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ABSTRACT 

Image registration concerns the problem of how to combine data and information from 

multiple sensors in order to achieve improved accuracy and better inferences about the 

environment than could be attained through the use of a single sensor. Registration of 

imagery from multiple sources is essential for a variety of applications in remote sensing, 

medical diagnosis, computer vision, and pattern recognition. In general, an image 

registration methodology must deal with four issues. First, a decision has to be made 

regarding the choice of primitives for the registration procedure. The second issue 

concerns establishing the registration transformation function that mathematically relates 

images to be registered. Then, a similarity measure should be devised to ensure the 

correspondence of conjugate primitives. Finally, a matching strategy has to be designed 

and implemented as a controlling framework that utilizes the primitives, the similarity 

measure, and the transformation function to solve the registration problem. The Modified 

Iterated Hough Transform (MIHT) is used as the matching strategy for automatically 

deriving an estimate of the parameters involved in the transformation function as well as 

the correspondence between conjugate primitives. The MIHT procedure follows an 

optimal sequence for parameter estimation. This sequence takes into account the 

contribution of linear features with different orientations at various locations within the 

imagery towards the estimation of the transformation parameters in question. 

Accurate co-registration of multi-sensor datasets captured at different times is a 

prerequisite step for a reliable change detection procedure. Once the registration problem 

has been solved, the suggested methodology proceeds by detecting changes between the 
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registered images. Derived edges from the registered images are used as the basis for 

change detection. Edges are utilized because they are invariant regardless of possible 

radiometric differences between the images in question. Experimental results using real 

data proved the feasibility and robustness of the suggested approach. 
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       CHAPTER 1  

 

INTRODUCTION 

1.1 Problem Definition 

Image registration concerns the problem of how to combine data and information from 

multiple sensors in order to achieve improved accuracy and better inferences about the 

environment than could be attained through the use of a single sensor data. In some 

applications, such as interactive remote sensing and medical imaging, image registration 

is the final goal; in other applications, it is a prerequisite for accomplishing high-level 

tasks such as sensor fusion, surface reconstruction, and object recognition. With the flux 

of high resolution scenes captured by space-borne platforms (e.g., LANDSAT-7, 

IKONOS, QUICKBIRD, ORBVIEW, EROS-A1, and SPOT-5), there is an increasing 

need for a robust registration technique that can tolerate varying geometric resolutions of 

the available scenes. 

Automatic and even manual registration of imagery remains challenging for several 

reasons. First, images are usually acquired using different sensor types, each having its 

inherent noise. Furthermore, radiometric as well as geometric properties of the same 

object in the involved imagery might differ as a result of changes in the sensor view 

point, imaging methodology, imaging conditions (e.g., atmospheric changes, cloud 

coverage, and shadows), and spectral sensitivity of the implemented imaging systems 

(e.g., panchromatic, multi- and hyper-spectral imaging systems). Finally, the registration 



  2 

 

process can be complicated by changes in object space caused by movements, 

deformations, and urban development between the epochs of capture associated with the 

involved images. 

Although a vast body of research has dealt with automatic image registration, we still do 

not have a methodology that meets the current challenges posed by image registration. 

This research will investigate and develop a semi-automatic, accurate, and robust 

registration paradigm that can cope with those challenges. 

1.2 Motivation 

In recent years, there has been an enormous increase in the volume of remotely sensed 

images being acquired by an ever-growing number of earth observation satellites. This 

surge in use mandates the development of accurate and robust registration procedures that 

can handle imagery with varying geometric and radiometric properties. Moreover, the 

need to develop a registration methodology is motivated by the fact that its application 

areas span the following fields (Brown, 1992): 

 Remotely sensed data processing for military and civilian applications in agriculture, 

geology, oceanography, oil, mineral exploration, pollution control, urban expansion 

monitoring, forestry, and target location and identification. 

 Medical image analysis for diagnosis purposes such as tumor detection and disease 

localization. Image registration can be also useful for biomedical applications such as 
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classification of microscopic images of blood cells, cervical smears, and 

chromosomes. 

 Computer vision and pattern recognition applications such as segmentation, object 

recognition, shape reconstruction, motion tracking, stereo-mapping, and character 

recognition. 

1.3 Scope of the Research 

This research aims at developing a registration methodology for handling imagery with 

varying geometric and radiometric properties. This thesis describes in detail the essential 

components and the suggested implementation of an effective image registration 

methodology, which includes selecting appropriate primitives, transformation function, 

similarity measure, and matching strategy. 

The first stage in this study includes an investigation into the most appropriate primitives 

that can be used for image-to-image registration. Several primitives (e.g. points, linear 

features, and areal features) can be used in the registration process (Fonseca and 

Manjunath, 1996). Linear features, and more specifically straight line features, will be the 

main focus of this study. The rationale behind using straight lines instead of points and 

areal features will be discussed. Moreover, a comparative study will be done of the 

performance of point and linear features as the registration primitives. 

Investigation of the most appropriate registration transformation functions is the second 

stage. Within this stage, simplified (i.e., approximate) as well as rigorous (i.e., based on 
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the geometric characteristics of the imaging sensor) transformation functions will be 

analyzed (Habib and Morgan, 2002). A comprehensive analysis will be conducted to 

evaluate the validity of the transformation function and the gained improvement in the 

registration quality, as contrasted with the increased complexity of the registration 

methodology. 

The third stage concerns the development of a similarity measure, which mathematically 

describes the coincidence of conjugate elements after the application of the registration 

transformation function. A similarity measure incorporates the attributes of the 

registration primitives to derive the necessary constraints that can be used to estimate the 

parameters of the transformation function relating the images to be registered. 

Automating the solution to the registration problem requires the establishment of a 

controlling framework that utilizes the primitives, similarity measure, and transformation 

function. This framework is usually referred to as the matching strategy and is the final 

stage. In this research, the Modified Iterated Hough Transform (MIHT) first proposed by 

Habib et al (2001a, 2001b) is used as the matching strategy. Such a methodology is 

attractive since it allows for simultaneous matching and parameter estimation. MIHT has 

been successfully implemented in several photogrammetric operations such as automatic 

single photo resection and relative orientation (Habib et al., 2001a, 2001b; Habib and 

Kelley 2001a, 2001b). 

In general, the key contributions of this thesis are as follows: 
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 Utilizing straight-line segments in image-to-image registration as a remedy for 

expected geometric differences between multi-source satellite images. This is an 

important means of increasing the robustness of the registration procedure to cope 

with the flux of newly available high-resolution satellite scenes (e.g., IKONOS, 

LANDSAT-7, SPOT-5, EROS-A1, KOMPSAT-II, QUICKBIRD, and ORBVIEW). 

 Showing that line segments are superior to point primitives in identifying the 

registration primitives in multi-resolution satellite imagery. 

 Introducing a new mathematical model representing the similarity measure, which 

describes the necessary constraints for ensuring the correspondence of conjugate 

primitives. The similarity measure has been developed in light of the fact that the end 

points of conjugate line segments are not identical. This is a critical consideration; 

because of varying geometric and radiometric properties of the respective imaging 

systems and different imaging conditions, the manual or automatic extraction 

methodology might not reliably identify corresponding points in the reference and 

input images. 

 Establishing an automatic matching strategy (MIHT) that utilizes the introduced 

similarity measure together with the transformation function to establish the 

correspondence between the extracted primitives and simultaneously solve for the 

parameters involved in the registration transformation function. This method would 

allow for investigating and evaluating the appropriateness of the selected registration 

transformation function. Previous research has rarely considered this issue. The 
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MIHT approach does not assume a one-to-one correspondence between the 

primitives, nor does it require approximate registration of the involved scenes. 

 Deriving the optimal sequence for parameter estimation within the MIHT procedure. 

This process takes into account the contribution of linear features with different 

orientations at various locations within the imagery to estimate the transformation 

parameters in question. An optimal sequence is derived for 2-D similarity and affine 

transformation functions. The derivation has been performed by analyzing the 

deviations from the similarity measure constraints associated with line segments with 

different orientations at various regions within the imagery as a result of incremental 

changes in the transformation parameters. 

  Detecting changes between the registered images. After the registration problem has 

been solved, the suggested methodology derives edges from the registered images and 

uses those edges as the basis for change detection. Edges are utilized because they are 

invariant regardless of possible radiometric differences between the images in 

question. 

1.4 Definition of Terms 

This section provides the definitions of some frequently used terms. 

Reference image and input image: One of two given images is called a reference 

image; and the other, an input image. Image registration attempts to find the transforms in 

the input image relative to the reference image. The reference image is assumed to be of 
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good quality as well as high resolution, and more representative of the object space. A 

reference image would have no cloud, good contrast and negligible geometrical 

distortions. The input image, on the other hand, is relatively lower in resolution than the 

reference image. Some coverage such as fog or clouds may be present, along with the 

geometrical distortions. 

Conjugate or corresponding features: This term refers to the primitives (i.e., points, 

linear features, and areal features) on different images, which represent the same object 

space feature. In the case of image registration, conjugate or corresponding features are 

the matched (coupled pairs) primitives in the reference and input images. Although 

semantically the term “corresponding” is more general, and “conjugate” refers to two 

images only, these terms are used interchangeably. 

Geometric resolution or resolving power: These interchangeable terms refer to the 

smallest visible separation between similar objects that can be clearly reproduced by a 

remote sensing system. Geometric resolution is usually expressed as the maximum 

number of line pairs per unit length. 

Residual: The residual is the linear distance between a fixed reference point (ground 

control point) and the point that gives the best fit, as determined through the application 

of the transformation function to the observed data. 

Root Mean Square Error (RMSE): One determines the RMSE by calculating the 

deviations of points from their true position, averaging the squares of such deviations, 

and then taking the square root of the average. 
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Accuracy: Accuracy refers to the quality of the nearness to the truth if one assumes no 

biases in the measurement procedure. Accuracy represents the relationship of a set of 

features to a defined reference system and is expressed as the RMSE of a set of derived 

points. 

1.5 Thesis Outline 

The balance of this thesis is organized as follows. Chapter 2 contains a comprehensive 

review of the image registration paradigm elements which include selecting appropriate 

primitives, transformation function, similarity measure, and matching strategy. This 

chapter then explains various existing techniques and studies for image registration and 

their limitations. Finally, the importance of accurate image registration for reliable 

change detection techniques is investigated and a review of the change detection 

algorithms is presented. 

Chapter 3 is dedicated to selecting the most appropriate primitive, transformation 

function, similarity measure, and matching strategy for incorporation into the suggested 

image registration paradigm to ensure accurate, and robust image-to-image registration. 

In this chapter, the motivation for using linear features in photogrammetric applications 

and in particular automatic image registration is explained. This explanation is followed 

by an investigation of the most appropriate registration transformation functions; detailed 

analysis of rigorous and approximate models is provided and the validity of such models 

for different applications is discussed. The calculation of the similarity measure, which 

mathematically describes the coincidence of conjugate line segments after application of 
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the registration transformation function, is the next step. Finally, the Hough Transform is 

introduced, and the development of the MIHT algorithm, which is a foundation of this 

work, is described. 

Within the proposed image registration methodology, the MIHT procedure follows an 

optimal sequence for parameter estimation. This will be the main issue of Chapter 4 

where the optimal sequence of the transformation functions (2-D similarity and affine 

transformation) parameters are established. 

Chapter 5 deals with the change detection algorithm. Once the registration problem has 

been solved, the suggested methodology detects changes between the registered imagery. 

The suggested change detection algorithm depends on geometrical properties of the 

images rather than on radiometric properties. This algorithm is explained in Chapter 5. 

Chapter 6 describes the experiments carried out to demonstrate the feasibility and 

robustness of the proposed algorithm for image registration and change detection.   

In Chapter 7, conclusions are drawn and relevant suggestions for future research are 

given. 
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       CHAPTER 2  

 

LITERATURE REVIEW 

2.1 Introduction 

The recent development of new sensors has created a need for data processing techniques 

that can fuse observations from a variety of different sensors. Image registration aims at 

geometrically aligning two or more images so that corresponding pixels or their 

derivatives (edges, corner points, etc.), representing the same underlying structure in the 

object space, may be integrated or fused. Registration of images captured by different 

types of sensors under different conditions is a challenging problem. The difficulty comes 

from the fact that these images have varying radiometric and geometric resolutions and 

properties. 

In general, an image registration methodology must deal with four issues. First, a 

decision has to be made regarding the choice of primitives for the registration procedure. 

Then, a similarity measure should be devised to ensure the correspondence of conjugate 

primitives. The third issue concerns establishing the registration transformation function 

that mathematically relates the images under consideration. Finally, a matching strategy 

has to be designed and implemented as a controlling framework that utilizes the 

primitives, the similarity measure, and the transformation function to solve the 

registration problem. 
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This chapter reviews the basic components of the image registration process and then 

analyzes the various techniques that are currently used for image-to-image registration 

and change detection. The chapter begins with an overview of different alternatives that 

can be used as registration primitives (Section 2.2); this is followed by a description of 

different transformation functions and their characteristics considering various imaging 

systems used to capture the images (Section 2.3). Then, Section 2.4 reviews different 

criteria for the similarity measure. An overview of the most common image registration 

algorithms and their associated advantages and limitations is given in Section 2.5. 

Finally, Section 2.6 describes various procedures that have been developed for change 

detection purposes. 

2.2 Primitives 

Registration primitives encompass the domain in which information is extracted from 

input imagery for the registration process. Hence, to carry out the registration process, the 

appropriate primitives must be chosen. The three fundamental and most commonly used 

spatial domain features are points, lines and homogenous/areal regions, Figure 2.1. 

Candidate features include lakes, rivers, cost-lines, roads or similar dominant man-made 

or natural structures. Each of these features will be assigned one or more point locations 

(e.g. centroid of area, line endings, etc.) to be used as the registration primitive (Fonseca 

and Manjunath, 1996).  
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 Distinct Points  Linear Features  Homogenous/Areal Regions 

Figure 2.1: Registration Primitives Alternatives 

 

Traditional procedures for manually registering an image pair require interactive 

selection of tie points in each image. The points are then used to determine the 

parameters of a registration transformation function, which is subsequently used to 

resample one of the images into the reference frame associated with the other image. 

However, such a procedure, which relies on manual identification of conjugate points, 

can lead to inaccurate results and is slow to execute, especially if large numbers of 

images with varying geometric and radiometric properties need to be registered. One 

could even argue that manual registration of such imagery using points would be very 

difficult. For example, a visual inspection of the imagery in Figure 2.2 shows that manual 

identification of conjugate points is extremely difficult, if not impossible. 

Automation of the registration procedure requires the replacement of manual tie point 

selection with automatic algorithms for locating corresponding points in both images 

(Brown, 1992). Points can be automatically extracted using an interest operator (Förstner 
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and Gulch, 1987; Moravec, 1977). Then, extracted points can be automatically matched 

through consideration of the radiometric properties of the surrounding pixels or the 

geometric distribution of the whole set of selected points across the entire image 

(Boardman et al., 1996). 

 

.  
 

(a) IKONOS/PAN (1m) 
 

 

 
 

(b) KOMPSAT-1/EOC (6m) 
 

 

 
 

(c) SPOT/PAN (10m) 
 

 

 
 

(d) LANDSAT/PAN (15m) 
 

Figure 2.2: Scenes with Varying Geometric and Radiometric Properties 
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Automatic extraction of points based on the radiometric information results in different 

sets of points from each image due to varying radiometric properties of the involved 

imagery. This situation extends to the problem of finding conjugate points (matching) 

where point extraction algorithms are not likely to be able to identify the same point. In 

other words, for multi-source imagery with varying geometric and radiometric 

resolutions, the texture and gray levels at the location of conjugate points are unlikely to 

be similar. Therefore, automatically or manually extracted points are difficult to match 

and are not suitable primitives for registration. 

Consequently, linear and areal features are other promising alternative primitives that are 

more suited for multi-source image registration; since the geometric distribution of the 

pixels making up the feature, rather than their radiometric attributes, can be used in the 

matching. Linear features can be extracted through the use of derivative-based edge 

detectors (Pratt, 1991) or line extraction algorithms such as Hough transform (Hough, 

1962). On the other hand, areal features (patches) can be extracted using classification or 

segmentation algorithms (Gonzalez and Woods, 1992). 

Areal primitives (e.g., lakes, oceans, and homogeneous regions), might not be always 

available especially in the case of satellite scenes over urban areas. Moreover, registration 

procedures based on areal primitives use the centers of gravity of these features as the 

registration primitives. The estimated centers of gravity are susceptible to potential errors 

associated with the identified boundaries of these patches. Linear features are more 

appropriate than areal features in terms of availability in nature, complexity of extraction 

algorithms, and existence of geometric constraints. Areal features can be represented as a 
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sequence of linear features along the boundaries. For change detection applications, 

linear features can be broken into smaller subsets, which can be individually matched. 

However, dividing an areal feature into smaller subsets is not a trivial task. 

2.3 Transformation Functions 

The second issue in a registration procedure involves the establishment of the 

transformation function that mathematically describes the mapping between imagery in 

question. In other words, given a pair of images, reference and input images, the 

transformation function attempts properly to overlay these images. The functions, used to 

align two images, may be global or local. A global transformation is given by a single set 

of equations, which optimally registers all the pixels in the two images. Local 

transformations map the images depending on the spatial location; this results in several 

sets of equations for one map. Local transformations are usually more accurate but also 

more computationally demanding (Fonseca and Manjunath, 1996). 

For different imaging systems, geometric distortions vary considerably with different 

factors such as the platform (airborne versus satellite), the sensor (LANDSAT versus 

IKONOS), the total field of view, and the scanning trajectory. To overcome the problem 

of geometric distortions, several types of transformation functions have been considered, 

starting with the two dimensional conformal transformation in Equation 2.1, also known 

as 2-D similarity. This transformation is sufficient to match two images with rigid-body 

distortion (Brown, 1992) where the true shape is retained. This is a four-parameter 
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transformation that includes two translations in x- and y-directions, one scale and one 

rotation. 
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where 

s : Scale factor 

Tx & Ty  : Shifts in x and y direction 

κ  : Rotation angle 

x & y : Image coordinates in the reference image 

x′ & y′ : Corresponding image coordinates in the input image. 

At least two tie points are required to solve for the parameters of the 2-D similarity 

transformation. However, using only the minimum number of tie points is unwise, since 

it allows no room for monitoring observation errors. An increase in accuracy of the 

results is accomplishable only through the use of many well distributed tie points across 

the images. 

The affine transformation in Equation 2.2 is frequently used to obtain a mapping between 

two coordinate systems. There are two more parameters than in the 2-D similarity 

transformation. Additional allowance is made for two different scale factors, one in the x-

direction and the other in the y-direction, and there is a nonorthogonality correction 

between the x and y axes. In general, the more parameters included in the transformation 

function, the greater the ability to compensate for possible distortions between the two 

involved images. 
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where 

xs  : Scale factor along x-axis 

ys  : Scale factor along y-axis 

δκ  : Non-orthogonality angle 

Tx & Ty  : Shifts in x and y direction 

κ  : Rotation angle 

x & y : Image coordinates in the reference image 

x′& y′ : Corresponding image coordinates in the input image. 

At least three tie points are required to solve for the parameters of the affine 

transformation. This transformation carries parallel lines into parallel lines, preserves 

collinearity (i.e., all points lying on a line before transformation still lie on a line after 

transformation) and ratios of distances (i.e., the midpoint of a line segment remains the 

midpoint after transformation). The affine transformation will not preserve orthogonality. 

A transformation that maps lines to lines, and does not necessarily preserve parallelism, 

is the projective transformation (Equation 2.3), also known as eight-parameter 

transformation. It is the appropriate transformation to use when the transformation takes 

place between two planes. 



  18 

 

 

1

1

33

210

33

210

++
++

=′

++
++

=′

ybxa
ybxbby

ybxa
yaxaax

 (2.3) 

where 

x & y : Image coordinates in the reference image 

x′& y′ : Corresponding image coordinates in the input image. 

In fact, if 3a  and 3b  in Equation 2.3 are equal to zero, these equations become the affine 

transformation. With eight unknown parameters, this transformation requires a minimum 

of four tie points.  

Although the previous three transformation types are the most commonly used, higher 

order polynomials and surface splines have been proposed to overcome the problems of 

significant geometric distortions (Flusser, 1992; Goshtasby, 1988; Goshtasby et al., 

1986). For example, the second order polynomial transformation in Equation 2.4 includes 

twelve parameters and can be expressed as follows: 
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where 

x & y : Image coordinates in the reference image 

x′& y′ : Corresponding image coordinates in the input image. 
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Prior research did not investigate the validity of the registration transformation function. 

Simplified and sometimes incorrect registration transformation functions are assumed in 

earlier studies. Moreover, only direct image-to-image transformations were considered. 

Further investigation of the object-to-image transformation was not taken as a 

preliminary step, so that the sensor geometry and complexity of the object space could be 

explored to determine a valid image-to-image transformation. 

2.4 Similarity Measure 

The next step in the registration paradigm is the selection of the similarity measure, 

which describes the necessary constraints for ensuring the correspondence of conjugate 

primitives. The similarity measure formulation depends on the selected registration 

primitives and their respective attributes. The division of similarity measure criteria falls 

into two broad categories: radiometric and geometric similarity measures. 

2.4.1 Radiometric Similarity Measure 

Radiometric similarity measure describes the degree of similarity between the gray level 

distribution functions at the vicinity of the selected primitives. Small windows composed 

of gray values serve as matching primitives where the center pixel of the window can be 

used for the definition of the location of a point to be matched. For point primitives, 

radiometric similarity measure plays an important role in both interest point extraction 

and matching criteria. Interest points are image locations where the interest operator 

computes a high variance value. In other words, a certain pixel within the image 
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corresponds to an interesting point if there is a significant difference between the gray-

value at this pixel and its neighbouring pixels. On the other hand, point matching 

compares the gray level distribution of a small sub image patch with its counterpart in the 

other image (Schenk, 1999). Figure 2.3 introduces a frequently used terminology. The 

template is an image patch, which usually remains fixed in the input image. The search 

window refers to the search space within which image patches (Matching window) in the 

reference image are compared with the template. Cross-correlation and least squares 

matching are the best known criteria for similarity measure. These criteria represent a 

quantitative measure of how well conjugate points corresponds to each other. 

 
Figure 2.3: Concept of Area Based Matching 

In cross-correlation, the idea is to measure the similarity between the template and the 

matching window. The template window moves over the search window where a 

correlation coefficient between the template and matching window is calculated at the 

center of each window (point primitive). The position of the conjugate points is given by 

the position of the maximum correlation coefficient. The correlation coefficient can take 

Input Image Reference Image 

Search window 

Template 

Matching window 
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values that range from -1 to +1 where zero indicates no similarity at all, -1 indicates an 

inverse similarity and +1 indicates a perfect match (the highest possible similarity). 

In least square matching, the idea is to minimize the gray level differences between the 

template and the matching window, where the position and shape of the matching 

window are parameters to be estimated in the adjustment process. The position and shape 

of the matching window are changed until the gray level differences between the 

template and the matching window reach a minimum (Schenk, 1999). Least square 

matching is sensitive to the approximate values needed during the adjustment process 

where it might diverge if bad approximations are selected. 

Although cross-correlation and least square matching are very successful in certain 

situations, these methods suffer from a number of limitations. The images in question 

must be radiometrically very similar, preferably imaged by the same sensor. However, 

gray level characteristics of the images can vary from sensor to sensor; hence, correlation 

measures become unreliable (Fonseca and Manjunath, 1996). Moreover, applying cross-

correlation requires two images with the same geometric resolution, and this is not the 

case with existing satellite images (i.e., IKONOS (1m), SPOT (10m), LANDSAT (30m), 

etc.). Furthermore, the success of these methods depends on external influences, such as 

illumination and atmospheric conditions. For these reasons, the radiometric similarity 

measure, in general, is not suitable for images with varying geometric and radiometric 

resolutions. 

Primitives other than points can also be extracted on the basis of radiometric properties, 

such as edge detection algorithms for lines and segmentation and classification 
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procedures for areal primitives. However, finding matching primitives by depending on 

radiometric attributes is difficult if not impossible. Some criteria of similarity measures 

depend on radiometric properties such as the average brightness for regions, the 

difference in gray value or gray value variance between two adjacent regions; however, 

these attributes are ineffective unless geometric attributes (e.g., area of regions and length 

of lines) are incorporated. Moreover, these criteria are invalid for dealing with images 

with various radiometric resolutions where conjugate regions appear with different gray 

values. 

2.4.2 Geometric Similarity Measure 

A geometric similarity measure mathematically describes the fact that conjugate 

primitives should coincide with each other after application of the proper registration 

transformation function. Geometric similarity measure depends on the selected 

registration primitive (e.g., points, linear features, areal regions) as well as the 

registration transformation function (e.g., 2-D similarity or affine transformation). 

Feature-based matching techniques do not use the gray levels themselves as the 

description of the images; rather, they employ an abstract image representation derived 

through a feature extraction algorithm. Feature-based matching employs conjugate 

features appearing in both images. One important requirement is that the features be 

robust against changes in sensor geometry, wavelength and noise characteristics (Fonseca 

and Manjunath, 1996). Moreover, features should be distinct with respect to their 

neighborhoods, invariant with respect to geometric and radiometric influences, and stable 

with respect to noise (Förstner 1986). 
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Each feature is characterized by a set of local or global attributes. An example of a local 

attribute would be the image coordinates of a point where the distance between the 

conjugate points after application of the transformation function is used as a similarity 

measure. Further examples of local attributes are the edge orientation and strength 

(gradient across the edge) for edge elements, the length and curvature of lines, and the 

area of regions. Global features are usually composed of different local features. Besides 

the attributes of the local features, relations between these local features are introduced to 

characterize global features. These relations can be geometric or topologic. Geometric 

relations include the angle between two adjacent polygon sides and the minimum 

distance between two edges. An example of a topologic relation is the notion that one 

feature is contained in another. Matching with global features is also referred to as 

relational matching. 

The Ψ-S curve is a good example of geometric similarity measures. It is a functional 

representation of a line where the arc length s is the parameter of the tangent Ψ. Straight 

lines in the spatial domain correspond to horizontal straight lines in the Ψ-S domain (the 

derivative is constant), see Figure 2.4 (a). Note that a rotation in the spatial domain 

amounts to vertical shift in the Ψ-S representation, see Figure 2.4 (b) (Schenk, 1999). 

Circles are represented as straight lines with slope proportional to the curvature. The 

rationale for using the Ψ-S representation for feature matching is that the representation is 

invariant with respect to the edge position in the image and the rotation between two 

images results in a simple shift. Another motivation for using this representation is its 

stability to extract distinct shape features such as change in curvature. 
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Figure 2.4: (a) Example of Line in the x,y Domain and its Representation in the Ψ-S 

Domain, (b) Rotated Version of the Line in Figure 2.4 (a). 

In conclusion, similarity measures based on geometric attributes are more suitable than 

those based on radiometric attributes. Features in general are more invariant with respect 

to geometric and radiometric influences. Moreover, geometric constraints can be 

established between features to ensure the correspondence between conjugate primitives. 

2.5 Matching Strategy 

In photogrammetry and remote sensing, matching can be defined as the establishment the 

correspondence between various data sets. The matching problem is also referred to as 

the correspondence problem. The datasets involved in matching might include images, 

maps and GIS data. Image matching is an important step and prerequisite for many 
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applications, such as image registration, image orientation, DEM generation, ortho-

rectification, data fusion and relative orientation. 

Matching strategy refers to the concept or overall scheme of the solution of the matching 

problem (Schenk, 1999). It encompasses the selected primitives, transformation functions 

and similarity measures for automatically solving the registration problem. 

2.6 Registration Algorithms 

A previous survey of registration techniques (Fonseca and Manjunath, 1996) reviewed 

registration techniques developed for many different types of applications and data. An 

earlier survey by Brown (1992) was far more wide-ranging and compared numerous 

different applications of image registration, including remote sensing, computer vision 

and medical imaging. The following survey outlines relevant research attempts in 

chronological order. 

Goshtasby et al. (1986) used closed boundary regions primitives to register LANDSAT 

MSS and simulated TM data. Regions were extracted as matching primitives through the 

use of image segmentation. Centers of gravity of closed boundary regions were taken as 

tie points and correspondence was established between the tie points. These points were 

used to establish an approximation of the scale factor, rotation and translation required to 

register the images. Through registration of the images, corresponding patches could be 

identified and their edges refined so that they became optimally similar. The centroids of 

the patches were then re-determined to an anticipated higher degree of accuracy. The co-

ordinates of these centroids were then used to determine the parameters of a higher order 

transformation function (polynomial transformation). Sub-pixel accuracy was achieved. 
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Goshtasby (1988) used point primitives to register LANDSAT MSS and LANDSAT-TM 

scenes. The centers of gravity of fourteen corresponding regions were used as control 

points to register the images. Two surface splines, which represent the x and y 

components of a transformation function, were used to register the two images. Results 

showed the root mean square error of 0.63 pixels, compared to 1.9 pixels when a 

polynomial and least squares technique was used. The surface fitting approach takes into 

consideration the local geometric distortion between the images. However, the surface 

fitting approach proved to have a high computational cost and relied on the number of 

correctly identified tie points to solve the equations. 

Flusser (1992) used point primitives to establish image-to-image registration. The method 

relied on a number of correctly identified tie points being selected in advance. Flusser’s 

paper addressed the problem of selecting a valid and appropriate transformation function 

between the images. Images of 3D-scenes had different viewing angles, or taken by 

different sensors, had local geometric distortions which prevented global polynomial 

transformation functions from achieving accurate registration. More accurate results were 

obtained using surface spline transformation functions. However, the computational 

efforts to solve the surface spline functions were too great and intensified quickly with 

increasing numbers of tie points and larger images. To solve the problem, an adaptive 

algorithm that split the image up into smaller tiles and used a much simpler equation to 

represent the surface spline function was used where sub-pixel accuracy was achieved. 

Flusser and Suk (1994) used closed boundary regions as matching primitives to register 

SPOT and LANDSAT-TM images of size 512 × 512 pixels. To extract closed boundary 
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regions, a Sobel mask was used first to detect edges in various directions; then, the image 

was binarized where closed-boundary regions were found. Only the regions having 

perimeters between ten and one hundred pixels were taken into account. Correspondence 

between the regions was then established in two stages. The first stage depended on the 

local information of the regions to find three pairs of the most likely correspondence 

regions. The second stage used the center of gravity of the regions to find the parameters 

of the assumed transformation function. Root mean square error was used to assess the 

accuracy of the registration where most errors were less than one pixel. 

Abbasi-Dezfouli and Freeman (1994) used areal features as matching primitives to 

register SPOT stereo pairs of size 500 × 500 pixels. The primitives were extracted by 

searching the image for patches of uniform colour and were then matched using several 

criteria that corresponded to some feature’s attributes such as area, dimensions of 

bounding rectangle, perimeter, linearity, concavity and relative geometry. The aim was to 

register the images fully automatically and determine the terrain height across the region 

of interest. After the patches had been matched, tie points were generated by matching 

significant points on the boundaries of corresponding patches with each other through the 

use of a correlation method. No mention was made about the order of the transformation 

function or the matching strategy. 

Li et al. (1995) presented a contour-based approach using region boundaries and other 

strong edges as matching primitives to register LANDSAT and SPOT images of size 512 

× 512 pixels. Images were convolved with a Laplacian-of-Gaussian (LOG) operator and 

the edges were detected at the zero crossing points. For every closed contour, five shape 
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attributes were compared: the perimeter, the longest and shortest distances from the 

boundary to the centroid, and the first and second invariant moments. An invariant 

moment is a function of centroid coordinates and the length of the contour. A pair of 

contour lines was accepted as matching a candidate if it passed a certain threshold. For 

open contours, measures of curvature at certain points within certain thresholds were 

used to find the matched entities. The relationship between corresponding points was 

assumed to be an affine transformation. Results showed that the contour-matching 

algorithm was quite robust and reliable as long as corresponding contours were available. 

The registration scheme would fail if sufficient contour information could not be 

extracted. 

Dowman et al. (1996) used points to register two SPOT images of size 1024 × 1024 

pixels. The matching primitives were extracted from the images using the Förstner 

interest operator (Förstner, 1986). Large number of corresponding points was 

automatically found. The interest operator was applied first at the top level of the 

pyramid and the matching was applied at that level where matched points were used to 

define the initial transformation parameters. The transformation passed down to the next 

level where extraction and matching were applied again. The transformation from the 

previous level of the pyramid was used to predict the position of the point in the reference 

and input images. Cross-correlation was used to find conjugate points. An approximate 

initial affine transformation was used to register the images. Results showed an RMS 

error of 2 pixels (approximately 20m on the ground). 
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Boardman et al. (1996) used point primitives to register two SPOT images. In this work, 

the Förstner operator was used to determine interest points in an image. Transformation 

function and accuracy of the results was not mentioned. The suggested system 

components were initial image registration, image smoothing, image sub-sampling, areas 

of interest, interest point extraction, feature point matching and intensity matching. The 

procedure required an initial image registration to kick off the hierarchical and iterative 

matching procedure. The suggested system achieved sub-pixel accuracy in ideal 

situations and accuracy of two pixels in areas of great relief change, with much fewer 

matchable features. 

Fonseca and Costa (1997) presented an automatic registration algorithm that used points 

to register SPOT and LANDSAT-TM images of size 512 × 512 pixels. Point features 

were detected from the gray level information content of the images and their local 

wavelet transform modulus maxima. A correlation coefficient was used as a similarity 

measure. An affine transformation was used to model the deformation between the two 

images. Because the registration procedure used the gray level information content of the 

images in the matching process, it was only adequate for registering images of the same 

sensor with similar spectral bands. 

Morgado and Dowman (1997) used areal features as the matching primitives to register 

aerial photographs to a map. Initial registration was performed through the matching of 

areal features on the basis of attributes such as size, shape and perimeter length. 

Registration was then refined based on a dynamic programming technique. Tie points 

were generated from the pixels that made up the edges of the patches. The image was 
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registered to the map using an affine transformation, the parameters of which were 

determined from the tie points using a least squares technique. An RMS error of 

approximately 7m (two pixels) in the x-y plane was obtained. As in other studies, areal 

and edge features were utilized to extract tie points such as edge endpoints for use in 

matching where point-to-point correspondence was required. 

Hsieh et al. (1997) introduced an edge-based approach for image registration. Their 

approach applied a wavelet transform to extract a number of points as the basis for 

registration. Each selected point was an edge point whose edge response was the 

maximum within a neighborhood. The rotation angle corresponding to the maximum 

peak of the histogram was used to compensate for the difference between two target 

images. On the basis of the rotation angle, an initial matching could be performed. Then, 

cross-correlations were used to establish and find matching entities for use in the final 

registration process. 2-D similarity transformation was used to model the geometric 

transformation between two images. 

Dare and Dowman (2001) used points and areal features as registration primitives to 

automatically register SAR and SPOT sub-images of size 512 × 512 pixels. Multiple 

feature extraction and matching algorithms were incorporated to identify common 

features from which accurate tie points could be derived. An affine transformation was 

used to model the geometric distortion present in the images. The image registration 

model described in this work was based on three steps. Initial alignment with the use of 

manually selected tie points was followed by approximate registration using patch 

matching. Finally, an edge extraction algorithm was applied to provide a much larger 
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number of tie points with more extensive spatial distribution than the number and 

distribution found in the patch matching algorithm. The results showed that multiple 

feature extraction algorithm increased the number of identified common tie points usable 

for more accurate and robust image registration. The method relied on a number of 

correctly identified tie points resulting from different matching procedures. Therefore, 

mismatch points would lead to significant change in the estimated transformation 

parameters of the suggested transformation function. 

Seedahmed and Martucci (2002) used points as the registration primitive to register two 

sub-images of SPOT scenes of size 1024 × 1024 pixels taken at different times (1987 and 

1991). Point features were extracted through the use of a Moravec operator. The 

suggested approach assumed that the two SPOT images could be aligned by a 2-D 

similarity transformation. This paper introduced an automatic registration procedure 

largely based on the Modified Iterated Hough Transform (MIHT) strategy (Habib et al., 

2001a, b). The results showed that sub-pixel accuracy in the final registration parameters 

was achieved. The suggested approach significantly differed from the registration 

strategies described above, as it simultaneously determined the correspondences between 

the involved primitives and solved for the parameters of the registration transformation 

function. However, this work started with the extraction of point primitives that could not 

be reliably extracted from imagery with different geometric and radiometric properties. 

Moreover, the registration transformation function was not investigated and was assumed 

without valid justification. 

Table 2.1 summarizes the work described above in terms of the primitives and 

transformation functions used. 
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Table 2.1: Summary of Current Registration Techniques 

Authors Registration primitives Transformation functions 
Goshtasby et al. (1986) Regions Polynomial function 
Goshtasby (1988) Regions Surface splines 
Flusser (1992) Points Surface Spline 
Flusser and Suk (1994) Regions Affine 
Abbasi-Dezfouli and 
Freeman (1994) Regions Affine 

Li (1995) Points and Regions Affine 
Dowman et al. (1996) Points Affine 
Boardman et al. (1996) Points 2-D Similarity 
Fonseca and Costa (1997) Points Affine 
Morgado and Dowman 
(1997) Regions Affine 

Hsieh et al. (1997) Points 2-D Similarity 
Dare and Dowman (2001) Points and Regions Affine 
Seedahmed and Martucci 
(2002) Points 2-D Similarity 

 

Although a vast body of research has dealt with image registration, methodologies that 

can meet the current challenges posed by image registration are not available yet. The 

following is a summary of the drawbacks of the methodologies suggested in current 

literature: 

 Extracted points from multi-source imagery with varying radiometric and geometric 

properties would be difficult to match. Moreover, for this imagery, point extraction 

algorithms likely would not be able to identify the same point. One could even argue 

that manual registration of such imagery using points would be extremely difficult, 

Figure 2.2. 
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 Areal primitives might not be always available, especially in the case of high 

resolution satellite scenes over urban areas. 

 Registration procedures based on areal primitives use the centers of gravity of these 

features as the registration primitives. The estimated centers of gravity are susceptible 

to potential errors associated with the identified boundaries of these patches. 

 Developed similarity measures for matching those primitives are empirical and 

sometimes subjective. Also, the involved imagery has to be approximately aligned or 

registered prior to the automatic registration procedure to avoid ambiguities in the 

matching of the involved primitives. 

 The appropriate registration transformation function is not investigated, i.e., 

simplified and sometimes invalid registration transformation function is assumed. 

Moreover, previous methods draw out the results based on small patches of the test 

fields (e.g., 500 × 500 pixels). This may be considered a local transformation because 

such patches do not necessarily represent the whole scene. 

As mentioned before, change detection is one of the most important applications of image 

registration where accurate image registration is required for reliable and effective 

change detection (Singh, 1989; Townshend et al.1992; Lillesand and Kiefer 2000; and Li 

et al., 2002). The next section discusses the importance of change detection and reviews 

different algorithms and techniques that have been mentioned in the literature. 
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2.7 Change Detection Algorithms 

Change detection is the process of identifying differences in the state of objects or 

phenomena through observation at different times. Change detection is an important 

process for monitoring and managing natural resources, urban development, 

environmental changes and disaster assessments. Recent advances in satellite imagery, in 

terms of improved spatial and temporal resolutions, allow for efficient identification of 

change patterns and the prediction of areas of growth. Change detection analysis might 

involve multi-spectral, multi-source, and multi-resolution images that have been captured 

at different times. The reliability of the change detection process is strongly affected by 

environmental factors such as atmospheric effects, illumination conditions, lake level, 

winds or soil moisture. Moreover, seasonal changes such as differences in land cover 

must be considered (Lillesand and Kiefer 2000). 

Traditional change detection studies are based on visual comparison of temporal datasets 

(such as satellite scenes, aerial images, maps, etc.). However, the huge flux of imagery 

that is being captured by an ever-increasing number of earth observing satellites 

necessitates the development of automatic, reliable, and fast change detection techniques. 

Such techniques are essential to reduce the high cost associated with spatial data updating 

activities. 

Several change detection methods have been developed and reported in the literature 

(Singh, 1989; Fung, 1990; Coppin and Bauer, 1994; Dowman, 1998; Sohl, 1999; Mas, 

1999; Bruzzone and Prieto, 2000; Cho, 2000; Li et al., 2002 ; Palandro et al., 2003; Li 

and Narayanan, 2003, and Townshend et al., 1992). Basically, two main solutions for the 
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change detection problem have been proposed: the supervised and unsupervised 

approaches. The former is based on supervised classification methods, which require the 

availability of multi-temporal ground truth in order to derive a suitable training set for the 

learning process of the classifier. The latter performs change detection by directly 

comparing the two images under consideration, without relying on any additional 

information (Bruzzone and Prieto, 2000). 

In supervised classification, data from two images is separately classified; thus, the 

problem of normalizing such data for atmospheric and sensor differences between two 

different times is minimized (Singh, 1989). The supervised approach exhibits some 

advantages over the unsupervised, mainly the capability to recognize the kinds of land 

cover transition that have occurred, robustness to different atmospheric and light 

conditions at the two acquisition times, and the ability to process multi-sensor/multi-

source images (Bruzzone and Serpico, 1997). A major drawback of the supervised 

classification is that the generation of an appropriate multi-temporal ground truth is 

usually a difficult and expensive task; in addition greater computational and labelling 

efforts are required. On the other hand, unsupervised classification is used mainly to 

create “difference images”. It involves image differencing, image ratio, vegetation index 

differencing, image regressions, change vector analysis (CVA), and principal component 

analysis (PCA). Changes are then identified through analysis (e.g., thresholding) of the 

difference image. 

Image differencing is the most widely used technique for unsupervised change detection 

(Singh, 1989). In this technique, two or more images taken at different times are 
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subtracted, pixel by pixel, where changes are detected based on the difference of the gray 

values. The differences in areas of no change will be close to zero while areas of change 

will have relatively large differences. A threshold must be decided upon to set the 

boundary between changed and unchanged areas. 

Image ratioing finds the ratio in the gray value where images are compared on a pixel by 

pixel basis. The ratio in areas of no change will be very close to one while in areas of 

change the ratio would be significantly greater or less than one. Ratioing tends to 

normalize the data for changes such as sun angle and shadow (Lillesand and Kiefer, 

2000). However, the problem lies in selecting the threshold values in order to separate the 

areas of change from those of no change. 

Vegetation index differencing technique uses the Normalized Difference Vegetation 

Index (NDVI) as the basis of the change detection algorithm instead of making direct use 

of spectral radiance values. If one band is in the visible region (VIS) and another band is 

in the near infrared (NIR), then the NDVI is (NIR - VIS)/(NIR + VIS). The technique 

provides a crude estimate of vegetation health and a way of monitoring changes in 

vegetation over time. Simply, in vegetation index differencing technique, the NDVI is 

calculated for both dates and then subtracted. This tends to enhance the random or 

coherent noise that is not correlated in different bands. Nelson (1982, 1983) reported that 

vegetation index differencing is a more accurate technique than image differencing and 

ratioing to describe forest canopy changes. Banner and Lynham (1981) used the 

vegetation index differencing to delineate forest clear-cuts. They compared the results 
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with the supervised classification approach using multi-spectral MSS Band 5 images. The 

results showed that the vegetation index differencing method was less accurate. 

Image regression assumes a linear relationship for changes between pixels and applies 

regression techniques to predict unknown information. In this method, a thresholding 

technique is also used to detect the area of changes. This technique accounts for 

differences in the mean and variance of pixel values so that the effect of different 

atmospheric conditions and sun angles tends to be reduced (Jenson, 1983). 

The Change Vector Analysis algorithm can be considered as an extension of image 

differencing. Two spectral variables are plotted for Date 1 and Date 2 of a given pixel. 

The vector connecting the two datasets describes the magnitude and direction of spectral 

changes between two images. A threshold on the magnitude can be established as the 

basis for determining the areas of changes, and the direction of the spectral changes 

vector often relates to the type of the change (Lillesand and Kiefer 2000). CVA requires 

accurate geometric registration and radiometric normalization (Johnson and Kasischke, 

1998).  

The Principal component analysis technique is used to compress all of the information 

contained in an original n-bands dataset into fewer than n bands (components), where 

linear combinations of the original dataset are derived to form new band images 

containing all the information of all bands in each image. Then, several uncorrelated 

principal components are used in image differencing to find areas of changes. This 
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technique is often difficult to interpret and it is not easy to identify the specific nature of 

the changes involved (Lillesand and Kiefer 2000). 

Based on the previous techniques of change detection, several procedures have been 

proposed by researchers. Fung (1990) assesses the information content and accuracy of 

LANDSAT TM digital images for change detection purposes. Two sub-areas of 

LANDSAT-5 TM images of size 500 × 700 dated August 3, 1985 and July 21, 1986 were 

used for the analysis. Both images were radiometrically calibrated and converted to 

reflectance values to alleviate any differences in solar elevation. To register geometrically 

the images, polynomial functions were generated by using twenty nine ground control 

points. The RMSE was reported to be below 0.2 pixels. On the basis of the different 

combinations of the available special bands of LANDSAT, change detection techniques 

of image differencing and principal component analysis were applied to generate twelve 

change images. To delineate change from no-change areas, each of the twelve images 

was thresholded through the selection of threshold values at ± N standard deviations from 

the mean. The results show that images associated with changes in the near-infrared 

reflectance or greenness detect changes between vegetation and non-vegetation areas. 

Images related to changes in the visible reflectance are able to detect changes due to 

rural-to-urban land conversion. Moreover, researchers found that mid-infrared do not 

provide additional information about land-cover changes. 

Townshend et al. (1992) studied the impact of misregistration of images on the detection 

of changes in land cover using LANDSAT MSS images. They focused attention on 

simulated images of the Normalized Difference Vegetation Index (NDVI) of two of the 
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spatial resolution of the planed Moderate Resolution Imaging Spectrometer (MODIS). 

The results indicate that in the absence of real changes in the object space, the 

consequences of misregistration were clearly highlighted even for sub-pixel 

misregistration. Also, the results showed that for four out of seven tested areas an error 

equivalent to 50% of the actual changes has been introduced. Registration accuracy of 0.2 

pixels is required in order to reduce the error to 10% of the actual changes. 

Coppin and Bauer (1994) developed a digital procedure to optimize the information 

content of multi-spectral LANDSAT TM images for forest cover change detection. 

Images from three different years (1984, 1986, and 1990) were radiometrically calibrated 

and geometrically rectified being before subjected to two change detection algorithms, 

image differencing and principal component analysis. Vegetation indexes were calculated 

from band reflectance values and used in the change detection algorithms. It was found 

that changes in brightness and greenness identified the most important forest canopy 

change features. The researchers noted that post-classification for change images would 

eliminate small but real features of interest. They also reported that spatially accurate 

forest cover monitoring required the precise registration of the multi-date imagery. 

Dowman (1998) developed procedures for change detection using aerial, SPOT and SAR 

images. The first procedure uses the information present in a database to identify 

corresponding objects in an image and then compare the detailed geometry as given by 

the database and image. The second procedure compares two images pixel by pixel after 

normalizing and noise reduction. As has been mentioned, accurate image registration is 

essential for the validity of change detection output. 
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Mas (1999) used LANDSAT Multi-Spectral Scanner (MSS) to test six change detection 

procedures for detecting areas of change in a coastal zone. 2045×1687 pixel sub images 

were extracted from February 15, 1974 and April 29, 1992 LANDSAT MSS scenes. The 

change detection techniques considered were image differencing, vegetation index 

differencing, principal component analysis, unsupervised classification, supervised 

classification and a combination of supervised classification and image enhancement. 

The accuracy of the results was evaluated by comparison with aerial photographs. 

Thresholds were applied to the change images to isolate the pixels with no change. 

Supervised classification comparison was found to be the most accurate procedure and 

had the added advantage of indicating the nature of changes. Due to differences in soil 

moisture and vegetation between the two scenes, poor performance was obtained by 

image enhancement procedures. It was found that methods based on classification were 

less sensitive to radiometric variations. 

Cho (2000) used LANDSAT TM and SPOT panchromatic images to detect 

environmental changes on an area of Mountain Moscow, Idaho. LANDSAT TM images 

were captured on July 8, 1990 and July 20, 1991, while a SPOT image was captured on 

August 14, 1992. Images were registered with RMSE of 0.286 pixels where TM images 

were resampled from 30 m to 10 m spatial resolution. The image enchantment process 

then was performed to improve the quality of the images. Supervised classification was 

performed using the maximum likelihood classifier method. Pixel-by-pixel comparison 

was used to detect changes in the study area. Overall accuracy was reported to be higher 

than 90%. 
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Palandro et al. (2003) used two aerial photographs acquired on February 5, 1981 and 

Januarry 17, 1992 and 4 m spatial resolution IKONOS imagery acquired on October 15, 

2000 for a change detection application. Aerial photographs were scanned and resampled 

to 2 m pixel size and then geo-corrected using IKONOS image as a reference image. 

Supervised classification was used to divide each image into four classes. The training 

pixels were chosen according to the database available for each year. Results showed the 

IKONOS imagery to be a good source of information when used in conjunction with 

historic color aerial photographs. The authors did not release any information about the 

size of involved imagery, accuracy of registration between the images, radiometric 

variations between the images, quality of the output results, and the types of changes that 

occurred. Moreover, the change detection procedure was not explained. 

Li and Narayanan (2003) presented a shape-based approach to detect changes of lakes in 

the Nebraska region using supervised classification. Thirty-six four-band LANDSAT 

MSS images of size 256×256 pixels from 1981 to 1987 and 10 six-band TM of size 

768×768 from 1992 to 1997 were employed. All the images were radiometrically and 

geometrically rectified. As a first stage, each image was classified and lakes represented 

by polygons were retrieved. Then, shape similarity measures based on the Euclidian 

distances between centroids of two conjugate polygons were conducted. Results showed 

that the centroids of the studied lakes did not change although the boundary shapes of 

some lakes experience strong variations  

Table 2.2 summarizes the work described above in terms of the images as well as the 

methods used for change detection. 
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Table 2.2: Summary of Change Detection Techniques 

Authors Images Change detection Method 

Fung (1990)  LANDSAT-TM 
 Image differencing  
 Principal component analysis 

Townshend et al. (1992)  LANDSAT-MSS  Vegetation index differencing
Coppin and Bauer (1994)   LANDSAT-TM  Vegetation index differencing

Dowman (1998)  
 Aerial 
 SPOT  
 SAR 

 Image differencing 

Mas (1999)  LANDSAT-MSS 
 Image differencing 
 Vegetation index differencing 
 Principal component analysis 

Cho (2000)  
 LANDSAT-TM 
 SPOT  

 Image differencing 

Palandro et al. (2003) 
 Aerial  
 IKONOS 

 Image differencing 

Li and Narayanan (2003)  LANDSAT-MSS  Image differencing 
 

In summary, the following issues have to be considered for change detection techniques: 

 Image differencing methods assume that differences between radiometric values are 

due to changes in the object space. Intact, these differences could be a result of other 

factors, such as different atmospheric conditions, different illumination conditions, 

changes in soil moisture and changes of sunlight angle. Several solutions were 

suggested to overcome such a problem. Basically, these solutions depend on image 

enhancement and radiometric corrections that tend to reduce radiometric differences 

between images under consideration. Ingram et al., (1981) used a normalization 
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procedure, in which a selected value for the mean and standard deviation was input 

along the images to be normalized. 

 Most of these methods require a decision as to where to place the threshold 

boundaries in order to separate the areas of changes from those of no changes (Singh, 

1989). In fact, classical techniques perform thresholding based on empirical strategies 

or manual trial and error procedures, which significantly affect the reliability and the 

accuracy of the final change detection results (Li et al., 2002). 

 In general, classification methods require two or more bands for the classification 

process. These are not always available, especially in the case of aerial images, which 

represent an important source of historical information needed for change detection 

purposes. 

 Image differencing techniques are sensitive to misregistration between the reference 

and input images (Singh, 1989; Townshend et al., 1992; Li et al., 2002; Buruzzone 

2003). Studies pointed out that the accuracy of the image registration process is the 

key factor that controls the validity and reliability of the change detection outcome. 

Traditional approaches to change detection have failed. They are based on differencing 

intensity images, and the illumination of the scene is not under control in many 

applications. To overcome this problem, this thesis proposes features invariant to changes 

of the illumination conditions. 
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       CHAPTER 3  

 

IMAGE REGISTRATION METHODOLOGY 

3.1 Introduction 

In this chapter, the basic concepts, the mathematical model, and the methodology of the 

proposed image registration paradigm are introduced. The elements of the paradigm have 

been established and chosen in a way that allows them to handle multi-source imagery 

with varying geometric and radiometric properties. 

Section 3.2 is a discussion of the rationale behind adopting linear features, and in 

particular straight lines, as the preferred registration primitives. In Section 3.3, rigorous 

as well as approximate transformation functions are analyzed in search of the most 

appropriate transformation functions. Then, a geometric similarity measure based on 

straight lines is mathematically derived (Section 3.4). Finally, a matching strategy based 

on Modified Iterated Hough Transform is introduced. This is used as a framework 

utilizing straight line primitives, a similarity measure, and a transformation function to 

calculate the parameters of the transformation function and simultaneously establish the 

correspondence between conjugate lines (Section 3.5). 
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3.2 Linear Features 

As mentioned before, the selection of the most appropriate primitives, which encompass 

the domain in which information is extracted from input imagery for the registration 

process, is the first step of the image registration paradigm. In contrast to point 

primitives, linear features have a set of appealing properties, especially in the case of 

multi-resolution images. These properties include the following facts: 

 Compared to distinct points, linear features have higher semantics, which can be 

useful for subsequent processes (such as DEM generation, map compilation, change 

detection, and object recognition).  

 It is easier to automatically extract linear features from multi-resolution imagery 

rather than distinct points (Kubik, 1991). This is attributable to the nature of linear 

features, since they represent discontinuities in the gray value function in one 

direction. On the other hand, point features represent discontinuity in all directions. 

Even if the extraction process is done manually, the identification of conjugate linear 

features in multi-resolution imagery is much easier than the identification of 

conjugate distinct points. 

 Images of a man-made environment are rich with linear features. 

 Geometric constraints are more likely to exist among linear features. This can lead to 

a simple and robust registration procedure. 

 Linear features in multi-resolution imagery can be extracted with sub-pixel accuracy 

across the direction of the edge. 
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 Linear features allow for the incorporation of areal features through the use of their 

boundaries. Moreover, linear features are easier to use in change detection 

applications than are areal features. The superiority of linear features stems from the 

possibility of dividing them into smaller subsets. On the other hand, breaking areal 

features into smaller subsets is not a trivial task. 

  Terrestrial Mobile Mapping Systems (MMS) can economically provide accurate and 

current object space linear features in real time. 

 Linear features increase the redundancy and improve the robustness and geometric 

strength of various photogrammetric adjustment activities. 

 Point correspondence on matched linear features is not necessary, so the use of such 

features allows more flexibility than the use of points or areal features. 

Linear features can be represented either by an analytical function (e.g., straight lines, 

conic sections, or parametric functions) or by a free form shape. In this research, straight-

line segments have been chosen as the registration primitives for the following reasons: 

 Man-made environments are rich with straight lines. 

 Straight lines are easier to detect in multi-resolution imagery, and the correspondence 

problem between conjugate features in the input imagery becomes easier to solve. 

 Straight-line parameters can be obtained with sub-pixel accuracy. 

 It is straightforward to develop mathematical constraints (similarity measures) 

describing the correspondence of conjugate straight-line segments. 

 Free-form linear features can be represented with sufficient accuracy as a sequence of 

straight-line segments (polylines). 
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After selecting straight-line segments as the registration primitives, one must decide how 

to represent them. In this thesis, the line segments will be represented by their end points. 

This representation is chosen since it will have no singularity (i.e., it is capable of 

representing all line segments in 2-D space). The end points defining corresponding line 

segments in the imagery need not be conjugate, Figure 3.1. 

 

IKONOS ~ 1m KOMPSAT ~ 6m 

Figure 3.1: Conjugate Straight Lines without Corresponding End Points 

It has to be mentioned that manual digitization was adopted in this research since the 

main objective is focused on image-to-image registration through the use of straight lines, 

not the extraction method. Automatic extraction of straight lines was beyond the 

objective of this study and will be investigated in future work.  

Once straight lines are digitized and adopted as the most suitable primitive to be used in 

the registration process, the next step is to select a valid and proper transformation 

function that can faithfully represent the transformation between the input and the 

reference images. 
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3.3 Registration Transformation Functions 

At this stage, one should establish a registration transformation function that properly 

aligns the images relative to each other. Given a pair of images, reference and input 

images, the registration process attempts to find the relative transformation between 

them. The type of spatial transformation needed to properly overlay the input and 

reference images is one of the most fundamental and difficult tasks in any image 

registration technique. Images involved in the registration process might have been taken 

from different viewpoints with the use of different imaging technologies. The registration 

transformation function must suit multi-resolution and multi-spectral images that could 

be captured under different circumstances. 

Throughout this thesis,  denotes the coordinates of a point in the reference image, 

 is used for the coordinates of the conjugate point in the input image, and 

 represents the ground coordinates of the corresponding object point. In the next 

subsections, available options for establishing the transformation models between such 

images will be investigated. For the various alternatives, object to image space 

transformation for both the reference and input images is discussed first. Then, the 

transformation function is analyzed to derive the mapping function relating the reference 

and input images, Figure 3.2. 
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Despite the current progress in the development of frame cameras, digital frame systems 

that can replace film-based cameras are still not available. A Charged Coupled Device 

(CCD) camera with a resolution comparable to the classical frame cameras must be in the 

order of 20,000 × 20,000 sensing elements (Schenk, 1999), and is not available yet. The 

chief advantage of digital frame cameras over the classical film-based technology is the 

instant availability of images for further processing and analysis. This feature makes 

digital frame cameras ideal for real time photogrammetry (Habib and Beshah, 1998). 

Today, digital systems using line scanning geometry are the only imaging sensors that 

can compete with film-based photos in terms of acquired area and image resolution. 

Digital frame cameras capture images through a single exposure of a two-dimensional 

CCD array; linear array scanners capture scenes with large ground coverage and high 

geometric and radiometric resolutions through multiple exposures of a few scan lines 

along the focal plane. Successive coverage of different areas on the ground is achieved 

either through the motion of the imaging platform (push-broom scanners) or the motion 

of the sensor relative to the imaging platform (panoramic scanners). Depending on the 

sensor type, viewing angles, system altitude, and scan trajectory, different mathematical 

models have been devised to describe the relation between the image and object space as 

well as the relation between stereo-images. 

The image formation process can be described by a central (perspective) projection in 

which the projection rays from the object to the image space pass through a single point, 

the perspective center. For frame cameras, there are three models that can be used to 

rigorously describe the mathematical relationship between corresponding image and 
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ground coordinates, collinearity equations, Direct Linear Transformation (DLT), and 

projective transformation. 

The main objective of the collinearity equations (Equation 3.1) is to define the 

mathematical relationship between corresponding image and object space coordinates in 

perspective views, where the image coordinates of a point are expressed as a function of 

the Interior Orientation Parameters (IOP), the Exterior Orientation Parameters (EOP), and 

the ground coordinates of the corresponding object point, Figure 3.3 (Kraus, 1997). The 

IOP defines the sensor or camera characteristics required for the reconstruction of the 

image space bundle of rays from corresponding image points. The IOP can be obtained 

from the system manufacturer or a calibration procedure (Habib et al, 2001b). The EOP 

establishes the position and orientation of the bundle of rays with respect to the object 

space coordinates (Mikhail and Bethel, 2001). EOP can be directly determined through 

the use of GPS/INS or indirectly estimated through the use of ground control points in a 

bundle adjustment procedure (Habib et al, 2000; Habib et al, 2001b)  

The concept of the collinearity equations stems from the fact that image point, object 

point, and the perspective center are collinear. 
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where 

x, y:  Image point coordinates corresponding to object point (X, Y, Z) 

X, Y, Z: Corresponding ground point coordinates 

xp, yp, c:  Interior orientation parameters (calibrated principal point position and 

principal distance of the camera with respect to image coordinate system) 

 Exterior orientation parameters (X0, Y0 and Z0 represent the position of 

perspective center with respect to ground coordinate system, where ω, φ and 

κ represent the rotation angles between the ground and image coordinate 

systems). 

X0, Y0, Z0: 
ω, φ, κ 
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Figure 3.3: Relationship between Image and Object Coordinate System 
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DLT in Equation 3.2 is a simpler model in which the relationship between image and 

ground coordinates is formulated through the use of eleven parameters that encompass 

the interior and exterior orientation parameters (Abdel-Aziz and Karara, 1971). The wide 

popularity of the DLT is due to the linear formulation of the relationship between image 

and object coordinates. The DLT model requires well distributed 3-D object space 

control points to estimate the full set of its parameters. In this model, IOP and EOP are 

not explicitly needed. 
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where 

x, y : Image point coordinates corresponding to object point coordinates (X, Y, Z) 

A1, …, A11 : Direct linear transformation parameters. 

Finally, projective transformation (Equation 3.3), which involves eight parameters, 

assumes a planar object space. Projective transformation can be used for high altitude 

photography over flat terrain. At least four planimetric ground control points are needed 

to solve for the eight parameters involved in the projective transformation. As in the case 

of the DLT, the IOP and EOP are not explicitly involved in the projective transformation. 
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where 

x, y : Image point coordinates corresponding to object point coordinates (X, Y, Z) 

A1, …, A3 : Projective transformation parameters. 

The collinearity model used for frame imagery can be modified so as to be valid for 

linear array scanners (Habib and Beshah, 1998). In the case of linear array scanners, each 

image line is the result of a perspective projection in the CCD line direction and has its 

own EOP. The collinearity equations for linear array scanners are as follows: 
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where 

xt, yt:  Image point coordinates corresponding to object point (X, Y, Z) at time t 

X, Y, Z: Corresponding ground point coordinates 

xp, yp, c: Interior orientation parameters (calibrated principal point position and 

principal distance of the camera with respect to image coordinate system) 

ttt rrr 332211 ,...,, : Elements of rotation matrix tR , which are function of  ωt, φt and κt at time t 
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t
o

t
o

t
o ZYX ,, : The position of the perspective center at time of capturing the scene line 

under consideration. 

Once perspective transformations (3D to 2D) have been discussed, the mathematical 

relation between stereo-pair (2D to 2D) has to be described. Before details of the 

mathematical model are discussed, explanation of the idea of the epipolar geometry must 

be clarified. Figure 3.4 shows the concept of epipolar geometry of a stereopair. The 

perspective centers associated with the images of a stereopair and a single point on the 

ground define a plane known as the epipolar plane; epipolar lines are defined by the 

intersection of the epipolar plane with the focal planes of the images. 

The relationship between conjugate points in stereo-pair (2D to 2D) captured according 

to perspective projection can be described by the co-planarity condition. This condition 

mathematically describes the fact that conjugate points in the reference and input images 

belong to the corresponding epipolar plane (Habib and Kelley, 2001b). The coplanarity 

constraint can be defined by constraining the normal to the epipolar plane to be 

perpendicular to the base vector (Equation 3.5). This condition is defined as follows. 

 0)( =•× bpp rl

rrr  (3.5) 

where 

b
r

: The vector between the two perspective centers of the stereopair, referred to 

as the image base 



  56 

 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=−=

olor

olor

olor

ZZ
YY
XX

PcPcb 12

r
 

lP
r

, rP
r

 : The vectors from the perspective center to conjugate points in the left and 

right images, respectively. 

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
c
yy
xx

RP pl

pl

ll ),,( κθω
r

 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−
−

=
c
yy
xx

RP pr

pr

rr ),,( κθω
r

 

 

b
rPc1 Pc2

ololol ZYX ,,  

Equation

 

Assuming

relationsh
ololol ZYX ,,  

Figure 3.4: Epipolar Geometry of a Stereo-pair
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),( ll yx with a line in the right image (epipolar line). Therefore, there is no point-to-point 

mathematical relation. Instead any given point in the input image belongs to a line in the 

reference image (epipolar line) Figure 3.5. Point-to-point relation can be established if 

and only if a digital elevation model (DEM) of the object space is available. This is not 

practical since the DEM is an end product. 

Reference Image Input Image 

Object Space 

 

Figure 3.5: Rigorous Mathematical Relationship between Conjugate Points in Stereo-

Images 

3.3.2 Perspective Projection: Approximate Models 

Work with rigorous models usually results in accurate mathematical representation of 

object to image relation. However, these models suffer from several difficulties. First, the 

interior orientation parameters (IOP) and exterior orientation parameters (EOP) for 

sensors (e.g. IKONOS) might not be always available for security reasons. Second, 

images provided by linear CCD array sensors consist of lines scanned independently at 

different instants of time with different EOP. The use of rigorous models for such images 

requires six parameters for each scan line, and this results in a huge set of parameters to 

be considered. For example 36000 parameters are involved in SPOT with 6000 scan 

lines. Third, rigorous modelling requires complete understanding of the nature and 
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operation principles of the imaging system used to capture the images. For all these 

reasons, there has been an increasing trend within the photogrammetric community 

towards using approximate models to describe the mathematical relationship between 

image and object space points for scenes captured by high altitude line cameras with a 

narrow angular field of view (e.g., IKONOS, SPOT, LANDAST, EROS-A1, 

QUICKBIRD, and ORBVIEW) (Figure 3.6). The main advantage of approximate models 

is their capability to extract reliable and accurate 3D information from stereo satellite 

images without explicit reference to either camera model or satellite ephemeris 

information (Fraser et al., 2001). 

Among these models, Rational Function Models (RFM) are gaining popularity since they 

can handle any type of imagery without the need for a comprehensive understanding of 

the operational principles of the imaging system (Tao and Hu, 2001). RFM are fractional 

polynomial functions that express the image coordinates as a function of object space 

coordinates (Equation 3.7). RFM have been extensively used in processing satellite 

scenes in the absence of the rigorous sensor model (e.g., IKONOS scenes). However, the 

use of RFM would not allow for the development of a closed form transformation 

function between the coordinates of conjugate points in the reference and input images. 
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Parallel Projection

Figure 3.6: Approximate Models 

For scenes captured by high altitude line cameras with narrow angular field of view (e.g., 

IKONOS, SPOT, and LANDAST), parallel projection approximates the mathematical 

relationship between image and object space coordinates (Habib and Morgan, 2002). 

Image to object space coordinate transformation using parallel projection involves eight 

parameters, Equation 3.8. 
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As in the case of rational functions, parallel projection would not allow for the  

establishment of point-to-point correspondence between the input and reference image 

without the knowledge of height information (Z coordinate), Figure 3.5. 

For relatively planar object space (i.e., when height variation within the object space is 

very small compared to the flying height), the parallel projection can be simplified to an 

 2-D Similarity Parallel Projection Standard Affine

Narrow AFOV Planar Surface Parallel Image-Object 

Perspective Projection

Flight Directions 

Object Space
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affine transformation involving six parameters. In other words, corresponding image 

(either the reference or the input image) and planimetric object coordinates are related 

through a six-parameter affine transformation. Due to the transitive property of an affine 

transformation, the relationship between corresponding points in the input and reference 

images can be represented by an affine transformation as well (Figure 3.7). For situations 

where the image is almost parallel to the object space, the affine transformation function 

can be further approximated by a 2-D similarity transformation. Once again, since 

similarity transformation is transitive, coordinates of conjugate points in the reference 

and input images can be related to each other through a 2-D similarity transformation. 

In summary, one concludes that for scenes captured by high altitude imaging satellites 

with narrow angular field of view of a relatively flat terrain, the mathematical 

relationship between the coordinates of conjugate points in the reference and input 

images can be described by an affine transformation. Moreover, for scenes that are 

almost parallel to the object space, such transformations can be further simplified to a 2-

D similarity transformation involving only four parameters. Since this thesis focuses on 

the registration of multi-resolution satellite imagery (e.g., IKONOS, KOMPSAT, SPOT, 

and LANDAST), affine and 2-D similarity transformation functions will be used to 

establish the mathematical relationship between conjugate elements of the involved 

image pair. 

After discussing the choice of the most appropriate registration primitives as well as the 

transformation function between the reference and input images, one can proceed to the 

third issue of the registration paradigm, namely, the similarity measure. 
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Affine transformation 

Reference Image Input Image 

Figure 3.7: Transitive Property of Affine Transformation 

3.4 Similarity Measure 

The similarity measure mathematically describes the coincidence of conjugate line 

segments after application of the registration transformation function. The similarity 

measure incorporates the attributes of the registration primitives to derive the necessary 

constraints that can be used to estimate the parameters of the transformation function 

relating the reference and input images. In other words, having two datasets, which 

represent the registration primitives (straight-line segments) manually or automatically 

extracted from the input and reference images, one should derive the necessary 

constraints to describe the coincidence of conjugate primitives after applying the 

appropriate registration transformation function. 

Affine Transformation 
Affine Transformation 

Object Space 
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y′

x′

Transformation Function

Figure 3.8: Similarity Measure Using Straight Line Segments 

In Figure 3.8, it is assumed that the line segment (1-2) in the reference image corresponds 

to the line segment (3-4) in the input image. As mentioned earlier, the end points of the 

two segments need not be conjugate. The similarity measure should describe 

mathematically the fact that the line segment (1-2) should coincide with the 

corresponding line segment (3-4) after application of the transformation function relating 

the reference and input images. Such a measure can be derived by forcing the normal 

distances between the end points of a line segment in the reference image, after applying 

the transformation function, and the corresponding line segment in the input image to be 

zero (i.e., 0== nn 21 , Figure 3.8). Equation 3.9 mathematically describes such a 

constraint for one of the end points of the line segment in the reference image. 

 0sincos 11 =−⋅′+⋅′ ρθθ yx  (3.9) 
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where 

),( θρ : are the polar coordinates representing the line segment 3-4 in the input image 

),( 11 yx ′′ : are the transformed coordinates of point 1 in the reference image after applying 

the registration transformation function. 

2-D similarity and affine registration transformation functions, represented by Equations 

2.1 and 2.2 respectively, can be used to describe the mathematical relationship between 

),( yx 11  and ), 11 yx ′′( . Re-parameterization of Equations 2.1 and 2.2 results in Equations 

3.10 and 3.11, respectively. 
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where 

κcos1 sa =  κsin1 sb =  
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where 

Txa =0  κcos1 xsa =  )sin(2 δκκ += ysa  

Tyb =0  κsin1 xsb =  )cos(2 δκκ += ysb  
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One pair of conjugate line segments would yield two constraints of the form in Equation 

3.9. Using a given set of “n” corresponding line segments, one can incorporate the 

resulting “2n” constraints in a least squares adjustment procedure to solve for the 

parameters of the registration transformation function (a0, b0, a1, and b1 for 2-D similarity 

transformation or a0, b0, a1, a2, b1, and b2 for affine transformation). 

3.5 Matching Strategy 

After establishing the registration primitives, transformation function, and similarity 

measure, one should focus on how to establish the correspondence between conjugate 

primitives. Corresponding primitives in the reference and input images can be manually 

identified. However, the large amount of data and the need for fast registration methods 

mandate the automation of the process of identifying conjugate primitives. Therefore, a 

matching strategy has to be developed to manipulate the registration primitives, the 

transformation function, and the similarity measure to automatically establish the 

correspondence between conjugate primitives. In this thesis, the Modified Iterated Hough 

Transform (MIHT) is used as the matching strategy. Such a methodology is attractive 

since it allows for simultaneous matching and parameter estimation. Moreover, it does 

not require a complete correspondence between the primitives in the reference and input 

images. MIHT has been successfully implemented in several photogrammetric operations 

such as automatic single photo resection and automatic relative orientation (Habib et al., 

2001a; Habib and Kelley 2001a, 2001b). 
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Hough (1962) introduced a method of determining parameters by way of a voting scheme 

(Appendix A). The basic principle of his approach was to switch the roles of parameters 

and spatial variables. The Hough transform can be used to estimate the parameters of a 

mathematical model relating conjugate entities of two datasets after some modification. 

The modified Hough transform assumes the availability of two datasets (Figure 3.9) 

where the attributes of conjugate primitives are related to each other through a 

mathematical function (similarity measure incorporating the appropriate transformation 

function). The approach starts by making all possible matching hypotheses between the 

primitives in the datasets under consideration. For each hypothesis, the similarity 

measure constraints are formulated where the parameters of the transformation function 

can be estimated simultaneously or sequentially, depending on the number of 

hypothesized matches simultaneously considered.  

x′

y′ y

x

Figur

 
Input
Mathematical Model 

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
′
′

1

1

21

21

0

0

1

1

y
x

bb
aa

b
a

y
x

),,,,,( 221100 bababa

Input Data Set 2 Input Data Set 1 

Transformation parameters 

 
Output
 

e 3.9: Summary of the Input and Output of the Modified Hough Transform 

Correspondence 



  66 

 

All possible entity matches are evaluated, and the results (parameter estimations) are 

stored in an accumulator array, which is a discrete tessellation of the range of expected 

numerical values for the parameters under consideration. Within the considered 

correspondences, correct matching hypotheses would produce the same parameters, 

which will manifest themselves as a distinct peak in the accumulator array. Moreover, 

matching hypotheses that contributed to the peak can be tracked to establish the 

correspondence between conjugate primitives in the involved datasets. 

The number of parameters being simultaneously solved determines the dimension of the 

accumulator array. In order to solve “n” parameters simultaneously, one must utilize the 

number of hypothesized entity matches needed to generate the required n equations. 

However, this approach is not practical. Evaluating all permutations of entities leads to 

combinatorial explosion. For example, if there are x entities in dataset one and y entities 

in dataset two, solving n parameters simultaneously would lead to 

)!(
!

)!(
!

ny
y

nx
x

−
×

−
combinations. In addition, the memory requirements of an n 

dimensional accumulator array create another problem.  

An alternative is to solve for each parameter sequentially in an iterative manner, updating 

the approximations at each step (MIHT). Consequently, the accumulator array becomes 

one-dimensional and the memory problem disappears. Also, if there are x elements in 

dataset one and y elements in dataset two, the total number of evaluated entity matches 

becomes xy, and this reduces the computational complexity of the problem. After each 

iteration, the approximations are updated and the cell size of the accumulator array can be 
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reduced. In this manner, the parameters can be estimated with high accuracy (Habib and 

Kelley, 2001a). 

The convergence rate towards the correct parameters depends on the independence of the 

parameters and the non-linearity of the transformation function. The effect of the non-

linearity is similar to least squares adjustment of non-linear models. Highly non-linear 

models have slower convergence rates and would require more iterations. On the other 

hand, the independence of the parameters is more crucial. Since we are sequentially 

solving for the involved parameters, the quality of the estimated parameters at any time 

depends on the quality of other parameters (assumed to be correct). Therefore, if the 

parameters are independent, then we can partition the given data into subsets. The 

partitioning should be done in such a way that each set is only affected by a single 

parameter. This partitioning will lead to a faster convergence rate (Habib and Kelley, 

2001a). Partitioning depends on the mathematical models under consideration. The 

partitioning based on affine and 2-D similarity transformation functions will be discussed 

in Chapter 4. 

The implementation of the MIHT strategy for automatic image registration can be 

summarized as follows: 

 An accumulator array is formed for the parameters involved in the registration 

transformation function (e.g., 2-D similarity or affine). The accumulator array is a 

discrete tessellation of the range of expected parameters solutions. The dimension of 

this array depends on the number of parameters to be simultaneously solved for, 

which is related to the number of entity pairings simultaneously considered as well as 
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the number of constraints provided by a single matching hypothesis. In this research, 

the parameters are sequentially estimated one by one and a one-dimensional 

accumulator array is always used (Chapter 4). 

 Approximations are assumed for the parameters which are not yet determined. The 

cell size of the accumulator array depends on the quality of the initial values; poor 

approximations will require larger cell sizes. 

 All possible matches between individual registration primitives within the reference 

and input images are evaluated. The accumulator array is incremented at the location 

of the resulting solution from each matching hypothesis. 

 After all possible matches have been considered, the peak in the accumulator array 

will indicate the correct solution of the parameter in question. Only one peak is 

expected for a given accumulator array, Figure 3.10. 
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Figure 3.10: Example of an Accumulator Array for a0 Parameter 
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 After each parameter is determined in a sequential manner, the approximations are 

updated. For the next iteration, the accumulator array cell size is decreased to reflect 

the improvement in the quality of the parameters. Then, the above two steps are 

repeated until convergence is achieved (i.e., the estimated parameters do not 

significantly change from one iteration to the next). 

 By tracking the hypothesized matches that contributed towards the peak in the last 

iteration, one can determine the correspondence between conjugate primitives. These 

matches are then used in a simultaneous least squares adjustment to derive a 

stochastic estimate of the involved parameters in the registration transformation 

function. Figure 3.11 briefly explains the various steps in MIHT using 2-D similarity 

transformation. 

 

 Modified Iterated Hough Transform 

Figure 3.11: MIHT Implementation Using 2-D Similarity Transformation 
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In addition to providing simultaneous estimation of the parameters of the registration 

transformation function and the correspondence between conjugate primitives, the MIHT 

strategy will help in verifying the validity of the selected transformation function between 

the reference and input images. The MIHT is expected to converge if and only if the 

registration transformation function is appropriate (on the assumption that enough 

conjugate primitives exist in the involved datasets).  

In summary, the automatic matching strategy (MIHT) utilizes the introduced similarity 

measure together with the transformation function to establish the correspondence 

between the extracted primitives while simultaneously solving for the parameters 

involved in the registration transformation function. In this approach, we assume no 

knowledge of conjugate entities and do not require complete correspondence between 

those entities Moreover, the suggested approach allows for investigating and evaluating 

the appropriateness of the selected registration transformation function; this has rarely 

been considered in previous research.  
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       CHAPTER 4  

 

OPTIMAL SEQUENCE FOR PARAMETER ESTIMATION 

4.1 Introduction 

MIHT sequentially derives an estimate of the parameters of the registration 

transformation function. Therefore, a decision has to be made concerning the optimum 

sequence for parameter estimation that guarantees fast and robust convergence to the 

correct solution. Through analysis of the similarity measure, it can be established that 

linear features with different orientations at various regions of the image are influenced 

differently by the involved parameters. In other words, some parameters have low 

influence on specific line segments at some regions while having larger influence on 

others. Thus, certain regions in the images under consideration would be useful for the 

estimation of certain parameters if they have large influence at that region, while other 

parameters have minor or no influence at the same region.  

The following subsections deal with how to determine the optimal sequence for 

parameter estimation when affine and 2-D similarity registration transformation functions 

are used. 
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4.2 Affine Transformation 

The assumption is that the mathematical model between the coordinate systems shown in 

Figure 4.1 can be represented by 2-D affine transformation. 
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Figure 4.1: Example of Linear Features Extracted From Input and Reference Images 

 

With reference to Figure 4.2., affine transformation function can be expressed as: 
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in matrix form as: 
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where 

),( yx  : Coordinates of a point in the reference image. 

),( yx ′′  : Coordinates of the conjugate point in the input image.  

Tx  : Shift in x-axis 
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Ty  : Shift in y-axis 

 κ  : Rotation angle 

xs  : Scale factor along x-axis 

ys  : Scale factor along y-axis 

δκ  : Non-orthogonality angle. 

The previous equation can be rewritten as 
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where 

Txa =0  κcos1 xsa =  )sin(2 δκκ += ysa  

Tyb =0  κsin1 xsb =  )cos(2 δκκ += ysb  
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Figure 4.2: Affine Transformation Parameters 
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The similarity measure in Figure 3.8, which ensures that a line segment in the reference 

image is conjugate to another line segment in the input image, is expressed by two 

constraints involving the normal distance between conjugate lines as shown in Equation 

4.2. 

 

 0sincos =−′+′= ρθθ yxf  (4.2) 
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To establish the optimal sequence for parameter estimation, one has to determine how the 

normal distance, between the transformed end points of the line segment in the reference 

image and the corresponding segment in the input image, will change as a result of 

incremental changes in the parameters of the transformation function. The magnitude of 

these changes should be evaluated for line segments with different orientations at various 

locations in the involved imagery. Large changes resulting from an incremental change in 

a single parameter, using specific line segments at certain locations, indicate the 

appropriateness of these segments in this area for the computation of that parameter. For 

that purpose, the images to be registered are divided into five regions labeled from 1 to 5 

(Figure 4.3). One can assume that points in Region 5 have very small x-, y-coordinate 

values ( 055 ≈≈ yx ). Also, points in Regions 1 and 3 have smaller x-coordinate values 
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when compared to their y-coordinates ( 3,13,1 yx < ), while points in Regions 2 and 4 have 

smaller y-coordinates values when compared to their x-coordinates ( 4,24,2 xy < ). 

 

Figure 4.3: Image Partitioning for Sequential Estimation of the Transformation 
Parameters 

 

To illustrate the optimal sequence concept, let us evaluate the effect of incremental 

changes in ( ),,,,, 221100 bababa , as expressed by the respective partial derivative, on the 

normal distance described by the similarity measure, as follows: 

Partial derivative with respect to ( 0a ): 
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A closer look at Equation 4.3 reveals the following facts: 
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 Horizontal line segments in the input image ( 090=θ ) would lead to no change in 

the normal distance ( 00 ≈∂∂ af ). Therefore, horizontal line segments are not 

useful for 0a  estimation. 

 Vertical line segments in the input image ( 00=θ ) would lead to a change in the 

normal distance ( 10 ≈∂∂ af ). Therefore, vertical line segments are useful for 0a  

estimation. 

Partial derivative with respect to ( 0b ): 
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 (4.4) 

A closer look at Equation 4.4 reveals the following facts: 

 Horizontal line segments in the input image ( 090=θ ) would lead to a change in 

the normal distance ( 10 ≈∂∂ bf ). Therefore, horizontal line segments are useful 

for 0b  estimation. 

 Vertical line segments in the input image ( 00=θ ) would lead to no change in the 

normal distance ( 00 ≈∂∂ bf ). Therefore, vertical line segments are not useful for 

0b  estimation. 
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Partial derivative with respect to ( 1a ): 

 

θcos
1

111

x
a
f

a
y

y
f

a
x

x
f

a
f

=
∂
∂

∂
′∂

⋅
′∂

∂
+

∂
′∂

⋅
′∂

∂
=

∂
∂

 (4.5) 

A closer look at Equation 4.5 reveals the following facts: 

 Line segments in the reference image with relatively small x-coordinates ( 0≈x ) 

would lead to no change in the normal distance ( 01 ≈∂∂ af ). Therefore, line 

segments that are close to the y-axis are not useful for 1a  estimation, regardless of 

their orientation. 

 Horizontal line segments in the input image ( 090=θ ) would lead to no change in 

the normal distance ( 01 ≈∂∂ af ). Therefore, horizontal line segments are not 

useful for 1a  estimation, regardless of their location in the images to be 

registered. 

 Vertical line segments in the input image ( 00=θ ) would lead to a change in the 

normal distance that is proportional to their x-coordinate in the reference image 

( xaf ≈∂∂ 1 ). Therefore, vertical line segments that are far from the y-axis are 

useful for 1a  estimation. 
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Partial derivative with respect to ( 1b ): 
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A closer look at Equation 4.6 reveals the following facts: 

 Line segments in the reference image with relatively small x-coordinates ( 0≈x ) 

would lead to no change in the normal distance ( 01 ≈∂∂ bf ). Therefore, line 

segments that are close to the y-axis are not useful for 1b  estimation regardless of 

their orientation. 

 Horizontal line segments in the input image ( 090=θ ) would lead to a change in 

the normal distance that is proportional to their x-coordinate in the reference 

image ( xbf ≈∂∂ 1 ). Therefore, horizontal line segments that are far from the y-

axis are useful for 1b  estimation. 

 Vertical line segments in the input image ( 00=θ ) would lead to no change in the 

normal distance ( 01 ≈∂∂ bf ). Therefore, vertical line segments are not useful for 

1b  estimation regardless of their location in the images to be registered. 
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Partial derivative with respect to ( 2a ): 
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A closer look at Equation 4.7 reveals the following facts: 

 Line segments in the reference image with relatively small y-coordinates ( 0≈y ) 

would lead to no change in the normal distance ( 02 ≈∂∂ af ). Therefore, line 

segments that are close to the x-axis are not useful for 2a  estimation, regardless 

of their orientation. 

 Horizontal line segments in the input image ( 090=θ ) would lead to no change in 

the normal distance ( 02 ≈∂∂ af ). Therefore, horizontal line segments are not 

useful for 2a  estimation, regardless of their location in the images to be 

registered. 

 Vertical line segments in the input image ( 00=θ ) would lead to a change in the 

normal distance that is proportional to their y-coordinate in the reference image 

( yaf ≈∂∂ 2 ). Therefore, vertical line segments that are far from the x-axis are 

useful for 2a  estimation. 
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Partial derivative with respect to ( 2b ): 
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A closer look at Equation 4.8 reveals the following facts: 

 Line segments in the reference image with relatively small y-coordinates ( 0≈y ) 

would lead to no change in the normal distance ( 02 ≈∂∂ bf ). Therefore, line 

segments that are close to the x-axis are not useful for 2b  estimation, regardless of 

their orientation. 

 Horizontal line segments in the input image ( 090=θ ) would lead to a change in 

the normal distance that is proportional to their y-coordinate in the reference 

image ( ybf ≈∂∂ 2 ). Therefore, horizontal line segments that are far from the x-

axis are useful for 2b  estimation. 

 Vertical line segments in the input image ( 00=θ ) would lead to no change in the 

normal distance ( 02 ≈∂∂ bf ). Therefore, vertical line segments are not useful for 

2b  estimation, regardless of their location in the images to be registered. 
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Table 4.1: The Influence of Different Image Regions on the Affine Transformation 

Parameters 
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Table 4.1 summarizes the above discussion. It shows analysis of the partial derivatives of 

the similarity measure function with respect to the unknown parameters of the affine 

transformation function. As a result, one can derive the optimum sequence for parameter 

estimation in the following manner (Figure 4.4): 

 Use vertical lines in Region 5 to estimate 0a . 

 Use horizontal lines in Region 5 to estimate 0b . 
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 Use vertical lines in Regions 2 and 4 to estimate 1a . 

 Use horizontal lines in Regions 2 and 4 to estimate 1b . 

 Use vertical lines in Regions 1 and 3 to estimate 2a . 

 Use horizontal lines in Regions 1 and 3 to estimate 2b . 

y 

1 

0b

0a

2b

1a

2b

1b1b

2a 1a

2a

4 5 2 x 

3 

 

Figure 4.4: Optimal Sequence for Affine Transformation Parameters 

As illustrated in Table 4.1, vertical line segments in various areas of the involved imagery 

can be used for estimating the shift component a0 (as indicated by non-zero partial 

derivatives). However, only vertical lines in Region 5 are used. This restriction is 

imposed because variations in the normal distances between conjugate line segments, as 

expressed by the partial derivatives, from the optimum value (zero) in Region 5 are only 
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attributed to a0. On the other hand, variations in Regions 1 and 3 can be ascribed to a0 

and a2. Similarly, variations in Regions 2 and 4 are attributed to a0 and a1. Therefore, 

vertical line segments in Region 5 are the only alternative for ensuring the separation 

among a0, a1, and a2. Thus, a certain region would be useful for the estimation of a 

certain parameter in either of the following cases: 1) the parameter has a large influence 

at that region, while other parameters have minor or no influence at the same region; 2) 

other parameters affecting that region have been already estimated. Following the same 

argument, one can see that only horizontal lines in area 5 would allow for the separation 

among b0, b1, and b2. 

The evaluated partial derivatives in Table 4.1 assume that the x-coordinates in Regions 1 

and 3 are small ( 031 ≈≈ xx ) and the y-coordinates in Regions 2 and 4 are small as well 

( 042 ≈≈ yy ). Even if these assumptions might not be true, the sequential procedure 

would still work. However, more iteration cycles would be required until convergence. 

This is mainly because the partitioning is only needed to identify regions in the image 

that are affected significantly more than others by incremental changes in the parameters 

of the transformation function. It should be noted that the requirement for vertical and 

horizontal line segments is not stringent. The suggested procedure can be implemented 

through the use of predominantly horizontal or vertical segments or both. The deviation 

from being truly vertical or horizontal would only lead to a slower convergence. The lack 

of features in any of the five regions will only slow the convergence process, because all 

parameters affect all regions, but with different magnitudes. 
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4.3 2-D Similarity Transformation 

Let us assume that the mathematical model between the coordinate systems shown in 

Figure 4.1 can be represented by 2-D similarity transformation. 

In Figure 4.5, 2-D similarity transformation function can be expressed as: 
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where 

),( yx  : Coordinates of a point in the reference image 

),( yx ′′  : Coordinates of the conjugate point in the input image 

Tx  : Shift in x-axis 

Ty  : Shift in y-axis 

κ  : Rotation angle 

s  : Scale factor. 

The previous equation can be rewritten as 
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 (4.9c) 

where 

κcos1 sa =  κsin1 sb =  
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Figure 4.5: 2-D Similarity Transformation Parameters 

 

The similarity measure in Figure 3.8 ensuring that a line segment in the reference image 

is conjugate to another line segment in the input image is expressed by two constraints of 

the form in Equation 4.10: 

 

 0sincos =−′+′= ρθθ yxf  (4.10) 

where 
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As with affine transformation (Section 4.1), the optimal sequence can be evaluated on the 

basis of the effect of an incremental change in ),,,( κsyx TT , as expressed by the 
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respective partial derivative on the normal distance described by the similarity measure as 

follows: 

Shift in x-axis ( Tx ): 
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A closer look at Equation 4.11 reveals the following facts: 

 Horizontal line segments in the input image ( 090=θ ) would lead to no change in 

the normal distance ( 0≈∂∂ Txf ). Therefore, horizontal line segments are not 

useful for Tx estimation. 

 Vertical line segments in the input image ( 00=θ ) would lead to a change in the 

normal distance ( 1≈∂∂ Txf ). Therefore, vertical line segments are useful for Tx  

estimation. 

Shift in y-axis ( Ty ): 
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A closer look at Equation 4.12 reveals the following facts: 

 Horizontal line segments in the input image ( 090=θ ) would lead to a change in 

the normal distance ( 1≈∂∂ Tyf ). Therefore, horizontal line segments are useful 

for Ty  estimation. 

 Vertical line segments in the input image ( 00=θ ) would lead to no change in the 

normal distance ( 0≈∂∂ Tyf ). Therefore, vertical line segments are not useful for  

Ty  estimation. 

Rotation angle (κ ): 
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Assuming small rotation angle, 0≈κ , Equation 4.13 can be re-written as: 

 θθ
κ

sincos xsysf
−=

∂
∂  (4.14) 

A closer look at Equation 4.14 reveals the following facts: 

 Line segments in the reference image with relatively small x-, y-coordinates 

( 0≈≈ yx ) would lead to no change in the normal distance ( 0≈∂∂ κf ). 
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Therefore, line segments that are close to the center are not useful for κ  

estimation regardless of their orientation. 

 Line segments in the reference image with relatively small y-coordinates 

( 0≈y ) would have the following effects: 

a. Horizontal line segments in the input image ( 090=θ ) would lead to a change 

in the normal distance that is proportional to their x-coordinate in the 

reference image ( xsf −≈∂∂ κ ). Therefore, horizontal line segments with 

relatively small y-coordinates and far from the y-axis are useful for κ  

estimation. 

b. Vertical line segments in the input image ( 00=θ ) would lead to no change in 

the normal distance ( 0≈∂∂ κf ). Therefore, vertical line segments with 

relatively small y-coordinates are not useful for κ  estimation. 

 Line segments in the reference image with relatively small x-coordinates 

( 0≈x ) would have the following effect: 

a. Horizontal line segments in the input image ( 090=θ ) would lead to no 

change in the normal distance ( 0≈∂ κf ). Therefore, horizontal line segments 

with relatively small x-coordinates are not useful for κ  estimation. 

b. Vertical line segments in the input image ( 00=θ ) would lead to a change in 

the normal distance that is proportional to their y-coordinate in the reference 

image ( ysf ≈∂ κ ). Therefore, vertical line segments with relatively small x-

coordinates and far from the x-axis are useful for κ  estimation. 
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Scale factor ( s ): 
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Assume dealing with a small rotation angle ( 0≈κ ), Equation 4.15 can be reduced to 

 θθ sincos yx
s
f

+=
∂
∂  (4.16) 

A closer look at Equation 4.6 reveals the following facts: 

 Line segments in the reference image with relatively small x-, y-coordinates 

( 0≈≈ yx ) would lead to no change in the normal distance ( 0≈∂∂ sf ). 

Therefore, line segments that are close to the center are not useful for scale 

estimation, regardless of their orientation. 

 Line segments in the reference image with relatively small y-coordinates ( 0≈y ) 

would have the following effect: 

a. Horizontal line segments in the input image ( 090=θ ) would lead to no 

change in the normal distance ( 0≈∂∂ sf ). Therefore, horizontal line 

segments with relatively small y-coordinates are not useful for scale 

estimation. 
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b. Vertical line segments in the input image ( 00=θ ) would lead to a change in 

the normal distance that is proportional to their x-coordinate in the reference 

image ( xsf ≈∂∂ ). Therefore, vertical line segments with relatively small y-

coordinates and far from the y-axis are useful for scale estimation. 

 Line segments in the reference image with relatively small x-coordinates ( 0≈x ) 

would have the following effects: 

a. Horizontal line segments in the input image ( 090=θ ) would lead to a change 

in the normal distance that is proportional to their y-coordinate in the 

reference image ( ysf ≈∂∂ ). Therefore, horizontal line segments with 

relatively small x-coordinates and far from the x-axis are useful for scale 

estimation. 

b. Vertical line segments in the input image ( 00=θ ) would lead to no change in 

the normal distance ( 0≈∂∂ sf ). Therefore, vertical line segments with 

relatively small x-coordinates are not useful for scale estimation. 
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Table 4.2: The Influence of Different Image Regions on the 2-D Similarity 

Transformation Parameters 

Region      

 
0
0

≠
≈

y
x

 
0
0

≈
≠

y
x

 
0
0

≠
≈

y
x

 
0
0

≈
≠

y
x

 
0
0

≈
≈

y
x

 

00=θ  1 1 1 1 1 
θcos=

∂
∂

Tx
f

 
090=θ  0 0 0 0 0 

00=θ  0 0 0 0 0 
θsin=

∂
∂

Ty
f

 
090=θ  1 1 1 1 1 

00=θ  s y 0 s y 0 0 
θθ

κ
sincos xsysf

−=
∂
∂

 
090=θ  0 s x 0 s x 0 

00=θ  0 x 0 x 0 
θθ sincos yx

s
f

+=
∂
∂

 
090=θ  y 0 y 0 0 

 

Table 4.2 summarizes the above discussion for analyzing the partial derivatives of the 

similarity measure function with respect to the unknown parameters of the transformation 

function. As a result, one can derive the optimum sequence for parameter estimation as 

follows, Figure 4.6: 

 Use vertical lines in Region 5 to estimate Tx . 

 Use horizontal lines in Region 5 to estimate Ty . 

 Use horizontal lines in Regions 2 and 4 and vertical lines in Regions 1 and 3 to 

estimateκ . 

 Use horizontal lines in Regions 1 and 3 and vertical lines in Regions 2 and 4 to 

estimate s . 
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Figure 4.6: Optimal Sequence for 2-D Similarity Transformation Parameters 

Once again, vertical line segments in Region 5 are used for Tx  estimation while 

horizontal lines in the same area are used for Ty  estimation, since they will allow for the 

separation among Tx , Ty , and the remaining parameters (κ and s). Also, the partial 

derivatives in Table 4.2 assume a small rotation angle (κ ). Even if this assumption might 

not be true, the sequential procedure would still work. However, more iteration cycles 

would be required until convergence. This is mainly because the main objective is to 

identify the optimal sequence that is based on the relative contribution of line segments 

with different orientations at different image regions towards the estimation of the 

parameters of the registration transformation function. 
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       CHAPTER 5  

 

CHANGE DETECTION METHODOLOGY 

5.1 Introduction 

Applications utilizing multi-temporal remotely sensed images are dependent on accurate 

registration of the involved images. Change detection, as one of the most important 

applications of image registration, can be defined as the process of identifying differences 

in land cover over time. As human and natural forces continue to alter the landscape, it is 

important to develop monitoring methods to assess and quantify these changes. Such 

changes have to be accurately and reliably inventoried to understand fully the physical 

and human processes at work (Estes, 1992). Recent advances in satellite imagery, in 

terms of improved spatial and temporal resolutions, are allowing for efficient 

identification of change patterns and the prediction of areas of growth. Change detection 

analysis might involve multi-spectral, multi-source, and multi-resolution images that 

have been captured at different times. Accurate co-registration of these datasets is a 

prerequisite step and a key factor in the developmental of a reliable change detection 

procedure. 

In general, the uncertainty of change detection outcome depends on two factors: 

geometric and radiometric differences in the involved images. Sections 5.2 and 5.3, will 

discuss the impact of potential geometric and radiometric differences on the change 
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detection results. Section 5.4 demonstrates the proposed methodology of change 

detection. 

5.2 Geometric Differences 

High resolution overlapping scenes captured by space-borne platforms (e.g., LANDSAT-

7, IKONOS, QUICKBIRD, ORBVIEW, EROS-A1, and SPOT-5) and aerial images are 

becoming more available at a reasonable cost. These images represent the main source of 

recent and historical information necessary for change detection application. Because of 

different imaging systems, spatial resolutions, viewing points and perspective geometry 

between these temporal images, geometric differences should be expected. Reliable 

change detection is contingent on accurate compensation of these differences among the 

involved images. 

To ensure accuracy in the performance of change detection, one must apply a co-

registration process so that pixels in the same position in the two images (input image and 

resampled reference image) belong to the same object on the ground. If accurate 

registration between images is not achieved, then change detection techniques that are 

based on image differencing will cause spurious changes; different locations are 

compared instead of locations belonging to the same object space. In other words, Pixel-

by-pixel differencing methodologies for change detection are sensitive to registration 

errors. On other hand, change detection techniques, which are based on classification 

methods, will be able to tolerate geometric differences. However, multi-spectral data is 

needed for such a methodology.  
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In this work, the proposed technique for change detection is designed to cope with 

possible geometric differences among the scenes in question. The proposed registration 

methodology described in Chapters 3 and 4 will accurately align the images in question, 

regardless of the possible geometric differences. Experimental results set out in Chapter 6 

will show that the range of sub-pixel to a few pixels accuracy has been achieved. 

Moreover, the suggested change detection methodology (Section 5.4) should tolerate 

possible remaining geometric differences (in the order of few pixels) after performance of 

the registration procedure. 

5.3 Radiometric Differences 

The basic premise in using remote sensing data for change detection application is that 

changes in land cover will result in changes in radiance values. Moreover, changes in 

radiance due to land cover change must be larger than radiance changes caused by other 

factors (Ingram et al., 1981). These other factors might include differences in 

atmospheric conditions, sun angle, and soil moisture (Jenson, 1983). One should expect 

that these factors will affect the reliability of change detection algorithms, especially 

when one is considering images with varying radiometric and spatial resolutions, which 

are captured by different sensors.  

To alleviate the effect of these factors, intensity normalization is traditionally used as a 

pre-processing technique, compensating for possible illumination variations between the 

involved images. In this type of pre-processing, the intensity values in the second image 

are normalized to have the same mean and variance values as those in the first image. 



  96 

 

Assuming that the involved images are co-registered relative to a common reference 

frame, one can proceed by applying image-differencing methods to create a new image 

that represents the change. The comparison results are based on the assumption that the 

differences between the radiometric properties of corresponding pixels are due to actual 

changes in the object space. However, these differences could be the result of other 

factors, such as different atmospheric conditions, noise, different imaging sensors, and 

errors in registration. Moreover, the difference image is usually binarized by 

thresholding, where thresholds are empirically selected. In these cases, traditional 

approaches to change detection that are based on the differencing of intensity images fail. 

This problem is overcome through the use of derived edges from the registered images as 

the basis of the proposed change detection methodology. Edges are used because they are 

invariant with respect to possible radiometric differences between the images in question. 

In summary, uncertainty in the change detection outcome relies on two factors. First, it is 

affected by possible radiometric differences due to atmospheric changes and different 

sensor types. Second, the detected changes might be biased by inaccurate registration 

procedure. The effect of radiometric differences between the images in question can be 

mitigated by using image derivatives that are robust to such differences (e.g., edge 

images). However, accurate co-registration remains a necessary pre-processing step for 

all change detection algorithms. In fact, accurate registration of multi-source imagery can 

be considered one of the most important components of an accurate and reliable change 

detection procedure. 
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5.4 Change Detection Methodology 

The proposed method for change detection is as follows:  

 Resampling (see appendix B) the input image into the reference frame associated with 

the reference image. The parameters of the registration transformation function 

(Chapters 2 and 3) are used in the resampling process. After resampling, 

corresponding pixels are assumed to belong to the same object space feature. 

 Applying intensity normalization techniques to the images in question (e.g., to ensure 

that they have the same intensity mean and variance values) in order to reduce the 

radiometric differences between the involved images.  However, this procedure 

would not be enough to eliminate radiometric differences in the involved images. 

 Extracting edge cells from the resampled images using the Canny edge detector 

(Canny, 1986). As mentioned before, utilizing the edge images has two advantages. 

First, derived edges are robust to possible radiometric differences between the 

registered images (e.g., due to noise and different spectral properties). Also, the edges 

would correspond to interesting features (e.g., building boundaries, roads, trails, etc.). 

Therefore, comparing edge images will be useful in outlining the amount of 

urbanization activities, which is one of the most important objectives of change 

detection exercises. The final output of the edge extraction process will be binary 

images in which white pixels refer to edges while black pixels refer to non-edges. 

 Applying the majority filter (also known as mode filter) to the edge images. In the 

proposed methodology for change detection, the majority filter is implemented for the 

following reasons:  
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• To allow for binary transformation of edge images, thus compensating for any 

registration errors (in the order of few pixels). 

• To balance the effect of varying edge densities in the registered images, 

especially when dealing with multi-source images. 

• To fill small gaps within an area with numerous edges, and smooth object 

boundaries without expanding or shrinking objects, Figure 5.1-a. 

• To eliminate isolated edges, Figure 5.1-b. 

As a result, filtered images will highlight areas with interesting features since they would 

lead to a dense distribution of edge cells. 

In general, the majority filter is applied to binary images where a window is centered at 

each pixel and the value of this pixel is changed or maintained according to the majority 

of the pixels within this window (Lillesand and Kiefer 2000). The advantages of a 

majority filter can be summarised as follows: 

• It does not generally shrink or expand objects. 

• It smoothes object boundaries. 

• It removes small peninsulas, bays, small objects, and small holes. 

• It is less biased than close-open or open-close filtering techniques. 

• Unlike a median filter, it selects the pixel value with highest frequency and 

assigns it to the output pixel. (Chidumayo et al., 1999) 

 Subtracting filtered images (pixel-by-pixel) in order to highlight areas of change.  
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 Applying a majority filter to the difference image to eliminate small areas (since 

changes/no-changes are expected to be locally spread – i.e., they are not isolated). 

The workflow of the proposed method of change detection is illustrated in Figure 5.2. 

 

 

 
(a) - Before  

 

 
(a) – After 

 

 
(b) – Before 

 

 
(b) – After 

 

Figure 5.1: Majority Filter: (a) Filling Gaps among Dense Edges (b) Removing Isolated 

Edges  
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       CHAPTER 6  

 

EXPERIMENTS AND RESULTS 

6.1 Introduction 

This chapter deals with real data used to conduct a series of experiments. The purpose is 

to demonstrate the robustness and feasibility of the proposed algorithm as it is applied for 

image registration and change detection purposes. Section 6.2 presents the experiments 

conducted for image registration purposes. It starts with data description, then provides 

details of the conducted experiments and ends with the analysis of results. The resulting 

resampled images are then used as an input for change detection experimentation 

(Section 6.3). 

Experiments were conducted using real data and primarily focused on achieving the 

following objectives: 

 To compare the performance of points versus straight lines as the primitives of choice 

for the image registration process. The criteria for comparison are based on the ability 

to identify the primitive in multi-resolution satellite imagery as well as the accuracy 

of the image registration results as obtained from a least squares adjustment 

procedure. 

 To analyze the validity of various transformation functions (2-D similarity, affine and 

projective) for representing the mathematical relationship between scenes to be 

registered. 
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 To evaluate the performance of MIHT for establishing the correspondence between 

the digitized primitives and simultaneously solving for the parameters involved in the 

registration transformation function. 

 To verify the role of accurate image registration as an essential prerequisite for 

reliable and accurate change detection. 

 To explore the use of edges as the bases of a change detection methodology. 

6.2 Image Registration Experiments 

To illustrate the feasibility and robustness of the suggested registration process, 

experiments were conducted using two real datasets. The first dataset covers the city of 

Daegon, Korea while the second covers the city of Calgary, Canada. 

The Daegon dataset is composed of different satellite scenes, namely, 1500 rows × 1500 

columns LANDSAT scene (15m); 1500 rows × 1500 columns SPOT scene (10m); 1500 

rows × 1500 columns KOMPSAT scene (6m); and 6000 rows × 6000 columns IKONOS 

stereo-pair (1m). Figure 2.2 shows sample image patches. These scenes were captured at 

different times (multi-temporal) and exhibit significantly varying geometric and 

radiometric properties. 

First, the parameters of 2-D similarity and affine registration transformation functions 

were estimated with the use of thirty-six well distributed tie points, manually identified in 

the scenes. The selection of common points in the various scenes proved to be a difficult 

and time-consuming task. The variance component (  ) derived from the least squares 

adjustment procedure summarizes the quality of fit between the involved primitives in the 

2ˆ oσ
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registration process. A smaller variance component indicates a better fit between the 

registration primitives. In analyzing the results in Table 6.1, one can see that the 

estimated variance component improved with the use of an affine transformation when 

compared to that derived for the 2-D similarity transformation. A projective 

transformation with eight parameters was tested as well. It was noticed that the estimated 

variance component did not improve over the six-parameter affine transformation; this 

implies the sufficiency of the affine transformation to represent the mathematical 

relationship between the involved scenes. 

Considering the estimated variance component resulting from the registration of the two 

IKONOS scenes using a 2-D similarity transformation (105.6437^2 pixel^2), it can be 

concluded that such a transformation function is not a valid one. This can be attributed to 

the large scale associated with IKONOS scenes. Moreover, 2-D similarity transformation 

assumes that the image is parallel to the object space that is far from being true for 

IKONOS scenes. On the other hand, using an affine transformation resulted in a much 

more reasonable variance component (9.8179^2 pixel^2), and this result signified the 

validity of the affine transformation.  

Note that the translation in x and y directions are represented by ao and bo parameters, 

respectively, for both 2-D similarity and affine transformations. These values should be 

the same regardless of the implemented transformation function. As expected, comparing 

the values of ao and bo between 2-D similarity and affine transformations in Table 6.1 

shows that such values are very close for all images except for IKONOS / IKONOS 

scenes. This difference for IKONOS attributed to the invalidity of 2-D as the registration 

transformation function. 
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Table 6.1: Transformation Parameters Based on Manual Point Measurements - Daegon 

2-D Similarity IKONOS/IKONOS IKONOS/KOMPSAT IKONOS/SPOT IKONOS/LAND 
2ˆ oσ (Pixel ^2) 105.6437^2 4.6154^2 7.6691^2 7.4872^2

0a (Pixel) 56.81489 -99.65358 19.30487 0.13623 

0b  (Pixel) -18.69259 -26.27758 -6.58108 -9.58130 

1a  1.029469 0.013085 0.08846 0.03292 

1b  0.071629 0.03187 -0.01589 -0.00472 

Affine IKONOS/IKONOS IKONOS/KOMPSAT IKONOS/SPOT IKONOS/LAND 
2ˆ oσ (Pixel ^2) 9.8179^2 2.2249^2 6.6021^2 6.5063^2

0a (pixel) 72.48928 -97.42270 -19.59451 0.04353 

1a  1.051263 0.12707 0.08756 0.03051 

2a  -0.001246 -0.03174 0.018210 0.00319 

0b (pixel) -2.419632 -25.58517 -6.49936 -9.85226 

1b  0.140353 0.03153 -0.01341 -0.00545 

2b  1.005484 0.13352 0.09020 0.03521 

 

Afterwards, straight-line segments can be manually digitized or automatically extracted 

in the available scenes. Manual digitization was adopted in this research since the main 

objective is focused on image-to-image registration through the use of straight lines, not 

the extraction method. Automatic extraction of straight lines was beyond the objective of 

this study and will be investigated in future work.  

As an example, Figure 6.1 shows the digitized segments in IKONOS and SPOT scenes. 

In this figure, one can see that there is no complete (i.e., one-to-one) correspondence 

between the digitized primitives in the input and reference images. The digitized 

segments are then incorporated in the MIHT strategy to automatically determine the 

correspondence between conjugate line segments as well as the parameters involved in 
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the registration transformation function. The estimated registration transformation 

parameters as well as the corresponding variance component for all the datasets are listed 

in Table 6.2. 

  
 

   

 

 
IKONOS SPOT 

Figure 6.1: Digitized Linear Features in IKONOS and SPOT Scenes 

 



  106 

 

Table 6.2: Transformation Parameters Based on Automatically Matched Linear Features 

Using MIHT - Daegon 

2-D Similarity IKONOS/IKONOS IKONOS/KOMPSAT IKONOS/SPOT IKONOS/LAND 
2ˆ oσ (Pixel^2) 4.2431^2 4.2587^2 0.8947^2

0a (pixel) -103.94052 -19.69236 2.81575 

0b (pixel) -28.15586 -8.77077 -16.96265 

1a  0.13150 0.08704 0.02985 

1b  

No Conversion 

0.03197 -0.01583 -0.00435 

Affine IKONOS/IKONOS IKONOS/KOMPSAT IKONOS/SPOT IKONOS/LAND 
2ˆ oσ (Pixel^2) 9.7022^2 1.3567^2 1.1634^2 0.7193^2

0a (pixel) 70.17578 -97.95137 -18.87100 2.20314 

1a  1.05151 0.12695 0.08738 0.02924 

2a  -0.00037 -0.03193 0.01905 0.00510 

0b (pixel) -22.33391 -27.23188 -8.24337 -16.94389 

1b  0.14591 0.03196 -0.01358 -0.003795 

2b  1.00904 0.13332 0.08881 0.029800 

 

On the bases of results shown in Table 6.2, the following observations and can be made: 

 As with the results from the point datasets, the affine transformation produced better 

results than the 2-D similarity transformation. This shows the validity of the affine 

transformation as the registration transformation function relating the scenes under 

consideration. As mentioned before, the 2-D similarity transformation does not 

constitute a proper registration transformation function between the IKONOS scenes. 

Therefore as expected, the MIHT procedure did not converge for this dataset. 

 Comparing the results in Tables 6.1 and 6.2, one can see that utilizing linear features 

led to a better fit between the scenes than the fit derived through the use of point 

features. This should be expected, since identifying linear features in multi-resolution 
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imagery is much more reliable and accurate than identifying distinct points. As 

mentioned earlier, the affine transformation is valid when relatively flat terrain is 

assumed. In this context, linear features are advantageous since they restrict the 

selected primitives along relatively flat terrain as represented by the road network. 

This might not be the case for point primitives that might have significant relief 

distortions (e.g., simultaneous considerations of points along the terrain as well as 

high-rise buildings). 

 Observing the estimated shift components among the registered scenes (a0, b0), one 

can see that the proposed strategy successfully converged without the need for 

approximate registration of these scenes. 

Figure 6.2 depicts established correspondences between the digitized primitives in the 

IKONOS and SPOT. The estimated transformation parameters are then used to resample 

the reference image to the coordinate system associated with the input image. Figure 6.3 

shows a mosaic image derived by combining IKONOS and SPOT scenes (where every 

other square patch in the reference image has been replaced by the corresponding 

resampled patch in the input image). Features (e.g. roads, rivers, and buildings) in the 

derived mosaic accurately fit each other. (A smooth transition can be observed along the 

features within the resampled patches-solid circles). This proves the validity of the 

estimated parameters of the transformation function relating these scenes. However, one 

can also note that there are some discontinuities along the boundaries between some of 

the resampled patches (highlighted by dotted circles).These discontinuities are 

attributable to physical changes in the object space between the epochs of capture of the 

involved scenes. (The SPOT scene was captured a few years earlier than the IKONOS.) 
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              SPOT Linear Features 
                 Matched IKONOS Linear Features 
                 Non-Matched IKONOS Linear Features

Figure 6.2: Established Correspondences between IKONOS and SPOT Primitives 

 
Figure 6.3: IKONOS-SPOT Mosaic with Highlighted Continuities (Solid Circles) and 

Highlighted Discontinuities (Dotted Circles) Resulting from Physical 

Changes in the Object Space. 
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The previous discussion and analysis are also valid for all the involved images in this 

dataset. For example, Figure 6.4 shows the established correspondences between 

IKONOS & KOMPSAT primitives, while Figure 6.5 shows the mosaic image derived by 

combining IKONOS and KOMPSAT scenes. 

 

 

Figure 6.4: Established Correspondences between IKONOS and KOMPSAT Primitives. 
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Figure 6.5: IKONOS-KOMPSAT Mosaic 

The second set of experiments has been conducted using multi-source, multi-resolution, 

and multi-temporal imagery over the city of Calgary, Canada where aerial and satellite 

images are involved. The experiments incorporated 1374 rows × 1274 columns aerial 

photo (5.0m) captured in 1956, 1374 rows × 1274 columns aerial photo (3.5m) captured 

in 1972, 2000 rows × 2000 columns ortho-image (5.0m) created from an aerial image 

captured in 1999, 500 rows × 500 columns LANDSAT image captured in 2000, and 300 

rows × 300 columns LANDSAT image (30m) captured in 2001, Figure 6.6. 
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Aerial 1956 (5m) 

 
Aerial 1972 (3.5m) 

 
Ortho-photo 1999 (5m) 

 
LANDSAT 2000 (15m) 

 
LANDSAT 2001 (30m) 

 

Figure 6.6: Digitized Linear Features in the Calgary Dataset 
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The sequence of experiments applied to Daegon’s dataset was repeated for Calgary’s. 

Results showed the superiority of straight lines features over points and the suitability of 

affine transformation over 2-D similarity. These results were compatible with those of the 

previous experiments, and verified the robustness and flexibility of the suggested 

approach to handle multi-source, multi-resolution, and multi-temporal imagery. The 

estimated registration transformation parameters as well as the corresponding variance 

components using points and straight lines primitives are listed in Tables 6.3 and 6.4, 

respectively. 

 
Table 6.3: Transformation Parameters Based on Manual Point Measurements - Calgary 

2-D Similarity 
ORTHO 1999 
AERIAL 1956 

ORTHO 1999 
AERIAL 19 72 

ORTHO 1999 
LANDSAT 2000 

ORTHO 1999 
LANDSAT 2001 

2ˆ oσ (Pixel^2) 4.3580^2 3.1635^2 2.2987^2 1.847^2

0a (pixel) 95.0619 65.9943 91.4917 53.1679 

0b (pixel) -105.2252 270.2409 75.4917 29.5500 

1a  0.9164 1.3008 0.3369 0.1586 

1b  -0.0185 0.0546 0.0123 -0.0532 

Affine 
ORTHO 1999 
AERIAL 1956 

ORTHO 1999 
AERIAL  19 72 

ORTHO 1999 
LANDSAT 2000 

ORTHO 1999 
LANDSAT 2001 

2ˆ oσ (Pixel^2) 4.1231^2 2.6313^2 2.4148^2 1.8650^2

0a (pixel) 93.8898 64.9483 91.8455 53.3285 

1a  0.9120 1.2945 0.3361 0.1577 

2a  0.0162 -0.0573 -0.0107 0.05505 

0b (pixel) -105.5540 270.9716 77.7104 30.8239 

1b  -0.0216 0.05179 0.0138 -0.0519 

2b  0.9196 1.3056 0.3402 0.1624 

 



  113 

 

Table 6.4: Transformation Parameters Based on Automatically Matched Linear Features 

Using MIHT - Calgary.  

2-D Similarity 
ORTHO 1999 
AERIAL 1956 

ORTHO 1999 
AERIAL  19 72 

ORTHO 1999 
LANDSAT 2000 

ORTHO 1999 
LANDSAT 2001 

2ˆ oσ (Pixel^2) 2.2298^2 2.7774^2 1.7599^2 0.8977^2

0a (pixel) 94.0756 65.4424 87.9770 53.1336 

0b (pixel) -106.6365 269.8632 75.8580 30.9736 

1a  0.9195 1.3041 0.3341 0.1595 

1b  -0.0210 0.0562 0.0132 -0.0507 

Affine 
ORTHO 1999 
AERIAL 1956 

ORTHO 1999 
AERIAL  19 72 

ORTHO 1999 
LANDSAT 2000 

ORTHO 1999 
LANDSAT 2001 

2ˆ oσ (Pixel^2) 2.1785^2 2.0657^2 1.6761^2 0.8522^2

0a (pixel) 94.0991 64.6135 89.5263 52.7716 

1a  0.9181 1.3018 0.3355 0.1589 

2a  0.0181 -0.0592 -0.0105 0.0500 

0b (pixel) -106.6896 270.2862 75.7333 31.3885 

1b  -0.0229 0.0542 0.0142 -0.0506 

2b  0.9204 1.3053 0.3334 0.1612 

 

 

Figure 6.7 shows the derived correspondences between the digitized primitives in the 

Ortho-photo 1999 and aerial 1956 images while Figure 6.8 shows the established 

correspondences between the digitized primitives in the Ortho-photo 1999 and 

LANDSAT 2000 scenes. Even in the presence of small overlap between the Ortho-photo 

1999 and the LANDSAT 2000, the results of image registration are accurate enough 

Figure 6.9 (b). 
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              Aerial Linear Features 
                 Matched Ortho-photo Linear Features 
                 Non-Matched Ortho-photo Linear 

Figure 6.7: Established Correspondences between Ortho-photo 1999 and Aerial 1956 

Primitives. 
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              LANDSAT 2000 Linear Features 
                 Matched Ortho-photo 1999 Linear Features 
                 Non-Matched Ortho-photo 1999 Linear 

Figure 6.8: Established Correspondences between Ortho-photo 1999 and LANDSAT 

2000 Primitives. 
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Figure 6.9: Multi-Image Mosaic for Calgary Dataset 

 

To verify these results, the estimated transformation parameters are used to resample the 

reference image into the coordinate system associated with the input image. Figure 6.9 

shows mosaic images derived by combining LANDSAT 2000, Ortho-photo 1999, and 

aerial 1956. A closer look at this figure reveals the following facts: 

56

(c) (d) 

9900

(a) (b) 

99
56 99

00 

00 99 5699

0099 56 
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 Due to the limited area covered by the LANDSAT 2000 scene, Figure 6.6, image 

completion concept has been applied to obtain full coverage for the city of Calgary. 

Aerial 1956 and Ortho-photo 1999 were used to achieve such a task Figure 6.9(a, b). 

Multi-image integration has been accomplished. This important process is needed to 

cope with the large diversity of contemporary available images.  

 In Figure 6.9(c), every other square patch in the reference image (Ortho-photo, 1999) 

has been replaced by the corresponding resampled patch in the input image 

(LANDSAT, 2000). Features in the derived mosaic accurately fit each other. This 

proves the validity of the estimated parameters of the transformation function relating 

these scenes. 

 Discontinuities appear along the boundaries between some of the resampled patches 

in Figure 6.9(d) (highlighted by hollow circles). These discontinuities are attributed to 

real changes in the object space between the epochs of capture of the involved scenes. 

(The aerial image was captured forty-three years earlier than the Ortho-photo scene). 

This is significant for change detection applications, since accurate image registration 

is a prerequisite for accurate and reliable change detection output. 

6.3 Change Detection Experiments 

Once the transformation function has been established between the images, the input 

image can be resampled into the reference frame associated with the reference image. As 

explained in Chapter 5, the resampling is followed by the application of the Canny edge 

detection technique and majority filter to both images. Then, the resulting images are 
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subtracted to produce a change image, which is enhanced by re-applying the majority 

filter. 

An experiment was conducted using aerial image 1956 and Ortho-photo 1999 for the city 

of Calgary dataset. Figures 6.10 (a) and (b) show the input image and resampled 

reference image, respectively, with the same number of rows and columns. Figures 6.10 

(c) and (d) show the derived edges after applying the Canny edge detector for aerial 1956 

image and resampled Ortho-photo image respectively. A closer look to the edge images 

shows that linear features (rivers, roads, and buildings), which represent the main source 

of changes in urban areas, have been successfully detected in each image. 

Afterward, a majority filter was applied on the resulting edge images in order to fill small 

gaps within an area with numerous edges as well as to eliminate isolated edges. As a 

result of applying the majority filter, edge cells were densified and areas with interesting 

features were highlighted (see Figure 6.11). Then, the filtered images were subtracted to 

highlight areas of change, as in Figure 6.12 (a). White areas indicate changes while black 

areas indicate parts with no change. Finally, a majority filter was applied to the difference 

image to eliminate small areas which do not reflect a real object space change, Figure 

6.12 (b). Figure 6.13 shows the areas of change in the city of Calgary between 1956 and 

1999. 
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Calgary 1956 

 
(a) 

Calgary 1999 

(b) 

 

 
(c) 

 

(d) 

Figure 6.10: Resampled and Edge Images for the City of Calgary Dataset: (a) Aerial, 

1956 (b) Resampled Ortho-photo, 1999 (c) Edge Image for Aerial, 1956, 

and (d) Edge Image for Resampled Ortho-photo, 1999. 
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Calgary 1956 

 
Before 

Calgary 1999 

 
Before 

 

After 

 

After 

Figure 6.11: Edge Images Before and After Application of the Majority Filter 
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Calgary 1956 

(a) Before  

Calgary 1999 

(b) After 

Figure 6.12: Difference Image Before and After Application of the Majority Filter 

Calgary 1956 

 
(a) 

Calgary 1999 

(b) 

Figure 6.13: Areas of Change for the City of Calgary between 1956 and 1999  
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Simple statistics for the change image in Figure 6.14 show that there is an overall 50.6% 

change between the 1956 and 1999 imagery. Dividing the area into four quadrants shows 

that the percentages of change that occurred in the northwest, northeast, southeast and 

southwest parts of the image are 74.8%, 66.4%, 34.4%, and 26.8%, respectively. The sub 

images (b, c, d, and e) in Figure 6.14 show different types of changes that took place. Sub 

image 6.14 (b) shows changes as a result of an urbanization activity. (A new residential 

community was built). Sub image 6.14 (c) shows changes caused by trails in newly 

developed parks. Changes resulting from the construction of a new highway along the 

east side of the city are shown in sub image 6.14 (d). Finally, sub image 6.14(e) shows 

the changes due to shadowing effects caused by newly erected high-rise buildings in the 

downtown area. 

In order to examine the efficiency of the suggested change detection approach compared 

to traditional methods, image differencing based on supervised classification approach 

was conducted. For this purpose, texture images were derived from the original images 

using PCI Geomatics software. A filter size of 25 x 25 pixels was used to derive the 

texture images based on homogeneity and variance of the original image. Then, the aerial 

1965 image was classified, based on the original image and its derived texture image, into 

two main classes, urban and non-urban areas. The same process was carried out for 

Ortho-photo 1999 image. Finally, image differencing was applied to highlight the areas 

of change. The results indicated that small isolated regions which do not belong to real 

change still appear in the change image. However, the overall results can still be 

considered relatively compatible with the results of the approach suggested in this 

research. The disadvantages of image differencing based on supervised classification 
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mentioned in the literature were clearly observed. These drawbacks (including the great 

computational and labelling efforts required for classification purposes, The need for at 

least two bands for each image, and the thresholding problem) were avoided by using 

edges as a base for change detection. Figure 6.15 shows the classification for both images 

as well as the change detection results based on the classified images. 
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Calgary 1956 

(a) 

Calgary 1999 

(b) 

 
(d) 

Figure 6.15: Change Detection Based on Supervised Classification: (a) Classification of 

Aerial 1956 (b) Classification of Ortho-photo 1999 and (c) Difference 

Image with White Pixels Representing Changes. 
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       CHAPTER 7  

 

CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

With the flux of high resolution scenes captured by space-borne platforms (e.g., 

LANDSAT-7, IKONOS, QUICKBIRD, ORBVIEW, EROS-A1, KOMPSAT-I, and 

SPOT-5), there is an increasing need for a robust registration technique that can tolerate 

varying geometric resolutions among the available scenes. This research has 

comprehensively addressed the key issues of an efficient semi-automatic registration 

methodology that can handle such scenes. First, straight-line segments have been chosen 

as the registration primitives. The rationale for selection is that such primitives can be 

reliably identified in multi-resolution scenes. Then, the registration transformation 

function is analyzed to determine the mathematical relationship between the scenes to be 

registered. It has been established that affine transformation can be used as the 

registration transformation function for scenes captured by high altitude imaging satellite 

systems with narrow angular field of view. Moreover, 2-D similarity transformation can 

be used as another alternative for some applications with less demanding accuracy 

requirements. Afterwards, the geometric attributes of conjugate primitives are 

manipulated to derive a similarity measure describing the necessary constraints for the 

coincidence of these primitives after establishing the registration procedure. It is 

important to note that the similarity measure has been developed while considering the 
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fact that the end points of conjugate line segments are not identical.  Finally, the 

primitives and the similarity measure are manipulated in a MIHT procedure to 

sequentially solve for the parameters involved in the registration transformation function 

while establishing the correspondence between conjugate primitives. The MIHT 

procedure proved to be helpful in verifying the validity of the registration transformation 

function, since it will only converge if the transformation function is valid. Within the 

MIHT, an optimum sequence with the use of a 2-D similarity and affine transformation 

functions has been derived through the analysis of deviations from the similarity measure 

constraints associated with line segments with different orientations at various regions 

within the imagery as a result of incremental changes in the transformation parameters.  

Experimental results showed the feasibility and the robustness of the suggested approach 

that could tolerate possible discrepancies between the imagery due to varying sensor 

operational principles as well as changes in the object space without the need for 

approximate registration of the involved imagery. Moreover, the results proved the 

superiority of straight-line segments over distinct points. This should be expected since 

linear features can be identified more accurately than distinct points. In addition, the 

results verified the fact that affine transformation yields better registration when 

compared with 2-D similarity transformation. The proposed technique could be used to 

robustly and simultaneously estimate the parameters of the registration transformation 

function as well as the feature-to-feature correspondence between multi-temporal, multi-

resolution, and multi-source satellite imagery. 
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The importance of accurate image registration as an essential prerequisite for reliable and 

accurate change detection has been established. To avoid the effect of possible 

radiometric differences between the registered images, due to different atmospheric 

conditions, noise, and different spectral properties, the change detection is based on 

derived edge images. The use of edge images is attractive; since it would lead to an 

effective detection of urbanization activities since they would appear as a dense 

distribution of edge cells. Also, a majority filter has been applied to compensate for small 

registration errors as well as eliminating small gaps and isolated edges. The images are 

then subtracted to produce a change image, which could be enhanced through the 

application of a majority filter to remove small regions. The change detection results are 

found to be consistent with these visually identified. 

7.2 Recommendations for Future Work 

Future research will focus on automatic extraction of registration primitives from input 

imagery as well as the utilization of free-form linear features, represented as a sequence 

of straight line segments (polylines). In addition, the impact of various generalization 

levels of these primitives in terms of the processing time and the quality of the 

registration outcome should be investigated. Furthermore, research should be conducted 

to evaluate the limits for the validity of the affine transformation as the registration 

transformation function. The proposed strategy can be used to establish the registration of 

satellite scenes with vector data in existing GIS databases for change detection and for 

updating applications where the nature of detected changes (e.g., new residential 

community, new roads, etc.) is investigated as well. 
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APPENDIX A 

Hough Transform 

Hough introduced a method of determining parameters by way of a voting scheme 

[Hough 1962]. The Hough transform algorithm is a detection and segmentation 

technique. This technique is used if the location of a curve is not known but its shape is 

known as a parametric curve. Usually after automatic point extraction in digital 

photogrammetry, one has a list of points in image space, which are assumed to represent 

a certain analytical function. The Hough transform searches for the extracted points 

which satisfy this given function. The parameters of this function are the results of the 

Hough transform algorithm. The basic principle of Hough approach is to switch the roles 

of parameters and spatial variables. To illustrate this approach, consider the following 

example (Habib and Kelley, 2001a.). Suppose that we want to detect points that lie on a 

circle of known radius, r. A circle can be defined by Equation A1: 

 

 ( ) ( ) 0222 =−−+− rvyux  (A1) 

 

With x, y being the spatial variables and u, v the parameters (center) of the circle in the 

spatial domain. Now, let us introduce the parameter space, represented by the coordinate 

system u, v. A point with coordinate xi, yi in the spatial domain corresponds to a circle in 

the parameter space centered at xi, yi. For every point in the spatial domain, there exists a 

circle in the parameter space, and vice versa. The intersection of circles in the parameter 
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space identifies centers of circles in the spatial domain. The number of intersecting 

circles in the parameter space is directly related to the number of points that lie on this 

circle, (see Figure A1). A point in the spatial domain (a) corresponds with a circle in the 

parameter space (b) and vice versa. The intersection of circles in the parameter space 

determines the center of the sought circles in the spatial domain.  The intersection of four 

circles at u = 20, v = 25 identifies points 1,2,3 and 5 as belonging to a circle whose center 

c in the spatial domain is (20, 25). 
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Figure A1: Illustration of Finding Circles through Data Points in Hough Transform 

 

The Hough method is usually implemented by an accumulator array, which is an n-

dimensional, discrete space, where n is the number of parameters. In this example with 

circles of known radii, the parameter space is two-dimensional. Each circle is discretely 

represented in the parameter space. To keep track of all the circles, we simply increment 

all of the cells that are turned on by every circle. After having processed all points in this 

fashion, we analyze the accumulator array and determine the number of hits per cell. 



  138 

 

Every hit casts one vote for a point lying on that particular circle. The cell with the 

maximum number of hits, m, yields the center of the circle in the spatial domain that 

passes through m points. Similarly, other peaks in the accumulator array identify 

additional circle centers. Tracking the points contributing to the peak in the accumulator 

array identifies the points lying on the circle of known radius. 
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APPENDIX B 

Image Resampling Techniques 

After determining the geometric relation between the input and reference images, the 

relation can be used to resample one image to the space of the other. The resampling 

process involves the extraction and interpolation of gray levels from pixel locations in the 

original distorted image (input image) and their relocation to the approximate matrix 

coordinate location in the rectified (reference) image. After transformation, the gray 

value at an integer location in the input image will not be projected to an integer location 

in the reference image. Therefore, a decision has to be made about the gray value in the 

new non-integer location. There are several methods that can be used for this purpose, 

which include nearest neighbour, bilinear interpolation and cubic convolution resampling 

techniques. 

The nearest neighbour approach uses the value of the closest input pixel for the output 

pixel value. As shown in Figure B1, among the four pixel gray values (g11, g12, g21, g22) 

the one closest to (x,y) is determined and its gray value is used as the gray value at (x,y). 

g12g11

g(x,y) = g12

g21 g22

 

Figure B1: Nearest Neighbour Resampling 
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The nearest neighbour method is considered the most efficient in terms of computation 

time. Because it does not alter the gray level value, nearest neighbour interpolation is 

preferred if subtle variations in the gray levels need to be retained, or if classification will 

follow the registration. Nearest neighbour interpolation introduces a small geometric 

error into the newly registered image. The image may be offset spatially by up to 1/2 a 

pixel, causing a jagged, blocky or stair-step appearance. 

Bilinear interpolation determines the gray level from the weighted average of the four 

closest pixels to the specified input coordinates, and assigns that value to the output 

coordinates, see Figure B2. This method generates an image of smoother appearance than 

that of nearest neighbour, but the gray level values are altered in the process, resulting in 

blurring or loss of image resolution. Because of these changes in the gray level values, 

any image classification processes should be performed before the interpolation. Bilinear 

interpolation requires 3 to 4 times the computation time of the nearest neighbour method. 

c2 = dy c1 = 1- dy

 
Figure B2: Bilinear Resampling 

r2= dx

g21g11 r1= 1-dx

g22g21 

dx 

dy 

g = g11 r1 c1 + g12 r1 c2 + g21 r2 c1 + g22 r2 c2
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Cubic convolution determines the gray level from the weighted average of the 16 closest 

pixels to the specified input coordinates, and assigns that value to the output coordinates. 

This method is closer to the perfect sin(x)/x resampling method than nearest neighbour or 

bilinear interpolation. The image is slightly sharper than that produced by bilinear 

interpolation, and it does not have the disjointed appearance produced by nearest 

neighbour interpolation. Because the gray level values are altered by this method, any 

image classification processes should be performed before the interpolation. Cubic 

convolution requires about 10 times the computation time required by the nearest 

neighbour method. The process is illustrated in Figure B3 (Richards, 1993). 

 

Figure B3: Cubic Convolution Resampling 
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