi-source, multi-resolution, and multi-temporal 3D data (Habib et al., 2004, Habib and 

Al-Ruzouq, 2005).  Similar to medical image registration, noise in the data and 

systematic differences caused by different imaging sensors challenge the registration 
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process and can affect the resulting accuracy.  Also, geometric and radiometric 

characteristics of the same object can be different from two sets of data.  Temporal 

changes (e.g., urban development) or movements (e.g., ice sheet movements) can further 

complicate the process.   

 

Many surface matching techniques are developed and different approaches have been 

proposed to deal with these challenges (Brown, 1992).  Conventional surface registration 

techniques required the interpolation of the datasets into a uniform grid, and the 

transformation relating the surfaces were solved for by minimizing elevation differences 

at corresponding grid posts (e.g., Ebner and Ohlhof, 1994).  The interpolation process 

could introduce errors especially when dealing with datasets that have large variations in 

heights (e.g., urban areas) and minimizing elevation differences would only be valid for 

horizontal surfaces.  Based on the limitations of the traditional methodology, the majority 

of the more recent techniques utilize a least squares approach that minimizes the 

distances between corresponding surface elements, without prior interpolation, to solve 

for the registration problem.  The following subsections summarize several of these 

techniques which used different algorithmic approaches to solve the matching problem 

for data acquired by different means. 
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2.5.2.1 Registration of Laser Data to Photogrammetric Surfaces 

Postolov et al. (1999) developed a surface registration algorithm for matching airborne 

laser data to surfaces generated by photogrammetric means.  Although deriving 

transformation parameters using conjugate points between the two datasets would be 

straightforward, this approach was not feasible as identifying a corresponding point from 

a laser footprint to the same point captured by photogrammetry is almost impossible.  

Therefore, registration using higher order primitives (e.g., surfaces) was needed.  The 

developed algorithm divided the transformation relating the surfaces into horizontal and 

vertical components. The resulting mathematical model was based on these two 

transformations.  The horizontal transformation was characterized by two horizontal 

shifts, a rotation, and a scale factor.  With the horizontal transformation established, the 

vertical component was introduced to describe the shift in elevation and leveling slopes 

in two directions.  By combining these models, the height differences between the 

surfaces could be defined with the planar/horizontal parameters in a non-linear 

formulation.  To solve for the parameters, this formulation was linearized and the 

elevation differences were minimized using standard least squares methods.  The design 

matrix in the least squares algorithm required gradients, which were calculated by 

reconstructing small surface patches around a point of the photogrammetric data, using a 

planar or bilinear surface generation approach. 

 

This algorithm was tested and validated using both synthetic and real datasets.  A surface 

with known parametric function formed by randomly distributed points was used as the 
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synthetic data.  Random noise was added to the elevations of these points.  To validate 

the points derived from the surface registration algorithm, the same surface was created 

using a smaller set of points, and was transformed to a different reference frame using a 

known set of parameters.  The estimated parameters were reported as similar to the true 

values, and elevation differences between the points of the two registered surfaces were 

smaller than the added noise.  Small numbers of outliers were also reported as having 

minimal effect on the accuracy of the estimated parameters.  The real dataset consisted of 

Airborne Topographic Mapper laser data and panchromatic aerial photography of the 

same urban site.  Planar roof tops measured from the photographs were used as the 

reference surface and laser data points representing the same features were identified for 

the registration.  The standard deviations of the parameters were better than 10 cm in both 

horizontal and vertical directions.  The results also indicated that systematic differences 

existed between the two surfaces and were consistent over the area. 

 

Although this algorithm worked with the original scattered point data without the need to 

interpolate into regular grid posts, it solved for the parameters by minimizing elevation 

differences, which would be valid only for horizontal surfaces (like Ebner and Ohlhof’s 

technique, 1994).  In fact, the authors emphasized that the algorithm was suitable for 

surfaces with relatively moderate slopes, and if the surface geometry was not sufficient, 

then not all the parameters could be accurately determined.  The authors did not report 

numeric results from the experiments with synthetic data.  Thus no clear conclusion could 

be taken from the paper regarding the algorithm accuracy. 
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2.5.2.2 Least Squares 3D Surface Matching 

Gruen and Akca (2005) developed an algorithm for the least squares matching of 3D 

surfaces that were modeled by 3D point clouds.  The transformation parameters were 

estimated by minimizing the sum of squares Euclidean distances between the surfaces 

using the Generalized Gauss-Markoff model.  Random errors, which might originate 

from the discrepancies between imaging sensors or environmental conditions between the 

two sets of data, were also accounted for in the mathematical model.  This resulted in 

observation equations that described for each surface element on the template surface (f(x, 

y, z)), there was an exact correspondent surface patch on the search surface (g(x, y, z)) by 

also considering the involved errors (e(x, y, z)): 

),,(),,(),,( zyxgzyxezyxf =−            (2-5) 

 

The 3D similarity transformation (three translations, three rotations, and a scale) was 

chosen to express the relationship between conjugate surface elements.   To solve for the 

parameters, least squares minimization of the sum of squares Euclidean distances was 

used, which required linearization of the observation equations.  The resultant functions 

were expressed as a Guass-Markoff estimation model, which provided unbiased 

minimum variance estimation for the parameters as the least squares solution.  Since local 

surface normals were required for the search surface as expressed as derivative terms in 

the mathematical model, the search surface was represented as planar surface patches.  

The authors also included a weighting scheme on the residual vectors based on the 

estimated standard deviations of the parameters to eliminate large outliers.  Two 



42 
 

 

extensions to this basic mathematical model were also provided.  The first extension 

allowed simultaneously matching of multiple sub-surface patches with relevant 

information, instead of the use of the full dataset, to provide a more computationally 

effective solution.  The second extension enabled simultaneous matching of both surface 

geometry and intensity information, for data with geometrically-weak information. 

 

Two applications were used to show the capabilities of the least squares matching method.  

The first example was the registration of three 3D point clouds of a petrochemical plant 

acquired by a laser scanner (HDS 2500, Leica Geosystems, average point spacing = 12 

mm).  The registration was shown to be successful with the average square root of the 

estimated variance factor to be 2.66 mm, using the full set of data.  When the multi-

subpatch approach was used for the same dataset, the system redundancy decreased, thus 

resulting in higher standard deviations for the estimated parameters.  However, the square 

root estimated variance factor reduced to 2.05 mm.  The second application utilized the 

intensity and geometry of the data for 3D matching.  Laser scans of a wall painting in 

Neuschwanstein Castle, Germany, were matched (IMAGER 5003 laser scanner, 

Zoller+Frohlich, average point space = 3 mm) and results were successful with a root-

mean-square error of 1.16 mm. 

 

This least squares 3D surface matching technique allowed matching of two surfaces at 

any orientation, by minimizing Euclidean distances between conjugate features, instead 

of minimizing elevation differences.  Also, by including intensity information, the 
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extension provided flexibility and allowed for more accurate estimation of the parameters 

when the geometrical information alone was not sufficient.  The basic mathematical 

model could be modified with any transformation functions and surface representations.  

Thus it could be suitable for different applications and to properly model the 

deformations between surfaces.  Consistent with the well known issue associated with 

least squares estimation, the convergence behavior of this method depended on the 

quality of the initial approximations and the datasets.  The search for correspondent 

elements of the template surface on the search surface was computationally complex and 

required optimization algorithms and sophisticated software programs.  These matters 

were not reported in this paper by Gruen and Akca as it was not the scope of their study.  

Additionally, although a weighting scheme was incorporated to suppress large outliers, 

occlusions and smaller outliers could also affect the estimated parameters.  Overall, this 

developed algorithm successfully utilized the generalized least squares matching concept 

and allowed flexibility and extensions for any 3D matching applications. 

 

2.5.2.3 Automatic Registration of 3D Views based on Spin-Image 

Guarnieri et al. (2005) proposed a unique idea of using a Spin-Image approach to 

automatically recognize corresponding points in two laser scan views so that 

transformation parameters could be calculated by minimizing distances between the 

points.  Spin-Image was originally developed by Johnson and Hebert (1999).  The 

process describes each point, with a specific orientation and direction, on a surface mesh 
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by using an object-centered coordinate system (i.e., surface is described with respect to a 

coordinate system that is independent on the view of the surface).  The relationship of the 

neighboring points to a specific point on a surface mesh can be described by using a 

cylindrical coordinate system, which comprises of a radial and elevation coordinates.  

The radial coordinate (α) is defined by the distance between the point and the line 

through the surface normal of the point of interest, and the elevation coordinate (β) 

describes a signed perpendicular distance from a point to a tangent plane defined by the 

vertex normal and position of the point.  All the points that lie on a circumference of a 

circle relative to the point of interest will have the same α and β values.  These two 

coordinates are stored using a 2D accumulator, which can be treated as a 2D image with 

darker cells indicating more points with a specific coordinate combination relative to the 

reference point.  Spin-Images generated for corresponding points on two views of the 

same object will be similar, as they are based on the shape and surface characteristics of 

the object.   

 

For surface matching, Guarnieri et al. generated Spin-Images for each point on two laser 

scan views and the images were matched to identify corresponding points.  For these 

points, the Spin-Images would be similar but not identical due to the different 

discretization/sampling of the surface and noise associated with the data.  Therefore, to 

identify corresponding points, a correlation coefficient was developed to identify/match 

Spin-Images that were strongly correlated.  The identified corresponding points were then 
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used to calculate transformation parameters that were then utilized by the Iterated Closest 

Point (ICP) algorithm to derive the best alignment between the views. 

 

Two laser scan views (ShapeGrabber 100, ShapeGrabber Inc., Ottawa, Canada) of a 

rubber cat object were matched using this proposed technique.  The laser precision was 

50 um and the point spacing was 2 mm for surface modeling.  Spin-Images were created 

and matched to identify corresponding points between the views.  The results showed that 

by using only the Spin-Image algorithm, the maximum alignment error was 1.45 mm.  

This error improved to 0.80 mm after applying the ICP algorithm.  A second experiment 

was conducted using a 3D model of a human vertebra, with improvement also found in 

the alignment (maximum error from 1.4 mm to 0.29 mm) after applying ICP based on the 

parameters estimated from the Spin-Image algorithm. 

 

This Spin-Image algorithm worked exclusively with the intrinsic characteristics of the 

surface and did not rely on the coordinate systems of the data.  It also had few restrictions 

on the object shape, thus could deal with data containing highly cluttered objects and 

occlusions.  Although the results have shown accurate alignment of overlapping views, 

especially with the incorporation of ICP, generating Spin-Images could be 

computationally intensive especially when dealing with large objects modeled by many 

surface points.  Also, since this technique depended on distinct patterns of surface 

topography, objects with poor surface geometry (e.g., building models) might result in 

incorrect alignment with this algorithm.  This algorithm also assumed a point-to-point 
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correspondence between the two laser scan views, which could only be a valid 

assumption if the point density is high. 

 

2.5.3 Registration Requirements and the Proposed Algorithm 

Based on the literature review of existing techniques, some conclusions can be drawn 

regarding the requirements of the registration methodology.  The following are the basic 

requirements of the methodology to be proposed for this research.  Although these 

requirements can be generalized for most registration applications, they are specifically 

important for 3D MR data of joint structures. 

1) Base on a rigid transformation (i.e., no deformation) to relate the surfaces, 

2) Establish correspondence and solve for the transformation parameters, 

3) Use proper matching criteria for surfaces at any orientation,  

4) Need to be robust (i.e., errors or discrepancies would not affect accuracy), and 

5) Has measures to quantify the quality (e.g., accuracy) of the registration.   

 

With these requirements in mind, the proposed algorithm for this thesis research, 

developed by Habib et al. (2001) originally for geographic data, is a robust algorithm that 

allows simultaneous establishment of correspondences and estimation of transformation 

parameters.  It can work with surfaces that are represented by randomly distributed points 

with unknown correspondences.  A 3D similarity transformation is used to rigidly align 

the surfaces.  The modified iterated Hough transform (MIHT) is used as the matching 
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strategy that is based on a voting scheme for solving for the transformation parameters 

and the correspondence between the surfaces.  Matching between surfaces is performed 

locally, in that the smallest surface element (i.e. each point) is matched individually, 

which resulted in high registration accuracy.  Matches and non-matches (i.e., errors or 

discrepancies) are identified and a least squares adjustment is used only on the matches to 

derive a robust registration solution.  The accuracy of the algorithm was validated with 

different scenarios where noise and blunders were added to synthetic data (Habib et al., 

2001).  The results were accurate even with a 75% difference between the surfaces.  The 

algorithm also correctly detected changes (blunders) between the two surfaces up to an 

accuracy of 99.9%.  Overall, this algorithm can accurately estimate the transformation 

parameters between two surfaces for the synthetic data and can simultaneously identify 

changes or discrepancies between them. 

 

2.6 Summary 

The literature review have shown that in-vivo quantitative studies of joint biomechanics 

and health status are very important to understand the effects of joint injuries and diseases 

on joint and related tissue structures.  Although many techniques are available for these 

studies, MRI is superior as it provides accurate measurements of joint properties non-

invasively and allows studies of joint conditions without any harm to the subjects.  

Registration, along with other image processing techniques such as segmentation and 

reconstruction, are very important for analyses and comparisons of MR data that are 



48 
 

 

acquired under different conditions and at different times.  Several existing registration 

techniques developed for both medical imaging and Geomatics engineering applications 

were reviewed and requirements were derived as a result for registration of 3D MR data 

of joint structures.  The proposed algorithm for this thesis research, originally developed 

in the field of Geomatics engineering, was introduced as it meets the requirements of the 

registration methodology.   
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Chapter Three: Surface Matching Algorithm 

 

3.1 Introduction 

This chapter provides a detailed review of the methodology of the proposed surface 

matching algorithm (Habib et al., 2001).  The rationale behind the choices of the four 

registration paradigm components: registration primitives, transformation function, 

similarity measure, and matching strategy, will also be addressed.  This surface matching 

algorithm was employed in this thesis research to achieve the four study specific aims, 

and details of these will be presented in the following chapters. 

  

3.2 Registration Paradigm 

3.2.1 Registration Primitives 

Primitives are the utilized features for representing and relating the involved datasets in 

the registration process.  For surfaces, the most commonly used registration primitives 

include points, lines, and areal patches.  The chosen primitives depend on the 

characteristics of the involved data and will directly influence the mechanics and 

formulation of subsequent components of the registration paradigm.  Thus it is important 

to decide on appropriate primitives to represent the surfaces.  The proposed surface 
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matching algorithm works with the raw format of the data, thus the two surfaces can be 

represented by irregularly distributed 3D points that are not necessarily conjugate (i.e., 

there is no known point-to-point correspondence between the two surfaces).  The two 

surfaces can also be given relative to different reference frames.  Point primitive is 

suitable for both geographic and medical data, where features of interest are represented 

by a cloud of randomly distributed points that are spatially defined by their 3D 

coordinates, via systems such as the LIDAR laser-scanning systems and MRI.  Linear 

features can be commonly found in man-made scenes (e.g., buildings and roads), but 

processing is needed to extract them from 3D point clouds.  In contrast, linear features 

are not typically found in anatomical structures.  Areal primitives (e.g., regions) can be 

identified in both geographical (e.g., lakes) and medical (e.g., organs) data but processing 

of 3D point data is also needed to extract and represent these features.   

 

In general, two sets of data can be acquired from different viewpoints, under different 

conditions, and/or at different times.  Thus no point-to-point correspondence should be 

assumed between the surfaces.  To allow the surface matching algorithm to identify 

conjugate surface elements, points in one of the surfaces are further processed to form 

triangular patches, similar to a triangular irregular network.  If the two datasets are 

acquired by the same sensor (e.g., registration of two MR datasets), they would exhibit 

the same data characteristics (e.g., point density).  Consequently, the algorithm and 

results would not be affected by the choice of surface presentation for each dataset (i.e., 

which surface is represented by points and which is represented by patches).  Deviations 
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between a set of results and those obtained after swapping the representation schemes 

would not exceed the noise level in the implemented data.  To summarize, the registration 

primitives used in the proposed surface matching algorithm were selected as points for 

the first surface (S1) and triangular patches for the second surface (S2) (Figure 3-1). 

    

(a)      (b) 

Figure 3-1: Registration primitives for the proposed surface matching algorithm: points 
for S1 (a) and triangular patches for S2 (b). 
 

3.2.2 Transformation Function 

Generally, the involved datasets for the registration are given with respect to different 

references frames.  The transformation function describes the mathematical relationship 

or mapping function between the reference frames associated with the two surfaces.  

More specifically, the transformation parameters of the chosen function align the 

primitives from S1 onto the corresponding primitives from S2, with S2 being the reference 

surface for registration.  The chosen transformation function for the proposed surface 

registration is 3D similarity.  This includes seven parameters: three translations along the 

X, Y, and Z coordinate axes (XT, YT, ZT), three rotations about the three coordinate axes 
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(ω, φ, κ), and a scale factor (S) describing the overall scale difference between the two 

surfaces (Equation 3-1).  These seven parameters relating S1 and S2 are assumed to be 

unknowns and are solved for as part of the registration problem. 
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Where: X, Y, Z are the coordinates of a point on the first surface S1,    

X′, Y′, Z′ are coordinates of the transformed point with respect to the second 

surface S2 reference frame, and  

R is a 3 by 3 matrix that describes the rotational relationship between the involved 

reference frames. 

 

The 3D similarity transformation is a global rigid body transformation, implying that one 

set of transformation parameters is used to entirely relate the two surfaces.  Moreover, a 

rigid transformation assumes the absence of any deformations between the two surfaces 

that cannot be modeled by a rigid body transformation.  However, the presence of these 

deformations can be inferred by evaluating the quality of fit between the registered 

surfaces.  3D similarity preserves shapes (i.e., preserves angles) after the transformation; 

and if the scale factor is fixed at one, this transformation will also preserve distances 

between surface points.  Although the 3D similarity transformation was chosen, any other 

transformation functions could also be adapted into the algorithm to model the geometric 

relationships and deformations between the surfaces.     
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3.2.3 Similarity Measure 

The similarity measure mathematically describes the coincidence of conjugate 

registration primitives after performing the appropriate transformation function.  The 

formulation of the similarity measure depends on the choice of primitives as well as the 

utilized transformation function.  Since points and patches are used as the registration 

primitives to describe the involved surfaces (S1 and S2, respectively), the similarity 

measure has to constrain the correspondence between a point from S1 to a conjugate 

triangular patch from S2 after performing the transformation.  The constraint can specify 

that a transformed point, q’, from S1, is coplanar (i.e., belongs to the same plane) with its 

conjugate patch from S2 as defined by its vertices pa, pb, and pc (Figure 3-2).  Thus, if the 

point q is assumed to belong to a specific surface patch, the normal distance (d) between 

q’, obtained after applying the appropriate 3D similarity transformation on q, and the 

corresponding patch in S2 should be zero.  This condition is known as the coplanarity 

condition (Equation 3-2), which states that the volume enclosed by a point and the 

corresponding patch is zero.  The seven unknown 3D similarity transformation 

parameters are implicitly expressed in the first row of this coplanarity condition matrix 

(Equation 3-3).  This coplanarity condition can also be expressed in terms of the normal 

distance (d) (Equations 3-4 and 3-5).   
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Figure 3-2: Coplanarity condition describes the correspondence between a point in S1 
and a patch in S2 after performing 3D similarity transformation. 
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If more than seven conjugate point-patch pairs are identified, the seven unknown 

transformation parameters (Equation 3-3) can be solved for by satisfying the coplanarity 

constraints (Equation 3-2) through a least squares adjustment procedure.  It should be 

noted that this similarity measure minimizes the normal distances between corresponding 

points and patches to solve for the parameters, rather than reducing elevation differences 

between the surfaces (e.g., Ebner and Ohlhof’s technique, 1994).  Thus, it is valid for 

surfaces with any orientation as in the case for large-scale laser-scan data and MR 

imagery.   

 

Accurate solution of the parameters of the transformation function requires surface 

patches with varying orientation.  For example, planes normal to the X axis will only 

allow for estimating the shift component in the X direction, XT, as well as the rotations φ 

and κ (Figure 3-3).  Planes normal to the Y axis can help to solve for YT, ω and κ.  In the 

same manner, planes normal to the Z-axis will estimate the ZT and the rotation angles ω 

and φ.  Two parallel patches in any orientation are needed to derive the scale factor.  

Therefore, in generally, four planes (e.g., three intersecting planes and another plane that 

is parallel to one of the three planes) are the minimum requirement to solve for the seven 

parameters.  The importance of surface geometry can be visualized with a simple 

example: consider the registration of two spheres.  Any orientations or rotations along the 

main axes of the spheres can result in a perfect match.  However, if a square pyramid is 

attached to the spheres, then this unique geometry will constrain the registration where 

the pyramids have to align for the two surfaces to match.  Therefore, as a rule of thumb, 
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the involved surfaces should have sufficient geometry (i.e., patches with varying 

orientations) to allow accurate estimations of the transformation parameters. 

 

Figure 3-3:  Relationship between the seven transformation parameters and the 
orientation/geometry of the surface patches (Habib et al., 2001). 
 

3.2.4 Matching Strategy 

The matching strategy is an optimization procedure that utilizes the primitives, 

transformation function, and similarity measure to automate the registration procedure by 

establishing the correspondences between conjugate surface elements as well as 

estimating the parameters of the transformation function.  As discussed, if seven or more 

conjugate point-patch pairs are identified, the transformation parameters can be solved 

for using the coplanarity constraints (Equation 3-2).  However, since the correspondences 

between the two surfaces are typically unknown, conjugate point-patch pairs have to be 

identified either manually or automatically.  Manual identification of conjugate point-

patch pairs is difficult if not impossible especially when considering the volume and 

density of involved datasets.  Also, with anatomical features, it is extremely difficult to 
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identify conjugate surface elements especially for smooth and contiguous joint surfaces.  

Therefore, matching strategies are adapted to overcome this issue by automatically search 

for correspondences between datasets.  For the proposed surface matching algorithm, the 

Modified Iterated Hough Transform (MIHT) is utilized as the matching strategy, which is 

based on a voting scheme to simultaneously establish the correspondences between 

surface elements and solve for the transformation parameters. 

 

The role of the voting scheme within the MIHT is to identify the most probable solution 

(the highest vote) for the transformation parameters by considering all possible matches 

between points in S1 and patches in S2.  To illustrate this voting concept, one can consider 

any seven points in S1 and any seven patches in S2.  If each of the seven points is 

assumed to match with one of the seven patches, the relationship between these seven 

pairs can be described by a set of 3D similarity transformation parameters that results 

from the solution to the seven coplanarity constraints (Equation 3-2).  Another seven 

point-patch pairs can be chosen to derive another set of parameters.  If this process is 

repeated for all possible matches between the surfaces, while keeping track of the derived 

solutions for the parameters, the correct matches should result in the same set of solutions.  

Therefore, the voting scheme will simultaneously establish the correspondences between 

conjugate primitives as well as derive an estimate of the transformation parameters.   

 

To keep track of the parameter solutions from all the hypothesized matches, a seven-

dimensional accumulator array is required, where the cells of the array are used to record 
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the frequency of each solution vector.  The same solution set resulting from the correct 

matches will have the highest votes/counts and will manifest itself as a peak in the 

accumulator array, and these values are the most probable estimates for the 

transformation parameters.  However, when dealing with a large number of primitives, 

the use of a seven-dimensional accumulator array to keep track of possible primitive 

pairings is computationally intensive and will eventually lead to a combinatorial and 

memory explosion.  To overcome this problem, the MIHT approach solves for the 

parameters sequentially and iteratively by implementing a one-dimensional accumulator 

array while considering one parameter and one hypothesized matching pair at a time.  

Thus, the MIHT procedure replaces the seven-dimensional accumulator array with seven 

one-dimensional accumulator arrays while working only with a single matching pair at a 

time.  

 

3.3 Automated Surface Matching and Registration Methodology 

The proposed matching and registration methodology begins by setting up initial 

approximations for the seven unknown parameters of the 3D similarity transformation.  

Although the algorithm has shown to produce accurate results with poor initial 

approximations (Habib et al., 2001), it is beneficial to have educated estimates for the 

approximations based on a-priori information obtained from the involved datasets (e.g., 

visual evaluation of the geometrical relationship between the two surfaces).  The points 

from S1 are transformed using this set of initial approximated parameters.  Using the 
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MIHT approach, correspondence is established and the parameters are estimated in an 

iterative process.  To estimate one of the parameters, for example XT, the approximated 

values of the other parameters are considered to be correct.  Then each transformed point 

is hypothesized to match with each of the triangular patches from the reference surface S2, 

and XT can be solved for as a one-dimensional problem by satisfying the coplanarity 

constraint.  A one-dimensional accumulator array keeps track of the derived solutions for 

XT from all the possible hypothesized point-patch pairs.  The peak of the populated 

accumulator array will indicate the most probable solution for XT (Figure 3-4), and the 

initial approximation is updated with this peak value. This estimation process is then 

repeated sequentially for each of the remaining six parameters. 

 

Figure 3-4:  An accumulator array with the peak indicating the most probable solution 
for the parameter in question. 

 
 

The accumulator array is a discrete tessellation of the expected solution range of the 

parameter in question.  The cell size and range of the accumulator array (i.e., the 

allowable minimum and maximum values) depend on the quality of the approximate 
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values for the non-considered parameters (i.e., the remaining six parameters with fixed 

values).  Therefore, rough initial approximations should be compensated for by a larger 

range of allowable values and larger cell size.  After the first round of estimation for the 

seven parameters, the iteration procedure is repeated while decreasing the cell size of the 

accumulator array as well as its range to reflect the improvement in the derived estimates 

of the transformation parameters.  A smaller range reflects the improvement in precision 

of the estimated parameter, while a smaller cell size reflects the improvement in the 

quality of the remaining parameters.  In this manner, the unknown parameters are 

iteratively solved for in a coarse-to-fine strategy and will converge to the most probable 

solution.  Convergence is achieved when there is no significant change (i.e., below 

threshold value) in the estimated parameters between two successive iterations.   

 

Clearly, the starting and ending cell sizes and the number of iterations can affect the final 

quality of the parameter estimates.  A larger cell size should be used to compensate for 

poor approximations, but a cell size that is too large would be meaningless as all 

solutions (both correct and incorrect) will contribute to the same narrow peak in the 

accumulator array (Figure 3-5a).  In contrast, if the cell size is too small, then the noise 

effect might lead to two correct point-patch pairs contributing to two slightly different 

sets of parameters, thus no distinct peak will be apparent to indicate the most probable 

solutions (Figure 3-5b).  Therefore, it is important to assess the qualities of the data (e.g., 

noise level) and the initial approximations, so the appropriate start and ending cell sizes 

can be chosen to allow the array to capture the best estimates.  Also, the number of 
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iterations (i.e., the number of reductions in cell size) should be adequate to allow a 

gradual control of the precisions of the parameter estimates.  A small number of iterations 

will result in a quick jump from a large to small cell size, which means that estimates 

with poor precision will be used to derive the parameters that are supposed to have much 

higher precision.  This can lead to the convergence to incorrect solutions.  Although using 

a large number of iterations can increase the control of the convergence and the quality of 

the estimates, it can also significantly increase the run-time of the algorithm.   

   

(a)      (b) 

Figure 3-5:  An accumulator array with a large cell size can result in all solutions 
contributing to one distinct peak (a), while a cell size that is too small will have no 
distinct peak to indicate the best solution (b). 
 
 

Following the last iteration of the MIHT procedures, the matching points and patches (i.e., 

the matches that contribute to the peaks of the accumulative arrays) are used in a least 

squares adjustment to estimate the transformation parameters.  The estimates derived 

from the last iteration of the MITH provide highly accurate approximations for the 
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adjustment.  The non-matching points, which could be errors or differences between the 

two surfaces, are excluded from the adjustment process thus resulting in a highly robust 

registration.  Habib et al. (2001) reported that the estimated parameters were accurate 

even with a 75% difference between the surfaces.  The algorithm also correctly detected 

blunders between the two surfaces up to an accuracy of 99.9%.   

 

3.4 Outcome Measures 

The quality of fit between the registered surfaces can be measured by the estimated 

variance component (also known as the aposteriori variance factor) resulting from the 

least squares adjustment procedure.  A smaller variance component indicates a better fit.  

This variance component is only a relative measure for comparisons between different 

results.  A direct measure to quantify the quality of the registration is the Root Mean 

Squares (RMS) of the normal distances between the matched point-patch pairs after 

performing the transformation with the final parameter estimates.  The RMS of the 

normal distances provides a meaningful measure to quantify the quality of fit between the 

two surfaces, but it does not describe the absolute accuracy of the registration.  The RMS 

distance is calculated only from the matching point-patch pairs but does not account for 

the non-matches.  Consequently, a small RMS distance can be achieved even though only 

a small section of the surfaces are matching.  Thus, the percentages of the matched and 

unmatched points can provide indications about both the quality of the registration and 

also the amount of difference between the surfaces.  To truly evaluate the accuracy of the 
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registration, the estimated transformation parameters can be validated against the true 

values (i.e., gold standards) if these are available.   

 

In addition to quantitative measures, qualitative assessments of the matching results are 

also necessary to confirm the success of the registration.  This can be performed by 

displaying the matching and non-matching points from S1, transformed using the 

estimated parameters, onto the reference surface S2.  This can show how well the surfaces 

are registered and provide insights on why certain points are classified as non-matches.  

To further investigate why certain points/areas are not matching, the points can also be 

projected onto the original images or models of the datasets if they are available, so that 

the reasons for the non-matches can be justified (e.g., a new building or osteophytes that 

are found in only one of the datasets).  Another visualization tool for assessment is to 

create image mosaics (i.e., the superimposition of two registered images) for the 

registered datasets.  This can allow direct visualization of the surface alignment and 

comparisons of the two images.   

 

3.5 Summary of Surface Matching Methodology 

The proposed automated surface matching and registration procedure (Figure 3-6) 

provides a rigid registration between two surfaces based on a 3D similarity 

transformation and can detect errors and/or differences between them.  The algorithm 

simultaneously establishes correspondence by identifying conjugate surface elements and 
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estimates the transformation parameters through a voting process.  The final least squares 

adjustment procedure estimates the transformation parameters that best align the surfaces, 

with the non-matches excluded from the adjustment to produce highly robust results.  The  

RMS of the normal distance provides a direct measure to quantify the quality of the 

registration.  

 

Figure 3-6: Methodology of the proposed surface matching algorithm. 
   

3.6 Summary 

This chapter presented in details the proposed surface matching algorithm based on the 

Modified Iterated Hough Transform developed by Habib et al. (2001).  This algorithm 
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met the proposed requirements for registration of 3D MR data of joint structures defined 

in section 2.5.3.  It works with surfaces at any orientation and can simultaneously 

establish the correspondence between surface elements and solve for the transformation 

parameters.  It is also a highly robust algorithm that does not deform the surfaces of 

interest.  Quantitative measures are also derived to describe the quality of the registration.  

A limitation of the surface matching algorithm is that it may not be feasible for handling 

high density data in the presence of noise (e.g., MRI data).  The next chapter presents this 

limitation and the modifications implemented to address this issue, as part of the work for 

the first specific aim of this thesis research.  Verifications of the modified algorithm with 

high density data in Geomatics engineering applications will also be presented. 
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Chapter Four: Algorithm Limitation, Implemented 

Modifications, and Verifications with Geomatics 

Applications 

 

4.1 Introduction 

This chapter presents a limitation of the proposed surface matching algorithm, which 

inhibited its use for high density and noisy data such as MRI or LIDAR.  Modifications 

developed to overcome this limitation are described.  Verifications of the modified 

algorithm were performed with high density datasets for three Geomatics engineering 

applications.  The experiments and results are also summarized in this chapter.  The 

research describes in this chapter addresses the first specific aim of this thesis research as 

outlined in the Introduction chapter (section 1.2).   

 

4.2 Algorithm Limitation for High Density Datasets  

Inherent noise in the data acquisition and possible errors introduced by data processing 

(e.g., measurement units in LIDAR and feature digitization in MRI) introduced 

convergence problems for the MIHT algorithm.  The probability of non-convergence 

increases with increase in the density of the surface points, reaching a critical stage when 
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this density is almost equivalent to the level of the noise in the acquired points.  This 

problem should be expected to occur when dealing with high resolution laser scanning 

and MRI data, where the triangular patches formed from the high density point clouds are 

very small in size, and this size is similar to the noise level.  For example, LIDAR point 

clouds can have an average point spacing of approximately 0.7 m (i.e., size of the 

triangular patch).  This is similar to the expected noise levels found for LIDAR data 

(approximately 0.5 m and 0. 2 m in the horizontal and vertical directions, respectively).   

 

A pilot study was performed to investigate this limitation of the MIHT algorithm.  MR 

images of a knee joint was used in this pilot study (Figure 4-1a), which were acquired by 

a 3-telsa MR unit (General Electric Medical Systems, Waukesha, Wisconsin, USA) with 

a proton density fast spin echo sequence (sagittal, resolution: 0.273 mm × 0.273 mm × 4 

mm).  Noise in MR images can result in an overall grainy appearance in the image.  This 

means that adjacent pixels can appear to have different signal intensities even if they 

belong to the same tissue (Figure 4-1b).  The MIHT surface matching algorithm was 

applied to register femoral surfaces generated from this dataset (details about surface 

digitization and modeling from MRI will be discussed in the next chapter).  The results 

from this pilot study demonstrated that the parameter convergence was rough, with 

oscillations of the solution found during the last iterations (Figure 4-2).  These were 

caused by the fact that a point could match with either one of two (or more) adjacent 

patches and could still result in very similar transformation parameters.  These 
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convergence problems should be expected when the MITH algorithm is applied for any 

types of high density and noisy datasets.     

      

                (a)       (b) 

Figure 4-1: MR image of a knee joint acquired by a proton density fast spin echo 
sequence (a).  A zoomed-in portion of the image shows the presence of noise (b). 
 

 

Figure 4-2: Rough convergence for the angle φ based on the MIHT approach with the 
ending iterations showing oscillations between different solutions. 
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4.3 Modifications to Accommodate High Density and Noisy Datasets 

To overcome the limitation of MIHT for working with high density data in the presence 

of noise, a modification was implemented to the original algorithm to achieve the first 

specific aim of this thesis research.  For this modification, the MIHT algorithm was 

complemented by the Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992).  

The ICP algorithm was incorporated as an additional matching strategy to efficiently 

establish correspondences and solve for the seven transformation parameters.   

 

4.3.1 Iterative Closest Point 

The ICP algorithm, originally proposed by Besl and McKay (1992), has been modified 

by several groups (e.g., Zhang, 1994, Bergevin et al., 1996).  In general, with a set of 

initial approximations for the transformation parameters, the ICP algorithm performs 

rigid registration of 3D data by iterating through three main steps until the solutions 

remained constant (i.e. below a threshold value) between iterations: 

1) Establish correspondence between datasets by identifying conjugate surface features 

(i.e., find the closest point to a given patch). 

2) Estimate the transformation parameters relating the first surface to the reference 

surface by minimizing the summation of normal distances between identified 

conjugate features. 

3) Apply estimated parameters to transform the first dataset to the new position. 
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ICP has shown to yield quick convergence of the parameters and can handle a reasonable 

amount of normally distributed noise.  However, there are some known issues with this 

algorithm.  First, ICP converges quickly to a local minimum thus it is crucial to have 

good initial approximations that are relatively close to the true values.  Also, for the same 

reason, outliers in the data can affect the results, potentially leading to incorrect 

registration.  As for any registration problem, sufficient surface geometry is also essential 

for aligning the datasets.   

 

The following sub-section describes the modifications that were implemented in this 

thesis research by incorporating the ICP algorithm as part of the surface matching 

approach to overcome the limitation MIHT has with high density data.  Conversely, the 

abovementioned issues of the ICP algorithm are compensated for by the MIHT approach.  

Thus, these two complementary algorithms are used as the surface matching strategies for 

the modified surface matching algorithm.   

 

4.3.2 Modified surface matching algorithm with MIHT and ICP 

ICP requires good initial approximations for the transformation parameters.  The 

combination of the MIHT and ICP strategies is optimal since the MIHT procedure will 

ensure the availability of good approximations, which could be further refined through 

the ICP approach.  With the approximate parameters, the ICP algorithm finds the closest 

patch in the second/reference surface (S2) for each point in the first surface (S1) and 
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considers them as a matching pair.  In the implementation of the ICP algorithm for this 

thesis research, a point and a patch are considered a matching pair if both of the 

following criteria are satisfied (Figure 4-3): 

(i) Shortest normal distance: A point matches a patch when the normal distance between 

this point and the patch is less than a certain threshold and is also the shortest distance 

compared to the other patches.  The threshold value is set by considering the amount of 

noise inherent in the involved data. 

(ii) Projected point is inside the patch: A point only matches with a patch if its projection 

onto the patch is inside the polygon defined by its vertices.  The decision of whether the 

projected point is inside or outside the patch is determined by the number of intersections 

a shooting ray from that point makes with the edges of the patch.  An odd number of 

intersections indicate that the projected point lies inside the patch, while an even number 

means that it is outside the patch.   

 
(a)    (b)    (c) 
 

Figure 4-3: Matching criterion (i): shortest normal distance (a) and matching criterion 
(ii): projected point is inside the patch (b and c). 
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Using the resulting matches between the points in S1 and the patches in S2, the ICP 

procedure estimates an updated solution vector for the seven parameters through a least 

squares adjustment process by minimizing the summation of normal distances between 

the matches.  The estimated transformation parameters from the adjustment are then 

applied to transform the entire points in S1.  From this, updated matching pairs between 

S1 and S2 are derived, which are then used to update the solution vector.  This procedure 

is repeated in this manner until convergence occurs, where the estimated parameters do 

not significantly change between two successive iterations.  This convergence condition 

can be checked by comparing the estimated variance components from the least squares 

adjustment between consecutive iterations.  If the differences between them are less than 

a predefined threshold, then convergence is reached.  For this ICP procedure, identified 

unmatched points based on the matching criteria can be classified as changes or blunders.  

Similar to MIHT, these non-matches are excluded from the adjustment process for the 

parameter estimations thus resulting in a highly robust algorithm.  Figure 4-4 summarizes 

the surface matching methodology of the combined MIHT and ICP approach. 

 

The outcome measures from the original approach are also derived for the MIHT/ICP 

approach for quantitative and qualitative analyses of the results.  These measures include 

the estimated transformation parameters, estimated variance component, RMS of the 

normal distance, and a list of the matching and non-matching points.   
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Figure 4-4: Surface matching algorithm with the combined MIHT/ICP approach. 
 
 

For comparison of the original and the modified algorithm, the MIHT/ICP approach was 

applied to the MR dataset used in the pilot study for the investigation of the MIHT 

limitation (refer to section 4.2).  Evaluation of the convergence of the parameter based on 

the MIHT approach and the combined MIHT/ICP approach clearly shows that ICP 

complements MIHT and refines the convergence of the parameter (Figure 4-5).  Also, 

MIHT is utilized here to provide good initial approximations for the ICP algorithm.  Thus, 



74 
 

 

a smaller number of MIHT iterations is required (10 iterations versus 250 iterations, 

Figure 4-5), which also speeds up the total process time of the algorithm (1 minute for the 

MIHT/ICP approach versus 1 hour for the MIHT approach). 

  

(a)      (b) 

Figure 4-5: Convergence for the angle φ using only the MIHT approach (250 iterations) 
(a) and using the combined MIHT/ICP approach (10 MIHT with 40 ICP iterations) (b). 
 

4.4 Geomatics Applications 

The modified algorithm was applied to high density datasets acquired by Geomatics 

engineering techniques to verify its operation with high density data.  This section 

includes the details and results of three Geomatics engineering applications with the 

modified algorithm, including: 1) LIDAR data of an urban city, 2) facial measurements 

using stereophotogrammetry, and 3) close-range laser scanning of a small object.  The 

results from these applications demonstrate that the modified algorithm can be used to 

accurately register high density 3D datasets.  The implications of these results on the 

efficacy of the combined MIHT and ICP algorithm for MRI applications are discussed.  
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4.4.1 Light Detection and Ranging Data of Urban City 

LIDAR systems have been rapidly emerging as a fast, accurate, and cost-effective 

technology for acquiring high density 3D data representing physical surfaces.  LIDAR 

systems are directly geo-referenced using global positioning systems (GPS) combined 

with high-end inertial navigation systems (INS), resulting in direct and accurate 

acquisition of 3D coordinates of irregularly distributed object space points at high density 

(Wehr and Lohr, 1999).  Modern LIDAR systems can also capture intensity images over 

the mapped objects.  As a result of these advances, LIDAR is being more extensively 

used in mapping and geographic information system applications, and can be combined 

with photogrammetric systems to provide complementary and complete surface 

information (Habib et al., 2004).   

 

This application demonstrates the feasibility of the modified surface matching algorithm 

to register overlapping LIDAR datasets.  To validate the surface matching algorithm, 

results were compared to ones derived using linear features that were accurately and 

reliably extracted from the same LIDAR dataset.  The extraction of the linear features 

commenced with the identification of planar patches by plane fitting to LIDAR point 

clouds.  Subsequently, neighboring planar patches with different orientation (e.g., two 

rooftops) were intersected to produce the linear features.  This procedure resulted in 

linear features that were higher in accuracy than the LIDAR data itself.  Therefore, 

registration by utilizing linear features can provide highly accurate results (Habib et al., 



76 
 

 

2005).  Differences between surface matching and linear features results should be within 

the noise level of the LIDAR data in order to validate the surface matching algorithm.  

 

4.4.1.1 Data and Experiments 

The utilized LIDAR data covers an urban area in Brazil and is given with respect to the 

World Geodetic System 1984 (WGS84) reference frame.  This dataset was captured by 

an Optech ALTM 2050 airborne laser scanner (The Optech Incorporated, Toronto, 

Canada) from an average flying height of 975 m.  The point density for these laser scan 

strips was approximately 2.24 points/m2 (~0.7 m point spacing, i.e., high density).  

According to the flight and sensor specifications, this data was expected to have a 

horizontal accuracy of 0.5 m and a vertical accuracy of 0.15 m.  Two adjacent and 

partially overlapping LIDAR strips were used for the registration, which mainly covered 

buildings, vegetations (e.g., trees), roads, and other man-made structures (Figure 4-6).  

The two strips or surfaces, S1 and S2, comprised of 44,156 and 22,799 points, respectively.  

The 22,799 points of S2 were further processed to generate 45,520 triangular patches 

based on Delaunay triangulation in MATLAB (The Mathworks, Inc., Natick, MA, 

version 6.5) (Figure 4-7b).  The nature of LIDAR data acquisition substantially limited 

the number of points captured on the vertical facets of buildings (blank areas in Figure 4-

7a).  The modified surface matching algorithm was applied to register the points from S1 

to the patches of S2. 



77 
 

 

                 

          (a)                                (b) 

Figure 4-6:  Overlapping LIDAR range images over an urban area: first (a) and second 
surfaces (b). 
 

    

(a)     (b) 

Figure 4-7: Sections of the first LIDAR surface represented by 44,156 points (a) and of 
the second surface modeled by 45,520 triangular patches (b). 
 

4.4.1.2 Surface Matching Results and Discussion 

The registration results with the proposed surface matching algorithm are summarized in 

Table 4-1.  A distance threshold of 0.5 m was used for classifying matched points.  This 
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threshold was chosen by considering the point density and noise levels of the data.  Since 

the two overlapping LIDAR strips were given relative to the same reference frame, 

WGS84, the transformation parameters (XT, YT, ZT, ω, φ, κ, S) relating these strips should 

assume the values of 0 m, 0 m, 0 m, 0°, 0°, 0°, and 1, respectively.  However, such values 

would only be valid if there were no biases present in the data acquisition system.  For 

the MIHT procedure, the cell sizes for the accumulator arrays ranged from 1.0 m to 0.2 m 

for the translations, 1.0° to 0.5° for the rotations, and 0.10 to 0.01 for the scale factor.  

The large numbers of points and patches in this experiment required the algorithm 

approximately 1 day to complete with a 3 GHz Pentium 4 processor (Intel, Santa Clara, 

CA, USA).  

Table 4-1: Initial approximations, expected parameters, estimated transformation 
parameters, and registration results of the LIDAR data. 

 

 XT 
(m) 

YT 
(m) 

ZT 
(m) S ω 

(°) 
φ 
(°) 

κ 
(°) 

Initial Approximations 3.000 -3.000 3.000 0.900 -3.000 3.000 -3.000 

Expected Parameters 0.000 0.000 0.000 1.000 0.000 0.000 0.000 

Estimated Parameters  
(±Standard Deviation) 

-0.660 
(1.26e-3)

-0.367 
(1.55e-3)

0.007 
(2.44e-3)

1.001 
(2.20e-5)

-0.017 
(6.40e-5) 

0.002 
(1.14e-4) 

0.003 
(1.80e-5)

Estimated Variance 
Component 0.122 

RMS of the Normal 
Distances 0.142 m 

 
 

The initial approximations (Table 4-1) were chosen to be significantly different from the 

expected values to test the performance of the proposed algorithm.  The RMS of the 

normal distances between the matched point-patch pairs was 0.142 m, which indicated a 
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successful registration, considering the horizontal (0.5 m) and vertical (0.15 m) 

accuracies of the involved data.  Importantly, rough initial approximations led to accurate 

estimations of the transformation parameters by the modified algorithm.  This strongly 

demonstrates the ability of the MIHT algorithm to produce good estimates for the ICP 

algorithm, which in turn produces accurate overall matching results.  The deviations of 

the estimated transformation parameters from the expected values indicated that some 

biases existed between the two strips.  The larger deviations for XT and YT might result 

from bore-sighting biases between the GPS/INS unit and the laser system.  However, 

these biases were still within the noise level in the data.   

 

Qualitative analysis of the results further verified the accuracy of the registration.   The 

matched (blue) and unmatched (red) points in S1 were overlaid on top of an ortho-photo, 

a rectified photographic map, of the target area (Figure 4-8a).  A large portion of the 

overlapped area was classified as matches (blue points, 86%), with a small section of 

non-overlapping area on the left edge correctly classified as non-matches (red points).   

Closer investigation of a smaller portion of the unmatched points within the overlap area 

indicated that they mainly located along building boundaries and around areas with 

vegetation (e.g., trees) (Figure 4-8b).  This observation is reasonable, as physical surface 

representation using triangular planar patches is not valid at building boundaries where 

laser points might not land exactly on the edges of the building, so the patches are formed 

by vertices on the ground and roof tops resulting in slanted building walls (Figure 4-7b).  

Similarly, in vegetation areas, LIDAR rays can reflect off the treetops or penetrate 
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through to reach lower levels of vegetation or the ground, thus irregularly shaped 

triangles are formed that incorrectly model the physical shapes of the surface. 

    

(a)      (b) 

Figure 4-8: Matched (blue) and unmatched-points (red) of the first surface (S1) displayed 
on an ortho-photo of the target area (a), with the unmatched-points located mainly along 
edges of the buildings and vegetated areas (b). 
 
 

To validate the accuracy of the surface matching algorithm for registering LIDAR data, 

the estimated transformation parameters were compared to ones obtained using manually 

extracted and identified conjugate linear features from the same dataset (conducted in a 

parallel study by our research group, Lee et al. (2005)).  164 conjugate lines were 

extracted from the two LIDAR strips by plane fitting and plane intersections.  These 

features were used in a line-based absolute orientation procedure to solve for the seven 

transformation parameters relating the strips by minimizing the normal distances between 

conjugate lines.  
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A comparison of the estimated transformation parameters from this line-based absolute 

orientation (Table 4-2) with the results from the surface matching algorithm (Table 4-1) 

indicates that the transformation parameters from both approaches are similar (average 

difference of 0.2 m for the translations and 0.007° for the rotations), especially when 

considering the noise level in the LIDAR data and the preprocessing procedure for the 

derivation of the linear features.  As the values for the estimated parameters were within 

the noise level (0.5 m horizontal and 0.15 m vertical) when compared to ones derived 

using linear features, the accuracy of the surface matching algorithm was validated.  The 

larger differences between the XT and YT parameters of the approaches suggested that 

biases did exist especially in the horizontal directions of the LIDAR data.  Although 

surface registration using linear features can produce accurate results, the surface 

matching procedure directly works with the raw LIDAR point clouds with minimal pre-

processing.  Furthermore, for regions/surfaces with a limited number of linear features, 

the presented approach will be more appropriate. 

Table 4-2: Transformation parameters derived from on linear features and surface 
matching for the LIDAR data. 
 

Registration 
Method 

XT 
(m) 

YT 
(m) 

ZT 
(m) S ω 

(°) 
φ 
(°) 

κ 
(°) 

Linear Features & 
Absolute Orientation 

(±Standard Deviation) 

-0.418 
(2.98e-2)

-0.209 
(2.79e-2)

-0.019 
(7.87e-2)

1.000 
(2.30e-5)

-0.010 
(2.29e-2) 

0.017 
(3.78e-2)

0.003 
(1.30e-3)

Surface Matching 
(±Standard Deviation) 

-0.660 
(1.26e-3)

-0.367 
(1.55e-3)

0.007 
(2.44e-3)

1.001 
(2.20e-5)

-0.017 
(6.40e-5) 

0.002 
(1.14e-4)

0.003 
(1.80e-5)
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This study demonstrated that the surface matching algorithm can handle high density data 

and results were validated with ones derived from manually identified linear features.  

The algorithm can also be used for quality control of the LIDAR data as the presence of 

biases was identified.  

 

4.4.2 Stereophotogrammetry for Facial Measurements 

Measurements and modeling of human facial features can be found in many fields such 

as medical applications, person identification and surveillance, and virtual reality 

applications (D’Apuzzo, 2002).   The main objective of these applications is to verify an 

individual based on their unique facial geometry.  Many techniques are available in these 

fields to acquire facial data, such as laser scanning, video tracking, and photogrammetry.  

Some of these techniques require expensive and complex equipment, and extensive data-

processing procedures.  Therefore, low-cost digital cameras can be used in a 

photogrammetric procedure as a cost-effective approach to provide accurate and reliable 

facial measurements (Pullivelli, 2005).  Low-cost digital cameras, when properly 

calibrated, can capture stereo 2D images of facial features to accurately reconstruct a 3D 

human face.  This section presents the results of matching facial models obtained based 

on digital stereophotogrammetry using the modified surface matching algorithm. 
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4.4.2.1 Data and Experiments 

Two Canon EOS Digital Rebel XT cameras (Canon U.S.A., Inc., Lake Success, NY) 

were used in this experiment to capture stereo-images of facial features (eight mega 

pixels, pixel size of 6.5 micrometers).  The two cameras were mounted approximately 1.5 

m apart on a rigid metal frame (Figure 4-9).  The subjects were also positioned 

approximately 1.5 m from the cameras.  Both cameras were controlled by a remote 

control, so that the stereo-images could be taken at the exact same time.  This approach is 

particularly beneficial for facial measurements to eliminate potential movements between 

the two images.  A regularly spaced grid was projected onto the subject to allow 

identification of conjugate features (i.e., grid points) (Figure 4-10).  The 2D image 

coordinates of these conjugate points were measured on both images using a customized 

software written in Visual C++ (Microsoft Corporation, Rehmond, WA, version 6.0).  

Through a bundle adjustment algorithm along with camera parameters obtained from 

proper calibration procedures (e.g., Habib and Morgan, 2003a), the 3D object space 

coordinates of the grid points were derived to model the face.  To increase the density of 

these surface points, the Thin Plate Spline (TPS) algorithm (Boyd et al., 1999) was used 

to model the surface and re-sample the points (point density of 2 mm, no smoothing was 

applied) (Figure 4-11).  With a limited number of points measured on the face, details of 

some facial features (e.g., details of the eyes) were not fully captured and modeled. 
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Figure 4-9: Two Canon digital cameras mounted on a rigid frame for capturing stereo-
images of the face. 

 

 

Figure 4-10: Left and right stereo-images of a subject’s face, with projected grid points 
to allow identification of conjugate features. 
 

 

Figure 4-11: Surface model of a human’s face generated by the TPS algorithm. 
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Three male volunteers were used for this study.  Table 4-3 and Figure 4-12 present the 

datasets involved for the experiments.  Three experiments were performed to 1) verify 

that the surface matching algorithm could match temporal datasets and recognize facial 

models of the same individual, 2) test if the algorithm could detect differences between 

different facial expressions of the same individual, and 3) identify discrepancies when 

matching facial surfaces of two individuals.  Both quantitative (i.e., RMS distance and 

percentage of matches) and qualitative (i.e., visualization of the matching results) 

measures were analyzed for each experiment to determine if the surface matching 

algorithm was successful in achieving the objectives of the experiments.  These were 

preliminary experiments to verify that the surface matching algorithm can be used to 

match facial models.  To truly quantify the accuracies of the algorithm for facial 

recognition applications, further investigations with more subjects are needed. 

Table 4-3:  Involved facial datasets for the three registration experiments performed. 
 

Experiments Dataset 1 Dataset 2 Objective 

1 
Subject 1 

Time 1 
2790 patches

Subject 1 
Time 2 

6016 points

To test the ability of the algorithm for 
registering temporal datasets and 

recognize faces 

2 
Subject 1 

Not Smiling 
2790 patches

Subject 1 
Smiling 

6111 points

To test the ability of the algorithm for 
detecting changes 

3 Subject 2 
2100 patches

Subject 3 
5922 points

To test the ability of the algorithm to 
identify different people based on results

 



86 
 

 

(a)  

(b)   

 (c)  

Figure 4-12: Facial images used in the three experiments (two time points (a), non-
smiling versus smiling (b), and two different subjects (c)). 
 

4.4.2.2 Surface Matching Results and Discussion 

A distance threshold of 2.5 mm was used as the matching criteria for the three 

experiments.  The accumulator array cell sizes ranged from 8 cm to 5 mm for the 

translations and 2° to 2/3° for the rotations.  The scale factor was fixed at one as no scale 

differences were assumed between two facial models.  Each experiment required the 
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algorithm less than two hours to run on a 3 GHz Pentium 4 processor (Intel, Santa Clara, 

CA, USA). 

 

The first experiment registered two temporal face models from the same subject, and the 

resulting RMS distance was 0.705 mm.  This indicated a high quality of fit when 

matching temporal datasets that were captured under similar conditions.  A large 

percentage of the points were classified as matches (88%) with the non-matches mainly 

located around the edges of the surfaces resulting from different surface modeling 

behaviour of TPS (Figure 4-13).  This experiment shows that the algorithm can recognize 

facial models of the same person when matching datasets collected at different times.  

The images acquired for these datasets (Figure 4-12a) suggested that there might be some 

changes with the eyes and surrounding areas.   Since the details of these features were not 

fully captured by the facial models, these differences were not detected by the algorithm.   

 

Figure 4-13: Co-registered face models of subject 1 with the green mesh representing the 
model from the first time point and the points (blue: matches, red: non-matches) 
representing the second time point. 
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For the second experiment, the algorithm successfully registered the two face models 

with a RMS distance of 1.18 mm and 60% of the points were classified as matches.  

Qualitative analysis of the results indicated that the algorithm identified non-matching 

points in the areas of the mouth and the cheeks of the subject as expected when a person 

is smiling (Figure 4-14a).  The nose and the forehead of the subject were nicely aligned 

between the two models.  To further confirm these analyses, the non-matches were 

projected onto the original image of the first subject (Figure 4-14b), which verified that 

the unmatched points belonged to the mouth and cheeks areas.  These results 

demonstrated that the algorithm can register face models with different facial expressions, 

and can correctly identify the differences between them. 

     

         (a)                 (b) 

Figure 4-14:  Co-registered face models of subject 1 with the green mesh representing 
the non-smiling face and the blue (matched) and red (unmatched) points representing the 
smiling face (a); unmatched points projected onto the original image (b). 
 
 

The third experiment registered facial models of two different people to test whether the 

algorithm could detect differences in facial features.  Although the RMS distance of 2.12 
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mm indicated well fitted surfaces, qualitative investigation showed that a large 

percentage of the points (48%) were not matching (Figure 4-15).  This was likely because 

the algorithm would attempt to align the surfaces as well as possible (e.g., align distinct 

features like the nose) resulting in a small RMS distance between the matched points.  

Therefore, these results indicated that it is important to not only evaluate the RMS 

distance, but to also investigate other parameters (e.g., percentage of matches) and 

analyze the qualitative results.  It is clearly shown by Figure 4-15 that the surfaces were 

generated from two different people and that one subject had a larger forehead 

(unmatched points) than the other.  

 

Figure 4-15: Co-registered face models of two different subjects with clear indications of 
different facial features by the non-matches (red points). 
 

4.4.3 Close-range Laser Scanning of Small Object  

The Spin-Image surface alignment technique (reviewed in section 2.5.2.3) utilized a 

unique idea of matching Spin-Images to identify conjugate points between two 

overlapping laser point clouds (Guarnieri et al., 2005).  By establishing the 

correspondence, the transformation can be solved to align the laser scanning views as an 
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initial step to generate a 3D model.  The technique was tested with close-range laser 

scanning data of a rubber cat object (size: 25 cm × 20 cm × 10 cm).  A maximum error of 

1.45 mm was found for the Spin-Image technique.  With the incorporation of the ICP 

algorithm, the error reduced to 0.87 mm (Guarnieri et al., 2005), an excellent result given 

the object size.  This application shows the comparison between the Spin-Image 

technique and the proposed surface matching algorithm by applying it to the rubber cat 

dataset. 

 

4.4.3.1 Data and Experiments 

Two laser scan views of a rubber cat object (size: 25 cm × 20 cm × 10 cm, Figure 4-16) 

were acquired by a ShapeGrabber 100 laser scanner (ShapeGrabber Inc., Ottawa, 

Canada).  The laser precision was 50 µm and the point spacing for the acquired point 

cloud was approximately 1 mm, resulting in a high density data.  A 2 mm point spacing 

(every second point) was used for surface modeling to reduce the point density.  The 

separate coordinate system of each laser scan view was given with respect to the origin of 

the scanner unit.  One of the scans was further processed to form triangular patches using 

Delaunay triangulation.  The rubber cat surfaces were registered with the surface 

matching algorithm based on MIHT/ICP and results were compared to the Spin-Image 

technique.  Specifically, the transformation parameters, the RMS distance, the percentage 

of matches, and the process time were compared between the two approaches.  If the 
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difference between the RMS distances of the two techniques was within the noise level of 

the data, then it indicated that the two methods produced comparable matching results. 

        

Figure 4-16: Two views of a rubber cat object acquired by a close-range laser scanner. 

 

4.4.3.2 Surface Matching Results and Discussion 

The surface matching algorithm took 5 hrs 11 min to process with a 3 GHz Pentium 4 

processor (Intel, Santa Clara, CA, USA).  The accumulator array cell sizes set at 2 mm to 

1 mm for the translations and 2° to 5/6° for the rotations.  Scale factor was fixed at one.  

The algorithm aligned the two views together with a RMS distance of 0.203 mm, based 

on a distance threshold of 0.6 mm.  The estimated transformation parameters and quality 

of fit of the surfaces were compared to the ones derived using the Spin-Image technique, 

as summarized in Table 4-4 (Figure 4-17).   The transformation parameters and distances 

were similar between the two methods, with an average difference of 0.33 mm for the 

translation parameters and 0.18° for the rotations.  The proposed surface matching 

technique also resulted in a larger percentage of matches (difference of 2.7%) and a 

slightly smaller RMS distance (difference of 0.091 mm).  This difference of 90 µm was 

around noise level of the data, thus indicated that both surface matching techniques 
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produced similar results.  However, the surface matching technique required up to half 

the processing time of the Spin-Image technique.   

Table 4-4: Comparisons of the registration results between the proposed surface 
matching algorithm and the Spin-Image technique. 

 
Parameters Proposed Algorithm Spin-Image Technique Difference 

XT (mm) -0.125 0.188 -0.313 
YT  (mm) 9.465 9.182 0.284 
ZT  (mm) 9.603 9.992 -0.389 
ω  (°) -30.854 -30.947 0.093 
φ  (°) -1.017 -0.918 -0.099 
κ (°) 0.320 -0.018 0.338 

% of Matches 70.5% 67.8% 2.7% 
RMS Distance (mm) 0.203 0.294 -0.091 

 

    

Figure 4-17: Co-registered laser scanning views with the proposed surface matching 
algorithm (a) and with the Spin-Image technique (b) (green mesh represents the reference 
scan, blue points are the matches and red points are the non-matches for the second scan). 
 
 

This application shows that the proposed surface matching algorithm can produce 

accurate results by comparison with a different technique of similar accuracy.  The results 

also indicate that it can be successfully applied to align high density laser scanning views 

for 3D model generations. 
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4.5 Summary 

This chapter describes the modification of the proposed surface matching algorithm with 

the incorporation of the Iterative Closest Point algorithm to complement the modified 

iterated Hough transform approach.  Experimental results from the three Geomatics 

applications verified that the modified algorithm can successfully register high density 

3D data acquired by remote sensing systems.  The first application showed that the 

algorithm can be used to identify existing biases between overlapping LIDAR strips for 

quality control purposes.  The algorithm could also detect changes between facial models 

for person recognition.  The third application showed improvement of the proposed 

algorithm over an existing technique for matching laser scanning views.  Overall, these 

successful applications indicate that the algorithm has strong potential to function well 

with non-uniform applications such as those associated with anatomical joint structures 

generated from high density 3D MR data.  
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Chapter Five: Registration of 3D MR Data 

 

5.1 Introduction 

The suitability of the proposed surface matching algorithm for registration with 

anatomical joint structures is explored in this chapter for the second specific aim of this 

research.  The data, image processing procedures, and results of registration of knee joint 

surfaces generated from MRI with the proposed surface matching algorithm are presented.  

These experiments aimed to verify whether the proposed algorithm can be used to align 

with acceptable accuracy 3D MR datasets acquired under different conditions.   

   

5.2 Data Acquisition and Descriptions 

This data was collected in collaboration with a parallel study of PFPS using MRI 

(Connolly, 2005).  Ethics approval was obtained for this study from the Conjoint Health 

Research Ethics Board, University of Calgary, for performing health research on human 

subjects (Appendix A).  Written informed consent (Appendix B) was also obtained from 

each subject prior to imaging.  The dataset was acquired with a 3-telsa MRI unit (General 

Electric Medical Systems, Waukesha, Wisconsin, USA) located at the Seaman Family 

MR Research Centre, Foothills Medical Centre, Calgary, Canada (Figure 5-1).  All 

imaging sessions were operated by trained MR technologists.    
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A general purpose flex coil was used for imaging to enhance the image quality.  This coil 

could be positioned in close proximity to the knee without interfering with knee positions.  

It helped to reduce the noise captured (i.e., increase SNR) and improve tissue contrast 

(Figure 5-1).  One subject (Subject 1, age 25 years) with a healthy knee condition (no 

knee pain or injury one year prior to study) was imaged at 0° and 30° flexion angles 

(Figure 5-2).  Four additional female subjects (Subject 2-5, age 26.3 ± 4.6 years) with 

healthy knees conditions were imaged at 0°, 15°, 30°, and 45° flexion angles.  A balanced 

steady-state free precession (SSFP) sequence was chosen for all the subjects.  Imaging 

parameters were selected in a pilot study by a radiologist to maximize the contrast 

between tissues in the knee joint (e.g., cartilage, synovial fluid, and bone) while 

maintaining a short scan time.  At 0° flexion, the parameters set for the sequence were TR 

= 7 ms, TE = 2 ms, and flip angle = 40°.  Thirty-six contiguous sagittal images were 

acquired with an in-plane resolution (i.e., image pixel size) of 0.625 mm (FOV = 16 cm × 

16 cm, 256 × 256 matrix) and 3.0 mm across-slice resolution (i.e., slice thickness), with a 

total scan time of approximately 1 min 55 sec (Figure 5-3a).  At higher flexion angles 

(15°, 30°, and 45°), the knees were under physiological loading conditions, using a 

custom design loading apparatus (Ronsky, 1994) with the subjects pushing on a foot 

pedal and holding at approximately 12% of the maximum force they could apply  (Figure 

5-1).  The imaging parameters were set at TR = 17 ms, TE = 3 ms, and flip angle = 90°, 

resulting in a scan time of 2 min 17 sec.  Sagittal images were also acquired with an 

image resolution of 0.625 mm × 0.625 mm × 3.000 mm (FOV = 16 cm × 16 cm, 256 × 

256 matrix) (Figure 5-3b). 
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Figure 5-1: Subject imaged with the 3-telsa MRI unit and a flex coil at the Seaman 
Family MR Research Centre, Calgary. 

 

(a)           (b) 

Figure 5-2:  Subject positioned at 0° knee flexion (full extension) (a) and 30° knee 
flexion (b). 
 

          

(a)      (b) 

Figure 5-3: MR images (sagittal balanced SSFP sequence) of a healthy knee at full 
extension (a) and with the knee at 30° flexion under loading condition (b).  The red lines 
were the manually digitized points for the femoral bone-cartilage interfaces. 

30° 
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5.3 Feature Segmentation 

To perform surface matching with the proposed algorithm, surfaces of interest, such as 

the bone-cartilage interface of the femur, were digitized from the MR images.  

Digitization was performed manually for each image slice using the commercial software 

SliceOmatic (TomoVision, Montreal, Canada), that has been successfully employed by 

our research group (e.g. Connelly, 2005).  Although semi- and automatic segmentation 

techniques could potentially reduce the processing time for the digitization, Sobel and 

Non-Maxima Suppression edge detection algorithms were tested on this dataset and did 

not produce satisfying results.  Since intensity values between bone, cartilage, and fluid 

were similar, false edges were detected and intensive editing was required after automatic 

segmentation.  The optimal segmentation approach was not investigated as it was not the 

focus of this thesis research.  Therefore, manual digitization using SliceOmatic was 

performed.   

 

For each subject, femoral condyle surfaces (bone-cartilage interface) were digitized 

(Figure 5-3).  Digitization criterion was based on selecting the pixels between the cortical 

bone (dark grey) and cartilage (light grey).  The manual digitization process produced 

contours formed by points with 3D coordinates (Figure 5-4).  In addition, digitized points 

for the patellar bone and cartilage surfaces, as well as femoral bone and cartilage of the 

patellofemoral articulating area were obtained from a parallel study for the same datasets 

at the higher flexion angles (Figure 5-5) (Connolly, 2005).   
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Figure 5-4: Contours of the femoral condyle surface formed by digitized points of the 
MR image slice. 
 

 

(a)                                                         (b) 

Figure 5-5: Digitized bone (red for patella, purple for femur) and cartilage (green for 
patella, blue for femur) surfaces of the articulating area of the patellofemoral joint 
(Connolly, 2005).  
 

5.4 Surface Modeling 

The across slice resolution was significantly worse than the image resolution with the 

optimized imaging sequences.  To produce more evenly distributed surface point clouds, 

the TPS algorithm (Boyd et al., 1999) was applied to the digitized surface contours to 

densify the point clouds and resample the surface.  Since TPS could not model a surface 
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with the same XY coordinates but different Z coordinates, only the distal ends with 

mainly the anterior portions of the femoral condyles and groves were manually digitized 

and modeled for the registration.  For the femurs, a re-sampling interval of 1.0 mm was 

used to balance out the in-plane and across-slice resolution.  A smaller sampling interval 

could be used but this would result in a large number of surface points thus increase the 

run times of both the TPS and the surface matching algorithm.  For the smoothing factor, 

the effects of the amount of smoothing were investigated in a previous study (Moss, 

2001) for the femoral and patellar surfaces of porcine specimens with MRI.  No 

significant differences were found for smoothing factors ranging from 0.25 to 1.45.  A 

smoothing factor of 0.6 was chosen for the relatively smooth surface of the femur (Figure 

5-6a).  For the rougher patellar surfaces, a smoothing factor of 0.275 was used with the 

sampling interval also set at 1.0 mm (Figure 5-6b).  No investigations on the smoothing 

factor were performed here as it was beyond the scope of this thesis research.   

   

(a)      (b)    (c)  

Figure 5-6: Femoral (a) and patellar surface (b) resampled and modeled by TPS (figures 
are not to scale), and a section of the triangular patches formed by Delaunay triangulation 
using the resampled points (c). 
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Since the proposed algorithm requires the reference surface to be modeled as a triangular 

mesh, the point clouds were further processed using Delaunay triangulation in MATLAB 

(The Mathworks, Inc., Natick, MA, version 6.5) to generate triangular patches (Figure 5-

6c). 

 

5.5 Registration Experiments 

The main objective of the registration experiments with the femoral and patellar surfaces 

was to verify whether the surface matching algorithm, based on MIHT/ICP, can be used 

to successfully align high density 3D MR datasets.  The capability of the algorithm to 

match identical surfaces (i.e., surface generated from the same digitization of one scan) 

was initially evaluated to ensure no errors were introduced to the results by the 

registration algorithm.  Experiments were also performed on different bone structures 

(i.e., femur and patella) to test if the algorithm could successfully register joint surfaces 

that were captured at different positions and under different conditions.  The results from 

these experiments would verify whether the algorithm could be applied in MR 

applications to study joint biomechanics and health statues.  Also, the effect of different 

surface geometry (i.e., femur versus patella) on the matching results would be analyzed.  

Quantitative measures derived from the surface matching algorithm (e.g., RMS distance 

and percentage of matches) and qualitative results (e.g., 3D visualization and image 

mosaics of the matching results) were analyzed for each of the experiments to determine 

if the registrations were successful.   
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The capability of the surface matching algorithm to match identical surfaces was 

evaluated with datasets of Subject 1.  Registration was performed between two identical 

surfaces at the 0° flexion, and also for two surfaces at 30°.  The two surfaces for each 

flexion (one modeled by points and the other by patches) were generated from the same 

set of digitized points with the same TPS re-sampling and smoothing parameters.  For the 

registrations, the distance threshold was set at 0.4 mm for the matching criterion.  The 

accumulator array cell sizes were set to range from 0.8 mm to 0.5 mm for the translations, 

1° to ½° for the rotations, and 0.1 to 0.01 for the scale factor.  Since the surfaces were 

generated from the same digitization of the same set of scans, the true parameters were 

zeros for the translations and rotations, and one for the scale factor.  Rough initial 

parameter approximations were set (-4.5 mm, 4.5 mm, -4.5 mm, 4.5°, -4.5°, 4.5°, and 0.9 

for XT, YT, ZT, ω, φ, κ, and S respectively) to test whether the algorithm could still derive 

the correct parameters.  In addition, the identical surfaces should be fitted perfectly with 

each other after the registration, thus the estimated variance component and RMS 

distance should be zeros.  These two measures would be evaluated to check whether the 

surfaces did indeed achieve a perfect fit. 

 

For the other four subjects, nineteen registrations were performed between different 

flexion angles for both the femoral and patellar surfaces (Table 5-1).  These bone 

surfaces were assumed to remain rigid at the different flexions.  This was a valid 

assumption for bone surfaces of healthy subjects over the imaging session (approximately 

1 hour), thus the 3D similarity transformation should be sufficient to align the surfaces.  
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Although digitization may introduce some local changes/errors along the bone surfaces, 

these changes would be isolated by the proposed algorithm as non-matches and would 

not be included in the least squares adjustment for the transformation parameters.   

Table 5-1: Registration experiments performed for Subject 2 to Subject 5. 
 

Surface Parameters 

Surface 1 - Points Surface 2 – Patches
(reference) Subject Experiments Surface

Flexion (°) # Flexion (°) # 
1 Femur 15 4150 0 7456 
2 Femur 30 4107 0 7456 
3 Femur 45 4236 0 7456 
4 Patella 30 1694 15 3238 

S2 

5 Patella 45 1829 15 3238 
6 Femur 15 3996 0 7456 
7 Femur 30 4145 0 7456 
8 Femur 45 4282 0 7456 
9 Patella 30 1754 15 3394 

S3 

10 Patella 45 1789 15 3394 
11 Femur 15 3585 0 6540 
12 Femur 30 3690 0 6540 
13 Femur 45 3643 0 6540 
14 Patella 30 1407 15 2807 

S4 

15 Patella 45 1485 15 2807 
16 Femur 30 3991 15 7954 
17 Femur 45 4202 15 7954 
18 Patella 30 1512 15 2881 S5 

19 Patella 45 1584 15 2881 
 
 

For the registrations, the scale factor was set at one and was not solved for as MRI, when 

properly calibrated, captures true scale of objects.  Although this was a reasonable 

assumption, investigations should be performed in the future to confirm if it is valid.  The 

distance threshold was set at 0.4 mm for the matching criterion.  The accumulator array 
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cell sizes ranged from 0.8 mm to 0.3 mm for the translation parameters and 1° to ½° for 

the rotations.  Images at 0° flexion were not available for Subject 5, so the femur at 15° 

was used as the reference surface for the registration.   

 

The RMS distance and percentage of matches from each experiment would be evaluated 

to determine whether the algorithm could successfully register the surfaces.  To indicate 

successful registration, the quality of fit of the surfaces (i.e., the RMS distance) should be 

around the noise level of the data (i.e., about the size of the MR image pixel: 0.6 mm).  

For each subject, the MR scans were captured in one imaging session (less than 2 hours), 

thus a large percentage of the points should be classified as matches.  These percentages 

were evaluated and 3D visualizations of the matches and non-matches would also be 

performed.  Since only a portion of the femoral condyles and groves were used for the 

femur registrations, it was important to evaluate whether this was sufficient to produce a 

good alignment of the whole femur.  This evaluation was achieved by generating an 

image mosaic of the two datasets (i.e., superimposition of corresponding image slices).  

To generate an image mosaic, the image slices from the first surface were transformed 

with the estimated transformation parameters.  The transformed images were then re-

sampled based on a nearest neighbour approach (i.e., each re-sampled image voxel was 

assigned a grey level of its nearest voxel from the transformed image).  After this 

procedure, the transformed images fell onto the same planes as the reference image slices, 

and corresponding images were superimposed.  The alignment of the entire femoral 

surface could then be directly visualized on the image mosaics.      
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Although the coordinate systems were uniquely defined for each set of images, they 

shared similar orientations for the femur (Figure 5-7a), and also for the patella (Figure 5-

7b).  Table 5-2 provides the definitions of the directional terms for anatomy.  The 

coordinate axes were modified from the original MR coordinate systems so they were 

compatible for the TPS algorithm.  The femur and the patella were defined by different 

coordinate systems because of the different physical orientation of the surfaces.  As a rule 

of thumb with TPS modeling, the surfaces lie on the XY plane with the 

height/topographical variations defined along the Z axis.  This is because the TPS 

algorithm describes the Z coordinate of the surface as a function of X and Y (refer to 

section 2.4).  For both surfaces, the Y axis lied along the image slice direction.   

Table 5-2: Directional terms for the human body (Van De Graaff and Fox, 1989). 
 

Term Definition Example 
Anterior Toward the front The navel is on the anterior side of the body 
Posterior Toward the back The kidneys are posterior to the intestine 
Medial Toward the midline of the body The heart is medial to the lungs 
Lateral Toward the side of the body The ears are on the lateral sides of the head 

Proximal Toward the main mass of the 
body The knee is proximal to the foot 

Distal Away from the main mass of 
the body The hand is distal to the elbow 

 

(a)  

Z 

Y 

X



105 
 

 

(b)  

Figure 5-7: Coordinate system for the femur (X: Posterior (+) – Anterior (-), Y: Medial 
(+) – Lateral (-), Z: Proximal (+) – distal (-)) (a) and for the patella (X: Proximal (+) –
Distal (-), Y: Medial (+) – Lateral (-), Z: Posterior (+) – Anterior (-)) (b). 
 

5.6 Results and Discussion 

For the registrations between the identical 0° and 30° surfaces for Subject 1, the 

estimated transformation parameters were zero translations, zero rotations, and scale of 

one. These results showed that the algorithm correctly estimated the transformation 

parameters with rough initial parameter approximations.  The estimated variances and 

RMS distances were also zeros for both experiments, which indicated perfectly fitted 

surfaces.  These results confirmed that the surface matching algorithm can accurately 

register identical surfaces without introducing any errors.   

 

Table 5-3 summarizes the experiments performed on the four subjects and the registration 

results.  The estimated transformation parameters are not reported here as the true values 

were unknown for these cases and no comparisons were made.  The average RMS 

distance was 0.217 ± 0.035 mm (mean ± standard deviation (SD)) for the femur and 

X 

Y 

Z
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0.207 ± 0.008 mm for the patella.  These values were less than the size of an image pixel 

(0.625 mm) which indicated a high quality of fit of the surfaces.  The average 

percentages of matches were 63% for the femur and 61% for the patella.   

Table 5-3: Registration results for the femoral and patellar surfaces of the four subjects. 
 

Surface Parameters 
Points Patches Subject Exp. Surface 

Flexion (°) Flexion (°)
Variance

RMS 
Dist.
(mm) 

% of 
Matches Run Time

1 Femur 15 0 0.060 0.211 62% 4 hr 8 min 
2 Femur 30 0 0.053 0.197 66% 5 hr 28 min
3 Femur 45 0 0.051 0.203 50% 5 hr 22 min
4 Patella 30 15 0.040 0.212 54% 38 min 

S2 

5 Patella 45 15 0.037 0.202 60% 54 min 
6 Femur 15 0 0.068 0.214 49% 3 hr 47 min
7 Femur 30 0 0.050 0.206 60% 4 hr 
8 Femur 45 0 0.089 0.278 69% 5 hr 34 min
9 Patella 30 15 0.038 0.209 57% 54 min 

S3 

10 Patella 45 15 0.034 0.199 65% 52 min 
11 Femur 15 0 0.064 0.204 52% 3 hr 
12 Femur 30 0 0.063 0.209 60% 3 hr 8 min 
13 Femur 45 0 0.124 0.292 64% 5 hr 6 min 
14 Patella 30 15 0.035 0.198 67% 35 min 

S4 

15 Patella 45 15 0.037 0.202 58% 36 min 
16 Femur 30 15 0.050 0.179 83% 4 hr 
17 Femur 45 15 0.067 0.195 77% 4 hr 47 min
18 Patella 30 15 0.036 0.203 67% 34 min S5 

19 Patella 45 15 0.044 0.226 63% 42 min 
 
 

Registrations with the patella produced smaller estimated variance components and RMS 

distances than the femur.  These results are speculated to be attributed to the more unique 

geometry formed by the facets and the ridges of the patellar surfaces (Figure 5-8a).  

These surface features helped to align the patellar surfaces resulting in better qualities of 

fit than that of the femoral condyles, which are relatively smoothed surfaces with 
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minimal variations in topography (Figure 5-8b).  For the transformation parameters, 

comparisons between the standard deviations of the translation parameters indicated that 

ZT was the most precisely estimated.  This was likely because the majority of the surface 

patches were normal to the Z-axis (refer to Figure 5-7) and thus provided a good 

geometry for the estimation of ZT.  The femur registrations required the algorithm 3 to 

5.5 hours to process with a 3 GHz Pentium 4 processor (Intel, Santa Clara, CA, USA) and 

the patella registrations required less than 1 hour to process. 

 

 

        (a)              (b) 

Figure 5-8: Patellar (a) and femoral condyle (b) surfaces (Gray's Anatomy of the Human 
Body, 2006). 
 
 

Qualitative assessments of the matching results also confirmed the correctness of the 

registrations (Figure 5-9).  The unmatched points (red) identified on the femoral surfaces 

were most likely attributable to small errors introduced during the manual digitization 

and also different behaviours of TPS for the surface modeling.  The image mosaics 

revealed that even though only a small portion of the femur was used for the registration, 
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corresponding features from other areas of the femur were also well-aligned (Figure 5-

10).  The qualitative analyses along with the quantitative results discussed previously 

showed that the surface matching algorithm could register surfaces generated from high 

density MR data.  Digitization errors were also detected thus did not affect the quality of 

the registration.  Although the registration results were satisfactory, the use of TPS for 

surface modeling has limited the registration to use only a small portion of the femur in 

this research.  If the entire surface is used, the geometry will be improved, thus can 

potentially improve the accuracy of the registration and increase the number of matching 

points.  The ways to implement these suggestions will be addressed in Chapter Eight as 

part of the future work for this research. 

  

(a)       (b) 

Figure 5-9: Registered femoral surfaces (30° with 0°) (a) and patellar surfaces (30° with 
15°) (b) for subject 2, with the green mesh representing the reference surface, and blue 
points representing the matches and red points the non-matches from the transformed 
surface (figures are not to scale). 
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Figure 5-10: Mosaics showing a good match of the femur between the reference image 
(background: 0°) and its corresponding image from the second dataset (foreground/small 
windows: 30°). 
 
 

Since only one bone surface was used for each registration, the other knee joint structures 

would not be aligned.  Figure 5-11 shows the mosaics generated for the registration of a 

femur from 30° flexion to 0° flexion.  Clearly, the tibia and the patella were in different 

positions.  This is expected for different flexion angles and subject re-positioning 

between the two scans.  These observations suggest that the proposed surface matching 

algorithm can be applied in studies of joint biomechanics, where the movements of joint 

surfaces (e.g., patella) at different positions and conditions can be quantified after the 

registration of one (or more) reference surface (e.g., femur).  The image mosaics can also 

help to visualize how these joint structures change in positions. 
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Figure 5-11: Mosaics showing a good match of the femur but different positions for the 
tibia and the patella due to the different knee flexion angles (background: 0° and 
foreground 30°). 
 
 

5.7 Summary 

The surface matching algorithm correctly registered identical surfaces (one set of scans 

with one digitization) even with rough initial approximations for the parameters.  The 

estimated transformation parameters equalled to the known values, and the surfaces were 

perfectly fitted together (RMS distances of 0 mm).  Femoral and patellar surfaces at 

different positions (i.e., flexion angles) and conditions (i.e., loading) were also 

successfully registered for the four subjects.  Results indicated high quality of fit of the 

surfaces (RMS distances equalled approximately 1/3 of a pixel size).  Patellar surfaces 

have unique geometry formed by multi-oriented facets and ridges thus provided better 

quality of fit than the smooth femoral surfaces.  Qualitative assessments of the results and 

image mosaics further confirmed the correctness of the registrations.  The limitation of 

TPS to model surfaces with more than 180° curvature (e.g., the femur) resulted in the 

registrations limiting to using only a small portion of the femur.  Nonetheless, mosaics 
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showed good alignment of other femoral features.  The use of a larger surface can 

increase the geometry, thus increase the accuracy of the registration and improve the 

overall alignment.  The results provided convincing indication that the proposed 

algorithm is highly accurate.  However, no exact measure of the absolute accuracy can be 

drawn regarding the registration accuracy for knee joint surfaces generated from MRI, 

while considering also the errors from imaging, digitization, and modeling.  To quantify 

the overall accuracy, a validation study is required.  This can be accomplished by 

comparing results derived from surface matching with ones obtained using fiducial 

markers based on MRI.  Additionally, repeatability studies on the digitization and 

registration will provide further evaluation for the overall accuracy.  These aspects are 

addressed in Chapter Six.   

 

The research presented in this chapter verified that the proposed surface matching 

algorithm functions well with high density 3D MR data and can register surfaces with 

high quality of fit.  Thus, it suggests that the algorithm can be applied to study joint 

biomechanics and to help monitor OA progressions.   
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Chapter Six: Accuracy Validation and Repeatability 

Studies for the Surface Matching Algorithm 

 

6.1 Introduction 

The third specific aim of this research is to validate the absolute accuracy of the proposed 

surface matching algorithm for registering knee joint surfaces, and also to evaluate the 

repeatability of the manual digitization and registration processes.  The results from these 

studies will verify how accurate and repeatable the registration approach is for MRI data, 

and thus will provide knowledge about the reliability of the algorithm for applications of 

in-vivo assessments of joint conditions.  This chapter describes details of the 

experimental procedures, statistical analysis, and results for the validation and 

repeatability studies. 

 

6.2 Accuracy Validation 

Successful registration with the proposed algorithm for knee joint surfaces acquired at 

different positions (i.e., different flexion angles) and under different conditions (i.e., 

relaxed versus loaded) has been demonstrated (refer to Chapter 5).  The quality of fit of 

the two registered surfaces was described by the RMS distances between them.  The 
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accuracy of the proposed algorithm has also been previously tested with synthetic data 

(Habib et al., 2001, refer to section 2.5.3).  However, analyses are needed to evaluate the 

absolute accuracy of the proposed algorithm for matching knee joint surfaces based on 

MRI, while accounting for errors arising from imaging, surface digitization, and 

modeling.  The objective of this study is to quantify the accuracy of the registration in a 

realistic setting (e.g., in a clinical study), such that conclusions could be made about the 

effects of the registration on the results in studies of joint conditions based on MRI.  

Specifically, the ability of the registration technique to align surfaces with sufficient 

accuracy to enable detection of cartilage changes on the order of 1-2 mm associated with 

degenerative joint diseases, and movements of joint surfaces on the order of 1-2 mm and 

1-2° for biomechanics studies is explored. 

 

6.2.1 Experimental Design and Setup  

To validate the registration accuracy, results should be validated against a gold standard 

(i.e., known truth) or be compared to results that are obtained from a more accurate 

method.  Since a gold standard is typically unavailable or hard to establish with the 

registration of anatomical data, the results from the proposed surface matching algorithm 

for joint surfaces generated from MR images were compared with ones derived using 

fiducial markers through an absolute orientation procedure.  
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6.2.1.1 Absolute Orientation Procedure 

The absolute orientation is a common procedure used in the field of photogrammetry to 

relate the model space coordinate to the object space coordinate system with the use of 

control features such as points or lines.  The relationship is typically explained by the 3D 

similarity transformation with seven parameters (Equation 3-1).  These parameters are 

solved for using an adjustment process by minimizing the differences between the 

transformed and the conjugate features.  In general terms, absolute orientation is an 

adjustment procedure to determine the transformation parameters relating the coordinate 

systems associated with two datasets.  This procedure is adapted in this study to derive 

the transformation relating the surfaces using a set of fiducial markers so they can be 

compared to the ones derived from surface matching. 

 

6.2.1.2 Required Accuracy for Validation 

As a rule of thumb for accuracy validation, the accuracy achieved by the fiducial markers 

should be at least three times better (American Society of Photogrammetry and Remote 

Sensing, 2004) than the level the surface matching technique can achieve.  The RMS 

distances of the MR surface registrations (refer to section 5.5) were in the range of 0.2 

mm and could act as a rough estimate for the accuracy of the surface matching algorithm.  

Thus, the required accuracy derived from the fiducial markers should reach a level of 

approximately 0.06 mm or 60 µm (three times better than 0.2 mm).  Measurement errors 
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of the markers measured from the MR images should not exceed this required accuracy 

level.   

 

6.2.1.3  Joint Specimen 

Direct comparisons of the registration between the surface matching technique and 

absolute orientation, required that the fiducial markers be fixed in position relative to the 

knee joint during the scanning session.  Skin-attached markers on a human subject were 

not feasible for this purpose, as minimal movements of the skin markers could lead to 

errors in excess of the millimeter level (Rheinschmidt et al., 1997).  Other options 

considered were in-vivo bone-implanted markers that would be highly rigid in position. 

However, the invasive manner of this procedure made it ethically un-feasible for this 

study.  Therefore, a cadaver joint specimen was employed as it could avoid any possible 

movements during the scanning session.  Porcine specimens have been previously used 

for studies with MRI (Moss, 2001) and were adapted also for this validation study.   

 

The porcine stifle joint is similar in size and shape to the human knee joint, and is 

relatively inexpensive and can be easily obtained.  A fresh porcine knee specimen (less 

than 9 months of age) was obtained from a local abattoir (Red Deer Lake Meats Ltd., 

Calgary, AB).  The joint capsule was maintained intact.  The femoral head and 

trochanters (the proximal end) and the fibula were removed to allow fixation of the bone 

sections to a frame that was placed inside the MR gantry.  Due to the delay between 
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specimen supply and scanning, the specimen was frozen after preparation but was 

completely thawed out before scanning.  Freezing has been reported to alter tissue 

contrast levels in MR imaging (Ronsky et al., 2000), thus thawing the tissue should 

minimize any artifacts.  Additionally, as the bone surfaces are used for the registration in 

this study, minimal effects should be incurred on the results by the freezing and thawing 

procedures.   

 

6.2.1.4 Fiducial Markers 

The type, size, shape, and geometry of the markers were very important for this 

validation study.  The main criteria defined for the markers were:  

1) Non-ferromagnetic materials to enable imaging with MR,  

2) Strong homogenous MR signal with minimal MR artifacts,  

3) Able to be accurately digitized and modeled from the MR images,  

4) Able to be mathematically represented for the absolute orientation procedure, 

5) Position fixed with respect to the porcine specimen, and  

6) Encompassed inside the allowable MR FOV.   

 

Based on satisfying the above criteria, two types of markers were considered and 

evaluated for this study: spherical markers and linear features.   Spherical markers can be 

reliably captured by the MR image slices as circular cross-sections at any image 

orientation.  The circumference or the edge of each circular cross section can be digitized 
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from each image slice and a sphere fitting algorithm written in MATLAB (Least Squares 

Geometric Elements library, NPL Centre for Mathematics and Scientific Computing) can 

then be applied to the digitized points.  This algorithm uses a least squares approach to 

best-fit a sphere to the point cloud and calculates the 3D centroid of the sphere.  The 

RMS of the residuals between the digitized points and the best-fitted sphere are also 

calculated.  The markers’ centroids are used in a point-based absolute orientation 

procedure to derive the transformation parameters relating the two datasets.  One 

disadvantage of spherical markers is that a small shift in the image slice positions can 

lead to a small shift in the centroid location especially for small markers that are captured 

with only a few MR image slices.  Also, image slices that are further away from the 

centre of the sphere will have more diffused edges due to partial volume artifact, thus 

making it more difficult to digitize.  Therefore, generally speaking, the markers should 

appear on at least five or more image slices. 

 

Linear features have shown to be accurate for registration of 3D geographic data (Habib 

and Alruzouq, 2004) and are commonly used in neurosurgery for the establishment of a 

reference frame (e.g., the Olivier-Bertrand-Tipal frame, Tipal Instruments, Montreal, 

Quebec).  Linear markers, in the form of narrow cylinders, can also be reliably captured 

by MR slices as circular or elliptical shapes, depending on the orientation to the image 

plane.  The points on the edges of these elliptical shapes can then be digitized and ellipse 

fitting, written in MATLAB (Fitzgibbon et al., 1999), can be used to identify the centre 

of the cylinder at each cross-section.  Finally, 3D line fitting of these centre points with 
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MATLAB (Least Squares Geometric Elements library, NPL Centre for Mathematics and 

Scientific Computing) can produce a centerline to represent the marker.  For the line-

based absolute orientation procedure, the lines are represented by two points, with no 

requirements for using conjugate points to define conjugate lines (Habib and Morgan, 

2003b).  Thus, conjugate markers can be represented as lines with different lengths with 

this approach.  However, linear markers are less flexible as their orientations have to be 

relatively perpendicular to the image plane to avoid very elongated ellipses.  Additionally, 

the diameters of the cylinders must be sufficiently large (e.g, span across a minimum of 

five pixels) such that the edges are clearly defined and the centers can be accurately 

determined. 

 

The geometry of any fiducial marker is very important for any form of registration to 

allow accurate estimations for the transformation parameters.  For spherical markers, a 

minimum of three markers are needed to derive the seven parameters, with more markers 

increasing the redundancy and improving geometry.  The markers cannot be co-linear as 

this will result in an under-determined solution.  Similarly, for linear markers a minimum 

of three markers at varying orientations are required and the marker configuration must 

not be coplanar.  With limited imaging FOV, there is a substantial challenge in 

optimizing the position of the joint specimen apparatus together with the markers while 

considering the geometry of the setup.  
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A pilot study was performed to investigate the above issues and to quantify the accuracy 

of determining the centroids and centerlines of the spherical and linear markers 

respectively.  Both types of markers were measured with the FaroArm (FARO 

Technologies Inc., Lake Mary, FL) located in the Bioengineering Lab of CCIT (Schulich 

School of Engineering, Univeristy of Calgary, Calgary, AB).  The FaroArm is a precise 

measuring device with a reported accuracy of 0.025 mm.  The FaroArm measurements 

were used as an independent measurement to verify the accuracy of the MR 

measurements of the markers.   

 

To comply with the first design criteria, plastic ping-pong balls (STIGA, China) with 

diameters of approximately 39 mm were used as spherical markers (Figure 6-1).  For an 

MR image slice thickness of 3.0 mm, the balls would appear in approximately 18 slices.  

The balls were filled with canola oil (Safeway, Canada) as it can be easily obtained and 

has shown to produce strong and homogeneous MR signal (Moss, 2001).  Ping-pong 

balls were chosen as they are spherical, easy to find and inexpensive, and the thickness of 

the plastic is thin and evenly distributed over the inner and outer spherical surfaces.  As 

MR captured the signal of the oil contained inside the balls, it is thus more important for 

the ball to be spherical on the inside than the outside.  Approximately 30 well distributed 

points were measured on each ball surface with the FaroArm (Figure 6-1) and the CAM2 

Measure X software (FARO Technologies Inc., Lake Mary, FL) was used to 

automatically calculate the centroids and diameters of these balls.  
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Figure 6-1: Spherical markers (ping-pong balls) being measured with the FaroArm. 
 
 

For the linear markers, two sizes of circular tubes were used: three fiberglass tubes of 3 

mm diameter and three plastic tubes of 5 mm diameter.  Two different diameters were 

tested to analyze the effect the size had on the accuracy of the MR measurements.   The 

different materials of the tubes were not considered and evaluated in this study.  The 

tubes were mounted on a wooden frame with different orientations and positions (Figure 

6-2a).  One challenge of this set up was to ensure that the tubes were inserted linearly and 

rigidly into the wooden boards without any bending.  The two end points of each tube 

were measured with the FaroArm (Figure 6-2b) and were used to represent the tubes for 

subsequent calculations.  The tubes were then filled with a gadolinium solution 

(Magnevist, Berlex Canada), which is a contrast agent that is commonly used in MR 

imaging to enhance the signal.  Although canola oil could produce sufficient MR signal, 

the gadolinium solution was used here to ensure that strong signals could be captured for 

the small tubes.  
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        (a)                  (b) 

Figure 6-2: Six linear markers mounted on wooden frame (white: 5 mm diameter; black: 
3 mm diameter) (a) with end points measured by the FaroArm (b). 

 
 

For the MR image acquisition, the balanced SSFP sequence was used with the 3-telsa 

MR unit (sagittal, TR = 4.0 ms, TE = 1.0 ms, flip angle = 40°, FOV = 16 cm × 16 cm, 

256 × 256 matrix), resulting in a resolution of 0.625 mm × 0.625 mm × 3.000 mm 

(Figure 6-3).  Several scans were acquired at different frame positions and MR coordinate 

systems as described in Table 6-1 for each type of markers.  The MR coordinate system 

was defined by setting the origin around the centre of the markers’ locations to relate its 

position to the MR gantry.   
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                (a)                    (b) 
 

Figure 6-3: MR images of the spherical (a) and linear markers (b) for the pilot study. 
 

Table 6-1: The MR scans acquired for each type of fiducial markers for the pilot study. 
 

Marker Scan 
# Position Coord. 

System Descriptions 

1 1 1 Markers located at position 1 and the first MR 
coordinate system was defined 

2 2 1 
Markers moved to a different position (position 
2) but with the same MR coordinate system 
(coordinate system 1) 

Spheres 

3 2 2 Markers remained at position 2 but a different 
coordinate system was set (coordinate system 2) 

4 3 3 Markers located at a new position and with a new 
coordinate system defined  Lines 

5 4 4 Markers moved to a different position (position 
4) and a new coordinate system was set  

 
 

The images revealed that the fiberglass tubes (the smaller circles in Figure 6-3b) did not 

appear clearly, with one tube completely missing.  This finding was probably attributed 

to the material properties of the tubes and in-complete filling of the gadolinium solution.  

With high contrast between the markers and the background signal, a semi-automatic 

digitization algorithm, Non-Maxima Suppression (NMS), written in MATLAB (Moss, 
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2000), was used to digitize the edges for both types of markers for each of the scans 

(Figure 6-4).  This algorithm is based on two common principles for edge detection: 

suppression of local non-maxima magnitude of the gradient of the image intensity in the 

direction of this gradient, and edge detection using the zero-crossings of the Laplacian of 

the intensities.  The centroids and centerlines of the spherical and linear markers were 

determined using the best-fitting algorithms.   

      
 

   (a)          (b) 
 

Figure 6-4: Digitized edges (green points) of the spherical (a) and linear markers (b) with 
NMS (figures are not to scale). 
 
 

To validate the accuracy of the MR measurements of the markers’ centroids and 

centerlines, point-based and line-based absolute orientations between the FaroArm and 

MR centroid measurements were performed in MATLAB.  The root-mean-square errors 

(RMSE) were calculated for the X, Y, and Z directions.  The RMSE can be 

mathematically defined using the average and standard deviation (SD) of the errors (i.e., 

differences between the MR and FaroArm measurements of the markers after absolute 

orientation): 
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22 )()( SDaverageRMSE +=           (6-1) 

 

Tables 6-2 and 6-3 present the RMSE results for the spherical and linear markers for each 

scan, respectively.  The average RMSEs were significantly smaller for the spheres than 

the linear markers by an order of magnitude.  The combined average of the RMSEs also 

indicated that the accuracy for identifying the spherical centroid from MRI would be in 

the range of 50 µm when considering also the accuracy of the FaroArm measurements.  

The linear markers showed largest errors in the Y and Z directions (the directions of the 

image plane) which were most likely attributable to digitization and ellipse fitting errors.  

Based on these results, the spherical markers were chosen for the validation study, as they 

were also easier to setup and attach to the joint specimen.   

Table 6-2: RMSE of the coordinate differences between FaroArm and MR 
measurements for the three spherical markers after point-based absolute orientation. 

 
RMSE of the Coordinate differences (mm) Scan # X Y Z 

1 0.052 0.057 0.049 
2 0.019 0.020 0.018 
3 0.009 0.007 0.014 

Average 0.027 0.028 0.027 
 
 
Table 6-3: RMSE of the coordinate differences between FaroArm and MR 
measurements for five linear markers after line-based absolute orientation. 

 
RMSE of the Coordinate differences (mm) Scan # 

X Y Z 
4 0.176 0.479 0.587 
5 0.062 0.263 0.560 

Average 0.119 0.371 0.573 
 



125 
 

 

6.2.1.5 Materials for Markers 

A second pilot study was completed to investigate possible filler materials for the hollow 

markers, in addition to oil and gadolinium solution.  The materials should produce strong 

and homogenous MR signal, while considering that the signal might be altered when the 

markers were imaged together with the joint specimen for the validation study.  Visual 

evaluations of the MR signal quality of each material were done to identify the best 

material.  Nine ping-pong balls were filled with seven materials including Listerine, 

water, gelatin, syrup, skin lotion, canola oil, and gadolinium solution.  These balls were 

imaged together with the balanced SSFP sequence in the coronal view (Figure 6-5).   

 

Figure 6-5: MR image of spherical markers filled with different materials. 
 
 

Susceptibility artifacts (banding) were visible in the images, which were caused by the 

differences of magnetic susceptibility between the interface of air and filling materials.  

Visual inspection of the images indicated that both the water and gadolinium solution 



126 
 

 

produced strong MR signal.  However, alterations in signal may arise when imaged 

together with the porcine specimen.  Therefore, although the water appeared bright for 

this test, it might not be ideal when imaged with the joint tissues that are composed of a 

high percentage of water.  Gadolinium solution thus was chosen as the filler material for 

the fiducial markers for the validation study. 

 

6.2.1.6 Validation Frame Design and Setup 

The validation procedure required a positioning frame to be fabricated to allow fixation 

of the joint specimen and the markers in rigid positions.  Several criteria were defined for 

this validation frame: 

1) Non-ferromagnetic materials,  

2) Adjustable but rigid positioning device to enable different specimen sizes, 

3) Rigid support provided for the markers and porcine knee specimen, and 

4) Overall dimensions of device with markers and joint within the allowable MR FOV. 

 

Several designs were proposed for the frame with the final design adapted from one 

proposed for a parallel study that also uses porcine knee specimen and MRI (Figure 6-6a).  

The frame dimensions were designed to accommodate an average porcine joint size fit 

into the MR gantry (dimensions: 72 cm × 22 cm × 32 cm).  The frame was constructed 

entirely with wood, plastic, and nylon.  The porcine knee joint was fixed to the bone 

positioning containers using a construction cement (Quick Plug Hydraulic Cement, DAP, 



127 
 

 

USA).  The specimen was carefully wrapped with plastic wrap (Figure 6-6b) to contain 

any fluids and to minimize tissue dehydration.  Six spherical markers filled with 

gadolinium solution (Magnevist, Berlex Canada) were rigidly attached to the frame and 

positioned around the joint (Figure 6-7).  

 

(a)      (b) 

Figure 6-6: Validation frame (a) constructed with wood and plastic (Robu, 2006), and 
the porcine knee specimen was fixed using construction cement (b). 

 

 

(a)      (b) 

Figure 6-7: Six spherical markers were rigidly attached to the frame with three markers 
on each side of the joint (a, b). 
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6.2.2 MR Scanning 

Scanning was performed using the 3-telsa MR unit with the general purpose flex coil.  

Similar to the experiments with MR data of human knee joints (Chapter Five) and the 

marker pilot studies, the balanced SSFP sequence was also used (sagittal, TR = 5.1 ms, 

TE = 1.6 ms, flip angle = 40°, resolution = 0.625 mm × 0.625 mm × 3.000 mm).  A larger 

FOV (32 cm × 32 cm, 512 × 512 matrix) was required to encompass the six markers and 

the knee joint.  Consequently, 120 sagittal image slices were acquired.  Four scans were 

taken with this image sequence.  The frame was re-positioned between some of the scans 

and a new coordinate system was also defined for the scans.  More descriptions are 

provided in Table 6-4 for these scans.  Figure 6-8 shows an example of the MR images of 

the porcine joint and spherical markers. 

Table 6-4: MR scans acquired for the validation frame with the porcine joint and markers. 
 

Scan # Position Coord. Sys. Descriptions 

1 1 1 Frame located at the first position and the first MR 
coordinate system was defined. 

2 2 1 Frame moved to a second position but the same 
coordinate system was used (coordinate system 1) 

3 2 2 Frame remained in position 2, but a new MR 
coordinate system was set (coordinate system 2) 

4 3 3 Frame moved to another position and a new 
coordinate system was also defined. 
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                                                  (a)                      (b) 

Figure 6-8: MR image of the porcine knee specimen (a) and the spherical markers (b) 
(figures are not to scale). 
 

6.2.3 Surface Matching and Absolute Orientation Results 

Surface registrations with the proposed surface matching algorithm were performed using 

the porcine femoral surfaces from the different scans as listed in Table 6-5 (refer to Table 

6-4 for scan numbers).  Digitization and surface modeling were done using the techniques 

and algorithms as described in sections 5.3 and 5.4.  The results indicated well-fitted 

surfaces with average RMS distances of 0.186 ± 0.011 mm for all the tests.  

Transformation parameters were estimated for each registration and found small 

translations and rotations (maximum translation was 4.9 mm and maximum rotation was 

1.4°) between different frame positions.  The scale factor was fixed as one for the 

registrations with the assumption that the femoral bone surfaces remained rigid.  

Qualitative analysis of the matching results confirmed that the registrations were 

successful, with the non-matches located randomly over the surfaces and around the 

edges (Figure 6-9).  These were speculated to be digitization errors.  This is expected as 
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the cartilage of the young porcine specimen was thin (e.g., femoral cartilage was less than 

2 mm) resulting in greater difficulties for identifying the femoral bone-cartilage interface.   

Table 6-5: The MR scans (refer to Table 6-4) used for the registrations in the validation 
study. 
 

Test Reference Scan # Transformed Scan # 
1 1 2 
2 2 3 
3 2 4 
4 3 4 
5 1 3 
6 1 4 

 

 

Figure 6-9: Registered femoral surfaces of the porcine specimen with the green mesh 
representing the reference surface, blue points representing the matches, and red points 
representing the non-matches. 
 
 

As anticipated, the spherical marker signals were weaker compared to the ones acquired 

for the pilot study, when these markers were acquired together with the porcine joint.  

Also, since the markers were located at the edge of the imaging FOV and positioned in 

close proximity with each other and the specimen tissue, banding artifacts and distortions 
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(i.e., markers were less spherical) were present (Figure 6-8b).  Therefore, the digitization 

was manually performed with SliceOmatic, instead of employing the semi-automatic 

NMS edge detection algorithm that was used for the pilot studies.  In addition, only a 

minimal number of points could be digitized at the edges of each marker (i.e., image 

slices furthest away from the centroid) due to partial volume effects.  Inclusion of these 

artifacts would lead to errors in the marker measurement thus could directly affect the 

accuracies of centroid determination.  The effects of these artifacts were not investigated 

as it was beyond the scope of this study.   

 

On average, approximately 300 to 400 points were digitized for each marker.  The 

centroids were determined by applying sphere-fitting to the digitized points.  The point-

based absolute orientation procedures were performed with the centroids between the 

same scans as listed in Table 6-5.  Transformation parameters and errors/differences of 

the marker coordinates were derived for each test.  The mean errors in the X, Y, and Z 

directions were found to be zeros for all the tests, thus indicating that there were no 

biases in the marker measurements.  The RMSEs of the errors for the tests (Table 6-6) 

indicate that the largest errors occurred in the Y direction, presumably as it was along the 

image slice direction where the largest errors would be expected for centroid 

determination (refer to Figure 5-7 for the descriptions of the coordinate axes).  However, 

these errors were still within the size of an image pixel (0.625 mm).  The combined 

average RMSE for the coordinates was 0.539 mm.  Therefore, it can be concluded that 
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for these MR scans, the accuracy for the marker digitization and centroid determination 

was approximately the size of an image pixel.   

Table 6-6: The RMSEs of the coordinate differences between the markers after the 
absolute orientation procedures. 

 
RMSE of Coordinate Differences (mm) Test X Y Z 

1 0.077 0.614 0.101 
2 0.107 0.561 0.163 
3 0.081 0.691 0.178 
4 0.101 0.457 0.159 
5 0.079 0.231 0.153 
6 0.108 0.488 0.202 

Average 0.092 0.507 0.159 
 
 

Unfortunately the accuracy of the marker measurement was insufficient to provide a gold 

standard for validation (i.e., required accuracy was 60 µm, refer to section 6.2.1.2).  

Nonetheless, this was the best accuracy that could be achieved using point-based fiducial 

markers when considering all the error sources with MRI. 

 

6.2.4 Accuracy Analysis and Discussions 

The fiducial markers were examined for use as the gold standard and found to provide 

insufficient accuracy for this purpose. However, the accuracy of the surface matching 

algorithm could still be evaluated by comparing the surface matching results with the 

ones obtained from the absolute orientation procedures.  One approach for this was to 

statistically compare the values of the transformation parameters derived from both 

techniques.  Table 6-7 shows the transformation parameters as an example that were 
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derived from the surface matching algorithm and absolute orientation procedure between 

two datasets (Test 5 from Table 6-5).  However, because there could be correlations 

between the parameters, statistical analysis between individual parameter values might 

show significant differences, even though the entire set of parameters could still lead to 

statistically equal transformation.  Therefore, the most appropriate approach to evaluate 

the registration accuracy was to compare the actual transformations resulting from 

surface matching and from absolute orientation techniques.   

Table 6-7: The transformation parameters derived from surface matching and point-
based absolution orientation procedure between two datasets. 

 
Technique XT (mm) YT (mm) ZT (mm) ω (°) φ (°) κ (°) 

Surface Matching -0.857 -0.056 -0.130 -0.523 1.007 -0.154 
Absolute Orientation -0.500 -0.175 -0.410 -0.380 -0.084 -0.058 
 
 

This comparison was performed by transforming an object with each set of the 

parameters and evaluating differences in the resulting physical location (i.e., X, Y, and Z 

coordinates) of that object.  A box with dimensions of 100 mm × 160 mm ×  100 mm and 

modeled by 2057 3D points was used.  This box covered a similar volume of the 

combined porcine knee specimen and spherical markers.  The points were evenly 

distributed with the origin of the coordinate system located at the centre of the box 

(Figure 6-10).  The points within box were transformed with each set of transformation 

parameters derived from surface matching (TSM) and absolute orientation (TAO).  

Comparisons were made by statistically evaluating how similar the transformed boxes 

were in their locations (Figure 6-10).   
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Figure 6-10: 3D coordinates of a box were transformed using parameters from surface 
matching (SM) and absolute orientation (AO), and the resulting locations were compared. 
 
 

The differences in the X, Y, and Z coordinates of the box between the two techniques 

were computed for each test (refer to Table 6-5 for the list of tests), and the RMSE of 

these differences were computed (Table 6-8).  Larger errors (in the range of 0.6 mm) 

were found in the X and Z directions (the image plane direction, refer to Figure 5-7) with 

the last test showing the worst results.  Investigations were done to attempt to identify the 

sources of errors for the last test but no apparent reasons were found.  The averages of the 

RMSE were on the order of a pixel size (particularly in the image plane direction), thus 

were comparable to the accuracy of the marker measurement and centroid determination 

procedures.    

 

 

 

 

TAO

TSM
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Table 6-8: The RMSEs of the coordinate differences of the box between surface 
matching and absolute orientation procedure with markers. 

 
RMSE of Coordinate Differences (mm) Test X Y Z 

1 0.532 0.255 0.344 
2 0.558 0.316 0.389 
3 0.709 0.126 0.756 
4 0.423 0.191 0.389 
5 0.705 0.154 0.676 
6 0.954 0.169 0.897 

Average 0.647 0.202 0.575 
 
 

Based on the results and observations from this validation study, it can be inferred that 

the point-based absolute orientation procedure with spherical markers measured from 

MRI would not outperform the proposed surface matching technique.  Nevertheless, the 

two techniques were compared and results showed that the proposed surface matching 

algorithm could match knee joint surfaces generated from MRI with a fit of 

approximately 1/3 of a pixel size and had an absolute registration accuracy in the range of 

the size of one pixel.    

 

6.3 Repeatability Studies 

Repeatability is the ability of a system or a technique to provide consistent outcomes 

when used by a single operator.  For this research, repeatability studies were needed to 

understand how consistent the manual digitization and the registration are with the 
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proposed surface matching algorithm for the same datasets.  This section describes the 

procedures and results for these studies.    

 

6.3.1 Digitization and Registration 

The MR scans at 0° and 30° of one subject described in section 5.2 were adapted for this 

study as they represented different positions and conditions (relaxed versus loaded).  The 

femoral surfaces were manually digitized for each set of scans five times with 

SliceOmatic on separate days by one operator.  These surfaces were then modeled with 

TPS, using the same surface re-sampling intervals (1.0 mm) and smoothing parameter (λ 

= 0.6), which provided ten different surfaces (Figure 6-11).  Registrations were then 

performed with the proposed algorithm between each pair of surfaces in three separate 

categories: 0° with 0°, 30° with 30°, and 0° with 30°.  For the 0° with 0° and 30° with 30° 

categories, the first digitization was used as the reference surfaces for the registrations.  

For the 0° and 30° registrations, the 0° surfaces were used as the reference.  The 

registrations yielded four sets of transformation parameters (T in Figure 6-11) for the 0° 

with 0° and 30° with 30° categories, and five sets of parameters for the 0° with 30° 

registration. 
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Figure 6-11:  Ten surfaces generated from different digitization with arrows indicating 
each set of registration (red: category 1: 0° with 0°, green: category 2: 30° with 30°; blue: 
category 3: 30° with 0°). 
 

6.3.2 Repeatability Analysis and Discussion 

As potential correlations between the transformation parameters could exist, similar to 

the validation study, comparisons between individual values might not be suitable for 

analyzing the repeatability.  Therefore, the method used to statistically evaluate the 

validation study was adapted here, where a box was transformed by multiple sets of 

parameters and the resulting coordinates of the box were compared.  If the digitization 

and registration were repeatable, these transformed coordinates of the box should be 

similar.  For this study,  a box with dimensions of 120 mm × 120 mm ×  80 mm and 

modeled by 1521 3D points was used, which was similar in size to the human 

patellofemoral joint.  The points were transformed with each set of transformation 

parameters (T) from each category.  Comparisons were made by statistically evaluating 

how similar the transformed boxes were in their locations (Figure 6-12).   
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Figure 6-12: The 3D coordinates of a box were transformed with each set of 
transformation parameters and the resulting locations were compared. 
 
 

Fore the comparisons, the differences in the X, Y, and Z coordinates of the transformed 

points were computed, using the first transformation as a reference.  This resulted in three 

sets of coordinate differences for the first and second categories, and four sets of 

differences for the 0° and 30° registrations.  The RMSEs of all the coordinate differences 

were calculated for each category and are displayed in Table 6-9.  The errors for the Y 

coordinate were clearly smallest in comparison with X and Z.  This was likely because 

the Y axis lied along the MR image slice direction (refer to Figure 5-7), so the points 

digitized from an image slice would have a fixed Y coordinate for that image, thus 

resulting in highly repeatable Y coordinates for the digitization.  Also, the RMSEs were 

smaller for 30° with 30° than the 0° with 0° registrations, likely because the MR images 

of the 30° flexion were clearer for this particular dataset, and thus were easier to digitize 

repeatably.  As expected, the errors for the 0° with 30° registrations appeared to be higher 

as they were caused by combined digitization errors from both 0° and 30° MR scans.   

T4 

T3 
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Table 6-9: RMSEs of XYZ coordinate differences of the box between the 
transformations for the repeatability study. 

 
RMSE of Coordinate Differences (mm) Categories X Y Z 

1 0° with 0° 0.230 0.118 0.253 
2 30° with 30° 0.130 0.059 0.171 
3 0° with 30° 0.250 0.134 0.286 

 
 

Overall, the RMSEs, in the range of 0.2 mm, showed that the manual surface digitization 

and registration for MR knee joint surfaces with the proposed surface matching algorithm 

were highly repeatable, considering the MR image resolution (0.625 mm × 0.625 mm × 

3.000 mm) of the involved datasets.  

 

To confirm the results and conclusions obtained from the methodology of comparing 

coordinate differences of a box after transformation, the Analysis of Variance (ANOVA) 

was also performed for the transformed X, Y, and Z coordinates of the box for each 

registration category using the statistical program R (The R Foundation for Statistical 

Computing, version 1.8.1).  These statistical tests could determine whether there were 

any differences between the means of these coordinates within a category.  The results 

could provide evidence about the repeatability of the digitization and registration 

procedures.  The null hypothesis was defined as follows for each category: 

• Ho: Equal means for the coordinates of the transformed cube  

A small p-value (e.g., < 0.05) from the ANOVA test would provide convincing evidence 

that at least one of the coordinate mean was different than the others.  Table 6-10 
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summarizes the ANOVA test results for the X, Y, and Z coordinates at each category.  

The large p-values ranging from 0.872 to 0.985 indicate that the means of the coordinates 

were statistically equal for the registrations of each categories, thus confirm that the 

registration was repeatable based on different surface digitization. 

Table 6-10: ANOVA results for the XYZ coordinates of the box for the three registration 
categories. 

 
p-values Categories X Y Z 

1 0° with 0° 0.872 0.985 0.961 
2 30° with 30° 0.981 0.952 0.961 
3 0° with 30° 0.898 0.969 0.969 

 
 

The results from the statistical analysis indicated that the digitization and registration 

procedures were highly repeatable for the femoral surfaces from MR images.  This means 

that the digitization and registration results did not depend on the time the data was 

processed by a single operator.  Repeatability is an indication of reliability, thus the 

results further confirms the efficacy of the surface matching algorithm for biomechanics 

and OA studies with MRI.  The findings from the study also implies that the digitization 

and registration procedures will also be highly repeatable for patellar surfaces, as the 

patella was shown to produce better quality of fit than the femoral surface for registration 

(refer to section 5.6).  For other joint tissues, such as the cartilage surfaces, more studies 

will be needed to investigate the repeatability, as the signal contrast for identifying these 

surfaces may be different than the bone surfaces.  Importantly, the image quality and 

signal contrast can directly affect the repeatability of the registration as was found in this 
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study.  In this study, the digitization was performed by a single operator with experience 

in manual digitization of joint surfaces using SliceOmatic.  Inter-observer reliability 

needs to be investigated in the future with novice operators and minimal training.  

   

6.4 Summary 

A validation study was presented in this chapter to quantify the absolute accuracy of the 

surface matching algorithm for registering actual clinical MRI data of joint surfaces, 

while taking into account the imaging environment and numerous error sources (e.g., 

digitization and surface modeling).  The proposed approach was to validate surface 

matching results of a porcine knee specimen with ones derived using spherical markers 

based on a point-based absolute orientation procedure.  However, results indicated that 

the accuracy of the marker measurements and representation from MRI was not sufficient 

to act as a known truth for the validation.  Nevertheless, comparisons were made between 

the two techniques and revealed that the surface matching algorithm could achieve an 

absolute accuracy of approximately the size of an image pixel for the registration of joint 

surfaces generated from MRI.   

 

Repeatability studies were also presented to evaluate the repeatability of the manual 

digitization procedure and registration algorithm for MRI.  Femoral surfaces of a human 

subject were used for this study and results showed that the digitization and registration 

were highly repeatable, with errors in the range of approximately 1/3 of a pixel size.  The 
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signal contrast for other joint tissues such as cartilage is different than bone surfaces, thus 

the results found for bone surfaces can not be directly implied for other tissue types.   

Future studies should be conducted for other joint structures. 

 

The results from the validation and repeatability studies presented in this chapter 

confirmed that the proposed surface matching algorithm is able to align surfaces with 

sufficient accuracy (i.e., an image pixel size, which is typically in the sub-millimeter 

level) to enable detection of cartilage changes on the order of 1-2 mm associated with 

degenerative joint diseases, and movements of joint surfaces on the order of 1-2 mm and 

1-2° for biomechanics studies.  The validation study provides a quantitative measure to 

describe the absolute registration accuracy of the proposed algorithm for 3D MR data, 

which can be used to quantify the effect of the registration on results for MR applications 

(i.e., errors introduced by registration).  This advances over other technique such as the 

elastic registration developed by Stammberger et al. (1999) (refer to section 2.5.1.3) as no 

measures were reported in their study to directly quantify the registration accuracy and 

how the technique affected their results.   
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Chapter Seven: Applications of In-Vivo Studies of 

Degenerative Joint Conditions 

 

7.1 Introduction 

The capability of the proposed algorithm of producing a registration accuracy of 

approximately the size of one image pixel for joint surfaces generated from MRI has been 

demonstrated.  Additionally, the manual digitization and the surface matching procedures 

were highly repeatable.  These results thus suggest that the algorithm is feasible for 

accurate in-vivo studies of joint biomechanics and joint health statues.  Three 

applications with the proposed algorithm are presented in this chapter: 1) register 

temporal MR data to verify the feasibility of the algorithm to detect changes in cartilage 

volume associated with OA, 2) quantify patellar movement with respect to the femur 

based on the transformation parameters, and 3) quantify changes in contact area locations 

between the patellar and femoral cartilage at different knee flexion angles.   The first 

application is useful in assisting with non-invasive longitudinal monitoring of OA.  The 

two remaining applications assist in understanding the role that joint position and contact 

may play in conditions such as patellofemoral pain, patellar dislocation and 

chondromalacia.  Combined, these applications will provide evidence in support of the 

importance of registration for in-vivo assessments of joint conditions.   
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7.2 Registration for Disease Monitoring 

The first application employed the proposed algorithm to register temporal datasets to 

help in the detection of longitudinal changes in cartilage volume for monitoring OA 

progression.  This was a collaborative study with Drs. J. Jaremko and R. Lambert 

(University of Alberta, Edmonton, AB, Canada) and the work has been accepted for 

publication (Jaremko et al., 2006).  With successful registration, cartilage volume can be 

automatically calculated for the subsequent scans within the same regions of the interest 

defined for the baseline/first scans.  Successful application of this technique avoids the 

need for the tedious and time-consuming process to manually re-measure cartilage 

volume for each set of scans.  Thus, with the help of the proposed surface matching 

algorithm, this application presents a rapid approach for monitoring temporal cartilage 

volume changes.  Studies were done on temporal data of both healthy knees and knees 

with established OA to verify the feasibility and reliability of the proposed methods for 

registering temporal datasets and conducting cartilage volume measurements.   

 

7.2.1 Data 

The dataset for this study was supplied by Dr. R. Lambert and Dr. J Jaremko, University 

of Alberta.  The data was acquired with a 1.5-telsa MR unit (Symphony, Siemens AG, 

Munich) located in Edmonton, Canada.  A T1-weighted 3D spoiled gradient-echo fat-

saturated sequence was employed for this dataset (sagittal, TR = 42 ms, TE = 10 ms, flip 

angle = 20°, FOV = 16 cm × 16 cm, 512 × 512 matrix) with a resolution of 0.3125 mm × 
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0.3125 mm × 1.0 mm and a scan time of approximately 32 minutes.  This sequence 

showed cartilage as a bright structure with diminished signal for surrounding tissues 

(Figure 7-1).   Two groups of subjects participated in this study.  Institutional ethics were 

approved and written informed consents were obtained from each subject prior to 

imaging.  Knees of nine healthy subjects, with no signs of symptoms of OA, were imaged 

at full extension at two time points within an interval of two weeks.  The second group 

included three patients with knee OA, who were undergoing a clinical trial for 

experimental OA therapy (patients were participants in either treatment or control group).  

The investigators were blinded as to whether the individual OA subject was under 

treatment or whether he/she was part of the control group.  Subjects in the OA group also 

had images of their knees imaged at full extension, with four scans at six-month intervals 

up to two years.  Table 7-1 summarizes the subject information.   

 

Figure 7-1: Image of a healthy knee at full extension acquired by a 1.5T MRI unit with a 
T1-weighted 3D spoiled gradient-echo fat-saturated sequence. 
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Table 7-1: Information of the subjects with normal knees and knees with OA. 

Normal Sex Age Knee 
N1 M 48 L 
N2 F 42 R 
N3 M 41 L 
N4 M 41 R 
N5 M 39 R 
N6 M 34 R 
N7 F 33 R 
N8 F 28 R 
N9 F 23 L 

Mean ± SD 36.6 ± 7.8  
OA Sex Age Knee Comments 
OA1 Unknown 59 L Moderate OA 
OA2 Unknown 65 R Severe OA 
OA3 Unknown 71 L Severe OA 

 

7.2.2 Methods 

The tibial intercondylar eminence (located between the two tibial plateaus) was digitized 

and used for the surface registration.  Only the intercondylar eminence was used due to 

its unique shape of providing sufficient geometry for registration.  Additionally, this 

structure is unlikely to change in shape between the temporal scans.  The small size of the 

surface resulted in a much faster digitization process.  To evaluate the feasibility and 

reliability of the registration and cartilage measurement techniques,  four hypotheses 

were defined for this study: (1) accuracy of surface registration would not be impaired in 

patients with advanced OA despite local changes between scans (e.g., osteophyte 

growth), (2) surface registration using the intercondylar eminence would be faster than 

and equivalent in accuracy to digitization of the entire tibial plateau, (3) semi-automatic 

digitization would lead to comparable registration accuracy and cartilage volume 
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measurement as manual digitization, and (4) speed and inter-scan reliability of cartilage 

volume measurement using surface registration would be at least comparable to results 

reported by others in normal subjects. 

 

For the nine normal subjects, digitization of the intercondylar eminence was done 

manually using SliceOmatic (Figure 7-2a).  To test the second hypothesis, the entire tibial 

plateaus were digitized for two normal subjects (N2 and N5) and one OA patient (OA2).  

Due to the high contrast between the tibial bone surface and surrounding tissues (Figure 

7-1), scans of two normal subjects (N2 and N5) were also digitized with a custom-written 

semi-automatic digitization program based on Canny edge detection in MATLAB (The 

Mathworks, Inc., Natick, MA, version 6.5) (Figure 7-2b).  For the three OA patients, the 

tibial surfaces were digitized with the semi-automatic Canny edge detection.  For subject 

OA2, tibial surface was also manually digitized using SliceOmatic.  To test the third 

hypothesis, surface matching results and cartilage volume measurements obtained from 

the manual and semi-automatic digitization were compared for subjects N2, N5, and OA2. 

         

(a)     (b) 

Figure 7-2: Digitized tibial intercondylar eminence (green line) manually by SliceOmatic 
(a) and with semi-automatic digitization using Canny edge detection (b). 
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The MR resolution of the scans was adequate (0.3125 mm × 0.3125 mm × 1.0 mm), thus 

no surface re-sampling was required.  The baseline scans (i.e., first time point) were used 

as the reference surface for the registration.  The intercondylar eminence surfaces from 

the subsequent scans (or the tibial plateau surfaces when testing the second hypothesis) 

were registered to the baselines using the surface matching algorithm, with the distance 

threshold set at 0.25 mm for the matching process.  The resulting transformation 

parameters were then used to align the subsequent scans into the same reference frames 

as the baseline scans.  The RMS of the normal distances was evaluated to quantify the 

quality of the registration.  A RMS distance around the image noise level (i.e., image 

pixel size: 0.3125 mm) would indicate satisfying registration results.  Changes in the 

RMS distances were used to compare the registration between the two subject groups 

(first hypothesis), and to evaluate the effects of different surface types and digitization 

techniques (second and third hypotheses). 

 

To select and calculate the cartilage volume, a custom supervised algorithm written in 

MATLAB (The Mathworks, Inc., Natick, MA, version 6) was used.  With this algorithm, 

a roughly defined region of interest (ROI) was drawn to enclose the medial tibial 

cartilage for each sagittal image slice of the baseline scan (Figure 7-3a), with extra care 

paid to select the junction between the tibial and femoral cartilage.  The cartilage 

selection process took approximately eight minutes for a trained user.  Since the 

subsequent scans were aligned to the baseline scans after registration, the same ROIs 

selected based on the baseline scans could then be automatically transferred to the 
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subsequent scans without any re-measuring.  Smoothing and intensity enhancement were 

then applied to the images to improve the contrast between the cartilage and surrounding 

tissues (Figure 7-3b).  Based on Otsu’s method (1979), an automatically calculated 

optimal threshold was applied to select the cartilage voxels within the ROIs (Figure 7-

3c), and the volume of the cartilage was calculated by summing all the voxels.  The 

cartilage volumes obtained for each patient were compared by computing the mean and 

standard deviations (SD) of the difference in volume between scans. The coefficient of 

variation (CoV) was also computed to evaluate the inter-scan reliability (fourth 

hypothesis).  The CoV is defined as the ratio of the standard deviation to the mean value.  

The differences in the cartilage volume changes caused by the use of different 

digitization techniques were evaluated for the third hypothesis. 

(a)   (b)  

(c)  

Figure 7-3: ROI selected to enclose tibial cartilage (a); image enhancement applied to 
increase cartilage contrast (b); automatic thresholding selected cartilage voxels within the 
ROI (c). 
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7.2.3 Results and Discussion 

The registration of the tibial surfaces of both healthy subjects and OA patients were 

successful, and the results with cartilage volume changes are summarized in Table 7-2 

and Table 7-3.  The average RMS distance for the nine normal subjects was 0.121 ± 

0.003 mm (mean ± SD), with a coefficient of variation (CoV) of 2.6%.  For the OA 

patients, even in the presence of osteophytes, the registration produced highly fitted tibial 

surfaces (0.122 ± 0.004 mm, CoV = 3.2%).  These results indicate that the surface 

matching algorithm can allow good registrations (RMS distance ≈ 1/3 of a pixel size) for 

both healthy knees and knees with OA using the intercondylar eminence surfaces, thus 

confirmed the first hypothesis.  Changes such as the growth of osteophyte that are 

important for clinical diagnostic purposes were reliably detected.  These were 

subsequently excluded by the algorithm, thus allowing accurate registration of OA knee 

surfaces.   

Table 7-2: Tibial surface registration results and medial tibial cartilage volume changes 
for the nine healthy subjects. 

 
Volumes (mm3) Subject RMS Distance 

(mm) Time 1 Time 2 Mean 
Volume 

Difference* 
N1 0.120 3297 3479 3388 5.4% 
N2 0.120 1920 1967 1943 2.4% 
N3 0.125 2187 2117 2152 -3.3% 
N4 0.122 2038 2062 2050 1.2% 
N5 0.125 2068 2085 2076 0.9% 
N6 0.120 2453 2393 2423 -2.5% 
N7 0.117 1736 1836 1786 5.6% 
N8 0.124 1124 1166 1145 3.7% 
N9 0.117 1896 1881 1889 -0.8% 

Mean: 0.121   Mean: 1.4% 
CoV: 2.6%   CoV: 3.2% 

* Volume difference as a percentage of the mean volume 
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Table 7-3: Tibial surface registration results and medial tibial cartilage volume changes 
for the OA patients. 

 

Subject 
Scans 

(with scan 1 as 
a reference) 

RMS Distance 
(mm) 

Volume 
Difference* 

2 0.127 -1.9% 
3 0.117 4.9% OA1 
4 0.125 -4.8% 
2 0.125 -22.2% 
3 0.125 -9.6% OA2 
4 0.117 -21.0% 
2 0.121 20.6% 
3 0.119 10.3% OA3 
4 0.119 16.6% 

 Mean: 0.122  
 CoV: 3.2%  

* Volume difference as a percentage of the mean volume with 
the first scan as the reference scan. 

 
 

The entire tibial surfaces for subjects N2, N5, and OA2 were registered, to evaluate the 

potential difference when a larger surface was used for matching (second hypothesis).  

The results indicated that using the intercondylar eminence has minimal effect, increasing 

the average RMS distance from 0.122 mm to 0.127 mm (3.5%).  These results confirm 

that using only the uniquely shaped intercondylar eminence is sufficient for registration.  

This enables a substantial reduction in digitization time, thus enabling a more feasible 

technique for widespread clinical application. 

 

For the same three subjects, comparisons were made between manual digitization and the 

semi-automatic technique based on Canny edge detection (third hypothesis).  The semi-

automatic Canny technique reduced the digitization time from twenty minutes to seven 
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minutes.  The RMS distances also improved on average by 0.06 mm (Table 7-4).  

Therefore, semi-automatic Canny edge detection can efficiently digitize bone surfaces 

from MR images for and produce accurate registration.   

Table 7-4: The effects of digitization techniques on the registration and cartilage volume 
changes for normal and OA subjects. 

 
RMS Distance (mm) Cartilage Volume Changes 

Manual Canny Subject Scans Manual Canny mm3 % mm3 % 
N2 1 & 2 0.120 0.110 46.8 2.4 22.2 1.1 
N5 1 & 2 0.125 0.111 17.8 0.9 8.5 0.4 

OA2 2 & 4 0.129 0.125 -53.7 -4.1 14.3 1.2 
 
 

Cartilage volumes obtained for the temporal scans were compared by computing both in 

absolute terms and as a percentage relative to the mean volume for all the scans.  For the 

nine healthy subjects, the cartilage volume remained relatively unchanged over the two 

week interval (Table 7-2) with an inter-scan variation of 1.4 ± 3.2%, (i.e. inter-scan CoV 

of 3.2%). Small cartilage volume differences were expected for subjects with healthy 

knee over a two-week time interval.   These results were similar to other published 

studies (e.g., Raynauld et al., 2003, Cicuttini et al., 2004), thus the fourth hypothesis was 

confirmed.  For the OA patients, large variations were found in cartilage volume between 

the three subjects (Table 7-3).  These variations were speculated to be attributed to 

blinded therapeutic effects from the clinical trials and difficulties with selecting the thin 

tibial cartilage of OA knees.  The increase in the volume for OA3 was probably caused 

by inclusion of femoral cartilage in the selected regions of interest.   
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To determine the effect registration had on the volume calculations, cartilage volumes 

obtained based on the registration using manual digitization and Canny edge detection 

were compared to test the third hypothesis (Table 7-4).  This comparison revealed that a 

difference in 0.01 mm RMS distance from the registration resulted in less than 2% 

change in cartilage volume for healthy subjects.  However, for the OA patient, a small 

RMS distance difference of 0.004 mm led to a 5% change in the cartilage volume 

measurement.  This could be due to partial volume artifact where the largest effects could 

be found at edges of the cartilage.  For the thin cartilage of the OA patients, a large 

proportion of the cartilage voxels were located at the edges.  Further investigations are 

needed to truly understand the effects that digitization and registration have on the 

cartilage volume measurements with MRI for both healthy and OA patients.   

 

The proposed methods for cartilage volume measurement based on registration with tibial 

surfaces digitized using the semi-automatic technique required approximately 22 minutes 

of user supervision for a pair of temporal MR scans (seven minutes for surface 

digitization for each scan and eight minutes for ROI selection on baseline scan).  This is 

an improvement over other existing techniques that require over an hour in processing 

time (Eckstein et al., 2004, Glaser et al., 2003, Raynauld et al., 2003). 

  

To conclude, the results showed that the surface matching algorithm can successfully 

register temporal MR datasets of both healthy knees and knees with OA with using only a 

small portion of the tibial surface.  Differences in the surface digitization technique 
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resulted only in small differences in the registration and cartilage volume results for the 

normal subjects.  The proposed technique required a short processing time and the inter-

scan reliability of cartilage volume measurement was found to be comparable to other 

studies.  With successfully registered tibial surfaces, cartilage volumes were 

automatically measured on the temporal scans within the same regions selected on the 

baseline scans, resulting in an efficient approach.  With more testing of healthy and OA 

patients, and further refinements of the algorithms, the proposed methods can ultimately 

be adapted in a clinical setting to detect cartilage loss and to determine the disease stage 

and rate of progression, which can lead to more effective therapeutic interventions for 

treatment of OA.      

 

7.3 Patellar Tracking 

In order to understand the relationship of joint injuries and the development of OA, joint 

biomechanics have to be studied to understand the effects injuries have on the joints.  For 

the patellofemoral joint, the tracking of the patella during knee flexion and the contact 

mechanics between the patella and the femur should be studied to help understand the 

effects injuries and disorders such as patellofemoral pain syndrome have on the 

biomechanics of joint.   This application used the transformation parameters derived from 

the surface matching algorithm to directly and quantitatively track the relative 

movements of the patella with respect to the femur during knee flexion.  This approach 

enabled the patellar movements between flexion angles to be quantified in terms of three 
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rotations and three translations, relative to a reference position.  This quantification will 

enable comparison with in-vitro patellofemoral studies using similar measures to quantify 

patellar tracking throughout a range of knee flexion.   

 

7.3.1 Data 

The dataset of the four female subjects (Subject 2 to 5) acquired by the 3-telsa MR unit 

(refer to section 5.2) was also used for this application.  To summarize, the subjects had 

no known knee problems, and MR scans were acquired with the knees positioned at 

different flexion angles and under physiologic loading conditions.  For this application, 

the sagittal scans at 15°, 30°, and 45° flexion were used (balanced SSFP sequence, TR = 

17 ms, TE = 3 ms, and flip angle = 90°, 0.625 mm × 0.625 mm × 3.000 mm).  

 

7.3.2 Methods 

Anterior and distal portions of the femoral condyle and the patellar bone surfaces for each 

subject at each flexion angle were digitized using SliceOmatic, and resampled and 

modeled using the TPS algorithm (refer to sections 5.3 and 5.4 for details).  To quantify 

the patellar movements, the femur at 15° flexion was used as the reference position.  

Therefore, the surface matching algorithm was first applied to align the femoral surfaces 

at 30° and 45° to the reference frame of 15° flexion, which resulted in two sets of 

transformation parameters (TF in Figure 7-4a) relating the femurs for each subject.  

These two sets of parameters were then applied to transform the patellar surfaces at 30° 



156 
 

 

and 45° flexions to the reference frame of the femur at 15° (Figure 7-4a).  At this point, 

all the patellar surfaces were given with respect to the 15° femoral reference frame 

(Figure 7-4b, Figure 7-5).  To track the relative movements of the patella between flexion 

angles, the patellar surface at 15° was further registered to the transformed patellar 

surface at 30°, and the transformed 30° surface was registered to the one at 45° (Figure 7-

4b).  The two sets of transformation parameters (TPs in Figure 7-4b) were then used to 

directly quantify the relative changes in the 3D movements of the patella with respect to 

the femur during knee flexion.  The scale factor was fixed at one for all the registrations 

as MR captured the true scale of the object.   

    

(a)         (b) 

Figure 7-4: Patellar surfaces at 30° and 45° transformed to the reference frame of 15° 
femur, using transformation parameters (TF) derived from surface registration, which 
related the 45° and 30° femurs to the 15° femur (a).  The patellar surface at 15° was 
registered to the transformed patellar surface at 30°, and the one at 30° was registered to 
the one at 45° (b).  The resulting parameters (TP) were used to quantify the patellar 
movement with respect to the 15° femur (b). 
 

 

TP30-45 

TP15-30 

15° 
15° 30° 45°

TF30-15 

TF45-15

Femur
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(a)                                                                     (b) 

Figure 7-5: Patellar surfaces at different flexion angles with respect to the reference 
frame of the femoral surface at 15° flexion (3D view (a), 2D front view(b)) (units are in 
millimeters). 
 
 

Four of the transformation parameters (YT, ω, φ, and κ) were related to the patellar 

tracking system and terminologies established by van Kampen and Huiskes (1990) 

(Figure 7-6).  YT described the patellar shift, ω represented the tilt, φ represented the 

patellar flexion, and κ described the rotation.  The XT and ZT parameters provided 

information about the proximal-distal and posterior-anterior translations of the patella 

during flexion, which were not reported by van Kampen and Huiskes (1990).   

 

Figure 7-6: Patellar tracking system adapted from van Kampen and Huiskes (1990). 

 

Shift Flexion Tilt Rotation 
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7.3.3 Results and Discussion 

The registrations with the proposed algorithm for the femoral surfaces were successful, 

with an average RMS distance of the eight registrations (two registrations per each 

subject) of 0.191 ± 0.010 mm (approximately 1/3 of the pixel size).  Visual evaluation of 

a mosaic image formed after aligning two corresponding images from the 15° (reference) 

and 30° flexions also showed high quality of fit (Figure 7-7).  For the patella 

registrations, the average RMS distance was 0.207 ± 0.006 mm.  This slight increase in 

error may be attributed to the process of first transforming the patellae with parameters 

derived from the femoral registration, thus any error propagations would directly affect 

the patellar registration.  Based on the accuracy validation results from the previous 

chapter, translations with magnitudes above the size of an MR image pixel (0.625 mm) 

were considered detectable patellar movements during flexion.  For patellar tilt, flexion, 

and rotation, values with magnitudes above 1.4° were considered to be detectable.  This 

was determined from the extent of the patellar surface and image pixel size (Figure 7-8).   

 
 
Figure 7-7:  Mosaic shows a good match of the femur between the reference image 
(background, 15° flexion) and its corresponding image from the transformed dataset 
(foreground/small window, 30° flexion). 
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Figure 7-8: Detectable patellar translations and rotations based on the RMS distance 
from the registration. 
 

 

The patellar tracking results are reported in Table 7-5 (15° to 30° flexion) and Table 7-6 

(30° to 45° flexion).  While variations in the tracking patterns were found among the four 

subjects, some trends can also be observed during flexion.  First, the patella moved 

distally with respect to the femur for the four subjects as expected during knee flexion.  

Exceptions were found for subjects 4 and 5 where the patella moved proximally or 

remained in relatively the same location from 15° to 30° (Table 7-5).  This result may 

reflect differences in the “seating” of the patella in the femoral groove between 15° to 

30°, as reported by Fulkerson and Hungerford (1990).  Medial-lateral shifts were 

observed for three subjects (S3, S4, and S5), with opposing directions between 15° to 30° 

and 30° to 45° of flexion for S4 and S5.  This opposing trend was also reported by van 

Kampen and Huiskes (1990) based on cadaveric studies and by Patel et al. (2003) using 

MRI measurements.  These results also show significant posterior translations (up to 11.7 

mm) at higher flexion angles (Table 7-6).  Posterior patellar translation is also 

anticipated, as the patella slides through the femoral groove with increasing knee flexion.  

The patellae tilted slightly both in the medial and lateral directions for subject 4.  All 

subjects had significant superiorly anterior flexions (average of 12.4° for the four 

Patellar Surface 

0.625 mm 
(Pixel size) 

25 mm (1/2 of surface extent)

1.4°
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subjects) from 30° to 45° of knee flexion.  These results agreed with those reported by 

van Kampan and Huiskes (1990) and Patel et al. (2003).  Small medial and lateral 

rotations were shown for three subjects with varying trends between them, as opposed to 

van Kampen and Huiskes’ in-vitro results where consistent small medial rotations were 

found in three specimens while increasing gradually with increase in flexion angles.  

Conflicting results were reported by Patel and coworkers (2003), where consistent 

increase in lateral rotations during in-vivo knee flexion based on MR measurements was 

found.  Clearly more research is required in this area to revoke these conflicting results 

and to determine the characteristic values and trends in tracking parameters to describe 

patellar movements.  It is also important to note that the six transformation parameters 

are interrelated.  Thus, it is crucial to analyze all six parameters to fully understand the 

3D movement of the patella.   

Table 7-5: Transformation parameters and relative patellar movements from 15° to 30° 
knee flexion. 

 
15° to 30° 

Transformation Parameters   
XT 

(P-D) 
YT 

(M-L Shift)
ZT 

(Po-A) 
ω 

(Tilt) 
φ 

(Flexion) 
κ 

(Rotation) 
 Knee (mm) Dir. (mm) Dir. (mm) Dir. (°) Dir. (°) Dir. (°) Dir.

S2 Right -5.088 D -0.001 N 1.270 Po 1.076 N 0.830 N -0.031 N 
S3 Left -4.115 D 2.515 M -1.968 A 1.084 N -3.543 Po -4.084 L 
S4 Left 3.617 P -1.482 L 1.902 Po 1.570 M 5.511 A -0.331 N 
S5 Right 0.154 N 0.888 M -0.053 N -0.344 N -1.294 N 1.529 M 

Direction: P – Proximal; D – Distal; M – Medial; L – Lateral; Po – Posterior; A – 
Anterior; N – No Movement 
Patellar tracking system adapted from van Kampen and Huiskes (1990): 
• Positive XT, YT, and ZT indicate proximal, medial, and posterior translations 

respectively 
• Positive ω, φ, and κ indicate medial tilt, superiorly anterior flexion, and medial 

rotation respectively 
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Table 7-6: Transformation parameters and relative patellar movements from 30° to 45° 
knee flexion. 
 

30° to 45° 
Transformation Parameters   

XT 
(P-D) 

YT 
(M-L Shift)

ZT 
(Po-A) 

ω 
(Tilt) 

φ 
(Flexion) 

κ 
(Rotation) 

 Knee (mm) Dir. (mm) Dir. (mm) Dir. (°) Dir. (°) Dir. (°) Dir.
S2 Right -3.730 D 0.172 N 5.723 Po 0.587 N 9.837 A -4.901 L 
S3 Left -8.622 D -0.020 N 11.677 Po -0.422 N 19.429 A 1.958 M 
S4 Left -3.474 D 1.157 M 4.698 Po -3.517 L 11.541 A -0.155 N 
S5 Right -4.714 D -1.138 L 2.860 Po -1.300 N 8.807 A 1.534 M 

Direction: P – Proximal; D – Distal; M – Medial; L – Lateral; Po – Posterior; A – Anterior; 
N – No Movement 
Patellar tracking system adapted from van Kampen and Huiskes (1990): 
• Positive XT, YT, and ZT indicate proximal, medial, and posterior translations 

respectively 
• Positive ω, φ, and κ indicate medial tilt, superiorly anterior flexion, and medial rotation 

respectively 
 
 

Overall, this application demonstrated comparable patellar tracking results with other 

published works and has shown trends in the patellar movement during knee flexion.  

Compared to van Kampen and Huiskes’ study (1990), this study provided additional 

results on proximal-distal and anterior-posterior translations of the patella based on the XT 

and ZT parameters.  It also showed how registration with the proposed surface matching 

algorithm can be utilized to quantify in-vivo 3D patellar tracking pattern based on MRI.  

This tracking pattern can be used as a measure to identify abnormal patellofemoral 

kinematics and patellar malalignment, thus allowing further understanding of joint 

injuries and disorders, and the effects of surgical and therapeutic procedures.  This can 
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provide further insights about the relationships between injuries, joint biomechanics, and 

the development of OA.  

 

7.4 Changes in Contact Area Locations 

In addition to the study of patellar tracking patterns, registration can also be applied to 

study the contact patterns between the patellar and femoral cartilage during knee flexion.  

The objective of this application is to demonstrate how the proposed algorithm can be 

applied to directly quantify the relative movements of the cartilage contact area on the 

patellar surfaces.  By analyzing the patellofemoral contact mechanics, abnormal behavior 

may then be identified and thus help to understand the underlying causes of joint 

disorders and diseases.   

 

7.4.1 Data 

The same dataset used in the previous application was also used for this study.  The 

images were obtained under physiologic loading conditions.  Consequently, the patella 

should be “seated” within the femoral groove, in contact with the femoral cartilage. 

These loading conditions enable studies of the patellofemoral contact mechanics to be 

conducted. 
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7.4.2 Methods 

The patellar and femoral bone and articulating cartilage surfaces (refer to section 5.3 and 

Figure 5-5) were used in this application.  The proposed algorithm was applied to register 

the patellar bone surfaces at 30° and 45° flexions to the one at 15°.  This approach 

yielded two sets of transformation parameters for each subject.  Next, the patellar and 

femoral cartilage surfaces at 30° and 45° knee flexions were transformed using the above 

parameters so that they were given with respect to the patellar bone surfaces at 15° 

flexion.   

  

To determine the contact regions between the patellar and femoral cartilage, the TPS 

algorithm was used to calculate the contact areas based on a proximately measure.  Points 

on the cartilage surfaces were considered in contact if the normal distance, or a proximity 

value, projected at each surface point from the patellar cartilage surface onto the femoral 

cartilage surface was less than a predefined threshold (Baker, 2002).  Although in the 

ideal case contact regions should have normal distances or proximity values of zeros, 

proximity measure has to be adapted to classify points of contact, due to MR distortions 

and partial volume effects, errors introduced by segmentation and surface modeling, and 

limitations with achievable image resolution.  The upper and lower limits of the 

proximity threshold were set to be -1.4 mm and 1.4 mm, respectively (Baker, 2002).  A 

negative proximity indicated a space between the two surfaces, while a positive 

proximity indicated overlapping surfaces.  Based on this proximity approach, TPS was 

used to calculate the contact areas between the patellar and femoral cartilage, and to map 
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the areas onto the patellar cartilage surfaces.  The centroids of the contact area were also 

calculated in the medial-lateral direction and in the proximal-distal direction (Figure 7-9).  

This 2D centroid was used to represent the location of the contact area, and its relative 

movements from 15° to 30° and 30° to 45° flexion was directly quantified since the 

surfaces were aligned to the same reference frame.  Similar to previous application, a 

movement of the contact area centroid with a magnitude above the size of an image pixel 

(0.625 mm) was considered a detectable change.   

 

Figure 7-9: Cartilage contact areas (color maps) on the patellar surfaces at 15°, 30°, and 
45° flexion after registering to the same reference frames for subject 2 (units are in 
millimeters). 
 

7.4.3 Results and Discussion 

Registration of the patellar bone surfaces at 30° and 45° flexion to the reference surface 

at 15° resulted in an average RMS distances for the four female subjects of 0.207 ± 0.009 

mm.  The results (Table 7-7) show that the contact area centroids moved proximally with 

respect to the patellar surfaces as the patellae moved distally with increasing flexion 

angles (more prominent from 30° to 45° flexion).  The exceptions were at 15° to 30° 

flexion, where the contact area moved distally for subject 4 and no detectable movement 

was found for subject 5.  These results directly reflect the tracking of the patella (Table 7-
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5 and 7-6) for the four subjects as reported in the previous section.  Connolly (2005), 

Ronsky (1994), and Patel et al. (2003) found the same patterns of contact area 

movements in the proximal-distal direction based on MR measurements.  In the medial-

lateral direction, the measured movements of contact areas were smaller, with subject 5 

displaying a different pattern than the other three subjects.  All subjects demonstrated 

medial-lateral contact area movements with opposing directions from 15° to 30° and 

from 30° to 45° knee flexions.   Patel et al. (2003) also reported similar patterns for 

medial-lateral shifts of the cartilage contact areas.  Importantly, the shifts, tilts, flexions, 

and rotations of the patella can all contribute to changes in contact locations on the 

patellar cartilage.   

Table 7-7: Movements of contact area centroids from 15° to 30° flexions and from 30° to 
45° flexions for four female subjects. 

 
15° to 30° 30° to 45° 

Proximal-Distal Medial-Lateral Proximal-Distal Medial-Lateral  Knee Mag. 
(mm) Dir. Mag. 

(mm) Dir. Mag. 
(mm) Dir. Mag. 

(mm) Dir. 

S2 Right 2.808 P 1.527 L 5.996 P 0.834 M 
S3 Left 2.213 P 1.432 L 7.895 P 0.646 M 
S4 Left 1.198 D 1.797 L 4.073 P 1.023 M 
S5 Right 0.085 No 0.651 M 3.469 P 1.600 L 
Direction: P – Proximal; D – Distal; M – Medial; L – Lateral; N – No Movement 

 
 

This application showed how registration can be used for studies of the contact 

mechanics of the knee joint, thus providing further insights into the effects joint injuries 

and diseases have on the biomechanics of the joint.  The suggested method for the 

detection of movement based on the quality of surface fit (i.e., RMS distance) is a reliable 
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and quantifiable approach that can be customized for different applications, reflecting the 

individual characteristics of each set of images, surface types, and registrations. 

 

7.5 Summary 

The proposed surface matching algorithm was used in three applications to demonstrate 

its feasibility for in-vivo studies of joint biomechanics and joint health status.  The first 

application showed that with accurate registration, cartilage volume can be rapidly 

measured for multiple temporal scans to allow monitoring of OA progression.   The 

surface matching algorithm was then applied for patellar tracking to help understand joint 

kinematics during knee flexions.  This application showed that the six transformation 

parameters can directly quantify 3D patellar movements.  Registered patellar surfaces 

were also used to measure relative changes in cartilage contact area locations at different 

flexion angles.  The results from these applications not only verified that the proposed 

algorithm can accurately register joint surfaces generated from MR data, but further 

confirmed that registration can provide significant benefits for in-vivo study of joint 

injuries as it allows direct measurements and comparisons of joint properties.   
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Chapter Eight: Conclusions and Future Work 

 

8.1 Conclusions 

The knee joint is the largest and most complex joint of the human body, thus joint 

injuries and diseases are very common and can significantly affect patients’ quality of life.  

Specifically, OA, a degenerative joint disease, is associated with many risk factors but the 

exact pathology is unknown.  Therefore, to increase understanding of OA, quantitative 

assessments of joint properties and biomechanics, as well as monitoring of disease 

progression are needed.   

 

Many techniques such as photogrammetry and radiography have been used to study joint 

properties.  Among them, MRI has emerged as a safe, flexible, and non-invasive medical 

imaging technique that can allow accurate measurements of joint properties with high 

data resolution.  Since the subject can be positioned differently and anatomical changes 

occur over time, registration, a process to align datasets, is a necessary procedure for the 

analysis and direct comparison of MR data.  This research aimed at developing a 

registration technique based on matching knee joint surfaces generated from MRI to help 

with the in-vivo quantitative assessments of joint biomechanics and joint health status.  A 

novel approach was introduced to translate techniques originally developed in the field of 
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Geomatics engineering for biomedical applications.  The research objective was reached 

with four specific aims: 

SA1) Investigate whether the proposed surface matching algorithm can work with high 

density data in the presence of noise, implement necessary modifications, and perform 

verifications using Geomatics engineering applications. 

SA2) Apply the modified surface matching algorithm to register 3D MR data of knee 

joint structures acquired at different positions and under different alignment and loading 

conditions. 

SA3) Validate the registration accuracy obtained with the algorithm, and analyze the 

repeatability of the digitization and registration algorithm for matching knee joint 

surfaces generated from MR data. 

SA4) Apply the modified surface matching algorithm to register 3D MR data of healthy 

and pathologic knees to aid in the in-vivo study of joint biomechanics and joint health 

status. 

 

The proposed surface matching algorithm, originally developed by Habib et al. (2001) for 

geographic data, can simultaneously estimate the transformation parameters and establish 

correspondence between two surfaces.  The registration paradigm is defined as follows 

for the proposed algorithm:  

1) Primitives: points and triangular patches for the two surfaces 

2) Transformation function: 3D similarity (rigid transformation with seven parameters: 

XT, YT, ZT, ω, φ, κ, and S) 
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3) Similarity measure: Coplanarity condition (corresponding point and patches are 

coplanar) 

4) Matching strategy: MIHT (voting scheme to find the best estimates of the parameter 

and identify corresponding point and patch pairs)   

 

The proposed algorithm can work with surfaces at any orientation and performs matching 

by minimizing normal distances between corresponding surface elements.  It is also a 

robust algorithm as it performs local matching to identify and exclude discrepancies prior 

to the application of the least squares adjustment of the parameters.  To describe 

quantitatively the quality of fit of the surfaces, a RMS of normal distance is derived from 

the matches after applying the estimated parameters.   

 

With the first specific aim, results indicated that with high density data such as MRI, the 

proposed algorithm might not converge to a final solution.  Therefore, the ICP algorithm 

was added to complement the MIHT approach and refine the convergence of the 

parameters.  MIHT provides a set of good estimates to initialize the ICP algorithm.  ICP 

then performs matching locally to establish correspondence and estimate the parameters 

by minimizing the summation of normal distances.  This new modified algorithm was 

verified with high density 3D data collected using Geomatics engineering means (i.e., 

LIDAR, photogrammetry, and close-range laser scanning).  The results demonstrated that 

the algorithm could successfully register high density data and identify discrepancies 

between two surfaces.  The accuracy of the surface matching results was evaluated with 
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results based on linear features of the same data, and have found to be comparable.  The 

modified algorithm also showed improvement over another registration technique for 

matching the close-range laser scanning views. 

 

For SA2, the modified algorithm was applied for knee joint surfaces generated from MR 

images, to verify its feasibility for in-vivo assessments of joint conditions.  Four female 

subjects with healthy knees were imaged with a 3T MRI unit and femoral condylar and 

patellar surfaces were manually digitized from the image slices.  A Thin Plate Spline 

algorithm was employed for surface modeling and re-sampling.  Registrations were then 

performed with the modified algorithm between identical joint surfaces (same scan), as 

well as surfaces captured at different positions (i.e., different flexion angles) and under 

different loading conditions (i.e., loading versus not-loading).  The identical surfaces 

were correctly registered with RMS distances of 0.0 mm.  High qualities of fit were also 

found between the co-registered surfaces at different positions with average RMS of 

normal distances of 0.217 mm and 0.207 mm between the femoral and patellar surfaces, 

respectively.  The patellar surfaces produced better registration results due to their unique 

geometry formed by facets and ridges with varying orientation.  Qualitative analysis 

confirmed the high quality for the registrations and was also justified for the identified 

non-matches.  Although only the femoral condyles were used for the registration, a good 

alignment was shown for the other regions of the femurs. 

 



171 
 

 

The accuracy of the surface matching algorithm for registering MR imaged joint surfaces 

was validated by comparing the transformation results from surface matching with ones 

derived using fiducial markers.  A porcine knee specimen was used for surface matching 

which was fixed in position relative to spherical markers that were filled with gadolinium 

solution.  To compare the results, a box modeled by 3D points was transformed with each 

set of transformation parameters and the resulting locations (i.e., X, Y, and Z coordinates) 

of the box were compared.  Although MR artifacts and distortions led to small errors in 

the marker measurements and representations, comparisons were made and indicated that 

the surface matching algorithm had an absolute accuracy of approximately a pixel size of 

the MR image.  Repeatability studies were also performed for the manual digitization and 

the registration processes.  Two MR scans (0° and 30° flexions) were digitized five times 

each and registrations were performed between each set of digitization (categories: 0° 

with 0°, 30° with 30°, 0° with 30°).  A box modeled by 3D points was transformed with 

each set of the parameters and the coordinate differences of the points were computed.  

The root-mean-square errors of the coordinate differences in the range of 0.2 mm 

suggested the high repeatability of the digitization and registration processes.  ANOVA 

statistical analyses were also conducted on the transformed coordinates of the box.  The 

p-values suggested that the mean coordinates were statistically similar within each 

category, thus confirmed that the digitization and registration were repeatable.   

 

The final specific aim was to apply the accurate and repeatable algorithm for applications 

of in-vivo studies of joint biomechanics and health status.  The modified algorithm was 
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used in three applications: 1) registration of temporal data for monitoring of OA, 2) 

patellar tracking using the transformation parameters during knee flexion, and 3) change 

detections of patellofemoral cartilage contact locations.  In the first application, tibial 

cartilage volumes were automatically calculated for temporal MR datasets after 

successful registrations of the tibial intercondylar eminence.  Volume changes quantified 

for healthy subjects were comparable to other published results and this technique was 

shown to be more time-efficient than others.   

 

In the second application, in-vivo 3D patellar tracking patterns were directly described by 

the six transformation parameters (three translations and three rotations) for four subjects 

during knee flexion.  Registration was performed first for the femurs.  Patellar surfaces 

were then transformed to the 15° femoral reference frame and relative patellar 

movements were described by registering the transformed patellar surfaces.  Results 

demonstrated medial-lateral patellar movements during knee flexions, in agreement with 

ones based on cadaveric studies.   

 

The last application detected migrations of the patellofemoral contact area locations on 

registered patellar surfaces for the four subjects.  Contact areas were calculated using the 

Thin Plate Spline algorithm based on a proximity measure after transforming the patellar 

and femoral cartilage surfaces to the same reference frame.  Centroids of the contact 

areas were used as a measure to quantify movement and results reflected favorably with 

the patellar tracking patterns.  These applications showed that registration is an important 
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procedure for in-vivo studies of joint conditions and the proposed surface matching 

algorithm is feasible for these studies. 

 

Overall, this research project is significant as it demonstrated how Geomatics engineering 

techniques can be applied to biomedical applications, as both fields work with similar 

form of spatial data and share similar problems for their applications.  Also, this research 

shows that the surface matching algorithm, based on the MIHT and ICP approaches, can 

accurately register surfaces generated from MRI and be applied to applications for in-

vivo studies of joint biomechanics and health status.  This can lead to better diagnosis, 

monitoring, and treatments for OA, thus can also improve the quality of life for patients.  

Although this research only shows preliminary work and results, it provides convincing 

support that the proposed algorithm can be applied to a wide range of applications for not 

only studies of OA, but also to other areas in both the Geomatics and medical imaging 

fields. 

 

8.2 Future Work 

Since the speed or the efficiency of the proposed algorithm was not a concern of this 

research, the first proposal for future work is to improve the overall efficiency of the 

registration technique by applying the surface matching methodology in a coarse-to-fine 

strategy.  This can be done by first using a generalized version of the surfaces (i.e., 

general shape of the surface without local topography) to derive approximate values for 
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the transformation parameters with the MIHT approach.  The resulting parameter 

estimates can be further improved by restarting the process with less-generalized versions 

of the surfaces (i.e, higher sampling resolution with more details).  This process would be 

repeated while increasing the resolution and reducing the MIHT iterations thus reducing 

the overall process time for the algorithm.  Another similar approach to improve 

efficiency is to first use smaller regions of the surfaces (i.e., smaller number of points and 

patches) to derive parameter estimates with the MIHT algorithm.  This can reduce the 

execution time for the MIHT, thus can significantly improve the overall efficiency.  It is 

important to note that the surface regions should be representative of the entire surface 

topography to allow accurate estimation of the parameters.  The ICP algorithm can then 

use these estimates and the entire surfaces of interest to efficiently solve for the 

transformation parameters and correspondences.  By improving the efficiency of the 

proposed registration methodology, it can be extended for clinical applications and be 

adapted into other studies in the future. 

 

Another future focus is to improve the surface digitization and modeling techniques.  

Manual digitization with SliceOmatic was mainly used in this research, and has shown to 

be repeatable and to produce accurate registration.  Semi-automatic digitization 

techniques based on Non-Maxima Suppression was used for the spherical markers in the 

validation pilot study and the Canny edge detection were used for tibial surfaces acquired 

using 3D spoiled gradient-echo fat-saturated sequence.  If the image contrast permits, 

semi-automatic digitization with minimal editing can reduce processing time and does 
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not require a well-trained operator.  Therefore, for future applications, semi-automatic or 

automatic digitization techniques can be employed to improve efficiency of the proposed 

methodology, and can also become more clinically applicable.  For surface modeling, the 

TPS algorithm was employed to resample and smooth the 3D surface data.  As reviewed 

in section 2.4, the main limitation of the TPS is that it cannot work with surfaces that 

curve around more than 180° (i.e., same XY coordinates with different Z values), using 

the planar projection.  That was why only the femoral condyles were used in this study, 

instead of the entire bone surfaces for registration.  To overcome this limitation, a polar 

coordinate system can be adapted in TPS instead of the Cartesian coordinate system, so 

that surface points can be defined using radius and angle.  Another solution is to use 

different algorithms or programs for the surface modeling procedures.  Commercial 

software such as SolidWorks (SolidWorks Corporation, Concord, MA) and Pro-

/Engineer (Parametric Technology Corporation, Needham, MA) have 3D modeling 

capabilities and can produce surfaces as triangular meshes.  These software have a 

significant learning curve and require training.  However, the potential benefit associated 

with implementing alternate surface digitization is worth while to investigate for future 

applications.  It is important to use modeling software that can provide surface 

characteristics (e.g., surface normals) such as the TPS algorithm so joint properties (e.g., 

cartilage thickness) can be directly derived for in-vivo studies of joint conditions. 

 

The visualization of the registration results can also be improved for future extension of 

this research.  The 3D figures of the co-registered surfaces in this research were 
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generated using MATLAB, which has limited capabilities in terms of 3D visualization.  

Also, the image mosaics were formed by re-sampling the transformed image set onto the 

image slice locations of the reference set, thus do not provide the most accurate 

representation of the results.  For future works, 3D computer aided design models of the 

joint surfaces can be formed using software such as the Visualization Toolkit to provide a 

more visually pleasing representation of the results.  This is also beneficial for 

applications in clinical setting.  Animations or movies can also be created for applications 

such as patellar tracking so qualitative explanations of joint biomechanics can be offered 

during knee motions.  This is particularly attractive for clinical practitioners and for 

diagnostic purposes. 

 

Due to time constraints and the scope of this research, further investigations and studies 

to improve the accuracy validation approach and results were not performed.  In the 

validation study, the fiducial markers were scanned together with the porcine knee 

specimen and have resulted in artifacts and noise, which have decreased the accuracy of 

marker digitization and the absolute orientation results.  In the future, further 

investigations should be performed to quantify and compensate for these effects.  To 

allow a true validation of the surface matching accuracy and the effects of imaging and 

processing procedures, a gold standard of the transformation parameters is needed.  This 

can be obtained by precisely controlling and quantifying the movement (e.g., measured 

by the Coordinate Measurement Machine which has an accuracy up to 0.5 µm) of the 

specimen and markers between scans.  This movement (e.g., shifts and rotations) can 
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then be decomposed into the six translational and rotational parameters of the 3D 

similarity transformation and act as the known truth.  The assumption that MRI can 

capture objects at its true scale should be tested in the future.  The repeatability study was 

based on the femoral bone surface.  Thus, extensions to other joint structures are needed.  

In addition, inter-observer variability should also be tested for the digitization and 

registration approaches.   

 

The final future recommendation is to expand the presented applications and apply the 

proposed surface matching algorithm to a wider range of applications.  First of all, larger 

sample sizes should be included in the MR applications so that statistically supported 

findings can be made.  For the study of cartilage volume changes for OA, more patients 

and a controlled experimental setup are needed to reduce the variability of the results.  

Also, a validation study is needed to analyze the accuracy of the registration approach for 

measuring cartilage volume using MRI.  For the patellar tracking and contact area 

locations applications, both healthy subjects and subjects with knee disorders (e.g., PFPS) 

can be included so that comparisons can be made between groups and atypical tracking 

pattern and contact mechanics can potentially be identified based on the results.  For the 

contact area location, the centroid is only a crude measure thus it might not be the most 

ideal measure to use.  More investigations are needed to determine the best methods for 

representing contact area locations.  The femoral geometry is also an important factor for 

the contact mechanics of the patellofemoral joint and should also be investigated in the 

future.  In addition to these applications, the proposed surface matching algorithm can 
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also be applied for other studies such as determining hip implant movements and for 

other forms of 3D data such as optical imaging. 
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Appendix B: Subject Consent Form 

The following consent form is provided in courtesy of K. Connolly for the research study 

of patellofemoral pain syndrome.  MR images acquired of the subjects were used in this 

thesis research. 

 
TITLE: Investigating Joint Contact Characteristics in Patients with Patellofemoral Pain 
Syndrome 
 
INVESTIGATORS:  Dr. Janet Ronsky, Kim McLaughlin 
Clinical investigators: Dr. V. Lun, Dr. P. Wiley 
 
This consent form is only part of the process of informed consent. It should give you the 
basic idea of what the research is about and what your participation will involve. If you 
would like more detail about something mentioned here, or information not included here, 
please ask. Take the time to read this carefully and to understand any accompanying 
information. You will receive a copy of this form. 
 
BACKGROUND 
Patellofemoral Pain Syndrome (PFPS) is a common disorder of the patellofemoral joint 
characterized by pain on the anterior aspect of the knee. Reports from different sports 
medicine clinics have shown that knee problems account for 23 to 31% of all injuries and 
complaints, where pain conditions related to the patellofemoral joint are the most 
common. It is difficult to define PFPS as patients experience variety of symptoms from 
PF joint with different levels of pain and physical impairment. The initial treatment plan 
often includes quadriceps strengthening and temporary activity modification. 
Physiotherapy involving strategic strengthening of the quadriceps through a six week 
training regime has proven to be effective, with roughly 60 to 80% of patients 
experiencing pain reduction after treatment.  
 
One of the major contributing factors of PFPS is malalignment of the lower extremity 
and/or the patella. This may cause the patella to have unusual tracking patterns and in 
turn, changing the points of contact between the undersurface of the patella and the femur 
which causes pain. It is suspected that by strengthening the muscles, the tracking of the 
patella is altered which reduces pain. Results of this study will provide new knowledge 
regarding the differences occurring in patients before and after treatment with respect to 
patella tracking.     
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WHAT IS THE PURPOSE OF THE STUDY? 
The main objective of this study is to observe the differences in patellofemoral joint 
contact characteristics before and after a quadriceps strengthening regime in patients who 
have been successful with treatment. In addition, comparisons will be made to healthy 
individuals who are free of knee pain.   
 
WHAT WOULD I HAVE TO DO? 
You will have a pre-study clinical assessment of knee joint function, conducted by either 
Dr. Victor Lun or Dr. Preston Wiley. The standard clinical assessment, including a 
typical radiograph (for subjects in the PFPS group only), will determine that PFPS is the 
suspected cause of knee pain and not some other pathology.  
 
You will be requested to attend a magnetic resonance imaging (MRI) training session at 
the University of Calgary Health Science Center lasting approximately 1/2 hour. The 
purpose of this training session is to familiarize you with the set-up that will be used 
during the MR scans and to determine the level of force that can be comfortably 
maintained for approximately 2.5 minutes (the length of one scan for a given angle). 
 
During the MRI training session, you will be requested to complete an electromyography 
(EMG) session which will last approximately 1 hour. Surface electrodes will be placed on 
your leg in three locations over the quadriceps and hamstring muscle groups to measure 
muscle activity. The skin in the area of electrode application will be shaved to remove 
hair and rubbed with alcohol to remove surface skin oil. You will be asked to perform a 
step-up/down task while muscle activity is recorded.  
 
Following successful training in (2), you will complete various MRI scans conducted at 
the Seaman Family MR Research Centre. This will be on a separate day from the training 
session. You will lie on the knee flexion device, and the affected limb will be imaged 
once at 0°, 15°, and 30° of flexion. During the scan, you will be requested to maintain a 
submaximal contraction (the force determined in 2). A pair of instrumented goggles will 
be worn to give visual feedback so a constant force can be maintained. The time involved 
to complete the MRI study is approximately 1.5 hours. 
 
You will be asked to follow an 8-week quadriceps muscle strengthening and stretching 
regime using a commonly assigned protocol for treatment of PFPS. A questionnaire 
regarding knee pain will be completed before and after treatment. 
 
Steps 3 and 4 will be repeated after the physical trainging regime has been completed. 
 
** If you are signing this consent form as part of the healthy group of subjects, you will 
complete steps 1-4. ** 
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WHAT ARE THE RISKS? 
MR imaging is non-invasive and there are no known health risks associated with MR 
imaging for participants who meet the inclusion criterion. You will be asked to lie on a 
narrow table which slides into a large tunnel-like tube within the scanner.  There is no 
pain associated with MR imaging. The primary discomfort is the possible claustrophobic 
feeling that some experience from being inside the scanner. The machine produces loud 
thumping and humming noises during normal operation. Ear plugs will be given to you to 
reduce the noise. A technologist will observe you during the entire procedure and may be 
spoken to through an intercom in the scanner. 
 
The EMG surface electrode application procedure may cause a slight stinging of the skin 
before the electrodes are applied. Your skin may be red for a short time after the 
electrodes are removed. There are no other risks associated with surface EMG testing. 
 
During plain radiographs, exposure to x-rays will be maintained as low as reasonably 
achievable. Therefore, the risk associated with the radiograph portion of this study will be 
minimal. 
 
ARE THERE ANY REPRODUCTIVE RISKS? 
There are no reproductive risks associated with this study. 
 
WILL I BENEFIT IF I TAKE PART? 
If you agree to participate in this study there may or may not be a direct medical benefit 
to you. Your PFPS may be improved during the study but there is no guarantee that this 
research will help you. The information we get from this study may help us to provide 
better treatments in the future for patients with PFPS. 
 
The benefits of the study to you include a detailed quantitative assessment of your 
patellofemoral joint contact in the affected limb before and after treatment. Study 
participants will be made aware of their individual assessments, as well as the overall 
findings of the study, as available. 
 
DO I HAVE TO PARTICIPATE? 
Subjects will agree to participate on a volunteer basis only. Participants may withdraw 
from the study at any time without jeopardizing their healthcare. To withdraw, contact 
either Dr. J. Ronsky or Kim McLaughlin to inform them of their decision.   
 
WILL I BE PAID FOR PARTICIPATING, OR DO I HAVE TO PAY FOR 
ANYTHING? 
No payment will be given for participating in the study. Participants will be reimbursed 
for expenses associated with parking at the University of Calgary Health Science Center.  
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WILL MY RECORDS BE KEPT PRIVATE? 
Patient confidentiality will be maintained by referring to the participants as individual 
MRI study numbers only. The reference list to correlate participant names and MRI study 
numbers will be maintained confidentially by the principal investigator. The MRI study 
data will be transferred directly to digital tape, a backup copy obtained, and then removed 
from the main Seaman Family MR Research Centre database. Access to data will be 
limited to authorized individuals only (Dr. Ronsky and Kim McLaughlin), for assessment 
purposes. Upon completion of the study, all data files related to the study will be 
removed from the workstations and saved to CD. This data will be maintained by the 
principal investigator for a period of seven years. The information will be destroyed 
following a period of seven years. 
 
IF I SUFFER A RESEARCH-RELATED INJURY, WILL I BE COMPENSATED? 
In the event that you suffer injury as a result of participating in this research, no 
compensation will be provided to you by the University of Calgary, the Calgary Health 
Region or the Researchers. You still have all your legal rights. Nothing said in this 
consent form alters your right to seek damages.  
 
SIGNATURES 
Your signature on this form indicates that you have understood to your satisfaction the 
information regarding your participation in the research project and agree to participate as 
a subject. In no way does this waive your legal rights nor release the investigators, or 
involved institutions from their legal and professional responsibilities. You are free to 
withdraw from the study at any time without jeopardizing your health care. If you have 
further questions concerning matters related to this research, please contact: 
 
Dr. Janet Ronsky: (403) 220-8134 
 
If you have any questions concerning your rights as a possible participant in this research, 
please contact Pat Evans, Associate Director, Internal Awards, Research Services, 
University of Calgary, at 220-3782. 
 
 

Participant’s Name  Signature and Date 
   

Investigator/Delegate’s Name  Signature and Date 
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Witness’ Name  Signature and Date 
   

 
The University of Calgary Conjoint Health Research Ethics Board has approved this 
research study. 
 
A signed copy of this consent form has been given to you to keep for your records and 
reference. 
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