EXTREME ENGINEERING IN WATER RESOURCES FROM THE ARCTIC TO SOUTH AMERICA #### Wim M. Veldman M.Sc., FEIC., P.Eng. Vice President April 15, 2010 ## <u>OVERVIEW</u> - 1. IMPORTANCE OF DATA - 2. TRADITIONAL KNOWLEDGE - 3. WHAT IF - 4. CHALLENGE THE CONVENTIONAL - 5. LIFE CYCLE APPROACH - 6. EXTREME EVENTS - 7. CLIMATE CHANGE ## <u>IMPORTANCE OF DATA</u> #### 1. REALITIES - Never enough data: - ✓ Trans Alaska Pipeline (1973) - ✓ Rose Creek Diversion, Yukon (1979) - ✓ GasAtacama, Argentina (1997) - ✓ Baffin Island Railway (2008) - ✓ Bolivia Pipeline (2010) ## IMPORTANCE OF DATA - PIPELINES | | Low | Medium | High | |--------------|------------|--------|------------| | Streamflow | | | | | Peak | х | - x, | -28/j | | Low | X | | tig in the | | Water Level | | | | | Open Water | <u>x</u> — | - x | | | Ice | x | - x | | | Bed Scour | | | | | General | - | X | X | | Local | _ | | X | | Bank Erosion | - | | X | # IMPORTANCE OF DATA - BRIDGES AND CULVERTS | | Low | Medium | High | |-------------|-------|--------------------|-------------| | Streamflow | | | | | Peak | erana | X | | | Low | x | → X 7 7 7 7 | 100 - 100 m | | Water Level | | | | | Open Water | - | X | | | Ice + Flow | - | | X | # IMPORTANCE OF DATA - WATER SUPPLY | | Low | Medium | High | |------------------------------|-------|--|--------| | Availability | | | A | | Peak Flow | - 188 | - mar/1 | y 1=1" | | Low Flow | - | 1/2/1/1 - 1 / 200 | X | | Pipeline Hydrostatic Testing | | | - | | Peak Flow | - | ************************************** | • | | Low Flow | - 1 | | Х | ## 2. TRADITIONAL KNOWLEDGE - 1. OAK LAKE / PLUM CREEK, MANITOBA (1966) - 2. FLOOD LEVELS, SRI LANKA (1987) - 3. GASATACAMA, ARGENTINA (1999) - 4. OCP ECUADOR (2000) # TRADITIONAL KNOWLEDGE Ecuador – OCP Pipeline – Rio Quijos – Local expert # TRADITIONAL KNOWLEDGE Argentina - GasAtacama - Local Professional Experts ## 3. WHAT IF - Impact on design criteria - ✓ TAPS in different regions (1973) - ✓ 1992 Sag River Flood - Droughts more sustained than historic data Bow City Thermal - ✓ Impact on storage requirements - Design and operations Uncertainly Nova Scotia # WHAT IF – SHUBENACADIE R. INTAKE # WHAT IF - SHUBENACADIE RIVER | | WHAT IF | HOW DETERMINED | IMPACT ON OPERATION | IMPACT ON THE ENVIRONMENT | POTENTIAL MITIGATIVE
MEASURES – IF | |----|--|---|--|--|--| | | | | | | NECESSARY | | 1. | Silt or sand
deposits in
the Mixing
Channel | From surveys and visual observations, the latter best done in non-tidal and low river flow periods. | Could reduce flow in the mixing channel – a bar would have a minimal impact on the flow. However, deposition across the full width of the channel could reduce flow during low flow conditions. This is expected to have little or no impact on the available flow for water withdrawal or the performance of the outfall. | A significantly reduced flow would increase salinity concentrations in the channel. Depending on the natural salinity in the river, the resultant salinity in the channel would still be expected to be well below the maximum natural salinity values in the river. | Remove the deposited material using a backhoe or small portable dredge. Undertake the work in the least sensitive period (from an aquatic viewpoint). | | 2. | Scour of the bottom or erosion of the banks develops in the Mixing Channel | From surveys and visual observations – best done in non-tidal and low river flow periods. | Expected to have little impact on the magnitude of flow in the mixing channel and thus the operation of the intake and outfall. | Expected to have little impact if the scour and bank erosion is limited. Significant bank erosion could alter velocity patterns which could lead to non-uniform mixing of the flow in the channel. | Place more and/or larger
armour material on the
bed and banks of the
mixing channel. | | 3. | Mixing of the
Brine Water
with the flow
in the Mixing
Channel is
not as
modelled | Salinity measurements in
the channel upstream and
downstream of the outfall
are higher than predicted
herein. | None, except in the instance where the outfall flow affects the salinity of the water withdrawal from the channel. This could reduce the efficiency of the brining process. | Depending on the magnitude and spatial extent of the variance – actual versus modeled results – there could be a minor to moderate environmental impact. | Modify the outfall structure or add additional air lines to ensure full mixing of the brine and mixing channel flow. In an extreme nonconformance case, that can not be remediated by modifying the outfall structure, the magnitude of outflow might need to be reduced at certain times. | **Client's Concerns** **Regulatory Concerns** Joint Concerns - 1. TAPS Oil Pipeline(1973) - Elevated pile design / heat pipes - Environmental - 2. GASATACAMA PIPELINE (1997) - Instream alignment for 80 Km - 3. OCP Oil Pipeline ECUADOR (2000) - Mindo Ridge Trans Alaska Oil Pipeline "Gentlemen, do you know what 'Tsina' River means?" > Ralph Jackson 1975 TAPS Argentina - Atacama - Few Route Options Available Gabions Argentina - Atacama - Extra Pipeline Protection Ecuador - OCP - Towers/Cable/Handwork Ecuador - OCP 550 People for 8 km #### 5. LIFE CYCLE APPROACH #### 1. INTERRELATIONSHIPS OF - Design - Permitting - Construction - Monitoring #### 2. WALK – AWAY VERSUS POSSIBLE MAINTENANCE • "To design for all eventualities is easy. To develop a practical yet sound and adequate design is much tougher" (Wim) # LIFE CYCLE # **LIFE CYCLE - OPERATIONS** TAPS - Alaska OCP - Ecuador ## LIFE CYCLE - OPERATIONAL MONITORING ## 6. EXTREME EVENTS - 1. TAPS, ALASKA (1997, 2006) - 2. OCP ECUADOR (2002) - 3. NORANDINO, ARGENTINA (2000) # EXTREME EVENTS - GLACIER DAMMED LAKES Alaska #### EXTREME EVENTS - IMPACT OF LAKE RELEASES # EXTREME EVENTS - A BREAKUP AT -40° TAPS - TAZLINA RIVER ## EXTREME EVENT Value of personally experiencing an extreme event – TAPS Alaska # EXTREME EVENT - BEFORE Ecuador - OCP - Rio Montana pre Nov. 3, 2002 # EXTREME EVENT Ecuador - OCP El Reventador, Nov. 3, 2002 # EXTREME EVENT - THE IMPACT Ecuador - OCP - Rio Montana post Nov. 3 # EXTREME EVENT - THE IMPACT Ecuador -OCP - What Highway Bridge? # <u>EXTREME EVENT – DESIGN / CONSTRUCTION</u> <u>RESPONSE</u> Ecuador - OCP # EXTREME EVENT – BURIED HOMES Ecuador - OCP - Deadly Landslides, June 2001 # **EXTREME EVENT - UNIQUE SOLUTIONS** Ecuador - OCP - Landslides - Re-route Assessment # EXTREME EVENT - THE IMPACT Argentina - NorAndino - Debris Flows # EXTREME EVENT- REDESIGN Argentina - NorAndino - Realignment/Non-Rock ## 7. CLIMATE CHANGE - ANALYSIS OF HISTORIC DATA - Temperature - Flow - 2. EXTRAPOLATE TO THE FUTURE - Impact on project design - Mackenzie Gas Pipeline (2005) - Bow City Coal / Thermal Project (2004) - 3. USED AS A "CRUTCH" IN FAILURES / IMPACTS - Saint John River, NB Ice Jams Railway Bridges 1980's - Peace Athabasca Delta, AB / NWT Impact of Bennett Dam (2004) #### IMPORTANCE OF DATA | | Low | Medium | High | |-------------|-----|--------|--------| | Streamflow | | | | | Peak | | x- | - X */ | | Low | x- | → x | - | | Water Level | | | | | Open Water | | х- | - x | | Ice + Flow | | | X | #### TRADITIONAL KNOWLEDGE #### WHAT IF | | WHATIF | HOW DETERMINED | IMPACT ON OPERATION | IMPACT ON THE
ENVIRONMENT | POTENTIAL MITIGATIVI
MEASURES – IF
NECESSARY | |----|--|---|---|--|---| | 1. | Sift or sand
duposits in
the Mixing
Channel | From surveys and visual observations, the latter best done in non-tidal and low river flow periods. | Could reduce flow in the moving
channel – a bur vexual have a
minimal impact on the flow.
However, doposition across the
full waith of the channel could
reduce flow during low flow
conditions. This is expected to
have little or to impact on the
evaletile flow for water
withdrawal or the performance of
the outfall. | A significantly reduced flow would increase safinity concentrations in the channel. Depending on the natural salinity in the rhore, the mattert salinity in the rhore, the mattert salinity in the chonnel would slift be expected to be well below the maximum natural salinity values in the more. | Remove the deposite-
material using a backho
or small portable diredge
Undertake the work in the
least sensitive period
(from an aquati-
viewpoint). | | 2 | Scour of the
bottom or
erosion of
the banks
develops in
the Mixing
Channel | From surveys and visual
observations – best done
in non-tidal and low river
flow periods. | Expected to have little impact on
the magnitude of flow in the
mixing channel and thus the
operation of the intake and
outfall. | Expected to have little impact if
the soour and bank erosion is
limited. Significant bank erosion
could eiter velocity patterns which
could lead to non-uniform mixing
of the flow in the channol. | Place more and/or large
armour material on the
bod and banks of the
mixing channel. | | 3. | Mixing of the
Brine Water
with the flow
in the Mixing
Channel is
not as
modelled | Safinity measurements in
the channel upstroam and
downstream of the outfoll
are higher than predicted
herein. | None except in the instance where the outfall flow affects we when the salinity of the water withdrawel from the channel. This could reduce the efficiency of the braning process. | Depending on the magnitude and spetial electric of the variance – actual versus modeled results – these could be a minor to moderate environmental impact. | Modify the outfall structur
or odd odditional air time
to ensure till moxing of the
time and mixing channs
flow. In an extrem
nonconformance cost
that can not be
remediated by modifyin
the outfall structure, the
magnitude of outflow
might need to be reduce
at certain times. | #### CHALLENGE THE CONVENTIONAL LIFE CYCLE - APPROACH #### EXTREME EVENT # <u>THANK YOU – WIM VELDMAN</u>