

S(1a)	VIEW/(RdRo)				
		Higher Mode Factor, M Formi	Table 4.1.8.11 ,, and Base Overtuing Part of Sentence	I. Irning Reduction Fa e 4.1.8.11.(5)	actor, J ⁽¹⁾⁽²⁾	
	S _a (0.2)/S _a (2.0)	Type of Lateral Resisting Systems	M_v For $T_a \leq 1.0$	M_v For $T_a \ge 2.0$	J For $T_a \leq 0.5$	J For $T_a \geq 2.0$
		Moment-resisting frames or coupled walls ⁽³⁾	1.0	1.0	1.0	1.0
	< 8.0	Braced frames	1.0	1.0	1.0	0.8
		Walls, wall-frame systems, other systems ⁽⁴⁾	1.0	1.2	1.0	0.7
		Moment-resisting frames or coupled walls ⁽³⁾	1.0	1.2	1.0	0.7
	≥ 8.0	Braced frames	1.0	1.5	1.0	0.5
	Walls, wall-frame systems, other systems ⁽⁴⁾	1.0	2.5	1.0	0.4	

			Instructor: John Pa	10	
	D 21.2.5 Ana	UCTILE MOMENT	Resisting Frames ural members 21.1		
		Section properties	for analysis		
		Element type	Effective property		
		Beam	$I_e = 0.4I_g$		
		Column	$I_e = \alpha_c I_g$		
		Coupling beam (Clause 21.6.8.6)	$A_{ve} = 0.15 A_g$; $Ie = 0.4 I_g$		
⊴ [∑		Coupling beam (Clause 21.6.8.7)	$A_{ve} = 0.45 A_g$; $Ie = 0.25 I_g$		
		Slab frame element	$I_e = 0.2I_g$		
		Wall	$A_{xe} = \alpha_{w}A_{g}; I_{e} = \alpha_{w}I_{g}$		
	Seismic Design of Multistorey Concrete Structures				

Instructor: John Pao

				Instructor: John Pao
		Ductile Wa	alls	
21.6.5 Distri This clause introc <u>14</u> , except that in	ibuted Reinforcement duces tie requirements o Clause <u>21</u> , it applies to	for vertical distributed reinfor all vertical reinforcement.	orcement similar to thos	e introduced in Clause
Buckling prevent of reverse cyclic	ion ties for vertical distr yielding where 20M and	ibuted reinforcement are re d larger bars are used.	equired in <mark>plastic hinge r</mark>	egions in anticipation
		Plastic Hinge	Other Region	
	Distributed reinforcement			
	Amount	<i>ρ</i> ≥ 0.0025	<i>ρ</i> ≥ 0.0025	
	Spacing	≤ 300 mm	≤ 450 mm	
	Tying	Buckling prevention ties, Clause 21.6.6.9	Column ties, Clause 7.6.5	
	Horizontal reinforcement anchorage	Develop 1.25 f _y within region of concentrated reinforcement	extend into region of concentrated reinforcement	
	Concentrated reinforcement			
	Where required	at ends of walls and coupling beams, corners, and junctions	at ends of walls and coupling beams	
	Amount*	$A_s \ge 0.0015 \ b_w \ell_w$	$A_s \ge 0.001 b_w \ell_w$	1
	(at least 4 bars)	A _s ≤ 0.06 x area of concentrated reinforcement region	A _s ≤ 0.06 x area of concentrated reinforcement region	
	Hoop requirements	must satisfy Clauses 7.6 and 21.6.6.9	hoop spacing according to Clause 7.6]
	Splice requirements	1.5 ℓ_{d} and not more than 50% at the same location. Unless lap length less than ½ storey height lap alternate floors	$1.5\ell_{d}$ and 100% at the same location.	
9	Seis	mic Design of Multistore	y Concrete Structures	No

Ductile Walls

The wall moments should be resisted primarily by concentrated reinforcement. Walls designed with only distributed steel often fail by rupture of the edge tension reinforcement prior to developing significant ductility. Nevertheless when calculating the wall resistance the distributed reinforcement is to be taken into account.

21.6.6.4

N21.6.6.2

The minimum area of concentrated reinforcement in regions of plastic hinging shall be at least 0.0015 $b_w \ell_w$ at each end of the wall

This minimum reinforcement requirement is intended to ensure that the wall possesses post-cracking capacity.

21.6.6.7

In regions of plastic hinging, not more than 50% of the reinforcement at each end of the walls shall be spliced at the same location. In such walls, a total of at least one-half of the height of each storey shall be completely clear of lap splices in the concentrated reinforcement.

The requirement to keep at least half the storey height free of lap splices is intended to provide a section of wall with a capacity no greater than that anticipated in the design.

21.6.6.8

The concentrated reinforcement shall be at least tied as a column as specified in Clause <u>7.6</u>, and the ties shall be detailed as hoops. In regions of plastic hinging, the concentrated reinforcement shall be tied with buckling prevention ties as specified in Clause <u>21.6.6.9</u>.

The closer spacing of ties in the plastic hinge region is intended to prevent buckling of bars under compression.

Seismic Design of Multistorey Concrete Structures

No. 43

Instructor: John Pao

		19/05/2006 Instructor: John Pao	1
	Docian		
	Design		
	Evampla	maximum concentrated reinforcement (Clause 21.5.4.3)	
	слатріє	area of concentrated reinforcement region: lcosc := 12in	
		bconc := 12in	
		Asmax := 0.06-lconc-bconc Asmax = 5574 mm ²	
		check := if(As ≤ Asmax, "OK", "NG") check = "OK"	
		maximum bar diameter (Clause 21.5.4.4)	
		- wall in X direction bw := 10in	
		dbmax := $\frac{bw}{10}$ dbmax = 25.4 mm Use 25M	
		- wall in Y direction bw := 12in	
		dbmax := $\frac{bw}{10}$ dbmax = 30.5 mm	
		distributed reinforcement (Clause 21.5.5.1)	
		- in plaetic hinge region smax :- 300mm	
		 minimum distributed reinforcement in each direction pmin := 0.0025 	
		- wall in X direction: bw := 10in	
		assume two curtains of 15M@12in As := 2.200mm ²	
		$\rho := \frac{As}{bw \cdot s} \qquad \qquad \rho = 0.00517 \qquad \qquad s := 12in$	
		check := if $(\rho \ge \rho min, "OK", "NG")$	
		check = "OK" use 10M@12in	
\leq		- wall in Y direction: bw := 12in	
		assume two curtains of 15M@12in $As := 2.200 \text{ mm}^2$	
\triangleright		$\rho := \frac{As}{bu \cdot s} \qquad \rho = 0.00431$	
্য ন		$check := if(\rho \ge \rho min, "OK", "NG")$	
		check = "OK" use 15M@12in	
		ducti_shear_wall_design_01.mcd	
	CSCE	Salamia Design of Multistarov Constate Structures	
		Seismic Design of Multistorey Concrete Structures	No. 62
			INO. 03

	19/05/2008	Instructor: John Pao
Desian		
	abook if two curtains of reinforcement are required	
Example	- wall in X direction: 1w := 229.5in bw := 10in	
· ·	wall gross area: Acv := tw-hw	
	Varnin := 0.2-\$\$\$\$ \$	
	Vxmin = 236.3 Kips	
	- wall in Y direction: Iw := 114in Ibw := 12in	
	wall gross area: Acv := h+-bw	
	vyння := u.z.ęc. үлс.млэ.Асч	
	Vymin = 140.9 Kips	
	SEISMIC FORCE IN X DIRECTION	
	- seismic forces: Mf := 229447Kips-in Mf = 19121 Kips-ft	
	Vf = 203Kips	
	-moments at base (using ConcCol): Mr := 35625Kips-ft	
	pm := 4125004 pc m Ma $= 46721$ Kiro-ft	
	- distance to neutral axis (using ConcCol): c1 := 11 in c2 := 17.5 in	
	- over strength factor used for shear design $v_{W} = \frac{Mn}{2}$ $v_{W} = 2.157$	
\lhd	- ductility checks:	
	check if c<0.55*hw	
	$c := if(c) \le c_{c}^{2}, c_{c}^{2}, c_{c}^{2}$ (c) $c = 17.5$ in law := 201 in	
	check := if(c ≤ 0.55 lw, "OK", "NG")	
	cbsck = "OK"	
	ductil shear_wall_design_01.mod	
	Seismic Design of Multistorey Concrete Structure	25
× ×		No. 64

	19/05/2006	structor: John Pao
Decian		
Design		
	check if c<0.14"ww*tw	
Fyamnle	check := if (c ≤ 0.14 yw lw, "OK", "special wall confinement required")	
Елитріс	check = "OK"	
	- check wall stability:	
	wall thickness : bw := 10in	
	floor to floor elevation: hf := 9.33ft	
	slab thickness: ts := 7in	
	unsupported wall length at base: $hu := hf - ts$ $hu = 105$ in	
	$bw_min := \frac{hu}{10}$ $bw_min = 10.5 in$	
	- confinement of concentrated reinforcement:	
	in plastic hinge regions, the hoop spacing shall not exceed:	
	for 25M vertical bars db := 25mm s1 := 6 db s1 := 5.9in	
	101 1014 1066 dt := 101mm s2 := 24-0t s2 = 9.4 in	
	for walls thickness of $bw := 10in s3 := \frac{bw}{2} \qquad s3 = 5 in$	
	use 10M @ •_heop = Sin	
	DESIGN FOR SHEAR AT BASE OF WALL	
	- design base shear @ $V_X := \frac{M_P}{Mf}$. Vf $V_X = 496$ Kips	
	Vxmin = 236.3 Kips (see previous calculations)	
	check := if (Vx ≤ Vxmin, "use one curtain", "use two curtains")	
	check = "use two curtains"	
\Box	- effective shear wall depth: dv := 261 in	
	- total wall height: hw := 118ft	
	- average vertical strain: $cv := \frac{0.001}{\gamma w} \cdot \left(0.5 - \frac{c}{1w}\right) \left(18 + \frac{hw}{1w}\right)$ $cv = 0.004675$	
	- factored shear stress: $vf := \frac{Vx}{handrid}$ $vf = 190 psi$	
	the con	
	ducti_shear_wall_design_01.mcd	
CSCE	Saismic Design of Multistorey Concrete Structures	
	Seisinic Design of municipley Concrete Structures	NI: 07
		NO. 65

		Instructor: John Pao
	Design	
	E veranle	
	Example	$\frac{d}{\phi c \ bc} = 0.0634$
		- from the table 21-1 $\beta := 0.10634$
		- shear capacity taken by concrete: $Vog := 1.5 \ \text{de} \ \beta \ \sqrt{fc} \ MPa} \ \text{tw} \ dv \qquad Vog = 185.8 \ Kips$
		- for assumed minimum horizontal shear reinforcement 15M@ each face. $\Lambda v \simeq 2.200 mm^3$
		- shear capacity taken by steel s_max := $\frac{6 \sigma \Lambda r \cdot fy}{V_0} = 1.3 + c \beta \sqrt{6} \frac{M^2 h}{M^2} hw$
		- for a wall length that is reduced at base dv_roduced = 184in
		- maximum space for horizontal reinforcement: $S_max := \frac{dv_m rolaxod}{dv} s_max$ $S_max = 18.1 in$
		SEISMIC FORCE IN Y DIRECTION (for two walls.)
		- seismic forces: Mfx := 41907Kips-in Mfx = 3492.2 Kips-ft
		Mfy := 64956Kipe in
		vtx >> 94.9Kaps Mty = 541.3 Kaps II Vfy == 83Kaps
		assume that the maximum uniexial bending moment is
		$Mf := \sqrt{Mfx^2 + Mfy^2} \qquad Mf = 77301.2 \text{ Kips-in}$
		$Vf := \sqrt{Vh^2 + Vfy^2} \qquad Vf = 94.4 \text{ Kips}$
\triangleright		-moments at base (using ConoCol): Mr := 7750Kipe ft
		Mn := 196.00Kips-ft Mn := 21500Kins-ft
		- distance to neutral axis (using ConcCol): c1 = 5.6m c2 = 50in (for service dead & live load)
	-	ducil_shear_wal_design_01.mcd
-	CSCE	Seismic Design of Multistorey Concrete Structures
	× ·	No. 66

	19/05/2006	Instructor: John Pao
Decisy		
Design		
Evampla	- over strength factor used for shear design $\gamma wx := \frac{Mn}{Mf}$ $\gamma wx = 3.047$	
Lxample	Note: since we have case with bissist bending, based on A23.3-94,N21.5.7, it is conservative to assume very low yw value equivalent to 1/jes = 1.18	
	use yw := 1.18	
	 ductility checks (Clause 21.5.7): 	
	check if c<0.55*lw	
	$c := if(c1 \le c2, c2, c1)$ $c = 50 in$	
	hr = 114m $hr = if(a \le 0.55 hr "OK" "NG")$	
	sheet = \$0\$77	
	check = if (< 0.14 ye lot. "OK", "special wall confinement required")	
	alasia - funcial and configuration and a state of the	
	- model will confinement as for advance (Clause 21 & C is serviced	
	 special wail commemory as for course (clause 21.4.4) is required over the minimum length of: 	
	$L_conf := c_1 \left(0.25 + \frac{c}{1w} \right) \qquad \qquad L_conf = 34.4 \text{ in}$	
	- check wall stability:	
	wall thickness : bw := 12in	
	floor to floor elevation: hf := 9.33ft	
	sets unsupported wall length at base: $h_{\rm H} = h_{\rm H} = h_{\rm H} = 105$ in	
\triangleleft	$\sigma w_{min} := \frac{1}{10}$ $\delta w_{min} = 10.5$ m	
	commement of concentrated reinforcement: in plantic bioge regions, the base species shall not exceed:	
	for 15M vertical bars $dh = 15mm$ $sl = 6.dh$ $sl = 50m$	
	for 10M ties $dt := 10mm$ $s_2 := 24-dt$ $s_2 := 9.4 in$	
	for walls thickness of $bw := 12in s_3 := \frac{bw}{2} \qquad s_3^3 = 6 in$	
	use 10M @ s_hoop := 5in	
	ducti_shear_wail_design_01.mod	
CSCE	Seismic Design of Multistorey Concrete Structure	25
	colonno beolgii el munistorey conorete chactari	No 67

	Instructor: John Pao
Design Example	
1905/2005	
$\begin{split} Ash := if(Ash) \leq Ash2, Ash2, Ash1) & Ash = 650.3mm^2 \\ in y direction \\ i \} & Ash1 := 0.3 + hcy. \frac{fc}{5y} \left(\frac{Ag}{Ash} - 1\right) & Ash1 - 186.3mm^2 \\ i \} & Ash2 := 0.09 + hcy. \frac{fc}{5y} & Ash2 = 203.2mm^2 \\ Ash2 := 0.09 + hcy. \frac{fc}{5y} & Ash2 = 203.2mm^2 \\ Ash2 := if(Ash1 \leq Ash2, Ash2, Ash1) & Ash = 203.2mm^2 \\ - for columns that can develop plastic hings over thise full height, this reinforcement shall be provided over the entire column length (Clause 21.4.4.7.) \end{split}$	
Seismic Design of Multistorey Concrete Structure	5 No. 69

