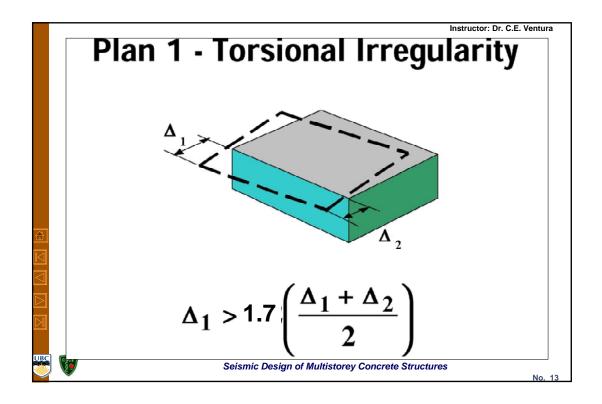
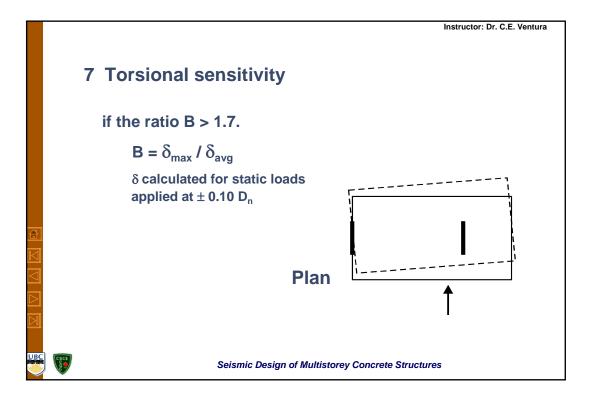
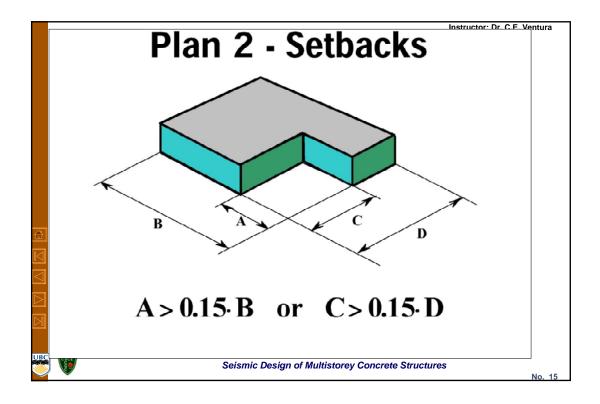
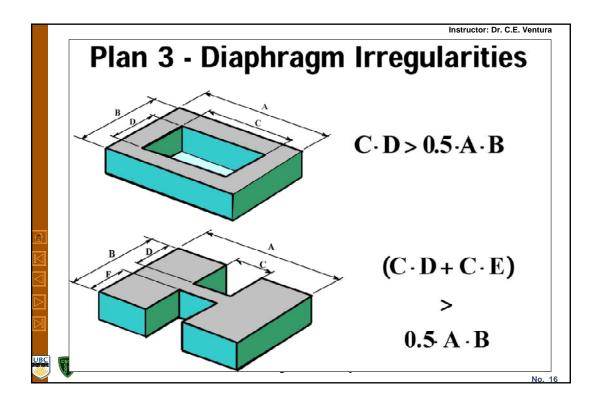
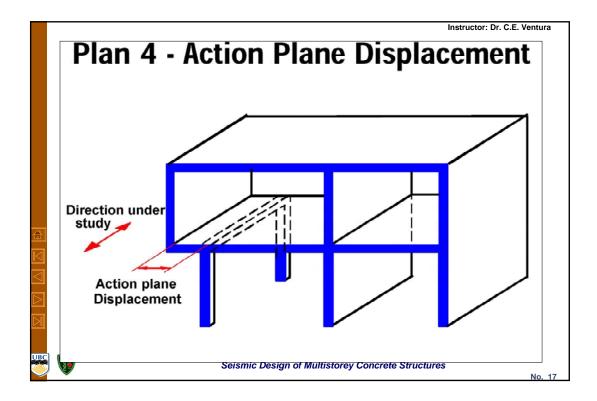

Туре	Irregularity Type and Definition	Notes
1	Vertical Stiffness Irregularity Vertical stiffness irregularity shall be considered to exist when the lateral stiffness of the SFRS in a storey is less than 70% of the stiffness of any adjacent storey, or less than 80% of the average stiffness of the three storeys above or below.	(1) (3) (7)
2	Weight (mass) Irregularity Weight irregularity shall be considered to exist where the weight, W _i of any storey is more than 150 percent of the weight of an adjacent storey. A roof that is lighter than the floor below need not be considered.	(1)
3	Vertical Geometric Irregularity Vertical geometric irregularity shall be considered to exist where the horizontal dimension of the SFRS in any storey is more than 130 percent of that in an adjacent storey.	(1) (2) (3) (7)
4	In-plane Discontinuity in vertical lateral force-resisting element An in-plane offset of a lateral load-resisting element of the SFRS or a reduction in lateral stiffness of the resisting element in the storey below.	(1) (2) (3) (7)
5	Out-of-Plane Offsets Discontinuities in a lateral force path, such as out-of-plane offsets of the vertical elements of the SFRS.	(1) (2) (3) (7)
6	Discontinuity in Capacity - Weak Storey A weak storey is one in which the storey shear strength is less than that in the storey above. The storey shear strength is the total strength of all seismic-resisting elements of the SFRS sharing the storey shear for the direction under consideration.	(3)
7	Torsional Sensitivity- to be considered when diaphragms are not flexible. Torsional sensitivity shall be considered to exist when the ratio B calculated according to Sentence 4.1.8.11(9) exceeds 1.7.	(1) (3) (4) (7)
8	Non-orthogonal Systems A "Non-orthogonal System" irregularity shall be considered to exist when the SFRS is not oriented along a set of orthogonal axes.	(5) (7)

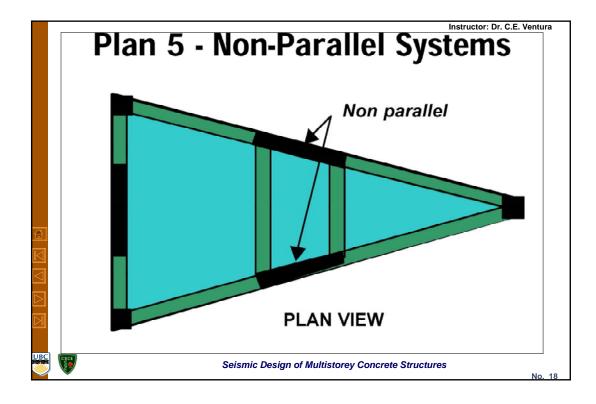


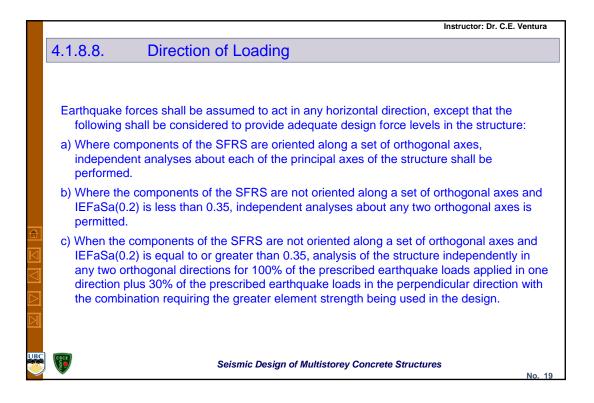


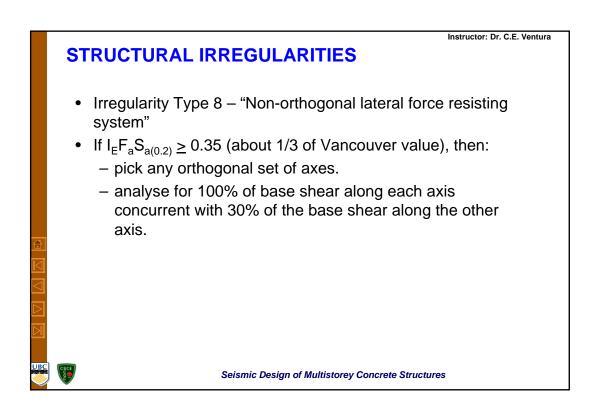


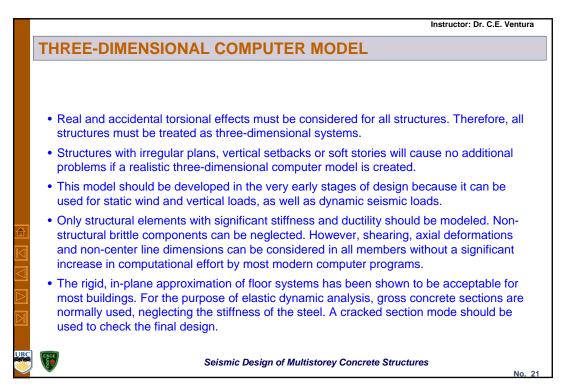


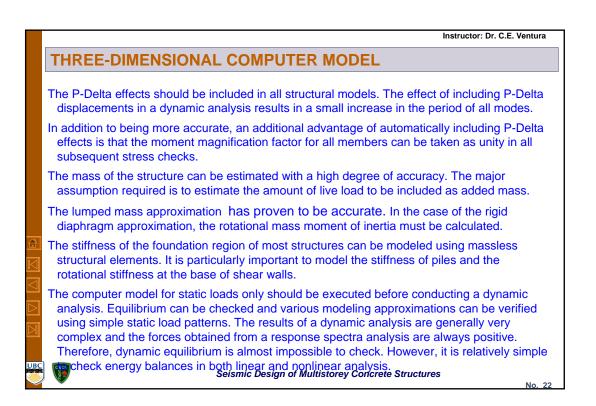


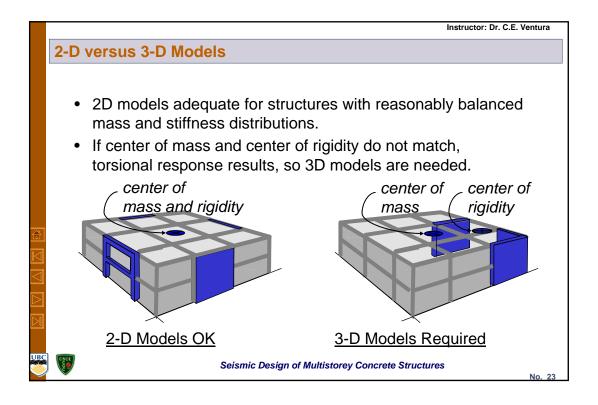


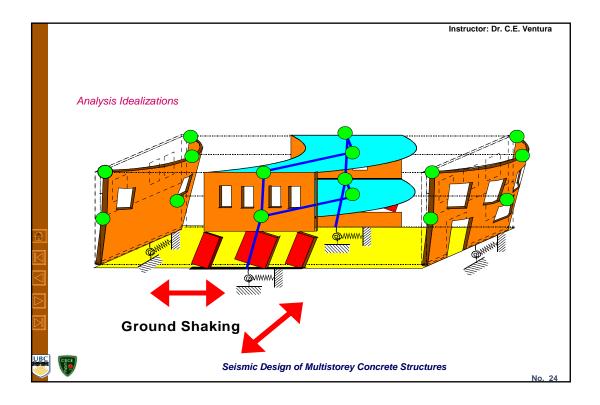


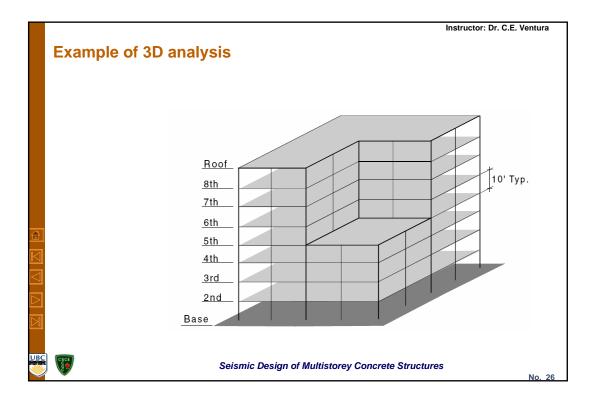











Instructor: Dr. C.E. Ventura

3D models:

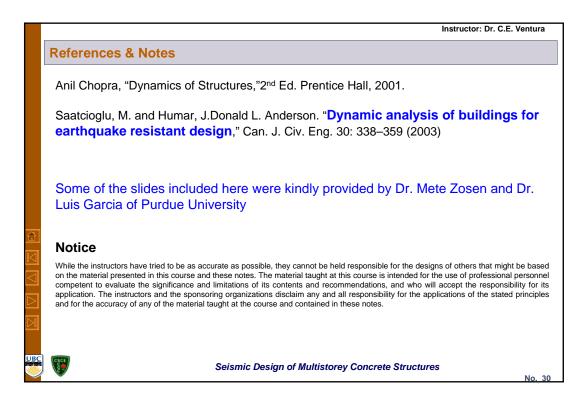
The current code defines an "irregular structure" as one that has a certain geometric shape or in which stiffness and mass discontinuities exist. A far more rational definition is that a "regular structure" is one in which there is a minimum coupling between the lateral displacements and the torsional rotations for the mode shapes associated with the lower frequencies of the system. Therefore, if the model is modified and "tuned" by studying the three-dimensional mode shapes during the preliminary design phase, it may be possible to convert a "geometrically irregular" structure to a "dynamically regular" structure from an earthquake-resistant design standpoint.

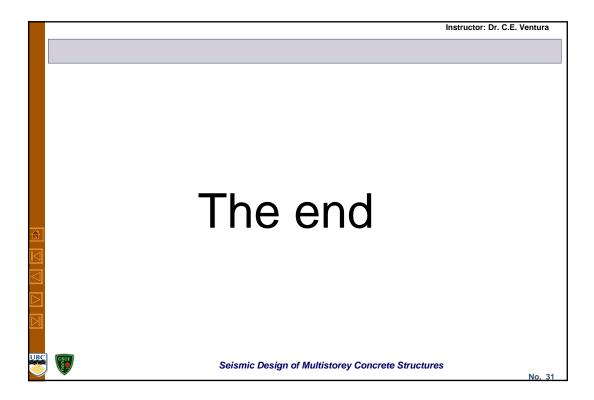
Seismic Design of Multistorey Concrete Structures

No. 25

						_	In	structor:
ree Dimensional	ODE	PERIOD	MODAL BASE SHEAR REACTIONS			AR MODAL OVERTURNING MOMENTS		
		Seconds	X-DIR	Y-DIR	Angle Deg.	X-AXIS	Y-AXIS	Z-AXIS
se Forces and	1	.6315	.781	.624	38.64	-37.3	46.6	-18.9
oments	2	.6034	624	.781	-51.37	-46.3	-37.0	38.3
	3	.3501	.785	.620	38.30	-31.9	40.2	85.6
	4	.1144	753	658	41.12	12.0	-13.7	7.2
	5	.1135	.657	754	-48.89	13.6	11.9	-38.7
	6	.0706	.989	.147	8.43	-33.5	51.9	2438.3
	7	.0394	191	.982	-79.01	-10.4	-2.0	29.4
	8	.0394	983	185	10.67	1.9	-10.4	26.9
	9	.0242	.848	.530	32.01	-5.6	8.5	277.9
	10	.0210	.739	.673	42.32	-5.3	5.8	-3.8
	11	.0209	.672	740	-47.76	5.8	5.2	-39.0
	12	.0130	579	.815	-54.63	8	-8.8	-1391.9
	13	.0122	.683	.730	46.89	-4.4	4.1	-6.1
	14	.0122	.730	683	-43.10	4.1	4.4	-40.2
	15	.0087	132	991	82.40	5.2	7	-22.8
	16	.0087	991	.135	-7.76	7	-5.2	30.8
	17	.0074	724	690	43.64	4.0	-4.2	-252.4
	18	.0063	- 745	667	41.86	3.1	-3.5	7.8
	19	.0062	667	.745	-48.14	-3.5	-3.1	38.5
	20	.0056	776	630	39.09	2.8	-3.4	54.1
	21	.0055	630	.777	-50.96	-3.4	-2.8	38.6
	22	.0052	.776	.631	39.15	-2.9	3.5	66.9
	23	.0038	766	643	40.02	3.0	-3.6	-323.4
	24	.0034	771	637	39.58	2.9	-3.5	-436.7

Participating Mass - (percent) 2 23.126 36.212 0.00 57.350 58.087 0.00 3 2.003 1.249 0.00 59.354 59.336 0.00 4 13.106 9.987 0.00 72.460 69.323 0.00 5 9.974 13.102 0.00 82.434 82.425 0.00 6 0.02 0.00 0.00 82.436 82.425 0.00 7 2.93 17.770 0.00 82.729 90.194 0.00 8 7.726 2.74 0.00 90.455 90.469 0.00 9 0.39 0.15 0.00 90.484 0.00 10 2.382 1.974 0.00 92.876 92.458 0.00 11 1.955 2.370 0.00 94.831 94.829 0.00 12 0.000 0.01 0.00 95.945 96.100 0.00 14 1.276 1.117							Instruc	tor: Dr. C.E.
Participating Mass - (percent) 2 23.126 36.212 0.000 57.350 58.087 0.000 3 2.003 1.249 0.000 59.354 59.336 0.000 4 13.106 9.987 0.000 72.460 69.323 0.000 5 9.974 13.102 0.000 82.434 82.425 0.000 6 0.02 0.00 0.000 82.434 82.425 0.000 6 0.02 0.00 0.000 82.436 82.425 0.000 7 2.93 17.770 0.000 82.729 90.194 0.000 8 7.726 274 0.00 90.455 90.469 0.000 10 2.382 1.974 0.000 92.876 92.458 0.000 11 1.955 2.370 0.000 94.831 94.828 0.000 12 0.000 0.01 0.000 95.945 96.100 0.000 14 <t< th=""><th></th><th>MODE</th><th>X-DIR</th><th>Y-DIR</th><th>Z-DIR</th><th>X-SUM</th><th>Y-SUM</th><th>Z-SUM</th></t<>		MODE	X-DIR	Y-DIR	Z-DIR	X-SUM	Y-SUM	Z-SUM
- (percent) 3 2.003 1.249 .000 59.354 59.336 .000 4 13.106 9.987 .000 72.460 69.323 .000 5 9.974 13.102 .000 82.434 82.425 .000 6 .002 .000 .000 82.436 82.425 .000 7 .293 17.770 .000 82.729 90.194 .000 8 7.726 .274 .000 90.455 90.469 .000 9 .039 .015 .000 90.494 90.484 .000 10 2.382 1.974 .000 92.876 92.458 .000 11 1.955 2.370 .000 94.831 94.828 .000 12 .000 .001 .000 95.945 96.100 .000 13 1.113 1.271 .000 95.945 96.100 .000 15 .028 1.556		1	34.224	21.875	.000	34.224	21.875	.000
4 13.106 9.987 .000 72.460 69.323 .000 5 9.974 13.102 .000 82.434 82.425 .000 6 .002 .000 .000 82.436 82.425 .000 7 .293 17.770 .000 82.729 90.194 .000 8 7.726 .274 .000 90.455 90.469 .000 9 .039 .015 .000 90.494 90.484 .000 10 2.382 1.974 .000 92.876 92.458 .000 11 1.955 2.370 .000 94.831 94.828 .000 12 .000 .001 .000 94.831 94.829 .000 13 1.113 1.271 .000 95.945 96.100 .000 14 1.276 1.117 .000 97.248 98.773 .000 15 .028 1.556 .000	Participating Mass	2	23.126	36.212	.000	57.350	58.087	.000
4 13.106 9.987 .000 72.460 69.323 .000 5 9.974 13.102 .000 82.434 82.425 .000 6 .002 .000 .000 82.436 82.425 .000 7 .293 17.770 .000 82.729 90.194 .000 8 7.726 .274 .000 90.455 90.469 .000 9 .039 .015 .000 90.494 90.484 .000 10 2.382 1.974 .000 92.876 92.458 .000 11 1.955 2.370 .000 94.831 94.828 .000 12 .000 .001 .000 94.831 94.829 .000 13 1.113 1.271 .000 95.945 96.100 .000 14 1.276 1.117 .000 97.248 98.773 .000 15 .028 1.556 .000	- (percent)	3	2.003	1.249	.000	59.354	59.336	.000
6 .002 .000 .000 82.436 82.425 .000 7 .293 17.770 .000 82.729 90.194 .000 8 7.726 .274 .000 90.455 90.469 .000 9 .039 .015 .000 90.494 90.484 .000 10 2.382 1.974 .000 92.876 92.458 .000 11 1.955 2.370 .000 94.831 94.828 .000 12 .000 .001 .000 95.945 96.100 .000 13 1.113 1.271 .000 97.220 97.217 .000 15 .028 1.556 .000 97.248 98.773 .000 16 1.555 .029 .000 98.802 .000 17 .011 .010 .000 98.814 98.812 .000 18 .505 .000 99.316 99.215 .00	dia ana ang	4	13.106	9.987	.000	72.460	69.323	.000
7 293 17.770 0.00 82.729 90.194 0.00 8 7.726 274 0.00 90.455 90.469 0.00 9 0.39 0.15 0.00 90.494 90.484 0.00 10 2.382 1.974 0.00 92.876 92.458 0.00 11 1.955 2.370 0.00 94.831 94.828 0.00 12 0.00 .001 0.00 94.831 94.829 0.00 13 1.113 1.271 0.00 95.945 96.100 .000 14 1.276 1.117 0.00 97.220 97.217 .000 15 .028 1.556 .000 97.248 98.773 .000 16 1.555 .029 .000 98.803 98.802 .000 17 .011 .010 .000 98.814 98.812 .000 18 .503 .403 .000 99.7		5	9.974	13.102	.000	82.434	82.425	.000
8 7.726 274 .000 90.455 90.469 .000 9 .039 .015 .000 90.494 90.484 .000 10 2.382 1.974 .000 92.876 92.458 .000 11 1.955 2.370 .000 94.831 94.828 .000 12 .000 .001 .000 95.945 96.100 .000 13 1.113 1.271 .000 97.220 97.217 .000 14 1.276 1.117 .000 97.248 98.773 .000 15 .028 1.556 .000 97.248 98.773 .000 16 1.555 .029 .000 98.803 98.802 .000 17 .011 .010 .000 98.814 98.812 .000 18 .503 .403 .000 99.316 99.215 .000 19 .405 .505 .000 99.8		6	.002	.000	.000	82.436	82.425	.000
9 .0.39 .0.15 .0.00 90.494 90.484 .0.00 10 2.382 1.974 .0.00 92.876 92.458 .0.00 11 1.955 2.370 .0.00 94.831 94.828 .0.00 12 .000 .001 .0.00 94.831 94.829 .0.00 13 1.113 1.271 .0.00 95.945 96.100 .0.00 14 1.276 1.117 .0.00 97.220 97.217 .0.00 15 .028 1.556 .0.00 98.803 98.802 .0.00 16 1.555 .029 .0.00 98.814 98.812 .0.00 17 .011 .010 .000 98.814 98.812 .0.00 18 .503 .403 .000 99.316 99.215 .000 19 .405 .505 .000 99.722 99.720 .000 20 .102 .067 .000 </td <th></th> <td>7</td> <td>.293</td> <td>17.770</td> <td>.000</td> <td>82.729</td> <td>90.194</td> <td>.000</td>		7	.293	17.770	.000	82.729	90.194	.000
10 2.382 1.974 .000 92.876 92.458 .000 11 1.955 2.370 .000 94.831 94.828 .000 12 .000 .001 .000 94.831 94.828 .000 13 1.113 1.271 .000 95.945 96.100 .000 14 1.276 1.117 .000 97.220 97.217 .000 15 .028 1.556 .000 97.248 98.773 .000 16 1.555 .029 .000 98.802 .000 17 .011 .010 .000 98.814 98.812 .000 18 .503 .403 .000 99.316 99.215 .000 19 .405 .505 .000 99.824 99.787 .000		8	7.726	.274	.000	90.455	90.469	.000
11 1.955 2.370 .000 94.831 94.828 .000 12 .000 .001 .000 94.831 94.829 .000 13 1.113 1.271 .000 95.945 96.100 .000 14 1.276 1.117 .000 97.220 97.217 .000 15 .028 1.556 .000 97.248 98.773 .000 16 1.555 .029 .000 98.803 98.802 .000 17 .011 .010 .000 99.814 98.812 .000 18 .503 .403 .000 99.316 99.215 .000 19 .405 .505 .000 99.722 99.720 .000 20 .102 .067 .000 99.824 99.787 .000		9	.039	.015	.000	90.494	90.484	.000
12 .000 .001 .000 94.831 94.829 .000 13 1.113 1.271 .000 95.945 96.100 .000 14 1.276 1.117 .000 97.220 97.217 .000 15 .028 1.556 .000 97.248 98.773 .000 16 1.555 .029 .000 98.803 98.802 .000 17 .011 .010 .000 99.814 98.812 .000 18 .503 .403 .000 99.316 99.215 .000 19 .405 .505 .000 99.722 99.720 .000 20 .102 .067 .000 99.824 99.787 .000		10	2.382	1.974	.000	92.876	92.458	.000
13 1.113 1.271 .000 95.945 96.100 .000 14 1.276 1.117 .000 97.220 97.217 .000 15 .028 1.556 .000 97.248 98.773 .000 16 1.555 .029 .000 98.803 98.802 .000 17 .011 .010 .000 98.814 98.812 .000 18 .503 .403 .000 99.316 99.215 .000 19 .405 .505 .000 99.824 99.787 .000		11	1.955	2.370	.000	94.831	94.828	.000
14 1.276 1.117 .000 97.220 97.217 .000 15 .028 1.556 .000 97.248 98.773 .000 16 1.555 .029 .000 98.803 98.802 .000 17 .011 .010 .000 98.814 98.812 .000 18 .503 .403 .000 99.316 99.215 .000 19 .405 .505 .000 99.824 99.787 .000		12	.000	.001	.000	94.831	94.829	.000
15 .028 1.556 .000 97.248 98.773 .000 16 1.555 .029 .000 98.803 98.802 .000 17 .011 .010 .000 98.814 98.812 .000 18 .503 .403 .000 99.316 99.215 .000 19 .405 .505 .000 99.722 99.720 .000 20 .102 .067 .000 99.824 99.787 .000		13	1.113	1.271	.000	95.945	96.100	.000
16 1.555 .029 .000 98.803 98.802 .000 17 .011 .010 .000 98.814 98.812 .000 18 .503 .403 .000 99.316 99.215 .000 19 .405 .505 .000 99.722 99.720 .000 20 .102 .067 .000 99.824 99.787 .000		14	1.276	1.117	.000	97.220	97.217	.000
17 .011 .010 .000 98.814 98.812 .000 18 .503 .403 .000 99.316 99.215 .000 19 .405 .505 .000 99.722 99.720 .000 20 .102 .067 .000 99.824 99.787 .000		15	.028	1.556	.000	97.248	98.773	.000
18 503 403 000 99.316 99.215 000 19 405 505 000 99.722 99.720 000 20 102 067 000 99.824 99.787 000		16	1.555	.029	.000	98.803	98.802	.000
19 .405 .505 .000 99.722 99.720 .000 20 .102 .067 .000 99.824 99.787 .000		17	.011	.010	.000	98.814	98.812	.000
20 .102 .067 .000 99.824 99.787 .000	4	18	.503	.403	.000	99.316	99.215	.000
		19	.405	.505	.000	99.722	99.720	.000
		20	.102	.067	.000	99.824	99.787	.000
21 .111 .109 .000 99.955 99.957 .000		21	.111	.169	.000	99.935	99.957	.000
22 .062 .041 .000 99.997 99.998 .000		22	.062	.041	.000	99.997	99.998	.000
		23	.003	.002	.000	100.000	100.000	.000
	Sec.	24	.001	.000	.000	100.000	100.000	.000


A-4.1.1.5.(2) Structural Equivalents


Sentence 4.1.1.5.(2) provides for the use of design methods not specified in Part 4 of the Code. These include full scale testing and model analogues. Normally this provision is used to permit acceptance of new and innovative structures or to permit acceptance of model tests such as those used to determine structural behavior or snow or wind loads. Sentence 4.1.1.5.(2) specifically requires a level of safety and performance at least equivalent to that provided by design to Part 4 and requires loadings and design requirements to conform to Section 4.1.

Sentence 4.1.1.5.(2) and the provisions for alternative solutions in Division A, Clause 1.2.1.1.(1).(b) are not intended to allow structural design using design standards other than those listed in Part 4. The acceptance of structures that have been designed to other design standards would require the designer to prove to the appropriate authority that the structure provides the level of performance required by Division A, Clause 1.2.1.1.(1).(b). The equivalence of performance can only be established by analyzing the structure for the loads and load factors set out in Section 4.1. and demonstrating that the structure at least meets the requirements of the design standards listed in Sections 4.3. and 4.4.

Seismic Design of Multistorey Concrete Structures

No. 29

