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Response Spectrum Concepts
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Seismic Hazard

Site conditions can have
significant effect on response.
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Linear Response of Structures

W /g 0.0\ 0.2\ /O. .6 VO.B
Vibration Period T =27 " \v/ % time, sec
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Now we impose the ground motions from an
earthquake to the base of our elastic system
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Base excitation

~=—— structural
element

= fiz
(a) (b)

mx +ce(x—x,)+k(x—x,)
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Base excitation
Using u to describe relative movement:

U=Xx-—Xx,

\We obtain:

mu + cu+ku=-mx,
And dividing by m
i +2E00 +0%u = X,

and

u(t)=———| x,(1) e —Boo(t~ 1”sen{ 1-E* m(t—‘t)}d
- ﬁ
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Peak ground movements

Acceleration

time (sec)

Velocity

e

“El Centro”, 1940 record
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Response of a 1 second period system

Absolute acceleration response (m/s?)

Relative velocity response (m/s)

Relative displacement response (m)

Damping, § = 5%

Base acceleration (m/s?)

"El Centro*, 1940, Record N-S§ Comp.
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DISPLACEMENT SPECTRUM
EL CENTRO RECORD

DISPLACEMENT

T=1.0s

— max 0.128 m

=

bliomae g,

Computation of the
response spectrum

B i

26 TIME (s)
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Displacement spectra

“Ef Centro”, 1940 Period T (s}
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Velocity Spectra

Period, T ()

“El Centro”, 1940 record
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Acceleration spectra

Period, T (s)

“El Centro”, 1940
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Relationship between spectra

Sd(T,é)E ® 0>

or 9

S,(T,8) =

27T 412

(D = frequency in radians/second (rad/s)
f=-02r-= frequency en cycles/second (Hertz)
T = 21t/®= 1/f = period in seconds (s)

E_, = coefficient of critical damping
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Log-log plot of velocity spectra

Velocity
Sy

“El Centro”, 1940 record © Period T
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Spectra as a function of
peak ground movements

2 |

0.01 %Amiuﬂ_dﬁg{l zanel

0.01

“El Centro”, 1940 record
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Spectrum for the two horizontal components of the

"Corralitos” record of the Loma Prieta 1989 EQ
2.57

1.5

2.0

Period T (s)
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Crustal Eq. vs Subduction Eq
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Crustal Eq. vs Subduction Eq.

SA spectra
25 Spectral Acceleration (g)
2 7\
N 1.5 k \\
AVa\
1 Y \ \\
0.5 \ :
0
0.5 1 15 2 2.5 3] 35 4
T (sec)
= KOBE
== LLAYLLAY
5% damping
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Crustal Eq. vs Subduction Eq.

SV spectra SD spectra
300 Spectral Velocity (cm/s) 60 Spectral Displacement (cm/s)
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-
>

1.0 Seco/
2.0 And

Spectral Acceleration (SA)
0.5 Second

Traditional Response Spectrum Plot

SD SA(T)?

i o
(@n)

SD = 10 SA (T) 2
(units of in., g,sec.)

5

>

Period (T)
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Design Spectra

» Acceleration response spectrum
is shown to the right.

» Displacement response
spectrum can be calculated
assuming simple harmonic
motion using expression below:

Sa \
_ Period, T
acceleration response spectrum

S

|

T 2
S, = >S.9
4 :
_ Period, T
displacement response spectrum
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Spectral Acceleration (SA)

Acceleration-Displacement Response
A Spectrum (ADRS) Plot

-[EE

T = 0.32 JS—D
SA

(units of sec., in., g)

Spectral Displacement (SD)
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Effect of Period Change

* Rehabilitation design
requires an understanding
of how dynamic response
changes when the system
Is modified.

* Change in period results in
change in response
amplitude.

Period, T
displacement response spectrum
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‘ Effect of Damping Change

« Damping dissipates
energy and reduces Sa
response amplitude

lower dampin .
ping _ Period, T
—— higher damping acceleration response spectrum

Sy

_ Period, T
displacement response spectrum
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Inelastic Response

* Inelastic response

reduces stiffness and W
. —
increases enerqy K
dissipation. <

* Reduced stiffness . Ki
equates to increased Shear .........
effective period of i
vibration. / ‘‘‘‘‘‘‘‘‘‘‘

« Energy dissipation /{7
equates to increased Displdcement
damping.
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Inelastic Response

W
— @

lower damping S
K —— higher damping

a

» Base shear is limited by strength. period, T

acceleration response spectrum

Displacements... T 1
— tend to increase due to period shift Sy ! T

— tend to decrease due to damping
increase

— Effects may cancel out (equal
displacement rule)

_ Period, T
displacement response spectrum
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Ductility Concepts
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Ductility

SDOF response:

\'%
m
e o=
I
1
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I
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v . o m
Natural Period of Vibration: T =27 K
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y
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Equal displacement rule
/ (for structures with T>0.5s)

_________ Auer

This is not really a rule but simply
an observation, however it forms
the basis for much of seismic
design.

If A,=A, then R=p,
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For T<0.5s equal displacement
rule does not hold
A>A,

Equal energy rule is one often
used

R=V(2 p,-1)

but this is not good as the

> period gets very small and
Ay A as the R value increases

Seismic Design of Multistorey Concrete Structures
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Ci erp TWO BASIC SPECTRAL REGIONS

Effect of 40
Yielding on 35
Maximum we
Displacement

SITE
(mean of 20

R=80

C1 is the ratio
between inelasticand 1.0 (

CLASS C —R=80
ground mctions) —AR=60
R=40

R=30

—AR=20

—R=15

elastic responses R=15 -
p 05 4 H
(after FEMA 440) 0.0 - - —_ - -
0.0 05 1.0 1.5 2.0 25 3.0
PERICD
L. N —_
~ o
® C; IS ON AVERAGE ® C, 1S APPROXIMATELY CONSTANT
LARGER THAN ONE WITH CHANGES IN T
® C; INCREASES WITH ® Ci DOES NOT CGHANGE MUCH WITH
DECREASING T CHANGES IN R
® Ci INCREASES WITH ® C, 1S ON AVERAGE APPROXIMATELY
INCREASING R EQUAL TO ONE
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deformation
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FiTaeas 0TI ——+¢ o8

Hiystaret reponss of & squet wall thes svetually
failed in shear,

a) Hysteretic force-deformation behavior from tests

actual hysteretic

b)

Instructor: Dr. C.E. Ventura

force

Force

behavior

backbone curve

Backbone representation of hysteretic behavior
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|dealized Force-Deformation Relationship

Base shear
ry

Actual force-disp
curve

A\ 4

A, Ay Displacement

(after FEMA 440)
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Strength, Strength Degradation & Stability

F
A A 1984 Morgan Hill, California Earthquake
8 Lot Gilroy #3, Sewage Treatment Plant, Comp. 0° E
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Measures of ductility:

1. Displacement ductility — entire structure
2. Rotational ductility — member
3. Curvature ductility — section \

beam yields-forms
Au plastic hinges

Elastic Deformation ) ~~"" Elastic+Plastic Deformation

-

[o——

0,-plastic rotation
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What's A ?

SDOF A

, majority of mass RS m

g Seismic Design of Multistorey Concrete Structures
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MDOF

T<l1s, uniform buildings

Instructor: Dr. C.E. Ventura
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Shear Wall

0.: 3 2
y M( A FLU ML
3EI  3E
A ML
L 3El
Beams:
ML
Y 3El
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Curvature ductility

Py Py 1 1
¢,-well defined ‘ ‘

¢, ¢, —difficult to estimate =0+ @,

0

=2
p

1= length of plastic hinge, not well defined
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lp=.08H +.022d,f, (m & MPa) for column and beam sections
~0.5W
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Strains

In terms of performance strains are the most important parameter,
especially in concrete. Unconfined concrete can take strains of 0.004 to

0.005 without failing, while confined concrete can go up to a strain of
0.010 or more

},Le and L are not good general indicators of damage as the strains
are dependéont on the size of the member.

Op is a better indicator of strains.

Seismic Design of Multistorey Concrete Structures
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Strains M 5 -/ M

oo

/-
€ =€y T & ¢c=BD  .1<p<2
o ‘=
Q_%Eﬂﬁﬁ d =/D 0.6 <y <09
lL=aD  05<a<l
g =2
P
l, &, =6‘sy.£+€p.£
c c v a
& :gsy.E'Fep.l—
3
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o, p and y vary - dependent mainly on the amount of reinforcement
and the axial load on the member — but they don’t vary by that much

c=pD d<p<.2
, Y.
d=D 06<y<09 8c—8s,-;+ Py
lpzocD 0.5<a<l

New concrete code will limit Gp for different situations.

6, < 0.02 will be one limit - for average values a, B,

g, ~ .002(.15/.7)+.02(.15/.75)

g, ~.0004+.004 = .0044 -would be o.k. even for
unconfined concrete.

@ Seismic Design of Multistorey Concrete Structures
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So, how do we use all these
concepts for seismic design?

=> NBCC 2005
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Equivalent Static Force (NBCC)

Site Conditions

Independent of T

1995 NBCC 2005 NBCC
V = vSIFW / (R/U) V=F, SMJIW/(RR,)
vS s
Base response spectrum v - amplitude 2
S - shape Based on UHRS
F F,orF,

Dependson T and S,

Importance of Structure

IE

Inelastic Response

R/U
Implied overstrength

Rd Ro
Explicit Overstrength

MDOF
Forces from higher modes

Increase S in long
periods

MV
Calibrated to dyn. analysis

MDOF
Distribution of forces

Ft
Higher force in top story

Ft
Same as 1995

MDOF
Overturning forces

J

J
Revised for UHS

No. 48
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Equivalent Static Load Procedure
Elastic Base Shear, Moment

® Elastic base shear is derived from
V,=S(Ty) WM,, where
S(T,) is the acceleration spectrum at the fundamental period T,
W is the weight of the structure contributing to inertia forces, and
M, is a factor to account for higher mode shears

® Base moment is given by
M. =V h, J, where
h, is the height of the resultant of the lateral forces, and
J is a moment reduction factor

g Seismic Design of Multistorey Concrete Structures

No, 49

Instructor: Dr. C.E. Ventura

Assume we have a building with T=1.5 sec.

L\

/-\ \ — Vancouver

o8 — Montreal
N //\ ontrea
ANANY

. \%.256

.073
O T T T
(0] 1 2 3 4
Period T, seconds
@ Seismic Design of Multistorey Concrete Structures
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Design shears in a building of two different
structural types located in Vancouver and Montreal
— first mode.
Structure Period Modal S.(T) Base
type T, weight g shear
Vancouver
Shear cantilever 1.50 .811W .256 .208W
Flexural cantilever 1.50 .616W .256 .158W
Montreal
Shear cantilever 1.50 .811W .073 .059W
Flexural cantilever 1.50 .616W .073 .045W
g Seismic Design of Multistorey Concrete Structures
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How do we understand the
meaning of the R factors?

R, = Force Reduction Factor based on “ductility”
of system

R, = Force Reduction Factor based on “reliable”
overstrengths

* Ryand R, are now in a table with building height limits based on the severity of the
regions seismicity and on the ductility of the structural system.

« Basically, the lower the seismicity and the higher the ductility — the higher the allowed
building.

e Seismic Design of Multistorey Concrete Structures
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R,, R, Factors

Va
Vo 9
V, =V, /Ry
V=V, /R4R,T
A, A
g Seismic Design of Multistorey Concrete Structures
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Inelastic Response in NBCC, Ductility factor - R

 Ductility factor, R

— Related to the amount of ductility capacity
the structure is believed to possess.

— Varies from 1.0 (e.g. unreinforced
masonry) to 5.0 (e.g. ductile steel moment
frame).

— Don’t get reduction in force for nothing!!

 For higher R values, material codes (e.g.
A23.3) have stricter detailing requirements.

» Needed to achieve higher ductility capacity.

g Seismic Design of Multistorey Concrete Structures
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R4 (Ductility) Factor

z
<
g
(o]
-
[a)
w
.
T
o
<

DISPLACEMENT, (mm) Deformation
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R, (Over strength) Factor

Ro = Rsize R(I) Ryield Rsh Rmech

Rg,e = rounding of sizes and dimensions
R
Ryieiq= ratio of actual “yield” to minimum specified “yield”

¢ = difference between nominal and factored resistance, 1/¢

Ry, = overstrength due to strain hardening
Rmech= Overstrength arising from mobilising full capacity of
structure (collapse mechanism)

@ Seismic Design of Multistorey Concrete Structures
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R, (Over strength) Factor

Ro =|Rsize R¢ Ryield| Rsh Rmech

R...R, R,V

yield

Rg,e = rounding of sizes and dimensions
R; = difference between nominal and factored resistance

Ryieq= ratio of actual “yield” to minimum specified “yield”

Seismic Design of Multistorey Concrete Structures
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R, (Over strength) Factor

Ro

- Steel

sh

Ry, = overstrength due to strain hardening

@ Seismic Design of Multistorey Concrete Structures
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R, (Over strength) Factor

Capacity design:
M,.= aM,

pc

Rnech= Overstrength arising from mobilising full capacity of

structure (collapse mechanism)

@ Seismic Design of Multistorey Concrete Structures

Instructor: Dr. C.E. Ventura

No, 59

R, (Over strength) Factor

Rmech @mount of strength that can be developed before a
collapse mechanism forms.

strength, .
1.20
- \
1.15
- . [B=138]
.F( _ 51.10
h.,
—_— h, 1.056 —
T 1.00 T
0 2 4 6 8 10 12 14 16 18 20
Number of floors
= _N+B
mech —
N+1
% @ Seismic Design of Multistorey Concrete Structures

Instructor: Dr. C.E. Ventura

— For a frame this is related to the ratio of column strength to the beam

No. 60
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’RO (Over strength) Factor

* R, depends on the type of lateral force resisting system

(c) 333+ v¥ (d) (f)
MM
M B M
% s Seismic Design of Multistorey Concrete Structures
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Derivation of R, for Concrete Structures

Calculation of g,

Type of SFRS Rsizz2 R¢  Ryield  Rsh  Rmech  Ro NBCC g,

Ductile moment-resisting frames 105 1.18 1.05 125 1.05 .71 1.7

Moderately ductile moment-resisting frames 1.05 1.18 1.05 1.10  1.00 143 14

Moment-resisting frames with conventional 105 118 1.05 1.00 1.00 130 13
construction

Ductile coupled walls 1.05 1.18 1.05 1.25 1.05 1.71 1.7
Ductile partially coupled walls 1.05 1.18 1.05 1.25 1.05 1.71 1.7
Ductile shear walls 1.05 1.18 1.05 1.25  1.00 1.63 1.6
Moderately ductile shear walls 1.05 1.18 1.05 1.10  1.00 143 14

Shear walls with conventional construction 1.05 1.18 1.05 1.00 1.00 1.30 1.3

g Seismic Design of Multistorey Concrete Structures
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R factors for Concrete Structures

System Cat.

Moment Resisting Frames D
MD

Coupled walls

D
D®

SHEETRWETES D
\Y/ 1D}

Conventional constr.®

@ Ductile partially coupled wall
@ Structures designed in accordance with CSA-A23.3 Cl. 1-20
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Notes on Ry, R,, and General Restrictions

= Rq is a ductility based force reduction virtually the same as the 1990 and 1995
NBCC.

» Rois a force reduction factor based on reliable overstrengths typically found
in structures.

= Previous codes had a few height restrictions, such as systems over 60m in high
seismic zones had to be ductile; Buildings greater than 3 storeys in higher
zones had to have reasonably ductile systems; Buildings less than 3 storeys
had few constraints.

= The above led to some anomalies, i.e. 2 storey brittle post disaster buildings.

= The 2001 CSA SI6.1 Steel Code introduced a more extensive set of height
limits based on system, ductility, and seismic zone. This is reflected in this
table.

= The approach taken by CSA SI6.1 had several advantages, addressed
several concerns, and was extended to the other structural materials.

@ Seismic Design of Multistorey Concrete Structures
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Useful Reference

Special issue of Canadian Journal of Civil
Engineering on 2005 NBCC Earthquake
Provisions (April 2003)

g Seismic Design of Multistorey Concrete Structures
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Note:

Several of the slides were kindly provided
by Dr. Mete Zosen and Dr. Luis Garcia of
Purdue University
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