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ABSTRACT 

 

 

Normalized image generation (epipolar resampling) is an important task for automatic 

image matching. Normalized images facilitate the detection of feature correspondences in 

the images and therefore provide the advantages of reducing the search space as well as 

the matching ambiguities. Normalized image generation is a well-established procedure 

for images captured by frame cameras. Digital frame cameras that produce resolution and 

ground coverage comparable to those of analog aerial photographs are not yet available. 

Instead, linear array scanners can be used on aerial or space platforms in order to obtain 

such characteristics. The resulting scenes are formed by stitching the captured one-

dimensional images that are produced as the sensor moves. Rigorous modeling 

necessitates accessing or estimating a large number of exterior orientation parameters of 

the images. The resulting epipolar lines are non-straight lines, which causes difficulties in 

epipolar resampling using the rigorous model. By comparison, the parallel projection 

model requires a smaller number of parameters, and it results in straight epipolar lines. In 

addition, as the flying height increases and the angular field of view decreases, similar to 

the case of space-borne scanners, the true perspective geometry can be approximated by 

parallel geometry. The mathematical models and the transformations related to the 

parallel projection model and its relation to the rigorous perspective projection model are 

developed. An approach for epipolar resampling of linear array scanner scenes based on 

the parallel projection model is established. Experimental results using synthetic as well 

as real data prove the feasibility of the developed approach. 
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CHAPTER 1: INTRODUCTION 

 

 

1.1 GENERAL 

 

Image resampling according to epipolar geometry is a prerequisite for a variety of 

photogrammetric tasks such as image matching, digital elevation model (DEM) and 

ortho-photo generation, aerial triangulation, map compilation, and stereoscopic viewing. 

The resampling process for images captured by the frame camera has been established 

and implemented in current Digital Photogrammetric Workstations (DPW); for example 

see Cho et al., 1992. Scanning analog images or using a digital camera directly can 

produce digital images, which are the input media for DPW. So far, there is no digital 

frame camera that is capable of producing geometric resolution that is comparable to 

those produced by analog cameras. To overcome this limitation, linear array scanners 

have been developed to capture scenes through multiple exposures of several (one to 

three) scan lines along the image plane. This imaging scenario makes the perspective 

geometry of line cameras more complicated than that of frame images. Moreover, 

established procedures for resampling frame images according to epipolar geometry are 

not suitable for scenes captured by linear array scanners, due to the geometric differences 

between the two systems. This research will investigate the feasibility of, and develop a 

methodology for, resampling scenes captured by linear array scanners according to 

epipolar geometry. 

 

 

1.2 RESEARCH OBJECTIVES AND SCOPE 

 

The objective of the proposed research is to investigate the feasibility of resampling 

scenes captured by linear array scanners according to epipolar geometry. The feasibility 

study starts with the analysis of the epipolar geometry of an imaging sensor using its 

rigorous model. This requires the availability of the Interior Orientation Parameters (IOP) 

of the scanner. The IOP include the principal distance, the coordinates of the perspective 
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center, and various lens distortions. Furthermore, the Exterior Orientation Parameters 

(EOP), which describe the position and the attitude of the imaging sensor as a function of 

time, are required. After analyzing the epipolar geometry, resampling the scenes using an 

alternative model “the parallel projection model”, which does not need the IOP or the 

EOP of the imaging scanner is investigated. 

 

The major objective of this research is to develop an approach for epipolar resampling of 

linear array scanner scenes. To achieve this goal, other objectives become important 

including the analysis of the epipolar lines in linear array scanner scenes using the 

rigorous and approximate models.  

 

 

1.3 STRUCTURE OF THE DISSERTATION 

 

Chapter 2 contains a literature review; it explains, in detail, the epipolar geometry and 

resampling for images captured by frame cameras. This review is important since it 

allows us to investigate potential problems and solutions when dealing with scenes 

captured by linear array scanners. Chapter 2 also includes an introduction to imaging and 

stereo coverage alternatives of various line scanners (e.g., SPOT, IKONOS, ADS40). 

Both the rigorous model and approximate models (including the parallel projection 

model) are introduced in this chapter. Finally, a review of the literature regarding the 

epipolar geometry of linear array scanners is presented.  

 

Chapter 3 examines the shape of the epipolar line in linear array scanner scenes with 

different altitudes and with different stereo coverage methods. This investigation allows 

us to inspect the deviation of the epipolar lines from straightness for these scenarios. 

Similar to frame images, cases which yield straight, or close to straight, epipolar lines 

would be more suitable for resampling these scenes according to epipolar geometry. 

 

The outcome of the investigations in Chapter 3 indicated that it is almost impossible to 

obtain straight epipolar lines from different linear array scanners with different imaging 
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configurations for stereo coverage. Moreover, it has been established that, as the flying 

height increases and the Angular Field Of View (AFOV) decreases, the generated 

epipolar lines become straighter. This particular scenario is very close to parallel 

projection. Therefore, Chapter 4 has been dedicated to study the parallel projection theory 

including the mathematical relationship between the object and scene coordinates and the 

shape of the expected epipolar lines. The necessary tools have been derived throughout 

this chapter to facilitate the various transformations for epipolar line determination and 

epipolar resampling. 

 

As indicated in Chapter 4, parallel projection maintains uniform scale. Given this 

situation, Chapter 5 deals with the necessary transformation of the captured scene 

according to perspective geometry into parallel projection geometry to maintain uniform 

scale. In addition, navigation parameters (the EOP of the scanner) may be available and 

could be used in perspective-to-parallel projection transformation. Therefore, the 

relationships between the navigation parameters and the parallel projection parameters 

are derived in this chapter.  

 

Chapter 6 deals with epipolar line determination and the generation of normalized scenes 

(i.e., resampled scenes according to epipolar geometry). In Chapter 6, the relationship 

between the x-parallax values in the normalized scenes and the corresponding height is 

analyzed. The discussion outlines the necessary conditions for having an x-parallax that is 

linearly proportional to the corresponding elevation. An approach for epipolar resampling 

is developed in this chapter. Finally, experimental results using synthetic and real data are 

presented.   

 

Chapter 7 includes a summary, along with conclusions and recommendations of the 

research. 
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1.4 RESEARCH CONTRIBUTIONS 

 

This research starts by presenting and closely analyzing the findings from prior literature 

that are relevant to epipolar resampling of linear array scanner scenes. They include:  

 

• Analyzing the epipolar geometry of frame images and linear array scanners 

(Chapter 2); 

• Analyzing the parallel projection model (Chapter 4); and 

• Analyzing the perspective-to-parallel transformation (Section 5.2, Chapter 5); 

 

In this dissertation, many mathematical models, transformations and approaches are 

developed. Contribution of this research includes: 

 

• Developing the epipolar line equation of the constant-velocity-constant-attitude 

model and investigating the straightness of the epipolar lines (Chapter 3); 

• Developing the transformation between the linear and non-linear forms of the 

parallel projection model (Section 4.4, Chapter 4); 

• Developing the mathematical model relating scenes generated according to the 

parallel projection that are sharing the same plane or sharing the same projection 

direction (Section 4.5, Chapter 4); 

• Developing a model combining the parallel projection model and the perspective-

to-parallel transformation (Section 5.3, Chapter 5); 

• Developing the relationship between scanner navigation data and parallel 

projection parameters (Section 5.4, Chapter 5); 

• Developing two approaches to eliminate y-parallax between scenes captured 

according to parallel projection (Section 6.2, Chapter 6); 

• Developing epipolar resampling approach to eliminate y-parallax values and 

maintain linear relationship between x-parallax and height values (Section 6.3, 

Chapter 6); 

• Testing the developed mathematical models and transformations and the epipolar 

resampling approach (Chapters 3 to 6); and 
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• Developing software using C++ programming language for implementing the 

developed epipolar resampling approach.  
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CHAPTER 2: LITERATURE REVIEW 

 

 

2.1 INTRODUCTION 

 

Section 2.2 of this chapter contains a discussion and analysis of the epipolar geometry of 

frame images (Schenk, 1990; Cho et al., 1992; Zhang et al., 1995; Luong and Faugeras, 

1996; Papadimitriou and Dennis, 1996; Schenk, 1999; Tsioukas et al., 2000). Section 

2.2.1 introduces some definitions and quantities that are associated with frame images 

and, more specifically, those associated with stereopair frame images. Section 2.2.2 

explains different methods for determining epipolar lines for stereopairs. Epipolar 

resampling and generating normalized frame images are discussed in Section 2.2.3.  

 

In Section 2.3, linear array scanners are introduced, including the motivation, 

terminology and methods of stereo observations. Rigorous and approximate models for 

linear array scanners are also introduced in this section. Finally, a literature review 

regarding the epipolar geometry of linear array scanners is discussed. 

 

 

2.2 EPIPOLAR GEOMETRY OF FRAME IMAGES 

  

2.2.1 Definitions 

 

It is important to introduce some terms with their definitions (Schenk, 1990; Cho et al., 

1992; Zhang et al., 1995; Luong and Faugeras, 1996; Papadimitriou and Dennis, 1996; 

Schenk, 1999; Tsioukas et al., 2000). These terms will be used throughout the analysis of 

the epipolar geometry of frame images. 

 

Figure 2.1 shows two relatively oriented frame images. O and O’ are the perspective 

centers of the left and right images, respectively, at the time of exposure. 
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Figure 2.1: Epipolar geometry in frame images 
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It should be noted that no DEM is needed to determine the epipolar line. This can be 

easily seen in Figure 2.1. Selecting several points along the ray (Op) - i.e., choosing 

different height values of the object point - will yield the same epipolar line (I’p) in the 

other image. The epipolar lines also pass through the epipoles as clearly seen in this 

figure. 

 

Another important property of epipolar lines in frame images is their existence in 

conjugate pairs. Considering Figure 2.2, where I’p is the epipolar line in the right image 

for point p in the left image, and p’1, p’2 are two different points in the right image 

selected on I’p. The epipolar lines of points p’1 and p’2 (Ip’1 and Ip’2, respectively) will be 

identical and pass through the point p. Similarly, the epipolar line of any point, other than 

p’1 or p’2, lying on I’p, will be identical to Ip’ and will pass through the point p. This can 

be easily seen in Figure 2.1, since all of these points and lines lie in the same plane (the 

epipolar plane). 

 

 

 

 

 

 

 

 

 

2.2.2 Determination

 

Generally, two meth

images. Both metho

Orientation Paramete

 

 

p I’pp’1
p’2

p p’1
p’2

Ip’ =Ip’1=Ip’2

Figure 2.2: Epipolar line pairs 

 of Epipolar Line in Frame Images 

odologies can be adopted to determine the epipolar lines in frame 

ds rely on the knowledge of the EOP or at least the Relative 

rs (ROP) of the two frame images. 



 9

2.2.2.1 Method 1: Collinearity Equations Through the Object Space 

 

The collinearity equations (Kraus, 1993), Equations 2.1, relate a point in the object space 

to its corresponding point in the image space; see Figure 2.3. 

 

 

 

 

 

 

 

 

 

Figure 2.3: Determining the epipolar line by back-projecting points along 

the left light ray to the right image 
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Where: 

x, y are the image coordinates of a point of interest in the left image 

whose epipolar line to be determined in the right image; 

x0, y0, c  are the IOP of the frame camera; 

X0, Y0, Z0, ω, ϕ, κ are the EOP of the left image;  

Xj, Yj, Zj  are the object space coordinates of the corresponding object point; 

λj   is the scale factor; and  
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In Equations 2.1, there exist three equations and four unknowns. These unknowns are: the 

object space coordinates and the scale factor. Remember that the DEM, or the true 

elevation of the object point, is not required. The left light ray can be determined based 

only on the orientation parameters. Two different points are selected along that ray by 

choosing two different scale factors (λ1, λ2) and then solving Equations 2.1 independently 

for points (X1, Y1, Z1) and (X2, Y2, Z2). The appropriate values of (λ1, λ2) can be chosen in 

such a way so that the object space points represent the minimum and maximum 

elevation in the object space. 

 

The two object points are then re-projected into the right image knowing its orientation 

parameters, by solving Equations 2.2 for the corresponding right image coordinates (x’j, 

y’j). 
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Where: 

X’0, Y’0, Z’0, ω’, ϕ’, κ’ are the EOP of the right image, and 
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Points (x’1, y’1) and (x’2, y’2) form the epipolar line. 

 

2.2.2.2 Method 2: Coplanarity Condition Without Visiting the Object Space 

 

The object space point (Xj, Yj , Zj) is related to both the right and left images through 

Equations 2.3, where the object space coordinates are eliminated. 
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Equations 2.3 represent three independent equations with four unknowns (λj, λ’j, x’, y’), 

which, after reduction, give the equation of the required epipolar line in the right image 

as a relation between (x’, y’). 

 

Further reduction of the above equations by eliminating (λj, λ’j) is similar to using the 

coplanarity condition (Kraus, 1993); see Equation 2.4 and Figure 2.4. 
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 are the components of the air base. 

 

Expanding Equation 2.4 gives a linear relation between x’ and y’ (the epipolar line 

equation). 

 

It is important to note that the epipolar lines of different points are not parallel in general. 

An exception is made for the case where the images are parallel to the air base. This is 

clear since all epipolar lines meet at the epipoles and the epipoles are at infinity; 

therefore, the epipolar lines will be parallel. In the following section, such an observation 

will be used for resampling the images to generate normalized images, in what is called 

“epipolar resampling”.  

 

2.2.3 Epipolar Resampling and Generation of Normalized Frame Images 

 

This section introduces the objectives and the importance of the normalized images. The 

discussion begins by explaining the concept and derives the mathematical model for 

epipolar resampling. Finally, the procedure for epipolar resampling and generating the 

normalized images is introduced. 

 

2.2.3.1 Objectives 

 

The main objective of epipolar resampling is to generate normalized images, which have 

the innate property that corresponding points lie on the same rows (or columns). This 

prime advantage reduces the search space and computation time in addition to reducing 

matching ambiguities. This is important for a wide variety of applications such as: 
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• Automatic matching 

• Automatic relative orientation 

• Automatic aerial triangulation 

• Automatic DEM generation 

• Ortho-photo generation, and 

• Stereo viewing 

 

Figure 2.5 shows normalized stereo images, where point a in the left image has 

coordinates of (xa, ya). For normalized images, the search space for its conjugate a’ in the 

right image will have a y’ value equal to that of point a. Therefore, y’a’ = ya. In this case, 

the search space of the corresponding point will be along the line y’ = ya. Similarly, for 

point b’ in the right image, its conjugate in the left image, b, will be along the line y = 

y’b’. For digital images, the search space for the conjugate point will be a row in the other 

image. 

 

x

y

x’

y’

a I’a

b’Ib’

ya

y’b’

Left normalized image Right normalized image  

 

 

 

 

 

Figure 2.5: Normalized stereopair 

 

2.1.3.2 Concept 

 

As discussed earlier, resampling frame images requires that the new images be parallel to 

the air base. In this case, the epipolar lines in both images will be parallel. As seen in 

Figure 2.6, a new plane, parallel to the air base and containing the normalized images, 

can be used. It must be noted that there is no unique plane that will result in parallel 

epipolar lines. For example, two different planes that are parallel to the air base, each for 

resampling one of the images, results in parallel epipolar lines in each image 

independently. However, the spacing (normal distances) between the epipolar lines in one 
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of the images will differ from the spacing between the corresponding points in the other 

image. In other words, the resulting images will have different scales. Therefore, the two 

images must be resampled to the same plane at a distance cn from the air base, and not to 

two different parallel planes, as seen in Figure 2.6. In addition, there is an infinite number 

of planes that are parallel to the air base and that are at a distance, cn , from it. These 

planes are tangent to the cylinder whose axis is the air base and radius is cn. Therefore, 

rotation ωn can be fixed to a certain value. Such a value can be chosen to be the average 

of ω and ω’ of the left and right original images, respectively, in order to minimize 

possible scale distortions in the corresponding direction. 
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ote that the choice of IOP of the normalized images is arbitrary, but they 

qual in both left and right normalized images. For example, if the plane is 

in a distance of cn from the air base, the new normalized images will have a 

stance of cn. However, it is preferred to use the same IOP values of the 

ges to obtain similar scales for both the original and normalized images.  
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Within the new image plane, both images must be rotated (κ rotation) to ensure that the 

corresponding points and epipolar lines lie along the same row (or column). Therefore, 

the EOP of the new images will be selected as follow: 

 

• The perspective centers of the normalized images will be the same as those of the 

original images, O(X0, Y0, Z0) and O’(X’0, Y’0, Z’0). 

 

• The orientations of the normalized images will be chosen as follows (Cho et al., 1992; 

Schenk, 1999): 

 

A primary rotation ϕn will be chosen in such a way to ensure that the new image 

plane is parallel to the air base; it can be computed as in Equation 2.5. 
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A secondary rotation κn will be chosen so that the rows of the new images are 

parallel to the air base. It can be computed as in Equation 2.6. 
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A tertiary rotation ωn will be chosen in such a way as to minimize the scale 

distortion in the corresponding direction, and can be computed as in Equation 2.7. 

2
'ωωω +

=n         (2.7) 

Therefore, the corresponding rotation matrix Rn is computed as follows: 

nnnn RRRR ωκϕ=          

 

2.2.3.3 Mathematical Model 

 

In this section, the mathematical model for transforming or resampling the image into a 

normalized one is derived. Consider any of the original images in Figure 2.6 - the left 
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image for example. Its points must be transformed to the normalized image whose 

perspective center is identical to that of the original image, its orientations are as 

determined in Equations 2.5, 2.6, and 2.7, and having arbitrary IOP (x0n, y0n, cn). Such a 

transformation is performed through the object space, as seen in Figure 2.7. In this figure, 

a profile of the images and the light ray are shown. Starting from the point in the original 

image, the collinearity equations or the equations of the light ray in space, can be written 

as: 

 

DEM

DEM

DEM

O(X0, Y0, Z0)

R(ω, ϕ, κ)

Rn(ωn, ϕn, κn)

 

 

 

 

 

 

 

 

Figure 2.7: Tracing light ray from the original image to the object space, 

then to the normalized image 
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The same object space point (X, Y, Z) appears in the normalized image. Therefore, other 

collinearity equations, for the corresponding point in the normalized image, can be 

written as follows: 
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Equating both Equations 2.8 and 2.9 results in: 
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  (2.10) 

 

Equations 2.10 contain three equations in three unknowns (xn, yn, λn/λ). Therefore, xn and 

yn can be computed, regardless of the actual values of λn or λ. Before proceeding further, 

it is important to note that an object space point (or DEM) is not required in order to 

resample the frame image according to epipolar geometry. It can be seen from the above 

analysis that the actual values of λn or λ are not required. This can also be visualized by 

tracing the light rays in Figure 2.7, starting from the perspective center O to the point in 

the original image. This ray is extended till it hits the object space (or DEM). Then, the 

object space point is back-projected into the new normalized image. This ray should also 

pass through the perspective center of the normalized image, which is the same as that of 

the original image. Therefore, the two light rays - those projected into the object space 

and projected back from the object space - coincide. Therefore, regardless of where these 

light rays hit the object space (DEM), the same back-projected point in the normalized 

image is obtained. Thus, it can be concluded that a DEM is not required for epipolar 

resampling of frame images (as long as their perspective centers do not change). This 

discussion is important since it would be related/compared to scenes captured by line 

scanners. 

 

The ratio λn/λ can be eliminated from Equations 2.10 by dividing the first and the second 

equations with the third one to give Equations 2.11, which are the mathematical functions 

that relate the coordinates in the original image to the corresponding coordinates in the 

normalized images. 
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2.2.3.4 Procedure 

 

The procedure for epipolar resampling and generating the normalized images can be 

summarized as follows (refer to Figure 2.8): 

 

 

 

 

 

 

 

 

Figure 2.8: Procedure of epipolar resampling, or normalized image 

generation 
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1. Start from any pixel location in the normalized image (xn, yn). 

2. Compute the corresponding location in the original image (x, y) using Equations 

2.11. The values of x and y are usually non-integer. 

3. Compute the gray value, g(x, y), in the original image using an appropriate 

interpolation method such as nearest neighbor, bilinear interpolation or cubic 

convolution. 

 



 19

4. Assign the interpolated gray value to the pixel in the normalized image, i.e., 

g(xn,yn)=g(x,y). 

5. Repeat the above steps for all pixels in the normalized image. 

6. Repeat the above steps for the other image in the stereopair. 

 

 

2.3 LINEAR ARRAY SCANNERS 

 

2.3.1 Introduction 

 

Scenes captured from linear scanners (also called pushbroom scanners or line cameras) 

are valued for their great potential for generating ortho-photos and updating map 

databases (Wang, 1999). The linear scanners with up to one-meter resolution from 

commercial satellites could deliver more benefits and provide a challenge to traditional 

topographic mapping based on aerial images (Fritz, 1995). In this section, motivations for 

using linear array scanners are discussed. Scanner types and ways of stereo observation 

are also introduced. Finally, geometric modeling of linear array scanners together with 

their epipolar geometry are introduced. 

 

2.3.1.1 Motivations for using Linear Array Scanners 

 

Two-dimensional digital cameras capture data using a two-dimensional Charged Coupled 

Device (CCD) array. However, the limited number of pixels in current digital imaging 

systems hinders their application to extensive large scale mapping functions in 

comparison with scanned analog photographs. Increasing the principal distance of the 2-

D digital cameras will increase the ground resolution, but will also decrease the ground 

coverage. On the other hand, decreasing the principal distance will increase the ground 

coverage at the expense of ground resolution. 

 

One-dimensional digital cameras (linear array scanners) can be used to obtain large 

ground coverage and maintain a ground resolution comparable to scanned analog 
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photographs. However, they capture only a one-dimensional image (narrow strip) per 

snapshot. Ground coverage and resolution in the scanning direction are achieved by the 

large number of pixels in the 1-D array (see Figure 2.9). On the other hand, successive 

ground coverage in the flying direction is achieved by moving the sensor (airborne or 

space-borne) and capturing more 1-D images. The ground resolution in the flying 

direction can be maintained by synchronizing the scanning frequency and the speed of 

the platform. The scene of an area of interest is obtained by stitching together the 

resulting 1-D images. It is important to note that every 1-D image is associated with one 

combination of exposure station and scanner orientations at the time of exposure. 

Therefore, each 1-D image will have a distinct set of EOP. A clear distinction is made 

herein between the two terms “scene” and “image” throughout the analysis of linear array 

scanners. Before proceeding, one has to note that the technology is evolving with a high 

speed. This leads to increase in the number of pixels of the 2-D cameras as well as the 1-

D scanners. However, the latter can always achieve larger number of pixels compared to 

the number of rows or columns in 2-D cameras. 
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2.3.1.2 Differences between Image and Scene 

 

An image is defined as the recorded sensory data associated with one exposure station. In 

the case of a frame image, it contains only one exposure station, and consequently it is 

one complete image. In the case of a linear array scanner, there are many 1-D images, 

each associated with different exposure stations. The mathematical model that relates a 

point in the object space and its corresponding point in the image space is contained in 

the collinearity equations, which use the EOP of the appropriate image (in which the 

point appears).  

 

By way of contrast, a scene is the recorded sensory data associated with one (as in frame 

images) or more exposure stations (as in linear array scanners) that maps near-continuous 

object space in a single short trip of the sensor. Therefore, in frame images, the image 

and scene are identical terms while, in linear array scanners, the scene is an array of 

consecutive 1-D images. 

 

Consequently, it is important to distinguish between the scene coordinates and image 

coordinates. As shown in Figure 2.10, i and y are the scene coordinates while xi and yi are 

the image coordinates for image number i. Only xi and yi can be used in the collinearity 

equations, while i indicates the image number or the time of exposure.  
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2.3.1.3 Types of Linear Array Scanner Systems 

 

A linear array scanner system may be comprised of one or more 1-D scanners in the 

image plane. Figure 2.9 shows an example of one linear array scanner system and Figure 

2.11 shows a three-line camera. The latter system has three linear array scanners, 

scanning in three different directions: backward, nadir, and forward-looking. As the 

platform moves, each of the scanners captures a different scene in the corresponding 

direction. Another type, panoramic linear array scanners, are used to capture a large 

swath normal to the flying direction (Habib and Beshah, 1998a). Due to the large scale 

differences within the captured scenes, this system will not be included in the analysis 

that follows. The various systems achieve stereo coverage differently by different means, 

as will be explained in the next subsection. 
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Figure 2.11: Three-line camera 

Coverage 

in objectives of photogrammetry is to reconstruct the three-dimensional 

rom 2-D images or scenes. This is usually achieved by intersecting light 

ponding points in different views. Therefore, different views or stereo 
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coverage are essential for deriving 3D information regarding the object space. In linear 

array scanners, stereo coverage can be achieved in each of the following ways:  

 

• One scanner and across-track stereo coverage using roll angles 

Stereo coverage can be achieved by tilting the camera sideways across the flight 

direction to produce different roll angles (see Figure 2.12a). This has been adopted in 

SPOT (Fraser et al., 2001). A drawback of this type is the large time gap between the 

images of the stereopair, and consequently changes may occur between the two 

scenes (Wang, 1999). In addition, large radiometric differences may occur between 

the recorded scenes and cause problems in image matching. 

 

• One scanner and along track stereo coverage using pitch angles 

In this case the camera is tilted forward and backward along the flight direction to 

produce different pitch angles (see Figure 2.12b). This type of stereo coverage is used 

in IKONOS (Fraser et al., 2001). This method has the advantage of reducing the time 

gap between the scenes comprising the stereopair and consequently reducing the 

radiometric or geometric differences between them. 

 

• Three scanners (three-line camera) 

In this case, three scanners are used to capture backward-looking, nadir, and forward-

looking scenes, producing different xi values (see Figure 2.12c). Continuous stereo or 

triple coverage can be achieved along the flight line with reduced time gaps. Similar 

scales are achieved for the three scenes generated by the scanners. However, different 

radiometric qualities exist among the scenes, which may cause problems in image 

matching. This method is implemented in MOMS and ADS40 (Heipke et al., 1996; 

Sandau et al., 2000; Fraser et al., 2001). 
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icant characteristic is that (xi – x0) is always constant, as shown in Figures 

t is always zero except for the backward and forward scanners in the three-

where it has the values of –d and d, respectively, where d is the spacing 

canners in the focal plane.  

ng of Linear Array Scanners 

 and generalized sensor models are the two broad categories of sensor 

 (McGlone, 1996). These are briefly discussed in the following subsections.  

ous Model 

 exact) modeling of linear array scanners describes the actual geometric 

the scenes at the time of photography. This modeling requires a knowledge 

 the scanner and the EOP of each image in the scene. Usually, EOP do not 

ge their values between consecutive images in a scene, especially for space-

s. Therefore, most rigorous modeling methods adopt a polynomial 

 of EOP (Wang, 1999; Lee et al., 2000); see Equations 2.12: 
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      (2.12) 

Where: 

i is the image number (which is directly related to the time of 

exposure); 

(X0i, Y0i, Z0i) are the spatial location of the exposure station of image i; 

(ωi, ϕi, κi) are the rotation angles of image i; 

(nX, nY, nZ) are the degrees of the polynomials of X0i, Y0i and Z0i, respectively; 

(nω, nϕ, nκ) are the degrees of the polynomials of ωi, ϕi and κi, respectively; 

(X0, Y0, Z0) are the spatial location of the exposure station of the first image in 

the scene (image 0); 

(∆X, ∆Y, ∆Z) are the linear changes of scanner location (components of the 

scanner velocity vector – the first order components of the scanner 

location); 

(∆XnX, ∆YnY, ∆ZnZ) are the nXth, nYth and nZth order components, respectively, of the 

scanner location; 

(ω, ϕ, κ) are the rotation angles of the first image in the scene; 

(∆ω, ∆ϕ, ∆κ) are the linear changes of the rotation angles (the first order 

components of the scanner rotation angles); and 

(∆ωnω, ∆ϕnϕ, ∆κnκ) are the nωth, nϕth and nκth order components, respectively, of the 

scanner rotation angles. 

 

It is important to note that the order of each polynomial may differ from those of the 

other polynomials. In other words, values of nX, nY , nZ, nω, nϕ and nκ may differ, 

depending of the scanner movement pattern. Their typical values are therefore scanner-

dependent. The parameters included in Equation 2.12 are either given (directly) from the 

 



 26

navigation units such as GPS and INS sensors mounted on the platform, or indirectly 

estimated using ground control in bundle adjustment (Habib and Beshah, 1998; Habib et 

al., 2001; Lee and Habib, 2002). 

 

Other methods (Ethridge, 1977; McGlone and Mikhail, 1981; Lee et al., 2000) use 

piecewise polynomial modeling to represent the flight trajectory and the platform 

attitude. This option is preferable if the scene time is large, and the variations in EOP do 

not comply with one set of polynomial functions.  

 

With the large number of unknowns in indirect methods using Ground Control Points 

(GCP), instability in the bundle adjustment exists, especially for space-based scenes 

(Wang, 1999; Fraser et a., 2001). This is attributed to the narrow Angular Field of View 

(AFOV) of space scenes, which results in very narrow bundles in the adjustment 

procedures. 

 

Finally, Lee and Habib (2002) avoided the polynomial representation of EOP, by 

explicitly considering the parameters of each image in the scene. Linear feature 

constraints were used to aid independent recovery of the EOP of the images as well as to 

increase the geometric strength of the bundle adjustment. 

 

2.3.2.2 Generalized Models 

 

Generalized sensor models represent an approximate transformation between the scene 

and object coordinates and do not necessarily represent the exact transformation. 

Therefore, they can be considered as approximate models. These sensor models can be 

used as a generic solution for all sensor types (Paderes et al., 1989; Tao and Hu, 2001; 

Grodecki and Dial, 2003). This class of models includes rational functions, such as DLT, 

SDLT, and 2-D Affine, which will be introduced in the following subsections. 

 

 

 



 27

2.3.2.2.1 Rational Functions 

 

Recently, the US military intelligence community has initiated the use of the rational 

function model. They have been implemented in some commercial software packages 

(Madani, 1999; Dowman and Dolloff, 2000). It is important to note that some satellite 

scene providers do not provide the IOP associated with their scanners or EOP associated 

with their scenes for security reasons (Fraser et al., 2001). Some satellite scenes are 

provided nowadays with generalized models, such as rational function models, describing 

the relation between scene and object coordinates. A general form of the rational 

functions can be written in Equations 2.13. 
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where Fi
r is a polynomial function of r-degree of the object coordinates (X, Y, Z). 

Equations 2.13 represent a forward transformation from the object coordinates to the 

scene coordinates. The degree of the polynomial is the maximum summation of the 

powers of the object coordinates. For example, in a third-degree polynomial such as 

, the summation of a, b and c should not exceed three. An alternative 

representation, the backward representation, can be seen in Equations 2.14, where the 

object planimetric coordinates are rational functions of the elevation and the scene 

coordinates.   
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Where Bi
r (x, y, Z) is an r-degree polynomial. The denominators in each expression may 

be the same or different. For example, F2
r and F4

r in Equations 2.13 – or B2
r and B4

r in 

Equations 2.14 - could have identical or different coefficients). 

 

Similar to the case of rigorous modeling, the rational functions’ parameters can be 

determined directly (using scanner IOP and EOP) or indirectly using control information 

(Tao and Hu, 2001). 

 

It is important to mention that directly determined rational functions’ parameters are 

subject to biases in the scanner’s IOP or EOP (Baltsavias et al., 2001; Fraser et al., 2001; 

Hanley et al., 2002; Fraser and Hanley, 2003). Therefore, indirectly determining these 

coefficients is preferable for the achievement of increased absolute accuracy. On the 

other hand, many GCPs are required to indirectly determine these parameters (Tao and 

Hu, 2001), which therefore limits the use of rational functions, especially in remote areas. 

 

2.3.2.2.2 Direct Linear Transformation (DLT) 

 

The collinearity equations (Equations 2.1) can be rewritten so that the image coordinates 

are rational functions of the object coordinates (Abdel-Aziz and Karara, 1971): 
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where A1, …, A11 are the DLT parameters. It is important to note that DLT consists of 

first-degree forward rational functions with common denominators. Therefore, these 

parameters can be obtained directly (using IOP and EOP) or indirectly (using GCP). 

Although DLT can be considered as the rigorous model of frame images, it is considered 

as approximate modeling of linear array scanners, since the EOP are no longer the same 

for images in the scene.  
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Wang (1999) developed self-calibrating DLT, referred to as the SDLT, which includes an 

additional parameter, A12, representing additional correction to the image coordinates:  
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Importantly, Wang assumed a straight line trajectory with constant heading in his 

derivation.  

 

2.3.2.2.3 Two-D Affine Model 

 

For scanners with a narrow AFOV and moving with constant-velocity and constant 

attitude, the relationship between the scene and object coordinates can be approximated 

by a 2-D Affine transformation (Equations 2.17) using fewer parameters (Ono et al., 

1999; Fraser, 2000). This characteristic makes it appealing to many researchers and 

applications (Okamoto, 1992; and Okamoto et al., 1992; Okamoto et al., 1996; Ono et al., 

1996; Okamoto and Fraser, 1998; Ono et al., 1999; Fraser, 2000; Hattori et al., 2000; Ono 

et al., 2000). 
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       (2.17) 

 

Fraser et al. (2001) achieved sub-pixel accuracy using the 2-D Affine model for IKONOS 

scenes. Therefore, this model will be closely investigated in Chapter 4. Achievement of 

such a level of accuracy motivates the use of this type of model for space scenes. 

However, it is important to mention that such accuracies are achieved under the 

assumption of high-quality image mensuration and ground control, and favorable 

imaging geometry (Hanley and Fraser, 2001; Fraser et al., 2001; Fraser et al., 2002). 
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It is important to mention that raw scenes obtained from linear array scanners comply 

with perspective geometry. Therefore, prior to using the model in Equations 2.17, a 

perspective-to-affine transformation must be applied to transform the scenes from their 

original state, as a perspective projection, to a 2-D Affine model (Okamoto et al., 1992; 

Okamoto et al., 1996; Okamoto and Fraser, 1998; Ono et al., 1999; Hattori et al., 2000; 

Ono et al., 2000). Such a transformation assumes flat terrain or a DEM and assumes a 

knowledge of the scanner roll angle. Chapter 5 of this dissertation is dedicated to the 

analysis of this transformation together with developing the relationship between the 

rigorous model and the parallel projection parameters.  

 

2.3.3 Epipolar Geometry of Linear Array Scanner Scenes 

 

As discussed earlier, every scan line at each different exposure station has a different 

perspective center and attitude. Therefore, the EOP will vary from one scan line to 

another. Hence, the epipolar lines should be clearly defined in such scenes before 

studying their geometry. Figure 2.13 shows a schematic drawing of two linear array 

scanner scenes. For a 1-D image in the left scene with O as its perspective center, point p 

can correspond to many epipolar planes, unlike the case of frame images - compare 

Figures 2.1 and 2.13. In this case, there are as many epipolar planes as there are 

perspective centers in the right scene. Therefore, the epipolar line cannot be defined as 

the intersection of planes. Instead, the second definition used in frame images is adopted, 

where the epipolar line is defined as the locus of all possible conjugate points of p in 

the other scene based on the orientation parameters.  

 

In order to determine the epipolar line, the EOP of the scan lines together with the IOP of 

the scanner must be available. The epipolar line can be determined in a similar manner to 

that discussed in Section 2.2.2 by repeating the procedure for each scan line, since each 

scan line has different EOP. The change in EOP from one scan line to the next is one of 

the factors that determine the shape of the epipolar line. Subsections 2.3.3.1 and 2.3.3.2 
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analyze the shape of epipolar lines derived from the rigorous perspective model and from 

the 2-D Affine model, respectively.  

 O’iO’i
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       (2.18) 

where j and i are the scan lines in the left and right scene, respectively. 

 

The author proved the relation that expresses the epipolar line, as indicated in Equation 

2.19. The notations are modified to eliminate any conflict with those used in this 

dissertation, especially in the analysis of the epipolar geometry presented in Chapter 3. 
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where: 

y is the point in the left scene, along the jth scan line, whose epipolar line to 

be determined; 

y’ is the corresponding point in the right scene, as a function of the scan line 

i; 

K1 to K9  are constants for a given scan line j in the left scene; and 

Q(i) is a quadratic function of i associated with yaw angle variation of the right 

sensor. 

 

From Equation 2.19, the relation between y’ and i is no longer a straight line; rather, its 

shape is hyperbola-like. Kim (2000) continued by analyzing the existence of conjugate 
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epipolar lines in SPOT scenes. He selected two different points (p’1 and p’2) on the right 

epipolar line (I’p). The left epipolar lines (Ip’1 and Ip’2) of the selected points were not 

identical, as shown in Figure 2.14. Therefore, the commonly known term “epipolar pairs” 

does not exist for a linear array scene whose EOP are modeled as in Equations 2.19.  

 

 

 

 

 

 

 

Figure 2.14: The nonexistence of conjugate epipolar lines in linear array 

scenes whose EOP are similar to those of the Orun and 

Natarajan model 
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In Chapter 3, a different model (the constant-velocity-constant-attitude model) will be 

analyzed and the resulting epipolar line equation will be developed. 

 

2.3.3.2 Epipolar Geometry using 2-D Affine Model 

 

Ono et al. (1999) derived the equation for epipolar lines, Equation 2.21, using the 2-D 

Affine model. 

 

4321 '' CyCxCxCy +++=        (2.21) 

 

Where C1 to C4 are the epipolar line parameters determined using point correspondences 

in both scenes. Equation 2.21 represents a straight line. Having straight epipolar lines 

motivates us to investigate the parallel projection model very closely (as done in Chapter 

4) and its use in epipolar resampling (Chapter 6). 
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2.4 SUMMARY 

 

This chapter presented a discussion of the epipolar geometry of frame images as reported 

in the literature. Of importance in this field are the facts that epipolar lines in frame 

images are straight lines, and neither epipolar line determination nor epipolar resampling 

require any knowledge of DEM. 

 

Linear array scanners were also introduced in Chapter 2, including different methods for 

their geometric modeling. Epipolar lines in linear array scanners were found to be non-

straight lines using Orun and Natarajan’s EOP model. As it is desirable to obtain a 

straight epipolar curve, a subclass of this EOP model is chosen for analysis in Chapter 3.  

 

Finally, the 2-D Affine (or the parallel projection) model is found to produce straight 

epipolar lines. Therefore, such a model will be investigated for the purpose of epipolar 

resampling of linear array scanner scenes (Chapters 4 to 6). 
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CHAPTER 3: EPIPOLAR LINES OF CONSTANT-VELOCITY-CONSTANT-

ATTITUDE LINEAR ARRAY SCANNERS 

 

 

3.1 INTRODUCTION 

 

In Chapter 2, the epipolar geometry of linear array scanners of the “Orun and Natarajan” 

EOP model were investigated and it was concluded that epipolar lines are not straight 

lines (Kim, 2000). This chapter establishes the epipolar line equation of linear array 

scanners using the constant-velocity-constant-attitude EOP model, which is a subclass of 

“Orun and Natarajan.” To the best of the author’s knowledge, there has been no prior 

research in this area. The motivation for investigating such a model stems from the fact 

that many space scenes are acquired within a very short time (e.g., about one second for 

IKONOS scene); similar assumptions were made for EOP when deriving the SDLT 

model for linear array scanners (Wang, 1999). The scanner, therefore, can be assumed to 

travel with constant velocity and constant attitude during the scene capture. Section 3.2 is 

dedicated to the analysis of this EOP model, followed by a presentation of experimental 

results using synthetic data in Section 3.3.  

 

 

3.2 CONSTANT-VELOCITY-CONSTANT-ATTITUDE EOP MODEL 

 

Assuming a linear transition of the platform having constant speed and attitude, the 

navigation parameters (EOP for any scan line) of the sensor during the capture of the left 

and right scene are as expressed as in Equations 3.1. 
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        (3.1) 

Where: 

j   is the scan line number on the left scene; 

i   is the scan line number on the right scene; 

(X0, Y0, Z0) is the position of the first exposure station in the left scene; 

(∆X, ∆Y, ∆Z) is the constant velocity vector of the scanner while capturing the 

left scene; 

(X’0, Y’0, Z’0) is the position of the first exposure station in the right scene; 

(∆X’, ∆Y’, ∆Z’) is the constant velocity vector of the scanner while capturing the 

right scene; 

(ω, ϕ, κ) are the rotation angles of the left scanner; and 

(ω’, ϕ’, κ’) are the rotation angles of the right scanner. 

   

For a point (j, yj) in the left scene, the collinearity equations can be written as: 
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As mentioned in Chapter 2, (xi – x0) is always constant. It is always zero, except for the 

backward and forward scanners in a three-line camera where it is –d and d, respectively. 

In addition, x0 is constant for the scanner as it is the principal point’s x-coordinate. As a 

result, xi is always constant. It is always equal to x0, except for the backward and forward 

scanners in three-line cameras where it is x0-d and x0+d, respectively. Therefore, x is used 

in lieu of xi in the following derivations. Equations 3.2 can be rewritten as:  
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Where: 
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Rearranging and separating the constants and the parameters in Equations 3.3 results in: 
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It is important to note that, for a given point, yj is constant; for a given image, the rotation 

matrix Rj is constant; and for a given camera, x0, y0 and c are constants. Therefore, the 

following constant terms (A1 to A4) can be introduced: 
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Accordingly, Equations 3.4 are rewritten as: 
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which represent two planes parallel to the Y and X axes, respectively. Their intersection is 

a straight-line (a light ray in space). On the other hand, for the right scene, the collinearity 

equations are: 
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Recall again that x’ is constant, and it is equal to x if the same scanner is used to acquire 

both the left and right scenes (Section 2.3.1.4). Using EOP from Equations 3.1, Equations 

3.7 can be written as: 
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Dividing the first two equations by the last results in the following equations: 

 

( ) ( ) (
( ) ( ) (

)
)

( ) ( ) (
( ) ( ) (

)
)03302342301321333231333323113

03202242201221232221232322112

0

03302342301321333231333323113

03102142101121131211131321111

0

'.''.'.''.'.''.''.''.''.'.'
'.''.'.''.'.''.''.''.''.'.'

'
'.''.'.''.'.''.''.''.''.'.'
'.''.'.''.'.''.''.''.''.'.'

'

ZrYrArXrArZrYrXrirArArZ
ZrYrArXrArZrYrXrirArArZ

c
yy

ZrYrArXrArZrYrXrirArArZ
ZrYrArXrArZrYrXrirArArZ

c
xx

iiiiiiiiiii

iiiiiiiiiii

i

iiiiiiiiiii

iiiiiiiiiii

−−+−+∆+∆+∆−++
−−+−+∆+∆+∆−++

=
−
−

−−+−+∆+∆+∆−++
−−+−+∆+∆+∆−++

=
−
−

 

(3.9) 

Where: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

333231

232221

131211

)',','(

'''
'''
'''

'

iii

iii

iii

i

rrr
rrr
rrr

R
iii κϕω  

 

Let us introduce the constants B1 to B9 as follows: 
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Then, Equations 3.9 are rewritten as: 

 

987

3210

..
..'

BBiBZ
BBiBZ

c
xx

+−
+−

=
−
−         (3.11) 

987

6540

..

..'
BBiBZ
BBiBZ

c
yy i

+−
+−

=
−
−        (3.12) 

 

Equation 3.11 can be reduced as follows: 
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Terms D1 and D2 can be introduced as follows:  
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Thus, Equation 3.13 is rewritten as: 
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Substituting Z from Equation 3.15 into Equation 3.12 results in:  
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Let us introduce the terms E1 to E4 as follows: 
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Use the above terms to rewrite Equation 3.16 as: 

 

4321 ...'.' EEiEiyEy ii +=+        (3.18) 

 

Recall that i and y’i are the scene coordinates in the right scene (see Figure 2.10). 

Equation 3.18, therefore, represents the locus of potential conjugate points in the right 

scene; i.e., the equation of the epipolar line in the right scene. It is important to note that 

y’i is unknown at image or scan line number i. The epipolar curve is a straight line if E2=0 

(if y’i is a linear function of i). Therefore, the term E2 must be analyzed as follows: 
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Using the cosine and sine functions of r’ij, the following reductions can be made: 
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Therefore, E2 can be redefined as follows: 
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Introduce F as follows: 
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Equation 3.19 can be rewritten as: 
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Setting E2 to 0, the condition for having the epipolar curve as a straight line can be 

expressed as: 
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Substituting for A1 and A3, the above condition can be rewritten as: 
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This condition can be rewritten as the triple product of three vectors, v1, v2 and v3, as: 
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Equation 3.23 indicates that these three vectors, shown in Figure 3.1, must be coplanar in 

order to have the epipolar curve as a straight line. 
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Substituting for F from Equation 3.20 into Equation 3.24, we obtain: 

 

1
'''

'''

31

000000

322212

1

AA
ZZYYXX

rrr
FE jjj

iii

−−−−=       (3.25) 

 

The ratio (E2 / E1) can be computed as follows: 
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In the above derivation, it was assumed that F (in Equations 3.20, 3.21 and 3.25) does not 

equal zero. In the case where this term equals zero, Equation 3.18 reduces to (i=constant), 

which means that epipolar lines are straight lines and they coincide with the scene scan 

lines (rows). This is a special case of SPOT where the vectors v1 and v3 and B are 

coplanar, as shown in Figure 3.2. In practice, it is rare to find this condition to be valid 

due to the differences in the scanner locations and rotation angles. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Epipolar lines corresponding to the scene rows 
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In summary, in order to analyze the shape of epipolar lines, the following procedure can 

be used: 
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• If F=0 (Equation 3.20), the epipolar lines are straight lines and they will coincide 

with the scene rows (i=constant), as shown in Figure 3.2. 

• If F≠0, the epipolar lines are not straight lines. In this case, the ratio E2/E1, as in 

Equation 3.23, quantifies the straightness of the epipolar curve. 

 

Recall that epipolar lines in frame images are straight lines in both the raw and 

normalized images, as discussed in Chapter 2. Therefore, no distortions are introduced in 

such a process. On the other hand, in linear array scenes, epipolar lines may not be 

straight, but it is desirable for them to be straight lines in the normalized scenes. 

Therefore, the evaluation of their non-straightness in the raw scenes will give us an 

indication of the magnitude of the errors introduced in the normalized scenes. 

 

 

3.3 EXPERIMENTS 

 

In this section, the straightness of the epipolar lines will be examined. In order to study 

the epipolar geometry, two scenes are needed. To this end, nine experiments have been 

performed. Experiments 3.1, 3.2 and 3.3 were simulated to obtain stereo coverage by 

changing xi values similar to what was discussed in Section 2.3.1.4 for three-line camera, 

and from different altitudes. On the other hand, Experiments 3.4, 3.5 and 3.6 were 

simulated to obtain stereo coverage by changing the pitch angles along track similar to 

that of IKONOS, and from different altitudes. Finally, Experiments 3.7, 3.8 and 3.9 were 

simulated to obtain stereo coverage by changing roll angles across-track similar to that of 

SPOT and again from different altitudes. Table 3.1 summarizes the experiments 

according to stereo coverage method and altitude. In these experiments, as the scanner’s 

altitude increases, the AFOV was reduced to maintain similar ground coverage. 
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Table 3.1: Summary of Experiments 3.1 to 3.9 

Altitude  

1000 m 680 km 822 km 

Three-line scanner Experiment 3.1 Experiment 3.2 Experiment 3.3 

Changing pitch angle Experiment 3.4 Experiment 3.5 Experiment 3.6 

Stereo 

coverage 

method Changing roll angle Experiment 3.7 Experiment 3.8 Experiment 3.9 

 

Figure 3.3 shows the footprint of the scenes for the different experiments. The footprints 

have been identified by projecting the scan lines using their positions and orientations 

onto a zero-elevation surface plane. It must be noted that the elevation is not required in 

order to determine the epipolar geometry. However, it has been used here so as to 

visualize the approximate ground coverage of the scenes at a certain elevation. Five 

points have been selected in the left scene in each of these experiments, as shown in 

Figure 3.4. The projection of these points on the zero elevation surface plane is also 

shown in Figure 3.3. Again, the true elevation values of these points (labeled from 1 to 5) 

are not required for determining their corresponding epipolar lines. Figure 3.5 shows the 

corresponding epipolar lines of these points. The epipolar lines were drawn within the 

extent of the right scenes. Dotted straight lines were added between the beginning and 

ending points to depict visually the straightness of these epipolar lines. It has been found 

that neither F (Equation 3.20) nor E2 (Equation 3.21) equals zero. Therefore, for the 

general case of a linear array scanner (even with the constant-velocity-constant-attitude 

trajectory model), the epipolar lines are not straight. In order to quantify the straightness 

of epipolar lines, Table 3.2 lists the values of E2/E1 for the experiments. 
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Figure 3.3: Scene footprints for Experiments 3.1 to 3.9 projected to a 

zero-elevation plane. (Note: Points whose epipolar lines are 

analyzed are projected onto the same plane.) 
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Figure 3.4: Left scenes of Experiments 3.1 to 3.9 including the points 

whose epipolar lines are analyzed 
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Figure 3.5: Right scenes of Experiments 3.1 to 3.9 including the epipolar 

lines for the selected points 

 

Table 3.2: Values of E2/E1 for various points in Experiments 3.1 to 3.9 

Experiment Point 

number 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 

1 0.031 0.0052 0.0043 0.03084 0.00515 0.00426 -0.012 -0.076 -0.062

2 0.031 0.0052 0.0043 0.03083 0.00515 0.00426 -0.114 -0.077 -0.063

3 0.031 0.0052 0.0043 0.03082 0.00515 0.00426 -0.144 -0.077 -0.065

4 0.031 0.0052 0.0043 0.03081 0.00515 0.00426 -0.158 -0.077 -0.066

5 0.031 0.0052 0.0043 0.03080 0.00515 0.00426 -0.167 -0.078 -0.067

Mean 

±Std 

0.031 

±0.000 

0.0052 

±0.0000 

0.0043

±0.0000

0.03082 

±0.00002

0.00515

±0.00000

0.00426

±0.0000

-0.119 

±0.0632 

-0.077

±0.0006

-0.065

±0.002
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Examining the standard deviation of E2/E1 of the selected points in each experiment, as 

listed in Table 3.2, it is noticeable that E2/E1 values do not change from point to point in 

the scene in Experiments 3.1 to 3.6. This means that these epipolar lines, even if they are 

not straight lines, are changing in a similar fashion. On the other hand, the standard 

deviations of E2/E1 values in Experiments 3.7 to 3.9 are relatively large, which 

consequently produces a high variation in the shapes of the epipolar lines. This is 

confirmed by an extreme example, Experiment 3.7, as shown in Figure 3.5. Therefore, it 

can be concluded that stereo coverage regimes similar to that of three-line camera or 

IKONOS are superior, in terms of shape variation of epipolar lines, to that of SPOT.  

 

Examining the average values of E2/E1 as listed in Table 3.2, it is noticeable that E2/E1 

decreases as the AFOV decreases, for the same stereo coverage type. Moreover, stereo 

coverage similar to IKONOS or three-line cameras gives smaller average values than that 

of SPOT at the same altitude. This can be confirmed by a comparison of the average 

values of Experiments 3.1, 3.4 and 3.7; those of Experiment 3.2, 3.5 and 3.8, and finally 

those of Experiments 3.3, 3.6 and 3.9. 

 

It is important to note that the value of E2/E1 can give an indication of the general 

behavior of the epipolar line, but not necessarily within the extent of the scene. 

 

 

3.4 SUMMARY 

 

It has been concluded that, for the constant-velocity-constant-attitude EOP model, the 

epipolar line is found to be a non-straight line in general.  In addition, a quantitative 

analysis of its non-straightness was introduced. 

 

An analysis of alternative stereo-coverage possibilities revealed that along-track stereo 

observation using pitch angles along with the use of three-line scanners is superior to 

across-track stereo coverage using roll angles, as they introduce straighter epipolar lines. 

Moreover, as the flying height increases and the angular field of view decreases, epipolar 
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lines become straighter. Such conclusions motivate us to investigate the epipolar 

resampling of space-borne scenes such as IKONOS. 

 

However, as the rigorous model produces non-straight epipolar lines, an alternative 

model will be sought. Parallel projection was chosen as an alternative model; it is 

discussed in detail, including the rationale behind its selection, in Chapter 4. 
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CHAPTER 4: PARALLEL PROJECTION 

 

 

4.1 INTRODUCTION 

 

In Chapter 3, the geometry of epipolar lines in constant-velocity-constant-attitude linear 

array scanner scenes was studied. However, it is desirable to have scenes with straight 

epipolar lines, which is the condition for straightforward resampling of imagery 

according to epipolar geometry. Therefore, the amount of deviation from straightness 

associated with epipolar lines in raw scenes can be considered as an indication of the 

level of difficulty in transforming these scenes into normalized ones. 

 

In this chapter, parallel projection, rather than the rigorous perspective model, is used to 

model, or to approximate, the relationship between corresponding scene and object space 

points. The chapter begins with the motivation and main reasons behind using the parallel 

projection. Following an explanation of its concept, the mathematical model of parallel 

projection is derived, and various cases of parallel projection are discussed and tested. 

 

 

4.2 MOTIVATION 

 

The parallel projection approximates the mathematical relation between the scene and 

object space coordinates using fewer parameters. This characteristic makes it appealing to 

many researchers and applications (Okamoto, 1992; and Okamoto et al., 1992; Okamoto 

et al., 1996; Ono et al., 1996; Okamoto and Fraser, 1998; Ono et al., 1999; Fraser, 2000; 

Hattori et al., 2000; Ono et al., 2000). A brief explanation of the reasons for choosing 

such a model are listed below: 

 

• The very narrow AFOV of some sensors (such as IKONOS) can result in having 

almost parallel projection in the scanning direction. Figure 4.1 shows a schematic 

drawing to illustrate this concept. Figure 4.1a is the actual perspective geometry of a 
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scan line, while Figure 4.1b shows a parallel projection of the same area. The two 

parts of the figure have been drawn separately to show the difference between the two 

types of projection. As the AFOV gets smaller, the difference between the recorded 

1-D images in Figure 4.1a and b become insignificant except for scale. 

• The constant attitude of the scanner during scene capture, as indicated by constant ω, 

ϕ, and κ angles in Equations 3.1, leads to parallel scan lines. Consequently, the 

resulting 1-D images and their ground strips will be parallel as shown in Figure 4.2a. 

This fact, together with the small AFOV, establishes the projection direction, as 

shown in Figure 4.2b. 

• Building upon the above two reasons, a constant-velocity (straight-line constant-

speed) trajectory makes the assumption of parallel projection more reasonable. Figure 

4.3 shows a scene generated with a straight-line constant-speed trajectory of the 

scanner that has very small AFOV and constant attitude. It can be proven that parallel 

lines will be mapped as parallel lines. In addition, ratios between points A, B and, C 

will be preserved in the scene space if the scanner sweeps equal areas in equal time 

intervals; i.e., if the scanner moves with constant speed. On the other hand, Figure 4.4 

shows a scanner that is not moving in a straight line. In this case, straight lines in the 

object space will not be mapped as straight lines in the scene space. This is one of the 

motivations for studying the epipolar geometry of the constant-velocity trajectory 

model in Chapter 3. It is important to mention that similar assumptions were made for 

deriving the SDLT model (Wang, 1999). 

 

 

 

 

 

 

 

 

 

Figure

 

 4.1: (a) Perspective projection and (b) parallel projection 

(b)(a)

AFOV
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Figure 4.4: Straight line is projected as non-straight line in a non-straight 

line trajectory scanner 

 

4.3 CONCEPT OF PARALLEL PROJECTION 

 

Parallel projection can be defined using two surfaces. Points in one surface are projected 

onto the other with parallel projection rays, as shown in Figure 4.5. Therefore, three 

components are required: two surfaces and a unit direction in space. Examples of parallel 

projections are shown in Figure 4.6. 

 

 

 

 

 

 

 

 

Figure 4.5: Concep

 

t of parallel projection between two surfaces 
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ght lines in one of the planes are projected as parallel straight lines in the 

and 
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 conditions comprise the requirements for an Affine transformation;  it 

ded that parallel projection between planar surfaces is an Affine 

The mathematical derivation will be provided in Sections 4.4.3 and 4.5.2. 

nd, not all Affine transformations are parallel projections. The reason is 

projection between planes, there is one line (the intersection of the two 

hich the scale is unity while, in the general Affine transformation, this 

necessarily maintained. Therefore, parallel projections are a subclass of 

ormation. 

s a profile of parallel projection between planar and non-planar surfaces. 

 seen that this projection is not an Affine transformation. One of the 
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reasons is that distance ratios are not maintained between the original and projected 

surfaces.  

 

The mathematical model of parallel projection between non-planar and planar surfaces -  

i.e., between the object space and scene space - will be derived in Section 4.4. In Section 

4.5, parallel projection between non-planar and two planar surfaces (i.e., two scenes) will 

be analyzed. 

 

 

4.4 PARALLEL PROJECTION BETWEEN NON-PLANAR AND PLANAR 

SURFACES 

 

4.4.1 Mathematical Model 

 

Considering Figure 4.7, O is the origin of the object coordinate system with axes X, Y, 

and Z. Point O can be selected to be the origin of the scene coordinate system whose axes 

are u, v and w. Let point P (X, Y, Z)T in the object space be mapped to (u, v, 0)T in the 

scene coordinate system. The unit projection vector with respect to the object coordinate 

system is (L, M, N)T, where: 

 

221 MLN −−=         (4.1) 
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 be introduced as follows: 

scene point coordinates with respect to the scene coordinate 

system; 

corresponding object point coordinates with respect to the object 

coordinate system; and 

vector connecting scene and object points with respect to the 

object coordinate system. 
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where λ is the distance between the object point P and its scene point p. Its value changes 

from one point to another. 

 

From Figure 4.7, the following vector summation equation can be written: 

 

321 vvv TT RR +=         (4.2) 

 

where R is the rotation matrix between the scene and object coordinate systems, based on 

the rotation angles ω, ϕ, and κ around X, Y, and Z axes, respectively. The vectors v2 and 

v3 are pre-multiplied with RT so that they are referenced to the scene coordinate system. 

Substituting the components of the vectors v1, v2 and v3 in equation 4.2 results in: 
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       (4.3) 

 

It is important to note that O was chosen to be the origin of the scene coordinate system 

as shown in Figure 4.7. Therefore, scene axes u, v and w can be shifted with the three 

shift values ∆x, ∆y and ∆z, to obtain a parallel scene coordinate system whose axes are x, 

y, z, respectively. However, due to the nature of parallel projection, the same image is 

obtained if a different ∆z value is chosen; i.e., if another parallel scene plane is chosen. 

Therefore, the three shift parameters are dependent, and consequently only two shift 

values ∆x and ∆y within the scene plane can be adopted, as seen in Figure 4.7.  

 

A scale s can be applied to the recorded scene to ensure a smaller scene than the actual 

object space. Applying the scale value s and the two shift values ∆x and ∆y to the scene 

coordinates (u, v, 0) in Equations 4.3 results in: 
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Therefore, the mathematical model of the parallel projection between planar (the scene) 

and non-planar (the object space) surfaces is expressed as follows:  
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Therefore, the eight parameters describing this parallel projection are: 

 

• Two components of the direction vector (L, M); 

• Three rotation angles of the scene plane (ω, ϕ, κ); 

• Two shift values (∆x, ∆y); and 

• Scale value (s), 

 

and will be called “scene parallel projection parameters”. N, the third component of the 

projection vector, can be determined using Equation 4.1, and λ can be found using the 

third equation of Equations 4.4, which is computed in Equation 4.6. In summary, the non-

linear form of the parallel projection model includes four equations (Equations 4.4 and 

4.1) and contains ten parameters (the parallel projection parameters together with N and 

λ). In the following section, a linear form of the parallel projection model is derived 

 

4.4.2 Alternative Linear Mathematical Model 

 

Equations 4.4 can be written as: 

 



 64

 

 
( ) ( )
( ) (
( ) ( 0.0

.
.

332313332313

322212322212

312111312111

++++++=
∆++++++= )

)

∆++++++=

ZrYrXrsNrMrLrs
yZrYrXrsNrMrLrsy

xZrYrXrsNrMrLrsx

λ
λ
λ

   (4.5) 

 

From the third equation, λ can be computed as follows: 
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Substituting this value of λ into the first and second equations of Equations 4.5 results in: 
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Rearranging, the above equations can be rewritten as: 
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21
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 (4.7) 

 

Let us assign U and V values as follows: 
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NrMrLr
NrMrLr

V

NrMrLr
NrMrLr

U

332313

322212

332313

312111

++
++

=

++
++

=

       (4.8) 

 

Consequently, Equations 4.7 can be rewritten as: 

 

( ) ( ) ( )
( ) ( ) ( ) yZVrrsYVrrsXVrrsy

xZUrrsYUrrsXUrrsx
∆+−+−+−=
∆+−+−+−=

333223221312

333123211311    (4.9) 

 

More concisely, Equations 4.9 can be written in the following form: 

 

8765

4321

AZAYAXAy
AZAYAXAx

+++=
+++=

       (4.10) 

Where: 

( )
( )
( )

(
( )
( )
yA

VrrsA
VrrsA
VrrsA

xA
UrrsA
UrrsA
UrrsA

∆=
−=
−=
−=

∆=
−=
−=
−=

8

33327

23226

13125

4

33313

23212

13111

)         (4.11) 

 

Equations 4.10 are linear functions between the scene coordinates (x, y) and the object 

coordinates (X, Y, Z), which constitute a 2-D Affine transformation (Okamoto, 1992; 

and Okamoto et al., 1992; Okamoto et al., 1996; Ono et al., 1996; Okamoto and Fraser, 

1998; Ono et al., 1999; Fraser, 2000; Hattori et al., 2000). One has to note that the 2-D 

Affine transformation involves two equations and eight parameters (A1 to A8), which is 

consistent with the non-linear parallel projection model (four equations and ten 

parameters). 
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Comparing Equations 4.10 and 4.4, the former equations are more suitable if point 

correspondences (control points) in both the scene and object space are available. In this 

case, the 2-D Affine parameters can be determined using a least-squares adjustment (if 

more than four control points are available) without the need for linearizing the model 

and obtaining approximations of the parameters through an iterative process. In 

conclusion, with the existence of control points, the 2-D Affine model is superior in terms 

of efficiency of computations. However, it is worth mentioning that navigation data, if 

available, are easier to incorporate using the non-linear model (Equations 4.4) since the 

mathematical relationship between the parallel projection and the navigation parameters 

can be established. This will be discussed in Section 5.4, Chapter 5. 

 

4.4.3 Special Case: Parallel Projection between Two Planar Surfaces 

 

An interesting special case occurs when the parallel projection is between two planar 

surfaces: that is, between scene and planar object space. In this case, Z in Equations 4.10 

can be replaced using the plane equation (aX+bY+c) as: 

 

( )
( ) 8765

4321

AcbYaXAYAXAy
AcbYaXAYAXAx

+++++=
+++++=

 

( ) ( ) ( )
( ) ( ) ( 787675

343231

cAAYbAAXaAAy
cAAYbAAXaAAx

+++++= )
+++++=

 

 

654

321

aYaXay
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++=
++=

        (4.12) 

Where: 
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765

754

343

322

311

cAAa
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+=
+=
+=
+=
+=
+=
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Equations 4.12 define the standard Affine transformation, Figure 4.6a. 

 

4.4.4 Transformation from 2-D Affine Parameters to Scene Parallel Projection 

Parameters 

 

It is important to note that the parameters in Equations 4.4 are more related to the 

navigation data (EOP of the sensor) than those in Equations 4.10. In addition, they will be 

used for epipolar resampling, as will be explained in Chapter 6. Therefore, it is important 

to derive the transformation from 2-D Affine parameters to scene parallel projection 

parameters, while the inverse transformation has been previously established  (Equations 

4.8 and 4.11). 

 

∆x and ∆y can be computed directly from Equations 4.11. To solve for the direction 

vector (L, M, N), Equations 4.8 can be rewritten as: 

  

( ) ( ) ( )
( ) ( ) ( ) 0...

0...

333223221312

333123211311

=−+−+−
=−+−+−

rVrNrVrMrVrL
rUrNrUrMrUrL

 

 

Multiplying the above equations by s results in: 

 

0
0

765

321

=++
=++

NAMALA
NAMALA

        (4.13) 

 

Rearranging and dividing the first by the second equations of Equations 4.13 results in: 

 

7

3

65

21

A
A

MALA
MALA

=
+
+

        (4.14) 

7263

5371

AAAA
AAAA

LM
−
−

=         (4.15) 
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The first line of Equations 4.13 can be rewritten as: 

 

( )
2
3

2
212

A
MALA

N
+

=         (4.16) 

 

Substituting Equation 4.16 into Equation 4.1 and rearranging results in: 

 

12 2
3

21
2
3

2
222

2
3

2
122 =++++

A
AA

LM
A
A

MM
A
A

LL     (4.17) 

 

Using Equations 4.15 And 4.17, L can be computed as follows: 

 

( ) 2
3

2
121

7263

53712
3

2
2

2

7263

5371

3

2 AAAA
AAAA
AAAA

AA
AAAA
AAAA

A
L

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

±=  (4.18) 

 

After L is obtained from Equation 4.18, M is directly solved using Equation 4.15. To 

avoid the sign ambiguity in L and M, N has to be computed from Equations 4.13 and not 

from Equations 4.1 or 4.16. From Equation 4.1, it is assumed that N is always positive 

(i.e., the direction vector points upwards). Therefore, the sign of N that is obtained from 

Equations 4.13 can be used to resolve for the sign ambiguities in L and M. 

 

To determine the scale factor s, let us define T1, T2 and T3 as follows: 

 

7362513

2
7

2
6

2
52

2
3

2
2

2
11

AAAAAAT
AAAT

AAAT

++=
++=

++=

       (4.19) 

 

Substituting for the values of A1, A2, A3, A5, A6, and A7 from Equations 4.11 into 

Equations 4.19 results in: 
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( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )]
[

][
][

333223221312

333123211311
2

33
2

23
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13323122211211
2

3

333223221312
2

33
2

23
2

13
22

32
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22
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2
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333123211311
2

33
2

23
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13
22

31
2

21
2

11
2

1

2

2

rrrrrrU

rrrrrrVrrrUVrrrrrrsT

rrrrrrUrrrVrrrsT

rrrrrrUrrrUrrrsT

++−

++−+++++=

++−+++++=

++−+++++=

 (4.20) 

 

Using the orthonormality properties of rotation matrices (Equations A.11, A.12, A.13, 

A.17, A.18 and A.19, Appendix A), the values of T1, T2 and T3 can be written as follows: 

 

( )
(
( )UVsT

VsT

UsT

2
3

22
2

22
1

1

1

=

+=

+=

)        (4.21) 

 

Dividing the first and second equations of Equations 4.21 by the third one, scale s is 

eliminated and the following ratios are obtained: 

 

UV
U

T
T 2

3

1 1+
=          (4.22) 

UV
V

T
T 2

3

2 1+
=          (4.23) 

 

Equation 4.22 can be rewritten as: 

 

( )
U
U

T
TV

2

1

3 1+
=         (4.24) 

 

Substituting the value of V into Equation 4.23 results in: 

 

( ) ( ) ( ) 02 2
321

2
1

2
3

2
21

2
3

4 =+−++− TTTTTUTTTU     (4.25) 

 

Which is a quadratic form in U2. Now, let us define A, B and C as follows: 
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2
3

21
2

1
2

3

21
2

3

2

TC

TTTTB

TTTA

=

−+=

−=

        (4.26) 

 

Consequently, the solution of U2 will be as follows: 

 

A
ACBBU

2
42

2 −±−
=        (4.27) 

 

Experimentally, it is found that the positive solution of the square root of Equation 4.27 

yields a value of U2 that is always negative, which is a rejected solution. On the other 

hand, the negative sign of the square root always produces a positive value of U2, and is 

accepted as a solution.  

 

Moreover, the experiments showed that if L > 0, then the value of U equals the positive 

square root of U2. Otherwise, it equals the negative square root of U2. 

 

After resolving the ambiguity in the value of U, Equation 4.24 is then used to compute V. 

Finally, s is computed from the following equation, which is derived from the first 

equation of Equations 4.21: 

 

2
1

1 U
Ts

+
=          (4.28) 

  

To solve for the rotation angles, substituting for r11 and r13, the A1-equation of Equations 

4.11 can be rewritten as: 

 

( )ϕκϕ sincoscos1 UsA −=  

 

Rearranging, the above equation can be rewritten as: 
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ϕ

ϕ
κ

cos

sin
cos

1

s
AU +

=         (4.29) 

 

Referring to Figure 4.8, sin(κ) can be derived from cos(κ) as follows: 

 

 

s
AU 1sin +ϕ

ϕcos 2
12 sincos ⎟

⎠
⎞

⎜
⎝
⎛ +−

s
AU ϕϕ

κ

 

 

 

 

 

Figure 4.8: From cos(κ) to sin(κ) 

 

ϕ

ϕϕϕ
κ

cos

sin2sincos
sin

1
2

2
1222 U

s
A

s
AU −−−

=     (4.30) 

 

Squaring both sides results in: 

 

ϕ

ϕϕϕ
κ 2

1
2

2
1222

2

cos

sin2sincos
sin

U
s
A

s
AU −−−

=     (4.31) 

 

A5-equation of Equations 4.11, substituting for r12 and r13, can be rewritten as: 

 

( )ϕκϕ sinsincos5 VsA −−=  

ϕ

ϕ
κ

cos

sin
sin

5

s
AV +−

=         (4.32) 

 

Squaring both sides results in: 
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ϕ

ϕϕ
κ 2

5
2

2
522

2

cos

sin2sin
sin

V
s
A

s
AV ++

=      (4.33) 

 

Equating the right side of Equations 4.31 and 4.33, and exploiting the fact that 

( ) result in: ϕϕ 22 sin1cos −=

 

( ) 0122sin1sin 2

2
5

2

2
151222 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−++⎟

⎠
⎞

⎜
⎝
⎛ ++++

s
A

s
A

s
AV

s
AUVU ϕϕ   (4.34) 

 

which is a quadratic form in sin(ϕ). Let us define D, E and F as follows: 

 

1

22

1

2

2
5

2

2
1

51

22

−+=

+=

++=

s
A

s
AF

s
AV

s
AUE

VUD

        (4.35) 

 

Substituting again in Equation 4.34 yields: 

 

D
DFEE

2
4sin

2 −±−
=ϕ        (4.36) 

 

Experimentally, it is found that, when L > 0, the positive square root in Equation 4.36 

gives the correct value of sin(ϕ). Otherwise, the negative square root gives the correct 

value of sin(ϕ). 

 

It is important to note that the range of ϕ is only from -π/2 to +π/2. Therefore, if sin(ϕ) is 

positive, the value of ϕ will range from 0 to +π/2; otherwise, it will change from -π/2 to 

0. 
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The value of κ can range from -π to +π, and hence both Equations 4.29 and 4.32 must be 

used to solve for κ. 

 

The A2-equation and A3-equation of Equations 4.11, substituting for r21, r23 , r22 and r23, 

can be explicitly expressed as: 

 

 
( ) ( )( )
( )( )κωϕκϕω ( )

ϕκϕωκω
sinsincoscossincos

coscossinsinsincos

3

2

+−−=
++=

UsA
UsA

 

 

Rearranging these two equations results in: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−−

+

s
A
s

A

U
U

3

2

sin
cos

sincoscossin
coscossinsin

ω
ω

κϕκϕ
ϕκϕκ

 

 

Sin(ω) can be computed as follows: 

 

( )22

322

coscossinsin

sincoscossin
sin

ϕκϕκ

κϕκϕ
ω

U
s
AU

s
A

s
A

++

++
=     (4.37) 

 

The range of ω varies from -π/2 to +π/2 and can be exclusively determined using the 

sin(ω) expression of Equation 4.37. 

 

Finally, the procedure for transforming the 2-D Affine parameters to the scene parallel 

projection parameters is summarized as follows: 

 

1. Use the fourth and eighth equations of Equations 4.11 to solve for ∆x and ∆y, 

respectively. 
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2. Use Equation 4.18 to solve for L, then Equation 4.15 to solve for M and, finally, 

Equation 4.13 to solve for N. 

 

3. Compute T1, T2 and T3 using Equations 4.19. 

 

4. Use Equation 4.27 to solve for U, Equation 4.24 to solve for V, and Equation 4.28 

to solve for s. 

 

5. Use Equation 4.36 to solve for ϕ, then both of the Equations 4.29 and 4.32 to 

solve for κ and, finally, Equation 4.37 to solve for ω.  

 

 

4.5 PARALLEL PROJECTION FROM NON-PLANAR SURFACE TO TWO 

PLANAR SCENES. 

 

4.5.1 Mathematical Model 
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ure 4.9: Parallel projection from object space to two scenes 

) proved that, by using 2-D Affine model, epipolar lines become straight 

ection, epipolar line parameters will be derived from scene parallel 
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projection parameters (or 2-D Affine parameters). Recall that the transformation between 

scene parallel projection parameters and 2-D Affine parameters has already been 

established in the previous section. 

 

Figure 4.9 shows two scenes in general positions and attitudes. Object space point P is 

imaged in the left and right scenes as point p and p’, respectively, through the direction 

vectors (L, M, N)T and (L’, M’, N’)T, respectively. 

 

Two sets of equations relating the object space point to the two scene points can be 

rewritten, similar to Equations 4.4, as follows: 
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where: 

(x’, y’)  are the scene coordinates of the corresponding point p’ in the right scene; 

λ’  is spatial distance between point P and its image on the right scene p’; 

R’ is the rotation matrix of the right scene coordinate system with respect to 

the object coordinate system, defined by the three angles (ω’, ϕ’, κ’); 

 (L’, M’, N’) is the direction vector for the parallel projection of the right scene; and 

(L’, M’, ω’, ϕ’, κ’, ∆x’, ∆y’, s’) are the right scene parallel projection parameters. 

 

Rearranging, the above equations can be rewritten as: 

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
∆−
∆−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

N
M
L

yy
xx

R
s

Z
Y
X

λ
0

1  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
∆−
∆−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

'
'
'

'
0

''
''

'
'

1

N
M
L

yy
xx

R
s

Z
Y
X

λ  

 

 



 76

Equating the object coordinates (X, Y, Z) in the above equations results in: 
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Equations 4.38 express the relation between the left and right scene coordinates, which is 

equivalent to the coplanarity condition for images captured according to perspective 

projection (Refer to Section 2.2.2.2 in Chapter 2). 

 

Another way to express this relation is to use the linear model (2-D Affine) for each of 

the scenes, as follows:  
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AZAYAXAx
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+++=

       (4.39) 

8765

4321

'''''
'''''
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+++=
+++=

      (4.40) 

 

Where, A1 to A8 are the 2-D Affine parameters for the left scene, and A’1 to A’8 are the 2-

D Affine parameters for the right scene. 

 

Equations 4.39 can be rewritten as: 
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Substituting in Equations 4.40 produces: 
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The above equations can be rewritten as: 
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From the first equation of Equations 4.41, Z is computed as: 
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Substituting in the second equation of Equations 4.41 results in: 
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which is similar to the equation derived by Ono et al. (1999). Before analyzing Equation 

4.42, it is important to recall the definition of the epipolar line for a point in a scene as the 

locus of all possible conjugate points in the other scene, based on the orientation 

parameters. Therefore, for a given point (x, y) in the left image, Equation 4.42 becomes a 

linear function in x’ and y’, which is the equation of the locus of the conjugate point in 

the right scene, and consequently the equation of the corresponding epipolar line in the 

right scene. One must note that epipolar lines become straight lines by adopting parallel 

projection.  

 

In the following sections, two special cases of the parallel projection, which will be used 

in epipolar resampling (Chapter 6), are developed. 
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4.5.2 Special Case: Same Direction Vector and Two Planar Scenes 

 

This case is important for projecting the scene into a different plane, which is a part of the 

epipolar resampling approach (as will be explained in Section 6.3, Chapter 6). Figure 

4.10 shows two scenes that are constructed from parallel projection using the same 

direction vector (L, M, N)T. 
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Figure 4.10: Par
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Equations 4.43 can be written as: 
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∆λ can be derived from the third equation of Equation 4.44 as follows: 

 

( ) ( )( )
( )

( ) ( )( )
( )

( ) ( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++
∆+∆

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−=

++
∆−+∆−

−=

++
∆−+∆−

−=∆

NrMrLrs
ymxmy

NrMrLrs
mx

NrMrLrs
m

NrMrLrs
yymxxm

NrMrLrs
yymxxmS

332313

2313

332313

23

332313

13

332313

2313

332313

2313

'
'''

'
'

'

'
''''

''''
λ

 

 

Substituting the value of ∆λ in the first and second equations of Equations 4.44 results in: 

  

( )
( )

( )
( )

( )( )
( ) ( )

( )
( )

( )
( )

( )( )
( ) ( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆+∆−

++
++∆+∆

+∆+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

++
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

++
−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆+∆−

++
++∆+∆

+∆+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

++
−+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

++
−=

''''

''

''''

''

2212
332313

3222122313

332313

32221223
22

332313

32221213
12

2111
332313

3121112313

332313

31211123
21

332313

31211113
11

ymxm
NrMrLr

NrMrLrymxmSy

y
NrMrLr

NrMrLrmmSx
NrMrLr

NrMrLrmmSy

ymxm
NrMrLr

NrMrLrymxmSx

y
NrMrLr

NrMrLrmmSx
NrMrLr

NrMrLrmmSx

(4.45) 

 



 81

The above equations as can be rewritten as: 
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It is important to note that b1 to b6 are constants. Therefore, Equations 4.46 represent a 

standard Affine transformation. By comparing Equations 4.46 to Equations 4.12, the 

former is a parallel projection between two planar scenes, while the latter is a parallel 

projection between a scene plane and planar object space. In both cases, the mathematical 

model is standard Affine, because they represent projections between planar surfaces. 

 

4.5.3 Special Case: Two Planar Scenes Along the Same Projection Plane 

 

Figure 4.11 shows the special case of the parallel projection, where the two scenes belong 

to the same projection plane. The two scenes are considered to have the same ω and ϕ 

orientations, while having different κ orientations (κ for the left scene and κ’ for the right 

scene). 
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Figure 4.11
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RTR’ can be compu
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ted as follows: 
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where, remembering the orthonormality properties of rotation matrices (see Appendix A): 

 

IRRRR TT == ϕϕωω  and 
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Substituting the expressions of RTR’ and ∆κ in Equations 4.38, the three equations can be 

rewritten as: 
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The third equation of Equations 4.48 can be written as: 
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Substituting the value of λ from Equation 4.49 into the first and second equations of 

Equations 4.48 results in: 
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These equations can be rewritten as: 
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It is important to note that λ’ in Equations 4.50 can vary from one point to another. It can 

be computed from the first equation as: 
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Substituting the value of λ’ into the second equation of Equations 4.50 results in: 
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The above equation can be rewritten as: 

  

4321 '''''' CyCxCxCy +++=        (4.52) 

Where: 

7236

3874
4

7236

3
3

7236

7
2

7236

3571
1

'

'

'

'

cccc
ccccC

cccc
cC

cccc
cC

cccc
ccccC

−
−

=

−
=

−
−

=

−
−

=

        (4.53) 

 

It is important to notice that Equation 4.52 is similar to Equation 4.42, except for the 

physical meaning of the involved parameters. More explicitly, parameters C1 to C4 in 

Equation 4.42 relate two scenes with general orientations, while parameters C’1 to C’4 in 

Equation 4.52 relate two scenes along the same projection plane. Therefore, if the two 
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scenes are known to share the same plane, Equation 4.52 can be used – otherwise, 

Equation 4.42 has to be used. However, both equations are valid and can be used to 

determine the epipolar lines knowing the orientation parameters or point 

correspondences.  

 

 

4.6 EXPERIMENTS 

 

In this section, the mathematical models for parallel projection between object space and 

one scene (Experiments 4.1 and 4.2), and between object space and two scenes 

(Experiments 4.3 to 4.8) are verified. 

  

Two surfaces are simulated, having parameters as listed in Table 4.1. Surface I is non-

planar, while Surface II is planar. In addition, four sets of parallel projection parameters 

(Parameters 1 to 4) are simulated, as listed in Table 4.2. Scenes are generated based on 

object space points (Surface I and II) and parallel projection parameters (Parameters 1 to 

4) using Equations 4.4. Table 4.3 lists the configuration of the experiments. It is 

important to mention that scene parallel projection parameters are chosen in such a way 

that Parameters 1 and 2 result in stereopair in general position and orientation, while 

Parameters 1 and 3 form two scenes along the same parallel projection direction (same L 

and M). Finally, Parameters 1 and 4 result in a stereopair sharing a common plane (same 

ω and ϕ). 
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Table 4.1: Simulated surfaces used in the experiments 

Surface Surface I Surface II 

Number of points 500 500 

Minimum X (m) -5500.0 -5500.0 

Maximum X (m) 5500.0 5500.0 

Minimum Y (m) -5500.0 -5500.0 

Maximum Y (m) 5500.0 5500.0 

Trend direction (main slope) in X direction (%) 0.0 0.0 

Trend direction (main slope) in Y direction (%) 0.0 0.0 

Height variation yes no 

Wave Amplitude (m) 100.0 - 

Wave length in X direction (m) 5000.0 - 

Wave length in Y direction (m) 5000.0 - 

 

Table 4.2: Simulated parallel projection parameters used in the experiments 

 Parameters 1 Parameters 2 Parameters 3 Parameters 4 

L -0.2 0.1 -0.2 0.1 

M -0.1 0.2 -0.1 0.2 

ω° 5.0 -10.0 -10.0 5.0 

ϕ° 3.0 -20.0 -20.0 3.0 

κ° -5.0 5.0 5.0 5.0 

∆x (m) 0.0 0.01 0.01 0.01 

∆y (m) 0.0 -0.01 -0.01 -0.01 

s 2.0E-5 2.0E-5 2.0E-5 2.0E-5 
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Table 4.3: Surface and parameter configurations of the experiments 

Experiment 
Involved 

surface 

Involved parallel projection 

parameters for the first scene

Involved parallel projection 

parameters for the second scene

Exp. 4.1 Surface I Parameters 1 - 

Exp. 4.2 Surface II Parameters 1 - 

Exp. 4.3 Surface I Parameters 1 Parameters 2 

Exp. 4.4 Surface II Parameters 1 Parameters 2 

Exp. 4.5 Surface I Parameters 1 Parameters 3 

Exp. 4.6 Surface II Parameters 1 Parameters 3 

Exp. 4.7 Surface I Parameters 1 Parameters 4 

Exp. 4.8 Surface II Parameters 1 Parameters 4 

 

Figure 4.12 shows the configuration of the object surface and the scene footprint of 

Experiments 4.1 and 4.2. The corresponding scenes are shown in Figure 4.13. Ten 

relatively well-distributed GCP are selected in each experiment, seen as triangular 

symbols in the figures, to compute the 2-D Affine parameters (Equations 4.10). Table 4.4 

summarizes the results of the least-squares adjustment. As shown in this table, the normal 

equation matrix, as in the case of Experiment 4.1, is not singular, and has a rank of eight. 

Therefore, the eight 2-D Affine parameters (A1 to A8), are estimated based on the 10 

GCP, (redundancy of 12). The variance components and the estimated parameters are 

listed in Table 4.4. In addition, the residuals at the GCP are not significantly different 

from zero. Note that no noise was introduced into the scene coordinates. Applying the 

transformation of the estimated 2-D Affine parameters, as indicated in Section 4.4.4, the 

derived scene parallel projection parameters, in Table 4.4, are exactly the same as the 

original values used in the simulation, as shown in Table 4.2.  
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(a)      (b) 

Figure 4.12: Configuration of Experiments 4.1 (a), and 4.2 (b), as 2-D 

views of the object space footprint, including GCP, and the 

footprint of the scenes 
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Figure 4.13: Recorded scenes of Experiments 4.1 (a), 4.2 (b), including 

the GCP in the scene space 
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Table 4.4: Results of Experiments 4.1 and 4.2 

Experiment number Exp. 4.1 Exp. 4.2 

Rank of normal 

equations matrix (of 

Equations 4.10) 

8 6 

Mathematical model 2-D Affine Standard Affine 

σ0 8.25E-16 6.43E-16 

A1 2.02E-05 2.02E-05 

A2 -2.09E-06 -2.09E-06 

A3 3.92E-06 0 

A4 1.39E-17 6.94E-17 

A5 1.78E-06 1.78E-06 

A6 1.98E-05 1.98E-05 

A7 2.40E-06 0 
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A8 -6.25E-17 2.22E-16 

L -0.2 - 

M -0.1 - 

ω° 5 - 

ϕ° 3 - 

κ° -5 - 

∆x (m) 0 0 

∆y (m) 0 0 
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s 2.0E-5 2.0E-5 

 

On the other hand, the normal equation matrix has been found to be singular, as in the 

case of Experiment 4.2, because the object space is planar. Therefore, in these 

experiments, the relationship between the object and scene points is no longer 2-D 

Affine. Instead, it is standard Affine. Therefore, the A3 and A7 parameters are fixed (set to 

0) and the least-squares adjustment is repeated. Standard Affine parameters are estimated, 
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as listed in Table 4.4 together with the variance component. It is important to notice that 

the transformation procedure outlined in Section 4.4.4 cannot be used to obtain the scene 

parallel orientation parameters since eight independent parameters cannot be obtained 

from only six parameters. Only ∆x, ∆y and s can be computed, as listed in the Table 4.4. 

 

To proceed with testing the mathematical models relating two scenes, scenes of 

Experiments 4.3 to 4.8 are simulated using the parameters listed in Table 4.3. 

Configurations of these experiments are shown in Figure 4.14 and the recorded scenes in 

Figures 4.15 and 4.16. Ten points are selected, shown in red circles, to test the 

mathematical models. It is important to note that Equations 4.41 contain Z values 

together with the scene coordinates of the points. Therefore, these points have to be 

vertical GCP. Based on these points, parameters B1 to B8, in Equations 4.41 are estimated 

in a least-squares adjustment. The results are listed in Table 4.5. In experiments 4.3, 4.5 

and 4.7, the normal equation matrix is non-singular. Therefore, the parameters can be 

estimated based on the 10 points, ensuring a redundancy of 12. On the other hand, the 

normal equation matrix in Experiments 4.4, 4.6 and 4.8 is singular because the object 

surface is planar. By fixing B3 and B7 – that is, setting them to zero - the other parameters 

can be estimated, comprising a standard Affine transformation. One should note that 

correspondence is a function of the height, in the case of non-planar object space. On the 

other hand, if the object space is planar, correspondence can be obtained without 

knowing the height of the points, as the mathematical relationship between conjugate 

points reduces to a case of the standard Affine transformation. 
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Figure 4.14: Footprint of Experiments 4.3 (a), 4.4 (b), 4.5 (c), 4.6 (d), 4.7 

(e) and 4.8 (f), as 2-D views of the object space footprint, 

including vertical GCP in red circles, and footprint of the 

scenes 
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(c)     (d) 

-0.1 -0.05 0 0.05 0.1

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

x(m)

y(
m

)

1

2

3

4

5

6

7

8

9

10

Scene borders
Common points
Non-common points
Tie points

-0.1 -0.05 0 0.05 0.1

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

x(m)

y(
m

c)

1

2

3

4

5

6

7

8

9

10

Scene borders
Common points
Non-common points
Tie points
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Figure 4.15: Recorded scenes of Experiments 4.3 to 4.5, including the tie 

points used in parameter estimation 
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Experiment 4.7 
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Figure 4.16: Recorded scenes of Experiments 4.6 to 4.8, including the tie 

points used in parameter estimation 
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Table 4.5: Results of implementing Equations 4.41 in Experiments 4.3 to 4.8 

Experiment 

number 
Exp. 4.3 Exp. 4.4 Exp. 4.5 Exp. 4.6 Exp. 4.7 Exp. 4.8 

Rank of normal 

equations matrix 

(Equations 4.41) 

8 6 8 6 8 6 

Mathematical 

model 

Equations 

4.41 

Standard 

Affine 

Equations 

4.41 

Standard 

Affine 

Equations 

4.41 

Standard 

Affine 

σ0 1.24E-15 8.47E-16 9.12E-16 8.51E-16 9.94E-16 7.66E-16

B1 1.07632 1.07632 0.947645 0.947645 0.964854 0.964854

B2 0.180713 0.180713 0.227643 0.227643 0.201225 0.201225

B3 -7.19E-06 0 -4.07E-19 0 -6.70E-06 0 

B4 0.01 0.01 0.01 0.01 0.01 0.01 

B5 -0.17072 -0.17072 -0.26902 -0.26902 -0.19042 -0.19042

B6 0.970039 0.970039 1.00589 1.00589 1.00798 1.00798 

B7 -5.49E-06 0 -1.56E-18 0 -5.63E-06 0 
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B8 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 

 

In Experiments 4.3 to 4.8, the parameters of Equation 4.42, which describe the epipolar 

line in one scene for a given point in the other scene, are estimated based on ten relatively 

well-distributed GCP. These points result in ten equations containing four unknowns (C1 

to C4), ensuring a redundancy of six. The estimated parameters and the corresponding 

variance components are listed in Table 4.6. This model is not valid for all cases of object 

space and for all cases of scene parallel projection parameters used in the experiments. In 

Experiments 4.4, 4.6 and 4.8, the two scenes were related through planar object space 

and, therefore, related through a standard Affine transformation. In addition, the two 

scenes in Experiment 4.5 - although the object space is non-planar - are also related 

through a standard Affine transformation as they have the same projection vector. 

Therefore, only in the case of non-planar object space and scenes in general orientation 
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(as in Experiment 4.3) or scenes belonging to the same plane (as in Experiment 4.7) can 

the model of Equation 4.42 be used. 

 

Table 4.6: Results of implementing Equations 4.42 in Experiments 4.3 to 4.8 

Experiment 

number 

Exp. 4.3 Exp. 4.4 Exp. 4.5 Exp. 4.6 Exp. 4.7 Exp. 4.8 

Rank of normal 

equations matrix 

(Equations 4.42) 

4 3 3 3 4 3 

σ0 8.68E-14 - - - 1.98E-13 - 

C1 0.763987 - - - 0.840365 - 

C2 -0.99301 - - - -1.00125 - 

C3 0.831977 - - - 0.83888 - 
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C4 -0.01764 - - - -0.0184 - 

 

The inability to derive the parameters describing the epipolar line for Experiments 4.4, 

4.5, 4.6 and 4.8 is attributed to the fact that the relationship between conjugate points can 

be expressed by a standard Affine transformation. In other words, the epipolar lines 

reduce to single points since the conjugate point can be identified; that is, the locus of 

conjugate points is 0-D. 

 

Parameters C1 to C4, in Equation 4.42, relate the coordinates of the scenes studied. 

Therefore, in order to generate normalized scenes, where no y-parallax exists, these 

parameters should be analyzed and utilized, as will be discussed in Chapter 6. Moreover, 

it is important to remember that all of the mathematical models and transformations, 

which were derived in this chapter, are based on parallel projection. However, real scenes 

are generated according to the rigorous perspective model. Therefore, perspective-to-

parallel transformation is the subject of the next chapter.  
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4.7 SUMMARY 

 

In this chapter, parallel projection has been introduced in terms of its motivations, 

assumptions and underlying concept. The mathematical model for parallel projection and 

the associated parameters were derived through a non-linear model using scene parallel 

projection parameters and a linear model using 2-D Affine parameters. The mathematical 

relationship between these two sets of parameters was derived and verified. The 

suitability of these models can be summarized as follows: 

 

• The linear model is suitable in the cases where GCP are available. The GCP are 

used to directly estimate the 2-D Affine parameters. 

• The non-linear model is suitable in the cases where scanner navigation data are 

available. The scene parallel projection parameters can be derived based on the 

navigation data, as what will be discussed in Section 5.4, Chapter 5. 

 

The mathematical relationship between two scenes, in general positions/orientations as 

well as in special cases, generated according to parallel projection, was also derived. The 

equation of the epipolar line in scenes generated according to parallel projection was 

derived and its character confirmed as a straight line. It was concluded that, for flat 

terrain, epipolar lines reduce to points and the mathematical relationship between the 

associated scenes is a standard Affine transformation. 

 

After discussing the epipolar geometry of scenes generated according to parallel 

projection, Chapter 5 deals with the necessary transformation of scenes generated 

according to perspective geometry to comply with the parallel projection model. 
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CHAPTER 5: PERSPECTIVE TO PARALLEL PROJECTION 

 

 

5.1 INTRODUCTION 

 

The mathematical model associated with scenes captured according to parallel projection 

has been discussed in great detail in Chapter 4. The geometry of epipolar lines in these 

scenes has been discussed, and it has been established that the perspective geometry 

associated with high altitude imaging systems with narrow AFOV is very similar to 

parallel projection geometry. However, the captured scenes from such sensors have to be 

modified to become closer to parallel projection. 

   

In this chapter, the means to transform scenes from perspective-to-parallel projection is 

established. First, scale modification along the scanning direction is presented in Section 

5.2, which entails altering the scene coordinates to compensate for the transformation 

from perspective to parallel projection. The effect of non-planar object space on the 

quality of such a transformation is also discussed. Section 5.3 deals with the possible 

ways of obtaining the roll angles that are required for perspective-to-parallel 

transformation. To address cases where scanner navigation data (scanner EOP) are 

available, deriving scene parallel projection parameters is discussed in Section 5.4. 

Finally, experimental results are presented in Section 5.5. 

 

 

5.2 SCALE MODIFICATION ALONG THE SCAN LINE 

 

As discussed in Chapter 4, scale is uniform throughout scenes captured according to 

parallel projection. However, scale may be non-uniform in perspective projection. As 

discussed in Chapter 3, there exist three imaging configurations for stereo coverage: by 

changing the pitch angle along the flying direction (similar to that of IKONOS); changing 

the roll angle across the flying direction (similar to that of SPOT); or by using three-line 

scanners (similar to that of MOMS and ADS40). For these types, scale modification 
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along the scanning direction, in order to achieve uniform scale along the scan line, is 

discussed in Sections 5.2.1, 5.2.2, and 5.2.3. 

 

5.2.1 Scale Modification for Scenes Whose Stereo Coverage is Achieved by changing 

the Pitch Angle Along the Track 

 

Figure 5.1 depicts a scan line oriented with a pitch angle,η, along the flying direction. It 

shows the footprint as it is defined by the intersection of the plane through the 

perspective center and the scan line with the object space. The scale of any point can be 

defined by dividing the image vector with the object vector. Considering a point in the 

object space along the optical axis, the length of the image vector is c and the length of 

the object vector is H/cos(η), where H is the flying height above the average elevation. 

Therefore, its scale, s, can be expressed as: 

 

( )η/cosH
cs =          (5.1) 
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If the footprint is parallel to the scan line, this scale value is constant for all points along 

the scan line. Therefore, for such imaging configuration and horizontal flat terrain, 

uniform scale exists for all points along the scan line, and consequently no scale 

modification is required. A zero roll angle across the flight direction is assumed. 

 

5.2.2 Scale Modification for Three-Line Scanner Scenes 

 

A three-line scanner is shown in Figure 5.2. Scale can be computed by dividing the 

length of the image vector by that of the corresponding object vector. Therefore, for the 

nadir-looking scanner, the scale along the optical axis, s, can be computed as: 

 

H
cs =           (5.2) 
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Figure 5.2: Scale uniformity along the scan lines of three-line scanners 

 

For forward- and backward-looking scanners, scale can be computed by dividing the 

length of the image vector (c / cos α) by the length of the object vector (H / cos α), which 

results in the same scale value as that computed in Equation 5.2. 
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Similar to the discussion in Section 5.2.1, assuming zero roll angle across the flight 

direction and flat horizontal terrain, scale is uniform along each scan line (that is, nadir, 

forward-, and backward-looking scanners), and consequently no scale modification is 

required. 

 

5.2.3 Scale Modification for Scenes Whose Stereo Coverage is Achieved Across- 

Track using Roll Angles 

 

Tilting the scanner across the track using roll angle results in non-uniform scale along the 

scanning direction. Scale modification of coordinates, generated according to perspective 

geometry, to comply with parallel projection, has been established (Okamoto et al., 1992; 

Okamoto et al., 1996; Okamoto and Fraser, 1998; Ono et al., 1999; Hattori et al., 2000; 

Ono et al., 2000). Such a transformation will be discussed together with the underlying 

assumptions in this section.  

 

Figure 5.3 shows the case of a 1-D scanner, represented by b1d1 and the corresponding 

perspective center O. Therefore, AFOV can be computed as: 

 

⎟
⎠

⎞
⎜
⎝

⎛=⎟
⎠

⎞
⎜
⎝

⎛=
c
da

c
ba 1111 arctan2arctan2AFOV      (5.3) 

where: 

a1  is the intersection of the optical axis with the scan line; and 

c is the principal distance of the sensor involved. 

 

Assuming an average elevation (H) as shown in Figure 5.3, points a1, b1, and d1, which 

are mapped through perspective projection, represent points A, B, and D, respectively in 

the object space. If the optical axis is chosen to represent the parallel projection direction, 

then the object space points A, B, and D will be mapped as points a2, b2, and d2, 

respectively, before applying a scale. For purposes of illustration, the same object points 

are also projected onto plane E, which is parallel to the image plane and passing through 
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point A. The object points will be mapped into plane E as points A1, B1, and D1 through 

perspective projection and as points A2, B2, and D2 through parallel projection.  
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 5.3: Scale non-uniformity along the scan line for SPOT scenes 

 are identical because they belong to the optical axis, which is chosen as 

ection direction. Similarly, A1 and A2 are identical. Distances A1B1 and 

mapped in a perspective projection, are related through the scale of point 

). Similarly, distances A1D1 and a1d1, are related through the same scale, 

le between the plane E and the image. 

( ) 11

11

11

11

/cos DA
da

BA
bac

==
ψ

       (5.4) 

le of point A; and 

nner roll angle. 

o have similar scales for the perspective and parallel projections. Thus, 

n to compare the coordinates of the two projections. Any point P in the 
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object space within the AFOV is mapped into plane E as points P1 and P2 in perspective 

and parallel projections, respectively (see Figure 5.4).  
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scene 

.4, light ray OP makes an angle α with the optical axis. As the ray Pp2 is 

the optical axis, the angle P1PP2 equals α. The tangent of angle α can be 

 the two triangles P1PP2 and OA1P1 as: 

( ) ( )ψ
α

cos/
an 1

2

12

H
Y

PP
YY PPP =

−
=       (5.5) 

he tangent of the roll angle, ψ, can be derived from triangle A1PP2 as: 

( )
2

2an
PY

PP
=ψ          (5.6) 

Equations 5.5 and 5.6 results in: 
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( ) ( )ψψ cos/tan
1

2

12

H
Y

Y
YY P

P

PP =
−  

 

Rearranging, the above equation can be rewritten as: 

 

( )ψsin1
12

P
PP YH

HYY
−

=  

 

It is important to remember that Yp1 and Yp2 are the coordinates of the perspective and 

parallel projections, respectively, on plane E. Yp1 must be scaled down to the image plane 

using the scale factor s (Equation 5.4). It is preferred to have similar scales for parallel 

and perspective projections. Therefore, s is chosen for scaling down the parallel 

projection points. Substituting for Yp2 by yp2/s and for Yp1 by yp1/s results in: 

 

( )ψsin1

12

s
yH

H
s

y
s

y
P

PP

−
=  

 

Where yp1 and yp2 are the coordinates of the perspective and parallel projections, 

respectively, in the image plane. Rearranging, the above equation can be written as: 

  

( )ψsin1
12

s
yH

Hyy
P

PP

−
=  

 

Substituting for H from Equation 5.4 results in: 

 

( )

( ) ( )ψψ

ψ

sincos

cos

1
12

s
y

s
c.

s
c.

yy
P

PP

−
=  

 

Rearranging, the above equation can be rewritten as: 
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( )ψtan1

1
1

12

c
yyy

P
PP

−
=        (5.7) 

 

Equation 5.7 represents the transformation from perspective to the parallel projection 

along the scan line (Okamoto et al., 1992; Okamoto et al., 1996; Okamoto and Fraser, 

1998; Ono et al., 1999; Hattori et al., 2000; Ono et al., 2000). It is important to note that 

the scale s, which depends on the average elevation, is not required for a transformation 

such as this. It must also be mentioned that this equation is valid for other stereo coverage 

methods such as IKONOS or three-line scanners, if the roll angle, ψ, which may differ 

from zero, is available. Therefore, Equation 5.7 is a general formula describing the 

perspective-to-parallel transformation for linear array scanner scenes. This equation 

assumes a knowledge of the roll angle, which can be available directly from scanner 

orientation angles (as will be discussed in Section 5.3.1). On the other hand, in cases 

where it is not available, GCP can be used to indirectly estimate the roll angle (as will be 

discussed in Section 5.3.2). However, let us first discuss some of the assumptions that 

were made during the derivation of Equation 5.7. 

 

One of the main assumptions in the previous derivation is having flat horizontal terrain. 

Therefore, it is important to quantify the introduced error due to possible deviation from 

this assumption. Figure 5.5 shows point P that has a perspective projection of P1 on plane 

E, and which is below the average elevation by a distance ∆Z. If point P is assumed to 

have an elevation similar to the average elevation, then the parallel projected point will 

be P2 on plane E. However, the true parallel projection point is P3. Therefore, an error of 

P2P3 (or ∆Y23) has been introduced. An error such as this may be expressed as a function 

of ∆Z in the following derivation. 
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e 5.5: Effect of non-flatness of terrain on the perspective to parallel 

transformation for SPOT scene 

P’ can be expressed in triangles PP’P’’ and PP’P’’’ as: 

( ) ( )αψα +
∆

=
∆

cossin
23 ZY  

( )
( )αψ

α
+

∆=
cos

sinZ  

for ∆Y23 by ∆y23/s results in: 

( )
( )αψ

α
+

∆=
cos

sin.23 Zs        (5.8) 
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Equation 5.8 expresses the introduced error by assuming an average elevation instead of 

the true elevation while transforming from perspective to parallel projection. The derived 

formula, Equation 5.8, is similar to that derived by Ono et al. (1999). For SPOT scenes, ψ 

= 26°, c = 1.082m, and H = 822km; therefore, s = 1.18e-6, from Equation 5.4. For a point 

at the end of the scan line, α = 1.9°, an elevation error of ∆Z = 113m introduces error 

∆y23 of 5.0 µm. For IKONOS and three-line scanners, Equation 5.8 reduces to: 

 

( )αtan.23 Zsy ∆=∆         (5.9) 

 

For IKONOS scenes, η = 22.5°, c = 10m, and H = 680km; then s = 1.35e-5, from 

Equation 5.1. For a point at the end of the scan line, α = 0.46°, an elevation error of ∆Z = 

46m introduces error ∆y23 having a magnitude of 5.0 µm. 

 

 

5.3 DERIVING THE ROLL ANGLE 

 

A knowledge of the roll angle is required to perform a perspective-to-parallel correction, 

as expressed in Equation 5.7. Two alternatives can be used, depending on the availability 

of data. Knowing the scanner rotation angles, the roll angle can be derived directly 

(Section 5.3.1). On the other hand, if GCP are available, they can be used to indirectly 

estimate the roll angle, as discussed in Section 5.3.2. 

 

5.3.1 Deriving the Roll Angle Directly using the Scanner Rotation Angles 

 

The roll angle can be determined if the scanner rotation angles are available. Similar to 

Equation A.35, Appendix A, vector yi, (unit vectors along the scanner direction with 

respect to the object coordinate system) can be expressed as (see Figure 5.6): 
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which is the second column of the rotation matrix associated with the ith scan line. 
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plicit value based on the scanner orientation angles, ωi, ϕi, κi: 

( ) ( ) ( ) ( ) ( )]iiiii κϕωκω sinsincoscos +    (5.12) 
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From Equation 5.12, it becomes clear that the roll angle is different from the scanner 

orientation angle ωi. The rotation angles and the associated rotation matrix adopted in this 

dissertation are described in Appendix A, Equations A.3. 

 

5.3.2 Indirect Estimation of the Roll Angle using GCP 

 

In Equation 5.7, yp2 represents the y-coordinate according to parallel projection, which is 

identical to y in Equations 4.10. Equating these coordinates yields: 

 

( )
8765

1

1
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C
y

y
P

P +++=
− ψ

 

 

Rearranging gives the following: 

 

( )( )8765

8765
1 tan1 AZAYAXA

C

AZAYAXAyP

++++

+++
=

ψ
     (5.13) 

 

Observe that yp1 represents the y-coordinate according to perspective geometry, which 

can be measured directly from the raw scene. Having at least five GCP, together with the 

knowledge of the scanner principal distance, the 2-D Affine parameters, A5 to A8, 

together with the roll angle, ψ, can be determined. Having more than 5 GCP, the 

parameters can be estimated in a least-squares adjustment. Such an adjustment requires 

linearization of Equation 5.13 using approximate values for the unknown parameters, 

which can be computed from the linear model (Equations 4.10). 

 

The next Section deals with cases where the scanner navigation data are available. For 

such cases, scene parallel projection parameters can be derived directly.  
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5.4 MATHEMATICAL RELATIONSHIP BETWEEN NAVIGATION 

PARAMETERS (SCANNER EOP) AND PARALLEL PROJECTION 

PARAMETERS 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7

znzn

 

In this section, sce

derived using the n

EOP, as described

vectors xi and zi, w

the object coordina

 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

31

21

11

i

i

i

i

r
r
r

x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

33

23

13

i

i

i

i

r
r
r

z

 

where ri11 to ri33 ar

These vectors, toge

 

: Orientation vectors and axes of the line scanner and the scene 

y1
xn

yn

x

V=(∆X, ∆
Y, ∆Z)

zn

z1

z

xn

yn

x

zi

zi

z
y=yi

y1

zi

y=yi

xi
xi

x1

x1

y1
xn

yn

x

V=(∆X, ∆
Y, ∆Z)

zn

z1

z

xn

yn

x

zi

zi

z
y=yi

y1

zi

y=yi

xi
xi

x1

x1

ne parallel projection parameters (L, M, ω, ϕ, κ, ∆x, ∆y, s) will be 

avigation parameters, which are the parameters expressing the scanner 

 in Equations 3.1. Similar to Equations A.30 and A.24, Appendix A, 

hich are unit vectors along the image coordinate axes with respect to 

te system, (see Figures 5.6 and 5.7) can be expressed as: 

         (5.14) 

         (5.15) 

e the elements of the rotation matrix associated with the ith scan line. 

ther with the yi vector (Equation 5.10) will be utilized in the following 
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subsections to derive the scene parallel projection parameters. Since a scanner moving 

with constant attitude (Equations 3.1) is assumed, these vectors do not change their 

values within the scene. 

 

5.4.1 Projection Vector (L, M, N) 

 

Because of the assumption of constant rotation angles for the whole scene, the projection 

vector will not change from one scan line to the next. The optical axis for scan line 

number i is expressed as (-ri13, -ri23, -ri33)T pointing downwards, in the opposite direction 

to zi. Therefore, the unit projection vector can be expressed as: 
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5.4.2 Scene Rotation Angles (ω, ϕ, κ) 

 

It is important to note that xi-, yi-, and zi-axes of the ith scan line (whose orientation 

vectors are xi, yi, and zi) may differ from the x-, y-, and z-axes of the scene. This can be 

seen in Figure 5.6 where the velocity vector, V, does not lie within the plane formed by 

the xi- and yi-axes of the scan line. Because scene and scanner coordinate systems might 

differ from one other, orientation angles of the scene axes (ω, ϕ, κ) may differ from those 

associated with the scanner axes (ωi, ϕi, κi). The scene orientation angles (ω, ϕ, κ) and 

the corresponding rotation matrix, R, can be derived after defining the scene coordinate 

system and its relation to the ground coordinate system. 

 

The scene plane can be expressed using the velocity vector, V, and the orientation vector 

yi along the yi axis. After defining the scene plane, two perpendicular scene axes (x- and 

y-axes) must be introduced. The y-axis can be chosen to be the same as the direction of 

yi-axis, as shown in Figure 5.7. The following procedure can be used to determine the 

unit vectors (x, y, z) along scene axes:  
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• Determine vector z, which is the normal to the scene plane, as the normalized 

cross product between the two vectors V and yi as: 
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• Determine vector x as the normalized cross product of vectors y and z. Since y 

and z are unit and orthogonal vectors, vector x can be written as: 

 

( ) zy
zy

zy
zy
zyx ×=

×
=

×
×

=
2/sin. π

 

( ) ( ) ( )

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆−∆−∆+∆
∆−∆−∆+∆
∆−∆−∆+∆

∆−∆+∆−∆+∆−∆
=

YrrXrrZrZr
ZrrXrrYrYr
ZrrYrrXrXr

YrXrXrZrZrYr

iiiiii

iiiiii

iiiiii

iiiiii

32223212
2
22

2
12

32222212
2
32

2
12

32122212
2
32

2
22

2
1222

2
3212

2
2232

.1x

  (5.18) 

 

Thus, the rotation matrix, R, between the object and scene coordinate systems can be 

written as:  

 

[ zyx=R ]          (5.19) 

 

5.4.3 Scene Scale (s) 

 

Scale along the scanning direction can be computed by intersecting the optical axis with 

the average elevation surface. The collinearity equations can then be written as: 
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Therefore, the third equation can be rewritten as: 

 

( cr
s

ZZ iiav −=− 330
1 )         (5.20) 

 

Rearranging, the scale s can be expressed as: 

 

avi
i ZZ

crs
−

=
0

33         (5.21) 

where: 

Zav  is the average elevation; 

Z0i  is the Z–coordinate of the perspective center of the image number i; and 

Z0i - Zav is the flying height above the average elevation, H. 

 

It is important to note that the origin of the scene coordinate system is chosen in the 

middle of the scene. Therefore, i in Equation 5.21 represents the middle scanned image, 

i.e., (i = n/2), where n is the number of scanned images in the scene.  Recall that in the 

constant-velocity-constant-attitude case (Equations 3.1) the scanner’s position, with 

respect to the object coordinate system, may change from one exposure station to 

another. 

 

5.4.4 Scene Shifts (∆x, ∆y) 

 

Scene shifts can be computed using Equations 4.4, by setting the origin of the scene 

coordinate system to the origin of the coordinate system of the middle image. This can be 

achieved by substituting the vector (X, Y, Z)T with the vector (X0i, Y0i, Z0i)T, where i is the 

middle image, and by setting the scene coordinates x and y to zero. Therefore, Equations 

4.4 can be rewritten as: 
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Expanding, the above equations can be rewritten as: 
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Equations 5.22 contain three unknowns (∆x, ∆y, λ). Therefore, λ can be computed using 

the third equation as: 
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Substituting this value of λ into the first and second equations of Equations 5.22 results 
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which is the final expression for computing the scene shifts (∆x, ∆y). 

 

Next section deals with experimental results to analyze/verify the mathematical 

transformations and relationships derived in this chapter.  
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5.5 EXPERIMENTS 

 

In this section, synthetic data are generated according to the rigorous perspective model, 

where object space points are back-projected into the scene space. The mathematical 

relationship between the navigation data and scene parallel projection parameters 

(Section 5.4) are then tested. Scene parallel projection parameters are used to produce 2-

D Affine parameters (Section 4.4.2, Chapter 4). In addition, another set of 2-D Affine 

parameters are indirectly estimated based on GCP. Comparison of the derived parameters 

is performed in the object space. The perspective-to-parallel transformation (Equation 

5.7) is also tested using the directly derived roll angle (see Section 5.3.1) and the 

indirectly estimated roll angle (see Section 5.3.2). 

 

Object space points are simulated and back-projected into scene stereopair using the 

rigorous perspective projection model. Scanner IOP and EOP are listed in Table 5.1. It is 

assumed that the scanner’s trajectory and orientation comply with the constant-velocity-

constant-attitude EOP model. 

 

Table 5.1: EOP and IOP parameters used for the simulation 

Left Scanner Parameters Right Scanner Parameters 

IOP EOP IOP EOP 

Principal point (x0, y0) 

=(0.0, 0.0) m 

Principal distance c = 

10.0 m 

x = 0.0 m 

Scene size= 13480 × 

13480 pixels 

Pixel size = 12 µm 

Scene time = 1.57 sec 

 

Scanner position at 

time 0 = (X0 ,Y0, Z0 ) 

= (-288.3, 59.5, 

680.0) km 

Scanner Velocity = 

(∆X, ∆Y, ∆Z) = (7.0, 

0.0, 0.0) km/s 

Scanner orientation 

angles = (ω, ϕ, κ) 

=(-5.0°, -22.5°, 0.0°)

Principal point (x0, y0) 

=(0.0, 0.0) m 

Principal distance c = 

10.0 m 

x = 0.0 m 

Scene size= 13480 × 

13480 pixels 

Pixel size = 12 µm 

Scene time = 1.57 sec 

 

Scanner position at 

time 0 = (X’0 ,Y’0, 

Z’0 ) = 277.3, -59.5, 

680.0) km 

Scanner Velocity = 

(∆X’, ∆Y’, ∆Z’) = 

(7.0, 0.0, 0.0) km/s 

Scanner orientation 

angles = (ω’, ϕ’, κ’) 

=(5.0°, 22.5°, 0.0°) 
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Twenty-five object space points covering an area of 11km by 11km are simulated with an 

average elevation of zero and a height variation of ±1000m. This is achieved by 

randomly selecting Z values with zero mean and a standard deviation of 1000 m. Figure 

5.8a shows the distribution of the object points and the footprint of the left and right 

scenes. Left and right scenes are shown in Figures 5.8b and 5.8c, respectively. Among 

the object points, sixteen points are used as GCP shown as red triangles in Figure 5.8, 

while nine points are used as check points shown as green circles in the same figure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Object space points together with scene footprint (a), and the 

left and right scene points, (b) and (c), respectively 
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Using scene EOP (navigation data) in addition to IOP and average elevation, scene 

parallel projection parameters are derived, as explained in Section 5.4 (see Table 5.2). 

The roll angles, which are also derived based on the scanner orientation (Equation 5.12), 

are also listed in Table 5.2. 

 

Table 5.2: Derived scene parallel projection parameters and roll angle 

 Left Scene Right Scene 

L -0.38268 0.382683 

M 0.080521 -0.08052 

ω° -5 5 

ϕ° 0 0 

κ° 0 0 

∆x (m) 0.000326 -0.00033 

∆y (m) 0 0 

Parallel Projection 

Parameters 

s 1.35E-05 1.35E-05 

Roll angle, ψ° -5.0 -5 

 

Using the derived scene parallel projection parameters, 2-D Affine parameters are 

derived, as explained in Section 4.4.2 (see Table 5.3). 

  

Table 5.3: Derived 2-D Affine parameters 

 Left Scene Right Scene 

A1 1.353E-05 1.353E-05 

A2 4.887E-07 4.886E-07 

A3 5.585E-06 -5.585E-06 

A4 0.00032598 -0.00032598 

A5 0 0 

A6 1.348E-05 1.348E-05 

A7 -1.180E-06 1.180E-06 

2-D Affine 

Parameters 

A8 0 0 
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Some attention must be given to the quality of the derived 2-D Affine parameters and the 

roll angles. Space intersection is chosen as a means of examining their quality in the 

object space. In this case, the 2-D Affine parameters for both left and right scenes, along 

with left and right scene coordinates, are used. Therefore, for each scene point, two sets 

of 2-D Affine equations, Equations 4.10, are written. For each pair of tie points, four 

equations can be written containing 3 unknowns, the object coordinates of the point. 

Thus, the object coordinates can be solved for, in a least-squares adjustment. The errors 

can then be computed in the object space between the estimated coordinates and the 

original coordinates used in the simulation. The mean and standard deviation of the error 

values are computed, as shown in Table 5.4.  

 

Table 5.4: Mean and standard deviation of the error values of the directly estimated 

object space points with and without Perspective-To-Parallel (PTP) correction 

for Experiments 5.1 to 5.3 

Errors, m 
 

MeanXY ± StdXY MeanZ ± StdZ Mean ± Std 

Without PTP 0.582 ± 3.427 0.944 ± 0.853 1.109 ± 3.532 

With PTP 0.590 ± 3.466 0.023 ± 0.194 0.591 ± 3.472 

 

In the above experiment, the Perspective-To-Parallel (PTP) transformation is also tested, 

based on the derived roll angle, as explained in Section 5.2.3. The effect of performing a 

PTP transformation in terms of reduction of the Z-component of the errors can be seen. It 

can then be concluded that omitting such a correction results in larger errors in the 

derived height values.  

 

For the same synthetic data, the 2-D Affine parameters are indirectly estimated using 

GCP (Equations 4.10). Three sets of results were obtained: without PTP correction; with 

PTP correction using the directly determined roll angle (the true roll angle); and with PTP 

correction using the estimated roll angle (Equation 5.13). However, the task of solving 

for the parameters in Equation 5.13 has a stability problem. Therefore, a coordinate 

normalization is performed prior to the estimation; Tao and Hu (2001) address a similar 
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problem dealing with rational functions. The estimated 2-D Affine Parameters and the 

estimated roll angles are listed in Table 5.5. Among the 20 object points, 16 points (seen 

as red triangles in Figure 5.8) are used as GCP in the parameter estimation. The other 

nine points, shown as green circles, are used as check points. 

 

Table 5.5: Indirectly estimated 2-D Affine parameters and roll angles using GCP 

Left Scene Right Scene 

 Without 

PTP 

With PTP 

(true roll 

angle) 

With PTP 

(estimated 

roll angle) 

Without 

PTP 

With PTP 

(true roll 

angle) 

With PTP 

(estimated 

roll angle) 

0σ) , 

pixels 
3.47 2.61 2.60 3.95 2.63 2.58 

ψ° 0.00000 -5.00000 -4.63434 0.00000 5.00000 6.09394 

A1 1.353E-05 1.353E-05 1.353E-05 1.353E-05 1.353E-05 1.353E-05 

A2 4.884E-07 4.884E-07 4.884E-07 4.884E-07 4.884E-07 4.884E-07 

A3 5.583E-06 5.583E-06 5.583E-06 -5.583E-06 -5.583E-06 -5.583E-06

A4 0.0003258 0.0003258 0.0003258 -0.0003258 -0.0003258 -0.0003258

A5 4.949E-09 4.808E-09 4.818E-09 4.535E-09 4.811E-09 4.872E-09 

A6 1.348E-05 1.348E-05 1.348E-05 1.348E-05 1.348E-05 1.348E-05 

A7 -1.195E-06 -1.185E-06 -1.186E-06 1.184E-06 1.174E-06 1.172E-06 2-
D

 A
ff

in
e 

Pa
ra

m
et

er
s 

A8 1.619E-05 -7.794E-06 -6.032E-06 -3.499E-05 -1.128E-05 -6.056E-06

 

As seen in Table 5.5, the square root of the estimated variance component, 0σ) , is the 

smallest by using the estimated roll angles for PTP correction. On the other hand, 

omitting PTP correction results in the largest estimated variance component. In addition, 

the estimated roll angles (as indicated in Equation 5.13, Section 5.3.2) differ from the true 

roll angles derived using the navigation data (as indicated in Equation 5.12, Section 

5.3.1). The difference is attributed to the assumption made in Section 5.2.3 of a flat 

terrain. On the other hand, it can be seen that using the estimated roll angles gives better 

results, in terms of the smallest variance component. In order to evaluate the quality of 
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the estimated 2-D Affine parameters, a space intersection is performed based on the 

estimated parameters and the coordinates of the points in both left and right scenes, as 

explained earlier. The estimated object coordinates are then compared to the true values 

and the errors associated with the points in Tables 5.6. 

 

Table 5.6: Mean and standard deviation of the error values of the indirectly estimated 

object space GCP and check points 

Errors, m 
 

MeanXY ± StdXY MeanZ ± StdZ Mean ± Std 

Without PTP 0.000 ± 1.675 0.000 ± 0.858 0.000 ± 1.882 

With PTP 

(true roll angle) 
0.000 ± 1.699 0.000 ± 0.070 0.000 ± 1.701 

GCP 

With PTP 

(estimated roll angle) 
0.000 ± 1.685 0.000 ± 0.015 0.000 ± 1.685 

Without PTP 0.674 ± 1.666 0.472 ± 0.486 0.823 ± 1.736 

With PTP 

(true roll angle) 
0.683 ± 1.720 0.030 ± 0.039 0.684 ± 1.721 Check 

points 
With PTP 

(estimated roll angle) 
0.552 ± 1.690 0.002 ± 0.008 0.552 ± 1.690 

 

As shown in Table 5.6, no bias can be seen in the estimation of object coordinates of the 

GCP. Again, a smaller Z-value of the standard deviation of the errors is achieved using 

the indirectly estimated roll angle, compared to those using the derived roll angles from 

the navigation data. The same conclusions can be drawn for the check points (see Table 

5.6) except for the existence of bias values. A comparison of Tables 5.6 and 5.4 reveals 

the suitability of indirect methods (that is, using GCP) compared to the direct methods 

(that is, using navigation data).  
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5.6 SUMMARY 

 

In this chapter, the scale modification along the scan line (perspective to parallel 

transformation) was introduced to alter the scene coordinates generated according to 

perspective geometry, so as to be closer to the model of a parallel projection. The 

mathematical model for such a transformation was introduced for scenes whose stereo 

coverage is achieved across-track through the use of roll angles, as in SPOT scenes, for 

example. It was found that, for scenes whose stereo coverage is achieved along track 

using pitch angles (e.g., IKONOS scenes) and those achieved using three-line scanners, 

no scale modification is required, assuming a zero roll angle.  

 

The mathematical relationship between navigation parameters (scanner EOP) and scene 

parallel projection parameters was established. At this stage, it is important to mention 

that the scene parallel projection parameters (L, M, ω, ϕ, κ, ∆x, ∆y, s) can be derived in 

many ways: 

 

• By using navigation data (scanner EOP) directly, without using GCP, as described in 

Section 5.4. 

• By using GCP in Equation 4.4, which represents a non-linear model. Therefore, 

linearization and approximate values are required for solution by means of an 

iterative least-squares adjustment. 

• By using GCP in Equation 4.10 (a linear model) to obtain the 2D Affine parameters. 

Then, a transformation from 2D Affine parameters to scene parallel projection 

parameters can be performed, as described in Section 4.4.4. 

 

Similarly, the roll angle, ψ, can be derived directly using the scanner rotation angles 

(Section 5.3.1) or estimated indirectly using GCP (see Section 5.3.2). Experiments 

revealed that the estimated roll angles using GCP produce the smallest errors in the 2-D 

Affine model, as well as in the object space. It is important to mention that the PTP 

correction assumes flat terrain. 
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Up to this point in the development of the wider methodology of this dissertation, the 

transformation and mathematical relationships between the perspective projection model 

and the parallel projection model have been established. In Chapter 6, an epipolar 

resampling approach of linear array scanner scenes according to parallel projection is 

developed. The perspective-to-parallel transformation discussed in this chapter is, 

therefore, a pre-requisite for the resampling process in the next chapter. 
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CHAPTER 6: EPIPOLAR RESAMPLING OF LINEAR ARRAY SCANNER 
SCENES 

 

 

6.1 INTRODUCTION 

 

This chapter deals with the epipolar resampling of linear array scanner scenes using the 

parallel projection model. First, interpretation of the epipolar line parameters will be 

discussed in Section 6.2. Based on this interpretation, target functions are derived to 

minimize y-parallax (Py) in the normalized scenes. An example will then be presented to 

show the importance of having GCP in epipolar resampling to ensure a linear relationship 

between x-parallax (Px) and height (Z). The purpose of Section 6.3 is to develop 

approaches for epipolar resampling based on the knowledge accumulated throughout this 

research. Finally, experimental results using synthetic data as well as real data are 

presented in Section 6.4.  

 

 

6.2 EPIPOLAR LINE DERIVATION AND PARAMETER UTILIZATION 

 

In this section, a general form of the epipolar line equation is presented. The parameters 

describing the epipolar line are then analyzed and utilized in order to reduce the y-

parallax of the scenes for the purpose of epipolar resampling.  

 

6.2.1 Derivation of Epipolar Line Parameters 

 

Equation 4.42 represents an epipolar line in a scene captured according to parallel 

projection. Conceptually, this equation describes the mathematical relationship between 

the coordinates of conjugate points in a stereopair. It is clear that Equation 4.42 

represents a straight line in either the left or the right scene; this equation also implies that 

the epipolar lines are parallel. In other words, for two points (x1, y1) and (x2, y2) in the left 

scene, the corresponding epipolar lines in the right scene are represented by (y’ = C1 x’ + 

C2 x1 + C3 y1 + C4) and (y’ = C1 x’ + C2 x2 + C3 y2 + C4), respectively; that is, they have 
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the same slope, C1. There is only a shift between these lines along the y’ direction with 

the amount of C2(x1-x2) + C3(y1-y2). Similarly, for any two points in the right scene, the 

corresponding epipolar lines in the left scene will have the same orientation. 

 

However, Equation 4.42 does not represent all straight-line cases in the scene. In other 

words, singularity will exist for lines parallel to y’ since C1 is undefined (tan π/2 = ∞). 

For such cases, x’ and y’ can be switched and Equation 4.42 can be rewritten as: 
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In this representation, lines parallel to the y’ direction will have no singularity because all 

the parameters in this equation will have finite values. However, lines parallel to x’ will 

have singularity and require working with Equation 4.42. The orientation of the epipolar 

lines is not known beforehand; that is, it is not known whether the epipolar lines are 

horizontal or vertical. Therefore, similar to the approach suggested by Habib (1999), 

Equations 4.42 or 6.1 can be rewritten as: 
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Equation 6.2 represents a more general case, since it represents all straight-lines in the 

left and right scenes - that is, regardless of their orientation. The parameters in Equation 
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6.2 can be directly computed from the navigation data according to what has been 

explained in Chapters 4 and 5. This can be achieved by first computing scene parallel 

projection parameters (see Section 5.3), then by determining the 2-D Affine parameters 

(Section 4.4.2). Finally, the epipolar line parameters can be derived as discussed in 

Section 4.5.1 by adapting Equation 6.2. 

 

Alternatively, G1 to G4 can be indirectly derived using point correspondences (i.e., 

conjugate points) in the left and right scenes. Then, the estimated parameters can be used 

to resample the subject scenes according to epipolar geometry. First, at least four tie 

points are required to determine the parameters, G1 to G4, as each point-pair produces one 

equation of the form in Equation 6.2. It is important to mention that a deficient normal 

equation matrix signifies the fact that the object space is a planar surface. In such a case, 

the epipolar lines are reduced to points, similar to what was discussed in Chapter 4. 

 

Regardless of the method of deriving G1 to G4, these parameters can be used to establish 

the necessary transformation for resampling scenes according to epipolar geometry. The 

next section deals with two different scenarios for utilizing the epipolar line parameters 

for the purpose of resampling the scenes according to epipolar geometry. 

 

6.2.2 Utilizing Epipolar Line Parameters for Normalized Scene Generation 

 

Scenes resampled according to epipolar geometry should satisfy the following two 

conditions: 

 

• The epipolar lines should be aligned along the rows of the resampled scenes. 

• Conjugate epipolar lines should be aligned along the same row in the final scenes. 

In other words, there is no Py between conjugate points in overlapping scenes. 

 

Therefore, each scene needs to be rotated through a different angle (e.g., θ for the left 

scene and θ’ for the right scene) in order to make the epipolar lines parallel to the x and x’ 

axes of the left and right scenes, respectively. However, such rotations do not guarantee 
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that conjugate epipolar lines have the same y and y’ values. Consequently, scale and shift 

parameters must be applied for this purpose. Such implementation can follow either one 

of the following two scenarios. 

 

6.2.2.1 Scenario I 

 

In this scenario, the scale and the shift values are applied to only one of the scenes (e.g., 

the right scene). Therefore, the transformation of the right scene includes rotation, scale 

and shift, while the transformation of the left scene includes only rotation. These 

transformations involve four parameters. Adopting such a strategy, the following 

transformations can be written: 
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where: 

θ   is the rotation angle of the left scene; 

θ’   is the rotation angle of the right scene; 

S   is the scale factor of the right scene; 

∆y   is the y shift of the right scene; 

(xn, yn) are the coordinates in the left scene after normalization (i.e., left 

normalized scene coordinates); and 

(x’n, y’n) are the coordinates in the right scene after normalization (i.e., right 

normalized scene coordinates). 

  

In the normalized scenes, y coordinates of the tie (conjugate) points should be equal. 

Therefore, by equating yn and y’n in Equations 6.3 and 6.4 results in: 
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This equation can be rewritten as: 
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Comparing Equations 6.5 and 6.2, the following equalities can be derived: 
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From Equations 6.6, the transformation parameters (θ, θ’, S, and ∆y) can be derived as 

follows: 
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Therefore, after deriving G1 to G4, the transformation parameters can be computed from 

Equations 6.7. Then, the normalized scenes can be generated using the mathematical 

relationships in Equations 6.3 and 6.4. 

 

 



 128

6.2.2.2 Scenario II 

 

Equations 6.3 and 6.4 indicate that only one scale value is applied to one of the scenes. In 

frame images, as discussed in Section 2.1.3.2, recall that the plane on which the 

normalized images are projected is selected in such a way as to divide the scaling 

between the images; that is, by choosing an average rotation angle ω across the base. 

Similarly, it is preferred to introduce two scale values in Equations 6.3 and 6.4; one is 

smaller than unity and the other is larger than unity while their product equals unity. By 

enforcing this criterion (using S for the right scene scale and 1/S for the left scene scale), 

no additional parameters are introduced. Therefore, Equations 6.3 and 6.4 can be 

rewritten as: 

 

( ) ( )
( ) ( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
∆

−+⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡

2

0

cossin
sincos1 y

y
x

Sy
x

n

n

θθ
θθ

     (6.8) 

( ) ( )
( ) ( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
∆+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡

2

0

'
'

'cos'sin
'sin'cos

'

'

y
y
x

S
y
x

n

n

θθ
θθ

     (6.9) 

   

In the same manner, the shift value ∆y is divided between the two scenes. Equating the y 

coordinate values of the above two equations results in: 
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This equation can be rewritten as: 
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By comparing this equation to Equation 6.2, the following equalities can be written: 
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The transformation parameters can therefore be computed as follows: 
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    (6.11) 

 

In summary, G1 to G4 in Equation 6.2 can be computed either directly (using navigation 

data) as explained in Chapters 4 and 5, or indirectly using a least-squares adjustment 

procedure involving identified tie points in the left and right scenes of a stereopair. 

Subsequently, by adopting Scenario I, the transformation parameters can be computed 

using Equations 6.7. Then, the normalized scenes can be generated using the 

mathematical relationships in Equations 6.3 and 6.4. Alternatively, adopting Scenario II, 

the transformation parameters can be computed using Equations 6.11, and the normalized 

scenes can be generated using Equations 6.8 and 6.9. In is very important to mention that 

a perspective-to-parallel correction has to be applied first, as discussed in Chapter 5, prior 

to handling the scenes as parallel projected scenes. 

 

 

 



 130

6.2.3 Example 

 

In this example, the main objective is to verify whether the above transformations are 

sufficient for epipolar resampling of captured scenes according to parallel projection. For 

this reason, two scenes were simulated according to parallel projection. Scene parallel 

projection parameters for the left and right scenes are chosen to be similar to Parameters 

1 and Parameters 2, respectively (see Table 4.2). Terrain was simulated with zero 

elevation and a height variation of ±1000m. The left and right scenes are shown in Figure 

6.1. 
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(a)      (b) 

Figure 6.1: Left Scene (a), and Right Scene (b) generated according to 

parallel projection 

 

Using the scene coordinates, the estimated epipolar line parameters together with the 

square root of the variance component are listed in Table 6.1. 
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Table 6.1: Estimated epipolar line parameters and the square root of the 

variance component 

Parameter Value 

0σ)  0.0 Pixels 

G1 -89.774036 

G2 75.215906 

G3 69.069181 

G4 -90.406242 

 

Adapting Scenarios I and II, the transformation parameters are listed in Table 6.2. This 

table lists the average Py, based on the transformations suggested in Section 6.2.2; the 

transformed scenes are shown in Figure 6.2. 

 

Table 6.2: Derived transformation parameters using Scenarios I and II 

 Scenario I Scenario II 

θ, (°) 50.042518 50.042518 

θ’, (°) 37.379352 37.379352 

S 0.971415 0.985604 

∆y, (m) 0.008538 0.008663 

Mean |Py|, Pixels 0.00 0.00 

 

 

 

 

 

 

 

 

 

Figure 6.2: Normalized scenes 
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From Table 6.2 and Figure 6.2, zero Py is realized for the normalized scenes. Now, the Px 

must be analyzed as it is directly related to the elevation values and, consequently, is 

important for three-dimensional restitution of the object space from the resampled scenes. 

Figure 6.3 shows the relationship between Px and elevation (Z). No linear relationship 

between Px and Z can be seen. In addition, the estimated variance component from 

straight-line fitting to the data points, representing the relation Px versus Z, is 464.82 m2 

for both Scenarios I and II.  
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 can be seen that the resulting Px is not useful for mapping purposes; 

vering the depth information from the corresponding Px. Therefore, 

n Section 6.2.2 are not sufficient for the generation of normalized 

, it is important to redefine the normalized scenes according to 

in the following form: Normalized scenes are those where 

 lie along the same row/column (i.e., no y-parallax) AND have x-

re linearly proportional to the elevation values. 

te that the suggested transformation (rotation, scale and shift) in 

t change the plane where the scene is located. In other words, the 

 a scene do not change as a result of this transformation. Therefore, 

es remain in their own planes after the transformation. As a result, 

 not be in a common plane. In the next section, the plane on which 
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the scenes are first projected, is determined. Recall that epipolar resampling of frame 

images requires projecting the images into a specific common plane (see Section 2.2.3). 

 

6.2.4 Normalization Plane for the Normalized Scenes 

 

The main emphasis of this section is to decide upon the orientation of the normalization 

plane, which will contain the normalized scenes. The orientation of that plane will be 

chosen in such a way that the resulting Px in the normalized scenes should be linearly 

proportional to the corresponding elevation of object space points. In other words, points 

with the same elevation should have the same Px regardless of their planimetric location. 

 

Before starting this analysis, it is important to note that the epipolar lines are parallel to 

the plane defined by the parallel projection directions for the left and right scenes, which 

will be denoted as the epipolar plane (see Figure 6.4). There is an infinite number of 

epipolar planes but for any point, either in the object or scene space, there is only one 

epipolar plane that passes through this point and which includes the projection directions 

associated with the left and right scenes. Thus, the epipolar line will be the intersection of 

this plane with the scene plane. 
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It is important to choose the plane on which the scenes are projected before proceeding 

with the transformation procedure described in Section 6.2.2 to generate normalized 

scenes. In order to show this, let us analyze the epipolar plane more closely (see Figure 

6.5). This figure contains the epipolar plane, which is the plane of the page, and the 

intersection of the epipolar plane with the original scenes (epipolar lines). In other words, 

this figure represents a profile in the scenes along the direction of the epipolar plane. 
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Figure 6.5: Px of vertically aligned points 
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Because of the parallel projection, it can be seen that the recorded scene point b is the 

midpoint of a and c (i.e., xb =(xa+xc)/2). Similarly, the recorded scene point b’ is the 

midpoint of a’ and c’ (i.e., xb’ =(xa’+xc’)/2). 

 

Therefore: 
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It can be proven that, for any plane with any orientation intersecting the epipolar plane 

(dotted lines in Figure 6.5), the same equation is valid. Thus, the relation between the Px 

and elevation, for vertically aligned points (i.e., sharing the same planimetric 

coordinates), is linear, regardless of the orientation of the plane(s) containing the scenes. 

However, it is important to analyze the relationship between the Px and the corresponding 

elevation for points with different planimetric coordinates. 

 

Figure 6.6 shows two points, B and D, of the same elevation value but with different 

planimetric coordinates. The x-parallax of point D, Pxd, is defined as: 
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This parallax can be expressed in terms of the x-parallax associated with point B as 

follows: 
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(a)      (b) 

Figure 6.7: The relationship between Px and elevation by Adapting 

Scenario I, (a), and Scenario II (b) after projection into 

horizontal normalization plane 

 

 

6.3 UTILIZING PARALLEL PROJECTION PARAMETERS FOR EPIPOLAR 

RESAMPLING 

 

From the discussion in Section 6.2.4, epipolar lines are parallel to the epipolar planes, 

defined by the projection directions and the object points under consideration. Therefore, 

determining this direction (i.e., the direction of the epipolar lines) will directly determine 

the x-axis of the normalized scenes. Figure 6.8 shows the epipolar plane containing the 

two parallel projection vectors (L, M, N) and (L’, M’, N’). It is important to note that this 

plane is not necessarily vertical. The direction of the epipolar lines along the 

normalization plane can be determined by intersecting the epipolar plane with the XY 

plane (which is parallel to the normalization plane). Assuming that the vector (U, V, 0) is 

along this intersection, the triple product of the three vectors (L, M, N), (L’, M’, N’) and 

(U, V, 0) should be zero (see Figure 6.8): 
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Figure 6.8: Determining the direction of the epipolar lines along the 

normalization plane 

 

Therefore, the relationship between U and V can be computed as follows: 
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The direction of the epipolar lines, κn, can be determined as follows: 
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Therefore, after determining the parallel projection parameters for each scene, the parallel 

projection parameters of the normalized scenes can be selected as follows: 

 

• ωn and ϕn are set to zero (to define a horizontal normalization plane). 
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• κn is computed from Equation 6.12 (to define the direction of the epipolar lines 

along the normalization plane). 

• sn is computed as the average scale of the two scenes. 

• ∆xn and ∆yn can be computed as the average shifts of the two scenes. 

• Ln, Mn, and Nn are the same as L, M, and N, respectively (same direction vector).  

• L’n, M’n, and N’n are the same as L’, M’, and N’, respectively (same direction 

vector).  

 

Selecting the parallel projection parameters according to the above values will ensure the 

generation of the normalized scenes with Px that is linearly proportional to the terrain 

elevation. 

 

Based on the knowledge accumulated throughout this research, a procedure for epipolar 

resampling of linear array scanner scenes has been developed. This procedure is 

summarized in the following steps: 

 

• Scenes must be transformed from perspective to parallel projection, as explained 

in Chapter 5. This transformation requires a knowledge of the scanner roll angle, 

which can be directly available from the navigation data (see Section 5.3.1) or 

indirectly estimated using GCP (see Section 5.3.2). 

• Scene parallel projection parameters are then derived. They can be directly 

derived using navigation data, as discussed in Section 5.4. Alternatively, they can 

be derived indirectly using GCP. In this case, 2-D Affine parameters are estimated 

based on GCP, Equations 4.10 or Equations 5.13. Afterwards, scene parallel 

projection parameters are derived as discussed in Section 4.4.4.  

• Normalized scene parallel projection parameters are then computed as explained 

in this section. They are (ωn, ϕn, κn, sn, ∆xn, ∆yn, Ln and Mn) for the left 

normalized scene and (ωn, ϕn, κn, sn, ∆xn, ∆yn, L’n and M’n) for the right 

normalized scene. 
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• Finally, the scenes are then re-projected using the normalized parameters. Each 

scene is re-projected along its own parallel projection direction. The mathematical 

model for this transformation is derived in Section 4.5.2. 

 

 

6.4 EXPERIMENTS 

 

In this section, the approach developed for epipolar resampling of linear array scanner 

scenes is tested, using synthetic and real data. 

 

6.4.1 Experiments using Synthetic Data 

 

To prove the feasibility of the approaches developed in this dissertation, Experiment 6.1, 

resembling scenes generated by changing the pitch angles similar to the case of IKONOS 

scenes, was performed. In this experiment, object points were simulated as having a 

height variation of ±1000m; then, IOP and EOP parameters were selected similar to those 

of IKONOS. Based on the rigorous perspective model (IOP and EOP), the object points 

were back-projected into the scene space. Then, a normally distributed noise with a zero 

mean and standard deviation of 1, 2 and 3 pixels was added to the scene coordinates. The 

object space points together with the scene footprints are shown in Figure 6.9. In this 

figure, 16 points shown as red triangles were used as GCP, while 9 points shown in green 

circles were used as check points. The procedure summarized in the previous section was 

then performed, producing the results as listed in Table 6.3.    
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Table 6.3: Results for Experiment 6.1 

 0 1 2 3 

pixels 1.5 1.5 2.4 2.6 

 pixels 1.5 1.6 2.4 3.3 

 0.0 1.0 1.5 2.6 

 Z), m 0.0 1.4 2.6 3.9 

XY, m 0.000 ± 1.684 0.000 ± 1.567 0.000 ± 2.171 0.000 ± 2.528

Z, m 0.000 ±0.000 0.000 ± 1.399 0.000 ± 2.541 0.000 ± 3.733

XY, m 0.552 ±1.720 0.447 ± 1.880 0.685 ± 1.815 0.762 ± 3.841

Z, m 0.000 ±0.000 1.089 ± 1.538 2.068 ± 2.137 0.909 ± 5.235

be seen that, when the data contain no noise, a linear relationship 

hieved together with the reduction of Py to zero.  As the noise level 

s are produced. From the error measures in the object space, no 

ing the GCP while small bias values exist using check points. In 

vel increases, StdZ increases faster than StdXY. This observation is 

base-height ratio of the scenes. Future work will investigate the 

e-height ratios and the terrain variation on the achieved accuracy.  
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6.4.2 Experiments using Real Data 

 

A panchromatic stereopair of IKONOS scenes covering Daejeon, South Korea was used 

in the experiments. The geographical coordinates of the area range from 36.26° to 36.36° 

North Latitude and from 127.31° to 127.45° East Longitude. An overview of these scenes 

is shown in Figure 6.10. The number of rows and columns and the acquisition data/time 

of the scenes are listed in Table 6.4. 

 

 

 

 

 

 

 

 

 

 

 

  
(a) Left Scene     (b) Right Scene 

Figure 6.10: Overview of the IKONOS scenes 

 

Table 6.4: IKONOS scenes’ dimensions and acquisition data/time 

 Left Right 

Number of rows 13824 14336 

Number of columns 13816 13816 

Acquisition date/time 2001-11-19 / 02:18 GMT 2001-11-19 / 02:19 GMT 

 

No information regarding the roll angles of the scenes was available. In addition, no GCP 

were available. Instead, the rational functions’ coefficients (Madani, 1999) of each of the 

scenes were provided. 
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Because of the unavailability of GCP, the rational functions’ coefficients were used to 

derive the ground coordinates of measured tie points - 162 points in all  (Tao and Hu, 

2002). A coordinate transformation was then implemented to obtain GCP in the local 

Cartesian coordinate system. In this regard, it is important to mention that the accuracy of 

the estimated object coordinates depends on: 

 

• The measurement accuracy of the scene coordinates; 

• The accuracy of the rational functions’ coefficients (typically not provided); and 

• The validity of the rational functions as an approximate model.   

 

The developed approach for epipolar resampling was then performed, yielding results as 

listed in Table 6.5. Three sets of experiments were tested using different numbers of GCP 

and check points.  

 

Table 6.5: Results of resampling approaches of IKONOS data 

Experiment 6.2 6.3 6.4 

# of GCP 9 25 162 

# of Check 153 137 0 

0σ) (2-D Affine-Left), pixels 4.8 3.7 2.9 

0σ) (2-D Affine-Right), pixels 1.7 1.3 1.1 

Mean|Py|, pixels 2.3 1.6 1.5 

0σ) (fitting of Px, Z), m 6.0 6.2 5.4 

MeanXY ± StdXY, m 0.000 ± 1.707 0.000 ± 0.993 0.000 ± 0.889 
GCP 

MeanZ ± StdZ, m 0.000 ± 5.674 0.000 ± 6.086 0.000 ± 5.450 

MeanXY ± StdXY, m 0.103 ± 1.364 0.095 ± 0.930 - Check 

points MeanZ ± StdZ, m 1.588 ± 6.101 0.587 ± 5.491 - 

 

From Table 6.5, the left scene does not completely conform to the parallel projection 

model compared to the right scene as indicated by the large estimated variance 

component. One has to note that the provided IKONOS scenes might not be raw 

 



 144

(unprocessed) scenes. From the same table, an insignificant improvement between 

Experiments 6.3 and 6.4 can be seen. Thus, it can be concluded that just a few GCP can 

be used for epipolar resampling according to the approach developed in this research. In 

addition, the standard deviation of the error values of the check points are not 

significantly different from those of the GCP. Therefore, the suggested approaches 

achieve similar errors throughout the resulting normalized stereopair. In other words, 

errors ‘far from’ the GCP are similar to those ‘close to’ the GCP.  

 

The scenes resampled according to epipolar geometry are shown side-by-side in Figure 

6.11. The two scenes are overlaid to generate a stereo anaglyph (see Figure 6.12) which 

can be stereo-viewed using anaglyph glasses. 

 

 

 

 

 

 

 

 

 

 
  

(a) Left Scene     (b) Right Scene 

Figure 6.11: Normalized Scenes 
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Figure 6.12: Stereo anaglyph of the normalized scenes 

.5 SUMMARY 

n this chapter, normalized scenes were strictly defined as those having the following 

roperties: 

• Py is zero to ensure that conjugate points or epipolar lines belong to the same 

row/column. No control information is required at this stage. 
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• Px is linearly related to Z in order to have a useful normalized stereopair where 

estimated height should be linearly related to the true height. Control information 

is required to meet this requirement. 

 

An approach for the epipolar resampling of linear array scanner scenes has been 

developed. In this approach, scene parallel projection parameters (derived from GCP or 

navigation data) are utilized to derive the required transformations. Perspective-to-

parallel correction is a prerequisite and can performed as explained in Chapter 5. 

Experiments using synthetic and real data showed the feasibility of the developed 

approach. 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 
 

 

7.1 SUMMARY AND CONCLUSIONS  

 

The main objective of this research is to generate normalized scenes obtained by linear 

array scanners. Normalized scenes, in regard to matching problems, have the prime 

advantage of reduced search space and computation time in addition to reducing 

matching ambiguities. This makes the normalized scene important and pre-requisite for 

wide variety of applications such as automatic matching, automatic relative orientation, 

automatic aerial triangulation, automatic DEM generation, ortho-photo generation, and 

stereo viewing. 

 

Chapter 2 provided an introduction of epipolar geometry and resampling of imagery 

captured by frame cameras. In Chapter 2, linear array scanners were introduced together 

with their rigorous and approximate modeling as reported in literature. Based on the fact 

that epipolar lines in frame images are straight lines, the shape analysis of epipolar lines 

in linear array scanners becomes important. 

 

Chapter 3 presented the shape analysis of epipolar lines in scenes captured by linear array 

scanners moving with constant velocity and constant attitude. In addition, the effect of 

different stereo-imaging configurations on the shape of epipolar lines was studied. Based 

on this analysis, it was concluded that linear array scanners do not, in general, produce 

straight lines. Moreover, for high altitude scanners with narrow AFOV moving with 

constant velocity and constant attitude, epipolar lines become straighter. Given this 

background, an alternative model was sought to represent such scenes. 

 

Parallel projection, as an alternative model was presented in Chapter 4. The relationship 

between the object and corresponding scene coordinates in imagery captured according to 

parallel projection was derived in Chapter 4. The mathematical relationship between the 

parallel projection parameters and the 2-D Affine transformation parameters (forward and 
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backward transformations) was derived. In addition, the mathematical relationship 

between corresponding points in two scenes generated according to parallel projection as 

well as the epipolar line equation was derived. As this chapter deals with scenes 

complying with parallel projection, which is different from the rigorous perspective 

model, transformation between the models becomes a prerequisite. 

 

Chapter 5 dealt with the transformation from perspective to parallel projection of scenes 

captured by linear array scanners. Such a transformation requires a knowledge of the 

scanner roll angle, which can be obtained directly from the navigation data or indirectly 

using GCP. The mathematical relationship between the navigation parameters (scanner 

EOP) of the original scenes and the parallel projection parameters of the transformed 

scenes according to parallel projection was derived. 

 

Based on the knowledge accumulated throughout this research, Chapter 6 deals with 

developing an approach for epipolar resampling of linear array scanner scenes. The 

developed approach was then tested using synthetic as well as real data. 

 

The procedure and analysis described above allowed certain conclusions to be reached. 

First, the nature of epipolar lines is a function of the scanner type and imaging 

configuration. Moreover, scenes with stereo-coverage achieved along track using pitch 

angles as well as three-line scanners results in epipolar lines that are closer to straight 

lines than those achieved in scenes with across-track stereo coverage, using roll angles. 

 

Second, for high altitude photography with narrow AFOV, the perspective imaging can 

be approximated by parallel projection. 

 

Third, for scenes captured according to exact parallel projection, the fate of epipolar lines 

varies with planarity of the object space: 

 

1. For non-planar object space, straight epipolar lines are obtained. Therefore, 

scenes can be resampled according to epipolar geometry. 
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2. For planar object space, the 1-D epipolar lines would reduce to 0-D points. 

Therefore, the exact correspondence between conjugate points can be precisely 

established. 

 

Fourth, scenes generated according to perspective geometry can be transformed into 

parallel projection to maintain uniform scale. For scenes whose stereo coverage is 

achieved along track using pitch angles as well as using three-line scanners, no scale 

modification is required. 

 

Fifth, transformation from perspective to parallel projection requires a knowledge of the 

roll angle. Two alternatives can be used for deriving the roll angle: 

 

1. Directly, using the scanner orientation angles as explained in Section 5.3.1. 

2. Indirectly, using GCP, as explained in Section 5.3.2. 

 

Sixth, parallel projection parameters can be derived in three possible ways:  

 

1. Using control points in Equations 4.4, which constitute a non-linear model. 

2. Using control points in Equations 4.10, which constitutes a linear model to obtain 

the 2D Affine parameters, or Equations 5.13, followed by a transformation from 

2D Affine parameters to scene parallel projection parameters, as described in 

Section 4.4.4. 

3. Using navigation data (scanner EOP) directly, without using control information, 

as described in Chapter 5. 

 

Seventh, epipolar resampling of linear array scanner scenes have the following 

objectives: 

 

1. Eliminating y-parallax, to obtain conjugate points or epipolar lines along the same 

rows (or columns). Conjugate points are needed, while no GCP is required, for 

this purpose. 
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2. Having x-parallax linearly related to the elevation, to obtain useful normalized 

stereopair. Control information (e.g., GCP) is required for this objective. 

 

Eighth, by combining the objectives identified in the seventh conclusion, it is reasonable 

to find that epipolar resampling requires control information. An approach for epipolar 

resampling was developed, by utilizing scene parallel projection parameters (obtained 

from navigation data or GCP) to compute the necessary transformation parameters. 

 

Ninth, epipolar resampling requires the projection of the scenes on a normalization plane, 

which has to be horizontal. 

 

Tenth, experimental results using synthetic data as well as real data proved the feasibility 

of the developed approach. 

 

 

7.2 RECOMMENDATIONS FOR FUTURE WORK  

 

Recommendations for future work include performing more experiments using synthetic 

data to investigate the effect of different base-height ratios, different noise levels and 

different terrain variations on the developed epipolar resampling approach. Additional 

experiments using real data (such as SPOT scenes) are also recommended to test the 

generality of the developed approach.  

 

Future work should also include an enhancement of the perspective-to-parallel model to 

incorporate knowledge of the trend of the terrain as it could be indicated from GCP. In 

addition, direct and indirect methods for epipolar resampling may be compared in terms 

of the achieved accuracy.  

 

Parallel projection models can be included in photogrammetric triangulations. Higher 

order primitives (e.g., linear and areal features) can also be incorporated in the parallel 

projection model. In addition, object space constraints can be utilized to reduce the 
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minimum requirement of GCP. Finally, DEM and ortho-photos can be generated based 

on the normalized scenes. 
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APPENDIX A: ANALYSIS OF THE ROTATION MATRIX 
 

 

A.1 OBJECTIVES 

 

The rotation matrix of the collinearity equations has important properties that are utilized 

in this dissertation. The elements of the rotation matrix have significant meaning that can 

be used to define the parallel projection direction, as in Chapter 5.  The rotation matrix 

cannot be defined in separation from the collinearity equations. Therefore, Section A.2 

introduces the collinearity equations together with the associated rotation matrix. In 

Section A.3, the orthonormality property of the rotation matrix is introduced. Finally, 

Section A.4 deals with defining the orientation vectors of frame images. 

 

 

A.2 COLLINEARITY EQUATIONS 

 

The main objective of the collinearity equations is to define the mathematical relationship 

between the image and object space coordinates in perspective views. The concept of the 

collinearity equations states that the image point, object point and the perspective center 

are collinear; that is, they belong to one straight line – see Figure A.1.  
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point a in the image, its coordinates with respect to the image coordinate system are (xa, 

ya, 0)T. Vector va, connecting the perspective center and the image point, can be defined 

with respect to the image coordinate system as: 
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For the object point A, its coordinates with respect to the object coordinate system are 

(XA, YA, ZA)T. The coordinates of the perspective center O with respect to the object 

coordinate systems are (X0, Y0, Z0)T. Therefore, vector VA, connecting the perspective 

center and the object point, can be defined with respect to the object coordinate system 

as: 
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Three independent rotation angles are used to represent the rotation between the object 

and image coordinate systems. This dissertation employs the convention that the rotation 

matrix is from the image coordinate system to the object coordinate system. The rotation 

matrix can be expressed as follows: 
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where ω is the primary rotation around the X-axis; ϕ is the secondary rotation around the 

Y-axis; and κ is the tertiary rotation around the Z-axis.  

 

The collinearity equations state that the two vectors va and VA are collinear (see Figure 

A.1). Therefore: 
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Expressing the components of the vectors va and VA results in: 
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where λ is a scale factor, which is the ratio between the length of vector va to the length 

of vector VA. It is important to note that vector va is pre-multiplied by the rotation matrix 

R in order to transform it to the object coordinate system.  

 

Pre-multiplying both sides of Equations A.4 with the rotation matrix RT, and using the 

orthonormality property of the rotation matrix (i.e., RTR=I, Equation A.20) result in: 
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Equations A.4 and A.5 are alternative forms of the collinearity equations containing the 

scale factor λ. Dividing the first and second equations by the third one in Equations A.4 

and A.5, to eliminate the scale factor, and rearranging result in: 
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Equations A.6 and A.7 are other alternative forms of the collinearity equations. 

 

 

A.3 Orthogonality and Orthonormality of the Rotation Matrix 

 

In order to prove the orthonormality of the rotation matrix R, the following characteristics 

must be proven: 

 

• The norm of each row or column in the rotation matrix is unit (normality condition). 

• The dot product of any two different rows or columns is zero (orthogonality 

condition). 

 

The norm of the first, second and third rows are |r1|, |r2|, and |r3|, respectively, and can be 

computed as: 
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Similarly, the norm of the first, second, and third columns are |c1|, |c2|, and |c3|, 

respectively, and can be computed as: 
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Therefore, r1, r2, r3, c1, c2 and c3 are unit vectors (normality condition). 

 

The dot product of the vectors that represents the rows of R can be computed as: 
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Similarly, the dot product of the vectors that represents the columns of R can be 

computed as: 
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(A.19) 

Therefore, the vectors representing the rows, or columns, of the rotation matrix R are 

orthogonal (orthogonality condition). 

 

Hence, it can be concluded that the rotation matrix R is orthonormal.  

 

Another proof of the orthonormality of the rotation matrix can be made in the following 

form: 
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where each of rotation matrices Rω, Rϕ, or Rκ is orthonormal. Similarly: 
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Therefore, R is an orthonormal matrix. 

 

 

A.4 Orientation Vectors in Frame Images 

 

The main objective is to determine the vectors that correspond to the image axis, x, y, and 

z, (see Figure A.2) with respect to the object coordinate system. 
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Thus, vector (XA-X0, YA-Y0, ZA-Z0)T represents the space vector of the optical axis pointing 

downwards. Therefore, a unit vector along the optical axis can be obtained by 

normalizing this vector: 
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Using Equation A.13, the above normal vector can be rewritten as: 
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This is the same unit direction vector along Oo, which is parallel to z-axis but in the 

opposite direction. Therefore, the unit vector along the z-axis, z, is expressed with respect 

to the object coordinate system as: 
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Vector Oo has a length of c and, therefore, can be expressed as: 
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A.4.2 Orientation Vector x 

 

In order to determine a vector along x-axis, image point b whose coordinates with respect 

to the image coordinate system are (∆+x0, y0, 0)T is selected, where ∆ is an arbitrary 

distance. In other words, line ob is parallel to the x-axis. The object space point is B and 

its coordinates with respect to the object coordinate system are (XB, YB, ZB)T. Using point 

B and its image point b in the collinearity equations, vector OB, connecting the 

perspective center to the object point, with respect to the object coordinate system can be 

obtained as: 
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A unit vector along OB can be expressed as: 
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Using Equations A.11, A.13 and A.18: 
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Which is also the unit vector along Ob with respect to the object coordinate system. 

 

Vector Ob has a length of 22 c+∆ . Therefore, it can be expressed as: 
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Therefore, vector ob, which is parallel to the x-axis can be expressed as: 
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Therefore, a unit vector along ob, which is the same unit vector along the x-axis, x, is: 
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A.4.3 Orientation Vector y 

 

In order to determine a vector along the y-axis, image point d, whose coordinates with 

respect to the image coordinate system are (x0, ∆+y0, 0)T, is selected, where ∆ is an 

arbitrary distance. In other words, line od is parallel to the y-axis. The object space point 

is D and its coordinates with respect to the object coordinate system are (XD, YD, ZD)T. 

Using point D and its image point d in the collinearity equations, vector OD with respect 

to the object coordinate system can be obtained as: 
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A unit vector along OD can be expressed as: 
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Using Equations A.12, A.13 and A.19: 
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which is also a unit vector along Od with respect to the object coordinate system. Vector 

Od has a length of 22 c+∆ . Therefore, it can be expressed as: 
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Therefore, vector od, which is parallel to y-axis can be expressed as: 
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Therefore, a unit vector along od, which is the same unit vector along the y-axis, y, is: 
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In conclusion, vectors x, y, and z represent the first, second and third columns, 

respectively, of the rotation matrix R. It is also important to recall the orthonormality of 

these vectors. 
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