UofC " This Is Now

Search Calendar:


Site Navigation
Welcome
Important Notice and Disclaimer
Graduate Students' Association (GSA)
Academic Schedule
Faculty of Graduate Studies General Information
Admissions
Academic Regulations
Handbook of Supervision and Examination
Program Abbreviations
Program Descriptions
Interdisciplinary Specializations
Courses of Instruction
How to Use
Courses of Instruction by Faculty
Course Descriptions
A
B
Biochemistry BCEM
Biology BIOL
Biomedical Engineering BMEN
Botany BOTA
Business and Environment BSEN
C
D
E
F
G
H
I
J, K
L
M
N, O
P
R
S
T
U
V
Fees and Expenses
Awards and Financial Assistance for Graduate Students
Student Services
About the University of Calgary
Graduate Studies Calendar 2011-2012 Courses of Instruction Course Descriptions B Biochemistry BCEM
Biochemistry BCEM

Instruction offered by members of the Department of Biological Sciences in the Faculty of Science.

Department Head - R.M.R. Barclay

Students interested in taking Biochemistry courses are urged to read the advice in the Faculty of Science Program section of this Calendar.

†Limited amounts of non-scheduled class time involvement will be required for these courses.

Biochemistry 543       Enzymology
The structure, mechanisms and biological interactions of enzymes. Binding, catalysis, rates and regulation will be discussed with regard to chemical principles of kinetics and reaction. The principles of enzyme action will be considered in the context of the biological role that enzymes play.
Course Hours:
H(3-0)
Prerequisite(s):
Biochemistry 393 or 443, and Chemistry 353 or 355.
back to top
Biochemistry 547       Signal Transduction and Regulation of Metabolism
Principles of signal transduction with examples from prokaryotes and eukaryotes. Discussion of protein covalent modifications, inositol lipid signaling, structure and function of protein kinases and protein phosphatases and their role in regulating various aspects of cell function. Emphasis on metabolic pathways, cell cycle control, checkpoints, DNA damage response and epigenetics.
Course Hours:
H(3-0)
Prerequisite(s):
Biochemistry 393 or 443.
back to top
Biochemistry 551       Structural Biology
Applications of modern methods to structural studies of proteins and nucleic acids by NMR and X-ray crystallography with a comparison of the structural information derived from the two methods. Crystallization of macromolecules. Experimental and theoretical foundations of X-ray and NMR structure determination, and ligand binding. Non-invasive NMR studies of metabolism, and magnetic resonance imaging.
Course Hours:
H(3-0)
Prerequisite(s):
One of Biochemistry 341 or 393, and one of Biochemistry 471 or Chemistry 371.
back to top
Biochemistry 555       Biomembranes
The material examines the structure and function of biological membranes with a strong emphasis on the role of membrane proteins. Topics may include: the physical properties of lipid bilayers, isolation and purification of membrane proteins, preparation of membrane mimetic systems, ion and solute movement across membranes (transport and ion channels), membrane protein folding, assembly and structure, and protein secretion and translocation systems.
Course Hours:
H(3-1T-0)
Prerequisite(s):
Biochemistry 393 or 443.
Notes:
Prior or concurrent completion of Biochemistry 431 and 471 is strongly recommended.
back to top
Biochemistry 561       Applied Biochemistry and Biotechnology
An introduction to the language, materials, methods, concepts and commercial applications of biotechnology with emphasis on methodology: biocatalysts, bioreactor designs and operation, scale-up, instrumentation, product recovery, animal and plant cell culture, process economics.
Course Hours:
H(2-3T)
Prerequisite(s):
Biochemistry 393.
Antirequisite(s):
Credit for both Biochemistry 561 and Biotechnology 561 will not be allowed.
Notes:
Prior completion of Cellular, Molecular and Microbial Biology 411 or Biochemistry 401 is strongly recommended.
back to top
Biochemistry 575       Lipids
Structure and function of lipids including phospholipids, sphingolipids, and steroids. Topics include properties of lipids and bilayers, lipid-lipid and lipid-protein interactions, technological applications, biosynthesis and regulation, lipids as second messengers, intracellular trafficking, and lipids in physiology and disease. Literature review and student seminars are significant components of this course.
Course Hours:
H(3-2T-0)
Prerequisite(s):
Biochemistry 393 or 443.
back to top
Biochemistry 577       Biomolecular Simulation
Introduction to simulation and computer modelling methods commonly used in biochemistry and biophysics, with a focus on physical models to understand the behaviour of biomolecules. Topics include simulation methods, dynamics of proteins, DNA, and lipids, calculation of binding constants, protein-drug interactions, properties of ion channels as well as a number of recent literature topics.
Course Hours:
H(3-4/2)
Prerequisite(s):
One of Biochemistry 341 or 393 and one of Biochemistry 471 or Chemistry 371.
back to top
Graduate Courses

Enrolment in any graduate course requires consent of the Department.

Only where appropriate to a student's program may graduate credit be received for courses numbered 500-599.

600-level courses are available with permission to undergraduate students in the final year of their programs.

See also the separate listing of graduate level Chemistry courses.

Biochemistry 641       Selected Topics in Biochemistry
Selected topics in Biochemistry such as those which appear annually in the serial publication Annual Review of Biochemistry.
Course Hours:
H(3-0)
MAY BE REPEATED FOR CREDIT
back to top
Biochemistry 731       Current Topics in Biochemistry
Contemporary methods of recombinant DNA technology will be combined with modern methods and strategies for expressing, secreting, purifying and characterizing proteins. This will include biophysical techniques, structural analysis and covalent modifications. Various modern 'omics' research approaches will also be discussed.
Course Hours:
H(3-0)
back to top