The University of Calgary Department of Chemical & Petroleum Engineering

ENCH 501: Mathematical Methods in Chemical Engineering

Final Examination

Time: 8:00-11:00 a.m.

December 12, 2000

Instructions:

Attempt all questions Open Book, Open Notes Examination Use of Calculators permitted

Problem #1 (25 points)

Cooling towers are used to remove waste heat from process water streams. In the operation, direct and intimate contact is maintained between water and ambient air through either atomizing the water or flowing it over flat surfaces to obtain thin films. Heat is transferred from the liquid into the air by evaporation of a small amount of the water (extraction of latent heat) and by sensible (convective and conduction) heat transfer. About 80% of the heat exchange is by the evaporation when the water is clean. However, water is often contaminated with oil in the petroleum industry. Under this condition, a thin film of oil may cover dispersed water. This inhibits evaporation and lowers the efficiency and effectiveness of a cooling tower. This is to be investigated. A limiting case when vaporization is totally suppressed is to be evaluated.

Six (6) million US gallons per hour of water at 56°C is to be cooled to 18°C before being reused. The cooling tower consists of 5 parallel vertical wooden slats over which the water is distributed to form films. The liquid flows downwards on both sides of a slat and is in contact with air at 5°C flowing upwards between the slats. The horizontal length of each slat is 1m. The heat transfer coefficient is 25 W/m²K between the air and the water. Wood is a poor thermal conductor.

- (a) How thick is the liquid layer on each side of a slat?
- (b) Derive the equations that when solved would allow you to estimate the height of the slats required to achieve the objective above.

Data: Assume properties of water are constant at: ρ = 996 kg/m³; μ = 0.86 mPa.s; k = 0.614 W/m K; and C_p = 4.179 kJ/kg K.

Problem #2 (25 points)

Microorganisms are to be used to digest and remove low concentrations of a toxic organic compound produced at a plant. The chief engineer has suggested collecting the plant's waste water which contains the compound in a pond at the site. The pond has a bottom lining such that nothing seeps into the ground below. The microbes are mixed with the water and they remain uniformly dispersed in the waste water. To digest the compound, the microbes also need oxygen, i.e. the microorganisms are aerobic. Oxygen dissolves from air at the surface of the pond, and as it diffuses in the liquid it is consumed at a rate which is first order with respect to the concentration of oxygen, i.e. $r_B = -k_1 C_B$; $B = O_2$. It is desired to estimate the maximum depth of the pond such that some oxygen can at least reach the bottom, say at 1% of the surface concentration. The atmospheric pressure is 680 mm Hg.

- (a) If k₁=0.08 s⁻¹, what maximum pond depth would you specify?
- (b) What is the steady state rate of O₂ uptake per unit surface area of the pond?

Data: The diffusivity of oxygen in water is 5 (10⁻⁵) m²/s. Molar concentration of water is 55.6 moles/litre. Henry's constant for 0₂ in water = 4.38(10⁴) atm. Oxygen is 21% v/v in air.

Problem #3 (25 points; each of a-e has equal value)

- (a) Two equal volumes of water (say ½ litre) are to be heated in a microwave oven. One container is styrofoam and the other is a ceramic mug. If alternately the containers are placed on one spot in the microwave, the power level and duration of activation kept identical (say 2 minutes), will the temperature of the water be the same for both systems at the end of heating? Explain.
- (b) Demonstrates the Russian Peasant Method of Multiplication for the product 86 x 57.
- (c) Hollow pipes with a drill bite attached to the lower end are used to drill for oil or water. Given 15 cm o.d. steel pipes with walls 1 cm thick, estimate the maximum depth of the hole that can be drilled without losing the string (series of pipes screwed together) due to metal failure past the elastic limit.

(density of steel = 7800 kg/m³; Young's modulus, E = 206.8 GPa; Maximum strain, ϵ_{max} = 0.001).

(Note: A string is made by attaching lengths of pipes, drilling until the last pipe almost disappears, pulling the string up and attaching another pipe).

- (d) Explain hydroplaning from your knowledge of Couette flow.
- (e) How would you go about identifying the dimensionless groups required to study the atomization of a liquid at a nozzle?

Problem #4 (25 points)

A large flat plate is totally submerged in a very large reservoir of water. Initially the plate and the water in the reservoir were stationary. Then suddenly the plate is pulled through the water at a steady speed of 5 m/s. If the density of water is 998 kg/m³ and the viscosity is 1.6 mPa.s, use *the integral method* to determine:

- (a) The velocity distribution as a function of distance from the plate and the time elapsed since the drag was initiated.
- (b) The time at which the drag (force) per unit area of the plate becomes ½ of its value 1 minute after pulling started.

Hint: If y is distance away from the plate and x is direction along which the plate is pulled, velocity in the x-direction is a function only of y and time, t. That is, u(y,t). A differential element of volume dxdy at a distance y from the plate has a momentum of pudxdy. Perform a force balance for a zone from y=0 to y=H (H> δ) above the plate, using Newton's law.

	1-
Output volypop 7 + (-kedi) dz ytay	
itence $v p c p $	
$\frac{\partial c}{\partial t} = \frac{\partial^2 c}{\partial y^2} + \frac{\partial c}{\partial y}$	Œ-
Subject to $z=0$ $i=\overline{l_e}=56^{\circ}C$ $y=0-e^{d\overline{l_e}}=h(\overline{l_e}-\overline{l}); \overline{l_d}=5$	°C
y = & Di = o (insulator) Dy	
and equition 6.4 with \$ = 00	
$v = \frac{\beta \xi \delta^2}{2\mu} \left(1 - \left(\frac{7}{\delta} \right)^2 \right)$	(1- Z)
Equation 1-1 (with eq. 1-2) is to be solved to obtain $T(y, z)$.	
The bulk mean temperature at any distance Z	3
given by $\overline{I}_{bn}(z) = \int_{0}^{\infty} uT(y,z) dy$	(1-3)
The question is: At what 2 is Tom = 1	8°c ?

Roblem #2 This problem is as on peoples B= 02 175 and 176 of Notes, It involves diffusion with chemical reaction wirt. Oz. 2 = L First the Oz objectives at the interface. Use Henry's Low, YBP = PB = Hacks NBS = (0.21)(680/760) = 4.2898(10-6) At steedy state, the material bolive equation on oxygen is dNB + KCB = 0 The flux is given as: NB = - DAB C dxB + NB (NA + NB) It is obvious that MB & MBO is small. Here drop second term on the right. The material balance equation is hence -2+3 d2xs + k, xg = 0; c = constent (Cg = Cxg)

This equelism is subject to	
?=> 28= 283	
Z=L olag = 0 (impervious wall) JZ	II S
बर	
The solution - eq. 122 w Notes is	
$\frac{2c_{B}}{2c_{BO}} = \frac{\cosh T(1-\frac{2}{L})}{2c_{BO}}, T = \frac{ k_{1}L^{2} ^{2}}{2c_{BO}}$	
NBO ash T , PrB	100
(a)	
for the poroblem, when Z=L, we went of to be	
at least poverent _ say 0.01 2180 = 768, i.e. 999.	>
approach. Hence	
(e) des 7 (cool 77 (c	
cosh! (cosh)	
Crah 7 = 100 => 17 = 5.2983	
1 5,2983 = T0.08 L 2 = 1 = 0.1325 m	
$\frac{1.5.2983}{5(10^{-5})} = \frac{1.5.25}{5(10^{-5})}$	
The pond should be about 13.25 cm chep.	
6.124	
NI = / Das C MBO \ T += h T	
NB/2=0 (PAB C NBO) T tonh T	
= 5(10-5)(55.6)(103)(4.2898)(10-6) 5.291	92
0:1325	7
0.9999	5
= 4.77 (10-4) males/m2, s	

Problem #3

(a) No. The temperature of the water will be higher with styroform cup then in the ceramic mus. Note test microwave radiation interacts for incriby with water molecules - not the polystyrene (of form cup) or the aremic.

As everyly is absorbed by water in the containers

and transformed into heat, the ceramic - with its

trighter conductivity and thermal capacity than the

for styroform, withdraws some of the test from

the water.

6	-67)	x -86-	Double left and & right until
3	114		r.h.s. equals 1. Cross out
	228	21	terms with even r.h.s.
	-456	-10	(Record only whole numbers
	912	5	on vihiti)
	1824	-2-	
	3648	N	

Sum 4902

y=0, N=V; y=5, N=0; y=5, dy=0
By Integral method - assume a profile N= a + by + cy²
Use b.c. $a = V$, $b = -\frac{2V}{8}$ and $C = \frac{V}{82}$
$\frac{1}{\sqrt{2}} = \left(1 - \frac{1}{2}\right)^2 \qquad \qquad (4-2)$
Let 7 = 8. Substitute eg. 4-2 uito 4-1
$\frac{d\left(\int_{0}^{+}V(1-\gamma)^{2}\delta d\gamma\right)}{dt}=\frac{h}{p}\frac{2V}{3}$
Set upper limit of integral as 5, i.e. H=5
$\frac{1}{at} \left[\sqrt{s} \int_{s}^{t} (1-\eta)^{2} d\eta \right] = 2 \sqrt{s}$
Hence 5 d 5 = 1 d 52 = 6 v d t
Z = 150+
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Tulimi raylolima 8+ (t)
Conen Twle = 1 , t = 4 mi ->