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Introduction 
 
This is a short presentation of the principles of structural dynamics applied to 
systems having several degrees of freedom for use by students in an earthquake 
engineering introductory course.  
 
The presented material is based, in the great majority, in corresponding sections of 
the book “Dinámica Estructural Aplicada al Diseño Sísmico” by Luis E. Garcia R., 
Universidad de los Andes, Bogota, Colombia, 1998, 574 p. 
 

Classical solution of the dynamic equilibrium equations  
 
For free vibration, we have the following system of n differential simultaneous 
equilibrium equations:  
 
 [ ]{ } [ ]{ } { }M U K U 0+ =   (1) 
 
[M] and [K] are the mass and stiffness matrices, respectively, both being positive 
defined — meaning that for the equilibrium position the potential energy of the 
system is cero.  
 
We can propose the following type of solution of the simultaneous differential 
equations:  
 
 { } { }(i )

i iU (t) f (t)= φ   (2)  
 
This is a solution that is separable into an amplitude vector, {φ(i)}, and a time 
dependant function, fi(t). Deriving Eq. (2) twice against time we obtain the following 
acceleration equation: 
 
 { } { }(i )

i iU (t) f (t)= φ   (3)  
 
Substituting (2) and (3) in (1) we obtain: 
 
 [ ]{ } [ ]{ } { }(i ) (i )

i iM f (t) K f (t) 0φ + φ =   (4)  
 
Eq. (4) can be seen as n equations of the type: 
 

 
n n

(i ) (i )
ij j i ij j i

j 1 j 1
m f (t) k f (t) 0

= =

   
φ + φ =   

   
∑ ∑   (5)  

 
This opens the door, in the ith equation, for the use of the classical differential 
equation solution of separation of variables: 
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n
(i )

ij j
j 1i
n

(i )i
ij j

j 1

k
f (t)
f (t) m

=

=

φ
− =

φ

∑

∑
  (6)  

 
In Eq. (6) we can see that the left side depends on time while the right doesn’t. This 
means that both sides are equal to a constant that we arbitrarily name as 2

iω . 
Therefore, the equation can be converted into two equations, one of them being 
dependent on time and the other not; and both, in turn, equal to the constant 2

iω : 
 
 2

i i if (t) f (t) 0+ ω =   (7)  
 
and 

 ( )
n

2 (i)
ij i ij j

j 1
k m 0

=

− ω φ =∑   (8)  

 
The solution of Eq. (7) is of type: 
 
 i i i i if (t) A sin t B cos t= ω + ω   (9)  
 
Where Ai and Bi are constants that depend on the initial conditions and represent the 
amplitude of the harmonic movement, with ωi being the natural frequency in radians 
per second. The values that ωi can take are obtained from Eq. (8), that presented in 
matrix form is: 
 
 [ ] [ ] { } { }2 (i)

iK M 0 − ω φ =    (10)  
 
Eq. (10) corresponds to a homogeneous simultaneous equation system, whose non-
trivial solution only exists if the determinant of the coefficient matrix is cero: 
 
 [ ] [ ]2

iK M 0∆ = − ω =   (11)  
 
∆ is called the characteristic determinant of the simultaneous equation system. 
Expanding the determinant, we can find a polynomial of degree 2n that has ω2 as the 
variable. This polynomial is called the characteristic equation or frequency equation. 
The n roots of this equation are the natural frequencies of the system, or 
eigenvalues. Since both [M] and [K] are positively defined, it is possible to prove that 
the roots of the characteristic equation are always real and positive. These root are 
ordered from minor to largest as: 
 
 2 2 2 2

1 2 3 nω ≤ ω ≤ ω ≤ ≤ ω   (12)  
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The square roots of them are called the natural frequencies, in radians per second. 
The smaller frequency, ω1, is called fundamental frequency.  
 
So far, we have solved half of the problem. Now we must seek the values of the 
amplitudes of the harmonic movement {φ(i)}, by replacing the values of 2

iω  in Eq. (10) 
This leads us to n systems of simultaneous equation of the type:  
 
 [ ] [ ] { } { }2 (r )

rK M 0 r 1, 2, , n − ω φ = =    (13)  
 
Where for each value of ωr there is a vector {φ(r)} corresponding to the non-trivial 
solution of the simultaneous equation system presented in Eq. (13). {φ(r)} is known as 
the characteristic vector, or vibration mode or "eigenvector". This vector is composed 
by n elements (r )

iφ , all of them real numbers having no definite value — in the strict 
sense — since for any real scalar αr, αr{φ(r)} is also a solution of the simultaneous 
equation system described by Eq. (13).  
 
This means that the ratio between the different terms of vector {φ(r)} is fixed and 
unique. Then, for each frequency ωr we have a vector {φ(r)} that has a definite shape 
but arbitrary amplitude. Since there is a possibility that two, or more, frequencies be 
equal any linear combination of the corresponding modes is also a mode.  
 
By assigning a definite value, such as one (= 1), to any of the terms of vector {φ(r)} 
the remaining n-1 terms are defined in a unique manner. This process is called 
normalization and the resulting vectors are called normal modes. The following 
normalization has been popular: 
 
 { } { }T(r ) (r ) 1φ φ =   (14)  
 
Sometimes it is convenient to normalize the modes with respect to the mass matrix 
[M]: 
 
 { } [ ]{ }T(r ) (r )M 1φ φ =   (15)  
 
This last normalization is called orthonormal and is used widely because it simplifies 
some of the numerical work when solving for the dynamic response of the system.  
 
The different modes are collected in a single matrix, called modal matrix, [Φ], having 
dimensions of n by n, and in which each column corresponds to a mode with the first 
mode located in the first column and the rest being placed in ascending order.  
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 [ ] { } { } { }(1) (2) (n)

 
 

Φ = φ φ φ 
 
 

  (16)  

 
Vibration modes are properties of the system in the same fashion that the natural 
frequencies are. They depend on the mass and stiffness properties of the system. 
Each mode can be excited independently from the other modes. If the initial 
conditions of the movement are selected in such a way that they excite only mode 
(r), {φ(r)}, the movement of the set of masses that comprise the system will be totally 
proportional to the shape of the mode and the system will respond in harmonic 
oscillation with a frequency that is the corresponding frequency of that particular 
mode ωr, in radians/second. 
 
Based on this, the general movement of an n degree of freedom system may be 
represented by the superposition of the response of the individual modes, each 
multiplied by constants that depend on the initial conditions, or on the excitation 
characteristics if we are dealing with forced excitation. These constants indicate the 
degree of participation of each individual mode in the total response. The total 
response, for the case of free vibration, is described using a set of new degrees of 
freedom, ηi, in such a manner that they relate to the original degrees of freedom 
employed to establish equilibrium through the following relationship: 
 
 { } [ ]{ }U(t) (t)= Φ η   (17)  
 
For free vibration each of the terms of vector {η(t)} have the following form: 
 
 i i i i i(t) A sin( t) B cos( t)η = ω + ω   (18)  
 
Eq. (17) may be transformed into: 
 

 
{ } [ ]{ }

[ ]{ }

{ }( ) { }( )
i i i i

n n
(i ) (i )

i i i i
i 1 i 1

U(t) (t)

A sin( t) B cos( t)

A sin( t) B cos( t)
= =

= Φ η

= Φ ω + ω

= φ ω + φ ω∑ ∑

  (19)  

 
Deriving against time Eq. (19) we can obtain the velocity response of each of the 
original degrees of freedom: 
 

 { } { }( ) { }( )
n n

(i ) (i )
i i i i i i

i 1 i 1
U(t) A cos( t) B sin( t)

= =

= φ ω ω − φ ω ω∑ ∑   (20)  
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If the initial conditions are defined as { }oU  and { }oU for displacement and velocity 
respectively, we can compute the following constants Ai and Bi: 
 

 { } { }( ) { } { }( )
n n

(i ) (i )
o i o i i

i 1 i 1
U B U A

= =

= φ = φ ω∑ ∑and   (21)  

 
Thus, it is possible to define two systems of simultaneous equations that have as 
unknowns the values of Bi and Ai ωi . Once the unknowns are solved for, the solution 
for the free vibration dynamic response of the system is obtained. 
 

Example 1 
 
For the building shown in Fig. 1, we are interested in the response in the direction 
of the numeric reference axes. The lateral stiffness of each one of the stories is the 
same and can be defined as k. The mass of the two lower stories is twice that of 
the roof. The roof mass is defined as m.  
 

3rd story 

2nd story 

1st story 
1 U 

2 U 

3 U 

C 

B 

A 

2 

1 

k 

k 

k 

m 

2m 

2m 

U 3 

U 2 

U 1 

 
 

Fig. 1 - Example-1 building 
 
The mass matrix of the structure is: 
 

 
[ ]

3

2

1

dof

m 0 0 U
M 0 2m 0 U

0 0 2m U

↓

 
 

=  
 
 

 

 
The stiffness matrix, obtained from equilibrium of each mass is: 
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[ ]

3

2

1

dof

k k 0 U
K k 2k k U

0 k 2k U

↓

 −
 

= − − 
 − 

 

 
The dynamic equilibrium equations are then: 
 

 
3 3

2 2

1 1

m 0 0 U k k 0 U 0
0 2m 0 U k 2k k U 0
0 0 2m U 0 k 2k U 0

       −
       

+ − − =        
        −       

 

 
We now proceed to find the solution of the free vibration response of the system for 
different initial conditions. From Eq. (11) we have: 
 
 [ ] [ ]2

iK M 0∆ = − ω =   
 
After replacing [K] and [M] we obtain the following determinant: 
 

 

2

2

2

k m k 0
k 2k 2m k 0
0 k 2k 2m

− ω −
∆ = − − ω − =

− − ω
 

 
Expanding this determinant, we obtain the following characteristic equation: 
 
 3 6 2 4 2 2 34m 12km 9k m k 0∆ = ω − ω + ω − =  
 
After dividing all terms of the characteristic equation by 4m3 we obtain: 
 

 
2 3

6 4 2
2 3

k 9 k 1 k3 0
m 4 4m m

ω − ω + ω − =  

 
A simple inspection of the equation tell us that ω2 = k/m is a root, and by using 
synthetic division, we transform the characteristic equation into: 
 

 ( )2 3 4 2 2 2k 4m 8km k m 0
m

 ω − ω − ω + = 
 
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Solving the second-degree equation contained in the second term of the previous 
equation, we obtain: 
 

 
2 2 4 2 4

2
3

k1.8668km 64k m 16k m k 3 m1
m 2 k8m 0.134

m

 ± −
ω = = ± = 〈 

 
 

 
Then, the natural frequencies of the building — properly ordered — are: 
 

2 2 2
1 2 3

k k k0.134 1.866
m m m

ω = ω = ω =  

 
Now, by using Eq. (13) we can obtain the vibration modes by going back to the 
characteristic determinant: 
 
 [ ] [ ] { } { }2 (r )

rK M 0 r 1, 2 3 − ω φ = =  and  
 
Replacing here the mass and stiffness matrices, we obtain the following set of 
homogeneous simultaneous equations: 
 

 

2 (r)
r 3

2 (r )
r 2

2 (r )
r 1

k m k 0 0
k 2k 2m k 0
0 k 2k 2m 0

    − ω − φ
    

− − ω − φ =    
    − − ω φ    

 

 
Expanding the product, we see the system in the classical simultaneous equation 
format: 
 

 

( )
( )

( )

2 (r ) (r)
r 3 2

(r ) 2 (r ) (r)
3 r 2 1

(r ) 2 (r )
2 r 1

k m k 0

k 2k 2m k 0

k 2k 2m 0

− ω φ − φ =

− φ + − ω φ − φ =

− φ + − ω φ =

 

 
From the third equation, we can see that, in this case, the ratio between the 
second unknown and the first unknown is: 
 

 
(r ) 2
2 r
(r )
1

2k 2m
k

φ − ω
=

φ
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Now replacing the third equation into the second, we obtain the following ratio 
between the third unknown and the first unknown: 
 

 
( )22(r )

r3
(r ) 2
1|

2k 2m
1

k

− ωφ
= −

φ
 

 
These two ratios are fixed for any value of 2

iω . We now replace the values of 
2
iω obtained previously and the values of the unknowns are found for each case: 

 
 2

1ω  2
2ω  2

3ω  

2

1

φ
φ

 
 

1.732 
 
0 

 
-1.732 

3

1

φ
φ

 
 
2 

 
-1 

 
2 

  
We may assign any arbitrary value to the φ1 term and thus from the obtained 
ratios compute the other two values of the terms of the mode. We choose, 
arbitrarily again, a value of one for φ1. By doing so, the modes are defined as:  
 

{ } { } { }(1) (2) (3)

2 1 2
1.732 0 1.732

1 1 1

     −
     

φ = φ = φ = −     
     
     

 

 
Corresponding, graphically, to: 
 

Mode 1 
2  

1.732  

1  

 

Mode 2 

0  

1  

-1  

 

Mode 3 
2  

-1.732  

1  

 
2
1

k0.134
m

ω =  2
2

k
m

ω =  2
3

k1.866
m

ω =  

 
We now change the normalization of the modes in such a way that they comply 
with Eq. (15) to obtain orthonormal modes: 
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 { } [ ]{ }T(r ) (r )M 1φ φ =   
 
Mode 1 
 

{ } { }(1)

2 2 0.5774 mm 0 0
12 3 1 0 2m 0 3 12m 3 0.5000 m

12m0 0 2m 1 1 0.2887 m

     
       = ⇒ φ = =      

      
        

 

 
Mode 2 
 

{ } { }(2)

m 0 0 1 1 0.5774 m
11 0 1 0 2m 0 0 3m 0 0
3m0 0 2m 1 1 0.5774 m

      − − −
        − = ⇒ φ = =      

      
        

 

 
Mode 3 
 

{ } { }(3)

2 2 0.5774 mm 0 0
12 3 1 0 2m 0 3 12m 3 0.5000 m

12m0 0 2m 1 1 0.2887 m

     
       − − = ⇒ φ = − = −      

      
        

 
The modal matrix is then: 
 

  [ ]
0.5774 0.5774 0.5774

1 0.5000 0 0.5000
m 0.2887 0.5774 0.2887

 −
 

Φ = − 
 
 

 

 
   

 
Orthogonality of the natural modes  

 
Each mode, independently, is obtained from solving the homogenous system of 
simultaneous equation depicted in Eq. (13), which is repeated here for convenience. 
 
 [ ] [ ] { } { }2 (r )

rK M 0 r 1, 2, , n − ω φ = =    (13)  
 
By using mode r, we have the following equation: 
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 [ ]{ } [ ]{ }(r ) 2 (r)
rK Mφ = ω φ  (22)  

 
By pre-multiplying by a different mode transposed, say s, we obtain: 
 
 { } [ ]{ } { } [ ]{ }T T(s) (r ) 2 (s) (r )

rK Mφ φ = ω φ φ  (23)  
 
If we had initiated the process in Eq. (22) with mode number s instead, and 
afterwards we had pre-multiplied by mode r transposed, we would had obtained: 
 
 { } [ ]{ } { } [ ]{ }T T(r ) (s) 2 (r ) (s)

sK Mφ φ = ω φ φ  (24)  
 
Applying to Eq. (24) the principle that states that ([A][B][C])T = [C]T[B]T[A]T, and 
knowing that [K] = [K]T and [M] = [M]T because they are symmetric, we obtain: 
 
 { } [ ]{ } { } [ ]{ }T T(s) (r ) 2 (s) (r )

sK Mφ φ = ω φ φ  (25)  
  
Subtracting Eq. (25) from Eq. (23) we find: 
 
 ( ){ } [ ]{ }T2 2 (s) (r )

r s0 M= ω − ω φ φ  (26)  
 
In most cases, the values of the natural frequencies are different, then: 
 
 ( )2 2

r s 0ω − ω ≠  (27)  
 
Therefore, the following product has to be cero:  
 
 { } [ ]{ }T(s) (r )M 0φ φ =  (28) 
 
We can obtain a similar result by starting from Eq. (22) expressed as: 
 

 [ ]{ } [ ]{ }(r ) (r )
2
r

1 K Mφ = φ
ω

 (29)  

 
Thus: 
 { } [ ]{ }T(s) (r )K 0φ φ =  (30)  
 
Summarizing, the orthogonality principle tell us that if the modes are orthonormally 
normalized as defined by Eq. (15), then: 
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 { } [ ]{ }T(s) (r) 1 if s r
M

0 if s r
=

φ φ =  ≠
 (31)  

 
and 

 { } [ ]{ }
2T(s) (r) s if s r

K
0 if s r

ω =
φ φ = 

≠
 (32)  

 
By expressing the orthogonality property through the mass and stiffness properties, 
as described by the mass [M] and stiffness [K] matrices, the modal vectors 
constitute a linearly independent set. This means that a vector with any configuration 
can always be expressed as a linear combination of the modes and; therefore, the 
modes can describe any possible movement of the system.  
 
If the modes are not normalized in such a way that they are orthonormal, then for the 
case of r = s in Eqs. (31) and (32) the values would not be those shown there, but 
would be non-cero in all cases. The relationship shown in Eq. (33) and known as 
Rayleigh quotient, is true even for approximations of the shape of the mode, and is 
the basis of Rayleigh’s method for obtaining vibration frequencies and modes. 
 

 
{ } [ ]{ }
{ } [ ]{ }

T(s) (s)
2
sT(s) (s)

K

M

φ φ
= ω

φ φ
 (33)  

 
Uncoupling of the dynamic equilibrium equations  

 
If after normalizing the modes through Eq. (15), thus making them orthonormal, and 
building a [Φ] matrix as described by Eq. (16); we can employ this matrix to perform 
a coordinate transformation as follows:  
 
 { } [ ]{ }U = Φ η  (34)  
 
By deriving twice against time, we obtain: 
 
 { } [ ]{ }U = Φ η  (35)  
 
On the other hand, Eq. (13) tell us that eigenvalues problem can be transformed into: 
 
 [ ][ ] [ ][ ] 2K M  Φ = Φ ω   (36)  
 
Where [ω2] is a diagonal matrix. Pre-multiplying both sides of Eq. (36) by [Φ]T, we 
obtain: 
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 [ ] [ ][ ] [ ] [ ][ ]T T 2K M  Φ Φ = Φ Φ ω   (37)  
 
Then by using the definition of orthonormal normalization:  
 
 [ ] [ ][ ] [ ]T M IΦ Φ =  (38)  
 
We know that by using the orthogonality principle, the following is true: 
 
 [ ] [ ][ ]T 2K  Φ Φ = ω   (39)  
 
Now, replacing Eqs. (34) and (35) in Eq. (1), we obtain: 
 
 [ ][ ]{ } [ ][ ]{ } { }M K 0Φ η + Φ η =   (40)  
  
Pre-multiply by [Φ]T the following result is obtained: 
 
 [ ] [ ][ ]{ } [ ] [ ][ ]

[ ]
{ } { }T T

2

M K 0

I  ω  

Φ Φ η + Φ Φ η =   (41)  

 
Then the system has been transformed to: 
 
 [ ]{ } { } { }2I 0 η + ω η =    (42)  
 
Because both [ I ] and [ω2] are diagonal matrices, we have been able to uncouple the 
system. This means that we have transformed a system of n simultaneous differential 
equations into n independent single-degree of freedom differential equations of the 
type:  
 
 2

i i i 0η + ω η =   (43)  
  
For free vibration Eq. (43) can be easily solved as the sum of a sine and a cosine 
affected by amplitude constants that depend solely on the initial conditions of the 
movement. Once the response in time of each one of the generalized degrees of 
freedom, ηi, is obtained, the response of the structure is the superposition of the 
individual contribution from each mode:  
 

{ } [ ]{ } { }( ) { } { } { }
n

(i ) (1) (2) (n)
i 1 2 n

i 1
U (t) (t) (t) (t)

=

= Φ η = φ η = φ η + φ η + + φ η∑  (44)  

 
We have just transformed the coordinate system of the dynamical equilibrium 
equations, from the system employed to state it, {U}, to a generalized coordinates 
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system, {η}, where each degree of freedom acts independently and in turn affects all 
the original degrees of freedom in such a way that they respond in an harmonic 
fashion as prescribed by the corresponding mode.  
 

Example 2 
 

Uncouple the dynamic system of Example 1 using matrix [Φ]. From Example 1 
have the following information.  
 
Mass matrix: 

 

[ ]
3

2

1

dof

m 0 0 U
M 0 2m 0 U

0 0 2m U

↓

 
 

=  
 
   

 
Stiffness matrix: 

 

[ ]
3

2

1

dof

k k 0 U
K k 2k k U

0 k 2k U

↓

 −
 

= − − 
 −   

 
Dynamic equilibrium equations: 
 

 

3 3

2 2

1 1

m 0 0 U k k 0 U 0
0 2m 0 U k 2k k U 0
0 0 2m U 0 k 2k U 0

         −
         

+ − − =        
        −           

 
In Example 1 the modal matrix was computed as:  
 

 

[ ]
0.5774 0.5774 0.5774

1 0.5000 0 0.5000
m 0.2887 0.5774 0.2887

 −
 

Φ = − 
 
   

 
In order to uncouple the system, the following operations are performed: 
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[ ] [ ][ ]T
0.5774 0.5000 0.2887 m 0 0 0.5774 0.5774 0.5774

1 1M 0.5774 0 0.5774 0 2m 0 0.5000 0 0.5000
m m0.5774 0.5000 0.2887 0 0 2m 0.2887 0.5774 0.2887

1 0 0
0 1 0
0 0 1

     −
     

Φ Φ = − −     
     −     

 
 

=  
 
   

 and 

[ ] [ ][ ]T
0.5774 0.5000 0.2887 k k 0 0.5774 0.5774 0.5774

1 1K 0.5774 0 0.5774 k 2k k 0.5000 0 0.5000
m m0.5774 0.5000 0.2887 0 k 2k 0.2887 0.5774 0.2887

0.134 0 0
k 0 1.000 0
m

0 0 1.866

     − −
     

Φ Φ = − − − −     
     − −     

 
 

=  
 
   

 
The uncoupled equations are: 
 

 

1 1

2 2

3 3

1 0 0 0.134 0 0 0
k0 1 0 0 1.000 0 0
m

0 0 1 0 0 1.866 0

         η η
         

η + η =        
        η η           

 
Or seen as three independent differential equations: 
 

 

1 1

2 2

3 3

k0.134 0
m
k1.000 0
m
k1.866 0
m

η + η =

η + η =

η + η =
 

   
 

Free vibration with initial conditions  
 
We have already stated that a general solution of the multi-degree of freedom 
system, under free vibration, is possible as a superposition of the response of the 
uncoupled degrees of freedom ηi. These uncoupled degrees of freedom are linked to 
the degrees of freedom employed to state equilibrium by:  
 
 { } [ ]{ }U(t) (t)= Φ η   (45)  
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The elements of vector {η(t)} have the following form when there is no damping: 
 
 i i i i i(t) A sin t B cos tη = ω + ω   (46)  
 
Then, Eq. (45) converts into: 
 
 { } [ ]{ } [ ]{ } [ ]{ }U(t) (t) Asen t Bcos t= Φ η = Φ ω + Φ ω   (47)  
 
By deriving Eq. (46) against time we obtain: 
 
 i i i i i i i(t) A cos t ( B )sin tη = ω ω + −ω ω   (48)  
and 
 { } [ ]{ } [ ]{ } [ ]{ }U(t) (t) Acos t B sin t= Φ η = Φ ω ω + Φ −ω ω   (49)  
 
For initial conditions in displacement, { }oU , and velocity, { }oU , then: 
 
 { } [ ]{ } [ ]{ }oU (0) B= Φ η = Φ   (50)  
and 
 { } [ ]{ } [ ]{ }oU (0) A= Φ η = Φ ω   (51)  
 
Pre-multiplying Eqs. (50) and (51) by [Φ]T[M], we obtain: 
 
 [ ] [ ]{ } [ ] [ ][ ]{ } { }T T

oM U M B BΦ = Φ Φ =   (52)  
and 
 [ ] [ ]{ } [ ] [ ][ ]{ } { }T T

oM U M A AΦ = Φ Φ ω = ω   (53)  
 
Then, the response in time of the displacements of an undamped system under free 
vibration conditions, can be described by: 
 

{ } [ ]{ } [ ][ ] [ ]{ } [ ][ ] [ ]{ }{ }T T
o o

1U(t) (t) M U sin t M U cos t = Φ η = Φ Φ ω + Φ Φ ω ω 
  (54)  

 
Total response is then the superposition of the response of the individual modes, as: 
 

 { } { } { }( )
n n

(i ) (i )i
i i i

i 1 i 1i

a
U(t) sin t b cos t

= =

 
= φ ω + φ ω ω 

∑ ∑   (55)  

Where: 
 { } [ ]{ }T(i )

i oa M U= φ   (56)  
and 
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 { } [ ]{ }T(i )
i ob M U= φ   (57)  

 
For damped systems, the same deduction can be used, by making the appropriate 
changes in Eq. (46).  
 

Example 3 
 
For the building in Example 1, find the free vibration response for different cases of 
initial displacement conditions.  
 
Case (a) - Suppose a unit displacement at each story of the building at time = 0, 
without any initial velocity.  
 
The initial displacement vector is: 
 

 { }
3

o 2

1

U (0) 1
U U (0) 1

U (0) 1

   
   

= =   
   
   

  

 
Constants bi are obtained from: 
  

 { } [ ] [ ]{ }T
oB M U= Φ  

 

 { }
1

2

3

b 0.5774 0.5000 0.2887 m 0 0 1 2.1547
1B b 0.5774 0 0.5774 0 2m 0 1 m 0.5774
mb 0.5774 0.5000 0.2887 0 0 2m 1 0.1548

         
         

= = − =        
        −         

  

 
Then, the response of the system is described by the following equation: 
 

3

2 1 2 3

1

1

U 0.5774 0.5774 0.5774
U 0.5000 2.1547cos t 0 0.5774cos t 0.5000 0.1547cos t
U 0.2887 0.5774 0.2887

1.2441 0.3333
1.0774 cos t 0 cos
0.6221 0.3333

       −
       

= ω + ω + − ω       
       
       

   −
   

= ω + ω   
   
   

2 3

0.0893
t 0.0774 cos t

0.0447

 
 

+ − ω 
 
 
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Fig. 2 - Response to initial displacement conditions. Case (a) 
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It is evident that the response of the system corresponds to the superposition of the 
individual responses from each mode. Fig. 2 shows the response for each mode 
and the total response of the building. Supposing that at some instant in time 
the three responses are in phase, 62.2% would be contributed by the first mode, 
33.3% by the second, and 4.5% by the third.  
 
Case (b) - Now lets suppose an initial displacement condition in the shape of the 
first mode, without initial velocity.  
 
The initial displacement vector is: 
 

 { }
3

o 2

1

2U (0)
U U (0) 3

U (0) 1

  
  

= =   
   
   

  

 
Constants bi are obtained from 
 

 { }
1

2

3

2b 0.5774 0.5000 0.2887 m 0 0 2 3
1B b 0.5774 0 0.5774 0 2m 0 3 m 0
mb 0.5774 0.5000 0.2887 0 0 2m 1 0

        
        

= = − =        
        −         

  

 
The response would be described by: 
 

 
3

2 1 1

1

2U 0.5774
U 0.5000 2 3 cos t 3 cos t
U 0.2887 1

    
    

= ω = ω     
     
     

 

 
100% of the response is contributed by the first mode alone. The other modes don’t 
contribute.  
 
Case (c) - Now lets suppose an initial displacement in the shape of the second 
mode without any initial velocity.  
 
The vector of initial displacements is: 
 

 { }
3

o 2

1

U (0) 1
U U (0) 0

U (0) 1

   −
   

= =   
   
   
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Constants bi are obtained from: 
  

 { } [ ] [ ]{ }T
oB M U= Φ  

 

 { }
1

2

3

0b 0.5774 0.5000 0.2887 m 0 0 1
1B b 0.5774 0 0.5774 0 2m 0 0 m 3
mb 0.5774 0.5000 0.2887 0 0 2m 1 0

        −
        

= = − =        
        −         

  

 
The response of the system is described by the following equation: 
 

 
3

2 2 2

1

U 0.5774 1
U 0 3 cos t 0 cos t
U 0.5774 1

     − −
     

= ω = ω     
     
     

 

 
Only the second mode contributes with a 100% of the response.  
 
Case (d) - Now lets suppose an initial displacement in the shape of the second 
mode without any initial velocity.  
 
The initial displacement vector is: 
 

 { }
3

o 2

1

2U (0)
U U (0) 3

U (0) 1

  
  

= = −   
   
   

  

 
Constants bi are obtained from: 
  

 { } [ ] [ ]{ }T
oB M U= Φ  

 

{ }
1

2

3

2b 0.5774 0.5000 0.2887 m 0 0 0
1B b 0.5774 0 0.5774 0 2m 0 3 m 0
mb 0.5774 0.5000 0.2887 0 0 2m 1 2 3

       
         = = − − =        

        −          

  

 
Response is described by the following equation: 
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3

2 3 3

1

2U 0.5774
U 0.5000 2 3 cos t 3 cos t
U 0.2887 1

    
    

= − ω = − ω     
     
     

 

 
Only the third mode contributes with a 100% of the response.  

   
 

Damped modal analysis  
 
Viscous damping is the damping of choice in many cases for describing the response 
of single degree of freedom dynamic systems. One of the main reasons for selecting 
viscous damping is associated with the fact that this type of damping is the most 
amenable for solving the dynamic equilibrium differential equation. When these 
concepts are extended to multiple degree of freedom systems, serious shortcomings 
come into play, because there is not such a clear relationship between the physical 
phenomena and its mathematical modeling.  
 
A multi-degree of freedom system with viscous damping under free vibration would 
be described by the following equilibrium equations: 
 
  [ ]{ } [ ]{ } [ ]{ } { }M x C x K x 0+ + =   (58)  
 
The force exerted by a viscous damper is proportional to the relative velocity between 
the two ends of the damper. The procedure to obtain the elements of the damping 
matrix [C] consists in imposing a unit velocity to one degree of freedom at a time, 
while maintaining the velocity of all other degrees of freedom in cero. The internal 
forces exerted in all degrees of freedom of the structure by the dampers affected by 
the unit velocity of the selected degree of freedom compose the column of the 
damping matrix corresponding to the selected degree of freedom.  
 

  [ ]
1,1 1,2 1,n

2,1 2,2 2,n

n,1 n,2 n,n

c c c
c c c

C

c c c

 
 
 =
 
 
  

  (59)  

 
Limitations in current knowledge about damping of structural materials, or structural 
members built with these materials, make the described procedure difficult to apply in 
most practical cases. The procedure generally involves approximations based on 
experimentally measured damping on structures that somewhat resemble the 
structure under study. These procedures generally employ what is called modal 
damping. Modal damping is based on the principle that the damping matrix can be 
uncoupled by the vibration modes obtained from the mass and stiffness properties. 
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This means that matrix [C] when pre-multiplied by [Φ]T and post-multiplied by [Φ] 
turns into a diagonal matrix: 
 
  [ ] [ ][ ] [ ]T

i iC 2Φ Φ = ξ ω   (60)  
 
In Eq. (60) [2ξiωi] is a diagonal matrix and ξii is the viscous damping associated with 
mode i. This type of damping in which the damping matrix is uncoupled by the 
vibration modes obtained only from mass and stiffness matrices [M] and [K], is 
known as classic damping. However, we have to be careful that under this premise, 
the main property of the damping matrix is the possibility of being uncoupled by the 
computed modes, a mathematical property that has little relation to the physical 
phenomena. Having so many unknowns around, it doesn’t make much sense to 
perform numerous computations to find a matrix [C] as described before; while the 
result would be as imprecise if we just used the values that would be obtained after 
performing the operation implicit in Eq. (60) Thus, the procedure generally employed 
consists in introducing damping to the uncoupled equation and not bothering with the 
computation of the damping matrix itself. This procedure is called modal damping 
and consists in using a damping value that is valid for a mode in particular. Using this 
procedure, uncoupled Eq. (43) turns into: 
 
  2

i i i i i i2 0η + ξ ω η + ω η =   (61)  
 
This equation can be solved using standard techniques employed for damped single 
degree of freedom dynamic equations. In each uncoupled equation the coefficient of 
critical damping ξi is that corresponding to mode i. The value to employ should be 
selected having in mind the type of structural material and the stress range in which 
the structural material would be responding when vibrating in that particular mode for 
the envisioned imposed displacements.  
 
If the damping matrix [C] is going to be used, it is important to know the type of 
damping that can be uncoupled by the modes, and the following comments are 
relevant.  
 
By stating that the damping matrix is a linear combination of mass [M] and stiffness 
matrix [K], where α and β are constants: 
 
  [ ] [ ] [ ]C M K= α + β   (62)  
 
The damping matrix can be uncoupled to produce the following result: 
 
  [ ] [ ][ ] [ ] [ ][ ] [ ] [ ][ ] [ ]T T T 2 2

iC M K I    Φ Φ = α Φ Φ + β Φ Φ = α + β ω = α + βω     (63)  
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Where 2
i α + βω   is a diagonal matrix and each one of the terms of the diagonal 

corresponds to 2ξiωi. Then the damping coefficient ξi for each uncoupled equation is: 
 

  i
i

i2 2
βωα

ξ = +
ω

  (64)  

 
This type of damping is known as Rayleigh damping, and corresponds to a particular 
case of the classic damping. From Eq. (64) it is evident that damping is a function of 
the corresponding mode frequency, being thus different for each mode. This 
contradicts experimental evidence pointing to having little difference in the damping 
coefficients for modes belonging to the same structure. If we know experimentally 
obtained values for damping in two modes, say r and s, it is possible to state two 
simultaneous equations from which we can solve for α and β: 
 

  r r r

s s s

11
12

ξ ω ω α        =    ξ ω ω β        
  (65)  

 
If the damping coefficients of two modes are equal (ξ = ξr = ξs), solution of the 
simultaneous equations leads to: 
 

  r s

r s

2
1

α ω ω   ξ   =   β ω + ω      
  (66)  

 
Fig. 3 shows the relationship between damping and frequency. Cases of damping 
being proportional only to mass and proportional only to stiffness are also shown in 
the same figure.  
 

ξ 

ω 

combined 
proporional to stiffness 

proportional to mass 

α = 0 

β = 0 

ω s 
ω r 

ξ s 

ξ r 

 
Fig. 3 - Relationship between damping and frequency for Rayleigh’s damping 
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It is convenient to take ωr as the value of the fundamental frequency and ωs as the 
frequency corresponding to the last of the upper modes that significantly contribute to 
the response. This way the first mode and mode s will have exactly the same 
damping, and all modes in between will have somewhat smaller similar values and 
the modes with frequencies larger than ωs will have larger damping values thus 
reducing their contribution to response.  
 
In the literature, there are other methodologies to define a damping matrix [C], within 
the context of classical damping. Notwithstanding, the need to have a damping matrix 
when modal techniques are employed is not warranted since damping can be 
assigned to the uncoupled equation, as indicated by Eq. (61). The last statement is 
not necessarily true when time step-by-step solution techniques are employed as 
opposed to modal procedures. In the former case, the only way to introduce 
damping, within the domain of linear elastic response, is using a damping matrix [C].  
 
The classic damping scheme should not be used in those cases in which a portion of 
the structure has damping significantly different from other portions. This may be the 
case of soil-structure evaluation, where the soil has much larger damping coefficients 
than the structure. In this case a technique based on employing classic damping for 
each portion of the structure independently to be latter combined into a single 
damping matrix is sometimes employed. The drawback is that this damping matrix, in 
some cases, is not amenable for uncoupling, thus step-by-step solution techniques 
must be employed.  
 

Forced vibration  
 
Previously we have shown that dynamic response of a multi-degree of freedom 
system can be solved by uncoupling the dynamic equilibrium equations. We have 
also shown that the free vibration solution of the response of the structure with initial 
conditions can be obtained as the superposition of the individual response of each 
one of the modes of vibration. The free vibration case corresponds to the 
homogeneous solution of the simultaneous differential equation system described by 
the dynamic equilibrium equations. Now we are interested in particular part of the 
solution that corresponds to the case where forces that vary in time are imposed on 
the degrees of freedom of the structure. We are dealing with structures whose 
dynamic equilibrium equations can be described, through linear algebra, in the 
following manner: 
 
 [ ]{ } [ ]{ } { }M x K x P(t)+ =   (67) 
 
Using the modes and frequencies of the structure obtained for free vibration; we can 
use the following coordinate transformation: 
 
 { } [ ]{ }x = Φ η   (68)  
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And deriving twice against time: 
 
   { } [ ]{ }x = Φ η  (69)  
 
Replacing (68) and (69) in (67), and pre-multiplying by [Φ]T we obtain: 
 
   [ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] { }

2

T T TM K P(t)

I   ω   

Φ Φ η + Φ Φ η = Φ  (70)  

 
Where [ I ] y [ω2] are both diagonal matrices. Eq. (70) indicates that we have n 
independent differential equation of the type: 
 

   ( )
n

2 (i )
i i i j j

j 1
p (t)

=

η + ω η = φ∑  (71)  

 
And if we use modal damping, of the type: 
 

   ( )
n

2 (i)
i i i i i j j

j 1
2 p (t)

=

η + ξ ω η + ω η = φ∑  (72)  

 
Now lets study the response of forced vibration for several cases.  
 

Harmonic forced vibration  
 
For this case, we have an excitation represented by forces that vary in time in a 
constant periodic — harmonic — fashion. This could be the case of mechanical 
equipment that vibrates with their own frequency at different stories of a building, as 
shown by Fig. 4.  
 

. 

. . 

. 

. 

. . 

. 

degrees of freedom harmonic forces  

Fn sin Ωnt 

F3 sin Ω3t 

Fi sin Ωit 

F2 sin Ω2t 

F1 sin Ω1t 

xn 

xi 

x3 

x2 

x1 

 
Fig. 4 - Structure subjected to several harmonic forces 
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The time varying forces vector has the form: 
 

   { } { }

n n

i i
2 2

1 1

F sen t

P(t) F sen t F sen t
F sen t

Ω 
 
 = Ω =  Ω 
 Ω 

 (73)  

 
Where Fi corresponds to the amplitude — in units of force — of the harmonic force 
applied to i degree of freedom and Ωi is the frequency — in radians per second — of 
the harmonic force. When the system is uncoupled as indicated by Eq. (70) n 
uncoupled equations of the type shown in Eq. (72) are obtained: 
 

   ( )
n

2 (i )
i i i i i j j j

j 1
2 F sen t

=

η + ξ ω η + ω η = φ Ω∑  (74)  

 
The solution of single degree of freedom equations under the action of a unique 
harmonic force, such as: 
 
   2

0x 2 x x F sen t+ ξω + ω = Ω  (75)  
is: 
   ( )x(t) sen t= Ψ Ω − ϕ  (76)  
 
where: 

   
( ) ( )

2
0

2 22

F

1 2

ω
Ψ =

   − Ω ω + ξ Ω ω  

 (77)  

and 

  
( )
( )2

2
tan

1

ξ Ω ω
ϕ =

− Ω ω
  (78)  

 
The only difference between Eq. (74) and Eq. (75) is that in the former the right side 
is the sum of several harmonic forces applied to the structure, affected term by term, 
by the appropriate values of the modal vectors. Since we are within the domain of 
linearly elastic response, superposition principle is valid; and response can be 
obtained as the superposition of each individual response. Then, the time response 
of the uncoupled degree of freedom ηi, is: 
 

   ( )( )
n

(i )
i j j j j

j 1
(t) sen t

=

η = φ Ψ Ω − ϕ∑  (79)  
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where: 

  

( ) ( )

2
j i

j 2 22

j i i j i

F

1 2

ω
Ψ =

   − Ω ω + ξ Ω ω   

 (80)  

and 

  
( )

( )
i j i

j 2

j i

2
tan

1

ξ Ω ω
ϕ =

− Ω ω
  (81)  

 
In Eqs. (80) and (81) i corresponds to the sub index of the uncoupled equation and j 
to the sub index of the degree of freedom where the harmonic force is applied. Once 
the values of all ηi variables are obtained, the displacements of the degrees of 
freedom used to state equilibrium may be obtained from:  
 
   { } [ ]{ }x = Φ η  (82)  
 
The response obtained from this procedure is the particular solution of the differential 
equations and correspond to the steady state where the effect of the initial conditions 
is not present or has disappeared due to damping. Base of this, the definition of the 
time of initiation of the excitation loses importance, and the given enough time the 
responses will combine in their maximum values. Thus, the maximum possible 
response can be obtained from the sum of the absolute values of the maximum 
individual responses:  
 

   ( )
n

(i )
i j jmax

j 1=

η = φ Ψ∑  (83)  

 
Transient forced vibration  

 
For an arbitrary excitation, the solution of the uncoupled equations is performed using 
the same techniques than those employed for single degrees of freedom systems. 
One way to perform this solution is using the convolution integral, also known as 
Duhamel integral: 
 

 { }i i

t
(t ) 2

i i i i2
0i i

1(t) P ( )e sen 1 (t ) d
1

−ξ ω −τη = τ − ξ ω − τ τ
ω − ξ

∫   (84)  

 
where: 

   ( )
n

(i )
i j j

j 1
P (t) p (t)

=

= φ∑  (85)  
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In the two last equations, sub index i refers to the uncoupled equation that 
corresponds to mode i and sub index j to the degree of freedom, of those employed 
in stating dynamic equilibrium of the structure.  
 
Alternatively to the use of Duhamel’s integral, any of the numerical method used for 
solving single degree of freedom systems can be used.  
 
 

Example 4 
 

The building shown in Fig. 5 is subjected to an explosion. The air pressure wave 
caused by the explosion varies in the form shown in Fig. 5(b). We are interested in 
obtaining the response of the structure in the short direction, as shown in the 
figure. Damping of the structure, for the displacement amplitude expected, is 
estimated to be ξ = 2% of critical. All girders of the frames have width b = 0.40 m 
and depth h = 0.50 m. All columns are square with a section side dimension of h = 
0.40 m. The modulus of elasticity of the structure is E = 25 GPa. The building has a 
mass per unit area of 1000 kg/m2. 
 
The explosion occurred far away, therefore we can assume that the pressure 
applied to the building doesn’t vary with height and is applied uniformly to the 
building façade. The tributary area for application of the pressure at the top story 
is 10m · 1.5 m = 15 m2 and for the other floors 10m · 3 m = 30 m2. 
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Fig. 5 - Example 4 
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We must first find the stiffness characteristics of the building in the short 
direction. Since the three frames have the same member dimensions and a rigid 
diaphragm effect is envisioned for the structure, the lateral stiffness properties for 
one frame are obtained and simply will be multiplied by three to obtain the 
total lateral building stiffness in the short direction. The frame stiffness is 
obtained using matrix analysis considering it a plane frame with three degrees of 
freedom per joint — a horizontal displacement, a vertical displacement and a 
rotation around an axis perpendicular to the plane of the frame. Once the 
stiffness matrix is obtained for these degrees of freedom, the rigid diaphragm 
condition is imposed by making all lateral displacements in the same story 
equal. Then all vertical displacements are condensed, leaving only the degrees of 
freedom corresponding to the lateral displacements of the frame expressed in a 4 x 
4 stiffness matrix. After multiplying this matrix by three to take into account the 
effect of all three frames, the following stiffness matrix for the building in the short 
direction in kN/m was obtained:  

 
[ ]

4

33
E

2

1

dof
76.869 99.691 25.583 3.4747 U
99.691 209.14 136.02 31.108 U

K 10 25.583 136.02 221.76 142.11 U
3.4747 31.108 142.11 252.10 U

↓

− − 
 − − = ×  − −
 − −  

 

 
Each floor slab has an area of 10 m · 6 m = 60 m2. Therefore, the translational mass 
per story is m = 60 m2· 1000 kg/m2 = 60 Mg. The mass matrix for the building is 
then: 
 

 
[ ]

4

3

2

1

dof
60 0 0 0 U

0 60 0 0 U
M 0 0 60 0 U

0 0 0 60 U

↓

 
 
 =  
 
  

 

 
We can state the dynamic equilibrium equations as: 
 

44

33 3

22

11

60 0 0 0 76.869 99.691 25.583 3.4747 UU
0 60 0 0 99.691 209.14 136.02 31.108 UU

100 0 60 0 25.583 136.02 221.76 142.11 UU
0 0 0 60 3.4747 31.108 142.11 252.10 UU

− −     
     − −     + ×     − −      − −        

15
30

q(t)30
30

  
  
  =  

   
     
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The right side corresponds to the façade tributary area in square meters 
assignable to each story and q(t) is the explosion caused pressure described in Fig. 
5(b) The tributary area in square meters multiplied by a pressure in kPa, give a 
force in kN, consistent with units from the product of masses in Mg by 
accelerations in m/s2, thus resulting in forces in kN and stiffnesses in kN/m per 
m of displacement, giving forces also in kN.  
 
By solving the eigenvalues problem stated in the dynamic equilibrium equation, 
the following frequencies and periods are obtained: 
 

Mode ω2 ω f T 
 (rad/s)²  (rad/s) (Hertz) (s) 

1 115.22 10.73 1.708 0.59 
2 1176.5 34.30 5.458 0.18 
3 3820.2 61.80 9.836 0.10 
4 7552.6 86.90 13.83 0.072 

 
The corresponding vibration modes are: 
 

 [ ]

0.089374 0.074828 0.050226 0.023604
0.075047 0.014665 0.081059 0.065184
0.050937 0.083904 0.004977 0.083710
0.021268 0.061745 0.086883 0.069665

− − 
 − Φ =  − −
 
  

 

 
(These modes are normalized to meet [Φ]T[M][ Φ] = [ I ], therefore are orthonormal) 
 

    
Mode 1 

T1 = 0.59 s 
Mode 2 

T2 = 0.18 s 
Mode 3 

T3 = 0.10 s 
Mode 4 

T1 = 0.072 s 
Fig. 6 - Example 4 - Vibration modes and periods of the structure 

 
Using the following coordinate transformation equations in the dynamic 
equilibrium equations: 
 

{ } [ ]{ }U = Φ η  and   { } [ ]{ }U = Φ η  
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And pre-multiplying both sides by [Φ]T, the following uncoupled equations are 
obtained: 
 
 2

1 1 1 1 1 12 5.7582q(t)η + ξ ω η + ω η =  

 2
2 2 2 2 2 22 3.6870q(t)η + ξ ω η + ω η =  

 2
3 3 3 3 3 32 0.77879q(t)η + ξ ω η + ω η =  

 2
4 4 4 4 4 42 1.1801q(t)η + ξ ω η + ω η =  

 
In these four equations ξi = 0.02. The response of each of the uncoupled equations 
was obtained employing Newmark’s Beta method. The first 2.5 of response are 
shown in Fig. 7: 
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Fig. 7 - Example 4 - Response in time for the uncoupled degrees of freedom 
 
The response at some instants are presented in the following table: 
 

t η1 η2 η3 η4 
(s) (m) (m) (m) (m) 

0.0000 0.000000 0.000000 0.000000 0.000000 
0.0234 0.000607 0.000392 0.000074 0.000097 
0.0468 0.004810 0.002748 0.000425 0.000419 
0.0702 0.015963 0.007780 0.000846 0.000563 
0.0937 0.036972 0.014603 0.001025 0.000656 
0.1000 0.044673 0.016511 0.001037 0.000724 
0.1234 0.080485 0.022223 0.001025 0.000891 
0.1468 0.125033 0.022946 0.000840 0.000548 
0.1702 0.174003 0.017556 0.000657 0.000481 
0.1937 0.222849 0.008559 0.000613 0.000648 
0.2171 0.267077 0.000513 0.000612 0.000357 
0.2405 0.302516 -0.002488 0.000491 0.000249 
0.2639 0.325557 0.000139 0.000300 0.000406 
0.2873 0.333435 0.005794 0.000206 0.000170 
0.3107 0.324369 0.010167 0.000200 0.000022 
0.4000 0.135337 -0.009842 -0.000213 -0.000097 

 
The structure displacements are obtained from: 
 
 { } [ ]{ }U = Φ η  
 
For example, for instant t=0.2873 s, displacements in m for each mode and total 
values are: 
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4

3

2

1

U 0.089374 0.074828 0.050226 0.023604 0.333435
U 0.075047 0.014665 0.081059 0.065184 0.005794
U 0.050937 0.083904 0.004977 0.083710 0.000206
U 0.021268 0.061745 0.086883 0.069665 0.0001

− −   
   −   =   − −          70

0.089374 0.074828 0.050226 0.023604
0.075047 0.014665 0.081059 0.0

0.333435 0.005794 0.0002060.050937 0.083904 0.004977
0.021268 0.061745 0.086883

 
 
 
 
 
  

− −     
     −     = × + × + × +     −     
          

65184
0.0001700.083710

0.069665

0.029800 0.000434 0.0000103 0.000
0.025023 0.000085 0.0000167
0.016984 0.000486 0.0000010
0.007992 0.000358 0.0000179

 
 
  × − 
  

− −     
     −     = + + +     −     
          

0040
0.0000111
0.0000142
0.0000118

0.029373
0.025103
0.017455
0.007479

 
 
 
 − 
  

 
 
 =  
 
  

 
To obtain the forces caused by the explosion at the same instant for all the 
structure, the structure stiffness matrix is multiplied by the displacements 
obtained: 
 
 { } [ ]{ }EF K U=  
 
This operation can be made for each mode independently in order to obtain 
displacements of the structure for each mode: 
 
 { } [ ]mod (1) (2) (3) (4) (1) (2) (3) (4)

EF K U U U U F F F F   = =     
 
Now, for the modal displacements at instant t=0.2873 s: 
 

{ } { }mod (1) (2) (3) (4)

0.029800 0.000434 0.0000103 0.0000040
0.025023 0.000085 0.0000167 0.0000111

U U U U U 0.016984 0.000486 0.0000010 0.0000142
0.007992 0.000358 0.0000179 0.0000118

− − 
 − = =  − −
 
  

 

 
The contribution to the applied force caused by each mode, in kN, at instant 
t=0.2873 s, is: 
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{ } [ ]{ }mod mod (1) (2) (3) (4)
E

206.02 39.60 2.37 1.82
172.99 6.00 3.83 5.02

F K U F F F F 117.41 34.32 0.24 6.45
49.03 25.25 4.10 5.37

− − 
 −  = = =   − −
 
  

 

 
And total forces in kN, for instant t=0.2873 s, are: 
 

{ } [ ]{ }E

175.97
180.18

F K U 145.05
83.75

 
 
 = =  
 
  

 

 
   

 
Base excitation  

 
Now lets study the base excitation of a multi-degree of freedom system, such as 
earthquake ground motions. Base dynamic excitation equilibrium equations have the 
following form: 
 
   [ ]{ } [ ]{ } [ ][ ]{ }oM U K U M x+ = − γ  (86)  
 
Matrix [γ] connects the direction of the degrees of freedom expressed in the 
equilibrium equations with the appropriate component of the accelerogram. Its form 
depends on the number of accelerogram components employed (one, two, or three) 
in vector { }0x . [γ] has as many columns as components of the accelerogram are 
employed.  
 
We use the same procedure to uncouple the dynamic equilibrium equations by 
applying the following coordinate transformation: 
 
   { } [ ]{ }U = Φ η  (87)  
 
And deriving twice against time: 
 
   { } [ ]{ }U = Φ η  (88)  
 
Replacing Eqs. (87) and (88) in (86) and pre-multiplying by [Φ]T we obtain: 
 
   [ ] [ ][ ]{ } [ ] [ ][ ]{ } [ ] [ ][ ]{ }

2

T T T
oM K M x

I   ω   

Φ Φ η + Φ Φ η = − Φ γ  (89)  
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This means having n independent single degree of freedom equation of type: 
 
   { }{ }2

i i i i oxη + ω η = − α  (90)  
 
And if modal damping is used: 
 
   { }{ }2

i i i i i i o2 xη + ξ ω η + ω η = − α  (91)  
 
In Eqs. (90) and (91) {αi} is called the participation coefficient and corresponds to row 
i of matrix [α] obtained from: 
 
   [ ] [ ] [ ][ ]T Mα = Φ γ  (92)  
  
Solution of Eqs. (90) and (91) can be performed using a suitable numerical method 
such as Newmark’s Beta method. Once the values of {η(t)} are known, for any time 
instant t, using Eq. (87) the displacements of the structure for that instant may be 
computed. It should be noted that Eq. (87) performs the superposition of the 
response of all modes directly.  
 

  

{ } [ ]{ } { }
{ } { } { }
{ } { } { }

n
(i )

i
i 1

(1) (2) (n)
1 2 n

(1) (2) (n)

U (t)

(t) (t) (t)

U U U

=

= Φ η = φ η

= φ η + φ η + + φ η

= + + +

∑
 (93)  

 
The forces imposed by the ground motion for each mode can be obtained by 
multiplying the displacements caused by each mode by the stiffness matrix of the 
structure:  
 
  { } [ ]{ }(i ) (i )F K U=  (94)  
 
Defining: 

  { }

1
1

1

1

 
 
 =  
 
  

 (95)  

and 
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  { }

n

i

1

h
h

h

h

 
 
 =  
 
  

 (96)  

 
where hi is the height of story i measured from the base of the structure. 
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Fig. 8 - Modal forces (Mode i) 

 
The base shear caused by mode i at instant t, is  
 
  { } { }T (i )

iV 1 F=  (97)  
 
The overturning moment of mode i at instant t, is:  
 
  { } { }T (i )

iM h F=  (98)  
 
Now, using the definition of matrix [α] given in Eq. (92) and pre-multiplying it by [Φ]T, 
we obtain: 
 
   [ ] [ ] [ ] [ ] [ ][ ]T T T MΦ α = Φ Φ γ  (99)  
 
Using the principle that ([A][B])T = [B]T[A]T to [Φ]T[M], we obtain [M]T[Φ] = [M][Φ], 
since [M] is symmetric. With this Eq. (99) converts into: 
 
   [ ] [ ] [ ] [ ][ ][ ] [ ]T T MΦ α = Φ Φ γ = γ  (100)  
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The total mass of the structure for any principal direction of the degrees of freedom 
corresponds to the sum of all masses that acts in that direction. The influence of 
each individual mass is expressed through matrix [γ], then: 
 
  [ ] [ ] [ ][ ]T

totM M= γ γ  (101)  
 
Now using Eq. (100) to replace [γ] in Eq. (101) the following results are obtained: 
 

  [ ] [ ] [ ]( ) [ ][ ] [ ] [ ] [ ][ ][ ] [ ]
TT T T T

totM M M= Φ α Φ α = α Φ Φ α  (102)  

and 
  [ ] [ ] [ ][ ]T 2

tot iM I  = α α = α ∑  (103)  
 
This means that the total mass that acts in a principal direction is the sum of the 
square of the modal participation coefficients, αi, in that direction. The value of α2 for 
each mode is called effective or active modal mass and can be interpreted as the 
fraction of the total mass that is activated by the mode when vibrating due to base 
excitation. This concept is used for defining the minimum number of modes 
necessary to describe the response in systems with many degrees of freedom and 
where the contribution of the upper modes to the response is not significant.  
 
In those cases where the normalization procedure employed for the modes doesn’t 
lead to orthonormal modes and [Φ]T[M][Φ] = [ I ] is not complied with, participation 
coefficients must be obtained from the following equation:  
 

  
{ } [ ]{ }

{ } [ ]{ }

( )

( )

n
(i )T(i ) j j

j 1
i T n 2(i ) (i ) (i )

j j
j 1

mM

M m

=

=

φφ γ
α = =

φ φ φ

∑

∑
 (104)  

 
And the mode effective mass should be obtained, in this case, using: 
 

  
{ } [ ]{ }( )
{ } [ ]{ }

( )

( )

2
n2 (i )T(i ) j j

j 1(i )
ef T n 2(i ) (i ) (i )

j j
j 1

mM
m

M m

=

=

 
φ φ γ

 = =
φ φ φ

∑

∑
 (105)  

 
Now lets look at the response of planar systems to earthquake ground motions at the 
base of the structure. In this case matrix [γ] corresponds to a vector {1} having ones 
in all its terms since all the lateral degrees of freedom of the structure are collinear 
with the accelerogram acting at the base of the structure.  
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Example 5 
 

Fig. 9 shows a building that is part of an industrial facility. We want to study 
the response of the building to the N-S component of the recorded accelerations at 
El Centro, California, in Mayo 18 of 1940. We are interested in the response in the 
direction shown in the figure. Damping for the system was estimated in ξ = 5% of 
critical. All girders of the structure have width b = 0.40 m and depth h = 0.50 m. All 
columns have square section with a cross section dimension h = 0.50 m. The 
material of the structure has a modulus of elasticity E = 25 GPa. The self weight of 
structure plus additional dead load is 780 kg/m2 and the industrial machinery, 
which is firmly connected to the building slabs, increases the mass per unit area 
by 1000 kg/m2, for a total mass per unit area of 1780 kg/m2. 
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Fig. 9 - Example 5 

 
The first step is to obtain the stiffness properties of the structure in the direction of 
the ground acceleration. A rigid diaphragm scheme is employed; therefore, the 
frames in that direction will have compatible lateral displacements. Since the 
three frames in that direction have the same properties, once the lateral stiffness of 
one frame is obtained it should be multiplied by three to obtain the lateral 
stiffness of the whole structure in the direction of interest. The frame stiffness 
matrix is modified to eliminate any axial deformations of the girders (to comply 
with the rigid diaphragm condition), and the vertical deformations and joint 
rotations are condensed. After performing all these operations, the lateral-load 
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stiffness matrix of the structure in the direction of the ground acceleration in 
kN/m is: 

[ ] 3
E

dof
216.76 306.77 105.49 19.561 4.2822 0.51088
306.77 668.24 475.14 137.94 29.375 5.3857
105.49 475.14 731.37 493.23 159.60 29.327

K 10 19.561 137.94 493.23 749.02 494.47 145.71
4.2822 29.375 159.60 494.47 738.11

↓

− − −
− − −

− − −
= ×

− − −
− −

6

5

4

3

2

1

U
U
U
U

515.90 U
0.51088 5.3857 29.327 145.71 515.90 889.94 U

 
 
 
 
 
 
 −
 
− − −  

 

 
The area of each floor slab is 12 m · 12 m = 144 m2. The total translational mass of 
each story is m = 144 m2· 1780 kg/m2 = 256 Mg. The mass matrix of the buildings is: 

 
[ ]

6

5

4

3

2

1

dof
256 0 0 0 0 0 U

0 256 0 0 0 0 U
0 0 256 0 0 0 U

M
0 0 0 256 0 0 U
0 0 0 0 256 0 U
0 0 0 0 0 256 U

↓

 
 
 
 

=  
 
 
 
  

 

 
Matrix [γ] is in this case a single column vector having one in all rows, because all 
the lateral degrees of freedom of the structure are parallel to the ground motion 
acceleration. The dynamic equilibrium equations are:  
 

6

5

4

3

2

1

3

256 0 0 0 0 0 U
0 256 0 0 0 0 U
0 0 256 0 0 0 U
0 0 0 256 0 0 U
0 0 0 0 256 0 U
0 0 0 0 0 256 U

216.76 306.77 105.49 19.561 4.2822 0.51088
306.77 668.24 475.14 137.94 29.375 5.3857
10

10

  
  
  
    

   
   
   
   
      

− − −
− − −

+ ×

6

5

4

3

2

1

U
U

5.49 475.14 731.37 493.23 159.60 29.327 U
19.561 137.94 493.23 749.02 494.47 145.71 U
4.2822 29.375 159.60 494.47 738.11 515.90 U

0.51088 5.3857 29.327 145.71 515.90 889.94 U

   
  
  
  − − − 
   − − −  
  − − −
  − − −    

[ ] 0

1
1
1

M x1
1
1

 
  
  
    = −  
  
  
  
    

 

 
After solving the eigenvalues problem for this system, we find: 
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ω2 ω f T Mode 
(rad/s)²  (rad/s) (Hertz) (s) 

1 29.108 5.39 0.859 1.16 
2 301.81 17.4 2.76 0.36 
3 973.78 31.2 4.97 0.20 
4 2494.3 49.9 7.95 0.13 
5 4686.5 68.5 10.9 0.092 
6 7113.8 84.3 13.4 0.075 

 
The corresponding vibration modes are: 
 

 [ ]

0.036721 0.032775 0.029168 0.020667 0.013049 0.005955
0.033690 0.011592 0.014245 0.032483 0.032188 0.018512
0.028524 0.014524 0.034529 0.005317 0.028533 0.029103
0.020961 0.033322 0.005049 0.034504 0.003317 0.0

− − −
− − −

− −
Φ =

− − − 33609
0.012243 0.033525 0.031633 0.006893 0.024392 0.031454
0.004460 0.015888 0.025184 0.034025 0.035774 0.023711

 
 
 
 
 
 
 − −
 
  
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Fig. 10 - Example 5 - Structure vibration periods and modes 

 
The modal participation factors are obtained from: 
 

{ } [ ] [ ][ ]T

34.970
13.540
8.2331

M 6.0279
4.4695
2.3861

 
 
 
  α = Φ γ =  
 
 
 
  
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The total effective mass is computed as 2
iα  

 
Mode αi 2

iα  %Mtot %Mtot 
accumulated 

1 34.970 1222.901 79.62% 79.62% 
2 13.540 183.332 11.93% 91.55% 
3 8.2331 67.784 4.41% 95.96% 
4 6.0279 36.336 2.37% 98.33% 
5 4.4695 19.976 1.30% 99.63% 
6 2.3861 5.693 0.37% 100.00% 

 
Now we modify the dynamic equilibrium equations by pre-multiplying by [Φ]T 
and using the following coordinate transformations: 
 

{ } [ ]{ }U = Φ η   and     { } [ ]{ }U = Φ η  
 
The uncoupled vibration equations are: 
 
 2

1 1 1 1 1 1 02 34.970xη + ξ ω η + ω η = −  

 2
2 2 2 2 2 2 02 13.540xη + ξ ω η + ω η = −  

 2
3 3 3 3 3 3 02 8.2331xη + ξ ω η + ω η = −  

 2
4 4 4 4 4 4 02 6.0279xη + ξ ω η + ω η = −  

2
5 5 5 5 5 5 02 4.4695xη + ξ ω η + ω η = −  

2
6 6 6 6 6 6 02 2.3861xη + ξ ω η + ω η = −  

 
In all six equations ξi = 0.05. Response of each one of the uncoupled equations is 
obtained using Newmark’s Beta method. The first 10 seconds of response are 
shown in the following graphs.  
 

-5 

-4 

-3 

-2 

-1 

0 

1 

2 

3 

4 

5 

0 1 2 3 4 5 6 7 8 9 10 

η 1 

(m) 
t (s) 

max 

min 

 -0.3 

-0.2 

-0.1 

0.0 

0.1 

0.2 

0.3 

0 1 2 3 4 5 6 7 8 9 10 

η 2 

(m) 
t (s) 

max 

min  
(a) response for η1 (T1 = 1.16 s) (b) response for η2 (T2 = 0.36 s) 

 
Fig. 11 - Example 5 - Response of the uncoupled coordinates 
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Fig. 11 (cont.) - Example 5 - Response of the uncoupled coordinates 

 
The following table contains the response at selected instants, and the extreme 
values obtained for each uncoupled degree of freedom during the first 10 s of 
response.  
 

t η1 η2 η3 η4 η5 η6 
(s) (m) (m) (m) (m) (m) (m) 

2.12 -2.005521 0.120653 0.022884 0.007405 0.003448 0.001047 
2.16 -1.454167 0.131596 0.020979 0.009887 0.002831 0.001150 
2.22 -0.313056 0.115723 0.009855 -0.005804 -0.002937 -0.001495 
2.24 0.044580 0.071039 -0.010748 -0.012843 -0.004919 -0.001187 
2.52 2.597408 0.177460 -0.054570 -0.012759 -0.000935 0.000215 
2.58 2.305620 0.044364 0.008234 0.010581 -0.001491 0.000439 
2.64 1.678734 -0.155214 0.022238 -0.017115 -0.001112 -0.000662 
3.04 -3.664644 -0.169206 0.038901 -0.001547 0.000665 0.000280 
3.08 -3.545856 -0.153292 -0.001900 0.003579 -0.001228 -0.000357 
3.22 -1.871672 0.183567 0.047073 0.005055 0.001766 0.000137 
4.58 2.840147 -0.284971 -0.010291 -0.001032 -0.001448 -0.000172 
4.76 1.448789 0.295191 -0.005745 -0.002603 0.000228 0.000605 
5.90 4.049463 0.020068 0.022552 -0.001531 -0.000257 -0.000036 
max 4.049463 0.295191 0.047073 0.010581 0.003448 0.001150 
min -3.664644 -0.284971 -0.054570 -0.017115 -0.004919 -0.001495 

 
Displacements caused by each mode at any instant t, is obtained from: 



 
Multiple degrees of freedom structural dynamics 

 43  L. E. Garcia and M. A. Sozen 

 { } { }(i ) (i )
iU (t)= φ η  

 
Displacements of the structure for the same instant t, are obtained as the sum of 
the individual contributions of each mode from: 
 
 { } [ ]{ }U (t)= Φ η  
 
For example, for instant t = 3.08 s, displacements in meters contributed by each 
mode are: 
 

{ } [ ]{ }

0.036721 0.032775 0.029168 0.020667 0.013049 0.005955
0.033690 0.011592 0.014245 0.032483 0.032188 0.018512
0.028524 0.014524 0.034529 0.005317 0.028533 0.029103

U 0.020961 0.033322 0.005049 0.034504 0.003317

− − −
− − −

− −
= Φ η =

− − −

3.5459
0.15329
0.001903

0.033609 0.0035796
0.012243 0.033525 0.031633 0.006893 0.024392 0.031454 0.0012279
0.004460 0.015888 0.025184 0.034025 0.035774 0.023711 0.00035675

−   
   −   
   − 
   
   
   − − −
  −     

0.130210 0.0050242 0.000055427
0.119460 0.0017770 0.000027070
0.101140 0.0022265 0.000065614
0.074326 0.0051079 0.000
0.043414 0.0051391
0.015815 0.0024355




− −   
   −   
   − −   = + +   − −   
   − −
   − −      

0.000073981 0.000016023
0.000116280 0.000039525
0.000019033 0.000035037

009595 0.000123510 0.000004073
0.000060111 0.000024673 0.00002995
0.000047856 0.000121800

− −   
   
   
    −   + +   −   
   −
   −      

0.000002124
0.000006604
0.000010383
0.000011990

1 0.000011221
0.000043928 0.000008459

0.12533
0.11751
0.10331
0.07956
0.04855
0.01823

   
   −   
      +   −   
   
   − −      

− 
 − 
 − =  − 
 −
 −  

 
To find the forces imposed by the ground motions at the same instant t = 3.08 s, 
the stiffness matrix of the structure is multiplied by the displacement just 
obtained for that instant: 
 
 { } [ ]{ }EF K U=  
 
This operation can be made for each mode independently, thus obtaining the 
contribution of the total internal forces caused by each one: 
 
 { } [ ]mod (1) (2) (6) (1) (2) (6)

EF K U U U F F F   = =     
 
The force contribution in kN for each mode at instant t = 3.08 s, is: 
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{ } [ ]{ }mod mod
E

970.27 388.19 13.82 47.24 19.22 3.87
890.19 137.30 6.75 74.25 47.42 12.03
753.69 172.02 16.36 12.15 42.04 18.91

F K U 553.86 394.65 2.39 78.87 4.89 21.84
323.51 397.07 14.99 15.76 35.93 20.44
117.85 188.18 1

− − − −
− −
− − −

= =
− − − −
− − −
− − − 1.93 77.77 52.70 15.41

 
 
 
 
 
 
 
 

− −  

 

 
Total forces in kN for instant t = 3.08 s, are: 
 

{ } [ ]{ }E

658.49
636.50
920.33

F K U 1041.90
663.43
308.29

− 
 − 
 − = =  − 
 −
 −  

 

 
Base shear contributed by each mode, also in kN, at instant t = 3.08 s, is obtained 
from: 
 

{ } { } { }

{ }

T modV 1 F

970.27 388.19 13.82 47.24 19.22 3.87
890.19 137.30 6.75 74.25 47.42 12.03
753.69 172.02 16.36 12.15 42.04 18.91

1 1 1 1 1 1 553.86 394.65 2.39 78.87 4.89 21.84
323.51 397.07 14.99 15.76 35.93 20.44
117.85 188.1

=

− − − −
− −
− − −

=
− − − −
− − −
− −

{ }
8 11.93 77.77 52.70 15.41

3609.37 626.43 15.24 53.82 25.72 6.06

 
 
 
 
 
 
 
 

− − −  
= − − − − −

 

 
The total base shear in kN at instant t = 3.08 s, is obtained as: 
 

{ } { } { }T

658.49
636.50
920.33

V 1 F 1 1 1 1 1 1 4229.01041.90
663.43
308.29

− 
 − 
 − = = = − − 
 −
 −  
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The overturning moment contributed by each mode in kN · m, for instant t = 3.08 
s, is obtained from: 
 

{ } { } { }

{ }

T modM h F

970.27 388.19 13.82 47.24 19.22 3.87
890.19 137.30 6.75 74.25 47.42 12.03
753.69 172.02 16.36 12.15 42.04 18.91

18 15 12 9 6 3 553.86 394.65 2.39 78.87 4.89 21.84
323.51 397.07 14.99 15.76 35.93 20.44
117.85 18

=

− − − −
− −
− − −

=
− − − −
− − −
− −

{ }
8.18 11.93 77.77 52.70 15.41

47141 483.7 55.4 27.3 37.7 4.0

 
 
 
 
 
 
 
 

− − −  
= − − − −

 
The total overturning moment in kN · m at instant t = 3.08 s, is obtained from: 
 

{ } { } { }T

658.49
636.50
920.33

M h F 18 15 12 9 6 3 467271041.90
663.43
308.29

− 
 − 
 − = = = − − 
 −
 −  

 

 
The same procedures can be used to obtain the response at any instant. If this is 
performed systematically, results such as shown in Fig. 12 are obtained. There the 
displacement response for the roof of the building is shown for the first 15 sec. of 
the to the NS component of El Centro record. From this figure, it is evident that the 
significant portion of the response is contributed solely by the first two modes, 
with se second contributing marginally. 
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Roof displacements 
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Fig. 12 - Example 5 - Roof displacements from each mode and total response 
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Fig. 13 shows the variation of the base shear of the building during the first 15 
sec. of response to the NS component of El Centro record. 
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Fig. 13 - Example 5 - Base shear of the structure 
 
Fig. 14 shows the variation of overturning moment for the first 15 sec. of response 
to the NS component of El Centro record.  
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Fig. 14 - Example 5 - Overturning moment of the structure 
   

 
Modal spectral analysis  

 
Instead of carrying all the computations involved in obtaining the step-by-step 
response of the structure as shown in the previous example, an alternative is to use 
the displacement response spectrum of the ground motion. The displacement 
response spectrum, Sd(T,ξ), is the collection of maximum displacements obtained by 
single degree of freedom systems having period T and damping coefficient ξ, when 
subjected to the ground motion record.  
 
Then, the maximum displacement that an uncoupled degree of freedom of the 
structure can have can be obtained by multiplying the participation coefficient 
corresponding to the equation by the value read from response spectrum for the 
vibration period of the equation and the corresponding damping coefficient. This can 
be stated as: 
 
 ( ) ( )i i d i imax

S T ,η = α ⋅ ξ  (106)  
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Where Ti = 2π/ωi and ξi correspond to the value of the modal damping for that mode 
in particular. If only the acceleration response spectra in known, then the maximum 
value for the displacement of the uncoupled degree of freedom can be obtained from: 
 

 ( ) ( ) ( )
2
i

i i a i i i a i i2 2max
i

T1 S T , S T ,
4

η = α ⋅ ⋅ ξ = α ⋅ ⋅ ξ
ω π

 (107) 

 
The values of maximum displacement of each period of vibration and damping that 
are collected in the response spectra do not occur at the same time. Therefore, their 
introduction as a replacement for the values obtained from the step-by-step and their 
use in computing the displacements and forces induced in the structure has the 
drawback that we would be adding values of response that didn’t occur at the same 
instant in time. This means that the direct use of the operation implicit in  
 

 

{ } [ ]{ } { }
{ } { } { }
{ } { } { }

n
(i )

i
i 1

(1) (2) (n)
1 2 n

(1) (2) (n)

U (t)

(t) (t) (t)

U U U

=

= Φ η = φ η

= φ η + φ η + + φ η

= + + +

∑
 (108) 

 
would not be true, because we would be adding modal displacements that occurred 
at different instants in time plus not taking into account the proper sign of the 
response because by definition only absolute values of response are collected in the 
spectra.  
 
In principle the modal responses obtained using the spectral value are correct since 
they describe the maximum value that is possible to achieve, simply we are not 
taking into account the proper sign (negative or positive). The main difficulty rests 
with the lack of simultaneity. The solution is then, to use one of the modal 
combination schemes that permit the combination of the modes to lead to reasonable 
results. Lets first study how to obtain the individual modal spectral response 
parameters without combining them.  
 
The maximum displacements that the structure can have for each individual mode, 
for example mode (i), may be obtained from: 
 
 { } { } ( ) { }(i ) (i ) (i )

mod i i d i imax
U S (T , )= φ ⋅ η = φ ⋅ α ⋅ ξ  (109) 

 
In Eq. (109) it must be take into account that the result multiplied by (-1) is also 
feasible since it corresponds to a description of an alternating movement. This 
possibility of positive or negative response is present in all forms of modal spectral 
response.  
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For each individual mode (i), the maximum lateral forces that can be developed in the 
structure may be obtained by multiplying the modal spectral displacements by the 
stiffness matrix of the structure: 
 
 { } [ ]{ } [ ]{ } ( ) [ ]{ }(i ) (i ) (i ) (i )

mod mod i i d i imax
F K U K K S (T ,= = φ ⋅ η = φ ⋅ α ⋅ ξ  (110) 

 
These modal spectral forces can be treated as a set of static lateral forces and from 
a conventional static analysis obtain the internal forces and displacements of the 
structure caused by mode (i). The internal forces and displacements may be 
obtained also employing directly the modal spectral displacements from Eq. (109). 
The two alternatives lead to the same results.  
 
Now we have available, for each individual mode, all parameters of interest such as 
story drift, overturning moment, and internal forces for the members of the structure. 
There will be as many sets of these parameters as modes of the structure. At this 
point, it would be proper to combine them using one of the modal combination 
schemes.  
 

Example 6 
 

Lets rework Example 5 using the displacement response spectra of the El Centro 
record. 
 
The results are the same up to the point where the dynamic equilibrium 
equations were uncoupled.  
 
The uncoupled vibration equations are: 
 
 2

1 1 1 1 1 1 02 34.970xη + ξ ω η + ω η = −  

 2
2 2 2 2 2 2 02 13.540xη + ξ ω η + ω η = −  

 2
3 3 3 3 3 3 02 8.2331xη + ξ ω η + ω η = −  

 2
4 4 4 4 4 4 02 6.0279xη + ξ ω η + ω η = −  

2
5 5 5 5 5 5 02 4.4695xη + ξ ω η + ω η = −  

2
6 6 6 6 6 6 02 2.3861xη + ξ ω η + ω η = −  

 
In all of them, as stated by the problem, ξi = 0.05.  
 
The response for each of the uncoupled equations is obtained using the 
displacement response spectra for the N-S component of the El Centro record. En la 
Fig. 15 shows the spectrum and period fro each mode and the displacement read 
from the spectrum for each period.  
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Fig. 15 - Example 6 - Displacement response spectrum for El Centro NS record 

 
Table 1 - Example 6 - Values read from the displacement spectrum 

Mode Ti  
(s) 

Sd(Ti,ξi) 
(m) 

1 1.16 0.116 
2 0.36 0.0218 
3 0.20 0.00674 
4 0.13 0.00285 
5 0.092 0.00113 
6 0.075 0.000720 

 
With this information, it is possible to compute the maximum displacement that 
the uncoupled degrees of freedom can attain: 
 

Table 2 - Example 6 - Maximum displacement values for the uncoupled degrees of freedom 

Mode αi 
Sd(Ti,ξi) 

(m) 
( )i i d i imax

S (T , )η = α × ξ  
(m) 

1 34.970 0.116 4.0495 
2 13.540 0.0218 0.29571 
3 8.233 0.00674 0.055458 
4 6.028 0.00285 0.017155 
5 4.469 0.00113 0.0050639 
6 2.386 0.000710 0.0017170 

 
Maximum modal displacements (m) 
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The maximum displacements for each mode are obtained from: 
 
 { } { }( )(i ) (i )

mod i max
U = φ η  

 
These results can be computed for all the modes at the same time by introducing 
the values of (ηi)max in the diagonal of a square matrix [Ηmod] y and performing 
the operation: 
 

[ ] [ ][ ] { } { } { }(1) (2) (n)
mod mod mod mod modU U U U = Φ Η =    

 
In present case matrix [Ηmod] has the following form: 
 

[ ]

( )
( )

( )
( )

( )
( )

1 max

2 max

3 max
mod

4 max

5 max

6 max

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 η
 

η 
 η Η =  η
 
 η
 

η  

 

 
And replacing the appropriate values from Table 2: 
 

[ ]mod

4.0495 0 0 0 0 0
0 0.29571 0 0 0 0
0 0 0.0055458 0 0 0
0 0 0 0.015155 0 0
0 0 0 0 0.0050639 0
0 0 0 0 0 0.001717

 
 
 
 

Η =  
 
 
 
  

 

 
The values for [Umod] are: 
 

{ } { } { } { } { } { }

[ ] [ ][ ]

(1) (2) (3) (4) (5) (6)
mod mod mod mod mod mod

mod mod

U U U U U U dof

0.148703 0.009692 0.001618 0.000355 0.000066 0.000010
0.136429 0.003428 0.000790 0.000557 0.000163 0.000032
0.115519 0.004295 0.001915 0.000091 0.000144

U

↓

− − −
− − −

−
= Φ Η =

6

5

4

3

2

1

U
U

0.000050 U
0.084882 0.009854 0.000280 0.000592 0.000017 0.000058 U
0.049588 0.009914 0.001754 0.000118 0.000124 0.000054 U
0.018061 0.004698 0.001397 0.000584 0.000181 0.000041 U

 
 
 
 −
 − − − 
 − −
 
  
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Fig. 16 - Example 6 - Maximum lateral displacements for each mode 

 
Maximum story drift as a percentage of story height (%h) 
 
Using the displacements just computed the story drift for each story and mode 
could be computed as the algebraic difference of the displacement of two 
consecutive stories. Drift is usually expressed as percentage of the inter-story 
height.  
 

Table 3 - Example 6 - Maximum story drift values, as a percentage of story height 
story mode 1 mode 2 mode 3 mode 4 mode 5 mode 6 

6 0.409% -0.209% 0.080% -0.030% 0.008% -0.001% 
5 0.697% -0.257% 0.037% 0.016% -0.010% 0.003% 
4 1.021% -0.185% -0.054% 0.023% 0.005% -0.004% 
3 1.177% -0.002% -0.068% -0.024% 0.004% 0.004% 
2 1.051% 0.174% 0.012% -0.016% -0.010% -0.003% 
1 0.602% 0.157% 0.047% 0.019% 0.006% 0.001% 
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Next figure shows the story drifts for each mode: 
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Fig. 17 - Example 6 - Maximum story drift (%h) for each mode 

 
Maximum modal lateral forces (kN) 
 
To obtain the maximum modal lateral forces imposed on the structure by the 
ground motions the stiffness matrix of the structure is multiplied by the modal 
lateral displacements. Results are obtained in kN.  
 
 [ ] [ ] (1) (2) (6) (1) (2) (6)

mod E mod mod mod mod mod modF K U U U F F F   = =     
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{ } { } { } { } { } { }

[ ] [ ][ ]

(1) (2) (3) (4) (5) (6)
mod mod mod mod mod mod

mod E mod

F F F F F F dof

1108.3 748.9 403.3 226.4 79.3 18.6
1016.2 264.8 196.9 355.8 195.6 57.9

860.2 331.8 477.4 58.2 173.4 91.0
F K U

632.9 761.5 69.8 378.0 20.2 105.1
369.4 765.9 437.3 7

↓

− − −
− − −

− −
= =

− − −

6

5

4

3

2

1

F
F
F
F

5.5 148.2 98.4 F
135.1 363.0 348.2 372.7 217.3 74.1 F

 
 
 
 
 
 
 − −
 
  

 

 

0 

1 

2 

3 

4 

5 

6 

-1000 -500 0 500 1000 1500 

Modal Forces 
(kN)  
 

0 

1 

2 

3 

4 

5 

6 

-1000 -500 0 500 1000 1500 

Modal Forces 
(kN)  

0 

1 

2 

3 

4 

5 

6 

-1000 -500 0 500 1000 1500 

Modal Forces 
(kN)  

mode 1 mode 2 mode 3 
 

0 

1 

2 

3 

4 

5 

6 

-1000 -500 0 500 1000 1500 

Modal Forces 
(kN)  
 

0 

1 

2 

3 

4 

5 

6 

-1000 -500 0 500 1000 1500 

Modal Forces 
(kN)  

0 

1 

2 

3 

4 

5 

6 

-1000 -500 0 500 1000 1500 

Modal Forces 
(kN)  

mode 4 mode 5 mode 6 
Fig 18 - Example 6 - Maximum modal forces for each mode 

 
Maximum modal story shear (kN) 

The maximum modal story shear is obtained from 
n

(i ) (i )
j k

k j
V F

=

= ∑  
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Table 4 - Example 6 - Maximum modal values for story shear 

story 
(1)
modV  

(kN) 

(2)
modV  

(kN) 

(3)
modV  

(kN) 

(4)
modV  

(kN) 

(5)
modV  

(kN) 

(6)
modV  

(kN) 
6 1108.3 -748.9 403.3 -226.4 79.3 -18.6 
5 2124.6 -1013.7 206.3 129.4 -116.3 39.3 
4 2984.8 -681.9 -271.0 187.7 57.1 -51.7 
3 3617.6 79.6 -340.9 -190.3 36.9 53.4 
2 3987.0 845.5 96.5 -114.8 -111.3 -45.0 
1 4122.1 1208.5 444.6 257.9 106.1 29.1 
0 4122.1 1208.5 444.6 257.9 106.1 29.1 
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Fig. 19 - Example 6 - Maximum story shear for each mode 
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Base shear (kN)  
 
The base shear in kN for each mode is obtained from 
 

{ } { } [ ] { }T
mod mod

1108.3 748.9 403.3 226.4 79.3 18.6
1016.2 264.8 196.9 355.8 195.6 57.9

860.2 331.8 477.4 58.2 173.4 91.0
V 1 F 1 1 1 1 1 1 632.9 761.5 69.8 378.0 20.2 105.1

369.4 765.9 437.3 75.5 148.2 98.4
135.1 363.0 348.2 372.7 217.3 7

− − −
− − −

− −
= =

− − −
− −

{ }
(1) (2) (3) (4) (5) (6)
mod mod mod mod mod mod

4.1

4122.1 1208.5 444.6 257.9 106.1 29.1

V V V V V V

 
 
 
 
 
 
 
 
  

=  

 
It is the same value obtained for the first story when the story shears were 
computed.  
 
 
Overturning moment (kN · m) 
 

The overturning moment for each story is obtained from ( )
n

(i ) (i )
j k j j

k j 1
M h h F

= +

= − ⋅∑   

 
Table 5 - Example 6 - Maximum story modal overturning moment  

story 
(1)
modM  

(kN · m) 

(2)
modM  

(kN · m) 

(3)
modM  

(kN · m) 

(4)
modM  

(kN · m) 

(5)
modM  

(kN · m) 

(6)
modM  

(kN · m) 
6 0.0 0.0 0.0 0.0 0.0 0.0 
5 3324.9 -2246.7 1209.8 -679.2 237.8 -55.9 
4 9698.6 -5287.8 1828.7 -290.9 -111.0 61.9 
3 18652.9 -7333.6 1015.6 272.2 60.2 -93.3 
2 29505.8 -7094.7 -6.9 -298.7 170.9 66.8 
1 41466.8 -4558.2 282.4 -643.1 -162.9 -68.2 
0 53833.1 -932.7 1616.3 130.7 155.3 19.2 
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Fig. 20 - Example 6 - Overturning moment for each mode 

 
The maximum overturning moment at the base, in kN · m, contributed by each 
mode can be obtained from: 
 

{ } { } [ ] { }T
mod mod

1108.3 748.9 403.3 226.4 79.3 18.6
1016.2 264.8 196.9 355.8 195.6 57.9
860.2 331.8 477.4 58.2 173.4 91.0

M h F 18 15 12 9 6 3
632.9 761.5 69.8 378.0 20.2 105.1
369.4 765.9 437.3 75.5 148.2 98.4
135.1 363.0 348.2 372.7 217

− − −
− − −

− −
= =

− − −
− −

{ }
(1) (2) (3) (4) (5) (6)
mod mod mod mod mod mod

.3 74.1

53833 933 1616 131 155 19

M M M M M M

 
 
 
 
 
 
 
 
  

= −  

 
This is the same result obtained for the overturning moment previously. 
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In Example 5 the step-by-step response of the building was obtained for the same 
earthquake record used to compute the spectrum in this example, it is interesting 
to make some comparisons of the results obtained in both cases. Table 6 lists the 
values obtained in Example 5 and Example 6 for each of the uncoupled degrees of 
freedom.    
 

Table 6 - Example 6 - Comparison of values obtained in Examples 5 and 6 
Uncoupled Example 5 Example 6 
degree of 
freedom 

 ηi 
(m) 

t 
(s) 

( )i i d i imax
S (T , )η = α × ξ  

(m) 
max 4.049463 5.90 

η1 min -3.664644 3.04 
4.0495 

max 0.295191 4.76 
η2 min -0.284971 4.58 

0.29571 

max 0.047073 3.22 
η3 min -0.054570 2.52 

0.055458 

max 0.010581 2.58 
η4 min -0.017115 2.64 

0.017155 

max 0.003448 2.12 
η5 min -0.004919 2.24 

0.0050639 

max 0.001150 2.16 
η6 min -0.001495 2.22 

0.0017170 

 
As can be seen, the results are essentially the same, and the differences obey to 
precision rounding in the numerical procedures because the algorithm employed 
to obtain the response is different from the one used to compute the spectrum. It 
should be noted that the maximum values for each uncoupled degree of freedom 
in Example 5 were obtained at different time instants It should also be noted that 
the maximum value obtained from the spectrum in some cases correspond to the 
maximum value and in some to the minimum obtained in the step-by-step 
procedure, this is because the value carried by the spectrum is the absolute value.  
 
The maximum lateral displacement of the roof obtained in Example 5 was 0.149 
m. The algebraic sum of the values obtained for the 6th story in Example 6 is 0.140 
m, and the sum of the absolute values is 0.160 m. The algebraic sum of the 
modal response underestimates the value obtained using a time step-by-step 
procedure and the sum of the absolute modal values overestimate it.  
 
The maximum value for the base shear of the building obtained in Example 5 
using a time step-by-step procedure was 4360 kN. The sum of the maximum 
modal base shears obtained in Example 6 was 6170 kN. This value overestimates 
the time step value by a factor of 1.4. In the time step procedure of Example 5 the 
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base shear is controlled by the first mode with the other modes contributing very 
little when the first mode peak occurs. For the overturning moment at the base in 
Example 5 a value of 54,400 kN · m was obtained In Example 6 the algebraic sum 
of the maximum modal values is 54,800 kN · m, and the sum of the absolute 
values is 56,690 kN · m. For the overturning moment, the contribution of the 
higher modes is small in both examples.  

   

 
Modal combination using the square root of the squares (SRSS)  

 
The most widely known method of modal spectral combination is called SRSS or 
square root of the sum of the squares. The method indicates that for any parameter 
of modal spectral response, r, the maximum credible value of the parameter, r , 
when taking into account m modal components ri is obtained from: 
 

 
m

2
i

i 1
r r

=

≈ ∑  (111) 

 
The SRSS method must be employed using the modal spectral values of the 
response parameter, ri. It must be taken into account that the result of the SRSS 
methods will always give positive values, but in reality, it can be either positive or 
negative since it is the representation of an oscillatory movement. This is the reason 
that when earthquake related effects are combined with those from other sources, 
such as gravity loads, the positive and negative cases of the earthquake forces must 
be used in the load combination employed in design.  
 
The application procedure for the SRSS method for different parameters of the 
response will be described for a structure having p stories and m modes: 
 
(a) Maximum credible lateral displacements of the structure - The maximum 

modal spectral lateral displacements for each mode i are obtained from Eq. 
(109). Then using the SRSS method the maximum credible value of the lateral 
displacement for story j would be: 

 

 ( ) ( ) ( ) ( )
m 2 2 2 2srss (i ) (1) (2) (m)

j j j j j
i 1

U U U U U
=

= = + + +∑  (112) 

 
(b) Maximum credible story drift - Using the maximum modal spectral 

displacement, for example for story j and mode i, (i )
jU , story drift is computes 

first as the difference of lateral displacements: 
 
 
 (i ) (i ) (i )

j j 1 jU U+∆ = −  (113) 
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Then using the SRSS method the maximum credible value of the story drift for 
story j would be: 

 

 ( ) ( ) ( ) ( )
m 2 2 2 2srss (i ) (1) (2) (m)

j j j j j
i 1=

∆ = ∆ = ∆ + ∆ + + ∆∑  (114) 

 
It is important to note that it would be wrong to compute the maximum credible 
story drift using values of the displacements that have already been combined. 
Thus, under the SRSS methodology, it wouldn’t be licit to employ the 
maximum credible lateral displacements obtained from Eq. (112) to compute 
the story drift. The reason is that by squaring the displacements in Eq. (112) 
the sign of the negative displacements would be lost and Eq. (113) would 
report a lower value for the story drift when there is a sign difference between 
the two story displacements. 

 
(c) Maximum credible story shear - Using Eq. (110) the maximum modal 

spectral forces for story k and mode i are obtained: (i )
kF . Then the modal 

spectral story shear is obtained from for each story and each mode i:  
 

  
p

(i ) (i )
j k

k j
V F

=

= ∑  (115)  

 
Then, using the SRSS procedure the maximum credible story shear is 
obtained for story j from:  

 

  ( ) ( ) ( ) ( )
m 2 2 2 2srss (i ) (1) (2) (m)

j j j j j
i 1

V V V V V
=

= = + + +∑  (116)  

 
In this case, as for story drift, it would be wrong to compute the maximum 
credible story shear using values of the lateral forces that have already been 
combined. 

 
(d) Maximum credible base shear - First, the modal spectral base shear for 

each mode i is obtained from the algebraic sum of the modal spectral story 
forces, (i )

kF :  
 

  
p

(i ) (i )
mod k

k 1
V F

=

= ∑   (117)  

 
Then, using the SRSS procedure the maximum credible base shear is 
obtained from:  
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  ( ) ( ) ( ) ( )
m 2 2 2 2srss (i ) (1) (2) (m)

mod mod mod mod
i 1

V V V V V
=

= = + + +∑  (118)  

 
In this case, as for story drift and story shear, it would be wrong to compute 
the maximum credible base shear using values of the lateral forces that have 
already been combined. 

 
(e) Maximum credible story overturning moment - Using Eq. (110) the 

maximum modal spectral forces for story k and mode i are obtained: (i )
kF . 

Then the modal spectral story overturning moment is obtained from for each 
story and for mode i as:  

 

  ( )
p

(i ) (i )
j k j k

k j 1
M h h F

= +

 = − ⋅ ∑  (119) 

 
Where hk and hj are the height measured from the base of stories k and j, 
respectively. Using the SRSS method, the maximum credible story overturning 
moment is obtained from:  

 

  ( ) ( ) ( ) ( )
m 2 2 2 2srss (i ) (1) (2) (m)

j j j j j
i 1

M M M M M
=

= = + + +∑  (120)  

 
The same warning is warranted: it would be wrong to compute the maximum 
credible story overturning moment using values of the lateral forces that have 
already been combined.  

 
(f) Maximum credible base overturning moment - Using the modal spectral 

forces for mode i, (i )
kF , the base overturning moment for mode i is obtained 

from:  
 

 ( )
p

(i ) (i )
mod k k

k 1
M h F

=

= ⋅∑  (121)  

 
The maximum credible base overturning moment is obtained from:  

 

 ( ) ( ) ( ) ( )
m 2 2 2 2srss (i ) (1) (2) (m)

mod mod mod mod
i 1

M M M M M
=

= = + + +∑  (122)  

 
The same warning is warranted: it would be wrong to compute the maximum 
credible base overturning moment using values of the lateral forces that have 
already been combined.  

 



 
Multiple degrees of freedom structural dynamics 

 62  L. E. Garcia and M. A. Sozen 

(g) Static equivalent lateral forces corresponding to the maximum credible 
modal lateral forces - For obtaining the internal forces of elements of the 
structure using a conventional static analysis, it is sometimes convenient to 
have available a set of static forces that represent the maximum credible 
spectral effects on the structure. The static equivalent lateral forces are 
obtained from the maximum credible story forces obtained in (c). The 
equivalent force at each story would be the difference in story shear between 
two contiguous stories. At the roof, it is equal to he story shear there. Then, for 
any story j the equivalent static force would be: 

 

 
max
jE

j max max
j j 1

V for j p
F

for j pV V +

 ==  ≠−
  (123)  

 
Previous presentation of the SRSS method was made having a planar system in 
mind. For three-dimensional cases some additional combining parameters must be 
taken into account, related mainly with the employment of different components of 
the earthquake along the principal axes of the structure. This is beyond the scope of 
this introductory presentation of multi-degree of freedom systems.  
 

Example 7 
 

Apply the square root of the sum of the squares SRSS procedure to the results 
obtained in Example 6. The use of the SRSS technique produces the following 
results: 
 
Maximum credible lateral displacements (m) 
 
The maximum modal displacements were obtained from: 
 
 { } { }( )(i ) (i )

mod i max
U = φ η  

as: 
{ } { } { } { } { } { }

[ ] [ ][ ]

(1) (2) (3) (4) (5) (6)
mod mod mod mod mod mod

mod mod

U U U U U U dof

0.148703 0.009692 0.001618 0.000355 0.000066 0.000010
0.136429 0.003428 0.000790 0.000557 0.000163 0.000032
0.115519 0.004295 0.001915 0.000091 0.000144

U

↓

− − −
− − −

−
= Φ Η =

6

5

4

3

2

1

U
U

0.000050 U
0.084882 0.009854 0.000280 0.000592 0.000017 0.000058 U
0.049588 0.009914 0.001754 0.000118 0.000124 0.000054 U
0.018061 0.004698 0.001397 0.000584 0.000181 0.000041 U

 
 
 
 −
 − − − 
 − −
 
  

 

 
We now apply the SRSS procedure to each of the row of previous matrix. For 
example for the roof (6th story): 
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( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2max
6U 0.148703 0.009692 0.001618 0.000355 0.000066 0.000010

0.14903 m

= + − + + − + + −

=
 

 
This value compares fairly well with the value of 0.14873 m obtained from the 
step-by-step procedure in Example 6. The result, in m, for all stories is: 
 

{ }

6

5

4srss

3

2

1

dof
0.14903 U
0.13648 U
0.11560 U

U
0.08545 U
0.05059 U
0.01872 U

↓

 
 
 
  = ±  
 
 
 
  

 

 
A symbol ± has been introduced to remind that the values obtained from the SRSS 
procedure may be either positive or negative.  
 
Maximum credible story drift 
 
The modal spectral story drifts are computed from the values shown in [Umod]. 
Using Eq. (113) the following result are obtained: 
 

{ } { } { } { } { } { }

[ ]

(1) (2) (3) (4) (5) (6)
mod mod mod mod mod mod

mod

story

0.012274 0.006264 0.002408 0.000912 0.000229 0.000042
0.020920 0.007723 0.001125 0.000466 0.000307 0.000082
0.030627 0.005559 0.001635 0.000683 0.000161 0.0

∆ ∆ ∆ ∆ ∆ ∆ ↓

− − −
− −
− − −

∆ =

6
5

00108 4
0.035304 0.000060 0.002034 0.000710 0.000107 0.000112 3
0.031517 0.005216 0.000358 0.000465 0.000305 0.000095 2
0.018061 0.004698 0.001397 0.000584 0.000181 0.000041 1

 
 
 
 
 − − − 
 − − −
 
  

 

 
As an example, we now apply the SRSS procedure to the third story: 
 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2srss
3 0.035304 0.000060 0.002034 0.000710 0.000107 0.000112

0.03537 m

∆ = + − + − + − + +

=
 

 
And for all stories: 
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{ }srss

story
0.0140 0.47%h 6
0.0223 0.74%h 5
0.0312 1.04%h 4

m
0.0354 1.18%h 3
0.0320 1.07%h 2
0.0188 0.62%h 1

↓

   
   
   
      ∆ = =   
   
   
   
      

 

 
Now, for the sake of discussion, lets compute erroneously the story drift from 
lateral displacements already combined, {Usrss}. The following are the results for 
story drift as a percentage of the story height (%h) thus computed: 
 

{ }

story
0.42%h 6 wrong result
0.70%h 5 wrong result
1.00%h 4 wrong result
1.16%h 3 wrong result
1.06%h 2
0.62%h 1

↓

  ⇐
  ⇐ 
  ⇐ ∆ =   ⇐ 
 
 
  

 

 
Maximum credible story forces (kN) 
 
The maximum modal spectral forces were obtained for each mode in Example 6 
multiplying the stiffness matrix by the modal spectral displacements of each 
mode, obtaining there the following forces in kN: 
 
 [ ] [ ] (1) (2) (6) (1) (2) (6)

mod E mod mod mod mod mod modF K U U U F F F   = =     
 

{ } { } { } { } { } { }

[ ] [ ][ ]

(1) (2) (3) (4) (5) (6)
mod mod mod mod mod mod

mod E mod

F F F F F F dof

1108.3 748.9 403.3 226.4 79.3 18.6
1016.2 264.8 196.9 355.8 195.6 57.9
860.2 331.8 477.4 58.2 173.4 91.0

F K U
632.9 761.5 69.8 378.0 20.2 105.1
369.4 765.9 437.3 7

↓

− − −
− − −

− −
= =

− − −

6

5

4

3

2

1

F
F
F
F

5.5 148.2 98.4 F
135.1 363.0 348.2 372.7 217.3 74.1 F

 
 
 
 
 
 
 − −
 
  
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A sensible recommendation is to keep these modal forces separated by mode and 
never combine them using SRSS. This way the danger of using the combined forces 
in the computation of story shears and overturning moments is avoided.  
 
Maximum credible story shear (kN) 
 
The maximum credible modal spectral story shear may be obtained from Eq. 
(115) 
 

 
p

(i ) (i )
j k

k j
V F

=

= ∑  

 
Table 7 - Example 7 - Story shear modal spectral values 

story 
(1)
modV  

(kN) 

(2)
modV  

(kN) 

(3)
modV  

(kN) 

(4)
modV  

(kN) 

(5)
modV  

(kN) 

(6)
modV  

(kN) 
6 1108.3 -748.9 403.3 -226.4 79.3 -18.6 
5 2124.6 -1013.7 206.3 129.4 -116.3 39.3 
4 2984.8 -681.9 -271.0 187.7 57.1 -51.7 
3 3617.6 79.6 -340.9 -190.3 36.9 53.4 
2 3987.0 845.5 96.5 -114.8 -111.3 -45.0 
1 4122.1 1208.5 444.6 257.9 106.1 29.1 

 
Applying, for example, the SRSS procedure to the second story, we obtain: 
 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2srss
2V 3987.0 845.5 96.5 114.8 111.3 45.0

4080.2 kN

= + + + − + − + −

=
 

 
The result, in kN, for all stories is 
 

{ }srss

story
1417.6 6
2369.8 5
3080.3 4

V 3640.1 3
4080.2 2
4327.6 1

↓

 
 
 
  = ±  
 
 
 
  
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Maximum credible base shear  
 
The base shear, in kN, was obtained in Example 6 for each mode as:  

{ } { } [ ] { }T
mod mod

1108.3 748.9 403.3 226.4 79.3 18.6
1016.2 264.8 196.9 355.8 195.6 57.9

860.2 331.8 477.4 58.2 173.4 91.0
V 1 F 1 1 1 1 1 1 632.9 761.5 69.8 378.0 20.2 105.1

369.4 765.9 437.3 75.5 148.2 98.4
135.1 363.0 348.2 372.7 217.3 7

− − −
− − −

− −
= =

− − −
− −

{ }
(1) (2) (3) (4) (5) (6)
mod mod mod mod mod mod

4.1

4122.1 1208.5 444.6 257.9 106.1 29.1

V V V V V V

 
 
 
 
 
 
 
 
  

=

 
Applying the SRSS procedure: 
 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2srssV 4122.1 1208.5 444.6 257.9 106.1 29.1

4327.6 kN

= + + + + +

=
 

 
Maximum credible overturning moment 
 
The overturning moment for each story and mode is obtained using Eq. (119): 
 

 ( )
n

(i ) (i )
j k j j

k j 1
M h h F

= +

 = − ⋅ ∑   

 
Table 8 - Example 7 - Modal story overturning moments 

story 
(1)
modM  

(kN · m) 

(2)
modM  

(kN · m) 

(3)
modM  

(kN · m) 

(4)
modM  

(kN · m) 

(5)
modM  

(kN · m) 

(6)
modM  

(kN · m) 
6 0.0 0.0 0.0 0.0 0.0 0.0 
5 3324.9 -2246.7 1209.8 -679.2 237.8 -55.9 
4 9698.6 -5287.8 1828.7 -290.9 -111.0 61.9 
3 18652.9 -7333.6 1015.6 272.2 60.2 -93.3 
2 29505.8 -7094.7 -6.9 -298.7 170.9 66.8 
1 41466.8 -4558.2 282.4 -643.1 -162.9 -68.2 
0 53833.1 -932.7 1616.3 130.7 155.3 19.2 

 
Now using the SRSS procedure for example to the fourth story: 
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( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2srss
4M 9698.6 5287.7 1828.7 290.9 111.0 61.9

4080.2 kN

= + − + + − + − +

=
 

 
The result, in kN · m, for all stories is: 
 

{ }srss

story
0.0 6

4252.9 5
11201.3 4
20070.6M 3
30348.8 2
41722.9 1
53865.8 0

↓

 
 
 
 
  =  
 
 
 
 
  

 

 
Maximum credible base overturning moment 
 
Base overturning moment contributed by each mode can be computed from: 
 

{ } { } [ ] { }T
mod mod

1108.3 748.9 403.3 226.4 79.3 18.6
1016.2 264.8 196.9 355.8 195.6 57.9

860.2 331.8 477.4 58.2 173.4 91.0
M h F 18 15 12 9 6 3 632.9 761.5 69.8 378.0 20.2 105.1

369.4 765.9 437.3 75.5 148.2 98.4
135.1 363.0 348.2 372.7 217

− − −
− − −

− −
= =

− − −
− −

{ }
(1) (2) (3) (4) (5) (6)
mod mod mod mod mod mod

.3 74.1

53833 933 1616 131 155 19

M M M M M M

 
 
 
 
 
 
 
 
  

= −

 
and 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2srssM 53833.1 932.7 1616.3 130.7 155.3 19.2

53865.8 kN m

= + − + + + +

= ⋅
 

 
Static equivalent lateral forces 
 
These forces, in kN, are computed using Eq. (123) using the story shears obtained 
by using the SRSS procedure: 
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{ }E

story
1417.6 1417.6 6
2369.8 1417.6 951.9 5
3080.3 2369.8 710.5 4

F
3640.1 3080.3 559.8 3
4080.2 3640.1 440.3 2
4327.6 4080.2 247.6 1

↓

   
   −   
   −   = = ±   −   
   −
   −      

 

 
The overturning moment, in kN · m, computed for these equivalent lateral loads 
is: 

{ } { }TE E

1417.6
951.9
710.5

M h F 18 15 12 9 6 3 56742.1 kN m559.8
440.3
247.6

 
 
 
   = = = ⋅  
 
 
 
  

 

 
The overturning moment, in this case, is slightly larger than the one obtained 
using the SRSS procedure with the modal spectral overturning moments.  
 
In Example 5 the step-by-step response of the system to the El Centro record was 
computed, in Example 6 the individual modal spectral responses were computed 
for the spectrum of the same record — thus permitting the computation of the 
absolute maximum spectral response —, and in Example 7 the SRSS procedure was 
applied to the results obtained in Example 6. Now some comparisons can be 
made between the results of the three examples.  
 

Table 9 - Example 7 - Comparison of the results from Examples 5, 6, and 7 

 
Parameter 

Example 5 
Step-by-step  

Analysis 

Example 6 
Modal spectral 
Absolute value 

Example 7 
Modal spectral  

SRSS 
Roof lateral 

displacement 
0.149 m 0.160 m 0.149 m 

Base shear 4 360 kN 6 170 kN 4 330 kN 
Overturning 

moment 54 400 kN · m 56 700 kN · m 53 900 kN · m 

 
For this case the match between the step-by step analysis values and the values 
obtained using the SRSS procedure is reasonable good.  

   
 


