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Abstract

A wireless location system including hardware and software for multipath is developed
and evaluated using measured data from CDMA base stations. An AOA (angle-of-
arrival)-assisted and correlation slope-based TOA/TDOA method is proposed, which is a

sub-optimal estimation for TOA/TDOA.

The AOA estimation is based on a Forward/Backward Smooth Multiple Signals
Classification algorithm through the use of an antenna array. A beamforming technique is
applied to partially mitigate multipath and the initial correlation function rising part is
used to further mitigate multipath based on the estimation of its slope and starting point.

So the correlation peak can be located to obtain TOA / TDOA.

The Cramer-Rao Lower Bounds of both the joint AOA / TOA method and the proposed
method are also investigated. The experimental results agree with the theoretical analysis.
The standard deviation of TDOA is 8 m in a real environment, where the signal to noise
ratio at the correlation peak after 3 PN epochs integration is 30 dB (multipath strength
may be also very strong at the correlation peak). It meets the FCC requirements of 50 to
150 metres. The data was collected outdoor under various conditions with little or strong
multipath effect. It shows that the proposed method works efficiently when Line-of-Sight
(LOS) signals exist in the multipath environments and deteriorates when LOS signals do

not exist.
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Chapter One: Introduction

1.1 Introduction

Terrestrial-based location systems have been researched and successfully deployed for a
few decades but with limitations in accuracy due to multipath and geometry, and
complexity in infrastructure development. Code-division multiple access (CDMA)
systems have partially overcome this deficiency, as its wide bandwidth is inherently able
to resolve some of the multipath. CDMA systems assign each user a unique pseudonoise
(PN) spreading code, which makes the identification of multipath with delay over one PN
code chip epoch efficient by signal correlation processing because the correlation peak of
multipath over one chip does not affect the correlation peak position of direct signal. In
CDMA systems, one chip epoch is about 800 ns that equal to 240 metres in distance.
However the intra-chip multipath, that is the reflected rays arriving within a chip period
of the first ray, cannot be resolved by a correlation technique and is still a significant
factor limiting location accuracy. The accuracy requirements of the enhanced 911(E-911)
mandate proposed by the Federal Communications Commissions (FCC) were set to
within 50 m for 67% of calls and within 150 m for 95% of calls for handset-based
solutions (FCC 2001). In order to meet the accuracy requirements in handset-based

solutions, the mitigation of the effects of intra-chip multipath must be considered.

Many existing wireless location systems, such as the Global Positioning System (GPS)

and Loran C, utilize radiolocation techniques. In these systems, the mobile station (MS)
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estimates its own position. As an alternative, cellular networks can be used to provide the
location service when GPS signals are very weak. An advantage of this approach is that
the signals from the cellular base stations travel shorter distances than the GPS signals
and the signal to noise ratio received by CDMA receivers is comparatively strong
compared to GPS signals. Also the pseudo-code used in cellular networks is longer than
that of the GPS, so it has better cross correlation characteristics. However the cellular
networks are initially designed for communication and not for location application. For
example, the time synchronization quality and the signal bandwidth requirement are
different from GPS. So the terrestrial-based location systems have lower location
accuracy than GPS, which can be at the centimetre level when used outdoor (e.g.
Lachapelle & Cannon 2004). Even so, ground-based systems remain an alternative to
provide location in the situations where the GPS signal availability and accuracy are still

limited as indoors and in other signal shaded areas (ibid).

There are two major methods to implement a cellular network-based location system. In
the first approach, the mobile station (MS) receives signals from the base stations (BS) to
calculate its own position, as in GPS. In the second approach, the BSs process the signals
from the MS to locate the user. The second approach has the advantage of no
modification requirement on users. There are several systems using cellular network-
based or GPS-assisted cellular network-based solution for location, such as gpsOne® by
Qualcomm, in which a cell phone user receives GPS signals and is connected to a
network-based location server which calculates the user location, and Matrix technology

by Cambridge Positioning Systems, which is based on GSM (Global System for Mobile
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Communications) system, and Cellocate™ by Cell-Loc Inc., which is based on AMPS
(Advanced Mobile Phone Service). For research purpose, the user-based approach is
more flexible. The approach investigated herein is based on the present CDMA 1S-95
system and uses a prototype CDMA receiver with an antenna array mounted on a vehicle
partly developed by Shanmugam et al (2005) to receive IS-95 pilot signals from several

base stations to calculate the position of the MS.

1.2 Motivations and Limitations of Previous Research

There are several methods for implementing radiolocation, such as signal strength (Figel
et al. 1969), angle of arrival (AOA) (Sakagami et al. 1992), time of arrival (TOA)
(Messier & Nielsen 1999) / time difference of arrival (TDOA) (Goud et al. 1991), or their
combinations, such as AOA/TOA (Ma 2003). These methods work well under certain
conditions of noise, interference, and multipath. Among those error sources, multipath is
the most difficult problem to deal with and significantly affects the location accuracy in
both GPS and cellular network-based location systems. Especially in urban areas, the
location accuracy decreases because more multipath is present. The following

characterizes the above location techniques and their drawbacks.

Signal strength based location systems are adversely affected by the changes in the
environment. The primary source of error is multipath fading. So this method is usually
used to determine the cell by making use of pre-measured signal strength contours

mapped out for each BS (Smith 1991).
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The accuracy of the AOA method is limited by the physical size of the array, SNR and
carrier frequency. And most of the algorithms are based on the assumption that the signal
essentially emanates from a single point. This assumption is reasonable for radar and
macro-cell (10 km of radius) applications, where the receiver is located relatively far
from the source. However for the micro-cell (2 km radius) application, the source cannot
be treated as a single source. It should be modeled as a spread source (Svantesson 2001).
So the AOA method is impractical for micro-cell. A 1" error can result in 17.5 m of

positioning error when the distance between the BS and the MS is 1 km, i.e. rsin(6,,,,,) -

So the AOA only method is usually used for lower-accuracy applications or in

conjunction with other measurements.

AOA systems are susceptible to angular multipath (Gans 1972). Thus, the TOA method
outperforms the AOA method in urban areas where multipath exists significantly, and
vice-versa in open areas. Even so, multipath is still a major error in TOA systems. The
conventional correlation peak techniques used in the TOA method cannot detect intra-
chip multipath components. If the direct ray arrives with less power than the delayed
rays, the correlation peak will be shifted due to the stronger multipath signal, which
results in a bias in the tracking loop. Several methods have been developed to mitigate
multipath, such as the Root-MUSIC algorithm (Klukas 1997, Dumont 1994), the least
mean squares (LMS) technique (So & Ching 1993) and the recent multiple DLL
architecture (Dovis et al 2004). However the mitigation of multipath is still an on-going

area of research.
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The TDOA method is a more practical way for location measurements than TOA because
it does not require that the entire system be equipped with precisely synchronized clocks
and it also does not require the timestamp labelled in the transmitting signal for the
receiver to estimate the distance the signal has traveled. It only requires that the
synchronized network and the unknown MS clock offset cancels out when differencing
any two TOA measurements. However it still needs LOS (Line-Of-Sight) signals as in
the techniques above to obtain a good performance. So the TDOA method is still affected

by multipath.

A joint AOA and TOA technique had been proposed, such as the Joint Angle and Delay
Estimation (JADE) (Van der Veen et al 1997) and the TST-MUSIC (Wang et al 2001).
Even though performance improvement is achieved by sacrificing simplicity, the

inaccuracy of the estimated AOA and TOA and multipath still affects the results.

Even though numerous methods have been proposed to deal with multipath (Tarighat et
al 2003, Kim 2004, Falletti et al 2006), there is still not an efficient way to mitigate
multipath due to its complicated characteristics. Multipath is a signal which reflects from
various objects. If the signal is reflected from a smooth surface, the reflected signal is
specular. If the signal is reflected by sharp edges, the reflected signal is scattered in all
direction and called diffuse multipath. Multipath models can be found in (Ertel 1998,

Jakes 1993, Rappaport 1991).
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There is the case when no LOS signal exists. In this case, an option in principle is to use
inertial navigation techniques to bridge gaps in location continuity. Inertial navigation
systems (INS) use gyros and accelerometers to update the location by integrating rotation
rates to obtain orientation changes and doubly integrating the accelerations to obtain
velocity and position increments (Jekeli 2000) from the last previously known position.
This technique can be used in cases when buildings obscure line of sight propagation
until a new position can be calculated (Petovello 2003). However the cost of sufficiently
accurate INS for such purpose is prohibitive. Another option is to extract the LOS from
the NLOS with prior PDF by subtracting the known amount of NLOS delay from the

total time delay (Qi 2003).

1.3 Objectives and Novel Contributions

The primary objective of the present research is to develop a practical signal processing
method in user-based location systems to estimate the angle of arrival (AOA) and then
the time of arrival (TOA) for the LOS signal under multipath environments. This is
achieved through the use of multi-element receiver antennas which are implemented in

hardware suitable for hand set or mounting on a small vehicle.

The major original work is summarized as follows:
1. Propose a practical scheme for AOA-assisted TOA estimation under multipath

environment as shown in Figure 1.1
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. Apply Forward/Backward Smooth MUltiple Slgnal Classification (MUSIC)

algorithm to a CDMA receiver with a limited capacity of resolvable angles of the

incident rays for AOAs estimation in multiple multipath signal environments

. Derive mathematically the Cramer-Rao Lower Bounds (CRLB) for separate AOA

and TOA estimators and joint AOA / TOA estimator in single source signal

environments

. Propose an initial correlation function rising slope-based method to determine the

correlation peak of the LOS based on the conclusion through the investigation of
AOA CRLB: decreasing the number of source signals is more efficient than

increasing the signal to noise ratio

. Derive the estimated variance for the AOA-assisted TOA estimator

. Contribute a hardware platform in FPGA design and implementation, real data

collection and verification

. Develop software to implement the proposed algorithm and verify it with actual

measured field data.
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Figure 1.1: Flow Chart of AOA-Assisted TOA Estimation for Multipath Mitigation

The proposed AOA-assisted TOA method consists of five main steps.
The first step is to find the coarse correlation peak position based on the traditional
sliding correlation technique using FFT processing. The derived correlation peak is

distorted by multipath. We cannot rely on that correlation peak to estimate the TOA.
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However the sampled data from five correlation functions can be used for processing by
MUSIC to estimate AOAs of the received signals as an initial estimated values to be
applied to the TOA technique.
The second step is to use a forward/backward smooth MUSIC algorithm to estimate
AOAs of the signals contained in the sampled data. The data to be processed by MUSIC
is sampled at the correlation functions in such a way that few multipath signals are
contained and only in the initial leading edge of the correlation function, the sampled data
contain fewer numbers of signals. Because the forward/backward smooth MUSIC
algorithm can resolve three AOAs with five antenna elements (Pillai 1989), so the first
and second step are an iterative process until the F/B smooth MUSIC works efficiently on
the sampled data.
The third step is to extract the LOS signal from the AOAs estimation derived in step 2
through the adaptive beamforming technique based on the antenna array of five elements
and augment the SNR of the LOS signal at the same time, which is described in Chapter
5. The purpose of using AOA estimation is to help identifying LOS and NLOS (Non-
Line-Of-Sight) signals and then mitigating NLOS signals through array signal processing
technique in order to reconstruct an initial correlation function rising slope with little
distortion from multipath. The accuracy of AOA estimation and the number of detected
signals obtained by the MUSIC algorithm will affect the improvement of LOS SNR,
because the pattern construction of the beamformer is affected by the number of source
signals and if the estimated AOA is out of the main lobe range of the beamformer, the

desired signal cannot be enhanced.
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The fourth step is to apply a correlation technique in the time domain to determine the
correlation function rising slope and intercept based on the result from the third step. A
linear model needs to be established for the unknown parameters estimation. And that
estimator reaches the CRLB.
The fifth step is to derive the starting point of the correlation function based on the

estimated correlation function rising slope and intercept from the fourth step. By adding a

modified offset of one chip period with TC' to the starting point, the LOS TOA can be

estimated. Because the bottom width of the correlation function of the real data is

different from the theoretical value of one chip 7~ due to the bandwidth of the base band

filter applied, it needs to modify that offset based on the real bandwidth of the received
signal. At this time, only the noise will affect the TOA estimation accuracy which has
however been improved by the summation of the signals from the five antennas. The
assumption of the proposed method is that LOS exists. If the LOS does not exist, the
earliest NLOS is assumed to be the LOS, which will result in error. In that case, one

needs to consider NLOS with a prior probability density function (Qi 2003).

The proposed method improves the TOA system under multipath environment through
the AOA measurements. The AOA estimation is based on the forward/backward smooth
MUSIC algorithm because it has a light computation burden compared with the
Maximum Likelihood method, which searches the angles in multi-dimensions. The
MUSIC algorithm can attain the CRLB for large numbers of samples, large numbers of

array elements, and high SNRs. A detailed analysis of the MUSIC estimation errors is
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given in Chapter 4. TOA estimation is based on the rising slope of correlation function,

whose minimum estimation variance is two times of TOA CRLB. However the practical

standard deviation of TDOA is 8 m in a real environment, where the SNR after

despreading is 30 dB, which meets the FCC requirements.

To implement the above objective, the following issues are addressed.

Investigation of the Forward and Backward Smoothing MUItiple Slgnal
Classification (MUSIC) algorithm (Pillai 1989) for AOA estimation

Array signal processing to filter out the NLOS based on the estimated AOA
bearing

Correlation technique for TOA estimation under multipath environments
CRLB analysis for AOA and TOA/TDOA estimation

Development and verification of practical algorithms

Practical implementation onto an FPGA, which is based on real time data
collected by a CDMA receiver with five antenna elements. This will provide a
means of conveniently obtaining ample experimental data for algorithm
development and statistical validation as well as demonstrating the feasibility
of the proposed algorithms.

Hardware assembly and testing for antenna array with five elements to collect
real data

Analysis of the data for AOA and TOA/TDOA estimation



12
Subsequently, the following tasks are required:

e Design and test a CDMA receiver hardware platform, including antenna array
placement, to collect the propagated measurement data

e Develop the software for the forward/backward smooth MUSIC algorithm to
derive the AOAs of the received signals

e Design an adaptive beamforming algorithm to filter out the NLOS signals
based on the derived AOAs and analyze the effect of the antenna spacing on
AOA estimation

® Propose a correlation function slope detection algorithm for TOA estimation

® Analyze the effect of multipath on TOA

e Test the above under field conditions to verify the proposed approach

e Comparison of CRLB based on the estimation theory, simulation and real data

1.4 Thesis Outline

There are seven chapters and six appendices in this dissertation. The subsequent chapters

are as follow.

Chapter 2 provides the background knowledge about CDMA-based location systems,
including an introduction of the CDMA communication system and IS-95 standards, and
several location techniques, such as the TOA, TDOA and AOA method, the effect of
geometric dilution of precision (GDOP) and a brief literature review of the present

wireless location techniques.
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Chapter 3 explains the minimum variance unbiased estimator from the estimation point of
view. It discusses the CRLB of AOA estimation and derives the CRLB of TOA
estimation in CDMA IS-95 systems. The theoretical variance error analysis for AOA
estimation is given based on the direction vector sensitivity and GDOP. The estimation
error comparison between AOA CRLB and the MUSIC estimator is given in Chapter 4,
and the comparison between TOA CRLB and the proposed TOA estimator is given in

Chapter 5. The error analysis with the measurement data is given in Chapter 6.

Chapter 4 describes the AOA estimation algorithm. The signal model for the algorithm is
examined. The conventional MUSIC and F/B (forward/backward) Smoothing MUSIC
algorithm is fully discussed from the vector space theory point of view, also including the
limitations and the AOA estimation error evaluation for the F/B Smooth MUSIC

estimator. The F/B Smoothing MUSIC AOA estimator is asymptotically optimal.

In Chapter 5, the AOA-assisted multipath mitigation approach for TOA estimation is
described. The array signal processing for the antenna array with five elements is
discussed. The SNR improvement of the LOS after the array signal processing is shown.
TOA estimation variance is derived based on the linearized vector parameter
transformation of the correlation function initial rising slope and its intercept though a

coordinate transform.

Chapter 6 describes the hardware system used herein, its design and implementation,

including the RF circuit and FPGA circuits. Related firmware development is
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demonstrated and its specifications are also provided. The experiment results are also
presented in this chapter, including the experiment setup, the calibration of the antenna
channel phase. The receiver antenna array is put on the roof of Calgary Centre for
Innovative Technology (CCIT) building at the University of Calgary, so the AOAs of the
received signals with respect to the surrounding CDMA base stations are determined
when the receiver antenna array is rotated in different directions. The experiment result
based on the raw data is given for comparison with the simulation results. The effect of
the estimated AOA on the TOA is also investigated. The TDOA measurement is given

and its standard deviation is compared with the theoretical value.

Chapter 7 concludes the thesis with a research summary including the advantages and the

limitations of the proposed algorithm, and recommendations for further investigations.

Finally, the appendices include background information of selected relevant topics, such
as CDMA IS-95 signal processing, derivation of CRLB for AOA estimation, Allan

variance measurements and the design of the second CDMA receiver.
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Chapter Two: CDMA-based Location Systems

2.1 CDMA Communication Systems

In this chapter, some location techniques such as AOA, TOA and TDOA are described.
Specifically CDMA 1S-95 system is discussed because signals analysis and data
measurement are all based on it. CDMA (Code Division Multiple Access), originally
commercialized by Qualcomm (Qualcomm 2006), is characterized by its high spectral
efficiency and good anti-jam performance. IS-95 CDMA is the second generation of
cellular network technology with a typical data rate of 9.6 kbps per channel, which
appeared in the 1990’s in North America. The following is a general description of the
IS-95 CDMA system, which is fundamental to the geolocation system being developed

and investigated in this thesis.

In single carrier CDMA systems all users transmit in the same bandwidth simultaneously.
To implement this approach, the concept of “spread spectrum systems" was introduced.
In this technique, the frequency spectrum of a data-signal is spread using a code
uncorrelated with the data-signal. As a result the bandwidth is much higher than required
for the data. The codes used for spreading have low cross-correlation values and are
unique to every user. So a receiver that has knowledge about the code of the intended

transmitter is capable of selecting the desired signal.

Major advantages are:
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» Low power spectral density. As the signal is spread over a large frequency-band,
the Power Spectral Density becomes very small, causing minimal interference

with other users using the same band.

e Privacy due to unknown codes. The applied codes are usually unknown to a
hostile user. This means that it is hardly possible to decode the message of

another user.

e Applying spread spectrum implies the reduction of multipath effects.

¢ Good anti-jam performance.

¢ Frequency diversity.

o High spectral efficiency.

2.1.1 Spread Spectrum

Originally for military used to avoid jamming, spread spectrum modulation is now used
in personal communication systems for its superior performance in interference
environments and better capacity in wireless fading channels. Spread spectrum means
that the data transmitted occupies a larger bandwidth than necessary to avoid
interception. The frequency of a conventional wireless signal is kept constant, for
example FM 103.1 MHz, so the bandwidth can be kept within certain limits, and the
signal can be easily intercepted by someone who wants to retrieve the information.

Bandwidth spreading is accomplished before the transmission through the use of a code
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with high bit rate, which is independent of the transmitted data. The same code is used to
demodulate the data at the receiving end. Figure 2.1 illustrates the spreading done on the
data signal x(t) by the spreading signal c(t) resulting in the message signal to be

transmitted, m(t).

x(t)
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c(t)

(a) Direct-Sequence Spreading Diagram
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(b) Time Sequence

Figure 2.1: (a) Direct-Sequence Spreading Diagram; (b) Time Sequence
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2.1.2 Pseudo-Noise Sequences

In order to overcome narrow band interference, the spreading signal needs to behave like
noise (Proakis 2001). Random binary sequences are such functions. They have the

following important properties:

e Balanced: they have almost equal number of 1's and 0's to avoid mean values

(having an extra ’0’)

e Periodic narrow peaks of auto-correlation function as shown in Figure 2.2 (a)

Theoretically, the auto-correlation function of a random binary sequence is a triangular
waveform as shown in Figure 2.2 (a), where T¢ is the duration of one chip and N is the
period of the PN sequence. Practically due to finite bandwidth of the filter in the

transmitter and receiver, the auto-correlation function becomes curvy.

PN sequences are periodic sequences that have a noise like behaviour. They are generated
using shift registers, modulo-2 adders (XOR gates) and feedback loops, as shown in

Figure 2.3.
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The maximum length of a PN sequence is determined by the length of the register and the
configuration of the feedback network. With N bits register, since the feedback network
performs linear operations, if all the inputs (i.e. the content of the flip-flops) are zero, the
output of the feedback network will also be zero. Therefore, the all zero combination will
always give a zero output for all subsequent clock cycles, so it is not included in the
sequences. Thus, the maximum length of any PN sequence is 2"-1 instead of 2~ and
sequences of that length are called Maximum-Length Sequences or m-sequences. In IS-95
systems, a zero is inserted in each sequence after the contiguous succession of fourteen
zeros to generate the pilot PN sequence of length 215 chips. It is based on the following
characteristic polynomials as expressed in equation (2.1) for ‘I’ and ‘Q’ pilot PN
sequences respectively and its autocorrelation function is shown in Figure 2.2 (b). The
difference between m-sequence correlation function and pilot PN sequence correlation

function is that the side lobe of the latter one is not constant.

PB(x)=x"+x"+x7+x°+2"+x° +1 o0
Py(x)=x"+x" +x"+x"+ 20+ +xt + 20 41 '

Based on the above characteristic polynomials, the pilot PN sequences I(n), for example,
can be generated by a 15-stage shift register as shown in Figure 2.3. The last register is
numbered zero and the first one is numbered 14. Equation (2.1) tells us that, for ‘I’
sequences, registers 0, 5, 7, 8, 9, and 13 should be tapped and summed in a module 2

adder. The output of the adder is then input to register 14.
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Figure 2.3: IS-95 In-Phase Pilot PN Code Generator

The pilot PN sequences /(n) and Q(n) are generated by the following recursive formulas:

In)=in-15@in-100@i(n-8)@i(n—7)@i(n—6)Di(n—2)
On)=qn—-15@qgn-13)@gn-11)®qg(n-10)® g(n—-9) ® g(n—-95) 2.2)
Dqg(n-4)®q(n-3)

where n equals the number of shift register 15. The initial state of the ‘I’ and ‘Q’ pilot
PN sequence is defined as the state in which the output of the pilot PN sequence
generator is the first ‘1’ output following fourteen consecutive ‘0’ outputs. The rate of
this PN sequence (called the chip rate) is 1.2288 Mcps. This results in the bandwidth of
the spread signals to be about 1.25 MHz, which is about one-tenth of the total bandwidth
allocated to one cellular service carrier. The sequences repeat themselves exactly 75

times every 2 seconds.

2.2 Wireless Location Techniques

Basically there are three types of wireless location techniques:
e Signal power strength method
® Angle of Arrival method

e Time of Arrival / Time Difference of Arrival method
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In this thesis, the TOA method is assisted by the AOA method. The investigation of the
signal processing is therefore focused on AOA and TOA methods based on the CDMA

pilot signal.

2.2.1 AOA Technique and Algorithm

In the AOA method, the location of the desired target in two dimensions can be found by
the intersection of two LOS bearings, each formed by a radial from a base station to the
mobile target, as shown in Figure 2.4. It does not require the synchronized system time.
Only two AOA measurements are needed. For 3D location, the desired target can be
calculated from the intersection of a minimum of three surfaces of position if the base
station geometry is sufficiently good. The accuracy of the AOA method is dependent on
the distances between and relative geometry of the MS to be located and the antenna
arrays at BSs. The further the MS is from the antenna arrays, the larger is the positioning

uncertainty because F,,. o« rog, where r is the distance and o4 is the estimated

AOA error.



23

ADAT

Figure 2.4: AOA Technique

Conventional direction finding technique using beamformer dates back to the Second
World War for source location in radar and sonar. It is an application of Fourier-based
spectral analysis to spatiotemporally sampled data. The advantage of using Discrete
Fourier Transform (DFT) is that it can be implemented through Fast Fourier Transform
(FFT) to speed up the computation. The drawback of the DFT is its low resolution. To
provide high resolution, super-resolution methods, such as the MUItiple Slgnal
Classification (MUSIC) (Schmidt 1979), the Estimation of Signal Parameters via
Rotational Invariance Techniques (ESPRIT) (Roy & Kailath 1989) and the Maximum
Likelihood (ML) (EI-Behery & MacPhie 1977) methods were developed. In this
research, a modified MUSIC algorithm called the forward/backward smoothing MUSIC
technique is applied because it can estimate AOA under multipath environments and can

be implemented in actual hardware (Kim et al 2003). The ESPRIT method cannot give as
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narrow peaks as MUSIC does to easily determine AOAs although it is less
computationally intensive than MUSIC (Roy & Kailath 1989). The ML solution is
computationally prohibitive, especially when multiple sources exist, although it is more
robust and has a smaller estimation error as compared with MUSIC (Schmidt 1979). The
following is a high level description of the MUSIC algorithm to estimate AOAs. A

detailed explanation is given in Chapter 4.

Conventional MUSIC Algorithm
The eigen structure-based super-resolution technique MUSIC was proposed by Schmidt
(1979). It is based on a Uniform Linear Array (ULA) to formulate the second order

moment of the received signal, i.e. the spatial covariance matrix defined by

R=E {x(t)xH ()}, where symbol ( H ) denotes the Hermitian transpose and x(¢) is the

array output vector (see equations 4.1 to 4.4). Thus the first step of MUSIC is to
decompose the covariance matrix into two parts of eigen signal subspace and eigen noise

subspace.

The fundamental properties are:

(1) The noise eigenvectors construct the noise subspace matrix.

(2) The eigenvectors corresponding to the minimal eigenvalue are the noise vectors and
orthogonal to the columns of the direction matrix, namely and to the K signal direction

vectors.
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Based on the above properties, the AOAs can be determined by searching through all
possible steering vectors a(f£). When al (B)Vy =0, where V, is noise subspace matrix

defined in equation (4.15), the corresponding f is the AOA of an incident ray, because

only the source signal is orthogonal to the noise (property (2)).

For multiple incident signals, the AOAs can be estimated by locating the peaks of a
“MUSIC spatial spectrum” as expressed in the following equation (Schmidt 1979):

1
a (BVyVyap)

P(p) = (2.3)

This conventional MUSIC algorithm can resolve the incident rays angles when the
signals are uncorrelated. For uncorrelated signals, the source signal covariance matrix is
nonsingular. By solving the array output matrix, the eigen vectors corresponding to the
source signals can be obtained. So the AOAs of the source signals can be scanned out by
the orthogonal noise vector. However when the source signals are correlated which is
common in multipath environments, the source signal covariance matrix becomes
singular and the noise vectors are no longer orthogonal to the source signal vectors. What
really happens is that the signal vectors superimpose to one composite signal eigen vector
and the resolved direction is for that composite signal. Therefore, with the conventional
MUSIC algorithm, the AOAs of correlated source signals cannot be estimated by

scanning the Vandermonde format steering vector a(f) in equation (2.3), because the
direction matrix of correlated signals is no longer in the form of a Vandermonde matrix

as in the uncorrelated signals case. An example is given in Section 4.4.2. The M X K
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direction matrix with the Vandermonde format has the following expression, as explained

in detail in Section 4.2:

1 1 1
X1 X2 XK
2 2 2
X1 X2 XK
M-1 _ M-l M-1
| X1 X2 XK i

Spatial Smoothing Technique

Several alternatives have been proposed to deal with the singular covariance matrix of the
correlated signals, including the spatial smoothing technique first studied by Evan et al
(1981) and subsequently by Pillai & Kwon (1989) and Shan et al (1985). After the spatial
smoothing technique is applied, the source signal covariance matrix becomes non-
singular. The details are given in Section 4.5.1. Then the conventional MUSIC algorithm

can still be used to estimate AOAs of correlated signals.

However it comes with the sacrifice of reducing the number of resolvable source signals.
Given M array elements, the conventional MUSIC can resolve M-1 signals. For the
forward-only smoothing scheme, it can resolve only M/2 signals. Because the size of
each subarray m in the forward-only smoothing scheme must be at least m = K +1 and the
number of subarrays L = M — m + 1 must be greater than or equal to the number of
signals K, i.e. M —m + 1 >= K (Shan 1985), the resolvable number of signals is K = M/2.
The forward-only spatial smoothing scheme trades off half the effective aperture. For a

linear array, the aperture is equal to the distance between the elements on either side of
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the array. In order to improve the resolving performance, the Forward/Backward

Smoothing Technique was proposed.

Forward/Backward Smoothing Technique

Pillai & Kwon (1989) proved that the forward/backward smoothing scheme can resolve
(2M/3) signals. In this forward/backward smoothing scheme, the number of subarrays is
2L. Similar to the forward-only spatial smoothing scheme, it requires m = K +1 and 2*(M
—m + 1) >= K. Therefore, the resolvable number of signals is K = (2M /3). The derivation
of this requirement in terms of matrix algebra theory is given in Section 4.5.3. This
improvement is not enough for multiple multipath signals environments. For example, in
this research, the array elements M = 5 and only K = 3 signals can be resolved using the
Forward/Backward Smoothing MUSIC. In order to overcome this limitation, the data to
process is sampled at the initial rising part of the correlation function to make fewer
number of signals included. This approach is applicable because multipath signals happen

always later than LOS signals.

The performance of the super-resolution method is related with signal to noise ratio
(SNR), the number of antenna elements, the number of samples (Friedlander & Porat

1989). The simulation and real data based experiment results are given in Chapter 7.

2.2.2 TOA/TDOA Technique and Algorithm

The measurements required in a TOA system are the absolute signal transmission times

between MS and BSs that are equivalent to the MS-BS distances. The MS is located at



28
the intersection of several circles, of which the centres are the BSs, and the radii are the
measured MS-BS distances. At least three TOA measurements are required to uniquely
determine the 2-D position of an MS if the entire system is time for synchronized, as

shown in Figure 2.5. The observation equations have the form

104, :\/(XMS ~Xpsi)” +(Vygs —Ypsi)’

wherei=1, 2, 3.
circle
1
§
H TOAZ
3 ‘
>
-
BS 2
' BS 3
i ¥
BS 1 ToAl —— P

Figure 2.5: TOA Technique

The measurements in a TDOA system are the relative signal transmission times which
are equivalent to the distance differences. A TDOA measurement defines a hyperbola
with two BSs as the foci. At least three hyperbolae are needed for the unique MS position
calculation if the network is synchronized, as shown in Figure 2.6. The observation

equations have the following form
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TDOA; :\/(XMS ~ X psi)” + (Yys = Ypsi) _\/(XMS ~Xps)° +(Yys —Yps;)°

where i #j, and i, j = 1, 2, 3 respectively.

Hyperbolas

Hyperbala2

B 3

BS 1
Hyperbalal

Figure 2.6: TDOA Technique

The conventional correlation-based TOA/TDOA estimation is degraded by multipath due
to its limited resolution. The resolution is the chip duration 7. In an 1S-95 CDMA
system, the chip duration is about 800 ns, which equals 240 m. So the correlation-based
TOA/TDOA only method is not suitable for location in multipath environments.
However if multipath can be mitigated from the received signal, the correlation-based
method can still be used for TOA/TDOA estimation. Based on this point, the proposed
method, as described in Chapter 1, is to estimate AOAs of multipath and mitigate them,
and apply the correlation technique to estimate the TOA/TDOA. So it is necessary to

investigate the IS-95 CDMA PN pilot signal correlation process.
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IS-95 Pilot Signal from the Transmitter
The transmitted 1S-95 pilot signal is formulated by the following expression:

sy (t) = 2A|PN (t) cosr 1) + PN o (1) sin27 f,.1) (2.4)

where 2A is the amplitude of the received signal, PN(¢) and PNy(t) are the “I” and “Q”

pilot sequences respectively, and f,. is the carrier frequency. The PN sequences are

generated based on the characteristic polynomials as expressed by equation (2.1).

1S-95 Pilot Signal Impinging on the Receiver Antenna
Due to K multipath and transmission propagations at the receiver with M antenna
elements mounted on a vehicle, the signal impinging on the jth sensor can be expressed
as
K
sj(t) = 22 A; [PNI (t—tg;)cos2n fot+¢ j(i)+ PNg(t—14,)sin2n f.t+¢ j(i))](2.5)
i=1

where ¢; (i) is the phase shift and 7,; is the time delay of the ith multipath at sensor j.

The Demodulation of the Input Signal
For simplicity of signal analysis, only one source signal received by one antenna element

is considered, as shown in Figure 2.7.

—®

s(1) cos 27 fyt .
I Signal

sin27 fyt
‘ > $>(0) Processing

Figure 2.7: Demodulation of the IS-95 CDMA Signal
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When the input signal goes through the down-mixers and low pass filters, the baseband

signals for / and Q channels are obtained as follows:

51(6)= A[PN (1 =1,)cos2m f, 1+ )+ PNy (t —t)sinx f, t + )] 2.6)
52(6)= A= PN (t=1,)sin2n £, 1+ )+ PNy (t =t ) cos2m f, t + )]

where f, = f.— f; is the carrier frequency difference between the incoming signal and
the local signal, ¢, is the time delay and ¢ is the initial phase of the signal. Based on
s1(¢) and s, (t), the complex baseband signal s5(¢) is as follows:

s3(0) =510+ js,(0)

. . (2.7
= A[PN (1—1,)+ j PNy (t =t ) expl=j2x £, t + )]

For multipath cases, the complex expression of s3(¢) at the jth antenna element can be

expressed as

K
53,0 = Y APN (1 =1,)+ J PN ot =1, Jexpl=j2m £, 1 46, ()]

P (2.8)
The Local Signal Generation for the Correlation Process
The local signal has the same form as that of the incoming signal, namely:
s10=5300] oy, =0.f,=f,.4=0
=[PN, (1) + j PNy (0))expl-j2x f, 1 (2.9)

=5, (expl-j2n f,1]
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Here f, is replaced by the estimated carrier frequency difference fe, and

51() =[PN;(t)+ j PNy (1)].

Time Domain Correlation Processing

In the time domain, the correlation between the received signal s,(¢) and the local signal
s;(t) is written as follows:

e fo=[ ) s3] (=0di = | 5305 ¢ ~v)explj2n f, (- o)l

:jOT[PN, (t=14)PN; (t=7)+ PN (t —14) PN (t = 7)Jexpl—j (2 m Af 1+ 9+ 2 f, ©)lds

—jjOT[PN,(z—zd)PNQ(r—r)—PN,(:—r)PNQ(z—zd)]exp[—j(szeH¢+2nfer)]dz
= exp[—j(znfer+¢)] I()T [PN;(t—t;)PN; (t—r)+PNQ (t—td)PNQ (t—17)]lexpl—j2nAf, tldt
(cross correlation: | OT PN (t—t4)PNo(t—7)dt = | OT PN (t=7)PNy(t—14)dt = 0)
(2.10)

where T is the integration time and Af, = f, — fe. Because the factor exp[—j2n fer]
does not affect the absolute value of r(z, fe), the received signal can be modified by

multiplying s,() with exp[j27 f,¢] to yield:

53(1) = sy () exp[j27 f, 1]
= AlPN; (t=t,)+ j PNy (t —t)Jexpl—j2n £, t + $)lexpl 27 f, ] @.11)
= A[PN, (t=1)+ j PNt =) Jexpl-j2 A, £+ 9]

Then the correlation function r(z, fe) in equation (2.10) can be simplified as follows:
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e fo)=[ ) HOF -
= [ AlPN =)+ PN (1) |expl=j2naf, 1+ 9) PN, (1 =)~ j PN (1~ D)lds
= Aexp[—jd] .[oT [PN;(t—1t4)PN;(t—1)+PNo(t—14)PNg(t—1)lexpl—j2nAf t1dt
(2.12)
When 7=t1,, it becomes the expression of the correlation peak value. The effect of

Af, can be seen as follows:

r(ty. fo)
= exp[— j¢] j OT[PNI (t—t14)PN (t—14)+PNg(t—14)PN(t —t,)expl—j2nAf, t1dt
7=0
_ . expl=j2mAf,T]I-1 . sin(n Af,T)
= 2exp[—jo] ~2nAf, = 2expl[ J(nAfeT+¢)]—nAfe
= 2T sinc(n Af,T)exp[— j(m Af,T + §)]
(2.13)

Frequency Domain Correlation Processing

When the modified complex incoming signal s3(¢)=s3(t)exp[j2n fe t] and the
simplified local complex signal §;(¢)=[PN,;(t)+ JPNy(@)] are sampled, the discrete
signals s,(n) and §,(n)can be obtained (n = 0, 1, ..., N -1). If the length of the local
signal snapshot §,(n) is a multiple number of IS-95 pilot PN sequence period, for

example three periods of IS-95 pilot PN sequences, the correlation function between the

received signal §,(n) and the local signal §,(n) can be calculated by circular convolution

correctly, which can also be implemented by FFT in the frequency domain as expressed

below (Philips 2003):
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. N-1 - ~
rim, f,) =Y. 535 (n—m) =DF" [S5(k)S, (k)] (2.14)
n=0

where the symbols DF! and ()*represent the inverse discrete Fourier transform (DFT)
and the complex conjugate respectively, m is the time delay, §3 (k) and 5‘, (k) are the

DFT of 5,(n) and 5,(n) respectively. The proof of equation (2.14) is given in Appendix

A.

It should be noted that this DFT method cannot give a good resolution. However, the
correlation terms are sufficient statistics, i.e. no loss of mutual information. So it is
effective for rapid coarse acquisition. In this research, the DFT method is used in the first
step to roughly locate the correlation peak, followed by the AOA estimation to mitigate
multipath and finally by the correlation peaks detection for TOA/TDOA estimation with

multipath mitigated.

2.3 Dilution of Precision

In terrestrial TOA systems, if three base stations are observed, then we can obtain three

pseudorange measurements as follow.

P =y —x)% + (01— yu)? +et,

p2=Juz—anz+o@—ywz+c@ (2.15)

3 =y — 1) + (33— y)? +et,
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where p;(j=1,2,3) is the pseudorange, and (x,,y,) and 7, are unknown 2D user
positions and the local clock offset, respectively. (x;,y;) (j=1, 2,3) are the known jth

base station’s position coordinates in two dimensions and c 1is the speed of light. For 3D
user positioning, one more pseudorange measurement is required and the coordinate of

the unknown user positions becomes (x,,,y,,2,) -

After the linearization of equation (2.15) by using a truncated Taylor series around an
approximate position location (%,,%,) and time bias estimate 7, , the correction to that

approximate value is solved as (Kaplan 2005):

X —Xx ;
pi—pj=—1 ”Axu+y]AyuAyu—ctu (2.16)
T r;
J j
where f; =/(x; = 5,07 +(y; = 9,0 +¢h, (j=12.3),
A ) SN2 (i
Axu =Xy _)%u
Ayu =Yu _j\)u'
Equation (2.16) can be simplified as follow.
Ap = HAx (2.17)
or Ax=H"'Ap (2.18)

Ap
where Ap =| Ap, | is a vector of differences between the real range measurements and

Ap;
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Ax,
the expected ranges at the guess position, Ax =| Ay, a position vector and receiver
—cAt,
X1 —Xy V1= Yu 1
7 A
) Xr — X -9 . . .
clock corrections, H =| =24 Y2 R Yu 11 s a3 x 3 matrix of coefficients.
r r
X3 — Xy Y3 = Yu 1
LB 73 ]

When more than three base stations are used, H is non-square and the least-squares of

residuals principle is applied as:
Ax =(HTH)TH? Ap
The covariance matrix C,, of Axis given by the following equation:

2
X

Cay = o =E(H'H)H Ap Ap" HH'H) 1= H'H)" 7,7
y

(2.19)

(2.20)

The assumption of the above formula is that the measurements x, and y, are

uncorrelated, the measurements of Ap are also uncorrelated and have a diagonal

E[Ap ApT] with identical elements 0',2.

The standard deviation of the final position estimate, oy, and the standard deviation of

the ranging estimate, o, , have the following relationship:

G, =10, +0,% =irace(H H) o,

By definition the Dilution of Precision (DOP) is as follow (Lachapelle 1998):

DOP =trace(HTH)™) |

(2.21)

(2.22)
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One also has

o, =DOPo,. (2.23)

It can be seen from the above formula that DOP affects the position accuracy.

For a TDOA system, the DOP calculation is similar except for that the receiver time
offset term included in the matrix H disappears because the differencing of two

measurements deletes that common term.

For an AOA system, the DOP can still be calculated by using equation (2.22). However
the matrix H needs to be reconstructed in terms of angles and the standard deviation of

the ranging estimate, o, , is replaced by the standard deviation of the angle estimate, 0 g

(Dempster 2006), that is

0,=DOPog. (2.24)

2.4 Literature Review of the Previous Research in CDMA-based Location Systems

The research and development on mobile-communication networks-based location
system has been active for the past few decades. Compared with GPS, cellular network-
based wireless location is deteriorated in accuracy because of detectability (Reed et al
1998, Ma 2003), which is the ability of a sufficient number of different base stations to
detect the user’s signal at an acceptable power level, and multipath, which can highly
degrade both TOA and AOA estimations (Krizman et al 1997). Therefore, recent research

has focused on solving theses problems.
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Yousef et al (1999) introduced a power delay profile (PDP) to estimate time-delays and
amplitudes for an 1S-95 CDMA system. The PDP was built by generating a group of
correlation functions with each separated by a fraction of a chip period. Then the earliest
arriving ray is selected from the PDP by the earliest correlation peak. The corresponding

time offset of the local PN code is the TOA estimate.

Kalman filter-based methods were described by Thomas et al (2001). The proposed
method was based on three stages: prefiltering of measurement data to remove NLOS
data as much as possible and smooth sampling measurement noise; TDOA-based location
estimation using standard weighted least-squares (WLS) solution or Chan’s method

(Chan 1994); KF tracking to provide a continuous location estimation.

In the paper by Tarighat et al (2003), a parametric method based on Maximum
Likelihood for TOA estimates and a Least-Squares method for AOA estimates were
discussed for a CDMA2000 system. This method has a heavy computational load due to

a multi-dimensional search for the parameters.

Klukas (1997) proposed a Root-MUSIC-based algorithm to estimate the TOA for

locating 911 caller in AMPS network which is an analog system deployed in 1984.

Kim (2004) proposed a MUSIC-based algorithm for multipath timing estimation in

CDMA system. It investigates how the number of antenna elements affects the
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performance. It mainly benefits the capacity improvement under multipath fading

channel.

The recent published research by Falletti et al (2006) applied an array of sensors placed
on a mobile vehicle to perform self-localization based on AOA-only method with beam-
space root MUSIC algorithm (Zoltowski et al 1993). This system focused on practical
design and did not much explored multipath mitigation and it was still based on

simulation results.

Most of the proposed methods above were network-based schemes and verified from the
simulation results. One paper from Wang et al (1994) proposed a method to improve the
AOA estimation based on real data from a VHF system. Numerous papers were based on
the AOA-only or the TOA-only method. There were also numerous papers estimating
both AOA and TOA values from modified MUSIC algorithms since array signal contains
both spatial and temporal information (Wang et al 2001, Van der Veen et al 1997,

Zoltowski et al 1996).

In this research, a practical method to estimate TOA assisted by AOA information under
multipath environment is proposed. AOA values are estimated using an F/B smooth
MUSIC algorithm and TOAs are estimated based on the correlation function’s rising part.
The data for the algorithm verification is collected using an IS-95 CDMA receiver

prototype developed by the PLAN Group (Shanmugam et al 2005).



40

2.5 Conclusions

The characteristics of CDMA system and IS-95 CDMA were introduced in this chapter.
The signal to be processed is the forward link pilot PN sequences from 1S-95 CDMA
base stations. The location techniques of AOA and TOA / TDOA method were discussed.
For AOA estimation, the forward/backward smoothing MUSIC algorithm is used because
it can resolve fully correlated signals, such as multipath signals and because it is
computationally efficient compared with a multiple dimensional search Maximum
Likelihood method. The array data processed in an AOA algorithm is sampled from the
auto-correlation functions of PN sequences in an antenna array with five elements. That
is how the forward/backward smoothing MUSIC algorithm is applied using the limited
number of antenna elements. The detailed discussion of the forward/backward smoothing
MUSIC algorithm is given in Chapter 4. For TOA / TDOA estimation, the limitations of
TOA / TDOA-only method under multipath environments were described. An AOA-
assisted TOA / TDOA method was proposed, which is discussed in detail in Chapter 5.
The correlation process of the IS-95 CDMA pilot signal is investigated because the data
to be processed either by the AOA or TOA / TDOA algorithm are basically from
correlation functions of IS-95 PN sequences. The location accuracy is affected by both
the AOA/TOA / TDOA measurement accuracy and the DOP. So DOP calculations under
different location techniques were derived. Finally a literature review was provided and

the AOA-assisted TOA method proposed in this thesis was introduced.
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Chapter Three: Theoretical Analysis of Signal Parameter Estimator

3.1 Introduction

Based on the discussion of location errors in Chapter 2, it is clear that the measurement
accuracies of AOA and TOA are very important for position estimation. Therefore it is
necessary to analyze the AOA and TOA estimation accuracy. Actually, AOA and TOA
are the unknown parameters of the received signals and they can be estimated with some
algorithms or estimators, for example, ML (Maximum Likelihood) estimator and MUSIC
(MUltiple SlIgnal Classification) estimator. The studies of estimator performance are
within the scope of estimation theory. In this chapter, the analysis of the AOA and TOA
estimation performance is based on the unbiased estimator and the Cramer-Rao Lower
Bound (CRLB). The CRLB of the AOA estimation and the TOA estimation for a single
IS-95 pilot signal are derived separately. The CRLB of the AOA estimation for multiple
IS-95 pilot signals is based on Stoica & Nehorai (1989).However, the investigation is
carried out further to find out that the AOA CRLB is affected by the angle of the incident
rays and that different initial phase of the incident rays results in minimum and maximum
CRLBs and that decreasing the number of source signals is more efficient than increasing
the SNR which also becomes the impetus of the proposed correlation function rising
slope-based method. Finally, the joint AOA and TOA estimation is investigated for
comparison. The performances of specific MUSIC approaches for the AOA and AOA-

assisted TOA estimators are analyzed in Chapter 4 and Chapter 5, respectively.
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3.2 The Parameterized PDF and Unbiased Estimators

3.2.1 The Parameterized PDF

Because the noise n(¢) at different antenna elements is random, so the received signals at
different antenna elements u(f) =s (f)+n(z), where s(¢) is source signal, are also

random. The random data is described by its probability density function (PDF) with the
unknown parameter 6. The PDF with the unknown parameter 6 is called the

parameterized PDF, denoted by p(x;0). If there are N-point data set

{x[O], x[1],---, x[N —1]} at one antenna, which results in a data column vector

X = [x[O], x[1], -+, x[N — 1]] T its parameterized PDF can be expressed as:
p(x;0) = p(«{0], (1], ---, x[N —1]; 6) (3.1)
where a semicolon is used to denote the dependence on the unknown parameter 6 .

For White Gaussian Noise (WGN) w[n], its dependence on the parameterized PDF on the

unknown noise variance ¢ is that the smaller noise variance o results in the narrower

PDF p(w[n];0?).

3.2.2 Unbiased Estimators

Because of noise, the estimator can not always yield the true value of the unknown

parameters. If the estimator can yield the true value @ on the statistic average
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(expectation), it means that the estimated parameter 0 is expected to be around & as

formula:
E(@)=0 a<6<b, (3.2)
where (a,b) denotes the range of possible values of @. This kind of estimators is called

unbiased estimators.

If the estimated parameter @ is a function of the data vector x as 6= g(x), the

mathematical definition of the unbiased estimator g(x) can be expressed as:
ﬂ@:jggﬂxmﬁze for all 6 (3.3)

Example of An Unbiased Estimator for Noise Variance

In practice, we need to estimate the unknown parameters without bias. In order to carry
on the constant false alarm detection of the correlation peak of IS-95 pilot signal, we need
to know the variance of the noise before despreading. Usually, the signal of input 1S-95
pilot signals at the antenna elements can be as small as -120 dBm, thus the signal

component s[n] in the measured data x[n] can be ignored, which can be expressed as:
x[n] = s[n]+ wln] = win] n=12,---,N—1. (3.4)
Assuming that the noise samples {w[0], w[l],:--, w[N —1]} are independently and

identically distributed (iid) Gaussian noise with zero mean as & (0, o), the noise

variance o can be estimated by:
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N-1 1

" 2] = ! 35
ngox [n] Nxx (3.5)

A
ot =L
N
It can be easily proven that the estimator implemented by equation (3.5) is unbiased due

to zero mean of x. It will be shown later on in equations (3.6) and (3.12) that it is

actually optimal.

In addition to the unbiasedness, we are also interested in the variance of the estimated
parameter. The variance of the estimated parameter presents the degree of estimation

error. The smaller the variance of the estimated parameter is, the larger the probability of

obtaining the true value is. As x is zero mean, E( x*[n]) =30"* (Kay 1998), the variance

A

of o can be derived as:

var( GAZ) = E[(aAz— c°)’]

(1 ’ 1 x'x
:_J; (WXTX_GZJ (\/_TG)N exp(—z—o_zJ dx

It shows that when N — oo, var( o) =0. Now the questions are: what is the minimum

variance of the estimated parameter and can this estimator reach that minimum variance?

To answer these questions, let us investigate the Cramer-Rao Lower Bound.
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3.3 Cramer-Rao Lower Bound (CRLB)

3.3.1 Cramer-Rao Lower Bound — for a Scalar Parameter

If the PDF satisfies the “regularity” condition (Kay 1998) expressed as:

dln p(x;0)
AT 7
E{ 50 } 0 forall @ 3.7

where the expectation is taken with respect to the parameterized PDF p(x;8), then the

variance of any unbiased estimator 6 must satisfy the following CRLB:

A 1

var(6) > (3.8)

0% 1n p(x;6)

—E——

00
The expectation in (3.8) is also taken with respect to the parameterized PDF p(x;8):
9% In p(x;6) 9% In p(x;6)

E = X; 0) dx 3.9
{ = [ i) (3.9)

Now let us have a look at the Cramer-Rao Lower Bound for the above example of

estimating the noise variance o”. The parameterized PDF p(x; 0)‘ , can be written
O=0

as:

1 X' X
p(X;GZ)Z—NeXp(— zj. (3.10)
(\/ 2750) 20
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The second derivative of the logarithm of p(x;0>) can be expressed as:

’lnpxo’) N x'x

. 3.11
o(c?)? 200 o©° G1D
Then the Cramer-Rao Lower Bound of estimating the noise variance o is:
A 4
varg?)>——— L 20 (3.12)
_E 0 In p(x;0°) N
8(0_2)2

So, the unbiased estimator expressed by equation (3.5) is optimal because its estimated

variance given in equation (3.6) reaches the above Cramer-Rao Lower Bound.

If the fundamental parameter is € and the desired parameter is & = g(6), then the CRLB

of the unbiased estimator is:

(agw)jz
var(Q) > 286’ ) (3.13)
0~ In p(x;6)
— E —
00
3.3.2 Cramer-Rao Lower Bound for a Vector Parameter
When there are p parameters {6,,6,,-, 0p} to be estimated, the Cramer-Rao Lower

Bound should be extended to a vector parameter 0 =[6,,6,, -, 49p]T . Assuming that the

estimator 0 is unbiased, i.e.,
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EG)| [#

A ) 6
E®) = E(fgz) =/ |=0 (3.14)

[EG6)] (6,

and the “regularity” condition is satisfied (Kay 1998):

[91n p(x;0) |
26, 0
dln p(x;0)
dln p(x;0) —— e 0
E[T}:O or BT 00, |5, (3.15)
dln p(x:0) | |0
i 00, |

then the CRLB of the parameter &; is the [i,i] element of the inverse of the Fisher

information matrix J(0), which can be mathematically expressed as:
var(d,) 2[J 7' (0)];, (3.16)
where J(0) is a p X p matrix, which is defined as:

0” In p(x;0)

0)] =-E
@)1, { 36,96,

} fori=1,2,---,p; j=12,---,p. (3.17)

More generally, the covariance matrix of the unbiased estimator 0 satisfies:

Cé—J_l(ﬂ)ZO (3.18)
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When r parameters to be estimated are the functions of p fundamental parameters
0=[6,.6,,--.0,]" as:

o=[a,a,, ]
81(9)

2,(0) (3.19)

- . 9

g,.(0)
=g(0)

the CRLB of the unbiased estimator for a is:

var(ai) [a{g(e) -1 ag(e) ]z ; (l — 1’2’. .. r)

or (3.20)
__980) Bg(ﬂ)

C; % 0) >0

where Cg is the covariance matrix of the unbiased estimator @ ; and % isanr X p

Jacobian matrix defined as:

_agl(e) agl(ﬂ) agl(ﬂ)_
26, 26, 20,
dg,(0)  dg,(0) g (9)
ag(ﬂ) 2 2 6207/
o | %% 9% 96, 2D
5,0 9g,® 9,0
96 26, 26, |
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3.4 The Data Model for AOA and TOA Estimation

In this thesis, the estimation of signal parameters is focused on AOA and TOA with a
uniform linear antenna array showed in Figure 3.1. The antenna array consists of M

identical elements and receives K narrow-band signals that arrive at the array from

directions B, B,, -+, Bx-
8 (1) Incident Plane
d cos B, Wavefront
\\\\/ \ . ﬁk \\\\ \ .
IR . 2Y N M—lT MT
x@ 0@ xp-1(t) Xm0

Figure 3.1: Uniform Linear Array

If the first element is taken as a reference point and K signals s,(), s,(2), ---, s, (¢) are
complex, the output data of the array is an M X 1 complex vector x(¢). For the signal

source s, (t), the array output vector x(#) can be expressed as:

X () 5. (1) nol | 1 | ny (1)

o= 2O || s | fmo) | e e

x,‘; O | s (- (M ~1)7) nM t) e—jzﬂf; (M D)7 nM (1)
—a() s (0 +n(0) ) _

(3.22)
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Copte y IS T L
where a(ﬂk)z[l, e I eI L M ] is an M x 1 vector called the direction

vector; the symbol (T) denotes transpose; f,. is the carrier frequency of the incident

d *cos(f3,)
c

signals; 7= is the delay between two elements; d is the antenna element

space; n(t) is the M x 1 complex noise vector which comes from the devices in the
receiver. The noise at different antenna elements can be assumed to be iid zero-mean
Gaussian stationary random process. Meanwhile, the noises are uncorrelated with the
impinging signals.

If d is equal to g times of the carrier wavelength A, the direction vector can be written

as:

a(By) = |1, e 2T 1B 2D geosf [T
|1 i, e |

M—l]T

=[Lak,az§,-~,ak (3.23)

={a;}
i=0,2,--- .M -1

where g Z%; a,i =2 iacosh _ miion, @, =27 q cos f;, which is called the
phase delay with respect to the adjacent element.

For K signal sources, the M X 1 array output vector can be expressed as:
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K

X(1) =a(By) s () +...+a(By)sg ) +n@) = a(B;)s; (1) +n(r)
i=1
s51(1) ny (1)
a8, aBy). . agon| 2 |4 [ 20

sk (1) ny ()
=As(t)+n(@)

and

® =00.0 ., 01" (3.24)

where

@ =27 q cos B
M = No. of antenna elements; K = No. of source signals.

where A =[a(f)),a(fB,),..., a(fg)] is an M x K direction matrix with a Vandermonde-

structure (columns are not linearly related if p,[B,,---,Bx are different) and

s(t) =[s1(t),....5g (t)]T is a K x 1 signal vector. The equation (3.24) is in continuous

time. In the following Sections (3.5, 3.6 and 3.7) however, the discussions are all in

discrete time.

Assuming that the 7 and Q base band outputs of the antenna array are corrupted by iid
Gaussian noise with zero mean and known variance o”/2, & (0,6°/2), then the
parameterized PDF p(x;0) with M real and M imaginary random variables can be
written as (Proakis 2001):

p(x;0) = p(Re(x), Im(x); )
1 { [X — As]H[x—As]} (3.25)
= exps —

62
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The investigation of the CRLB for AOA and TOA is based on the above equation.

3.5 CRLB of AOA Estimation for a Single IS-95 Pilot Signal

In this section, one sample of single dispread 1S-95 pilot signal is used to estimate AOA
CRLB. The derivation is contributed by the author. The case of multiple samples of

multi-sources is discussed in Section 3.6. Assume that the received dispread signal x(z)
is a complex signal with 7 and Q components. If x(#) is sampled at one time point of 7
and the source signal is s (#) with the incident angle of £, then equation (3.24) can be

simplified as:

X(to) =As (to)‘i‘ll(to)

1 n (to)
e t 3.26
_| e | $(tg) + "2(: 0) (3.26)
e/ M-Do ny (to)
where
d ) .
0=2rx zcos B (referring to equation (3.23)) (3.27)

$(t9) = YIPN (tg) + jPN o (tg)le? [PN (1) = jPN o (t0)]
=2vyel? (3.282)
nm(to) = [I’l] (to) + ]nQ(Io)][PNI (to) - ]PNQ(I())] m=12,..M

The signal to noise ratio of the dispread signal can be delivered as
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Is(tg) > 22 o2

SNR = =% note that E{l nj (tg) 1>} = E{I n; (tp) 1>} = —— (3.28b)
E{lnty))1°} o© 2

It shows that, from equation (3.28b), the signal to noise ratio of the dispread signal is the

same as the one before despreading.

Here y and ¢ are the amplitude and the initial phase of the signal impinging on the first

array element, respectively.

For simplicity, if only one snapshot is taken, 7, can be ignored. Thus the array element

outputs x can be expressed as:

X, 1 n,
X, e’ n,

x=| " |=As+n= . s+ | . (3.29)
X, oI M-De n,

Because x is a complex vector, the PDF p(x;0) is defined as the joint PDF of its real and

imaginary components as:
p(x:0) = p(Re(x), Im(x);0). (3.30)

In this case, the unknown parameter vector 0 is as follows:

6, Y
0=16, |=|p|. (3.31)
0, ¢

Here y and ¢ are the amplitude and the initial phase of the signal impinging on the first

array element; ¢ is the impinging signal phase delay between adjacent antenna elements.
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d . . . o
Because ¢ = 27[; cos £ in equation (3.27), where [ is the incident angle to be

estimated, the transformation of parameters is:

. Y
a=g®)=|f|= arccos( ’“”j (3.32)
SEREIAE 27d )| '

¢ o

Assuming that the 7 and Q outputs of the correlators are corrupted by Gaussian noise with
zero mean and known variance o> /2, which are iid V(0,07 /2), the PDF p(x;0) with

M real and M imaginary random variables is:

p(x:0) = p(Re(x), Im(x);6)
1 {_ [x—As])"[x- As]} (3.33)

= L exXp )
o

o
The logarithm of p(x;0) can be derived as:

x — As] [x — As]

0_2

In p(x:0) = —M In(7c2) -

=—Mln(27z0'2)—%[xHx—AHxs*—xHAs+AHAs*s] (3.34)
(o2

4M\(2

- 2

2 *
= constant + — Re[AHX s |
(o} o

Based on equation (3.17), one has the following equations:

3% 1In p(x;0) | M
(JO)]j =- l: 872 = 2
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9%1n p(x;0) 4 Mo i(m-1)p —j¢
[J(©)), =—E| ————"=|=—E|Re jm=1)e/ VP eI
" { dy0¢ o’ mZ=:1

o m=1

4 [ jm=Dp —j¢ _ el S -
=—Rel D j(m=De e JPE(x,,) —?Re D jm=1)|=

m=1

P npx0)| 4 M o Do —i
=g —227 - " FIR 2 Jjm=Ng —j¢
[J(O)]3 E{ 3700 2 E| Re m:1]e e '"x,,

—iRe % '(ej(m—l)(l’ e_j¢E(x ) zﬂRe('M):O
-2 J m) | = 2 e

2 m=1

2 .
[J(B)]ZZZ—E{L;(X’B)} 4Y [Re[Z(m ) eJ(m 1)(06 J¢ }]
an G m=1

m=1

_ 4y 2 -1 8v2M !
Re Z(m 1) e /M=o, ]¢E(x ) | = z m?
G m=1 O'

_ 492 (M -DM(2M -1)

o2 3

2 )
[J(e)]23:_E{M} 4y { (Z(m Dedm=be ¢’"H

a¢a¢ G m=1

M —
47 RG{Z(W l)eJ(m 1)(0 J¢E(x )]:LZ z
G m=1 =1

2 . M )
[J(0)]33 =— {M} - %E[Re( zej(m—l)qo e_]¢xm H

a¢a¢ (o} m=1

4 M B » 8 2
:_ZRe[zeJ(m Do , N)E(xm)}: 672 M

2 m=1

The Fisher information matrix J(0) can be derived as:
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M 0 0
5 M-1 ) 5 M-1
810 vy m- oy m
J(0) = — mzz:l mzz:l X (3.35)
o
M -1
0 yz Zm sz
L m=1 i

From the above equation, it can be seen that the three unknown parameters [y (1) ¢] have

the following relationship in their estimation:

(1) No matter whether the y is known or unknown, it will not affect the estimation

accuracy of @ and 4, ie., var(¢)| = var(¢)| and

y=known y=unknown

var(q;) :var(q;) , because vy 1is independent of both ¢ and ¢

y=known y=unknown

(J1200)=J13(0)=0).

(2) However, ¢ is not independent of ¢ (J,3(0) =J3,(0) # 0). So they will affect each

other during the estimation.

In order to estimate the incident angle £ which is the function of ¢, the Jacobian matrix

Jg(0)
00

is given as below:

1 0
g(0) B A
00 27d sin
0 0 1

]

O0<p<rx. (3.36)
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Because the incident angles from © to 2 w are resolved as the values which are symmetric

to the antenna array from O to 7.
Based on equation (3.20), the error of the estimated parameter ,[3’ is:

var(f) =[C, 1,

(3.37)
Meanwhile it is known that:
9g(8) - o 9g(®)"
C.-——=—J 0)——| =0. 3.38
[ "0 VO |, (3.38)
Because % is a diagonal matrix, it yields the following equation:
5 oag® 7 .-
var(B) =[C, 1, 2{ Bl )} 37 )1, (3.39)
a0 |,
From equation (3.35), the following formula can be obtained:
Bl
_ o) MM 3 3
IO =5 4M3t\/12 D 292 “sveemarroy O
o2 12 o2

2
where SNR = ZLZ is the signal to noise ratio at the sampled point, seeing (3.28.b).
o

Therefore, the CRLB of the estimated parameter ,3 can be derived as:
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3

Var(,B) > 5
2 d\” .2
M (M ~“ —1) SNR (Zﬂ/ij sin“ 8

= 3 (Radian?) (3.41)

2
27)>M(M? —1) SNR (j) sin” A

1 1 1 1
SNR p13 [djz sin’

= const.

A

The above result is similar to that of Kay (1998). One difference is that the signal
considered here is a complex signal, whereas in Kay’s book, the signal is a real number.
The other difference is that the data processed is sampled from the correlator output of
the IS-95 pilot signal instead of a continuous wave signal. It can be seen from the above
equation that (a) the higher SNR can result in a smaller error, which is evident; (b) a
higher number of antenna elements M improves the estimation accuracy, because then it
will have a higher number of samples for estimation. Intuitively more samples contain
more information, so it is easier to estimate the unknown parameters; (c) the larger

spacing d/A can reduce the interference from element to element, which helps to reduce

the estimation error; (d) the last term in equation (3.41) has an interesting effect

sin? A8

on the estimation error. When [ is zero or nm, it cannot be estimated. However, this

problem can be resolved by using a circular or a rectangular antenna array. The

theoretical and physical explanation are as follows.

Let’s investigate the sensitivity of the direction vector. The direction vector of the signal

with an incident angle of £, is the same as equation (3.22), which is expressed as:
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a(f) =|1, e 2T awsh | ima-n geosp |1 (3.42)

Then the direction vector at the ith antenna element is:
a,(B) = o271 gcos (3.43)

The derivative of the direction vector a; (f) is:

a, (B)=j2x(i—1) gsin(f) e /27D acosh (3.44)
When [ =90° ,a}< (f)=j2x(i—1)g. That means in the array boresight area, the
direction vector is the most sensitive to the change of incident angle value of A. So it
will result in a smaller estimation error for the angle estimation. When S=0°,

a k'(,B) = (. That means far from the array boresight area (see Figure 3.2), the direction
vector is the least sensitive to the change of incident angle of /. So the estimation error
of [ is larger. One solution to overcome this problem is proposed in Chapter 7 as future

work. The present method is to block the signals from the endfires (see Figure 3.2)

(Thompson 1995).

Physically speaking, if five antenna elements together with one BS are considered to

construct the Geometric Dilution of Precision (GDOP) as shown in Figure 3.2, when the
antenna array is parallel to the transmitting signal direction from BS2, i.e., £ =0°. the
GDOP is «© and so the angle estimation error is also o; On the other hand, when the
antenna array is perpendicular to the transmitting signal direction from BS1, i.e., # =90°.

the GDOP is small and so the angle estimation error is also small.
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Boresight

BS1

BS2

4—
TTHRIT
< » Endfire

x1(2) x2() x3(1) x4(1) x5(2)

Figure 3.2: Construction of GDOP by Antenna Array and BS

Based on equation (3.41), Figure 3.3 is the CRLB for one source signal case under

different SNR. It shows that when the incident signal is perpendicular to the antenna array

(B =90"), the CRLB is the smallest. For example, when SNR = 10 dB, M = 5 and

i =0.7 and
A

if f=90°, Jvar(B) 21°;
if f=30°, mzzo;
it £=5°, \Jvar(B) 211.6°;
it f=1°, var(B) = 58°.
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Figure 3.3: CRLB of AOA for One Source Signal

Based on the above analysis, we have the following useful conclusions about the
unbiased AOA estimator’s estimation error:

1) It is easiest to estimate AOA if £=90" and impossible to estimate it if B =0°or

£=180".

2) To decrease the variance of estimation error, it is helpful to increase SNR, the

number of sensors, M and the ratio of antenna spacing to signal wavelength, 1

3.6 CRLB of AOA Estimation for Multiple IS-95 Pilot Signals

The CRLB of AOA estimators for multiple sources is discussed in this section. Similarly

to Section 3.5, it is still assumed that the I and Q outputs of the correlators are corrupted
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by Gaussian noise with zero mean and variance /2, which are identically distributed

2

N (0,0°/2) and independent from sensor to sensor. The variance o’ is taken as an

unknown parameter.

Meanwhile, assuming that there are N snapshots, which are sampled at T , equation

(3.24) can be expressed as:

X(m) =x(1)|,_,; =[As@O+n®] _,,

t={L2, ..., N}

(3.45)

Note that x(¢) and n(¢)are M x1 complex vectors and s(¢) is a K X1 complex vector.

M and K are the number of antenna elements and the number of source signals as

defined in equation (3.24).

In Section 3.5, the impinging signal s(¢) is described with its unknown amplitude y and
initial phase ¢. Because the wanted parameter is the signal’s incident angle, instead of

the signal’ amplitude and its initial phase, and for the convenience of derivation of
multiple sources, the impinging signals are described with their real and imaginary
components. Thus, the unknown parameter vector @ can be taken as follows, which is a

(I+KN+K) x 1 vector:
0= [az,sﬁ(l), s; (1), -, 8p(N), s} (N), (pT]T (3.46)

where ¢ is the noise variance; s #(t) and s,(¢) are the real and imaginary components

of s(t) te{l,2, ..., N} respectively:
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S, (1) = Re[s(1)]

(3.47)
s,(H)y=Im[s(r)] te{l,2, ..., N}

® =lp.o okl
and p . (3.48)
o, =27 7 cos Sy

Under the above assumptions and definitions, the CRLB fop ~ is obtained as follows

(Stoica & Nehorai 1989) (The detailed proof is given in Appendix B):

o H o H H o1 o H B
varcr§( ):7 ZRe{S OD[I-AA"A)TA ]DS(t)}
t=1

or

_ | (3.49)
~_0o° H H A1 A Hip® ud H
varcp ( )=——|Rel (D" [I-A(A™A) "A" ] D} ZS(I)S (1)
2 i t=1
@is the Hadamard product [A@B]i i=A;B;;
where S(¢) is a diagonal matrix expressed as:

M () 0

S(t) = (3.50)
0 sk (1)

and D is a differential matrix expressed as:

D=[d(¢)).d(¢y), . d(¢)]

. 3.51
d(p)= 20 G20
Ay
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N
For large N, ZS(I)SH (t) = NRg, here Rg=F [s(t)s(t)H ] is signal correlation matrix,
t=1

and the CRLB can be simplified as:
2
~ o _ 1
varcri () = RelD[1-AA" A AT IDIORS . (3.520)

Equation (3.52a) is with N samples for multiple source signal environments. For a single

source environment using N samples, it can be derived as follows:

da((p)’ Rs = 472, and equation (3.52a) can be

Replace A, D, Rg with a(¢), d(¢) =

simplified as:

2 1
varcgyp (9) = ;’—N { [dH (@)d(p) - a7 (pra(p)@” (p)a(p)'a (¢)d(¢)]* 4v2F
-1

c? M_l.z .M_l. 1 .M_l. 1
_W Z(:) l —|:(—] E)l)ﬁ(—] Z(:)l)} m
-1
2 2
= o 5 lM(M—l)(ZM—l)—L{M}

3 ~ 3
N*SNR*M(M? 1)

2
N*ziz*M(Mz—l)
(o2

(3.52b)

Here N is the number of sampled data; M is the number of antenna elements; SNR is the

signal to noise ratio at the sampled point.
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Both equation (3.52b) and equation (3.40) are for a single source signal case. But
equation (3.52b) is based on N samples, so it is 1/N of a single sample case in equation

(3.40). When the number of samples is one, it is the same as equation (3.40).

In equation (3.52a), if the angle of arrival S, is the final estimated parameter, the CRLB

of B, can be expressed as:

. [varqg ()]
vargpp (B) = — B Nk (3.53)

2
(271’i] Sil"l2 ﬁk

If the signal vector s(¢) at the reference antenna is defined as:

s(t) = [y1 exp(idy (1), -, Yk exp(jdx N1 where y=[v1, yk17,0=[d - ox 1"

it can be seen that varcg z(f;) depends on N , %, o, v, 0 and =[5, B.1". A

more practical analysis, which cannot be seen easily from equation (3.53), is provided in

the case study of AOA CRLB below.

In equation (3.52b) for the single source signal case, the CRLB of angle of arrival £ can

be expressed as:
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[varcrrp (9)]
d 2
(27[1} sin? B
3

varcgr g (B) =

(3.54)

2
N*SNR*M (M —1)(275;{) sin? 8,

It is worth mentioning that, from the Fisher information matrix in equation (B.24), no

matter if the noise variance is known or unknown, the AOA estimation ,[Ai’ is not affected

2

by it because the noise variance ¢ “ is not related to @ which is a function of . So the

following example is given based on that fact that the noise variance is known.
Definition
The correlation coefficient of a set of observations {(x,-,y,- ):i=1,---,N} for two signals

x and y is defined by the following formula:

N
D =X =)
i=1

pxy - N N
\/Zm -9 (3 -9?
i=1 i=1

or Py = E[(x; —2)_6)(%‘ =) .
JE[|xi —x|"1El|y; -]

where x and y are the average values of x and y respectively.

The properties of the complex correlation coefficients are:
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. ‘ ny‘ =0, which is when signals are uncorrelated.

e 0O« ‘ ny‘ <1, which is when signals are correlated.

The relationship between the correlation coefficient and the correlation matrix Rg in

equation (3.52a) is that the correlation coefficient is the normalized correlation function

for each element in correlation matrix when the signal’s expectation is zero, i.e.

R, (G, J)

JEQs1E(s )

Pss = . So in the following case study, the correlation coefficient is

i

used to discuss the CRLB described by equation (3.52a).

Case Study of AOA CRLB
Assuming that the number of signal sources is K <3, the number of array sensors is

M =5, d/h = 0.5 and the estimated LOS AOA is ,31, the normalized CRLB

N varcp; g ( ﬁ’l) is investigated. These three practical factors are considered and shown in

Figure 3.4.

1. The phase of the correlation coefficient p,, of two signals
Different initial phase between two incident rays result in minimum and maximum

boundaries of varcg;p (,31) as shown in Figure 3.5. Stoica & Nehorai (1989) only

discussed the case when the phase of correlation coefficient p,, of two signals is zero,
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so only one CRLB exists. The upper circled two lines are obtained from three source
signals case and the lower circled two lines are obtained from two source signals case.

The initial phases of incident rays also affect the singularity of the source signal matrix
Rg/ > when the forward/backward smooth MUSIC algorithm 1is applied, which is

discussed in Section 4.5.3.
2. The AOA difference AS =l f; - f; |

In this case, the LOS incident angle AOA1 is supposed to be at 90'; SNR and SIR are 14

dB; the absolute value of correlation coefficient is | Pxy I=0.8 x=# y. It can be seen that

as the Af increases, the varqg;p( [31) decreases. When AOAL is from different angle, its

CRLB also changes as shown in Figure 3.5.

3. The number of source signals K

When there are three source signals, var.,, (Bl) is much more than that of two source
signals case within Af<20°. Another simulation experiment is done, which is not
displayed, to increase the SNR to 28 dB for the three source signals situation and it

reaches the same var,,, , ( Bl) as that in the two source signals condition within A < 20°.

It means that to achieve a small var., ,(f,), decreasing the number of source signals K

is more efficient than increasing SNR when the AOA difference A is small. This can be

controlled through sampling the data at the correlation rising part where few multipath

signals are added to LOS, which is implemented in this research described in Chapter 5.
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LOS AOAL
NLOS2 NLOS1

AB

® ® ® ® ®
Figure 3.4: Geometry of Incident Signals

From the simulation results shown in Figure 3.5, for A = 25° the maximum CRLB
values are obtained when the phase difference between LOS and NLOSI1 is 164° and the
phase difference between LOS and NLOS2 is 108° the minimum CRLB values are
obtained when the phase difference between LOS and NLOSI1 is 29° and the phase
difference between LOS and NLOS2 is 63°. No general formula was derived here to
describe the phase difference condition for maximum or the minimum CRLB to hold
because it is difficult to formulate. However through the simulation, it shows that the
maximum or the minimum CRLB values do exist when the phase difference between two

incident rays has a certain relationship.

Figure 3.5 also gives us a guide on how to apply MUSIC efficiently. It can be seen that
the CRLB for three source signals are higher than that for two source signals. So even
though MUSIC can resolve a certain number of incident signals only if the number of
antenna array is large enough, the best choice is to limit the number of incident
signals, which is presented in the proposed algorithm through using the data sampled at

the correlation initial part. Another phenomena worth mentioning is that different LOS
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AOA will result in different CRLB values. For example, if LOS AOA1 = 70°, the CRLB

increases, as shown in Figure 3.5 (b).

25
—— maximum CRLE for 3 soures
—&— minirmurm CRLE for 3 soures
—e=— maximum CRLE for 2 soures
-0 F —a&— minimum CRLE far 2 soures ||
=
2, SMR = 14 dB
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o 15l A05 of LOS = 90 degree |
= Sensor number =5
3 | Correlation coef. | = 0.8
o —
= d/a=05
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=
£
=
=
— =
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o i &
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(a) CRLB of AOA for Multiple Sources Signals, LOS AOA = 90°
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(b) CRLB of AOA for Multiple Sources Signals, LOS AOA =70°

Figure 3.5: (a) CRLB of AOA for Multiple Sources Signals, LOS AOA = 90°;

(b) CRLB of AOA for Multiple Sources Signals, LOS AOA =70°



71

3.7 CRLB of TOA Estimation for IS-95 Pilot Signal

The TOA of the LOS component of the received signal is estimated based on correlation
functions, independently from the AOA estimation process, i.e., after the AOA is
estimated in this approach, the AOA is a known parameter for the TOA estimation.
Compared with the maximum likelihood-based optimal joint AOA/TOA estimation, this
method is computationally more efficient to implement and sub-optimal when signal to
noise ratio is large. When the AOAs are estimated, the LOS is strengthened and the
multipath is mitigated through the beamformer. The performance of the beamformer is
discussed in Section 5.4. After beamforming, the weak multipath signals are not
considered. The following derivation of the CRLB for TOA is based on one source signal
because after the correlation function has been compensated by the estimated AOA, the

multipath signals can be treated as noise.

Assuming that the size of the linear antenna array is much less than ¢7,. (c is the velocity
of light and T, is the PN code chip period, so c¢T,. = 3x10°x800x10” = 240 m; whereas
the size of antenna array with 5 elements = 30 cm ), the relative time delays of the
baseband signals at different elements of the antenna array can be ignored. It means that

all time delays of PN code at different elements are the same. Thus the equation (3.22)

can be modified as:
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x, (1)

x, (1)

X(1) = =a(f)s)+n()

(3.55)
X, (1)
=a(B)yPN(t—71)e’” +n(1)

Here y, 7 and ¢ are the amplitude, time delay and initial phase of the IS-95 pilot signal
before despreading, respectively. For the IS-95 pilot signal, PN (¢ — 7) can be defined as

(referring to Chapter 2 for the IS-95 pilot signal correlation process):
PN(t—7)=PN,(t—7)+ jPN,(t—7)
Now the unknown parameter vector 0 is:

0=[02, v.0.7|"

where o is considered as the unknown noise variance; y, 7and ¢ are the amplitude,

time delay and initial phase of the IS-95 pilot signal, respectively.

The above assumes that the / and Q outputs of the demodulators are corrupted by iid
Gaussian noises with zero mean and variance ¢ /2, N (0,0°/2). However it will be
seen later on from the Fisher information matrix that the noise variance is not related with

the other three parameters y , ¢ and 7, which means that the noise variance can be

treated as a known parameter for the TOA estimation or can be estimated independently.
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If the number of snapshots is N, the parameterized PDF of the sampling data x(¢) can be

written as:

N
- \/—1 M N eXp{_% [X(f)—a(ﬁ)S(t)]H[x(t)—a(ﬁ)s(t)]}
G

loanipam

N . .
Y [x(1)-a(ByPN(t—1)e P17 [x(t) —a(B)y PN(t—1)e /7]
1 t=1

exp
( 5 jZM N o
TOoO

2

(3.56)
In the above equation, ¢ is the discrete time and 7 is the time delay normalized by T :

0<7<T/Tg

T is the period of PN sequence and Ty is the sampling period.

The logarithm of p(x(1), x(2),---, X(N);0) can be derived as:

A
L=In p(x(1), x(2),---, x(N);0)

N . .
= const— MN1no? ‘% S x)-a(B)y PN -1)e 717 [x(t) - a(Byy PNt —7)e /7]
O =1

(3.57)

Based on equation (3.57), one can obtain the following equations:
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L _ MN
300" o —Zn (H)n() (3.58)
9L (3.59)
dy vo 5
oL 2j
%" ZI [ (Da(B)s(1)] (3.60)
2 & PN(t—7) .
_:G_Z Re[n” (Na(B)y %e”’]
. (3.61)
as(t Z')

=2 Y Reln” (a(p)
2

Based on the above partial differentials and equations B.9 -10, the elements in the Fisher

Information matrix can be derived as:

®), = —E:a(‘: - -
O, = —Ea;’—gy ~0
O], = —Eag—aL(b ~0
O, = —Eag—aLT ~0

ZIPN(t— piz =24

[JO)],, =—-E aa f }: 22 2 ZRC[S*(I)aH (Ba(B)st)] =
Y Y O 5
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_ o°L _ a_La_L _ 4
[J(0)],; = E{ayagb}_ E{ayagb} o E{;Re[n (Ha(B)s(r) Im[n" (t)a(ﬁ)s(t)}

72;4 E{Z Im[n” (a(A)s() ~Imn" <r>a<,6’>s<t)<nH(t)a(ﬁ)s(t))*]}

=0

2
H O :_E{ 2L }: E{E)L BL}

dyoT dy ot
4 N
=———E z Re[n’ (a(B)s(t)]Re[n’ (1)a (ﬁ)as(t 7)}
YO |r=1
) W as(t 0,
=——1E Y Re[n’ (na(B)s()n’ (Ha(p)
YO |t=1
+Re[n” (na(B)s)m™ (a(B) as(t;) ]}
N
2y RG[PNU_T)MJ
o2 = 0T
N _
_ 2M'Y ZPN (t aPNIil: T)+PNQ(I—Z')8PN%S T)
_M dPN dPNG(v)
y Z I(v) v=(n-DT; — Ty T . v=(n-T; - T
o2 ~ v dv

=0
here Tg is the sampling period and PN (t) = %1, PNy (H==1



N
O] = —E{a—”—ﬂ =2 B Y min a(Bsolimin” (1a(B)so)]
a¢ a¢ (o2 t= 1

2

% {Z Reln” (a(B)st)]* - Reln® (na(Bstym™ (Ha(Bsen” ]]

2
:—4 [ZRe[a Bm” (Hm! (Ha” (B)s(t)s (f)]

v? _4MNy®

0_2

N
LY IPNe-0)1?
t=1

oL OJL
09 o7

[J(O)]34 =— {

}:——E[Zhn[n (a(B)s(]Reln (1) <,6’)as“ 7)}
(o)

as(t T)

_2 [Im[n DaB)sm! (Da(p)
G

+Imn (a(B)s@n” (Ha” (B)

s (t, T)
oT

. 2 N o
:_M ZIm PN(t—T)M =0 (see Appendix F)
s 2 ot

T

%L
[J(ﬂ)]M:_EL 5 }

N * 2
——%E{zRe[—an) B LD o) LD Retn® (1a) " ”}
o} =1

o7 z'

_2My* J|OPNG - 7)|?
o’ tgl a7 |

The Fisher information matrix is expressed as:

76
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o), 0 0 0
0 U®L 0 0
J@) = 3.62
®= 5 0 IO, [JO. (5:62)
0 0 O, IO,

From the above matrix, it can be seen that the TOA estimation is only affected by the IS-

95 signal initial phase ¢, not by both the noise variance o and signal amplitude vy

because the delay 7 is not correlated with both o and Y.

Then the CRLB of the time delay or TOA for CDMA signal is given by:

3
[T13®)1;;
i=1

varcryp () = [J (0154 = —

TT®)1; —[3©)11[3©)122[I(0)]34
i=1
1

= 3 (3.63)
[3(0)]4s [T O)134 /[T O)132
_ o’ 1
IEEN > . 2
OPN (1 —7) __\OPN (t-71)
2M§1 - [ iy 2 ZPN(t D=

To prove Im{ ZPN (t— =~( appeared in the above equation, a

t—l

aPN*a—r)
o7

further investigation of equation (3.63) is given in Appendix F.
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Thus CRLB of TOA for an IS-95 pilot signal is as follows:
..o’ 1
varcgrp (1) = — 3

Y N 2
2M28PN(t—f) B
by 0T

2 1

1 X PN (1 -17)
Iml— S PNG—0) T 7Y
" JN ;1 = ot

IPN(t —7)| 2

ot

(3.64)

=— (TS :Tc/z)

~ 30MK - SNR

2

where SNR = Y_2 is the signal to noise ratio before despreading; K = 215 is the length of

o

IS-95 PN sequences; M 1is the array elements and 7~ is the chip period . It can be seen

that the shorter the chip period is, the lower the CRLB is; the longer the length of the PN
sequence is, the lower the CRLB is; the higher the SNR is, the lower the CRLB is; The

higher the number of array elements is, the lower the CRLB is.

3.8 CRLB of Joint AOA and TOA Estimation for IS-95 Pilot Signal

For the joint AOA and TOA estimation, the parameter vector 0 is defined as:

0=|0> !
- b Y ’¢7 T’¢ (3.65)
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where o is considered an unknown noise variance; v, Tand ¢ are the amplitude, time
delay and initial phase of IS-95 pilot signal respectively; ¢ is the impinging signal’s

phase delay between adjacent antenna elements.
Compared with the unknown parameter vector 0 in Section 3.7 for the case of TOA

estimation, here the added parameter is ¢ = 27[; cos £, which is defined in equations

(3.23) and (3.27).

The direction vector a(/f) can be expressed as:

a(B=a(p)=[1, 7, .. e (3.66)

Similar to equation (3.51), the differential vector d(¢) is defined as:

d(p) = 4a(9) (3.67)

dg

Just as in the definition of log-likelihood L in equation (3.57), one can derive the

following equation:

N
g—; =2 Y Reln” (Nd(@)s(1)] (3.68)
O (=1

Note that the elements [J(0)], ;L= 1,2,---,4 1in the Fisher Information matrix are the

same as those derived in Section 3.7. Only the new added parameter ¢ needs to be

considered. The additional elements in the Fisher Information matrix can be derived as:



80

3%L 2 N H
[JO®)5 =—E| —— |= ZRe[n Od(@)s(0)] | =
Jdo an ot

N
[J(®)]p5 =—E {a P {2 e[nH(t)d(rp)s(r)—aH(r/))s*(r)d(rp)s(r)]}

= VY Refa® (prd() = 2T Rel b1 (b1 - 1)) =
O'

2 N
WOs =-E| 2 |- 2 B 3 Rel jn ()d(@)s)+ ja (9)s” 0d(@)s(0)
a¢a¢ o t=1

_4ANY? ONM(M 1)y | 2NM (M —1)y?
=~ T Refja! (pra(p)) = { W=y } W=y
G o (o}
[JO)]s5 =— { }
N . _ . * oo
= _% !Z Re[n’ (t)d(@yem % _af (@Ye—m Md(@s(t)]]
—1 T or
292 X H PN (t—7)
=—2 a” (p)d(¢p)————PN(t —7)
o _ 82‘
N ES
_ MM -1y ZR{J,BPN (t—Z')PN(t_T)}
o =1 0T
MM -1)y? L oPNy(t-1) . _OPN;(1-7) ~
- 2 Z‘{ - PN;(t-7) BV PN (t—17)
_2MM - l)y J-T dPNI(t)PN e
T56 dt
=0 (refering to Appendix F)
0°L ad
[30)]ss :—EL }:——E[ZR[ ((Z’) st -d ()" (t)d((p)s(t)]
0°

2

30

2 M _ 12
_ 4Ny Z(m—l)z _ 2NM (M —-1)(2M -1)y
2
o m=1

(3.69)
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Finally the Fisher information matrix for joint AOA and TOA estimation is obtained as:

IO 0 0 0 0 ]
0 [J(0)]» 0 0 0
J(©) = 0 0 [J(0)]33 0 [J(0)]35 (3.70)
0 0 0 [J(0)]l44 0
0 0 [J(0)]35 0 [J(©)]55 |

Based on the above equation, the CRLB of joint AOA and TOA estimation is formed as

follows:

1. The CRLB of AOA-joint TOA (7 ) estimation for CDMA IS-95 pilot signal is:

5
[T3®1;; /J(e)m —[J(O)] 1 LT (O) ]2 [J(8)135
i=3

5

varcpy g (£) =[J(0)]34 = 7
[T®1;; -3@2s[JI®)1;; /J(0)133

1

[J(0)]44

o’ 1
=— Vi 5 (3.71)

Y 2MZ PN (t—7)

= or

o’ IsTc (Tg =Tc12) (referring to Appendix F)
= — = 1 L

72 16MK s =1c 8 pp
__ T

32MK - SNR

where T~ is the PN chip period; M is the number of antenna array; K = 2" is the length

of PN sequence and SNR is the signal to noise ratio before despreading.
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Comparing equation (3.71) with equation (3.64), it can be seen that the CRLB of the
AOA-joint TOA estimator for the CDMA IS-95 pilot signal is the same as that of the
independent TOA estimator. This can also be seen from equation (3.69) where

J-T dPNI(l)

[J(0)]45 — O because PNy (t)dt — 0 (see Appendix F), which means that

the added unknown angle parameter ¢ in equation (5.32) affects little the TOA

estimation.

2. The CRLB of TOA-joint AOA (¢ = Zﬁ%cos ) estimation for the CDMA 1S-95 pilot

signal is:

4
H[J(G)]ii
i=3

5 4
[T®1;; -[3®15s [ IO /J(ﬂ)]33
i=3 i=3

varcrr g (@) = [J(0)]54 =

1
[J(0)]s5 —[J(0)135 /1I(0)]33 (3.72)
1
2NM (M -1)(2M —1)y* | 2NM (M —1)v* ? ANM)y?
362 c? o2

3
N*SNR*M (M —1)?

Here the SNR is the signal to noise ratio at the sampled point; N is the number of

samples; and M is the number of antenna array elements.
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Comparing equation (3.72) with (3.52b) shows that the CRLB of the TOA-joint AOA
estimator for CDMA IS-95 pilot signal is larger than that of the independent AOA
estimator because the latter estimator has fewer unknown parameters. However, when the

number of antenna array M is large, their CRLBs are close.

3.9 Conclusions

Parameterized PDF and unbiased estimators were introduced followed by an example.
The general estimation theory about CRLB was also described. Based on the linear
uniform array, a data model and the corresponding parameterized PDF for AOA and
TOA estimation were given. The CRLB of AOA estimation under one source signal was
studied. From this simple case, we can see that the signal from the broadside of the
antenna array has a smaller estimation error than that from the endfires. The larger the
antenna spacing, the larger the number of antenna elements, and the higher SNR results in
a smaller estimation error. The CRLB of AOA estimation under multiple source signals
was also investigated. A simulation experiment result was given to explain the error
factors from several more practical aspects. It shows that first, the phase of the correlation
coefficient has a great impact on the value of CRLB; secondly, the larger AOA difference
between two incident rays results in smaller CRLB values; thirdly, the number of source
signals has a larger effect on the estimation accuracy than the SNR when the AOA
difference between two incident rays is small. The CRLB of TOA for the IS-95 PN pilot

signal was derived in terms of SNR, which is easier to be applied in practice. Finally, the
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CRLBs of joint TOA and AOA estimation were derived and show a little bit worse
performance than that of an independent AOA estimator, whereas for TOA estimation,
both are the same. The CRLBs of joint and independent AOA /TOA estimations for

CDMA IS-95 pilot signals are summarized as Table 3.1.

Table 3:1: CRLB Comparison of Joint and Independent AOA/TOA Estimation

CRLBs of Joint AOA / TOA CRLBs of AOA-assisted TOA Estimation

Estimation

A | from equation (3.72) for single from equation (3.52b) for single source signal:
source signal:

N N 3
O | varcgp(9) varcry g (P) = 5
3 N*SNR*M (M “ —1)
Al =
2
N*SNR*M (M —1) It is the same as equation (3.40) when N =1.

from equation (3.52a) for multiple source
signals:

varcgprg (")

_ % RelD#[1-AA" ) A" DIOR; ||

(Stoica & Nehorai 1989)

T 2 2

var, (7) _Te var, (7) I
CRLB = CRLB =
0 32MK - SNR 32MK - SNR

A from equation (3.71) from equation ( 3.64)
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Chapter Four: AOA Estimation with the Forward/Backward Spatial Smoothing
MUSIC Algorithm

4.1 Introduction

In Chapter 3, the CRLBs of the AOA-joint TOA method and AOA-assisted TOA method
were derived. In this chapter, a specific estimator called the MUSIC (MUltiple SIgnal
Classification) algorithm for AOA estimation is fully investigated followed by an error
analysis. The variance expression for MUSIC AOA estimation is taken from Stoica &
Nehorai (1989). Based on that, as in the case of the AOA CRLB, it is found that
minimum and maximum variances exist and that the variance under more source signal
environments is larger than that under fewer source signal environments, which is
fundamental in this thesis. It will be seen that the unbiased MUSIC AOA estimator is

suboptimal when the angle difference between two incident rays is large.

The original or conventional MUSIC algorithm was proposed by Schmidt (1979) to
estimate the parameters of multiple uncorrelated or at most partially correlated signals
arriving at an antenna array. It can provide asymptotically unbiased estimates of the

following parameters (ibid):

1) The number of signals;
2) The angle of arrival;

3) The frequency.
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Because the estimate resolution of the MUSIC algorithm exceeds the Rayleigh resolution
criterion, it is classified as a high-resolution or super-resolution algorithm. The criteria
were developed by Lord Rayleigh in 1879. It states that two arrivals are considered
resolved when the first minimum angular spectrum value of one signal coincides with the

maximum angular spectrum value of the other signal, as shown in Figure 4.1.

Eesolution
Criteria

Figure 4.1: Rayleigh Resolution Criteria

Basically in the MUSIC algorithm, the measured data from M elements in the antenna
array can be visualized as a vector in M dimensional space. It is fundamentally based on
the eigen decomposition of the correlation matrix of the measured data. Assuming that
there are K signals impinging on M elements (M >K) in the antenna array (otherwise, K
signals cannot be resolved by an antenna array with M elements) and the correlation
matrix of the signals is non-singular, M eigenvalues and the corresponding eigenvectors
of the correlation matrix of the measured data can be obtained. These eigenvalues and

eigenvectors can be grouped into two sets:

1. M - K smallest eigenvalues and the corresponding eigenvectors that construct the

noise subspace;
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2. K largest eigenvalues and the corresponding eigenvectors that construct the

signal subspace.

As a result, an M dimensional space can be spanned by M eigenvectors and partitioned
into the above two subspaces, the noise and the signal subspace. Because the noise
vectors and the signal vectors are orthogonal (Section 2.2.1), the inner product of the
signal eigenvectors with the noise eigenvectors should be zero. Based on the above eigen
decomposition technique and the partition of the orthogonal subspaces, the parameters of

multiple signals can be estimated.

There are several MUSIC algorithms for different situations. Among them, the
forward/backward MUSIC algorithm is suitable for AOA estimation under multipath
environments (Pillai & Kwon 1989). In order to understand the application of the
forward/backward MUSIC algorithm on the AOA estimation of IS-95 pilot signals, the
fundamental characteristics of the algorithm are discussed in detail in the following

sections.

4.2 Data Model for AOA Estimation

The data is received from a uniform linear array with M identical elements, as shown in

Figure 3.1. Here is a brief review of Section 3.4. The K signals s,(¢), s,(t), -+, s, (t) are
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complex, the output data from the array is an M X 1 complex vector x(¢). For a single

signal source s, (¢), the array output vector x(¢) can be expressed as

x,(t) s, (1) n,(t) 1 n,(t)
t t— t RRdAd t
S T I P T2 T O P R
: : : : 4.1)
X, (1) s;t—(M - n,, (1) e /S M) n,, (t)
:a(ﬁk)sk(t)"‘n(t)
where a(ﬂk)z[l, e T eI LMD ]Tis an M x 1 vector called the direction

vector; the symbol (T) denotes transpose; f,. is the carrier frequency of the incident

d *cos(f,)
c

signals; 7= is the delay between two elements; d is the antenna element

space; and n(¢) is the M X 1 complex noise vector. The noise at different antenna

elements can be assumed to be zero-mean Gaussian stationary random processes and
independent from element to element. Meanwhile, the noise is uncorrelated with the

impinging signals.

If d equals to g times the carrier wavelength A, the direction vector can be written as:

a(fy) = [1, e I acosp - ,m2E(M=) g cosf ]T
= [1, eI, el M) o ]T
=[Lak,a§w~,af'qT 4.2)
= {aj )

i=0,2,-,M—1
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Where (pk :27‘[qcosﬁk; q= : ali:e—]ZElqcosﬂk =e_]l¢k.

A
For K source signals, the M X 1 array output vector can be expressed as

x()=a(B)s,()+...+a(B) s () +n@) =D a(B)s,(t)+n()

l

5, (1) _r; (1)
~1a(8), a8y, .., ago| 2 |+ | Y 4.3)
SK.(I ) nM.(t )
=As(t)+n(r)
where A =[a(f),a(f,), ..., a(B,)] is the direction matrix with Vandermonde-structure

(linearly independent columns if B, By, -, Bx are different) and s(t) =[s,(2),...,5, ()]
is a K X 1 source signal vector.
In the above assumption, the noise at the antenna elements is mutually uncorrelated and

also uncorrelated with the signals. Thus the M X M auto-correlation matrix of the array

output vector x(¢), which plays an important role in the MUSIC algorithm, can now be
expressed as:

R =E {x()x" (1)}
= AE {s()sT ()IAY + E{n(o)n ()} + AE {sOn” )V + E {(n()sT (1)}AT (4.9

=ARgA" 10671,
where the symbol ( H ) denotes the Hermitian transpose; R = E {s(t)s”(¢)} denotes the

K X K auto-correlation matrix for source signals; o2 is the variance of the additive noise;

and I,, is the identity matrix.
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Notice that if o2 # 0, R is positive definite, which means that all of its eigenvalues are

greater than zero; if o’ = 0, R is positive semidefinite, which means that its eigenvalues

are not less than zero In addition, R ; can be classified as three cases (Shan 1985):

1. Diagonal, non-singular and positive definite when the signals are uncorrelated;

2. Non-diagonal, non-singular and positive definite when some signals are partially
correlated;

3. Non-diagonal, singular and nonnegative when some signals are correlated, which

means that some eigenvalues are equal to zero.

In practice, N data samples from different snapshots can be used to approximate the

covariance matrix of the array output as follows:
A ] &
R=—) x(t)x"(t, 4.5
~ Z t)x" () (4.5)

The above approximation by time averaging is close to the expectation of the measured
signal in equation (4.4) when N is large. If N is small, the accuracy of the AOA estimates
will be degraded. If the vehicle is moving, when N is large, the information contained in

the data changes as the time goes by. Then the data needs to be modified.

4.3 Eigen Analysis of Array Data Space

4.3.1 Array Signal Space

Before discussing the eigenanalysis of array data space, it is necessary to figure out the

array data space and the relationship between array signal vector x(¢f) and direction
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matrix A or direction vector a(f3,). The expression of the array signal vector x(z) is

rewritten as:

s1(0) ny (t)
x(t) =[a(B)), a(fy), ..., a(Bk)] szz(t) + nz.(t)

sk (1) ny (1) 46)

uy () ny (¢)
uy (1) N ny (1)

=u(t)+n(t)=As (t)+n(r)

up (1) ny (1)

where A =[a(8)) a(3,) --- a(Bk)] has a Vandermonde structure; the vector u(r)
represents the noise free array signal space. It can be seen that u(z) is the linear
combination of the direction vectors a(/;) and the coefficients of the combination are the
source signals s;(f). The concepts of the array signal space and the corresponding
vectors u(t) are illustrated geometrically in Figure 4.2(a). There are two source signals

impinging on an antenna array with three elements, i.e., the array signal space is two

dimensions because it is constructed by the combination of two signal vectors a(f,) and
a(f3,) . The correlation matrix R of x(7) can be written as:
R =E {(x()x" (1))

=AR A +o%1 (4.7)

=R, +0° 1

The constant complex matrix A reflects the relative locations between the antenna array

and the signal sources. The K direction vectors in A are visualized as a K dimensional
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signal subspace within the array signal space and the source signal vector s (¢) lies in the

subspace.

The Signal Subspace

/1

Vi
a(f3) The Continuum of Direction

(a) Space for Two Signals and a Three-Element Antenna Array

The Signal Subspace Spanned by

Signal Eigenvectors Y,  Signal Eigenvector

Y1

Signal Eigenvector

v / -
' Y Noise Eigenvector

a(pB) The Continuum of Direction

(b) Eigen Space for Two Signals and a Three-Element Antenna Array

Figure 4.2: (a) Space for Two Signals and a Three-Element Antenna Array; (b)

Eigen Space for Two Signals and a Three-Element Antenna Array (Schmidt 1979)
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4.3.2 Eigen Analysis of Array Signal Space with Spatially Uncorrelated or Partially

Correlated Signals

Without loss of generalization, it can be assumed that the eigenvalues and the

corresponding Mx1 eigenvectors of R can be expressed as:

g, dnsrnidgg} (g2 Ay 220y, >0)

(4.8)
Y v2. > 7m}
The corresponding eigenvectors have the property of Hermitian matrices as follows:
H —
vily; or vimv;=0 4.9)

G, j=12,--M and i# j)

That is all eigenvectors of any correlation matrix are always orthogonal. When the

signals impinging on the antenna array are uncorrelated or partially correlated,
R = E{s(t)sH (t)} is nonsingular with rank(R )= K . After Rg is multiplied by the

Vandermonde-structure direction matrix A 5, , the matrix R, =A Ry A" has a rank

of:
rank(AR g A") =K (4.10)

Based on Equation (4.7), (4.8) and (4.9), the following results can be obtained:

4.11)



AR A"y, =0 i=K+1L,K+2,--,M
which results in the following equations:

Afy. =0  i=K+1L,K+2,--.M
or
j=12,.K

aH(,Bj)'YiZO or 'YzHa(:Bj):O {i:K+1 K42 -+ M

Derivation of Equation (4.13):
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(4.12)

(4.13)

By multiplying A" to equation (4.12) and continuously multiplying (APA)™! to the

equation, one can get the following expression:

AN TATARGA Yy, =0 i=K+1,K+2,--. M
or

RoA7y. =0  i=K+L,K+2,-- .M

By multiplying R !5 to the above equation, one can obtain equation (4.13).

Equations (4.11) - (4.13) state the following important facts:

1. There are M-K minimal eigenvalues that are equal to ¢°;

(4.14)

2.All direction vectors a(f j) (j=12,---,K) in the Vandermonde-structure

direction matrix A are orthogonal to M-K noise eigenvectors corresponding to

the M-K minimal eigenvalues.
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As aresult, the M dimensional array data space can be decomposed into two subspaces:

1. The noise subspace constructed by M—K noise eigenvectors;

2. The signal subspace constructed by K signal eigenvectors.

The concept of eigen analysis-based signal space is explained in Figure 4.2 (b). There are
also two signals impinging on an antenna array with three elements. The two dimensional

signal subspace can be visualized as a plane spanned by the signal eigenvectors, 7y, and

Y, (v, L v,). The noise eigenvector vy5 is orthogonal to the signal eigenvectors.

4.4 AOA Estimation with the Conventional MUSIC Algorithm for Spatially

Uncorrelated or Partially Correlated Signals

4.4.1 Conventional MUSIC Algorithm

As discussed in section 4.3, there are (M-K) noise eigenvectors. If V, denotes the M X

(M-K) matrix whose columns are the noise eigenvectors as follows:

Vy =Y ka> Yisrs o> Yr | (4.15)
and if any vector Y with M elements is orthogonal to the noise eigenvectors in matrix
V, , then the multiplication of vector Y by matrix V, yields:

VIY=0

or (4.16)
YAvyviy=0
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Based on the above equations, the conventional MUSIC algorithm is similar in the

equation below because the direction vectors a(f ) (j=1,2,---, K) are orthogonal to

all the noise eigenvectors in matrix V, (Section 4.3.2):

a” (B)VyVaa(B)=0 (j=12,-,K) 4.17)
By using a steering vector a(f), the AOAs of signals can be determined by searching

through all angles £ in the “MUSIC spatial spectrum” P(f3), expressed as:

1

P(B)= .
a™ (BVy Vi a(B)

(4.18)

When a(f) is equal to any one of the direction vectors a(f D) (j=L2---,K), ie,

a(f) is perpendicular to the noise eigenvectors in matrix V,, and the denominator of
P(pB) is zero. So the AOAs are estimated by locating the peaks of a “MUSIC spatial
spectrum” P(f). The relationship between the number M of linear array elements and

the number K of uncorrelated signals should be as follows:

M>K+1 (4.19)

This is because there should be at least one vector space for noise among M eigenvectors
to scan out K = M - 1 signals. If the number of noise vectors is i, then the number of

signals is K =M —i.
The steps in the conventional MUSIC algorithm are summarized as follows:

1. Choose M (the number of linear array elements) = K+1 (K is the number of
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uncorrelated signals);

2. Calculate the correlation matrix R of the measured data;
3. Calculate the eigenvalues of the correlation matrix R;

4. Construct the noise matrix V,, based on noise eigenvectors;

1 1

a*(p) " (BVyViap)
6. Pick K peaks of P(f) and obtain AOAs.

5. Evaluate the “spatial spectrum” P(f) =

4.4.2 Failure of the Conventional MUSIC Algorithm

If some signals impinging on the antenna array are spatially correlated, the conventional
MUSIC algorithm cannot be used to estimate the AOAs of the signals. The following

example shows how the conventional MUSIC fails under correlated signals.

Example 1:

Assuming that there are two correlated CW signals s,(f) and s,(¢) impinging on a linear
antenna array with three elements and the antenna spacing is d =A4/2. s,(t) is a LOS
signal and s,(¢) is an NLOS signal. If their impinging angles are 5, =90° and /3, = 60’
respectively, the direction vectors and matrix can be expressed as:

alB)=[L1L17, aBy)=Me /%, 2?17 =(1,—j,-117

here @, = 271'%008,32 =x/2 and A =[a(f) a(ﬁz)]'
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Because the NLOS signal s,(¢) is the replica of the LOS signal s,(¢), the relationship

between two signals can be written as:
§5 () = ws (1)

where w is the complex weight coefficient, which represents the time delay and
amplitude attenuation with respect to the LOS signal. Suppose that the independent noise

n(t);, at different antenna elements is a zero-mean Gaussian stationary random process

with variance o and uncorrelated with the impinging signals. Then the correlation
matrix R of the measured array data xX(¢)3y; =[a(f))s;(t)+a(By)s,(0)]+n(r) , if

I's,(£)1°=1, can be expressed as follows:

R = E {x(t)x (1)}

. H+wl? +6%  A+w)(d+jw) (+wd-w)
:A{l WZ}AH +oI=|A+w)d—jw) |j+wl?+c? A-w)Hd-jw)
wow A+wHl=w) (A=w)(1+jw") 11=wl* +02

It is evident that R is not a full rank matrix with rank(R ) = 1. A further analysis is

worth doing for understanding the limitation of the “MUSIC spatial spectrum”.

jmil4

Substituting w=e’""", which means that there is a 7 /4 phase delay for the NLOS signal

s, (1), into the above equation, the correlation matrix R is obtained as:
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242407 A+V2)A+)) A2
R=|(1+/2)1-j) 2++2+0> 1+ j

—j2 1-j 2-2+0?

2+42+07  N20+42)e "t 20072

= ( + e_<'” + +O- e'ﬂ'
\/51 \/5) jzl4 o) \/5 2 \/5 jzl4

\/Ee—jﬂ'/Z \/Ee—jﬂ'M 2—\/§+62

Three eigenvalues of R are A,=6+ J2+ 02, A =4 =0". The corresponding

eigenvectors of the eigenvalues are calculated as:

V22 T T
=[1, ——j—, —j&2-D1", =[—+j—, -1, 0
T1=[1 212, J( ) 1 72[2+J2 ]

v3=[-j2-1, 0, 117

It is clear that the noise space eigenvectors y, and 7y, are orthogonal to the combined

direction vector a(f)+ wa(/f,), but not orthogonal to the original direction vectors,
either a(f,) or a(f,). Therefore, AOAs cannot be estimated by “MUSIC spatial

spectrum” of equation (4.18). The extension of this example, Example 2, is continued in
Section 4.5.3 for the explanation of the successful use of forward/backward smoothing

MUSIC technique.

In terms of matrix algebra theory, the following more general example is given to prove
that the rank of the covariance matrix of the correlated signals is not full and not
orthogonal to the noise eigenvectors. Assume that the multipath environment consists of

K correlated signals from the same CW source (perfectly correlated) and the number of
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array elements is M. The correlated signals s,(¢), s,(t), -+, s, (¢), from the directions of
B, B, -+, By respectively, are phase-delayed amplitude-weighted replicas of the
source signal and expressed as:

s, =ws, (1) k=12, K (4.20)

here w, represents the complex weight coefficient of the K™ signal s, (1) with respect to

the source signal s, () .

By defining w to be the weight coefficient vector as follow:

W=[w, Wy, ..., wel, (4.21)

the signal vector can be written as:

s(1) = ws, (£) (4.22)

and the expression for the measured data vector can be written as:

n (1)
x(0) =[a(6). a0, ... a@ )] ws,) + | "
PR K ! : (4.23)
ny, ()
=Aws, (1)+n(r)
Thus, the covariance or correlation matrix R of s(¢) is as follows:
R = E{s()s” ()} =1s5,(t) P ww’ (4.24)

Now the covariance or correlation matrix R of x(¢) is modified as:
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R =E {x®)x" (1)}

) 0o o (4.25)
=ls;() 1" Aww™ A +07 1)y,

Because the rank of the K x K Hermitian matrix ww” is equal to 1 (singular) expressed

as:

rank(ww") =1, (4.26)

according to matrix algebra theory (Abadir & Magnus 2005), the rank of A ww A" s

also equal to 1 as follow:

rank(A ww"” A") =1. 4.27)

It means that there is only one independent source signal. Therefore there are M-1 noise

eigenvectors orthogonal to A ww” A” | which can be expressed as follows:
Awwfd Ay =0 =23 M. (4.28)

Based on the fact that the inverse of matrix ww” does not exist, the above formula can

be simplified as:
w' A"y, =0 or (AW)'y,=0 i=2,3,-, M (4.29)
where Aw is an Mx1 column vector which is the linear combination of all of direction

mode vectors. It can be defined as:

K
b=Aw =) a(B;)w; . (4.30)
i=1
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It can be seen from equations (4.29) and (4.30) that only the linear combination of all of
direction vectors b, which is no longer of the Vandermonde structure, is orthogonal to the

noise eigenvectors. So when the Vandermonde-structure steering vector a(f) scans the

all possible angles, it will never match non-Vandermonde structure direction vector

b =Aw in the newly generated direction matrix A wwi A¥ to estimate the AOAs of

the correlated signals.

The limitations of the conventional MUSIC algorithm application in correlated signal

AOA finding can be summarized as:

If m out of K signals are fully correlatetd, only the K-m uncorrelated signals can be

resolved using the conventional MUSIC algorithm.

4.5 AOA Estimation with the Forward/Backward Smoothing MUSIC Algorithm for

Spatially Correlated Signals

In practice, multipath signals exit in most wireless systems, which motivated people to
improve the conventional MUSIC algorithm to find the AOAs of correlated signals.
Evans et al (1981) and Shan et al (1985) proposed and demonstrated the effectiveness of
the forward smoothing MUSIC algorithm. Pillai et al (1989) then proposed the backward

smoothing MUSIC algorithm and combined the two algorithms into one
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Forward/Backward Smoothing MUSIC algorithm to resolve the AOAs of correlated

signals.

4.5.1 Forward Smoothing MUSIC Algorithm for Spatially Correlated Signals

Assume that a linear uniform array consists of M elements that are divided into L
overlapping subarrays, each with m elements, as shown in Figure 4.3. Thus, the elements
{1, 2, ..., m} are grouped as the first forward subarray; the elements {2, 3, ... , m+1} as

the second forward subarray and so on. The number of forward subarrays is defined as:

L=M-m+1 4.31)

A
A 4

2% % & S

Figure 4.3: Forward Spatial Smoothing Scheme

Let x/ (t) be the measured data vector of the I"™ forward subarray (=1, 2, ..., L). Based

on equations (4.1) - (4.3), x{ (t) can be expressed as follows:
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x! (0 =0, 21 O, oy Xy O1T
51(2) ny (1)

5o (1) 4 ny41(t)

=[a] 'a(B)), a 'a(By), ... ak 'a(By )] (4.32)

sk () Ny m—1(0)
=AB' s @ +n] (1)
where A is an m x K direction matrix defined in equation (4.3); B! is the (l—l)th power

of the KxK diagonal matrix B and it has the following expression:

B=diaga,.a,.....ay);  a=e " =12 K. (4.33)

4

Consequently, the auto-correlation matrix of the /™ forward subarray can be derived as:

le =E{xlf(t)(le(t))H} (4.34)

=AB" 'Ry B'HHAH 1671,
Here I,, is an m-dimensional identity matrix.

The forward spatial smoothing scheme is to obtain the mean of all forward subarray
covariance matrices and then implement eigendecomposition of the smoothed covariance
matrix. Thus, the forward smoothed auto-correlation matrix R’ for all subarrays can be
written as:

L L
R/ =%Zle :A(%ZBl_lRS (BH)HJAH +021,

=1 1=1 (4.35)

= AR,A + 671,
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where R is the forward smoothed source signal auto-correlation matrix of the signal,
which is expressed as:

1& _
R/ :ZZBI IRy B'HH
=1

L
_ lzBl—lRS (-
I=1

1 L Sy —(1-
:ZRS@Zdzag(Bl 1)[dzag(B =y
=1
where
B0 diag ol . ) (436

diag(B(l_l)) = [al(l_l), ag_l) e a%_l)]T;

diag [al_(l_l), ag(l_l), e al_{(l_l)];

diag B~V =[a7 "7V a0V IO

ai:e—ﬂ”qcosﬂi i=1,2,--. K

Based on the conventional MUSIC algorithm of Section 4.4.1, if only R/ in equation
(4.35) is a full rank matrix, i.e. rank(R/)= K , then all AOAs can be estimated even if

the impinging signals are correlated. In fact, R} is a full rank matrix, only if L > K.

This property is demonstrated below.

Assuming that the impinging signals are all correlated, the signal vector has the

expression of equation (4.22) with |s,() =1, and the KxK source auto-correlation

matrix R/ of the forward smoothing scheme has the following form:
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Rf _liBl_lw (BI—IW)H
L
=1

= %[w, Bw, B*w, ---, B“'w][w, Bw, B*w, ---, B"'w]” 4.37)

- Leer
L

where C is a KXL matrix, which is expressed as:

C=[w,Bw,B’w, -, Bl lw]

wy 0|1 a af - af
2 -1
_ Wy 1 ay, a5 - a; (4.38)
0 wi |1 ax ap - ak!
=DA

where D is a diagonal matrix and A has a Vandermonde structure.

Based on equation (4.37) and (4.38), the following relationship between the ranks of R§ ,

C,D and A is obtained:

rank(RY) = rank(C) = min (rank(D), rank(A)). (4.39)

Note that the rank of the KXK diagonal matrix D is K. Thus, if L > K, the rank of the

Vandermonde matrix A is also K. As a result, R/ is a full rank covariance matrix,

rank(R})=K , only if L> K. It means that even when the impinging signals are all

correlated, their AOAs can be resolved by the forward smoothing MUSIC algorithm. The

above result is obtained when a; #a, #as---#ag . When a| =a, =aj3---=ag,ie. all K

signals are from the same incident angle, then the MUSIC algorithm cannot resolve them.
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Based on the above discussion and Figure 4.3, the minimum number of antenna array
elements for the forward smoothing MUSIC algorithm should meet the following

equation:
M =Ly +mp, —1=K+(K+1)—-1=2K . (4.40)

Compared with K+1 elements for the conventional MUSIC algorithm, the forward
smoothing MUSIC algorithm sacrifices more antenna elements to overcome the

correlated signal problems that occur in the conventional MUSIC algorithm.

4.5.2 Backward Smoothing MUSIC Algorithm for Spatially Correlated Signals
The backward subarrays are also generated from the linear uniform array, as shown in
Figure 4.3.

R

A
A 4

Figure 4.4: Backward Spatial Smoothing Scheme

Based on Figure 4.4, the elements {M, M-1, ... , M-m+1} are grouped as the first

backward subarray; the elements { M-1, M-2, ..., M-m } as the second backward



108

subarray and so on. Thus, the number of the backward subarrays is the same as the

forward smoothing case, whichis L =M —m+1 as in equation (4.31).

Let xf (1) be the measured data vector of the ™ backward subarray (/=1, 2, ..., L). Based

on equations (4.1) - (4.3), it has the following expression:

X (1) =[xy 31 (O Xpg (s vy Xp 1 (D17

s1(2)

a2 (B, a1t (By), ... a7 Ma* (By)] Sz:(l)

sk (1)
= A[BY s (1) "+ 15, (1) = AB (BM s (1) “+nl (0)
=AB''r (1) +nl (1) [=1,2,-, L

where r(z) = (BM s (t)) " Then the auto-correlation matrix of the

can be derived as:

R} = E{x}) (0 (x} (1))
=AB" 'R, B™HHEAH + 571,

where

R, =E {r()r()"}
=B V(s (08 (1)) B
=B (Es(n)s” (1)]) (B )"
— B_(M_I)Rz B

M- _ . —~(M-1)  ~(M-1) —~(M-1)7.
B =diag |a, ,a, yeees Ay 1;

—j27z’qcosﬁi

a,=e i=1,2,---, K

* %
Ny 41 (0)
I’ZM_I (t)

ny 141 ()

(4.41)

I"™ backward subarray

(4.42)

(4.43)
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Similarly, the backward spatial smoothing scheme is to obtain the mean of all backward

subarray covariance matrices and then implement the eigen decomposition of the

smoothed covariance matrix. Thus, the backward smoothed auto-correlation matrix R’
for all subarrays can be written as:

L L
Rb:%ZRWq{%ZBHerHYﬂAH+GH
=1

= (4.44)

= AR’AT 161,
where ng is the backward smoothed source signal auto-correlation matrix, which is

written as:

1& _
Ll=1
L& M- p* n(M-I
=— > B~ MR gD (4.45)
Ll=1
Lo —(M-1) (M =1)\qT
= Rs © diag(B diag (B ™0)]
=1

BM =Dy o M=), M-

[al a(M—l)]T .

where diag( R %

Considering the completely correlated situation (referring to equation (4.24)) and

assuming that | s,(7) =1, R, in equation (4.43) can be modified as:

R, :B—(M—I)Rj; (B—(M—l))H
=B M Dy (B M DyHH (4.46)
=58"

where (refer to equation (4.2))
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6:[51’52,"',§K]T;

' . (4.47)
5]{ :WZ a];(M—l)’ a];(M—l) :e]27Z(M—l) qCOSﬁk kzl, 2,"',K

As a result, the KxXK source auto-correlation matrix R’; of the backward smoothing

scheme has the following form:

L
R’ :lzBHRr B
L5
1i I-1¢ «H ;pl-l1\H
-—S'B 587 B
L5 (4.48)

) %[5’ B3, B%3,---, B"'5][5, B3, B3, -, B '5]"

- Lgg#
L

where E is a KXL matrix, which is formed as:

E=[5,B5,B%5, .-, B/ 5]

9 0111 aq aq at™!
2 -1

| % La o - a (4.49)
0 Ok |1 agx ap ak™

where A 1is the same as that of equation (4.38) and F is a diagonal matrix.

Similar to the forward smoothing scheme, if L > K, then rank(ng) = K can be satisfied

and the AOAs of all correlated signals can be estimated. It follows that the backward

smoothing scheme also requires at least 2K elements in the uniform linear array and

works for correlated signals.
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4.5.3 Forward/Backward Smoothing MUSIC Algorithm for Spatially Correlated
Signals

The following shows that, by simultaneous use of the forward and backward smoothing
schemes, it is possible to reduce the number of elements required in the antenna array

(Pillai & Kwon 1989).

Firstly, one defines the forward/backward smoothed auto-correlation matrix R’’* as the

mean of R’/ and R”. In completely correlated situations, R’/’* can be written as:

R/ =L®/ 1R
2
:A{ﬁ(CCH +EE” )}AH +0°1 (4.50)
= AR/’ A" + 571,
where R}’” is the KXK source auto-correlation matrix of the forward/backward
smoothing scheme, which is written as:
b _ s b
R ZE[Rg +Rs]
1 H H
=—(CC" +EE 4.51
5 L( ) (4.51)
1

= —GG*
2L

The analysis of the rank of G, which determines the singularity of R’’’ is based on
equation (4.51). The matrix G can be derived as:
G =[w,Bw,B%w,---.B:"'w, 5, B3,B%,.--, B3]

—[DAFA]=D[A:D'FA] =D[A:JA]=DG, (4.52)
G =[A1JA]
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where D and A are the same as that in equation (4.38) and J is a diagonal matrix as (refer

to equation (4.38) and (4.49)):

J -D'F =diagle|, ey, , e 1;

. (4.53)
S5, wra (M- ; _
gk:_k: k %k ’ ak(M D Zpf2rM=l) geosf, 4 _1 5 ... K

Wk Wk

Considering that D is a KXK diagonal matrix, if the rank of G, is kept as K, the

following relationships can be obtained:

rank(RL'") = rank(G) = rank(G ) = K (4.54)
As a result, AOAs of all impinging signals can be estimated. Now the key point is to
analyze the rank of G,. The rank of KX2L matrix G as in equation (4.52) is mainly

determined by the variables ¢, and the total number of subarrays, 2L. The following

analysis of the rank(G,) is based on Figure 4.5.

1. L>2K
In this situation, rank(G,) is always equal to K because the A with Vandermonde

structure is always a full rank matrix, so the AOAS of all impinging signals can be
estimated. However, the number of elements in the antenna array is not reduced and it

is still 2K.
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L = the number of subarrays

L 4 K = the number of signals
L=K
L=k k>1xX 2k
2 2
> K

Figure 4.5: Relationship between L and K

2. K>L=2K/2

In this case, a subset is considered. Any {¢, :k=1,2,---, K} can be divided into
several subsets according to their equality. For example, if K =6 and
e, =&, &, = &5 = &, then there are three subsets, {¢,}, {¢,, &;}and {¢g,, &5, &} .

If the largest size of the subset is of L at most and {a;} of this largest subset are not
equal to each other, the rank of KX2L matrix G, can be kept as K, because of the
Vandermonde structure A in G, as defined in equations (4.38, 4.52). If the above
condition cannot be satisfied, rank(G,) will be less than K. For example, if all of ¢,
are equal, rank(G,) is L which is less than K. Fortunately the above requirement is
easily satisfied in practice because each ¢, (k =1, 2,---, K) are different most of the

time, which can be seen from the following equation:



114

* (M-
0 wy a . *
gk:_k:kk—:exp{][Zﬂ'(M—l) qCOSﬂk +2 p(wi)1} (4.55)
Wk Wk '
k:L 27" 7K

where ¢(w,) is the phase angle of the complex weight w, as defined in equation
(4.20). Tt is clear that ¢, is the function of the impinging angle S, and weight w, of

the k™ signal. Therefore, each ¢, (k =1, 2, ---, K) rarely has the same value.

Thus, in any situations, if L > K /2 is satisfied, AOAs of all correlated signals can be
estimated with the forward/backward smoothing MUSIC algorithm. The minimum
number of elements in the antenna array for the forward/backward smoothing scheme
should meet the following equation:

M

=L +myy, —1=K/2+(K+1)—1=3K/2 . (4.56)

min 'min

Example 2:
Now we apply the forward/backward smoothing MUSIC algorithm to example 1 given in

section 4.4.2. In this case, the size of subarray m = M =3 and the number of subarrays

L=1, i.e., one forward subarray and one backward subarray. According to equations

(4.36), (4.43), (4.45) and (4.51), R]'” can be derived as:

1 —(M - -, _1 2R
Rg/bZE[RS +B (M 1)R§ B(M 1)]:5[RS+B 2RS B2]

11 w*+110 1 w1 o]t o
“2lw w2l 210 =t||w" TwiP|lo =1| [0 1wl?
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After forward and backward smoothing, R-; '’ is a full rank matrix with rank(R ¢)=2.

According to equation (4.50), the auto-correlation matrix of the received signal is

expressed as:

+iwl +0® 1+ jlwl I=lwl
R/ =AR["A" +&’1=| 1-jlwP 1+lwP+6* 1+ jlwP
I-1wl 1-jlwl  1+lwl +0°

jml4

Substituting w=e’""" into the above equation, one obtains the following expression:

2+0° 1+ 0
R'""=|1-j 2+0> 1+j
0 1-j 2+0°

Three eigenvalues of R are A,=4+0°,1,=2+0", 4, =0°. The corresponding

eigenvectors to eigenvalues can be derived as:

T

71:[1’ 1_]’ _]] s 72:[1’ 0’ ]]T and 73:[1’ _(1_])’ _]]

T

From the above results, it is clear that the eigenvector y, belonging to the noise space are

orthogonal to the original direction vectors because a”(f)y,=a"(B,)y,=0.
Therefore, after the forward/backward smoothing, the AOAs of the correlated signals can
be estimated by equation (4.18). Meanwhile, it can be easily seen that the original signal
direction vectors a(f,) and a(f,) can be spanned linearly with signal space

eigenvectors y, and y, as a(f3) :HTJYI +1_TJYZ and a(ﬁz):_1;] Y +—1—;]Yz-
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4.6 AOA Estimation Variance of MUSIC Estimator and Comparison with CRLB

In practice, the auto-correlation matrix R is replaced by its estimate R in equation (4.5).
Because MUSIC algorithms are based on eigenanalysis of the auto-correlation matrix R,
then only the estimates { ,Bl- } of AOAs can be obtained, not the true values. An estimation

variance therefore occurs.

The MUSIC estimation error { ,l?l — B} are asymptotically (for large number of

snapshots) jointly Gaussian distributed with zero means. Its variance is given by Stoica &

Nehorai (1989) as follows:

varyysic (Bi) = ELB; — B)*]

H
_o Ak H 2 da(f;) H da(f;)
i Zk) a (ﬁi)'Yk‘ { ip } VNVy ip, (4.57a)

2N {da(ﬁ")r

where N is the number of snapshots; a(f;) is the direction vector defined in equation

(4.2); Vp is the noise eigen vectors defined in equation (4.15); and fs and Vg are

defined as:

fs :diag[kl—O'z,7»2—02,-'-,%1(—02] and Vg =[y1,v2, Ykl
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Based on (4.57a), the MUSIC error variance may have large values in the following

situations:
(1) When signal eigenvalues {4, :k€[l,2,---, K]} are close to o’. Tt means that the

signal auto-correlation matrix Rgis nearly singular. This situation may occur when

the directions of signals are close in space or signals are highly correlated and when

the signal-to-noise ratio is low.

(2) When the vector M is close to a zero vector. Based on equation (4.2), this

i

situation occurs when S8, — 0° or 180°. The explanation was given in Section 3.5.

For convenience of calculation, equation (4.57a) can be modified to (ibid):

varyysic (Bi )
o2 {IR5'l; +o2 RS AT ARG,

=5 x X (4.57b)
{da(ﬂn} T—AGAH Ay AH 205D
dp; dp;
In the single source signal case, the MUSIC estimator’s variance becomes:
var (B = 3 1+ ! ) (Radian?)
MUSIC , , N, M *SNR
2m)*N*M (M~ —1) SNR 1 sin” 3
(4.57c)

where N is the number of sampled data; M is the number of antenna elements; and SNR is

signal to noise ratio at the sampled point.
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Comparing equation (4.57c) with equation (3.54) shows that, when M and SNR are very
large, it reaches the CRLB. Figure 4.6 shows the AOA variance of the F/B MUSIC

estimator under different SNRs for single source signal case.

It should be mentioned that when using the F/B MUSIC estimator, the parameters in
equations (4.57a) to (4.57c) should be related to the subarray scheme, e.g. the size of

antenna array is referred to the size of subarray antenna elements.

35

30r

251

20

SMNR =5 dB B

SMR =10 dB B

SMR =15 dB

ADA Wariance for F/B MUSIC Estimator (degrae)

1 1 1 1 1 I T I
n] 10 20 30 40 a0 <] 0 a0 a0
Angle of Incident Signal (degree)

Figure 4.6: AOA Variance of F/B MUSIC Estimator for One Source Signal

Case Study of F/B Smooth MUSIC Estimator for Multiple Source Signals
Similar to Section 3.6, assuming that the number of source signals is K <3, the number
of array sensors is M =5. The difference is that the number of subarray sensors to be

considered, which is m = 4. The number of forward and backward subarrays is 2L = 4.
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The number of samples N = 1 and the estimated LOS AOA is [31 . Then the CRLB of the
independent AOA estimator, var.,, ([31) as expressed in equation (3.53) for multiple
source signals situation and the MUSIC AOA estimator error var,,, (B,) as expressed
in equation (4.57b) are compared, as shown in Figure 4.7. In this case, the LOS is s; and

its AOAL is supposed to be at 80°; SNR and SIR are 14 dB. It can be seen that the
MUSIC estimator error is larger than the CRLB given in equation (3.53) and the variance
of two source signals is much smaller than that of three source signals. In addition,

considering the phase of the correlation coefficient p,, of two signals, it is found that the

MUSIC estimator also exist maximum and minimum variances, which is similar to the

existence of maximum and minimum CRLB described in Chapter 3.
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Figure 4.7 (a) Comparison of MUSIC AOA Variance with CRLB for Three Source

Signals; (b) Comparison of MUSIC AOA Variance with CRLB for Two Source

Signals
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Comparison with AOA CRLB
Table 4.1 summarizes the expressions of AOA estimation variances of the MUSIC
estimator and compares them with its CRLB. For single source signals, it is easy to
compare according to the formula. When M and SNR are very large, the MUSIC
estimator reaches CRLB. However, for multiple source signals, it is hard to compare
based on the formula. It is easier to compare through the simulation results as shown in

Figure 4.7. It shows that when the angles of incident signals are far apart, the MUSIC

estimator reaches CRLB.

Table 4:1: Comparison of CRLBs with Specific Estimator Variances for the CDMA

IS-95 Pilot Signal

CRLBs of AOA-assisted TOA Estimation | Variances of Specific Estimator

AOA: MUSIC AOA Estimator

from equation (4.57c¢) for single source
from equation (3.54) for single source

signal: signal:

varcges (B ) vatcgrp (B )

_ 3 M

) d)\? ) _ M * SNR
N*SNR*M (M —1)[27[/J sin® 8

2
N*SNR*M (M?> —1)(27;‘;} sin” 3

Simulation result is shown in Figure 4.6.
Simulation result is shown in Figure 3.3.
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from equation (3.53) for multiple source
signals (Stoica & Nehorai 1989):

varcrr g (i)

gl\zl[Re({DH [1-AG\Y ) A" | DER |

from equation (4.57a) for multiple
source signals (Stoica & Nehorai 1989):

varyysic ()
o2l (BIvs (T +0? TV aB)

2
[272’2) sin’ B

Simulation result is shown in Figure 3.5.

N da(f;) " H da(f;)
[ ag } VAVH ap;

Simulation result is shown in Figure 4.7.

TOA:

(0 from equation (3.64)

var, 1/\' =
crLB (D)= 3 SNR

Correlation Function Rising Slope-based
TOA Estimator to be discussed in

Chapter 5

4.7 Application of MUSIC AOA Estimator for IS-95 Pilot Signal

In Section 4.6, the MUSIC estimator for AOA estimation is based on continuous wave

(CW) signals. In this section, the AOA estimation of IS-95 pilot signals with

Forward/Backward Smoothing MUSIC algorithm is discussed. Figure 4.8 shows that

the data for I1S-95 pilot signal AOA estimation is from 1&Q correlator outputs.

1

T xi(t 1, (7)
' | Down Correlator >
Sk (t) 5 2 Converter
k xo(t Tyo (7)
| Down Correlator >
Converter AOA
1 Estimator
M |
T xm(t) Ty (7)
| Down Correlator [
Converter

Figure 4.8: 1S-95 Pilot Signal AOA Estimation from Correlator Outputs
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Assuming that there are M sensors and K impinging signals, the baseband complex

signals are still denoted by s, (), s,(t),---, s, (#) and they can be defined as follows for

the first channel (the reference channel in the array) after the down converter:

s, =ws(t—1,) k=1,2-,K (4.59)

where s(t) is the IS-95 pilot baseband complex signal transmitted at the base station; w,
is the complex attenuation coefficient; ¢, (¢, <t,, <---<t,.) is the time delay and

s,(t) 1is the LOS signal.

Based on equations (2.4) to (2.12) and (3.22) to (3.24), the output of the ith correlator

r.;(7,t,) for K impinging signals is redefined as:

ro(Tt)=r,(t,t,)+r, () i=1L2,--,M; t,=[t,, 1,5, t;x] (4.60)

K
Rt )= Y[ s @expl-j - Dp,ls (¢~ 1ydr
k=1

K
D[ i s —t4)expl=j =D ls ()
k=1

M=

e (T—tg)expl—j (@ — D@y ] (4.61)

~
Il

1

where
T
rk(f—tdk)zjo sy (1), (t—T)dt

T
:jo wy s(t—ty) s (t=7)dt k=12, K

1, (T)= IOT n, (1)s,(t—7)dt (4.62)
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where r,,;(7,t,) and r,,(7) are the signal and noise parts of r ,(7,t,), respectively; s, (¢)
is the local IS-95 pilot base band complex signal; @, =27 g cos S, is defined in

equation (3.23).
Based on equations (4.60) to (4.62), the matrix format r, (7,t,) of the outputs of the

correlators can be written as:

v, (0,ty) =[r, (T.ty), 1y (Tt ), ry (Tt )] T
=Arg(7,t;)+r,(7)
where (4.63)

g (T,t)) =[r, (T—141)s Fy(T—tg0). - re (T—1, )]

1, (7) =7, (D), 1, (D), s 1y (O] 1

where A is the direction matrix defined in (3.24) and r,,(7) (i=1,2,---,M) is iid

Gaussian noise.

Comparing equation (4.63) with equation (3.24) or (4.3), all of them have the same
formats. It means that MUSIC algorithm can still be used for the IS-95 pilot signal AOA
estimation through the IS-95 pilot signal correlator output data and the IS-95 pilot signal

AOA estimation error can be calculated through equation (4.57b).

4.8 Comparison of the MUSIC with the MLL Method for AOA Estimation

In order to compare the MUSIC with the ML, the formulas for AOA estimation are

written as follows:
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1
a (BVy Vi a(B)

MUSIC: Py (B) = (same as equation (4.18))

1
a (HRla(B)

ML (Schmidt 1979): Py (B) = (for single source signal)

1

P - -
ML () A7 HR A

(for multiple source signals)

where a(f) is the direction vector defined in equation (4.2), V, is the noise matrix

defined in equation (4.15), A = [a(ﬂl) a(f,) - a(,BK)] is the direction matrix, and R is

the correlation matrix of the received signal defined in equation (4.7).

It can be seen that for single source signal, the ML has the same computation load as the
MUSIC. Both of them are one dimensional search. However, for K source signals, the

ML searches in K dimensions.

4.9 Conclusions

The conventional MUSIC algorithm, which works under uncorrelated or partially
correlated signals, was discussed in this chapter. However, in multipath environments, it
fails. An example was given to help understanding that failure. The forward-only
smoothing MUSIC algorithm overcomes that limitation, i.e., it can resolve the AOAs of
fully correlated signals. However, it sacrifices more array elements. The

Forward/backward smoothing MUSIC algorithm improves the efficiency of the use of
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array elements. An example is given to show how the forward/backward smoothing
MUSIC algorithm resolves the AOAs of fully correlated signals. The theoretical
performance analysis compared with CRLB followed. Finally, the practical consideration
of sampling data from the correlator output for CDMA IS-95 pilot signal AOA estimation
with MUSIC algorithm was explained and the comparison with the ML method is

explained briefly.
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Chapter Five: AOA-assisted TOA/TDOA Method for Multipath Mitigation

5.1 Introduction

In this chapter, the proposed AOA-assisted approach for TOA estimation for multipath
propagation environments is described. The limitation of the conventional TOA estimator
based on the beamforming technique is also discussed. It can be seen that through the use
of AOA information, multipath can be mitigated efficiently. The formulas for the
correlation function initial rising part-based TOA estimator and its predicted error are
derived based on the linearized vector parameter transformation of more fundamental
parameters of the correlation function initial rising slope and its intercept through
coordinate transformation. It is shown that the proposed TOA estimator is asymptotically
unbiased and the estimated standard deviation is about 37 m when the SNR after
despreading is 15 dB. The actual estimated variance is given in Chapter 6, as a function
of SNR. Finally the comparison between AOA-assisted TOA and AOA-join TOA

method is given.

5.2 Multipath Effect on the Correlation Functions of CDMA Signals

In spread spectrum radiolocation systems, TOAs can be obtained from the peaks of the
correlation function. Here the effect of multipath on the peaks of the correlation function
is discussed. In an urban canyon, the average multipath delay is about 400 ns (Turin

1972). Based on this assumption, a simulation is carried out under the following
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conditions, which are also described by Figure 5.1 and Table 5.1. It is noted that the
parameter selection is somewhat arbitrary because Figure 5.1 is only the summation of
five correlation functions to show multipath and it does not involve any proposed

algorithm yet.

(1) linear uniform array of M = 5 antenna elements with half wavelength spacing (The RF
frequency is 1.9475 GHz, A =15.4 cm);
(2) number of the incident rays K = 4;

(3) signal to noise ratio before despreading (SNR) is —30 dB and multipath to noise ratio

before despreading (INR) is —20 dB.

NLOS3
NLOS2
NLOS1
30
10°
[ o - o
5 4 3 2 1

Figure 5.1: LOS and NLOS Signals with Different AOAs

Table 5:1: Parameters of Multipath on Correlation Functions

Received Signals (dB) AOA (® Delay (ns)
LOS - 30 (SNR) 10 0
NLOS 1 - 20 (INR) 30 400
NLOS 2 - 20 (INR) 35 450
NLOS 3 - 20 (INR) 40 500
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These IS-95 pilot signals with different time delays are down converted to baseband
signals and sampled at a 2 MHz rate. The data snapshot is three pilot PN periods, which
is 0.08 seconds. Similar to Chapter 3 and 4, it is assumed that each element of the antenna
array generates one channel complex signal containing source signals and complex

Gaussian noise.

The simulation results are shown in Figure 5.2. The peak of the LOS correlation function
of the first channel is shifted by multipath signals from O to 7¢/2, where T¢ is the PN chip
period which is 800 ns. For the summation of the five correlation functions in five
channels, the correlation peak is also shifted by about 400 ns. This matches the given
simulation conditions for the delayed signals, which have 400 ns or more delays. That is,
the inter-chip multipath (less than 800 ns) in CDMA IS-95 systems cannot be resolved by
CDMA signal’s correlation peak, which can also be explained by PN sequence’s
correlation function shown in Figure 2.2. When the multipath delay is over one chip
period, its effect on the LOS signal correlation function is close to zero; when the
multipath delay is within one chip period, it has an effect on the LOS signal correlation
function and that effect increases as the multipath delay decreases. Figure 5.3 is the result
from the measured data. It shows that, due to inter-chip multipath, the LOS correlation
function has been distorted at the correlation peak. However, the initial rising part still
has a good linear shape, which means that multipath occurred after the first LOS signal.
Therefore the initial part of the correlation function has not been distorted by multipath.

Based on this, the proposed method focuses on the correlation rising slope estimation.
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Figure 5.2: Correlation Functions of the Simulated Data in Multipath Environments
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Figure 5.3: Correlation Functions of Four Channels in Real Multipath

Environments
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5.3 Limitations of Correlation Peak-based TOA Estimation in Multipath
Environments

At present, most GPS receivers use multiple DLLs (Delay Lock Loops) to estimate TOA
based on the correlation function peak position in the time domain. However, when
multipath interference exists, the peak of the correlation function is shifted, shown in
Figure 5.2 from simulated data and Figure 5.3 from real data. Due to limited bandwidth
of the filter in the receiver, the shape of the correlation function in Figure 5.3 is not a
triangle any more. Its bottom has been widened smoothly. The beamforming technique

can be used to mitigate multipath, which is explained briefly below.

Suppose that the output vector of M channel correlators (correlating the same signals) is

r, (7,t;)=r(7)+r,(7)

r(0)=[r,(T,ty), 1y (Tt y), -y (Tt )] T

r, (D) =[r, (T.t;), (Tt g)s 10 (Tt )] T

where r(7) is the signal component including LOS and NLOS, r, (7) is the noise

component; t; =[t],t,--+,#;] 1s the time delay vector.

If the AOA of the LOS signal is ;g , after beamforming the LOS correlation function

1s enhanced as follows:

() =a (Bros)r, (7.ty) (5.1)
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where a(f,,,) = [1, e, ... e /MY ]T is the direction vector of the LOS signal as

27 f,d *cos(fB,ps)
c

defined in equations (4.2) and (3.23), and ¢ = , Where d is the antenna

spacing, f, is the carrier frequency and c, the light velocity. Equation (5.1) means that

the LOS parts in the correlation functions from five channels are summated coherently to
enhance the LOS component and suppress multipath components coming from different

angles.

However, when NLOS signals are stronger than LOS signals, multipath cannot be
mitigated efficiently through equation (5.1), so the peak of the summated correlation
function will still be shifted. The following section describes a new approach to mitigate

multipath for TOA estimation.

5.4 AOA-based Multipath Mitigation Approach for TOA Estimation

The CRLB of the AOA-joint TOA approach is derived in Chapter 3, which can be used
as a reference to evaluate a specific estimator for AOA and TOA estimations. As it is
described by Kay (1998), the Maximum Likelihood (ML) estimator is optimal for both
AOA and TOA estimation. However, its computation load increases exponentially as the
number of multipath increases and it still cannot distinguish which is related to the LOS
signal. The proposed method is to estimate AOA and TOA separately in order to filter out

multipath based on estimated AOA and then to estimate TOA. Even though, as it is
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discussed in Chapter 3, the CRLB of the proposed AOA-assisted TOA method is non-
optimal in AOA estimation but optimal in TOA estimation, it is a practical way to
mitigate multipath. Under this separate AOA and TOA estimation scheme, specific
estimators for AOA and TOA estimations need to be created. Again, the ML estimator
can be considered for AOA estimation. However, it still has the drawback of heavy
computational load. For example, when there is only one source signal, it is the same
complexity as the MUSIC because they are all one dimensional search. However, when
there are two source signals, ML is a 2D search. When there are N source signals, it is N
dimensional search. So the suboptimal MUSIC algorithm is applied, whose computation
load does not increase as the number of multipath signals increase. For TOA estimation,
the correlation function peak-based method is optimal (Kay 1998). However, it is suitable
for clean LOS environment. In multipath environments, it causes large errors. Therefore
one needs to create a new TOA estimator for multipath environments. It can be seen that
although the correlation peak is distorted under multipath environments, fortunately the
initial rising part still has a good linear shape, as shown in Figure 5.2 and Figure 5.3. The
proposed AOA-based multipath mitigation approach for TOA estimation is based on the
estimated AOAs obtained from the modified forward/backward smoothing MUSIC
algorithm (Ch 4) to apply beamforming technique to improve the linearity of the initial
rising part of the correlation function and enhance the LOS SNR of that part. Then by
determining the correlation function rising slope and starting point, the TOA/TDOA can

be estimated. This approach is described in detail as follows:
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Step 1: Sample Data Generation from M Channels
The first step is to obtain the correlation functions of five channels and the data are
generated by sampling the correlation function rising parts. The data is used to estimate
the received signals’ AOAs by MUSIC as intermediate values for further TOA
estimation.
Step 2: Application of F/B Smoothing MUSIC for AOA Estimation in Multipath

Environment

The second step is to estimate AOAs using the data obtained in Step 1. As discussed in
Chapter 4, the conventional MUSIC algorithm works well when the signals are
uncorrelated. However, it fails when the signals are highly correlated which is common in
multipath environments. The F/B smoothing MUSIC algorithm can solve this problem.
But the resolvable number of the incident signals on the antenna array is (2M/3) where M
is the number of elements of the array. Based on the prototype IS-95 receiver used herein
that has five antenna elements, the F/B smoothing MUSIC can only resolve three signals.
To solve this problem, the data used to estimate AOA can be obtained by sampling the
outputs of correlators at the initial rising part of the correlation function to reduce the

number of incident signals.

Step 3: Improvement of LOS SNR at the Correlation Function Rising Part
Based on the AOAs estimated from the second step, the extraction of the LOS AOA is

based on a beamforming technique. Suppose that f; is the estimated AOA by step 2, the

one resulting in the largest rz(f)zaH (Br, (zr.ty)] is the LOS AOA. After

beamforming based on LOS AOA, the LOS component of the correlation function is
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enhanced and at the same time the multipath is suppressed. Assume that the AOA and

TOA of the LOS s; is B,,s = B, and t;; respectively, then the correlator output after

beamforming becomes

() =a (B os)T, (T.ty)=a" (B)r, (1.ty)

=a (BpAr(r,t,)+a (B)r, ()

K (5.2)
=M r(z-1g1)+ Y a (BaBi)r (e —tg)+a (B, (@)
k=2
= 12005 (D) + 15 NLos (D) + 15, (T)
where
rsros (D) =Mr(t—t41)
K H
renros (@)= Y.at (Bpa(B)r (t—t4;)
k=2
N-1
re(T—tgp)= Zs(k)sl' (k—t+t;;) for one channel
k=0
s(k) is the received signal
s (k) is the local generated signal (see Appendix C)
k=12,---,K(k=1is for LOS signal);
K is the number of incident rays;
N is the number of samples
M
rs (@) =" (B)r, (D)= Y explj(m-Dy1r,,, (7)
m =1
N-1 .
Tym(T) = Z n,, (k)s; (k—1) n,, (k) is the m™ channel noise
k=0
¢1 _ 27Z'f0d >X<COS(ﬂl) (53)
c

d is the antenna spacing, f isthe carrier frequency,c is the light velocity.
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Because the noise between each correlator output r,,(7) is iid Gaussian noise with zero

mean, the noise variance of r;,(7) at the correlator output after beamforming can be

derived as:
M M
2 * . . *
05 n = Elrs (D) rg,, (0} = D D expljm—D@ylexpl—jl —D@q] Elr,,, (2)r, ()]
m=11=1 (5.4)
:MCfr2
where 6,2 is the noise variance at each correlator output 7, (7) (m=12,---,M).

Thus, the LOS signal to noise ratio SNR;, ¢ of the correlation function rising part after

beamforming is as follow:

2 2

|”ZL0S(T)| |7‘1(’Z'—td1)|
2 =M 2
2 Oy

SNRZLOS = (55)

Here r(t—t;,) 1s the LOS signal correlation function at one channel.

Equation (5.5) means that after beamforming, the LOS signal to noise ratio at the
correlation function output increases M times.

Step 4: Correlation Function Slope Estimation based on Linear Model

After beamforming, the correlation function’s shape is improved, i.e. its initial rising part
is less distorted by multipath. The next step is to estimate the correlation function initial

rising slope a and its intercept b. Suppose that L data samples r, (7)), 1 (7,) ... (T,)

are taken from the rising part, as shown in Figure 5.4. Even though the practical

correlation function for IS-95 signals is more like a smoothened triangle as in Figure 5.3,
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the triangle shape of correlation function in Figure 5.4 doesn’t affect the generality of the
analysis because the focus is on the rising linear part of the correlation function which
can also be found in the real case from Figure 5.3. Also, these data are considered to be

contaminated by noise only because multipath is suppressed significantly in Step 3.

Correlation fumction
after bearn formmg

LOS Component with
o slope

Figure 5.4: Correlation Function Slope Estimation

Considering that 1, (7) is a complex function, it can be written as:

Ts10s (T) = 15105 (T) L exp(j @)
=(b+ar)exp(j@)
=b, + jb, +(a, + ja,) T
=B+ At

(5.6)

where
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a>0;

b>0 if 735<0;

b<0 if 1920;

A=aexp(j@); B=bexp(j@)=|b|explj(@+p®b))];

(b) = 0 20 5.7
oo)= 7 b<0

#(A)=¢; §(B)=¢+¢b)
ag =Re(A)=acosg; a; =Im(A) =asing;
bg =Re(B) =bcos¢; by =Im(B)=bsing.

Thus, the complex number format and the real number format of the unknown

parameters 0 and & can be defined respectively as (Kay 1998):

bR
o2 ana e=| (5.8)
= an = :
A b,
a,
Based on the sampled data r, (7,), 1. (7,), ..., 1(7,), a linear model can be expressed

as:

15 (7)) =ty o5 (7)) +13,(7,) =B+ AT, +1;,(T))
1s (Ty) =Fyp05 (T,) + 1, (T,) =B+ AT, +1,(7,) (59

1 (T,) =Ttyos (T)+15,(T,)=B+AT, +1,(7,)

The matrix expression of equation (5.9) can be written as:



ry =Iyros +rs, =HO+ry,
where
T
ry =[rs (7)), 12(7p), -, 15 (T1)]
_ T
ry ros =rs Los (71, s Los (T2), -+ s Los (T1)]

ry, =[r5, (7). 15, (T2), o 15 (7)1 T

ryos =HO
1 Tl
T B
H: . 2 9:|:A:|
1 TL

139

(5.10)

From the above equation, it can be seen that at least two samples are needed to determine

AandB,ie. L>2.

B
The relationship between 0 = LJ and the starting point 7, of the correlation function in

Figure 5.4 is as follows:

b b
70 =—R "L that means apby —ajbgr =0
agr ar
or
A'B
70 —8(9)——X:—W
or
_oey—_br+Jjbr __arbg+ajby
70 = g(%) - . - 2 2
ag+jay ar +ay

(5.11)

The true values for the unknown parameter @ without noise corruption can be calculated

by:

0=(H"H)'H"r,,, .

(5.12)
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The analysis is based on the following two different noise conditions. It can be seen that
from equation (5.18) the noise from the correlation function initial part discussed herein

are correlated.

1. The estimated values of @ under non “white”” Gaussian noises can be obtained by

(Kay 1998):

A

. | B
ez{ }(HTC*H)-‘HTC-‘rE (5.13a)
A

where C™' is the covariance matrix of the noise.

2. If the signal contains only “white” Gaussian noises, i.e. c!= G% oI , the above

formula reduces as:

0 é T ~1yy T
0=  |[=(H'H) Hr, (5.13b)
A

The covariance matrix of @ under non “white” Gaussian noise can be expressed in both

complex numbers and real numbers as (ibid):

Cy=t'@®=m“cm!
and

C; = J e (5.14a)

1[RefHACTH) 1,y —Im[HTCH) Voo
2| m[(HZCTH) 5y, RelEPCTH) My,

2 0 @ Acm)!

1@ic 'y 0 }
4x4

In the above equation, H and C are both real numbered, so Im[(H H C_lH) _1]2><2 =0.
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The covariance matrix of @ under “white” Gaussian noise can be expressed in both

complex numbers and real numbers as (ibid):

Cy=I"®=0f,H"H)"’

and
C; - @ (5.14b)
_ lg% _Re[(H Ay _1]2><2 —~Im[(H 7 H) _I]ZxZ}
2 7 mETH) M RelHTH) My,
152 (@m0
27" o M, ,

where G% ,, 1s the noise variance at the correlator output after beamforming as defined in

equation (5.4).

The assumption that samples are on the linear part of the correlation slope can be met.
Because even though the shape of the correlation function from real multipath
environments is a smoothened triangle, there is still a linear segment, which can be

seen in Figure 5.3.

A

~ | B
The estimation of 0 = { .

:l is based on a linear model. It is known that for a linear model,
A

the MVU (minimum variance unbiased) estimator attains the CRLB and an estimator
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~ | B
which reaches its CRLB is called efficient (ibid). So the estimation of Gzle} is
A

efficient.

Step 5: Correlation Slope-based TOA/TDOA Estimation in Multipath Environments

In order to estimate the TOA, which is #; as shown in Figure 5.4, one needs to estimate
the correlation function starting point 7,. Because the starting point is a real value, it can

be expressed as:

R A B Re A'B
7, =Re[g(0)]=—Re| < =—[A—2]
A [Al

(5.15)

N ‘A N N
aR+]a, aR+a,

_ _Re{ b, + jb, } _ agby+ab,

This equation shows that in order to estimate the correlation function starting point 7,,,

one needs to estimate the correlation function slope A and its intercept B.

Estimation of A and B

A

A and B can be estimated through equation (5.13a) under non “white” Gaussian noise
or equation (5.13b) under “white” Gaussian noise. One needs to figure out the correlation

properties of the noise at the summated correlator output.

Suppose that the sampling rate for I/Q baseband signals is 2/7; (two times the PN chip

rate) and the noise in the sampled baseband signals is a “white” Gaussian noise, the
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correlation characteristics of the noise in the correlation function after despreading,

shown in Figure 5.4, is investigated as follows.

Suppose that the sampling rate for the correlation function is vI, (0<v<1/2) and

three samples are taken in the rising part of the correlation function. Equation (5.10) is

changed to

ry =Iyros trs, =HO+ry,
where
T
ry =[x (7)), 15 (72), 15(73)]
T
Iy 10s =rsLos (7)), £ L0s (72), 15 Los (73)]

rep =g (@), 154(®2), 1 (#3017

ry 105 = HO (5.16)
I 7 1 7]

H=|1 7 |=|1 7+vIc | O<v<l/2
I 73 I 7 +22T¢

The above equation is based on three samples [ry(77), 75(73), r5(73)]. In order to

estimate the unknown parameter 0 using equation (5.13), the noise characteristics needs

to be figured out.
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Derivation of noise covariance matrix C

Based on (5.3), the correlation property between r,(7;) and r;,(7;), i,j=1,2,3 canbe

derived as (samples are still from the correlation function initial part):

Elrg o (515 (7 1 = Ela (B m, (e (B w201 |

=a’ (B)) Elr, (o)l (z)a(B))

M *
= ZE[rnm(Ti)rnm(Tj)]

m=1
(M is the number of array sensors)
= ME[1,1 (7)1 (7 )]
%
N-1 N-1
=ME { > ny(kTg)s; (kTg — Ti)}{ D m(kT)s;(kTg —7; )}
k=0 k=0

N-1

- MElZ |ny(kTg)1? 5;(kTg —7;)s) (kT —rj)}

k=0
N-1 .

=Mo? Y 5;(kTs —))s) (kTg —7;) = MNo>(1-li— jlv)  (5.17)
k=0

=2Mo?(1-1i—jlv)
where o is the noise variance at each channel before lispreading and 6,2 is the noise
variance at each channel after [ lispreading.

Based on equation (5.17), the covariance matrix of the sampled noise on the rising edge

of the correlation function can be written as:

1 1-v 1-2v
C=2Mc? 1-v 1 1-v (5.18)
1-2v 1-v 1
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This equation means that the noise in the correlator output is correlated if the sampling

rate for the correlation function is vI,, (0<v<1/2). That is the unknown parameter

0=[B A]T should be estimated under non “white” Gaussian noise using equation

(5.13a) as follows:

T+ 0 -7
®7c )T = 1 {1 vie 1}

Wl -1 0 1
1 |73 0 -7
ST |-1 01

. | B
0 { } =HTc'H)THTC g

A

A
1 {73 (1) - Ty 1y (73)}

C0Te | m(my)—re(n)

that is

A 1 1

B = [T3 ’”Z(Tl)—fl FE(T3)]=B+ [’[3 I”En(Tl)—Tl I”En(T?,)]
2VTC 2VTC

A= i (Tx)—ry(71)]= A+ 15, (T2)—ry, (T
2vTC[ v (73) —rs(71)] 2vTC[ v (73) =15, (71)]

Conclusions:

(5.19)

1. The “white” Gaussian noise becomes non “white” Gaussian after it goes through

Uispreading process. Because the noise at the correlator output is generated by

multiplying the baseband noise with the local PN code,

so the noise

characteristics at the correlator output are related to the local PN code’s

properties. As it is known that within one PN chip, the samples of PN code are
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correlated. So at the correlation function rising slope side, which is within one

PN chip, the samples are all correlated.

2. Only two samples on the rising edge of the correlation function are needed to

estimate the intercept A and the slope B because the samples are correlated as

described in equation (5.18).
It can also be proven that the estimation of @ =[B A]” is unbiased as follows:

Because Elr;,(7)] =0, the following expressions exist:

N 1 1
E(B) = E{Z\/—T[T3 (1) -1, rz(Ts)]} = 2v—T[T3 Trros (7)) =T Ir105 (T3)]1 = B

C C

. 1
E(A) = E{z .

Vi

1
[rp(75)— rZ(Tl)]} = 2—[r2LOS (T3) = T pos (TD]= A
VT,

The covariance matrix of the estimated parameters can be obtained as:

Cy=J"'O=H"c'H)™!

Mo |+ 2T +vTE = (5 +vTe)

ng — (Tl + VTc) 1
that is
A M62 2 2
var(B) = 2r (zf +2v T +VIE)
VTC
2
var(A) = MG{
VTC

(5.20)

(5.21)

It can be seen from the above expression that the accuracy of the estimates A and B

affects each other because J _1(9)12 =J _1(9)21 =—(71 +vI¢) #0. It will be shown later
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on in Section 5.5 that after coordinate transformation, the estimation of A and B does

not affect each other.

Estimation of correlation function starting point 7,

The estimated correlation function starting point 7, described in equation (5.15) is

derived based on the estimated A and B from equation (5.19) as follows:

. A B Re A*é
70 :Re[g(G)]:—Re ~ =—(A—2)
A [Al

_ —Re{% (m) =1 ’"2(73)} (5.22)
15(73) —1s(77)

_ Re{lrs(r3) — re (o173 75 (71) — 7 15 (73)])
| re (23) — 15 (77) 12

The estimated variance of 7|, is discussed in the next section.
Finally, the estimation of the LOS TOA £,, is obtained as:
fdl Zfo +TC (5.23)

where T, is the chip period of the PN code. In practice, 7. needs to be modified,
because the bottom width of the correlation function of the real data is different from the
theoretical value of one chip 7. due to the bandwidth of the baseband filter used. It will
be obtained based on the real bandwidth of the received signal. However for TDOA

estimation, the value of 7, is not required because it disappears when differencing two
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TOA values, i.e. TDOA=1i,4) —igp =%g1 — %o, where 7oy and 7, are the starting

points of two correlation functions related to two different base stations.

Summary

In this thesis, instead of trying to mitigate all inter-chip multipath, the proposed method
attempts to mitigate multipath at the initial rising part of the correlation function by
enhancing the LOS SNR based on the estimated AOAs from the F/B smoothing MUSIC

algorithm.

The conventional F/B smoothing MUSIC is limited by the number of incident rays due to
the limited antenna elements. For this purpose the new data set with less signal sources is
generated by sampling the beginning part of the correlation function where fewer
multipath components are included. After using the modified F/B smoothing MUSIC, the
AOAs of the signals can be estimated. Then the spatial addition of the five channels’
signals in the direction of the LOS is applied to enhance the strength of the LOS and at
the same time mitigate the multipath efficiently at the rising edge of the correlation
function even though the peak is still distorted by the same multipath. Then the focus is
on the rising edge which has a good linear shape to detect the correlation function linear
slope and, sequentially, the starting point is obtained. Finally the multipath mitigated
TOA/TDOA measurement can be obtained. Figure 5.5 shows the flow chart for this

algorithm.
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Figure 5.5: Flow Chart of Proposed Algorithm
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5.5 Error Analysis of the AQA-assisted TOA Estimator Using Coordinate
Transformation

Based on equation (5.23), it can be seen that the variance of TOA (7 41 ) 1s the same as that

of the correlation function starting point (7, ). So the variance of 7, is discussed here. As

A

the expression in equation (5.22), the starting point 7, is the nonlinear transformation of

the fundamental parameter 0, so it is not possible to derive the variance var(7,) directly

by linear model. However, as discussed in Chapter 3, any unbiased estimator’s variance

can be obtained by equation (3.20). In this section, two tasks are carried on:
1.

Prove that the non-linear estimator for 7, is unbiased under certain condition

2. Derive the variance of estimator for 7,

Proof of unbiased estimator fort,

Intuitively, if there is a larger signal to noise ratio, then | A~ Al and equation (5.22)
can be simplified as

R A B Re Aké
£ = Relg(®)] = _R{_A} - R4 D)
A Al (524
__Re(A'B)
A2

Based on equation (5.19), the condition for | A1>~ A1? is derived as follows:
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|A|2:;2| iy (73) = 1y (7)) 17
VTe)
1

=——— 112105 (73) ~ 15 L0s (71) + 152, (73) = 12, (7)) 2
(2VTc)

2
+ 1y, (73) — an(Tl)|
2VTC ‘
1 2
= PP | 2v v 1.OS peak (T) + an(f?)) - an(Tl) l
(2VTc)
(rs Los peak (7) is the peak value of the correlation function)

1 2 . .
= —(2 T )2 { ‘2\/ Y LOS peak(f)‘ + 2Re{2v T LOS peak('[) [rEn(T3) _ an(Tl)]}
vic

2 2 * *
+ ‘an(T_?,)‘ +‘rzn(q)‘ —2Re[ry,, (715, (73)] }

=IAP? +1A,

(5.25)
where
2
(2V)2 _|rZLOS peak (T)|

2
—erLOS peak (0)1°=
@Te)? | Te |

A1%=

1

1A 2= 5
(vTc)

n

{ 2Re(20 15105 peat (D15 1 (73) =12, (7))
g (012 +1rs (1) 1% = 2Relrs (7)) 15 (73)] }
Evidently, | A, I” is introduced due to noise. Based on (5.17) and E[r,,(7)]=0, the

expectation of | A, 1” can be derived as:

_Mo;
vTC2

E(1A,1%) (5.26)

In order to find the condition for | A1~l AI*, the probability of false alarm Py, is

introduced (Barton & Leonov 1997) as:
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2
-A - SNR

P =ex =ex

fa p(2(;2) P

) (5.27a)

If Pr, =0.01~0.001, then the required threshold to detect the signal is SNR = 9.6 ~ 11.4

dB; Usually the threshold is 5 dB below the signal peak, so the SNR,..x can reach 14.6 to
16.4 dB. For an array with 5 elements, the signal to noise ratio at the peak will be

increased five times (7 dB), i.e. SNRy poqx =21.6dB ~ 23.4dB .

For example, if it the required threshold is SNRy ., 214.8dB and v = 1/6, i.e.

2
l s LOS peak ()1

2 2
Al —= TC2 =vSNRzpeakzl*101-48=5 (5.27b)
E(A,17) Moy 6
vTC2

Thus, the condition for | A 12~ A1? is:

1412

s (5.27¢)
E(A,1%)

When SNRy ,eq 214.8dB , based on equation (5.19), the estimation of 7, in equation

(5.24) becomes:
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2 z_Re(A*é):_ 1 Re A*+r;n(73)_r;n(71) B+T3rzn(f1)_71rzn(f3)
’ lAI° A2 2T, 2T,

LTt (T) =T, 1, (T 1 (T)— 1 (T
7, IR{ASE(I) 12(3)+Bz(3) 5 (7))

1AL 20T, 20T,
+ [r;n (73)— rE*n (e)llzy 13, (7)) =7, 13, (75)]
(QT,)?

(5.28a)

Based on equation (5.17), the expectation of 7, can be derived as:

A *
E(fy) =7y + —— {rl | rg (23) 12 473 11, (7)) |2 =03 Elry , (73) 15 (7))]
()2 1Al
3
—TlE[Vzn(Tl)Vzn(T3)}
1
=79+ 2[T1M0,2+T3M0r2

(29) 175 108 peak (D)
—(1-2n53Mo? — (-2 Mo?]

2v(ty +73)M 0',2

=T~ 2
(2v) " 115 105 peak (T)
4vz'2MG,2
0 202 12
(2v) s LOS peak (7)
T
g2
VSNRZ peak

(5.28b)

It can be seen that the unbiased estimator for 7, should meet the following conditions:

1. Large SNRy peqr » ©-8- SNRy peqi 214.8dB

(5]

2. 7, =0, otherwise a bias of
VSNRZ peak

in equation (5.28b) will be introduced.
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That is the origin of the coordinate in Figure 5.4 needs to move to the position of

(5]

Modification of estimator for 7, based on coordinate transformation

Based on the above conclusion, after coordinate transformation, the time axis 7 1is

changed to:
T =1-7, (5.29)
Thus, three samples located in 7 the time axis are

6 =—Te, 75=0, 73=vIg (5.30)
. - 1
Here vT- is the interval between two samples as shown in Figure 5.4 and 0<v < 5

Under a new coordinate system, the linear model in equation (5.16) is modified as:

ry =Iyros +rs, =HO+ry,
where
1 1 1 T
ry =[rs(71), 15 (73), 15 (73)]
1 1 1 T
ry 10s =z Los (71), ' Los (T2), s Los (T3)]

1 1 1 T
ry, =0y, (7)), 12,(72), 15, (73)]

I's 108 =HO (531)

1

1 71 1 —VTC
H=|1 7, |=[1 0 | 0<v<1/2
1 oy |1 v

Accordingly, equation (5.19) for the estimates of A and B is modified as:



| cm'HTc! = 1 {% 0 _Tl}

2Tc|l-1 0 1
_ 1 VTC 0 VTC
S WTe| -1 01

A

. | B
0= { } —HTc'H)THTC 'y
A

1 |:vTC[rZ (1) + 15 (73 )]}
WTc ry(73) —rg(71)
that is

~ 1 ! ' 1
B ZE[F2(71)+F2(T3)] ZE[Fz(—VTc)-Frz(VTc)]

A=

re (73) — 15 (77)] =
2VTC[z( 3)—re(77)] T,

Equation (5.21) for the estimated variance is modified as:

C,=J"'®=H"C'H)"
_Mc? {v(l—v)TCZ o}

VI 0 1
that is
var(é) =v(l-v)Mo?
2
var(A) = MGZ’
vic
and
C.=J"®
_1|{HCH)™ 0
2 0 HCTH™ ],
v(1-v)T; 0 0 0
_ 1Mo} 0 1 0 0
2 VT 0 0 v(I-wT; 0
0 0 0 1

[ Iy (VTC ) —Iy (—VTC )]
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(5.32)

(5.33)

It can be seen that, from equation (5.33), after coordinate transformation, the accuracies
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of the estimates A and B do not affects each other because J _1(9)12 =] _1(9)21 =0.

This can be understood easily because when the origin of the time axis is moved to 75,

the change of the correlation slope A will not result in the change of intercept B. Whereas,
before coordinate transformation, they affects each other as expressed in equation (5.21)

because the change of correlation slope A will result in the change of intercept B.

Finally, based on equation (5.32), the correlation starting point estimation expressed in

equation (5.22) is modified as:

K ~ B Re(A™B)
=Re[g(0)]=—Re| = |=—+——
7o =Re[g(0)] eL} RE
o] 2ot
Vz(T3)—V2(Tl)

Re{[ry (73) -1y (7))l 15 (77) + 15 (73)]}
| rs (73) =15 (7)1 2
o Re{l 7y (73)12 =11y (7)1 +2jImry (73) 15 (77)])
¢ (2 =1 (7)) 12

— (5.34)

g (73)1% =17 (7)12
| rs (73) =15 (7)1 2

=—y

Equation (5.34) can be used practically for the measured data. It is a simplified version of

equation (5.22). One needs to remember that only when SNRy .4 214.8dB, is the

estimate of 7, unbiased, which is shown below.

The true value of the correlation starting point in the new coordinate system 7 is



157

formulated as follows:

*k

' B A B
TOZg(e)z—ZZ—W

_Z372L0s (7))~ T 75105 (73)

rs1os(T3) —rsros (71)

* 1 * L} 1 L} 1 1
_ lzros () —repos @I T3 15105 (71) =71 1505 (73)]

1 1 2
Iy 10s(T3) =15 105 (7)) |

15 Los (73) = 15 Los EDL s Los (1) + 15 o (73)]

=V C 1 [l 2
Irspos (73) —rs Los (71) |

' 2 'N12 . * ! !
| rZLOS (T3 ) [© —]| rZLOS (Tl ) | +2] Im[rZLOS (’[3 )rZLOS (Tl)]

=V C 1 1 2
| TE(T3)—r2(T1)|

(Note : Im(7y) =0)

'y2 "\12

s 105 (73) — s os (7)1 (5.35.2)

When SNRy peqr 214.8dB , the estimate of Tb is

A%k A ! 2 _ ! 2
oo ERA B (@)1 —lg (@) (5.35.b)

2 ' N
Al Iy 105 (73) —rs Los (71) |

Based on the above equation, the expectation of 7y is expressed as:
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E(rs (13)1%) = E(rs (7)1%)

E(’fo ) z—VTC ; ; )
Iy Los (73) — 12 Los (71) |

E(l rZLOS(Té)_’_an(Té)lz)_E(l rzLog(fi )+ 1, (1) 1%)

=—VTC ; ; 2
Irs Los (73) — 1z Los (71) |
vIc ) )
=" , 5 U pos @)1 =1y 165 (7))
lrs Los (73) —rg Los (71) |

+2E[Re(rs 105 (7315 0 (T3 D]+ Ell g, (73) 121

—2E[Re(rs 105 (71 )75 (T )] = E[l 15, (7 ) 121}

—vI¢ ) ) 2 2
=— {|TZLOS(T3)| _lrELOS(Tl)l +Mo, —Mo, '}

Al 1 2
Iy 10s (73) — 1y Los (71) |

' 2 ! 2
IrZLOS(Z'3)| _erLOS(Tl)l ,
= —VTC =170

1 1 2
Irs 105 (73) —rs os (77) |

(5.36)
So the estimator for the correlation starting point in the new coordinate system 7 is

unbiased. After 7, is estimated, the final estimated correlation starting point £, in the
original coordinate system can be obtained by:

ty =12y +7o (5.37)
Where 7, corresponds to the middle sample position which can be located by the local

code shift during the correlation process.

Derivation of the variance of 1,

Based on equation (3.20), the variance of the unbiased estimator f'o can be expressed as
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2 _98(®) 1. 08 ©)
var(zy) = 3 J © 3 -
. (5.38)
_09g(®) C. Jg’ (€)
0 & %

is defined as:

og(§)
0

where C% is given in equation (5.33) and the 1 x 4 Jacobian matrix

0g€) _| dg®) g dg®) dg(®)
g ob,  da, ob, oa,

based on (5.11) and (5.6),
03®) _  a, _ cosg

ob, a,+a; a ’
0g(&) _ azby —a;by +2aza,b, _bcos¢ _ 7,cosd (5.39)
T
ag(é):_ a, __sing
ob, a,+a; a ’
0g(&) _ a;b, —ayh, +2azab, _bsing _ 7,sing
T P

Because C& is a diagonal matrix, var(%,) can be written as
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o8 . 9" (©
0 5 0

el L 2L 2L

Var(zA'(')) =

_IMoE | v1-WTE (1)) |1 Mo} > (7)?
=>— 5 t——— =% A-vT¢ +
2 vIG a a 212 L0s peak () v
- o (5.40)
= ! (1= n12 + 70
ZSNRZ peak (7) | %
3 1 72 (71 —70)(7] +70)
= 2 -
ZSNRZ peak (7) | \%
i ;N2
- o | T - 2T~y + L
ZSNRZ peak (T) | 1%

where T¢ is the PN chip period; 0 < v <Y and 0< (7] —7() < (1-2v)T.
Equation (5.40) shows that var(f'b) is related with three parameters: SNRy ., (7) , the

sample interval vT¢, and the first sample position with respect to the position of the

starting point (7] —7() . It can be seen that, from equation (5.18), the closer the samples

are, the more correlated the noise is. Therefore, Figure 5.6 shows that a smaller v results

in a larger variance (dashed line). For example, when v = 1/6, T{—TE) =0.157T and

SNRy peak (T) =15dB, the estimation standard deviation is 36.8 m. It can also be seen

that the closer to the starting point the first sample is, the smaller the variance Var(fb) is.

Because any vibration of the samples due to noise will cause the error of the estimated

starting point and that error decreases if the first sample is closer to the stating point. So

the variance var(?)) is also reduced.
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Figure 5.6: Square Root of var( %;))

5.6 Comparison of the AOA-Assisted TOA Estimation Variance with TOA CRLB

Based on equations (5.40) and (C.11), when 7y =0 and v = Y%, the minimum variance of

7y or Ty or 7 is obtained as:

e _ T

= (5.41)
ASNRy. peak (r)  16MK - SNR

var(Zo) min = var(fp) min = var(?) min =

where f'o =Ty —7Ty; T =1y + T (I, is the chip period of PN code).

Based on equation (3.64), the CRLB of the estimated TOA can rewritten as follows:
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varCRLB (f)
T2 (5.42)
32MK - SNR

where Tcis the PN chip period; M is the number of antenna array; K = 2" is the length of

the PN sequence and SNR is the signal to noise ration before despreading.

Comparing equation (5.42) with equation (5.41) shows that the minimum variance of
AOQA-assisted TOA estimation is twice that of the TOA CRLB. Table 5.2 summarizes the
expressions of AOA estimated variance of the MUSIC estimator, the TOA estimated

variance of the proposed method and their CRLBs.
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Table 5:2: Comparison of CRLBs with Specific Estimator Variances for the CDMA

IS-95 Pilot Signal

CRLBs of AOA-assisted TOA Estimates

Variances of Specific AOA and TOA
Estimators

AOA:

from equation (3.54) for single source
signal:

vatcgrrp (B )
3

2
N*SNR*M(M? -1) (27:21) sin? 3

Simulation result is shown in Figure 3.3.

MUSIC AOA Estimator

from equation (4.57¢) for single source
signal:

varcgrg (B )

31+ L)
M * SNR

2
N*SNR*M (M?> —1)(27;‘;} sin” 8

Simulation result is shown in Figure 4.7.

from equation (3.53) for multiple source

signals:

varcrr g (Bi)
2

;-N[Re({DH [1-AG" A AT IDIER; |

2
[Zﬂ'j] sin? B

(Stoica & Nehorai 1989)

Simulation result is shown in Figure 3.5.

from equation (4.57a) for multiple source

signals:

varyysic(Bi)
o2 (BIvs (@5 +0° TV Tags,
2N {da(ﬁ»r

ag;

(Stoica & Nehorai 1989)

Simulation result is shown in Figure 4.7.

TOA:

VaI'CRLB (f)
__ T
32MK - SNR

from equation ( 3.64)

Correlation Rising Slope-based TOA

6

Estimator: var(%),;, =———=——
©min 16MK - SNR

from equation (5.41)
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5.7 Conclusions

The effect of multipath on correlation peaks was discussed by using both simulated and
measured data. The results show that the position of the peak is shifted, which results in a
TOA estimation error. By using a beamforming technique, multipath can be mitigated.
But when the multipath is much stronger than the LOS signal, the multipath effect on the
correlation peak cannot be suppressed efficiently. The proposed approach focused on the
correlation function initial rising part because multipath arrives after the LOS signal and
it will not affect the correlation function initial rising shape theoretically. Even though in
real IS-95 system, due to limited bandwidth of the filter, the side lobe of multipath
correlation function affects LOS correlation function initial rising part a little bit, after
beamformer is used along the direction of LOS, the side lobe of multipath correlation
function is suppressed because the random phase in each antenna cancel out that side lobe
signal and whereas the LOS signal strength is enhanced. Section 5.4 proved that the SNR
for the LOS signal has increased M (number of array elements) times after beamforming.
Its TOA estimation error is therefore M times less than that of a single antenna-based
TOA estimator. The TOA estimator is based on the estimates of the correlation function
rising slope and its intercept, which has a non linear relationship. So the coordinate
transform is introduced. The correlation function initial rising slope and its intercept are
estimated by a linear model under non “white” Gaussian noise. The TOA estimated
variance is derived. Even though the proposed unbiased TOA estimator does not reach
the CRLB, the estimated variance is 36.8 m when the SNR after despreading is 15 dB. It

will be seen in Chapter 6 that the actual estimation error is much smaller than that due to
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the high SNR after despreading. The advantage of the proposed AOA-assisted TOA
method is that it is more practical due to its light computational burden and it can be used

in multipath environments.
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Chapter Six: System Hardware Implementation and Experimental Results

6.1 Introduction

In this chapter, a hardware platform developed to collect IS-95 data is described together
with experiments based on real data collected under various environments with the above
platform. The results are compared with the theoretically estimated values of AOA and
TOA derived in Chapter 4 and Chapter 5, respectively. It can be seen that the
experimental AOA estimation results are unbiased and the estimated standard deviation is
less than 3°. The final estimated TOA values has a constant offset of about 200 metres
due to an unknown but deterministic parameter. The theoretical value is asymptotically
unbiased when the signal to noise ratio at the correlation peak is more than 15 dB
(Section 5.5, equation 5.27). The practical TDOA standard deviation is 8 m in the real
environment, where the signal to noise ratio after despreading is 30 dB, meeting the FCC
requirements of 50 to 150 metres. The practical errors are uncontrollable systematic
errors due to receiver transfer function uncertainties, timing offsets in ADC sampling and

base station timing uncertainties.

6.2 General Description of the System

The hardware platform was developed in PLAN (Positioning, Location and Navigation)
group of the Department of Geomatics Engineering. The system consists of an antenna

array, RF & baseband circuit, FPGA-based digital circuit and data collection control
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software (e.g. Lopez et al 2005). The developed prototype CDMA receiver receives the
real time pilot signals from IS-95 CDMA base stations. The data is used to verify the
proposed algorithm. The diagram of the system is shown in Figure 6.1. The detail

description of each part is given in the following subsections.

| GPS time |
v
RF&A/D | 16
Multiplexer
CLK
for Five Channels
RFYAD | 10
' & 16 16
' Data Acquisition Card <> PC
CLK Time Control
(National Instrument)
Circuit
RF&AD | 16
X
CLK
T RF&AD | 16
1ax (Altera FPGA)
T I 16
RF&A/D
+ CLK
CLK
Phase —lock Frequency TCXO

Synthesizer

Figure 6.1: Hardware System Diagram

6.2.1 Directional and Omni-directional Antenna Array Design and Development

A uniform linear antenna array with five elements is connected to the five-channel input

of RF circuits. The antenna element spacing is 0.74. The RF frequency is 1.9475 GHz.
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The antenna array is put on a turntable to adjust the array’s direction for receiving base
station signals from different angles as shown in Figure 6.2 (a), installed on the roof of
the CCIT building on the University of Calgary campus. Figure 6.2 (b) is the directional
antenna’s pattern, which has a high antenna gain in a range of about 120" in azimuth and
20’ in elevation. This is suitable for receiving the CDMA base station signals, which are
usually from low elevation. Because the directional antenna limits the number of
multipath and the number of available base station signals, it is helpful to identify the
signals at the initial research experiment stage. However in order to verify the proposed
algorithm for multipath mitigation, in the later experiment, the omni-directional antenna
is used to receive more multipath and the antenna spacing changes to 0.54 for another
test as shown in Figure 6.2 (c). The omni-directional antenna pattern is in Figure 6.2 (d),

which has full gain in azimuth and a range of about 30 in elevation.
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(a) Linear Uniform Array with Directional Antenna

(b) ) Single Directional Antenna Patterns (E & H Plane)
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Omni-
directional
Antenna
Array

(c) Linear Uniform Array with Omni-directional Antenna

(d) Single Omni-directional Antenna Pattern (E-Plane) from Specification Sheet

Figure 6.2: (a) Linear Uniform Array with Directional Antenna; (b) Directional
Antenna Patterns (E & H Plane); (c) Linear Uniform Array with Omni-directional

Antenna (d) Omni-directional Antenna Pattern (E-Plane)
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6.2.2 RF & Baseband Circuit Design and Development

Figure 6.3 is the RF superheterodyne receiver block diagram. It contains the functions of
amplification, filtering, mixing and demodulation. The RF LO converts the incoming
signal first to IF at a relatively high frequency, and then the IF LO converts the IF signal
into baseband. The demodulated I & Q signals are fed to the following baseband circuit
as shown in Figure 6.4. The stability of the sampling frequency for ADC is affected by
the stability of TCXO, which is described by its Allan variance in Appendix D. The
unstable sampling frequency will affect the acquisition process for the CDMA signal
despreading processing. The identity of the sampling frequency of 10 MHz for each
channel ADC will not introduce an extra phase difference between antenna elements. The
AGC control signal is generated separately for each channel to adjust the signal

amplitude of each channel efficiently.
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Figure 6.3: RF Circuit Diagram for One Channel
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Five Channels & Altera FPGA (1% Generation Receiver)
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6.2.3 FPGA-based Digital Circuit Design and Development

In order to collect the data stream from the five RF channels to the computer correctly, a
strict time control circuit is required. The Altera FPGA shown in Figure 6.4 multiplexes
five-channel data into a PC via a National Instrument Data Acquisition Card. The data is
triggered by a 1pps (1 pulse per second) GPS signal to synchronize the local receiver
time to GPS time. The diagram is shown in Figure 6.5. I(f) and Q(¢) are the input five-
channel data from the ADC outputs. Each ADC output is 8-bit, so for five channels I(7)
and Q(?), the total number of data bits is 80-bit while the NI DAQ (Data Acquisition
Card) data width is 16-bit. Thus it requires that the data transfer frequency for DAQ be
five times of the parallel five channels data samples. The sampling frequency for ADC is
10 MHz and then the data is decimated to reduce the data rate to 2 MHz. The data
transfer frequency for DAQ (REQ ®@,) is therefore 10 MHz. The 1pps GPS signal is fed
in as a trigger signal (Trig) for DAQ to make the collected data synchronized to GPS
time. There is a fixed data delay of 200 ns after the 1pps appears. The uncertainty of the
1pps appearance at the rising edge of the 10 MHz clock signal ®@; is 100 ns. The possible
maximum data delay with respect to the GPS time is therefore 300 ns. The data stored in
the PC is in a 16-bit format with the most significant 8-bit for the I channel and the least
significant 8-bit for the Q channel and the data obtained from the ADC output is a sign
data. The data to be transferred to the DAQ is also fed into the VGA control signal

generator, whose outputs are sent to the VGA device located on the digital board.
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6.2.4 Control Software Development

In order to implement the GPS synchronized data transfer from the FPGA to PC via
DAQ, the related control software is developed in the C language. Because the 1S-95
pilot signal is transmitted at GPS even seconds, it needs the receiver to collect the data in
GPS even seconds. Once the 1pps signal from the NovAtel OEM4 GPS receiver is
decoded as an even second, the generated trigger signal in FPGA is used to activate the
DAQ to receive the data at each rising edge of the FPGA generated REQ signal as shown

in Figure 6.5.

6.2.5 The Second Generation of CDMA Receiver

The first generation receiver is suitable for data collection when the Doppler frequency
does not change significantly during the long integration time. However, it is not
applicable when the Doppler frequency changes significantly during the integration time,
such as in the case of dynamic movement of the receiver or the use of the crystal
oscillator with low stability. So in the second generation CDMA receiver, the frequency
de-rotation circuit was added in the Xilinx FPGA as shown in Figure 6.6 to detect the
Doppler frequency and remove it before the data is transferred to the computer. The

design of the second generation receiver is given in Appendix E.

Figure 6.6: Xilinx FPGA Board for the 2" Generation Receiver
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6.3 Experiment and Performance Analysis

In this section, the field experiment is described. A group of data is measured by the
CDMA prototype receiver when the SmartMotor ™ controls the turntable with steps of
2.5°. The receiver is treated as a user. The measured data from the nearby CDMA base
stations is used to estimate the AOA and TOA of the user based on the approach

proposed in this thesis.

6.3.1 Experiment Setup

The diagram of the data collection system and the real field measurement system are
shown in Figure 6.7 (a) and (b) respectively. For calibration purpose, the first spot to
collect should be a LOS signal environment, such as a building roof or an open area. The
antenna array should be set perpendicular to the signal from a nearby base station. The
turntable in Figure 6.7 (a) is to collect the data at different antenna angles in order to
verify the AOA algorithm. After this process, the data can be collected in various

locations without the turntable.



Chl

Turntable

CDMA BS

Antenna Array

Ch COM1

el

NIDA

SmartMotor™ software
PC

Data acauisition software

(a) Diagram of Data Measurement

(b) Field Measurement on the Roof of CCIT Building, University of Calgary

177

Figure 6.7: (a) Diagram of Data Measurement; (b) Field Measurement on the Roof

of CCIT Building, University of Calgary
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Here are the data processing steps:
Step 1: adjust the antenna array orthogonal to the incident ray from the base station
nearby through geomatic measurement to get channel phase calibration data.
Step 2: Apply the calibration data to the data measured under different incident angles to
compensate for the channel phase error in order to apply the MUSIC algorithm
Step 3: Use MUSIC to estimate AOAs for different raw data sets. The results are shown

later in this chapter.

Channel Phase Calibration

The channel phase calibration is important because the F/B Smoothing MUSIC algorithm
is based on all the antenna elements and their corresponding channels having the same
channel properties. For example each channel phase characteristics is supposed to be the
same. However it is impossible to manufacture the hardware of each channel to have the
same channel phase. So channel calibration is necessary before using MUSIC. Without
phase calibration, the AOA estimation using the Forward/backward Smoothing MUSIC
algorithm would result in a large error. The channel phase calibration is carried out by
putting the antenna array perpendicular to the signal ray coming from the nearby visible
CDMA BS which, in this case, is located on the West Campus of the University of
Calgary, as shown in Figure 6.7 and on the diagram shown in Figure 6.8 (a). In this case
the phase of each channel reflects hardware phase shift and the phase shift of an array
element with respect to the reference element (first element) will not be counted. Suppose
that one snapshot data is collected and the autocorrelation functions of five channels are

Ry (1), Ry(t), R5(t), Ry(t), R5(t), respectively, as shown in Figure 6.8 (b). Then five
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samples from five correlation functions respectively are obtained, namely

R (71), Ry(71), R3(71), R4(71), R5(7), to calculate the phase of each channel as

Im(R; (7
Q; = atanM i=1,2,...,5represents the i™" antenna element . In order to get a
Re(R; (1))

better average channel phase, N samples are used. Then the phase angle becomes

1 % g IR ()

Y, =— Re(R, (7, ) i=1,2,..., 5 represents the ith antenna element,  where
e (T

k=1
7 is selected from the correlation function initial rising linear part in which multipath

has been supposed to be suppressed.

These phase corrections are multiplied by the corresponding five autocorrelation

functions for phase compensation, resulting in
R, (e /%, Ry(1)e™ %, Ry(t)e ™%, Ry(t)e ™%, Rs(t)e % . The phase-compensated
auto-correlation functions are then sampled at the initial rising part to construct a data

matrix processed by MUSIC for further AOA estimation, which is expressed by equation

4.4).



180

Array:Boresight

BS

\4
e 1L BTT -
endfire > endfire

x1(1) x2(1) x3(1) x4(7)

(a) Channel Phase Calibration Diagram

Amplitude 4 ‘ _ | Correlation function

(0] ) éO / 4‘0 éO 80 160 - :‘;‘20 1£‘I-O 71 T60 180
Samples
(b) Autocorrelation Function of LOS Signal from Soccer Field at the Univ. of

Calgary
Figure 6.8: (a) Channel Phase Calibration Diagram; (b) Autocorrelation Function

of LOS Signal from Soccer Field at the Univ. of Calgary

6.3.2 Multipath Effect on the Measured Data

Figure 6.9 (a) shows the correlation functions of several base stations for one antenna
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element (one channel) after the coarse acquisition process. The integration time is 3 PN
epochs (80 ms), and the peak pattern therefore repeats three times. Figure 6.9 (b) shows
the detail shapes of the correlation functions of the five channels from the strongest
correlation peak, BS1. The strongest peak is from the nearest base station. The resolution
for the correlation function is determined by the correlation process in the time domain,
which is chosen to be (1/20) chip, equal to 40 ns because one chip is 800 ns. The
resolution level affects the processing time required. The higher resolution, the more time
required. It can be seen that from Figure 6.9 (b) due to the multipath, the width of the
correlation peak has been enlarged to around 2000 ns, whereas the theoretical width
should be 2 chips (1600 ns). This results in a shift of the correlation peak. So the
correlation peak based TOA method will fail in multipath situations. However the
correlation function’s rising part has not been distorted significantly, because the
multipath always arrives after the LOS. So the data to be processed by the F/B Smoothing
MUSIC for AOA estimation is sampled on the correlation function initial part, which
reduces the impact of multipath. Figure 6.9 (c) shows the correlation functions of five
channels from another base station, namely BS2, which have smaller correlation peaks. It
can be seen that the bottom width of the correlation functions have also increased and the
correlation peaks have been destroyed significantly while the initial part still has a good
linearity. Due to low signal to noise ratio, the five correlation functions from different

channels do not align closely.

The above multipath effect from actual data matches the theoretical analysis based on the

simulated results shown in Section 5.2. An AOQOA-assisted TOA/TDOA method to
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mitigate multipath has been proposed and described in Section 5.4.
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6.3.3 AOA Estimation Results and Error Analysis

Figure 6.10 (a) is the AOA estimation based on equation (4.18) for the strongest signal
(from BS1) in Figure 6.9 (a) without phase calibration. It is supposed to be at 115°. But
now it is estimated at 87° and the error is therefore 28°. Figure 6.10 (b) is for the same
incident ray, but with phase calibration. The estimated AOA is 114° which is a
remarkable improvement. The small peak in Figure 6.10 (b) is due to 0.7 A antenna
spacing. If the antenna spacing is 0.5 A, there will be no ambiguity. Large antenna

spacing has weak coupling interference from adjacent antenna, but introduces ambiguity,

-j2r d cos 3,
which can be seen from direction vector a(f;)=e A . If d=0.51, then

a(By) = ¢~ 17 € B \which has no ambiguity; If d = A, then a(f5;) = ¢ 127 <05 Be which

has ambiguity.
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Figure 6.10: (a) AOA Estimation Spectrum without Phase Compensation

(b) AOA Estimation Spectrum with Phase Compensation

In order to get the directional antenna-based AOA estimations from 0° to 180°, a step
motor provided by Servo Systems is applied to adjust the angle of the antenna array.
Figure 6.11 shows the estimated AOAs from 0 to 180 degree. Figure 6.12 shows the error
curve. It can be seen that when the incident ray is between 45° and 170°, the error ranges
from +2° to -3°. Beyond that, the error increases to 20°. This is due to the insensitivity of

the antenna array at the endfires, as explained in Section 3.5.
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Figure 6.12: AOA Estimation Error Using F/B Smoothing MUSIC

6.3.4 Multipath Mitigation through the AOA Compensation

As a result of multipath, the shape of each autocorrelation function from four omni-
directional antennas is different as shown in Figure 6.13 (a), for data collected on the roof

of the CCIT building. After beamforming using the estimated LOS AOA, which is
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denoted by fB;ps., the summation of the four correlation function,

4 _ji-1) 27 fyd*cos(Bos)
Ry(1)=> e ¢ R;(7), is plotted in Figure 6.13 (b). It shows that
i=1

multipath has been suppressed significantly. It also shows that the amplitude is increased,
which is helpful for determining the slope of the correlation function rising part. So the
benefit of using estimated AOA is to filter out some multipath and enhance the SNR of

the correlation function.



187

Amplitude

1

09

0.8

o7r Market ball
oe |
os |
o4 |
0.3
oz

0.7 =0 <

0

Samples

(a) IS-95 Signal Autocorrelation in Each Antenna Element

Amplitude

A

= .

Markeaet Pall

<

256 F <

2 .

1.5 g

1k .

i
] 20 A0 [=n ] a0 100 120 140 160 180

(b) Summation of Four Autocorrelations after Beamforming

Figure 6.13: (a) IS-95 Signal Autocorrelation in Each Antenna Element (b)

Summation of Four Autocorrelation after Beamforming



188

6.3.5 AOA-Assisted TOA Results and Error Analysis

(The antenna used is a BNF1905S (1850 — 1990 MHz) omni-directional antenna)

The experiment data is obtained from the four locations shown in Figure 6.14, which is
on the campus of the University of Calgary. The results are described in the four
scenarios below. The proposed correlation slope-based method is compared with the
correlation peak-based method, which is also based on multiple channels. The

comparison with the one-channel correlation peak-based method is also given for

Scenario 2.

Figure 6.14: Measurement Locations of AOA-Assisted TOA Test
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Scenario 1. Data collected in LOS under low multipath effect environment
Roof of CCIT building, University of Calgary
In this environment, multipath is reflected from surrounding high buildings, as can be
seen in Figure 6.15. The side lobe of the correlation function on the falling side is
different from that on the rising side due to multipath. However the rising part still has a

good linear shape, which is suitable for the use of the method proposed herein.
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Based on the above correlation functions from two base stations, after calibration and
beamforming for each of them, two correlation functions like those of Figure 6.13 (b) can
be obtained. Then two data segment in the linear part are selected (the principle is
described in Chapter 5) to estimate the slope and hence the starting point of each
correlation function. Then the subtraction of these two starting points is the TDOA value
which is provided in the second column of Table 6.1. This is the process of the proposed

algorithm.

Another method called the correlation peak-based method is used for comparison. It is
also based on antenna array process and AOAs are used to sum four correlation functions
in the direction of LOS to locate the peak position of the summated correlation function
instead of estimating the correlation function starting point proposed in this dissertation.
The subtraction of the peak position is a TDOA value, which is provided in the first
column of Table 6.1. The correlation peak-based method is also subject to calibration and
beamforming, but no samples at the correlation rising part are needed and that is the

difference from the method proposed herein.

It can be seen from table 6.1 that under a comparatively clean LOS environment, the
results from the correlation peak-based and the proposed correlation slope-based methods
are quite close. This verifies that the proposed method operates well under this condition.
In order to compare performance, the surveyed value is provided. However the two
methods have large biases of 217 m and 215 m respectively, with respect to the surveyed

value. This may be due to synchronization errors among base stations in the CDMA
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network (Iltis & Mailaender 1996). It can be seen from Table 6.9 that each base station is

quite stable because this bias remains constant.

Table 6:1: TDOA Estimation Comparison - Roof of CCIT Building

Correlation Peak-based Correlation Slope-based Survey Reference

130.9 m 133.4m 348.0m

In order to calculate the variance based on the real data, eight mega samples are collected
which is under 2.5 MHz sampling rate within 3.2 seconds. The variance is computed
based on 40 groups of data and each group of data is 0.08 seconds which contain three
epochs of IS-95 PN sequences. It can be seen from Table 6.2 that the actual TDOA
standard deviation of the proposed method is close to the theoretical standard deviation
discussed in Section 5.5. The practical standard deviation is a little bit larger than
theoretical value because the accuracy of the estimated LOS AOA and the linearity of the
correlation function initial rising part will affect the final TOA /TDOA estimation

accuracy.

Table 6:2: Correlation Slope-based TDOA Standard Deviation - Roof of CCIT

Building

Practical Standard Deviation (8 mega samples) | Theoretical Standard Deviation

34m 1.3 m
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Front of CCIT building (Location A)
In this environment, multipath is reflected from the wall of the building as shown in
Figure 6.16. The multipath effect is low, which can be seen from the correlation function
shown in Figure 6.17. In such an environment, the proposed method does not show a
significant advantage over the correlation peak-based method because the peak is not
significantly shifted. So the TDOA values are very close as shown in Table 6.3. The bias

is still about 200 m but the standard deviation is still small as shown in Table 6.4.

Omni-directional
Antenna Array

Figure 6.16: Field Measurement - Front of CCIT Building (Location A)
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Table 6:3: TDOA Estimation Comparison - Location A

Correlation Peak-based Correlation Slope-based Survey Reference

56.7 m 66.3 m 2819 m

Table 6:4: Correlation Slope-based TDOA Standard Deviation - Location A

Practical Standard Deviation (8 mega samples) | Theoretical Standard Deviation

1.3 m 09 m

Scenario 2. Data collected in LOS under high multipath effect environment

Front of CCIT building (Location B)

In this environment, multipath is reflected from the wall of several buildings as shown in
Figure 6.18. The multipath effect is significant as shown in Figure 6.19(a), where the
correlation peak has shifted significantly. In this case, the proposed method should have
better performance than the correlation peak-based method, which can be seen from

Table 6.12.

Omni-directional
Antenna Array

Figure 6.18: Field Measurement - Front of CCIT Building (Location B)
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Table 6:5: TDOA Estimation Comparison - Location B

Correlation Peak-based

Correlation Slope-based

Survey Reference

25.6 m

41.6 m

266.9 m

Table 6:6: Correlation Slope-based TDOA Standard Deviation - Location B

Practical Standard Deviation (8 mega samples)

Theoretical Standard Deviation

39m

1.5m

Scenario 3. Data collected under LOS and weak signal environment

Roof of CCIT building

196

In this case, a comparatively weak signal from the Varsity Tower base station, which is

far away, is measured. It can be seen that the proposed method still works well. It can

also be seen that the CDMA IS-95 signals are quite strong even though the base station is

far away.
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Figure 6.20: Correlation Functions from Different Base Stations - Roof of CCIT

Building



Table 6:7: TDOA Estimation Comparison - Roof of CCIT Building

Correlation Peak-based Correlation Slope-based Survey Reference

9334 m 934.0 m

1151.0 m

Table 6:8: Correlation Slope-based TDOA Standard Deviation - Roof of CCIT

Building

Practical Standard Deviation (8 mega samples)

Theoretical Standard Deviation

7.8 m

7.1m

Scenario 4. Data collected under non-LOS multipath environment

North of CCIT Building

198

In the previous scenarios, LOS signals exist and multipath delay was more than 200 ns,

so the correlation function rising part had not been distorted. The correlation functions, as

shown in Figure 6.21, are separated because of random NLOS signal delays, incident

angles and phase on each antenna array. In this case, the proposed method does not work

properly because MUSIC works only when each incident signal on each antenna element

has close amplitude characteristics. From Figure 6.21, it can be seen that the amplitude of

each channel at the sampling point is quite different because of multipath effect on each

channel. As an auxiliary method, the first correlation peak can be considered the peak for

LOS signal because it can be treated as the peak of the earliest NLOS signal.
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Stability Analysis
Scenario 1: One location at different time periods
The data use here is collected on the roof of CCIT building on May 7, 2007, at about
every one hour interval. The system setup and the calibration of five antennas is the same
as the previous description in Section 6.3.1. The results are shown in Table 6.9. It can be
seen from the third column that the TDOA bias varies by about 6 m within the four hours,
which is the stability of the system including the receiver and the transmitters at the base
stations. The bias of about 220 m in the third column is due to unknown system offset.
The survey values were provided by Tellus Mobility, Canada and some of them were re-

measured by Geomatics Engineering department, University of Calgary.

Table 6:9: Stability Analysis of TDOA Bias for Scenario 1 (Roof of CCIT Building)

Time Slot TDOA Measurement (m) TDOA Bias with Survey Reference (m)

(BSs: Market Mall & Edt. Tower)

12:31 pm 125.4 222.6
2:16 pm 125.4 222.6
3:26 pm 120.5 227.5
4:00 pm 126.4 221.6

4:47 pm 120.0 228.0




Scenario 2: Different locations measured on different days
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This data is collected at different locations on the University of Calgary campus on

different days. The results are shown in Table 6.10. The TDOA biases with respect to the

survey reference at different locations, as shown in the second column, are at the same

level of about 220 m, which means that the bias is about the same at the different

locations; as shown in the third column, the measurements on the other day is similar,

which is reassuring from a consistency point of view.

Table 6:10: Stability Analysis of TDOA Bias for Scenario 2 (Different Locations)

Locations TDOA Bias with Survey | TDOA Bias with Survey
Reference (m) Reference (m)
Day 1 Day 2
Roof of CCIT Building
(BSs: Market Mall & Edt. Tower) 214.6 216.8
Roof of CCIT Building
(BSs: Varsity & Edt. Tower) 217.0 2154
Front of CCIT Building
(Location A) 215.6 214.7
(BSs: Market Mall & Edt. Tower)
Front of CCIT Building
(Location B) 225.3 221.9

(BSs: Market Mall & Edt. Tower)

Error Analysis

One reason for the above constant bias of about 220 m in the TDOA measurements may

be due to the CDMA network time synchronization accuracy of 1 pus (Iltis & Mailaender
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1996). As discussed in Section 2.2.2, the TDOA technique does not require
synchronization of the mobile user to the network because the timing error cancels out.
So the error from the non perfect GPS synchronized data in the receiver board will not
contribute to the TDOA error. However the TDOA technique requires that the network
should be precisely synchronized for high location performance. This constant bias can
be compensated at the CDMA base stations. The measured TDOA standard deviation
under different environments discussed previously may be due to uncontrollable
systematic errors, e.g. receiver transfer function uncertainty, timing offsets in ADC

sampling and base station timing uncertainty, etc.

Comparison with Single Antenna-based Correlation Peak Method

In Table 6.1, 6.3, 6.5 and 6.7, the correlation peak-based method uses the antenna array to
estimate the correlation peak, which requires calibration and beamforming process and
then locates the correlation peak position. Here the comparison with the single antenna-
based correlation peak method, which is the conventional correlation peak-based method
without calibration and beamforming process, is given. Table 6.11 shows the result
obtained from a low multipath environment from Scenario I, which is on the roof of
CCIT building. It can be seen that, in this environment, the single antenna-based
correlation function peak method produces stable results from one antenna to another,
which means that each channel is working properly and the correlation slope-based
method also has similar TDOA value. In this case, the proposed method does not show a

significant advantage over the correlation peak method.
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Table 6:11: TDOA Estimation - Roof of CCIT building (Scenario 1)

Method Correlation Peak-based Method Correlation Slope-based Method
(BSs: Market Mall & Edt. Tower) | (BSs: Market Mall & Edt. Tower)
Chl Ch2 Ch3 Ch4 using antenna array
TDOA (m)| 109.2 102.5 1129 |117.8 119.9

Table 6.12 shows the results from an environment with strong multipath (Scenario 2),

which is in front of CCIT building. It can be seen that the single antenna-based

correlation function peak method produces unstable results from one antenna to another,

whereas the correlation slope-based method overcomes this effect through array

processing using estimated LOS AOAs. In this case, the proposed method shows a more

dependable result.

Table 6:12: TDOA Estimation - Front of CCIT building (Location B)

Method

Correlation Peak-based Method

(BSs: Market Mall & Edt. Tower)

Chl

Ch2

Ch3

Ch4

Correlation Slope-based Method
(BSs: Market Mall & Edt. Tower)

using antenna array

TDOA (m)

106.8

51.8

340.5

22.5

41.6




204

6.4 Conclusions

A CDMA receiver with multiple channels is described, including the RF front end and
the digital circuit. The multiplexer is implemented by an Altera FPGA to transfer the five
channels data to a PC via a NI DAQ. The related control software is developed using the
C language. The experiment is based on measured data from actual CDMA base stations
at different time periods and locations on the campus of the University of Calgary. The
data is processed with the proposed AOA-assisted TOA / TDOA algorithm. The results
show that the proposed method is working in both LOS and multipath environments. In
LOS environments, the proposed method produces similar TDOA results to those
obtained from using the correlation peak method. However, in multipath environments
the correlation slope-based method shows a more dependable result than that of the

correlation peak-based method (Table 6.12).
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Chapter Seven: Conclusions and Recommendations for Future Work

7.1 Research Summary

In a positioning system, the AOA and TOA parameters are the major values for position
estimation. The accuracy of AOA / TOA estimates and the GDOP affect the location
accuracy significantly. When the signal is strong and multipath is weak, the AOA / TOA
can be estimated correctly through various methods as discussed in Chapter 2. However
under multipath environments, the accurate estimations of AOA and TOA become
difficult because the correlation function of the line-of-sight signals is corrupted by

multipath.

In this research, a new approach for TOA estimation under multipath environment
through the use of AOA information was proposed. It is suitable for user-based wireless
location systems. The test measurement data is from CDMA IS-95 downlink pilot

signals.

Conventional TOA estimators based on correlation function peak for CDMA signals can
mitigate multipath with over one chip delay. However the inter-chip multipath cannot be
resolved efficiently, which results in the shift of the peak especially when the multipath
signal is strong. As a consequence, the estimation of TOAs based on the correlation
function peak method is inaccurate in multipath environments. Fortunately, the initial

rising part of the correlation function still has a good linear shape without distortion by
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multipath because the latter always arrives later than LOS signal. Usually, the multipath
delay is larger than 200 ns (in urban areas it is typically larger than 400 ns (Turin 1972)).
Based on this condition, which is also valid from the experiment results in Chapter 6, the
estimation of the initial rising slope was investigated to determine TOA. The problem is
that low SNR at the initial rising part of the correlation function affects performance.
Then the beamforming technique based on an antenna array is applied to improve SNR.
In order to enhance the LOS signal strength and mitigate NLOS signals at the same time
efficiently through the beamformer, the AOA of LOS signals needs to be estimated. This
is the process that was investigated to make use of the AOA information for the proposed

AOA-assisted TOA estimation algorithm.

In this approach, the AOA estimation is an important step. The forward/backward
smoothing MUSIC algorithm is applied to estimate AOA in multipath environments
because the conventional MUSIC algorithm is not suitable for fully correlated signals
which exist in such environments. The computational effort using MUSIC is low with
one dimension search no matter how high the number of source signals is, whereas the
Maximum Likelihood method needs N dimension search if the number of signals is N and
other parameters, such as signals’ amplitude and phase are known. One of the limitations
of the F/B smoothing MUSIC algorithm is that the number of source signals cannot be
over 2M/3 (M is the number of antenna array elements), otherwise the angles of the
signals cannot be resolved. This problem is overcome in a CDMA IS-95 system by
sampling the data at the correlation function initial rising part, where fewer source signals

are contained.
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The CRLBs of the AOA-joint TOA method and the proposed AOA-assisted TOA method
were investigated in Chapter 3. One interesting phenomena that was found for multiple
source signals is that the AOA CRLB of the AOA-assisted TOA method exists maximum
and minimum values due to different initial phases of the incident rays. Stoica & Nehorai

(1989) only discussed the case when the phase of the correlation coefficient p,, of two

signals is zero, so only one CRLB exists. Compared with AOA-joint TOA estimation, the
AOA-assisted TOA method is a suboptimal method. The advantage of the proposed
method is that the computation is much less than the Maximum Likelihood method
because it only needs to search the signal incident angle within 180°; whereas the ML
method needs to search in multiple dimensions including the signal amplitude, phase,

incident angle and time delay.

In Chapter 4, a specific AOA estimator called MUSIC estimator was analyzed and
compared with its CRLB. It can be seen that the unbiased MUSIC-based AOA estimator
is suboptimal when the angle difference between two incident rays is large. Similar to the
discussion of the maximum and minimum CRLB in Chapter 3, the MUSIC estimator also

exist maximum and minimum variances when the phase of correlation coefficient p,, of

two signals is considered.

In Chapter 5, a specific TOA estimator using a multipath mitigated correlation function
rising slope is analyzed theoretically and compared with its CRLB. It can be seen that

the asymptotically unbiased TOA estimator exists when the SNR after despreading is
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more than 15 dB but its variance increases with the decrement of SNR after despreading.

For example, when SNR after despreading is 15 dB, the TOA standard deviation is 36.8

m. The advantage to process data in the correlation function initial rising part is that

fewer multipath components were contained in that range. The conventional correlation

peak-based TOA method fails in multipath environments even if is optimal (Kay 1998).

The experiment described in Chapter 6 is based on data measured by a CDMA receiver

prototype. The results show that:

1.

The proposed method works in both clean LOS environment (open air area
without multipath) and multipath environments.

AOA estimates are close to the theoretical values which are accurate to about 1°
to 2° when the angle of incident ray is perpendicular to the array line; whereas
when the incident angle is parallel to antenna array, the AOA estimates have large
error, in which case other suitable base stations needs to be choosen.

TDOA estimates are biased. Theoretically when the SNR after despreading is
more than 15 dB, it will be unbiased.However, when the practical SNR after
despreading is more than 30 dB, other practical factors such as the non-
synchronization of the CDMA network base stations may cause a bias. The
TDOA standard deviation is small and close to the theoretical value of 8 m when
the SNR after despreading is 30 dB.

A stability test shows that the TDOA measurements vary by 10 m during a one

hour interval.

From several scenarios described in Chapter 6, it can be seen that:
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1. In open air areas with LOS signals without or little multipath effect as in Scenario
1 of Section 6.3.5, both the correlation peak-based method and the correlation
slope-based method yield similar results. In this case, the latter one has no
significant advantage.

2. In LOS environments with strong multipath as in Scenario 2 of Section 6.3.5, the
proposed method shows a significant advantage over the correlation peak-based
method.

3. In LOS environments with weak signal strength as in Scenario 3 of Section 6.3.5,
the proposed method still works with standard deviation less than 10 m .

4. In non- LOS environments with multipath as in Scenario 4 of Section 6.3.5, the
proposed method deteriorates because the earliest NLOS is treated as LOS,
resulting in five channel correlation functions separated from one another as
shown in Figure 6.21. In that case, the MUSIC algorithm cannot resolve the

incident signals’ angles.

7.2 Limitations of the Proposed Algorithm and Recommended Future Work

Limitations

Short Delayed Multipath Results in Low SNR at the Correlation Function Rising Part
The proposed algorithm is based on that the correlation function initial rising part has
little distortion by multipath due to the certain delay of multipath in city canyon

environment. The statistical delay value is more than 200 ns (Turin 1972). If the delay is
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very small, less than 100 ns, the correlation function initial part will have a small segment

without distortion, in which area the SNR 1is small resulting in performance degradation.

The More the Number of Short Delayed Multipath, the Worse the AOA Estimation

The AOA estimation performance is affected by the number of antenna array elements.
More array elements results in smaller estimation error. In this research, we use five
antenna elements which have the ability to resolve three source signals. If the synthetic
array technique is used, the number of array elements can be increased. The synthetic
array can be applied in MUSIC algorithm by constructing a new antenna array output
vector and its auto-correlation matrix by equation (4.4). Then the contents in Chapter 4
can be used. However during the construction of the new array output vector, it needs to
determine the phase change in the antenna array which is related with the movement of
the array. If the movement of the array in a vehicle is random, then it will be difficult to
parameterize the change of the array phase. So an inertial device will be helpful to apply

the synthetic array technique for AOA estimation (Ali et al 2007).

AOA Estimation Accuracy Decreases if Signals Come Parallel with Antenna Array

From the experiment results, it can be seen that the accuracy of the AOA estimation is
related with the geometric angle between the antenna array line and the base stations. If
the signal from the base station is perpendicular to the array line, the AOA estimation
error will be small. If the signal from the base station is parallel to the array line, the

AOA estimation error will be large. To solve this problem, one possible solution is to add
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one more linear uniform array orthogonal to the previous one. So when the signal is
parallel to one ULA, it is orthogonal to the other ULA. This will increase the complexity

of the algorithm which can be studied in the future.

Without LOS, the Earliest NLOS is Treated as LOS, Resulting in Estimation Error

The proposed algorithm is on the condition that the LOS exists. In the paper by Qi
(2003), it proposed a method to estimate TOA based on the NLOS with prior PDF by
subtracting the NLOS delay from the total time delay. However it still needs to know if
the received signal is LOS or NLOS which is hard to determine. So in this research, the

first arrival signal is used as the LOS signal.

Future Work

More Field Testing

The experiment is based on the limited measured data. More field testing under a wider
range of conditions (different environments such as down town areas, different antenna
spacing and different number of antenna elements) is needed to fully validate the

approach designed herein.

The Application of the Proposed Algorithm in Tracking Process

The proposed method is verified through the acquisition process for CDMA IS-95 pilot
signals. However it can also be applied in tracking process, in which Kalman filter
technique can be used to predict new AOA estimates based on the previous AOA values

from MUSIC estimator and the updated AOA estimates will be sent to the adaptive
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beamformer to enhance LOS SNR and mitigate multipath. Then TOA can be determined
using the proposed method. The proposed method is also suitable for GPS signal and the
steps also go from AOA estimation, beamforming for multipath mitigation and then
correlation function rising slope estimation for TOA determination. The difference is that
the GPS signal is weaker than CDMA signal, which can be improved through long

integration and antenna array to increase SNR after beamforming.

Application to Dynamic Cases

For dynamic application, the impact of coherent integration time on the overall
performance should be studied. The clock stability, the Doppler shift during the coherent
integration time will all affect the data collected and cause the signal processing more

complicated.

Requirements for the CDMA Network

From the experiment results it can be seen that the synchronization among the base
stations is very important for location accuracy using TDOA technique because 1 ps time
offset between two base stations will result in a bias of about 300 metres. The bandwidth
of the filter before despreading will affect the correlation function’s shape significantly.
The larger bandwidth, the correlation function will be closer to be like a triangle, which is

helpful for determining the rising linear part.
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Requirements for the Antenna Size
The antenna array used herein is suitable for amounting on vehicles. For handset
application, it requires smaller size of antenna which can be distributed around the
circumference of handset. In that case, the MUSIC algorithm is not applied in a uniform

linear array. It needs to figure out the phase difference between each antenna element.
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APPENDIX A: IS-95 SIGNAL PROCESSING IN FREQUENCY DOMAIN

The relationship between the linear convolution and the Fourier transform of the discrete
signals §;[n] and 5,[n] in Section 2.2.2 is:

S5 = D HmEnm-m - S3(Q)S5,;(Q). (A.1)

m=—co
where symbol (*) denotes the linear convolution, §3 () and Ky ;(€2) denote the Fourier
transform of the signals §3(n) and §,[n] respectively. If §;[n] and §,[n] are the periodic

discrete signals, the relationship between the circular convolution and the DFT of the

signals s;[n] and s,[n] is:

SO =Y 55 n-m o> 508 (A2)

m=0
where symbol (®) denotes the circular convolution, §3(k) and §l (k) denote the

discrete Fourier transform of the signals 53(n) and 5,[n] respectively.

Based on §,(-n) <— S,(—k), 5 (n)<— S, (~k) and equation (A.2), the correlation

between 5,[n] and 5,[n] can be implemented in the frequency domain by:

) =5, (m) ®F, (-m) =Y 5,05, (n—m) < §,(0S, ®). (A3)

n=0
Because s3[n] contains the estimated carrier frequency difference fermr, equation (A.3)

can also be written as:
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R N-1 - ~
r(m, fopror) = Z S3(n)s;(n—m) = DF’! [S5(k)S; (k)] (A4)
n=0

Equation (A.3) can be proved generally as follows:
Considering two sampled signals x[n] and y[n], the cross correlation function is given

by:
1 N
r, Iml= NZ yin)x" [n—m] (A.5)

Both x[n] and y[n] may be written as:

N-1 ].Zfrnf

anl=) X[fle " (A.6)
=0
N-1 ' j27rnf'

Mnl=) Yifle ¥ (A7)
=0

where X[f] and Y[f ] are the DFT of x[n] and y[n] respectively. Substituting (A.6)

and (A.7) to (A.5), we obtain the following expression:

1l N1 27rnf N-1 27r(n m) f

N
radml=— | 3 vif1e ZX[f N

n=0| f'=0

(=}

jzznf' _jpanf 2amy

1N—1 N-1 , N-1 j
= 2| X Yifle N ZX[f NN

N 2ol 7=0

\ (A.8)

| NoIN=1 N-1 jranf _2anf 2zmf

== S Srfixifle N el N oo N

anOf =0f=0

| N=IN-I j2EmS Ny M
=L X X | MrXfle N ze N

f=0/=0
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Considering that (f — f)is an integer and —(N —=1)<(f — f)< N -1, we can derive

N 27n(f=f) g j2an(f -f) , N f-f=0
Ze] N — 1 e : — N6(f _f) — f' f (A.9)
n:o 2EU 0 f-f#0

l-e ¥

Substituting (A.9) to (A.8), the correlation function of signals x[n] and y[n] can be

expressed as follow:

1 Nt ' ' 2t '
r, . [m] =—ZZ(Y[f IX"[fle ¥ N&(f —f)]
Nf'=0f=0
2xmf

N-1 . J
=3 YIfIX [fle © (A.10)
£=0

=DF " [Y(HX (f)]
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APPENDIX B: CRLB DERIVATION FOR AOA ESTIMATION UNDER

MULTIPLE SOURCE SIGNALS

For convenience, the real and imaginary components of a complex vector or matrix y(z)

are defined as:

y@®)=Re[y®], ¥@)=Im[y()]

The fundamental parameter vector in equation (3.46) is expressed as:
T
0=lo2sT ), 57, -, sT ), sT(N), 0" |" (142KN+K)x1 vector

0=[p, 0, 01
¢k=27£%c0s,3k k=12,--,K

Assuming that the complex measured data x;(¢) is corrupted by Gaussian complex noise
ni(t), which is identically distributed N (0, o’ /2), and the noises are independent from

sensor to sensor, the parameterized PDF p(x(1), x(2),---, X(N);0) can be expressed as:

p(x(1), x(2),-+, X(N);0) = p(X(1), X(1),-, X(N),X(N);0)

1 1<
= ——w—expi——5 » n’(Hn(r) (B.1)
(Wrcrz)z { ° 'Z—ll }

1 1 &
= v eXps——5 ) [X(t) — As(1)]" [x(t) — As( )]}
=i { &

The logarithm of p(x(1), x(2),---, X(N);0) can be derived as:



L=1n p(x(1), X(2), -, X(N);6)

= const — MN Inc? — % Z [XH (1) - s (t)AH 1[x(¢) — As(?)]
=1

For obtaining the Fisher information matrix J(0) = E {
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(B.2)

T
j } or CRLB covariance

matrix J~'(0), the derivations of the parameterized PDF logarithm with respect to ¢,

s(t), S(t) and ¢, should be obtained.
Noting that

os™ (1) |
d5,(1)
os” (1)
os” (HA" | 95,(t)

A" = A",

0As(?) _A

2

9s(7) os(1)

os” (1)
| 95, (1) |

as™ (1) |
95,(1)
" (A" | 95, (1)

0As(?) _A

b

= = AT =—jA", —
95(1) ) os(1)

os” (1)
| 95, (1) |

os(t) _A

A5y ()]
o0 }=1A
95, (1)
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the derivations of the parameterized PDF logarithm with respect to ¢, s(z)

, S(t) and
@, can be written as:
oL MN
3oh - o Zn (t)n(r) (B.3)
E_)—L =—[A"n(®) +n" (HNA]= %RC[AHn(t)] t=1,2,---,N (B.4)
os(t) o o
aL A H « H 2 H
——=—[-jA"n@®)+ jn”" (HA]=—Im[A"n@®)] r=1,2,---,N (B.5)
os(t) o o
_ LS u . OA
oo {ZS 9, S(’)}
1 N H H
=— Zs 0d" (g m@) +n" ()d(@,)s, (1) (B.6)
o
2 S Relsi 0" (pom() k=
FZResk(r)d (@, )n(r) k=12, K
Based on (3.44) and (3.45), the vector expression of (B.6) can be formulated as:
oL 2 < oon
%zF;Re[s (D" n(r)] (B.7)

Now some pre-results for CRLB covariance matrix J™' (@) are needed, which are stated

and proven in the following:

4

O' t+7T
1) Eln” ()n(n” (0)n(r)]= { (B.8)
MM +)o* t=71

For t # 7,
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En” (H)n()n” (z)n(r)] = E[n” (t)n(H)]En” (t)n(r)]=Moc* *Mo* =M *c*
For ¢t =7, note that n” ()f(¢) =0’ (H)n(r)

Em™ (n@mn” ()nn)1 = E(n" ()n(n)1?)

= E([n” (n(r) - jii’ (On(@0)+ jn’ On@) +i’ Of@0)*)

= E([n (n(n) +i’ (Of(n))

= E([n" (On0)]* )+ 2Em" (R0’ o))+ E([{ 0fm)*)
=2E{[n (On(n]*}+2E@’ (On())E’ (i)

=2E{[m! (O)n()]*)+ %M 254

Since
2
M M M
E{[a’ on0)*)=E !Zﬁ? (r)] = E[Z RO (r)]
i=1 i=1j=1
M M M 0_4 64
=Y > Elnf (O1*El (0)+ Y. Elii;' ()] = (M * - M)=—+3M =~
i =1i]¢=; i=1
2 o’
=M? +2M)"—
4
thus  En” @n@n” On@®)]=MM +o*
2) Em” On@tn” (1)]=0 and Em@®n’ (0)]=0 foralltand t (B.9)

For t # 7, the result is evident since are independent.

Fort=7,
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E{L7 0+ 7 ), ()
EmﬂumamﬂﬁyzE{}}#@»ﬁ#@ﬂn%n}: B0+ 7 O, 0)

E{[n;, (1) + 7y (D], (1))
Em O+ 0]

Elm 0+ 01| _ o

Elfty, (1) + iy (1)]
El[n} (0] = E[R; (1) +2j i, (), (1) = i} ()] = E[7 (1) =i ()] = 6° =67 =0
Note that the third-order moments of Gaussian noise are equal to zero.

3) Re(u)Re(v") = %[Re(uvT) +Re(uv”)]

Im(u) Im(v") = —%[Re(uvT) —Re(uv”)]
Re(u)Im(v") = %[Im(uVT) —Im(uv"”)] (B.10)

Im(u)Re(v') = %[Im(uvT) + Im(uv”)]

A
4) If H is a nonsingular complex matrix, and denote its inverse by G=H"", then

F __H} :F __G} (B.11)
H H G G

Proof: Because HG = (H + jﬁ)(E + jé) =1, the followings can be obtained:

o =
o Q)
=nlBlas]]
Q
Ll
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Thus, the matrix multiplication is as follow:

H -ifi|[c¢c -¢| [HG-#é -H
i H|6 ¢ |AG+HE -

5) If A and D are nonsingular square matrices, then one has the following expression

(Abadir & Magnus 2005):
A B]' [A"+A'BE'CA' -—A'BE"
AT ¢ . here E=D—CA™B (B.12)
C D _E'CA™ E"

The method to prove equation (B.12) is similar to that for equation (B.11).

To obtain the CRLB covariance matrix:

o |dlnL(dmLY h
J (9)—E{ P ( 0 j} (B.13)

the following notations introduce are introduced:

2
H=2A"A
2

G=H"

A, == A"DS(K)
o

Based on equations (B.3) — (B.12), the elements in the Fisher information matrix 1(0)

can be derived:
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E{(%} ] =E [—?+— >'nf! (t)n(t)}2

2a72
MV 2N ZE[n on@1+— 3 3 Em (on(on® @)

o Gt thzl

_M*N? 2M*N?
o o (B.14)

+L{(N2 N) E " (Oontn (0)n(2)1+ NE{n" (t)n(0)] }}

O t#+71
M?2N? 1 2 2 4 4
- +—[(N“"=N)*M“0c"+N*M(M +1)0]
4 8
o o
_ MN
04

T
oL ( oL _ 4 H H T
E{aw)(aw)j }—G — E{Re[A " n(k)IRe[An()]" }

= %E(Re{AHn(k)[AHn(l)]T}+Re{AHn(k)[AHn(l)]H })
o

(B.15)

= iE(Re{AH n([ATn@)? }): iRe{AH En(n’ (1)]1A)
0'4 0'4

ZLRC[AHA]é‘k l :ﬁé‘k 1
o2 ’ ’

here J, is the Kronecker Delta function, which is equal to 1 if k =/ orzeroif k #1.
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E[ oL (?LJ }:E{ ?L (
95k 9as() 9s(k)\ 95()

as(k)

5W)) | o*

T
E[ oL ( JL ] ]_ * E(Re[AT n())Im[AFn()]T )

%E(Im{AH n(O[ATn@D)]" )~ Im{A 7 n(k)[ AT n@)? })

o

—i4 E(Im{AH n()[A T n@)? }): —%Im (AT Eln(on® (1)1A)
O

_ 2z
2

o

m[A7 A6, , =-H6;

oL JT}T

—%Im[AHA]T 5k’l:—izlm[AHA]T§k’l
O o
2 T o * 2 H o« *
- Im[ATAT16; ;= - Im[(ATA)16;
o o
2

62

Im[AHA]5k,l = ﬁ§k,l

4

T
E[a?L ( oL j }— 4 E{Im[AT n()]Im[A T n())" )
S

2

4

o

(k)\ 9s()

(o}

- iE(Re{AHn(k)[AHn(Z)]H })

ot
2

02

RC[AHA]é‘k’l :ﬁé‘k,l

_ 2
0_4

E(Re{AHn(k)[AHn(l)]T }—Re{A 7 n(k)[ATn) ¥ })

Re{A X Em@n? (1))A)
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(B.16)

(B.17)

(B.18)



aL (aLY | 4 e ol oy
E!ag(k) (ﬂ} ]?E{Re[A n(k)];Re[S D n()| )
Re{A"n(k)>[8” D" n()] )

+Re(A"n(0) > [8" (D" ]

t=1

= 2 £ Re(Y An (b8 0D nio)’ }]

2

0_4

Re{Y A"E[n(kn" (1)IDS(1))

:%Re[AHDS(k)]: A,
(o}

_aL oL ! 3L (oL 7 5 ) o
‘ %(GWJ ]_E[8§(k) (%J ] =7 Re[ATDS(K)]" = A,

oL ( dL ! 4 . N ., ;
£ a’g(k)(ﬂj }?Eum[‘“ “(")]Z;Re[s OD" )]}

Im{A"n(k)>[8" D" n()] )

+Im(A"n(0) > 87 D ]

t=1

=—E Im{ZN:AHn(k)[SH(t)DHn(t)]H}J

2

0.4

Im{z A" En(kn” ()DS@)}

— 2 Im[A"DS(k)]=A .

0_2

T

aL aL T aL aL T 5 ) o
E[ﬁ(aﬁ(k)j }E[a:é(k)(ﬂj } =_7Im[ATDS(K)" =A,
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(B.19)

(B.20)

(B.21)

(B.22)
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!_ %}T = E[ D Re[SH D" n(t)] > Re[SH (@)D" n(f)]rj

=1
-t % %Re[SH D" n(t)|Rels ()D " n(0)]
04 t=Ir=
2 J 3 H, \nH H H
:?E gg {[s (1D n(t)][S (t)D n(T)]H} B23)
2 I X H, \nH H
:—422 Re{S"” ()D"” E[n(r)n(z)"" 1 DS(7)}
o =1r=
2 J H, \nH
=—5 2 Re{S" ()D"DS(1)}
t=1
A
=r
Based on (B.14) — (B.23), the Fisher information matrix can be derived as:
_ | _
Miv l 0 0
o L
'H -H A,
| ~ J— ~
oL (oL  HH 0 A,
16)= {aﬂ(%”_ 0 | :
o H -H|a, (B24)
| ~ — ~
; H H|A,
0 AT AT AL AL T

— le ZlZ
zZ, T
The Fisher information matrix in (B.24) is partitioned into four blocks by two solid lines.

Thus, the CRLB of ¢ can be derived as:
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VarC_;LB (@)=T- Z21Z1_11Z12

G -G 1147
R A 0 Al (B.25)
=I-[A] A, Ay Ayl :
0 G -Gl|A,
i G GJ[A,]
where
[AT A7) ¢ -G A =[AT A7) GA -Ga, =[AT AT]... Re(GA)
G G||A, " IGA,+GA, o Im(GA,)| (B.26)
=Re[AGA ]

Based on equations (B.25) and (B.26), the following expression is derived:

N
varg,; () =T =Y Re[AGA ]

t=1

= ZRe{SH(t)DHDS(t) $"(HD"AA"A)'A"DS(}  (B.27)

Re{SH OD[I-AA"A)ATIDS®)}

2
o’
i
o’

M- 1

Thus, var,,, (@) can be expressed as:

Valeg  (¢) = %{Z Re{S" (D" [I-AA"A)"A"] DS(t)}} (B.28)

If the transformation of parameters is as follows:

a=g(0)
T
=le2 5T, 5T, -, sT N, 5T (N, BT | (1+2KN +K)x1 vector
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where

ﬁ:[ﬁl’ﬁz""’ﬁlf]T

A
k=1,2,,K
2z %)

B, = arccos(

0g(0)

Because W is a diagonal matrix, so the CRLB of AOA ,Bk can be derived as:

. aﬁ 2 0_2 N -l
vVarcrr B (ﬁk) = (ﬁj 7{ RC{SH (I)DH [I —A(AHA)_IAH] DS(t)}]
t=1
k k
-1
o’ | & H H H -1, H d . 2
:T ZRe{S @OD[I-AA"A) A7 1DS(r)} (272’/181n,3Kj
r=1

kk

(B.29)
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APPENDIX C: INVESTIGATION OF SIGNAL TO NOISE RATIO AT THE

PEAK OF THE CORRELATION FUNCTION

Based on the contents in Section 2.2.2, the IS-95 pilot signal impinging the receiver

antenna can be expressed as:
5(t)=2A[PN, (t)cos2n f. 1+ §) + PN, (1)sin(2 7 f. 1 + )] (C.1)
Suppose that the signal is corrupted by the band pass “white” Gaussian noise with zero

mean, the noise can be expressed as
n(t)=2n, (t)cos 2 f. t +n, (t)sin 2 £ 1] (C.2)
where n;(7) and ng(¢) are the noises of I and Q components as shown in Figure C.1.
e ® 51(0)
' ny (1)

s (1) ' Signal
n (1)

Processing

(R 59 (#)
' ) — ng (1)

Figure C.1: Demodulation of the CDMA IS-95 Signal

After demodulation, the base band components of s(¢) can be obtained as:

s1(0)= AlPN [ (t=14)cos2n f, 1+ @)+ PN (t—14)sin2m f, 1+ )]

c3
500 = Al PN (t=1)sin@7 £, 1 +§)+ PN (t = 14)cos f, t + )| €
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In order to derive the signal to noise ratio at the peak of the correlation function

conveniently, here assume that f,=0 and ¢ =0. Thus the complex base band signal and

noise can be expressed as

5() = A[PN, (1) + j PN, (1)] expl—j2n £, 1 +9)]
— AlPN, )+ j PN, (1)] (C4)

n(t)=n, (1) + jny(t)

where n,(t) and n, () are “white” Gaussian noises with distribution of % (0, c’/2),
which has E[n,(1)n,(1)]=0 and E[n;(t;)n;(t2)]= Elng (t))ng (t2)]1=0 1) #1,. After
the incoming signal passes through a low pass filter with the bandwidth of 1/7,. (T, is

the chip period of PN code) and sampled with the rate of 2/7,, the noises at the sample

points have the following relationship:
E[l’ll (kl )I’ll (k2 )] = E[l’lQ (kl )I’lQ (k2 )] =0 kl # k2 (CS)
If defining SNR as the signal to noise ratio before despreading, it can be expressed as:

Ell s(k)1?] _ 242

SNR =
Elln()1?] o2

(C.6)

In the correlation process of IS-95 pilot signal, if the integration time is one PN code

period, the correlation function value at the peak can be derived as:

7,(0) = max[r, (7)]

2K-1 2K-1 (C7)
= D s(k)s;(k)=Y s(k)[PNy (k)= jPNg(k)]=4KA
k=0 k=0
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where s;(k)=PN;(k)— jPN 0 (k) is the local generated signal for correlation process; K
— 9ls
Meanwhile the noise output at the correlation function peak can be expressed as:

2K -1
(@) = 3 n(k)s; (k) (C8)
k=0

Based on equation (C.5), the variance of r,(0) can be derived as:

k

2K-1 2K-1
E[lr, (0)*1=E { Zn(k)sl(k)}{ Zn(k)sl(k):|

k=0 k=0

[2K-1 )
=E| Y |n(k)s; (k)| }
| k=0
[2K-1
=E z
k=0

(o[ s; (k)|2} (C.9)

Zé—l
=X B Jsiof
k=0

=4Ko?
As a result, the signal to noise ratio at the peak of correlation function can be obtained as:

2 2,2
SNk, = maxlls @] _16K7A7 b oy (C.10)

k
P Bl 012 4Ko?

For M elements of antenna array processing, the signal to noise ratio at the peak of

correlation function can be expressed as:

2
max[l s (7)1%]

SNRs. peak = =~ =4KM SNR (C.11)
Ellr g ,(0) 2]
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Furthermore, if the integration time is p periods of PN code, the signal to noise ratio at
the peak of correlation function can be derived as:

max[l s, (7) 2]
Ell r 5 ,(0) %]

SNRs. peak = = 4pKM SNR (C.12)

where K = 2P ; M is the number of antenna elements; p is the integration time; SNR is

signal to noise ratio before despreading.
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APPENDIX D: INVESTIGATION OF TCXO ALLAN VARIANCE

TCXO stands for Temperature Compensated Crystal Oscillator. Its frequency stability is
expressed by frequency change within a given time interval T and usually stated in parts
per million (ppm). There are two ways to describe frequency stability: Short-term
stability (Allan variance) within 1~100 seconds and long-term stability (aging) within 1

day ~ 1 year (10 years). Here Short-term stability is investigated.

Allan variance is defined by one half of the time average over the sum of the squares of
the differences between successive readings of the frequency deviation sampled over the

sampling period. It is normally expressed by:

2 1 =
%=1 Z[y(+1) y(1?

y(@) = [x(@+1) — x(@)] / t is called the fractional frequency value averaged over
measurement interval ¢, which is computed by two adjacent sampled data x(i); M is the
number of fractional frequency values. These parameters are described in Figure D.1.

time difference x(1)

time

Figure D.1: Allan Variance Description
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Here y; = [x(2) - x(1)] / ¢ and x(7) is also called clock signal’s “phase” because different
points show different statuses of the signal. The data rate is 10'2' = 152
samples/second (the clock is 10 MHz and the counter is 16-bit). So the number of data
collected in 1000 seconds is 1000*152 = 152000 samples. The calculation of Allan
Deviation at T = 1 s requires about 100 seconds of data (Fruehauf 1991). In this research,

15 hours of data have been collected. Figure D.2 is the circuit to collect the clock data

based on FPGA.
c2 Sampled
P oy
D o[*p o1
[fK kK Quae B —
” J—D Q -;. FRO 2
’ t6-6it | |3 2 i) E NI Data
stl%ﬂz Clousnter i [ D Q Acquisition
cEqy | & i Card
& L_.‘J- J
— 16ihit &
6wt | 16 | || ppr SEL | 1g
TEHO 10 Ve A Pl 5 16-bit
=% 16-bit 21
cmr HFF

Figure D.2: FPGA-based Circuit for Allan Variance Measurement

Figure D.3 is the result for square root of Allan variance which is called Allan deviation
(ADEV). The time interval is from 1 ~ 10000 seconds. The conclusions are as follows:
1. When t <15 (Rubidium) ~ 50 (TCXO) seconds, the ADEV increases; This trend is
different from the theoretical Allan deviation curve. This is due to the

(a) initial aging process

(b) system noise
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(c) data discontinuity
2. After 15~50 seconds, the ADEV goes down correctly.
3. The sinusoidal noise exists in the plot due to the uncertainty of the measured Allan
variance (Hou 2004).
4. The rubidium is Ball Efratom FRK mode. It has more stable curves with respect to the
different warm-up time than that of the TCXO.
5. Rubidium is more close to the specifications in (Fruehauf 1991) as Table D.1.
6. Both TCXO data and rubidium data are collected in 15 hours which has a total of

8208000 samples.

Allan Deviation
-8

10
Yellow is TCXD, Warm up 12 hours; Light-blue is TCXO, Warm up 14 hours, 27 NovO4d
10° e
m.m F _
1w L Y zl
Green is Rubidium, Warmn up 2 hours; Red is Rubidiurm, YWarm up 6.5 hours, 05Dec0d
-12
-II:I " " i " " i " " i "
10° 10' 10° 10° 10°

Interval time ( (seconds)

Figure D.3: Measured Allan Deviation for TCXO and Rubidium



Table D.1 Allan Deviation for Rubidium

Time Interval Specifications Measured Values
T=1s 3x10™ 3x10™"*
1=10s 110" 110"
1=100s 3x107"7 6x10"*
T=1hr 1x10"2 2x107"7

Table D.2 Allan Deviation for TCXO

Time Interval Specifications Measured Values
T=1s 1x10™ 1x107™
1=10s 1x10™ 6x10"°
1=100s 1x10"2 9.5x10™"
T=1hr 3x10™" 2.5x10™°
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Even though the measured result for this particular TCXO is not as good as the

specifications, it is stable enough for this research. For example, if the TCXO stability is

1x10™'%in one second, then the frequency change at RF 1.9 GHz will be 0.19 Hz which is

small for this application.
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APPENDIX E: DEVELOPMENT OF THE SECOND GENERATION RECEIVER

FOR LOCATION SYSTEM

The second generation receiver still receives five channels signals parallel from the RF
front end. After down conversion to IF signal, it comes to a digital board as shown in
Figure E.1. The digitized signals of five channels are transferred to FPGA serially
through the OE (output enable) control signal. The input and output data of FPGA are all
differential voltages. Inside the FPGA, the serial input 8-bit I and Q data of five channels
are converted to parallel data in order to be sent to AGC unit and frequency de-rotation
unit as shown in Figure E.2. The function of frequency de-rotator is to measure the
frequency offset or called the Doppler frequency caused by the clock uncertainty and the
movement of the receiver and then compensate that frequency offset. This step is newly
added with respect to the first generation receiver. The benefit is to make signal
acquisition in laptop finished quickly without 2-D search and then the coarse PN code
phase can be sent back from laptop to FPGA tracking unit via USB port. So the second
generation receiver can work in real time mode. The tracking unit consists of 50
correlators for one signal’s tracking and each of them is shown in Figure E.3 (Alfredo et
al 2006). The use of accumulator can greatly reduce the amount logic cells required. The
control of whether the accumulator should add or subtract is determined by the local PN
bit. If the bit is 1, then the accumulator should add; otherwise, it should subtract. The
accumulator is initialized with zero and is reset at every one PN code epoch. The 50
correlators outputs of one signal are sent to PC for displaying as shown in Figure E.4,

where the correlation functions of five signals from five base stations are given. The peak
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of the correlation function determines the time of arrival. In order to track one signal, the
local PN code generator’s phase is adjusted based on the peak value located in one of 50

correlators outputs.

VOHO 5
20X CLE g 35
4.[/? '-DH' &3 81\ Decoder
Sarnpling CLE \IO Deecimation CLE ,. ]
103 CLK KOLK L:M
SN74HCST4
16 16 Z
CHI1 E@% D Qf <|:
OE
Ky
16 16
CHz —» E@ D ©Q {J
OF =
s OE Pushing CLE
< OF .. 10 CLE
16 16 16 SerialParallel To ISR Fort
CH3 EID 4D > :D—/— AGC for CH 1.5
OF.. Freguency De-rotation
OE o Tracking
BGC < USEB Intetface
KOO,
16 16 —]
CH4 —* EID ~+-=D Q AGCLs
0E,
OE
LGC, - FPGA
CH5— LD |2—|D O |2
T OE
KO, <

Figure E.1: Digital Circuit Diagram of the Second Receiver
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APPENDIX F: DERIVATION OF TOA CRLB FOR IS-95 PILOT SIGNAL

Note that the time delay for TOA is within the range of

0Lt<T

where T is one period of PN sequence.

Let’s consider the first term of the denominator of equation (3.63):

2

iaPN(t—r) 1 %|8PN(nTS—T)|2 .
ot T | ot | S
=1 o<c<r/T, Sn=l 0<t<T
1 L [epNGTg - )| .
- T
Ty 21| onTy =) | 0<t<T
L L [¥heefdeN G zdt—iJ'T dPN@)|*
TS Ty—t dt TS 0 dt

Using Fourier transform properties, one has the following formula:

J,

where PN(w) is the spectrum of PN(t), which can be expressed as:

dPN(t)
dt

2
1 p+ 2
dtzgj‘_w |@ PN ()| dw

K-1

) LK)+ jQ(k)]exp(—j@kTc)
k=0

I (k) and Q(k) are the discrete PN sequences

K :the length of PN sequences

w TC

PN (w) =T sinc(

Thus
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(F.1)

(F.2)

(F.3)
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jo dPN(t) =—j |a)PN(a))| dw
K-1K-1
=— j (T)Z D k) + jOUII () - jOD)]expl—jo(k —DT¢ ldw
k=01=0
2 K N
=; z z I(k)+jQ(k)][I(l)—jQ(l)]j_w sin ( )exp[ jotk-DTgldw
2 K-1
2 SU®+ 0010 - 5O 77 sin? (€ costk ~ DT 1w

=0/=0

If the bandwidth of PN(w) 1s we [2n/T,,2x/T,], it yields:

dPN ()|’
dt

dt = i J . PN (@) de

J,

1K)+ QUM = QN[ " sin* (e cos[w(k - DT, Jdw
k=0 [=0 c
2 K-1 K-1 . . @
= [£(k)+ jOUOII () - JQ(Z)]_[ sin”(—) cos[ (k —Dwldo
T =01 o 2
= Y )+ 0NN - joN| 11~ cos wleosl (k - hald
i erwer ey
considering that
2 k-1=0
Te
% 7 1~ coswlcos| (k - haldw= —% k—l=+1
0 others




253

a

-1

[L(k) + jOWK)I[L (k) = jO(k)] = 2K

N =
I
»—- (=}

[I(k) + JOOI (k1) - jO(k £1)] =

=0

»

Finally one has the following result:

J,

Next, let’s investigate the second term of the denominator of equation (3.63). Similar to

2
PN} 4y gk /T... (F4)

equation (F.1), one has the following expression:

X PN PN (@)
Ty L NG T = { j PN
I (T |dPN;(®) dPN (1)
- ——F PN — PN 2 " \d
JNT J- [ dt o® () " t -
_ 2 (T dPN;(1) 1 ,
=T, /s S PN (a1 - N PN (PN (),
2 (T dPN;(t)
= s jo PN (t)dt
dPN, (1)

Intuitively, PN, (t) can be taken as a random signal, therefore the following

result can be obtained:

dPN (1) g2 jr dPN (1)
0

JINT,

" PN()

1
Im——
JNT, 0

PN, (t)dt =0

It can be proven in the frequency domain. The integration in (F.2) can be changed to a

convolution format through the following definitions:
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] Q(k) : the symbol of the reverse PN sequence Q(k)
e PN 5 () : the expression of Q(k)
That is

Q(k) =0(K-1+k) (k=1,2,---,K—-1) and K = 215 s the length of PN sequences)
PNQ(T—I):PNQ(I) 0<r<T ’

(F.6)
Based on equations (F.5) and (F.6), the following relationship is obtained:
T dPN,(t) _ (" dPN,(7) B
| PN (1) di = [ U PN = 1) -
(F.7)
= M * P]\](~2 (l)
t=T

By defining F[-] as Fourier transform, the following Fourier transform properties are

used:

F{M} = joPN, (o)
dt

Flx(t)* y»)|= X (@)Y (@) here Flx(N]=X (), Flyn]=Y(®) (F.8)

X0 %y, _, = i I _Z X (@)Y (@) exp(jaT) do

Based on equations (F.3) and (F.8), the convolution value in equation (F.7) is derived as:
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_* dPN,(7)
PNQ(t)dt—J.O e

PNQ(t—T)dT

t=T

J~T dPN, (1)
0 dt

dPN, (1)
== PN (1)

t=T

27r/
=— ! ]a)PN (a))PN (w)exp(jaT)dw
27 Y 2T,

i 2T,
= LJ. © wsinc(
27 Y 2T,

T K-1
“’26 ); 1(k)exp(~ j@KT, )PN 5 () exp(jT)

sing(Ze )Z O(K —1-Dexp(-jolIT.)exp(jal) dw
=Ly Zl(k)Q(K 1- l)J. a)smc( C)exp[]a)(K k—=DT,]

272’. k=0 [=0

~

Considering the even and odd properties of the integrated function, the above integration

is expressed as:

T dPN,(t)

| EELL PN () dr
=% ZI(k)Q(K 1- Z)I a)smc( C)sm[a)(K k-DT,.ldw
= 2 Zl(k)Q(K 1- I)J smc( C)sm( C)sm[a)([{ k—DT,]
ﬂ.TC =0 I=

(F.9)

Because sm(wzc)sm[a)(K —k—1)T.] is periodical, the above integration is close to

zero. It can be proven as follow.
Defining a and b as:

a=(K—-k-1+1/2)T. b=(K-k—-1-1/2)T,
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T,
and substituting sinc(% Te)=1-(u 2—C) 2 into equation (F.9) yields:
V4

v[271'/TC . wTC

e sine( )sin(wgc ysinf@(K —k )T 1de

:jzn/T{l—(a)T—C) }sm( C)sm[a)(K k—DTcldw
0 2z

2/ T, T,
=-[ @5 sin(“1C ) sinf@(K -k —1) T da
0 2
27 /T, T
:lj a C(a)z—c)2{cos[a)(K—k—l+1/2)TC]—cos[a)(K—k—l—1/2)TC]}da)
y/4
) 2n /T,
2w
s1naa)+—cosaa)——s1naa)
)7 ine
0
; ) 2n /T,
———C w—smbaH@cosba)—@smba)
0
2 2w
(—2 osaa)——cosba)j
w=2n/T,
b2 (K—k-1-1/2% (K—k—1+1/2)2

(F.10)

1 1
(K-k—-1-1/2* (K-k-1+1/2)*

When |K-k—-11>2, ( j—) 0, the equation (F.5)

can be simplified to:
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2 J»T dPN/ ()

PN (t)dt
JINTg 70 di ¢
4 K-1K-1 1 1
= I(k)Q(K —-1-1)
873 T~INTy ,Z:Ol;, (K—k—-1-1/2)2 (K—k—1+1/2)2 | x—k—1
=x1,%2
K-1
1 32
N > —I(k)Q(k)——I(k)Q(k 2)+—1(k)Q(k+1)——1(k)Q(k 3)
27 \/NTCTS k=0 9
=(
(F.11)
Based on (F.4) and (F.11), the CRLB of TOA for an IS-95 pilot signal is as follows:
. o’ 1
varcgrg () = —5- 3
Y N s
8PN(t—f) aPN (t—1)
2M Y ———= PN(t—1)——*~ » */
El ot { ; ( ot
_ c? 1
o2 N N
Y ZMZaPN(t 7) (F.12)
t=1 7
o TTc (Tg =T¢ /2)
2 lemk 0
__ T
32MK - SNR

2

where SNR = — is the signal to noise ratio before despreading; K = 215 is the length of
c

IS-95 PN sequences; M is the array elements and 7~ is the chip period .





