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Abstract 

 

A wireless location system including hardware and software for multipath is developed 

and evaluated using measured data from CDMA base stations. An AOA (angle-of-

arrival)-assisted and correlation slope-based TOA/TDOA method is proposed, which is a 

sub-optimal estimation for TOA/TDOA. 

 

The AOA estimation is based on a Forward/Backward Smooth Multiple Signals 

Classification algorithm through the use of an antenna array. A beamforming technique is 

applied to partially mitigate multipath and the initial correlation function rising part is 

used to further mitigate multipath based on the estimation of its slope and starting point. 

So the correlation peak can be located to obtain TOA / TDOA. 

 

The Cramer-Rao Lower Bounds of both the joint AOA / TOA method and the proposed 

method are also investigated. The experimental results agree with the theoretical analysis. 

The standard deviation of TDOA is 8 m in a real environment, where the signal to noise 

ratio at the correlation peak after 3 PN epochs integration is 30 dB (multipath strength 

may be also very strong at the correlation peak). It meets the FCC requirements of 50 to 

150 metres. The data was collected outdoor under various conditions with little or strong 

multipath effect. It shows that the proposed method works efficiently when Line-of-Sight 

(LOS) signals exist in the multipath environments and deteriorates when LOS signals do 

not exist.  
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Chapter One: Introduction 

 

1.1 Introduction 

 

Terrestrial-based location systems have been researched and successfully deployed for a 

few decades but with limitations in accuracy due to multipath and geometry, and 

complexity in infrastructure development. Code-division multiple access (CDMA) 

systems have partially overcome this deficiency, as its wide bandwidth is inherently able 

to resolve some of the multipath. CDMA systems assign each user a unique pseudonoise 

(PN) spreading code, which makes the identification of multipath with delay over one PN 

code chip epoch efficient by signal correlation processing because the correlation peak of 

multipath over one chip does not affect the correlation peak position of direct signal. In 

CDMA systems, one chip epoch is about 800 ns that equal to 240 metres in distance. 

However the intra-chip multipath, that is the reflected rays arriving within a chip period 

of the first ray, cannot be resolved by a correlation technique and is still a significant 

factor limiting location accuracy. The accuracy requirements of the enhanced 911(E-911) 

mandate proposed by the Federal Communications Commissions (FCC) were set to 

within 50 m for 67% of calls and within 150 m for 95% of calls for handset-based 

solutions (FCC 2001). In order to meet the accuracy requirements in handset-based 

solutions, the mitigation of the effects of intra-chip multipath must be considered. 

 

Many existing wireless location systems, such as the Global Positioning System (GPS) 

and Loran C, utilize radiolocation techniques. In these systems, the mobile station (MS) 
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estimates its own position. As an alternative, cellular networks can be used to provide the 

location service when GPS signals are very weak. An advantage of this approach is that 

the signals from the cellular base stations travel shorter distances than the GPS signals 

and the signal to noise ratio received by CDMA receivers is comparatively strong 

compared to GPS signals. Also the pseudo-code used in cellular networks is longer than 

that of the GPS, so it has better cross correlation characteristics. However the cellular 

networks are initially designed for communication and not for location application. For 

example, the time synchronization quality and the signal bandwidth requirement are 

different from GPS. So the terrestrial-based location systems have lower location 

accuracy than GPS, which can be at the centimetre level when used outdoor (e.g. 

Lachapelle & Cannon 2004). Even so, ground-based systems remain an alternative to 

provide location in the situations where the GPS signal availability and accuracy are still 

limited as indoors and in other signal shaded areas (ibid).  

 

There are two major methods to implement a cellular network-based location system. In 

the first approach, the mobile station (MS) receives signals from the base stations (BS) to 

calculate its own position, as in GPS. In the second approach, the BSs process the signals 

from the MS to locate the user. The second approach has the advantage of no 

modification requirement on users. There are several systems using cellular network-

based or GPS-assisted cellular network-based solution for location, such as gpsOne by 

Qualcomm, in which a cell phone user receives GPS signals and is connected to a 

network-based location server which calculates the user location, and Matrix technology 

by Cambridge Positioning Systems, which is based on GSM (Global System for Mobile 
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Communications) system, and Cellocate
TM

 by Cell-Loc Inc., which is based on AMPS 

(Advanced Mobile Phone Service). For research purpose, the user-based approach is 

more flexible. The approach investigated herein is based on the present CDMA IS-95 

system and uses a prototype CDMA receiver with an antenna array mounted on a vehicle 

partly developed by Shanmugam et al (2005) to receive IS-95 pilot signals from several 

base stations to calculate the position of the MS. 

 

1.2 Motivations and Limitations of Previous Research 

 

There are several methods for implementing radiolocation, such as signal strength (Figel 

et al. 1969), angle of arrival (AOA) (Sakagami et al. 1992), time of arrival (TOA) 

(Messier & Nielsen 1999) / time difference of arrival (TDOA) (Goud et al. 1991), or their 

combinations, such as AOA/TOA (Ma 2003). These methods work well under certain 

conditions of noise, interference, and multipath. Among those error sources, multipath is 

the most difficult problem to deal with and significantly affects the location accuracy in 

both GPS and cellular network-based location systems. Especially in urban areas, the 

location accuracy decreases because more multipath is present. The following 

characterizes the above location techniques and their drawbacks.   

 

Signal strength based location systems are adversely affected by the changes in the 

environment. The primary source of error is multipath fading. So this method is usually 

used to determine the cell by making use of pre-measured signal strength contours 

mapped out for each BS (Smith 1991). 
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The accuracy of the AOA method is limited by the physical size of the array, SNR and 

carrier frequency. And most of the algorithms are based on the assumption that the signal 

essentially emanates from a single point. This assumption is reasonable for radar and 

macro-cell (10 km of radius) applications, where the receiver is located relatively far 

from the source. However for the micro-cell (2 km radius) application, the source cannot 

be treated as a single source. It should be modeled as a spread source (Svantesson 2001). 

So the AOA method is impractical for micro-cell. A 1
º 

error can result in 17.5 m of 

positioning error when the distance between the BS and the MS is 1 km, i.e. )sin( errorr θ . 

So the AOA only method is usually used for lower-accuracy applications or in 

conjunction with other measurements. 

 

AOA systems are susceptible to angular multipath (Gans 1972). Thus, the TOA method 

outperforms the AOA method in urban areas where multipath exists significantly, and 

vice-versa in open areas. Even so, multipath is still a major error in TOA systems. The 

conventional correlation peak techniques used in the TOA method cannot detect intra-

chip multipath components. If the direct ray arrives with less power than the delayed 

rays, the correlation peak will be shifted due to the stronger multipath signal, which 

results in a bias in the tracking loop. Several methods have been developed to mitigate 

multipath, such as the Root-MUSIC algorithm (Klukas 1997, Dumont 1994), the least 

mean squares (LMS) technique (So & Ching 1993) and the recent multiple DLL 

architecture (Dovis et al 2004). However the mitigation of multipath is still an on-going 

area of research. 
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The TDOA method is a more practical way for location measurements than TOA because 

it does not require that the entire system be equipped with precisely synchronized clocks 

and it also does not require the timestamp labelled in the transmitting signal for the 

receiver to estimate the distance the signal has traveled. It only requires that the 

synchronized network and the unknown MS clock offset cancels out when differencing 

any two TOA measurements. However it still needs LOS (Line-Of-Sight) signals as in 

the techniques above to obtain a good performance. So the TDOA method is still affected 

by multipath. 

 

A joint AOA and TOA technique had been proposed, such as the Joint Angle and Delay 

Estimation (JADE) (Van der Veen et al 1997) and the TST-MUSIC (Wang et al 2001). 

Even though performance improvement is achieved by sacrificing simplicity, the 

inaccuracy of the estimated AOA and TOA and multipath still affects the results. 

 

Even though numerous methods have been proposed to deal with multipath (Tarighat et 

al 2003, Kim 2004, Falletti et al 2006), there is still not an efficient way to mitigate 

multipath due to its complicated characteristics. Multipath is a signal which reflects from 

various objects. If the signal is reflected from a smooth surface, the reflected signal is 

specular. If the signal is reflected by sharp edges, the reflected signal is scattered in all 

direction and called diffuse multipath. Multipath models can be found in (Ertel 1998, 

Jakes 1993, Rappaport 1991). 
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There is the case when no LOS signal exists. In this case, an option in principle is to use 

inertial navigation techniques to bridge gaps in location continuity. Inertial navigation 

systems (INS) use gyros and accelerometers to update the location by integrating rotation 

rates to obtain orientation changes and doubly integrating the accelerations to obtain 

velocity and position increments (Jekeli 2000) from the last previously known position. 

This technique can be used in cases when buildings obscure line of sight propagation 

until a new position can be calculated (Petovello 2003). However the cost of sufficiently 

accurate INS for such purpose is prohibitive. Another option is to extract the LOS from 

the NLOS with prior PDF by subtracting the known amount of NLOS delay from the 

total time delay (Qi 2003). 

 

1.3 Objectives and Novel Contributions 

 

The primary objective of the present research is to develop a practical signal processing 

method in user-based location systems to estimate the angle of arrival (AOA) and then 

the time of arrival (TOA) for the LOS signal under multipath environments. This is 

achieved through the use of multi-element receiver antennas which are implemented in 

hardware suitable for hand set or mounting on a small vehicle. 

 

The major original work is summarized as follows: 

1. Propose a practical scheme for AOA-assisted TOA estimation under multipath 

environment as shown in Figure 1.1  
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2. Apply Forward/Backward Smooth MUltiple SIgnal Classification (MUSIC) 

algorithm to a CDMA receiver with a limited capacity of resolvable angles of the 

incident rays for AOAs estimation in multiple multipath signal environments  

3. Derive mathematically the Cramer-Rao Lower Bounds (CRLB) for separate AOA 

and TOA estimators and joint AOA / TOA  estimator in single source signal 

environments 

4. Propose an initial correlation function rising slope-based method to determine the 

correlation peak of the LOS based on the conclusion through the investigation of 

AOA CRLB: decreasing  the number of source signals is more efficient than 

increasing the signal to noise ratio  

5. Derive the estimated variance for the AOA-assisted TOA estimator 

6. Contribute a hardware platform in FPGA design and implementation,  real data 

collection and verification 

7. Develop software to implement the proposed algorithm and verify it with actual 

measured field data.      
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Figure 1.1: Flow Chart of AOA-Assisted TOA Estimation for Multipath Mitigation 

 

The proposed AOA-assisted TOA method consists of five main steps.  

The first step is to find the coarse correlation peak position based on the traditional 

sliding correlation technique using FFT processing. The derived correlation peak is 

distorted by multipath. We cannot rely on that correlation peak to estimate the TOA. 

Step 1: Coarse TOA Estimation 

(Frequency Domain) 

Step 2: AOA Estimation 

(MUSIC Algorithm) 

RF Front End/  

FPGA 

Step 3: Multipath Mitigation  

(Adaptive Beamforming) 

Step4: TOA Estimation 

(Time Domain) 

Spread Spectrum CDMA Pilot Signal 
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However the sampled data from five correlation functions can be used for processing by 

MUSIC to estimate AOAs of the received signals as an initial estimated values to be 

applied to the TOA technique.  

The second step is to use a forward/backward smooth MUSIC algorithm to estimate 

AOAs of the signals contained in the sampled data. The data to be processed by MUSIC 

is sampled at the correlation functions in such a way that few multipath signals are 

contained and only in the initial leading edge of the correlation function, the sampled data 

contain fewer numbers of signals. Because the forward/backward smooth MUSIC 

algorithm can resolve three AOAs with five antenna elements (Pillai 1989), so the first 

and second step are an iterative process until the F/B smooth MUSIC works efficiently on 

the sampled data.  

The third step is to extract the LOS signal from the AOAs estimation derived in step 2 

through the adaptive beamforming technique based on the antenna array of five elements 

and augment the SNR of the LOS signal at the same time, which is described in Chapter 

5. The purpose of using AOA estimation is to help identifying LOS and NLOS (Non-

Line-Of-Sight) signals and then mitigating NLOS signals through array signal processing 

technique in order to reconstruct an initial correlation function rising slope with little 

distortion from multipath. The accuracy of AOA estimation and the number of detected 

signals obtained by the MUSIC algorithm will affect the improvement of LOS SNR, 

because the pattern construction of the beamformer is affected by the number of source 

signals and if the estimated AOA is out of the main lobe range of the beamformer, the 

desired signal cannot be enhanced.  
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The fourth step is to apply a correlation technique in the time domain to determine the 

correlation function rising slope and intercept based on the result from the third step. A 

linear model needs to be established for the unknown parameters estimation. And that 

estimator reaches the CRLB. 

The fifth step is to derive the starting point of the correlation function based on the 

estimated correlation function rising slope and intercept from the fourth step. By adding a 

modified offset of one chip period with 
'

CT  to the starting point, the LOS TOA can be 

estimated. Because the bottom width of the correlation function of the real data is 

different from the theoretical value of one chip CT  due to the bandwidth of the base band 

filter applied, it needs to modify that offset based on the real bandwidth of the received 

signal. At this time, only the noise will affect the TOA estimation accuracy which has 

however been improved by the summation of the signals from the five antennas. The 

assumption of the proposed method is that LOS exists. If the LOS does not exist, the 

earliest NLOS is assumed to be the LOS, which will result in error. In that case, one 

needs to consider NLOS with a prior probability density function (Qi 2003). 

 

The proposed method improves the TOA system under multipath environment through 

the AOA measurements. The AOA estimation is based on the forward/backward smooth 

MUSIC algorithm because it has a light computation burden compared with the 

Maximum Likelihood method, which searches the angles in multi-dimensions. The 

MUSIC algorithm can attain the CRLB for large numbers of samples, large numbers of 

array elements, and high SNRs. A detailed analysis of the MUSIC estimation errors is 
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given in Chapter 4. TOA estimation is based on the rising slope of correlation function, 

whose minimum estimation variance is two times of TOA CRLB. However the practical 

standard deviation of TDOA is 8 m in a real environment, where the SNR after 

despreading is 30 dB, which meets the FCC requirements.  

 

To implement the above objective, the following issues are addressed. 

• Investigation of the Forward and Backward Smoothing MUltiple SIgnal 

Classification (MUSIC) algorithm (Pillai 1989) for AOA estimation 

• Array signal processing to filter out the NLOS based on the estimated AOA 

bearing 

• Correlation technique for TOA estimation under multipath environments  

• CRLB analysis for AOA and TOA/TDOA estimation  

• Development and verification of practical algorithms 

• Practical implementation onto an FPGA, which is based on real time data 

collected by a CDMA receiver with five antenna elements. This will provide a 

means of conveniently obtaining ample experimental data for algorithm 

development and statistical validation as well as demonstrating the feasibility 

of the proposed algorithms. 

• Hardware assembly and testing for antenna array with five elements to collect 

real data  

• Analysis of the data for AOA and TOA/TDOA estimation 
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Subsequently, the following tasks are required: 

• Design and test a CDMA receiver hardware platform, including antenna array 

placement, to collect the propagated measurement data 

• Develop the software for the forward/backward smooth MUSIC algorithm to 

derive the AOAs of the received signals  

• Design an adaptive beamforming algorithm to filter out the NLOS signals 

based on the derived AOAs and analyze the effect of the antenna spacing on 

AOA estimation  

• Propose a correlation function slope detection algorithm for TOA estimation  

• Analyze the effect of multipath on TOA  

• Test the above under field conditions to verify the proposed approach 

• Comparison of CRLB based on the estimation theory, simulation and real data 

 

1.4 Thesis Outline 

 

There are seven chapters and six appendices in this dissertation. The subsequent chapters 

are as follow. 

 

Chapter 2 provides the background knowledge about CDMA-based location systems, 

including an introduction of the CDMA communication system and IS-95 standards, and 

several location techniques, such as the TOA, TDOA and AOA method, the effect of 

geometric dilution of precision (GDOP) and a brief literature review of the present 

wireless location techniques. 
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Chapter 3 explains the minimum variance unbiased estimator from the estimation point of 

view. It discusses the CRLB of AOA estimation and derives the CRLB of TOA 

estimation in CDMA IS-95 systems. The theoretical variance error analysis for AOA 

estimation is given based on the direction vector sensitivity and GDOP. The estimation 

error comparison between AOA CRLB and the MUSIC estimator is given in Chapter 4, 

and the comparison between TOA CRLB and the proposed TOA estimator is given in 

Chapter 5. The error analysis with the measurement data is given in Chapter 6. 

 

Chapter 4 describes the AOA estimation algorithm. The signal model for the algorithm is 

examined. The conventional MUSIC and F/B (forward/backward) Smoothing MUSIC 

algorithm is fully discussed from the vector space theory point of view, also including the 

limitations and the AOA estimation error evaluation for the F/B Smooth MUSIC 

estimator. The F/B Smoothing MUSIC AOA estimator is asymptotically optimal.   

 

In Chapter 5, the AOA-assisted multipath mitigation approach for TOA estimation is 

described. The array signal processing for the antenna array with five elements is 

discussed. The SNR improvement of the LOS after the array signal processing is shown. 

TOA estimation variance is derived based on the linearized vector parameter 

transformation of the correlation function initial rising slope and its intercept though a 

coordinate transform. 

 

Chapter 6 describes the hardware system used herein, its design and implementation, 

including the RF circuit and FPGA circuits. Related firmware development is 
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demonstrated and its specifications are also provided. The experiment results are also 

presented in this chapter, including the experiment setup, the calibration of the antenna 

channel phase. The receiver antenna array is put on the roof of Calgary Centre for 

Innovative Technology (CCIT) building at the University of Calgary, so the AOAs of the 

received signals with respect to the surrounding CDMA base stations are determined 

when the receiver antenna array is rotated in different directions. The experiment result 

based on the raw data is given for comparison with the simulation results. The effect of 

the estimated AOA on the TOA is also investigated. The TDOA measurement is given 

and its standard deviation is compared with the theoretical value. 

 

Chapter 7 concludes the thesis with a research summary including the advantages and the 

limitations of the proposed algorithm, and recommendations for further investigations. 

 

Finally, the appendices include background information of selected relevant topics, such 

as CDMA IS-95 signal processing, derivation of CRLB for AOA estimation, Allan 

variance measurements and the design of the second CDMA receiver.      
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Chapter Two: CDMA-based Location Systems 

 

2.1 CDMA Communication Systems 

 

In this chapter, some location techniques such as AOA, TOA and TDOA are described. 

Specifically CDMA IS-95 system is discussed because signals analysis and data 

measurement are all based on it. CDMA (Code Division Multiple Access), originally 

commercialized by Qualcomm (Qualcomm 2006), is characterized by its high spectral 

efficiency and good anti-jam performance. IS-95 CDMA is the second generation of 

cellular network technology with a typical data rate of 9.6 kbps per channel, which 

appeared in the 1990’s in North America. The following is a general description of the 

IS-95 CDMA system, which is fundamental to the geolocation system being developed 

and investigated in this thesis. 

 

In single carrier CDMA systems all users transmit in the same bandwidth simultaneously. 

To implement this approach, the concept of “spread spectrum systems'' was introduced. 

In this technique, the frequency spectrum of a data-signal is spread using a code 

uncorrelated with the data-signal. As a result the bandwidth is much higher than required 

for the data. The codes used for spreading have low cross-correlation values and are 

unique to every user. So a receiver that has knowledge about the code of the intended 

transmitter is capable of selecting the desired signal.  

Major advantages are:  
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• Low power spectral density. As the signal is spread over a large frequency-band, 

the Power Spectral Density becomes very small, causing minimal interference 

with other users using the same band.  

• Privacy due to unknown codes. The applied codes are usually unknown to a 

hostile user. This means that it is hardly possible to decode the message of 

another user.  

• Applying spread spectrum implies the reduction of multipath effects.  

• Good anti-jam performance. 

• Frequency diversity. 

• High spectral efficiency. 

 

2.1.1 Spread Spectrum 

Originally for military used to avoid jamming, spread spectrum modulation is now used 

in personal communication systems for its superior performance in interference 

environments and better capacity in wireless fading channels. Spread spectrum means 

that the data transmitted occupies a larger bandwidth than necessary to avoid 

interception. The frequency of a conventional wireless signal is kept constant, for 

example FM 103.1 MHz, so the bandwidth can be kept within certain limits, and the 

signal can be easily intercepted by someone who wants to retrieve the information. 

Bandwidth spreading is accomplished before the transmission through the use of a code 



17 

 

with high bit rate, which is independent of the transmitted data. The same code is used to 

demodulate the data at the receiving end. Figure 2.1 illustrates the spreading done on the 

data signal x(t) by the spreading signal c(t) resulting in the message signal to be 

transmitted, m(t). 

 

 

(b) Time Sequence 

 

Figure 2.1: (a) Direct-Sequence Spreading Diagram; (b) Time Sequence  

t 

t 

t 

X (t) 

C (t) 

m (t) 

TI 

TC 

Data Signal 

Spreading Signal 

(PN Code) 

Message Signal 

(Coded Signal) 

(a) Direct-Sequence Spreading Diagram 



18 

 

2.1.2 Pseudo-Noise Sequences 

In order to overcome narrow band interference, the spreading signal needs to behave like 

noise (Proakis 2001). Random binary sequences are such functions. They have the 

following important properties: 

• Balanced: they have almost equal number of 1's and 0's to avoid mean values 

(having an extra ’0’) 

• Periodic narrow peaks of auto-correlation function as shown in Figure 2.2 (a) 

Theoretically, the auto-correlation function of a random binary sequence is a triangular 

waveform as shown in Figure 2.2 (a), where TC is the duration of one chip and N is the 

period of the PN sequence. Practically due to finite bandwidth of the filter in the 

transmitter and receiver, the auto-correlation function becomes curvy.  

 

PN sequences are periodic sequences that have a noise like behaviour. They are generated 

using shift registers, modulo-2 adders (XOR gates) and feedback loops, as shown in 

Figure 2.3. 
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(a) Autocorrelation Function of m-Sequence 

 

(b) Autocorrelation Function of Pilot PN Sequence 

 

Figure 2.2: (a) Autocorrelation Function of m-Sequence; (b) Autocorrelation 
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The maximum length of a PN sequence is determined by the length of the register and the 

configuration of the feedback network. With N bits register, since the feedback network 

performs linear operations, if all the inputs (i.e. the content of the flip-flops) are zero, the 

output of the feedback network will also be zero. Therefore, the all zero combination will 

always give a zero output for all subsequent clock cycles, so it is not included in the 

sequences. Thus, the maximum length of any PN sequence is 2
N
-1 instead of 2

N
 and 

sequences of that length are called Maximum-Length Sequences or m-sequences. In IS-95 

systems, a zero is inserted in each sequence after the contiguous succession of fourteen 

zeros to generate the pilot PN sequence of length 2
15 

chips. It is based on the following 

characteristic polynomials as expressed in equation (2.1) for ‘I’ and ‘Q’ pilot PN 

sequences respectively and its autocorrelation function is shown in Figure 2.2 (b). The 

difference between m-sequence correlation function and pilot PN sequence correlation 

function is that the side lobe of the latter one is not constant. 

15 13 9 8 7 5

15 12 11 10 6 5 4 3

( ) 1

( ) 1

I

Q

P x x x x x x x

P x x x x x x x x x

= + + + + + +

= + + + + + + + +
                                  (2.1) 

 

Based on the above characteristic polynomials, the pilot PN sequences I(n), for example, 

can be generated by a 15-stage shift register as shown in Figure 2.3. The last register is 

numbered zero and the first one is numbered 14. Equation (2.1) tells us that, for ‘I’ 

sequences, registers 0, 5, 7, 8, 9, and 13 should be tapped and summed in a module 2 

adder. The output of the adder is then input to register 14.  
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Figure 2.3: IS-95 In-Phase Pilot PN Code Generator 

 

The pilot PN sequences I(n) and Q(n) are generated by the following recursive formulas: 
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              (2.2) 

where n equals the number of shift register 15. The initial state of  the ‘I’ and ‘Q’ pilot 

PN sequence is defined as the state in which the output of the pilot PN sequence 

generator is the first ‘1’ output following fourteen consecutive ‘0’ outputs. The rate of 

this PN sequence (called the chip rate) is 1.2288 Mcps. This results in the bandwidth of 

the spread signals to be about 1.25 MHz, which is about one-tenth of the total bandwidth 

allocated to one cellular service carrier. The sequences repeat themselves exactly 75 

times every 2 seconds. 

 

2.2 Wireless Location Techniques  

Basically there are three types of wireless location techniques: 

• Signal power strength method 

• Angle of Arrival method 

• Time of Arrival / Time Difference of Arrival method 
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In this thesis, the TOA method is assisted by the AOA method. The investigation of the 

signal processing is therefore focused on AOA and TOA methods based on the CDMA 

pilot signal. 

 

2.2.1 AOA Technique and Algorithm 

In the AOA method, the location of the desired target in two dimensions can be found by 

the intersection of two LOS bearings, each formed by a radial from a base station to the 

mobile target, as shown in Figure 2.4. It does not require the synchronized system time. 

Only two AOA measurements are needed. For 3D location, the desired target can be 

calculated from the intersection of a minimum of three surfaces of position if the base 

station geometry is sufficiently good. The accuracy of the AOA method is dependent on 

the distances between and relative geometry of the MS to be located and the antenna 

arrays at BSs. The further the MS is from the antenna arrays, the larger is the positioning 

uncertainty because βσrPerror ∝ , where r  is the distance and βσ  is the estimated 

AOA error.  
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Figure 2.4: AOA Technique 

 

Conventional direction finding technique using beamformer dates back to the Second 

World War for source location in radar and sonar. It is an application of Fourier-based 

spectral analysis to spatiotemporally sampled data. The advantage of using Discrete 

Fourier Transform (DFT) is that it can be implemented through Fast Fourier Transform 

(FFT) to speed up the computation. The drawback of the DFT is its low resolution. To 

provide high resolution, super-resolution methods, such as the MUltiple SIgnal 

Classification (MUSIC) (Schmidt 1979), the Estimation of Signal Parameters via 

Rotational Invariance Techniques (ESPRIT) (Roy & Kailath 1989) and the Maximum 

Likelihood (ML) (EI-Behery & MacPhie 1977) methods were developed. In this 

research, a modified MUSIC algorithm called the forward/backward smoothing MUSIC 

technique is applied because it can estimate AOA under multipath environments and can 

be implemented in actual hardware (Kim et al 2003). The ESPRIT method cannot give as 
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narrow peaks as MUSIC does to easily determine AOAs although it is less 

computationally intensive than MUSIC (Roy & Kailath 1989). The ML solution is 

computationally prohibitive, especially when multiple sources exist, although it is more 

robust and has a smaller estimation error as compared with MUSIC (Schmidt 1979). The 

following is a high level description of the MUSIC algorithm to estimate AOAs. A 

detailed explanation is given in Chapter 4.   

 

Conventional MUSIC Algorithm  

The eigen structure-based super-resolution technique MUSIC was proposed by Schmidt 

(1979). It is based on a Uniform Linear Array (ULA) to formulate the second order 

moment of the received signal, i.e. the spatial covariance matrix defined by 

)}()({ ttE HxxR = , where symbol ( H ) denotes the Hermitian transpose and )(tx  is the 

array output vector (see equations 4.1 to 4.4). Thus the first step of MUSIC is to 

decompose the covariance matrix into two parts of eigen signal subspace and eigen noise 

subspace. 

                                                                

The fundamental properties are:  

(1) The noise eigenvectors construct the noise subspace matrix.  

(2) The eigenvectors corresponding to the minimal eigenvalue are the noise vectors and 

orthogonal to the columns of the direction matrix, namely and to the K signal direction 

vectors. 
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Based on the above properties, the AOAs can be determined by searching through all 

possible steering vectors )(βa . When 0)( =N
T Va β , where NV  is noise subspace matrix  

defined in equation (4.15), the corresponding β is the AOA of an incident ray, because 

only the source signal is orthogonal to the noise (property (2)).  

 

For multiple incident signals, the AOAs can be estimated by locating the peaks of a 

“MUSIC spatial spectrum” as expressed in the following equation (Schmidt 1979): 

                             
)()(

1
)(

ββ
β

aVVa
H

NN
H

P = .                                            (2.3)                                                   

This conventional MUSIC algorithm can resolve the incident rays angles when the 

signals are uncorrelated. For uncorrelated signals, the source signal covariance matrix is 

nonsingular. By solving the array output matrix, the eigen vectors corresponding to the 

source signals can be obtained. So the AOAs of the source signals can be scanned out by 

the orthogonal noise vector. However when the source signals are correlated which is 

common in multipath environments, the source signal covariance matrix becomes 

singular and the noise vectors are no longer orthogonal to the source signal vectors. What 

really happens is that the signal vectors superimpose to one composite signal eigen vector 

and the resolved direction is for that composite signal. Therefore, with the conventional 

MUSIC algorithm, the AOAs of correlated source signals cannot be estimated by 

scanning the Vandermonde format steering vector )(βa  in equation (2.3), because the 

direction matrix of correlated signals is no longer in the form of a Vandermonde matrix 

as in the uncorrelated signals case. An example is given in Section 4.4.2. The M × K 
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direction matrix with the Vandermonde format has the following expression, as explained 

in detail in Section 4.2: 
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Spatial Smoothing Technique 

Several alternatives have been proposed to deal with the singular covariance matrix of the 

correlated signals, including the spatial smoothing technique first studied by Evan et al 

(1981) and subsequently by Pillai & Kwon (1989) and Shan et al (1985). After the spatial 

smoothing technique is applied, the source signal covariance matrix becomes non-

singular. The details are given in Section 4.5.1. Then the conventional MUSIC algorithm 

can still be used to estimate AOAs of correlated signals.  

 

However it comes with the sacrifice of reducing the number of resolvable source signals. 

Given M array elements, the conventional MUSIC can resolve M-1 signals. For the 

forward-only smoothing scheme, it can resolve only M/2 signals. Because the size of 

each subarray m in the forward-only smoothing scheme must be at least m = K +1 and the 

number of subarrays L = M – m + 1 must be greater than or equal to the number of 

signals K, i.e. M – m + 1 >= K (Shan 1985), the resolvable number of signals is K = M/2. 

The forward-only spatial smoothing scheme trades off half the effective aperture. For a 

linear array, the aperture is equal to the distance between the elements on either side of 
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the array.  In order to improve the resolving performance, the Forward/Backward 

Smoothing Technique was proposed. 

 

Forward/Backward Smoothing Technique 

Pillai & Kwon (1989) proved that the forward/backward smoothing scheme can resolve 

(2M/3) signals. In this forward/backward smoothing scheme, the number of subarrays is 

2L. Similar to the forward-only spatial smoothing scheme, it requires m = K +1 and 2*(M 

– m + 1) >= K. Therefore, the resolvable number of signals is K = (2M /3). The derivation 

of this requirement in terms of matrix algebra theory is given in Section 4.5.3. This 

improvement is not enough for multiple multipath signals environments. For example, in 

this research, the array elements M = 5 and only K = 3 signals can be resolved using the 

Forward/Backward Smoothing MUSIC. In order to overcome this limitation, the data to 

process is sampled at the initial rising part of the correlation function to make fewer 

number of signals included. This approach is applicable because multipath signals happen 

always later than LOS signals.   

 

The performance of the super-resolution method is related with signal to noise ratio 

(SNR), the number of antenna elements, the number of samples (Friedlander & Porat 

1989). The simulation and real data based experiment results are given in Chapter 7. 

 

2.2.2 TOA/TDOA Technique and Algorithm 

The measurements required in a TOA system are the absolute signal transmission times 

between MS and BSs that are equivalent to the MS-BS distances. The MS is located at 
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the intersection of several circles, of which the centres are the BSs, and the radii are the 

measured MS-BS distances. At least three TOA measurements are required to uniquely 

determine the 2-D position of an MS if the entire system is time for synchronized, as 

shown in Figure 2.5. The observation equations have the form 

22 )()( iBSMSiBSMSi YYXXTOA −+−=  

where i = 1, 2, 3. 

 

Figure 2.5: TOA Technique 

 

The measurements in a TDOA system are the relative signal transmission times which 

are equivalent to the distance differences. A TDOA measurement defines a hyperbola 

with two BSs as the foci. At least three hyperbolae are needed for the unique MS position 

calculation if the network is synchronized, as shown in Figure 2.6. The observation 

equations have the following form  

MS 
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2222 )()()()( jBSMSjBSMSiBSMSiBSMSji YYXXYYXXTDOA −+−−−+−=  

where i ≠ j, and i, j = 1, 2, 3 respectively. 

 

Figure 2.6: TDOA Technique 

 

The conventional correlation-based TOA/TDOA estimation is degraded by multipath due 

to its limited resolution. The resolution is the chip duration Tc. In an IS-95 CDMA 

system, the chip duration is about 800 ns, which equals 240 m. So the correlation-based 

TOA/TDOA only method is not suitable for location in multipath environments. 

However if multipath can be mitigated from the received signal, the correlation-based 

method can still be used for TOA/TDOA estimation. Based on this point, the proposed 

method, as described in Chapter 1, is to estimate AOAs of multipath and mitigate them, 

and apply the correlation technique to estimate the TOA/TDOA. So it is necessary to 

investigate the IS-95 CDMA PN pilot signal correlation process. 
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IS-95 Pilot Signal from the Transmitter    

The transmitted IS-95 pilot signal is formulated by the following expression: 

[ ])2sin()()2cos()(2)( tftPNtftPNAts cQcIT ππ +=                               (2.4) 

where 2A is the amplitude of the received signal, PNI(t) and PNQ(t) are  the “I” and “Q” 

pilot sequences respectively, and cf  is the carrier frequency. The PN sequences are 

generated based on the characteristic polynomials as expressed by equation (2.1). 

 

IS-95 Pilot Signal Impinging on the Receiver Antenna  

Due to K multipath and transmission propagations at the receiver with M antenna 

elements mounted on a vehicle, the signal impinging on the jth sensor can be expressed 

as 

[ ]∑
=

+−++−=
K

i

jcidQjcidIij itfttPNitfttPNAts

1

))(π2sin()())(π2cos()(2)( φφ (2.5)                                                                          

where )(ijφ  is the phase shift and 
idt  is the time delay of the ith multipath at sensor j. 

 

The Demodulation of the Input Signal 

For simplicity of signal analysis, only one source signal received by one antenna element 

is considered, as shown in Figure 2.7.  

 

 

                                             

        Figure 2.7: Demodulation of the IS-95 CDMA Signal 
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When the input signal goes through the down-mixers and low pass filters, the baseband 

signals for I and Q channels are obtained as follows:                                                                      

[ ]
[ ])π2cos()()π2sin()()(

)π2sin()()π2cos()()(

2

1

φφ

φφ

+−++−−=

+−++−=

tfttPNtfttPNAts

tfttPNtfttPNAts

edQedI

edQedI                       (2.6) 

where lce fff −=  is the carrier frequency difference between the incoming signal and 

the local signal, dt  is the time delay and φ  is the initial phase of the signal. Based on 

)(1 ts  and )(2 ts , the complex baseband signal )(3 ts is as follows: 

[ ] )]π2(exp[)()(

)()()( 213

φ+−−+−=

+=

tfjttPNjttPNA

tsjtsts

edQdI

                                 (2.7) 

 

For multipath cases, the complex expression of )(3 ts at the jth antenna element can be 

expressed as 

           
[ ]∑

=

+−−+−=
K

i

jeidQidIij itfjttPNjttPNAts

1

,3 ))](π2(exp[)()()( φ
        (2.8) 

 

The Local Signal Generation for the Correlation Process 

The local signal has the same form as that of the incoming signal, namely: 

                   [ ]
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Here ef  is replaced by the estimated carrier frequency difference ef̂ , and 

)]()([)(~ tPNjtPNts QIl += .   

 

Time Domain Correlation Processing 

In the time domain, the correlation between the received signal )(3 ts  and the local signal 

)(tsl  is written as follows: 
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(2.10) 

where T  is the integration time and eee fff ˆ−=∆ . Because the factor ]ˆπ2exp[ τfj e−  

does not affect the absolute value of )ˆ,( efτr , the received signal can be modified by 

multiplying )(3 ts  with ]ˆπ2exp[ tfj e  to yield:         

     [ ]
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            (2.11) 

Then the correlation function )ˆ,( efτr  in equation (2.10) can be simplified as follows: 
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When dtτ = , it becomes the expression of the correlation peak value. The effect of 

ef∆ can be seen as follows: 
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Frequency Domain Correlation Processing 

When the modified complex incoming signal ]ˆπ2exp[)()(~
33 tfjtsts e=  and the 

simplified local complex signal )]()([)(~ tPNjtPNts QIl +=  are sampled, the discrete 

signals )(~
3 ns  and )(~ nsl can be obtained (n = 0, 1, …, N -1). If the length of the local 

signal snapshot )(~ nsl  is a multiple number of IS-95 pilot PN sequence period, for 

example three periods of IS-95 pilot PN sequences, the correlation function between the 

received signal )(~
3 ns  and the local signal )(~ nsl  can be calculated by circular convolution 

correctly, which can also be implemented by FFT in the frequency domain as expressed 

below (Philips 2003): 
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where the symbols 1-DF  and *() represent the inverse discrete Fourier transform (DFT) 

and the complex conjugate respectively, m is the time delay, )(
~

3 kS   and )(
~

kSl  are the 

DFT of )(~
3 ns  and )(~ nsl  respectively. The proof of equation (2.14) is given in Appendix 

A.  

 

It should be noted that this DFT method cannot give a good resolution. However, the 

correlation terms are sufficient statistics, i.e. no loss of mutual information. So it is 

effective for rapid coarse acquisition. In this research, the DFT method is used in the first 

step to roughly locate the correlation peak, followed by the AOA estimation to mitigate 

multipath and finally by the correlation peaks detection for TOA/TDOA estimation with 

multipath mitigated.   

 

2.3 Dilution of Precision 

In terrestrial TOA systems, if three base stations are observed, then we can obtain three 

pseudorange measurements as follow. 
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where )3,2,1( =jjρ  is the pseudorange, and ),( uu yx  and ut  are unknown 2D user 

positions and the local clock offset, respectively. )3,2,1(),( =jyx jj  are the known jth 

base station’s position coordinates in two dimensions and c  is the speed of light. For 3D 

user positioning, one more pseudorange measurement is required and the coordinate of 

the unknown user positions becomes ),,( uuu zyx . 

 

After the linearization of equation (2.15) by using a truncated Taylor series around an 

approximate position location )ˆ,ˆ( uu yx  and time bias estimate ut̂ , the correction to that 

approximate value is solved as (Kaplan 2005):  
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where )3,2,1(ˆ)ˆ()ˆ(ˆ 22 =+−+−= jtcyyxx uujujjρ , 

            )3,2,1()ˆ()ˆ(ˆ 22 =−+−= jyyxxr ujujj , 
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Equation (2.16) can be simplified as follow.  

                     xHρ ∆=∆                                                                    (2.17) 

or                                            ρHx ∆=∆ −1                                                                  (2.18) 
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the expected ranges at the guess position, 
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H  is a 3 × 3 matrix of coefficients.  

When more than three base stations are used, H  is non-square and the least-squares of 

residuals principle is applied as: 

  ρHHHx ∆=∆ − TT 1)(                                                                   (2.19) 

The covariance matrix x∆C of x∆ is given by the following equation:                              
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The assumption of the above formula is that the measurements ux  and uy  are 

uncorrelated, the measurements of ρ∆  are also uncorrelated and have a diagonal 

][ T
E ρρ ∆∆  with identical elements 

2
rσ . 

The standard deviation of the final position estimate, pσ , and the standard deviation of 

the ranging estimate, rσ , have the following relationship:  

                             r
T

yxp trace σσσσ ))(( 122 −=+= HH                                    (2.21)                                            

By definition the Dilution of Precision (DOP) is as follow (Lachapelle 1998): 

                                        ))(( 1−= HHT
traceDOP .                                                  (2.22)                      
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One also has  

                                        rp DOPσσ = .                                                                     (2.23) 

It can be seen from the above formula that DOP affects the position accuracy. 

 

For a TDOA system, the DOP calculation is similar except for that the receiver time 

offset term included in the matrix H  disappears because the differencing of two 

measurements deletes that common term. 

 

For an AOA system, the DOP can still be calculated by using equation (2.22). However 

the matrix H  needs to be reconstructed in terms of angles and the standard deviation of 

the ranging estimate, rσ , is replaced by the standard deviation of the angle estimate, βσ  

(Dempster 2006), that is   

                                          βσσ DOPp = .                                                                (2.24) 

 

2.4 Literature Review of the Previous Research in CDMA-based Location Systems 

The research and development on mobile-communication networks-based location 

system has been active for the past few decades. Compared with GPS, cellular network-

based wireless location is deteriorated in accuracy because of detectability (Reed et al 

1998, Ma 2003), which is the ability of a sufficient number of different base stations to 

detect the user’s signal at an acceptable power level, and multipath, which can highly 

degrade both TOA and AOA estimations (Krizman et al 1997). Therefore, recent research 

has focused on solving theses problems.  
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Yousef et al (1999) introduced a power delay profile (PDP) to estimate time-delays and 

amplitudes for an IS-95 CDMA system. The PDP was built by generating a group of 

correlation functions with each separated by a fraction of a chip period. Then the earliest 

arriving ray is selected from the PDP by the earliest correlation peak. The corresponding 

time offset of the local PN code is the TOA estimate.  

 

Kalman filter-based methods were described by Thomas et al (2001). The proposed 

method was based on three stages: prefiltering of measurement data to remove NLOS 

data as much as possible and smooth sampling measurement noise; TDOA-based location 

estimation using standard weighted least-squares (WLS) solution or Chan’s method 

(Chan 1994); KF tracking to provide a continuous location estimation. 

 

In the paper by Tarighat et al (2003), a parametric method based on Maximum 

Likelihood for TOA estimates and a Least-Squares method for AOA estimates were 

discussed for a CDMA2000 system.  This method has a heavy computational load due to 

a multi-dimensional search for the parameters.    

 

Klukas (1997) proposed a Root-MUSIC-based algorithm to estimate the TOA for 

locating 911 caller in AMPS network which is an analog system deployed in 1984. 

  

Kim (2004) proposed a MUSIC-based algorithm for multipath timing estimation in 

CDMA system. It investigates how the number of antenna elements affects the 
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performance. It mainly benefits the capacity improvement under multipath fading 

channel. 

 

The recent published research by Falletti et al (2006) applied an array of sensors placed 

on a mobile vehicle to perform self-localization based on AOA-only method with beam-

space root MUSIC algorithm (Zoltowski et al 1993). This system focused on practical 

design and did not much explored multipath mitigation and it was still based on 

simulation results. 

 

Most of the proposed methods above were network-based schemes and verified from the 

simulation results. One paper from Wang et al (1994) proposed a method to improve the 

AOA estimation based on real data from a VHF system. Numerous papers were based on 

the AOA-only or the TOA-only method. There were also numerous papers estimating 

both AOA and TOA values from modified MUSIC algorithms since array signal contains 

both spatial and temporal information (Wang et al 2001, Van der Veen et al 1997, 

Zoltowski et al 1996).  

 

In this research, a practical method to estimate TOA assisted by AOA information under 

multipath environment is proposed. AOA values are estimated using an F/B smooth 

MUSIC algorithm and TOAs are estimated based on the correlation function’s rising part. 

The data for the algorithm verification is collected using an IS-95 CDMA receiver 

prototype developed by the PLAN Group (Shanmugam et al 2005).    
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2.5 Conclusions 

The characteristics of CDMA system and IS-95 CDMA were introduced in this chapter. 

The signal to be processed is the forward link pilot PN sequences from IS-95 CDMA 

base stations. The location techniques of AOA and TOA / TDOA method were discussed. 

For AOA estimation, the forward/backward smoothing MUSIC algorithm is used because 

it can resolve fully correlated signals, such as multipath signals and because it is 

computationally efficient compared with a multiple dimensional search Maximum 

Likelihood method. The array data processed in an AOA algorithm is sampled from the 

auto-correlation functions of PN sequences in an antenna array with five elements. That 

is how the forward/backward smoothing MUSIC algorithm is applied using the limited 

number of antenna elements. The detailed discussion of the forward/backward smoothing 

MUSIC algorithm is given in Chapter 4. For TOA / TDOA estimation, the limitations of 

TOA / TDOA-only method under multipath environments were described. An AOA-

assisted TOA / TDOA method was proposed, which is discussed in detail in Chapter 5. 

The correlation process of the IS-95 CDMA pilot signal is investigated because the data 

to be processed either by the AOA or TOA / TDOA algorithm are basically from 

correlation functions of IS-95 PN sequences. The location accuracy is affected by both 

the AOA/TOA / TDOA measurement accuracy and the DOP. So DOP calculations under 

different location techniques were derived. Finally a literature review was provided and 

the AOA-assisted TOA method proposed in this thesis was introduced. 
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Chapter Three: Theoretical Analysis of Signal Parameter Estimator 

 

3.1 Introduction 

 

Based on the discussion of location errors in Chapter 2, it is clear that the measurement 

accuracies of AOA and TOA are very important for position estimation. Therefore it is 

necessary to analyze the AOA and TOA estimation accuracy. Actually, AOA and TOA 

are the unknown parameters of the received signals and they can be estimated with some 

algorithms or estimators, for example, ML (Maximum Likelihood) estimator and MUSIC 

(MUltiple SIgnal Classification) estimator. The studies of estimator performance are 

within the scope of estimation theory. In this chapter, the analysis of the AOA and TOA 

estimation performance is based on the unbiased estimator and the Cramer-Rao Lower 

Bound (CRLB). The CRLB of the AOA estimation and the TOA estimation for a single 

IS-95 pilot signal are derived separately. The CRLB of the AOA estimation for multiple 

IS-95 pilot signals is based on Stoica & Nehorai (1989).However, the investigation is 

carried out further to find out that the AOA CRLB is affected by the angle of the incident 

rays and that different initial phase of the incident rays results in minimum and maximum 

CRLBs and that decreasing the number of source signals is more efficient than increasing 

the SNR which also becomes the impetus of the proposed correlation function rising 

slope-based method. Finally, the joint AOA and TOA estimation is investigated for 

comparison. The performances of specific MUSIC approaches for the AOA and AOA-

assisted TOA estimators are analyzed in Chapter 4 and Chapter 5, respectively. 
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3.2 The Parameterized PDF and Unbiased Estimators 

 

3.2.1 The Parameterized PDF 

Because the noise )(tn  at different antenna elements is random, so the received signals at 

different antenna elements )()()( ttt nsu +=    , where )(t    s  is source signal, are also 

random. The random data is described by its probability density function (PDF) with the 

unknown parameter θ . The PDF with the unknown parameter θ  is called the 

parameterized PDF, denoted by );( θxp . If there are N-point data set 

]}1[,],1[],0[{ −Nxxx L  at one antenna, which results in a data column vector 

[ ]T
Nxxx ]1[,],1[],0[ −= Lx , its parameterized PDF can be expressed as:  

)];1[,],1[],0[();( θθ −= Nxxxpp Lx                                (3.1) 

where a semicolon is used to denote the dependence on the unknown parameter θ  .  

For White Gaussian Noise (WGN) w[n], its dependence on the parameterized PDF on the 

unknown noise variance 2σ  is that the smaller noise variance 2σ  results in the narrower 

PDF )];[( 2σnwp .   

 

3.2.2 Unbiased Estimators 

Because of noise, the estimator can not always yield the true value of the unknown 

parameters. If the estimator can yield the true value θ  on the statistic average 
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(expectation), it means that the estimated parameter θ̂  is expected to be around θ  as 

formula:  

baE <<= θθθ )ˆ( ,                                               (3.2) 

where ),( ba denotes the range of possible values of θ . This kind of estimators is called 

unbiased estimators.  

If the estimated parameter θ̂  is a function of the data vector x as )(ˆ xg=θ , the 

mathematical definition of the unbiased estimator )(xg  can be expressed as: 

θθθθ allfordpgE ∫ == xxx );()()ˆ(                               (3.3) 

Example of An Unbiased Estimator for Noise Variance 

In practice, we need to estimate the unknown parameters without bias. In order to carry 

on the constant false alarm detection of the correlation peak of IS-95 pilot signal, we need 

to know the variance of the noise before despreading. Usually, the signal of input IS-95 

pilot signals at the antenna elements can be as small as -120 dBm, thus the signal 

component ][ns  in the measured data ][nx  can be ignored, which can be expressed as:  

1,,2,1][][][][ −=≈+= Nnnwnwnsnx L .                     (3.4) 

Assuming that the noise samples ]}1[,],1[],0[{ −Nwww L  are independently and 

identically distributed (iid) Gaussian noise with zero mean as N (0, 2σ ), the noise 

variance 2σ  can be estimated by: 
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It can be easily proven that the estimator implemented by equation (3.5) is unbiased due 

to zero mean of x .  It will be shown later on in equations (3.6) and (3.12) that it is 

actually optimal. 

 

In addition to the unbiasedness, we are also interested in the variance of the estimated 

parameter. The variance of the estimated parameter presents the degree of estimation 

error. The smaller the variance of the estimated parameter is, the larger the probability of 

obtaining the true value is. As x  is zero mean, 44 3)][( σ=nxE  (Kay 1998), the variance 

of 
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2σ can be derived as: 
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      (3.6) 

It shows that when ∞→N , 0)var( 2 =
∧

σ . Now the questions are: what is the minimum 

variance of the estimated parameter and can this estimator reach that minimum variance? 

To answer these questions, let us investigate the Cramer-Rao Lower Bound. 

 



45 

 

3.3  Cramer-Rao Lower Bound (CRLB) 

 

3.3.1 Cramer-Rao Lower Bound – for a Scalar Parameter 

If the PDF satisfies the “regularity” condition (Kay 1998) expressed as: 
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where the expectation is taken with respect to the parameterized PDF );( θxp , then the 

variance of any unbiased estimator θ̂  must satisfy the following CRLB: 
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The expectation in (3.8) is also taken with respect to the parameterized PDF );( θxp : 
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Now let us have a look at the Cramer-Rao Lower Bound for the above example of 

estimating the noise variance 2σ . The parameterized PDF 
2
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The second derivative of the logarithm of );( 2σxp  can be expressed as: 
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Then the Cramer-Rao Lower Bound of estimating the noise variance 2σ  is: 

Np
E

4

22

22

2 2

)(

);(ln

1
)var(

σ

σ

σ
σ =










∂

∂
−

≥
∧

x
.                              (3.12) 

So, the unbiased estimator expressed by equation (3.5) is optimal because its estimated 

variance given in equation (3.6) reaches the above Cramer-Rao Lower Bound. 

 

If the fundamental parameter is θ  and the desired parameter is )(θα g= , then the CRLB 

of the unbiased estimator is: 
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3.3.2 Cramer-Rao Lower Bound  for a Vector Parameter 

When there are p  parameters },,,{ 21 pθθθ L  to be estimated, the Cramer-Rao Lower 

Bound should be extended to a vector parameter T

p ],,,[ 21 θθθ L=θ . Assuming that the 

estimator θ̂  is unbiased, i.e., 
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and the “regularity” condition is satisfied (Kay 1998):  
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then the CRLB of the parameter iθ  is the ],[ ii  element of the inverse of the Fisher 

information matrix )(θJ , which can be mathematically expressed as: 

iii )]([)ˆvar( 1 θJ −≥θ                                                                 (3.16) 

where )(θJ  is a p × p matrix, which is defined as: 
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More generally, the covariance matrix of the unbiased estimator θ̂  satisfies: 

0θJC
θ

≥− − )(1
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When r  parameters to be estimated are the functions of p  fundamental parameters 

T

p ],,,[ 21 θθθ L=θ  as: 

 

)(

)(

)(

)(

],,,[

2

1

21

θg

θ

θ

θ

α

=



















=

=

r

T

r

g

g

g

M

L ααα

,                                                          (3.19)  

the CRLB of the unbiased estimator for α  is: 
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where αC ˆ  is the covariance matrix of the unbiased estimator α̂ ; and 
θ

θg

∂

∂ )(
  is an r × p 

Jacobian matrix defined as: 
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3.4 The Data Model for AOA and TOA Estimation 

In this thesis, the estimation of signal parameters is focused on AOA and TOA with a 

uniform linear antenna array showed in Figure 3.1. The antenna array consists of M 

identical elements and receives K narrow-band signals that arrive at the array from 

directions Kβββ ,,, 21 L .  

 

 

 

Figure 3.1: Uniform Linear Array 

If the first element is taken as a reference point and K signals )(,),(),( 21 tststs KL are 

complex, the output data of the array is an M × 1 complex vector )(tx . For the signal 
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where [ ]TτMfjτfj

k
cc ee

)1(22
,,,1)(

−−−= ππβ Ka is an M × 1 vector called the direction 

vector; the symbol (T ) denotes transpose; cf  is the carrier frequency of the incident 

signals; 
c

d
τ k )cos(* β

=  is the delay between two elements; d  is the antenna element 

space; )(tn  is the M × 1 complex noise vector which comes from the devices in the 

receiver. The noise at different antenna elements can be assumed to be iid zero-mean 

Gaussian stationary random process. Meanwhile, the noises are uncorrelated with the 

impinging signals. 

If d  is equal to q  times of the carrier wavelength λ , the direction vector can be written 

as: 
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                           (3.23) 

where kk ijqiji
k

eea
d

q
ϕβπ

λ
−− === cos2

; ; kk q βπϕ cos2=  which is called the 

phase delay with respect to the adjacent element. 

For K signal sources, the M × 1 array output vector can be expressed as: 
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where )](,),(),([ 21 Kβββ aaaA K=  is an M × K direction matrix with a Vandermonde-

structure (columns are not linearly related if Kβββ ,,, 21 L  are different) and 

T
K tstst )](,),([)( 1 K=s  is a K × 1 signal vector. The equation (3.24) is in continuous 

time. In the following Sections (3.5, 3.6 and 3.7) however, the discussions are all in 

discrete time.  

 

Assuming that the I and Q base band outputs of the antenna array are corrupted by iid 

Gaussian noise with zero mean and known variance 2/
2σ , N (0, 2/

2σ ), then the 

parameterized PDF );( θxp  with M real and M  imaginary random variables can be 

written as (Proakis 2001): 
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The investigation of the CRLB for AOA and TOA is based on the above equation. 

 

3.5 CRLB of AOA Estimation for a Single IS-95 Pilot Signal  

 

In this section, one sample of single dispread IS-95 pilot signal is used to estimate AOA 

CRLB. The derivation is contributed by the author. The case of multiple samples of 

multi-sources is discussed in Section 3.6. Assume that the received dispread signal )(tx  

is a complex signal with I and Q components. If )(tx  is sampled at one time point of t0 

and the source signal is )(ts     with the incident angle of β , then equation (3.24) can be 

simplified as: 
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where  

                                      β
λ

πϕ cos2
d

=   (referring to equation (3.23))                    (3.27) 
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The signal to noise ratio of the dispread signal can be delivered as 
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It shows that, from equation (3.28b), the signal to noise ratio of the dispread signal is the 

same as the one before despreading. 

Here γ  and φ  are the amplitude and the initial phase of the signal impinging on the first 

array element, respectively. 

For simplicity, if only one snapshot is taken, t0 can be ignored. Thus the array element 

outputs x can be expressed as: 
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Because x is a complex vector, the PDF );( θxp  is defined as the joint PDF of its real and 

imaginary components as:  

( )θxxθx );Im(),Re();( pp = .                                               (3.30)  

In this case, the unknown parameter vector θ  is as follows: 

















=

















=

φ

ϕ

θ

θ

θ γ

3

2

1

θ .                                                                   (3.31)  

Here γ  and φ  are the amplitude and the initial phase of the signal impinging on the first 

array element; ϕ  is the impinging signal phase delay between adjacent antenna elements.  
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Because β
λ

πϕ cos2
d

=  in equation (3.27), where β  is the incident angle to be 

estimated, the transformation of parameters is:  
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Assuming that the I and Q outputs of the correlators are corrupted by Gaussian noise with 

zero mean and known variance 2/
2σ , which are iid N (0, 2/

2σ ), the PDF );( θxp  with 

M real and M imaginary random variables is: 
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The logarithm of );( θxp  can be derived as: 
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Based on equation (3.17), one has the following equations:  
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The Fisher information matrix )(θJ  can be derived as: 
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From the above equation, it can be seen that the three unknown parameters [ ]φϕγ  have 

the following relationship in their estimation: 

(1) No matter whether the γ  is known or unknown, it will not affect the estimation 

accuracy of ϕ  and φ , i.e., 
unknownknown ==

=
γγ

)ˆvar()ˆvar( ϕϕ  and 

unknownknown ==
=

γγ
)ˆvar()ˆvar( φφ , because γ  is independent of both ϕ  and φ  

( 0)()( 1312 == θJθJ ). 

(2) However, ϕ  is not independent of φ  ( 0)()( 3223 ≠= θJθJ ). So they will affect each 

other during the estimation.   

In order to estimate the incident angle β  which is the function of ϕ , the Jacobian matrix 
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Because the incident angles from π to 2 π are resolved as the values which are symmetric 

to the antenna array from 0 to π. 

Based on equation (3.20), the error of the estimated parameter β̂  is:  
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Because 
θ

θg

∂

∂ )(
 is a diagonal matrix, it yields the following equation: 
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From equation (3.35), the following formula can be obtained: 
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where 
2

2γ2

σ
=SNR  is the signal to noise ratio at the sampled point, seeing (3.28.b). 

Therefore, the CRLB of the estimated parameter β̂  can be derived as: 
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The above result is similar to that of Kay (1998). One difference is that the signal 

considered here is a complex signal, whereas in Kay’s book, the signal is a real number. 

The other difference is that the data processed is sampled from the correlator output of 

the IS-95 pilot signal instead of a continuous wave signal. It can be seen from the above 

equation that (a) the higher SNR can result in a smaller error, which is evident; (b) a 

higher number of antenna elements M improves the estimation accuracy, because then it 

will have a higher number of samples for estimation. Intuitively more samples contain 

more information, so it is easier to estimate the unknown parameters; (c) the larger 

spacing d/λ can reduce the interference from element to element, which helps to reduce 

the estimation error; (d) the last term in equation (3.41) 
β2sin

1
 has an interesting effect 

on the estimation error. When β  is zero or nπ, it cannot be estimated. However, this 

problem can be resolved by using a circular or a rectangular antenna array. The 

theoretical and physical explanation are as follows. 

 

Let’s investigate the sensitivity of the direction vector. The direction vector of the signal 

with an incident angle of kβ  is the same as equation (3.22), which is expressed as: 
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[ ]TqMjqj
k

kk ee
βπβπβ cos)1(2cos2

,,,1)(
−−−= Ka .                                     (3.42)                        

Then the direction vector at the ith antenna element is: 

βπβ cos)1(2)( qij
k e

−−=a                                                               (3.43)                                                                                                                                                    

The derivative of the direction vector )(βka   is:  

βπβπβ cos)1(2' )sin()1(2)( qij
k eqij

−−−=a .                                                 (3.44) 

When o90=β , qijk )1(2)(' −= πβa . That means in the array boresight area, the 

direction vector is the most sensitive to the change of incident angle value of β . So it 

will result in a smaller estimation error for the angle estimation. When o0=β , 

0)(
' =βka . That means far from the array boresight area (see Figure 3.2), the direction 

vector is the least sensitive to the change of incident angle of β . So the estimation error 

of β  is larger. One solution to overcome this problem is proposed in Chapter 7 as future 

work. The present method is to block the signals from the endfires (see Figure 3.2) 

(Thompson 1995). 

 

Physically speaking, if five antenna elements together with one BS are considered to 

construct the Geometric Dilution of Precision (GDOP) as shown in Figure 3.2,  when the 

antenna array is parallel to the transmitting signal direction from BS2, i.e., o0=β , the 

GDOP is ∞ and  so the angle estimation error is also ∞; On the other hand, when the 

antenna array is perpendicular to the transmitting signal direction from BS1, i.e., o90=β , 

the GDOP is small and so the angle estimation error is also small. 
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Figure 3.2: Construction of GDOP by Antenna Array and BS 

 

Based on equation (3.41), Figure 3.3 is the CRLB for one source signal case under 

different SNR. It shows that when the incident signal is perpendicular to the antenna array 

( 090=β ), the CRLB is the smallest. For example, when SNR = 10 dB, M = 5 and 

7.0=
λ

d
 and 

if 090=β , 01)ˆvar( ≥β ;  

if 030=β , 02)ˆvar( ≥β ;  

if 05=β , 06.11)ˆvar( ≥β ;  

if 01=β , 058)ˆvar( ≥β . 

90º 

x1(t) x2(t) x3(t) x4(t) x5(t) 

BS1 

BS2 

Endfire 

Step 4: Boresight 
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Figure 3.3: CRLB of AOA for One Source Signal 

Based on the above analysis, we have the following useful conclusions about the 

unbiased AOA estimator’s estimation error: 

1) It is easiest to estimate AOA if 090=β  and impossible to estimate it if 00=β or 

0180=β . 

2) To decrease the variance of estimation error, it is helpful to increase SNR, the 

number of sensors, M and the ratio of antenna spacing to signal wavelength, 
λ

d
.   

 

3.6 CRLB of AOA Estimation for Multiple IS-95 Pilot Signals  

 

The CRLB of AOA estimators for multiple sources is discussed in this section. Similarly 

to Section 3.5, it is still assumed that the I and Q outputs of the correlators are corrupted 
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by Gaussian noise with zero mean and variance 2/2σ , which are identically distributed 

N (0, 2/2σ ) and independent from sensor to sensor. The variance 2σ  is taken as an 

unknown parameter. 

Meanwhile, assuming that there are N snapshots, which are sampled at ST , equation 

(3.24) can be expressed as:  

}21{

)]()()()(

 , N, ,t

tttn
ss nTtnTt

…=

+==
==

ns[Axx     
.                                       (3.45)                                        

Note that )(tx  and )(tn are 1×M  complex vectors and )(ts  is a 1×K  complex vector. 

M  and K  are the number of antenna elements and the number of source signals as 

defined in equation (3.24).  

In Section 3.5, the impinging signal s(t) is described with its unknown amplitude γ  and 

initial phase φ . Because the wanted parameter is the signal’s incident angle, instead of 

the signal’ amplitude and its initial phase, and for the convenience of derivation of 

multiple sources, the impinging signals are described with their real and imaginary 

components. Thus, the unknown parameter vector θ  can be taken as follows, which is a 

(1+KN+K) × 1 vector: 

[ ]TTT

I

T

R

T

I

T

R NN φssssθ ),(),(,),1(),1(,2
Lσ=                     (3.46) 

where 2σ  is the noise variance; )(tRs  and )(tIs  are the real and imaginary components 

of }21{)(  , N, ,tt …∈s  respectively: 
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Under the above assumptions and definitions, the CRLB for φφφφ ˆ  is obtained as follows 

(Stoica & Nehorai 1989) (The detailed proof is given in Appendix B): 
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where )(tS  is a diagonal matrix expressed as: 
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and D is a differential matrix expressed as: 
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For large N, S

N

t

H
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S ttE ssR =  is signal correlation matrix, 

and the CRLB can be simplified as:  
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Equation (3.52a) is with N samples for multiple source signal environments. For a single 

source environment using N samples, it can be derived as follows:  

Replace A, D, RS with )(ϕa , 
ϕ

ϕ
ϕ

d

d )(
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d = , RS = 4γ

2
, and equation (3.52a) can be 

simplified as: 
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Here N is the number of sampled data; M is the number of antenna elements; SNR is the 

signal to noise ratio at the sampled point. 
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Both equation (3.52b) and equation (3.40) are for a single source signal case. But 

equation (3.52b) is based on N samples, so it is 1/N of a single sample case in equation 

(3.40). When the number of samples is one, it is the same as equation (3.40).                                                                

 

In equation (3.52a), if the angle of arrival kβ  is the final estimated parameter, the CRLB 

of kβ̂  can be expressed as: 

k

kkCRLB
kCRLB

d
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λ
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β
2

2
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)ˆ(var





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                                            (3.53) 

If the signal vector )(ts  at the reference antenna is defined as: 

T
K

T
K

T
KK wheretjtjt ],,[,]γ,,γ[))](exp(γ,)),(exp(γ[)( 1111 φφφφ LLL === φφφφγs

 

it can be seen that )ˆ(var kCRLB β  depends on N , 
λ

d
, 2σ , γ , φφφφ  and T

K ],,[ 1 ββ L=β . A 

more practical analysis, which cannot be seen easily from equation (3.53), is provided in 

the case study of AOA CRLB below.  

 

In equation (3.52b) for the single source signal case, the CRLB of angle of arrival β  can 

be expressed as: 
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It is worth mentioning that, from the Fisher information matrix in equation (B.24), no 

matter if the noise variance is known or unknown, the AOA estimation β̂  is not affected 

by it because the noise variance 2σ  is not related to ϕ  which is a function of  β . So the 

following example is given based on that fact that the noise variance is known.   

Definition  

The correlation coefficient of a set of observations ( ){ }Niyx ii ,,1:, L=  for two signals 

x  and y  is defined by the following formula: 
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where x  and y  are the average values of x  and y  respectively. 

The properties of the complex correlation coefficients are: 
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• 0=xyρ , which is when signals are uncorrelated. 

• 10 ≤< xyρ , which is when signals are correlated. 

 The relationship between the correlation coefficient and the correlation matrix SR  in 

equation (3.52a) is that the correlation coefficient is the normalized correlation function 

for each element in correlation matrix when the signal’s expectation is zero, i.e. 

}{}{

),(

22
ji

s
ss

sEsE

jiR

ji
=ρ . So in the following case study, the correlation coefficient is 

used to discuss the CRLB described by equation (3.52a). 

 

Case Study of AOA CRLB 

Assuming that  the  number  of  signal sources is 3≤K ,  the number  of array  sensors  is  

M = 5, d/λ = 0.5 and the estimated LOS AOA is 1β̂ , the normalized CRLB 

)ˆ(var 1βCRLBN  is investigated. These three practical factors are considered and shown in 

Figure 3.4.  

1. The phase of the correlation coefficient xyρ  of two signals  

Different initial phase between two incident rays result in minimum and maximum 

boundaries of )ˆ(var 1βCRLB  as shown in Figure 3.5. Stoica & Nehorai (1989) only 

discussed the case when the phase of correlation coefficient xyρ  of two signals is zero, 
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so only one CRLB exists. The upper circled two lines are obtained from three source 

signals case and the lower circled two lines are obtained from two source signals case. 

The initial phases of incident rays also affect the singularity of the source signal matrix 

bf
S

/
R  when the forward/backward smooth MUSIC algorithm is applied, which is 

discussed in Section 4.5.3.  

2. The AOA difference || ji βββ −=∆                      

In this case, the LOS incident angle AOA1 is supposed to be at 90
º
; SNR and SIR are 14 

dB; the absolute value of correlation coefficient is yxxy ≠= 8.0|| ρ . It can be seen that 

as the β∆  increases, the )ˆ(var 1βCRLB  decreases. When AOA1 is from different angle, its 

CRLB also changes as shown in Figure 3.5. 

3. The number of source signals K  

When there are three source signals, )ˆ(var 1βCRLB  is much more than that of two source 

signals case within 020<∆β . Another simulation experiment is done, which is not 

displayed, to increase the SNR to 28 dB for the three source signals situation and it 

reaches the same )ˆ(var 1βCRLB  as that in the two source signals condition within 020<∆β . 

It means that to achieve a small )ˆ(var kCRLB β , decreasing the number of source signals K 

is more efficient than increasing SNR when the AOA difference β∆  is small. This can be 

controlled through sampling the data at the correlation rising part where few multipath 

signals are added to LOS, which is implemented in this research described in Chapter 5.  
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Figure 3.4:  Geometry of Incident Signals 

 

From the simulation results shown in Figure 3.5, for ∆β = 25º, the maximum CRLB 

values are obtained when the phase difference between LOS and NLOS1 is 164º and the 

phase difference between LOS and NLOS2 is 108º; the minimum CRLB values are 

obtained when the phase difference between LOS and NLOS1 is 29º and the phase 

difference between LOS and NLOS2 is 63º. No general formula was derived here to 

describe the phase difference condition for maximum or the minimum CRLB to hold 

because it is difficult to formulate. However through the simulation, it shows that the 

maximum or the minimum CRLB values do exist when the phase difference between two 

incident rays has a certain relationship.   

 

Figure 3.5 also gives us a guide on how to apply MUSIC efficiently. It can be seen that 

the CRLB for three source signals are higher than that for two source signals. So even 

though MUSIC can resolve a certain number of incident signals only if the number of 

antenna array is large enough, the best choice is to limit the number of incident 

signals, which is presented in the proposed algorithm through using the data sampled at 

the correlation initial part. Another phenomena worth mentioning is that different LOS 

LOS AOA1 
NLOS1 NLOS2 

∆β 
∆β 
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AOA will result in different CRLB values. For example, if LOS AOA1 = 70º, the CRLB 

increases, as shown in Figure 3.5 (b). 

 

(a) CRLB of AOA for Multiple Sources Signals, LOS AOA = 90º 

 

(b) CRLB of AOA for Multiple Sources Signals, LOS AOA = 70º 

 

Figure 3.5: (a) CRLB of AOA for Multiple Sources Signals, LOS AOA = 90º;  

(b) CRLB of AOA for Multiple Sources Signals, LOS AOA = 70º 
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3.7 CRLB of TOA Estimation for IS-95 Pilot Signal 

 

The TOA of the LOS component of the received signal is estimated based on correlation 

functions, independently from the AOA estimation process, i.e., after the AOA is 

estimated in this approach, the AOA is a known parameter for the TOA estimation. 

Compared with the maximum likelihood–based optimal joint AOA/TOA estimation, this 

method is computationally more efficient to implement and sub-optimal when signal to 

noise ratio is large. When the AOAs are estimated, the LOS is strengthened and the 

multipath is mitigated through the beamformer. The performance of the beamformer is 

discussed in Section 5.4. After beamforming, the weak multipath signals are not 

considered. The following derivation of the CRLB for TOA is based on one source signal 

because after the correlation function has been compensated by the estimated AOA, the 

multipath signals can be treated as noise.  

 

Assuming that the size of the linear antenna array is much less than CcT  (c is the velocity 

of light and CT  is the PN code chip period, so CcT  = 3×10
8
×800×10

-9 
= 240 m; whereas 

the size of antenna array with 5 elements = 30 cm ), the relative time delays of the 

baseband signals at different elements of the antenna array can be ignored. It means that 

all time delays of PN code at different elements are the same. Thus the equation (3.22) 

can be modified as: 
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Here γ , τ and φ  are the amplitude, time delay and initial phase of the IS-95 pilot signal 

before despreading, respectively. For the IS-95 pilot signal, )( τ−tPN can be defined as 

(referring to Chapter 2 for the IS-95 pilot signal correlation process):   

)()()( τττ −+−=− tjPNtPNtPN QI  

Now the unknown parameter vector θ  is: 

[ ]T
τφσ ,,γ,2=θ  

where 2σ  is considered as the unknown noise variance; γ , τ and φ  are the amplitude, 

time delay and initial phase of the IS-95 pilot signal, respectively.  

 

The above assumes that the I and Q outputs of the demodulators are corrupted by iid 

Gaussian noises with zero mean and variance 2/2σ , N (0, 2/2σ ). However it will be 

seen later on from the Fisher information matrix that the noise variance is not related with 

the other three parameters γ , φ  and τ , which means that the noise variance can be 

treated as a known parameter for the TOA estimation or can be estimated independently.  
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If the number of snapshots is N, the parameterized PDF of the sampling data x(t) can be 

written as: 
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In the above equation, t is the discrete time and τ  is the time delay normalized by ST : 

STT /0 <≤ τ  

T  is the period of PN sequence and ST  is the sampling period.  

The logarithm of ));(,),2(),1(( θxxx Np L  can be derived as: 
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(3.57) 

Based on equation (3.57), one can obtain the following equations: 
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Based on the above partial differentials and equations B.9 -10, the elements in the Fisher 

Information matrix can be derived as: 
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The Fisher information matrix is expressed as: 
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From the above matrix, it can be seen that the TOA estimation is only affected by the IS-

95 signal initial phase φ , not by both the noise variance 2σ  and signal amplitude γ  

because the delay τ  is not correlated with both 2σ  and γ . 

 

 Then the CRLB of the time delay or TOA for CDMA signal is given by: 
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Thus CRLB of TOA for an IS-95 pilot signal is as follows: 
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  (3.64) 

where 
2

2γ

σ
=SNR  is the signal to noise ratio before despreading; 152=K  is the length of 

IS-95 PN sequences; M  is the array elements and CT  is the chip period . It can be seen 

that the shorter the chip period is, the lower the CRLB is; the longer the length of the PN 

sequence is, the lower the CRLB is; the higher the SNR is, the lower the CRLB is; The 

higher the number of array elements is, the lower the CRLB is.  

 

3.8 CRLB of Joint AOA and TOA Estimation for IS-95 Pilot Signal 

 

For the joint AOA and TOA estimation, the parameter vector θ  is defined as: 

[ ]T
ϕτφσ ,,,γ,2=θ                                                (3.65) 
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where 2σ  is considered an unknown noise variance; γ , τ and φ  are the amplitude, time 

delay and initial phase of IS-95 pilot signal respectively; ϕ  is the impinging signal’s 

phase delay between adjacent antenna elements.  

Compared with the unknown parameter vector θ  in Section 3.7 for the case of TOA 

estimation, here the added parameter is β
λ

πϕ cos2
d

= , which  is defined in equations 

(3.23) and (3.27). 

                              

The direction vector )(βa  can be expressed as: 

[ ]TMjj
cee

ϕϕϕβ )1(
,,,1)()(

−−−== Kaa                           (3.66) 

Similar to equation (3.51), the differential vector )(ϕd  is defined as: 

ϕ

ϕ
ϕ

d

d )(
)(

a
d =                                                         (3.67) 

Just as in the definition of log-likelihood L  in equation (3.57), one can derive the 

following equation: 

∑
=

=
∂

∂ N

t

H
tst

L

1
2

)]()()(Re[
2

ϕ
σϕ

dn                                  (3.68) 

Note that the elements 4,,2,1,)]([ L=jijiθJ  in the Fisher Information matrix are the 

same as those derived in Section 3.7. Only the new added parameter ϕ  needs to be 

considered. The additional elements in the Fisher Information matrix can be derived as:       
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Finally the Fisher information matrix for joint AOA and TOA estimation is obtained as: 
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Based on the above equation, the CRLB of joint AOA and TOA estimation is formed as 

follows:  

1. The CRLB of AOA-joint TOA (τ ) estimation for CDMA IS-95 pilot signal is: 
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  (3.71) 

where CT  is the PN chip period; M is the number of antenna array; K = 2
15

 is the length 

of PN sequence and SNR is the signal to noise ratio before despreading. 
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Comparing equation (3.71) with equation (3.64), it can be seen that the CRLB of the 

AOA-joint TOA estimator for the CDMA IS-95 pilot signal is the same as that of the 

independent TOA estimator. This can also be seen from equation (3.69) where 

0)]([ 45 →θJ  because 0)(
)(

0
→∫ dttPN

td

tdPNT

Q
I  (see Appendix F), which means that 

the added unknown angle parameter ϕ  in equation (5.32) affects little the TOA 

estimation.  

 

2. The CRLB of TOA-joint AOA ( β
λ

πϕ cos2
d

= ) estimation for the CDMA IS-95 pilot 

signal is: 
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           (3.72) 

Here the SNR  is the signal to noise ratio at the sampled point; N is the number of 

samples; and M is the number of antenna array elements. 
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Comparing equation (3.72) with (3.52b) shows that the CRLB of the TOA-joint AOA 

estimator for CDMA IS-95 pilot signal is larger than that of the independent AOA 

estimator because the latter estimator has fewer unknown parameters. However, when the 

number of antenna array M is large, their CRLBs are close.  

 

3.9 Conclusions  

 

Parameterized PDF and unbiased estimators were introduced followed by an example. 

The general estimation theory about CRLB was also described. Based on the linear 

uniform array, a data model and the corresponding parameterized PDF for AOA and 

TOA estimation were given. The CRLB of AOA estimation under one source signal was 

studied. From this simple case, we can see that the signal from the broadside of the 

antenna array has a smaller estimation error than that from the endfires. The larger the 

antenna spacing, the larger the number of antenna elements, and the higher SNR results in 

a smaller estimation error. The CRLB of AOA estimation under multiple source signals 

was also investigated. A simulation experiment result was given to explain the error 

factors from several more practical aspects. It shows that first, the phase of the correlation 

coefficient has a great impact on the value of CRLB; secondly, the larger AOA difference 

between two incident rays results in smaller CRLB values; thirdly, the number of source 

signals has a larger effect on the estimation accuracy than the SNR when the AOA 

difference between two incident rays is small. The CRLB of TOA for the IS-95 PN pilot 

signal was derived in terms of SNR, which is easier to be applied in practice. Finally, the 
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CRLBs of joint TOA and AOA estimation were derived and show a little bit worse 

performance than that of an independent AOA estimator, whereas for TOA estimation, 

both are the same. The CRLBs of joint and independent AOA /TOA estimations for 

CDMA IS-95 pilot signals are summarized as Table 3.1. 

 

Table 3:1: CRLB Comparison of Joint and Independent AOA/TOA Estimation   

 

 CRLBs of Joint AOA / TOA 

Estimation 

CRLBs of AOA-assisted TOA Estimation  

from equation (3.52b) for single source signal: 
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Chapter Four: AOA Estimation with the Forward/Backward Spatial Smoothing 

MUSIC Algorithm 

 

4.1 Introduction 

 

In Chapter 3, the CRLBs of the AOA-joint TOA method and AOA-assisted TOA method 

were derived. In this chapter, a specific estimator called the MUSIC (MUltiple SIgnal 

Classification) algorithm for AOA estimation is fully investigated followed by an error 

analysis. The variance expression for MUSIC AOA estimation is taken from Stoica & 

Nehorai (1989). Based on that, as in the case of the AOA CRLB, it is found that 

minimum and maximum variances exist and that the variance under more source signal 

environments is larger than that under fewer source signal environments, which is 

fundamental in this thesis. It will be seen that the unbiased MUSIC AOA estimator is 

suboptimal when the angle difference between two incident rays is large.  

 

The original or conventional MUSIC algorithm was proposed by Schmidt (1979) to 

estimate the parameters of multiple uncorrelated or at most partially correlated signals 

arriving at an antenna array. It can provide asymptotically unbiased estimates of the 

following parameters (ibid):  

1) The number of signals; 

2) The angle of arrival; 

3) The frequency. 
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Because the estimate resolution of the MUSIC algorithm exceeds the Rayleigh resolution 

criterion, it is classified as a high-resolution or super-resolution algorithm. The criteria 

were developed by Lord Rayleigh in 1879. It states that two arrivals are considered 

resolved when the first minimum angular spectrum value of one signal coincides with the 

maximum angular spectrum value of the other signal, as shown in Figure 4.1.                                               

 

Figure 4.1: Rayleigh Resolution Criteria 

Basically in the MUSIC algorithm, the measured data from M elements in the antenna 

array can be visualized as a vector in M dimensional space. It is fundamentally based on 

the eigen decomposition of the correlation matrix of the measured data. Assuming that 

there are K signals impinging on M elements (M >K) in the antenna array (otherwise, K 

signals cannot be resolved by an antenna array with M elements) and the correlation 

matrix of the signals is non-singular, M eigenvalues and the corresponding eigenvectors 

of the correlation matrix of the measured data can be obtained. These eigenvalues and 

eigenvectors can be grouped into two sets: 

1. M–K smallest eigenvalues and the corresponding eigenvectors that construct the 

noise subspace;  



87 

 

2. K largest eigenvalues and the corresponding eigenvectors that construct the 

signal subspace. 

As a result, an M dimensional space can be spanned by M eigenvectors and partitioned 

into the above two subspaces, the noise and the signal subspace. Because the noise 

vectors and the signal vectors are orthogonal (Section 2.2.1), the inner product of the 

signal eigenvectors with the noise eigenvectors should be zero. Based on the above eigen 

decomposition technique and the partition of the orthogonal subspaces, the parameters of 

multiple signals can be estimated.  

 

There are several MUSIC algorithms for different situations. Among them, the 

forward/backward MUSIC algorithm is suitable for AOA estimation under multipath 

environments (Pillai & Kwon 1989). In order to understand the application of the 

forward/backward MUSIC algorithm on the AOA estimation of IS-95 pilot signals, the 

fundamental characteristics of the algorithm are discussed in detail in the following 

sections. 

 

4.2 Data Model for AOA Estimation 

 

The data is received from a uniform linear array with M identical elements, as shown in 

Figure 3.1. Here is a brief review of Section 3.4. The K signals )(,),(),( 21 tststs KL are 
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complex, the output data from the array is an M × 1 complex vector )(tx . For a single 

signal source )(tsk , the array output vector )(tx  can be expressed as  
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where [ ]TτMfjτfj

k
cc ee

)1(22
,,,1)(

−−−= ππβ Ka is an M × 1 vector called the direction 

vector; the symbol (T ) denotes transpose; cf  is the carrier frequency of the incident 

signals; 
c

d
τ k )cos(* β

=  is the delay between two elements; d  is the antenna element 

space; and )(tn  is the M × 1 complex noise vector. The noise at different antenna 

elements can be assumed to be zero-mean Gaussian stationary random processes and 

independent from element to element. Meanwhile, the noise is uncorrelated with the 

impinging signals. 

 

If d  equals to q  times the carrier wavelength λ , the direction vector can be written as: 
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where kk ijqiji
kkk eea

d
qq

ϕβπ

λ
βπϕ −− ==== cos2

;;cos2 . 

For K source signals, the M × 1 array output vector can be expressed as 
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where )](,),(),([ 21 Kβββ aaaA K=  is the direction matrix with Vandermonde-structure 

(linearly independent columns if Kβββ ,,, 21 L  are different) and T

K tstst )](,),([)( 1 K=s  

is a K × 1 source signal vector. 

In the above assumption, the noise at the antenna elements is mutually uncorrelated and 

also uncorrelated with the signals. Thus the M × M auto-correlation matrix of the array 

output vector )(tx , which plays an important role in the MUSIC algorithm, can now be 

expressed as: 

M
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ttEttEttEttE

ttE
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xxR

2

)}()({)}()({)}()({)}()({

)}()({

σ+=

+++=

=

    (4.4) 

where the symbol ( H ) denotes the Hermitian transpose; )}()({ ttE
H

S ssR =  denotes the 

K × K auto-correlation matrix for source signals; 2σ  is the variance of the additive noise; 

and MI  is the identity matrix.  
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Notice that if 02 ≠σ , R is positive definite, which means that all of its eigenvalues are 

greater than zero; if 02 =σ , R is positive semidefinite, which means that its eigenvalues  

are not less than zero  In addition, SR  can be classified as three cases (Shan 1985):  

1. Diagonal, non-singular and positive definite when the signals are uncorrelated; 

2. Non-diagonal, non-singular and positive definite when some signals are partially 

correlated; 

3. Non-diagonal, singular and nonnegative when some signals are correlated, which 

means that some eigenvalues are equal to zero. 

In practice, N data samples from different snapshots can be used to approximate the 

covariance matrix of the array output as follows: 

         ∑
=

=
N

i

i

H

i tt
N 1

)()(
1ˆ xxR                                                            (4.5) 

The above approximation by time averaging is close to the expectation of the measured 

signal in equation (4.4) when N is large. If N is small, the accuracy of the AOA estimates 

will be degraded. If the vehicle is moving, when N is large, the information contained in 

the data changes as the time goes by. Then the data needs to be modified. 

 

4.3 Eigen Analysis of Array Data Space 

4.3.1  Array Signal Space 

Before discussing the eigenanalysis of array data space, it is necessary to figure out the 

array data space and the relationship between array signal vector )(tx  and direction 
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matrix A or direction vector )( kβa . The expression of the array signal vector )(tx  is 

rewritten as:  
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where [ ])()()( 21 Kβββ aaaA L=  has a Vandermonde structure; the vector )(tu  

represents the noise free array signal space. It can be seen that )(tu  is the linear 

combination of the direction vectors )( iβa and the coefficients of the combination are the 

source signals )(tis . The concepts of the array signal space and the corresponding 

vectors )(tu  are illustrated geometrically in Figure 4.2(a). There are two source signals 

impinging on an antenna array with three elements, i.e., the array signal space is two 

dimensions because it is constructed by the combination of two signal vectors )( 1βa  and 

)( 2βa . The correlation matrix R of )(tx  can be written as: 
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                                                        (4.7) 

The constant complex matrix A  reflects the relative locations between the antenna array 

and the signal sources. The K direction vectors in A  are visualized as a K dimensional 
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signal subspace within the array signal space and the source signal vector )(t    s  lies in the 

subspace.  

 

 

 

 

 

                                                          

 

 

 

 

 

 

 

 

Figure 4.2: (a) Space for Two Signals and a Three-Element Antenna Array; (b) 

Eigen Space for Two Signals and a Three-Element Antenna Array (Schmidt 1979) 
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(b) Eigen Space for Two Signals and a Three-Element Antenna Array 
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4.3.2 Eigen Analysis of Array Signal Space with Spatially Uncorrelated or Partially 

Correlated Signals 

Without loss of generalization, it can be assumed that the eigenvalues and the 

corresponding M×1 eigenvectors of R can be expressed as: 

          
},,,{

)0(},,,{

21

2121

M

MM λλλλλλ

γγγ L

LL >≥≥≥
.                                      (4.8) 

The corresponding eigenvectors have the property of Hermitian matrices as follows: 
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H
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                                             (4.9) 

That is all eigenvectors of any correlation matrix are always orthogonal. When the 

signals impinging on the antenna array are uncorrelated or partially correlated, 

)}()({ ttE
H

S ssR =  is nonsingular with Krank S =)(R . After SR  is multiplied by the 

Vandermonde-structure direction matrix KM×A , the matrix H
Su ARAR =  has a rank 

of:  

                         Krank
H

S =)( ARA                                                          (4.10) 

Based on Equation (4.7), (4.8) and (4.9), the following results can be obtained: 
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which results in the following equations: 





++=

=
==

++==

MKKi

Kj
or

or

MKKi

j
H
iij

H

i
H

,,2,1

,,2,1
0)(0)(

,,2,10

L

L

L

ββ aγγa

γA

                      (4.13)         

Derivation of Equation (4.13): 

By multiplying HA  to equation (4.12) and continuously multiplying 1)( −AAH  to the 

equation, one can get the following expression: 
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By multiplying S
1−

R  to the above equation, one can obtain equation (4.13). 

 

Equations (4.11) - (4.13) state the following important facts: 

1. There are M-K minimal eigenvalues that are equal to 2σ ; 

2. All direction vectors )( jβa  ( Kj ,,2,1 L= ) in the Vandermonde-structure 

direction matrix A are orthogonal to M-K noise eigenvectors corresponding to 

the M-K minimal eigenvalues. 
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As a result, the M dimensional array data space can be decomposed into two subspaces: 

1. The noise subspace constructed by M–K noise eigenvectors;  

2. The signal subspace constructed by K signal eigenvectors. 

The concept of eigen analysis-based signal space is explained in Figure 4.2 (b). There are 

also two signals impinging on an antenna array with three elements. The two dimensional 

signal subspace can be visualized as a plane spanned by the signal eigenvectors, 1γ  and 

2γ  ( 21 γγ ⊥ ). The noise eigenvector 3γ  is orthogonal to the signal eigenvectors.  

 

4.4 AOA Estimation with the Conventional MUSIC Algorithm for Spatially 

Uncorrelated or Partially Correlated Signals  

 

4.4.1 Conventional MUSIC Algorithm 

 

As discussed in section 4.3, there are (M-K) noise eigenvectors. If NV  denotes the M × 

(M-K) matrix whose columns are the noise eigenvectors as follows: 

],,,[ 21 MKKN γγγV K++=                                               (4.15) 

and if any vector Y with M elements is orthogonal to the noise eigenvectors in matrix 

NV , then the multiplication of vector Y by matrix NV  yields: 

0
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or                                                                  (4.16) 
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Based on the above equations, the conventional MUSIC algorithm is similar in the 

equation below because the direction vectors  )( jβa  ( Kj ,,2,1 L= ) are orthogonal to 

all the noise eigenvectors in matrix NV  (Section 4.3.2):  

     ),,2,1(0)()( Kjj
H
NNj

H
L==ββ aVVa                                        (4.17) 

By using a steering vector )(βa , the AOAs of signals can be determined by searching 

through all angles β  in the “MUSIC spatial spectrum” )(βP , expressed as: 

)()(

1
)(

ββ
β

aVVa H
NN

H
P = .                                             (4.18) 

When )(βa  is equal to any one of the direction vectors )( jβa  ( Kj ,,2,1 L= ), i.e., 

)(βa  is perpendicular to the noise eigenvectors in matrix NV , and the denominator of 

)(βP  is zero. So the AOAs are estimated by locating the peaks of a “MUSIC spatial 

spectrum” )(βP . The relationship between the number M of linear array elements and 

the number K of uncorrelated signals should be as follows: 

1+≥ KM                                                                    (4.19) 

This is because there should be at least one vector space for noise among M eigenvectors 

to scan out K = M - 1 signals. If the number of noise vectors is i, then the number of 

signals is K = M – i. 

The steps in the conventional MUSIC algorithm are summarized as follows: 

1. Choose M (the number of linear array elements) ≧ K+1 (K is the number of 
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uncorrelated signals); 

2. Calculate the correlation matrix R of the measured data; 

3. Calculate the eigenvalues of the correlation matrix R; 

4. Construct the noise matrix NV  based on noise eigenvectors; 

5. Evaluate the “spatial spectrum” 
)()(

1

)(

1
)(

2 βββ
β

aVVa H
NN

Hd
P == ; 

6. Pick K peaks of )(βP  and obtain AOAs. 

 

4.4.2 Failure of the Conventional MUSIC Algorithm  

 

If some signals impinging on the antenna array are spatially correlated, the conventional 

MUSIC algorithm cannot be used to estimate the AOAs of the signals. The following 

example shows how the conventional MUSIC fails under correlated signals.  

 

Example 1: 

Assuming that there are two correlated CW signals )(1 ts  and )(2 ts  impinging on a linear 

antenna array with three elements and the antenna spacing is 2/λ=d . )(1 ts  is a LOS 

signal and )(2 ts  is an NLOS signal. If their impinging angles are 0

1 90=β  and  0

2 60=β   

respectively, the direction vectors and matrix can be expressed as: 
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Because the NLOS signal )(2 ts  is the replica of the LOS signal )(1 ts , the relationship 

between two signals can be written as: 

)()( 12 twsts =  

where w is the complex weight coefficient, which represents the time delay and 

amplitude attenuation with respect to the LOS signal. Suppose that the independent noise 

13)( ×tn at different antenna elements is a zero-mean Gaussian stationary random process 

with variance 2σ and uncorrelated with the impinging signals. Then the correlation 

matrix R of the measured array data )()]()()()([)( 221113 ttstst naax ++=× ββ  , if 

1|)(| 2

1 =ts , can be expressed as follows: 
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It is evident that SR  is not a full rank matrix with rank( SR ) = 1. A further analysis is 

worth doing for understanding the limitation of the “MUSIC spatial spectrum”. 

Substituting 4/πj
ew = , which means that there is a 4/π  phase delay for the NLOS signal 

)(2 ts , into the above equation, the correlation matrix R is obtained as: 
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Three eigenvalues of R are 2

32

2

1 ,26 σλλσλ ==++= . The corresponding 

eigenvectors of the eigenvalues are calculated as: 
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It is clear that the noise space eigenvectors 2γ  and 3γ  are orthogonal to the combined 

direction vector )()( 21 ββ aa w+ , but not orthogonal to the original direction vectors, 

either )( 1βa   or )( 2βa . Therefore, AOAs cannot be estimated by “MUSIC spatial 

spectrum” of equation (4.18). The extension of this example, Example 2, is continued in 

Section 4.5.3 for the explanation of the successful use of forward/backward smoothing 

MUSIC technique.  

 

In terms of matrix algebra theory, the following more general example is given to prove 

that the rank of the covariance matrix of the correlated signals is not full and not 

orthogonal to the noise eigenvectors. Assume that the multipath environment consists of 

K correlated signals from the same CW source (perfectly correlated) and the number of 
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array elements is M. The correlated signals )(,),(),( 21 tststs KL , from the directions of 

Kβββ ,,, 21 L  respectively, are phase-delayed amplitude-weighted replicas of the 

source signal and expressed as: 

Kktswts kk ,,2,1)()( 1 L==                                       (4.20) 

here kw  represents the complex weight coefficient of the k
th

 signal )(tsk  with respect to 

the source signal )(1 ts . 

 

By defining w to be the weight coefficient vector as follow: 

T

Kwww ],,,[ 21 K=w ,                                                 (4.21) 

the signal vector can be written as: 

)()( 1 tst ws =                                                                 (4.22) 

and the expression for the measured data vector can be written as: 
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Thus, the covariance or correlation matrix SR  of s(t) is as follows: 

HH
S tsttE wwssR 2

1 |)(|)}()({ ==                                        (4.24) 

Now the covariance or correlation matrix R of x(t) is modified as: 
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Because the rank of the K × K Hermitian matrix H
ww  is equal to 1 (singular) expressed 

as: 

1)( =Hrank ww  ,                                                            (4.26) 

according to matrix algebra theory (Abadir & Magnus 2005), the rank of HH AwwA  is 

also equal to 1 as follow: 

1)( =HHrank AwwA .                                                  (4.27) 

It means that there is only one independent source signal. Therefore there are M-1 noise 

eigenvectors orthogonal to HH AwwA , which can be expressed as follows: 

Mii
HH ,,3,20 L==γAwwA .                                    (4.28) 

Based on the fact that the inverse of matrix H
ww  does not exist, the above formula can 

be simplified as: 

Mior i

H

i

HH ,,3,20)(0 L=== γAwγAw                       (4.29) 

where Aw is an M×1 column vector which is the linear combination of all of direction 

mode vectors. It can be defined as: 
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It can be seen from equations (4.29) and (4.30) that only the linear combination of all of 

direction vectors b, which is no longer of the Vandermonde structure, is orthogonal to the 

noise eigenvectors. So when the Vandermonde-structure steering vector )(βa  scans the 

all possible angles, it will never match non-Vandermonde structure direction vector 

Awb =  in the newly generated direction matrix HH AwwA  to estimate the AOAs of 

the correlated signals.  

 

The limitations of the conventional MUSIC algorithm application in correlated signal 

AOA finding can be summarized as: 

If m out of K signals are fully correlatetd, only the K-m uncorrelated signals can be 

resolved using the conventional MUSIC algorithm. 

 

4.5 AOA Estimation with the Forward/Backward Smoothing MUSIC Algorithm for 

Spatially Correlated Signals 

 

In practice, multipath signals exit in most wireless systems, which motivated people to 

improve the conventional MUSIC algorithm to find the AOAs of correlated signals. 

Evans et al (1981) and Shan et al (1985) proposed and demonstrated the effectiveness of 

the forward smoothing MUSIC algorithm. Pillai et al (1989) then proposed the backward 

smoothing MUSIC algorithm and combined the two algorithms into one 
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Forward/Backward Smoothing MUSIC algorithm to resolve the AOAs of correlated 

signals.  

 

4.5.1 Forward Smoothing MUSIC Algorithm for Spatially Correlated Signals 

Assume that a linear uniform array consists of M elements that are divided into L 

overlapping subarrays, each with m elements, as shown in Figure 4.3. Thus, the elements 

{1, 2, … , m} are grouped as the first forward subarray; the elements {2, 3, … , m+1} as 

the second forward subarray and so on. The number of forward subarrays is defined as: 

                                      1+−= mML                                                               (4.31) 

Figure 4.3: Forward Spatial Smoothing Scheme 

 

Let )(tf

lx be the measured data vector of the l
th

 forward subarray (l = 1, 2, … , L). Based 

on equations (4.1) - (4.3), )(tf

lx can be expressed as follows: 
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where A   is an m × K direction matrix defined in equation (4.3); B
l-1

 is the (l-1)
th

 power 

of the K×K diagonal matrix B  and it has the following expression:   
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Consequently, the auto-correlation matrix of the l
th

 forward subarray can be derived as: 
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Here mI  is an m-dimensional identity matrix.  

The forward spatial smoothing scheme is to obtain the mean of all forward subarray 

covariance matrices and then implement eigendecomposition of the smoothed covariance 

matrix. Thus, the forward smoothed auto-correlation matrix fR  for all subarrays can be 

written as:  
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where f

SR  is the forward smoothed source signal auto-correlation matrix of the signal, 

which is expressed as:  
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Based on the conventional MUSIC algorithm of Section 4.4.1, if only f

SR  in equation 

(4.35) is a full rank matrix, i.e. Krank
f

S =)(R , then all AOAs can be estimated even if 

the impinging signals are correlated. In fact, f

SR  is a full rank matrix, only if KL ≥ . 

This property is demonstrated below.  

 

Assuming that the impinging signals are all correlated, the signal vector has the 

expression of equation (4.22) with 1|)(| 2

1 =ts ,  and the K×K  source auto-correlation 

matrix f

SR  of  the forward smoothing scheme has the following form: 
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where C is a K×L matrix, which is expressed as: 
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where D is a diagonal matrix and Λ  has a Vandermonde structure. 

Based on equation (4.37) and (4.38), the following relationship between the ranks of f

SR , 

C, D and Λ  is obtained: 

( ))(),(min)()( ΛDCR rankrankrankrank
f

S == .                             (4.39) 

Note that the rank of the K×K diagonal matrix D is K. Thus, if KL ≥ , the rank of the 

Vandermonde matrix Λ  is also K.  As a result, f

SR  is a full rank covariance matrix, 

Krank
f

S =)(R , only if KL ≥ . It means that even when the impinging signals are all 

correlated, their AOAs can be resolved by the forward smoothing MUSIC algorithm. The 

above result is obtained when Kaaaa ≠≠≠ L321 . When Kaaaa === L321 , i.e. all K 

signals are from the same incident angle, then the MUSIC algorithm cannot resolve them.  
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Based on the above discussion and Figure 4.3, the minimum number of antenna array 

elements for the forward smoothing MUSIC algorithm should meet the following 

equation: 

KKKmLM 21)1(1minminmin =−++=−+= .                               (4.40) 

Compared with K+1 elements for the conventional MUSIC algorithm, the forward 

smoothing MUSIC algorithm sacrifices more antenna elements to overcome the 

correlated signal problems that occur in the conventional MUSIC algorithm. 

 

4.5.2 Backward Smoothing MUSIC Algorithm for Spatially Correlated Signals 

The backward subarrays are also generated from the linear uniform array, as shown in 

Figure 4.3. 

 

 

 

 

 

Figure 4.4: Backward Spatial Smoothing Scheme 

 

Based on Figure 4.4, the elements {M, M-1, … , M-m+1} are grouped as the first 

backward  subarray;  the  elements  { M-1, M-2, … , M-m }  as  the  second  backward 
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subarray and so on. Thus, the number of the backward subarrays is the same as the 

forward smoothing case, which is 1+−= mML  as in equation (4.31). 

Let )(tb

lx be the measured data vector of the l
th

 backward subarray (l = 1, 2, … , L). Based 

on equations (4.1) - (4.3), it has the following expression: 
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where ( ) *1 )()( tt
M    sBr −= . Then the auto-correlation matrix of the l

th
 backward subarray 

can be derived as: 
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Similarly, the backward spatial smoothing scheme is to obtain the mean of all backward 

subarray covariance matrices and then implement the eigen decomposition of the 

smoothed covariance matrix. Thus, the backward smoothed auto-correlation matrix bR  

for all subarrays can be written as:  
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where b
SR  is the backward smoothed source signal auto-correlation matrix, which is 

written as: 
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where TM
K

MMlM
aaadiag ],,,[)(

)1()1(
2

)1(
1

)( −−−− = KB . 

Considering the completely correlated situation (referring to equation (4.24)) and 

assuming that 1|)(| 2

1 =ts , rR  in equation (4.43) can be modified as: 
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where (refer to equation (4.2)) 
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As a result, the K×K source auto-correlation matrix b

SR  of the backward smoothing 

scheme has the following form: 
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where E is a K×L matrix, which is formed as: 
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where Λ  is the same as that of equation (4.38) and F is a diagonal matrix. 

 

Similar to the forward smoothing scheme, if KL ≥ , then Krank
b

S =)(R  can be satisfied 

and the AOAs of all correlated signals can be estimated. It follows that the backward 

smoothing scheme also requires at least 2K elements in the uniform linear array and 

works for correlated signals. 
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4.5.3 Forward/Backward Smoothing MUSIC Algorithm for Spatially Correlated 

Signals 

The following shows that, by simultaneous use of the forward and backward smoothing 

schemes, it is possible to reduce the number of elements required in the antenna array 

(Pillai & Kwon 1989). 

Firstly, one defines the forward/backward smoothed auto-correlation matrix bf /R  as the 

mean of fR  and bR . In completely correlated situations, bf /R  can be written as: 
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where bf

S

/
R  is the K×K source auto-correlation matrix of the forward/backward 

smoothing scheme, which is written as: 
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                                                 (4.51) 

The analysis of the rank of G, which determines the singularity of bf

S

/
R , is based on 

equation (4.51). The matrix G can be derived as: 
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where D and Λ  are the same as that in equation (4.38) and J is a diagonal matrix as (refer 

to equation (4.38) and (4.49)): 
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Considering that D is a K×K diagonal matrix, if the rank of 0G  is kept as K, the 

following relationships can be obtained: 

Krankrankrank
bf

S === )()()( 0
/

GGR                                     (4.54) 

As a result, AOAs of all impinging signals can be estimated. Now the key point is to 

analyze the rank of 0G . The rank of K×2L matrix  0G  as in equation (4.52) is mainly 

determined by the variables kε  and the total number of subarrays, 2L. The following 

analysis of the )( 0Grank  is based on Figure 4.5.             

 

1.  KL ≥  

In this situation, )( 0Grank  is always equal to K because the Λ  with Vandermonde 

structure is always a full rank matrix, so the AOAS of all impinging signals can be 

estimated. However, the number of elements in the antenna array is not reduced and it 

is still 2K.  
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                                                                                      KL =  

 

                                                                                                     

 

Figure 4.5: Relationship between L and K 

2. 2/KLK ≥>  

In this case, a subset is considered. Any },,2,1:{ Kkεk L=  can be divided into 

several subsets according to their equality. For example, if 6=K  and 

65432 , εεεεε === , then there are three subsets, }{ 1ε , },{ 32 εε and },,{ 654 εεε .  

If the largest size of the subset is of L at most and {ak} of this largest subset are not 

equal to each other, the rank of K×2L matrix  0G  can be kept as K, because of the 

Vandermonde structure Λ  in 0G , as defined in equations (4.38, 4.52). If the above 

condition cannot be satisfied, )( 0Grank  will be less than K. For example, if all of kε  

are equal, )( 0Grank  is L which is less than K. Fortunately the above requirement is 

easily satisfied in practice because each ),,2,1( Kkεk L=  are different most of the 

time, which can be seen from the following equation: 

K 

L 

 KL ≥  
     

2

K
LK ≥>        

2

K
L =  

L = the number of subarrays  

K = the number of signals 
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    where )( *

kwφ  is the phase angle of the complex weight *

kw  as defined in equation 

(4.20). It is clear that kε  is the function of the impinging angle kβ  and weight kw  of 

the k
th

 signal. Therefore, each ),,2,1( Kkεk L=  rarely has the same value. 

 

Thus, in any situations, if 2/KL ≥  is satisfied, AOAs of all correlated signals can be 

estimated with the forward/backward smoothing MUSIC algorithm. The minimum 

number of elements in the antenna array for the forward/backward smoothing scheme 

should meet the following equation: 

2/31)1(2/1minminmin KKKmLM =−++=−+=  .                       (4.56) 

 

Example 2: 

Now we apply the forward/backward smoothing MUSIC algorithm to example 1 given in 

section 4.4.2. In this case, the size of subarray 3== Mm  and the number of subarrays 

1=L , i.e., one forward subarray and one backward subarray. According to equations 

(4.36), (4.43), (4.45) and (4.51), bf

S

/
R  can be derived as: 









=








−
















−
+











=

+=+= −−−−

22*2

*

2*2)1(*)1(/

||0

01

10

01

||

1

10

01

2

1

||

1

2

1

][
2

1
][

2

1

www

w

ww

w

SS
M

S
M

S
bf

S
BRBRBRBRR

 



115 

 

After forward and backward smoothing, bf

S

/
R  is a full rank matrix with rank( SR ) = 2. 

According to equation (4.50), the auto-correlation matrix of the received signal is 

expressed as: 
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Substituting 4/πj
ew =  into the above equation, one obtains the following expression: 
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Three eigenvalues of R are 2
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1 ,2,4 σλσλσλ =+=+= . The corresponding 

eigenvectors to eigenvalues can be derived as: 

      TTT
jjjjj ]),1(,1[and],0,1[,],1,1[ 321 −−−==−−= γγγ  

From the above results, it is clear that the eigenvector 3γ  belonging to the noise space are 

orthogonal to the original direction vectors because 0)()( 3231 == γaγa ββ HH . 

Therefore, after the forward/backward smoothing, the AOAs of the correlated signals can 

be estimated by equation (4.18). Meanwhile, it can be easily seen that the original signal 

direction vectors )( 1βa  and )( 2βa  can be spanned linearly with signal space 

eigenvectors 1γ  and 2γ  as 211
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1
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+
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4.6 AOA Estimation Variance of MUSIC Estimator and Comparison with CRLB 

 

In practice, the auto-correlation matrix R is replaced by its estimate R̂  in equation (4.5). 

Because MUSIC algorithms are based on eigenanalysis of the auto-correlation matrix R̂ , 

then only the estimates { iβ̂ } of AOAs can be obtained, not the true values. An estimation 

variance therefore occurs.  

 

The MUSIC estimation error }ˆ{ ii ββ −  are asymptotically (for large number of 

snapshots) jointly Gaussian distributed with zero means. Its variance is given by Stoica & 

Nehorai (1989) as follows:   
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where N is the number of snapshots; )( iβa  is the direction vector defined in equation 

(4.2);  NV   is the noise eigen vectors defined in equation (4.15); and SΓ   and SV  are 

defined as: 

],,,[]λ,,λ,[λ 21
22

2
2

1 KSKS anddiag γγγVΓ LL =−−−= σσσ . 
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Based on (4.57a), the MUSIC error variance may have large values in the following 

situations: 

(1) When signal eigenvalues ]},,2,1[:{ Kkk L∈λ  are close to 2σ . It means that the 

signal auto-correlation matrix SR is nearly singular. This situation may occur when 

the directions of signals are close in space or signals are highly correlated and when 

the signal-to-noise ratio is low. 

(2) When the vector 
i

i

d

d

β

β )(a
 is close to a zero vector. Based on equation (4.2), this 

situation occurs when 00 1800 ori →β . The explanation was given in Section 3.5.  

For convenience of calculation, equation (4.57a) can be modified to (ibid):  
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In the single source signal case, the MUSIC estimator’s variance becomes: 
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                                                            (4.57c)         

where N is the number of sampled data; M is the number of antenna elements; and SNR is 

signal to noise ratio at the sampled point. 
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Comparing equation (4.57c) with equation (3.54) shows that, when M and SNR are very 

large, it reaches the CRLB. Figure 4.6 shows the AOA variance of the F/B MUSIC 

estimator under different SNRs for single source signal case. 

 

It should be mentioned that when using the F/B MUSIC estimator, the parameters in 

equations (4.57a) to (4.57c) should be related to the subarray scheme, e.g. the size of 

antenna array is referred to the size of subarray antenna elements. 

 

Figure 4.6: AOA Variance of F/B MUSIC Estimator for One Source Signal 

 

Case Study of F/B Smooth MUSIC Estimator for Multiple Source Signals 

Similar to Section 3.6, assuming that the number of source signals is 3≤K , the number 

of array sensors is 5=M . The difference is that the number of subarray sensors to be 

considered, which is m = 4. The number of forward and backward subarrays is 2L = 4. 
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The number of samples N = 1 and the estimated LOS AOA is 1β̂ . Then the CRLB of the 

independent AOA estimator, )ˆ(var 1βCRLB  as expressed in equation (3.53) for multiple 

source signals situation and the MUSIC AOA estimator error )ˆ(var 1βMUSIC  as expressed 

in equation (4.57b) are compared, as shown in Figure 4.7. In this case, the LOS is 1s  and 

its AOA1 is supposed to be at 080 ; SNR and SIR are 14 dB. It can be seen that the 

MUSIC estimator error is larger than the CRLB given in equation (3.53) and the variance 

of two source signals is much smaller than that of three source signals. In addition, 

considering the phase of the correlation coefficient xyρ  of two signals, it is found that the 

MUSIC estimator also exist maximum and minimum variances, which is similar to the 

existence of maximum and minimum CRLB described in Chapter 3. 
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Figure 4.7  (a) Comparison of MUSIC AOA Variance with CRLB for Three Source 

Signals; (b) Comparison of MUSIC AOA Variance with CRLB for Two Source 

Signals 

(a) Comparison of MUSIC AOA Variance with CRLB for Three Source Signals 

(b) Comparison of MUSIC AOA Variance with CRLB for Two Source Signals 
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Comparison with AOA CRLB 

Table 4.1 summarizes the expressions of AOA estimation variances of the MUSIC 

estimator and compares them with its CRLB. For single source signals, it is easy to 

compare according to the formula. When M and SNR are very large, the MUSIC 

estimator reaches CRLB. However, for multiple source signals, it is hard to compare 

based on the formula. It is easier to compare through the simulation results as shown in 

Figure 4.7. It shows that when the angles of incident signals are far apart, the MUSIC 

estimator reaches CRLB.    

 

Table 4:1: Comparison of CRLBs with Specific Estimator Variances for the CDMA 

IS-95 Pilot Signal   

CRLBs of AOA-assisted TOA Estimation Variances of Specific Estimator  

AOA: 

from equation (3.54) for single source 

signal: 
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Simulation result is shown in Figure 3.3. 

MUSIC AOA Estimator  

from equation (4.57c) for single source 

signal: 
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Simulation result is shown in Figure 4.6. 
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from equation (3.53) for multiple source 

signals (Stoica & Nehorai 1989): 
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Simulation result is shown in Figure 3.5. 

from equation (4.57a) for multiple 

source signals (Stoica & Nehorai 1989):  
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Simulation result is shown in Figure 4.7. 

TOA: 

SNRMK

TC
CRLB

⋅
=

32
)ˆ(var

2

τ   from equation (3.64) 

Correlation Function Rising Slope-based 

TOA Estimator to be discussed in 

Chapter 5 

 

4.7 Application of MUSIC AOA Estimator for IS-95 Pilot Signal  

In Section 4.6, the MUSIC estimator for AOA estimation is based on continuous wave 

(CW) signals. In this section, the AOA estimation of IS-95 pilot signals with 

Forward/Backward Smoothing MUSIC algorithm is discussed. Figure 4.8 shows that 

the data for IS-95 pilot signal AOA estimation is from I&Q correlator outputs. 

 

 

 

 

 

Figure 4.8: IS-95 Pilot Signal AOA Estimation from Correlator Outputs 
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Assuming that there are M sensors and K impinging signals, the baseband complex 

signals are still denoted by )(,),(),( 21 tststs KL  and they can be defined as follows for 

the first channel (the reference channel in the array) after the down converter: 

 Kkttswts kdkk ,,2,1)()( L=−=                                     (4.59) 

where )(ts  is the IS-95 pilot baseband complex signal transmitted at the base station; kw  

is the complex attenuation coefficient; )( 21 Kdddkd tttt <<< L  is the time delay and 

)(1 ts  is the LOS signal. 

Based on equations (2.4) to (2.12) and (3.22) to (3.24), the output of the ith correlator 

),( dixr tτ  for K impinging signals is redefined as:  

],,,[;,,2,1)(),(),( 21 Kdddddd tttMirrr inisix LL ==+= ttt τττ           (4.60) 
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where ),( disr tτ  and )(τinr  are the signal and noise parts of ),( dixr tτ , respectively; )(tsl  

is the local IS-95 pilot base band complex signal; kk q βπϕ cos2=  is defined in 

equation (3.23). 

Based on equations (4.60) to (4.62), the matrix format ),( dx tr τ  of the outputs of the 

correlators can be written as:  
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where A is the direction matrix defined in (3.24) and ),,2,1()( Mir in L=τ  is iid 

Gaussian noise. 

 

Comparing equation (4.63) with equation (3.24) or (4.3), all of them have the same 

formats. It means that MUSIC algorithm can still be used for the IS-95 pilot signal AOA 

estimation through the IS-95 pilot signal correlator output data and the IS-95 pilot signal 

AOA estimation error can be calculated through equation (4.57b). 

 

4.8  Comparison of the MUSIC with the ML Method for AOA Estimation 

 

In order to compare the MUSIC with the ML, the formulas for AOA estimation are 

written as follows: 
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MUSIC: 
)()(

1
)(

ββ
β

aVVa H
NN

HMUP =           (same as equation (4.18))  

ML (Schmidt 1979): 
)()(

1
)(

1 ββ
β

aRa −
=

HMLP   (for single source signal) 

                                  
ARA 1)(

1
)(

−
=

β
β

HMLP       (for multiple source signals) 

where )(βa  is the direction vector defined in equation (4.2), NV   is the noise matrix 

defined in equation (4.15), [ ])()()( 21 Kβββ aaaA L=  is the direction matrix, and R  is 

the correlation matrix of the received signal defined in equation (4.7). 

   

It can be seen that for single source signal, the ML has the same computation load as the 

MUSIC. Both of them are one dimensional search. However, for K source signals, the 

ML searches in K dimensions. 

 

4.9 Conclusions 

 

The conventional MUSIC algorithm, which works under uncorrelated or partially 

correlated signals, was discussed in this chapter. However, in multipath environments, it 

fails. An example was given to help understanding that failure. The forward-only 

smoothing MUSIC algorithm overcomes that limitation, i.e., it can resolve the AOAs of 

fully correlated signals. However, it sacrifices more array elements. The 

Forward/backward smoothing MUSIC algorithm improves the efficiency of the use of 
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array elements. An example is given to show how the forward/backward smoothing 

MUSIC algorithm resolves the AOAs of fully correlated signals. The theoretical 

performance analysis compared with CRLB followed. Finally, the practical consideration 

of sampling data from the correlator output for CDMA IS-95 pilot signal AOA estimation 

with MUSIC algorithm was explained and the comparison with the ML method is 

explained briefly.      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



127 

 

Chapter Five: AOA-assisted TOA/TDOA Method for Multipath Mitigation 

 

5.1 Introduction 

 

In this chapter, the proposed AOA-assisted approach for TOA estimation for multipath 

propagation environments is described. The limitation of the conventional TOA estimator 

based on the beamforming technique is also discussed. It can be seen that through the use 

of AOA information, multipath can be mitigated efficiently. The formulas for the 

correlation function initial rising part-based TOA estimator and its predicted error are 

derived based on the linearized vector parameter transformation of more fundamental 

parameters of the correlation function initial rising slope and its intercept through 

coordinate transformation. It is shown that the proposed TOA estimator is asymptotically 

unbiased and the estimated standard deviation is about 37 m when the SNR after 

despreading is 15 dB. The actual estimated variance is given in Chapter 6, as a function 

of SNR. Finally the comparison between AOA-assisted TOA and AOA-join TOA 

method is given. 

 

5.2 Multipath Effect on the Correlation Functions of CDMA Signals 

 

In spread spectrum radiolocation systems, TOAs can be obtained from the peaks of the 

correlation function. Here the effect of multipath on the peaks of the correlation function 

is discussed. In an urban canyon, the average multipath delay is about 400 ns (Turin 

1972). Based on this assumption, a simulation is carried out under the following 
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conditions, which are also described by Figure 5.1 and Table 5.1. It is noted that the 

parameter selection is somewhat arbitrary because Figure 5.1 is only the summation of 

five correlation functions to show multipath and it does not involve any proposed 

algorithm yet.  

(1) linear uniform array of M = 5 antenna elements with half wavelength spacing (The RF 

frequency is 1.9475 GHz, cm4.15=λ ); 

(2) number of the incident rays K = 4; 

(3) signal to noise ratio before despreading (SNR) is –30 dB and multipath to noise ratio 

before despreading (INR) is –20 dB. 

                                                                 

                    

 

 

Figure 5.1: LOS and NLOS Signals with Different AOAs 

 

Table 5:1: Parameters of Multipath on Correlation Functions  

Received Signals (dB) AOA (º) Delay (ns) 

LOS - 30 (SNR) 10 0 

NLOS 1 - 20 (INR) 30 400 

NLOS 2 - 20 (INR) 35 450 

NLOS 3 - 20 (INR) 40 500 

 

NLOS1 

 

NLOS3 
NLOS2 

100 

1 3 4 5 2 

30 
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These IS-95 pilot signals with different time delays are down converted to baseband 

signals and sampled at a 2 MHz rate. The data snapshot is three pilot PN periods, which 

is 0.08 seconds. Similar to Chapter 3 and 4, it is assumed that each element of the antenna 

array generates one channel complex signal containing source signals and complex 

Gaussian noise. 

 

The simulation results are shown in Figure 5.2. The peak of the LOS correlation function 

of the first channel is shifted by multipath signals from 0 to TC/2, where TC is the PN chip 

period which is 800 ns. For the summation of the five correlation functions in five 

channels, the correlation peak is also shifted by about 400 ns. This matches the given 

simulation conditions for the delayed signals, which have 400 ns or more delays. That is, 

the inter-chip multipath (less than 800 ns) in CDMA IS-95 systems cannot be resolved by 

CDMA signal’s correlation peak, which can also be explained by PN sequence’s 

correlation function shown in Figure 2.2. When the multipath delay is over one chip 

period, its effect on the LOS signal correlation function is close to zero; when the 

multipath delay is within one chip period, it has an effect on the LOS signal correlation 

function and that effect increases as the multipath delay decreases. Figure 5.3 is the result 

from the measured data. It shows that, due to inter-chip multipath, the LOS correlation 

function has been distorted at the correlation peak. However, the initial rising part still 

has a good linear shape, which means that multipath occurred after the first LOS signal. 

Therefore the initial part of the correlation function has not been distorted by multipath. 

Based on this, the proposed method focuses on the correlation rising slope estimation.   
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Figure 5.2: Correlation Functions of the Simulated Data in Multipath Environments 

 

Figure 5.3: Correlation Functions of Four Channels in Real Multipath 

Environments 
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5.3 Limitations of Correlation Peak-based TOA Estimation in Multipath 

Environments 

 

At present, most GPS receivers use multiple DLLs (Delay Lock Loops) to estimate TOA 

based on the correlation function peak position in the time domain. However, when 

multipath interference exists, the peak of the correlation function is shifted, shown in 

Figure 5.2 from simulated data and Figure 5.3 from real data. Due to limited bandwidth 

of the filter in the receiver, the shape of the correlation function in Figure 5.3 is not a 

triangle any more. Its bottom has been widened smoothly. The beamforming technique 

can be used to mitigate multipath, which is explained briefly below.  

 

Suppose that the output vector of M channel correlators (correlating the same signals) is 

T
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where )(τr  is the signal component including LOS and NLOS, )(τnr  is the noise 

component; ],,,[ 21 kd ttt L=t  is the time delay vector. 

If the AOA of the LOS signal is LOSβ , after beamforming the LOS correlation function 

is enhanced as follows: 

),()()( dLOS
H

xr tra τβτ =Σ                                               (5.1) 
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where [ ]TMjj

LOS ee
ϕϕβ )1(,,,1)( −−−= Ka  is the direction vector of the LOS signal as 

defined in equations (4.2) and (3.23), and 
c

df LOS )cos(*2 0 βπ
ϕ = , where d is the antenna 

spacing,  0f  is the carrier frequency and c, the light velocity. Equation (5.1) means that 

the LOS parts in the correlation functions from five channels are summated coherently to 

enhance the LOS component and suppress multipath components coming from different 

angles. 

 

However, when NLOS signals are stronger than LOS signals, multipath cannot be 

mitigated efficiently through equation (5.1), so the peak of the summated correlation 

function will still be shifted. The following section describes a new approach to mitigate 

multipath for TOA estimation. 

 

5.4 AOA-based Multipath Mitigation Approach for TOA Estimation 

 

The CRLB of the AOA-joint TOA approach is derived in Chapter 3, which can be used 

as a reference to evaluate a specific estimator for AOA and TOA estimations. As it is 

described by Kay (1998), the Maximum Likelihood (ML) estimator is optimal for both 

AOA and TOA estimation. However, its computation load increases exponentially as the 

number of multipath increases and it still cannot distinguish which is related to the LOS 

signal. The proposed method is to estimate AOA and TOA separately in order to filter out 

multipath based on estimated AOA and then to estimate TOA. Even though, as it is 
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discussed in Chapter 3, the CRLB of the proposed AOA-assisted TOA method is non-

optimal in AOA estimation but optimal in TOA estimation, it is a practical way to 

mitigate multipath. Under this separate AOA and TOA estimation scheme, specific 

estimators for AOA and TOA estimations need to be created. Again, the ML estimator 

can be considered for AOA estimation. However, it still has the drawback of heavy 

computational load. For example, when there is only one source signal, it is the same 

complexity as the MUSIC because they are all one dimensional search. However, when 

there are two source signals, ML is a 2D search. When there are N source signals, it is N 

dimensional search. So the suboptimal MUSIC algorithm is applied, whose computation 

load does not increase as the number of multipath signals increase. For TOA estimation, 

the correlation function peak-based method is optimal (Kay 1998). However, it is suitable 

for clean LOS environment. In multipath environments, it causes large errors. Therefore 

one needs to create a new TOA estimator for multipath environments. It can be seen that 

although the correlation peak is distorted under multipath environments, fortunately the 

initial rising part still has a good linear shape, as shown in Figure 5.2 and Figure 5.3. The 

proposed AOA-based multipath mitigation approach for TOA estimation is based on the 

estimated AOAs obtained from the modified forward/backward smoothing MUSIC 

algorithm (Ch 4) to apply beamforming technique to improve the linearity of the initial 

rising part of the correlation function and enhance the LOS SNR of that part. Then by 

determining the correlation function rising slope and starting point, the TOA/TDOA can 

be estimated. This approach is described in detail as follows: 
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Step 1: Sample Data Generation from M Channels 

The first step is to obtain the correlation functions of five channels and the data are 

generated by sampling the correlation function rising parts. The data is used to estimate 

the received signals’ AOAs by MUSIC as intermediate values for further TOA 

estimation.  

Step 2: Application of F/B Smoothing MUSIC for AOA Estimation in Multipath 

Environment 

The second step is to estimate AOAs using the data obtained in Step 1. As discussed in 

Chapter 4, the conventional MUSIC algorithm works well when the signals are 

uncorrelated. However, it fails when the signals are highly correlated which is common in 

multipath environments. The F/B smoothing MUSIC algorithm can solve this problem. 

But the resolvable number of the incident signals on the antenna array is (2M/3) where M 

is the number of elements of the array. Based on the prototype IS-95 receiver used herein 

that has five antenna elements, the F/B smoothing MUSIC can only resolve three signals. 

To solve this problem, the data used to estimate AOA can be obtained by sampling the 

outputs of correlators at the initial rising part of the correlation function to reduce the 

number of incident signals. 

Step 3: Improvement of LOS SNR at the Correlation Function Rising Part  

Based on the AOAs estimated from the second step, the extraction of the LOS AOA is 

based on a beamforming technique. Suppose that iβ  is the estimated AOA by step 2, the 

one resulting in the largest ),()()( di
H

xr tra τβτ =Σ  is the LOS AOA. After 

beamforming based on LOS AOA, the LOS component of the correlation function is 
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enhanced and at the same time the multipath is suppressed. Assume that the AOA and 

TOA of the LOS 1s  is 1ββ =LOS  and 1dt  respectively, then the correlator output after 

beamforming becomes 
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Because the noise between each correlator output )(τmnr  is iid Gaussian noise with zero 

mean, the noise variance of )(τnrΣ  at the correlator output after beamforming can be 

derived as: 
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where 2

rσ  is the noise variance at each correlator output ),,2,1()( Mmr mn L=τ . 

Thus, the LOS signal to noise ratio LOSSNRΣ  of the correlation function rising part after 

beamforming is as follow: 
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Here )( 11 dtr −τ  is the LOS signal correlation function at one channel.  

Equation (5.5) means that after beamforming, the LOS signal to noise ratio at the 

correlation function output increases M times. 

Step 4: Correlation Function Slope Estimation based on Linear Model   

After beamforming, the correlation function’s shape is improved, i.e. its initial rising part 

is less distorted by multipath. The next step is to estimate the correlation function initial 

rising slope a and its intercept b. Suppose that L data samples )( 1τΣr , )( 2τΣr  … )( Lr τΣ  

are taken from the rising part, as shown in Figure 5.4. Even though the practical 

correlation function for IS-95 signals is more like a smoothened triangle as in Figure 5.3, 
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the triangle shape of correlation function in Figure 5.4 doesn’t affect the generality of the 

analysis because the focus is on the rising linear part of the correlation function which 

can also be found in the real case from Figure 5.3. Also, these data are considered to be 

contaminated by noise only because multipath is suppressed significantly in Step 3.  

 

Figure 5.4: Correlation Function Slope Estimation 

 

Considering that )(τLOSrΣ  is a complex function, it can be written as:  
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where 
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Thus, the complex number format and the real number format of the unknown 

parameters θ  and ξ  can be defined respectively as (Kay 1998): 
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Based on the sampled data )( 1τΣr , )( 2τΣr , …, )( Lr τΣ , a linear model can be expressed 

as: 
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The matrix expression of equation (5.9) can be written as: 
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From the above equation, it can be seen that at least two samples are needed to determine 

A and B, i.e. 2≥L .  

The relationship between 







=

A

B
θ  and the starting point 0τ  of the correlation function in 

Figure 5.4 is as follows: 
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The true values for the unknown parameter θ  without noise corruption can be calculated 

by: 

LOS

HH

Σ
−= rHHHθ 1)( .                                                   (5.12) 
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The analysis is based on the following two different noise conditions. It can be seen that 

from equation (5.18) the noise from the correlation function initial part discussed herein 

are correlated. 

1. The estimated values of θ  under non “white” Gaussian noises can be obtained by 

(Kay 1998):  

Σ
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where 1−
C  is the covariance matrix of the noise. 

2. If the signal contains only “white” Gaussian noises, i.e. IC n
21
Σ

− = σ , the above 

formula reduces as:   
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The covariance matrix of θ  under non “white” Gaussian noise can be expressed in both 

complex numbers and real numbers as (ibid): 
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In the above equation, H  and C  are both real numbered, so 0])Im[( 22
11 =×

−− HCH H .  
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The covariance matrix of θ  under “white” Gaussian noise can be expressed in both 

complex numbers and real numbers as (ibid): 
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where 2
nΣσ  is the noise variance at the correlator output after beamforming as defined in 

equation (5.4).  

 

The assumption that samples are on the linear part of the correlation slope can be met. 

Because even though the shape of the correlation function from real multipath 

environments is a smoothened triangle, there is still a linear segment, which can be 

seen in Figure 5.3. 

 

The estimation of 











=

A

B

ˆ

ˆ
θ̂  is based on a linear model. It is known that for a linear model, 

the MVU (minimum variance unbiased) estimator attains the CRLB and an estimator 
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which reaches its CRLB is called efficient (ibid). So the estimation of 











=

A

B

ˆ

ˆ
θ̂  is 

efficient. 

Step 5: Correlation Slope-based TOA/TDOA Estimation in Multipath Environments 

In order to estimate the TOA, which is 1dt  as shown in Figure 5.4, one needs to estimate 

the correlation function starting point 0τ̂ .  Because the starting point is a real value, it can 

be expressed as:   
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This equation shows that in order to estimate the correlation function starting point 0τ̂ , 

one needs to estimate the correlation function slope Â  and its intercept B̂ . 

 

Estimation of Â  and B̂   

Â  and B̂  can be estimated through equation (5.13a) under non “white” Gaussian noise 

or equation (5.13b) under “white” Gaussian noise. One needs to figure out the correlation 

properties of the noise at the summated correlator output. 

Suppose that the sampling rate for I/Q baseband signals is 2/Tc (two times the PN chip 

rate) and the noise in the sampled baseband signals is a “white” Gaussian noise, the 
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correlation characteristics of  the noise in the  correlation function after despreading, 

shown in Figure 5.4, is investigated as follows. 

 

Suppose that the sampling rate for the correlation function is )2/10( << vvTC  and 

three samples are taken in the rising part of the correlation function. Equation (5.10) is 

changed to  
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The above equation is based on three samples )](),(),([ 321 τττ ΣΣΣ rrr . In order to 

estimate the unknown parameter θ  using equation (5.13), the noise characteristics needs 

to be figured out.   
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Derivation of noise covariance matrix C 

Based on (5.3), the correlation property between  )( inr τΣ  and )( jnr τΣ , 3,2,1, =ji  can be 

derived as (samples are still from the correlation function initial part): 
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where 2σ  is the noise variance at each channel before �ispreading and 2
rσ  is the noise 

variance at each channel after �ispreading.   

Based on equation (5.17), the covariance matrix of the sampled noise on the rising edge 

of the correlation function can be written as:  
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This equation means that the noise in the correlator output is correlated if the sampling 

rate for the correlation function is )2/10( << vvTC . That is the unknown parameter 

TAB ][=θ  should be estimated under non “white” Gaussian noise using equation 

(5.13a) as follows:    

)]()([
2

1
)]()([

2

1ˆ

)]()([
2

1
)]()([

2

1ˆ

)()(

)()(

2

1

)(
ˆ

ˆ
ˆ

101

0

2

1

101

02

2

1
)(

1313

31133113

13

3113

111

13

11111

ττττ

ττττττττ

ττ

ττττ

ττ

ττ

nn
CC

nn
CC

C

TT

C

C

C

TT

rr
vT

Arr
vT

A

rr
vT

Brr
vT

B

isthat

rr

rr

vT

A

B

vT

vT

vT

ΣΣΣΣ

ΣΣΣΣ

ΣΣ

ΣΣ

Σ
−−−

−−−

−+=−=

−+=−=










−

−
=

=











=










−

−
=










−

−+
=

rCHHCHθ

CHHCH

                 (5.19) 

 

Conclusions: 

1. The “white” Gaussian noise becomes non “white” Gaussian after it goes through 

	ispreading process. Because the noise at the correlator output is generated by 

multiplying the baseband noise with the local PN code, so the noise 

characteristics at the correlator output are related to the local PN code’s 

properties. As it is known that within one PN chip, the samples of PN code are 
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correlated. So at the correlation function rising slope side, which is within one 

PN chip, the samples are all correlated.  

2. Only two samples on the rising edge of the correlation function are needed to 

estimate the intercept A and the slope B because the samples are correlated as 

described in equation (5.18). 

It can also be proven that the estimation of TAB ][=θ  is unbiased as follows:  

Because 0)]([ =Σ τnrE , the following expressions exist: 
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The covariance matrix of the estimated parameters can be obtained as: 
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It can be seen from the above expression that the accuracy of the estimates Â  and B̂  

affects each other because 0)()()( 121
1

12
1 ≠+−== −−

CvTτθJθJ . It will be shown later 
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on in Section 5.5 that after coordinate transformation, the estimation of Â  and B̂  does 

not affect each other.    

 

Estimation of correlation function starting point 0τ̂  

The estimated correlation function starting point 0τ̂  described in equation (5.15) is 

derived based on the estimated Â  and B̂  from equation (5.19) as follows:  
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                           (5.22) 

The estimated variance of 0τ̂  is discussed in the next section. 

Finally, the estimation of the LOS TOA 1d̂t  is obtained as: 

Cd Tt += 01 ˆˆ τ                                                      (5.23) 

where CT  is the chip period of the PN code. In practice, CT  needs to be modified, 

because the bottom width of the correlation function of the real data is different from the 

theoretical value of one chip CT  due to the bandwidth of the baseband filter used. It will 

be obtained based on the real bandwidth of the received signal.  However for TDOA 

estimation, the value of  CT  is not required because it disappears when differencing two 
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TOA values, i.e. 2,01,021 ˆˆˆˆ ττ −=−= dd ttTDOA , where 1,0τ̂  and  2,0τ̂  are the starting 

points of two correlation functions related to two different base stations. 

 

Summary 

In this thesis, instead of trying to mitigate all inter-chip multipath, the proposed method 

attempts to mitigate multipath at the initial rising part of the correlation function by 

enhancing the LOS SNR based on the estimated AOAs from the F/B smoothing MUSIC 

algorithm. 

 

The conventional F/B smoothing MUSIC is limited by the number of incident rays due to 

the limited antenna elements. For this purpose the new data set with less signal sources is 

generated by sampling the beginning part of the correlation function where fewer 

multipath components are included. After using the modified F/B smoothing MUSIC, the 

AOAs of the signals can be estimated. Then the spatial addition of the five channels’ 

signals in the direction of the LOS is applied to enhance the strength of the LOS and at 

the same time mitigate the multipath efficiently at the rising edge of the correlation 

function even though the peak is still distorted by the same multipath. Then the focus is 

on the rising edge which has a good linear shape to detect the correlation function linear 

slope and, sequentially, the starting point is obtained. Finally the multipath mitigated 

TOA/TDOA measurement can be obtained. Figure 5.5 shows the flow chart for this 

algorithm. 
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  Figure 5.5: Flow Chart of Proposed Algorithm 
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5.5 Error Analysis of the AOA-assisted TOA Estimator Using Coordinate 

Transformation 

 

Based on equation (5.23), it can be seen that the variance of TOA ( 1d̂t ) is the same as that 

of the correlation function starting point ( 0τ̂ ). So the variance of 0τ̂
 
is discussed here. As 

the expression in equation (5.22), the starting point 0τ̂  is the nonlinear transformation of 

the fundamental parameter θ̂ , so it is not possible to derive the variance )ˆvar( 0τ  directly 

by linear model. However, as discussed in Chapter 3, any unbiased estimator’s variance 

can be obtained by equation (3.20). In this section, two tasks are carried on: 

1. Prove that the non-linear estimator for 0τ̂  is unbiased under certain condition 

2. Derive the variance of  estimator for 0τ̂   

 

Proof of unbiased estimator for 0τ̂    

Intuitively, if there is a larger signal to noise ratio, then 22 |||ˆ| AA ≈  and equation (5.22) 

can be simplified as 
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Based on equation (5.19), the condition for 22 |||ˆ| AA ≈  is derived as follows:      
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Evidently, 2|| nA  is introduced due to noise. Based on (5.17) and 0)]([ =Σ τnrE , the 

expectation of 2|| nA  can be derived as: 
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In order to find the condition for 22 |||ˆ| AA ≈ , the probability of false alarm Pfa is 

introduced (Barton & Leonov 1997) as: 
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If 001.0~01.0=faP , then the required threshold to detect the signal is SNR = 9.6 ~ 11.4 

dB; Usually the threshold is 5 dB below the signal peak, so the SNRpaek can reach 14.6 to 

16.4 dB. For an array with 5 elements, the signal to noise ratio at the peak will be 

increased five times (7 dB), i.e. dBdBSNR peak 4.23~6.21=Σ .  

 

For example, if it the required threshold is dBSNR peak 8.14≥Σ  and v = 1/6, i.e. 
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Thus, the condition for 22 |||ˆ| AA ≈  is: 
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When dBSNR peak 8.14≥Σ , based on equation (5.19), the estimation of 0τ̂  in equation 

(5.24) becomes: 
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(5.28a) 

Based on equation (5.17), the expectation of 0τ̂  can be derived as: 
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(5.28b) 

 

It can be seen that the unbiased estimator for 0τ̂  should meet the following conditions: 

1. Large peakSNRΣ , e.g. dBSNR peak 8.14≥Σ      

2. 02 =τ , otherwise a bias of 
peakvSNRΣ

2τ
 in equation (5.28b) will be introduced.  
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That is the origin of the coordinate in Figure 5.4 needs to move to the position of 

2τ   

 

Modification of estimator for 0τ̂  based on coordinate transformation 

Based on the above conclusion, after coordinate transformation, the time axis τ  is 

changed to: 

2
' τττ −=                                                                 (5.29) 

Thus, three samples located in 'τ  the time axis are 

CC vTvT ==−= '
3

'
2

'
1 ,0, τττ                                              (5.30) 

Here CvT  is the interval between two samples as shown in Figure 5.4 and 
2

1
0 << v    

Under a new coordinate system, the linear model in equation (5.16) is modified as: 
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Accordingly, equation (5.19) for the estimates of Â  and B̂  is modified as: 
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Equation (5.21) for the estimated variance is modified as: 
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It can be seen that, from equation (5.33), after coordinate transformation, the accuracies 
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of the estimates Â  and B̂  do not affects each other because 0)()( 21
1

12
1 == −− θJθJ . 

This can be understood easily because when the origin of the time axis is moved to 2τ , 

the change of the correlation slope A will not result in the change of intercept B. Whereas, 

before coordinate transformation, they affects each other as expressed in equation (5.21) 

because the change of correlation slope A will result in the change of intercept B.   

 

Finally, based on equation (5.32), the correlation starting point estimation expressed in 

equation (5.22) is modified as: 
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                   (5.34) 

Equation (5.34) can be used practically for the measured data. It is a simplified version of 

equation (5.22). One needs to remember that only when dBSNR peak 8.14≥Σ , is the 

estimate of '
0τ̂  unbiased, which is shown below.   

 

The true value of the correlation starting point in the new coordinate system '
0τ  is 
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formulated as follows: 
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        (5.35.a) 

When dBSNR peak 8.14≥Σ , the estimate of '
0τ  is  
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Based on the above equation, the expectation of '
0τ̂  is expressed as: 
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(5.36) 

So the estimator for the correlation starting point in the new coordinate system '
0τ̂  is 

unbiased. After '

0τ  is estimated, the final estimated correlation starting point 0τ̂  in the 

original coordinate system can be obtained by: 

2
'
00 ˆˆ τττ +=                                                               (5.37) 

Where 2τ  corresponds to the middle sample position which can be located by the local 

code shift during the correlation process. 

 

Derivation of the variance of '

0τ̂    

Based on equation (3.20), the variance of the unbiased estimator '
0τ̂  can be expressed as 
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where 
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C ˆ  is given in equation (5.33) and the 1 × 4 Jacobian matrix 
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Because 
ξ

C ˆ  is a diagonal matrix, )ˆvar( '
0τ  can be written as 
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(5.40)     

where TC is the PN chip period; 0 < v < ½ and CTv)21()(0 01 −<′−′< ττ . 

Equation (5.40) shows that )ˆvar( '
0τ  is related with three parameters: )(τpeakSNRΣ , the 

sample interval vTC, and the first sample position with respect to the position of the 

starting point )( 01 ττ ′−′ . It can be seen that, from equation (5.18), the closer the samples 

are, the more correlated the noise is. Therefore, Figure 5.6 shows that a smaller v results 

in a larger variance (dashed line). For example, when v = 1/6, CT15.001 =′−′ ττ  and 

dBSNR peak 15)( =Σ τ , the estimation standard deviation is 36.8 m. It can also be seen 

that the closer to the starting point the first sample is, the smaller the variance )ˆvar( '
0τ  is. 

Because any vibration of the samples due to noise will cause the error of the estimated 

starting point and that error decreases if the first sample is closer to the stating point. So 

the variance )ˆvar( '
0τ  is also reduced. 
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Figure 5.6: Square Root of var( '
0τ̂ )  

 

5.6 Comparison of the AOA-Assisted TOA Estimation Variance with TOA CRLB  

 

Based on equations (5.40) and (C.11), when 00 =′τ  and v = ½, the minimum variance of 

'
0τ̂  or 0τ̂  or τ̂   is obtained as:  
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where 20
'
0 ˆˆ τττ −= ; CT+= 0ˆˆ ττ  ( CT  is the chip period of PN code). 

Based on equation (3.64), the CRLB of the estimated TOA can rewritten as follows:  
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                                                                (5.42) 

where TC is the PN chip period; M is the number of antenna array; K = 2
15

 is the length of 

the PN sequence and SNR is the signal to noise ration before despreading. 

 

Comparing equation (5.42) with equation (5.41) shows that the minimum variance of 

AOA-assisted TOA estimation is twice that of the TOA CRLB. Table 5.2 summarizes the 

expressions of AOA estimated variance of the MUSIC estimator, the TOA estimated 

variance of the proposed method and their CRLBs. 
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Table 5:2: Comparison of CRLBs with Specific Estimator Variances for the CDMA 

IS-95 Pilot Signal   

CRLBs of AOA-assisted TOA Estimates Variances of Specific AOA and TOA 

Estimators  

AOA: 

from equation (3.54) for single source 
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Simulation result is shown in Figure 3.3. 

MUSIC AOA Estimator  

from equation (4.57c) for single source 

signal: 
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Simulation result is shown in Figure 4.7. 

from equation (3.53) for multiple source 

signals:
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(Stoica & Nehorai 1989) 

Simulation result is shown in Figure 3.5. 

from equation (4.57a) for multiple source 

signals: 
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(Stoica & Nehorai 1989)  

Simulation result is shown in Figure 4.7. 

TOA: 
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      from equation ( 3.64) 

Correlation Rising Slope-based TOA 
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5.7 Conclusions 

 

The effect of multipath on correlation peaks was discussed by using both simulated and 

measured data. The results show that the position of the peak is shifted, which results in a 

TOA estimation error. By using a beamforming technique, multipath can be mitigated. 

But when the multipath is much stronger than the LOS signal, the multipath effect on the 

correlation peak cannot be suppressed efficiently. The proposed approach focused on the 

correlation function initial rising part because multipath arrives after the LOS signal and 

it will not affect the correlation function initial rising shape theoretically. Even though in 

real IS-95 system, due to limited bandwidth of the filter, the side lobe of multipath 

correlation function affects LOS correlation function initial rising part a little bit, after 

beamformer is used along the direction of LOS, the side lobe of multipath correlation 

function is suppressed because the random phase in each antenna cancel out that side lobe 

signal and whereas the LOS signal strength is enhanced. Section 5.4 proved that the SNR 

for the LOS signal has increased M (number of array elements) times after beamforming. 

Its TOA estimation error is therefore M times less than that of a single antenna-based 

TOA estimator. The TOA estimator is based on the estimates of the correlation function 

rising slope and its intercept, which has a non linear relationship. So the coordinate 

transform is introduced. The correlation function initial rising slope and its intercept are 

estimated by a linear model under non “white” Gaussian noise. The TOA estimated 

variance is derived. Even though the proposed unbiased TOA estimator does not reach 

the CRLB, the estimated variance is 36.8 m when the SNR after despreading is 15 dB. It 

will be seen in Chapter 6 that the actual estimation error is much smaller than that due to 
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the high SNR after despreading. The advantage of the proposed AOA-assisted TOA 

method is that it is more practical due to its light computational burden and it can be used 

in multipath environments.    
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Chapter Six: System Hardware Implementation and Experimental Results 

 

6.1 Introduction 

 

In this chapter, a hardware platform developed to collect IS-95 data is described together 

with experiments based on real data collected under various environments with the above 

platform. The results are compared with the theoretically estimated values of AOA and 

TOA derived in Chapter 4 and Chapter 5, respectively. It can be seen that the 

experimental AOA estimation results are unbiased and the estimated standard deviation is 

less than 3º. The final estimated TOA values has a constant offset of about 200 metres 

due to an unknown but deterministic parameter. The theoretical value is asymptotically 

unbiased when the signal to noise ratio at the correlation peak is more than 15 dB 

(Section 5.5, equation 5.27). The practical TDOA standard deviation is 8 m in the real 

environment, where the signal to noise ratio after despreading is 30 dB, meeting the FCC 

requirements of 50 to 150 metres. The practical errors are uncontrollable systematic 

errors due to receiver transfer function uncertainties, timing offsets in ADC sampling and 

base station timing uncertainties.  

 

6.2  General Description of the System 

 

The hardware platform was developed in PLAN (Positioning, Location and Navigation) 

group of the Department of Geomatics Engineering. The system consists of an antenna 

array, RF & baseband circuit, FPGA-based digital circuit and data collection control 



167 

 

software (e.g. Lopez et al 2005). The developed prototype CDMA receiver receives the 

real time pilot signals from IS-95 CDMA base stations. The data is used to verify the 

proposed algorithm. The diagram of the system is shown in Figure 6.1. The detail 

description of each part is given in the following subsections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1: Hardware System Diagram 

 

6.2.1 Directional and Omni-directional Antenna Array Design and Development 

A uniform linear antenna array with five elements is connected to the five-channel input 

of RF circuits. The antenna element spacing is λ7.0 . The RF frequency is 1.9475 GHz. 
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The antenna array is put on a turntable to adjust the array’s direction for receiving base 

station signals from different angles as shown in Figure 6.2 (a), installed on the roof of 

the CCIT building on the University of Calgary campus. Figure 6.2 (b) is the directional 

antenna’s pattern, which has a high antenna gain in a range of about 120
º 
in azimuth and 

20
º 
in elevation. This is suitable for receiving the CDMA base station signals, which are 

usually from low elevation. Because the directional antenna limits the number of 

multipath and the number of available base station signals, it is helpful to identify the 

signals at the initial research experiment stage. However in order to verify the proposed 

algorithm for multipath mitigation, in the later experiment, the omni-directional antenna 

is used to receive more multipath and the antenna spacing changes to λ5.0  for another 

test as shown in Figure 6.2 (c). The omni-directional antenna pattern is in Figure 6.2 (d), 

which has full gain in azimuth and a range of about 30
º 
in elevation. 
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(a) Linear Uniform Array with Directional Antenna 

 

 

 

 

(b) ) Single Directional Antenna Patterns (E & H Plane) 
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(c) Linear Uniform Array with Omni-directional Antenna 

 

(d) Single Omni-directional Antenna Pattern (E-Plane) from Specification Sheet 

 

Figure 6.2: (a) Linear Uniform Array with Directional Antenna; (b) Directional 

Antenna Patterns (E & H Plane); (c) Linear Uniform Array with Omni-directional 

Antenna (d) Omni-directional Antenna Pattern (E-Plane) 
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6.2.2 RF & Baseband Circuit Design and Development 

Figure 6.3 is the RF superheterodyne receiver block diagram. It contains the functions of 

amplification, filtering, mixing and demodulation. The RF LO converts the incoming 

signal first to IF at a relatively high frequency, and then the IF LO converts the IF signal 

into baseband. The demodulated I & Q signals are fed to the following baseband circuit 

as shown in Figure 6.4. The stability of the sampling frequency for ADC is affected by 

the stability of TCXO, which is described by its Allan variance in Appendix D. The 

unstable sampling frequency will affect the acquisition process for the CDMA signal 

despreading processing. The identity of the sampling frequency of 10 MHz for each 

channel ADC will not introduce an extra phase difference between antenna elements. The 

AGC control signal is generated separately for each channel to adjust the signal 

amplitude of each channel efficiently. 

                         

 

 

 

 

Figure 6.3: RF Circuit Diagram for One Channel 
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(a) Baseband Circuit Diagram for Five Channels 

              

 

(b) Baseband with Five Channels & Altera FPGA (1
st
 Generation Receiver) 

 

Figure 6.4: (a) Baseband Circuit Diagram for Five Channels; (b) Baseband with 

Five Channels & Altera FPGA (1
st
 Generation Receiver) 
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6.2.3 FPGA-based Digital Circuit Design and Development 

In order to collect the data stream from the five RF channels to the computer correctly, a 

strict time control circuit is required. The Altera FPGA shown in Figure 6.4 multiplexes 

five-channel data into a PC via a National Instrument Data Acquisition Card. The data is 

triggered by a 1pps (1 pulse per second) GPS signal to synchronize the local receiver 

time to GPS time. The diagram is shown in Figure 6.5. I(t) and Q(t) are the input five-

channel data from the ADC outputs. Each ADC output is 8-bit, so for five channels I(t) 

and Q(t), the total number of data bits is 80-bit while the NI DAQ (Data Acquisition 

Card) data width is 16-bit. Thus it requires that the data transfer frequency for DAQ be 

five times of the parallel five channels data samples. The sampling frequency for ADC is 

10 MHz and then the data is decimated to reduce the data rate to 2 MHz. The data 

transfer frequency for DAQ (REQ Φ2) is therefore 10 MHz. The 1pps GPS signal is fed 

in as a trigger signal (Trig) for DAQ to make the collected data synchronized to GPS 

time. There is a fixed data delay of 200 ns after the 1pps appears. The uncertainty of the 

1pps appearance at the rising edge of the 10 MHz clock signal Φ1 is 100 ns. The possible 

maximum data delay with respect to the GPS time is therefore 300 ns. The data stored in 

the PC is in a 16-bit format with the most significant 8-bit for the I channel and the least 

significant 8-bit for the Q channel and the data obtained from the ADC output is a sign 

data. The data to be transferred to the DAQ is also fed into the VGA control signal 

generator, whose outputs are sent to the VGA device located on the digital board.  
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Figure 6.5: FPGA Design for Five-Channel Data Collection 
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6.2.4 Control Software Development 

In order to implement the GPS synchronized data transfer from the FPGA to PC via 

DAQ, the related control software is developed in the C language. Because the IS-95 

pilot signal is transmitted at GPS even seconds, it needs the receiver to collect the data in 

GPS even seconds. Once the 1pps signal from the NovAtel OEM4 GPS receiver is 

decoded as an even second, the generated trigger signal in FPGA is used to activate the 

DAQ to receive the data at each rising edge of the FPGA generated REQ signal as shown 

in Figure 6.5.   

 

6.2.5 The Second Generation of CDMA Receiver 

The first generation receiver is suitable for data collection when the Doppler frequency 

does not change significantly during the long integration time. However, it is not 

applicable when the Doppler frequency changes significantly during the integration time, 

such as in the case of dynamic movement of the receiver or the use of the crystal 

oscillator with low stability.  So in the second generation CDMA receiver, the frequency 

de-rotation circuit was added in the Xilinx FPGA as shown in Figure 6.6 to detect the 

Doppler frequency and remove it before the data is transferred to the computer. The 

design of the second generation receiver is given in Appendix E.  

 

Figure 6.6: Xilinx FPGA Board for the 2
nd

 Generation Receiver 
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6.3 Experiment and Performance Analysis 

 

In this section, the field experiment is described. A group of data is measured by the 

CDMA prototype receiver when the SmartMotor
TM

 controls the turntable with steps of 

2.5º. The receiver is treated as a user. The measured data from the nearby CDMA base 

stations is used to estimate the AOA and TOA of the user based on the approach 

proposed in this thesis. 

 

6.3.1 Experiment Setup 

The diagram of the data collection system and the real field measurement system are 

shown in Figure 6.7 (a) and (b) respectively. For calibration purpose, the first spot to 

collect should be a LOS signal environment, such as a building roof or an open area. The 

antenna array should be set perpendicular to the signal from a nearby base station. The 

turntable in Figure 6.7 (a) is to collect the data at different antenna angles in order to 

verify the AOA algorithm. After this process, the data can be collected in various 

locations without the turntable.    
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(a) Diagram of Data Measurement 

 

 

(b) Field Measurement on the Roof of CCIT Building, University of Calgary 

 

Figure 6.7: (a) Diagram of Data Measurement; (b) Field Measurement on the Roof 

of CCIT Building, University of Calgary 
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Here are the data processing steps: 

Step 1: adjust the antenna array orthogonal to the incident ray from the base station 

nearby through geomatic measurement to get channel phase calibration data. 

Step 2: Apply the calibration data to the data measured under different incident angles to 

compensate for the channel phase error in order to apply the MUSIC algorithm 

Step 3: Use MUSIC to estimate AOAs for different raw data sets. The results are shown 

later in this chapter. 

 

Channel Phase Calibration 

The channel phase calibration is important because the F/B Smoothing MUSIC algorithm 

is based on all the antenna elements and their corresponding channels having the same 

channel properties. For example each channel phase characteristics is supposed to be the 

same. However it is impossible to manufacture the hardware of each channel to have the 

same channel phase. So channel calibration is necessary before using MUSIC. Without 

phase calibration, the AOA estimation using the Forward/backward Smoothing MUSIC 

algorithm would result in a large error. The channel phase calibration is carried out by 

putting the antenna array perpendicular to the signal ray coming from the nearby visible 

CDMA BS which, in this case, is located on the West Campus of the University of 

Calgary, as shown in Figure 6.7 and on the diagram shown in Figure 6.8 (a). In this case 

the phase of each channel reflects hardware phase shift and the phase shift of an array 

element with respect to the reference element (first element) will not be counted. Suppose 

that one snapshot data is collected and the autocorrelation functions of five channels are 

),(),(),(),(),( 54321 tRtRtRtRtR  respectively, as shown in Figure 6.8 (b). Then five 
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samples from five correlation functions respectively are obtained, namely  

)(),(),(),(),( 1514131211 τττττ RRRRR ,
 

to calculate the phase of each channel as 
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better average channel phase, N samples are used. Then the phase angle becomes 
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ϕ , where 

kτ  is selected from the correlation function initial rising linear part in which multipath 

has been supposed to be suppressed. 

 

These phase corrections are multiplied by the corresponding five autocorrelation 

functions for phase compensation, resulting in 

54321 )(,)(,)(,)(,)( 54321
ϕϕϕϕϕ jjjjj

etRetRetRetRetR
−−−−−

. The phase-compensated 

auto-correlation functions are then sampled at the initial rising part to construct a data 

matrix processed by MUSIC for further AOA estimation, which is expressed by equation 

(4.4).  
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(a) Channel Phase Calibration Diagram 

 

 

 

 

 

 

 

 

 

 

 

   (b) Autocorrelation Function of LOS Signal from Soccer Field at the Univ. of 

Calgary 

 

Figure 6.8:  (a) Channel Phase Calibration Diagram; (b) Autocorrelation Function 

of LOS Signal from Soccer Field at the Univ. of Calgary 
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element (one channel) after the coarse acquisition process. The integration time is 3 PN 

epochs (80 ms), and the peak pattern therefore repeats three times. Figure 6.9 (b) shows 

the detail shapes of the correlation functions of the five channels from the strongest 

correlation peak, BS1. The strongest peak is from the nearest base station. The resolution 

for the correlation function is determined by the correlation process in the time domain, 

which is chosen to be (1/20) chip, equal to 40 ns because one chip is 800 ns. The 

resolution level affects the processing time required. The higher resolution, the more time 

required. It can be seen that from Figure 6.9 (b) due to the multipath, the width of the 

correlation peak has been enlarged to around 2000 ns, whereas the theoretical width 

should be 2 chips (1600 ns). This results in a shift of the correlation peak. So the 

correlation peak based TOA method will fail in multipath situations. However the 

correlation function’s rising part has not been distorted significantly, because the 

multipath always arrives after the LOS. So the data to be processed by the F/B Smoothing 

MUSIC for AOA estimation is sampled on the correlation function initial part, which 

reduces the impact of multipath. Figure 6.9 (c) shows the correlation functions of five 

channels from another base station, namely BS2, which have smaller correlation peaks. It 

can be seen that the bottom width of the correlation functions have also increased and the 

correlation peaks have been destroyed significantly while the initial part still has a good 

linearity. Due to low signal to noise ratio, the five correlation functions from different 

channels do not align closely.  

 

The above multipath effect from actual data matches the theoretical analysis based on the 

simulated results shown in Section 5.2. An AOA-assisted TOA/TDOA method to 
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mitigate multipath has been proposed and described in Section 5.4.   

 

Figure 6.9: (a) Correlation Functions Obtained in One Channel; (b) Superimposed 

Correlation Functions of Five Channels from a Strong Signal; (c) Superimposed 

Correlation Functions of Five Channels from a Weak Signal 
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6.3.3 AOA Estimation Results and Error Analysis 

Figure 6.10 (a) is the AOA estimation based on equation (4.18) for the strongest signal 

(from BS1) in Figure 6.9 (a) without phase calibration. It is supposed to be at 115º. But 

now it is estimated at 87º and the error is therefore 28º. Figure 6.10 (b) is for the same 

incident ray, but with phase calibration. The estimated AOA is 114º which is a 

remarkable improvement. The small peak in Figure 6.10 (b) is due to 0.7 λ antenna 

spacing. If the antenna spacing is 0.5 λ, there will be no ambiguity. Large antenna 

spacing has weak coupling interference from adjacent antenna, but introduces ambiguity, 

which can be seen from direction vector 
k

d
j

k ea
β

λ
π

β
cos2

)(
−

= . If λ5.0=d , then 

kj
k ea

βπβ cos
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−=  which has no ambiguity; If λ=d , then kj
k ea

βπβ cos2
)(

−=  which 

has ambiguity. 

 



184 

 

 

 

                                                                       

Figure 6.10:  (a) AOA Estimation Spectrum without Phase Compensation                        

(b) AOA Estimation Spectrum with Phase Compensation 

 

In order to get the directional antenna-based AOA estimations from 0º to 180º, a step 

motor provided by Servo Systems is applied to adjust the angle of the antenna array. 

Figure 6.11 shows the estimated AOAs from 0 to 180 degree. Figure 6.12 shows the error 

curve. It can be seen that when the incident ray is between 45º and 170º, the error ranges 

from +2º to -3º. Beyond that, the error increases to 20º. This is due to the insensitivity of 

the antenna array at the endfires, as explained in Section 3.5.  

(a) AOA Estimation Spectrum without Phase Compensation 

(b) AOA Estimation Spectrum with Phase Compensation 
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Figure 6.11:  AOA Estimation Using F/B Smoothing MUSIC 

 

Figure 6.12:  AOA Estimation Error Using F/B Smoothing MUSIC 

 

6.3.4 Multipath Mitigation through the AOA Compensation 

As a result of multipath, the shape of each autocorrelation function from four omni-

directional antennas is different as shown in Figure 6.13 (a), for data collected on the roof 

of the CCIT building. After beamforming using the estimated LOS AOA, which is 
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denoted by LOSβ , the summation of the four correlation function, 
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)cos(*2
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ij

ReR

LOS

∑
=

−−

∑ = , is plotted in Figure 6.13 (b). It shows that 

multipath has been suppressed significantly. It also shows that the amplitude is increased, 

which is helpful for determining the slope of the correlation function rising part. So the 

benefit of using estimated AOA is to filter out some multipath and enhance the SNR of 

the correlation function. 
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Figure 6.13: (a) IS-95 Signal Autocorrelation in Each Antenna Element (b) 

Summation of Four Autocorrelation after Beamforming 
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(a) IS-95 Signal Autocorrelation in Each Antenna Element 

  (b) Summation of Four Autocorrelations after Beamforming 
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6.3.5 AOA-Assisted TOA Results and Error Analysis 

(The antenna used is a BNF1905S (1850 – 1990 MHz) omni-directional antenna)  

The experiment data is obtained from the four locations shown in Figure 6.14, which is 

on the campus of the University of Calgary. The results are described in the four 

scenarios below. The proposed correlation slope-based method is compared with the 

correlation peak-based method, which is also based on multiple channels. The 

comparison with the one-channel correlation peak-based method is also given for 

Scenario 2. 

   

 

 

Figure 6.14: Measurement Locations of AOA-Assisted TOA Test 
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Scenario 1. Data collected in LOS under low multipath effect environment  

Roof of CCIT building, University of Calgary 

In this environment, multipath is reflected from surrounding high buildings, as can be 

seen in Figure 6.15. The side lobe of the correlation function on the falling side is 

different from that on the rising side due to multipath. However the rising part still has a 

good linear shape, which is suitable for the use of the method proposed herein. 

   

 

(a) Correlation Functions from Market Mall Base Station 

 

 

(b) Correlation Functions from Education Tower Base Station 

Figure 6.15: Correlation Functions from Different Base Stations - Roof of CCIT 

Building 
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Based on the above correlation functions from two base stations, after calibration and 

beamforming for each of them, two correlation functions like those of Figure 6.13 (b) can 

be obtained. Then two data segment in the linear part are selected (the principle is 

described in Chapter 5) to estimate the slope and hence the starting point of each 

correlation function. Then the subtraction of these two starting points is the TDOA value 

which is provided in the second column of Table 6.1. This is the process of the proposed 

algorithm. 

 

Another method called the correlation peak-based method is used for comparison. It is 

also based on antenna array process and AOAs are used to sum four correlation functions 

in the direction of LOS to locate the peak position of the summated correlation function 

instead of estimating the correlation function starting point proposed in this dissertation. 

The subtraction of the peak position is a TDOA value, which is provided in the first 

column of Table 6.1. The correlation peak-based method is also subject to calibration and 

beamforming, but no samples at the correlation rising part are needed and that is the 

difference from the method proposed herein. 

 

It can be seen from table 6.1 that under a comparatively clean LOS environment, the 

results from the correlation peak-based and the proposed correlation slope-based methods 

are quite close. This verifies that the proposed method operates well under this condition. 

In order to compare performance, the surveyed value is provided. However the two 

methods have large biases of 217 m and 215 m respectively, with respect to the surveyed 

value. This may be due to synchronization errors among base stations in the CDMA 
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network (Iltis & Mailaender 1996). It can be seen from Table 6.9 that each base station is 

quite stable because this bias remains constant.  

 

Table 6:1: TDOA Estimation Comparison - Roof of CCIT Building 

Correlation Peak-based Correlation Slope-based Survey Reference 

130.9 m 133.4 m 348.0 m 

 

In order to calculate the variance based on the real data, eight mega samples are collected 

which is under 2.5 MHz sampling rate within 3.2 seconds. The variance is computed 

based on 40 groups of data and each group of data is 0.08 seconds which contain three 

epochs of IS-95 PN sequences. It can be seen from Table 6.2 that the actual TDOA 

standard deviation of the proposed method is close to the theoretical standard deviation 

discussed in Section 5.5. The practical standard deviation is a little bit larger than 

theoretical value because the accuracy of the estimated LOS AOA and the linearity of the 

correlation function initial rising part will affect the final TOA /TDOA estimation 

accuracy.  

 

Table 6:2: Correlation Slope-based TDOA Standard Deviation - Roof of CCIT 

Building  

Practical Standard Deviation (8 mega samples) Theoretical Standard Deviation 

3.4 m 1.3 m 
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Front of CCIT building (Location A) 

In this environment, multipath is reflected from the wall of the building as shown in 

Figure 6.16. The multipath effect is low, which can be seen from the correlation function 

shown in Figure 6.17. In such an environment, the proposed method does not show a 

significant advantage over the correlation peak-based method because the peak is not 

significantly shifted. So the TDOA values are very close as shown in Table 6.3. The bias 

is still about 200 m but the standard deviation is still small as shown in Table 6.4.  

 

 

Figure 6.16: Field Measurement - Front of CCIT Building (Location A) 

Omni-directional  

Antenna Array 
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(a) Correlation Functions from Market Mall Base Station 

 

  

                       (b) Correlation Functions from Education Tower Base Station 

Figure 6.17: Correlation Functions from Different Base Stations - Front of CCIT 

Building (Location A) 
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Table 6:3: TDOA Estimation Comparison - Location A 

Correlation Peak-based Correlation Slope-based Survey Reference 

56.7 m 66.3 m  281.9 m 

 

Table 6:4: Correlation Slope-based TDOA Standard Deviation - Location A 

Practical Standard Deviation (8 mega samples) Theoretical Standard Deviation 

1.3 m 0.9 m 

 

Scenario 2. Data collected in LOS under high multipath effect environment 

Front of CCIT building (Location B) 

In this environment, multipath is reflected from the wall of several buildings as shown in 

Figure 6.18. The multipath effect is significant as shown in Figure 6.19(a), where the 

correlation peak has shifted significantly. In this case, the proposed method should have 

better performance than the correlation peak-based method, which can be seen from 

Table 6.12.    

 

Figure 6.18: Field Measurement - Front of CCIT Building (Location B) 

Omni-directional  

Antenna Array 
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                       (a) Correlation Functions from Market Mall Base Station 

 

 

                        (b) Correlation Functions from Education Tower Base Station 

Figure 6.19: Correlation Functions from Different Base Stations - Front of CCIT 

Building (Location B) 
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Table 6:5: TDOA Estimation Comparison - Location B 

Correlation Peak-based Correlation Slope-based Survey Reference 

25.6 m 41.6 m 266.9 m 

 

Table 6:6: Correlation Slope-based TDOA Standard Deviation - Location B 

Practical Standard Deviation (8 mega samples) Theoretical Standard Deviation 

3.9 m 1.5 m 

 

 

Scenario 3. Data collected under LOS and weak signal environment 

Roof of CCIT building 

In this case, a comparatively weak signal from the Varsity Tower base station, which is 

far away, is measured. It can be seen that the proposed method still works well. It can 

also be seen that the CDMA IS-95 signals are quite strong even though the base station is 

far away.   
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                        (a) Correlation Functions from Varsity Tower Base Station 

 

                       (b) Correlation Functions from Education Tower Base Station 

Figure 6.20: Correlation Functions from Different Base Stations - Roof of CCIT 

Building 
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Table 6:7: TDOA Estimation Comparison - Roof of CCIT Building 

Correlation Peak-based Correlation Slope-based Survey Reference 

933.4 m 934.0 m 1151.0 m 

 

Table 6:8: Correlation Slope-based TDOA Standard Deviation - Roof of CCIT 

Building 

Practical Standard Deviation (8 mega samples) Theoretical Standard Deviation 

7.8 m 7.1 m 

 

 

Scenario 4. Data collected under non-LOS multipath environment 

North of CCIT Building 

In the previous scenarios, LOS signals exist and multipath delay was more than 200 ns, 

so the correlation function rising part had not been distorted. The correlation functions, as 

shown in Figure 6.21, are separated because of random NLOS signal delays, incident 

angles and phase on each antenna array. In this case, the proposed method does not work 

properly because MUSIC works only when each incident signal on each antenna element 

has close amplitude characteristics. From Figure 6.21, it can be seen that the amplitude of 

each channel at the sampling point is quite different because of multipath effect on each 

channel. As an auxiliary method, the first correlation peak can be considered the peak for 

LOS signal because it can be treated as the peak of the earliest NLOS signal. 
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                         (a) Correlation Functions from Market Mall Base Station 

 

(b) Correlation Functions from Education Tower Base Station 

Figure 6.21: Correlation Functions from Different Base Stations - North of CCIT 

Building 
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Stability Analysis 

Scenario 1: One location at different time periods  

The data use here is collected on the roof of CCIT building on May 7, 2007, at about 

every one hour interval. The system setup and the calibration of five antennas is the same 

as the previous description in Section 6.3.1. The results are shown in Table 6.9. It can be 

seen from the third column that the TDOA bias varies by about 6 m within the four hours, 

which is the stability of the system including the receiver and the transmitters at the base 

stations. The bias of about 220 m in the third column is due to unknown system offset. 

The survey values were provided by Tellus Mobility, Canada and some of them were re-

measured by Geomatics Engineering department, University of Calgary. 

 

Table 6:9: Stability Analysis of TDOA Bias for Scenario 1 (Roof of CCIT Building) 

Time Slot TDOA Measurement (m) 

(BSs: Market Mall & Edt. Tower) 

TDOA Bias with Survey Reference (m) 

12:31 pm 125.4 222.6 

2:16 pm 125.4 222.6 

3:26 pm 120.5 227.5 

4:00 pm 126.4 221.6 

4:47 pm 120.0 228.0 
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Scenario 2: Different locations measured on different days 

This data is collected at different locations on the University of Calgary campus on 

different days. The results are shown in Table 6.10. The TDOA biases with respect to the 

survey reference at different locations, as shown in the second column, are at the same 

level of about 220 m, which means that the bias is about the same at the different 

locations; as shown in the third column, the measurements on the other day is similar, 

which is reassuring from a consistency point of view.  

 

Table 6:10: Stability Analysis of TDOA Bias for Scenario 2 (Different Locations) 

Locations TDOA Bias with Survey 

Reference (m) 

Day 1 

TDOA Bias with Survey 

Reference (m) 

Day 2 

Roof of CCIT Building 

(BSs: Market Mall & Edt. Tower) 

 

214.6 

 

216.8 

Roof of CCIT Building 

(BSs: Varsity & Edt. Tower) 

 

217.0 

 

215.4 

Front of CCIT Building  

(Location A) 

(BSs: Market Mall & Edt. Tower) 

 

215.6 

 

214.7 

Front of CCIT Building  

(Location B) 

(BSs: Market Mall & Edt. Tower) 

 

225.3 

 

221.9 

 

 

Error Analysis 

One reason for the above constant bias of about 220 m in the TDOA measurements may 

be due to the CDMA network time synchronization accuracy of 1 µs (Iltis & Mailaender 
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1996). As discussed in Section 2.2.2, the TDOA technique does not require 

synchronization of the mobile user to the network because the timing error cancels out. 

So the error from the non perfect GPS synchronized data in the receiver board will not 

contribute to the TDOA error.  However the TDOA technique requires that the network 

should be precisely synchronized for high location performance. This constant bias can 

be compensated at the CDMA base stations. The measured TDOA standard deviation 

under different environments discussed previously may be due to uncontrollable 

systematic errors, e.g. receiver transfer function uncertainty, timing offsets in ADC 

sampling and base station timing uncertainty, etc.   

 

Comparison with Single Antenna-based Correlation Peak Method 

In Table 6.1, 6.3, 6.5 and 6.7, the correlation peak-based method uses the antenna array to 

estimate the correlation peak, which requires calibration and beamforming process and 

then locates the correlation peak position. Here the comparison with the single antenna-

based correlation peak method, which is the conventional correlation peak-based method 

without calibration and beamforming process, is given. Table 6.11 shows the result 

obtained from a low multipath environment from Scenario 1, which is on the roof of 

CCIT building. It can be seen that, in this environment, the single antenna-based 

correlation function peak method produces stable results from one antenna to another, 

which means that each channel is working properly and the correlation slope-based 

method also has similar TDOA value. In this case, the proposed method does not show a 

significant advantage over the correlation peak method. 
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Table 6:11: TDOA Estimation - Roof of CCIT building (Scenario 1) 

Method Correlation Peak-based Method 

(BSs: Market Mall & Edt. Tower) 

     Ch1           Ch2          Ch3           Ch4 

Correlation Slope-based Method 

(BSs: Market Mall & Edt. Tower) 

using antenna array 

TDOA (m) 109.2 102.5 112.9 117.8 119.9 

 

 

Table 6.12 shows the results from an environment with strong multipath (Scenario 2), 

which is in front of CCIT building. It can be seen that the single antenna-based 

correlation function peak method produces unstable results from one antenna to another, 

whereas the correlation slope-based method overcomes this effect through array 

processing using estimated LOS AOAs. In this case, the proposed method shows a more 

dependable result. 

 

Table 6:12: TDOA Estimation - Front of CCIT building (Location B) 

Method Correlation Peak-based Method 

(BSs: Market Mall & Edt. Tower) 

      Ch1           Ch2          Ch3       Ch4 

Correlation Slope-based Method 

(BSs: Market Mall & Edt. Tower) 

using antenna array 

TDOA (m) 106.8 51.8 340.5 22.5 41.6 
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6.4 Conclusions 

 

A CDMA receiver with multiple channels is described, including the RF front end and 

the digital circuit. The multiplexer is implemented by an Altera FPGA to transfer the five 

channels data to a PC via a NI DAQ. The related control software is developed using the 

C language. The experiment is based on measured data from actual CDMA base stations 

at different time periods and locations on the campus of the University of Calgary. The 

data is processed with the proposed AOA-assisted TOA / TDOA algorithm. The results 

show that the proposed method is working in both LOS and multipath environments. In 

LOS environments, the proposed method produces similar TDOA results to those 

obtained from using the correlation peak method. However, in multipath environments 

the correlation slope-based method shows a more dependable result than that of the 

correlation peak-based method (Table 6.12).  
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Chapter Seven: Conclusions and Recommendations for Future Work 

 

7.1 Research Summary  

 

In a positioning system, the AOA and TOA parameters are the major values for position 

estimation. The accuracy of AOA / TOA estimates and the GDOP affect the location 

accuracy significantly. When the signal is strong and multipath is weak, the AOA / TOA 

can be estimated correctly through various methods as discussed in Chapter 2. However 

under multipath environments, the accurate estimations of AOA and TOA become 

difficult because the correlation function of the line-of-sight signals is corrupted by 

multipath.  

 

In this research, a new approach for TOA estimation under multipath environment 

through the use of AOA information was proposed. It is suitable for user-based wireless 

location systems. The test measurement data is from CDMA IS-95 downlink pilot 

signals.  

 

Conventional TOA estimators based on correlation function peak for CDMA signals can 

mitigate multipath with over one chip delay. However the inter-chip multipath cannot be 

resolved efficiently, which results in the shift of the peak especially when the multipath 

signal is strong. As a consequence, the estimation of TOAs based on the correlation 

function peak method is inaccurate in multipath environments. Fortunately, the initial 

rising part of the correlation function still has a good linear shape without distortion by 
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multipath because the latter always arrives later than LOS signal. Usually, the multipath 

delay is larger than 200 ns (in urban areas it is typically larger than 400 ns (Turin 1972)). 

Based on this condition, which is also valid from the experiment results in Chapter 6, the 

estimation of the initial rising slope was investigated to determine TOA. The problem is 

that low SNR at the initial rising part of the correlation function affects performance. 

Then the beamforming technique based on an antenna array is applied to improve SNR. 

In order to enhance the LOS signal strength and mitigate NLOS signals at the same time 

efficiently through the beamformer, the AOA of LOS signals needs to be estimated. This 

is the process that was investigated to make use of the AOA information for the proposed 

AOA-assisted TOA estimation algorithm. 

 

In this approach, the AOA estimation is an important step. The forward/backward 

smoothing MUSIC algorithm is applied to estimate AOA in multipath environments 

because the conventional MUSIC algorithm is not suitable for fully correlated signals 

which exist in such environments. The computational effort using MUSIC is low with 

one dimension search no matter how high the number of source signals is, whereas the 

Maximum Likelihood method needs N dimension search if the number of signals is N and 

other parameters, such as signals’ amplitude and phase are known. One of the limitations 

of the F/B smoothing MUSIC algorithm is that the number of source signals cannot be 

over 2M/3 (M is the number of antenna array elements), otherwise the angles of the 

signals cannot be resolved. This problem is overcome in a CDMA IS-95 system by 

sampling the data at the correlation function initial rising part, where fewer source signals 

are contained. 
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The CRLBs of the AOA-joint TOA method and the proposed AOA-assisted TOA method 

were investigated in Chapter 3. One interesting phenomena that was found for multiple 

source signals is that the AOA CRLB of the AOA-assisted TOA method exists maximum 

and minimum values due to different initial phases of the incident rays. Stoica & Nehorai 

(1989) only discussed the case when the phase of the correlation coefficient xyρ  of two 

signals is zero, so only one CRLB exists. Compared with AOA-joint TOA estimation, the 

AOA-assisted TOA method is a suboptimal method. The advantage of the proposed 

method is that the computation is much less than the Maximum Likelihood method 

because it only needs to search the signal incident angle within 180º; whereas the ML 

method needs to search in multiple dimensions including the signal amplitude, phase, 

incident angle and time delay. 

    

In Chapter 4, a specific AOA estimator called MUSIC estimator was analyzed and 

compared with its CRLB. It can be seen that the unbiased MUSIC-based AOA estimator 

is suboptimal when the angle difference between two incident rays is large. Similar to the 

discussion of the maximum and minimum CRLB in Chapter 3, the MUSIC estimator also 

exist maximum and minimum variances when the phase of correlation coefficient xyρ  of 

two signals is considered. 

 

 In Chapter 5, a specific TOA estimator using a multipath mitigated correlation function 

rising slope is analyzed theoretically and compared with its CRLB.  It can be seen that 

the asymptotically unbiased TOA estimator exists when the SNR after despreading is 
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more than 15 dB but its variance increases with the decrement of SNR after despreading. 

For example, when SNR after despreading is 15 dB, the TOA standard deviation is 36.8 

m. The advantage to process data in the correlation function initial rising part is that 

fewer multipath components were contained in that range. The conventional correlation 

peak-based TOA method fails in multipath environments even if is optimal (Kay 1998).  

      

The experiment described in Chapter 6 is based on data measured by a CDMA receiver 

prototype. The results show that: 

1. The proposed method works in both clean LOS environment (open air area 

without multipath) and multipath environments. 

2. AOA estimates are close to the theoretical values which are accurate to about 1º 

to 2º when the angle of incident ray is perpendicular to the array line; whereas 

when the incident angle is parallel to antenna array, the AOA estimates have large 

error, in which case other suitable base stations needs to be choosen. 

3. TDOA estimates are biased. Theoretically when the SNR after despreading is 

more than 15 dB, it will be unbiased.However, when the practical SNR after 

despreading is more than 30 dB, other practical factors such as the non-

synchronization of the CDMA network base stations may cause a bias. The 

TDOA standard deviation is small and close to the theoretical value of 8 m when 

the SNR after despreading is 30 dB.  

4. A stability test shows that the TDOA measurements vary by 10 m during a one 

hour interval. 

From several scenarios described in Chapter 6, it can be seen that:  
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1. In open air areas with LOS signals without or little multipath effect as in Scenario 

1 of Section 6.3.5, both the correlation peak-based method and the correlation 

slope-based method yield similar results. In this case, the latter one has no 

significant advantage.  

2. In LOS environments with strong multipath as in Scenario 2 of Section 6.3.5, the 

proposed method shows a significant advantage over the correlation peak-based 

method.  

3. In LOS environments with weak signal strength as in Scenario 3 of Section 6.3.5, 

the proposed method still works with standard deviation less than 10 m . 

4. In non- LOS environments with multipath as in Scenario 4 of Section 6.3.5, the 

proposed method deteriorates because the earliest NLOS is treated as LOS, 

resulting in five channel correlation functions separated from one another as 

shown in Figure 6.21. In that case, the MUSIC algorithm cannot resolve the 

incident signals’ angles. 

   

7.2 Limitations of the Proposed Algorithm and Recommended Future Work 

 

Limitations 

Short Delayed Multipath Results in Low SNR at the Correlation Function Rising Part  

The proposed algorithm is based on that the correlation function initial rising part has 

little distortion by multipath due to the certain delay of multipath in city canyon 

environment. The statistical delay value is more than 200 ns (Turin 1972). If the delay is 



210 

 

very small, less than 100 ns, the correlation function initial part will have a small segment 

without distortion, in which area the SNR is small resulting in performance degradation.        

 

The More the Number of Short Delayed Multipath, the Worse the AOA Estimation 

The AOA estimation performance is affected by the number of antenna array elements. 

More array elements results in smaller estimation error. In this research, we use five 

antenna elements which have the ability to resolve three source signals. If the synthetic 

array technique is used, the number of array elements can be increased. The synthetic 

array can be applied in MUSIC algorithm by constructing a new antenna array output 

vector and its auto-correlation matrix by equation (4.4). Then the contents in Chapter 4 

can be used. However during the construction of the new array output vector, it needs to 

determine the phase change in the antenna array which is related with the movement of 

the array. If the movement of the array in a vehicle is random, then it will be difficult to 

parameterize the change of the array phase. So an inertial device will be helpful to apply 

the synthetic array technique for AOA estimation (Ali et al 2007).  

 

AOA Estimation Accuracy Decreases if Signals Come Parallel with Antenna Array 

From the experiment results, it can be seen that the accuracy of the AOA estimation is 

related with the geometric angle between the antenna array line and the base stations. If 

the signal from the base station is perpendicular to the array line, the AOA estimation 

error will be small. If the signal from the base station is parallel to the array line, the 

AOA estimation error will be large. To solve this problem, one possible solution is to add 
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one more linear uniform array orthogonal to the previous one. So when the signal is 

parallel to one ULA, it is orthogonal to the other ULA. This will increase the complexity 

of the algorithm which can be studied in the future. 

 

Without LOS, the Earliest NLOS is Treated as LOS, Resulting in Estimation Error  

The proposed algorithm is on the condition that the LOS exists. In the paper by Qi 

(2003), it proposed a method to estimate TOA based on the NLOS with prior PDF by 

subtracting the NLOS delay from the total time delay. However it still needs to know if 

the received signal is LOS or NLOS which is hard to determine. So in this research, the 

first arrival signal is used as the LOS signal.   

 

Future Work 

More Field Testing 

The experiment is based on the limited measured data. More field testing under a wider 

range of conditions (different environments such as down town areas, different antenna 

spacing and different number of antenna elements) is needed to fully validate the 

approach designed herein.  

 

The Application of the Proposed Algorithm in Tracking Process  

The proposed method is verified through the acquisition process for CDMA IS-95 pilot 

signals. However it can also be applied in tracking process, in which Kalman filter 

technique can be used to predict new AOA estimates based on the previous AOA values 

from MUSIC estimator and the updated AOA estimates will be sent to the adaptive 
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beamformer to enhance LOS SNR and mitigate multipath. Then TOA can be determined 

using the proposed method. The proposed method is also suitable for GPS signal and the 

steps also go from AOA estimation, beamforming for multipath mitigation and then 

correlation function rising slope estimation for TOA determination. The difference is that 

the GPS signal is weaker than CDMA signal, which can be improved through long 

integration and antenna array to increase SNR after beamforming. 

 

Application to Dynamic Cases 

For dynamic application, the impact of coherent integration time on the overall 

performance should be studied. The clock stability, the Doppler shift during the coherent 

integration time will all affect the data collected and cause the signal processing more 

complicated. 

   

Requirements for the CDMA Network  

From the experiment results it can be seen that the synchronization among the base 

stations is very important for location accuracy using TDOA technique because 1 µs time 

offset between two base stations will result in a bias of about 300 metres. The bandwidth 

of the filter before despreading will affect the correlation function’s shape significantly. 

The larger bandwidth, the correlation function will be closer to be like a triangle, which is 

helpful for determining the rising linear part.   

 

 

 



213 

 

Requirements for the Antenna Size 

The antenna array used herein is suitable for amounting on vehicles. For handset 

application, it requires smaller size of antenna which can be distributed around the 

circumference of handset. In that case, the MUSIC algorithm is not applied in a uniform 

linear array. It needs to figure out the phase difference between each antenna element. 
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APPENDIX A: IS-95 SIGNAL PROCESSING IN FREQUENCY DOMAIN 

 

The relationship between the linear convolution and the Fourier transform of the discrete 

signals ][~
3 ns  and ][~ nsl  in Section 2.2.2 is: 
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where symbol (*)  denotes the linear convolution, )(
~

3 ΩS  and )(
~

ΩlS  denote the Fourier 

transform of the signals )(~
3 ns  and  ][~ nsl  respectively. If ][~

3 ns  and ][~ nsl  are the periodic 

discrete signals, the relationship between the circular convolution and the DFT of the 

signals ][~
3 ns  and ][~ nsl  is: 
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where symbol )(⊗  denotes the circular convolution, )(
~

3 kS  and )(
~

kSl  denote the 

discrete Fourier transform of the signals )(~
3 ns  and  ][~ nsl  respectively. 

 

Based on )(
~

)(~ kSns ll −←→− , )(
~

)(~ **
kSns ll −←→  and equation (A.2), the correlation 

between ][~
3 ns  and ][~ nsl  can be implemented in the frequency domain by: 
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Because ][~
3 ns  contains the estimated carrier frequency difference errorf̂ , equation (A.3) 

can also be written as:  



225 

 

)](
~

)(
~

[)(~)(~)ˆ,( *
3

1
1

0

3 kSkSmnsnsfmr l
-

N

n

lerror DF=−= ∑
−

=

                          (A.4) 

Equation (A.3) can be proved generally as follows: 

Considering two sampled signals ][nx  and ][ny , the cross correlation function is given 

by: 
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Both ][nx  and ][ny  may be written as: 
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where ][ fX  and ][ 'fY  are the DFT of ][nx  and ][ny  respectively. Substituting (A.6) 

and (A.7) to (A.5), we obtain the following expression:  
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Considering that )( ' ff − is an integer and 1)()1( ' −≤−≤−− NffN , we can derive 
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Substituting  (A.9)  to  (A.8),  the correlation function of signals  ][nx   and  ][ny   can  be 

expressed as follow:   
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APPENDIX B: CRLB DERIVATION FOR AOA ESTIMATION UNDER 

MULTIPLE SOURCE SIGNALS 

For convenience, the real and imaginary components of a complex vector or matrix )(ty  

are defined as: 
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The fundamental parameter vector in equation (3.46) is expressed as: 
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Assuming that the complex measured data xi(t) is corrupted by Gaussian complex noise 

ni(t), which is identically distributed N (0, 2/2σ ), and the noises are independent from 

sensor to sensor, the parameterized PDF ));(,),2(),1(( θxxx Np L  can be expressed as: 
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The logarithm of ));(,),2(),1(( θxxx Np L  can be derived as: 
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For obtaining the Fisher information matrix  
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the derivations of the parameterized PDF logarithm with respect to 2σ , )(ts , )(~ ts  and 

kϕ  can be written as: 
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Based on (3.44) and (3.45), the vector expression of (B.6) can be formulated as: 
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Now some pre-results for CRLB covariance matrix )(1 θJ −  are needed, which are stated 

and proven in the following: 
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For τ≠t ,  
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For τ≠t , the result is evident since are independent.  

For τ=t , 
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Note that the third-order moments of Gaussian noise are equal to zero. 
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4) If H is a nonsingular complex matrix, and denote its inverse by 1−
∆

= HG , then  
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Thus, the matrix multiplication is as follow:  
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5) If A and D are nonsingular square matrices, then one has the following expression 

(Abadir & Magnus 2005): 
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The method to prove equation (B.12) is similar to that for equation (B.11).  

To obtain the CRLB covariance matrix: 
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the following notations introduce are introduced: 
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Based on equations (B.3) - (B.12), the elements in the Fisher information matrix )I(θ  

can be derived: 
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here lk ,δ  is the Kronecker Delta function, which is equal to 1 if  lk =  or zero if lk ≠ . 
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Based on (B.14) – (B.23), the Fisher information matrix can be derived as: 
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The Fisher information matrix in (B.24) is partitioned into four blocks by two solid lines. 

Thus, the CRLB of φ  can be derived as: 
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Based on equations (B.25) and (B.26), the following expression is derived: 
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Thus, )ˆ(var φCRLB  can be expressed as: 
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If the transformation of parameters is as follows: 
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APPENDIX C: INVESTIGATION OF SIGNAL TO NOISE RATIO AT THE 

PEAK OF THE CORRELATION FUNCTION 

 

Based on the contents in Section 2.2.2, the IS-95 pilot signal impinging the receiver 

antenna can be expressed as: 

[ ])π2sin()()π2cos()(2)( φφ +++= tftPNtftPNAts cQcI              (C.1) 

Suppose that the signal is corrupted by the band pass “white” Gaussian noise with zero 

mean, the noise can be expressed as 

[ ]tftntftntn cQcI π2sin)(π2cos)(2)( +=                          (C.2) 

where )(tnI  and )(tnQ  are the noises of I and Q components as shown in Figure C.1. 

 

Figure C.1: Demodulation of the CDMA IS-95 Signal 

 

After demodulation, the base band components of s(t) can be obtained as: 

[ ]
[ ])π2cos()()π2sin()()(

)π2sin()()π2cos()()(

φφ
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edQedII
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s (t) Signal 

Processing 

Unit 

sI (t) 

sQ (t) 

n (t) 

nI (t) 

nQ (t) 



240 

 

In order to derive the signal to noise ratio at the peak of the correlation function 

conveniently, here assume that 0=ef  and 0=φ . Thus the complex base band signal and 

noise can be expressed as 

[ ]
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                          (C.4) 

where )(tnI  and )(tnQ are “white” Gaussian noises with distribution of N (0, 2/2σ ), 

which has 0)]()([ =tntnE QI  and 212121 0)]()([)]()([ tttntnEtntnE QQII ≠== . After 

the incoming signal passes through a low pass filter with the bandwidth of CT/1  ( CT  is 

the chip period of PN code) and sampled with the rate of CT/2 , the noises at the sample 

points have the following relationship:     

212121 0)]()([)]()([ kkknknEknknE QQII ≠==                            (C.5) 

If defining SNR as the signal to noise ratio before despreading, it can be expressed as: 
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In the correlation process of IS-95 pilot signal, if the integration time is one PN code 

period, the correlation function value at the peak can be derived as: 
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where )()()( kPNjkPNks QIl −=  is the local generated signal for correlation process; K 

=  2
15

. 

Meanwhile the noise output at the correlation function peak can be expressed as: 
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Based on equation (C.5), the variance of )0(nr  can be derived as: 
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As a result, the signal to noise ratio at the peak of correlation function can be obtained as: 
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For M elements of antenna array processing, the signal to noise ratio at the peak of 

correlation function can be expressed as: 
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Furthermore, if the integration time is p periods of PN code, the signal to noise ratio at 

the peak of correlation function can be derived as: 
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where K = 2
15

; M is the number of antenna elements; p is the integration time; SNR is 

signal to noise ratio before despreading. 
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APPENDIX D: INVESTIGATION OF TCXO ALLAN VARIANCE 

 

TCXO stands for Temperature Compensated Crystal Oscillator. Its frequency stability is 

expressed by frequency change within a given time interval τ and usually stated in parts 

per million (ppm). There are two ways to describe frequency stability: Short-term 

stability (Allan variance) within 1~100 seconds and long-term stability (aging) within 1 

day ~ 1 year (10 years). Here Short-term stability is investigated. 

   

Allan variance is defined by one half of the time average over the sum of the squares of 

the differences between successive readings of the frequency deviation sampled over the 

sampling period. It is normally expressed by: 

                        2
1

1

2 )]()1([
)1(2

1
iyiy

M

M

i

y −+
−

= ∑
−

=

σ       

y(i) = [x(i+1) – x(i)] / t is called the fractional frequency value averaged over 

measurement interval t, which is computed by two adjacent sampled data x(i); M is the 

number of fractional frequency values. These parameters are described in Figure D.1. 

                     

Figure D.1: Allan Variance Description 
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Here y1 = [x(2) - x(1)] / t and x(i) is also called clock signal’s “phase” because different 

points show different  statuses of the signal. The data rate is 10
7
/2

16
 = 152 

samples/second (the clock is 10 MHz and the counter is 16-bit). So the number of data 

collected in 1000 seconds is 1000*152 = 152000 samples. The calculation of Allan 

Deviation at τ = 1 s requires about 100 seconds of data (Fruehauf 1991). In this research, 

15 hours of data have been collected. Figure D.2 is the circuit to collect the clock data 

based on FPGA. 

 

 

Figure D.2: FPGA-based Circuit for Allan Variance Measurement 

 

Figure D.3 is the result for square root of Allan variance which is called Allan deviation 

(ADEV). The time interval is from 1 ~ 10000 seconds. The conclusions are as follows: 

1. When τ <15 (Rubidium) ~ 50 (TCXO) seconds, the ADEV increases; This trend is 

different from the theoretical Allan deviation curve. This is due to the  

(a) initial aging process  

(b) system noise  
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(c) data discontinuity 

2. After 15~50 seconds, the ADEV goes down correctly. 

3. The sinusoidal noise exists in the plot due to the uncertainty of the measured Allan 

variance (Hou 2004). 

4. The rubidium is Ball Efratom FRK mode. It has more stable curves with respect to the 

different warm-up time than that of the TCXO. 

5. Rubidium is more close to the specifications in (Fruehauf 1991) as Table D.1.  

6. Both TCXO data and rubidium data are collected in 15 hours which has a total of 

8208000 samples.  

 

 

Figure D.3: Measured Allan Deviation for TCXO and Rubidium 

 

Interval time ( (seconds) 

Allan Deviation 
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Table D.1 Allan Deviation for Rubidium 

Time Interval Specifications Measured Values 

τ = 1 s 3×10
-11 

3×10
-12

 

τ = 10 s 1×10
-11 

1×10
-11

 

τ = 100 s 3×10
-12 

6×10
-12

 

τ = 1 hr 1×10
-12 

2×10
-12

 

 

    

Table D.2 Allan Deviation for TCXO 

Time Interval Specifications Measured Values 

τ = 1 s 1×10
-11 

1×10
-10

 

τ = 10 s 1×10
-12 

6×10
-10

 

τ = 100 s 1×10
-12 

9.5×10
-10

 

τ = 1 hr 3×10
-11 

2.5×10
-10

 

 

Even though the measured result for this particular TCXO is not as good as the 

specifications, it is stable enough for this research. For example, if the TCXO stability is 

1×10
-10 

in one second, then the frequency change at RF 1.9 GHz will be 0.19 Hz which is 

small for this application.  
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APPENDIX E: DEVELOPMENT OF THE SECOND GENERATION RECEIVER 

FOR LOCATION SYSTEM 

 

The second generation receiver still receives five channels signals parallel from the RF 

front end. After down conversion to IF signal, it comes to a digital board as shown in 

Figure E.1. The digitized signals of five channels are transferred to FPGA serially 

through the OE (output enable) control signal. The input and output data of FPGA are all 

differential voltages. Inside the FPGA, the serial input 8-bit I and Q data of five channels 

are converted to parallel data in order to be sent to AGC unit and frequency de-rotation 

unit as shown in Figure E.2. The function of frequency de-rotator is to measure the 

frequency offset or called the Doppler frequency caused by the clock uncertainty and the 

movement of the receiver and then compensate that frequency offset. This step is newly 

added with respect to the first generation receiver. The benefit is to make signal 

acquisition in laptop finished quickly without 2-D search and then the coarse PN code 

phase can be sent back from laptop to FPGA tracking unit via USB port. So the second 

generation receiver can work in real time mode. The tracking unit consists of 50 

correlators for one signal’s tracking and each of them is shown in Figure E.3 (Alfredo et 

al 2006). The use of accumulator can greatly reduce the amount logic cells required. The 

control of whether the accumulator should add or subtract is determined by the local PN 

bit. If the bit is 1, then the accumulator should add; otherwise, it should subtract. The 

accumulator is initialized with zero and is reset at every one PN code epoch. The 50 

correlators outputs of one signal are sent to PC for displaying as shown in Figure E.4, 

where the correlation functions of five signals from five base stations are given. The peak 
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of the correlation function determines the time of arrival. In order to track one signal, the 

local PN code generator’s phase is adjusted based on the peak value located in one of 50 

correlators outputs. 

 

Figure E.1: Digital Circuit Diagram of the Second Receiver 
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Figure E.2: FPGA Design Diagram in the System 
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Figure E.3: Accumulator-based Correlator 

 

 

Figure E.4: Correlator Outputs from Five Different Base Stations 
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APPENDIX F: DERIVATION OF TOA CRLB FOR IS-95 PILOT SIGNAL 

 

Note that the time delay for TOA is within the range of  

                                               T<≤ τ0  

where T  is one period of PN sequence. 

Let’s consider the first term of the denominator of equation (3.63): 
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Using Fourier transform properties, one has the following formula: 
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where )(ωPN  is the spectrum of )(tPN , which can be expressed as: 
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Thus 
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If the bandwidth of )(ωPN  is ]/2,/2[ CC TπTπ−∈ω , it yields:  
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Finally one has the following result:  
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Next, let’s investigate the second term of the denominator of equation (3.63). Similar to 

equation (F.1), one has the following expression:  
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Intuitively, )(
)(

tPN
td

tdPN
Q

I  can be taken as a random signal, therefore the following 

result can be obtained: 
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It can be proven in the frequency domain. The integration in (F.2) can be changed to a 

convolution format through the following definitions: 
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Based on equations (F.5) and (F.6), the following relationship is obtained: 
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By defining ][ ⋅F  as Fourier transform, the following Fourier transform properties are 

used: 
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Based on equations (F.3) and (F.8), the convolution value in equation (F.7) is derived as: 
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Considering the even and odd properties of the integrated function, the above integration 

is expressed as: 
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Because ])(sin[)
2

sin( C
C TlkK

T
−−ω

ω
 is periodical, the above integration is close to 

zero. It can be proven as follow.  

Defining a and b as: 
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256 

 

and substituting 2)
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can be simplified to: 
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Based on (F.4) and (F.11), the CRLB of TOA for an IS-95 pilot signal is as follows: 
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where 
2

2γ

σ
=SNR  is the signal to noise ratio before despreading; 152=K  is the length of 

IS-95 PN sequences; M  is the array elements and CT  is the chip period . 

 




