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Abstract

Vertical crustal motion is a prominent process in Canada because of plate tectonic activity

and on-going post-glacial rebound. The process is predominant in the eastern (postglacial

rebound) and western (plate tectonics) parts of the country; however, the magnitudes range

from a few centimetres to a few millimetres. As a consequence, heights measured over time

provide information about vertical motion. Since levelling measurements in Canada are being

taken for the past 100 years; there is a wealth of deformation information available to constrain

vertical motion.

In this research, a part of the Canadian Precise Levelling Network in eastern Canada is

analysed, where both postglacial rebound and plate tectonics are active. The aims of this

analysis is to find out, if a kinematic vertical datum can be realized, and also, if the levelling

dataset can be created as an independent dataset of vertical motion for geophysical studies.

The latter objective will extend the knowledge from deformation studies using other geode-

tic data (Global Positioning System, Very Long Baseline Interferometry, Satellite LASER

Ranging, and absolute gravimetry), which provide information only for the past ≈20 years.

The results from the analysis show that the network has some data gaps, which created

excess constraints in addition to minimum constraints that needed to be fixed. This was

overcome by using a priori information from postglacial rebound models and height values

estimated from a static height adjustment by the Geodetic Survey Division, Natural Resources

Canada. On further analysis, it was found that the datum realized with the height values as

excess constraints fulfilled one of the objectives of this study – defining a kinematic vertical

datum. Here, it is called a workable kinematic vertical datum to distinguish it from minimum

constraint and overconstraint datums.

The results were interpreted with geological data, earthquake data, and postglacial re-

bound models, which all revealed that the region of the network is seismically active and also

had effects of postglacial rebound. However, the major contributor to the vertical crustal

motion in the region was found to be the postglacial rebound phenomenon. In addition, there

were a few local anomalous patterns identified that correlated well with the tectonic faults in

the network.



From all these analyses and interpretations it was concluded that a workable kinematic

vertical datum can be defined for Canada even with the data gaps. Further, with the reali-

sation of a kinematic vertical datum, an independent dataset of vertical crustal motion rates

was created from the levelling dataset for geophysical studies.
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Chapter 1

Introduction

This research concerns vertical crustal motion in Canada and the definition of a kinematic

vertical datum using levelling data of the last century. In order to exploit this rather long

time series, compared to GPS or absolute gravimetry measurements, several geodetic and

mathematical methods need to be employed. Among these are graph theory, geodetic network

analysis, least squares adjustment and statistical tests. The results of this study will be

compared with independent geological and geophysical observations available in the study

area. This introduction gives an outline of the background information required to understand

the concept and strategies of this research.

1.1 Time in geodetic reference frames

Geodetic reference systems have always reflected the notion that the Earth is static because

of the systems’ time-invariant three-dimensional positioning conception. This notion has

changed as the geodesists have realized that the Earth is dynamic and is changing its shape

at a slow rate. In order to incorporate this variations of shape, the time geodetic conception

has turned four-dimensional, and geodesists have been deliberating over the possible method-

ologies and models for this four-dimensional geodesy for a long time now e.g., (Mather, 1973;

Vańıček et al., 1987). Mather (1978) went one step further and proposed a four-dimensional

reference system for ocean studies thereby establishing the real need. But, all these deliber-

ations have been far and wide, weaning proper attention to the problem of four-dimensional

geodesy. In recent times, the attention has been rejuvenated particularly in the development

of a vertical reference system that incorporates vertical crustal motions (Kleijer et al., 2001;

Marti & Schlatter, 2001).

1.2 Crustal motion studies and reference frames

Crustal motion studies have long been an integral part of geodesy, but confined to small

localized areas such as tectonic zones (Mazzotti et al., 2003), earthquake-prone regions (Hearn,
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2003), volcanic regions (Dzurisin, 1999), oil and gas fields (Kenselaar & Quadvlieg, 2001), and

mines (Wright & Stow, 1999), to name a few. All these studies were traditionally made using

terrestrial geodetic measurement techniques and were made from specially designed networks

(Xu et al., 2000). But in recent times, space-geodetic methods like the Global Positioning

Systems (GPS) (Blewitt, 2000), Synthetic Aperture Radar (SAR) (Bürgmann et al., 2000),

Very Long Baseline Interferometry (VLBI) (Campbell, 2000), and Satellite Laser Ranging

(SLR) (Tapley et al., 1985) are being used.

The advent of space-geodetic methods brought with it global and homogeneous coverage

and hence, global monitoring of the Earth, which prompted the study of global scale crustal

motions due to plate tectonics. The result of these studies was the development of a global

network of space-geodetic stations that provided the first kinematic global terrestrial refer-

ence frame – the International Terrestrial Reference Frame of 1991 (ITRF1991) (Altamimi

et al., 2002). Plate tectonic studies and the ITRF have been a real driving force in the de-

velopment and implementation of modern geodetic reference frames that incorporate plate

tectonic crustal motions. Such reference frames have been adopted by New Zealand (New

Zealand Geodetic Datum 2000) (Blick, 2003) and Japan (Japanese Geodetic Datum) (Mat-

sumura et al., 2004).

Similarly, the development of a kinematic vertical datum has been made possible by the

increased interest in vertical crustal motion due to postglacial rebound, earthquakes, plate

tectonics, and oil and gas extraction, among both geodesists and geophysicists. This is valid

especially in countries that are experiencing these phenomena: Nordic countries, the Nether-

lands, Switzerland and Canada. The Nordic countries have a very long history of precise

levelling data, some of which date back to 1885 (Mäkinen et al., 2003). The levelling network

of the Nordic countries have been relevelled atleast twice and based on the relevellings many

land uplift studies have been carried out e.g., (Mäkinen & Saaranen, 1998). Now, the Nordic

countries are planning to utilize these precise relevellings to implement a kinematic vertical

datum by the turn of the year 2006/2007 (Mäkinen et al., 2003) while the Netherlands (Kleijer

et al., 2001) and Switzerland (Marti & Schlatter, 2001) have realized one recently.
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1.3 The Canadian perspective

Crustal motion studies began in Canada in 1926 when the first crustal motion study was

conducted in Québec after the 1925 earthquake. Further, crustal motion studies were carried

out close to dams during the period 1959–64 (Gareau, 1986). However, interest turned into

the crustal movements due to the postglacial rebound phenomenon in the eastern parts of

Canada (Davis & Mitrovica, 1996), centered around Hudson Bay (Mitrovica, 1997), in the

prairies (Lambert et al., 1998), and the Great Lakes (Mainville & Craymer, 2005); and the

crustal movements due to tectonics along the western coast of Canada especially, the Cascadia

subduction zone (Mazzotti et al., 2003). Since the entire Canadian region undergoes some

kind of geophysical activity, some attempts were made to produce vertical crustal motion

maps of Canada based on the levelling network observations and tide gauge records (Vańıček

& Christodulidis, 1974; Vańıček & Nagy, 1981; Sjöberg et al., 1990). But, these attempts used

only the relevelling observations in combination with the tide gauge records. The work in this

direction is still being continued with primary emphasis on postglacial rebound modelling

(Koohzare et al., 2005). In addition, in 1991, the Western Canada Deformation Array was

established to continuously monitor crustal motion due to the tectonics in the Cascadia region

(Dragert & Hyndman, 1995). In parallel there are many more geological and geophysical

studies that are being carried out with primary regard to postglacial rebound, for example

(Peltier, 2002; Wu, 2006).

1.4 Motivation and objectives

The Earth is a dynamic planet and in order to completely understand its spatio-temporal

dynamics, geodetic, geophysical, and geological data over long time scales and of homogeneous

accuracy are essential. Looking at Canada, most of the previous studies have been carried

out with GPS observations, and other modern space-geodetic measurement types (absolute

and relative gravimetry, SLR, VLBI) all of which cover only the past ≈20 years. This is a

serious handicap for geophysical inversion, which is the aim of using geodetic and geophysical

data to constrain Earth parameters. The longer the history of data collection, and the more

frequent the observations are repeated, the better the inversion results; however, these are

only two of the important aspects of geophysical inversion.
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The only geodetic data types that have a longer history to support geophysical inversion

studies are traditional triangulation and trilateration data, levelling data, and tide gauge

data; all of which have a data history of ≈100 years. Although, today these measurement

types seem obsolete, these historic datasets are very important for geophysical inversion, and

especially crustal motion studies. Since the interest of this research is only in vertical crustal

motion, only levelling data was considered while tide gauges were kept aside for later cross-

validation of the results from the two datasets. Geophysical inversion studies often benefit

from different and independent datasets for cross-validation rather than combining them.

In order to retrieve and relate all the different geophysical phenomena from the levelling

dataset, it is essential to define a common vertical datum that incorporates the vertical crustal

motion. Thus, the objectives of this study are

1. to determine the feasibility of defining a kinematic vertical datum based only on the

levelling network of Canada, and

2. to establish the levelling dataset as an independent dataset for vertical crustal motion

and geophysical studies.

The biggest challenge of this study is that the national levelling network will be used for

vertical crustal motion determination, although it has not been designed for such studies. In

other words, the national levelling networks are designed to provide control for static height

measurement and the frequency of measurement for a country of the size of Canada is very

sparse. However, the greatest advantage of using historic levelling data for such studies is that

they cover the last century as no other land-based geodetic dataset, and that the accuracy

of levelling data has not changed a lot during the course of ≈100 years of measurements.

Hence, the levelling observations can be considered homogeneous compared to other types of

geodetic data such as GPS, where the improvements in accuracy have been an order or two

higher than the first measurements.

The research problem here involves the determination of vertical crustal motion only

from the levelling network observation and without any additional a priori information from

geophysical models. In other words, the vertical crustal motion obtained from the levelling

network should be interpretable in itself. If this can be achieved with the levelling network,

then the two objectives of this study will be fulfilled, because the feasibility of defining a
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kinematic vertical datum depends on whether the data can stand alone in providing the

vertical crustal motion information. Thus, it can be seen that the two objectives are inter-

twined.

For the purpose of this study a small network was chosen from eastern Canada, where

repeated observations are taken frequently and also, there are effects of both tectonics and

postglacial rebound in this region. The region is depicted in Figure 1.1.

Figure 1.1: Illustration of the location of the study area

1.5 Outline of the thesis

The thesis starts with a review of gravitation, gravity, and the geopotential and their relation

to the different height systems predominantly used for national levelling networks. Then,

the concept of a vertical datum is introduced from three different perspectives, viz., physical,

geodetic, and mathematical. The concept is completed with an explanation of datum con-
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straints. The concept of a vertical datum is then extended to the kinematic vertical datum

and the S-transformation of a kinematic vertical datum is derived – chapter 2.

In chapter 3, the history of the levelling dataset of Canada is reviewed for the purpose

of evaluating the quality of the data. Then the format of the dataset obtained from the

Geodetic Survey Division, Natural Resources Canada, is described and also its implications

towards the data processing strategies are discussed. The solvability of levelling networks for

vertical crustal motion is explained, and extended into data processing methods. The chapter

concludes by illustrating results from the levelling network data processing.

In chapter 4, a review of the rudiments of graph theory is given and it is connected

to the levelling network adjustment. Then, the least squares method of adjustment of the

levelling networks is explained with examples and is linked with graph theory. In addition,

vital statistics of the levelling network are calculated. These statistics characterize the nature

of the network and also provide a preliminary idea about the quality of the adjustment

process and its results. Also, a trend analysis of relative velocities is carried out for levelling

observations that have been re-observed more than once.

In chapter 5, the adjustment results are presented, where adjustment using different types

of constraints, and different weighting schemes are illustrated and explained. The results of

the adjustments are then analysed from a least squares error analysis point of view, which

provides insight into the interpretability of the results. The chapter concludes with performing

statistical tests to find outliers in the observations. The adjustment results are geologically

and geophysically interpreted in chapter 6, where the nature of estimated vertical crustal

motion are discussed. The conclusions of this research and its future scope are discussed in

chapter 7.
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Vertical Datum Definition

A datum is defined as any numerical or geometrical quantity or set of such quantities which

serve as a reference or base for other quantities (Jekeli, 2000). In that sense, a vertical datum

is a reference for heights. In this chapter, a brief introduction to the concepts of gravitation,

gravity and geopotential will be given in section 2.1; various height systems that exist will be

briefly discussed in section 2.2; different perspectives in the datum definition will be discussed

in section 2.3; the mathematical model that will be used in the kinematic vertical datum will

be discussed in section 2.5; and finally, the S-transformation of the kinematic vertical datum

is derived in section 2.6.

2.1 Gravitation, gravity, and geopotential

The words gravity and gravitation bring to mind the famous Newton equation of the force of

gravitational attraction

F12 =
Gm1m2

r2
12

, (2.1)

where

F12 – the force of gravitational attraction between two point masses at 1 and 2 (N).

G – gravitational constant (6.672.10−11Nm2/kg2).

m1, m2 – mass of the point masses (kg).

r12 – distance between the two points (m).

From (2.1), the force per unit mass of the mass m2 can be derived and is given as

a2 =
F12

m2

a2 =
Gm1

r2
12

. (2.2)

When this quantity is considered for a body with respect to the gravitational force of attraction

of the Earth, the indices can be removed and equation (2.2) becomes,

a =
GM

r2
.
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Since, force is a vector the above equation is written in vector notation,

~a =
GM

r3
~r . (2.3)

The quantity ~a is the gravitational attraction of the mass M , which is the mass of Earth. The

gravitational attraction field of the Earth is a conservative field that means the amount of

work done to go from point 1 to 2 is the same regardless of the path taken. Mathematically,

this can be expressed as,

rot~a = ∇× ~a = ~0

which according to vector analysis is also equivalent to rot grad F , where F is a scalar field.

Thus, the gravitational attraction can be written as the gradient of a scalar field and this

scalar field is called the gravitational potential field V . The term ~a is called the gravitation

and the term V is called the gravitation potential. The gravitation potential of the Earth is

given by

V =
GM

r
. (2.4)

The above equation can be rewritten with density instead of the mass term,

V = G

∫∫∫

Ω

ρ(x, y, z)

r
dxdy dz , (2.5)

where Ω represents the volume of the Earth.

Whenever a measurement is done to observe the gravitation of a point the measurement

also contains the centrifugal attraction in addition to the gravitation. What is measured is

called gravity, the sum of centrifugal and gravitational attraction. Since the gravity has the

centrifugal acceleration term, the gravity potential also has the centrifugal potential term.

gravity = gravitational attraction + centrifugal attraction

~g = ~a + ~ac (2.6)

gravity potential = gravitational potential + centrifugal potential

W = V + Vc (2.7)

Since the gravity of the Earth arises from a potential field, the Earth could be visualized as

consisting of equipotential surfaces of the Earth’s gravity potential (refer Figure 2.1), along
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which the value of the gravity potential is the same. These equipotential surfaces are also

referred to as level surfaces Heiskanen & Moritz (2000).

2.2 Height Systems

Heights are defined as the perpendicular distances to points of consideration in the vertical

direction from a reference surface. Any instrument that is put up on the Earth’s surface

and levelled with a spirit bubble comes under the influence of the Earth’s gravity field and

hence, the Earth’s gravity potential field. Once the instrument is levelled, i.e. when the spirit

bubble is at the center, the instrument is said to lie parallel to the tangent of the equipotential

surface (or level surface), of the Earth’s gravity potential (geopotential), at that point. The

perpendicular line between the center of the instrument and the level surface is called the

direction of plumbline or plumbline in short (Heiskanen & Moritz, 2000). In spirit levelling

the height differences measured between two points is in essence the measurement of the

height difference between the equipotential surfaces of the geopotential passing through the

two points. However, the equipotential surfaces are not parallel to each other and this causes

the heights to be non-unique when they are observed using spirit levelling. This is shown in

Figure 2.1.

equipotential surface

Direction of plumbline

A

B

Geoid

∆H

Figure 2.1: The height measurement procedure between two points through levelling mea-

surements. The observed height difference in the field is the value ∆H.

The above concept can be easily proved by taking a closed circuit of spirit levelling mea-
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surements (Figure 2.2) and then adding them up. By logic of geometry the sum should be

zero, because if the starting and ending points of a height measurement are the same then

the height difference must be zero. But this will not be the case as there will be a misclosure,

which indicates that the equipotential surfaces are not parallel. When the same sum of the

circuit is taken with the gravity values, which accounts for this non-parallelity of the equipo-

tential surfaces, for each of those measured points, the misclosure can be expected to zero if

the measurements are not affected by observation errors. The other reason being, when the

gravity measurements along the measurement lines are combined with the height difference

observations the resulting quantity is geopotential. Hence, if the geopotential differences are

summed up in a given levelling circuit the sum will be zero. This is also the reason that

heights measured based on spirit levelling take one of these equipotential surfaces as their

reference (Heiskanen & Moritz, 2000). The gravity values become relevant only for a levelling

network whose lines have a distance of few hundred metres and more.

a

b
c

d

e

Figure 2.2: A closed circuit of spirit levelling measurements

Other methods of height measurements include triangulation, trilateration, and GPS mea-

surements. The height measurements from these methods are purely geometrical and they

are referenced to an ellipsoid; however, vertical deflection corrections need to be made for

measurements from triangulation and trilateration. The heights are geometrical in the sense

that the ellipsoid, which is the reference surface, is purely geometrical and imaginary when

compared to the equipotential surface of the Earth’s gravity field. Thus, from the above

discussion, the height systems can be broadly classified into physical and geometrical height

systems based on their reference surfaces (Meyer et al., 2004). Following is a list of the

common physical height systems used for national height networks and topographic mapping.
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Orthometric Heights

HP =
CP

ḡ
(2.8)

Dynamic Heights

Hdyn
P =

CP

γ◦
(2.9)

Normal Heights

Hn
P =

CP

γ̄
(2.10)

Normal Orthometric Heights

H∗

P =
C∗

P

γ̄
(2.11)

where

CP = W0 − WP

=

∫

g dH (2.12)

is the geopotential number with W0 representing the geopotential at the reference point and

WP representing the geopotential at point P .

ḡ is the mean gravity along the plumbline between P and the geoid.

γ̄ is the mean normal gravity along the normal plumbline between P and the quasi-geoid.

γ◦ is the normal gravity at a chosen latitude, which is usually φ = 45◦ latitude.

C∗

P = U0 − UP

=

∫

γ dH∗ (2.13)

is the normal geopotential number with U0 representing the normal geopotential of the quasi-

geoid and UP representing the normal geopotential at P . The physical nature of these heights

can be explained in the following manner. In Figure 2.1, if the gravity values are measured

at the points A and B, they will represent the gradient of gravity potential at those points as
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it is known that gravity is the grad W (cf. Section 2.1). Taking the mean gradient along this

measurement line and integrating that with the measured height difference gives the gravity

potential. This is what is done in equations (2.12) and (2.13). The other dimension through

which this physical nature of the physical heights can be visualized is the density term in

the gravitational potential term (cf. (2.5)). Gravity variations are a consequence of density

variations in the Earth. In geophysical prospecting this property of gravity is utilized to locate

mineral resources or other density anomalies.

Of the above mentioned height systems the orthometric height system is the most widely

used height system because it uses true gravity values, when compared to other height systems.

The only problem with the determination of orthometric heights is that the calculation of

mean gravity along the plumbline requires the knowledge of the density variations of the

crust between the point of consideration and the geoid, which is difficult, if not impossible.

This is also one of the reasons that we have other height systems in place. For example, the

normal height system was proposed to overcome this difficulty of finding the density variations

along the plumbline. In the normal height system, the heights are referred to a surface called

quasigeoid, which is an approximation of the geoid due to the use of normal gravity. However,

the quasigeoid is not an equipotential surface, but coincides with the geoid over the oceans

(Heiskanen & Moritz, 2000).

Due to the extensive labour and high cost involved in spirit levelling measurements, na-

tional height networks are slowly being replaced by GPS/levelling techniques. This technique

exploits the simple relationship between ellipsoidal heights, orthometric heights and geoid

undulations, which is given as

h = H + N , (2.14)

where

h – ellipsoidal height,

H – orthometric height, and

N – geoid undulation. (Heiskanen & Moritz, 2000)

The geometric relationship of the three quantities is shown in Figure 2.3

The main drawback of the above method are the accuracies of GPS heights and geoid

undulations, which are still at the few centimetres level. A detailed study of this method has
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h
H

N

Earth Surface

Geoid

Ellipsoid

Figure 2.3: Relationship between geoid undulation and ellipsoidal and orthometric heights

been carried out by Fotopoulos (2003). For a detailed discussion of the height systems refer

Heiskanen & Moritz (2000); Vańıček & Krakiwsky (1986); Torge (2001); Meyer et al. (2004,

2005).

2.3 Perspectives in vertical datum definition

2.3.1 Physical perspective

The visualization of a vertical datum can be either physical as always in the case of physical

geodesy literature, where the vertical datum is pictured as a physical surface: usually a geoid.

The geoid is defined as an equipotential surface of the gravity field of the Earth that is closely

approximated by the mean sea surface. This definition was first proposed by C.F. Gauß and his

Ph.D. student J.B. Listing and hence, the above definition of geoid is called the Gauß-Listing

geoid. This definition has long been used in geodesy to define a vertical datum. Sometimes,

this geoid definition is loosely referred to as the mean sea level and the heights above it the

heights above mean sea level. So, one of the perspectives of vertical datum definition is a

physical surface. Although, a geoid is an imaginary surface physically realized via the mean

sea level obtained from mareograph measurements. A complete discussion on this perspective

is given in Heck (2002); Jekeli (2000).
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2.3.2 Mathematical perspective

The above perspective was from physical geodesy, while the other perspective of vertical

datum definition comes from geodetic network analysis. The spirit levelling measurements

taken in a network form a network similar to the electrical potential circuits (networks). The

similarity comes from the fact that levelling network represents the network of geopotential

difference measurements. This network is represented by the design matrix in the least squares

adjustment of the network. The design matrix is referred to as the edge-node incidence matrix

in graph theory (cf. Strang (1986)).

The whole network consists only of measurements of the height differences between the

points in the network, while the requirement is absolute heights of points. Determining heights

only from height difference measurements is impossible (Caspary, 1988). Thus, a constant

needs to be added to the measurements without changing the differences to determine the

heights (Strang, 1986). This lack of information appears as a column rank deficiency in the

design matrix of the network. This lack of information, and hence, the column rank deficiency,

is termed the datum problem in geodetic network analysis. The datum definition can now

be considered as satisfying this rank deficiency by supplying some relevant information, for

example, assuming a constant to be the height of one of the points in the network. This is

the mathematical or computational perspective of the datum definition. Since the constant

could be any convenient value, and also, the point in the network could be any convenient

point the vertical datum definition can be considered arbitrary.

A complementary explanation to the mathematical perspective is given by Strang (1986);

Lanczos (1997), which comes from matrix calculus theory. Strang (1986) says that design

matrix in a least squares adjustment problem can be considered as a hyperplane having the

dimension of the number of parameters being estimated. The singular value decomposition

of this matrix tells us how much information the matrix carries in each of those axes of the

hyperplane. When there is a rank deficiency the singular values are zero corresponding to the

rank deficiency number. Hence, the zero singular values indicate lack of information along

those axes. In order to overcome this situation, information has to be supplied to the matrix

along those axes (Lanczos, 1997), and this is where the constant comes into play. In geodesy,

this constant is termed the datum constraint.
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2.3.3 Geodetic perspective

The two different perspectives might give a feeling that they will be treated separately in the

vertical datum definition. Traditionally, the marriage between the two perspectives is made

possible by establishing that the equipotential surface passes through a chosen mareograph

location, and the mean sea level value at the mareograph station serves as the constant

according to the mathematical perspective of datum definition. In essence, datum definition

drops down to a geodetic network adjustment problem, where the network appears as the

design matrix; the potential differences appear as the vector of observations; and the datum

problem appears as the column rank deficiency. The generalized inverse of the design matrix

taken by supplying the constant in the column of the mareograph station point provides both

the datum definition and estimates the absolute heights of points.

2.3.4 Perspectives on a good vertical datum

In keeping with the perspectives of vertical datum definition, it is also imperative to look into

the perspectives of good vertical datum definition. Grant & Blick (2001) have come up with

a list of items that need to be taken care of in realizing a vertical datum. Following is the list

of the items,

• unified and definitive – There must be only a single vertical datum for the whole of a

country;

• based on an equipotential surface – The vertical datum must be based on an equipotential

surface such as the geoid because of the fact that height determination is dependent upon

the gravity potential of the Earth;

• consistent with gravimetric geoid models – The vertical datum should use the gravimetric

geoid models so that it facilitates the conversion of ellipsoidal heights obtained from GPS

to orthometric heights;

• zero height close to sea level – This is a requisite for hydrographic studies, storm water

and river system management studies, and land title boundary demarcations along the

coastline;
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• applicable to islands – The vertical datum developed should be applicable to constituent

islands of a country across vast stretches of oceans. Countries like New Zealand suffer

from separate vertical datums for the constituent islands, which renders the height

system followed in one island useless or difficult for transformation in the other islands;

• consistent with international standards and systems – Proper reductions of gravity data

and height data, which are upto the standards followed globally should be done; and

• able to support sea level modelling – The vertical datum should support studies related

to sea level changes and hence should avoid using the mean sea level as a reference for

the vertical datum.

2.4 Datum constraints and datum matrices

The term datum constraints was introduced in section 2.3.2. The term constraints comes

from data analysis, where the datum problem of the levelling network, in the sense of geodetic

network analysis, becomes a constrained least squares problem (van Loan, 1985). The linear

equality constrained least squares problem is given as (van Loan, 1985; Golub & van Loan,

1996),

Solve

y = Ax + ǫ (2.15)

subject to

Bx = c (2.16)

In the case of geodetic networks, the constraint equation becomes,

DT x = c , (2.17)
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where

y – vector of observations,

A – co-efficient or design matrix,

x – is the vector of parameters, and

ǫ – randomn errors in the observations,

B – condition matrix,

D – is the datum matrix,

c – is the vector of constants.

The datum matrix indicates which parameters in x will be fixed by a constant to estimate the

absolute values of the parameters with respect to the constants (an example of a datum matrix

is given in section 2.6.3). The solution to the problem in (2.15) subject to the constraint in

(2.16) can be obtained by least squares by minimizing the variation function in (2.18) via

Langrange multipliers.

φ(x, λ) = ‖y − Ax‖2
2 + λ(‖DT x‖2

2 − c) (2.18)

where

φ(x, λ) – variation function

λ – Lagrange multipliers

Minimizing the equation (2.18) results in

x̂ = (AT A + DDT )−1(AT y + Dc) . (2.19)

A complete derivation of the solution is provided in Caspary (1988) from the datum matrix

point of view and the subject of constrained least squares is covered in detail in Golub & van

Loan (1996).

The constraints can be applied to the least squares problem in three different ways: min-

imum constraints, inner constraints and over-constraints.

• When the number of constants equal the rank deficiency of the design matrix of the

geodetic network, then the equality constraints are called minimum constraints. In

other words, supplying whatever information that is lacking in the design in the form of

constraints is called minimum constraints. This is a case of linear equality constrained

least squares. Minimum constraints are applied to national geodetic networks of the
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primary order and the important characteristic of minimum constraints adjustment is

that it preserves the geometry of the network.

• When some conditions on the parameter-side or on the observation-side are applied,

instead of supplying constants to the parameters, then such form of constraints are called

inner constraints. The least squares adjustment carried out with inner constraints is also

referred to as free network adjustment. It is predominantly carried out to find erroneous

observations. The difference between the conditions applied on the parametric-side here

and in the minimum constraints case is that in minimum constraints the constraint

values are taken from external sources, but in inner constraints the conditions come

from within the parameters.

• When the number of constants supplied to the least squares problem is more than what

is required by the rank deficient design matrix, then the equality constraints are called

over-constraints. This is again a case of linear equality constrained least squares. This

type of constraints are mainly applied to lower order networks in order to fit them to the

higher order networks. The over-constraint adjustment strains (distorts) the geometry

of the network (Kuang, 1996).

2.5 Kinematic vertical datum

Three types of vertical crustal motion can be distinguished, viz., secular, periodic, and episodic.

Plate tectonics and post-glacial rebound fall under the realm of secular motions, although post-

glacial rebound is not secular over long periods of geological time; the deformation and gravity

changes caused by tidal forces are periodic; and vertical deformation due to Earthquakes, and

landslides are episodic. It must be noted that eventhough the tidal forces generate deformation

that is periodic in nature, permanent tidal deformation also occurs, which is treated as a

systematic effect and removed from the observations. The values are calculated based on

solid Earth tide models (Gareau, 1986).

2.5.1 Kinematic height model

The different types of vertical crustal motion can be incorporated into the vertical datum either

kinematically – without considering the forces causing the vertical motion, or dynamically –
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considering the forces causing the vertical motion. Since in this research a kinematic vertical

datum is the area of focus, only the kinematic vertical datum will be discussed. Nevertheless, it

is essential to analyse the nature of the deformation in the region of concern before attempting

the realization of a vertical datum that takes into account the vertical crustal deformation.

In Canada, the major sources of vertical deformation are post-glacial rebound and plate

tectonics, which are secular in nature. Hence, a secular deformation model will be used for

the kinematic vertical datum. The following is the secular (linear) model of the kinematic

vertical datum,

Hi(tk) = Hi(t0) + vi(tk − t0) i ∈ {1, n} , (2.20)

where

Hi – height of the point i

vi – vertical velocity of the point i

tk, t0 – epochs of observation and the datum respectively.

The reason for assuming a linear model is also that there data are not sufficient to verify

if there is any acceleration of heights in the region. This will be discussed in the next chapter.

However, Mäkinen & Saaranen (1998) applied an accelerating model for the Finnish levelling

network, but were unable to find any significant acceleration.

2.5.2 Derivation of the Kinematic Vertical Datum Adjustment

By assuming a linear model for the vertical deformation, every point in the network is param-

eterized by one height and one velocity. The linear model can be visualized as an equation of

a line in analytical geometry (Figure 2.4), which is given by

y = f(x) (2.21)

y = mx + c , (2.22)

where
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y – the ordinate,

x – the abscissa

m – the slope of the line

c – the intercept.

H

t

H(   )

t

∆H

∆t

v = 
∆Η
∆t

0

t0

Figure 2.4: Representation of the kinematic height model as an equation of a line in analytical

geometry

In the kinematic height model, the height at the datum epoch t0 is the value c; the velocity

of the point is the slope of the line m; and time and height are the abscissa and the ordinate

axes, respectively. Since, only geopotential differences are available to estimate both heights

and velocities of the points, only height differences and velocity differences (relative velocities)

will be estimable from the observations. However, as mentioned in section 2.3.2, if a constant

is supplied, both the height differences and velocity differences can be transformed to absolute

(with respect to the constants) heights and velocities.

As mentioned in section 2.3, the datum definition drops down to a geodetic adjustment

problem. The adjustment of a kinematic vertical datum is very similar to the adjustment of

a vertical datum, because the observations are still the network of geopotential differences.

The two major differences that break this similarity are

1. time-tagging of the observations, and

2. addition of velocities and time epoch to the vector of parameters to be estimated.
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The time-tagging of observations has implications in that the vertical velocity of height points

are discretized within the time-span chosen; and time becomes a datum parameter. The time-

span could be a decade, an year, a month, a day or even an hour. This further implies that the

discretization makes the heights of the points static within the time-span chosen, or in other

words, the movement of the height point within the time-span chosen is assumed insignificant.

More often than not the time-span is chosen based on the frequency of observation. The

other implication that time becomes a datum parameter comes from the fact that if a t0 is

not prescribed, the reference time epoch will be the beginning of Julian calender, i.e., 0A.D.

The estimated heights will all refer to that year for which there is no information about what

the heights were in that period and also, there is no way of validating such heights. So, it is

not sensible to keep such a value as a reference epoch. Hence, a time epoch that is within

or closer to the observation time period is always chosen as the reference epoch. Time as a

datum parameter has been used in a study of the star catalogues based on Hipparcos satellite

measurements (Arias et al., 2000). In that study the authors develop an error estimate based

on the reference epoch shift.

Realisation of a kinematic vertical datum involves the estimation of heights and the vertical

deformation (velocities). As the kinematic vertical datum is as arbitrary as the vertical datum,

one height, one velocity and a time epoch all need to be fixed. Thus in the realisation of a

kinematic vertical datum three datum parameters need to be fixed, which are height, velocity

and time. But the value of time can be chosen as a constant or a deterministic variable in the

model (2.20). If the time epoch is chosen as a deterministic variable then the linear model

becomes a non-linear model and hence, the model has to be linearized in order to use least

squares estimation to estimate the parameters. This linearization is shown in the following

derivation of the least squares adjustment equation of the kinematic vertical datum.

The levelling difference observation at a given time tk between two points i and j is given

as

Hij(tk) = Hj(tk) − Hi(tk) i, j ∈ {1, n} . (2.23)

Substituting equation (2.20) gives

Hij(tk) = Hj(t0) − Hi(t0) + (vj − vi)(tk − t0) . (2.24)
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Since in (2.20) both vi and t0 are parameters, the equation needs to be linearized. The height

at a particular time tk can be thought of as a function of height at a chosen time epoch

(Hi(t0)), velocity (vi), and time epoch (t0). So, the first derivative of the height of a given

point can be written in the following form,

dHi =
∂Hi

∂H
dH +

∂Hi

∂v
dv +

∂Hi

∂t0
dt0 (2.25)

The linearized form is given as,

Hi(tk) = Hi(t0) + vi(tk − t0) + dHi + (tk − t0) dvi − vi dt0 (2.26)

Making the differentials finite gives,

Hi(tk) = Hi(t0) + vi(tk − t0) + ∆Hi + (tk − t0) ∆vi − vi ∆t0 (2.27)

Substituting (2.27) in (2.23) for i and j gives

Hij(tk) = Hj(t0) − Hi(t0) + (vj − vi)(tk − t0) + (∆Hj − ∆Hi) +

(∆vj − ∆vi)(tk − t0) − (vj − vi)∆t0 . (2.28)

Simplifying the above equation notation-wise gives the following equations

Hij(tk) = Hij(t0) + vijt0k +

(∆Hj − ∆Hi) + (∆vj − ∆vi)t0k − vij∆t0 (2.29)

Hij(tk) − Hij(t0) − vijt0k = (∆Hj − ∆Hi) + (∆vj − ∆vi)t0k − vij∆t0 . (2.30)
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Equation (2.30) if written in matrix notation will be as follows,

2

6

6

6

4

H12(tk) − H12(t0) − v12t0k

...

Hnm − Hnm(t0) − vnmt0k
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5

=

2

6

6

6

4

−1 1 . . . . . . −t0k t0k . . . . . . v12
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. . .
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6
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6

6

6
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7

7

5

. (2.31)

Thus the above equation represents the linearized observation equation

y = Ax + ǫ , (2.32)

which when estimated with least squares becomes,

ŷ = Ax̂ . (2.33)

The A matrix (called the design matrix) will have a rank deficiency of two; one for height,

and one for velocity. While removing columns for satisfying the rank deficiency two columns

of the A matrix should be removed: one each for height and velocity. If the datum matrix

method is being adopted, then the datum matrix will have a dimension ((2n)×2), which when

split up becomes (n(heights)+n(velocities)). Even though there are three datum parameters,

only height and velocity need to be fixed while time can be estimated from the observations’

time-tagging.
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2.6 S-transformation of a kinematic vertical datum

The kinematic vertical datum adjustment is obtained from a rank deficient design matrix. This

rank deficiency makes the estimated parameters biased estimates because of the information

supplied by constants via the columns of the design matrix (Teunissen, 1985). The estimates

depend on the choice of the columns along which the information is supplied. By changing

the constants and/or the columns, an innumerable number of solutions can be obtained. All

these solutions are related to each other by a similarity transformation, which enables the

transformation of parameters defined by one set of constants to another set of constants

(Strang van Hees, 1982).

S-transformation is a similarity transformation that transforms the stochastic (variance-

covariance) information in addition to transforming the co-ordinates. This is an important

tool for transforming co-ordinates from one datum to the other along with their stochastic

information. The advantage of using a S-transformation is that the whole process of adjust-

ment need not be carried out over and over again for transforming the co-ordinates and their

stochastics from one datum to other. The S-transform, which will be derived in the sequel,

does the job of transferring the co-ordinates and their stochastic information in one simple

step.

After equation (2.32) has been solved for the parameters, the heights, velocities and the

time epoch will all be known in one datum that has been fixed. If the datum parameters

need to be transformed to other datum parameters, i.e., from [Ha, va, t
a
0] datum to [Hb, vb, t

b
0]

datum, then there will be a constant shift in height, velocity and time epoch. There are a

few things that need to be thought about these shifts in datum parameters as they are not

straightforward, atleast in their conception. The shifts in each of height, velocity and time is

explained in the following sections.

2.6.1 Height shift

In the kinematic vertical datum definition and transformation it is essential to fix the reference

time epoch. This is because heights are a function of time H = f(t), similar to the equation

of a line 2.21, as the heights keep changing with time. Estimated heights are referenced with

a time epoch to indicate the relevance of the height value in time. Thus, it is obvious that
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before definition or transformation of a kinematic vertical datum, the reference time epoch

should be fixed. Reviewing (2.20) gives

Hi(tk) = Hi(t0) + vi(tk − t0) ,

where tk is the instantaneous time and t0 is the reference time epoch. From the kinematic

adjustment only the height at t0 is estimated. Hence, in the datum transformation the interest

is in transforming the heights at reference epochs and the intention is only to transform them

to a new datum.

As mentioned above, it is assumed that [Ha, va, t
a
0] are known and [Hb, vb, t

b
0] are required.

It is also assumed that the kinematic vertical datum parameters in b do not have the same

epoch as a. Now, in order to find the shift, the height of the vertical datum parameter in a

has to be moved from time ta0 to time tb0.

Ha
i (tb0) = Ha

i (ta0) + va
i (tb0 − ta0) (2.34)

Thus, the height shift between the two datums is determined as follows,

∆Hab = Hb
i (t

b
0) − Ha

i (tb0) . (2.35)
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Figure 2.5: The height, velocity, and time shifts in a kinematic vertical datum

2.6.2 Velocity and time shifts

The interesting thing about the vertical velocity of a point is that, since the kinematic height

model is assumed to be linear, its shift as a datum parameter does not depend on time or



Chapter 2 26

height. Therefore it is straightforward.

∆vab = vb
i − va

i (2.36)

Similar is the case with time shift and it is again just the difference of the time epochs between

which the transformation is done.

∆tab = tb0 − ta0 (2.37)

Both the height and time shifts are illustrated in Figure 2.5.

2.6.3 The S-transform

Putting all the above datum shifts together gives

∆Hab = Hb
i (t

b
0) − Ha

i (ta0) − va
i (tb0 − ta0)

∆Hab = Hb
i (t

b
0) − Ha

i (ta0) − va
i ∆tab (2.38)

∆vab = vb
i − va

i (2.39)

∆tab = tb0 − ta0 . (2.40)

Rearranging the above equations gives

Hb
i (t

b
0) − Ha

i (ta0) = ∆Hab + va
i ∆tab

vb
i − va

i = ∆vab

tb0 − ta0 = ∆tab . (2.41)

The above equations are the equations of similarity transformation of a kinematic vertical

datum. If these equations are written in matrix notation, the following will be obtained:
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Chapter 2 27

Simplifying the notation for the above equation will give

X = TP . (2.43)

Whenever a datum transformation is made, there are some points in the network whose co-

ordinates are known in both the datums between which the transformation is made. Now, we

introduce a datum matrix that tells us the points with which we can estimate the shift in the

datum parameters.

Db =






















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











1 0 0
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















(2.44)

and the values of the datum constraints are given by the constraint equation,

DT
b Hb = c . (2.45)

Pre-multiplying the transpose of Db with (2.43) gives

DT
b X = DT

b TP

In the above equation DT
b T is a regular square that can be uniquely inverted and hence, the

above equation becomes,

(DT
b T )−1DT

b X = P (2.46)

Substituting (2.46) in (2.43) gives,

X = T (DT
b T )−1DT

b X (2.47)

Expanding the above equation gives

Hb − Ha = T (DT
b T )−1DT

b (Hb − Ha) (2.48)
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Hb − Ha = T (DT
b T )−1DT

b Hb

−T (DT
b T )−1DT

b Ha . (2.49)

Based on the constraint condition, the above equation can be written as

Hb − Ha = T (DT
b T )−1c

−T (DT
b T )−1DT

b Ha . (2.50)

Post-adding Ha to the above equation gives

Hb = T (DT
b T )−1c

−T (DT
b T )−1DT

b Ha + Ha (2.51)

Hb = T (DT
b T )−1c

+(−T (DT
b T )−1DT

b + I)Ha .

By the commutative law of matrix addition we write the above equation as

Hb = T (DT
b T )−1c

+(I − T (DT
b T )−1DT

b )Ha . (2.52)

The variance-covariance matrix of Hb based on the law of propagation of errors is given as

follows,

Qxbxb
= (T (DT

b T )−1)Qcc(T (DT
b T )−1)T

+(I − T (DT
b T )−1DT

b )Qxaxa
(I − T (DT

b T )−1DT
b )T (2.53)

The first term on the right hand side of the equation is applicable only if the variance-

covariance matrix of the datum constraints are given.

Since, an infinite number of datums are possible by changing the constants and the param-

eters, it is essential to determine the best of the possible datums. S-transformation facilitates

this determination. According to Baarda (1981), to determine the best set of parameters to

be fixed to determine the datum, the variances of the datum constraints must be kept to zero.

This ensures that the estimates are not corrupted by external accuracies from the constraints,
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and the variance-covariance matrix of the estimates obtained is a complete artefact of the

datum parameters chosen. Hence, equation (2.53) becomes,

Qxbxb
= (I − T (DT

b T )−1DT
b )Qxaxa

(I − T (DT
b T )−1DT

b )T , (2.54)

where (I −T (DT
b T )−1DT

b ) is the S-transform. The above derivations were carried out based

on the derivations by Strang van Hees (1982). Further, a clear mathematical elucidation of

the S-transformation concepts is given by Teunissen (1985); Strang van Hees (1982).

2.7 Chapter summary

In this chapter the theory behind height systems and vertical datums was reviewed briefly.

The perspectives in defining and realizing a vertical datum were also discussed. The idea of

applying datum constraints was explained. Then these ideas were extended to the kinematic

vertical datum. Some important points on the kinematic vertical datum given in the chapter

are as follows:

1. the kinematic vertical datum was shown to be a vertical datum incorporating a mathe-

matical model for vertical motion, which was chosen to be a linear model;

2. time was established as a datum parameter, and also, the reference time epoch was

shown to be a determinable from the observations;

3. if time was considered a determinable variable then it was explained that the kinematic

height model becomes non-linear and hence, it has to be linearized to perform least

squares adjustment; and

4. the S-transformation of a kinematic vertical datum incorporating a linear kinematic

height model was derived.
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Levelling Data and Data Processing Methodologies

Mathematical techniques and procedures are very well suited and work perfectly for ideal

data. When it comes to field data it is never straight-forward to apply these mathematical

techniques and procedures. This is due to the fact that field data collection is not carried out

under ideal conditions, but the data collection is influenced by environmental, human, and

instrumentation factors. In order to bring the field data into a computable form, a certain

amount of processing is required. The amount of processing indicates the quality of the data,

and further, the amount depends on how detailed the field data collection was carried out.

Therefore, this chapter will discuss the nature of the data and the need for data processing

thereby reflecting on the data quality available for the study.

In this chapter, first a look at the history of Canadian levelling network and the related

height datums is given (section 3.1); then the format of the levelling dataset storage is ex-

plained (section 3.2); in the following, the need for the data processing is discussed (section

3.4); and finally, the data processing that was carried out on the data is described in detail

(section 3.5).

3.1 History of the Canadian Precise Levelling Network

In order to determine the possibility of estimating the rate of change in heights, a thorough

study of the history of levelling network is essential. The study of the history is also essential

to properly designate accuracies to the various epochs of measurements involved in the ad-

justment as the measurements might have been taken with different kinds of instruments and

also with different standards (Xu et al., 2000). A detailed history of the Canadian levelling

network and the various vertical datums adopted so far has been covered by Gareau (1986).

Further, Nassar (1977) has also accounted a brief history of the Canadian levelling network

and also has given gravity correction formulas to account for the local gravity variations along

the levelling lines.

In addition to the above two reports some interesting literature has also been published
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by Vańıček & Nagy (1981), wherein they had published the vertical uplift rate map of Canada

with the very few relevellings (5046 levelling segments) and the data from tide gauges (47).

The map was compiled based on the vertical rates obtained through a method suggested

by Vańıček & Christodulidis (1974) for scattered geodetic relevellings. Apart from these

reports and articles not much has been written about the Canadian levelling network. The

other source of information was the personal communication with Geodetic Survey Division,

Natural Resources Canada – with Mr. Marc Véronneau.

The above literature have revealed that very few relevellings have been done in Canada.

According to Gareau (1986), these relevellings were made as part of maintenance of the

levelling network. Further, some of the relevellings were done close to dams to check if

there was any vertical crustal motion around the dam due to the load of the dam. Also,

the Trans-Canada levelling line that originally ran along the Trans-Canada railway line was

relevelled along the Trans-Canada highway. A discrepancy of 2.2m was found out between

the relevellings, which prompted investigations into vertical crustal motion along the Trans-

Canada levelling line. This also invoked the authorities responsible for levelling, to design a

program for relevelling the entire Canadian network every 40 years (Nassar, 1977). Thus, it

will take another 11 years to get the first relevelling of the entire Canadian network to estimate

the velocities. In this context, Hazay (1977) brings out an interesting point that to obtain

reliable estimates of vertical crustal motion (mainly due to secular changes) a minimum of

three relevellings are required, in which case reliable estimates of the vertical crustal motion

can be obtained only in 2057.

In the initial stages of the development of the Canadian levelling network, levelling was

conducted with various initial benchmarks, which later became the benchmarks constraining

the Canadian vertical datum. The Canadian vertical datum was defined in 1928 and is called

the Canadian Geodetic Vertical Datum of 1928 (CGVD28). In addition to this datum, two

other datums existed at the time of the definition of CGVD28, viz., Great lakes datum of

1903; and Chaloner datum. Later on there were several readjustments (Gareau, 1986) to

incorporate the new levelling lines that were added to the levelling network.

Of the readjustments, the North American Vertical Datum of 1988 (NAVD88) is of par-

ticular interest because of the fact that the whole of North American levelling networks,

which includes the levelling networks of Canada, United States of America and Mexico, were
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adjusted with Rimouski, Quebec in Canada as the datum point. NAVD88 was more of a

readjustment than a new vertical datum definition, but it was scientific in its adjustment as

only one point was chosen as the datum point, and not six as in the case of Canada and

also, true gravity values were used in the adjustment. The other interesting thing is that the

heights that are in use in the United States of America are based on NAVD88 (Zilkoski et al.,

1992).

The heights used at present in Canada are still based on CGVD28, which is defined by

constraining six tide gauges, namely, Rouses point, Point au Père, Halifax, Yarmouth (all

in the east coast), Vancouver and Prince Rupert (all in the west coast) (Gareau, 1986), but

Nassar (1977) refers to only five of them (leaving out Vancouver). Although the datum is

called CGVD28 it was officially adopted in the year 1931 (Gareau, 1986). The 1928 adjustment

of the levelling network did not involve gravity and in the later adjustments normal gravity

values were used to suffice the problem. Currently, observed gravity values are used for the

computation of heights (personal communication with Mr. Véronneau).

In addition to the changes in gravity values used, there were also changes in the accuracy

standards used for the levelling measurements. Before and during the 1928 adjustment the

accuracy standard for precision was kept at 4mm
√

km. However in 1972, GSD classified the

levelling based on the precision involved, according to which there were 6 classes, namely,

• (0 mm – 2mm)
√

K

• (2 mm – 4mm)
√

K

• (4 mm – 5.4 mm)
√

K

• (5.4 mm – 6.8 mm)
√

K

• (6.8 mm – 8.5 mm)
√

K

• 8.5 mm
√

K.

where K – the length of each levelling segment in km (Gareau, 1986). Inspite of this levelling

precision revision, the precision for all the epochs of levelling measurement can be considered

homogeneous compared to the other types of height measurement, for example, GPS. The

reason for such a revision of the precision was the transition to better instrumentation. Gareau
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(1986) provides a comprehensive list of the different types of the instruments used for the

levelling measurements until the NAVD88 readjustment. A weighting scheme considering the

different instruments used was proposed for NAVD88 although, there is no record indicating

the implementation of such a weighting scheme.

3.2 Levelling dataset of the Canadian Precise Levelling Network

The levelling dataset of the Canadian Precise Levelling Network (CPLN) is stored in a format

called the GHOST format at three different levels of detail: sections, links, and lines. All

field measurements are taken at the section level and then combined to form links. And then,

links are amalgamated together to form lines. It is presumed that lines are the basic units

at the level of design of the levelling networks, and links are formed based on the number of

section measurements carried out in a day. Usually, the levelling lines are tens of kilometres

in length while the length of the sections vary from a few hundred metres to a few kilometres

depending on the roughness of the terrain. Table 3.1 illustrates the method of storage of the

observed data in the GHOST format.

1 2 3 4 5 6 7 8

14 70E7249 001B78780121 78B034 0080019 3.36547 1.9016 .917

14 78B034 001B78780121 70E7245 0080020 −.11187 1.6957 .722

14 70E7245 001B78780121 78B035 0080021 −1.35341 2.4115 1.480

Table 3.1: Table illustrates the method of storage of the observed data in the GHOST format

Column description

1. Code 14 indicates a levelling observation

2. Unique station number (From)

3. Line identification number

4. Unique station number (To)
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5. The first three characters indicate the link number and the rest of the characters indicate

the section number for the given line

6. Levelling height difference in geopotential numbers(m kGal)

7. Precision of observation (mm kGal)

8. Levelled distance between stations (km)

Columns 3 and 5 in Table 3.1 will be explained in detail as all the other columns are

self-explanatory. Essentially, each line of the observed data indicated by code 14 provides

information on each observed section. So, if columns 3 and 5 were combined it would provide

a unique section identification number. The whole section identification number, for example,

section 001B787801210080019 can be split-up in the following manner,

001 B 78 78 0121 008 0019

, where 001 indicates the line; B indicates the province; 78 indicates the year the line was first

observed; 78 indicates the year the line was observed last; 0121 indicates the project number;

008 indicates the link number within the line; and 0019 indicates the section number within

the line. The point that needs to be noted here is that if the section is levelled again in a

different year then the last year of observation and the project number will change. Hence,

the first 6 characters, viz. 001B78, become the unique line identification number. Further, the

last year of observation is an indication of whether the line has a relevelling or not. Thus, the

significant that can be exploited are the first 8 characters of the line identification number,

or, the unique section identification number.

Column description:

1. Code 4 indicating information about a station

2. Unique station number

3. Latitude (degree minute second)

4. Longitude (degree minute second)

5. Estimated heights in geopotential numbers (mm kGal)
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1 2 3 4 5

4 78B054 46 5832.3214 64 0304.4785 54.0130

4 01N161 A 44 1006.5698 61 5104.2318 123.8756

4 79L*0055 47 5428.0000 68 4408.0000 178.5672

Table 3.2: Table illustrates the method of storage of the station information in the GHOST

format

The GHOST data format also stores information on the stations in the levelling network

as shown in Table 3.2. There are a few important things that need to be noted with respect to

the unique station number. The first two characters of the station number indicate the year

in which it was installed; the third character, which is an alphabet, indicates the province in

which it is installed; and the rest of the characters indicate the station number.

In Table 3.2, three different types of station numbers are shown. The station number

shown in the first row indicates a stable and permanent benchmark, which is provided with

a marker and a description. The station number in the second row has an alphabet at the

end of the end of the station number indicating that the station has been floated. A station

is floated if it has significantly moved with respect to the other surrounding benchmarks; or

it has been dislocated by an earthquake, construction, or vandalism. The station number in

the thrid row has an ‘ * ’ mark in the fourth character, which indicates that the station is a

temporary benchmark, and so, it does not have a marker and a description in the field.

3.3 Solvability of levelling networks for heights and vertical velocities

In order to understand and justify the need for data processing it is essential to understand how

the solution of a kinematic levelling network works to estimate heights and vertical velocities

of the points in the network. It will be shown in this section that it is not a straight forward

problem of algebra, where the parameters are estimable when the number of equations are

more than (overdetermined solution) or equal (unique solution) to the number of parameters,

as in the case of a static levelling network.
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3.3.1 Review of terminology

Levelling is relative and hence, always done between a pair of points. The objective of levelling

is to find the heights of the points between which the observations are measured. The group of

points that are connected by levellings is called a network. The levelling networks, whose only

purpose is to estimate heights of the points in the network, are referred to as static levelling

networks. When the observations of the levelling network are repeated over time then the

repeated observations are referred to as relevellings. The levelling networks, whose purpose is

to estimate heights and their variations in time (velocities) of the points in the network, are

referred to as kinematic levelling networks.

When every observation of a static network is observed repeatedly over time then it will

be referred to as an ideal kinematic levelling network. If instead only a few observations in the

static network are observed again then it will be referred to as a scattered kinematic levelling

network. The following figures give a visual picture of the above.

3

1 2

(1) Ideal Network

3

t1 t4

1 2

(2) Scattered Network

Figure 3.1: Ideal and scattered kinematic levelling networks

3.3.2 Rules for solvability of kinematic levelling networks

Consider, the following three figures.

In Figure 3.2(1) the line 1 − 2 has been relevelled and hence, there are two observations

but four unknowns – height and velocity for 1 and 2 . In order to find the parameters of one

point the parameters of the other point should be fixed, because are only height differences

are available to estimate both heights and vertical velocities of the points. Now, consider

Figure 3.2(2), which is a triangle and all its sides have been relevelled. In this figure there

are six observations and six unknowns. Eventhough there are equal number of observations



Chapter 3 37

1 2

(1)

3

1 2

(2)

3

t1 t4

1 2

(3)

Figure 3.2: Illustration of solvability analysis

and unknowns presenting an unique solution situation, one height and one velocity need to

be fixed to have absolute heights and velocities relative to the fixed quantities.

Now, consider Figure 3.2(3), where there is only one relevelling between points 1 and 2

and there are two single levellings to point 3 . In this case, there are four observations and six

unknowns, but, as in the Figure 3.2(2) there is a rank deficiency of 2 because of the relative

measurement process. Since, there is only one relevelling line this case seeks special attention,

and so, the solution is explained step-by-step. Taking line 1 − 2 into consideration and solving

it like Figure 3.2(1). Then there are four known parameters – two fixed and two estimated,

which leaves the situation with two observations – 1 − 3 & 3 − 2 , and two unknowns – height

and vertical velocity of point 3 . At this juncture one important thing needs to be considered,

which is Is there velocity information in the given observations?.

Velocity information of a point in a kinematic network is available in two forms.

1. Relevellings

2. Two or more observations to a point from a solvable network observed in atleast two

different epochs. For example, in Figure 3.2(3) the solvable network would be the relev-

elling line 1 − 2 . Also, a careful look at the previous statement shows the emphasis on

observations at two or more different epochs. This is because, if there is/was deforma-

tion in that particular point of concern, then the observations will show a misclosure,

which will be significant apart from the errors. Hence, it will contribute to velocity

information.

Thus, Figure 3.2(3) presents the latter situation with two observations at different epochs.
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Hence, it is possible to determine height and velocity of point 3 with those two observations,

inspite of the fact that we do not have relevellings to 3 . So, the rank deficiency of Figure 3.2(3)

is also 2. This triangle will not be solvable if both the observations – 1 − 3 & 3 − 2 , had the

same time epoch of observation. The triangle of Figure 3.2(3) can be extended into a huge

network with only single levellings by making sure that every point has two connections at

different observation epochs.

3.3.3 Network with multiple rank deficiency

1

2
3 4

5

6

7

8

9

t1

t4 t2

Figure 3.3: A network with multiple rank deficiency

The above concepts are applied to a complex situation shown in Figure 3.3, where we

have multiple rank deficiency. The three triangles are solvable in themselves, and if done so

will have a rank deficiency of two for each triangle. Since combination of single levellings also

have velocity information, the network needs to be analysed for solvability taking the single

levellings into consideration. Now, triangle 1 − 2 − 3 has one connection each with the other

two triangles. Hence, there is no possibility of transmitting the velocity information to either

triangle as two single levelling connections are required to transmit the velocity information.

Therefore, triangle 1 − 2 − 3 will have two parameters fixed and either triangle 4 − 5 − 6 or

triangle 7 − 8 − 9 will have one parameter fixed. The third triangle need not be fixed for any

parameters as it has two connections to this integrated group of triangles. And finally, the

network will have a rank deficiency of 3, wherein the excess deficiency is referred to as excess

constraint datum parameter(s). One important observation has to be noted here: there are
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more equations (21) than the parameters (18) needed to be estimated. Therefore, a solvability

check has to be made before attempting a kinematic vertical datum solution.

In the above multiple rank deficiency example, there is a rank deficiency of three, which

is one more than for a network whose heights and vertical velocities can be estimated by a

minimum constraint datum solution. But this situation is different from the overconstraint

datum solution, because in an overconstraint situation there are enough observations to apply

a minimum constraint. The purpose of applying an overconstraint is mainly to fit the given

observations to a set of known co-ordinates. However, in the case of multiple rank deficiency

there is a data gap or lack of observations to perform a minimum constraint adjustment. So,

there are constraints in excess of what is ideal and hence, such solutions to multiple rank

deficiency problems will be referred to as excess constraint solutions. In an excess constraint

solution, if the constraints are close to true values then they will provide as good solutions as

a minimum constraint solution.

If the rank deficiency is more than 2, a choice can be made in fixing a combination of the

height and velocity parameters. For example, in the case of Figure 3.3, where there is a rank

deficiency of 3, a choice can be made to fix either two heights and one velocity or, one height

and two velocities. It will be advantageous to use the former choice as they are more easily

available, while the choice of fixing more than one velocity will make the datum dependent

on a priori geophysical/geodynamical models. This will be touched upon again in chapter 5

with some results from the levelling network.

3.4 Need for the processing of Canadian Precise Levelling Network data

The aim of this research, as stated before, is the definition of a kinematic vertical datum for a

levelling network for which the fundamental component is the relevellings in the network. So,

the data was analysed for finding out the relevelled lines in the network. The data analysis

for relevellings was performed at the section level, because if there are sufficient relevellings

in the network at the section level then both heights and velocities can be estimated for all

the available benchmarks (points) in the network. If the other levels of the data are chosen,

then the velocities of some of the benchmarks have to be estimated by interpolation methods.

In Figure 3.4 the relevellings at the section level of the data are shown. The relevellings are
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all over the network, but they are completely disconnected, which means that the network is

not an ideal kinematic levelling network.
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Figure 3.4: Relevellings in the network at the section level of the data

The scattered relevellings were expected of the network, because a review of the history

indicated that there were hardly any dedicated relevelling campaigns, and most of the relev-

ellings that are seen are mainly due to the maintenance measurements (cf. section 3.1). So, it

was decided to look into the higher level of the data, viz. at the line level of data. To analyse

at the level of the links will not make sense, because it is purely used for managerial purposes

(cf. section 3.2). In order to understand the implications of using line level of data, consider

Figure 3.5. In that figure, if the data is analysed at section level, then no relevellings will be

identified, because none of the sections have been revisited neither along the same route, nor

in a different route. But, if the same data were analysed at the line level, i.e., lines e1 and

e2 , then it will be found out that they are relevellings.

The line level of data was analysed with the year information present in the line identifica-

tion number(cf. section 3.2). This method, eventhough provided information on which lines
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Initial and end points of a line

Initial and end points of a section

e1

e2

Figure 3.5: Illustration of relevelling information at line level and at section level

are relevelled and those not, did not provide the complete solution. This is because of the two

major obstacles in the network: branching, and relevellings of the same line having different

line identification numbers. First, the lines with the same line identification number were all

segregated together and then they were compared with the other lines with the same unique

line identification number (cf. section 3.2). The lines were not continuous (continuous in the

sense of Figure 3.5) as they had some sections that were diverging out of the main levelling

route of the line. For example, the line showed in Figure 3.6 is a network in itself. So, these

kinds of lines cannot be compared at the line level. Also, some relevellings of the same line

had different line identification numbers at different epochs. An example of such an inconsis-

tency is shown in Figure 3.7, and the corresponding line numbers in Table 3.3. This made it

impossible to rely upon the information in the line identification numbers. So, it was futile

to do the processing at both the line and section level and hence, provided motivation and

justification to carry out other data processing methods.

3.5 Data Processing of the network

Data processing of the network consists of finding the intersection points between the lines;

removing loose ends; removing loops; and reduction of the levelling observations based on the

time-tagging. This is a crucial step in the whole levelling network analysis as this step tries to

manipulate and exploit all the available vertical motion information. In doing so the methods

alter the geometry of the network and hence, the methods must be evaluated and validated

before they are applied to the field data. In this section and the following section the data
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A levelling line with all kinds of abnormal branching
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A levelling line with a loop as a branch

Figure 3.6: Branching in levelling lines. The different coloured lines show the different

branches of a levelling line route. In the first figure the levelling line does not follow a

particular route, but forms a network in itself.
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Yellow Green Red

056L15250251 085L19190248 255L54540109

255L54550145

255L54680101C

255L54690144C

255L54700146

255L54710385A

255L54710385B

255L54720386A

255L54730387B

255L54740388B

255L54750097A

255L54790151B

255L54790151C

255L54790151D

255L54830501A

255L54830501B

255L54870548

255L54960600

Table 3.3: Line numbers for the Figure 3.7
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Location of the lines in the whole network
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Three different line numbers for the same levelling line

Figure 3.7: Abnormality in line numbering. Here, all the three colours, red, yellow, and green

are observations of the same levelling line but they have been given different line numbers in

the dataset.
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processing methods and their validity will be discussed.

3.5.1 Finding intersection points

To explain the process of finding the intersection points in the network, Figure 3.8 is taken as

an example. In Figure 3.8(1) lines e2 , e3 and e4 are relevellings of parts of line e1 , and line

e5 is a relevelling of line e3 (with the individual numbers denoting the intersection points

between the lines). In the Figure 3.8(2), the lines e1 and e3 after the algorithm is applied

are depicted.

For every line a matrix is drawn with the column space indicating the points that form the

line and the row space indicating the number of connections that the line has with other lines.

For example, the matrix for e1 will have 8 points through the column and 3 lines through

the row (an 8×3 matrix). Then in each column of the matrix the line number is written in

the row of the common point. The completed matrix is sent through an iteration where the

line is broken at first and last non-zeros in the column with any intermediate non-zero(s) in

between then retained. At the end of the iteration the line is broken as per the connections

of the line. The above procedure is demonstrated for the line in Figure 3.8(1).


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







1 e2 0 0

2 e2 0 0

3 e2 0 0

4 e2 0 0

5 0 e3 0

6 0 0 e4

7 0 0 e4

8 0 e3 0











































→


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











1 e2 0 0

2 e2 0 0

3 e2 0 0

4 e2 0 0

















+




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

 +





5 0 e3 0

6 0 0 e4


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

 +




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



When this matrix is sent through the iteration mentioned before the line is broken into

two in the first iteration: one line from points 1 to 4 and the other from 4 to 8. In the next

iteration the line is broken into three: one line from 1 to 4, next from from 4 to 5 and the
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third from 5 to 8. In the third and last iteration the line from 5 to 8 is broken down into

three more, which are 5 to 6; 6 to 7; and 7 to 8.

Similarly for line e3 the matrix will be
















5 e1 0

9 0 e5

10 0 e5

8 e1 0

















→





5 e1 0

9 0 e5



 +





9 0 e5

10 0 e5



 +





10 0 e5

8 e1 0





and the broken lines will be 5 to 9; 9 to 10; and 10 to 8. Thus the number of iterations for

each matrix is equal to the row space of the matrix.
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(1) Levelling line before finding intersection points

e11
e12

e13

e14 e15

e31 e32

e331

2

3
4

5

6

7
8

(2) Levelling line segmented at the intersection

points identified

Figure 3.8: An example for the intersection point recognizing algorithm

3.5.2 Removing open lines and loops

Open lines and loops are illustrated in Figure 3.9. Open lines are those lines, whose initial

or end points have no other connections to them. For example, in the case of the network

in Figure 3.9 the open line would be c-f, and f is the point that has no other connections

other than the line c-f. Open lines occur frequently in levelling networks, because there is

always a requirement for a tide gauge, a permanent GPS station, or a height control point

for a construction site e.g., (dam, nuclear plant, bridge, industry, etc.) to be connected to the

precise levelling network (personal communication with Mr. Véronneau).

Open lines are ought to be removed as they do not serve any purpose in the least squares

adjustment of the network. The reason being that since one of the end points is not con-

nected to any other line in the network, there is no redundancy involved at that point. And,

redundancy is the holy grail of a least squares adjustment, which provides a proper check on

the observations for the height value estimated for that point. Also, if such observations are

removed from the network they will not have an impact in the outcome of the results.
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Loops are those lines that start and end at the same point, whilst all the points forming

the sections within those lines will have exactly two connections, for example, Figure 2.2.

Loops are either an artefact of improper network design and planning, or done on purpose

to do some local checks on the observation quality. The reason for removing loops are that

when parametric least squares is used for estimation of the parameters, it will be impossble

to represent the loop equation in the design matrix, and hence the normal matrix. Loops can

be retained only if adjustment of condition equations is followed as they will provide a sound

check for the point and observation in the loop, for example, the point e and the associated

loop in Figure 3.9.

a

b
c

d

e

f

open line

loop

Figure 3.9: Illustration of the open line and loop in a levelling network

3.5.3 Reduction of levelling observations

It is recalled that in a kinematic levelling network the observations within a given epoch are

assumed static (cf. section 2.5.2). This is the discretization of the continuous secular trend

of the velocity signal. That is why relevelling observations taken within the same epoch do

not provide any velocity information. Also, from solvability analysis it was elucidated that

if a point in the network has observations through it only in one epoch then it does not

allow the parameterization of velocity parameter for that particular point (cf. section 3.3).

Further, this is a bottleneck for the adjustment and estimation of heights and velocities as

these parameters have to be fixed with constants thereby increasing the excess constraints.

In the reduction process it is sought to eliminate these excess constraints or, in the worst
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(2) Network after Reduction

Figure 3.10: Illustration of Reduction process

cases to reduce the number of overconstriants in the network. So, first all the bottlenecks, i.e.

the points whose incident observations were observed only in one epoch, are identified. Since

all the observations in the same epoch are static, all the observations through each of those

points can be combined and new pseudo-observations can be formed. This is referred to as

reduction, which is borrowed from levelling network adjustment terminology and redefined.

In static levelling network adjustment this procedure is applied to observations, which are in

the middle of a long levelling line and are connected exactly by two observations – one at the

initial point and the other at the end point of the observation. For example, in Figure 3.5 if

all the intermediate white dots between the two black dots are combined to form two single

levelling lines then this procedure would be called reduction in the classical sense.

Here, instead of sticking to observations that had only two connections, one at the initial

point and one at the end point, observations with multiple connections are also considered

for reduction. The reduction process algorithm that has been implemented for this research

follows the following steps,

1. find and remove loops

2. find and remove open lines

3. find all points in the network that were visited by observations only in one

epoch

4. for i = 1 to p (the number of points from previous step)
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4.1 combine all the observations meeting at point i -- C2
n

4.2 check if the combined lines already exist in the observations with the

same epoch

4.2.1 if yes throw the pseudo-observation away

4.2.2 else add and update the observation table

end for loop

5. remove all points with their observations from step 3 that are still present

after reduction

The above algorithm is explained with the Figure 3.10 in which Figure 3.10(1) has already

been explained previously. Now, in Figure 3.11(1) only point 5 has been visited by obser-

vations in only one epoch – t1. So, only the observations passing through this point will be

reduced by the algorithm: lines 1 -5, 4 -5, and 5 -6 observed in epoch t1. The number of com-

binations will be equal to C2
3, which is 3, and the combinations are 1 -4, 1 -6, and 4 -6 all with

observation epoch t1. Of these combinations line 1 -6 with observation epoch t1 already exists

in the network hence, it is rejected, but the other two combinations (pseudo-observations)

are accepted. Thus, the reduced network looks like the Figure 3.10(2). Now, there are a few

positive additions to the network, which are

a) a new relevelling line is formed – line 4 -6.

b) a new observation is added – line 1 -4.

This reduction process reduces the number of excess constraints in the network and also, im-

proves the redundancy in the network. In the above example, the number of excess constraints

was reduced from 1 to 0 and the redundancy has improved from 0 to 2. This algorithm was

applied to the levelling network in the study region. The resultant statistics of the network

are shown in the next section.

3.6 Network configuration at various stages of data processing

The three figures in Figure 3.11 show the raw network, network after processing for intersection

points and network after reduction of observations. Physically all three networks are the
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(2) Network after finding the intersection points
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same in the sense that no new field observations were added to the raw network, but they are

topologically different. This difference in topology changes the entire scenario of adjustment as

the error estimates of the parameters and the weighting of the observations completely depend

on the topology of the network. The latter is because, the observations are combined to reduce

the number of parameters during the reduction process and hence, also their corresponding

variances. Also, in the reduced network a lot of pseudo-observations are generated because of

the C2
n combinations at each point whose observations all have the same year of observation.

When 26n63 (n - degree of vertex of a point) the reduction process generates the same

number of observations that were present before reduction. But, when n is any bigger than

that then the reduction process will generate a lot more pseudo-observations than what has

been observed. This phenomenon in the original network is shown in the following figures.

In Figure 3.12(3), when compared to Figure 3.12(2), there are a lot of pseudo-observations

formed just by using the combination C2
n in the reduction algorithm. In one sense it is good to

have more observations, but they are just combinations of original data and connecting points

that were not directly connected by observations taken in the field. The justification for such

a method comes from a need to reduce the parameters that are being estimated rather than

anything else. Further, the extra observations add redundancy and stabilize the inverse of the

normal matrix. To prove the last point a simple example is sought for elucidation.

3.6.1 Equivalence of estimated parameters from networks before and after re-

duction

In order to elucidate the physical equivalence and the topological non-equivalence of the

networks before and after reduction, observations were simulated for the networks shown in

Figure 3.13. The observations were simulated by assuming the following velocities for those

points in the network.

Further, the loop misclosures for the simulated observations were kept within 4
√

K mm
√

km,

where K is the distance in km. A kinematic adjustment and a static adjustment were per-

formed to demonstrate the physical equivalence of the networks before and after reduction.
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(3) Network after reduction process

Figure 3.11: Raw network and network at various stages of data processing

S.No. Velocities

mm/yr

1. 6.0

2. 6.0

3. 6.2

4. 6.5

5. 4.3

6. 5.0

Table 3.4: Velocity at each height point
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(1) Area with excess pseudo-observations is highlighted
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(2) After finding intersection points
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(3) After network reduction

Figure 3.12: Figure shows the excess pseudo-observations after network reduction
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Figure 3.13: Simulated examples to show the equivalence of the network estimates before and

after reduction.
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Network Observations Parameters Rank Defect Datum points

Before Reduction 11 12 9 1 (height) and 2 and 5 (velocity)

After Reduction 11 10 8 1 (height) and 5 (velocity)

Points Before reduction After reduction

m m

3 1.712 ± 0.026 1.712 ± 0.019

4 1.431 ± 0.029 1.427 ± 0.021

5 19.359 ± 0.032 19.351 ± 0.024

6 21.196 ± 0.024 21.195 ± 0.017

Table 3.5: Height estimates of points

From the results shown in Tables 3.5, 3.6, and 3.7, it can be seen that the values of

the points before and after reduction do change, but not drastically. The changes are very

minimal, and it can be said that both the networks are physically equivalent eventhough

topologically non-equivalent. Also, it can be observed that the values from the reduced

network approach the originally assumed values.

3.6.2 Heights estimated from networks before and after reduction process

In order to prove the equivalence of the networks before and after reduction for the levelling

network used for this research, the networks before and after reduction were considered as

static networks and the height values of the points in the network were estimated. Only a

static adjustment of these networks is possible, because the original network had too many
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Points Before reduction After reduction

mm/yr mm/yr

1 5.5 ± 0.5 5.7 ± 0.4

3 5.8 ± 0.4 6.0 ± 0.3

4 6.2 ± 0.4 6.3 ± 0.3

6 4.7 ± 0.4 4.8 ± 0.3

Table 3.6: Velocity estimates of points

Points Before reduction After reduction

m m

3 1.705 ± 0.027 1.693 ± 0.021

4 1.411 ± 0.031 1.399 ± 0.030

5 19.412 ± 0.030 19.422 ± 0.027

6 21.236 ± 0.023 21.250 ± 0.020

Table 3.7: Height estimates of points from static adjustment
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excess constraints (cf. Table 3.8) and it would not be meaningful to fix all those values given

the size of the network.

Network type Observations Parameters Rank Defect

Before reduction 3324 3422 560

After reduction 3730 2292 24

Table 3.8: Observations, parameters, and rank defect of the networks before and after reduc-

tion; considering them as kinematic levelling networks
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Figure 3.14: Plot of the differences in height estimates from networks after applying the

reduction process and after finding the intersection points

The results of the tests from the static levelling networks indicate that the height esti-

mates do not differ by much. Especially, in Figures 3.14 and 3.15, the difference values are

concentrated between ±10mm. Considering the size of the network the differences are very

small. The differences in the estimates come from, as mentioned previously, the change in

topology of the network.
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Figure 3.15: Histogram of the differences in height estimates from networks after applying

the reduction process and after finding the intersection points

3.7 Relevellings at various stages of processing

In the Figures 3.4, 3.16(1), and 3.16(2), the relevellings before any processing was done is

shown in addition to relevellings after finding out the intersection points and relevellings after

reduction of the network. A closer look at the figures reveals that after every processing stage

the length of the relevelling lines seems to be growing, but also with the addition of a few (in

the southeast corner of the network in Figure 3.16(2)) after network reduction. This addition

is due to the generation of pseudo-observations after network reduction (cf. section 3.5.3).

Thus, the processing of the observations has helped in the following ways:

1. it combined the observations through points that were all observed only in one epoch

thereby reducing the parameters needed to be estimated and the excess constraints

needed to be fixed; and

2. the combination of observations brought out the hidden relevelling information and

provided strength to the estimation of crustal motion.

3.8 Chapter summary

The chapter focussed on bringing the observations to ready-to-adjust format. The important

points that have to be noted in this chapter are as follows:
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(1) Relevellings in the network after finding the intersection points
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(2) Relevellings in the network after reduction process

Figure 3.16: Relevellings in the network from the raw data and at various stages of data

processing
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1. a review of the levelling network history revealed that no effort was made to perform

relevelling over the entire network, but the heartening fact is that the accuracy of the

observations are homogeneous with the range being (4
√

K – 0–2
√

K) mm;

2. the data storage format revealed the location of relevelling in the dataset, however, it

was not sufficient for retrieving them from the dataset;

3. the network in its original form gave an underdetermined problem, which was over-

come by applying three different data processing steps, viz., finding intersection points,

removing loops and open lines, and reduction;

4. the reduction process improved the situation from a rank deficiency of 560 to a rank

deficiency of 24, thus bringing the rank deficiency to manageable proportion; and

5. since the reduction process changed the topology of the network, the networks before and

after reduction were shown to be equivalent by estimating heights from static adjustment

of either network.
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Pre-adjustment Analysis of the Levelling Network

4.1 Graph theory: A brief overview

Graph theory deals with the analysis of graphs. A graph G(V,E) is defined as a set of vertices

V {v1, v2, . . . , vn} connected by a set of edges E{e1, e2, . . . , em}. In other words, a graph is a

geometric structure defined for a set of vertices (points) by the interconnecting edges (lines

or arcs). The structure of the connections between the vertices enabled by the edges is called

the topology of the graph. Graphs are broadly classified into directed graphs or digraphs, and

undirected graphs. The classification is based on whether the edges connecting the vertices

are oriented in direction or not, as shown in Figure 4.1. A digraph is also referred to as a

network especially, when the edges carry a quantitative significance to them. For example,

pipeline networks, transportation networks, social networks, geodetic networks, etc.

Also, there are other types of classifications of graphs that are common to both undirected

and directed graphs: simple graphs, multigraphs, complete graphs, and regular graphs. A

multigraph is a graph, where a pair of vertices have multiple edges connecting them and/or

have loops in them. For example Figure 4.1(3) is a multigraph in which edges e3 and e8 are

multiple edges of the pair of vertices v3 and v4. Further, edge e9 is loop at vertex v1. A

simple graph is a graph that does not have any multiple edges or loops. Figures 4.1(1) and

4.1(2) are examples of a simple graph. A complete graph is a graph in which every vertex is

connected to every other vertex in the graph. A triangle is a simple example of a complete

graph, where every vertex of a triangle is connected to every other vertex. A regular graph

is a graph where every vertex has equal number of connections. A rectangle, triangle, or in

general, a polygon is an example of a regular graph where every vertex has two connections.

It should be noted that every complete graph is a regular graph.

4.1.1 Degree of vertex

The term connections in the above paragraph was used to mention the number of edges (lines)

culminating or starting at a vertex. This is referred to as the degree of vertex in graph theory,
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Figure 4.1: Types of graphs
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and these two terms, connections and degree of vertex, will be hereafter used interchangeably.

For example, in Figure 4.1(1) vertex v3 has a degree of vertex of 4 as there are four edges

starting from or culminating into it. In addition, the starting point of a node will be referred

to as from point and the culminating or end point of an edge will be referred to as to point.

This from-and-to information is relevant and important only in the case of directed graphs as

directions are considered.

4.1.2 Representations of graphs

Graphs are commonly represented in three different ways, which are edge-node list, adjacency

matrix and incidence matrix. Edge-node lists are more suited for storage purposes, while

adjacency and incidence matrices are well suited for computational purposes. Here, the three

different representations of Figures 4.1(1) and 4.1(2) are given.

Edge-node lists

Edge From point To point

e1 v2 v1

e2 v3 v2

e3 v4 v3

e4 v5 v4

e5 v1 v5

e6 v3 v1

e7 v5 v3

Table 4.1: Edge-node list of the directed graph of Figure 4.1(2). For the undirected graph

of Figure 4.1(1), the list will be the same except for the fact that the directions will have no

meaning and are interchangeable.



Chapter 4 63

Adjacency matrices

The matrix representations need some more explanation. First, the adjacency matrix is dealt

with. The adjacency matrix is a square matrix with the dimensions of the number of points

in the graph n×n. The matrix contains entries of only 0 and 1, where 0 indicates the points

are not connected by a line, or in other words, the points are not adjacent. And, an entry of

1 indicates that the pair of points are connected/adjacent. In the case of an undirected graph

the adjacency matrix has entries in cells vivj as well as vjvi, and hence, the adjacency matrix

is a symmetric matrix for the undirected case. In the case of a directed graph, the adjacency

matrix has a entry for vivj if there is a line connecting i and j starting from the former and

ending at the latter points. There will be an entry for vjvi only if there is a line starting from

j and ending at i. Hence, the adjacency matrix of a directed graph is not symmetric.

Adjacency matrix of an undirected graph Adjacency matrix of a directed graph





























v1 v2 v3 v4 v5

v1 0 1 1 0 1

v2 1 0 1 0 0

v3 1 1 0 1 1

v4 0 0 1 0 1

v5 1 0 1 1 0

























































v1 v2 v3 v4 v5

v1 0 0 0 0 1

v2 1 0 0 0 0

v3 1 1 0 0 0

v4 0 0 1 0 0

v5 0 0 1 1 0





























A careful look at the matrices would indicate that the diagonal elements are all zero

suggesting that the points are not connected to themselves by a line. However, if there is a

loop at one of those points then the diagonal entry has a 1 for that particular point.

Incidence matrices

The incidence matrix is a rectangular matrix with the dimensions of the rows equivalent to

the number of lines and the columns equivalent to the number of points in the graph – a m×n

matrix. The entries of the matrix comprise of −1, 0, and 1 for a directed graph, and 0 and 1

for a undirected graph. The word incident refers to the fact that the points are incident upon

the line. Hence, an entry of 1 in the matrix indicates the points are incident in that particular

line. This further implies that every row has a pair of entries in the case of graph with lines.
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If there are arc lines, and the arc lines are described/formed by more than a pair of points,

then each row has more than two entries. Also, if there are loops in the graph then there is

only one entry in that particular row indicating that only one point is incident upon the line.

For the directed graph case, −1 entry indicates the from point and 1 indicates the to point.

Incidence matrix of an undirected graph Incidence matrix of a directed graph


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
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











v1 v2 v3 v4 v5

e1 1 1 0 0 0

e2 0 1 1 0 0

e3 0 0 1 1 0

e4 0 0 0 1 1

e5 1 0 0 0 1

e6 1 0 1 0 0

e7 0 0 1 0 1


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v1 v2 v3 v4 v5

e1 1 −1 0 0 0

e2 0 1 −1 0 0

e3 0 0 1 −1 0

e4 0 0 0 1 −1

e5 −1 0 0 0 1

e6 1 0 −1 0 0

e7 0 0 1 0 −1
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Properties of the adjacency and incidence matrices

The main interests of this research lies in the properties of the adjacency and incidence

matrices of the undirected graphs; and incidence matrices of the digraphs, and hence, only

these will be discussed. The properties of the above mentioned matrices are given as follows,

• The column and row sums of the adjacency matrices, and the column sum of the inci-

dence matrices of undirected graphs give the degree of vertex of the set of points in the

graphs.

• The incidence matrix of a directed and an undirected graph always have a column rank

deficiency of 1.

• The adjacency matrix of an undirected and a digraph is of full rank.

• Both the incidence and adjacency matrices of any graph are sparse matrices.
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Relationship between the adjacency and incidence matrices

Let A be the adjacency matrix and I be the incidence matrix. Then A and I are related in

the following manner,

A = D − I
T
I (4.1)

L(G) = I
T
I , (4.2)

where

L(G) is called the Laplacian of the graph and is the inner product of the incidence matrix,

and

D is a diagonal matrix containing the degree of vertices as its diagonal entries.

The above relationship is true only for the incidence matrices of the undirected graphs. It

is also true for incidence matrices of the digraphs, but the resultant adjacency matrices are the

adjacency matrices of the underlying undirected graph of a digraph1. Equation (4.1) implies

that provided the incidence matrix of any graph, the adjacency matrix of the underlying

undirected graph can be constructed. In addition to that, the Laplacian matrix and its

variants formed from the inner product of the incidence matrix are used in the spectral analysis

of graphs.

4.2 A detailed excursion through least squares adjustment of a levelling

network

In this section a link will be made between graph theory and least squares adjustment of a

levelling network. Also, a link will be created to the sections following in order to emphasize

the importance of looking into the statistics before attempting an adjustment of the levelling

network. To illustrate the adjustment by least squares Figure 4.1(2) is considered as a levelling

network here. For reasons of simplicity, the points will only be referred to in the mathematical

equations below without the prefix v. Recalling the levelling observation equation given by,

∆Hij = Hj − Hi + ǫ , (4.3)

1For every digraph there is an underlying undirected graph obtained by removing the directions of the

digraph
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where

ǫ is the unknown error term in the observation.

Applying this observation equation to the entire network in Figure 4.1(2) will give us the

following set of equations,

e1 = H1 − H2 + ǫ1

e2 = H2 − H3 + ǫ2

e3 = H3 − H4 + ǫ3

e4 = H4 − H5 + ǫ4

e5 = H5 − H1 + ǫ5

e6 = H1 − H3 + ǫ6

e7 = H3 − H5 + ǫ7 .

Writing the above equations in matrix format will give us,
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. (4.4)

Representing the observations with ∆H and the parameters as H the equation (4.4) can be

written in a simpler form, which becomes,

∆H = AH + ǫ , (4.5)

where

A is called the design matrix.

The A matrix is an exact replica of the incidence matrix mentioned in section 4.1.2 of

the Figure 4.1(2). Also, (4.5) is the linear equation as in (2.15), which is again solved by

the linear equality constrained least squares as the incidence matrix is rank deficient (cf.
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section 2.4). The solution is given by equation (2.19), which is recalled here and replaced by

the appropriate terms for observations and parameters.

Ĥ = (AT A + DDT )−1(AT∆H + Dc) , (4.6)

where

D is the datum matrix. The equation (4.6) is applicable only if the datum matrix method

is used. If the constraints are applied to the observations prior to the estimation of parame-

ters then appropriate number of columns are removed from the design matrix. This can be

mathematically expressed as follows;

applying the constraints to the observations prior to estimation

∆H ′ = ∆H − ADc ; (4.7)

removing the appropriate number of columns from the design matrix – in the static levelling

case one column is removed,

A → A′ ;

then the solution to equation (4.5) becomes,

Ĥ = (A′T A′)−1(A′T∆H ′) . (4.8)

If the observations are provided with weights then the solutions (4.6) and (4.8) become,

Ĥ = (AT P A + DDT )−1(AT P∆H + Dc) (4.9)

Ĥ = (A′T P A′)−1(A′T P∆H ′) , (4.10)

where

P is the weight matrix.

The terms (AT A + DDT ), (A′T A′), (AT P A + DDT ), and (A′T P A′) are the normal

matrices of the equations (4.6), (4.8), (4.9), and (4.10) respectively. The terms (AT A), (A′T A′), (AT P A),

are the Laplacian and weighted Laplacian (if the weight matrix P is involved) matrices, and

hence, involve the degree of vertices of the points in the network and adjacency matrix as

well. However, the point of interest is the degree of vertices.
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The advantage of using least squares is that it provides estimates of the variances of the

estimates. The error variances for the solutions in equations (4.6), (4.8), (4.9), and (4.10) are

respectively,

Q
Ĥ

= (AT A + DDT )−1 (4.11)

Q
Ĥ

= (A′T A′)−1 (4.12)

Q
Ĥ

= (AT P A + DDT )−1 (4.13)

Q
Ĥ

= (A′T P A′)−1 , (4.14)

where

Q
Ĥ

is the variance-covariance matrix of the estimates. This variance-covariance of the esti-

mates involves the Laplacian, and its weighted variant, matrix of the network. In the case of

column removal approach of estimation, the variance-covariance matrix is the direct inverse

of the Laplacian of the network devoid of the row and column of the point whose column is

removed from the incidence (design) matrix. This relationship between graph theory and lev-

elling network adjustment is brought out here to emphasize that the degree of vertex dictates

the variance-covariance estimates of the parameters. According to Strang (1986), the higher

the values of the diagonal elements when compared to the off-diagonal elements, the more

stable is the inverse of the matrix. Thus, an analysis of the degree of vertices will give a priori

information about the stability of the inverse. Also, the degree of vertex of a point indicates

the response of the point to the least squares adjustment as a higher number of observations

leading to a point provide better check on the estimated height values at that point.

The geodetic literature indicates that there have been a few attempts in utilizing graph

theory to solve geodetic problems in the vertical (Snay, 1978), horizontal (Grafarend & Mader,

1989), three-dimensional (Even-Tzur, 2001), and solvability of kinematic levelling networks

(Kleijer et al., 2001). Linkwitz (1999) provides a complete overview of network analysis by

starting off with the role of graph theory in such an analysis. Further, Borre (2001) provides

a comprehensive overview of the spectral analysis of the normal matrix of a network both

from a graph theoretical point of view as well as from the geodetic network analysis point of

view. The role of graph theory should not be overestimated, because it is only an efficient

and effective tool for the intuitive understanding of the character of a network.

The above ideas can also be extended to the kinematic levelling network. Recalling the
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kinematic observation equation model (2.24) from section 2.5.1,

∆Hij(tk) = Hj(t0) − Hi(t0) + (vj − vi)(tk − t0) + ǫ

For reasons of simplicity and better understanding the ∆t0 term has been neglected and

assumed as constant. Applying this model to the Figure 3.13(2), which is illustrated here in

Figure 4.2 again for reasons of clarity.

1

3

4

56

t1
t2

t3

t4

t1

t1

t3

t4

t2

t1
t4

Figure 4.2: Illustration for explaining the kinematic levelling network design matrix
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(4.15)

In equation (4.15) there is a partition to indicate one part of the design matrix refers to

the height part of the matrix and the other part refers to the velocity part of the matrix.

Hereafter, the height part of the matrix will be represented as AH and the velocity part of

the matrix will be represented as Av. Rewriting equation (4.15),

∆H(t) =
[

AH|Av
]
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+ ǫ (4.16)
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Both the matrices, AH and Av, are the incidence matrices of the multigraph underlying the

network, but Av is a product of a diagonal matrix of the time epochs of the observations and

the incidence matrix. This is shown in the following equation,

Av =
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(4.17)

Av = TAH (4.18)

Rewriting equation (4.15) with equation (4.18),

∆H(t) =
[

AH|TAH
]
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(4.19)

Henceforth,
[

AH|TAH
]

is represented as A and
[

HT vT
]

is represented as H . Therefore,

equation (4.19) is rewritten as,

∆H(t) = AH (4.20)

Applying least squares solution as in equation (4.5), the same result as in equations (4.6),

(4.8), (4.9), and (4.10) will be obtained. So, again focussing on the inner product of the design
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matrix of the kinematic levelling network, it can be expanded as follows,

AT A =
[

AHT |AHT
T T

]T
[

AH|TAH
]

(4.21)
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Here, it can be seen that all the four elements of the expanded inner product of the kinematic

levelling network design matrix are Laplacian and its variant matrices. These Laplacian

matrices are the Laplacian of the incidence matrix of the underlying multigraph of the network.

Here, the variants of the Laplacian are weighted by the epoch of observation: in some cases

it is epoch and in others it is square of the epoch. Thus, the role of the degree of vertices in

the stable inverse of the normal matrix for the kinematic levelling network is explained.

4.3 Statistics of the levelling network

The following statistics of the network are presented in this section.

1. Number of observations in a relevelling line.

2. Number of the different epochs of observations at each point in the network.

3. Time interval between the first and the last observation in a relevelling line.

4. Length of levelling lines before and after reduction.

5. Degree of vertices.

6. Time interval between the first and last observations through each point in the network.

All these statistics will provide a good characterization of the network in terms of its strengths

and weaknesses, and further enabling a rigorous analysis of the results from least squares

estimation of parameters. Again, the value of these statistics should not be overestimated as

they provide only an intuitive understanding of the network.
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Figure 4.3: Histogram of the number of relevellings of the relevelled levelling lines

4.3.1 Number of observations in the relevelling lines

This statistic provides information on how often the observations have been repeated in the

network for the purpose of vertical crustal motion determination. In the Figure 4.3 it can be

clearly seen that the number of observations for a relevelling line is predominantly 2, which

indicates that it can only give velocities and also, these velocities cannot be checked for their

accelerations if any or, if they are only secular over time. It can be recalled that this was one

of the reasons why a linear model (section 2.5.1) was chosen for modelling the vertical crustal

motion.

4.3.2 Number of the different epochs of observations at each point in the network

This statistic is similar to the previous one, but it differs only in that it emphasizes on the

other form of velocity information in the network, i.e., the information in the single levelling

observations observed at different epochs and incident at a point in the network. Again, it is

clearly seen that the points all have been visited by observations only in two different epochs.

This again indicates that only velocities can be estimated and they cannot be checked for

their accelerated trend, if any, in the region.
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Figure 4.4: Histogram of the number of years (epochs) in which the observations were observed

through each point in the network
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Figure 4.5: Histogram of the time interval between the epochs of observation in the relevelling

lines
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4.3.3 Time interval between epochs of observation in the relevelling lines

This statistic provides information about the time resolution available in the network: bigger

the time resolution easier the identification of velocities. Considering the accuracy of levelling

observations (minimum of 4
√

Kmm
√

km) and the rate of vertical crustal motion (in mm/year),

it can be said that in order get meaningful velocities from the relevellings the time interval

must be a minimum of 10 years. Eventhough 1 year would be sufficient enough theoretically,

the velocity estimates will not be reliable. An analogy would be the rounding off the decimal

places, where when only three decimal digits are required it is always good practice to round

off at the fourth or even the fifth digit. Figure 4.5 shows a rather uniform distribution of the

time intervals 0-5, 6-10, 11-20, and 21-30. After that the numbers become insignificant. The

histogram shows that more than 80% of the time intervals are close to 10 years or more. This

indicates that the relevellings will more often provide us a signal (velocities) rather than noise

(errors), because of a good time resolution.

4.3.4 Length of levelling lines before and after reduction

This statistic provides an insight into the global or local nature of the signal that has been

estimated from the network. Also, it indicates the homogeneity of the network geometry. In

this case fig. 4.6(1) shows a predominantly homogeneous network of shorter levelling lines

before reduction whereas, after reduction the network shows a lot more inhomogeneity than

that was present before, fig. 4.6(2). This can be attributed to the combining nature of the

reduction algorithm.

4.3.5 Degree of vertices

Degree of vertex of a point in a network is the number of observations observed through

that point. The analysis of the degree of vertices of the network provides a clear insight into

the robustness of the network towards errors in the observations. If the points of a height

network have more than two observations observed through them then it can be presumed

that the parameters associated with that point will be estimated with better accuracy. This

comes from the fact that the variance-covariance matrix of the estimates is the inverse of the

weighted Laplacian matrix, and the Laplacian matrix is a variant of the adjacency matrix.
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Figure 4.6: Histograms of length of levelling lines before and after reduction
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The adjacency matrix depicts the connectedness of each point in a network of the levelling

type.

Qx̂ = (AT P A)−1 , (4.23)

where

Qx̂ is the variance-covariance matrix of the parameter estimates,

A is the design matrix with no rank defect, and

P is the weight matrix of the observations, and here, it is the inverse of variance-covariance

matrix of the observations.

The histograms (Figures 4.7(1) and 4.7(2)) and the spatial plots (Figures 4.8(1) and 4.8(2))

of the degree of vertices of the network are shown. The histogram provides a quantitative

overview of the predominant degree of vertex of the points in the network while the spatial

plot of the degree of vertex shows how they are distributed in the network. In both figures the

network replete of the relevellings is also taken into account, because only this configuration

determines the geometric strength of the network and hence, controls error variances of the

estimates. The plots with the relevellings added to them are just to show how different the

degree of vertices of the network looks after adding those relevellings.

The distribution of the degree of vertex of the network without relevellings ranges from 2

to 10, and after that it dies out. A similar pattern can be observed in the case with relevellings.

Also, the predominant degrees of vertex are 3 and 5 in the without and with relevellings cases

respectively. This goes to show that the network has good geometric strength. The spatial

distribution plot of the same for both cases supports the above reasoning. However, there is

cause for concern as obvious from Figure 4.7(1).

The cause for concern is that there are atleast two hundred points (out of 1146, which is

close to 20%) that have a degree of vertex of only two in the network without relevellings.

This shows that there is no strong redundancy check for these points except for the fact that

they are in the network. Such points sometimes do not make it into loop circuits as they might

be weak connections between two big or small networks. So, a review of the spatial plot of

only the degree 2 vertices is done with Figure 4.9. The plot indicates no such problems, and

also, indicates that it is distributed all over the network. Further, most of them are present

in loop circuits, which provide those points with adequate check for errors. The ones that
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Figure 4.7: Histograms of the degree of vertices of the network points without and with

relevellings taken into consideration
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Figure 4.8: Spatial plots of the degree of vertices of the network point without and with

relevellings taken into consideration. The degree of vertices of the network points without

relevellings determine the response of the network to the adjustment.
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Figure 4.9: Spatial distribution of the degree 2 vertices in the network. The degree 2 vertices

are spread out all over the network, and also substantial in quantity.
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are critical are all located on the tail portion of the network in the northwest corner that is

extending in the southwestern direction.

Apart from the above concern, the entire network is filled with very good degree of vertex

interspersed by minimum degree of vertex (2) and other higher values. This shows that the

network is close to homogeneity in terms of degree of vertex. However, the southern most part

of the network does not share this homogeneity as a brown streak can be seen indicating very

high degree of vertex in that region. This is due to the combination effect explained in section

3.6. It is the presumption and expectation of the author that such a kind of inhomogeneity

will show up in the error estimates of the parameters.

4.3.6 Time interval between the first and last observations through each point

in the network

The kinematic height model used here is recalled for reasons of clarity, which is given as,

Hp(tk) = Hp(t0) + vp∆t ,

where

Hp is the height of a point p,

vp is the height velocity of point p, and

∆t = tk − t0 is the time difference between the reference epoch and the observation epoch.

This model was compared with the equation of a line, and it is recalled again here for

reasons of clarity. The abscissa in the adjustment model is the time, ordinate is the height

of the point, the slope is the vertical velocity, and the constant is the height value at the

reference epoch. If the pairs of values of the abscissa and the ordinate are known, it is

possible to determine the equation of the line. The equation of the line is defined by m

(velocity v) and c (height at t0). If the errors in the values of the ordinates are equivalent

to the value of the slope then it is common sense that larger abscissa intervals are required

to determine the slope value. In other words, if the slope of the line is too flat then we need

higher abscissa intervals to find out the change in ordinate values.

It is exactly the same situation that is dealt with in here. The heights determined via

spirit levelling have a precision of millimetre and the velocities have a magnitude of mm/year.

This means that a larger time interval is required for the determination of velocities from
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Figure 4.10: Spatial plot of the time difference, ∆t, between the first and the last observations

through each point in the network
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height differences. Thus, in the present case the retrieval of velocity information at a point

depends on the time interval between the first and last observations through that point. It

depends only on this time interval, because the first and the last times of observation provide

a boundary for the velocity information content at that point.

In the spatial plot of the time interval (Figure 4.10) it can be seen that there is a mixed

distribution of the time interval values. However, the time interval values are predominantly

in the cyan and blue zone of the colorbar. This is proven by the histogram plot (Figure

4.11), where the predominant values are concentrated between 1 and 32 years. The three

peak time intervals 7, 8, and 9 years are seen more often in the middle of the network, and

they are bordered by the higher values on the northern, southern, and western boundaries

of the network. Also, starting from the south western end of the network there is a zig-zag

streak of red and dark yellow values going until the middle of the network. In summary, the

distribution of the ∆t is mixed all over the network, and, the peak values at 7, 8, and 9 years

indicate that errors might dominate the deformation information.
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Figure 4.11: Histogram of ∆t between the first and last observations through each point in

the network.

4.4 Trend analysis of the relative velocities from multiple relevellings

Here, the term trend analysis is similar to time-series analysis, but it is not in the real sense

of the conventional time series analysis, which requires observations to be taken at short and

usually equal intervals of time. The observations that are analysed do not fall into this frame;
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however, the aim is to find out the consistency in the trend of the crustal motion over time.

To perform this analysis a levelling line must have been observed atleast in three different

epochs (years), which gives two relative velocities for comparison.

Now, the computation of relative velocities is explained. First, the relevellings of a levelling

line are identified and sorted with respect to ascending order of time. Then, the following

computation is performed.

hij(t1)

hij(t2)−hij(t1)
t2−t1

hij(t2)

hij(t3)−hij(t2)
t3−t2

hij(t3)
...

...

hij(tn−1)

hij(tn)−hij(tn−1)
tn−tn−1

hij(tn)

In the following Figures 4.12(1)–4.12(105), the relative velocities are plotted as a bar graph

in the left-hand-side (LHS) of each figure and the corresponding time interval bars in the

right-hand-side (RHS) of that figure.

Consistency in the trend of crustal deformation relative velocities is defined in the following

manner: The relative velocities in a series must be equal or atleast close enough in magnitude

irrespective of the time interval between the observations. This formulation comes from the

assumption that the crustal deformation trend for the region considered is secular. This is a

very important assumption and the interpretation of the results are good only as far as the

assumption.

When the bar graphs are analyzed it is found that only one Figure – 4.12(14) – appears

convincing; however, there are a few doubtful cases. The doubtful ones are Figures 4.12(20),

4.12(27), 4.12(30), 4.12(39), 4.12(63), and 4.12(87). In Figure 4.12(14), what is seen is that

the magnitudes of relative velocities are similar and the time intervals for the two relative

velocities are not the same. The difference in time interval gives a very good indication that

the relative velocities are signals of the crustal deformation along that levelling line. It is
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surprising that all the other graphs do not show any consistency (apart from the doubtful

ones), and these can be regarded as errors. The reason for considering the rest of the graphs

as errors is because of the following reasons.

1. The relative velocities switch between positive and negative, which means there is both

uplift and subsidence along same levelling line. This is impossible unless and otherwise

for an earthquake changing (episodically) the deformation direction. So, these can be

classified as errors. The best example for this type of a graph is Figure 4.12(60), where

there are four relative velocities possible with one year time interval , and the negative

and positive values alternate. The other good examples that have different year intervals,

but still show the positive negative switch are Figures 4.12(3), 4.12(17), and 4.12(40).

2. In some graphs, for example, in Figures 4.12(1), 4.12(2), 4.12(13), 4.12(15), 4.12(34),

4.12(41), and 4.12(48) it can be seen that the relative velocities are higher when the

time interval is small and vice versa. This could be, because they are simply errors in

the observations and they get smoothed out as the time interval increases. This suggests

that they are ratios of error differences and the time interval between them.

3. In some other graphs, for example, in Figures 4.12(51), 4.12(54) and 4.12(68) it can be

seen that the time intervals are very similar, but the relative velocities are completely

disparate values. So, this may be an indication that these are not signals of crustal

deformation, but again the ratio mentioned above. Although, it could also be the

inability of the linear model to capture episodic and non-linear motion.

4. Further, there are graphs, where the relative velocity magnitudes are directly propor-

tional to the time intervals. This is again an inconclusive situation, because nothing can

be said about the values; however, they can be classified as errors. Some examples for

this situation are 4.12(9), 4.12(78), 4.12(88), 4.12(90), and 4.12(97).

The doubtful cases mentioned above are doubtful in that they have very similar time intervals

and very similar relative velocity magnitudes. It cannot be said with confidence that these

values are relative velocities, because from the general trend of the figures in the time series,

the relative velocities are inversely proportional to the time interval. So, the doubt remains

as to whether the values have to be classified as relative velocities or as errors.



Chapter 4 86

In addition to the above, one important trend that can be observed from the time series

is that if the time intervals are shorter – 1 6 ∆t 6 10 – then the jumps, switches, and

inconsistencies are more common than with observations taken over longer periods of time.

This is an important observation, because this gives a hint to utilize time as weights for

the adjustment. Also, it is expected that levelling measurements provide accuracies at the

millimeter level and the signal that is being pursued is also at the millimeter level. This

means that there has to be a sufficient time interval between observations for the signal to be

pronounced and extracted from the observations. Thus, this analysis clearly reveals if there

is any deformation information at all in the observations and if they have been smeared by

errors – mostly by unaccounted systematic errors – in the observations.

In summary, the pre-adjustment analysis shows that the network has a good geometric

strength, and nominal resolution in terms of time interval between repeated observations.

Although the trend analysis shows some inconsistencies, it is a true that repeated observations

over time time do contain information about the motion, if there is any. From geodynamic

models and GPS studies it is known that the area has some postglacial rebound motion going

on, and hence, it is a strong belief that the adjustment of the network for velocities will

show some signals pertaining to the vertical motion. Further, the number of levelling lines

that could be analysed are only 106 of about 2800 levelling lines in the network (as in the

underlying simple graph of the network), which is less than the 4% of the lines.

4.5 Chapter summary

Pre-adjustment analysis of the network was analysed in this chapter to get an insight into the

nature of the network, and also to get an idea about the quality of the estimates from the

adjustment of the network. The important points form this chapter are as follows:

1. the ability of graph theory to help visualise the network and give an intuitive under-

standing was demonstrated;

2. the relationship between the degree of vertices of the network and the variance-covariance

estimate of the parameters was illustrated;

3. a number of statistics were computed for the network of concern, viz.,
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• number of observations in a relevelling line;

The predominant number was 2 in this case and hence, indicated only velocities

can be estimated, and a check cannot be made if there is any acceleration in the

velocity values.

• number of the different epochs of observations at each point in the network;

This statistic again showed the predominance of two epochs at most of the points,

which further confirmed that only a linear model of vertical crustal motion can be

applied to the data.

• time interval between the first and the last observation in a relevelling line;

The time interval statistic showed that the network had equal share of short and

long time intervals, which augurs well for the vertical crustal motion estimation.

• length of levelling lines before and after reduction;

The length of the levelling lines increased only marginally after reduction when

compared to the lengths before reduction.

• degree of vertices;

The degree of vertices of the network without relevellings will reflect the strength of

the network. In that sense, the degree of vertices of the simple graph indicates that

the network has a number of degree 2 vertices, which suggests that the adjustment

will not be able to check for errors at these points.

• time interval between the first and last observations through each point in the

network;

This statistic showed that most of the network points fall under the time 6 10 years

indicating only a nominal time interval between epochs.

4. the statistics showed that the network was a nominal network for the estimation of

vertical crustal motion; and

5. trend analysis of relative velocities calculated from multiple relevellings was performed,

which indicated the relevellings were ridden with errors. However, this formed only

4% of the available levelling lines and so, it can be said that this analysis cannot be

extrapolated to the entire network.
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Figure 4.12: Trend analysis of relative velocities derived from multiple relevellings of a levelling

line



Chapter 5

Realisation of a Kinematic Vertical Datum for the Levelling

Network

After a thorough investigation of the characteristics of the network concerned for vertical

crustal motion determination, a linear constrained least squares adjustment of the network is

carried out. The method of adjustment followed is the parametric least squares method as it

provides the parameters directly, and integrates the datum definition problem into it. Since

the adjustment takes care of the datum problem of the scattered kinematic levelling network

concerned here, the least squares adjustment of the network is referred to as the realisation

of a kinematic vertical datum. In this chapter, the method of adjustment and the source of

the velocity constraints are explained in sections 5.1, 5.2, and 5.3, and then the estimated

parameters and the adjusted observations are analysed and statistically tested in sections 5.4

and 5.5.

5.1 Subset matrix selection from the kinematic design matrix

The network that was adjusted was the network after the reduction process. The network

had 3730 observations, and 2292 parameters with half of the parameters representing heights

and the other half representing the velocities of the points in the network. The kinematic

design matrix of the network had a rank deficiency of 24 indicating that the network had

a multiple rank deficiency. As mentioned in section 3.3.3, the network now has 23 different

interconnected subnetworks (as every kinematic network has a minimum rank deficiency of

2) that have an extra rank deficiency. The problem then was to find these groups, or to find

those columns that were linearly dependent on the other columns. This problem can be solved

in two ways, either by graph-theoretical methods, or by matrix calculus methods.

Initially, the graph-theoretical method was preferred and an implementation was at-

tempted, but was not successful. As mentioned by Snay (1978), it is a challenging task

to devise graph-theoretical methods to solve networks that have their points parameterized

by more than one parameter. So, the matrix calculus methods were chosen here. In matrix
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calculus, the above mentioned problem is solved by finding out the subset of the design matrix

whose columns are the most linearly independent columns. Hence, this method is called the

subset selection method.

The subset matrix can be selected based on either QR factorization with pivoting, Cholesky

decomposition, or singular value decomposition. All these methods are discussed in detail in

Golub & van Loan (1996) (cf. chapter 12). Here, the method based on QR factorization was

used to identify the subset of most linearly independent columns from the kinematic design

matrix. In Kleijer et al. (2001), the method based on Cholesky decomposition has been used.

The choice of the QR factorization based method was because of the ease of implementation

of the method and ease of interpretation of the results.

A point to be noted here is that the S-transformation of Baarda facilitates in finding out

the subset of the most linearly independent columns. The reason being, only the most linearly

independent columns will give a good condition number: in other words, a condition number

closer to unity. Or, in the terms of Lanczos (1997) (cf. section 2.3.2), the subset that has

the most linearly independent columns retains close to complete information available in the

complete matrix, and hence, provides the minimum condition number possible. Thus, such a

subset indicates the points in the network that can be constrained to obtain the best datum,

and which in turn minimizes the error estimates of the parameters.

Mostly, the points chosen by mathematical methods cannot be implemented in practice

due to historical reasons, or theoretical reasons. For example, in a static height network the

point that provides the best possible datum will be close to the centre of the network, but

only tide gauges along the coast lines are preferred (this might not be true for land-locked

countries) in order to define a geoid. Further, tides gauges that have records over a long

period of time are preferred due to their historical significance, and also, for the sheer amount

of sea-level data.

5.2 Methods of applying the constraints in an excess constraints situation

It is recalled that the kinematic design matrix of the network concerned has multiple rank

deficiency. In such situations the excess constraints can be applied in the following ways (cf.

section 3.3.3),
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1. minimum constraints are fixed with one height and one velocity, and rest of the excess

constraints are all fixed with velocities,

2. minimum constraints are fixed with one height and one velocity, and rest of the excess

constraints are all fixed with heights, and

3. minimum constraints are fixed with one height and one velocity, and rest of the excess

constraints are fixed with a combination of heights and velocities.

The first method has a disadvantage, because all the heights and velocities that are estimated

from the excess constraint adjustment are distorted by the excess constraint velocities fixed.

It is trivial that there will not be a distortion when the excess constraints are the true values

of the velocities. But this is rarely possible as they are often taken from a priori geophysi-

cal/geodynamical models, or from other forms of geodetic measurements (GPS, SAR/InSAR,

and tide gauges). The second method has a very good advantage in that if heights of points

are known to an nominal accuracy, all taken in the same epoch, and having the same refer-

ence frame, then the heights and velocities of all the other points can be estimated without

any significant distortion. This allows the interpretation of the velocities in terms of vertical

crustal motion without any assumptions and biases from geophysical/geodynamical models.

The third method is not a sensible method at all as it will not be possible to interpret the

results either based on the heights, or based on the source of the velocities. In this research

the first two methods were used.

5.3 Results from adjustment for the realisation of a kinematic vertical da-

tum

As mentioned in Table 3.8 the network had a rank deficiency of 24 and the corresponding

subnetworks were identified using subset matrix selection method. However, the condition

number of the subset matrix was large, which blew up the error values of the estimates. Hence,

one more column had to be removed to bring down the value of the condition number. Thus,

in the end 25 different points were fixed out of which 23 are excess constraints. The 25 datum

points are depicted in Figure 5.1
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Figure 5.1: The 25 datum points fixed for all the adjustments carried out in the research

5.3.1 Fixing the excess constraints with velocities

For fixing the excess constraint velocities five different post glacial rebound models were used,

which provided the velocity values for the excess constraints. The post glacial rebound models

are computed on approximated spherical Viscoelastic Maxwell type 2 (VM2) Earth models

(Peltier, 2002) with six layers, and with ICE-3G (Tushingham & Peltier, 1991) (Figure 5.2(1))

and ICE-4G models (Peltier, 2002) (Figures 5.3(1), 5.3(2), 5.3(3), and 5.3(4)), which provide

information on the ice loading history (cf. Table 6.1). The numerical modelling of the post

glacial rebound models are explained in Rangelova et al. (2005). It has to be noted that

it is not a matter of concern as some arbitrary values for the velocities can also be taken.

As it will be shown later that fixing the velocity excess constraints to zero does not alter

the results significantly. A geophysical/geodynamical model is preferred instead of arbitrary

values, because the models come from scientific and logical reasoning. Nevertheless, it has

to be kept in mind that an excess constraint adjustment only provides distorted values no

matter what values are used.
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(1) Estimates of velocities by using velocities from model 1 for excess constraints and with precision of the

observations as weights

−72 −70 −68 −66 −64 −62 −60 −58
43

44

45

46

47

48

49

50

Longitude (decimal Degrees)

L
a
ti
tu

d
e

(d
ec

im
a
l
D

eg
re

es
)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

mm kGal/yr

(2) Error estimates of velocities using velocities from model 1 for excess constraints and with precision

of the observations as weights

Figure 5.2: Velocities and their errors estimated using velocity excess constraints from model

1 and with weights as the precision of the observed data
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(3) Velocity estimates using velocity excess constraints from model 4 and with precision of the observa-

tions as weights
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Figure 5.3: Velocities estimated from the network with the use of different a priori postglacial

rebound models
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Figure 5.4: Velocities estimated from the network by fixing all the constraints with zero and

using precision of the observations as weights
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5.3.2 Fixing the excess constraints with heights

It was realized that if heights from a source are used as excess constraints it is easier to validate

their true value and their accuracy when compared to velocities as excess constraints. Also,

there are a lot of sources for obtaining reliable height values when compared to velocities,

viz., GPS/levelling, and SAR/InSAR. As mentioned before, if certain precautions are taken

care of, the estimated velocities can be interpreted without any bias or assumptions. Thus,

it is felt that in multiple rank deficiency cases this is the best possible solution that can be

arrived at.

In the adjustments carried out in this research three different height sources were con-

sidered: heights calculated by Geodetic Survey Division, Natural Resources Canada, from

Canadian Precise Levelling Network adjustment, heights from Shuttle RADAR Topography

Mission (SRTM), and GPS/levelling heights. It can be argued that heights estimated from

the network are used to estimate velocities of the same network points is incorrect, but it is

performed to see what effect it has on the outcome. A better source is the digital elevation

models (DEMs) obtained from SRTM data. The advantage of SRTM is that all the heights

obtained are in the same year (2000), and this suits extremely well with the time discretization

used for this study, which is year. Hence, there will not be any signal of vertical crustal mo-

tion. However, the serious disadvantages are that the accuracy is extremely low, viz., 615m.

Further, the SRTM heights are orthometric heights based on EGM96 geoid model, which was

truncated at the metre level accuracy (personal communication with Dr. A. Braun). So,

it was decided not to use SRTM data for adjustment. GPS/levelling was considered as an

alternative, but the idea had to be dropped because of the lack of GPS measurements on

levelling benchmark stations that were needed to be fixed in the adjustment.

5.3.3 Discussion of the results

The least squares adjustment of the network was performed by inverting the normal matrices

of the column removed design matrices. For the velocity excess constraints and the height

excess constraints adjustments, the inverse of the diagonal variance-covariance matrix, formed

from the precision provided with data, was used as the weight matrix. The results are shown

from Figure 5.2 through Figure 5.5(1). In all those figures, if an a priori post glacial rebound
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Figure 5.5: Velocities and their errors estimated from the network by fixing the excess con-
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model is used then the isolines of the vertical rates are plotted. Since the errors of the

estimates do not change with the change of the values of the constraints, only one error plot

is shown for all those figures.

The units of the velocity estimates are mm kGal/year, which indicates that the crustal motion

is explained in terms of variation in geopotential over time. This can be interpreted directly as

mm/year, because the gravity values vary around 980 Gal (1 Gal = 1 cm/s2), which if expressed

in kGal (1 kGal = 1000 Gal) will be equal to 0.98kGal. If this value is rounded off, it will

give unity. The other reason for using these units is that the data was received from Geodetic

Survey Division, Natural Resources Canada, in the form of geopotential numbers, and it was

decided not to use gravity data to convert them back to height differences, which will then

introduce errors from such conversions.

The striking similarity between all the Figures 5.2 through 5.5(1) is that the color pattern

and the range of the velocities are very similar. In all those figures the velocities from the

cyan and blue zone of the colourmap dominate the whole network. Also, three different local

patterns can be seen: 1. The red streaks on the northern part of the network, which is the

region south of the St. Lawrence river; 2. the ‘A’ shaped patch of dark blue patch in the

southeast corner of the network, which is the Cape Breton Island east of Nova Scotia; and, 3.

the dark red ‘boomerang-shaped’ patch in the southwest parts of the network, which is Nova

Scotia. Further, a close inspection of the velocity values shows the presence of uplift values

next to subsidence values. This is a pattern that was shown to be in the relevellings in the

trend analysis (section 4.4), where there was hardly a trend in the relative velocities and it was

interpreted to be the unaccounted systematic errors or remnant errors in the observations.

Figure 5.2(2) provides an illustration of the spatial distribution of error estimates of the

velocities. The figure shows a slow gradation from higher error estimates in the northern part

of the network to lower error estimates in the southern part of the network. The predominant

error values range from 0.5 – 1.5mm/yr. However, the eastern boundary of the network presents

itself with large error values, along with a small island of large error values in the the south

eastern corner of the network. The error estimates closer to the datum points do not have

smaller values, which might be due to the over-constrained adjustment of the network. In

addition to the above the error estimates show the patterns that were seen in the velocity

estimates plot (Figure 5.2(1)). The three different exaggerated local patterns in the velocity
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estimates, which are distinct from the ‘seemingly’ global pattern of the network might also

be because of the weighting of the observations. So, other weights for the observations were

also used to perform the adjustment.

In order to verify if the patterns are an outcome of the post glacial rebound models, all the

velocity constraints were fixed to zero. The spatial plot of the velocities is shown in Figure 5.4.

The patterns show up even if the velocities are fixed with some arbitrary values. Hence, the

patterns cannot be an outcome of the a priori models used. The other possibilities are either

the variance-covariance matrix, the geometry of the network, or the nature of the vertical

crustal motion. Each of these three possibilities are treated individually in the sequel.

5.3.4 Results from adjustment using different weight matrices

Three different types of weight matrices were applied apart from the precision of observations

supplied by Geodetic Survey Division, Natural Resources Canada with the levelling data:

normalized precision of the data as weights; unit weights for all observations or, in other words,

equal weights for all observations; and time interval between the observations as weights. It

can be argued that all these three different weights do not provide any information on the

stochastics of the information, but the concept of weights adopted in the context of this

research is that weights are just numbers that provide a logical scheme to give importance to

certain observations rather than others. So, in order to counteract the units of the weights

formed, it is assumed that all the weights formed are normalized by their unit values (1{unit}).

Unit weights for all observations

In the unit weighted adjustment, the velocity estimates (Figure 5.6(1)) seem to provide a

decreasing gradient pattern from north to south, but still the inconsistencies remain as in the

case of using precision of observations as weights. In other words, the estimates have been

smoothed out throughout the network. The major changes are the red “boomerang” has

disappeared; however, positive values prevail in that region. Also, in the southern most part

a greenish-yellow patch can be seen, which was dark blue when the observation precision was

used as weights. In addition, the mid-western boundary values have risen in their magnitude

substantially – negative values have become positive values. The error estimates for the unit
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weights case (Figure 5.6(2)) has shown a further shift to the higher error values, and again in

the order of 0.1 – 0.2mm kGal/yr, but this is insignificant.

Time interval between observations as weights

For the adjustment using the time interval between relevellings, forming the weight matrix

was not straight forward. The reason is that not all the observations in the network are

relevelled and hence, a different approach was required to be adopted for the single levelling

lines. First the relevellings were identified and then the time difference between the relevellings

were calculated. Then based on the idea that every relevelling observation holds the vertical

crustal motion information from the time it was observed last time until the time the relevelling

itself was measured, the observation was provided with a weight of this time difference. This

is explained in Table 5.1.

Observations Time intervals Weights

∆H(t1) ∆t12

t2 − t1

∆H(t2) ∆t12

t3 − t2

∆H(t3) ∆t23
...

...
...

∆H(tn−1) ∆t(n−2)(n−1)

tn − tn−1

∆H(tn) ∆t(n−1)n

Table 5.1: Table showing the weighting scheme based on the time interval between observa-

tions for relevelling lines

However, as it can be seen in the table that a problem was encountered in assigning a
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Figure 5.6: Velocities and their errors estimated with unit weights for all observations and

fixing the excess constraints with velocities from model 1
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Figure 5.7: Velocities and their errors estimated with unit weights for all observations and

fixing the excess constraints with heights obtained from static adjustment by Geodetic Survey

Division, Natural Resources Canada
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weight for the initial observation. A weight of zero cannot be applied as this will make the

weight matrix singular and hence, normal matrix inversion impossible. So, it was decided to

provide the first observation with the same weight as the next immediate relevelling. The

weight calculation can be done only when there is a relevelling for an observation. If there is a

only a single levelling observation along a levelling line then the following method is applied.

For all the observations there is a from and to point, and every point in the network has

observations taken in different years. So, for every single levelling observation, the years of

observation at each point involved in the particular observation are taken and sorted. Then the

time difference between the year of the observation of the single levelling and the immediate

year of observation before the observation of concern was calculated. This is clearly explained

in Table 5.2.

Observation Years of observation

through each point

Sorted years Weight

∆Hij(t4) i - t1, t2, t4

j - t2, t3, t4, t7

t1, t2, t3, t4, t7 ∆t34

Table 5.2: Table showing the weighting scheme based on the time interval between observa-

tions for single levelling lines

The results from the adjustment with this weighting scheme are shown in Figures 5.8 and

5.9. The velocity estimates in Figure 5.8(1) show similar patterns as seen in Figure 5.6(1),

but there are minor differences. The same can be said of the estimates from excess constraints

fixed with heights shown in Figure 5.9(1). It can be said with confidence that the time interval

weighting scheme does not influence the observations except for minor changes.

From the use of different schemes it has been established that the local patterns, described

in section 5.3.3, are in fact an outcome of the weights formed from the precision values

of the observations provided by the Geodetic Survey Division, Natural Resources Canada.
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Figure 5.8: Velocities and their errors estimated by applying time interval between observa-

tions as weights for the observations and fixing the excess constraints with velocities from

model 1
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Figure 5.9: Velocities and their errors estimated with time interval between observations as

weights for the observations and fixing the excess constraints with heights obtained from static

adjustment by Geodetic Survey Division, Natural Resources Canada
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Nevertheless, it has to be kept in mind that these precision values were carefully chosen

based on field experience, instrument types used for measurement, and knowledge of local

phenomena (personal communication with Mr. Véronneau).

It can be inferred from the above results that the precision weights provided with the data

exaggerates the velocity estimates. However, the appearance of similar patterns inspite of

the use of different excess constraints still needs to be answered. The reason being that the

excess constraints were expected to behave like overconstraints and give a different distorted

picture everytime, but this is not the case here. The results appear to come out of a minimum

constraint adjustment, where the pattern remains the same, but with a shift depending upon

the values of the constraints. This similarity in pattern could either be a response of the

network geometry to the adjustment, or the nature of the vertical crustal motion itself. If the

latter is true, then one major objective of the study is fulfilled.

Also, note has to be made of the pattern of the error estimates when the excess constraints

are fixed with heights. The patterns in Figures 5.5(2), 5.7(2), and 5.9(2) follow a slow gra-

dation from low error values at the North of the network to high values towards the south

of the network. This gradation of error values occur only in minimum constraint adjusted

networks, where the network points closer to the constrained/datum point have lower error

estimates than the ones that are located away from the constrained/datum point. This is

demonstrated by Baarda (1981) for a 2-D horizontal network. Thus, this provides ample

proof that when the excess constraints are fixed with heights that have a nominal accuracy,

they can be used to estimate vertical crustal motion rates that can be interpreted without

any a priori geophysical/geodynamical information.

In order to support the above discussion and further analyses, Table 5.3 provides some

statistics that summarize the results in Figures 5.2–5.9. The values in the table indicate

that the maximum and minimum values of the velocities are large and unrealistic values,

especially in the case of height excess constraints, where the values are huge. These are

unrealistic considering the nature of uplift in the region. Also, the means of the parameter

estimates with respect to the height excess constraints are unrealistic as well. The reason

for this being that there are about 10% of the total velocity estimates, using height excess

constraints, whose values are more than 100 mm kGal/year. This shoots up the mean values to

unrealistic levels. However, care must be taken in interpreting the reason for these extreme



Chapter 5 113

Figure Ex. Cnstrnt. Weights Velocity (mm kGal/yr) Std. Dev. (mm kGal/yr)

Max. Min. Mean Max. Min. Mean

Figure 5.2(1) V1 P 46.9 -108.3 0.1 310.4 0.0 2.1

Figure 5.3(1) V2 P 45.8 -109.4 -1.0 310.4 0.0 2.1

Figure 5.3(2) V3 P 47.2 -108.0 0.4 310.4 0.0 2.1

Figure 5.3(3) V4 P 47.1 -108.1 0.3 310.4 0.0 2.1

Figure 5.3(4) V5 P 47.1 -108.1 0.3 310.4 0.0 2.1

Figure 5.4 Z P 47.4 -107.8 0.6 310.4 0.0 2.1

Figure 5.5 H P 628.6 -1301.4 10.2 310.5 0.0 2.3

Figure 5.6 V1 U 56.5 -51.2 0.1 75.4 0.1 2.2

Figure 5.7 H U 628.4 -1303.7 10.6 76.1 0.3 2.3

Figure 5.8 V1 Y 51.0 -86.7 0.4 161.8 0.5 3.7

Figure 5.9 H Y 628.3 -1307.3 10.4 163.8 0.4 3.9

Table 5.3: Statistics summarizing the results in Figures 5.2–5.9. The statistics here show the

maximum, minimum, and mean values of all the estimation results: both the parameters and

their error estimates. V1, V2, V3, V4, and V5 – velocities excess constraints from models

1, 2, 3, 4, and 5, respectively; H – height excess constraints; Z – zero values for all excess

constraints; P – precision of observations used as weights; U – unit weights; Y – time interval

between observations as weights
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values. In addition to the above, it can be clearly seen from the table that other than estimates

from height excess constraints rest of the means of estimates are significantly smaller than

their estimated error means. This is a serious drawback if the estimates have to be inetrpreted

geophysically. Further analysis of the estimates are provided in section 5.6.

5.4 Least squares error analysis

In order to understand the role of the data and the constraints and how they impact the

estimated parameters, resolution matrices and redundancy matrices are analysed. These

matrices are related to the comparison of a priori and a posteriori variances of the data and

the parameters. These matrices provide insight into the response of the network toward the

adjustment.

5.4.1 Resolution matrices

The term resolution matrices comes from the fact that these matrices resolve the contribu-

tions from data and a priori information on the parameters, for example excess constraints,

towards the estimation of parameters. The resolution matrices are dealt with in regularization

literature, where ill-conditioned matrices are regularized with the aid of a priori information

on the parameters. The design matrices of networks are similar to ill-conditioned in that they

need a priori information to invert their normal matrices due to the inherent rank deficiency

in them. Hence, the resolution matrices will provide information on the contributions of the

a priori information and the observations.

Recalling equation 4.9 here,

Ĥ = (AT P A + DDT )−1(AT P∆H + Dc) .

Substituting AH + v for ∆H and DT H for c and taking the expectation of the estimator

Ĥ gives,

E{Ĥ} = (AT P A + DDT )−1(AT PE{AH + v} + DE{DT H}) . (5.1)

On simplification equation (5.1) gives,

E{Ĥ} = (AT P A + DDT )−1(AT P AH + DDT H) (5.2)

H = (AT P A + DDT )−1(AT P A + DDT )H . (5.3)
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In the above equation (5.3), the R.H.S. of the equation can be split up into two matrices, viz.,

Ry = (AT P A + DDT )−1AT P A (5.4)

Rx = (AT P A + DDT )−1DDT . (5.5)

The matrices Ry and Rx are the resolution matrices of the observations and the a priori

information, respectively. The resolution matrices are square matrices with the size of the

number of parameters required to be estimated.

The implication from equation (5.3) is that

(AT P A + DDT )−1(AT P A + DDT ) = I , (5.6)

which further implies,

Ry + Rx = I . (5.7)

The diagonal elements of the resolution matrices vary between 0 and 1. If the values of

diag(Ry) are 1 then those parameters are purely estimated by the observations and if the

values of diag(Rx) are 1 then those parameters are completely estimated by the a priori

information provided. If the values are between 0 and 1 then they suggest the percentage

contribution of the observations and the a priori information.

In a minimum constraint datum adjustment, the parameters that are fixed, i.e. the pa-

rameters through which the a priori information is supplied, are solely determined by the

parameter side, and the rest of the parameters are solely determined by the observations.

This means that for the fixed parameters the Rx values are 1, and the Ry values are 0, and

vice-versa for the other parameters. In an overconstraint network adjustment, the parameters

that are fixed are partially determined by the a priori information and partially by the obser-

vations, and the rest of the parameters are solely determined by the observations. This means

that the Rx and Ry will not be 1 and 0 respectively for the fixed parameters, but will add

up to unity. A numerical example is shown for the static levelling network of Figure 4.1(2).

Figure 5.10 shows the numerical results, which stand proof to the explanation given above.

Figure 5.11 shows the diagonal values of the resolution matrices with different datum

matrices, viz., velocity excess constraint (Figure 5.11(1)) and height excess constraint (Fig-

ure 5.11(2)) datum matrices. It can be clearly seen that the adjustments exhibit minimum
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Figure 5.10: Resolution matrices of minimum and overconstraint adjustments of the static

leveling network in Figure 4.1(2). For the minimum constraints adjustment, point 1 was fixed,

and for overconstraints adjustment, point 3 was fixed additionally

constraint like behaviour, whence overconstraint behaviour is expected. However, the network

shows overconstraint behaviour at two points. The explanation for this comes from the fact

that if the subset matrix of the design matrix was selected the least singular value of the SVD

of the subset and its second-least singular value had a difference in the order of 102. This

blew up the error estimates of the parameters and hence, one more parameter was required

to be fixed. This is the reason for the partial values at the two points.
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Figure 5.11: Diagonal elements of the resolutions matrices of the observations (Ry) and the

parameters (Rx) with precision of the observations as weights

It can be seen that there is a slight difference in the way the excess constraints are treated,
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if heights are fixed as excess constraints and if velocities are fixed as excess constraints. When

heights are fixed, the contribution values approach 1, but when velocities are fixed the contri-

bution values are shared half and half by the constraints and the observations. According to

Zelt (1999), if the contribution values exceed 0.5–0.7 then those parameters can be considered

to be fully estimated by the parameters fixed or observations, wherever the value occurs.

Thus, in the case concerned the two height excess constraints, showing partial contribution

values, are solely estimated by the heights fixed, while the two velocity constraints, exhibiting

partial contribution values, have contribution from both fixed parameters and observations.

The implications are that the height excess constraints distort the network to a lesser extent

than the velocity excess constraints.
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Figure 5.12: Diagonal elements of the resolutions matrices of the observations (Ry) and the

parameters (Rx) with unit weights for all observations

In Figures 5.12 and 5.13, where different weight matrices are applied, it is clearly seen that

there are no partial resolution values, which clearly indicates that the network behaves like a

group of minimum constraint networks. This also implies that the behaviour of the network

in Figure 5.11, with partial resolution values, is a consequence of the weight matrices used and

not the rank deficient network itself. Nevertheless, it can be said with adequate confidence that

the behaviour of the network adjustment being close to the minimum constraint adjustment
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Figure 5.13: Diagonal elements of the resolutions matrices of the observations (Ry) and the

parameters (Rx) with heights as excess constraints

behaviour is an explanation to the constancy in pattern of the occurrence of vertical crustal

motion estimates. In other words, it can be recalled that when there is a multiple rank

deficiency in the kinematic network then there are groups in the network, and they can be

adjusted individually as well (section 3.3.3). Hence, the similarity in the vertical crustal

motion pattern could be because of this group behaviour of multiple rank deficient kinematic

networks. The derivations for the resolution matrices explained in this section were all followed

based on Sneeuw (2000).

5.4.2 Redundancy matrices

The advantage of least squares estimation is the ability of the technique to utilize the re-

dundancy in the observations, i.e. the excess observations, to cross-check the observations

for their errors. The utilization of the excess observations in a geodetic network in general,

depends on the geometry of the network. The tool that provides insight into whether the

observations are cross-checked by other observations connected to them is the redundancy

matrix.



Chapter 5 119

Recalling the observation equation of the kinematic levelling network (4.16),

∆H(t) = AH + ǫ .

After applying least squares estimation the estimated residuals become,

ǫ̂ = ∆H(t) − AĤ (5.8)

ǫ̂ = ∆H(t) − ∆Ĥ(t) . (5.9)

Applying the variance-covariance propagation law for the residuals gives the variance-covariance

matrix of ǫ̂,

Qǫ̂ = Q∆H − Q∆Ĥ
(5.10)

Qǫ̂ = Q∆H − A(AT P A + DDT )−1AT (5.11)

Qǫ̂ = Q∆H − AQ
Ĥ

AT . (5.12)

Post-multiplying P to equation (5.12) gives the redundancy matrix,

Qǫ̂P = Q∆HP − AQ
Ĥ

AT P (5.13)

Qǫ̂P = I − AQ
Ĥ

AT P (5.14)

Qǫ̂P = I − Q∆Ĥ
P (5.15)

The redundancy matrix is a square matrix with the dimensions of the number of observations

as it is derived from the variance-covariance matrix of the residuals. The diagonal elements

of the redundancy matrix are called the local redundancy numbers, which provide information

on whether the particular observation was cross-checked by the redundancy in the network.

The diagonal elements can be expressed in the following manner based on equation (5.15)

(Sneeuw, 2000),

ri = 1 −
σ2

∆Ĥ

σ2
∆H

, (5.16)

where

ri is the local redundancy number, and

σ2 are the variances of the estimates and the observations.

Equation (5.16) indicates that the values of the local redundancy number are a ratio

of the change in variance of the observations before and after estimation and the variance
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before estimation. The values of the local redundancy number vary from 0 to 1, where 0

indicates no improvement from the adjustment, i.e. the observation was not cross-checked by

the redundancy in the network, and 1 indicates the opposite.

A careful look at the expanded form of the redundancy matrix in equation (5.13) will

show that the a posteriori variance-covariance matrix is strongly dependent on the network

geometry, because it is a combination of the Laplacian matrix and the edge-edge adjacency

matrix AAT . Thus, this expanded form of the redundancy matrix is ample indication of the

fact that the matrix acts as an indicator of how the geometry adjusts and improves the obser-

vations closer to their true values. Ding & Coleman (1996) provide a technique to utilize this

information in finding multiple gross errors. A remarkable property of the redundancy matrix

is that the trace of the redundancy matrix provides the number of redundant observations in

the network (Sneeuw, 2000).

tr(Qǫ̂P ) = m − n + d (5.17)
m

∑

i=1

ri = m − n + d , (5.18)

where

m is the number of observations,

n is the number of parameters, and

d is the datum (rank) deficiency of the network design matrix.
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Figure 5.14: Local redundancy values of each of the observations in the network

Figure 5.14 shows the local redundancy numbers when heights and velocities are used

as excess constraints. Also, the three different weight matrices applied for the estimation

were taken into consideration. The figure shows that there is no difference in using heights
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as excess constraints or velocities as excess constraints as there is only a marginal difference

between the local redundancy numbers obtained from the two different types of adjustments.

There is a visible difference only when precision of observations are used as weights. The

difference is thought to come from the influence of the variance-covariance matrix of the

estimated parameters (AT P A)−1 which is where the choice of excess constraints play a huge

part. There is a difference between using different weight matrices, which indicates that the

primary influence on the local redundancy of the observations is the stochastic information

provided through the weight matrices. The geometry of the network only exhibits a secondary

effect.

The figure shows that about 1200 observations have a local redundancy number less than

0.1 when the precision of the observations is used as weights, which indicates that one third

of the network had hardly undergone any improvement. However, this is not the case with

the other two weighting schemes. They behave very similar to each other, and they show an

improvement in the error estimates of those adjusted observations that had a local redundancy

number of 0 with the precision of observations as weights. The possible reason could be

that the stochastic information provided by the precision of observations was true and the

adjustment could not improve it. The reason could not be the network geometry, because

if it was the primary influence then no matter what stochastic information is used the local

redundancy numbers do not change. However, for the little less than 500 observations that

show 0 local redundancy, no matter what stochastic information is provided. The primary

influence for such a behaviour is the geometry of the network, and these observations will

be adjusted without consideration of the network. The spatial plots (Figures 5.15, 5.16, and

5.17) also prove this point as some of the levelling lines can be seen in all the spatial plots.

The spatial distribution of these observations are shown in Figures 5.15, 5.16, and 5.17

along with the points having a degree of vertex value of 2 without the relevellings taken into

consideration. The spatial distribution shows that the observations with 0 local redundancy

are scattered all over the network and most of these observations originate in a point with

degree of vertex 2. Thus, this proves the point that the degree of vertices of the underly-

ing simple graph of a kinematic levelling network play a vital role in predicting how well

conditioned the network is to provide reliable estimates of the parameters as mentioned in

pre-adjustment analysis. Further, on a closer look at these observations in the spatial plots
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Figure 5.15: Spatial plot showing observations with a local redundancy value of ‘0’, estimated

with the precision of the observations as the weights, and network points with a degree of

vertex of ‘2’
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Figure 5.16: Spatial plot showing observations with a local redundancy value of ‘0’, estimated

with unit weights for all observations, and network points with a degree of vertex of ‘2’
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Figure 5.17: Spatial plot showing observations with a local redundancy value of ‘0’, estimated
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of velocities suggests that the points involved with these observations often have an outlier as

their estimate. This strongly emphasizes that the constancy in pattern is mainly due to the

behaviour of the network similar to a minimum constraint network.

5.5 Statistical testing of the observations

According to Baarda & Alberda (1962), the geodetic adjustment theory based on least squares

extends in itself into statistical tests. A geodetic adjustment procedure based on least squares

can be considered complete only after proper statistical testing of the observations is carried

out because of the fact that the least squares method is very sensitive to large randomn errors

in observations. If these large errors are not identified and a proper action is not taken then

the parameter estimates can be unrealistic. The action that is usually taken on erroneous

observations is to remove them from the network and perform a readjustment. However, in the

present case statistical testing is performed for the sake of the completeness of the adjustment

rather than detection of outliers. The reason is that it is felt that the network is fragile and

any further removal of observations would mean degradation of the fragile network, which

is not favoured. So, the observations that were found to be erroneous were down-weighted;

however, an effective down-weighting of the observations made the weight matrices singular.

Hence, the detected outliers are only listed rather than removed and readjusted. Here, two

basic statistical tests were applied, viz., Baarda’s data snooping, and Pope’s tau test.

5.5.1 Baarda’s data snooping

Baarda’s data snooping test can be applied only when the a priori variance-covariance in-

formation is close to the truth, because according to Baarda & Alberda (1962), realistic

numerical weight values are essential for the purposes of mathematical statistical tests they

have proposed. According to this statement, data snooping can be performed only on the

adjustment that used the precision of observations supplied by Geodetic Survey Division,

Natural Resources Canada, as weights because of the fact that these weights were prepared

based on the stochastics of levelling observations. The time weights do not represent any

stochastic, but they are logical weight values. Figure 5.18 shows the ratio between the test

static of the residual of every observation and the critical value for the test. The observations
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outside the black lines are the erroneous observations. Here, there are close to 500 erroneous

observations in the case with velocity excess constraints. This number reduces to half when

the excess constraints are fixed with heights.

Ti =
ǫ̂i

√

Qǫ̂ii

, (5.19)

where

Ti is the test statistic,

ǫ̂i is the estimated residual of the observation i, and

Qǫ̂ii
is the estimated variance of the residual.

The test statistic is tested against a critical value Nq taken from a normal distribution table

with a level of significance of 1%.

Nq = N1−α
2

, (5.20)

where

N1−α
2

follows the standard normal distribution curve N(0, 1), and

α is the level of significance (Rizos, 1999).
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Figure 5.18: Baarda’s data snooping performed on the adjusted residuals that used the pre-

cision of observations as the weight values. Figure shows the ratio between the test static of

every individual residual and the critical value. Values ‘> 1’ and ‘< −1’ are the erroneous

observations

The values of estimated residuals depend heavily on the constraints used. This is far more

critical in the case of excess constraint adjustments than in minimum constraint adjustment
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because, if incorrect set of excess constraint values are used then they will produce distortions.

Hence, this results in big residuals even for error-free observations, which then will be detected

by the statistical tests as errors. Also, incorrect excess constraints can hide the erroneous ob-

servations. Since the Baarda test also heavily depends on the a priori variance-covariance

matrix, incorrect or unrealistic variance-covariance matrix entries can lead to unreliable re-

sults.

In the case under consideration, the weight matrix is the same for both adjustments

performed, but the excess constraint values differed. Also, height excess constraints are clearly

closer to reality than the velocity excess constraints, eventhough the height excess constraints

contain unaccounted vertical crustal motion and other systematic errors. Thus, the reduction

in the number of erroneous observations can be attributed to the better fit of the height excess

constraints than the velocity excess constraints.

5.5.2 Pope’s τ-test

Pope’s τ -test comes into play when the sample variance-covariance information is used, or if

the a priori variance factor (σ2
0) is not known. Thus, in the case with precisions as observation

weights, the true variance factor is not known, and in the unit weights and time interval as

weights cases, the weights themselves are not true weights. So, the τ -test can be applied to

all the three weight matrices to identify erroneous observations. Figure 5.19 shows the τ -test

values for all the different adjusted residuals estimated. The figure clearly shows that there

are less erroneous observations when unit weights and time intervals are used as weights.

Ti =
ǫ̂i

√

σ̂2
0Qǫ̂ii

(5.21)

σ̂2
0 =

ǫ̂T P ǫ̂

m − n + d
, (5.22)

where

σ2
0 is the estimated variance factor.

The test statistic is tested against a critical value q taken from a τ distribution table with a
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level of significance of 1%.

τq = τ1−α
2

,m−n+d

=

√

√

√

√

(m − n + d) × t21−α
2

,m−n+d−1

(m − n + d − 1) + t21−α
2

,m−n+d−1

, (5.23)

where

t is the t-distribution table values for the given degrees of freedom and the level of significance

(Gökap & Boz, 2005).
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Figure 5.19: τ -test performed on all adjusted residuals estimated using different weight ma-

trices. Figure shows the ratio between the test static of every individual residual and the

critical value. Values ‘> 1’ and ‘< −1’ are the erroneous observations.

The τ -test completely relies on the residuals because of the fact that the variance factor

used for the scaling of the a priori variance-covariance matrix is computed from the residuals

(equation (5.22)). So, the results are purely an indication of the fit or misfit of the excess

constraints used here. In that sense the results show that if using velocity excess constraints

and precision weights, there are more outliers, and hence a larger misfit. However, Figure 5.19

also indicates that when the unit weight matrix and the time interval based weight matrices

are used, a difference in the use of constraints is hardly visible in the detection of erroneous

observations.

5.6 Statistical significance of the estimated parameters

The statistical significance of the parameters is calculated by taking the ratio of the estimated

parameters and the corresponding estimated errors of the parameters. This is equivalent to
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calculating the 1σ significance test of the estimated parameters as the errors are normally

distributed. In Figure 5.20, the plots indicate values of 0 and 1 for the estimated parameters.

The 0 values indicate that the parameters are insignificant with respect to their estimated

error values, and the 1 values indicate that the estimated parameters are significant. This is

a very simple test, but clearly shows the statistical significance of the estimated parameters.

This test has been performed on all the combinations of excess constraints and different weight

matrices.
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(5) Velocity excess constraints; Time interval as

weights
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(6) Height excess constraints; Time interval as weights

Figure 5.20: The plots indicate the ratio between the parameter estimates and their error

estimates, which is being used as an indicator for statistical significance of the estimated

parameters. Statistically significant parameter estimates are plotted as value 1 in the plot

and the other statistically insignificant parameter estimates are plotted as value 0.

In the Figures 5.20(1)–5.20(6), it can be seen that the number of significant estimated

parameters increase substantially when the precision of the observations are used as weights.
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Also, the difference between the use of height and velocity constraints is seen conspicuously.

Based on these plots it can be said that the best results are obtained with the use of height

excess constraints and precision of the observations as weights. In other words, it can be

said that the number of significant parameters are more than 50% when the precision of

observations is used as weights, and the number of significant parameters are significantly less

than 50% when unit weights or time interval weights are used. Table 5.4 shows the percentage

of significant values in the different cases of estimationa and validates the above statements.

The table elucidates that the time interval between observations as weights deteriorates the

significance of the parameter estimates.

Excess constraints Weights % of significant parameters

Velocity Precision of observations 52.9

Height Precision of observations 62.6

Velocity Unity 30.0

Height Unity 36.4

Velocity Time interval between observations 6.7

Height Time interval between observations 16.9

Table 5.4: Percentage of the significant parameters for the different cases of estimation. The

table clearly indicates that the combination of height excess constraints and precision of the

observations as weights provide the best results. It also indicates that the precision of the

observations as weights provide more statistically significant parameters than any other type

of weights.

A point has to be noted here: the estimation based on unit weights purely indicates the

quality of the network (cf. section 4.2), which means that the network provides at the most

only 36.4% of significant values. It can be inferred that the network geometry contributes

considerably to the outcome of the results. However, this has been rectified to an extent with

the use of precision of observations as weights. Inspite of this rectification there are about

37.4–47.1% of parameters are insignificant. In estimating errors of the velocities the only
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influence other than network geometry is the time difference between observations at each

point in the network (cf. section 4.2).

In Figure 5.21, the mean of the parameter error estimates are taken based on the time

interval between the first and last observations at each point in the network (cf. Figure 4.11).

All the figures indicate that when the time difference between observations is short then the

mean of the errors are higher and vice-versa. However, there are some abnormalities in this

pattern in both the velocity and height excess constraint situations. In the former there is a

jump at the 20–30 year interval, while in the latter there is a jump at the 60–70 year interval.

The reason for this being there are large outliers in these time intervals, and they correspond

with points that have degrees of vertex of 2 without taking the relevellings into account. Thus,

these simple tests elucidate the point that a good network for crustal motion determination

requires a strong network – in the sense of degree of vertices, and sufficient time interval

between observations at different epochs.

5.7 Chapter summary

In this chapter, various methods of implementing a kinematic vertical datum adjustment in

excess constraint situations were discussed in detail. Three different types of implementations

were identified:

1. excess constraints fixed with velocities,

2. excess constraints fixed with heights, and

3. excess constraints with a mix of heights and velocities.

Of the three methods identified, only the first two were implemented as the third was felt to be

unreasonable for the situation in hand. For fixing the excess constraints with velocities, five

different a priori post-glacial rebound models were used, and for fixing the excess constraints

with heights, heights computed by Geodetic Survey Division, Natural Resources Canada, with

the levelling data were used. The adjustment was carried out based on least squares, where

the weight matrix was formed from the inverse of diagonal variance-covariance matrix of the

observations. The diagonal variance-covariance matrix of the observations was in turn formed

from the precision of the observations given with the data.
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Figure 5.21: The bar graphs show the means values of the error estimates for the points based

on the statistic shown in Fig. 4.11. The figures indicate that the time interval between the

first and last observations have an impact on the estimated errors of the parameters.
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The results from the adjustment showed that there was a constancy in the pattern of

occurrence of the vertical crustal motion rates, and in addition, there were also some conspic-

uous local patterns in the occurrence of vertical crustal motion rates. In order to figure out

the constancy in pattern of the vertical crustal motion occurrence, inspite of the fact that dif-

ferent excess constraints were applied, it was decided to change the weight matrices to study

their influence. Two other weight matrices were applied, viz., unit weights, and time interval

between the observations as weights. Again for both the weight matrices height and velocity

excess constraints were applied. The results showed that local patterns in vertical crustal

motion rates were exaggerated patterns heavily influenced by the weight matrix formed based

on the precision of observations. However, the general pattern of vertical crustal motion rates

in the network remained the same.

Least square error analysis was carried out to ascertain the cause of the constancy in

vertical crustal motion pattern. To this effect the resolution and the redundancy matrices

were computed. While the resolution matrices provide insight into the contribution of the

data and the excess constraints in the estimates of heights and their velocities; the redundancy

matrices shows if there is any improvement in the estimated errors of observations. This

analysis showed that the network behaved like a minimum constraint network due to the

presence of groups in a multiple rank deficient kinematic levelling network.

Then, statistical testing of the observations was carried out, although not in complete

detail. The statistical testing of observations demonstrated that excess constraints fixed with

height are a better choice to overcome the multiple rank deficiency situation in the adjustment

of kinematic levelling networks. The error spatial plots from height excess constraint adjust-

ments also provided sufficient evidence that such adjustments give out a minimum constraint

adjustment for velocities, which is essential to interpret the velocities without any influence

from a priori geophysical and geodynamical models.

Finally, statistical significance of the estimates was also analysed. The analysis showed

that only if the precision of observations are used as weights, a little more than 50% of the

estimates are significant at 1σ level. The significance test of the estimates from adjustment

using unit weights gave a direct indication of the quality of the network available in terms of

both degree of vertices and time interval between observations. Also, analysis of the mean

of the estimated errors based on time interval between first and last observations at a point,
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provided insight into the essentials of a good network for estimating vertical crustal motion:

strong network of points with good degree of vertices (preferably > 3 for each point), and

sufficient time interval between observations made at different epochs (preferably > 10 years

in this study).
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Geological and Geophysical Interpretation

Least squares adjustment of the kinematic levelling networks only provides numerical quan-

tities based on the parameterization in the observation equation. In order to evaluate the

validity of the estimated numerical quantities, especially vertical crustal motion rates, a geo-

logical and geophysical interpretation is essential. In this chapter, the structural geology with

respect to the faults in the region will be explained briefly; the earthquake history in the re-

gion will be discussed; some postglacial rebound models will be shown to elucidate the nature

of the postglacial rebound phenomenon in the region; and finally, the velocities obtained from

the adjustments will be discussed and interpreted with geology and geophysics of the region.

6.1 Geological fault lines in the study area

Before delving deep into the geological faults in the study area, a review of the different fault

types is essential. There are three major types of faults: strike-slip faults, normal faults, and

thrust faults. In a strike-slip fault, the two fault planes slide along the fault line parallel to

the horizontal plane, and hence, there is no vertical movement in a strike-slip fault. In a

normal fault, one of the two fault planes moves downward along the fault line and this fault

plane is called the upper fault plane. In the thrust fault as the name suggests one of the fault

planes is thrust upon the other. Since one of the fault plane is resistant to the one that is

being thrust upon, the thrusted fault plane topples over the stable fault plane. Thrust faults

are also referred to as reverse faults, because the upper plane moves in the upward direction.

These thrust faults are very common in the regions of converging plate boundaries; however,

these three types of faults are the only types of tectonic faults (Lowrie, 1997). These three

different types of faults are illustrated in Figure 6.1

Figure 6.3 shows the fault lines over the study area, which suggests that there is significant

faulting in most parts of the network. All the fault lines in the northern part of the network

are thrust faults, which means that the faulted plane moves in upward-downward direction

and hence, causing vertical crustal motion (cf. Figure 6.2). Wu (1998) indicates the reason
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Figure 6.1: Different types of faults

for these thrust faults can be a result of the postglacial rebound phenomenon experienced in

that region. The rest of the fault lines have not been classified by the Geological Survey of

Canada (Wheeler et al., 1996), which will hamper to an extent the geological interpretation

of the velocities in those regions. However, the presence of thrust faults in the northern

part of the network suggests that the vertical crustal motion estimates will show some sudden

changes between the adjacent velocity values across the fault lines. The cause for concern over

kinematic levelling networks in such heavy faulted regions is that if there were occurrences of

episodic movements due to earthquakes then a linear model for the vertical crustal motion will

smooth out the episodic movement and display it as linear motion. However, the geological

and geophysical interpretation that will be done will help identify such smoothing effects.

6.2 Earthquake history in the study area

Figure 6.4 shows that the region has been seismically active given the large number of earth-

quakes recorded. The figure shows that the region is prone to earthquakes predominantly in

the magnitudes between >3 and 5. Also, there is a heavy concentration of the earthquakes at
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Figure 6.2: Geological map of the study area. For the legend refer to Wheeler et al. (1996)
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Figure 6.3: Geological fault lines in the study area
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Figure 6.4: Occurrences of earthquakes in the study region with their magnitude and depth.

Data courtesy: Dr. John Adams, Geological Survey of Canada, Ottawa.
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shallow depths in the north-northwestern part of the network, i.e., closer to the St. Lawrence

river. In addition, the region just above the northern part of the network, in the mouth of

St. Lawrence river, again shows heavy concentration of earthquakes of substantial magnitude

and substantial depth. However, although there have been many earthquakes of a substantial

magnitude in the middle of the network, the depth suggests that most of them have occurred

at a shallow depth. This indicates that these earthquakes would not have caused any major

episodic movements but, insignificant displacements. Also, a thorough look into the data re-

veals that there have been no major earthquakes during the measurement period (1904–1999)

of the levelling network in the region. Thus, the nature of earthquake data suggests that the

vertical crustal motion information that is extracted from the levelling network is primarily

contributed by the other phenomenon of consideration – postglacial rebound.

6.3 Postglacial rebound phenomenon in the study area

Postglacial rebound, also known as glacial isostatic adjustment, is a phenomenon that refers

to the rebound of the crust after melting of the Laurentide ice sheet since the last glacial

maximum ≈ 21,000 years ago. Due to glaciation, ice formed on land and the ice-load depressed

the crust causing it to subside. After this, the ice melted, and at the end of the ice age the

load was removed from the crust and then the crust rebounded due to the viscous nature of

the Earth at time-scales >1000 years. The ice-sheets covered the whole of Canada and hence,

Canada experiences postglacial rebound resulting in a uplift rebound of upto 1.2 cm/yr in areas

around Hudson Bay and gradually decreasing to 0 cm/yr around the Great Lakes region.

Figure 6.5 shows vertical crustal motion rates from the five different postglacial rebound

models used as a priori information for fixing the velocity excess constraints. The model

simulations are carried out by considering the Earth as a radially symmetric entity and made

up of 6 layers, which represent the major discontinuities in the Earth’s viscosity structure.

Details of the simulations can be found in Rangelova et al. (2005). Here, all the models follow

a six-layer mantle model with the same type of crust and core. The model values are given

in Table 6.1.

The purpose of showing these models is to provide an overview of the nature of the

vertical crustal motion due to postglacial rebound. There are ongoing studies using GPS



Chapter 6 141

−72 −70 −68 −66 −64 −62 −60 −58
42

43

44

45

46

47

48

49

50

Longitude (decimal Degrees)

L
a
ti
tu

d
e

(d
ec

im
a
l
D

eg
re

es
)

−1.25
−1

−1

−0.75

−0.75

−0.75

−0.5

−0.5

−0.5

−0.25

−0.25

−0.25

−0.25

0

0

0

0

0.5

0.5

0.5

0.5

1

1

1

1

1.5

1.5

1.5

2

2

2

2.5

2.5

3

3

4

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

mm kGal/yr

(1) Model 1

−72 −70 −68 −66 −64 −62 −60 −58
43

44

45

46

47

48

49

50

Longitude (decimal Degrees)

L
a
ti
tu

d
e

(d
ec

im
a
l
D

eg
re

es
)

−2

−1.875

−1
.7

5

−1
.5

−1.5

−1
.2

5

−1.25

−1

−1

−0
.5

−0.5

−0.5

0

0 0

0.
5

0.5

0.5

1

1
1

2

2 2

3

4
5

−1

0

1

2

3

4

mm kGal/yr

(2) Model 2

−72 −70 −68 −66 −64 −62 −60 −58
43

44

45

46

47

48

49

50

Longitude (decimal Degrees)

L
a
ti
tu

d
e

(d
ec

im
a
l
D

eg
re

es
)

−1.3

−1

−1

−0.5

−0.5

−0.5

0

0

0

0

0.5

0.5

0.5

0.5

1

1

1

1

1

2

2

2

2

2

3

3

3

3

4

4

4

5

5

6

6

7

−1

0

1

2

3

4

5

6

mm kGal/yr

(3) Model 3

−72 −70 −68 −66 −64 −62 −60 −58
43

44

45

46

47

48

49

50

Longitude (decimal Degrees)

L
a
ti
tu

d
e

(d
ec

im
a
l
D

eg
re

es
)

−1

−1

−0.75

−0.75

−0.5

−0.5

−0.5

0

0

0

0

0.5

0.5

0.5

0.5

1

1

1

1

1

1.
5

1.5

1.5

1.5

2

2

2

2

2.5

2.5

2.5

2.5

3.5

3.5

3.5

4.5

4.5

5.5

0

1

2

3

4

5

mm kGal/yr

(4) Model 4

−72 −70 −68 −66 −64 −62 −60 −58
43

44

45

46

47

48

49

50

Longitude (decimal Degrees)

L
a
ti
tu

d
e

(d
ec

im
a
l
D

eg
re

es
)

−2

−2

−1.
75

−1.75

−1
.5

−1.5
−1.5

−1

−1

−1

−0
.5

−0
.5

−0.5 −0.5

0

0

0 0

1

1

1

1 1

2

2

2

2 2

3
3

3

3

3

4

4

5

5

6
7

−1

0

1

2

3

4

5

6

mm kGal/yr

(5) Model 5

Figure 6.5: Vertical crustal motion rates from postglacial rebound models that were used as

a priori information for fixing the velocity excess constraints
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Layer R ρ µ η (Pas)

(km) (kg/m3) (GPa) Model 1 Model 2 Model 3 Model 4 Model 5

Crust 6371 3191.7 60.2 1.0e43 1.0e43 1.0e43 1.0e43 1.0e43

UM1 6256 3442.1 73.1 0.4e21 1.0e21 0.4e21 0.4e21 1.0e21

UM2 5971 3882.4 109.5 0.4e21 1.0e21 0.4e21 0.4e21 1.0e21

LM1 5701 4527.3 180.6 2.0e21 2.0e21 10.0e21 6.0e21 6.0e21

LM2 5200 5084.2 240.9 4.0e21 4.0e21 10.0e21 6.0e21 6.0e21

Core 3480 10925.0 0 0 0 0 0 0

Table 6.1: Layers and their parameters of the 5 postglacial rebound models used for a priori

velocity excess constraints. R – radius from the centre of Earth, ρ – density, µ – rigidity, η –

viscosity, UM – upper mantle, LM – lower mantle

and absolute gravimetry to constrain and validate these models. The models show that the

study area is a region of transition from uplift to subsidence, which implies that there will

be no vertical motion coming from postglacial rebound at some points in the network. Also,

the models indicate that it is a region of minimal vertical motion, which further implies that

the detection of vertical crustal motion will be difficult given the time interval between the

repeated levelling observations (cf. Figure 4.5).

6.4 Interpretation of results from kinematic vertical datum adjustment

For the geological and geophysical interpretation of the kinematic adjustment results, only the

results from adjustments using unit weights are used as it was shown previously (section 5.3.4)

that the weights based on the precision of the observations exaggerate some of the local

patterns and have a heavy influence on the results. Also, it was shown that there is not

much difference between time interval between observations as weights and unit weights.

Results from the adjustments with both the velocity excess constraints and the height excess



Chapter 6 143

−70 −68 −66 −64 −62 −60 −58

44

45

46

47

48

49

50

Longitude (decimal degrees)

L
a
ti
tu

d
e

(d
ec

im
a
l
d
eg

re
es

)

(1) Fault lines over the network

−72 −70 −68 −66 −64 −62 −60 −58
43

44

45

46

47

48

49

50

0

−1

−0.5

1.
5

1

0.5

2

0

−1

−0.5

1.5

1

0.5

2.5

2

Longitude (decimal degrees)

−0.5

0

1.5

1

3

0.5

2.5

2

0

1.5

1

0.5

3

2.5

2

1.5

1

L
a
ti
tu

d
e

(d
ec

im
a
l
d
eg

re
es

)

−1.5

−1

−0.5

0

0.5

1

1.5

mm kgal/yr

(2) Velocities from adjustment using velocity excess constraints

−72 −70 −68 −66 −64 −62 −60 −58
43

44

45

46

47

48

49

50

Longitude (decimal degrees)

L
a
ti
tu

d
e

(d
ec

im
a
l
d
eg

re
es

)

−2.5

−2

−1.5

−1

−0.5

0

0.5

mm kGal/yr

(3) Velocities from adjustment using height excess constraints

Figure 6.6: Illustration of the two regions of focus within the entire network
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constraints are presented in the interpretation.

In Figures 6.6(2) and 6.6(3), it can be clearly seen that there is a significant trend of ve-

locities from positive values in the northwest to the negative values in the southeast. In other

words, there is trend in the vertical crustal motion in the direction from northwest to south-

east. The trend was initially thought to come from the a priori postglacial rebound model

used but, the doubts were clarified by the velocity estimates from the height overconstraint

adjustment. Since, it was shown that height overconstraint adjustment is the best possible

way of estimating biasless velocities. Thus, it can be clearly seen that this trend of positive

to negative is infact the postglacial rebound signal in the region. It can also be seen that in

Figure 6.6(2) the trend is seen as a strong signal whereas in Figure 6.6(3) the signal is a litle

bit under-toned. However, there are some deviations to this trend in the network.

In Figure 6.6 two boxes are shown, one in the northern part of the network close to the

St. Lawrence river, and the other in the southern part of the network in Nova Scotia. The

reason for showing these particular regions is that there is a strong correlation between the

estimated velocities and the geological faults in the area. Taking a closer look into the box

in the northern part of the network in Figure 6.6 (Figures 6.7(3) and 6.7(5)) it can be seen

that the velocities suddenly change from brownish-red to red and then again moves back

to brownish red. This transition coincides with a fault line of a thrust fault, which, as is

known, contributes to vertical crustal motion. Similarly, the velocity values of the points

in the box in the southern part of the network all show high positive values in a region of

subsidence (Figure 6.6). A glance at the fault lines suggest that this anomaly coincides with

fault lines; however, these fault lines have not been classified. Nevertheless, this anomaly is

ample indication that the velocities may have a contribution from the tectonics in the region

as well.

Apart from the correlation with the faults and earthquake zones, the velocity estimates

also correlated with the rock types. In Figure 6.8 two areas are highlighted with boxes. The

areas show a marked change in the velocity values, which when compared with the geology

map of the region (Figure 6.2) shows that these two areas are areas of change in rock types.

In the upper rectangle the rock types change from Silurian and Silurian & Devonian stratified

sequences to Carboniferous stratified sequence. In the lower rectangle the rock types change

from Devonian intrusive rock to Cambrian & Ordovician rock types.
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Figure 6.7: A closer look at the two areas of the network highlighted in Figure 6.6, whose

velocity values correlate with the faults
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Figure 6.8: Illustration of the areas in the network, whose velocity estimates correlate with

the geological rock types of the region
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6.5 Chapter summary

In summary, the region shows complex geology and a combination of different geophysical

activities, viz., seismic activity, tectonics, and postglacial rebound. The geological and geo-

physical interpretation indicates that the vertical crustal motion signal is being seen in the

estimated results. Further, postglacial rebound has a strong signal and a trend can be seen in

the Figures 6.6(2) and 6.6(3) apart from a few anomalies. A closer look at these anomalies in

juxtaposition with the fault lines over the network suggests contribution from tectonics and

seismicity. This is an indication that the vertical motion due to postglacial rebound acts as a

background signal upon which the vertical crustal motion due to seismicity and tectonics are

superposed. Although, the density and quality of the levelling network does not allow for a

closer look into individual faults. In addition to them, the velocities also correlate with the

rock types, especially at the rock type boundaries; however, this correlation requires further

analysis.



Chapter 7

Concluding Remarks

7.1 Summary

In this research, a part of the Canadian Precise Levelling Network was analysed to study the

feasibility of defining a kinematic vertical datum. Initially, the concept of kinematic vertical

datum was reviewed and then the kinematic vertical datum was identified as a vertical datum

incorporating a mathematical model for the vertical crustal motion. In that sense, a linear

model for the vertical crustal motion was chosen in view of the geophysical activities going on

in Canada, and a linear model was assumed given the quantity and quality of the data. Then,

in the linear model, a reference time epoch was identified as an estimable datum parameter

and hence, the equation of the linear model became non-linear in the sense of adjustment

theory. The linearisation of the corresponding equation was shown.

After completing a theoretical review, the data was analysed to prepare it for the kinematic

vertical datum realisation. First, a glance at the history of the Canadian Precise Levelling

Network was taken to get an overview about the data quality. Then, the data format was

explained and its implications towards the data processing were brought out. In the data

format, for the storage of levelling network observations, information on repeated observations

were also given. This made the process of finding the relevellings easier in an otherwise tedious

task. Then, it was found that the network in its original topological form was not suitable for a

kinematic vertical datum definition as the adjustment problem was underdetermined. Hence,

data processing was required and the data was processed in three different steps: finding

intersection points, reduction of the levelling observations observed in the same year, and

removal of open lines and loops. These data processing methods were based on the solvability

analysis of the kinematic levelling network.

When the observations were in ready-to-adjust format, a pre-adjustment analysis was car-

ried out, where the network was characterized by the statistics calculated from the processed

observations. These statistics provided a very good intuitive insight into the quality of the

estimated parameters and adjusted observations that can be expected from the network. For
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example, the correlation between the degree of vertex of the underlying simple graph of the

network and the local redundancy numbers was illustrated. Also, trend analysis of the rel-

ative velocities of relevellings that were observed more than twice was performed to get an

insight into the influence of errors in the observations. Finally, a parametric adjustment of

the observations was carried out to determine the vertical crustal motion.

The processed observations provided a multiple rank deficient design matrix, which had

to be supplied with a priori information to suffice the multiple rank deficiency. The a priori

information was taken from postglacial rebound models and heights from static height adjust-

ment by the Geodetic Survey Division, Natural Resources Canada. All the adjustments with

different a priori information provided the same pattern of vertical crustal motion, which

cannot be true given the differences in the a priori information. So, the weighting scheme

was changed and it was found out that the weighting scheme had influence on some of the

patterns in the estimated vertical crustal motion rates. However, there were other patterns

in the vertical crustal motion that remained even after changing the weighting scheme.

In order to clarify this situation, least squares error analysis was carried out, which gave

insight into the contributions of the a priori information and the observations towards the

estimated parameters. It was found that the estimated parameters were all a consequence of

the observations. Also, during the course of the adjustment, it was seen that sufficing the

multiple rank deficiency with height constraints provided reliable results in that the heights

did not come from the assumed modelling. Then, statistical tests were applied to illustrate

the good observations and outliers. It revealed that the weighting scheme had influence on the

outcome of the statistical testing. Also, statistical significance of the velocities were computed,

which brought to the fore the essentials of a good network for crustal motion determination:

strong network with good degree of verices for each point, and sufficient time interval between

observations at different epochs. In that sense, the network of concern was a weak network.

In the end, the results from the parametric adjustment were interpreted with the geology

and geophysics of the area, viz., tectonics, seismicity, and post glacial rebound. The results

showed an overall pattern in the network that corresponded to the effects of the postglacial

rebound phenomenon in the region. Also, the results correlated well with the geological faults

in the region and also the geological rock types as far as this interpretation could be achieved

here.
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7.2 Conclusions

Recalling the objectives of this study here,

1. to determine the feasibility of defining a kinematic vertical datum based only on the

levelling network of Canada

From the results of data processing of the network it can be confirmed that an ideal

minimum constraint kinematic vertical datum, i.e., only 2 datum constraints one for

velocity and one for height, cannot be established at this point as the network has some

data gaps. However, this situation is overcome by fixing the excess constraints with

heights, which provide a workable minimum constraint datum. Here, the term workable

is used to make a distinction between minimum constraint & overconstraint datums,

and a datum realized with excess constraints. This workable datum provides estimates

of the vertical crustal motion with minor or no distortions. The reason being that the

height values all come from a minimum constraint adjustment, which gives undistorted

estimates of the height values. Thus, any vertical crustal motion estimates from this

workable datum is free of any assumptions other than linear motion.

2. to create the levelling dataset as an independent dataset for geophysical studies

It was explained in section 1.4 that the two objectives are inter-twined and hence, it can

be concluded that the levelling dataset provides independent vertical crustal motion

dataset for geophysical studies. The method of applying excess constraints ensures

that levelling network observations are independent and do not have to depend on any

external source, like postglacial rebound models, for the a priori information.

Thus, it can be concluded from the study that the objectives of the study have been achieved.

7.3 Contributions

Various aspects of the kinematic vertical datum were dealt with in this work. Following are

the contributions of this work towards the framework of kinematic vertical datum definition

and realization:

• the biggest contribution of this research is that the levelling dataset has been created

as an independent dataset for geophysical studies;
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• reference time epoch was established as a datum parameter, and also, it was proven

that the reference time epoch was estimable from the data;

• S-transformation of a kinematic vertical datum based on a linear model for vertical

crustal motion was derived and also, time-shift in the datum transformation was eluci-

dated;

• excess constraints (or multiple rank deficiency) situation in a kinematic vertical datum

realization was dealt with and it was shown that the situation can be easily overcome

by applying the constraints on the height part of the parameters;

• a number of statistics were derived from the ready-to adjust network, which proved

to provide very good insight into the expected quality of the results and also in the

interpretation of the results; and

• trend analysis of relative velocities was established as an valuable but intuitive tool to

discriminate between the relevellings that have velocity information and those that are

smudged by errors.

7.4 Outlook

This research was carried out as a pilot study for the definition of a kinematic vertical datum

for the Canadian Precise Levelling Network. The size of the network used for the study is

small compared to the entire Canadian levelling network. Also, the study area was one of the

regions that was frequently re-observed (personal communication with Mr. Véronneau). So,

extrapolating the outcome of this research to the entire Canadian network, it is fair to say that

an ideal minimum constraint kinematic vertical datum with a linear model cannot be realized.

However, the methods described for the data processing can be applied and all the resulting

excess constraints can be fixed with the heights from the static adjustment carried out by

Geodetic Survey Division, Natural Resources Canada. This will ensure that the levelling data

are independent of any external information for the determination of vertical crustal motion.

Apart from the above, the other areas where the study can be extended are as follows:

• In the solvability analysis, it was shown that single levellings also contribute to the

vertical crustal motion estimation and that they cannot be neglected in such studies.
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Keeping with that, geodetic network design methods can be developed such that they

provide reliable results, and at the same time, reduce the number of repeated observa-

tions. This will be a more suitable method for larger levelling networks also in other

countries.

• For the excess constraints, height values from GPS/levelling can be used, and the dif-

ferences in the estimated results can be evaluated. This is an important area given

that the height system of Canada will soon be modernized with GPS/levelling methods

(Véronneau & Huang, 2004).

• In the geological interpretation of the results, it was seen that the network region is

tectonically active, and also includes an area of seismic activity. This suggests instances

of episodic motion in the region, which cannot necessarily be modelled by the linear

motion model. This will be the case in national levelling networks of large countries,

where the phenomenon responsible for crustal motion keeps changing with space and

time. Hence, when defining and realizing a kinematic vertical datum, these things need

to be taken into consideration.

• The methods that have been developed in this research have only been applied to the

Canadian levelling network. These methods need to be applied to other national net-

works, for example, the networks of Nordic countries, and the Netherlands. This will

provide another evaluation of the algorithms and methods employed for data processing

in this research, and will benefit studies of vertical crustal motion in these countries.

• This research has created levelling as an independent dataset for geophysical studies and

so, a surface can be fit to the estimated vertical crustal motion rates and can be used

for validation of the vertical crustal motion rates estimated from tide gauges, because

tide gauge measurements are very similar to levelling measurements in that they just

measure the height differences between instantaneous sea level and the reference.
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Sjöberg L, Vańıček P, Kwimbere M (1990) Estimates of present rates of land and geoid uplift

in eastern North America. Manuscripta Geodaetica 15:261–272.

Snay RA (1978) Solvability analysis of geodetic networks using logical geometry. Manuscripta

Geodaetica 3:321–346.

Sneeuw N (2000) A semi-analytical approach to gravity field analysis from satellite observa-

tions. Dissertationen Heft Nr. 527, Deutsche Geodätische Kommission, bei der Bayerischen

Akademie der Wissenschaften.

Strang G (1986) Introduction to Applied Mathematics. Wellesley-Cambridge.

Strang van Hees GL (1982) Variance-covariance transformations of geodetic networks.

Manuscripta Geodaetica 7:1–20.

Tapley B, Schutz B, Eanes R (1985) Satellite LASER Ranging and its applications. Celestial

Mechanics 37:247–261.

Teunissen P (1985) Zero order design: Generalized inverses, adjustment, the datum prob-

lem and S-transformations. In: E Grafarend, F Sansò (eds.), Optimization and Design of
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