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ABSTRACT

Normalized image generation (epipolar resampling) is an important task for automatic
image matching. Normalized images facilitate the detection of feature correspondences in
the images and therefore provide the advantages of reducing the search space as well as
the matching ambiguities. Normalized image generation is a well-established procedure
for images captured by frame cameras. Digital frame cameras that produce resolution and
ground coverage comparable to those of analog aerial photographs are not yet available.
Instead, linear array scanners can be used on aerial or space platforms in order to obtain
such characteristics. The resulting scenes are formed by stitching the captured one-
dimensional images that are produced as the sensor moves. Rigorous modeling
necessitates accessing or estimating a large number of exterior orientation parameters of
the images. The resulting epipolar lines are non-straight lines, which causes difficulties in
epipolar resampling using the rigorous model. By comparison, the parallel projection
model requires a smaller number of parameters, and it results in straight epipolar lines. In
addition, as the flying height increases and the angular field of view decreases, similar to
the case of space-borne scanners, the true perspective geometry can be approximated by
parallel geometry. The mathematical models and the transformations related to the
parallel projection model and its relation to the rigorous perspective projection model are
developed. An approach for epipolar resampling of linear array scanner scenes based on
the parallel projection model is established. Experimental results using synthetic as well

as real data prove the feasibility of the developed approach.
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CHAPTER 1: INTRODUCTION

1.1 GENERAL

Image resampling according to epipolar geometry is a prerequisite for a variety of
photogrammetric tasks such as image matching, digital elevation model (DEM) and
ortho-photo generation, aerial triangulation, map compilation, and stereoscopic viewing.
The resampling process for images captured by the frame camera has been established
and implemented in current Digital Photogrammetric Workstations (DPW); for example
see Cho et al., 1992. Scanning analog images or using a digital camera directly can
produce digital images, which are the input media for DPW. So far, there is no digital
frame camera that is capable of producing geometric resolution that is comparable to
those produced by analog cameras. To overcome this limitation, linear array scanners
have been developed to capture scenes through multiple exposures of several (one to
three) scan lines along the image plane. This imaging scenario makes the perspective
geometry of line cameras more complicated than that of frame images. Moreover,
established procedures for resampling frame images according to epipolar geometry are
not suitable for scenes captured by linear array scanners, due to the geometric differences
between the two systems. This research will investigate the feasibility of, and develop a
methodology for, resampling scenes captured by linear array scanners according to

epipolar geometry.

1.2 RESEARCH OBJECTIVES AND SCOPE

The objective of the proposed research is to investigate the feasibility of resampling
scenes captured by linear array scanners according to epipolar geometry. The feasibility
study starts with the analysis of the epipolar geometry of an imaging sensor using its
rigorous model. This requires the availability of the Interior Orientation Parameters (IOP)

of the scanner. The IOP include the principal distance, the coordinates of the perspective



center, and various lens distortions. Furthermore, the Exterior Orientation Parameters
(EOP), which describe the position and the attitude of the imaging sensor as a function of
time, are required. After analyzing the epipolar geometry, resampling the scenes using an
alternative model “the parallel projection model”, which does not need the IOP or the

EOP of the imaging scanner is investigated.

The major objective of this research is to develop an approach for epipolar resampling of
linear array scanner scenes. To achieve this goal, other objectives become important
including the analysis of the epipolar lines in linear array scanner scenes using the

rigorous and approximate models.

1.3 STRUCTURE OF THE DISSERTATION

Chapter 2 contains a literature review; it explains, in detail, the epipolar geometry and
resampling for images captured by frame cameras. This review is important since it
allows us to investigate potential problems and solutions when dealing with scenes
captured by linear array scanners. Chapter 2 also includes an introduction to imaging and
stereo coverage alternatives of various line scanners (e.g., SPOT, IKONOS, ADS40).
Both the rigorous model and approximate models (including the parallel projection
model) are introduced in this chapter. Finally, a review of the literature regarding the

epipolar geometry of linear array scanners is presented.

Chapter 3 examines the shape of the epipolar line in linear array scanner scenes with
different altitudes and with different stereo coverage methods. This investigation allows
us to inspect the deviation of the epipolar lines from straightness for these scenarios.
Similar to frame images, cases which yield straight, or close to straight, epipolar lines

would be more suitable for resampling these scenes according to epipolar geometry.

The outcome of the investigations in Chapter 3 indicated that it is almost impossible to

obtain straight epipolar lines from different linear array scanners with different imaging



configurations for stereo coverage. Moreover, it has been established that, as the flying
height increases and the Angular Field Of View (AFOV) decreases, the generated
epipolar lines become straighter. This particular scenario is very close to parallel
projection. Therefore, Chapter 4 has been dedicated to study the parallel projection theory
including the mathematical relationship between the object and scene coordinates and the
shape of the expected epipolar lines. The necessary tools have been derived throughout
this chapter to facilitate the various transformations for epipolar line determination and

epipolar resampling.

As indicated in Chapter 4, parallel projection maintains uniform scale. Given this
situation, Chapter 5 deals with the necessary transformation of the captured scene
according to perspective geometry into parallel projection geometry to maintain uniform
scale. In addition, navigation parameters (the EOP of the scanner) may be available and
could be used in perspective-to-parallel projection transformation. Therefore, the
relationships between the navigation parameters and the parallel projection parameters

are derived in this chapter.

Chapter 6 deals with epipolar line determination and the generation of normalized scenes
(i.e., resampled scenes according to epipolar geometry). In Chapter 6, the relationship
between the x-parallax values in the normalized scenes and the corresponding height is
analyzed. The discussion outlines the necessary conditions for having an x-parallax that is
linearly proportional to the corresponding elevation. An approach for epipolar resampling
is developed in this chapter. Finally, experimental results using synthetic and real data are

presented.

Chapter 7 includes a summary, along with conclusions and recommendations of the

research.



1.4 RESEARCH CONTRIBUTIONS

This research starts by presenting and closely analyzing the findings from prior literature

that are relevant to epipolar resampling of linear array scanner scenes. They include:

e Analyzing the epipolar geometry of frame images and linear array scanners
(Chapter 2);
e Analyzing the parallel projection model (Chapter 4); and

e Analyzing the perspective-to-parallel transformation (Section 5.2, Chapter 5);

In this dissertation, many mathematical models, transformations and approaches are

developed. Contribution of this research includes:

e Developing the epipolar line equation of the constant-velocity-constant-attitude
model and investigating the straightness of the epipolar lines (Chapter 3);

e Developing the transformation between the linear and non-linear forms of the
parallel projection model (Section 4.4, Chapter 4);

e Developing the mathematical model relating scenes generated according to the
parallel projection that are sharing the same plane or sharing the same projection
direction (Section 4.5, Chapter 4);

e Developing a model combining the parallel projection model and the perspective-
to-parallel transformation (Section 5.3, Chapter 5);

e Developing the relationship between scanner navigation data and parallel
projection parameters (Section 5.4, Chapter 5);

e Developing two approaches to eliminate y-parallax between scenes captured
according to parallel projection (Section 6.2, Chapter 6);

e Developing epipolar resampling approach to eliminate y-parallax values and
maintain linear relationship between x-parallax and height values (Section 6.3,
Chapter 6);

e Testing the developed mathematical models and transformations and the epipolar

resampling approach (Chapters 3 to 6); and



e Developing software using C++ programming language for implementing the

developed epipolar resampling approach.



CHAPTER 2: LITERATURE REVIEW

2.1 INTRODUCTION

Section 2.2 of this chapter contains a discussion and analysis of the epipolar geometry of
frame images (Schenk, 1990; Cho et al., 1992; Zhang et al., 1995; Luong and Faugeras,
1996; Papadimitriou and Dennis, 1996; Schenk, 1999; Tsioukas et al., 2000). Section
2.2.1 introduces some definitions and quantities that are associated with frame images
and, more specifically, those associated with stereopair frame images. Section 2.2.2
explains different methods for determining epipolar lines for stereopairs. Epipolar

resampling and generating normalized frame images are discussed in Section 2.2.3.

In Section 2.3, linear array scanners are introduced, including the motivation,
terminology and methods of stereo observations. Rigorous and approximate models for
linear array scanners are also introduced in this section. Finally, a literature review

regarding the epipolar geometry of linear array scanners is discussed.

2.2 EPIPOLAR GEOMETRY OF FRAME IMAGES

2.2.1 Definitions

It is important to introduce some terms with their definitions (Schenk, 1990; Cho et al.,
1992; Zhang et al., 1995; Luong and Faugeras, 1996; Papadimitriou and Dennis, 1996;
Schenk, 1999; Tsioukas et al., 2000). These terms will be used throughout the analysis of

the epipolar geometry of frame images.

Figure 2.1 shows two relatively oriented frame images. O and O’ are the perspective

centers of the left and right images, respectively, at the time of exposure.
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Figure 2.1: Epipolar geometry in frame images

Epipolar plane: The epipolar plane for a given image point p in one of the images is the
plane that passes through the point p and both perspective centers, O and O’
Alternatively, it can be defined using the corresponding point in the object space and the

two perspective centers.

Air base: The line connecting the perspective centers of the two images under

consideration.

Epipoles: The intersections of the air base with the images themselves, or the planes that
contain the images. As seen in Figure 2.1, e and e’ are the epipoles of the given

stereopair.

Epipolar line: The epipolar line can be defined in two ways. First, it can be defined as
the intersection of the epipolar plane with the image, which produces a straight line (in
frame images). Secondly, the epipolar line can be represented by the locus of all possible
conjugate points of p on the other image. The latter definition is used in Section 2.3 when

dealing with linear array scanners.



It should be noted that no DEM is needed to determine the epipolar line. This can be
easily seen in Figure 2.1. Selecting several points along the ray (Op) - i.e., choosing
different height values of the object point - will yield the same epipolar line (/’p) in the
other image. The epipolar lines also pass through the epipoles as clearly seen in this

figure.

Another important property of epipolar lines in frame images is their existence in
conjugate pairs. Considering Figure 2.2, where /', is the epipolar line in the right image
for point p in the left image, and p’;, p’, are two different points in the right image
selected on /’,. The epipolar lines of points p’; and p’ (1,1 and I,,, respectively) will be
identical and pass through the point p. Similarly, the epipolar line of any point, other than
p’iorph, lying on I’,, will be identical to /,- and will pass through the point p. This can
be easily seen in Figure 2.1, since all of these points and lines lie in the same plane (the

epipolar plane).

l‘\o\ >
p’ S [ ]
g llp’zp <— P p

Figure 2.2: Epipolar line pairs

2.2.2 Determination of Epipolar Line in Frame Images

Generally, two methodologies can be adopted to determine the epipolar lines in frame
images. Both methods rely on the knowledge of the EOP or at least the Relative

Orientation Parameters (ROP) of the two frame images.



2.2.2.1 Method 1: Collinearity Equations Through the Object Space

The collinearity equations (Kraus, 1993), Equations 2.1, relate a point in the object space

to its corresponding point in the image space; see Figure 2.3.

Figure 2.3: Determining the epipolar line by back-projecting points along
the left light ray to the right image

X, X, . X=X,
V=] %o |+ R | Y20 2.1)
Z, Z, / —-c
Where:
X,y are the image coordinates of a point of interest in the left image
whose epipolar line to be determined in the right image;
X0, Y0, C are the IOP of the frame camera;

Xo, Yo, 2o, @, ¢, K are the EOP of the left image;

X, Y;, Z; are the object space coordinates of the corresponding object point;
A is the scale factor; and

o N, T 1 0 0 cosp 0 sing | cosk —sink O
Riyoiy=|"1 Ta Tn|=|0 cosw -—sinw 0 1 0 |[sinxk cosx O

Ty Ty Ty 0 sinw cosw |—-sing 0O cose| O 0 1
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In Equations 2.1, there exist three equations and four unknowns. These unknowns are: the
object space coordinates and the scale factor. Remember that the DEM, or the true
elevation of the object point, is not required. The left light ray can be determined based
only on the orientation parameters. Two different points are selected along that ray by
choosing two different scale factors (1;, 42) and then solving Equations 2.1 independently
for points (X1, Y1, Z)) and (X3, Y2, Z;). The appropriate values of (4, A4;) can be chosen in
such a way so that the object space points represent the minimum and maximum

elevation in the object space.

The two object points are then re-projected into the right image knowing its orientation

parameters, by solving Equations 2.2 for the corresponding right image coordinates (x 7,

Y-
¢ —x e P =x e, v -y )+, (2, - 20)
/ ra G —x e -1 vz, -2 02
el (X, —x )+, (v, -1 )+ (2, - 22, '
/ ra G —x e, v -y )4z, -2
Where:
X0, Y0, 20, @, ¢, K are the EOP of the right image, and
r, o r, g, 1 0 0 cosp' 0 sing'| coskx' —sink' 0
R py=|T"u Tyn 7'y |=|0 cos®' —sine' 0 1 0 | sinx' cosx'" O
'y 'y, Ty 0 sin@' cosw' |-sing' 0 cose'| O 0 1

Points (x’}, ') and (x 2, y ) form the epipolar line.

2.2.2.2 Method 2: Coplanarity Condition Without Visiting the Object Space

The object space point (X;, Y; , Z) is related to both the right and left images through

Equations 2.3, where the object space coordinates are eliminated.
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X, X=X, X', x'-x,

1 1 1 1 1
)70 +/1_R({u,(p,1c) Y=Y |= Y 0 +l_'R ("' k") Y=Y (23)
Z, / —c Z', / —c

Equations 2.3 represent three independent equations with four unknowns (4, 47, x’, »"),
which, after reduction, give the equation of the required epipolar line in the right image

as a relation between (x’, y").

Further reduction of the above equations by eliminating (4;, A) is similar to using the

coplanarity condition (Kraus, 1993); see Equation 2.4 and Figure 2.4.

0’

o air base

Figure 2.4: Coplanarity condition of vectors (Byx, By, Bz), (u, v, w) and

(u’,v,w’)
B. B, B,
u v wi=0 (2.4)
uV vV Wl
Where:
u X—X,

v :R(w,go,K) Y=o >
w —C
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'

u x'-x,

V' |[=R'(0',9',x")| y'-y, |, and
R —-c
B, [x',] [X,

B, |=|Y', |-| Y, | are the components of the air base.
_Bz Z'O Zo

Expanding Equation 2.4 gives a linear relation between x’ and y’ (the epipolar line

equation).

It is important to note that the epipolar lines of different points are not parallel in general.
An exception is made for the case where the images are parallel to the air base. This is
clear since all epipolar lines meet at the epipoles and the epipoles are at infinity;
therefore, the epipolar lines will be parallel. In the following section, such an observation
will be used for resampling the images to generate normalized images, in what is called

“epipolar resampling”.

2.2.3 Epipolar Resampling and Generation of Normalized Frame Images

This section introduces the objectives and the importance of the normalized images. The
discussion begins by explaining the concept and derives the mathematical model for
epipolar resampling. Finally, the procedure for epipolar resampling and generating the

normalized images is introduced.

2.2.3.1 Objectives

The main objective of epipolar resampling is to generate normalized images, which have
the innate property that corresponding points lie on the same rows (or columns). This
prime advantage reduces the search space and computation time in addition to reducing

matching ambiguities. This is important for a wide variety of applications such as:
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e Automatic matching

e Automatic relative orientation
e Automatic aerial triangulation
e Automatic DEM generation

e Ortho-photo generation, and

e Stereo viewing

Figure 2.5 shows normalized stereo images, where point a in the left image has
coordinates of (x,, y,). For normalized images, the search space for its conjugate a’ in the
right image will have a y’ value equal to that of point a. Therefore, y’,- = y,. In this case,
the search space of the corresponding point will be along the line y” = y,. Similarly, for
point b’ in the right image, its conjugate in the left image, b, will be along the line y =
v’y For digital images, the search space for the conjugate point will be a row in the other

image.

Ay

®a a
[

I, e b’

<=
oo
<>
=v
=v

Left normalized image Right normalized image

Figure 2.5: Normalized stereopair

2.1.3.2 Concept

As discussed earlier, resampling frame images requires that the new images be parallel to
the air base. In this case, the epipolar lines in both images will be parallel. As seen in
Figure 2.6, a new plane, parallel to the air base and containing the normalized images,
can be used. It must be noted that there is no unique plane that will result in parallel
epipolar lines. For example, two different planes that are parallel to the air base, each for
resampling one of the images, results in parallel epipolar lines in each image

independently. However, the spacing (normal distances) between the epipolar lines in one
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of the images will differ from the spacing between the corresponding points in the other
image. In other words, the resulting images will have different scales. Therefore, the two
images must be resampled to the same plane at a distance ¢, from the air base, and not to
two different parallel planes, as seen in Figure 2.6. In addition, there is an infinite number
of planes that are parallel to the air base and that are at a distance, ¢, , from it. These
planes are tangent to the cylinder whose axis is the air base and radius is ¢,. Therefore,
rotation @, can be fixed to a certain value. Such a value can be chosen to be the average
of w and @’ of the left and right original images, respectively, in order to minimize

possible scale distortions in the corresponding direction.

Figure 2.6: Concept of epipolar resampling and normalized images

One must note that the choice of IOP of the normalized images is arbitrary, but they
should be equal in both left and right normalized images. For example, if the plane is
chosen within a distance of ¢, from the air base, the new normalized images will have a
principal distance of c¢,. However, it is preferred to use the same IOP values of the

original images to obtain similar scales for both the original and normalized images.
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Within the new image plane, both images must be rotated (x rotation) to ensure that the
corresponding points and epipolar lines lie along the same row (or column). Therefore,

the EOP of the new images will be selected as follow:

e The perspective centers of the normalized images will be the same as those of the

original images, O(Xo, Yo, Zo) and O’ (X "o, Yo, Z°0).

e The orientations of the normalized images will be chosen as follows (Cho et al., 1992;

Schenk, 1999):

A primary rotation ¢, will be chosen in such a way to ensure that the new image
plane is parallel to the air base; it can be computed as in Equation 2.5.

B
@, =- arctan(B—Zj (2.5)

X

A secondary rotation x;, will be chosen so that the rows of the new images are

parallel to the air base. It can be computed as in Equation 2.6.

B
K, = arctan ———— (2.6)
VB +B;
A tertiary rotation @, will be chosen in such a way as to minimize the scale
distortion in the corresponding direction, and can be computed as in Equation 2.7.

_o+o

a)n
2

2.7)

Therefore, the corresponding rotation matrix R, is computed as follows:

R,=R, R,R

Kn an

2.2.3.3 Mathematical Model

In this section, the mathematical model for transforming or resampling the image into a

normalized one is derived. Consider any of the original images in Figure 2.6 - the left
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image for example. Its points must be transformed to the normalized image whose
perspective center is identical to that of the original image, its orientations are as
determined in Equations 2.5, 2.6, and 2.7, and having arbitrary IOP (xo,, you, ¢4). Such a
transformation is performed through the object space, as seen in Figure 2.7. In this figure,
a profile of the images and the light ray are shown. Starting from the point in the original
image, the collinearity equations or the equations of the light ray in space, can be written

as:

OXy, Yo, Zo)

Figure 2.7: Tracing light ray from the original image to the object space,

then to the normalized image

X X, . X=X,
Y = YO + ZR(IU,(/I,K) y - yo (28)
zZ Z, -c

The same object space point (X, Y, Z) appears in the normalized image. Therefore, other
collinearity equations, for the corresponding point in the normalized image, can be

written as follows:

X, X, =X
¥ R | Vn =Y, (2.9)

—C

n

+

(=]

N ~ X

1
/In
z

(=]
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Equating both Equations 2.8 and 2.9 results in:

Xy~ Xon X, 1 X=X X,
YVu = Yon :;i’anT(”n:‘ﬂfr’K/z) YO +ER(C(),(/J,K') Y=)o |~ YO
_cn ZO —-C ZO
(2.10)
) X=X,
:_anTR Y=Xo

A

—C

Equations 2.10 contain three equations in three unknowns (x,, v,, 4,/4). Therefore, x, and
vn can be computed, regardless of the actual values of 4, or A. Before proceeding further,
it is important to note that an object space point (or DEM) is not required in order to
resample the frame image according to epipolar geometry. It can be seen from the above
analysis that the actual values of 4, or A4 are not required. This can also be visualized by
tracing the light rays in Figure 2.7, starting from the perspective center O to the point in
the original image. This ray is extended till it hits the object space (or DEM). Then, the
object space point is back-projected into the new normalized image. This ray should also
pass through the perspective center of the normalized image, which is the same as that of
the original image. Therefore, the two light rays - those projected into the object space
and projected back from the object space - coincide. Therefore, regardless of where these
light rays hit the object space (DEM), the same back-projected point in the normalized
image is obtained. Thus, it can be concluded that a DEM is not required for epipolar
resampling of frame images (as long as their perspective centers do not change). This
discussion is important since it would be related/compared to scenes captured by line

scanners.

The ratio 4,/4 can be eliminated from Equations 2.10 by dividing the first and the second
equations with the third one to give Equations 2.11, which are the mathematical functions
that relate the coordinates in the original image to the corresponding coordinates in the

normalized images.
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(2.11)

Where:

2.2.3.4 Procedure

The procedure for epipolar resampling and generating the normalized images can be

summarized as follows (refer to Figure 2.8):

(x, y) Non-integer location

Original Image

(x,,, v,) Integer location

Normalized Image

Figure 2.8: Procedure of epipolar resampling, or normalized image

generation

1. Start from any pixel location in the normalized image (x,, y,).

2. Compute the corresponding location in the original image (x, y) using Equations
2.11. The values of x and y are usually non-integer.

3. Compute the gray value, g(x, y), in the original image using an appropriate
interpolation method such as nearest neighbor, bilinear interpolation or cubic

convolution.
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4. Assign the interpolated gray value to the pixel in the normalized image, i.e.,
gXnyn)=8g(x.y).
5. Repeat the above steps for all pixels in the normalized image.

6. Repeat the above steps for the other image in the stereopair.

2.3 LINEAR ARRAY SCANNERS

2.3.1 Introduction

Scenes captured from linear scanners (also called pushbroom scanners or line cameras)
are valued for their great potential for generating ortho-photos and updating map
databases (Wang, 1999). The linear scanners with up to one-meter resolution from
commercial satellites could deliver more benefits and provide a challenge to traditional
topographic mapping based on aerial images (Fritz, 1995). In this section, motivations for
using linear array scanners are discussed. Scanner types and ways of stereo observation
are also introduced. Finally, geometric modeling of linear array scanners together with

their epipolar geometry are introduced.

2.3.1.1 Motivations for using Linear Array Scanners

Two-dimensional digital cameras capture data using a two-dimensional Charged Coupled
Device (CCD) array. However, the limited number of pixels in current digital imaging
systems hinders their application to extensive large scale mapping functions in
comparison with scanned analog photographs. Increasing the principal distance of the 2-
D digital cameras will increase the ground resolution, but will also decrease the ground
coverage. On the other hand, decreasing the principal distance will increase the ground

coverage at the expense of ground resolution.

One-dimensional digital cameras (linear array scanners) can be used to obtain large

ground coverage and maintain a ground resolution comparable to scanned analog
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photographs. However, they capture only a one-dimensional image (narrow strip) per
snapshot. Ground coverage and resolution in the scanning direction are achieved by the
large number of pixels in the 1-D array (see Figure 2.9). On the other hand, successive
ground coverage in the flying direction is achieved by moving the sensor (airborne or
space-borne) and capturing more 1-D images. The ground resolution in the flying
direction can be maintained by synchronizing the scanning frequency and the speed of
the platform. The scene of an area of interest is obtained by stitching together the
resulting 1-D images. It is important to note that every 1-D image is associated with one
combination of exposure station and scanner orientations at the time of exposure.
Therefore, each 1-D image will have a distinct set of EOP. A clear distinction is made
herein between the two terms “scene” and “image” throughout the analysis of linear array
scanners. Before proceeding, one has to note that the technology is evolving with a high
speed. This leads to increase in the number of pixels of the 2-D cameras as well as the 1-
D scanners. However, the latter can always achieve larger number of pixels compared to

the number of rows or columns in 2-D cameras.

Flying direction
—

Positive 1-D scanner array

Figure 2.9: Linear array scanner
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2.3.1.2 Differences between Image and Scene

An image is defined as the recorded sensory data associated with one exposure station. In
the case of a frame image, it contains only one exposure station, and consequently it is
one complete image. In the case of a linear array scanner, there are many 1-D images,
each associated with different exposure stations. The mathematical model that relates a
point in the object space and its corresponding point in the image space is contained in
the collinearity equations, which use the EOP of the appropriate image (in which the

point appears).

By way of contrast, a scene is the recorded sensory data associated with one (as in frame
images) or more exposure stations (as in linear array scanners) that maps near-continuous
object space in a single short trip of the sensor. Therefore, in frame images, the image
and scene are identical terms while, in linear array scanners, the scene is an array of

consecutive 1-D images.

Consequently, it is important to distinguish between the scene coordinates and image
coordinates. As shown in Figure 2.10, i and y are the scene coordinates while x; and y; are
the image coordinates for image number i. Only x; and y; can be used in the collinearity

equations, while i indicates the image number or the time of exposure.

(@)
ll

l.Column #
12 i n or time

(b)

Figure 2.10: A sequence of 1-D images (a) consisting a scene (b)
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2.3.1.3 Types of Linear Array Scanner Systems

A linear array scanner system may be comprised of one or more 1-D scanners in the
image plane. Figure 2.9 shows an example of one linear array scanner system and Figure
2.11 shows a three-line camera. The latter system has three linear array scanners,
scanning in three different directions: backward, nadir, and forward-looking. As the
platform moves, each of the scanners captures a different scene in the corresponding
direction. Another type, panoramic linear array scanners, are used to capture a large
swath normal to the flying direction (Habib and Beshah, 1998a). Due to the large scale
differences within the captured scenes, this system will not be included in the analysis
that follows. The various systems achieve stereo coverage differently by different means,

as will be explained in the next subsection.

Three negative 1-D scanner array;

Three positive 1-D scanner array;

Figure 2.11: Three-line camera

2.3.1.4 Stereo Coverage

One of the main objectives of photogrammetry is to reconstruct the three-dimensional
object space from 2-D images or scenes. This is usually achieved by intersecting light

rays of corresponding points in different views. Therefore, different views or stereo
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coverage are essential for deriving 3D information regarding the object space. In linear

array scanners, stereo coverage can be achieved in each of the following ways:

e One scanner and across-track stereo coverage using roll angles

Stereo coverage can be achieved by tilting the camera sideways across the flight
direction to produce different roll angles (see Figure 2.12a). This has been adopted in
SPOT (Fraser et al., 2001). A drawback of this type is the large time gap between the
images of the stereopair, and consequently changes may occur between the two
scenes (Wang, 1999). In addition, large radiometric differences may occur between

the recorded scenes and cause problems in image matching.

e One scanner and along track stereo coverage using pitch angles

In this case the camera is tilted forward and backward along the flight direction to
produce different pitch angles (see Figure 2.12b). This type of stereo coverage is used
in IKONOS (Fraser et al., 2001). This method has the advantage of reducing the time
gap between the scenes comprising the stereopair and consequently reducing the

radiometric or geometric differences between them.

e Three scanners (three-line camera)

In this case, three scanners are used to capture backward-looking, nadir, and forward-
looking scenes, producing different x; values (see Figure 2.12c). Continuous stereo or
triple coverage can be achieved along the flight line with reduced time gaps. Similar
scales are achieved for the three scenes generated by the scanners. However, different
radiometric qualities exist among the scenes, which may cause problems in image
matching. This method is implemented in MOMS and ADS40 (Heipke et al., 1996;
Sandau et al., 2000; Fraser et al., 2001).
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X;=x=0 X;—x=0 X=%=0 x;—x,=0
Roll .5 <0  Rollgjy >0  Pitchyeq <0 Pitchgg >0

Area of interest Area of interest Area of interest

(a) (b) ©

Figure 2.12: Stereo coverage in linear array scanners achieved by roll
angle rotation in two flying paths (a), pitch angle rotation in the

same flying path (b), and three-line camera (c)

A final significant characteristic is that (x; — xo) is always constant, as shown in Figures
2.9 to 2.12. It is always zero except for the backward and forward scanners in the three-
line camera where it has the values of —d and d, respectively, where d is the spacing

between the scanners in the focal plane.

2.3.2 Modeling of Linear Array Scanners

The rigorous and generalized sensor models are the two broad categories of sensor

models in use (McGlone, 1996). These are briefly discussed in the following subsections.

2.3.2.1 Rigorous Model

Rigorous (or exact) modeling of linear array scanners describes the actual geometric
formation of the scenes at the time of photography. This modeling requires a knowledge
of the IOP of the scanner and the EOP of each image in the scene. Usually, EOP do not
abruptly change their values between consecutive images in a scene, especially for space-
based scenes. Therefore, most rigorous modeling methods adopt a polynomial

representation of EOP (Wang, 1999; Lee et al., 2000); see Equations 2.12:
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X, =X, +AX i+..+AX,, i"*
Y, =Y, +AYi+.+AY,, i"
Zy=Zy+AZi+..+AZ, ,i"

0, =0+A0i+..+Aw,, "’

(2.12)

@, =p+Api+..+Ap,, i"

K,=k+Axi+..+Ax, i""

Where:

(Xoi» Yoir Zoi)
(o, @i, K3)

(nX, nY, nz)
(nw, ne, nK)

(Xo, Yo, Zo)

(AX, AY, AZ)

(AXn 5 AYnY: AZnZ)

(@, ¢, k)
(Ao, Ap, AK)

(A®nw, APngy Akini)

is the image number (which is directly related to the time of
exposure);

are the spatial location of the exposure station of image i;

are the rotation angles of image i;

are the degrees of the polynomials of Xy, Yo; and Zy,, respectively;
are the degrees of the polynomials of @, ¢; and x;, respectively;

are the spatial location of the exposure station of the first image in
the scene (image 0);

are the linear changes of scanner location (components of the
scanner velocity vector — the first order components of the scanner
location);

are the nX™, n¥™ and nZ™ order components, respectively, of the
scanner location;

are the rotation angles of the first image in the scene;

are the linear changes of the rotation angles (the first order
components of the scanner rotation angles); and

are the no™, ng™ and nk™ order components, respectively, of the

scanner rotation angles.

It is important to note that the order of each polynomial may differ from those of the

other polynomials. In other words, values of nX, nY , nZ, nw, ngp and nx may differ,

depending of the scanner movement pattern. Their typical values are therefore scanner-

dependent. The parameters included in Equation 2.12 are either given (directly) from the
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navigation units such as GPS and INS sensors mounted on the platform, or indirectly
estimated using ground control in bundle adjustment (Habib and Beshah, 1998; Habib et
al., 2001; Lee and Habib, 2002).

Other methods (Ethridge, 1977; McGlone and Mikhail, 1981; Lee et al., 2000) use
piecewise polynomial modeling to represent the flight trajectory and the platform
attitude. This option is preferable if the scene time is large, and the variations in EOP do

not comply with one set of polynomial functions.

With the large number of unknowns in indirect methods using Ground Control Points
(GCP), instability in the bundle adjustment exists, especially for space-based scenes
(Wang, 1999; Fraser et a., 2001). This is attributed to the narrow Angular Field of View
(AFOV) of space scenes, which results in very narrow bundles in the adjustment

procedures.

Finally, Lee and Habib (2002) avoided the polynomial representation of EOP, by
explicitly considering the parameters of each image in the scene. Linear feature
constraints were used to aid independent recovery of the EOP of the images as well as to

increase the geometric strength of the bundle adjustment.

2.3.2.2 Generalized Models

Generalized sensor models represent an approximate transformation between the scene
and object coordinates and do not necessarily represent the exact transformation.
Therefore, they can be considered as approximate models. These sensor models can be
used as a generic solution for all sensor types (Paderes et al., 1989; Tao and Hu, 2001;
Grodecki and Dial, 2003). This class of models includes rational functions, such as DLT,

SDLT, and 2-D Affine, which will be introduced in the following subsections.
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2.3.2.2.1 Rational Functions

Recently, the US military intelligence community has initiated the use of the rational
function model. They have been implemented in some commercial software packages
(Madani, 1999; Dowman and Dolloff, 2000). It is important to note that some satellite
scene providers do not provide the IOP associated with their scanners or EOP associated
with their scenes for security reasons (Fraser et al., 2001). Some satellite scenes are
provided nowadays with generalized models, such as rational function models, describing
the relation between scene and object coordinates. A general form of the rational

functions can be written in Equations 2.13.

e F/(X,Y,Z)
F(X,Y,Z) 2.13)
F(X,7,Z) '
I F/(X,Y,7)

where F; is a polynomial function of r-degree of the object coordinates (X, Y, Z).
Equations 2.13 represent a forward transformation from the object coordinates to the
scene coordinates. The degree of the polynomial is the maximum summation of the

powers of the object coordinates. For example, in a third-degree polynomial such as

ZCkX “y*7z" the summation of a, b and ¢ should not exceed three. An alternative
k

representation, the backward representation, can be seen in Equations 2.14, where the

object planimetric coordinates are rational functions of the elevation and the scene

coordinates.
_ B/ (x7 Vs Z)
B;(x,y,2) (2.14)
¥ = B;(x,y.Z)

B} (x,»,2)
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Where B/ (x, y, Z) is an r-degree polynomial. The denominators in each expression may
be the same or different. For example, F," and F4" in Equations 2.13 — or B," and B4 in

Equations 2.14 - could have identical or different coefficients).

Similar to the case of rigorous modeling, the rational functions’ parameters can be
determined directly (using scanner IOP and EOP) or indirectly using control information

(Tao and Hu, 2001).

It is important to mention that directly determined rational functions’ parameters are
subject to biases in the scanner’s IOP or EOP (Baltsavias et al., 2001; Fraser et al., 2001;
Hanley et al., 2002; Fraser and Hanley, 2003). Therefore, indirectly determining these
coefficients is preferable for the achievement of increased absolute accuracy. On the
other hand, many GCPs are required to indirectly determine these parameters (Tao and

Hu, 2001), which therefore limits the use of rational functions, especially in remote areas.

2.3.2.2.2 Direct Linear Transformation (DLT)

The collinearity equations (Equations 2.1) can be rewritten so that the image coordinates

are rational functions of the object coordinates (Abdel-Aziz and Karara, 1971):

‘o AX+AY+A,Z+ A,
1+ A, X +A4,Y+A4,Z
(2.15)
_AX+ AY + A, 7 + Aq
ST AN+ A Y47
where A, ..., A1 are the DLT parameters. It is important to note that DLT consists of

first-degree forward rational functions with common denominators. Therefore, these
parameters can be obtained directly (using IOP and EOP) or indirectly (using GCP).
Although DLT can be considered as the rigorous model of frame images, it is considered
as approximate modeling of linear array scanners, since the EOP are no longer the same

for images in the scene.
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Wang (1999) developed self-calibrating DLT, referred to as the SDLT, which includes an

additional parameter, A4;,, representing additional correction to the image coordinates:

‘e AX+AY+AZ+ A,

1+ A, X +A4,,Y+A4,Z
A X +AY +A,Z + A
1+ A4, X +A4,Y+A4,Z

(2.16)

y—A,xy =

Importantly, Wang assumed a straight line trajectory with constant heading in his

derivation.

2.3.2.2.3 Two-D Affine Model

For scanners with a narrow AFOV and moving with constant-velocity and constant
attitude, the relationship between the scene and object coordinates can be approximated
by a 2-D Affine transformation (Equations 2.17) using fewer parameters (Ono et al.,
1999; Fraser, 2000). This characteristic makes it appealing to many researchers and
applications (Okamoto, 1992; and Okamoto et al., 1992; Okamoto et al., 1996; Ono et al.,
1996; Okamoto and Fraser, 1998; Ono et al., 1999; Fraser, 2000; Hattori et al., 2000; Ono
et al., 2000).

x=AX+AY+AZ+A,
(2.17)

y=AX+AY+A,Z+ A
Fraser et al. (2001) achieved sub-pixel accuracy using the 2-D Affine model for IKONOS
scenes. Therefore, this model will be closely investigated in Chapter 4. Achievement of
such a level of accuracy motivates the use of this type of model for space scenes.
However, it is important to mention that such accuracies are achieved under the
assumption of high-quality image mensuration and ground control, and favorable

imaging geometry (Hanley and Fraser, 2001; Fraser et al., 2001; Fraser et al., 2002).
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It is important to mention that raw scenes obtained from linear array scanners comply
with perspective geometry. Therefore, prior to using the model in Equations 2.17, a
perspective-to-affine transformation must be applied to transform the scenes from their
original state, as a perspective projection, to a 2-D Affine model (Okamoto et al., 1992;
Okamoto et al., 1996; Okamoto and Fraser, 1998; Ono et al., 1999; Hattori et al., 2000;
Ono et al., 2000). Such a transformation assumes flat terrain or a DEM and assumes a
knowledge of the scanner roll angle. Chapter 5 of this dissertation is dedicated to the
analysis of this transformation together with developing the relationship between the

rigorous model and the parallel projection parameters.

2.3.3 Epipolar Geometry of Linear Array Scanner Scenes

As discussed earlier, every scan line at each different exposure station has a different
perspective center and attitude. Therefore, the EOP will vary from one scan line to
another. Hence, the epipolar lines should be clearly defined in such scenes before
studying their geometry. Figure 2.13 shows a schematic drawing of two linear array
scanner scenes. For a 1-D image in the left scene with O as its perspective center, point p
can correspond to many epipolar planes, unlike the case of frame images - compare
Figures 2.1 and 2.13. In this case, there are as many epipolar planes as there are
perspective centers in the right scene. Therefore, the epipolar line cannot be defined as
the intersection of planes. Instead, the second definition used in frame images is adopted,
where the epipolar line is defined as the locus of all possible conjugate points of p in

the other scene based on the orientation parameters.

In order to determine the epipolar line, the EOP of the scan lines together with the IOP of
the scanner must be available. The epipolar line can be determined in a similar manner to
that discussed in Section 2.2.2 by repeating the procedure for each scan line, since each
scan line has different EOP. The change in EOP from one scan line to the next is one of

the factors that determine the shape of the epipolar line. Subsections 2.3.3.1 and 2.3.3.2
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analyze the shape of epipolar lines derived from the rigorous perspective model and from

the 2-D Affine model, respectively.

Figure 2.13: Epipolar line in linear array scanner scenes

2.3.3.1 Epipolar Line Determination using the Rigorous Model

Kim (2000) originated this determination by modeling the changes of EOP, as expressed
in Equations 2.18. This model is called the “Orun and Natarajan” model as cited from
Orun and Natarajan (1994). The author indicated the suitability of the model for
describing the EOP of SPOT scenes.
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X, =X, +AX j+AX, j°
Y, =Y, +AY j+AY, j?
Zy, =Zy+AZ j+AZ, j?
K; =K+Ax j+Axk, Jj?

a)j =w

P, =9 (2.18)
X'y= X'\ +AX i+ AX, i°
Y'\ =Y\ +AY i+ AY', i’
2\ =Z'+AZ'i+AZ', i’
K' = K+AK' i+ Ak, i’

o, =0

¢ =9

where j and 7 are the scan lines in the left and right scene, respectively.

The author proved the relation that expresses the epipolar line, as indicated in Equation
2.19. The notations are modified to eliminate any conflict with those used in this

dissertation, especially in the analysis of the epipolar geometry presented in Chapter 3.

' K j+K,y+K,
V= — : : (2.19)
(K4] +Ksy+Kg )Sm Q(l)+ (K7] +Ky+ K, )COS Q(l)
where:
y is the point in the left scene, along the /™ scan line, whose epipolar line to
be determined;
v’ is the corresponding point in the right scene, as a function of the scan line
I
K;to Ky are constants for a given scan line j in the left scene; and
o) is a quadratic function of i associated with yaw angle variation of the right

S€Nnsor.

From Equation 2.19, the relation between y’ and i is no longer a straight line; rather, its

shape is hyperbola-like. Kim (2000) continued by analyzing the existence of conjugate
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epipolar lines in SPOT scenes. He selected two different points (p’; and p’,) on the right
epipolar line (/°,). The left epipolar lines (/,1 and /,») of the selected points were not
identical, as shown in Figure 2.14. Therefore, the commonly known term “epipolar pairs”

does not exist for a linear array scene whose EOP are modeled as in Equations 2.19.

e
~
RS

[ ]
° p’
Ip’lilp'z < P,1 //

Figure 2.14: The nonexistence of conjugate epipolar lines in linear array

scenes whose EOP are similar to those of the Orun and

Natarajan model

In Chapter 3, a different model (the constant-velocity-constant-attitude model) will be

analyzed and the resulting epipolar line equation will be developed.

2.3.3.2 Epipolar Geometry using 2-D Affine Model

Ono et al. (1999) derived the equation for epipolar lines, Equation 2.21, using the 2-D
Affine model.

V'=Cx+Cyx+C,y+C, (2.21)

Where C; to Cy are the epipolar line parameters determined using point correspondences
in both scenes. Equation 2.21 represents a straight line. Having straight epipolar lines
motivates us to investigate the parallel projection model very closely (as done in Chapter

4) and its use in epipolar resampling (Chapter 6).



34

2.4 SUMMARY

This chapter presented a discussion of the epipolar geometry of frame images as reported
in the literature. Of importance in this field are the facts that epipolar lines in frame
images are straight lines, and neither epipolar line determination nor epipolar resampling

require any knowledge of DEM.

Linear array scanners were also introduced in Chapter 2, including different methods for
their geometric modeling. Epipolar lines in linear array scanners were found to be non-
straight lines using Orun and Natarajan’s EOP model. As it is desirable to obtain a

straight epipolar curve, a subclass of this EOP model is chosen for analysis in Chapter 3.

Finally, the 2-D Affine (or the parallel projection) model is found to produce straight
epipolar lines. Therefore, such a model will be investigated for the purpose of epipolar

resampling of linear array scanner scenes (Chapters 4 to 6).
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CHAPTER 3: EPIPOLAR LINES OF CONSTANT-VELOCITY-CONSTANT-
ATTITUDE LINEAR ARRAY SCANNERS

3.1 INTRODUCTION

In Chapter 2, the epipolar geometry of linear array scanners of the “Orun and Natarajan”
EOP model were investigated and it was concluded that epipolar lines are not straight
lines (Kim, 2000). This chapter establishes the epipolar line equation of linear array
scanners using the constant-velocity-constant-attitude EOP model, which is a subclass of
“Orun and Natarajan.” To the best of the author’s knowledge, there has been no prior
research in this area. The motivation for investigating such a model stems from the fact
that many space scenes are acquired within a very short time (e.g., about one second for
IKONOS scene); similar assumptions were made for EOP when deriving the SDLT
model for linear array scanners (Wang, 1999). The scanner, therefore, can be assumed to
travel with constant velocity and constant attitude during the scene capture. Section 3.2 is
dedicated to the analysis of this EOP model, followed by a presentation of experimental

results using synthetic data in Section 3.3.

3.2 CONSTANT-VELOCITY-CONSTANT-ATTITUDE EOP MODEL

Assuming a linear transition of the platform having constant speed and attitude, the
navigation parameters (EOP for any scan line) of the sensor during the capture of the left

and right scene are as expressed as in Equations 3.1.
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Xy, =Xy +AX j

Yy, =Y, +AY j
Zy, =Zy+AZ j
K, =K
0, =0
P, =@
(3.1)
X' =X\ +AX"i
', =Y',+AY'"i
Z2',=2'+A"i
K =K'
o, =o
e
Where:
j is the scan line number on the left scene;
i is the scan line number on the right scene;
(Xo, Yo, Zo) is the position of the first exposure station in the left scene;
(4X, AY, A7) is the constant velocity vector of the scanner while capturing the
left scene;
(X0, Y0, Z) is the position of the first exposure station in the right scene;
(AX°, AY’, AZ”) is the constant velocity vector of the scanner while capturing the
right scene;
(o, @, K) are the rotation angles of the left scanner; and
(', @', k) are the rotation angles of the right scanner.
For a point (j, y;) in the left scene, the collinearity equations can be written as:
X-X,; | X=X,
Y=Y, :TR_,-(%,%,K,) Yi=Yo (3.2)
Z-Z,, / —c
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As mentioned in Chapter 2, (x; — xo) is always constant. It is always zero, except for the
backward and forward scanners in a three-line camera where it is —d and d, respectively.
In addition, x¢ is constant for the scanner as it is the principal point’s x-coordinate. As a
result, x; is always constant. It is always equal to x,, except for the backward and forward
scanners in three-line cameras where it is xo-d and x¢+d, respectively. Therefore, x is used

in lieu of x; in the following derivations. Equations 3.2 can be rewritten as:

(3.3)

Where:
m Vi Tz
Jonen) — | izt Tia Tios

Fist  Tiza Tiss

Rearranging and separating the constants and the parameters in Equations 3.3 results in:

Z

Y= l:,n(x xo)""”/lz( Yo +’”,13 c:l
J31(x xo)"’ J32( Vo +”;33 C

x —z ”ju(x_xo) jlz(yj — Yo +’",13 c
0 0
”/31()‘ xo)"‘”/sz(y, Yo +”/33 C

le(x xo) j22( Vi3 c)
o |:131(x xo) 132( ,33 C)}

r121(x xo)+r;22( yo)"”’,za C:l

(3.4)
Z

+| Y, —Z,,
J

l: ! ]31(x xo) 132( y0)+ 133 c

It is important to note that, for a given point, y; is constant; for a given image, the rotation

matrix R; is constant; and for a given camera, xo, yo and ¢ are constants. Therefore, the

following constant terms (4, to 44) can be introduced:
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’”jn(x )+rj12(y yo) 113( C)

A =
1 rj31(x )+rj32 (y J’o) 133( c)
A =X —7 jll(x xo 112( 0) ”,13 C X -7 4
’ vy T3 (x xo 132( 0) ’”;33 C R (3.5)
_rj21(x_x0) 122( j ) 123( c)
rj31(x_x0) ey (yj ) 133( C)
4y —7 m(x xo 122( 0)+ 123 C Yy 7 4
4 0, 0; 131(x xo 132( ) 133 c 0, 0413
Accordingly, Equations 3.4 are rewritten as:
X=4,7Z+4, (3.6
Y=A4,Z+ 4, )

which represent two planes parallel to the Y and X axes, respectively. Their intersection is
a straight-line (a light ray in space). On the other hand, for the right scene, the collinearity

equations are:

x'=x, X-X'y,
VYo |= A R i@y | Y =Y, (3.7)
—c -7,

Recall again that x’ is constant, and it is equal to x if the same scanner is used to acquire
both the left and right scenes (Section 2.3.1.4). Using EOP from Equations 3.1, Equations

3.7 can be written as:
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x'-x, X-X',-AX'i
Y=Yy | = A R iw gy | Y =Y =AY
—c Z-7'\—AZ'i
(AZ+ A, - X'\-AX"i
=" R o on | A3 Z+ A, —Y'\—AY'i (3.9)
Z-7'\—AZ'i

47 Tax] [4,-x,
= ﬂ"l‘ R'Ti(a)'i,¢'i,[('l.) Z A3 - i. AY' + A4 - Y'O
1| |az| | -2,

Dividing the first two equations by the last results in the following equations:

1
X=Xy _

—C
Z( aA A +rvi3l) ( il AX+r121'AY'+r'i3]'AZ')+(r'ill A, =1y Xy+r!
( a3 A 14, +rvi33)_l( s AX +r i23~AY'+V'i33~AZ')+(V'ns Ay =1 X+
yi_yO _

1 Al 1 1
Ay rle-Yo_ri31'Zo)

1 1 1 1
i23° A riZS'Y()_riB'ZO)

—C
Z( FigA + 1Ay + r'[32)_ ( P DX '+r' ) AY'+1'5, AZ') (r'[IZ‘AZ - ”'112 X'o+r' Ay — r'i22'Y'0_r'i32'Z'O)
Z( a3 A+ 1A, +r'i33) ( 13 AX o AY '+ 5 AZ! )+(r’i13‘A2 ry X g+ .4, r'i23‘YVO_r'i33‘Z'0)

(3.9
Where:

1 1 1

o Vi Vs
1 1 1 1

Rz(a)'i,(p'i,K) Fior i Tios
] 1 1

i Vi T

Let us introduce the constants B; to By as follows:



By =1 A 1 Ay 1y

B, =1, AX'+r', AY'+r' 5 AZ'

By =1ty Ay =1 X Ay =1 Y =15, 2
By =1y A+ 7" A+ 1

B, =7, AX'+7',, AY'+r' 5, AZ'

By =1y dy =1y X410 Ay =10 Y =13, 2
By =1y A + 1y Ay + 1

By =1 s AX'+1' ) AY'+r  AZ"

=T i23 33
o ) ' ! o " '
By =154y =1y X4 Ay =1 03 Y =153 2

Then, Equations 3.9 are rewritten as:

x'-x, Z.B,—iB,+B,
-c¢  ZB,-iBy+B,

V=Y, Z.B,—iB;+B
-c Z.B, —i.B; + B,

Equation 3.11 can be reduced as follows:

Z [(x'—xo )B7 +c.B, ] =i [(x‘—x0 )B8 +c.B, ] + [— (x'—xo )39 - c.B3]

. [(x‘—xo )B, +c.B, } . {— (x'—x,)B, - c.B3}

(x'-x,)B, +c.B, (x'-x,)B, +c.B,

Terms D; and D, can be introduced as follows:

(x'—x0 )B8 +c.B,

(x’—x0 )87 +c.B,

- (x'—x0 )B9 —c.B,
(x'—x,)B, +c.B,

D, =

D, =

Thus, Equation 3.13 is rewritten as:

Z=D,i+D,

40

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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Substituting Z from Equation 3.15 into Equation 3.12 results in:

y'—-y, (Di+D,)B,—iB,+B,

-¢  (Di+D,)B,-iB, +B,

or,

Expanding:

ci(D,.B, - B,)+c(B, + D,.B,)= —y',(B, + D,.B,) +i.y,(D,.B, - B;)
+,(B, + D,.B,)~ y',i{D,.B, - By)

V' [(Bo +D,.B, )]+ y‘i'i'[(Dl‘B7 - By )] = i'[yo(Dl'B7 - Bx)_ C(DI'B4 - B; )] (3.16)
+[v,(B, + D,.B,)~c(B, + D,.B,)|

Let us introduce the terms £ to £, as follows:

E, =B, +D,.B,

E, =D, B, - B, (3.17)
E, :yO(Dl'B7 _Bx)_C(D1~B4 _Bs)
E,=y,(B, +D,.B,)-c(B, + D, .B,)

Use the above terms to rewrite Equation 3.16 as:
y.E +y . iE,=iE,+E, (3.18)

Recall that i and y’; are the scene coordinates in the right scene (see Figure 2.10).
Equation 3.18, therefore, represents the locus of potential conjugate points in the right
scene; i.e., the equation of the epipolar line in the right scene. It is important to note that
y’i 1s unknown at image or scan line number i. The epipolar curve is a straight line if £,=0

(if y’; is a linear function of 7). Therefore, the term £, must be analyzed as follows:
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E, =D,.B,-B;

_ (x'—x0 )B8 +c.B, B, -B,

(x’—xo )B7 +c.B,
(x'-x,)B,B, +c.B,B, —(x'~x, )B, B — c.B, By
(x'—x0 )B7 +c.B,

_ ¢.B,B; —c.B By
- (x'-x,)B, +c.B,
_ BzB7 _BIBs
T x) L

bx)p g

c
_ (r'm.AX'+r'm.AY'+r'l.31.AZ')(r'“3.A1 +7' A + 15, )— (r'm.AX'+r'f23 AY'+r o, .AZ')(V'“I.A1 +7',. 4, + r'm)

x'—x,
AP B, + B,
c

Ez[(x'_xo) B, +Bl:| = (r‘ill'AX'+r'i21'AY'+r'i31'AZ')(r’i13‘Al 7' Ay + r'i33)
C

— (" AX S AY S AZ N A+ Ay )

_ ' ' [ ' ' ' [ ' 1,0 [ '
=AX Al(’”in”m rillri13)+AX A3(’”i11”i23 ri21ri13)+AX(rillri33 ri31ri13)
1 1 1 1 1 1 1 1 1 1 1 ] 1 1 1
+AY Al(”[21”i13‘”i11’”i23)+AY A}(ri21r[23_r[21ri23)+AY (”[217”,‘33_”1'317”[23)
1 1 i\l 1 1 ] 1 1 1 1 ] 1 1 1 1
+AZ Al(ri3lr[l3_rillri33)+AZ A}(ri31ri23_ri21ri33)+AZ (ri31ri33_ri31ri33)

Using the cosine and sine functions of 7, the following reductions can be made:

. 2 . . . .2
Pl i =13 7' = —sinw'cos” @'cosk'-cosw'sin @'sin k'-sin @'sin” ¢'cos k'
=—sinw'cosk'—cos @'sin ¢'sin '

1
=T

PP s =T 3 7'y = COS@'cos” @' cos k'—sin @'sin ¢'sin '+ cos @'sin” ¢'cos k'
=cosw'cosk'—sin @'sin ¢'sin k"'

0
=rin

P o =T s = COS@'sin @'sin k'+sin @'sin” @' cos k'+sin 'cos” @' cos k'
= sinw'cosk'+cosw'sin @'sin k'
=1
P o 7 = 5 7' py = €O’ @'cOs @'sin k'+sin @' cos @'sin @' cos @' cos k'+sin’ 'cos ¢'sin k'
—sin®'cosw'sin @'cos p'cos k'
=cos@'sink’

1
=T
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. . . ) 2
Pl M= Py =sine'sin @'sink'-cos@'sin” @'cosk'-cosw'cos” ¢'cos k'
=sin@'sin @'sin k'-cos w'cos k'

]
AT

' ' ' ' _ 2 (P 1 : ' Vel ' ( 1 2 (P '
P Vi =F 0 7'y = —sIN” @'cos @'sin k'+sin @' cos w'sin ¢'cos @' cos x'—cos” @'cos ¢'sin k
—sin®'cos w'sin @'cos @'cos k'
=—cos@'sink’

o
=V

Therefore, E, can be redefined as follows:

E2|:(X'ZXO)B7 +Bl:| = AX'As(_ r’i32)+AX'(r'iZZ)J'_AY'Al(r'iSZ)-i_AY’(_ r'i12)+AZ'Al(_ r'i22)+AZ’A3(r'i12)

= _[r'ilz (AY’_AZ‘A3)_ i (AX'_AZ'Al)‘*' i (AX‘A3 - AY'A1)]

i Tin Tim
=—AX' AY' AZ'
4 4 1
(3.19)
Introduce F as follows:
(x'=x,)
F=——"B,+B, (3.20)
c
Equation 3.19 can be rewritten as:
Pa Ty Tin
E, F=—AX' AY' AZ' (3.21)
A 4, 1

Setting E> to 0, the condition for having the epipolar curve as a straight line can be

expressed as:

1 ' '
Fip T Tim

AX' AY' AZ'|=0 (3.22)
A 4, 1
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Substituting for A; and A3, the above condition can be rewritten as:

i i '
! Y AZ''=0
rjll(x_xo)-i_rjlzﬁ(j_y0)+rj13(_c) erl(x_x0)+rj22 yj_y0)+rj23(_c) 1
rj31(x_x0)+rj32(yj _y0)+ r/33(_c) rf31(x_x0)+rj32(yj _y0)+rj33(_c)
i i s
AX' AY' AZ' =0

'ffll(x_xo)+rj12(y/ _y0)+r113(_c) }"_fZI(x_xO)-’—r_/'ZZ(yj _y0)+rj23(_c) rj}l(x_xo)—’—r_/'ﬂ(yj —y0)+1’j33(—c

This condition can be rewritten as the triple product of three vectors, vy, v, and v3, as:

(v, ®v,)ow, =0 (3.23)

where:

v, =| Ay'|>and

Equation 3.23 indicates that these three vectors, shown in Figure 3.1, must be coplanar in

order to have the epipolar curve as a straight line.
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Oy, Yo Zy)

22, 5.,

Figure 3.1: Vectors vy, v2, and v3 in Equation 3.23

In reality, it is hardly ever possible to find the above condition valid and absolutely equal
to zero. For the case of a general epipolar curve, in order to quantify the straightness of
the epipolar curve, the value of £, must be compared to the value of £;. The smaller the

ratio of (E, / E}), the epipolar curve will approach straightness.
E, can be analyzed as follows:

E, = D,.B, +B,
_- (x'—x0 )Bg —c.B; B,+B,
(x'—x0 )87 +c.B,
_ —(x'—x,)B,B, —c.B,B; +(x'-x,)B,B, + ¢.B,B,
(x'—x0 )B7 +c.B,
_ ¢B B, —cBB,
(x'—x0 )B, +¢.B,
_ BB,-BB,
[N
Mg 4B

C
_ ' o ' ' o v ' ' ' '
—[(r naedy = X4 Ay — 15, Y riSS‘ZO)(r a-A 14 +ri31)

x'—xo)

1 ] 1 1 1 1 1 1 ] ] 1 (
_(rill'AZ_rill'X0+ri21'A4_ri21'Y0_ri31'ZO)(ril3'Al +7' 4, ‘H’isz)]/[ B

B, +Bl}
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(x' x ) ] 1 1 |l 1 1 |l
E1|: B : B, +Bi| ( Flas-dy =13 X' +r' 5.4, ri23'Y0_ri33’ZO)(ri11‘Al+ri21'A3+ri3l)

' ' Al 1 1 ] Al '
—(r a-dy =1 X Ay =y Y iSI'ZO)(r n3-Ay 7054, +Vi33)
— ] 1 1 1 ] 1 1 1 1 1
=X A( 111”113_”111’”113)+X A ( iV is =i ”113) )

1
+Y A( P M= ”,11”123)+Y A ( A ”121”123)+Y ( o i ’"131’”123)

1 1
+Z A( P = r,,1r133)+Z A ( s~ ri21ri33)+ZO( 1 s ’"m)

\l ' 1 ' ] '
+A|A2( i Pas = ri13)+A1A4( i P ril3)+A2A3(ri21 s =i rm)

' 1 ] 1 1 1 1 1 1 ' 1 1
+A3A4(r i21 T3 ™7 i rl.23)+A2(r 3173 =i ri33)+A4(r 317037 i ri33)

1 1 1
( m iz =7 31 7”,13)
1

:XVOA( 132)+X ( 122)+Y'0 Al(r'i32)+Y'0( 112)+Z A( 122)+Z A( 112)
+A1A4( 132)+A A ( 132)+AZ(_r'i22)+A4(r'i12)

=r'y, (_Y‘O+ASZ'O+A4)+F’1‘Z2 (X'O_AIZ'O_A2)+r'i32 (_A3X'0+A1Y'0_A1A4 +A2A3)

= Py (Y A Z Yy = A2 )4, (X 4,20+ 4,2, - X))
P (CAX AT A Y, + A AZ 4 ALK, - A AZ,,)

= _[’”'nz (Y’O_YO/' _A3( ’O_ZOf))_r'iZZ (X’O_XO,/ —4, (Z'O_ZO./ ))
+r', (A3 (X‘O_X()j )_ 4, (Y'o _YOj ))]

T ia Fim i3
:_X’O_Xo,/ Y'O_Yo,j Z’O_ZO/'
A, 4 1
(3.24)
Substituting for F’ from Equation 3.20 into Equation 3.24, we obtain:
i i s
E F=-|X'\-X,, Y\Y, Z'.-Z, (3.25)
4, A, 1

The ratio (£, / E1) can be computed as follows:
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1 1 1
g T T

AX' AY' AZ'
& _ A, A, 1
E, L o '
X'O_Xoj Y'O_YOj Z'O_Zoj
4 4 1 (3.26)
i o i
AX' AY' AZ'

X-X,, Y-Y, Z-Z,

] 1 1
i i T

X'O_X()j Y‘O_Y()j Z'O_Z()j
o Y-Y, Z-Z,

In the above derivation, it was assumed that F' (in Equations 3.20, 3.21 and 3.25) does not
equal zero. In the case where this term equals zero, Equation 3.18 reduces to (i=constant),
which means that epipolar lines are straight lines and they coincide with the scene scan
lines (rows). This is a special case of SPOT where the vectors vy and v3 and B are
coplanar, as shown in Figure 3.2. In practice, it is rare to find this condition to be valid

due to the differences in the scanner locations and rotation angles.

B (X'g-Xqj> VoY Z ‘o Zo)

> V1 (" P P izd)

i Jox—X\iA

Figure 3.2: Epipolar lines corresponding to the scene rows

In summary, in order to analyze the shape of epipolar lines, the following procedure can

be used:
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e If F=0 (Equation 3.20), the epipolar lines are straight lines and they will coincide
with the scene rows (i=constant), as shown in Figure 3.2.
e If F#0, the epipolar lines are not straight lines. In this case, the ratio E»/Ej, as in

Equation 3.23, quantifies the straightness of the epipolar curve.

Recall that epipolar lines in frame images are straight lines in both the raw and
normalized images, as discussed in Chapter 2. Therefore, no distortions are introduced in
such a process. On the other hand, in linear array scenes, epipolar lines may not be
straight, but it is desirable for them to be straight lines in the normalized scenes.
Therefore, the evaluation of their non-straightness in the raw scenes will give us an

indication of the magnitude of the errors introduced in the normalized scenes.

3.3 EXPERIMENTS

In this section, the straightness of the epipolar lines will be examined. In order to study
the epipolar geometry, two scenes are needed. To this end, nine experiments have been
performed. Experiments 3.1, 3.2 and 3.3 were simulated to obtain stereo coverage by
changing x; values similar to what was discussed in Section 2.3.1.4 for three-line camera,
and from different altitudes. On the other hand, Experiments 3.4, 3.5 and 3.6 were
simulated to obtain stereo coverage by changing the pitch angles along track similar to
that of IKONOS, and from different altitudes. Finally, Experiments 3.7, 3.8 and 3.9 were
simulated to obtain stereo coverage by changing roll angles across-track similar to that of
SPOT and again from different altitudes. Table 3.1 summarizes the experiments
according to stereo coverage method and altitude. In these experiments, as the scanner’s

altitude increases, the AFOV was reduced to maintain similar ground coverage.
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Table 3.1: Summary of Experiments 3.1 to 3.9

Altitude
1000 m 680 km 822 km
Stereo Three-line scanner | Experiment 3.1 | Experiment 3.2 | Experiment 3.3

coverage | Changing pitch angle | Experiment 3.4 | Experiment 3.5 | Experiment 3.6

method Changing roll angle | Experiment 3.7 | Experiment 3.8 | Experiment 3.9

Figure 3.3 shows the footprint of the scenes for the different experiments. The footprints
have been identified by projecting the scan lines using their positions and orientations
onto a zero-elevation surface plane. It must be noted that the elevation is not required in
order to determine the epipolar geometry. However, it has been used here so as to
visualize the approximate ground coverage of the scenes at a certain elevation. Five
points have been selected in the left scene in each of these experiments, as shown in
Figure 3.4. The projection of these points on the zero elevation surface plane is also
shown in Figure 3.3. Again, the true elevation values of these points (labeled from 1 to 5)
are not required for determining their corresponding epipolar lines. Figure 3.5 shows the
corresponding epipolar lines of these points. The epipolar lines were drawn within the
extent of the right scenes. Dotted straight lines were added between the beginning and
ending points to depict visually the straightness of these epipolar lines. It has been found
that neither ' (Equation 3.20) nor E, (Equation 3.21) equals zero. Therefore, for the
general case of a linear array scanner (even with the constant-velocity-constant-attitude
trajectory model), the epipolar lines are not straight. In order to quantify the straightness

of epipolar lines, Table 3.2 lists the values of E»/E; for the experiments.
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Table 3.2: Values of E,/E; for various points in Experiments 3.1 to 3.9

52

Point Experiment

number 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9
1 0.031 | 0.0052 | 0.0043 | 0.03084 | 0.00515|0.00426| -0.012 | -0.076 | -0.062
2 0.031 | 0.0052 | 0.0043 | 0.03083 | 0.00515|0.00426| -0.114 | -0.077 | -0.063
3 0.031 | 0.0052 | 0.0043 | 0.03082 | 0.00515|0.00426| -0.144 |-0.077 |-0.065
4 0.031 | 0.0052 | 0.0043 | 0.03081 | 0.00515 |0.00426| -0.158 | -0.077 | -0.066
5 0.031 | 0.0052 | 0.0043 | 0.03080 | 0.00515|0.00426| -0.167 | -0.078 | -0.067

Mean | 0.031 | 0.0052 | 0.0043 | 0.03082 | 0.00515 [0.00426| -0.119 | -0.077 |-0.065

+Std  {£0.000|+0.0000(+0.0000| +0.00002 |+0.00000|+0.0000|+0.0632 *-0.0006 +0.002
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Examining the standard deviation of E»/E; of the selected points in each experiment, as
listed in Table 3.2, it is noticeable that E»/FE; values do not change from point to point in
the scene in Experiments 3.1 to 3.6. This means that these epipolar lines, even if they are
not straight lines, are changing in a similar fashion. On the other hand, the standard
deviations of E»/E; values in Experiments 3.7 to 3.9 are relatively large, which
consequently produces a high variation in the shapes of the epipolar lines. This is
confirmed by an extreme example, Experiment 3.7, as shown in Figure 3.5. Therefore, it
can be concluded that stereo coverage regimes similar to that of three-line camera or

IKONOS are superior, in terms of shape variation of epipolar lines, to that of SPOT.

Examining the average values of E,/E, as listed in Table 3.2, it is noticeable that E,/E)
decreases as the AFOV decreases, for the same stereo coverage type. Moreover, stereo
coverage similar to IKONOS or three-line cameras gives smaller average values than that
of SPOT at the same altitude. This can be confirmed by a comparison of the average
values of Experiments 3.1, 3.4 and 3.7; those of Experiment 3.2, 3.5 and 3.8, and finally
those of Experiments 3.3, 3.6 and 3.9.

It is important to note that the value of E»/E; can give an indication of the general

behavior of the epipolar line, but not necessarily within the extent of the scene.

3.4 SUMMARY

It has been concluded that, for the constant-velocity-constant-attitude EOP model, the
epipolar line is found to be a non-straight line in general. In addition, a quantitative

analysis of its non-straightness was introduced.

An analysis of alternative stereo-coverage possibilities revealed that along-track stereo
observation using pitch angles along with the use of three-line scanners is superior to
across-track stereo coverage using roll angles, as they introduce straighter epipolar lines.

Moreover, as the flying height increases and the angular field of view decreases, epipolar
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lines become straighter. Such conclusions motivate us to investigate the epipolar

resampling of space-borne scenes such as IKONOS.

However, as the rigorous model produces non-straight epipolar lines, an alternative
model will be sought. Parallel projection was chosen as an alternative model; it is

discussed in detail, including the rationale behind its selection, in Chapter 4.
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CHAPTER 4: PARALLEL PROJECTION

4.1 INTRODUCTION

In Chapter 3, the geometry of epipolar lines in constant-velocity-constant-attitude linear
array scanner scenes was studied. However, it is desirable to have scenes with straight
epipolar lines, which is the condition for straightforward resampling of imagery
according to epipolar geometry. Therefore, the amount of deviation from straightness
associated with epipolar lines in raw scenes can be considered as an indication of the

level of difficulty in transforming these scenes into normalized ones.

In this chapter, parallel projection, rather than the rigorous perspective model, is used to
model, or to approximate, the relationship between corresponding scene and object space
points. The chapter begins with the motivation and main reasons behind using the parallel
projection. Following an explanation of its concept, the mathematical model of parallel

projection is derived, and various cases of parallel projection are discussed and tested.

4.2 MOTIVATION

The parallel projection approximates the mathematical relation between the scene and
object space coordinates using fewer parameters. This characteristic makes it appealing to
many researchers and applications (Okamoto, 1992; and Okamoto et al., 1992; Okamoto
et al., 1996; Ono et al., 1996; Okamoto and Fraser, 1998; Ono et al., 1999; Fraser, 2000;
Hattori et al., 2000; Ono et al., 2000). A brief explanation of the reasons for choosing

such a model are listed below:

e The very narrow AFOV of some sensors (such as IKONOS) can result in having
almost parallel projection in the scanning direction. Figure 4.1 shows a schematic

drawing to illustrate this concept. Figure 4.1a is the actual perspective geometry of a
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scan line, while Figure 4.1b shows a parallel projection of the same area. The two
parts of the figure have been drawn separately to show the difference between the two
types of projection. As the AFOV gets smaller, the difference between the recorded
1-D images in Figure 4.1a and b become insignificant except for scale.

The constant attitude of the scanner during scene capture, as indicated by constant o,
¢, and x angles in Equations 3.1, leads to parallel scan lines. Consequently, the
resulting 1-D images and their ground strips will be parallel as shown in Figure 4.2a.
This fact, together with the small AFOV, establishes the projection direction, as
shown in Figure 4.2b.

Building upon the above two reasons, a constant-velocity (straight-line constant-
speed) trajectory makes the assumption of parallel projection more reasonable. Figure
4.3 shows a scene generated with a straight-line constant-speed trajectory of the
scanner that has very small AFOV and constant attitude. It can be proven that parallel
lines will be mapped as parallel lines. In addition, ratios between points 4, B and, C
will be preserved in the scene space if the scanner sweeps equal areas in equal time
intervals; 1.e., if the scanner moves with constant speed. On the other hand, Figure 4.4
shows a scanner that is not moving in a straight line. In this case, straight lines in the
object space will not be mapped as straight lines in the scene space. This is one of the
motivations for studying the epipolar geometry of the constant-velocity trajectory
model in Chapter 3. It is important to mention that similar assumptions were made for

deriving the SDLT model (Wang, 1999).

AFOV

—

(a) (b)

Figure 4.1: (a) Perspective projection and (b) parallel projection
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Figure 4.2: Parallel 1-D images and parallel ground strips (a), together

with narrow AFOV, set up the direction of parallel projection
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Figure 4.3: Straight line is projected as straight line, using a straight-line

trajectory scanner



58

o
o

Projection
Direction

Figure 4.4: Straight line is projected as non-straight line in a non-straight

line trajectory scanner

4.3 CONCEPT OF PARALLEL PROJECTION

Parallel projection can be defined using two surfaces. Points in one surface are projected
onto the other with parallel projection rays, as shown in Figure 4.5. Therefore, three
components are required: two surfaces and a unit direction in space. Examples of parallel

projections are shown in Figure 4.6.

Figure 4.5: Concept of parallel projection between two surfaces
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(€] (b)

Figure 4.6: Examples of parallel projection

Figure 4.6a shows parallel projection between two planar surfaces. In this case, the

following observations can be made:

e Straight lines in one of the planes are projected as straight lines in the other plane;

o Parallel straight lines in one of the planes are projected as parallel straight lines in the
other plane; and

e Distance ratios between points along a straight line in one of the planes are preserved

between corresponding projected points in the other plane.

The above three conditions comprise the requirements for an Affine transformation; it
can be concluded that parallel projection between planar surfaces is an Affine
transformation. The mathematical derivation will be provided in Sections 4.4.3 and 4.5.2.
On the other hand, not all Affine transformations are parallel projections. The reason is
that, in parallel projection between planes, there is one line (the intersection of the two
planes) along which the scale is unity while, in the general Affine transformation, this
criterion is not necessarily maintained. Therefore, parallel projections are a subclass of

the Affine transformation.

Figure 4.6b shows a profile of parallel projection between planar and non-planar surfaces.

It can be easily seen that this projection is not an Affine transformation. One of the
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reasons is that distance ratios are not maintained between the original and projected

surfaces.

The mathematical model of parallel projection between non-planar and planar surfaces -
i.e., between the object space and scene space - will be derived in Section 4.4. In Section
4.5, parallel projection between non-planar and two planar surfaces (i.e., two scenes) will

be analyzed.

4.4 PARALLEL PROJECTION BETWEEN NON-PLANAR AND PLANAR
SURFACES

4.4.1 Mathematical Model

Considering Figure 4.7, O is the origin of the object coordinate system with axes X, ¥,
and Z. Point O can be selected to be the origin of the scene coordinate system whose axes
are u, v and w. Let point P (X, ¥, Z)" in the object space be mapped to (u, v, 0)" in the
scene coordinate system. The unit projection vector with respect to the object coordinate

system is (L, M, N)", where:

N=v1-I*-M? 4.1)
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Figure 4.7: Mathematical model of parallel projection to a planar surface

Vectors vy, v, and vz can be introduced as follows:

u
v, =|V scene point coordinates with respect to the scene coordinate
0
system;
X
v, =0P =| Y | corresponding object point coordinates with respect to the object
zZ

coordinate system; and

L
v, =AM vector connecting scene and object points with respect to the
N

object coordinate system.
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where A is the distance between the object point P and its scene point p. Its value changes

from one point to another.

From Figure 4.7, the following vector summation equation can be written:

v, =R"v, +R"v, (4.2)

where R is the rotation matrix between the scene and object coordinate systems, based on
the rotation angles @, ¢, and x around X, Y, and Z axes, respectively. The vectors v, and
v3 are pre-multiplied with R' so that they are referenced to the scene coordinate system.

Substituting the components of the vectors vy, v; and v3 in equation 4.2 results in:

u X L
v|=R"| Y |+ AR"|M (4.3)
0 Z N

It is important to note that O was chosen to be the origin of the scene coordinate system
as shown in Figure 4.7. Therefore, scene axes u, v and w can be shifted with the three
shift values Ax, Ay and Az, to obtain a parallel scene coordinate system whose axes are x,
v, z, respectively. However, due to the nature of parallel projection, the same image is
obtained if a different Az value is chosen; i.e., if another parallel scene plane is chosen.
Therefore, the three shift parameters are dependent, and consequently only two shift

values Ax and A4y within the scene plane can be adopted, as seen in Figure 4.7.

A scale s can be applied to the recorded scene to ensure a smaller scene than the actual
object space. Applying the scale value s and the two shift values Ax and Ay to the scene

coordinates (u, v, 0) in Equations 4.3 results in:
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x ul| [Ax
yi=slv|+|Ay
0 0] 10
L X Ax
=s| AR"|M |+R"| Y ||+| Ay
| N VA 0

Therefore, the mathematical model of the parallel projection between planar (the scene)

and non-planar (the object space) surfaces is expressed as follows:

X L X Ax
Y |=sAR"|M |+sR"|Y [+|Ay (4.4)
0 N VA 0

Therefore, the eight parameters describing this parallel projection are:

e Two components of the direction vector (L, M);

Three rotation angles of the scene plane (@, @, x);

Two shift values (Ax, Ay); and

Scale value (s),

and will be called “scene parallel projection parameters”. N, the third component of the
projection vector, can be determined using Equation 4.1, and A can be found using the
third equation of Equations 4.4, which is computed in Equation 4.6. In summary, the non-
linear form of the parallel projection model includes four equations (Equations 4.4 and
4.1) and contains ten parameters (the parallel projection parameters together with N and

A). In the following section, a linear form of the parallel projection model is derived

4.4.2 Alternative Linear Mathematical Model

Equations 4.4 can be written as:
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x:s./l(r”L+r2]M+r31N)+S(r”X+r21Y+r31Z)+Ax
v :S.ﬂ,(rlzL+rzzM+r32N)+s(r12X+r22Y+r3zZ)+ Ay 4.5)
0=5A(rsL+7yM + 7 N)+s(rs X + 7, Y +7,Z)+0

From the third equation, A can be computed as follows:

X 1Y +r,Z
raL+rM+r, N

A=—

(4.6)

Substituting this value of A into the first and second equations of Equations 4.5 results in:

X + 1Y +r,Z
x=-5— 2 3 (r11L+r21M+r31N)+ s(r“X+r21Y+r31Z)+Ax

1L+ 1M + 1y N

1 X + 1Y +rZ
=—5 roL+r,M+r ,N)+slr,X+r,Y+r,Z)+A
Yy r13L+r23M+r33N(12 2 32 ) (12 2 32 ) Y

Rearranging, the above equations can be rewritten as:

x=slr _I’13(I”HL+7”21M+I’31N) X+ r _1”23(1””L+l”21M+I’31N) y
! rsLl+ry M +r; N 2 rsLl+ry M +r; N

7’33(’”11L+7’21M+’”31N)
+s| ry, —

]z 4 Ax
raL+r,M+r, N

(4.7)

y=sr 7’13(’”12L+’”22M+”32 X+s ’"23(’"12L+’”22M+”32N) y
E 1oL +rM+r, N raL+r M +r, N

ro\roL+r M +r.,,N
+S(V32 33 ( 12 22 32

JZ Ay
rsL+ry M +r; N

Let us assign U and V values as follows:



Consequently, Equations 4.7 can be rewritten as:

More concisely, Equations 4.9 can be written in the following form:

Where:

NN NN

—_

LS}

%)

w

(=)}

-

o0

ryL+r,M+r, N

raL+r,M+r, N
roL+r,M+r, N

raL+r M +r, N

= s(r11 —1*13U)X+S(r21 —7‘23U)Y+S(I"31 —r33U)Z+Ax
= s(r12 —7‘13V)X+S(7'22 —r23V)Y+s(r32 —r33V)Z+Ay

x=AX+AY+AZ+ A,
y=AX+AY + A Z + A

S(rll —7”13U)
S(rzl _r23U)
S(r31 —l’33U)
Ax

S(rlz _rle)
S(I”22 —1”23V)
S(”32 —7”33V)
Ay
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(4.8)

(4.9)

(4.10)

4.11)

Equations 4.10 are linear functions between the scene coordinates (x, ) and the object

coordinates (X, Y, Z), which constitute a 2-D Affine transformation (Okamoto, 1992;
and Okamoto et al., 1992; Okamoto et al., 1996; Ono et al., 1996; Okamoto and Fraser,
1998; Ono et al., 1999; Fraser, 2000; Hattori et al., 2000). One has to note that the 2-D

Affine transformation involves two equations and eight parameters (4, to Ag), which is

consistent with the non-linear parallel projection model (four equations and ten

parameters).
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Comparing Equations 4.10 and 4.4, the former equations are more suitable if point
correspondences (control points) in both the scene and object space are available. In this
case, the 2-D Affine parameters can be determined using a least-squares adjustment (if
more than four control points are available) without the need for linearizing the model
and obtaining approximations of the parameters through an iterative process. In
conclusion, with the existence of control points, the 2-D Affine model is superior in terms
of efficiency of computations. However, it is worth mentioning that navigation data, if
available, are easier to incorporate using the non-linear model (Equations 4.4) since the
mathematical relationship between the parallel projection and the navigation parameters

can be established. This will be discussed in Section 5.4, Chapter 5.
4.4.3 Special Case: Parallel Projection between Two Planar Surfaces

An interesting special case occurs when the parallel projection is between two planar
surfaces: that is, between scene and planar object space. In this case, Z in Equations 4.10

can be replaced using the plane equation (aX+bY+c) as:

x=AX+A4,Y+A,(aX +bY +c)+ 4,
y=A,X +AY + A, (aX +bY +c)+ 4,

x= (A4, +ad,)X + (4, +bA, )Y +(4, +cA,)
y=(4; +ad, )X + (A, +bA, )Y + (4, +c4,)

x=a,X+a,Y +a,

(4.12)
y=a,X+a,Y +a,
Where:
a, = A, +aA,
a, = A, +bA,
a, =A,+c4,
a, =As +ad,
as = As +bA,

a, = Ag +cA,



67

Equations 4.12 define the standard Affine transformation, Figure 4.6a.

4.4.4 Transformation from 2-D Affine Parameters to Scene Parallel Projection

Parameters

It is important to note that the parameters in Equations 4.4 are more related to the
navigation data (EOP of the sensor) than those in Equations 4.10. In addition, they will be
used for epipolar resampling, as will be explained in Chapter 6. Therefore, it is important
to derive the transformation from 2-D Affine parameters to scene parallel projection
parameters, while the inverse transformation has been previously established (Equations

4.8 and 4.11).

Ax and Ay can be computed directly from Equations 4.11. To solve for the direction

vector (L, M, N), Equations 4.8 can be rewritten as:

L(Vn _U-7’13)+M(”21 —U.I’23)+N(l"31 —U.I’33)=O
L(’”lz _V"’13)+M(”22 _V-r23)+N(r32 —VJ’33)=0

Multiplying the above equations by s results in:

LA, +MA, + NA, =0

(4.13)
LA + MA, + NA, =0

Rearranging and dividing the first by the second equations of Equations 4.13 results in:

LA, +MA, A, “4.14)
LA, +MA, A, '

A A, — 4,4
M =] 2101 T3S (4.15)

A3A6 - Az A7
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The first line of Equations 4.13 can be rewritten as:

LA, + M4, )’
<W=L4i7il (4.16)
A3

Substituting Equation 4.16 into Equation 4.1 and rearranging results in:

A7 4; 4,4
L%u?23+MQ+M“—§+um1122=1 (4.17)
3

3 3

Using Equations 4.15 And 4.17, L can be computed as follows:

4

L=+ 2 3 (4.18)
AAd —A.A AAd —A.A
R R R B 7E 7D T e R e XN ) Y I RO L
A A, — A, 4, A A, — A, A,

After L is obtained from Equation 4.18, M is directly solved using Equation 4.15. To
avoid the sign ambiguity in L and M, N has to be computed from Equations 4.13 and not
from Equations 4.1 or 4.16. From Equation 4.1, it is assumed that N is always positive
(i.e., the direction vector points upwards). Therefore, the sign of N that is obtained from

Equations 4.13 can be used to resolve for the sign ambiguities in L and M.

To determine the scale factor s, let us define 7, 7> and Tx as follows:

T, =A"+ A4+ A;
T,=A;+A; + A (4.19)
T, = A A+ A, A, + A, A,

Substituting for the values of 4i, 4y, 43, As, As, and A; from Equations 4.11 into

Equations 4.19 results in:
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o2, 2 2 22 2 2

I =s [(r11+r21+r31)+U (1”13+I’23+I"33)—2U(I”“l"13+I”21l"23+l"311”33)]
o2 2 2 22 2 2

T,=s [(’”12+’”22+7’32)+V (’”13"'"23+’”33)_2U(”12"13+”22"23+’”32"33)] (4.20)

2 2 2 2 '

Iy=s [(rllrlz+r21r22+r31r32)+UV(r13+r23+r33)—V(r11r13+r21r23+r31r33)

_U(”lzrw Tl Tl )]

Using the orthonormality properties of rotation matrices (Equations A.11, A.12, A.13,
A.17, A.18 and A.19, Appendix A), the values of T}, 75 and 75 can be written as follows:

T, =s*(1+U?)
T, =s7(1+7?) (4.21)
T, =s*(UV)

Dividing the first and second equations of Equations 4.21 by the third one, scale s is

eliminated and the following ratios are obtained:

2
5L _1+U (4.22)
I, Ur
2
L _1+V (4.23)
I, Ur
Equation 4.22 can be rewritten as:
2
VZE(HU ) (4.24)
I, U
Substituting the value of 7 into Equation 4.23 results in:
UH(r? -TT, )+ U (21 + T2 =TT, )+ (1) =0 (4.25)

Which is a quadratic form in U?. Now, let us define 4, B and C as follows:
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A= Taz -I1T,
B=2T] +T’ -TT, (4.26)
C=T;

Consequently, the solution of U will be as follows:

_—BEVB’-44C

24

U2

(4.27)

Experimentally, it is found that the positive solution of the square root of Equation 4.27
yields a value of U? that is always negative, which is a rejected solution. On the other
hand, the negative sign of the square root always produces a positive value of U7, and is

accepted as a solution.

Moreover, the experiments showed that if L > 0, then the value of U equals the positive

square root of U?. Otherwise, it equals the negative square root of U”.
After resolving the ambiguity in the value of U, Equation 4.24 is then used to compute V.

Finally, s is computed from the following equation, which is derived from the first

equation of Equations 4.21:

5= ‘/1+T212 (4.28)

To solve for the rotation angles, substituting for 7;; and i3, the 4;-equation of Equations

4.11 can be rewritten as:
A, = s(cospcosk —Using)

Rearranging, the above equation can be rewritten as:



Usin(z)+é

COSK =
CosQ

Referring to Figure 4.8, sin(x) can be derived from cos(x) as follows:

cos @ RS
cos’ (p—(Usin(p+—‘j
s

K

Usin(p+i
S

Figure 4.8: From cos(x) to sin(x)

A’ A
\/cosz(p—Uz sin’ p— 13- =21 Using
s s

sink =
cos @

Squaring both sides results in:

2
cos’ ¢ —U?sin’ go—f;—ZilUsingo
cos’ @

sin’x =

As-equation of Equations 4.11, substituting for 71, and 73, can be rewritten as:

A, = s(~cospsinx —Vsing)

—Vsin(p+é

sink = Al

cosQ

Squaring both sides results in:

71

(4.29)

(4.30)

(4.31)

(4.32)
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2
& sin2(o+A—§+2éVsin(o
sin’ x = S 5 § (4.33)
cos” @

Equating the right side of Equations 4.31 and 4.33, and exploiting the fact that

(cos” @ =1—sin” @) result in:

2 2
sin® (U + 72 +1)+sin ¢(2Uﬁ+ 2Vﬁj + (A—;+A—§— J =0 (4.34)
S S S S

which is a quadratic form in sin(¢). Let us define D, E and F as follows:

D=U>+V?*+1
EzzUﬁuVé (4.35)
S S
A? A7
F="L475 1
S2 S2

Substituting again in Equation 4.34 yields:

. —E++E*-4DF
sing = D (4.36)

Experimentally, it is found that, when L > 0, the positive square root in Equation 4.36
gives the correct value of sin(¢). Otherwise, the negative square root gives the correct

value of sin(@).

It is important to note that the range of ¢ is only from -n/2 to +n/2. Therefore, if sin( ) is

positive, the value of ¢ will range from 0 to +m/2; otherwise, it will change from -7/2 to

0.
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The value of x can range from -r to +m, and hence both Equations 4.29 and 4.32 must be

used to solve for x.

The A,-equation and A43-equation of Equations 4.11, substituting for r,;, 23 , 722 and 73,

can be explicitly expressed as:

, = s(cosw(sin x )+ sin w(sin @ cos & + U cos 9))

4
A, = s(cosw(—sinpcosk —U cos @) +sin o(sin k)

W

Rearranging these two equations results in:

sin K sinpcosk +U cose || cosw
sinw

—singpcosk —U cos @ sin k

© |wﬁk Y |Nﬁk

Sin(w) can be computed as follows:

A, . A A4, .
“Zsingcosk +-—2Ucosp+—>sink

: s s s
sin® = (4.37)
sin” k + (sin g cosx +U cos @)’

The range of w varies from -n/2 to +m/2 and can be exclusively determined using the

sin(w) expression of Equation 4.37.

Finally, the procedure for transforming the 2-D Affine parameters to the scene parallel

projection parameters is summarized as follows:

1. Use the fourth and eighth equations of Equations 4.11 to solve for Ax and Ay,

respectively.
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2. Use Equation 4.18 to solve for L, then Equation 4.15 to solve for M and, finally,
Equation 4.13 to solve for N.

3. Compute T}, T, and T3 using Equations 4.19.

4. Use Equation 4.27 to solve for U, Equation 4.24 to solve for V, and Equation 4.28

to solve for s.

5. Use Equation 4.36 to solve for ¢, then both of the Equations 4.29 and 4.32 to

solve for x and, finally, Equation 4.37 to solve for .

4.5 PARALLEL PROJECTION FROM NON-PLANAR SURFACE TO TWO
PLANAR SCENES.

4.5.1 Mathematical Model

Figure 4.9: Parallel projection from object space to two scenes

Ono et al. (1999) proved that, by using 2-D Affine model, epipolar lines become straight

lines. In this section, epipolar line parameters will be derived from scene parallel
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projection parameters (or 2-D Affine parameters). Recall that the transformation between
scene parallel projection parameters and 2-D Affine parameters has already been

established in the previous section.

Figure 4.9 shows two scenes in general positions and attitudes. Object space point P is
imaged in the left and right scenes as point p and p’, respectively, through the direction

vectors (L, M, N)" and (L’, M’, N’)", respectively.

Two sets of equations relating the object space point to the two scene points can be

rewritten, similar to Equations 4.4, as follows:

X' L' X Ax'
P 0|=s AR M |+s' R Y [+| A
0 N' Z 0
where:
x,y) are the scene coordinates of the corresponding point p’ in the right scene;
A’ is spatial distance between point P and its image on the right scene p;
R’ is the rotation matrix of the right scene coordinate system with respect to

the object coordinate system, defined by the three angles (@, ¢’, k’);
(L', M’, N’) is the direction vector for the parallel projection of the right scene; and

L' M, 0, ¢, kK", A, Ay, s”) are the right scene parallel projection parameters.

Rearranging, the above equations can be rewritten as:

X x—Ax L
Y :lR yv=Ay |-AM
z] | o N
X ] x'—Ax' A
Y =1'R' y-AY' |- A M
z| 7| o N
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Equating the object coordinates (X, Y, Z) in the above equations results in:

x—Ax L x'—Ax' L'
lR y-Ay |- M :l'R' y-Ay' =AM
1o N T o N
X Ax L x'—-Ax' L'
y|=|Ay|+sAR"| M +£'RTR' Y-AY' | -5 A RT| M (4.38)
o| |o N|° 0 N

Equations 4.38 express the relation between the left and right scene coordinates, which is
equivalent to the coplanarity condition for images captured according to perspective

projection (Refer to Section 2.2.2.2 in Chapter 2).

Another way to express this relation is to use the linear model (2-D Affine) for each of

the scenes, as follows:

xX=AX+AY+AZ+ A,

(4.39)
y=AX+AY + A7 + A

X=A\ X +A,Y+A4,Z+4,

(4.40)
V=A X+ A Y+A,7+A,

Where, 4, to Ag are the 2-D Affine parameters for the left scene, and 4°; to 4’ are the 2-

D Affine parameters for the right scene.

Equations 4.39 can be rewritten as:
X1 T T x—4,7-4,
Y| | | ly-4,2-4,

L 1 Y A; A 4, A A, Ay

[

N

W
(=2}

1N

[

SO O NN

[=2)

N
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Substituting in Equations 4.40 produces:

x' A, A, x] [4, A,
= + Z+
y| AIS 14;'6 i Y A|7 _A'g
(A5 A4 Ag] [v] |4 4] |4 A5 Aq Ay
_A'5 A'() As A6 Yy A'7 a A's A's As A6 A7
A1 T4, 4,4 4,774,]
+ —
A'8 A'S A'6 AS A6 AS
The above equations can be rewritten as:

MM R A

xX'=Bx+B,y+B,Z+B,

) (4.41)
V'=Bx+B,y+B,Z+ B,
Where:

_Bl B, . _A'1 454 4, B

_B5 BG - _A'S AVG AS AG

(B, [4y] [4, 4,4 4774

_B7_ - _A'7_ _A'S A'6__A5 A6_ _A7_

_B4 ] _ _A'4 ] _A'l A'Z ] _Al AZ T _A4_

_BS _ - _A'S _ _A'S A'6 _ _AS A6 a _AS |

From the first equation of Equations 4.41, Z is computed as:
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B B.B B.B B.B
=| =L |x'H By——~L |x+| By——L—=* |y +| B, ———*
B, B, B, B

V=Cx+Cyx+C,y+C, (4.42)
Where:
B
C, ==L
B3
B.B
C,=B,——-
B3
C3 :BG—B7B4
B3
B.B
C,= B, -2

which is similar to the equation derived by Ono et al. (1999). Before analyzing Equation
4.42, it is important to recall the definition of the epipolar line for a point in a scene as the
locus of all possible conjugate points in the other scene, based on the orientation
parameters. Therefore, for a given point (x, y) in the left image, Equation 4.42 becomes a
linear function in x” and y’, which is the equation of the locus of the conjugate point in
the right scene, and consequently the equation of the corresponding epipolar line in the
right scene. One must note that epipolar lines become straight lines by adopting parallel

projection.

In the following sections, two special cases of the parallel projection, which will be used

in epipolar resampling (Chapter 6), are developed.



79

4.5.2 Special Case: Same Direction Vector and Two Planar Scenes

This case is important for projecting the scene into a different plane, which is a part of the
epipolar resampling approach (as will be explained in Section 6.3, Chapter 6). Figure
4.10 shows two scenes that are constructed from parallel projection using the same

direction vector (L, M, N)T.

Figure 4.10: Parallel projection from object space to two planar scenes

along the same direction

Equations 4.38 can be written for this special case as:

Ax L X'—Ax'
=l Ay |+s(A-2)RT| M |+ = RTR| y'-Ay'
0 Nl ° 0

=

X Ax L x'—Ax'
y|=| Ay [+sALR" | M |+ SM"| y'—Ay' (4.43)
0 0 N 0

Where:
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Equations 4.43 can be written as:

x = Ax +s.A(r, L+ 1y M + 15, N )+ S(m,, (x'=Ax')+ m,, (y'~Ay"))
y=Ay+ A, L+ ryM + 1, N)+ S(my, (x'=Ax')+ m,, (y'=Ay")) (4.44)
0=0+ s.A/L(rBL +7,M + r33N)+ S(m13 (x'—Ax')+ m,, (y'—Ay'))

AA can be derived from the third equation of Equation 4.44 as follows:

S(mn (x'—Ax') + My (y'—Ay'))
s(rBL + 7, M + r33N)
(m13 (x '—Ax') My, (y '—Ay '))
s'(rBL +r,M + r33N)

AL =~

_ m, ' M3 ) m; Ax'+my, Ay’
S'(rl3L+r23M+r33N) s'(r13L+r23M+r33N) s'(rnL+r23M+r33N)

Substituting the value of A4 in the first and second equations of Equations 4.44 results in:

¥ = (S(m“ _ m13(7’11L+7’21M+7’31N)ij,+(s(m21 _ m23(”11L+r21M+731N)j]y.

(’”13L+’”23M+’”33N) (’”13L+’”23M+”33N)
A+ S (m13Ax'+m23Ay')(r“L+r21M+I’31N)_(mlle,+m21Ay,)
(”13L+"23M+’”33N) (4.45)
45
y=|§ mlz_mw(”lzl""rzzM"'rnN) Y4l s mzz_m23(7’12L+rzzM+”32N) %
(’"13L+”23M+”33N) (’"13L+”23M+”33N)

H Ay +S (m13Ax'+m23Ay')(l’12L+r22M +r32N)—(m12Ax'+m22Ay')
(1’13L+r23M +r33N)
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The above equations as can be rewritten as:

x=bx'+b,y'+b,

(4.46)
y = b4x'+b5y'+b6
Where:
m13 rHL+r21M+r31N)
(rsL+7rsM +75N)
mzs ”11L+’”21M+F3IN)
(ryL+7ryM + 7, N)
b, =Ax+S (m13Ax+m23Ay )(”11L+r21M +r31N)—(m11Ax'+m21Ay')
(}/‘13L+V23M +F33N) (4 47)
m13 ’”12L+’”22M+r32N) |
(RsL+rysM + 7, N)
b. =S| m _m23(r12L+r22M+r32N)
s 2 (7/13L+r23M+r33N)
by=Ay+S (m13Ax +my Ay )(”1214 +rpM + r32N) - (mlex'+m22Ay')
(nyL+7ryM +7,N)

It is important to note that b, to b¢ are constants. Therefore, Equations 4.46 represent a
standard Affine transformation. By comparing Equations 4.46 to Equations 4.12, the
former is a parallel projection between two planar scenes, while the latter is a parallel
projection between a scene plane and planar object space. In both cases, the mathematical

model is standard Affine, because they represent projections between planar surfaces.

4.5.3 Special Case: Two Planar Scenes Along the Same Projection Plane

Figure 4.11 shows the special case of the parallel projection, where the two scenes belong
to the same projection plane. The two scenes are considered to have the same @ and ¢
orientations, while having different x orientations (x for the left scene and x’ for the right

scene).



Figure 4.11: Parallel projection from object space to two scenes having

the same orientation

The rotation matrices R and R’ of the left and right scenes can be written as:

=R,R,R,
1 0 0 cosp 0 sing |[cosk —sink 0
=|0 cosw -—sinw 0 1 0 |lsink cosx O
10 sinw cosw ||—sing 0 cosgp| O 0 1
_’”'11 'y T

" ' ' '
R'=\r'y r'y 1y

=R,R,R,.
1 0 0 cosp 0 sing |[cosk' —sink' 0
=10 cosw —sinw 0 1 0 |sink' cosx' O
0 sinw cosw |—sing 0 cosp| O 0 1

R'R’ can be computed as follows:

82
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R'R'=(R,R R Y(R,R,R.)

o et Kk o e k!
_ pT pT pT
=R'R!RIR,R,R,

T pT
=R'RIR,R,.
=R'R,.

cosk sinxk O cosx' —sinx' 0
=|—sink cosx Of sinx' cosx' O
0 0 1 0 0 1

COSK COSK'+sinxsink' sinx cosk'—cosxsink' 0

=| —(sinx cosx'—cosxsink') cosxcoskx'+sinxsink’ 0
0 0 1

[cos(x'~x) —sin(x'~x) 0
=| sin(k'-x) cos(x'-x) 0
0 0 1

[cosAx —sinAx 0
=|sinAx cosAx 0
0 0 1

=R

Ax

where, remembering the orthonormality properties of rotation matrices (see Appendix A):

R,R,=R;R, =1 and
Ak =K'-K
Substituting the expressions of R'R” and Ax in Equations 4.38, the three equations can be
rewritten as:
x= Ax+5.A(r,L+7,M +r,N)+ %((x’—Ax')cos Ax —(y'=Ay')sin Ax)
—s./i'(rnL'+r21M'+r31N')
y=Ay+ s.i(rlzL +r,M + r32N)+ %((x'—Ax’)sin Ax + (y'—Ay')cos Ax) (4.48)

—s. A (1, L'+ 1y M'+7,, N")
0=0+ S./1(r13L + 7, M + r33N)+ 0- s./i'(rBL'+r23M'+r33N')

The third equation of Equations 4.48 can be written as:
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1 1 1
B rL'+r,,M'+r,, N 2

= (4.49)
1L+ 1M 41, N

Substituting the value of A from Equation 4.49 into the first and second equations of

Equations 4.48 results in:

1 1 1
1L+, M'+r, N
1L+ 1M +r,N

X = (%COSAK}C"*‘(_i,SinAij'+(S(”11L +ry, M+ I’31N)
S

- s(rllL'+r21M'+r31N')Jﬂ,'
s

+(Ax - i'(Ax'cos Ax —Ay'sin AK))
s

s S r.L'+r,.M'+r. N'
= | ZsinAx x4+ =cosAx |y'H s(r,L+r, M +r, N)-L2=—2 3 _s(r,L'+r,M'+r,N') |1

Y (s, ] (S' jy ( (12 2 32 /1’13L+FZ3M+F33N (12 2 32 )

s .

+(Ay——'(Ax's1nAK+Ay'cosAK)j

s

These equations can be rewritten as:
x=cx+c, y'+c, A'+c
1 2y 3 4 (450)

Y =csxX'+egy'+e, Aty
Where:

s
¢, =—CosAx
SV

s .
¢, =——sInAx
SV

1 1 1
rL'+r,,M'+r ;N
1L+ 1M +ryN

cy = S(I’“L +7, M + r31N) - s(r“L'+r21M'+r31N')

¢, =Ax —g(Ax'cosAK — Ay'sinAx)

s .
¢ =—sinAx
Sl

N
Cc = —COSAK
Sl
1 1 1
1 L'y, M'+r, N

¢, :S(’izL"'rzzM""rnN)
1L +r M +r,N

— s(iﬂlzL'+r22M'+r32 N')

cg =Ay —%(Ax'sin Ak + Ay'cos Ax) @51)
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It is important to note that A’ in Equations 4.50 can vary from one point to another. It can

be computed from the first equation as:

_ (] ' 1 Cl ' CZ 1 C4
Y =Xt y'te,| —x——tx'-2 y'—— 14 ¢
G G G G

C C,C C,C C,C
_ 7 _ 17 { _ 27 ' _ 47
_ H R ( _jx +(cé jy {cg j
& G G G
Cc,C, —C:.C —C C C,C, —CgC
y,Z(H sgjx.{ : JH( : jy+(47 33J
CeC3 —CrCy CeC3 —CrC CsC3 — CrCq CeC3 —CrC

The above equation can be rewritten as:

y'=Cx+Cyx+C,y+C, (4.52)
Where:
_ GG — GG
C'\=——=
CCy — CyC,
_c7
¢a= C.Cy —C,C
6C3 ~ 66 (4.53)
G
Cy=—"——
CeC3 —CrCy
_ GGy — GGy
C'y=—"—"=
CCy — CyC,

It is important to notice that Equation 4.52 is similar to Equation 4.42, except for the
physical meaning of the involved parameters. More explicitly, parameters C; to Cy4 in
Equation 4.42 relate two scenes with general orientations, while parameters C’; to C’4 in

Equation 4.52 relate two scenes along the same projection plane. Therefore, if the two
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scenes are known to share the same plane, Equation 4.52 can be used — otherwise,
Equation 4.42 has to be used. However, both equations are valid and can be used to
determine the epipolar lines knowing the orientation parameters or point

correspondences.

4.6 EXPERIMENTS

In this section, the mathematical models for parallel projection between object space and
one scene (Experiments 4.1 and 4.2), and between object space and two scenes

(Experiments 4.3 to 4.8) are verified.

Two surfaces are simulated, having parameters as listed in Table 4.1. Surface I is non-
planar, while Surface II is planar. In addition, four sets of parallel projection parameters
(Parameters 1 to 4) are simulated, as listed in Table 4.2. Scenes are generated based on
object space points (Surface I and II) and parallel projection parameters (Parameters 1 to
4) using Equations 4.4. Table 4.3 lists the configuration of the experiments. It is
important to mention that scene parallel projection parameters are chosen in such a way
that Parameters 1 and 2 result in stereopair in general position and orientation, while
Parameters 1 and 3 form two scenes along the same parallel projection direction (same L
and M). Finally, Parameters 1 and 4 result in a stereopair sharing a common plane (same

w and @).



Table 4.1: Simulated surfaces used in the experiments
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Surface Surface I Surface 11
Number of points 500 500
Minimum X (m) -5500.0 -5500.0
Maximum X (m) 5500.0 5500.0
Minimum Y (m) -5500.0 -5500.0
Maximum Y (m) 5500.0 5500.0
Trend direction (main slope) in X direction (%) 0.0 0.0
Trend direction (main slope) in Y direction (%) 0.0 0.0
Height variation yes no
Wave Amplitude (m) 100.0 -
Wave length in X direction (m) 5000.0 -
Wave length in Y direction (m) 5000.0 -

Table 4.2: Simulated parallel projection parameters used in the experiments

Parameters 1 Parameters 2 Parameters 3 Parameters 4

L -0.2 0.1 -0.2 0.1

-0.1 0.2 -0.1 0.2
@’ 5.0 -10.0 -10.0 5.0
¢° 3.0 -20.0 -20.0 3.0
K° -5.0 5.0 5.0 5.0
Ax (m) 0.0 0.01 0.01 0.01
Ay (m) 0.0 -0.01 -0.01 -0.01
s 2.0E-5 2.0E-5 2.0E-5 2.0E-5
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Table 4.3: Surface and parameter configurations of the experiments

Experiment Involved | Involved parallel projection | Involved parallel projection
surface |parameters for the first scene| parameters for the second scene

Exp. 4.1 Surface I Parameters 1 -

Exp. 4.2 | Surface II Parameters 1 -

Exp. 4.3 Surface I Parameters 1 Parameters 2
Exp. 4.4 | Surface II Parameters 1 Parameters 2
Exp. 4.5 Surface | Parameters 1 Parameters 3
Exp. 4.6 | Surface II Parameters 1 Parameters 3
Exp. 4.7 Surface I Parameters 1 Parameters 4
Exp. 4.8 | Surface II Parameters 1 Parameters 4

Figure 4.12 shows the configuration of the object surface and the scene footprint of
Experiments 4.1 and 4.2. The corresponding scenes are shown in Figure 4.13. Ten
relatively well-distributed GCP are selected in each experiment, seen as triangular
symbols in the figures, to compute the 2-D Affine parameters (Equations 4.10). Table 4.4
summarizes the results of the least-squares adjustment. As shown in this table, the normal
equation matrix, as in the case of Experiment 4.1, is not singular, and has a rank of eight.
Therefore, the eight 2-D Affine parameters (4; to As), are estimated based on the 10
GCP, (redundancy of 12). The variance components and the estimated parameters are
listed in Table 4.4. In addition, the residuals at the GCP are not significantly different
from zero. Note that no noise was introduced into the scene coordinates. Applying the
transformation of the estimated 2-D Affine parameters, as indicated in Section 4.4.4, the
derived scene parallel projection parameters, in Table 4.4, are exactly the same as the

original values used in the simulation, as shown in Table 4.2.
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Table 4.4: Results of Experiments 4.1 and 4.2

Experiment number Exp. 4.1 Exp. 4.2
Rank of normal 8 6
equations matrix (of
Equations 4.10)
Mathematical model 2-D Affine Standard Affine
for) 8.25E-16 6.43E-16
g 4, 2.02E-05 2.02E-05
g A 2.09E-06 2.09E-06
v o5
g ‘g A 3.92E-06 0
& g
< g As 1.39E-17 6.94E-17
()
& g2 As 1.78E-06 1.78E-06
B £
s < As 1.98E-05 1.98E-05
£
= A7 2.40E-06 0
m
As -6.25E-17 2.22E-16
2 L -0.2 -
8
S M -0.1 -
IS
3, a° 5 ]
3 ¢ .
T : :
S =
§; N K° -5 -
5 =
S Ax (m) 0 0
=
2 Ay (m) 0 0
N
S s 2.0E-5 2.0E-5

On the other hand, the normal equation matrix has been found to be singular, as in the
case of Experiment 4.2, because the object space is planar. Therefore, in these
experiments, the relationship between the object and scene points is no longer 2-D
Affine. Instead, it is standard Affine. Therefore, the A3 and 47 parameters are fixed (set to

0) and the least-squares adjustment is repeated. Standard Affine parameters are estimated,
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as listed in Table 4.4 together with the variance component. It is important to notice that
the transformation procedure outlined in Section 4.4.4 cannot be used to obtain the scene
parallel orientation parameters since eight independent parameters cannot be obtained

from only six parameters. Only Ax, Ay and s can be computed, as listed in the Table 4.4.

To proceed with testing the mathematical models relating two scenes, scenes of
Experiments 4.3 to 4.8 are simulated using the parameters listed in Table 4.3.
Configurations of these experiments are shown in Figure 4.14 and the recorded scenes in
Figures 4.15 and 4.16. Ten points are selected, shown in red circles, to test the
mathematical models. It is important to note that Equations 4.41 contain Z values
together with the scene coordinates of the points. Therefore, these points have to be
vertical GCP. Based on these points, parameters B, to Bs, in Equations 4.41 are estimated
in a least-squares adjustment. The results are listed in Table 4.5. In experiments 4.3, 4.5
and 4.7, the normal equation matrix is non-singular. Therefore, the parameters can be
estimated based on the 10 points, ensuring a redundancy of 12. On the other hand, the
normal equation matrix in Experiments 4.4, 4.6 and 4.8 is singular because the object
surface is planar. By fixing B; and B7 — that is, setting them to zero - the other parameters
can be estimated, comprising a standard Affine transformation. One should note that
correspondence is a function of the height, in the case of non-planar object space. On the
other hand, if the object space is planar, correspondence can be obtained without
knowing the height of the points, as the mathematical relationship between conjugate

points reduces to a case of the standard Affine transformation.
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Table 4.5: Results of implementing Equations 4.41 in Experiments 4.3 to 4.8

Experiment

mber Exp.4.3 | Exp.44 | Exp.4.5 | Exp.4.6 | Exp.4.7 | Exp.4.8
Rank of normal
equations matrix 8 6 8 6 8 6
(Equations 4.41)

Mathematical Equations | Standard | Equations | Standard | Equations | Standard

model 4.41 Affine 4.41 Affine 4.41 Affine
- oo 1.24E-15 | 8.47E-16 | 9.12E-16 |8.51E-16| 9.94E-16 | 7.66E-16
i % B, 1.07632 | 1.07632 | 0.947645 |0.947645 | 0.964854 |0.964854
@': % B, 0.180713 |0.180713 | 0.227643 |0.227643 | 0.201225 |0.201225
E *g B3 -7.19E-06 0 -4.07E-19 0 -6.70E-06 0
% é By 0.01 0.01 0.01 0.01 0.01 0.01
::n: E Bs -0.17072 | -0.17072 | -0.26902 | -0.26902 | -0.19042 | -0.19042
E -‘é Bs 0.970039 |0.970039 | 1.00589 | 1.00589 | 1.00798 | 1.00798
é % B -5.49E-06 0 -1.56E-18 0 -5.63E-06 0
g Bg -0.01 -0.01 -0.01 -0.01 -0.01 -0.01

In Experiments 4.3 to 4.8, the parameters of Equation 4.42, which describe the epipolar
line in one scene for a given point in the other scene, are estimated based on ten relatively
well-distributed GCP. These points result in ten equations containing four unknowns (C;
to Cy), ensuring a redundancy of six. The estimated parameters and the corresponding
variance components are listed in Table 4.6. This model is not valid for all cases of object
space and for all cases of scene parallel projection parameters used in the experiments. In
Experiments 4.4, 4.6 and 4.8, the two scenes were related through planar object space
and, therefore, related through a standard Affine transformation. In addition, the two
scenes in Experiment 4.5 - although the object space is non-planar - are also related
through a standard Affine transformation as they have the same projection vector.

Therefore, only in the case of non-planar object space and scenes in general orientation
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(as in Experiment 4.3) or scenes belonging to the same plane (as in Experiment 4.7) can

the model of Equation 4.42 be used.

Table 4.6: Results of implementing Equations 4.42 in Experiments 4.3 to 4.8

Experiment Exp.4.3 | Exp.44 | Exp.4.5 | Exp.4.6 | Exp.4.7 | Exp.4.8
number
Rank of normal 4 3 3 3 4 3
equations matrix
(Equations 4.42)
. oo | 8.68E-14 - - - 1.98E-13 -
g § Ci | 0.763987 - - - 0.840365 -
é g g C, | -0.99301 ; ; ; -1.00125 3
Z g G, | 0831977 | - i i 0.83388 i
=~ Cs | -0.01764 - - - -0.0184 -

The inability to derive the parameters describing the epipolar line for Experiments 4.4,

4.5, 4.6 and 4.8 is attributed to the fact that the relationship between conjugate points can

be expressed by a standard Affine transformation. In other words, the epipolar lines

reduce to single points since the conjugate point can be identified; that is, the locus of

conjugate points is 0-D.

Parameters C; to Ci, in Equation 4.42, relate the coordinates of the scenes studied.

Therefore, in order to generate normalized scenes, where no y-parallax exists, these

parameters should be analyzed and utilized, as will be discussed in Chapter 6. Moreover,

it is important to remember that all of the mathematical models and transformations,

which were derived in this chapter, are based on parallel projection. However, real scenes

are generated according to the rigorous perspective model. Therefore, perspective-to-

parallel transformation is the subject of the next chapter.
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4.7 SUMMARY

In this chapter, parallel projection has been introduced in terms of its motivations,
assumptions and underlying concept. The mathematical model for parallel projection and
the associated parameters were derived through a non-linear model using scene parallel
projection parameters and a linear model using 2-D Affine parameters. The mathematical
relationship between these two sets of parameters was derived and verified. The

suitability of these models can be summarized as follows:

e The linear model is suitable in the cases where GCP are available. The GCP are
used to directly estimate the 2-D Affine parameters.

e The non-linear model is suitable in the cases where scanner navigation data are
available. The scene parallel projection parameters can be derived based on the

navigation data, as what will be discussed in Section 5.4, Chapter 5.

The mathematical relationship between two scenes, in general positions/orientations as
well as in special cases, generated according to parallel projection, was also derived. The
equation of the epipolar line in scenes generated according to parallel projection was
derived and its character confirmed as a straight line. It was concluded that, for flat
terrain, epipolar lines reduce to points and the mathematical relationship between the

associated scenes is a standard Affine transformation.

After discussing the epipolar geometry of scenes generated according to parallel
projection, Chapter 5 deals with the necessary transformation of scenes generated

according to perspective geometry to comply with the parallel projection model.
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CHAPTER 5: PERSPECTIVE TO PARALLEL PROJECTION

5.1 INTRODUCTION

The mathematical model associated with scenes captured according to parallel projection
has been discussed in great detail in Chapter 4. The geometry of epipolar lines in these
scenes has been discussed, and it has been established that the perspective geometry
associated with high altitude imaging systems with narrow AFOV is very similar to
parallel projection geometry. However, the captured scenes from such sensors have to be

modified to become closer to parallel projection.

In this chapter, the means to transform scenes from perspective-to-parallel projection is
established. First, scale modification along the scanning direction is presented in Section
5.2, which entails altering the scene coordinates to compensate for the transformation
from perspective to parallel projection. The effect of non-planar object space on the
quality of such a transformation is also discussed. Section 5.3 deals with the possible
ways of obtaining the roll angles that are required for perspective-to-parallel
transformation. To address cases where scanner navigation data (scanner EOP) are
available, deriving scene parallel projection parameters is discussed in Section 5.4.

Finally, experimental results are presented in Section 5.5.

5.2 SCALE MODIFICATION ALONG THE SCAN LINE

As discussed in Chapter 4, scale is uniform throughout scenes captured according to
parallel projection. However, scale may be non-uniform in perspective projection. As
discussed in Chapter 3, there exist three imaging configurations for stereo coverage: by
changing the pitch angle along the flying direction (similar to that of IKONOS); changing
the roll angle across the flying direction (similar to that of SPOT); or by using three-line
scanners (similar to that of MOMS and ADS40). For these types, scale modification
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along the scanning direction, in order to achieve uniform scale along the scan line, is

discussed in Sections 5.2.1, 5.2.2, and 5.2.3.

5.2.1 Scale Modification for Scenes Whose Stereo Coverage is Achieved by changing
the Pitch Angle Along the Track

Figure 5.1 depicts a scan line oriented with a pitch angle, 7, along the flying direction. It
shows the footprint as it is defined by the intersection of the plane through the
perspective center and the scan line with the object space. The scale of any point can be
defined by dividing the image vector with the object vector. Considering a point in the
object space along the optical axis, the length of the image vector is ¢ and the length of
the object vector is H/cos(7), where H is the flying height above the average elevation.

Therefore, its scale, s, can be expressed as:

T H/cos(n) D

Figure 5.1: Scale uniformity along the scan line for scenes whose stereo
coverage is achieved by changing the pitch angle, 7, along the

track
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If the footprint is parallel to the scan line, this scale value is constant for all points along
the scan line. Therefore, for such imaging configuration and horizontal flat terrain,
uniform scale exists for all points along the scan line, and consequently no scale

modification is required. A zero roll angle across the flight direction is assumed.
5.2.2 Scale Modification for Three-Line Scanner Scenes
A three-line scanner is shown in Figure 5.2. Scale can be computed by dividing the

length of the image vector by that of the corresponding object vector. Therefore, for the

nadir-looking scanner, the scale along the optical axis, s, can be computed as:

§=— (5.2)

u n n
. d od
» 4
v H

Figure 5.2: Scale uniformity along the scan lines of three-line scanners

For forward- and backward-looking scanners, scale can be computed by dividing the
length of the image vector (¢ / cos @) by the length of the object vector (H / cos ), which

results in the same scale value as that computed in Equation 5.2.
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Similar to the discussion in Section 5.2.1, assuming zero roll angle across the flight
direction and flat horizontal terrain, scale is uniform along each scan line (that is, nadir,
forward-, and backward-looking scanners), and consequently no scale modification is

required.

5.2.3 Scale Modification for Scenes Whose Stereo Coverage is Achieved Across-

Track using Roll Angles

Tilting the scanner across the track using roll angle results in non-uniform scale along the
scanning direction. Scale modification of coordinates, generated according to perspective
geometry, to comply with parallel projection, has been established (Okamoto et al., 1992;
Okamoto et al., 1996; Okamoto and Fraser, 1998; Ono et al., 1999; Hattori et al., 2000;
Ono et al., 2000). Such a transformation will be discussed together with the underlying

assumptions in this section.

Figure 5.3 shows the case of a 1-D scanner, represented by b,d; and the corresponding

perspective center O. Therefore, AFOV can be computed as:

b d
AFOV =2 arctan(h] =2 arctan( dlis J (5.3)
c c
where:
ai is the intersection of the optical axis with the scan line; and
c is the principal distance of the sensor involved.

Assuming an average elevation (H) as shown in Figure 5.3, points a;, b;, and d;, which
are mapped through perspective projection, represent points 4, B, and D, respectively in
the object space. If the optical axis is chosen to represent the parallel projection direction,
then the object space points A, B, and D will be mapped as points a», by, and d>,
respectively, before applying a scale. For purposes of illustration, the same object points

are also projected onto plane E, which is parallel to the image plane and passing through
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point 4. The object points will be mapped into plane E as points 4, B, and D; through

perspective projection and as points 4,, B>, and D, through parallel projection.

a,ay

Average elevation

Figure 5.3: Scale non-uniformity along the scan line for SPOT scenes

Points a; and a, are identical because they belong to the optical axis, which is chosen as
the parallel projection direction. Similarly, 4, and A, are identical. Distances 4,8, and
a1b;, which are mapped in a perspective projection, are related through the scale of point
A (Equation 5.4). Similarly, distances 4;D; and a,d,, are related through the same scale,

which is the scale between the plane E and the image.

0T H/C(fs(l//) B lell)?ll B lej)ll >4
where:
s is the scale of point 4; and
7% is the scanner roll angle.

It is preferred to have similar scales for the perspective and parallel projections. Thus,

plane E is chosen to compare the coordinates of the two projections. Any point P in the
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object space within the AFOV is mapped into plane E as points P; and P, in perspective

and parallel projections, respectively (see Figure 5.4).

K
e "o,
'3/)6

Average elevation

e

Figure 5.4: Perspective to parallel transformation of point P in a SPOT

scenc

In Figure 5.4, light ray OP makes an angle o with the optical axis. As the ray Pp» is
parallel to the optical axis, the angle P;PP, equals «. The tangent of angle « can be

derived from the two triangles P1PP, and OA,P; as:

tan(cr) = L R (5.5)
PP, H/cos(y)
Moreover, the tangent of the roll angle, y, can be derived from triangle 4,PP; as:
tan(y )= Ph (5.6)

P2

Combining Equations 5.5 and 5.6 results in:
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Yo, =Yy — Y,
Y, tan(y) H/cos(y)

Rearranging, the above equation can be rewritten as:

H
Y, =Y, —
e H—7Y, Sin(l//)

It is important to remember that Y,; and Y,, are the coordinates of the perspective and
parallel projections, respectively, on plane E. ¥,; must be scaled down to the image plane
using the scale factor s (Equation 5.4). It is preferred to have similar scales for parallel
and perspective projections. Therefore, s is chosen for scaling down the parallel

projection points. Substituting for ¥,» by y,»/s and for Y, by y,1/s results in:

Ypa _ Vi H
s s H—hsin(l,y)
S

Where y,1 and y,, are the coordinates of the perspective and parallel projections,

respectively, in the image plane. Rearranging, the above equation can be written as:

H

Yp2 =JVp1

H - hsin(t//)
s

Substituting for H from Equation 5.4 results in:

c.cos(y)
S

C.COS(l//)_ Vi
o sin(y)

Yp2 =Vpi

Rearranging, the above equation can be rewritten as:
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1
Yp2 = VP (5.7)

l—htan(w)
c

Equation 5.7 represents the transformation from perspective to the parallel projection
along the scan line (Okamoto et al., 1992; Okamoto et al., 1996; Okamoto and Fraser,
1998; Ono et al., 1999; Hattori et al., 2000; Ono et al., 2000). It is important to note that
the scale s, which depends on the average elevation, is not required for a transformation
such as this. It must also be mentioned that this equation is valid for other stereo coverage
methods such as IKONOS or three-line scanners, if the roll angle, y, which may differ
from zero, is available. Therefore, Equation 5.7 is a general formula describing the
perspective-to-parallel transformation for linear array scanner scenes. This equation
assumes a knowledge of the roll angle, which can be available directly from scanner
orientation angles (as will be discussed in Section 5.3.1). On the other hand, in cases
where it is not available, GCP can be used to indirectly estimate the roll angle (as will be
discussed in Section 5.3.2). However, let us first discuss some of the assumptions that

were made during the derivation of Equation 5.7.

One of the main assumptions in the previous derivation is having flat horizontal terrain.
Therefore, it is important to quantify the introduced error due to possible deviation from
this assumption. Figure 5.5 shows point P that has a perspective projection of P; on plane
E, and which is below the average elevation by a distance AZ. If point P is assumed to
have an elevation similar to the average elevation, then the parallel projected point will
be P, on plane E. However, the true parallel projection point is Ps;. Therefore, an error of
P»P; (or AY»3) has been introduced. An error such as this may be expressed as a function

of AZ in the following derivation.



Average elevation

Figure 5.5: Effect of non-flatness of terrain on the perspective to parallel

transformation for SPOT scene

The length PP’ can be expressed in triangles PP’P’’ and PP’P’’’ as:

AY. AZ
PP': 23 —
sin()  cos(y +a)
Therefore:
AY.. = AZsin—(a)
> COS(l// + a)

Substituting for AY>3 by Ay,s/s results in:

sin(a)

Ay, =S N —F——
Va8 sy 1 a)
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(5.8)
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Equation 5.8 expresses the introduced error by assuming an average elevation instead of
the true elevation while transforming from perspective to parallel projection. The derived
formula, Equation 5.8, is similar to that derived by Ono et al. (1999). For SPOT scenes, ¥
=26°, ¢ = 1.082m, and H = 822km; therefore, s = 1.18e-6, from Equation 5.4. For a point
at the end of the scan line, o = 1.9°, an elevation error of AZ = 113m introduces error

Ay of 5.0 pum. For IKONOS and three-line scanners, Equation 5.8 reduces to:

Ay, = s.AZ tan(r) (5.9)

For IKONOS scenes, 7 = 22.5°, ¢ = 10m, and H = 680km; then s = 1.35e-5, from
Equation 5.1. For a point at the end of the scan line, a = 0.46°, an elevation error of AZ =

46m introduces error 4y,3 having a magnitude of 5.0 um.

5.3 DERIVING THE ROLL ANGLE

A knowledge of the roll angle is required to perform a perspective-to-parallel correction,
as expressed in Equation 5.7. Two alternatives can be used, depending on the availability
of data. Knowing the scanner rotation angles, the roll angle can be derived directly
(Section 5.3.1). On the other hand, if GCP are available, they can be used to indirectly

estimate the roll angle, as discussed in Section 5.3.2.
5.3.1 Deriving the Roll Angle Directly using the Scanner Rotation Angles
The roll angle can be determined if the scanner rotation angles are available. Similar to

Equation A.35, Appendix A, vector y;, (unit vectors along the scanner direction with

respect to the object coordinate system) can be expressed as (see Figure 5.6):
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i12
Y. =|l» (5.10)

i32

which is the second column of the rotation matrix associated with the i™ scan line.

Figure 5.6: Unit vectors x;, y; and z;, along the scanner axes x;, y; and z;,
respectively. Roll angle, w, as the vertical angle of vector y;

with respect to the ground coordinate system

The roll angle may be defined as inclination of the vector y;, Figure 5.6, to the horizontal
plane. As vector y; has unit length, its components, 72, 722, and 73, represent the
directional cosines with respect to the X-, Y- and Z- axes, respectively. Therefore, The roll

angle y can be computed as:
Vs
v = 2 arccos(ri32 ) (5.11)
Substituting r;3; with its explicit value based on the scanner orientation angles, @, ¢;, &;:

Y= % —arccos[sin(, )cos(x, )+ cos(a, )sin(¢, )sin(x, )] (5.12)
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From Equation 5.12, it becomes clear that the roll angle is different from the scanner
orientation angle @;. The rotation angles and the associated rotation matrix adopted in this

dissertation are described in Appendix A, Equations A.3.
5.3.2 Indirect Estimation of the Roll Angle using GCP

In Equation 5.7, y,» represents the y-coordinate according to parallel projection, which is

identical to y in Equations 4.10. Equating these coordinates yields:

%:A5X+A6Y+ A Z + A
1" tan
o tan(y)

Rearranging gives the following:

A X+ AY + A, Z + Aq

Yo = (5.13)

1+tanc(‘”)(ASX+A6Y+A7Z+A8)

Observe that y,; represents the y-coordinate according to perspective geometry, which
can be measured directly from the raw scene. Having at least five GCP, together with the
knowledge of the scanner principal distance, the 2-D Affine parameters, 4s to As,
together with the roll angle, y, can be determined. Having more than 5 GCP, the
parameters can be estimated in a least-squares adjustment. Such an adjustment requires
linearization of Equation 5.13 using approximate values for the unknown parameters,

which can be computed from the linear model (Equations 4.10).

The next Section deals with cases where the scanner navigation data are available. For

such cases, scene parallel projection parameters can be derived directly.
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5.4 MATHEMATICAL RELATIONSHIP BETWEEN NAVIGATION
PARAMETERS (SCANNER EOP) AND PARALLEL PROJECTION
PARAMETERS

Figure 5.7: Orientation vectors and axes of the line scanner and the scene

In this section, scene parallel projection parameters (L, M, o, ¢, k, Ax, Ay, s) will be
derived using the navigation parameters, which are the parameters expressing the scanner
EOP, as described in Equations 3.1. Similar to Equations A.30 and A.24, Appendix A,
vectors x; and z;, which are unit vectors along the image coordinate axes with respect to

the object coordinate system, (see Figures 5.6 and 5.7) can be expressed as:

X =|r 5.14
i21 (

Z; =|Tins (5.15)

. . . . .th .
where 7;11 to r33 are the elements of the rotation matrix associated with the i~ scan line.

These vectors, together with the y; vector (Equation 5.10) will be utilized in the following
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subsections to derive the scene parallel projection parameters. Since a scanner moving
with constant attitude (Equations 3.1) is assumed, these vectors do not change their

values within the scene.

5.4.1 Projection Vector (L, M, N)

Because of the assumption of constant rotation angles for the whole scene, the projection
vector will not change from one scan line to the next. The optical axis for scan line
number 7 is expressed as (-7;13, -¥123, -r,-33)T pointing downwards, in the opposite direction

to z;. Therefore, the unit projection vector can be expressed as:

L K
M=z, =|r,y (5.16)
N 7

5.4.2 Scene Rotation Angles (@, ¢, k)

It is important to note that x;-, y;-, and z-axes of the i™ scan line (whose orientation
vectors are X;, y;, and z;) may differ from the x-, y-, and z-axes of the scene. This can be
seen in Figure 5.6 where the velocity vector, V, does not lie within the plane formed by
the x;- and y;-axes of the scan line. Because scene and scanner coordinate systems might
differ from one other, orientation angles of the scene axes (@, ¢, x¥) may differ from those
associated with the scanner axes (@;, ¢, &;). The scene orientation angles (@, ¢, k) and
the corresponding rotation matrix, R, can be derived after defining the scene coordinate

system and its relation to the ground coordinate system.

The scene plane can be expressed using the velocity vector, V, and the orientation vector
y; along the y; axis. After defining the scene plane, two perpendicular scene axes (x- and
y-axes) must be introduced. The y-axis can be chosen to be the same as the direction of
yi-axis, as shown in Figure 5.7. The following procedure can be used to determine the

unit vectors (X, y, z) along scene axes:
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e Determine vector z, which is the normal to the scene plane, as the normalized

cross product between the two vectors V and y; as:

LAY =1, AZ

zZ= Xy, = 5 : > B T AZ =15, AX
|V X y,~| \/(”mAY - riZZAZ) + (”ileZ - rz'SZAX) + (riZZAX - ”ileY) iy AX — 1, AY
(5.17)

e Determine vector x as the normalized cross product of vectors y and z. Since y

and z are unit and orthogonal vectors, vector x can be written as:

_yXZ YXz

*e |y><z| B |y|.|z|sin(7r/2) IR

1
2 2 2
\/(’?32AY_’322AZ) +(’312AZ_’332AX) +(’322AX_”1‘12AY)
riiZAX-"’?§2AX_’?127”1'22AY_7”1'12’”1’32AZ (5.18)
73122AY+’?§2AY_7312’?22AX_’”izzl”iszAZ
’”iszZ ‘H”ézAZ =Tl AX =11y AY

X =

Thus, the rotation matrix, R, between the object and scene coordinate systems can be

written as:

R=[x y z] (5.19)

5.4.3 Scene Scale (s)

Scale along the scanning direction can be computed by intersecting the optical axis with

the average elevation surface. The collinearity equations can then be written as:

X-X, 0
Y-Y, |=—R| 0
Z.,—Z, -c

av
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Therefore, the third equation can be rewritten as:
1
Ly =Ly :_’”533(_ C) (5.20)
s

Rearranging, the scale s can be expressed as:

c

S =l 7 -7 (5.21)
where:
y is the average elevation;
Zoi is the Z—coordinate of the perspective center of the image number 7; and
Zoi - Zyy is the flying height above the average elevation, H.

It is important to note that the origin of the scene coordinate system is chosen in the
middle of the scene. Therefore, i in Equation 5.21 represents the middle scanned image,
i.e., (i = n/2), where n is the number of scanned images in the scene. Recall that in the
constant-velocity-constant-attitude case (Equations 3.1) the scanner’s position, with
respect to the object coordinate system, may change from one exposure station to

another.

5.4.4 Scene Shifts (Ax, Ay)

Scene shifts can be computed using Equations 4.4, by setting the origin of the scene
coordinate system to the origin of the coordinate system of the middle image. This can be
achieved by substituting the vector (X, 7, Z)T with the vector (Xo;, Yo;, ZOi)T, where i is the
middle image, and by setting the scene coordinates x and y to zero. Therefore, Equations

4.4 can be rewritten as:
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0 L X, | [Ax
0|=s.AR"|M |+sR"| Y, |+|Ay
0 N Z, 0

Expanding, the above equations can be rewritten as:

0= Sﬂ“(’”lll""rle +’”31N)+S(”11X0i +1y, Yy, +r3IZOi)+Ax
0= S-ﬂ(’”lzL""”zzM +’”32N)+S(”12X0i + 1Yy +r3220i)+Ay (5.22)
0= S‘ﬂ”(rlSL—i_rBM +r33N)+S(”13X0i +r3 Y, +r33ZOi)+0

Equations 5.22 contain three unknowns (4x, 4y, A). Therefore, A can be computed using

the third equation as:

_”13X0i +13 Y + 132y,
1L +r,M +ry N

2{:

Substituting this value of A into the first and second equations of Equations 5.22 results

n:

Ax = s ’”13(”1114""”21]\4""”31]\/)_},11 X, +s ’”23(’”11L"""21]M""”31N)_r21 Y,,
1L+ 1M +r N 1L+ 1M+ 1N

e ’”33(’”11L""’21]M""’31]\7)_’,31 Z,,
1L+ 1M +r, N

(5.23)

Ay=s ’”13(”1214""’2?]\4""’32]\7)_’,12 X, +s ”23(”12L+’”22M+7’32N)_r22 Y,,
1L +r,M+r, N 1L+ 1M +r, N

i ’”33(’”12L+”22M+7’32N)r 7
32 |[Zoi
1L +r,M +r N

which is the final expression for computing the scene shifts (Ax, 4y).

Next section deals with experimental results to analyze/verify the mathematical

transformations and relationships derived in this chapter.
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5.5 EXPERIMENTS

In this section, synthetic data are generated according to the rigorous perspective model,
where object space points are back-projected into the scene space. The mathematical
relationship between the navigation data and scene parallel projection parameters
(Section 5.4) are then tested. Scene parallel projection parameters are used to produce 2-
D Affine parameters (Section 4.4.2, Chapter 4). In addition, another set of 2-D Affine
parameters are indirectly estimated based on GCP. Comparison of the derived parameters
is performed in the object space. The perspective-to-parallel transformation (Equation
5.7) is also tested using the directly derived roll angle (see Section 5.3.1) and the

indirectly estimated roll angle (see Section 5.3.2).

Object space points are simulated and back-projected into scene stereopair using the
rigorous perspective projection model. Scanner IOP and EOP are listed in Table 5.1. It is
assumed that the scanner’s trajectory and orientation comply with the constant-velocity-

constant-attitude EOP model.

Table 5.1: EOP and IOP parameters used for the simulation

Left Scanner Parameters Right Scanner Parameters

10P EOP I0P EOP

Principal point (xo, yo) [Scanner position at  |Principal point (xo, yo) [Scanner position at

=(0.0, 0.0) m time 0 = (Xo ,Y0, Zo )| =(0.0,0.0) m time 0 = (X" ,Y ",
Principal distance ¢ = | =(-288.3, 59.5, Principal distance c = | Z’y)=277.3,-59.5,

10.0 m 680.0) km 10.0 m 680.0) km
x=0.0m Scanner Velocity = | x=0.0 m Scanner Velocity =
Scene size= 13480 x | (4X, AY, AZ) = (7.0, |Scene size= 13480 x (AX°, AY’, AZ) =

13480 pixels 0.0, 0.0) km/s 13480 pixels (7.0, 0.0, 0.0) km/s

Pixel size =12 um  |Scanner orientation  |Pixel size =12 um  |Scanner orientation
Scene time = 1.57 sec | angles = (w, @, ¥)  |Scene time = 1.57 sec | angles = (@', ¢’, K’)

=(-5.0°, -22.5°, 0.0°) =(5.0°, 22.5°, 0.0°)
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Twenty-five object space points covering an area of 11km by 11km are simulated with an
average elevation of zero and a height variation of £1000m. This is achieved by
randomly selecting Z values with zero mean and a standard deviation of 1000 m. Figure
5.8a shows the distribution of the object points and the footprint of the left and right
scenes. Left and right scenes are shown in Figures 5.8b and 5.8c, respectively. Among
the object points, sixteen points are used as GCP shown as red triangles in Figure 5.8,

while nine points are used as check points shown as green circles in the same figure.
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Figure 5.8: Object space points together with scene footprint (a), and the
left and right scene points, (b) and (c), respectively
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Using scene EOP (navigation data) in addition to IOP and average elevation, scene
parallel projection parameters are derived, as explained in Section 5.4 (see Table 5.2).
The roll angles, which are also derived based on the scanner orientation (Equation 5.12),

are also listed in Table 5.2.

Table 5.2: Derived scene parallel projection parameters and roll angle

Left Scene Right Scene

L -0.38268 0.382683

0.080521 -0.08052
@° -5 5
Parallel Projection @° 0 0
Parameters K° 0 0

Ax (m) 0.000326 -0.00033
Ay (m) 0 0

s 1.35E-05 1.35E-05
Roll angle, y° -5.0 -5

Using the derived scene parallel projection parameters, 2-D Affine parameters are

derived, as explained in Section 4.4.2 (see Table 5.3).

Table 5.3: Derived 2-D Affine parameters

Left Scene Right Scene
A, 1.353E-05 1.353E-05
A 4.887E-07 4.886E-07
A3 5.585E-06 -5.585E-06
2-D Affine | A4 0.00032598 -0.00032598
Parameters | 45 0 0
Ag 1.348E-05 1.348E-05
A7 -1.180E-06 1.180E-06
As 0 0
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Some attention must be given to the quality of the derived 2-D Affine parameters and the
roll angles. Space intersection is chosen as a means of examining their quality in the
object space. In this case, the 2-D Affine parameters for both left and right scenes, along
with left and right scene coordinates, are used. Therefore, for each scene point, two sets
of 2-D Affine equations, Equations 4.10, are written. For each pair of tie points, four
equations can be written containing 3 unknowns, the object coordinates of the point.
Thus, the object coordinates can be solved for, in a least-squares adjustment. The errors
can then be computed in the object space between the estimated coordinates and the
original coordinates used in the simulation. The mean and standard deviation of the error

values are computed, as shown in Table 5.4.

Table 5.4: Mean and standard deviation of the error values of the directly estimated
object space points with and without Perspective-To-Parallel (PTP) correction

for Experiments 5.1 to 5.3

Errors, m
Meanyy *+ Stdyy Mean, + Std; Mean + Std
Without PTP 0.582 +3.427 0.944 + 0.853 1.109 £ 3.532
With PTP 0.590 + 3.466 0.023 £ 0.194 0.591 £3.472

In the above experiment, the Perspective-To-Parallel (PTP) transformation is also tested,
based on the derived roll angle, as explained in Section 5.2.3. The effect of performing a
PTP transformation in terms of reduction of the Z-component of the errors can be seen. It
can then be concluded that omitting such a correction results in larger errors in the

derived height values.

For the same synthetic data, the 2-D Affine parameters are indirectly estimated using
GCP (Equations 4.10). Three sets of results were obtained: without PTP correction; with
PTP correction using the directly determined roll angle (the true roll angle); and with PTP
correction using the estimated roll angle (Equation 5.13). However, the task of solving
for the parameters in Equation 5.13 has a stability problem. Therefore, a coordinate

normalization is performed prior to the estimation; Tao and Hu (2001) address a similar
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problem dealing with rational functions. The estimated 2-D Affine Parameters and the
estimated roll angles are listed in Table 5.5. Among the 20 object points, 16 points (seen
as red triangles in Figure 5.8) are used as GCP in the parameter estimation. The other

nine points, shown as green circles, are used as check points.

Table 5.5: Indirectly estimated 2-D Affine parameters and roll angles using GCP

Left Scene Right Scene
With PTP | With PTP With PTP | With PTP
Without . Without ‘
(true roll | (estimated (true roll | (estimated
PTP PTP
angle) roll angle) angle) roll angle)
O,
3.47 2.61 2.60 3.95 2.63 2.58
pixels
W 0.00000 -5.00000 -4.63434 0.00000 5.00000 6.09394
Ay | 1.353E-05 | 1.353E-05 | 1.353E-05 | 1.353E-05 | 1.353E-05 | 1.353E-05
o Ay | 4.884E-07 | 4.884E-07 | 4.884E-07 | 4.884E-07 | 4.884E-07 | 4.884E-07
Q
‘g As | 5.583E-06 | 5.583E-06 | 5.583E-06 | -5.583E-06 | -5.583E-06 | -5.583E-06
g Ay | 0.0003258 | 0.0003258 | 0.0003258 | -0.0003258 | -0.0003258 | -0.0003258
2 | As | 4.949E-09 | 4.808E-09 | 4.818E-09 | 4.535E-09 | 4.811E-09 | 4.872E-09
=
Q<E A¢ | 1.348E-05 | 1.348E-05 | 1.348E-05 | 1.348E-05 | 1.348E-05 | 1.348E-05
A
& | A7 | -1.195E-06 | -1.185E-06 | -1.186E-06 | 1.184E-06 | 1.174E-06 | 1.172E-06
As | 1.619E-05 | -7.794E-06 | -6.032E-06 | -3.499E-05 | -1.128E-05 | -6.056E-06

As seen in Table 5.5, the square root of the estimated variance component, &, is the

smallest by using the estimated roll angles for PTP correction. On the other hand,
omitting PTP correction results in the largest estimated variance component. In addition,
the estimated roll angles (as indicated in Equation 5.13, Section 5.3.2) differ from the true
roll angles derived using the navigation data (as indicated in Equation 5.12, Section
5.3.1). The difference is attributed to the assumption made in Section 5.2.3 of a flat
terrain. On the other hand, it can be seen that using the estimated roll angles gives better

results, in terms of the smallest variance component. In order to evaluate the quality of
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the estimated 2-D Affine parameters, a space intersection is performed based on the
estimated parameters and the coordinates of the points in both left and right scenes, as
explained earlier. The estimated object coordinates are then compared to the true values

and the errors associated with the points in Tables 5.6.

Table 5.6: Mean and standard deviation of the error values of the indirectly estimated

object space GCP and check points

Errors, m
Meanyy *+ Stdyy Mean, + Std; Mean + Std
Without PTP 0.000 £ 1.675 0.000 £ 0.858 0.000 £ 1.882
With PTP
0.000 £ 1.699 0.000 £ 0.070 0.000 £ 1.701
GCP (true roll angle)
With PTP
) 0.000 £ 1.685 0.000 £ 0.015 0.000 £ 1.685
(estimated roll angle)
Without PTP 0.674 £ 1.666 0.472 £ 0.486 0.823 £ 1.736
With PTP
Check 0.683 £ 1.720 0.030 £ 0.039 0.684 £ 1.721
) (true roll angle)
points
With PTP
‘ 0.552 £ 1.690 0.002 £ 0.008 0.552 £ 1.690
(estimated roll angle)

As shown in Table 5.6, no bias can be seen in the estimation of object coordinates of the
GCP. Again, a smaller Z-value of the standard deviation of the errors is achieved using
the indirectly estimated roll angle, compared to those using the derived roll angles from
the navigation data. The same conclusions can be drawn for the check points (see Table
5.6) except for the existence of bias values. A comparison of Tables 5.6 and 5.4 reveals
the suitability of indirect methods (that is, using GCP) compared to the direct methods

(that is, using navigation data).
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5.6 SUMMARY

In this chapter, the scale modification along the scan line (perspective to parallel
transformation) was introduced to alter the scene coordinates generated according to
perspective geometry, so as to be closer to the model of a parallel projection. The
mathematical model for such a transformation was introduced for scenes whose stereo
coverage is achieved across-track through the use of roll angles, as in SPOT scenes, for
example. It was found that, for scenes whose stereo coverage is achieved along track
using pitch angles (e.g., IKONOS scenes) and those achieved using three-line scanners,

no scale modification is required, assuming a zero roll angle.

The mathematical relationship between navigation parameters (scanner EOP) and scene
parallel projection parameters was established. At this stage, it is important to mention
that the scene parallel projection parameters (L, M, @, @, k, Ax, Ay, s5) can be derived in

many ways:

e By using navigation data (scanner EOP) directly, without using GCP, as described in
Section 5.4.

e By using GCP in Equation 4.4, which represents a non-linear model. Therefore,
linearization and approximate values are required for solution by means of an
iterative least-squares adjustment.

e By using GCP in Equation 4.10 (a linear model) to obtain the 2D Affine parameters.
Then, a transformation from 2D Affine parameters to scene parallel projection

parameters can be performed, as described in Section 4.4.4.

Similarly, the roll angle, w, can be derived directly using the scanner rotation angles
(Section 5.3.1) or estimated indirectly using GCP (see Section 5.3.2). Experiments
revealed that the estimated roll angles using GCP produce the smallest errors in the 2-D
Affine model, as well as in the object space. It is important to mention that the PTP

correction assumes flat terrain.
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Up to this point in the development of the wider methodology of this dissertation, the
transformation and mathematical relationships between the perspective projection model
and the parallel projection model have been established. In Chapter 6, an epipolar
resampling approach of linear array scanner scenes according to parallel projection is
developed. The perspective-to-parallel transformation discussed in this chapter is,

therefore, a pre-requisite for the resampling process in the next chapter.
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CHAPTER 6: EPIPOLAR RESAMPLING OF LINEAR ARRAY SCANNER
SCENES

6.1 INTRODUCTION

This chapter deals with the epipolar resampling of linear array scanner scenes using the
parallel projection model. First, interpretation of the epipolar line parameters will be
discussed in Section 6.2. Based on this interpretation, target functions are derived to
minimize y-parallax (P,) in the normalized scenes. An example will then be presented to
show the importance of having GCP in epipolar resampling to ensure a linear relationship
between x-parallax (P,) and height (Z). The purpose of Section 6.3 is to develop
approaches for epipolar resampling based on the knowledge accumulated throughout this
research. Finally, experimental results using synthetic data as well as real data are

presented in Section 6.4.

6.2 EPIPOLAR LINE DERIVATION AND PARAMETER UTILIZATION

In this section, a general form of the epipolar line equation is presented. The parameters
describing the epipolar line are then analyzed and utilized in order to reduce the y-

parallax of the scenes for the purpose of epipolar resampling.

6.2.1 Derivation of Epipolar Line Parameters

Equation 4.42 represents an epipolar line in a scene captured according to parallel
projection. Conceptually, this equation describes the mathematical relationship between
the coordinates of conjugate points in a stereopair. It is clear that Equation 4.42
represents a straight line in either the left or the right scene; this equation also implies that
the epipolar lines are parallel. In other words, for two points (x;, y1) and (x2, 12) in the left
scene, the corresponding epipolar lines in the right scene are represented by (v’ = C; x” +

Cox;+Cyyr+Cy)and (' = Cy x" + Cyxa + Cs o + Cy), respectively; that is, they have
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the same slope, C;. There is only a shift between these lines along the y’ direction with
the amount of Cy(x;-x2) + Cs(y1-y2). Similarly, for any two points in the right scene, the

corresponding epipolar lines in the left scene will have the same orientation.

However, Equation 4.42 does not represent all straight-line cases in the scene. In other
words, singularity will exist for lines parallel to y’ since C; is undefined (tan 7/2 = ).

For such cases, x” and y’ can be switched and Equation 4.42 can be rewritten as:
x'=Cy+C,x+Cyy+C, (6.1)

In this representation, lines parallel to the y’ direction will have no singularity because all
the parameters in this equation will have finite values. However, lines parallel to x” will
have singularity and require working with Equation 4.42. The orientation of the epipolar
lines is not known beforehand; that is, it is not known whether the epipolar lines are
horizontal or vertical. Therefore, similar to the approach suggested by Habib (1999),

Equations 4.42 or 6.1 can be rewritten as:

C2 C3 Cl ' 1 '
——Ex——y-—x+—)'=1
C, C, ¢, C,

Gx+G,y+Gx'+G,y'=1 (6.2)
where:
6--C
C,
6--C
o
6--G
o
G-t
¢,

Equation 6.2 represents a more general case, since it represents all straight-lines in the

left and right scenes - that is, regardless of their orientation. The parameters in Equation
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6.2 can be directly computed from the navigation data according to what has been
explained in Chapters 4 and 5. This can be achieved by first computing scene parallel
projection parameters (see Section 5.3), then by determining the 2-D Affine parameters
(Section 4.4.2). Finally, the epipolar line parameters can be derived as discussed in

Section 4.5.1 by adapting Equation 6.2.

Alternatively, G| to G4 can be indirectly derived using point correspondences (i.e.,
conjugate points) in the left and right scenes. Then, the estimated parameters can be used
to resample the subject scenes according to epipolar geometry. First, at least four tie
points are required to determine the parameters, G to G4, as each point-pair produces one
equation of the form in Equation 6.2. It is important to mention that a deficient normal
equation matrix signifies the fact that the object space is a planar surface. In such a case,

the epipolar lines are reduced to points, similar to what was discussed in Chapter 4.

Regardless of the method of deriving G, to G4, these parameters can be used to establish
the necessary transformation for resampling scenes according to epipolar geometry. The
next section deals with two different scenarios for utilizing the epipolar line parameters

for the purpose of resampling the scenes according to epipolar geometry.

6.2.2 Utilizing Epipolar Line Parameters for Normalized Scene Generation

Scenes resampled according to epipolar geometry should satisfy the following two

conditions:

e The epipolar lines should be aligned along the rows of the resampled scenes.
e Conjugate epipolar lines should be aligned along the same row in the final scenes.

In other words, there is no P, between conjugate points in overlapping scenes.

Therefore, each scene needs to be rotated through a different angle (e.g., @ for the left
scene and @’ for the right scene) in order to make the epipolar lines parallel to the x and x’

axes of the left and right scenes, respectively. However, such rotations do not guarantee



126

that conjugate epipolar lines have the same y and y’ values. Consequently, scale and shift

parameters must be applied for this purpose. Such implementation can follow either one

of the following two scenarios.

6.2.2.1 Scenario I

In this scenario, the scale and the shift values are applied to only one of the scenes (e.g.,

the right scene). Therefore, the transformation of the right scene includes rotation, scale

and shift, while the transformation of the left scene includes only rotation. These

transformations involve four parameters. Adopting such a strategy, the following

transformations can be written:

where:
0

o

S

Ay

(n> V)

(X' Y'n)

1 [ cos(#) sin(e)) H

(6.3)

- —sin(@) cos(8)| y

L il =

is the rotation angle of the left scene;

is the rotation angle of the right scene;

is the scale factor of the right scene;

is the y shift of the right scene;

are the coordinates in the left scene after normalization (i.e., left
normalized scene coordinates); and

are the coordinates in the right scene after normalization (i.e., right

normalized scene coordinates).

In the normalized scenes, y coordinates of the tie (conjugate) points should be equal.

Therefore, by equating y, and y’, in Equations 6.3 and 6.4 results in:

—sin(@)x + cos(8)y = —S.sin(6")x'+S.cos(0")y"+Ay
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This equation can be rewritten as:

_ sin(@) T cos(é?) v+ S.sin(g') o S.cos(gv) Yo 6.5)

Ay Ay Ay Ay

Comparing Equations 6.5 and 6.2, the following equalities can be derived:

G, = sin(6)
Ay
G :cos(é’)
oo (66
S.sin(6") '
G3
Ay
S.cos(@'
G, - czs( )
Y

From Equations 6.6, the transformation parameters (6, &, S, and Ay) can be derived as

0 = arctan —i
GZ

follows:

= arcta
G4 6.7)
Ay = sm _ cos 6)
Gl G2
S — G3Ay —_ G4Ay

sin(¢')  cos(0')

Therefore, after deriving G; to G, the transformation parameters can be computed from
Equations 6.7. Then, the normalized scenes can be generated using the mathematical

relationships in Equations 6.3 and 6.4.
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6.2.2.2 Scenario 11

Equations 6.3 and 6.4 indicate that only one scale value is applied to one of the scenes. In
frame images, as discussed in Section 2.1.3.2, recall that the plane on which the
normalized images are projected is selected in such a way as to divide the scaling
between the images; that is, by choosing an average rotation angle @ across the base.
Similarly, it is preferred to introduce two scale values in Equations 6.3 and 6.4; one is
smaller than unity and the other is larger than unity while their product equals unity. By
enforcing this criterion (using S for the right scene scale and 1/S for the left scene scale),
no additional parameters are introduced. Therefore, Equations 6.3 and 6.4 can be

rewritten as:

; %{—C :lsrfg) ZLZEZ;FH o ] (6.8)

x| [ cos(@) sin(@)]x] | D
e S{— sin(0') cos(6") y} ’ [%] (69)

In the same manner, the shift value Ay is divided between the two scenes. Equating the y

coordinate values of the above two equations results in:

- sir;(@) X+ 00;(9) Y- % = —S.sin(@')x’+S.cos(é")y'+%

This equation can be rewritten as:

3 sin(#) T4 cos(#) yt S.sin(@") . S.cos(@')
SAy SAy Ay Ay

y'=1

By comparing this equation to Equation 6.2, the following equalities can be written:
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G = sin(@)
SAy
ol
4
6.10
S.sin(6") (6.10)
G, =
Ay
G, = S.cos(8")
Ay
The transformation parameters can therefore be computed as follows
0= arctan(— ﬁ]
G,
0'= arctan(— 63]
! (6.11)
= |- G, sin(@) _ | G, cos(@)
G, sin(@) G, cos(8')
Ay = — sin(@) _ cos(#) _ S.sin(') _ S.cos(6")
YT 756 T sG, | G G,

In summary, G; to G4 in Equation 6.2 can be computed either directly (using navigation
data) as explained in Chapters 4 and 5, or indirectly using a least-squares adjustment
procedure involving identified tie points in the left and right scenes of a stereopair.
Subsequently, by adopting Scenario I, the transformation parameters can be computed
using Equations 6.7. Then, the normalized scenes can be generated using the
mathematical relationships in Equations 6.3 and 6.4. Alternatively, adopting Scenario I,
the transformation parameters can be computed using Equations 6.11, and the normalized
scenes can be generated using Equations 6.8 and 6.9. In is very important to mention that
a perspective-to-parallel correction has to be applied first, as discussed in Chapter 5, prior

to handling the scenes as parallel projected scenes.
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6.2.3 Example

In this example, the main objective is to verify whether the above transformations are
sufficient for epipolar resampling of captured scenes according to parallel projection. For
this reason, two scenes were simulated according to parallel projection. Scene parallel
projection parameters for the left and right scenes are chosen to be similar to Parameters
1 and Parameters 2, respectively (see Table 4.2). Terrain was simulated with zero
elevation and a height variation of £1000m. The left and right scenes are shown in Figure

6.1.
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(a) (b)

Figure 6.1: Left Scene (a), and Right Scene (b) generated according to

parallel projection

Using the scene coordinates, the estimated epipolar line parameters together with the

square root of the variance component are listed in Table 6.1.
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Table 6.1: Estimated epipolar line parameters and the square root of the

variance component

Parameter Value
o, 0.0 Pixels
G -89.774036
Gy 75.215906
Gs 69.069181
Gy -90.406242

Adapting Scenarios I and II, the transformation parameters are listed in Table 6.2. This
table lists the average P,, based on the transformations suggested in Section 6.2.2; the

transformed scenes are shown in Figure 6.2.

Table 6.2: Derived transformation parameters using Scenarios I and II

Scenario | Scenario 11

o, (°) 50.042518 50.042518

&, (°) 37.379352 37.379352

S 0.971415 0.985604

Ay, (m) 0.008538 0.008663
Mean |P,|, Pixels 0.00 0.00

P e o *‘;:; Tom o1 o R o o ’;{j’ G5 o1 ok
(Left) (Right)

Figure 6.2: Normalized scenes
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From Table 6.2 and Figure 6.2, zero P, is realized for the normalized scenes. Now, the Py
must be analyzed as it is directly related to the elevation values and, consequently, is
important for three-dimensional restitution of the object space from the resampled scenes.
Figure 6.3 shows the relationship between P, and elevation (Z). No linear relationship
between P, and Z can be seen. In addition, the estimated variance component from
straight-line fitting to the data points, representing the relation Py versus Z, is 464.8° m’

for both Scenarios I and 1I.

500

-500

-1000 L L L L L L ),
-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015

x-parallax

Figure 6.3: The relationship between P, and Z

From this example, it can be seen that the resulting P, is not useful for mapping purposes;
for example, for recovering the depth information from the corresponding P,. Therefore,
the transformations in Section 6.2.2 are not sufficient for the generation of normalized
scenes. At this stage, it is important to redefine the normalized scenes according to
epipolar geometry in the following form: Normalized scenes are those where
corresponding points lie along the same row/column (i.e., no y-parallax) AND have x-

parallax values that are linearly proportional to the elevation values.

It is important to note that the suggested transformation (rotation, scale and shift) in
Section 6.2.2 does not change the plane where the scene is located. In other words, the
values of w and ¢ of a scene do not change as a result of this transformation. Therefore,
the left and right scenes remain in their own planes after the transformation. As a result,

the two scenes might not be in a common plane. In the next section, the plane on which
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the scenes are first projected, is determined. Recall that epipolar resampling of frame

images requires projecting the images into a specific common plane (see Section 2.2.3).

6.2.4 Normalization Plane for the Normalized Scenes

The main emphasis of this section is to decide upon the orientation of the normalization
plane, which will contain the normalized scenes. The orientation of that plane will be
chosen in such a way that the resulting P, in the normalized scenes should be linearly
proportional to the corresponding elevation of object space points. In other words, points

with the same elevation should have the same P, regardless of their planimetric location.

Before starting this analysis, it is important to note that the epipolar lines are parallel to
the plane defined by the parallel projection directions for the left and right scenes, which

will be denoted as the epipolar plane (see Figure 6.4). There is an infinite number of

epipolar planes but for any point, either in the object or scene space, there is only one
epipolar plane that passes through this point and which includes the projection directions
associated with the left and right scenes. Thus, the epipolar line will be the intersection of

this plane with the scene plane.

N 77/

(L,M,N) \ / (L M",N’)
(L.M,N) v (L, M’,N’)

Figure 6.4: Epipolar lines are parallel to the epipolar plane defined by the

two parallel projection directions and the object point under

consideration
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It is important to choose the plane on which the scenes are projected before proceeding
with the transformation procedure described in Section 6.2.2 to generate normalized
scenes. In order to show this, let us analyze the epipolar plane more closely (see Figure
6.5). This figure contains the epipolar plane, which is the plane of the page, and the
intersection of the epipolar plane with the original scenes (epipolar lines). In other words,

this figure represents a profile in the scenes along the direction of the epipolar plane.

Original right scene

Original left scene

Alternative planes

L M'N)
P

Figure 6.5: P, of vertically aligned points

C

In Figure 6.5, points A, B, and C are aligned vertically; that is, they have the same X, ¥
but different Z values. Moreover, point B has the average elevation of points 4 and C.
One should note that the P, has to be linearly proportional to the elevation value, so that
the normalized stereo scenes become useful for 3-D object space reconstruction. For this
reason, the x-parallax of the scene point » must be the average of the x-parallax values of
points a and c. The x-parallax values of points a, b, and ¢ will be denoted as P,,, P.», and

P.., respectively, and can be computed as follows:
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Because of the parallel projection, it can be seen that the recorded scene point b is the
midpoint of a and ¢ (i.e., x, =(x,tx.)/2). Similarly, the recorded scene point 5’ is the

midpoint of @’ and ¢’ (i.e., xp> =(x,+x.°)/2).

Therefore:
P, - X, H X, X, + X,
2 2
_ (v = x )+ (e —x,)
- 2
_P.+P,
2

It can be proven that, for any plane with any orientation intersecting the epipolar plane
(dotted lines in Figure 6.5), the same equation is valid. Thus, the relation between the P,
and elevation, for vertically aligned points (i.e., sharing the same planimetric
coordinates), is linear, regardless of the orientation of the plane(s) containing the scenes.
However, it is important to analyze the relationship between the P, and the corresponding

elevation for points with different planimetric coordinates.

Figure 6.6 shows two points, B and D, of the same elevation value but with different

planimetric coordinates. The x-parallax of point D, P,4, is defined as:

P,=x,-x,

X

This parallax can be expressed in terms of the x-parallax associated with point B as

follows:

P, =x,—-x,

= (x, +bd)—(x, +b'd")
=(x, —x, )+ (bd —b'd")
=P, +(bd -b'd"
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Original left scene Original right scend

Alternative planes

LM’ .N’)

9

Figure 6.6: P, for points with the same elevation
Therefore, in order for the two points to have the same P,, the distances bd and b’d’
should be equal. This will not be the case unless the scene plane is horizontal (i.e., it is

parallel to BD), as shown by the thick dotted line in Figure 6.6.

In summary, the P, in the normalized scenes will be linearly proportional to the
elevations if and only if the plane including the normalized scenes (the normalization

plane) is parallel to the XY-plane of the ground coordinate system.

Before developing an approach for normalized scene generation, the incorporation of a
horizontal normalization plane is tested in the example introduced in Section 6.2.3. In this
case, scenes were projected first on a horizontal plane, each along its own parallel
projection direction. The mathematical model for such a transformation is described in
Section 4.5.2. After epipolar resampling, P, was reduced to 0.0 pixels and the

relationship between P, and elevation is a straight line (5,=0.0 m for line fitting - see

Figure 6.7).
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Figure 6.7: The relationship between P, and elevation by Adapting
Scenario I, (a), and Scenario II (b) after projection into

horizontal normalization plane

6.3 UTILIZING PARALLEL PROJECTION PARAMETERS FOR EPIPOLAR
RESAMPLING

From the discussion in Section 6.2.4, epipolar lines are parallel to the epipolar planes,
defined by the projection directions and the object points under consideration. Therefore,
determining this direction (i.e., the direction of the epipolar lines) will directly determine
the x-axis of the normalized scenes. Figure 6.8 shows the epipolar plane containing the
two parallel projection vectors (L, M, N) and (L’, M’, N’). It is important to note that this
plane is not necessarily vertical. The direction of the epipolar lines along the
normalization plane can be determined by intersecting the epipolar plane with the XY
plane (which is parallel to the normalization plane). Assuming that the vector (U, V, 0) is
along this intersection, the triple product of the three vectors (L, M, N), (L’, M’, N’) and
(U, 7, 0) should be zero (see Figure 6.8):
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L M N
L' M N\|'=0
U v oo
Y
‘o)
» X
L M)

Figure 6.8: Determining the direction of the epipolar lines along the

normalization plane
Therefore, the relationship between U and V' can be computed as follows:
(MN-N.M')U +(N.L'-LN")V =0
V. _NM-M.N'

U NL-LN'

The direction of the epipolar lines, x;, can be determined as follows:

K, = arctan r = arctan NM=M.N (6.12)
U N.L'-L.N'

Therefore, after determining the parallel projection parameters for each scene, the parallel

projection parameters of the normalized scenes can be selected as follows:

e ,and @, are set to zero (to define a horizontal normalization plane).
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K, 1s computed from Equation 6.12 (to define the direction of the epipolar lines
along the normalization plane).

s, 1s computed as the average scale of the two scenes.

Ax, and Ay, can be computed as the average shifts of the two scenes.

L,, M,, and N, are the same as L, M, and N, respectively (same direction vector).
Ly, M’,, and N’, are the same as L’, M’, and N, respectively (same direction

vector).

Selecting the parallel projection parameters according to the above values will ensure the

generation of the normalized scenes with P, that is linearly proportional to the terrain

elevation.

Based on the knowledge accumulated throughout this research, a procedure for epipolar

resampling of linear array scanner scenes has been developed. This procedure is

summarized in the following steps:

Scenes must be transformed from perspective to parallel projection, as explained
in Chapter 5. This transformation requires a knowledge of the scanner roll angle,
which can be directly available from the navigation data (see Section 5.3.1) or
indirectly estimated using GCP (see Section 5.3.2).

Scene parallel projection parameters are then derived. They can be directly
derived using navigation data, as discussed in Section 5.4. Alternatively, they can
be derived indirectly using GCP. In this case, 2-D Affine parameters are estimated
based on GCP, Equations 4.10 or Equations 5.13. Afterwards, scene parallel
projection parameters are derived as discussed in Section 4.4.4.

Normalized scene parallel projection parameters are then computed as explained
in this section. They are (@, @n, &n, Su, Ay, Ayn, L, and M,) for the left
normalized scene and (@,, @, Ku, Su, AXn, Ay, L’y and M’,) for the right

normalized scene.
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e Finally, the scenes are then re-projected using the normalized parameters. Each
scene is re-projected along its own parallel projection direction. The mathematical

model for this transformation is derived in Section 4.5.2.

6.4 EXPERIMENTS

In this section, the approach developed for epipolar resampling of linear array scanner

scenes is tested, using synthetic and real data.

6.4.1 Experiments using Synthetic Data

To prove the feasibility of the approaches developed in this dissertation, Experiment 6.1,
resembling scenes generated by changing the pitch angles similar to the case of IKONOS
scenes, was performed. In this experiment, object points were simulated as having a
height variation of £1000m; then, IOP and EOP parameters were selected similar to those
of IKONOS. Based on the rigorous perspective model (IOP and EOP), the object points
were back-projected into the scene space. Then, a normally distributed noise with a zero
mean and standard deviation of 1, 2 and 3 pixels was added to the scene coordinates. The
object space points together with the scene footprints are shown in Figure 6.9. In this
figure, 16 points shown as red triangles were used as GCP, while 9 points shown in green
circles were used as check points. The procedure summarized in the previous section was

then performed, producing the results as listed in Table 6.3.
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— Left Scene FootPrint
—— Right Scene FootPrint
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Figure 6.9: Overview of the Object space GCP (red triangles), and check

points (green circles), for Experiment 6.1

Table 6.3: Results for Experiment 6.1

o -Noise, pixels 0 1 2 3
0,(2-D Affine-Left), pixels 1.5 1.5 2.4 2.6
0,(2-D Affine-Right), pixels 1.5 1.6 24 33
Mean|P,|, pixels 0.0 1.0 1.5 2.6
o, (line fitting of Py, Z), m 0.0 1.4 2.6 3.9

Meanyy £ Stdyy, m |0.000 £ 1.684|0.000 + 1.567|0.000 £ 2.1710.000 + 2.528
GCP

Meanz £ Stdz, m | 0.000 £0.000 |0.000 £ 1.3990.000 + 2.541|0.000 £ 3.733

Check| Meanyy £ Stdyy, m | 0.552 £1.720 {0.447 £ 1.880|0.685 = 1.815]0.762 £ 3.841

points| Meanz + Stdz, m | 0.000 +0.000 [1.089 + 1.538(2.068 +2.137(0.909 + 5.235

From Table 6.3 it can be seen that, when the data contain no noise, a linear relationship
between P, and Z is achieved together with the reduction of P, to zero. As the noise level
increases, larger errors are produced. From the error measures in the object space, no
biases can be found using the GCP while small bias values exist using check points. In
addition, as the error level increases, Std; increases faster than Stdyy. This observation is
highly related to the base-height ratio of the scenes. Future work will investigate the

effects of different base-height ratios and the terrain variation on the achieved accuracy.
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6.4.2 Experiments using Real Data

A panchromatic stereopair of IKONOS scenes covering Daejeon, South Korea was used
in the experiments. The geographical coordinates of the area range from 36.26° to 36.36°
North Latitude and from 127.31° to 127.45° East Longitude. An overview of these scenes
is shown in Figure 6.10. The number of rows and columns and the acquisition data/time

of the scenes are listed in Table 6.4.

(a) Left Scene (b) Right Scene

Figure 6.10: Overview of the IKONOS scenes

Table 6.4: IKONOS scenes’ dimensions and acquisition data/time

Left Right
Number of rows 13824 14336
Number of columns 13816 13816
Acquisition date/time 2001-11-19/02:18 GMT 2001-11-19/02:19 GMT

No information regarding the roll angles of the scenes was available. In addition, no GCP
were available. Instead, the rational functions’ coefficients (Madani, 1999) of each of the

scenes were provided.
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Because of the unavailability of GCP, the rational functions’ coefficients were used to
derive the ground coordinates of measured tie points - 162 points in all (Tao and Hu,
2002). A coordinate transformation was then implemented to obtain GCP in the local
Cartesian coordinate system. In this regard, it is important to mention that the accuracy of

the estimated object coordinates depends on:

e The measurement accuracy of the scene coordinates;
e The accuracy of the rational functions’ coefficients (typically not provided); and

e The validity of the rational functions as an approximate model.
The developed approach for epipolar resampling was then performed, yielding results as
listed in Table 6.5. Three sets of experiments were tested using different numbers of GCP

and check points.

Table 6.5: Results of resampling approaches of IKONOS data

Experiment 6.2 6.3 6.4
# of GCP 9 25 162
# of Check 153 137 0
0,(2-D Affine-Left), pixels 4.8 3.7 2.9
0,(2-D Affine-Right), pixels 1.7 1.3 1.1
Mean|P,|, pixels 2.3 1.6 1.5
o, (fitting of Py, Z), m 6.0 6.2 5.4
Meanyy £ Stdyy, m 0.000 £ 1.707 | 0.000 £0.993 | 0.000 +0.889
oep Meany + Stdz, m 0.000 £5.674 | 0.000 £ 6.086 | 0.000 £+ 5.450
Check Meanyy + Stdyy, m 0.103 £ 1.364 | 0.095£0.930 -
points Meany + Stdz, m 1.588+£6.101 | 0.587 £5.491 -

From Table 6.5, the left scene does not completely conform to the parallel projection
model compared to the right scene as indicated by the large estimated variance

component. One has to note that the provided IKONOS scenes might not be raw
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(unprocessed) scenes. From the same table, an insignificant improvement between
Experiments 6.3 and 6.4 can be seen. Thus, it can be concluded that just a few GCP can
be used for epipolar resampling according to the approach developed in this research. In
addition, the standard deviation of the error values of the check points are not
significantly different from those of the GCP. Therefore, the suggested approaches
achieve similar errors throughout the resulting normalized stereopair. In other words,

errors ‘far from’ the GCP are similar to those ‘close to’ the GCP.

The scenes resampled according to epipolar geometry are shown side-by-side in Figure
6.11. The two scenes are overlaid to generate a stereo anaglyph (see Figure 6.12) which

can be stereo-viewed using anaglyph glasses.

(a) Left Scene (b) Right Scene

Figure 6.11: Normalized Scenes
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Figure 6.12: Stereo anaglyph of the normalized scenes

6.5 SUMMARY

In this chapter, normalized scenes were strictly defined as those having the following
properties:
e P, is zero to ensure that conjugate points or epipolar lines belong to the same

row/column. No control information is required at this stage.
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e P, is linearly related to Z in order to have a useful normalized stereopair where
estimated height should be linearly related to the true height. Control information

is required to meet this requirement.

An approach for the epipolar resampling of linear array scanner scenes has been
developed. In this approach, scene parallel projection parameters (derived from GCP or
navigation data) are utilized to derive the required transformations. Perspective-to-
parallel correction is a prerequisite and can performed as explained in Chapter 5.
Experiments using synthetic and real data showed the feasibility of the developed

approach.
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS

7.1 SUMMARY AND CONCLUSIONS

The main objective of this research is to generate normalized scenes obtained by linear
array scanners. Normalized scenes, in regard to matching problems, have the prime
advantage of reduced search space and computation time in addition to reducing
matching ambiguities. This makes the normalized scene important and pre-requisite for
wide variety of applications such as automatic matching, automatic relative orientation,
automatic aerial triangulation, automatic DEM generation, ortho-photo generation, and

stereo viewing.

Chapter 2 provided an introduction of epipolar geometry and resampling of imagery
captured by frame cameras. In Chapter 2, linear array scanners were introduced together
with their rigorous and approximate modeling as reported in literature. Based on the fact
that epipolar lines in frame images are straight lines, the shape analysis of epipolar lines

in linear array scanners becomes important.

Chapter 3 presented the shape analysis of epipolar lines in scenes captured by linear array
scanners moving with constant velocity and constant attitude. In addition, the effect of
different stereo-imaging configurations on the shape of epipolar lines was studied. Based
on this analysis, it was concluded that linear array scanners do not, in general, produce
straight lines. Moreover, for high altitude scanners with narrow AFOV moving with
constant velocity and constant attitude, epipolar lines become straighter. Given this

background, an alternative model was sought to represent such scenes.

Parallel projection, as an alternative model was presented in Chapter 4. The relationship
between the object and corresponding scene coordinates in imagery captured according to
parallel projection was derived in Chapter 4. The mathematical relationship between the

parallel projection parameters and the 2-D Affine transformation parameters (forward and
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backward transformations) was derived. In addition, the mathematical relationship
between corresponding points in two scenes generated according to parallel projection as
well as the epipolar line equation was derived. As this chapter deals with scenes
complying with parallel projection, which is different from the rigorous perspective

model, transformation between the models becomes a prerequisite.

Chapter 5 dealt with the transformation from perspective to parallel projection of scenes
captured by linear array scanners. Such a transformation requires a knowledge of the
scanner roll angle, which can be obtained directly from the navigation data or indirectly
using GCP. The mathematical relationship between the navigation parameters (scanner
EOP) of the original scenes and the parallel projection parameters of the transformed

scenes according to parallel projection was derived.

Based on the knowledge accumulated throughout this research, Chapter 6 deals with
developing an approach for epipolar resampling of linear array scanner scenes. The

developed approach was then tested using synthetic as well as real data.

The procedure and analysis described above allowed certain conclusions to be reached.
First, the nature of epipolar lines is a function of the scanner type and imaging
configuration. Moreover, scenes with stereo-coverage achieved along track using pitch
angles as well as three-line scanners results in epipolar lines that are closer to straight

lines than those achieved in scenes with across-track stereo coverage, using roll angles.

Second, for high altitude photography with narrow AFOV, the perspective imaging can

be approximated by parallel projection.

Third, for scenes captured according to exact parallel projection, the fate of epipolar lines

varies with planarity of the object space:

1. For non-planar object space, straight epipolar lines are obtained. Therefore,

scenes can be resampled according to epipolar geometry.
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2. For planar object space, the 1-D epipolar lines would reduce to 0-D points.
Therefore, the exact correspondence between conjugate points can be precisely

established.

Fourth, scenes generated according to perspective geometry can be transformed into
parallel projection to maintain uniform scale. For scenes whose stereo coverage is
achieved along track using pitch angles as well as using three-line scanners, no scale

modification is required.

Fifth, transformation from perspective to parallel projection requires a knowledge of the

roll angle. Two alternatives can be used for deriving the roll angle:

1. Directly, using the scanner orientation angles as explained in Section 5.3.1.

2. Indirectly, using GCP, as explained in Section 5.3.2.

Sixth, parallel projection parameters can be derived in three possible ways:

1. Using control points in Equations 4.4, which constitute a non-linear model.

2. Using control points in Equations 4.10, which constitutes a linear model to obtain
the 2D Affine parameters, or Equations 5.13, followed by a transformation from
2D Affine parameters to scene parallel projection parameters, as described in
Section 4.4.4.

3. Using navigation data (scanner EOP) directly, without using control information,

as described in Chapter 5.

Seventh, epipolar resampling of linear array scanner scenes have the following

objectives:

1. Eliminating y-parallax, to obtain conjugate points or epipolar lines along the same
rows (or columns). Conjugate points are needed, while no GCP is required, for

this purpose.
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2. Having x-parallax linearly related to the elevation, to obtain useful normalized

stereopair. Control information (e.g., GCP) is required for this objective.

Eighth, by combining the objectives identified in the seventh conclusion, it is reasonable
to find that epipolar resampling requires control information. An approach for epipolar
resampling was developed, by utilizing scene parallel projection parameters (obtained

from navigation data or GCP) to compute the necessary transformation parameters.

Ninth, epipolar resampling requires the projection of the scenes on a normalization plane,

which has to be horizontal.

Tenth, experimental results using synthetic data as well as real data proved the feasibility

of the developed approach.

7.2 RECOMMENDATIONS FOR FUTURE WORK

Recommendations for future work include performing more experiments using synthetic
data to investigate the effect of different base-height ratios, different noise levels and
different terrain variations on the developed epipolar resampling approach. Additional
experiments using real data (such as SPOT scenes) are also recommended to test the

generality of the developed approach.

Future work should also include an enhancement of the perspective-to-parallel model to
incorporate knowledge of the trend of the terrain as it could be indicated from GCP. In
addition, direct and indirect methods for epipolar resampling may be compared in terms

of the achieved accuracy.

Parallel projection models can be included in photogrammetric triangulations. Higher
order primitives (e.g., linear and areal features) can also be incorporated in the parallel

projection model. In addition, object space constraints can be utilized to reduce the
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minimum requirement of GCP. Finally, DEM and ortho-photos can be generated based

on the normalized scenes.
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APPENDIX A: ANALYSIS OF THE ROTATION MATRIX

A.1 OBJECTIVES

The rotation matrix of the collinearity equations has important properties that are utilized
in this dissertation. The elements of the rotation matrix have significant meaning that can
be used to define the parallel projection direction, as in Chapter 5. The rotation matrix
cannot be defined in separation from the collinearity equations. Therefore, Section A.2
introduces the collinearity equations together with the associated rotation matrix. In
Section A.3, the orthonormality property of the rotation matrix is introduced. Finally,

Section A.4 deals with defining the orientation vectors of frame images.

A.2 COLLINEARITY EQUATIONS

The main objective of the collinearity equations is to define the mathematical relationship
between the image and object space coordinates in perspective views. The concept of the
collinearity equations states that the image point, object point and the perspective center

are collinear; that is, they belong to one straight line — see Figure A.1.
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Y

Figure A.1: Concept of collinearity equations — Object point 4, image

point a, and perspective center O are collinear
A.2.1 Mathematical Derivation

Figure A.1 shows an object point 4 mapped as point ¢ in a frame image whose
perspective center is O. The image coordinate system (a right handed system) can be
defined in such a way as to have its origin at the fiducial center (in the case of analog
cameras) or the center of the 2-D array (in the case of digital cameras). x- and y-axes are
perpendicular to each other and lie within the image plane. The z-axis is normal to the
image plane pointing upwards. Due to possible manufacturing imperfections, the
perspective center O might be shifted from the z-axis by distances of x¢ and yy in the x
and y directions, respectively. Coordinates of point O with respect to the image
coordinate system are then (xo, yo, ¢)' where ¢ is the camera principal distance. It is
important to note that line Oo represents the optical axis of the lens, while point o is the

principal points, i.e., the intersection of the optical axis with the image plane. For any
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point a in the image, its coordinates with respect to the image coordinate system are (x,,
Ve, 0)'. Vector v,, connecting the perspective center and the image point, can be defined

with respect to the image coordinate system as:

‘xa xO ‘xa_xo
Vo= Yo |7 Yo [T Ya= Yo (A.1)
0 c —c

For the object point A4, its coordinates with respect to the object coordinate system are
(X1, Y4, Zo)". The coordinates of the perspective center O with respect to the object
coordinate systems are (X, Yo, ZO)T. Therefore, vector V,, connecting the perspective

center and the object point, can be defined with respect to the object coordinate system

as:
XA Xo XA _Xo
V=Y |- % =] Y -1 (A.2)
ZA Zo ZA _Zo

Three independent rotation angles are used to represent the rotation between the object
and image coordinate systems. This dissertation employs the convention that the rotation
matrix is from the image coordinate system to the object coordinate system. The rotation

matrix can be expressed as follows:

o Tha s
R=|r, r, Iy :RwR(pRK
1731 T3 T3
1 0 0 cosp 0 sing |[cosk —sink 0
=|0 cos®w -—sinw 0 1 0 |sink cosxk O (A.3)
|0 sinw cosw |-sing 0 cosg| O 0 1
- COS (¢ COS K —cos@sink sin @
=|cos@sin kK +Sin@sin @ COSK COS® COSK —Sin @ sin @sink  —sin @ cos ¢
| Sin @ Sin K —COS @SN Y COS K SIN @ COSK +COS @SN YSinK  COS @ COS @
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where o is the primary rotation around the X-axis; ¢ is the secondary rotation around the

Y-axis; and « is the tertiary rotation around the Z-axis.

The collinearity equations state that the two vectors v, and V4 are collinear (see Figure

A.1). Therefore:

X, —X, | Xq —Xg
Y, -Y, :ZR Ya—Yo (A4)
Z,-7Z, —c

where A is a scale factor, which is the ratio between the length of vector v, to the length
of vector V4. It is important to note that vector v, is pre-multiplied by the rotation matrix

R in order to transform it to the object coordinate system.

Pre-multiplying both sides of Equations A.4 with the rotation matrix R', and using the
orthonormality property of the rotation matrix (i.e., R'R=I, Equation A.20) result in:

X, =X X, —X,
v, =¥, |=AR"| Y, -7, (A.5)
—c Z,-7Z,

Equations A.4 and A.5 are alternative forms of the collinearity equations containing the
scale factor A. Dividing the first and second equations by the third one in Equations A.4

and A.5, to eliminate the scale factor, and rearranging result in:



162

rll(xa _xo)""”n(ya _J’o)"‘”m(_c)

X,=X,+(2,-z
4 0+( 4 0)rl(xa—x0)+r32(ya—y0)+’”33(_c)

3
(A.6)
Y =Y +(Z 7 )rZI('xa_x0)+r22(ya_y0)+r23(_c)
4 0 4 0
r31(xa—x0)+r32(ya—y0)+r33(—c)
xa:xo_crll(XA_X0)+r21(YA_YO)+r31(ZA Zo)
r13(XA_X0)+r23(YA_Y0)+r33(ZA Zo) (A7)
y :yo_crlz(XA_X0)+r22(YA_Y0)+r32(ZA Zo)
’ r13(XA_X0)+r23(YA_Y0)+r33(ZA Zo)

Equations A.6 and A.7 are other alternative forms of the collinearity equations.

A.3 Orthogonality and Orthonormality of the Rotation Matrix

In order to prove the orthonormality of the rotation matrix R, the following characteristics

must be proven:

e The norm of each row or column in the rotation matrix is unit (normality condition).
e The dot product of any two different rows or columns is zero (orthogonality

condition).

The norm of the first, second and third rows are |ry|, |r,|, and |r3|, respectively, and can be

computed as:

Irf = i iz +53
= \/(cos pcosk)’ +(—cosgsink)’ +(sing)’
= \/ (cosp)’ ((sin k) +(cosx)’ )—i— (sing)’ (A.8)

= \/ (cos@)’ +(sing)’
=1

Il
=



163

R
|r2|— o T 13

. . . 2 . . . 2 . 2
= \/(COSCOSII’IK"FSII’ICOSIH(/)COSK) +(cosa)cosx—sma)sm(psmlc) +(—sma)cosg0)

\/ cosw) ( (sinx)’ +(cosx )’ )+ (sin wsin @)’ ((sin k) +(cosx )’ )+ (sinwcos @)’

cosw)’ +(sinwsinp)’ + (sin wcos p)’

(
(
(cos a))2 + (sin a))2 ((sin g0)2 + (cos (/))2 )
(

cosw) +(sinw)’

Il
2 2 2

=1

I
SI

(A.9)

_[2 .2, 2
|l‘3|— I3y + 15 T3

. . . 2 2
sin wsin K — COSCOSII’I¢COSK‘) +(Sll’l(¢)COSK+COSC!)SlIl(DSll’1K‘) +(COSC()COS¢)

QQQQQ

sin a)) ((sin /() +(cos K') )+ (cos ®sin (0)2 ((sin K) + (cos K')2 )+ (cosmcos g0)2

= s
(
= JGinw)’ +(coswsing)’ +(coswcos o)
= (s
= s

)
sin a))2 (cos co)2 ((sin q))2 + (cos (0)2 )
)

sinw)’ +(cosw)’

I
§|

=1
(A.10)

Similarly, the norm of the first, second, and third columns are |¢;|, |c2|, and |cs],

respectively, and can be computed as:

Y
|c|_ ot

. . . 2 . . . 2
COSQ)COSK‘ (COS @wsSIn K + Sin Q)SIHQJCOSK’) +(S1IICUSIDK'—COSC!)SII’1¢)COSK)

cospcosk) +(sinx)’ ((cos o) +(sinw)’ )+ (singcosx )’ ((sin o) +(cosw)’ )

cosk )’ ((cos ¢) +(singp)’ )+ (sinx)’

=
=
Jcospeosx) +(sinx)’ +(sinpeosr)
J(
J(

cosx)’ +(sinx)’

Ji=1

(A.11)
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\/ COS(DSII]K' COSCOCOSK‘—SII’IG)SII’I(BSII’IK') +(SlIla)COSK+COSCOSIIl(pSH'lK)
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(A.12)
|Cz|: V’”é +r223 +r323
= \/(sin ¢)’ +(=sinwcosp)’ +(coswcosp)’
= \/ (sin go)2 + (cos ¢)2 ((cos a))2 + (sin o) ) (A.13)

= (singy

=1=1

Therefore, ry,

+(cosp)’

Iy, I's, €1, ¢; and ¢3 are unit vectors (normality condition).

The dot product of the vectors that represents the rows of R can be computed as:

ror,

=1y Tl T 150

= (cos ¢ cos k' )(cos wsin k +sin wsin g cos )

+(~ cos gsin k' )(cos wcos k —sin wsin gsin x)+ (sin @ )~ sin wcos @)

= (cos g cos k' )(cos wsin )+ (cos g cos  )(sin wsin g cos k)

—(cos psin x )(cos @cos k) + (cos @sin x )(sin wsin gsin k) - (sin ¢ )(sin @ cos )

= (cos g cos x )(sin wsin @ cos x)+ (cos @sin « (sin wsin gsin «)

—(sin @sin ¢ cos qo)
= (sin wsin g cos (p)((cos k) +(sink)’ - 1)
(sm @sin ¢ cos (p)(l 1)

(A.14)
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I oy = 1y Iy + 1ol T 1575
= (cos ¢ cos x )(sin wsin x — cos wsin p cos k)
+(~ cos sin x )(sin @cos & + cos wsin gsin )+ (sin @ )(cos wcos )
= (cos ¢ cos x )(sin wsin k') — (cos g cos k )(cos wsin g cos k)

—(cos gsin x )(sin wcos k) — (cos @sin k )(cos wsin gsin )+ (sin ¢ ) cos wcos @)

= —(coscos x)(cos @sin pcos x) - (cos sin « )(cos wsin psin k) (A-13)
+(coswsinpcosp)
= (cos wsin pcos q))( (cosx)’ —(sinx)’ + 1)
(cos @Sin ¢ cos (p)(— 1+ 1)
Iy oXy = 1Ty + 105 + 1305
= (cos wsin x +sin @sin ¢ cos k )(sin wsin x — cos wsin pcos k)
+(cos @cos x —sin wsin gsin x |(sin wcos k + cos wsin psin x)
+(~sin @cos p)(cos wcos )
= (sinwcos a))((sin k) +(cosx)’ )— (sin wcos o(sin p)’ X(sin k) +(cosx)’ ) (A.16)

—(sin@cos p)cos wcos )

(sinwcosw)— (sin wcos o(sin p)’ )— (sinwcosp)coswcos @)

(sinwcos a))( (sing)” —(cosp)’ )
= (sm @Cos a))(l 1)
=0

Similarly, the dot product of the vectors that represents the columns of R can be

computed as:

€ o€y = 1yl 1y Ty T 1575
= (cospcos k)~ cos psin k)
+(cos wsin x + sin wsin ¢ cos k )(cos wcos k —sin wsin @sin k)
+(sin @sin x — cos wsin ¢ cos k )(sin @ cos k' + cos wsin @sin k)
= —(cospcosx )cos psin k)
+(sin & cos K)((cos o) +(sinw)’ )— ((sin @)’ sink cos KX(sin o) +(sinw)’ ) (A.17)
= —(cospcosx |cos psin x )+ (sin x cos k) - ((sin )’ sin« cos K‘)
= (sinx cos K‘)( (cosp)’ —(singp)’ + 1)
= (sinxcosx)~1+1)
=0
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€ oCy =My Ty + 1515
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= (cos pcos k- )(sin @) — (cos wsin x )(sin wcos @) — (sin wsin g cos x Ysin @ cos @)
+(sin wsin x )(cos @cos @) — (cos wsin g cos x fcos wcos @)
= (sin g cos pcos x)— (sin wsin @ cos x Ysin @ cos @)
~(cos wsin pcos xfcos wcos @)
= (sin g cospcos K)(l —(sinw)’ —(cos )’ )
= (singcospcosx)1-1)
0

(A.18)
€y 0 €3 = Tphiy T 1503 T 1375
(—cos sin k )(sin @)+ (cos @ cos & —sin wsin @sin & |~ sin wcos @)
+(sin @cos k + cos wsin @sin x )cos wcos @)
= —(cos gsin x |sin @) — (cos @cos & |(sin @ cos @)+ (sin wsin gsin k )(sin wcos )
+(sin @cos k' )cos wcos @) + (cos wsin psin k cos wcos @)
= —(sin @ cos gsin x°) + (sin wsin gsin x Ysin @ cos )
+(cos wsin gsin k' )cos wcos )
= (sin @ cos @sin K)(— 1+ (sinw)’ +(cosw)’ )
= (sinpcossinxf—1+1)
0

(A.19)
Therefore, the vectors representing the rows, or columns, of the rotation matrix R are

orthogonal (orthogonality condition).

Hence, it can be concluded that the rotation matrix R is orthonormal.

Another proof of the orthonormality of the rotation matrix can be made in the following

form:
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R'R=(R,R,R. ) R,R,R,
= (R, (R, ) (R,) R, R,R,
= (R.) (R, 1.R,R,
=(R,)' (R, R,R, (A.20)
=(R.)" LR,
=(R.)"R,

- R,R, (R, ) (R,) (A.21)

Therefore, R is an orthonormal matrix.

A.4 Orientation Vectors in Frame Images

The main objective is to determine the vectors that correspond to the image axis, X, y, and

z, (see Figure A.2) with respect to the object coordinate system.
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X

Figure A.2: Unit vectors X, y, and z that correspond to the image

coordinate axes with respect to the object coordinate system

A.4.1 Orientation Vector z

As shown in Figure A.2, vector Oo corresponds to the optical axis. In order to determine

it in space, xo and yy can substitute for x,, and y,, respectively (i.e., writing the collinearity

equations for point o). Therefore:
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X, —X, 1 Xo —Xg
O4=| Y, =Y, :ZR Yo =Xo
Z,-7Z, —c
1 0]
=—R 0 A22
2 (A.22)
_—C
_n3_
:—2]/
2|
| 733

Thus, vector (X-Xo, Y4-Yo, Z4-Zo)" represents the space vector of the optical axis pointing
downwards. Therefore, a unit vector along the optical axis can be obtained by

normalizing this vector:

XA_XO
04 _ 1 v _y
|OA| \/(XA_XO)2+(YA_Y0)2+(ZA_ZO)2 Z:II—ZO0
3 ",
= 4 3

Using Equation A.13, the above normal vector can be rewritten as:

o4 |

———=—r A23

04 23 ( )
33

This is the same unit direction vector along Oo, which is parallel to z-axis but in the
opposite direction. Therefore, the unit vector along the z-axis, z, is expressed with respect

to the object coordinate system as:
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z=|r A24
2 (A.24)

0o =—c| ry, (A.25)

A.4.2 Orientation Vector x

In order to determine a vector along x-axis, image point » whose coordinates with respect
to the image coordinate system are (A+xo, yo, 0)' is selected, where A is an arbitrary
distance. In other words, line ob is parallel to the x-axis. The object space point is B and
its coordinates with respect to the object coordinate system are (Xz, Y3, Z5)'. Using point
B and its image point b in the collinearity equations, vector OB, connecting the
perspective center to the object point, with respect to the object coordinate system can be

obtained as:

=—R| 0 (A.26)
rA—r;c

=—|r,A—ry,e

ry A—ryc

A unit vector along OB can be expressed as:
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X, —-X

OB _ 1 YB Y°
= 0
|OB| \/(XB_X0)2+(YB_Y0) (Z Z ZB

4
l [;’”A 75C

w

S

A

= 1 _ _ ryA—rye
ﬂ\/(rnA_rnc) +(r21A_rz3c) r31A ’"33 ryA—ryc
X
2 2 2 2
\/Az(rn r21 +(r31) )+Cz((r13) +(r23) +(r33) )_2CA(’”117’13 +757 +r31r33)
rA—r1;5c
vy A—r,y5C
ry A—ryce
Using Equations A.11, A.13 and A.18:
rA—r,c
B 1
o = 7y A—ryc (A.27)
|OB| A +c?
ryA=rye
Which is also the unit vector along Ob with respect to the object coordinate system.
Vector Ob has a length of Y A® +¢* . Therefore, it can be expressed as:
rA—r;c
Ob=|r,A—r,c (A.28)
ryA—ryc

Therefore, vector ob, which is parallel to the x-axis can be expressed as:
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mA-r,e T3
ob=0b—00 =|r, A=r,c |+c| 1)y
ryA—rye 33

(A.29)

4%
= Al ry,

Y

Therefore, a unit vector along ob, which is the same unit vector along the x-axis, X, is:

x=|r, (A.30)

A.4.3 Orientation Vector y

In order to determine a vector along the y-axis, image point d, whose coordinates with
respect to the image coordinate system are (xo, A+yo, 0)', is selected, where A is an
arbitrary distance. In other words, line od is parallel to the y-axis. The object space point
is D and its coordinates with respect to the object coordinate system are (Xp, Yp, Zp) .
Using point D and its image point d in the collinearity equations, vector OD with respect

to the object coordinate system can be obtained as:

X,—-X, Xy — X,
OD=|Y,-Y, :%R A+y, =y,
Z,-Z, —-c
| 0
:ZR A (A.31)
—c
r,A—r;c
=—|r,A—ryC

1y, A—r155c
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A unit vector along OD can be expressed as:

XD _Xo
|ng)| - 2 : 2 2 Yy =1,
\/(XD_XO) +(YD_YO) +(ZD_ZO) ZD_ZO
l r,A—r;c
= 1 A FpA—ryc
i\/(rle_rwc)z +(rpA=rye) +(rpA=rye) rpA—ryc
\/Az((rlz)z +(r22)2 +(r32)2)+02((r13)2 +(l”23)2 +(”33)2)_20A(’”12’”13 T 750, +’”32’”33)
r,A—r;c
ryA—=rycC
ry,A—=r55c
Using Equations A.12, A.13 and A.19:
raA=rnse
oD ! ryA=ryc (A.32)

|OD| ) VA +c?

ryA—r55c

which is also a unit vector along Od with respect to the object coordinate system. Vector

Od has a length of YA® +¢” . Therefore, it can be expressed as:

r,A—r;c
Od =|r,A=ry,e (A.33)

ryp,A—r55c

Therefore, vector od, which is parallel to y-axis can be expressed as:
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naA —rsc "3
od =0d — 00 =|r,A—ryc|+c|r,
P —r3C 33

(A.34)

>
=A| 1)y,

I3,

Therefore, a unit vector along od, which is the same unit vector along the y-axis, y, is:

Y=\|"» (A.35)

In conclusion, vectors X, y, and z represent the first, second and third columns,
respectively, of the rotation matrix R. It is also important to recall the orthonormality of

these vectors.
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