Determination of Seismic Design Forces

Donald L. Anderson, P.Eng

Prof. Emeritus, UBC

The original Powerpoint presentation was prepared by

Jag Humar of Carleton University

which is greatly appreciated.

December 2002

<section-header><list-item><list-item><list-item><list-item>

Foundation Factor

- Foundation soil generally amplifies wave motion as it propagates up through the layer
- Amplification depends on stiffness and depth of soil, as well as on ground motion intensity
- Foundation factor F in NBCC 1995 will be replaced by factor F_a for short periods and F_v for long periods

Foundation Site Classification

		Average	properties in top 3	0 m
Site	Soil profile name	Soil shear wave	Standard	Soil undrained
class		average velocity	penetration	shear strength,
		V _s , m/s	resistance, N ₆₀	s _u , kPa
А	Hard Rock	> 1500	NA	NA
В	Rock	760 to 1500	NA	NA
С	Very dense Soil	360 to 760	> 50	> 100
	and soft Rock			
D	Stiff Soil	180 to 360	15 to 50	50 to 100
Е	Soft Soil	< 180	< 15	< 50
Е		Any profile with more	than 3m of soil wi	th the following
		characteristics		
		• Plastic index $PI \ge$	20	
		Moisture content	$w \ge 40\%$, and	
		• Undrained shear s	trength s _u < 25 kPa	
F	⁽¹⁾ Others			
⁽¹⁾ Other:	soils include:			
 Liqu 	efiable soils, quick a	nd highly sensitive clays	s, collapsible weak	y cemented
soils	, and other soils susc	eptible to failure or coll	apse under seismic	loading.
• Peat	and/or highly organi	c clays greater than 3m	in thickness	

• Soft to medium stiff clays with thickness greater than 30m

			$\mathbf{F}_{\mathbf{a}}$					
Site			Sa(0.2)					
Class	≤ 0.25	0.50	0.75	1.00	1.25			
Α	0.7	0.7	0.8	0.8	0.8			
В	0.8	0.8	0.9	1.0	1.0			
С	1.0	1.0	1.0	1.0	1.0			
D	1.3	1.2	1.1	1.1	1.0			
Е	2.1	1.4	1.1	0.9	0.9			
F	Site specific geotechnical investigation and dynamic site response required							
			Fv					
Site	S _a (1.0)							
Class	≤ 0.10	0.20	0.30	0.40	≥ 0.50			
А	0.5	0.5	0.5	0.6	0.6			
В	0.6	0.7	0.7	0.8	0.8			
С	1.0	1.0	1.0	1.0	1.0			
D	1.4	1.3	1.2	1.1	1.1			
E	2.1	2.0	1.9	1.7	1.7			
F	Site specific	geotechnical inv	vestigation and dv	namic site respor	se required			

Design Spectral Acceleration

- $S(T) = F_a S_a(0.2) \text{ for } T \le 0.2 \text{ s}$ = $F_v S_a(0.5) \text{ or } F_a S_a(0.2)$ whichever is smaller, for T = 0.5 s= $F_v S_a(1.0) \text{ for } T = 1.0 \text{ s}$ = $F_v S_a(2.0) \text{ for } T = 2.0 \text{ s}$
 - $= F_v S_a(2.0)/2$ for $T \ge 4.0$ s

Obtaining Design Forces from UHS

- Dynamic analysis procedure (default method)
- Equivalent static load procedure (allowed for some structures)

Conditions under which Static Load Procedure may be used

- Structures located in zones of low seismicity, that is, $IF_a S_a(0.2) < 0.35$, or
- Regular structures that are less than 60 m in height and have $T_a < 2$ s, where T_a is the fundamental period, or
- Irregular structures that are less than 20 m in height, have $T_a < 0.5$ s and are not torsionally sensitive

Equivalent Static Load Procedure Elastic Base Shear

- Elastic base shear is derived from
 - $V_e = S(T_a)M_V W$, where
- > $T_{\rm a}$ is the fundamental period,
- W is the weight of the structure contributing to inertia forces, and
- > M_V is a factor to account for higher mode shears

Equivalent Static Load procedure Design Base Shear

 $V = V_e I / R_d R_o$

V = factored design base shear

I = importance factor, 1.0, 1.3, or 1.5

- R_d = ductility related force modification factor
- R_o = overstrength related force modification factor

Equivalent Static Load Procedure Design Base Shear

- Because of uncertainty associated with the S_a values for periods greater than 2.0 s, $S(T_a)$ is taken as S(2.0) for $T_a > 2.0$
- For ductile structures where R_d is 1.5 or more, the following upper limit is specified on the design shear (affects short periods)

$$V = \frac{2}{3} \frac{S(0.2)IW}{R_d R_o}$$

Importance Factor

I = 1.3	Buildings used as post disaster shelters,
	such as, schools and community centres,
	and manufacturing facilities containing
	toxic, explosive or hazardous substances

I = 1.5 Buildings used for post-disaster recovery, such as, hospitals, telephone exchanges, generating stations, fire and police stations, water and sewage treatment facilities

I = 1.0 All other buildings

Fundamental Period Empirical Expressions

For concrete frames $T = 0.075 (h_n)^{3/4}$ For steel frames $T = 0.085 (h_n)^{3/4}$ For other moment frames T = 0.1N

where h_n in the height above base in m and N is the total number of storeys above grade

Braced frames $T = 0.025 h_n$ Shear wall buildings $T = 0.05 (h_n)^{3/4}$

The corresponding NBCC 1995 formula was

 $T = \frac{0.09 h_n}{\sqrt{D_s}}$

Building height	NBCC period s	Analytical period s
5	0.7	1.7
10	1.2	3.7
15	1.6	5.7

Equivalent Static Load Procedure Elastic Base Shear

- Elastic base shear is derived from
 - $V_e = S(T_a)M_V W$, where
 - $T_{\rm a}$ is the fundamental period,
 - *W* is the weight of the structure contributing to inertia forces, and
- > M_V is a factor to account for higher mode shears

Effect of Higher Modes on Base Shear, M_v factor

Relative contribution of higher modes depends on

- 1. Spectral shape
- 2. Relative modal periods
- 3. Mass participation factor

$\frac{S_a(0.2)}{S_a(2.0)}$	Type of lateral force resisting system	M_{ν} for T ≤ 1.0	M_{ν} for $T \ge 2.0$	J for T ≤ 0.5	J for T ≥ 2.0
< 8.0	Moment-resisting frames or "coupled walls" ⁽³⁾	1.0	1.0	1.0	1.0
	Braced frames	1.0	1.0	1.0	0.8
WEST	Walls, wall-frame systems, other systems ⁽⁴⁾	1.0	1.2	1.0	0.7
> 8.0	Moment-resisting frames or "coupled walls" ⁽³⁾	1.0	1.2	1.0	0.7
EAST	Braced frames	1.0	1.5	1.0	0.5
	Walls, wall-frame systems, other systems ⁽⁴⁾	1.0	2.5	1.0	0.4
Notes: 1. Va inte 2. Va inte 3. Co bas and 4. Fon ana	lues of M_v between period repolation. lues of J between period repolation. upled wall is a wall syste e overturning moment re compression forces res hybrid systems, use val lysis	ods of 1.0 and s of 0.5 and 2 em with coup esisted by the ulting from sl ues correspon	2.0 s are to be 2.0 s are to be of ling beams whe wall system is near in the coup dding to walls of	e obtained by line obtained by line ere at least 66% carried by axia pling beams or carry out a c	near ear 6 of the al tension dynamic

Relative modal periods and modal weights for flexural and shear cantilevers

Mode	Unifor	n shear wall	Uniform frame, stiff bean		
No.	Period	Modal weight	Period	Modal weight	
1	1.000	0.616	1.000	0.811	
2	0.167	0.188	0.333	0.090	
3	0.057	0.065	0.200	0.032	
4	0.030	0.032	0.143	0.017	
5	0.018	0.020	0.111	0.010	

Effect of Higher Modes on Base Shear - example

- Consider a building structure with first mode period of 1.5 s
- Assume that contribution from only the first two modes are significant
- Use the UHS for Vancouver and Montreal and the data in previous table

Desig	n shears	in a bui	lding of t	wo differ	ent struc	tural type	es located	in Vanc	ouver and	l Montreal	l
Structure type	1 st mode period	2 nd mode period	Modal weight in 1 st mode	Modal weight in 2 nd mode	Spectral accelerat ion (g) in 1 st mode	Spectral accelerat ion (g) in 2 nd mode	Base shear in 1 st mode	Base shear in 2nd mode	SRSS shear	Base shear assuming entire weight at 1 st mode period	M
Vancouver											
Frame	1.50	0.50	0.811W	0.090W	0.256	0.630	0.208W	0.057W	0.216W	0.256W	0.84
Shear wall	1.50	0.25	0.616W	0.188W	0.256	0.900	0.158W	0.169W	0.231W	0.256W	0.9
Montreal											
Enomo	1.50	0.50	0.811W	0.090W	0.073	0.340	0.059W	0.031W	0.067W	0.073W	0.9 1
Frame			0.61.611	0 188W	0.073	0.600	0.045W	0.113W	0.122W	0.073W	16
Frame Shear wall Montreal	1.50	0.25	0.616W 0.811W	0.188W 0.090W	0.256	0.900	0.158W 0.059W	0.169W 0.031W	0.231W 0.067W	0.256W 0.073W	

Methodology for Estimating Shear Adjustment Factor

$$M_{v} = \frac{\sqrt{\sum \{S_{a}(T_{i})W_{i}\}^{2}}}{S_{a}(T_{1})W} = \frac{V_{b}}{S_{a}(T_{1})W}$$

- $S_a(T_i)$ = spectral acceleration in the i th mode
- $T_i =$ i th mode period
- $W_i =$ modal weight in the i th mode

Structural types studied

- 1. Moment-resisting frame
- 2. Concentrically braced frame
- 3. Flexural wall
- 4. Coupled flexural walls
- 5. Hybrid frame-wall system

Overturning Moments

- Estimates of overturning moment depend on the manner in which the base shear is distributed up the height
- First mode distribution gives the highest overturning moments
- Higher mode effects are important near the top of the structure

- NBCC distribution is based predominantly on first mode, except for F_t applied at top
- An adjustment factor J is applied to the base overturning moment to account for higher mode effects (and F_t)
- Adjustment factor J_x is applied to the calculated moment at level x

Determination of J, J_x factor

- Determine from the code static shear forces the overturning moment at the base, M_{bc}, and at each level x, M_{xc}.
- 2. Obtain more precise estimates of the base moment, M_{bd} and at each level, M_{xd} by a dynamic response spectrum analysis
- 3. Then, $J = M_{bd}/M_{bc}$, $J_x = M_{xd}/M_{xc}$

$\frac{S_a(0.2)}{T_a(0.2)}$	Type of lateral force resisting system	M_v	M_v	J	J
$S_{a}(2.0)$		$T \le 1.0$	$T \ge 2.0$	$T \le 0.5$	$T \ge 2.0$
	Moment-resisting frames				
< 8.0	or "coupled walls" ⁽³⁾	1.0	1.0	1.0	1.0
	Braced frames	1.0	1.0	1.0	0.8
WEST	Walls, wall-frame				
	systems, other systems ⁽⁴⁾	1.0	1.2	1.0	0.7
	Moment-resisting frames				
>8.0	or "coupled walls" ⁽³⁾	1.0	1.2	1.0	0.7
	Braced frames	1.0	1.5	1.0	0.5
EAST	Walls, wall-frame				
	systems, other systems ⁽⁴⁾	1.0	2.5	1.0	0.4
Notes: 1. Va int	lues of M_v between periods of 1 erpolation.	1.0 and 2.0 s	are to be ob	tained by line	ear
2. Va	lues of J between periods of 0.5	5 and 2.0 s a	re to be obta	ined by linea	r
int	erpolation.				
3. Co	upled wall is a wall system with erturning moment resisted by the	h coupling b 1e wall syste	eams where m is carried	at least 66% by axial tensi	of the base on and

Overturning Moment Reduction Factor, J_x

$$J_x = 1.0 \qquad \text{for} \quad h_x \ge 0.6h_n$$
$$J_x = J + (1 - J)\frac{h_x}{h_n} \quad \text{for} \quad h_x < 0.6h_n$$

i.e., $J_x = 1$ for top 40% of the building, then reduces linearly to $J_x = J$ at the base of the building.

<section-header><text><text><equation-block><text><text><text>

- The remaining 0.05*b* should take care of the amplification of the natural torsion
- The 0.1*b* accidental torsion can be applied dynamically by shifting the mass by ±0.05b if the structure is 'torsionally stiff' (B≤1.7), else it must be applied statically

Torsion Related Parameters

- e = eccentricity between CR and CM
- K_y = lateral stiffness in y direction
- $K_{\theta R}$ = torsional stiffness about CR

$$v_y = \sqrt{\frac{K_y}{m}}$$
 = uncoupled lateral frequency

$$\omega_{\theta} = \sqrt{\frac{\kappa_{\theta R}}{mr^2}}$$
 = uncoupled torsional frequency

$$\Omega_R = \frac{\omega_\theta}{\omega}$$
 = frequency ratio

Large Ω_R = torsionally stiff building

NBCC 2005 Provisions for Torsion

Use dynamic analysis for B > 1.7, where

B is the largest value of B_{x_i} where

 $B_x = \delta_{\text{max}} / \delta_{\text{ave}}$

- δ_{max} = maximum displacement at extreme points of storey *x*, produced by lateral forces applied at an eccentricity of +/- 0.1b_{nx}
- δ_{ave} = average of the displacements at extreme points of storey x produced by the lateral forces

Dynamic Analysis

Dynamic analysis required for the following class of buildings

- Regular structures that have $h \ge 60$ m, or have $T_a \ge 2$ s, and are located in areas in which $IF_aS_a(0.2) \ge 0.35$
- Irregular buildings that have h ≥ 20 m, or have $T_a \ge 0.5$ s, and are located in areas in which $IF_aS_a(0.2) \ge 0.35$
- All buildings that have rigid diaphragms and are torsionally sensitive, i.e. B ≥ 1.7

- Obtain the dynamic elastic base shear V_e
- Obtain dynamic design base shear $V_d = V_e I/R_d R_o$
- If $V_d < 0.8V_{static}$, take V_d to be no less than $0.8V_{static}$
- For irregular structures requiring dynamic analysis V_d should be taken no less than V_{static}

Dynamic Analysis Methods

- Modal response spectrum method <u>linear</u>, expected to be most common dynamic method used
- Numerical integration <u>linear</u> time history method
- Numerical integration <u>nonlinear</u> time history method

Response spectrum

- A response spectrum provides the maximum response of a SDOF system, for a given damping ratio and a range of periods, for a specific earthquake
- A design response spectrum is a smoothed spectrum used to calculate the expected seismic response of a structure
- A Uniform Hazard Spectrum (UHS) is a spectrum, for a given damping ratio, that has equal probability of occurring at all periods

Use of UHS in Modal Analysis

- Use of UHS in modal analysis will provide conservative results
- A number of calculations show the overestimation of response to be not more than 10%

Dynamic Analysis Methods

- Modal response spectrum method linear
- Numerical integration <u>linear</u> time history method
- Numerical integration <u>nonlinear</u> time history method
- Time history analysis requires ground motion records

Ground Motion Record Selection

- Ground motion records:
- Should be of appropriate magnitude and distance
- Some codes recommend at least 3 records with the maximum response being used, or the use of at least 7 records if the average response is used.
- Should be scaled to be compatible with the design spectrum

Ground motion records should be <u>compatible</u> with the design spectrum

Two methods of making ground motion records compatible with a spectrum

- Scaling of records until the spectrum of the record is close to the design spectrum in the period range of interest – generally the 1st and 2nd mode periods
- Modifying the records so that the spectrum of the modified record matches the design spectrum

- acceleration record so that the response spectrum matches the target spectrum
- There is controversy over the use of modified records but they have two great advantages:
 - 1. there is not as much scatter in the results, and
 - not as much care must be taken in selecting the original records

