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Abstract 

Global Positioning System (GPS) and low cost Inertial Navigation System (INS) 

integrated systems are expected to become more widespread as a result of the availability 

of low cost inertial Micro-Electro-Mechanical Sensors (MEMS). This integrated system 

has been widely and successfully applied in many applications, such as vehicle 

navigation and mobile mapping system.  

 

Currently most of the GPS/INS integrated systems are based on the differential GPS 

(DGPS) to ensure the navigation performance. However the requirement on a base station 

is usually problematic as it limits the operational range of the system and also increases 

the system cost and complexity. To tackle this issue, a method to integrate the data from a 

single GPS receiver and a low cost MEMS Inertial Measurement Unit (IMU) for 

autonomous positioning and attitude determination is developed in this thesis. The GPS 

and IMU data will be fused based on the Precise Point Positioning (PPP) technology, 

which is able to provide centimetre to decimetre positioning accuracy by using a single 

dual-frequency receiver and is therefore employed to ensure the navigation performance. 

Previous work has demonstrated that the integration of PPP GPS and tactical grade IMU 

is able to provide navigation solution with accuracy at centimetre to decimetre for 

position and centimetre per second for velocity. However, due to the expensive cost of 

the tactical grade IMU, it is not suitable for the commercial applications.  

 

The motivation of this research is to investigate the integration of PPP GPS and low cost 

MEMS IMU for precise positioning and attitude determination. Both loose and tight 
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integration of PPP GPS and MEMS IMU are studied and loosely and tightly coupled 

Kalman filters are developed to derive the optimal navigation solutions. The primary 

observable used in PPP GPS is the carrier phase measurement, and it is well known that 

the undetected cycle slips deteriorate its high precision nature and eventually degrade the 

overall system performance. An algorithm of inertial aided cycle slip detection and 

identification is also investigated in this thesis. Two van tests are conducted to evaluate 

the performance of the developed integrated PPP GPS/MEMS IMU system. The 

performance analysis is carried out based the position, velocity and attitude errors. A 

loosely coupled DGPS/tactical grade IMU system is used to provide the reference 

solution.  
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Chapter One: Introduction 

 

Nowadays, the powerful synergy between Global Positioning System (GPS) and Inertial 

Navigation System (INS), along with the availability of the low cost inertial Micro-

Electro-Mechanical Sensors (MEMS), makes the integration of the two navigation 

technologies more widespread (Mathur and Grass, 2000). The integration can be 

implemented using a Kalman filter in such modes as loosely coupled and tightly coupled. 

In both of the modes, the INS error states, together with the navigation states and other 

unknown parameters of interests, are estimated using the GPS measurements (Park and 

Gao, 2002). This thesis investigates an integrated GPS/INS system based a single dual-

frequency GPS receiver and a low cost MEMS inertial measurement unit (IMU). To 

ensure the navigation performance, the Precise Point Positioning (PPP) technique is 

employed.  

 

1.1 Background 

Currently most of the GPS/INS integrated systems are based on the differential GPS 

(DGPS) to ensure the navigation performance. In such a system, two GPS receivers must 

be employed, one as a base station set up at a precisely surveyed control point while the 

other as a rover station installed on the vehicle platform. However, the requirement on a 

base station is usually problematic for some applications as it limits the operational range 

of the system and also increases the system cost and complexity. With the advent of the 

Precise Point Positioning (PPP) GPS, which is able to provide centimetre to decimetre 

positioning accuracy without the need for a base receiver station, it opens the opportunity 
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to develop a high performance integrated GPS/INS system based on only one GPS 

receiver.  

 

Zhang and Gao (2007) demonstrated that the integration of PPP GPS and tactical grade 

IMU is able to provide position accuracy at centimetre to decimetre and velocity 

accuracy at centimetre per second. However, the tactical grade IMU is too expensive for 

many commercial applications. Considering the price and the acceptable performance, 

the MEMS IMU is a good alternative for commercial applications. The challenge of 

working with the current generation of the low cost MEMS IMU is to develop a robust 

navigation capability that can deal with the large instrument errors (Brown and Lu, 

2004). In the proposed PPP GPS/MEMS IMU integrated system, the MEMS inertial 

sensor errors can be continuously estimated with the availability of the PPP GPS, as a 

result the INS error accumulation can be limited; on the other hand, the low cost MEMS 

inertial sensors can bridge the navigation estimates during the PPP GPS outages. 

Eventually, the derived navigation solution from an integrated system is better than either 

standalone solutions. 

 

The proposed integrated PPP GPS/MEMS IMU system can be useful to many 

applications. Some of them are briefly described in the following. 

 

1)  Unmanned Aerial Vehicle (UAV) Navigation Systems 

In recent years, the UAV has been more and more used in the civilian applications, such 

as the disaster assessment and management, life search and rescue, environmental 
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monitoring and mineral exploration (Kim and Sukkarieh, 2002). For different UAV 

applications, the position, velocity and attitude information is necessary for the ground 

station control or autonomous navigation. The requirements on the accuracies of the 

position, velocity and attitude information depend on the missions that the UAV is 

intended to perform. Currently some commercial navigation or autonomous guidance 

systems for the UAVs are developed based on the low grade GPS/MEMS IMU systems, 

which are only able to offer positioning accuracy at several to tens of metres. This may 

not be suitable for some applications that require higher positioning accuracy. Some other 

navigation and guidance systems are developed based on the differential GPS (DGPS) to 

ensure the navigation performance. This is also problematic for some applications such as 

disaster & emergency management since the setup of a base station is not time effective 

and it also limits the operational range of the system and further increases the system cost 

and complexity.  

 

The proposed integrated PPP GPS/MEMS IMU system can be used as the UAV 

navigation and guidance system, especially when the base station is difficult to be set up. 

The accurate navigation solutions provided by the integrated system can be used to track 

the UAV or, in combination with an automated guidance system, to steer the UAV.  

 

2) Land Vehicle/Machine Automation 

A navigation system based on a low cost MEMS IMU integrated GPS has been widely 

used in land vehicle/machine automation applications, such as guidance of dozers, drills, 
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draglines and shovels in mining and grader excavators and pavers for construction (Geng 

et al., 2007). Nowadays, most of such systems are developed based on the DGPS, which 

is costly and limits the operational range. Another issue is that the cycle slips occur 

frequently for the land vehicle/machine applications due to the signal blockages, which 

potentially degrades the navigation performance. 

 

The proposed integrated PPP GPS/MEMS IMU system can be used to provide the 

navigation guidance for the machine automation without the need for a base receiver 

station, and reduce the system cost and complexity. With the aiding from the MEMS 

IMU, the cycle slips on carrier phase measurements can be detected and identified by 

developing inertial aided cycle slip detection and identification algorithms. 

 

3) Mobile Mapping Systems (MMS) 

The MMS integrates a set of sensors such as inclinometer, compass, IMU, GPS and 

camera, mounted on a common platform and it is capable of operating and collecting 

navigation and image data that are sufficient to do the mapping process without the need 

to establish costly, and time consuming terrestrial ground control network (Ellum, 2001; 

El-Sheimy and Schwarz, 1999). Currently, the integrated GPS/INS systems are 

extensively used for direct geo-referencing of the MMS. In such systems, the navigation-

grade or tactical-grade IMU are commonly used to ensure the necessary navigation 

performance. The high cost of such IMUs, their considerable size and their restricted 

handing regulations have limited their use (Niu et al., 2006). Recently, the MEMS IMU 
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has been considered as an alternative for the navigation-grade IMU or tactical-grade IMU 

in MMS due to its small size, light weight, inexpensive cost.    

 

The proposed integrated system has the potential to be used by the MEMS-based mobile 

mapping system, with advantages being low-cost and small size although the attitude 

accuracy requires further improvement. 

 

The PPP GPS and MEMS IMU are briefly introduced in the following sections. 

 

1.1.1 Precise Point Positioning GPS 

The PPP uses un-differenced GPS measurements from a single dual-frequency GPS 

receiver, such as pseudorange, carrier phase observations, in addition to precise orbit and 

clock data. This technique does not suffer from the drawbacks of the conventional DGPS 

technique and is able to provide similar positioning accuracy comparable to DGPS 

without the need for a base station (Zhang and Gao, 2005). Several organizations, such as 

International GPS Service (IGS) and Jet Propulsion Laboratory (JPL), provide the precise 

GPS orbit and clock products. IGS is a civilian organization, which operates a global 

network of high quality dual frequency GPS stations and provides the GPS orbit and 

clock, earth rotation parameters, troposphere delay and global ionosphere map. JPL 

operates a global network of GPS stations and calculates the corrections corresponding to 

the broadcast satellite orbit and clock corrections. These corrections are then transferred 

to the users through the Internet (Aldel-Salam, 2005). The Natural Resources Canada 

(NRCan) is also operating a network of GPS stations all over Canada and produce real 
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time satellite orbit and clock corrections, which are available through the Internet and the 

Canadian MSAT communication satellite (Lochhead et al., 2002).  

 

Precise Point Positioning technology was proposed by Zumberge et al. (1997) as well as 

Kouba and Heroux (2000). Zumberge et al. (1997) suggested a method for calculating the 

orbit and clock data using a subset of the IGS network. By using the precise data with 

intervals of 30 seconds and 15 minutes for satellite clock and orbit, respectively, 

promising results were obtained based on their technique. Kouba and Heroux (2000) 

were the first to publish the technique of using un-differenced code and carrier phase 

observations from a dual-frequency receiver. They emphasized error mitigations 

especially those related to the un-differenced code and carrier phase observations. Using 

the GPS data at interval of 30 seconds, the unknown parameters were estimated at 15 

minutes interval. They obtained results comparable to Zumberge’s (1997). 

 

The research work from Zumberge et al. (1997) as well as Kouba and Heroux (2000) was 

focused on using the ionosphere-free combination of pseudorange and carrier phase 

observations. The unknowns include one float ambiguity term for each satellite in 

addition to position coordinates, a receiver clock offset and a troposphere parameter. Gao 

and Shen (2001) introduced a new observation model that uses the average of code and 

carrier phase observations on both L1 and L2 frequencies in addition to the ionosphere-

free carrier phase combination. The newly developed model allows for estimation of 

ambiguities on both L1 and L2 frequencies for each satellite along with the position 

parameter, receiver clock offset and tropospheric delay. 
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Since the success of Precise Point Positioning system significantly improves the 

operational flexibility and reduces the system cost, it increases the number of applications 

using GPS technology, such as geodetic surveys, machine control and atmosphere 

sensing (Aldel-Salam, 2005). 

 

1.1.2 Low Cost MEMS IMU 

The key of development of MEMS IMU is the need to maintain reasonable cost levels 

when using an INS for consumer applications. With smaller size and lower price, inertial 

technology is now being used in applications that were previously not feasible due to size 

and cost constraints (Hide et al., 2003). The MEMS IMUs are often categorized as 

automotive grade sensors based on their performance levels and intended applications.  

 

Table 1.1 presents the error characteristics of different IMUs, which include the low cost 

MEMS IMU, the tactical and navigation grade IMU. As illustrated in the table, the 

MEMS IMU (categorized under the automotive grade) features a turn on bias of several 

thousand degrees per hour in gyroscopes and a scale factor of about 10000 PPM, while 

these errors can be negligible in tactical grade or higher grade IMUs. Also, the MEMS 

IMU exhibits in-run bias of more than 1000 degrees per hour in gyroscopes, comparing 

to 1~10 degrees per hour for a tactical grade IMU, and about 0.01 degree per hour for a 

navigation grade IMU. However, the MEMS IMU is preferred for commercial 

applications in terms of cost. As it can be noted, the cost of MEMS IMU is ten times 

lower than that of tactical grade IMU.  
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Table 1.1 Performance of different grade of IMU (Modified from Godha, 2006) 

Grade Navigation Tactical Automotive 

Accelerometers 

In Run Bias (mg) 0.05~0.1 0.5~1 2.5 

Turn On Bias (mg) N/A N/A 30 

Scale Factor (PPM) 100 300 10000 

Gyroscopes 

In Run Bias (deg/hr) 0.01 1~10 < 1200 

Turn On Bias (deg/hr) N/A N/A 5000 

Scale Factor (PPM) 5 150 10000 

Cost >$90K $10K-$20K <$5 

 

 

Given the significant sensor errors of MEMS IMU, some traditional approaches of using 

the high-end IMU are not suitable for MEMS IMU, for instance, the coarse alignment 

method cannot be implemented with MEMS IMU. As a result, some non-traditional 

algorithms and approaches are required (Salychev et al., 2000; Ford et al., 2001).  
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1.2 Literature Review 

The integration of GPS and low cost INS has been a popular research area over the past 

decades. This section briefly reviews the research that investigates the GPS and INS 

integration techniques. 

 

1.2.1 Integration of GPS and INS Using a Kalman Filter 

In the last few years, some research was conducted to investigate the GPS/INS 

integration using the Kalman filtering. Salychev et al (2000) and Nayak (2000) applied a 

loose integration strategy to integrate the MotionPakTM MEMS IMU with DGPS using 

pseudorange and Doppler measurements. Hide (2003) investigated the tightly coupled 

integrated DGPS/INS system for marine application based on a Crossbow AHRS DMU-

HDX IMU and carrier phase measurements. Shin and El-Sheimy (2004) applied the 

unscented Kalman filter and extended Kalman filter to the integration of DGPS and low 

cost MEMS IMU. Li et al (2006) investigated the low cost tightly coupled GPS/INS 

integration based on a nonlinear Kalman filter design. Wang (2006) developed a loosely 

coupled integrated GPS/MEMS IMU system using the aiding from the fuzzy logic expert 

system. The above research primarily investigated the system performance under benign 

operation environments.  

 

Some research was to study the system performance under more realistic environments, 

such as urban canyon area. Hide and Moore (2005) investigated the positioning 

performance of the DGPS and low cost INS integrated system in urban environments. 

Their research demonstrated that the tightly coupled system outperformed the loosely 
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coupled system and a horizontal error around 20 m was obtained by using a tight 

integration of Crossbow AHRS400 MEMS IMU and DGPS in the city of Nottingham, 

UK. Godha (2006) also investigated the performance of the DGPS/MEMS IMU 

integrated system and he obtained a horizontal error of less than 10 m by using a tight 

integration of DGPS and Crista MEMS IMU without applying any vehicle motion 

constraints in the downtown of Calgary, Canada. His research also demonstrated that a 

comparable accuracy to a DGPS/HG1700 integrated system was obtained in the urban 

area with vehicle motion constraints. However, the use of DGPS increases the system 

cost and limits the operational range. 

 

1.2.2 Inertial Sensor Modeling 

Some research has been conducted to characterize the inertial sensor random errors, 

which primarily focus on the sensor noise. Generally, the sensor noise consists of a high 

frequency component, which has white noise characteristics, and a low frequency 

component, which is commonly termed as bias drift and can be characterized by 

correlated noise (Nassar, 2003). Chiang et al (2004) and Abdel-Hamid et al (2004) 

investigated the wavelet de-nosing technique to de-noise the inertial sensor measurements 

prior to data processing. Chiang et al (2004) applied the wavelet de-nosing technique to 

the MEMS IMU and obtained about 5% - 20% improvements, while Abdel-Hamid et al 

(2004) obtained 30%-60% improvements by using the same technique. Nassar et al 

(2003) used the Auto-Regressive (AR) modeling methods to model the bias-drifts and it 

was shown to provide slight improvement in system performance.   
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1.2.3 Integration of GPS/INS System with Other Sensors 

Investigations were also conducted to incorporate the GPS/INS system with other 

sensors. The initial alignment is an important issue to use low cost MEMS IMU, since the 

initial attitude information cannot be obtained by using the conventional coarse alignment 

method due to significant sensor errors. Normally the initial azimuth information is 

obtained from the external source. Salychev et al (2000) and Nayak (2000) used a 

magnetic compass to provide the heading information to the integrated GPS/INS system.  

 

The performance of INS during the GPS outages is degraded rapidly due to lack of 

updates. Some research has investigated to resolve this issue with the help of auxiliary 

sensors. Sukkarieh (2000) and Shin (2005) incorporated the GPS/INS system with an 

odometer to control the INS errors during GPS outages. Zhang et al. (2003) and Wang 

(2006) integrated the GPS/INS system with a magnetometer to improve the INS 

performance when there are no GPS updates. Numajima et al. (2002) and Lee (2002) 

used Vehicle Motion Sensors and an array of pseudolites to mitigate INS error 

accumulation, respectively.  

 

Due to the large sensor errors and poor observability, the attitude accuracies are typically 

poor when a low cost MEMS IMU is used. The azimuth accuracy is even poorer than the 

accuracies of roll and pitch, especially when the horizontal accelerations are absent. 

Investigations were also conducted to resolve this issue. Hirokawa (2008) integrated the 

GPS/INS system with a multiple antenna GPS compass to improve the heading accuracy. 

Li (2009) used the forward speed information, obtained from a wheel speed sensor, along 
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with the 2D (lateral and vertical) velocity constraints to improve the attitude accuracies in 

a GPS/INS integrated system. However, the use of additional sensors increases the 

overall system cost. 

 

1.3 Research Objectives and Contributions 

Given the lack of research work on the integration of low-cost MEMS IMU with PPP 

GPS for precise positioning, this thesis is devoted to develop an integrated GPS/INS 

system based on the PPP GPS and low-cost MEMS IMU. The specific objectives of this 

thesis are provided in the following: 

 

1) To develop an integrated Precise Point Positioning GPS/MEMS IMU system without 

the need for a base receiver station and to investigate the performance of the 

integrated system using both loose and tight integration strategies.  

 

2) Due to the significant sensor errors of MEMS IMU, the proposed integrated system 

can only result in relatively poor attitude accuracies. To improve the attitude 

accuracies, the 2D velocity constraints are used and their improvements are analyzed.  

 

3) The GPS outages can be encountered in the realistic environments, such as urban 

areas. This thesis also investigates the ability of MEMS IMU to bridge the GPS 

outages and to analyze the performance improvements obtained by using the 2D 

velocity constraints. 
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4) The cycle slips occur frequently for the land vehicle/machine applications due to the 

signal blockages. To detect and fix these cycle slips, an inertial aided cycle slip 

detection and identification algorithm is investigated in this thesis. The developed 

algorithm is able to detect the possible cycle slips and eventually improve the overall 

system performance. 

 

The major contributions of this thesis can be summarized as follows: 

1) The development of both the tight and loose integration algorithms for the integrated 

PPP GPS/MEMS IMU system. The INS error states, which include the position error, 

velocity error, attitude error, sensor bias drift, sensor turn on bias and sensor scale 

factor, are estimated in the loosely coupled integrated system. For the tightly coupled 

system, the INS error states plus the states unique to PPP including the receiver clock 

offset and drift, tropospheric delay and ambiguities are estimated. 

 

2) The development of a non-holonomic constraints aided inertial navigation algorithm. 

This algorithm is capable of improving attitude accuracies and mitigating the INS 

error accumulation during the GPS outages using vehicle dynamic knowledge. The 

navigation performance of MEMS IMU during complete and partial GPS outages is 

also evaluated.  

 

3) The development of an inertial aided cycle slip detection and identification algorithm. 

The proposed algorithm uses Widelane phase and Extra-Widelane phase to detect and 
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identify the possible cycle slips due to their much longer wavelength compared to that 

of the L1and L2 phases. 

  

1.4 Thesis Outline 

Chapter Two provides an overview of GPS and INS. The available GPS measurements 

and different GPS error sources are reviewed. The Precise Point Positioning technology 

is also reviewed with an emphasis given on the error mitigation techniques and the 

observation models. Next, the focus is on the coordinate systems, INS mechanization and 

INS alignment of the Inertial Navigation System. 

 

Chapter Three reviews the integration of GPS and INS, and the Kalman filtering theory. 

Different GPS and INS integration strategies are introduced, including the system design, 

advantages and disadvantages of each integration strategy. Following the discussion of 

GPS/INS integration, an overview of estimation theory and the Kalman filter algorithm 

are provided.  

 

Chapter Four introduces the integrated PPP GPS/MEMS IMU system from the 

implementation point of view. The Precise Point Positioning technique, the tightly and 

loosely coupled integrated systems are described with the details of the Kalman filter 

design, which includes the filter states, the mathematical and the measurement models. 

Later, the 2D velocity constraints are described in details. The proposed algorithm of 

inertial aided cycle slip detection and identification is introduced at last. 
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Chapter Five presents two field tests and the analysis results. One field test is conducted 

under a relatively open sky environment, and the other one is carried out in a combined 

environment, which includes a relatively open sky environment and an urban canyon 

environment. The position, velocity and attitude error results are firstly presented. Then 

the GPS outages are simulated to evaluate the ability of MEMS IMU to bridge the GPS 

outages. The efficiency of the proposed inertial aided cycle slip detection and 

identification algorithm is verified at last. 

 

Chapter Six summarizes the work presented in this thesis, and draw conclusions from the 

field test results and analysis. Then the recommendations for the future work are given. 
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Chapter Two: Overview of Precise Point Positioning GPS and Inertial Navigation 

System 

 

This chapter reviews the relevant characteristics of each system. It begins with an 

introduction of GPS including the GPS measurements and the various error sources that 

affect the GPS positioning accuracy. Then the Precise Point Positioning technology is 

reviewed, with details of the techniques used to mitigate the various error sources. Later, 

the principle of the INS is reviewed, including the different coordinate systems, INS 

mechanization, and the alignment procedures. 

 

2.1 Overview of GPS 

GPS is a satellite-based radio navigation system developed by the United States 

Department of Defense (DoD) to provide position, velocity and time (PVT) information 

in all weather conditions and at all times and anywhere on or near the earth. A 

comprehensive description of GPS could be found in Kaplan (1996), Parkinson and 

Spilker (1996), Hofmann-wellenhof et al. (2001).  

 

Typically the following three types of measurements can be obtained from most GPS 

receivers. 

 

• Pseudorange (code) measurements. 

• Carrier phase (phase) measurements. 

• Doppler measurements. 
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Pseudorange measurements are derived from the Pseudo-Random Noise (PRN) codes and 

are therefore classified according to code and frequency as L1-C/A, L1-P and L2-P 

(Petovello, 2003). The pseudorange measurement can be described by Equation (2.1) 

(Lachapelle, 2008). 

 

)()( PdddTdtcdP tropionorb ερ +++−++=  (2.1) 

 

where P  is the GPS pseudorange measurement, ρ  is the geometric range, orbd  is the 

satellite orbital error, c  is the speed of the light, dt  and dT  are the satellite clock error 

and receiver clock error, respectively, iond  is the ionospheric delay, tropd  is the 

tropospheric delay, and )(Pε  is a combination of code measurement noise and code 

multipath. 

 

The carrier phase measurements are derived by measuring the phase of the incoming 

carrier in both L1 and L2 frequencies (Petovello, 2003). The carrier phase measurements 

in the unit of length can be described as Equation (2.2) (Lachapelle, 2008).  

 

)()( Φ++−+−++=Φ ελρ tropionorb ddNdTdtcd  (2.2) 
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where Φ  is the receiver measured carrier phase measurement, λ  is the wavelength of the 

carrier, N  is the ambiguity in the carrier phase measurement, and )(Φε  is a combination 

of carrier phase noise and the carrier phase multipath. 

 

The Doppler measurements are the derivatives of the carrier phase measurements with 

respect to time, which are caused by the relative motion between the GPS receiver and 

GPS satellite (Petovello, 2003).  It can be described as Equation (2.3) (Lachapelle, 2008). 

 

)()( Φ++−−++=Φ &&&&&&&& ερ tropionorb ddTdtdcd  (2.3) 

 

where Φ&  is the measured Doppler measurement, ρ&  is the geometric range rate, orbd&  is 

the orbital error drift, td&  and  Td&  are the satellite clock error drift and receiver clock 

error drift, respectively, iond&
 
is the ionospheric delay drift, tropd&  is the tropospheric delay 

drift, and )(Φ&ε  is the Doppler measurement noise. 

 

Autonomous point positioning or Standard Positioning Service (SPS) is vulnerable to the 

effect caused by the GPS related errors (Abdel-Salam, 2005). As indicated through 

Equation (2.1) to Equation (2.3), these GPS error sources include satellite orbit and clock 

errors, the errors caused by atmosphere propagation, such as ionospheric delay and 

tropospheric delay and the errors caused by site belongings and receiver firmware, such 

as multipath and noise. The common magnitudes of these errors are given in Table 2.1.  
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Table 2.1 GPS error budget (Misra and Enge, 2001; Abdel-Salam, 2005) 

Common Error Source Error Magnitude 

Satellite Orbit ≈ 2 m 

Satellite Clock ≈ 2 m 

Ionospheric Delay ≈ 2 ~ 10 m at zenith 

Tropospheric Delay ≈ 2.3 ~ 2.5 m at zenith 

Multipath 
In a clean environment 

code: 0.5 ~ 1 m 
Carrier: 0.5 ~ 1 cm 

Receiver Noise Code: 0.25 ~ 0.5 m 
Carrier phase: 1 ~ 2 mm 

 

 

Due to these GPS error sources, autonomous or standard point positioning can only result 

in the positioning accuracy at the level of several metres (Abdel-Salam, 2005). To 

achieve high accuracy positioning, techniques for error mitigation are necessary. The 

most common method to improve the positioning accuracy is the differential GPS, which 

requires a base station with precisely surveyed coordinates. However the requirement for 

a base station can be problematic for some applications, as it limits the operational range 

of the system and also increases the system cost and complexity. Due to these 

shortcomings of differential GPS, the Precise Point Positioning technique is developed to 

enable precise positioning using a single GPS receiver without the need for a base station 

(Abdel-Salam and Gao, 2003). 
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2.2 Overview of Precise Point Positioning GPS 

With the advent of precise ephemerides and satellite clock corrections from IGS or other 

organizations, it is possible to conduct high precision GPS positioning using a single 

receiver without a need to use base stations, referred as the Precise Point Positioning 

(Zhang and Gao, 2007). This positioning method uses the un-differenced carrier phase 

observations as the primary observables and is able to provide centimetre or decimetre 

positioning accuracy (Gao and Shen 2001). Because of the un-differenced nature of PPP, 

all error sources associated with the space segment, propagation, environment and 

receiver need to take into account (Abdel-salam, 2005). Due to the lack of a base station, 

the error mitigations can be carried out by modeling, estimation and observation 

combination. The details of these error mitigation techniques are described as follows.  

 

2.2.1 Satellite Orbit and Clock Errors 

The major errors associated with GPS satellites are uncertainties in satellite orbit and 

clock corrections broadcast from the satellites. The magnitudes of these errors are 

typically about 2 m for orbit and 7 ns for clock correction (Kaplan, 1996). With a global 

GPS station networks, the GPS satellite orbit and clock can be estimated with high 

accuracy (Zumberge et al., 1998). IGS provides the GPS satellite orbit and clock in 

different latencies and accuracies as shown in Table 2.2 (Abdel-salam, 2005). By using 

these precise GPS orbit and clock products, the uncertainties in the satellite orbit and 

clock corrections can be significantly reduced. 
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Table 2.2 IGS products (Abdel-salam, 2005) 

Data 

Accuracy 

Latency 

Interval 

Orbit Clock Orbit Clock 

Final < 5 cm ~ 0.1 ns ~ 13 days 15 minutes 

15 minutes 

5 minutes 

Rapid < 5 cm ~ 0.1 ns ~ 17 hours 15 minutes 5 minutes 

Ultra rapid (observed) < 5 cm ~0.2 ns ~ 3 hours 15 minutes 15 minutes 

Ultra rapid (predicted) ~ 10 cm 5 ns Real time 15 minutes 15 minutes 

 

 

2.2.2 Tropospheric Delay 

Troposphere is the lower layer of atmosphere, and it extends from the sea level up to 

about 40 km (Skone, 2009). Due to its non-dispersive nature, the tropospheric delay is 

invariant to GPS frequencies. As a result, it cannot be mitigated by observation 

combination from different GPS frequencies. The tropospheric delay consists of two 

components, which are referred as the wet and dry components. The wet component, 

which contains most of the water vapor, represents 10% of the total tropospheric delay 

(Misra and Enge, 2001; Zhang and Gao, 2007; Tao, 2008), and it is caused by the lower 

portion of the troposphere. Due to the fact that the variation of the water vapor density is 

a function of position and time, the wet component is difficult to model (Tao, 2008). The 

dry component contains mainly gases, which can be easily modeled, and is caused by the 

higher portion of troposphere. It represents 90% of the total tropospheric delay. The wet 

and dry tropospheric delay are usually modeled at zenith and then mapped, using a 
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mapping function of the satellite elevation as described in Equation (2.4) (Zhang and Gao, 

2007; Tao, 2008).
 

 

 

drydrywetwettrop MdMdd +=
 

(2.4) 

 

where wetd
 
is the zenith wet component, wetM

 
is the wet mapping function, dryd  is the 

zenith dry component, dryM  is the dry mapping function. 

 

Different models for the zenith wet and dry tropospheric delays and mapping functions 

based on theoretical and practical data are in use. The troposphere models include 

Saastamoinen, Hopfield, and Black-Eisner, while mapping functions include Davis, Chao, 

Marini and Niell (Tao, 2008). More details of these models and mapping functions can be 

found in Mendes and Langely (1994) and Tao (2008). In PPP, the dry component of the 

tropospheric delay is mitigated by modeling, since its modeling accuracy can achieve 

millimetre level (Zhang and Gao, 2007). The wet component of the tropospheric delay 

remains in the measurement equation and is estimated along with other parameters of 

interests. 

 

2.2.3 Ionospheric Delay 

The ionosphere layer is the higher portion of the atmosphere, which is extending from 

about 40 km to 1000 km, and the ionosphere contains ionized particles created by the 

sun’s ultraviolet radiation (Skone, 2009). Different from the troposphere, the ionosphere 
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is a dispersive medium, which means that it causes different magnitude of delays for GPS 

L1 and L2 frequencies. The density of ionized particles differs with height profile and 

can be illustrated as five layers: H, F2, F1, E and D (Skone, 2009). More details can be 

found in Klobuchar (1996) and Skone (2009). 

 

Ionosphere advances the carrier phase but delays code observations with the same 

amount. As a result, the summation of the carrier phase and code measurement eliminates 

the ionospheric delay. For single frequency GPS users, the ionosphere models can be 

used to mitigate the ionospheric delay, although it can only alleviate part of the delays. 

For dual frequency GPS receivers, by using the dispersive nature of ionosphere, the 

ionospheric delay can be mitigated by observation combination. The ionospheric delay is 

related to the frequency that the signal travelled and the total electron content (TEC). The 

absolute TEC can be calculated based on the code observations from L1 and L2 

frequencies, whereas a more accurate estimate but ambiguous can be derived from the 

carrier phase observations (Skone, 2009). The ambiguous nature is caused by the 

ambiguity in the carrier phase observations from L1 and L2 frequencies. The calculation 

procedure is described by Equation (2.5) and Equation (2.6). 
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where a  and r  represent the absolute and relative (with ambiguity unknown), 

respectively, 1P  and 2P  are the measured pseudorange on L1 and L2 frequencies, 

respectively, 1Φ  and 2Φ  are the measured carrier phase on L1 and L2 frequencies, 

respectively, 1λ  and 2λ  are the wavelength on L1 and L2 frequencies, respectively, sGDT ,  

and '

,sGDT  are the satellite inter-frequency bias in code and phase measurements, and 

rGDT , and '

,rGDT  are the receiver inter-frequency bias in code and phase measurements. 

 

Some other GPS common error sources, such as sagnac effect, relativity and receiver 

antenna phase center have been well discussed in a lot of publications and thus they are 

not discussed herein. The details can be found in Kaplan (1996), Parkinson and Spilker 

(1996). 

 

There are several GPS related error sources that have not attracted as much attention as 

other error sources because these errors are relatively small or can be eliminated by 

differencing algorithm in differential GPS (Abdel-Salam, 2005). These error sources 

include the satellite antenna phase center offset, phase wind up, earth tide, ocean tide 

loading and atmosphere loading. However due to the un-differencing nature and the 

requirements of high positioning accuracy in PPP, these error sources must be 

considered. The details of these error sources can be found in Witchayangkoon (2000), 

Abdel-Salam et al. (2002), Bisnath and Langley (2001), Collins et al. (2001), Zumberge 

et al. (2001). 
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2.3 Overview of Inertial Navigation System 

INS is a dead-reckoning navigation system which determines the attitude, velocity and 

position of a moving object from the knowledge of the previous states and the 

measurements obtained from an IMU (Schwarz and Wei, 2000). The IMU normally 

consists of three accelerometers and three gyroscopes, which provide measurements of 

specific force along its axes and measurements of rotation rate of the body with respect to 

the inertial reference frame, respectively. With the initial attitude information or the 

attitude estimates from the previous epoch and the measured rotation rate, the orientation 

of the object at the current epoch can be determined (Skaloud, 1999). By using the 

attitude information, accelerometer measurements can be transformed to an appropriate 

frame of interest thus to determine the translational motion of the moving body within 

that frame after the integration process takes place. Given the knowledge of the initial 

velocity and position, the trajectory of a moving object with respect to a reference frame 

can be determined (Park, 2004). 

 

2.3.1 Coordinates Frames and Transformations 

The INS typically requires transformation between different coordinate systems. The 

most common used coordinate systems are Inertial Frame, Earth Centered Earth Fixed 

Frame, Local Level Frame and Body Frame, which are described as follows. 
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Inertial Frame (i-frame): it is a non-rotating and non-accelerating frame with respect to 

fixed stars. The inertial frame is defined as follows: 

Origin: Earth’s centre of mass 

Zi –Axis : Parallel to the spin axis of the Earth 

Xi –Axis : Pointing towards the mean vernal equinox 

Yi –Axis : Orthogonal to X and Z completing a right-handed system 

 

Earth Centered Earth Fixed (ECEF or e-frame): it is defined as follows (Figure 2.1): 

Origin : Earth’s centre of mass 

Ze –Axis : Parallel to the mean spin axis of the Earth 

Xe –Axis : Pointing towards the mean meridian of Greenwich 

Ye –Axis : Orthogonal to X and Z completing a right-handed system 

 

Local Level Frame (LLF or l-frame): it is a local geodetic frame as shown in Figure 

2.1, it can be defined as 

Origin : Coinciding with sensor frame 

Zl –Axis : Orthogonal to reference ellipsoid pointing up 

Xl –Axis : Pointing towards geodetic east 

Yl –Axis : Pointing towards geodetic north 
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Figure 2.1 ECEF and LLF frames 

 

Body Frame (b-frame): it is an orthogonal frame, whose axes coincide with the axis of 

the IMU. The body frame is assumed to be aligned with the vehicle frame as shown in 

Figure 2.2 and can be defined as follows: 

Origin : Centre of the IMU 

Xb –Axis : Pointing towards the right of the vehicle 

Yb –Axis : Pointing towards the forward direction  

Zb –Axis : Orthogonal to the X and Y axes to complete a right-handed system 
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Figure 2.2 Body frame 

 

The transformation between e-frame and l-frame can be performed by two consecutive 

rotations around the X and Z axes of the ECEF frame, and can be described by Equation 

(2.7) (Schwarz and Wei, 2000; Jekeli, 2000). 
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()
2
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π

ϕ
π

+−= RRR
l

e

 
(2.7) 

 

where ϕ  is the latitude, λ  is the longitude, l

eR  is the rotation matrix from e-frame to l-

frame, and 31, RR  are the rotation matrices about X and Z axes, respectively. 

 

The transformation between b-frame and l-frame can be performed by three consecutive 

rotations around Y, X and Z axes, and can be described Equation (2.8) (Schwarz and Wei, 

2000; Jekeli, 2000). 
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l

b =   (2.8) 

 

where ψ  is the azimuth angle, θ  is the pitch angle, φ  is the roll angle, and l

bR  is the 

transformation matrix from b-frame to the l-frame. 

 

The transformation between the b-frame and e-frame can be obtained by the two 

consecutive rotations as described by Equation (2.9) (Schwarz and Wei, 2000; Jekeli, 

2000). 
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2.3.2 INS Mechanization 

INS mechanization is the algorithm that derives the current position, velocity and attitude 

solutions from the measurements of an IMU (Edwan et al., 2009). Normally, the 

mechanization algorithm can be carried out in both e-frame and l-frame. In this study, the 

INS mechanization is carried out in l-frame.  

 

Generally, the INS mechanization can be concluded as two steps. In the first step, the 

measured rotation rate along with the attitude of previous epoch or the initial attitude 

obtained by INS alignment (will be reviewed in the later section) are used to calculate the 

current attitude. The effect caused by the earth rotation and the change of orientation of l-
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frame should be compensated in this step. Then based on the calculated attitude 

information, the specific force measured by the accelerometers can be transformed to the 

navigation frame of interest, in which the position and velocity can be obtained by 

integrating the specific force once and twice, respectively. Figure 2.3 summarizes the 

scheme of INS mechanization implemented in l-frame. 

 

 

Figure 2.3 Scheme of INS mechanization in the local-level frame (Schwarz and Wei, 

2000) 

 

The INS mechanization algorithm can be mathematically described by Equation (2.10) 

(El-Sheimy, 2007). 

 



31 

 

















Ω−Ω

+Ω+Ω−=
















−

)(

)2(

1

b

il

b

ib

l

b

lll

el

l

ie

bl

b

l

l

b R

gvfR

vD

R

v

r

&

&

&

  (2.10) 

 

where dot represents the time derivatives, and the superscript ‘l’ and ‘b’ represent the l-

frame and b-frame, respectively, 
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 is the relationship 

matrix between the position rate and velocity in l-frame, mR  is the meridian radius of the 

earth curvature, 
nR  is the prime vertical radius of the earth curvature, [ ]hr

l λϕ=  is 

the position vector, [ ]TUNEl vvvv =  is the velocity vector in the l-frame, 
b

f  is the 

specific force vector measured from the IMU accelerometer triad, [ ]gg
l −= 00  is the 

earth’s local gravity vector, g can be obtained from a normal gravity model, c

abΩ  is the 

skew-symmetric matrix of the rotation rate c

abω , which represents the rotation rate from 

frame ‘b’ relative to frame ‘a’, expressed in frame ‘c’, b

ibω  is the angular rate vector 

sensed by the gyroscope triad, l

ieω  and l

elω  are the earth rotation rate projected in the l-

frame and the transport rate caused by the change of orientation of the l-frame, 

respectively, l

ilω  is the sum of the l

ieω  and l

elω . 

 



32 

 

It can be noted that Equation (2.10) represents the INS mechanization in the continuous-

time domain. Due to the fact that the INS mechanization algorithm is mostly 

implemented in the computer, the equations of INS mechanization in continuous-time 

domain need to be converted to discrete-time domain. Instead of outputting the specific 

force and rotation rate, most IMUs actually output the velocity increment and angular 

increment over the sample period (Li, 2009).  

 

Normally the INS mechanization in discrete-time domain can be implemented as 

following steps: sensor error compensation, attitude update and position update (El-

Sheimy, 2007; Li, 2009), which are reviewed in details as follows. 

 

Sensor Error Compensation 

The raw IMU measurements are typically corrupted with inertial sensor errors, such as 

biases, scale factors. Normally these errors can be calibrated in the laboratory or can be 

estimated along with other parameters of interests. Once obtained the corrections of the 

sensor errors, the raw IMU measurements can be compensated as Equation (2.11) and 

Equation (2.12) (Li, 2009). 
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where ‘˜’ represents the raw IMU measurements corrupted with sensor errors, 
b

fv∆  is the 

velocity increment, b

ibθ∆  is the angular increment, gb  is the gyroscope drift, ab  is the 

accelerometer bias, gS  is the scale factor in gyroscope, aS  is the scale factor in 

accelerometer and t∆  is the sample period. 

 

Attitude Update 

The angular increment obtained from an IMU is measured in the body frame with respect 

to the inertial frame. The body angular increment with respect to the navigation frame 

can be obtained by Equation (2.13) (El-Sheimy, 2007; Li, 2009) 

 

[ ]Tzyx

l

il

b

l

b

ib

b

lb tR θθθωθθ ∆∆∆=∆−∆=∆  (2.13) 

 

Based on the body angular increment with respect to the navigation frame, the updated 

transformation matrix from the body frame to the navigation frame can be obtained by 

using quaternion parameters as shown in Equation (2.14) (El-Sheimy, 2007). 

 

kkk QQQ Ω+=+
2

1
1  (2.14) 

 

where Ω  is the skew-symmetric matrix of the angular increment vector obtained in 

Equation (2.13). 
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The conversion between the quaternion parameters and transformation matrix l

bR  can be 

described by Equation (2.15) and (2.16) (El-Sheimy, 2007). 
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where ijR  is the element at the ith row and jth column of the transformation matrix from 

the b-frame to the l-frame. 

 

The use of quaternion parameters for attitude update has the advantages such as 

robustness against singularities and computational efficiency. More details can be found 

at Savage (2000) and Jekeli (2001). The attitude solution can be derived from the 

transformation matrix from b-frame to l-frame through Equation (2.17) to Equation (2.19) 

(El-Sheimy, 2007). 
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Position Update 

As discussed before, the raw velocity increment obtained from an IMU is measured in the 

body frame, which needs to be transformed to the navigation frame. Given the updated 

transformation matrix from the b-frame to the l-frame, the velocity increment can be 

obtained through Equation (2.20) (El-Sheimy, 2007;). The Coriolis and gravity correction 

need to be applied when calculate the velocity increment in the l-frame. 
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Based on the velocity increment in the l-frame, the velocity and position can be updated 

through Equation (2.21) and Equation (2.22) (El-Sheimy, 2007; Shin, 2001), respectively.  
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It can be seen that the current position, velocity and attitude solutions are calculated 

based on the previous solution and the measurements from the IMU. As a result, any 

error in the previous solutions or in the IMU measurements will affect the current 
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position accuracy and eventually accumulates, thus the inertial navigation system is 

vulnerable to the sensor biases and it must be periodically corrected by the external 

source, such as GPS or other sensors (Shin et al., 2005; Stephen, 2000). 

 

2.3.3 INS Initial Alignment 

As discussed before, the initial attitude is necessary to the INS mechanization. This 

section reviews the INS initial alignment, from which the initial attitude can be derived. 

Generally, the initial alignment can be implemented as horizontal alignment and heading 

alignment.  

 

Horizontal Alignment 

An initial estimate of the roll and pitch is obtained through the horizontal alignment, 

which can also be referred as accelerometer leveling. The principle of horizontal 

alignment is using the knowledge of the gravity sensed by each accelerometer under 

static conditions to derive the estimates of pitch and roll, which can be described as 

Equation (2.23) and Equation (2.24) (Godha, 2006). 
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Where the ‘bar’ above a quantity represents a time average. The accuracies of these 

estimates primarily depend on the accelerometer biases (El-Sheimy, 2007). The 

accelerometer leveling error estimation sensitivity to accelerometer bias is 0.06 deg/mg 

(Godha, 2006). 

 

Heading Alignment 

An initial estimate of the azimuth can be determined by the heading alignment, which can 

also be referred as the gyro compassing. Normally this method can only be used for the 

tactical grade or higher grade IMUs, since it uses knowledge of the Earth rotation rate 

sensed by each gyro under static conditions to derive the azimuth estimate. For MEMS 

IMU, the Earth rotation rate cannot be detected due to the significant sensor errors 

(Farrell and Barth, 2001). As a result, the gyro compassing cannot be implemented with 

MEMS IMU. Normally the initial estimate of azimuth is obtained from external source 

when the low cost MEMS IMU is used. 
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Chapter Three: Integration of GPS and INS 

 

Having reviewed the major aspects of GPS and INS in the previous chapter, this chapter 

discusses the integration of the two systems. In particular it describes the loose and tight 

integration strategies. Then the estimation and filtering theory, which are used to fuse the 

GPS and INS data, are given.  

 

3.1 GPS/INS Integration Strategies 

There are several strategies that can be used for GPS and INS integration. The following 

three strategies are the most common. 

 

• Loose Integration 

• Tight Integration 

• Deep/Ultra-Tight Integration 

 

In deep/ultra-tight integration strategy the GPS updates are used to calibrate the INS, 

while the INS is used to assist the GPS receiver tracking loops during interference or 

degraded signal conditions (Sennott and Senffner, 1997; Petovello, 2003). However, this 

strategy requires access to the receiver’s firmware. Thus the deep/ultra-tight integration 

strategy is normally implemented by the equipment manufacturers (Petovello, 2003), and 

therefore, it is not discussed herein. 
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The loose and tight integration strategies are the most commonly used integration 

strategies for the integrated GPS/INS system at the user level. In both cases, the GPS 

receiver and the IMU are two separate units. They mainly differ in the type of 

information that is shared between the individual systems (Petovello, 2003; El-Sheimy, 

2007). Each strategy is described in details as follows. 

 

3.1.1 Loose Integration Strategy 

In the loose integration, the GPS and INS mechanization are carried out independently. 

Together these constitute a decentralized filter process; therefore, this strategy is also 

referred as a decentralized integration strategy (Wang and Wilson, 2002; Wang, 2004). 

Figure 3.1 shows the integration scheme of the loose integration strategy.  

 

 

 

Figure 3.1 Scheme of loose integration 
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As illustrated in the figure, the raw GPS measurements are processed in a GPS-only 

Kalman filter to derive the position and velocity solutions. Meanwhile, the raw IMU data 

is processed through the mechanization algorithm to compute the attitude, position, and 

velocity navigation solutions. Then the INS-derived position and velocity are differenced 

with the GPS-derived position and velocity. The integration filter processes the position 

and velocity residuals to estimate the error states and then output the corrected position, 

velocity and attitude solutions. It is worthy to mention that the full position and velocity 

variance-covariance matrix is needed to generate the measurement noise matrix for the 

integration filter to make sure that the correlation between the velocity update and 

position update is properly accounted. 

 

There are two implementation approaches for the integrated GPS/INS system, which can 

be referred as open loop and closed loop approaches. With the open loop approach, the 

INS mechanization operates independently without getting any error compensation from 

the Integration filter. While in the closed loop approach the integration filter feedbacks 

the estimated error states to the INS mechanization to compensate the sensor errors of the 

IMU, as shown in the dot line in Figure 3.1. Usually the open loop approach is valid for 

high end inertial sensors, such as navigation grade IMU and tactical grade IMU, which 

propagate small errors because of their superior error characteristics. However, it is not 

suitable for low cost MEME IMU, which propagates large errors in a small time interval 

due to the significant sensor errors. The reason is that without the error compensation 

from the integration filter, the INS mechanization error accumulates rapidly and becomes 

very significant for MEMS IMU, which spoils the small error assumption made in the 
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INS error model, and thus potentially degrades the system performance (Wang et al., 

2003; Zhang et al., 2003). As a result, the closed loop approach is normally adopted to 

compensate the sensor errors when low cost MEMS IMU is used.  

 

The loose integration strategy is common to use due to its faster processing, simplicity of 

implementation and robustness. The primary disadvantage of this strategy is that the 

integrated system provides typically poor solution during the periods of partial GPS 

availability (typically less than 4 satellites are available) and the tightly coupled  

integrated system normally outperforms it under such environments (Hide and Moore, 

2005). Petovello (2003) identified one specific problem with loose integration strategy 

that the processing noise has to be added to both of the filters because the system has two 

independent filters. The extra processing noise in the GPS filter used to compensate the 

user’s dynamics would have also negative effect on the state estimation.  

 

3.1.2 Tight Integration Strategy 

Different from the loose integration strategy, both the raw GPS measurements, such as 

pseudorange, carrier phase and Doppler measurements, and INS data are processed 

centrally in one common filter; therefore, this integration strategy is also referred as a 

centralized integration scheme, which is illustrated in Figure 3.2. 
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Figure 3.2 Scheme of tight integration 

 

As shown in the figure, the position and velocity outputs of the INS mechanization are 

not directly used in the integration filter; instead they are used to predict the GPS 

measurements, such as the pseudorange, carrier phase and Doppler measurements. Later, 

the collected GPS raw measurements from the receiver are differenced with the INS 

predicted measurements. The integration filter then directly processes those measurement 

residuals to estimate the error states and then output the corrected attitude, position and 

velocity solutions. Similar to the loose integration strategy, the open loop and closed loop 

approaches can be implemented. Since the GPS updates used in the tight integration are 

the raw GPS measurements, the measurement noise matrix of the integration filter is the 

same as the normally used noise matrix in GPS filters, which has been well investigated 

in Tiberius (1999), Collins and Langley (1999). 
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The tight integration strategy is preferred to use in the urban environments, in which the 

number of the tracked satellites is frequently less than 4, because the INS can still be 

updated with the available GPS measurements. In addition, because no additional 

processing noise is present in the single filter and the GPS measurements used to update 

the filter are more statistically independent, this strategy offers better accuracy on the 

state estimation (Wang and Gao, 2003). However comparing to the loose integration 

strategy, the increased size of the state vector leads to an increased computational burden 

(Petovello, 2003). 

 

3.2 Kalman Filtering 

Estimation is to obtain a set of values for a set of unknown parameters and their 

properties from a redundant (non-deterministic) set of observations (Gao, 2008). The 

Kalman filter is one of the most common estimation methods. It is an optimal data 

processing algorithm that processes all available measurements regardless of their 

precision, to estimate the current values of the variables of interests, with the use of 1) 

knowledge of the system dynamics 2) the statistical description of the system noises, 

measurement errors, and uncertainties in the dynamic models, and 3) any available 

information about the initial conditions of the variables of interests (Maybeck, 1979; Gao 

2008). More details can be found in Gelb (1974), Brown and Hwang (1992), and Grewal 

et al. (2001).  

 

The basic Kalman filter is limited to a linear system, though most realistic systems are 

non-linear, such as the integrated GPS/INS system. Linearization of the non-linear model 
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is required in case of applying the Kalman filter to these systems. A filter where 

linearization is done about the predetermined nominal state vector is referred as a 

Linearized Kalman filter (LKF), and if the linearization is done based on the states from 

the previous epoch, the filter is referred as an Extended Kalman filter (EKF) (Gelb, 1974). 

The latter one is a more common procedure.  

 

The non-linear system can be described by Equation (3.1) (Gelb, 1974; Gao, 2008). 

 

)()()),(()( twtGttxftx +=&  (3.1) 

 

where )(tx  is the system states, )),(( ttxf  is the non-linear function representing the 

temporal behavior of the system states, )(tG  is the shaping matrix and )(tw  is a noise 

vector.  

 

The noise vector )(tw  in Equation (3.1) is assumed to be a Gaussian distributed noise 

with a mean value of zero. Its covariance matrix can be obtained through Equation (3.2) 

(Gelb, 1974; Gao, 2008). 

 

{ } )()()()( ttQtwtwE
T δ=  (3.2) 

 

where )(tQ is the spectral density matrix of )(tw , and the )(tδ  represents the Dirac delta 

function. 
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In the linearization process, a nominal trajectory )(tx∗
 is selected, and then the system 

states can be written as Equation (3.3) (Gelb, 1974; Gao, 2008).  

 

)()()( txtxtx δ+= ∗
 (3.3) 

 

where )(txδ  is a perturbation from the nominal trajectory.  

 

By applying the Taylor series expansion and neglect the second and higher order terms, 

the linearized continuous-time system is described by Equation (3.4) (Gelb, 1974; Gao, 

2008). 

 

)()()()()( twtGtxtFtx += δδ&  (3.4) 

 

where )(tF  is the system dynamic matrix. 

 

As it can be noted, the Kalman filter actually estimates perturbations from the nominal 

trajectory after linearization. For the case of applying Kalman filter to the integrated 

GPS/INS system, the most common method is the EKF, which can be implemented as: 

first use the last Kalman filter estimate as the linearization point to linearize the non-

linear model, then applying the standard Kalman filter.  
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Normally the Kalman filter estimation algorithm is implemented on a computer and the 

continuous-time system equations need to be transformed to their corresponding discrete-

time form. The Equation (3.4) can be transformed to the discrete-time form as described 

in Equation (3.5) (Gelb, 1974; Gao, 2008). 

 

1111, −−−− +Φ= kkkkkk wGxx δδ  (3.5) 

 

where 1, −Φ kk  
is the state transition matrix, kxδ

 
is the system state vector at kt  and 1−kw

 
 is 

the driving noise during 1−−=∆ kkk ttt  

 

If kt∆  is very small or )(tF  is approximately constant over kt∆ , the transition matrix can 

be described by Equation (3.6) (Gelb, 1974; Gao, 2008). 
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Based on the assumption, kw  is a white sequence and obeys the following conditions, 

which can be described by Equation (3.7) and Equation (3.8) (Gelb, 1974; Gao, 2008). 
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By applying a trapezoidal integration, kQ  can be described by Equation (3.9) (Shin, 

2005). 
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For the case of the integrated GPS/INS system, the non-linearity is associated with not 

only the system model but also the measurement model. After applying the linearization 

to the measurement model, the measurement equation about the nominal trajectory in 

discrete-time form is described in Equation (3.10) (Gelb, 1974; Gao, 2008). 

 

kkkk vxHZ += δδ  (3.10) 

 

where kZδ  is the measurement error vector, kH  is the design matrix and kv  is the 

measurement noise. 

 

If we assume the measurement noise kv
 
is a white sequence, then it obeys the following 

conditions, which can be described in Equation (3.11) and Equation (3.12) (Gelb, 1974; 

Gao, 2008). 

 

{ } 0=kvE  (3.11) 
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The system noise kw  and measurement noise kv  are assumed to be uncorrelated, which 

means { } 0=T

jk vwE , for all kj, . 

 

The covariance matrix of the error state vector is defined as Equation (3.13) (Gelb, 1974; 

Gao, 2008). 

 

( )( ){ } k

T

kkkk PxxxxE =−− δδδδ ˆˆ
 

(3.13) 

 

As introduced before, a Kalman filter is a recursive data processing algorithm that 

consists of a series of prediction and update steps. The implementation procedure is 

illustrated in Figure 3.3 (Gao, 2008). An initial state estimate 1
ˆ

−kxδ  at time 1−kt  and its 

variance-covariance matrix are needed to compute the Kalman gain at the first place. 

Then the update procedure is implemented based on the calculated Kalman gain. The 

state estimate of the next epoch is calculated in the prediction step based on the updated 

state estimate at the current epoch.  
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Figure 3.3 Computation procedure of Kalman filter (Gao, 2008) 

 

In the prediction step, a state estimate 1,
ˆ

−kkxδ  at time kt  is computed by using the 

transition matrix, which can be described in Equation (3.14) (Gelb, 1974; Gao, 2008). 

 

11,1,
ˆˆ

−−− Φ= kkkkk xx δδ  (3.14) 

 

The corresponding covariance matrix can be calculated based on the transition matrix and 

the updated matrix 1−kP  at 1−kt , which can be described in Equation (3.15) (Gelb, 1974; 

Gao, 2008). 
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11,11,1. −−−−− +ΦΦ= k

T

kkkkkkk QPP  (3.15) 

 

In the update step, the Kalman gain matrix kK  is firstly computed by Equation (3.16) 

(Gelb, 1974; Gao, 2008). 

 

1

1,1, )( −
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T

kkkk

T

kkkk RHPHHPK  (3.16) 

 

Based on the calculated Kalman gain matrix, the state from the prediction step and the 

input measurement, the updated estimate is derived as shown in Equation (3.17) (Gelb, 

1974; Gao, 2008). 

 

)ˆ(ˆˆ
1,1, −− −+= kkkkkkkk xHZKxx δδδδ  (3.17) 

 

The updated variance-covariance matrix at time kt  is calculated by Equation (3.18) (Gelb, 

1974; Gao, 2008). 

 

1,)( −−= kkkkk PHKIP  (3.18) 
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Chapter Four: Integration of Precise Point Positioning GPS and Low Cost MEMS 

IMU 

 

This chapter mainly discusses the theoretical and practical aspects of the integration of 

the PPP GPS and the low cost MEMS IMU. As discussed in the previous chapter, the 

Kalman filtering is used to fuse the GPS and the MEMS IMU data. The chapter begins 

with a discussion of the PPP filter, which includes the system model and the 

measurement model. Then different Kalman filter designs for both loosely and tightly 

coupled integrated PPP GPS/MEMS IMU system are introduced. Later, the 2D velocity 

constraints are discussed in details. The proposed algorithm of inertial aided cycle slip 

detection and identification is described at last.  

 

4.1 Precise Point Positioning GPS Filter 

Precise Point Positioning technique is a positioning methodology, which processes the 

GPS data from a single dual-frequency GPS receiver and using the precise GPS orbit and 

clock products to derive high quality position solution with centimetre to decimetre level 

accuracy. In this study, the Precise Point Positioning technique is carried out using the 

Kalman filtering. 

 

4.1.1 System States 

Considering that the designed integrated PPP GPS/MEMS IMU system is normally used 

for high dynamic applications, the well-known position-velocity model is adopted for the 

PPP filter in this study. Based on the chosen system model, six system states are used and 



52 

 

parameterized in a local-level frame, which are latitude, longitude and height errors and 

three velocity error states in east, north and up directions. 

 

As introduced in Chapter 2, there are two observation models in PPP GPS, namely the 

traditional model and the UofC model. Although the two observation models provide 

similar positioning accuracy, the UofC model was proposed to support the resolution of 

the integer ambiguities as L1 and L2 ambiguity parameters can be estimated separately. 

Only the traditional model is used in this study since integer ambiguity resolution is not 

the focus of this thesis. The satellite orbit error and clock error are eliminated by using 

the precise GPS clock and orbit products, the first order ionospheric delay is mitigated by 

using the ionosphere-free combination, and the dry component of the tropospheric delay 

is mitigated by modeling. So the rest errors in the GPS measurements are the GPS 

receiver clock offset and the wet tropospheric delay component, which are estimated 

along with the other parameters of interests. The ambiguity terms for different satellites 

in view are also estimated in the Kalman filter and treated as float values. Finally the 

system states for PPP filter include 3 position error states, 3 velocity error states, the 

receiver clock offset and drift, the wet tropospheric delay and the ambiguity terms, which 

can be described by Equation (4.1) 

 

],,,,,,[
21 nIFIFIFtropdT

ll

GPS NNNdddTvrx Lδδ=  (4.1) 
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where IF represents the ionosphere-free combination, n represents the number of 

satellites in view; [ ]hr
l δδλδϕδ =  is the position error state vector in the l-frame, 

hδδλδϕ ,,  are the latitude, longitude and height error states, respectively; 

[ ]UNE

l vvvv δδδδ =  is the velocity error vector in the l-frame, UNE vvv δδδ ,, represent 

the velocity errors in east, north and up directions, respectively; dT  represents the 

receiver clock offset and dTd  represents the receiver clock drift; tropd  represents the wet 

component of the tropospheric delay. 

 

4.1.2 System Model 

The nature of the system states dictates the suitable modeling process. Based on the 

chosen system model, the transition matrix in PPP filter can be described as Equation 

(4.2). The corresponding system states are given in Equation (4.1). 
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is the relationship matrix between the 

position errors and the velocity errors in the l-frame; mR  and nR  are the earth radius in 

meridian and prime meridian directions, respectively; t∆  is the Kalman filter time 

interval. 

 

With the position-velocity system model, the velocity errors are modeled as random walk 

processes, as well as the receiver clock drift and the wet component of tropospheric delay. 

The ambiguity states are assumed to be constants since they remain unchanged if no 

cycle slips over time. Based on the random process modeling for the system states, the 

noise matrix Q is given herein. For the purpose of illustration, the structure of the noise 

matrix is divided into sub-blocks, in which each block represents a set of related 

parameters, such as position error block, receiver clock error block, tropospheric delay 

block and ambiguities block (Abdel-Salam, 2005). Figure 4.1 shows the structure of the 

noise matrix used in the PPP filter. 
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Figure 4.1 Noise matrix structure (Abdel-Salam, 2005) 

 

The sub-block of the position errors can be described as Equation (4.3) (Abdel-Salam, 

2005).  
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where 
UNE VVV qqq ,,  are the spectral density of the velocity errors in the east, north and up 

directions, respectively.  

 

Similar to the position error block, the noise matrix for the receiver clock error block can 

be formulated using a random walk as given in Equation (4.4) (Abdel-Salam, 2005). 
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where 
dtVq  is the spectral density of the receiver clock error drift.  

 

The nature of the troposphere allows for modeling its wet component as a random walk 

process. The noise matrix is illustrated in Equation (4.5) (Abdel-Salam, 2005). 

 

[ ]tqQ tropTrop ∆=  (4.5) 

 

where tropq  is the spectral density of the wet component of tropospheric delay. 

 

As discussed before that the ambiguities are modeled as random constant processes, 

therefore the noise matrix is a nil matrix. 
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4.1.3 Measurement Model 

The raw GPS measurement contains the inter-frequency bias and the hardware delay that 

must be taken into account in PPP GPS. The inter-frequency bias is a delay between L1 

and L2 signals (Abdel-Salam, 2005) and the hardware delay is caused by satellite and 

receiver hardware components such as the signal processing (Ray and Senior, 2005; 

Raquet, 2001). The inter-frequency bias is of no concern since it is cancelled out in the 

ionosphere-free combination, which is employed in the traditional model to eliminate the 

first order ionospheric delay. The hardware delay would be absorbed by the receiver 

clock, which would be estimated along with other parameters.  

 

For the carrier phase measurements, the non-zero initial phase will not be cancelled out in 

the ionosphere-free combination but will be merged with the ambiguities, which will be 

estimated as float values.  

 

The traditional model, which includes the ionosphere-free pseudorange, carrier phase and 

Doppler measurements, is related to the user position and velocity through Equation (4.6), 

(4.7) and (4.8), respectively.  
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where s and u represent the GPS satellites and the user, respectively, i represents ith 

satellite, zyx ,,  represent the x coordinate, y coordinate and z coordinate, respectively, 

zyx vvv ,,  represents the velocity in x axis, y axis and z axis, respectively, and wetM
 
is the 

mapping function for the zenith wet component of the tropospheric delay. 

 

Obviously the three equations are non-linear, which need to be linearized when they are 

used in the Kalman filter. More details about the linearization can be found in Kaplan 

(1996) and Parkinson and Spilker (1996). After the linearization procedure, the design 

matrix for the pseudorange, carrier phase and Doppler measurements in the ECEF-frame 

can be described by Equation (4.9), (4.10) and (4.11), respectively. 
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where n is the number of satellites in view, 
zyx ∂

∂

∂

∂

∂

∂
,,  are the partial derivatives with 

respect to the position error vector; 
zyx vvv ∂

∂

∂

∂

∂

∂
,,  are the partial derivatives with respect 

to the velocity error vector.  

 

Since the design matrix given in Equation (4.9) to Equation (4.11) is built in the ECEF-

frame, the transformation matrix from ECEF-frame to the local-level frame is needed to 

transform the design matrix to the local-level frame. 

 

The code, carrier phase and Doppler observations are all used in PPP GPS. These 

observations have different accuracies; therefore, the weight of each observation should 

be chosen properly (Abdel-Salam, 2005). It is well known that the precision of the 

observation is related to the satellite’s elevation. The SIN function is used in this study to 

model the relationship between the measurement precision and elevation angle as 

described in Equation (4.12). The reason for using this function is attributed to the 

similarity of the Cosecant function and behavior of tropospheric and ionospheric delay 

changes with respect to the satellite elevation (Vermeer, 1997; Collins and Langely, 1999; 

Abdel-Salam, 2005). 

 

)sin(

1
)(

E
EM =  (4.12) 

 



60 

 

where E is the elevation angle 

 

4.2 Tightly Coupled PPP GPS/MEMS IMU Integrated System 

As discussed in Chapter 2, the INS mechanization error accumulates over time, thus, the 

INS must be periodically corrected by external source. This section introduces the tightly 

coupled integrated PPP GPS/MEMS IMU system which uses the updates from PPP GPS 

to mitigate the INS error accumulation in tightly coupled mode.  

 

Figure 4.2 illustrates the integration strategy of the tightly coupled integrated PPP 

GPS/MEMS IMU system. As shown in the figure, a single integration filter is used to 

fuse the GPS and INS information. Given the GPS satellites ephemeris, the outputs of 

position and velocity from the INS mechanization are used to predict the pseudorange, 

carrier phase and Doppler measurements. The error corrector is used to correct the errors 

in the raw GPS measurements, such as satellite orbit and clock error, ionospheric delay, 

with more details in Chapter 2. Later, the corrected pseudorange, carrier phase and 

Doppler measurements from PPP GPS are differenced with the INS-predicted 

measurements. Then the integration filter directly processes those residuals to estimate 

the INS error estimates. Finally, the obtained INS error estimates are feed back to the INS 

mechanization using the closed loop approach. The outputs of the INS mechanization 

could also be applied in the error corrector of PPP GPS to help quality control of the 

integrated system, such as cycle slip detection and identification.  
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Figure 4.2 Tightly coupled integrated PPP GPS/MEMS IMU system 

 

The estimated error states such as position error, velocity error can be directly applied to 

the INS-derived position and velocity solutions. The attitude states can be corrected by 

using Equation (4.13). The sensor bias and scale factors can be applied to the raw INS 

measurements as shown in Equation (2.11) and (2.12). 

 

−+ Ω−= ,, )( l

b

l

b RIR ε   (4.13) 

 

where εΩ  represent the skew-symmetric matrix of the attitude error states obtained from 

the integration filter, −,l

bR  and +,l

bR  represent the transformation matrix before and after 

applying the attitude corrections, respectively. 
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4.2.1 System States 

A basic INS error state vector consists of nine navigation error states, which are 3 

position error states, 3 velocity error states and 3 attitude error states. However due to the 

sensor errors of accelerometers and gyroscopes, the system state vector needs to be 

augmented by the sensor error states. The number of augmented sensor error states 

depends on the sensor error characteristics, which primarily determined by the grade of 

IMU (Shin, 2005; Godha, 2006). For the high-end IMU, such as navigation grade IMU, 

or tactical grade IMU, the sensor errors of turn on biases and scale factors can be 

neglected. However, the low cost MEMS IMU, such as Crista IMU used in this study, 

normally features a turn-on bias of about several thousand degrees per hour and exhibits 

in-run bias drift of more than 1000 degrees per hour in gyros (Godha, 2006). Since it is 

not practical to calibrate these errors each time when the sensor is turned on, a solution is 

to estimate them as additional states in the Kalman filter.  

 

By considering the position errors, velocity errors, attitude errors, and the additional 

sensor bias drifts, turn on biases and scale factor errors for the low cost MEMS IMU, a 

27-INS error state vector is formed as Equation (4.14). 

 

],,,,,,,,[ ,, gatobgtobaga

lll

INS SSbbbbvrx δδδεδδ=   (4.14) 

 

where a and g represent the accelerometer and gyroscope, respectively, the 

symbol [ ]δψδφδθδε =l  is the attitude error state vector, δψδφδθ ,,  represent the 
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pitch, roll and azimuth error states, respectively; iS is the scale factor error, tobib ,  is the 

turn on bias, and ibδ  is the bias drift 

 

Since there is only one filter in the tightly coupled integrated system to process both GPS 

and INS information, the filter must account for not only the INS error states but also the 

PPP GPS states, such as the receiver clock offset, wet component of the tropospheric 

delay and the ambiguity terms. The full integration filter system state vector can be 

described by Equation (4.15). 

 

],,,,,[ ,2,1, nIFIFIFtropdTINS NNNdddTxx L=  (4.15) 

 

4.2.2 System Model 

The INS error model is derived from the perturbations of the INS mechanization 

equations. It can be described by a series of differential equations as follows. The first 

derivative of the position errors is related to the position errors and velocity errors, which 

can be described as Equation (4.16) (El-Sheimy, 2007; Jekeli, 2001; Shin, 2001). 
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The first derivative of the velocity errors is related to the position errors, the velocity 

errors, the attitude errors as well as the accelerometer sensor error, which can be 

described as Equation (4.17) (El-Sheimy, 2007; Jekeli, 2001; Shin, 2001). 

 

bl

b

l

v

l

vv

l

vr

l
fRFvFrFv δδεδδδ ε +++=&

 
(4.17) 

 

where 





















−

−−

++

=

R
v

vv

vvv

F

E

e

EE

e

NNU

e

vr

γ
ϕω

ϕλϕω

ϕλϕϕω

2
0sin2

00cos/cos2

00cos/)cossin(2

&

&

, 























+

−
+

−
+−

+−+
+

+−

=

02cos)2(

sin)2(

cos)2(sin)2(
tan

ϕϕλω

ϕϕλω

ϕλωϕλω
ϕ

&&

&&

&&

e

m

U

e

ee

NU

vv
hR

v
hN

vv

F , 

















−

−

−

=

0

0

0

EN

EU

NU

v

ff

ff

ff

F ε , and UNE
fff ,, are the specific force in the l-frame; 



65 

 

ϕ&  and λ&  are the latitude and longitude rate, respectively, γ is the normal gravity that 

varies with the altitude, b
fδ  is the accelerometer sensor error, and

 nmRRR = . 

 

The first derivative of the attitude errors is related to the position errors, the velocity 

errors, the attitude errors and the gyro sensor error, which can be described by Equation 

(4.18) (El-Sheimy, 2007; Jekeli, 2001; Shin, 2001). 
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F , eω  represents the earth rotation 

rate and b

ibδω  is the gyro sensor error. 

 

The inertial sensor bias-drift is normally modeled as a first order Gauss-Markov process, 

which can be described as Equation (4.19). 
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where iτ  is the correlation time and biη  is the Gauss-Markov process driving noise with 

spectral density biq . 

 

Normally the Gauss-Markov model parameters, such as correlation time iτ  and 

variance iσ , are obtained by calculating the auto-correlation function of the raw INS data 

under static conditions (Gelb, 1974; Nassar, 2003).  

 

The inertial sensor turn on bias remains constant after the sensor is turned on; therefore, it 

is modeled as a random constant process, which can be described as Equation (4.20). 
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The inertial sensor scale factor changes slowly with time, and thus can be modeled as a 

first order Gauss-Markov process with a large correlation time (Godha, 2006), which can 

be described as Equation (4.21) 
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where siτ  represents the correlation time and the siη
 
is the Gauss-Markov process driving 

noise.  

 

The PPP states remain the same as described in the PPP filter, which can be described by 

Equation (4.22) 
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4.2.3 Measurement Model 

The integration filter processes the residuals between the corrected GPS measurements 

and the corresponding INS-predicted measurements to estimate the error states. The 

design matrix for pseudorange, carrier phase and Doppler measurements in an ECEF-

frame are given in Equation (4.23), (4.24) and (4.25), respectively. The linearization 

point is obtained from the INS mechanization. A transformation matrix from the ECEF-

frame to the local-level frame is needed to transform the design matrix to the local level-

frame. The misclosure vector can be calculated as Equation (4.26). 
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where GPS

j

GPS

j

GPS

jP ΦΦ &,,  are the PPP-corrected ionosphere-free pseudorange, carrier phase 

and Doppler measurements, respectively, INS

j

INS

j

INS

jP ΦΦ &,,  are the INS-predicted 

ionosphere-free pseudorange, carrier phase and Doppler measurements, respectively. 
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4.3 Loosely Coupled PPP GPS/MEMS IMU Integrated System 

This section describes the loosely coupled integrated PPP GPS/MEMS IMU system, in 

which the PPP GPS and inertial processing are carried out in two separate, but interacting 

filters, namely the PPP filter and the integration filter. 

 

Figure 4.3 shows the scheme of the loosely coupled integrated system. As illustrated in 

the figure, the integrated system contains three components, namely the INS component, 

the PPP component and the integration filter component. The raw GPS measurements are 

firstly corrected by the error corrector in the PPP component to mitigate the measurement 

errors; then the PPP filter processes the corrected GPS measurements to estimate the 

position and velocity solutions. Meanwhile the INS raw measurements are processed in 

the INS component to derive the position and velocity solutions. The integration filter 

then uses the difference between the PPP-derived position and velocity solutions and the 

INS mechanization-derived solutions as measurements to estimate the error states. The 

closed loop approach is used to feedback the estimated error states to the INS component 

to compensate the INS errors. Similar to the tightly coupled integrated system, the 

outputs of the INS mechanization could also be applied in PPP error corrector to help the 

quality control.  
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Figure 4.3 Loosely coupled integrated PPP GPS/MEMS IMU system 

 

Since the PPP GPS and inertial processing are carried out in two separate filters, the 

integration filter only deals with the INS error states, which contain 27 error states in total 

and have been given in Equation (4.14).  

 

The system model of the integration filter is the INS error model only, which has been 

given through Equation (4.16) to Equation (4.21).  

 

The integration filter uses the residuals between the estimates of PPP-derived position 

and velocity, and the estimates of INS mechanization-derived position and velocity as 

measurements to compute the error estimates. Therefore, the measurement design matrix 

and the misclosure vector of the integration filter can be described as Equation (4.27) and 

Equation (4.28). 
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The measurement noise matrix of the integration filter is generated by transferring the 

full position and velocity variance covariance matrix from the PPP filter to ensure that the 

correlation between the PPP-derived position and velocity is properly accounted. 

 

4.4 2D Velocity Constraints 

It is found that the non-holonomic constraints can improve the attitude accuracies of the 

integrated GPS/INS system and mitigate the INS error accumulation during the GPS 

outages (Dissanayake et al., 2001; Shin, 2005; Wang and Gao, 2006). The constraints 

used in this thesis are the 2D velocity constraints. It is worthy to mention that the 2D 

velocity constraints are only suitable for the application of ground vehicles. 

 

The 2D velocity constraints are derived based on two assumptions. The first assumption 

is that the vehicle does not slip, which is a close representation for a vehicle travelling in 

a constant direction. The second assumption is that the vehicle stays on the ground. If 

both of the assumptions are true, then the velocity in the direction perpendicular to the 

movement of the vehicle can be regarded as zero (Shin, 2005; Li, 2009). The constraints 

can be illustrated in Figure 4.4. 
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Figure 4.4 2D velocity constraints 

 

If the body frame is defined as the Y axis point to the forward direction, the Z axis point 

to the up direction, and the X axis point to the right direction, the 2D velocity constraints 

can be mathematically written as Equation (4.29) 

 

0

0

≈

≈
b

z

b

x

v

v
  (4.29) 

 

The 2D velocity constraints are applied to the integrated system as illustrated in Figure 

4.5. The INS mechanization-derived velocities along X axis (lateral direction) and Z axis 

(vertical direction) are differenced with the corresponding velocities obtained from the 

2D velocity constraints. Then the integration filter processes the velocity residuals to 
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estimate the error states. The obtained estimates of the error states are then feedback to 

the INS component to compensate the INS errors.  

 

 

Figure 4.5 Integration scheme of using 2D velocity constraints 

 

The 2D velocity constraints can be used as additional observations in the integration filter. 

The measurement model can be obtained by a perturbation analysis of the body frame 

velocity as illustrated in Equation (4.30) and (4.31). 
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where lE  is the skew-symmetric matrix of the attitude error states, and b
V  is the skew-

symmetric matrix of the velocity expressed in the body frame. 
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As indicated in Equation (4.31), the velocity error in the body frame is correlated to the 

attitude estimates. As a result, improvements should be observed on the attitude estimates 

in theory when the 2D velocity constraints are used. Based on the Equation (4.31), the 

design matrix and misclosure vector can be written as Equation (4.32) and (4.33), 

respectively. 
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where ijR  represents the element at ith row and the jth column of a transformation matrix 

from the body frame to the local-level frame. 

 

The measurement noise of the 2D velocity constraints is calculated based a projection of 

the forward velocity on the lateral and vertical directions due to the misalignment angles 

as shown in Equation (4.34).  
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where βα ,  are the misalignment angles. 
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The typical forward velocity of a land vehicle is 18~20 m/s in most cases, and if the 

misalignment angle is 2~3 degrees, then the projected velocity on the lateral and vertical 

directions is around 1 m/s (Shin, 2001; Li, 2009). 

 

4.5 Inertial Aided Cycle Slip Detection and Identification 

The carrier phase measurements are the primary observables in the PPP GPS. Before they 

can be used as the most accurate ranging information, their integer ambiguities must be 

resolved. Unfortunately, high dynamics, signal obstruction and low satellite elevation 

may cause so called cycle slips, which would cause a jump on the integer ambiguities and 

deteriorate the obtainable accuracy if the cycle slips remain undetected. 

 

In this thesis, an algorithm of inertial aided cycle slip detection and identification is 

developed to help the quality control in PPP GPS. The basic idea of this algorithm is to 

differentiate the double differenced (differencing between two satellites and differencing 

between two consecutive epochs) GPS carrier phase observations with the calculated 

double differenced INS-derived geometric ranges to get a decision variable. Then this 

decision variable is used to detect and identify the possible cycle slips. The proposed 

algorithm is implemented in 3 steps, namely, widelane (WL) phase based cycle slip 

detection and identification, extra-widelane (EWL) phase based cycle slip detection and 

identification, and cycle slip identification on L1 and L2 frequencies. 
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Step One: Widelane Phase Based Cycle Slip Detection and Identification 

The first step contains two tasks, which are decision variable calculation and cycle slip 

detection and identification. Figure 4.6 illustrates the scheme of the decision variable 

calculation. As illustrated in the figure, the double differenced GPS WL phase 

observations are firstly generated. Given the satellites’ positions, the double differenced 

INS-derived geometric ranges are computed based on the INS-predicted user’s positions. 

Then the decision variables are calculated by differencing the double differenced GPS 

WL phase observations and the double differenced INS-derived geometric ranges. It is 

worthy to mention that the double differenced algorithm used here means the differencing 

between two satellites and the differencing between two consecutive epochs; it is not the 

same as the traditional double difference algorithm in DGPS. The reason of using WL 

phase combination is that it has a wavelength of 86 cm, which is much longer than the 

wavelength on L1 and L2 frequencies. As a result the robustness and reliability of the 

testing procedure are improved.  

 

 

Figure 4.6 Scheme of WL-based decision variable calculation 
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The procedure of the calculation of the WL based decision variable can also be described 

by the following equations. The differencing of the WL phase measurements between 

two satellites eliminates the receiver clock error, which can be described in Equation 

(4.35). 

 

)(, WLtropWLionWLWLWL ddN Φ∇+∇+∇−∇+∇=Φ∇ ελρ  (4.35) 

 

where WL represents the widelane phase linear combination, the symbol ∇  represents 

the differencing between satellites, WLλ
 
represents the wavelength of the widelane phase, 

WLN  represents the widelane ambiguity, WLiond ,  represents the ionospheric delay in the 

widelane phase combination, and ε  represents the measurement noise. 

 

The differencing between two consecutive epochs eliminates the ambiguity term if the 

carrier phase is free of cycle slips over the two consecutive epochs. It can be 

mathematically described by Equation (4.36). 

 

)(, WLtropWLionWL dd Φ∇+∇+∇−∇=Φ∇ εδδδρδδ  (4.36) 

 

where δ represents the differencing between two consecutive epochs, and 

)( WLΦ∇εδ represents the double differenced GPS WL phase error, which primarily 

includes the phase noise and multipath. 
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The double differenced INS-derived geometric range can be obtained through the same 

procedure, which can be described by Equation (4.37). 

 

)( INS

WL

INS

WL Φ∇+∇=Φ∇ εδρδδ  (4.37) 

 

where )( INS

WLΦ∇εδ  represents the error contained in the calculated double differenced 

INS-derived geometric range. 

 

The INS-derived geometric range is determined by the INS-predicted user’s position and 

the satellite’s position. Since the precise GPS orbit product is able to eliminate the 

satellite orbit error, the error contained in the INS-derived range highly depends on the 

INS-predicted position error, which is primarily determined by the sensors errors. 

 

The WL based decision variable is calculated by differencing the double differenced GPS 

WL phase measurement and the corresponding double differenced INS-derived 

geometric range. If the GPS carrier phase is free of cycle slips, the decision variable can 

be described by Equation (4.38). 

 

)()(,

INS

WLWLtropWLion ddDV Φ∇−Φ∇+∇+∇−= εδεδδδ
 

(4.38) 
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The double differenced geometric range is eliminated by the differencing procedure. If it 

is assumed that the ionospheric delay and tropospheric delay do not change much during 

the two consecutive epochs, then the decision variable can be simplified as described in 

Equation (4.39). 

 

)()( INS

WLWLDV Φ∇−Φ∇= εδεδ  (4.39) 

 

As shown in Equation (4.39), the decision variable only contains the double differenced 

GPS WL phase error and the double differenced INS-derived range error if the carrier 

phase is free of cycle slips. If we further assume that the GPS WL phase error and INS-

derived range error are Gaussian distributed, then the decision variable is a Gaussian 

random variable with a mean value of zero. Since the noise level of the carrier phase 

measurement is very low, the standard deviation of the decision variable primarily 

depends on the error characteristics of the MEMS IMU. 

  

The cycle slip detection and identification scheme is very straightforward, which is 

shown in Figure 4.7. If the decision variable exceeds a certain threshold, a cycle slip is 

detected; otherwise no cycle slip is detected. Similarly, if the decision variable falls into 

an interval determined by an integer number and a certain threshold, such 

as [ ]NN TmTm +− , , then the slipped cycles are identified as m. 
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Figure 4.7 Scheme of cycle slip detection and identification 

 

The algorithm of cycle slip detection and identification is mathematically derived from 

the statistical testing. The detection algorithm contains two tasks, namely 1) define 

hypothesis and 2) form test statistic, which can be described through Equation (4.40) to 

Equation (4.43). 

 

The null hypothesis means no cycle slip occurred, and the mean value of the decision 

variable is zero, which is described in Equation (4.40) 

 

0)(:0 =DVEH   (4.40) 
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The alternative hypothesis means cycle slips are present, and the mean value of the 

decision variable is not zero, which is described in Equation (4.41). 

 

0)(: ≠DVEHa  (4.41) 

 

If we assume that the decision variable is Gaussian distributed, then the test statistic for 

null hypothesis follows the Gaussian distribution centered at zero, with variance σ, which 

can be described by Equation (4.42). 

 

),0(~:0 σNDVwH =  (4.42) 

 

Similarly the test statistic for the alternative hypothesis also follows the Gaussian 

distribution but centered at m, with variance σ, which is described as Equation (4.43). 

 

),(~: σmNDVwHa =
 

(4.43) 

 

where m is the number of cycle slips. 

 

When the absolute value of the test statistic is less than a certain threshold, the null 

hypothesis 0H  will be accepted, which means no cycle slip occurred; otherwise the 

alternative hypothesis aH  will be accepted, which means at least one cycle slip is present. 
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The testing probabilities, such as probabilities of false alarm and missed detection are 

also derived from the statistical testing. Figure 4.8 shows the probabilities of false alarm 

and missed detection. False alarm means that the threshold is exceeded though no cycle 

slip occurred, its probability can be calculated as shown in Equation (4.44) (Altmayer, 

2000). 

 

( ) )(2| 0
σ

D
DFA

T
erfcHTDVPP =≥=  (4.44) 

 

where the error function dtexerfc
x

t

∫
∞

−=
22

)(
π

, and DT  represents the chosen threshold 

for cycle slip detection. 

 

 

Figure 4.8 Probability of false alarm and missed detection 
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The missed detection means that the threshold is not exceeded though cycle slips are 

actually present. Its probability can be calculated as described in Equation (4.45) 

(Altmayer, 2000). 

 

( ) )()(|
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(4.45) 

 

where m is the slipped cycles in GPS carrier phase measurements. 

 

As illustrated in Figure 4.7, the cycle slip identification is performed only if cycle slips 

are detected. Similar to the cycle slip detection, the cycle slip identification also includes 

two tasks, namely 1) define hypothesis and 2) form test statistic. The defined hypothesis 

is described in Equation (4.46).  
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where m represents the number of the cycle slips in the GPS carrier phase measurements. 
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The test statistic for each of the hypothesis follows the Gaussian distribution centered at 

the number of the slipped cycles with variance σ, which can be described by Equation 

(4.47). 
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mNDVwH
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=
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M
 (4.47) 

 

If the test statistic falls into a certain interval that centered at an integer number m then 

this integer number is said to be the actual number of slipped cycles. The interval can be 

described by Equation (4.48). 

 

[ ]NNm TmTmI +−= ,  (4.48) 

 

where { }LL ,2,1,1,2 −−∈m , represents the number of cycle slips, and NT  represents the 

selected threshold for cycle slip identification. 

 

The testing probabilities for the cycle slip identification include the probabilities of right 

determination and false determination. Right determination means that the test statistic 

falls into the interval mI  centered at the number m if indeed m is the number of the cycle 

slips. Its probability can be calculated as shown in Equation (4.49) (Altmayer, 2000). 
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, and NT  is the chosen threshold for cycle slip 

identification.  

 

False determination means that the test statistic lies in the wrong interval kI  leading to a 

false fixed number of the cycle slips. Its probability can be described in Equation (4.50) 

(Altmayer, 2000). 
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As it can be seen from Equation (4.44), (4.45), (4.49) and (4.50), the testing probabilities 

are highly dependent upon the chosen thresholds ( NT and DT ) and the standard deviation 

(σ) of the decision variable. In practice certain critical testing probabilities like MDP  and 

FDP  have to be guaranteed and are therefore treated as given values while the thresholds 

are adjusted according to the estimation of the actual standard deviations (Altmayer, 

2000). 
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Step Two: Extra-Widelane Phase Based Cycle Slip Detection and Identification 

The extra-widelane phase based cycle slip detection and identification follows the same 

testing procedure described in step one. The only difference in step two is that instead of 

using widelane phase combination, the extra-widelane phase combination is used, which 

can be generated in the unit of cycle as shown in Equation (4.51). 

 

21 54 LLEWL Φ−Φ=Φ  (4.51) 

 

The wavelength of the EWL phase is 183 cm, which is 2 times longer than the 

wavelength of WL phase.  

 

Step Three: Cycle Slip Identification on L1 and L2 Frequencies 

The WL and EWL phases are the linear combinations of the carrier phase observations in 

L1 and L2 frequencies, so the WL and EWL phase cycle slips are also linear 

combinations of cycle slips on L1 and L2 frequencies. Based on the identified cycle slips 

on the WL phase and EWL phase, the cycle slips on L1 and L2 frequencies can be easily 

determined as shown in Equation (4.52) and Equation (4.53). 

 

EWLWL mmm −= 51  (4.52) 

EWLWL mmm −= 42  (4.53) 
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where 1m  and 2m represent the number of the cycle slips on L1 and L2 frequencies, 

respectively, WLm
 
and EWLm

 
are the number of the cycle slips in the WL phase and EWL 

phase, respectively. The efficiency of the proposed algorithm of inertial aided cycle slip 

detection and identification will be evaluated in Chapter 5.  
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Chapter Five: Results and Analysis 

 

This chapter uses two van field tests to verify the navigation performance of the proposed 

integrated PPP GPS/MEMS IMU system. One field test is conducted under a relatively 

open sky environment and the other one is carried out in a combined environment, which 

contains an urban canyon environment and a relatively open sky environment. A 

developed C++ program which implements the proposed integration algorithm with post-

mission processing routines has been used to process the data collected from the low cost 

MEMS IMU and the GPS receiver and to generate the integrated navigation solutions. 

 

5.1 Field Test One 

This section describes the test and analysis results of the proposed integrated system 

under a relatively open sky environment. It begins with a field test description which 

includes the sensors used in the field test, operating environment and procedures adopted 

for data collection. The performance evaluation is carried out based on the 

position/velocity/attitude error results. The improvements on attitude estimates by using 

the 2D velocity constraints are then discussed. The GPS outages are simulated to verify 

the ability of MEMS IMU to bridge the gaps when GPS outages occur. Later, the 

efficiency of the proposed algorithm of inertial aided cycle slips detection and 

identification is evaluated based on a simulated cycle slip scenario and its improvements 

on positioning accuracy.  
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5.1.1 Field Test Description 

The MEMS IMU used in this study is the Crista IMU from Cloud Cap Technology Inc. It 

is a six axis measurement system consisting of three MEMS gyroscopes and three 

accelerometers providing temperature compensated inertial data. One specific advantage 

of Crista is that it has a built-in GPS pulse per second (PPS) interface which facilitates 

the accurate time synchronization of IMU and GPS data (Godha, 2006). The size of 

Crista is small (2.05” × 1.50”×1.00”) and only weighs 36.8 grams (Crista- Interface 

Operation Documents, 2004). The Crista IMU and a NovAtel GPS receiver are built into 

the NavBox, which was developed by the PLAN group at The University of Calgary. The 

Crista IMU data is synchronized to GPS time by the NovAtel GPS receiver inside the 

Navbox.  

 

Apart from the Crista IMU, a NovAtel SPANTM system is also used. It consists of a 

NovAtel OEM4 receiver and a tactical grade HG1700AG11 IMU (HG1700). The 

HG1700 data is time tagged internally by the OEM4 receiver in the SPANTM system. The 

motivation behind using the HG1700 IMU is to generate a precise reference solution to 

facilitate a comparative analysis. The error characteristics of both the Crista and HG1700 

have been discussed in Section 1.1. 

 

The field test started with a two minutes static alignment to allow the inertial system to 

determine initial attitude with sufficient accuracy (conducted only for the tactical grade 

unit). The equipments used were a SPANTM system and the NavBox. The raw dual 

frequency GPS data, which includes pseudorange, carrier phase and Doppler 
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measurements, were logged from the SPANTM system with a data rate of 1 Hz and the 

raw IMU data from HG1700 was logged at a rate of 100 Hz. The Crista IMU data was 

also collected at 100 Hz. In order to generate a reference solution using a high precision 

DGPS/INS integrated system, a NovAtel OEM4 receiver was setup on a building roof at 

The University of Calgary with excellent GPS satellites availability as the base station. 

The raw GPS pseudorange, carrier phase and Doppler measurements in dual-frequency 

were logged with a data rate of 1 Hz at the base station. 

 

Figure 5.1 and Figure 5.2 show the field test run trajectory and satellites availability, 

respectively. The field test is carried out in the residential areas (Hamptons neighborhood) 

in Northwest Calgary, which has a relatively clear sky view. As shown in Figure 5.2, the 

relatively poor satellite visibilities are observed at some epochs. This is because the GPS 

signal from the satellite with low elevation is frequently blocked by houses or trees. The 

test lasts about 16 minutes and the trajectory is traversed twice. 
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Figure 5.1 Field test trajectory (Field Test #1) 
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Figure 5.2 GPS satellites availability (Field Test #1) 
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5.1.2 Reference Navigation Solution 

In order to evaluate the navigation performance of the proposed integrated PPP 

GPS/MEMS IMU system, a matlab program has been developed which implements the 

loosely coupled integrated DGPS/INS algorithm and is used to process the DGPS 

solution and the HG1700 data to generate the reference navigation solution. The DGPS 

solution is obtained by using Waypoint GrafNav 8.10 software with ambiguity integer 

solution enabled. The dual frequency GPS carrier phase, pseudorange, and Doppler 

measurements are all used in the data processing. The ambiguity fixed position solution is 

obtained from the Waypoint GrafNav 8.10 software and it is accurate to better than 5 cm. 

The typical attitude accuracies of using tactical grade IMU, such as HG1700 is about 0.05 

degree for both pitch and roll, and 0.17 degree for azimuth (Godha, 2006), which are 

sufficient to evaluate the performance of MEMS IMU. The noise parameter of HG1700 

used in the loosely coupled DGPS/INS system is given in Table 5.1 (Petovello, 2003). 

Figure 5.3, Figure 5.4 and Figure 5.5 show the reference trajectory, velocity and attitude 

solution, respectively. 
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Table 5.1 Gauss-Markov parameters for HG1700 IMU (Petovello, 2003) 

Sensor 

Time 

Constant  

Temporal 

Variance  

Gyro 

X 100 min 0.35 deg2/hr2 

Y 55 min 0.34 deg2/hr2 

Z 84 min 0.47 deg2/hr2 

Accelerometer 

X 170 min 8.0e-8 m2/s4 

Y 68 min 2.5e-7 m2/s4 

Z 152 min 4.8e-7 m2/s4 
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Figure 5.3 Reference test trajectory (Field Test #1) 
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Figure 5.4 Reference velocity solution (Field Test #1) 
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Figure 5.5 Reference attitude solution (Field Test #1) 
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5.1.3 PPP GPS Results 

In order to assess the performance of the integrated PPP GPS and MEMS IMU system, it 

is necessary to verify the performance of the aiding source, which is the PPP GPS. Figure 

5.6 presents the satellites geometry. Although the HDOP values are less than 2 in 

majority of the time, which demonstrates good horizontal satellite geometry, the VDOP 

values are relatively poor at some epochs. The spectral densities used in the PPP filter 

(described in Chapter 4) are given in Table 5.2.  
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Figure 5.6 Satellites geometry (Field Test #1) 

 

Table 5.2 Spectral densities used in PPP 

Spectral 

Densities 

)( 32
smq

EV  )( 32
smq

NV  )( 32
smq

UV  )( 32
smq

dtV  )( 2
smqtrop  

Values 10 10 10 100 1e-9 
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Figure 5.7 shows the PPP GPS position error time series. The position solution in PPP 

GPS requires a convergence time before it can achieve centimetre to decimetre level 

accuracy due to the fact that the ambiguity terms are estimated as float numbers and they 

require a time period to converge to their true values.  Normally the required convergence 

time is 20-40 minutes for the solution to be at centimetre to decimetre level. Since the 

duration of the field test is about 16 minutes, the ambiguities in the carrier phase 

measurements have not completely converged. As a result, a backward processing is 

employed to improve the obtainable accuracy.  
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Figure 5.7 PPP GPS position error (Field Test #1) 

 

As shown in Figure 5.7, the latitude and longitude errors are well bounded within half-

metre during the entire run, while the height error is relatively large comparing to the 
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latitude and longitude errors due to the larger VDOP values. A statistical summary of the 

position error is presented in Table 5.2. The horizontal and vertical position errors are 

0.34 m and 0.47 m, respectively. With longer duration of the field test, the position 

accuracy is expected to be further improved. 

 

Figure 5.8 presents the PPP GPS velocity error time series. There is no convergence time 

required for velocity estimation since the velocity estimate highly depends on the 

Doppler measurements. The Table 5.2 lists the velocity error statistics. The horizontal 

and vertical velocity errors are 3.1 cm/s and 7.6 cm/s, respectively.  
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Figure 5.8 PPP GPS velocity error (Field Test #1) 
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Table 5.3 RMS error results of PPP GPS solution (Field Test #1) 

Position Error (m) 

Lat Lon H Horizontal 3D 

0.10 0.32 0.47 0.34 0.58 

Velocity Error (m/s) 

Vn Ve Vu Horizontal 3D 

0.019 0.025 0.076 0.031 0.082 

 

                                                                                                                                                                                                          

Based on these results, we can see that the PPP GPS offers better than half metre level 

accuracy for position and centimetre to sub-decimetre per second level accuracy for 

velocity. Due to the short duration of the field test, the ambiguity did not converge 

completely and the PPP GPS was not able to achieve the centimetre to decimetre level 

accuracy. Based on the obtained accuracy of the PPP GPS solution, a similar accuracy is 

expected from the integrated PPP GPS/MEMS IMU system.   

 

5.1.4 Integrated PPP GPS/MEMS IMU System Results 

This section describes the test results of both the tightly and loosely coupled integrated 

PPP GPS/MEMS IMU system. The GPS pseudorange, carrier phase and Doppler 

measurements are all used in data processing and the results are obtained with the cycle 

slip detection and identification enabled. Due to the short duration of the field test, the 

backward processing is used in both the tightly and loosely coupled integrated systems. 

The stochastic model parameters for inertial sensors are given in Table 5.4 and 5.5.  In 
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the following sections, the position accuracy is presented first, followed by the velocity 

and attitude accuracies. 

 

Table 5.4 Model parameters for bias drifts of gyros and accelerometers 

 Gyros Accelerometers 

 σ (degree/hr) τ (s) σ (m/s
2
) τ (s) 

X 240 400 7e-3 250 

Y 200 350 7e-3 200 

Z 180 300 8e-3 340 

 

Table 5.5 Model parameters for scale factors of gyros and accelerometers (Godha, 

2006) 

 Gyros Accelerometers 

 σ (PPM) τ (s) σ (PPM) τ (s) 

X 10000 18000 1000 18000 

Y 10000 18000 1000 18000 

Z 10000 18000 1000 18000 

 

 

5.1.4.1 Position Accuracy 

Shown in Figure 5.9 are the position error results obtained from the tightly coupled 

integrated PPP GPS/MEMS IMU system. Since more than 4 satellites are available 

throughout the entire run, the position error can be continuously corrected with the GPS 

updates. As a result, it prevents the INS error accumulation. The tightly coupled 
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integrated system offers similar results comparing to the PPP GPS. A statistical summary 

of the position errors are given in Table 5.3. The horizontal and vertical position errors 

are 0.27 m and 0.38 m, respectively.  
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Figure 5.9 Tightly coupled PPP GPS/MEMS IMU position error (Field Test #1) 

 

A statistical summary of the position errors of the loosely coupled integrated system is 

also listed in Table 5.3. The horizontal and vertical position errors are 0.32 m and 0.39 m, 

respectively. The results indicate that the tightly coupled system slightly outperforms the 

loosely coupled system under the relatively open sky environments. This is because GPS 

and INS information are more rigorously modeled in the tightly coupled system than a 

loosely coupled system. 
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Table 5.6 RMS position error results of PPP GPS/MEMS IMU (Field Test #1) 

RMS Lat (m) Lon (m) Height (m) Horizontal (m) 3D (m) 

TC 0.08 0.26 0.38 0.27 0.47 

LC 0.10 0.30 0.39 0.32 0.50 

 

 

As demonstrated in Table 5.3, improvements are observed on the position solutions in the 

integrated PPP GPS/MEMS IMU system comparing to the PPP GPS position solutions. 

These improvements are associated with the successful fixing the detected cycle slips by 

using the developed algorithm of inertial aided cycle slip detection and identification. 

More details will be discussed later in Section 5.1.5. 

 

5.1.4.2 Velocity Accuracy 

Provided in Figure 5.10 are the velocity error time series obtained from the tightly 

coupled integrated system. The velocity errors in the east and north directions are well 

bounded in 5 cm/s, and the velocity error in the up direction is well below 10 cm/s in 

most of the time.  

 

Table 5.4 lists a statistical summary of the velocity errors. In the tightly coupled 

integrated system, the horizontal and vertical velocity errors are 2.9 cm/s and 7.3 cm/s, 

respectively. Similar velocity accuracies are obtained in the loosely coupled integrated 

system.   
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Figure 5.10 Tightly coupled PPP GPS/MEMS IMU velocity error (Field Test #1) 

 

Table 5.7 RMS velocity error results of PPP GPS/MEMS IMU (Field Test #1) 

RMS Vn (m/s) Ve (m/s) Vu (m/s) Horizontal (m/s) 3D (m/s) 

TC 0.018 0.023 0.073 0.029 0.079 

LC 0.019 0.025 0.073 0.031 0.080 

 

 

As shown in Table 5.3 and 5.4, the proposed integrated system offers the horizontal and 

vertical position accuracies at 0.3 m and 0.4 m, respectively, and the velocity accuracy at 

centimetre to sub-decimetre per second under relatively open sky environment. Although 

it does not achieve the centimetre to decimetre level accuracy due to the short duration of 
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the field test, the results are promising since only a single dual-frequency GPS receiver is 

used.  

 

5.1.4.3 Attitude Accuracy 

Figure 5.11 shows the attitude error time series obtained from the tightly coupled 

integrated PPP GPS/MEMS IMU system. The pitch and roll errors are well bounded 

within 1 degree in the majority of the time, while the azimuth error is larger than the pitch 

and roll errors. Given in Table 5.5 is a statistical summary of the attitude errors in the 

tightly coupled system. The pitch and roll errors are 0.44 degree and 0.37 degree, 

respectively, while the azimuth error is as large as 1.41 degrees. In INS there are strong 

couplings between the velocity error in the east direction and the roll error, and between 

the velocity error in the north direction and the pitch error. The coupling between the 

horizontal velocity errors and the azimuth error is much weaker. If two INS error states 

are strongly coupled and one of them can be accurately estimated, then the other error 

state can be estimated accurately too. As a result, the accurate estimation of the velocity 

in the integrated system leads to more accurate roll and pitch solutions than the azimuth 

solution. 

 

Since the low cost MEMS IMU has much higher magnitudes of sensor errors comparing 

to the tactical grade IMU, the attitude accuracies are much poorer than the tactical grade 

IMU. The results indicate that the attitude accuracies heavily depend on the grade of the 

IMU used. 
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Figure 5.11 Tightly coupled PPP GPS/MEMS IMU attitude error (Field Test #1) 

 

The statistics of the attitude errors in the loosely coupled system are also summarized in 

Table 5.5. Similar attitude accuracies are obtained from the loosely coupled integrated 

system. Godha (2006) and Li (2009) investigated the integrated DGPS/MEMS IMU 

system using the same equipments and their results indicated that the integrated 

DGPS/MEMS IMU system offers the pitch and roll accuracies at 0.3~0.5 degree, and the 

azimuth accuracy at 1.2~1.6 degrees without applying any non-holonomic dynamic 

constraints. The proposed integrated PPP GPS/MEMS IMU system offers similar attitude 

accuracies comparing to their results. 
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Table 5.8 RMS attitude error results of PPP GPS/MEMS IMU (Field Test #1) 

RMS Pitch (degree) Roll (degree) Azimuth (degree) 

TC 0.44 0.37 1.41 

LC 0.46 0.43 1.42 

  

 

5.1.5 Results with 2D Velocity Constraints 

For the ground vehicles, it has been found that the non-holonomic constraints can be used 

in the integrated GPS/INS system under benign environments to improve the attitude 

accuracies (Li, 2009; Niu et al, 2006). The constraints used in this study are the 2D 

velocity constraints. Shown in Figure 5.12 is the attitude error time series with the tightly 

coupled integrated system after applying the 2D velocity constraints. Although 

improvements on both pitch and roll estimates are relatively small, significant 

improvements are observed on the azimuth estimate.  

 

Table 5.6 presents a statistical summary of the tightly coupled integrated system attitude 

errors after applying the constraints. Improvements are observed on all attitude 

components, for instance, the pitch and roll accuracies are improved by 4.6% and 5.4%, 

respectively, and the azimuth accuracy is improved by 46.8%. As discussed before, the 

velocity error in the body frame is correlated with the attitude error states, as a result the 

use of the 2D velocity constraints improves the observability of the attitude estimates, 

and eventually improve the attitude accuracies. 
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Figure 5.12 Tightly coupled PPP GPS/MEMS IMU attitude error with 2D velocity 

constraints (Field Test #1) 

 

Table 5.9 RMS attitude error results of tightly coupled PPP GPS/MEMS IMU with 

2D velocity constraints (Field Test #1) 

 Pitch (degree) Roll (degree) Azimuth (degree) 

No Constraints 0.44 0.37 1.41 

2D Velocity 0.42 0.35 0.75 

Improvements 4.6% 5.4% 46.8% 

 

 

Table 5.7 presents a statistical summary of the loosely coupled integrated system attitude 

errors after applying the 2D velocity constraints. The pitch and roll accuracies are 

improved by 6.5% and 4.7%, respectively, and the azimuth accuracy is improved by 

43.7%.  
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Table 5.10 RMS attitude error results of loosely coupled PPP GPS/MEMS IMU 

with 2D velocity constraints (Field Test #1) 

 Pitch (degree) Roll (degree) Azimuth (degree) 

No Constraints 0.46 0.43 1.42 

2D Velocity 0.43 0.41 0.80 

Improvements 6.5% 4.7% 43.7% 

 

 

5.1.6 Results with GPS outages 

One advantage of the integrated GPS/INS system is that the INS can bridge the GPS 

outages when GPS signals are blocked or subject to severe degradation. This section 

discusses the ability of the MEMS IMU in the integrated PPP GPS/MEMS IMU system 

to bridge the GPS outages, which include both complete and partial outages. The GPS 

outages are simulated by rejecting the GPS satellites in data processing. The position 

error results under complete GPS outages are firstly presented, and then followed by the 

results under partial GPS outages. The GPS data and Crista IMU data are processed with 

the tightly coupled integrated system because of its specific advantages under partial GPS 

availability. The positioning accuracy improvements by using the 2D velocity constraints 

during the GPS outages are also discussed.  

 

5.1.6.1 Results with Complete GPS Outage  

A total of six GPS complete outages are simulated at different dynamic environments: 2 

over high dynamic periods, 2 over moderate dynamic periods and 2 over low dynamic 

periods. All outages last for 30 seconds and it is given at least 55 seconds for the 
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integration filter to re-converge before the next outage. The GPS data and Crista IMU 

data are firstly processed without the constraints to obtain a baseline performance of the 

integrated system under complete GPS outages. The position errors are computed as a 

function of the time elapsed since the last GPS update for each outage.  

 

Figure 5.13 shows the horizontal position error during the six GPS outages. During the 

GPS outages, the integration filter works in a pure prediction mode, and its solution 

therefore entirely relies on the INS mechanization algorithm. The position error is 

accumulated since the GPS outages start. The drifting INS error during the GPS outages 

primarily depends on the inertial sensor errors and the time-span of the GPS outage. For 

all the GPS gaps, the maximum errors range from about 17 m to about 50 m.  
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Figure 5.13 Horizontal position error of PPP GPS/MEMS IMU under complete GPS 

outages (Field Test #1) 
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As discussed previously, one way to improve the system performance during GPS 

outages is to use the non-holonomic constraints. Figure 5.14 shows the horizontal 

position error during the GPS outages after applying the 2D velocity constraints. As 

shown in the figure, the performance is significantly improved, the maximum horizontal 

position error is less than 13 m during all complete GPS outages. 
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Figure 5.14 Horizontal position error of PPP GPS/MEMS IMU under complete GPS 

outages with 2D velocity constraints (Field Test #1) 

 

The RMS position error during GPS outages is calculated (Petovello, 2003; Godha, 2006) 

and provided in Figure 5.15. The green and red lines represent the RMS position error 

with and without applying the 2D velocity constraints. As demonstrated in the figure, the 

RMS position error starts to grow right after the GPS outage occurs. During a 30-second 
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complete GPS outage, the RMS position error increases to about 37 m. The position drift 

error is typically large. By applying the 2D velocity constraints, the positioning 

performance is significantly improved, since the maximum RMS position error is reduced 

to about 11 m. 
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Figure 5.15 RMS horizontal position error during complete GPS outages (Field Test 

#1) 

 

5.1.6.2 Results with Partial GPS Outages  

Having discussed the ability of the MEMS IMU in the integrated system to bridge the 

complete GPS outages, its positioning performance under partial GPS outages are 

discussed here. The six time periods used to simulate the complete GPS outages are 

adopted again to simulate the partial GPS outages, during which only 2 or 3 satellites are 

available. The partial GPS outages with 3 satellites available are firstly simulated by 
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increasing the satellite elevation mask for the adopted six periods of time; then the 

elevation mask are further raised for these periods to simulate the partial GPS outages 

with 2 satellites available.  

 

Shown in Figure 5.16 is the computed RMS position error for all 30-second partial GPS 

outages. The solid line represents the RMS position errors when 2 satellites are available, 

while the dot line represents the RMS position errors when 3 satellites are available. The 

green and red colors represent the RMS position errors with and without applying the 2D 

velocity constraints, respectively. 
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Figure 5.16 RMS horizontal position error during partial GPS outages (Field Test 

#1) 
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During the partial GPS outages, the performance of the integrated system mainly depends 

on the sensor error characteristics, the number of satellites, and the geometry of the 

available satellites (Godha, 2006). As shown in the figure, when with 2 satellites 

available, the INS error is still accumulating, although the rate of accumulation is damped. 

As a result, the RMS horizontal position error is reduced to about 20m. When with 3 

satellites available, the RMS horizontal position error is further reduced to be less than 2 

m. Improvements are still observed on positioning accuracy after applying the 2D 

velocity constraints. The RMS horizontal position error is reduced to about 5 m when 

with 2 satellites available and 1.5 m when with 3 satellites available by using the 2D 

velocity constraints. 

 

5.1.7 Inertial Aided Cycle Slip Detection and Identification Results 

It is well known that undetected cycle slips would deteriorate the accuracy of carrier 

phase measurements and eventually degrade the navigation performance. This section 

discusses the efficiency of the proposed inertial aided cycle slip detection and 

identification algorithm. As it is difficult to verify the efficiency of the algorithm without 

knowing the truth, a cycle slip scenario is simulated. The improvements on the 

positioning accuracy are also presented. 

 

Before any cycle slip scenario is simulated, the decision variables (referred to Section 4.5) 

should be analyzed. Provided in Figure 5.17 and Figure 5.18 are the decision variables 

for the GPS satellites during the entire test period. The GPS satellite PRN20 has the 

highest elevation and is used as the base satellite to compute the decision variables. The 
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blue dot and the red dot represent the computed decision variable based on the widelane 

phase combination and the extra-widelane phase combination, respectively. The epochs 

which have cycle slips have been removed in both Figure 5.17 and 5.18 to provide a clear 

view of the values of the decision variables.  

 

Based on the assumptions made in the Section 4.5, if the carrier phase measurement to a 

GPS satellite is free of cycle slips, then the decision variable is Gaussian distributed with 

a mean value of zero. This can be confirmed in Figure 5.17 and Figure 5.18 that all 

decision variables are normal distributed and centered at zero. As shown in the figures, 

PRN4, PRN13, PRN25 and PRN30 have low elevations ranging 7~18 degrees and they 

can only be tracked for certain periods of time due to the signal blockage by trees or 

houses, whereas the satellites (PRN23, PRN31 and PRN32) with high elevation angles 

can be tracked continuously during the entire time period. Due to the lower elevation 

angles, the decision variables for PRN4, PRN13, PRN25 and PRN30 are much noisier 

than the decision variables for the rest satellites. 
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Figure 5.17 Decision variables for PRN4, PRN13, PRN16 and PRN23 (Field Test #1) 
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Figure 5.18 Decision variables for PRN25, PRN30, PRN31 and PRN32 (Field Test 

#1) 
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As discussed in Section 4.5, the testing probabilities such as the probabilities of the false 

alarm, missed detection, right determination and false determination are highly dependent 

upon the selected threshold and the estimated standard deviation of the decision variable. 

Summarized in Table 5.8 are the standard deviations of the decision variables for all 

satellites in view. 

 

Table 5.11 STD of the decision variables (Field Test #1) 

PRN 4 13 16 23 25 30 31 32 

DV for WL (cycle) 0.15 0.13 0.12 0.06 0.13 0.17 0.10 0.06 

DV for EWL (cycle) 0.17 0.17 0.09 0.04 0.18 0.17 0.06 0.04 

 

 

As shown in the table, the standard deviations of the decision variables for all satellites in 

view are less than 0.2 cycles. The standard deviations of the decision variables for PRN4, 

PRN13, PRN25 and PRN30 are larger than that of the rest satellites due to the lower 

elevation angles.  

 

Having analyzed the decision variables for widelane and extra-widelane phase 

combinations, the cycle slip scenario is simulated as shown in Table 5.9. Different 

number of cycle slips is simulated on both L1 and L2 frequencies for all satellites in view.  
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Table 5.12 Simulated cycle slips scenario I 

Satellite  

PRN 

GPS time 

 (s) 

Cycle Slips on L1 

(cycle) 

Cycle Slip on L2 

(cycle) 

4 494410 1 0 

13 494196 0 -1 

16 494330 5 -8 

23 494550 1 10 

25 494386 -20 3 

30 494232 5 6 

31 494610 3 1 

32 494730 15 12 

 

 

In this study, the threshold of cycle slip detection and identification for all satellites in 

view are set to 0.5 cycles and the corresponding testing probabilities are provided in 

Table 5.10 based on Equation (4.44), (4.45), (4.49) and (4.50). The FA, MD, RD and FD 

represent the false alarm, missed detection, right determination and the false 

determination, respectively. If the calculated probability is smaller than 1e-10, it will be 

given as zero, and if it is larger than 1-1e-10, then it will be given as one. 
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Table 5.13 Testing probabilities (Field Test #1) 

 Widelane Phase Combination Extra-Widelane Phase Combination 

PRN FA MD RD FD FA MD RD FD 

4 3e-6 1e-6 1-3e-6 3e-6 4e-5 2e-5 1-4e-5 4e-5 

13 3e-7 1e-7 1-3e-7 3e-7 8e-5 4e-5 1-8e-5 8e-5 

16 2e-8 9e-9 1-2e-8 2e-8 0 0 1 0 

23 0 0 1 0 0 0 1 0 

25 7e-8 4e-8 1-7e-8 7e-8 2e-4 1e-4 1-2e-4 2e-4 

30 5e-5 2e-5 1-5e-5 5e-5 9e-5 4e-5 1-9e-5 9e-5 

31 0 0 1 0 0 0 1 0 

32 0 0 1 0 0 0 1 0 

 

 

Figure 5.19 and Figure 5.20 show the decision variables for the GPS satellites with 

simulated cycle slips. As expected the cycle slips deteriorate the Gaussian characteristics 

of the decision variable. Some large values of the decision variables are observed at some 

epochs and they indicate that cycle slips occurred.  
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Figure 5.19 Decision variables for PRN4, PRN13, PRN16 and PRN23 with simulated 

cycle slips (Field Test #1) 
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Figure 5.20 Decision variables for PRN25, PRN30, PRN31 and PRN 32 with 

simulated cycle slips (Field Test #1) 
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Table 5.11 summarized the detected and identified cycle slips using the proposed 

algorithm. The columns 5-8 give the identified cycle slips on WL phase, EWL phase, L1 

phase and L2 phase, respectively. Based on the identified WL and EWL cycle slips, the 

cycle slips on both L1 and L2 frequencies are identified. Comparing to the simulated 

cycle slip scenario given in Table 5.9, all simulated cycle slips have been correctly 

identified.   

 

Table 5.14 Identified cycle slips in simulated cycle slip scenario I  

PRN GPS 

time (s) 

DV/WL 

(cycle) 

DV/EWL 

(cycle) 

CS/WL 

(cycle) 

CS/EWL 

(cycle) 

CS/L1 

(cycle) 

CS/L2 

(cycle) 

4 494410 1.12 3.83 1 4 1 0 

13 494196 1.07 4.89 1 5 0 -1 

16 494330 12.90 59.96 13 60 5 -8 

23 494550 -9.04 -46.05 -9 -46 1 10 

25 494386 -22.96 -94.75 -23 -95 -20 3 

30 494232 -1.09 -10.07 -1 -10 5 6 

31 494610 1.98 6.99 2 7 3 1 

32 494730 2.98 -0.00 3 0 15 12 
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Having verified the efficiency of the developed algorithm for inertial aided cycle slip 

detection and identification, the improvements on the positioning performance by the 

proposed algorithm are now discussed. As the GPS data was collected at a residential 

area and GPS signals from low elevation satellites were blocked frequently by trees and 

houses. As a result, a large number of cycle slips are expected. By applying the 

developed algorithm, there are 156 epochs in total at which the cycle slips were detected. 

The details are shown in Table 5.12. There is no cycle slips on the carrier phase 

measurements corresponding to PRN23, PRN31 and PRN32. The results are consistent 

with the fact that PRN23, PRN31 and PRN32 have higher elevations than other satellites 

and they can be continuously tracked during the entire test period. 

 

Table 5.15 Cycle slip detection results (Field Test #1) 

PRN 4 13 16 23 25 30 31 32 Total 

No. of Epochs  54 33 12 0 43 14 0 0 156 

 

 

Figure 5.21 shows the improvements on the position accuracy by using the proposed 

algorithm. The green and red lines represent the 3D position error with and without fixing 

the cycle slips, respectively. Table 5.13 summarizes the improvements on the position 

solutions. By fixing the cycle slips, the horizontal and vertical position accuracies are 

improved by 20.6% and 20.8%, respectively. Although large improvements are observed 

on position solutions, the improvements on velocity solutions are very small. This is 
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because that the velocity estimate highly relies on the Doppler measurements, which do 

not contain any ambiguity term and will not be affected by cycle slips.  
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Figure 5.21 Position accuracy improvements (Field Test #1) 

 

Table 5.16 Summary of position accuracy improvements (Field Test #1) 

 Lat (m) Lon (m) H (m) Horizontal (m) 3D (m) 

no CS fixed 0.11 0.32 0.48 0.34 0.59 

CS fixed 0.08 0.26 0.38 0.27 0.47 

Improvement 27.2% 18.8% 20.8% 20.6% 20.3% 
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5.2 Field Test Two 

This section evaluates the navigation performance of the developed integrated system by 

using a van test that carried out under a combined environment, which includes an urban 

canyon environment and a relatively open sky environment (Bancroft, 2009). Similar to 

Section 5.1, the description of the field test, which includes the GPS and IMU sensors 

used, the data collection environments and procedures, is firstly introduced. The analysis 

results obtained under the urban canyon environment and the relatively open sky 

environment are then discussed separately in Section 5.2.3 and Section 5.2.4. 

 

5.2.1 Field Test Description 

The sensors used in the field test are the Crista IMU and the NovAtel SPANTM system, 

which are already described in Section 5.1.1. The raw dual frequency GPS data, which 

includes pseudorange, carrier phase and Doppler measurements, was logged from the 

SPANTM system with a data rate of 1 Hz. The raw HG1700 IMU data as well as the 

Crista IMU data were logged at a rate of 100 Hz. In order to generate a reference solution 

using a high precision DGPS/INS integrated system, a NovAtel OEM4 receiver was 

setup on the roof of a building with good satellite visibility at The University of Calgary 

to act as the base station. The dual-frequency GPS pseudorange, carrier phase and 

Doppler measurements were also logged at 1 Hz at the base station.  

 

Data collection for the rover receiver installed on a vehicle began in a static mode under a 

relatively open sky environment. Then the vehicle was driven to the Calgary downtown 

area and then driven to the University region as shown in Figure 5.22 and the test lasted 
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for about 31 minutes (about 17 minutes in downtown area and 14 minutes in relatively 

open sky area). The velocity during the test ranged from zero to 70 km/h, with several 

stops due to traffic lights.  

 

 

Figure 5.22 Field test trajectory (Field Test #2) 

 

5.2.2 Reference Navigation Solution 

In order to facilitate a comparative analysis, a high precision DGPS/INS integrated 

system based on the NovAtel OEM4 receivers and HG1700 IMU is used. The collected 

GPS and INS data are processed by SAINTTM (Petovello 2003) with ambiguity resolution 

enabled to generate a precise reference solution. Figure 5.23 shows the standard deviation 

of the reference position solution. In the relatively open sky area, the fixed ambiguity 

navigation solution is obtained and the position standard deviation is maintained at less 
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than 4 cm. However the standard deviation is much larger in the urban canyon area due to 

the poor satellites availability. The largest horizontal and vertical standard deviations of 

the position solution are about 1 m and 1.8 m, respectively.  
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Figure 5.23 STD of reference position solution (Field Test #2) 

 

Figure 5.24 shows the standard deviation of the reference velocity solution. In the 

relatively open sky area, the velocity standard deviation is maintained at better than 1 

cm/s in most of the time. Similarly, larger standard deviations are observed in the urban 

canyons. The largest horizontal and vertical velocity standard deviations are about 4 cm/s 

and 5 cm/s, respectively.  
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Figure 5.24 STD of reference velocity solution (Field Test #2) 

 

5.2.3 Results in Downtown Area 

This section evaluates the navigation performance of the developed integrated system 

under realistic urban environments. There are a variety of medium or tall buildings in 

downtown area, which causes severe signal blockage. As a result, the satellite availability 

in the downtown area is pretty poor as shown in Figure 5.25. GPS outages occurred 

frequently and their duration varied from several to tens of seconds. The number of 

visible satellites changed from 0~3 at most times in the core area of downtown.  Table 

5.14 summarizes the satellites availability statistics during the time period spent in the 

downtown area.  
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Figure 5.25 GPS satellites availability in downtown area (Field Test #2) 

 

Table 5.17 Statistics of satellites availability in downtown area (Field Test #2) 

Number of Satellites 

Used in KF 

Number of Epochs Percentage (%) 

0 123 11.65 

1 148 14.02 

2 167 15.81 

3 140 13.26 

>= 4 478 45.27 
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Given in Table 5.15 are the position error statistics of both tightly and loosely coupled 

integrated systems. Due to the poor satellites availability in downtown area, the INS error 

cannot be continuously updated and corrected, and therefore accumulates. As a result, the 

positioning accuracy is typically poor, for instance, the horizontal position error can be as 

large as about 10 m. As demonstrated in the table, the tightly coupled system outperforms 

the loosely coupled system in the urban canyon environment because of the centralized 

processing in the tightly coupled system. The tightly coupled system uses the raw GPS 

measurements to update the INS error states whereas the loosely coupled system uses the 

calculated GPS position and velocities. During partial GPS outages the loosely coupled 

system solution still depends on GPS-only solutions, which are typically poor, thus 

degrading the quality of the updates available to the INS. The tightly coupled system 

relies on the raw GPS measurements, which offer updates to INS with better quality.  

 

Table 5.18 RMS position error results of PPP GPS/MEMS IMU in downtown area 

(Field Test #2) 

 Lat (m) Lon (m) Height (m) Horizontal  (m) 3D (m) 

TC 5.48 6.31 7.19 8.35 11.02 

LC 6.55 7.25 8.43 9.77 12.90 

 

 

As discussed before, one remedy to improve the navigation performance of the integrated 

GPS/INS system under GPS outages is the non-holonomic constraints. The 2D velocity 

constraints are used during the GPS outages to improve the obtainable navigation 
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performance of the proposed integrated system. A statistical summary of the position 

errors from both the tightly and loosely coupled integrated systems with applying the 2D 

velocity constraints is given in Table 5.16. Improvements are observed on the position 

solutions in both the tightly and loosely coupled systems. For example, the horizontal 

position accuracy is improved by 41.4% and 35.4% in the tightly and loosely coupled 

integrated systems, respectively.  

 

Table 5.19 RMS position error results of PPP GPS/MEMS IMU with 2D velocity 

constraints in downtown area (Field Test #2) 

 Lat Lon Height  Horizontal  3D 

TC Position Error (m) 3.42 3.50 5.58 4.89 7.42 

Improvements (%) 37.6 44.5 22.4 41.4 32.6 

LC Position Error (m) 4.67 4.25 6.55 6.31 9.09 

Improvements (%) 28.7 41.4 22.3 35.4 29.5 

 

 

Although improvements are obtained by using the 2D velocity constraints, the navigation 

performance of the proposed integrated PPP GPS/MEMS IMU system is still poor in 

urban areas, for instance, about 7 ~ 9 m accuracy for 3D position solution. For the 

applications requiring higher positioning accuracy under such conditions, more 

investigations are needed with the proposed integrated system.  
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5.2.4 Results in Relatively Open Sky Area 

The analysis results of the proposed integrated system under the relatively open sky 

environment in Field Test #2 are presented here.  

 

5.2.4.1 PPP GPS Results 

Figure 5.26 and Figure 5.27 show the GPS satellites availability and the DOP values, 

respectively. More than 4 satellites are available throughout the time spent in the 

relatively open sky area. The HDOP and VDOP values are less than 2 in most of the time, 

although some relatively poor satellite geometry is observed at some epochs due to that 

the satellites with low elevations are frequently blocked by the buildings aside the road. 

 

Provided in Figure 5.28 is the PPP GPS position error time series. As discussed in 

Section 5.1.3, a convergence time is needed for the position solution to achieve 

centimetre to decimetre level accuracy. However due to the van test in the relatively open 

sky area only lasts about 14 minutes, the backward processing is used to improve the 

obtainable accuracy. As shown in the figure, the latitude and longitude errors are well 

bounded within half metre in most of the time, while the height error is relatively large. A 

statistical summary of the position error is listed in Table 5.17. The horizontal and 

vertical position errors are 0.39 m and 0.55 m, respectively.  
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Figure 5.26 GPS satellites availability in relatively open sky area (Field Test #2) 
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Figure 5.27 Satellites geometry in relatively open sky area (Field Test #2) 
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Figure 5.28 PPP GPS position error in relatively open sky area (Field Test #2) 

 

Figure 5.29 shows the velocity error time series and Table 5.17 summarizes the velocity 

error statistics. The horizontal and vertical velocity errors are 3.3 cm/s and 5.6 cm/s, 

respectively. Since the velocity estimate mainly relies on the Doppler measurements, the 

velocity estimation does not require a convergence time. Based on the PPP GPS results, 

similar results are expected from the proposed integrated PPP GPS/MEMS IMU system. 
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Figure 5.29 PPP GPS velocity error in relatively open sky area (Field Test #2) 

 

Table 5.20 RMS position/velocity error results of PPP GPS in relatively open sky 

area (Field Fest #2) 

Position Error (m) 

Lat Lon H Horizontal 3D 

0.33 0.22 0.55 0.39 0.67 

Velocity Error (m/s) 

Vn Ve Vu Horizontal 3D 

0.027 0.019 0.056 0.033 0.065 

 

 



135 

 

5.2.4.2 Integrated PPP GPS/MEMS IMU System Results 

This section discusses the results obtained from both the tightly and loosely coupled 

integrated PPP GPS/MEMS IMU systems under the relatively open sky environments in 

Field Test #2. All GPS pseudorange, carrier phase and Doppler measurements are used in 

data processing and the results are obtained with the cycle slip detection and 

identification enabled. A backward processing method is also used due to the short 

duration of dataset. Similar to Section 5.1.4, the position accuracy is given first, then 

followed by the velocity and attitude accuracies. 

 

Position Accuracy 

Figure 5.30 shows the position error time series of the tightly coupled integrated system. 

The latitude and longitude errors are well bounded within 0.4 m, while the height error is 

less than 0.6 m in majority of the time. Listed in Table 5.18 are the position error 

statistics of both the tightly and loosely coupled integrated systems. The horizontal and 

vertical position errors for the tightly coupled system are 0.31 m and 0.42 m, respectively, 

and similar results are obtained in the loosely coupled system.  

 

Similarly the tightly coupled integrated system slightly outperforms the loosely coupled 

system; the reason has been discussed in Section 5.1. Improvements on positioning 

accuracy raised by the proposed algorithm of inertial aided cycle slip detection and 

identification algorithm can still be observed. The details will be discussed later. 
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Figure 5.30 Tightly coupled PPP GPS/MEMS IMU position error in relatively open 

sky area (Field Test #2) 

 

Table 5.21 RMS position error results of PPP GPS/MEMS IMU in relatively open 

sky area (Field Test #2) 

RMS Lat (m) Lon (m) Height (m) Horizontal (m) 3D (m) 

TC 0.26 0.18 0.42 0.31 0.53 

LC 0.28 0.18 0.44 0.33 0.55 

 

 

Velocity Accuracy 

Figure 5.31 presents the velocity error time series of the tightly coupled system. The 

velocity errors in the east and the north directions are well bounded within 5 cm/s in most 

of the time. A statistical summary of the velocity errors in both the tightly and loosely 
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coupled integrated systems is listed in Table 5.18. The horizontal and vertical velocity 

errors for the tightly coupled integrated system are 2.9 cm/s and 5.3 cm/s, respectively. 

Similar results are obtained in the loosely coupled integrated system. 
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Figure 5.31 Tightly coupled PPP GPS/MEMS IMU velocity error in relatively open 

sky area (Field test #2) 

 

Table 5.22 RMS velocity error results of PPP GPS/MEMS IMU in relatively open 

sky area (Field Test #2) 

RMS Vn (m/s) Ve (m/s) Vu (m/s) Horizontal (m/s) 3D (m/s) 

TC 0.023 0.018 0.053 0.029 0.061 

LC 0.025 0.019 0.054 0.031 0.062 
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Due to the short duration of the dataset, the ambiguity did not completely converge to its 

real value. As a result, the proposed integrated system was not able to achieve centimetre 

to decimetre level positioning accuracy. With longer duration of dataset, the position 

accuracy is expected to be further improved. Since no convergence time is needed for 

velocity estimation, the velocity solution accuracy is at centimetre per second level. 

 

Attitude Accuracy 

The attitude error time series of the tightly coupled integrated system is plotted in Figure 

5.32. As discussed before, the significant sensor errors and poor observability result in 

relatively poor accuracies for attitude estimates, especially for the azimuth estimate. As 

shown in the figure, the pitch and roll errors are well below 1 degree in most times, while 

the azimuth error can be as large as about 3 degrees at some epochs.  

 

Table 5.20 presents the attitude error statistics of both the tightly and loosely coupled 

integrated systems. Similar attitude accuracies are obtained in both systems. The pitch 

and roll errors are about 0.4 degree and the azimuth error is about 1.5 degrees. 
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Figure 5.32 Tightly coupled PPP GPS/MEMS IMU attitude error in relatively open 

sky area (Field Test #2) 

 

Table 5.23 RMS attitude error results of PPP GPS/MEMS IMU in relatively open 

sky area (Field Test #2)  

RMS Pitch (degree) Roll (degree) Azimuth (degree) 

TC 0.45 0.42 1.47 

LC 0.41 0.44 1.52 

 

 

5.2.4.3 Results with 2D Velocity Constraints 

As discussed before, the 2D velocity constraints are able to improve the attitude 

accuracies. Figure 5.33 shows the tightly coupled system attitude error time series after 

using the constraints. The improvements on the pitch and roll estimates are relatively 
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small comparing to the major improvements on the azimuth estimate. Table 5.21 

summarizes the tightly coupled system attitude error statistics after using the 2D velocity 

constraints. The pitch and roll accuracies are improved by 6.7% and 7.1%, respectively, 

and the azimuth accuracy is improved by about 48%. 
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Figure 5.33 Tightly coupled PPP GPS/MEMS IMU attitude error with 2D velocity 

constraints in relatively open sky area (Field Test #2) 

 

Table 5.24 RMS attitude error results of tightly coupled PPP GPS/MEMS IMU with 

2D velocity constraints in relatively open sky area (Field Test #2) 

 Pitch (degree) Roll (degree) Azimuth (degree) 

No Constraints 0.45 0.42 1.47 

2D Velocity 0.42 0.39 0.76 

Improvements 6.7% 7.1% 48.3% 
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Summarized in Table 5.22 are the improvements on the attitude accuracies in the loosely 

coupled integrated system after using the 2D velocity constraints. The pitch and roll 

accuracies are improved by 7.3% and 9.0%, respectively, and azimuth accuracy is 

improved by 46%. 

 

Table 5.25 RMS attitude error results of loosely coupled PPP GPS/MEMS IMU 

with 2D velocity constraints in relatively open sky area (Field test #2) 

 Pitch (degree) Roll (degree) Azimuth (degree) 

No Constraints 0.41 0.44 1.52 

2D Velocity 0.38 0.40 0.81 

Improvements 7.3% 9.0% 46.7% 

 

 

5.2.4.4 Results with GPS outages 

This section evaluates the ability of the MEMS IMU to bridge the GPS outages. Similar 

to the Field Test #1, GPS outages are simulated by rejecting the satellites in data 

processing. The results under complete GPS outages are firstly presented and then 

followed by the results under partial GPS outages. The 2D velocity constraints are used 

during the GPS outages to investigate the obtainable performance of the proposed 

integrated system. The GPS data and Crista IMU data are processed with the tightly 

coupled integrated system. 
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Results with Complete GPS Outages 

A total of five complete GPS outages are simulated, which are selected as 2 over high 

dynamic periods, 2 over moderate dynamic periods and 1 over low dynamic period. The 

outages last for 30 seconds and it is given at least 70 seconds for the integration filter to 

re-converge before the next outage.  

 

Figure 5.34 shows the horizontal position error during the five complete GPS outages. As 

expected the position error is accumulated over time when GPS update is absent. The 

accumulated INS error primarily depends on the grade of IMU used and the time span of 

the GPS outages. For all GPS outages, the maximum horizontal position errors range 

from 23 m to 58m.  
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Figure 5.34 Horizontal position error of PPP GPS/MEMS IMU in relatively open 

sky area under complete GPS outages (Field Test #2) 
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Shown in Figure 5.35 is the horizontal position error during complete GPS outages with 

applying the 2D velocity constraints. The position accuracy is improved significantly 

after using the 2D velocity constraints. The maximum horizontal position errors are 

limited to be less than 15 m for all simulated GPS outages. 
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Figure 5.35 Horizontal position error of PPP GPS/MEMS IMU with 2D velocity 

constraints in relatively open sky area under complete GPS outages (Field Test #2)  

 

The RMS position error during complete GPS outages is calculated and provided in 

Figure 5.36. The green and red solid lines represent the RMS position error with and 

without applying the 2D velocity constraints, respectively. The RMS position error starts 

to grow right after the GPS outage occurs and it is accumulated to 39 m within 30 
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seconds. By applying the constraints, the maximum RMS horizontal position error is 

reduced to about 10 m. 
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Figure 5.36 RMS horizontal position error of PPP GPS/MEMS IMU in relatively 

open sky area during complete GPS outages (Field Test #2) 

 

Results with Partial GPS Outages 

The five time periods used to simulate complete GPS outages are adopted again to 

simulate the partial GPS outages, during which only 2 or 3 satellites are available. As 

introduced in Section 5.1.6, the partial GPS outages are simulated by raising the satellite 

elevation mask during the certain time periods. Figure 5.37 presents the computed RMS 

position error for all the partial GPS outages.  
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Figure 5.37 RMS horizontal position error of PPP GPS/MEMS IMU in relatively 

open sky area during partial GPS outages (Field Test #2) 

 

When 2 GPS satellites are available, the INS error still accumulates, although the rate of 

accumulation is damped. It accumulates to about 22 m over 30 seconds. After applying 

the 2D velocity constraints, the maximum RMS position error is reduced to about 6 m. 

With 3 GPS satellites available, the maximum RMS position error is reduced to about 2 

m, and it is further reduced to about 1.5 m when the constraints are used. 
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5.2.4.5 Inertial Aided Cycle Slip Detection and Identification Results 

This section presents the results of the inertial aided cycle slip detection and 

identification. Similar to Section 5.1.7, the calculated decision variables are firstly 

analyzed, and a simulated cycle slip scenario is used to evaluate the efficiency of the 

developed algorithm; then the improvements on positioning accuracy are discussed at last. 

 

Shown in Figure 5.38 and Figure 5.39 are the decision variables for the GPS satellites. 

The blue dot and red dot represent the computed decision variable based on the widelane 

phase combination and the extra-widelane phase combination, respectively. The GPS 

satellite PRN12 has the highest elevation and is used as the base satellite to compute the 

decision variables. To provide a clear view of the values of the decision variables, the 

epochs which have cycle slips have been removed in both Figure 5.38 and Figure 5.39.  

 

As shown in the figures, the decision variables are Gaussian distributed and centered at 

zero. The PRN9, PRN17 and PRN29 have the lower elevations that range from 7 to 19 

degrees and they can only be tracked in certain periods of time. Due to the low elevations, 

the decision variables for PRN9, PRN17 and PRN29 are much noisier than that of the rest 

satellites.  
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Figure 5.38 Decision variables for PRN2, PRN4, PRN5 and PRN9 in relatively open 

sky area (Field Test #2) 
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Figure 5.39 Decision variables for PRN17, PRN29 and PRN30 in relatively open sky 

area (Field Test #2) 

 

Listed in Table 5.23 are the estimated standard deviations of the decision variables for all 

satellites in view. It can be seen that the standard deviations for all decision variables are 

less than 0.2 cycles. 
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Table 5.26 STD of decision variables in relatively open sky area (Field Test #2) 

PRN 2 4 5 9 17 29 30 

DV for WL (cycle) 0.04 0.06 0.05 0.14 0.12 0.15 0.11 

DV for EWL (cycle) 0.03 0.04 0.06 0.16 0.10 0.19 0.09 

 

 

Shown in Table 5.24 is the simulated cycle slip scenario. The cycle slips are simulated on 

L1 and L2 frequencies for all satellites in view with different numbers.  

 

Table 5.27 Simulated cycle slip scenario II 

Satellite  

PRN 

GPS time  

(s) 

Cycle Slips on L1 

(cycle) 

Cycle Slip on L2 

(cycle) 

2 333000 1 0 

4 333123 0 -1 

5 333211 5 -8 

9 333311 1 10 

17 333426 -20 3 

29 333527 5 6 

30 333688 3 1 

 

 



150 

 

The threshold for both cycle slip detection and identification is selected as 0.5 cycles in 

this study, and the testing probabilities computed based on the threshold and the 

estimated standard deviations of decision variables are given in Table 5.25.  

 

Table 5.28 Testing probabilities in relatively open sky area (Field Test #2) 

 Widelane Phase Combination Extra-Widelane Phase Combination 

PRN FA MD RD FD FA MD RD FD 

2 0 0 1 0 0 0 1 0 

4 0 0 1 0 0 0 1 0 

5 0 0 1 0 0 0 1 0 

9 9e-7 4e-7 1-9e-7 9e-7 2e-5 1e-5 1-2e-5 2e-5 

17 7e-9 4e-9 1-8e-9 8e-9 0 0 1 0 

29 5e-6 2e-6 1-5e-6 5e-6 4e-4 2e-4 1-4e-4 4e-4 

30 3e-10 1e-10 1-3e-10 3e-10 0 0 1 0 

 

 

As discussed before, with the cycle slips, the normal distribution characteristic of the 

decision variable is deteriorated. This can be seen in Figure 5.40 and Figure 5.41 which 

show the decision variables with the cycle slips. Some large values of decision variables 

are observed at some epochs and they indicate that the cycle slips occurred. 
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Figure 5.40 Decision variables for PRN2, PRN4, PRN5 and PRN9 with simulated 

cycle slips in relatively open sky area (Field Test #2)  
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Figure 5.41 Decision variables for PRN17, PRN29 and PRN30 with simulated cycle 

slips in relatively open sky area (Field Test #2) 

 

Table 5.26 lists the detected and identified cycle slips by using the proposed algorithm. 

Based on the identified WL phase and EWL phase cycle slips, the cycle slips on L1 and 

L2 frequencies are determined. Comparing to the simulated cycle slip scenario, all 

simulated cycle slips are correctly identified. 
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Table 5.29 Identified cycle slips in simulated cycle slip scenario II 

PRN GPS 

time (s) 

DV/WL 

(cycle) 

DV/EWL 

(cycle) 

CS/WL 

(cycle) 

CS/EWL 

(cycle) 

CS/L1 

(cycle) 

CS/L2 

(cycle) 

2 333000 0.98 4.00 1 4 1 0 

4 333123 1.04 5.00 1 5 0 -1 

5 333211 13.02 60.08 13 60 5 -8 

9 333311 -9.02 -45.97 -9 -46 1 10 

17 333426 -22.83 -94.90 -23 -95 -20 3 

29 333527 -1.02 -10.07 -1 -10 5 6 

30 333688 1.99 6.99 2 7 3 1 

 

 

Having evaluated the efficiency of the proposed algorithm by using simulated cycle slip 

scenario, the improvements on the positioning accuracy are now discussed. The collected 

GPS and Crista IMU data are processed with the tightly coupled integrated system. Table 

5.27 presents the obtained cycle slip detection results. 

 

Table 5.30 Cycle slips detection results in relatively open sky area (Field Test #2) 

PRN 2 4 5 9 17 29 30 Total 

No. of Epochs  2 3 3 26 28 33 7 102 
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Since the GPS signals from the satellites with low elevations are frequently blocked by 

the buildings aside the road, a large number of cycle slips is expected. There are 102 

epochs in total that cycle slips were detected. PRN2, PRN4 and PRN5 have higher 

elevations and very few cycle slips are detected on these satellites, however lots of cycle 

slips are detected on PRN9, PRN17 and PRN29 due to their low elevations. 

 

Figure 5.42 shows the improvements on the position solution. As expected, 

improvements on position accuracy are observed after successfully fixing the cycle slips 

by using the proposed algorithm. Because the velocity estimate highly relies on the 

Doppler measurements, the improvements on velocity accuracy are very small. 
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Figure 5.42 Position accuracy improvements in relatively open sky area (Field Test 

#2) 
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Table 5.28 summarizes the improvements on the position accuracy. By fixing the cycle 

slips, the latitude and longitude accuracies are improved by 18.8% and 18.2%, 

respectively, and the height accuracy is improved by 22.2%. 

 

Table 5.31 Summary of position accuracy improvements in relatively open sky area 

(Field Test #2) 

 Lat (m) Lon (m) H (m) Horizontal (m) 3D (m) 

no CS fixed 0.32 0.22 0.54 0.38 0.66 

CS fixed 0.26 0.18 0.42 0.31 0.53 

Improvement 18.8% 18.2% 22.2% 18.4% 19.7% 

 

 

5.3 Results Summary 

In this chapter, the proposed integrated PPP GPS/MEMS IMU system has been tested 

and analyzed with relatively open sky area data and urban area data.  

 

5.3.1 Relatively Open Sky Area Results Summary 

In the relatively open sky area, although the developed integrated system does not 

achieve the centimetre to decimetre positioning accuracy due to the short duration of the 

field tests, the obtained results are still promising. In both field tests, the horizontal and 

vertical position accuracies are about 0.3 m and 0.4 m, respectively, and the velocity 

accuracy is centimetre to sub-decimetre per second. The attitude accuracies are relatively 

poor comparing to the tactical grade IMU due to the large sensor errors of MEMS IMU. 

The pitch and roll accuracies are about 0.5 degree and azimuth accuracy is about 1.5 
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degrees without applying any constraints. The results also indicate that the tightly 

coupled system slightly outperforms the loosely coupled system in the relatively open sky 

environments. This is because that GPS and INS information are more rigorously 

modeled in the tightly coupled system than a loosely coupled system.  

 

By applying the 2D velocity constraints, the observability of the attitude estimates are 

improved, which leads to some improvements on the attitude accuracies. The pitch and 

roll accuracies are improved by 5%~9%, and the azimuth accuracy is improved by 

43%~48%. 

 

Due to the absence of the GPS updates, the INS error accumulates rapidly during 

complete GPS outages. In the two field tests, the maximum RMS horizontal position 

error reaches about 38~40 m during the 30-second complete GPS outages. By applying 

the 2D velocity constraints, the maximum RMS horizontal position error is reduced to 

10~11 m. Under the 30-second partial GPS outages with 2 satellites available, the INS 

error still accumulates, although the rate of accumulation is damped. This slight 

improvement can be attributed to the updates from the 2 available GPS satellites. The 

obtained results indicate that the maximum RMS horizontal position error reaches 20~22 

m and it is reduced to 5~6 m after using the 2D velocity constraints. When 3 satellites are 

available, the positioning performance is significantly improved, although the INS error 

still accumulates at a much slower rate. The maximum RMS horizontal position error is 

about 2 m during the 30-second partial GPS outage and it is reduced to about 1.5 m by 

applying the constraints.  
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The developed algorithm of inertial aided cycle slip detection and identification is able to 

detect and identify every single cycle slips. The computed decision variable is Gaussian 

distributed with a mean value of zero if it is free of cycle slips. By fixing the identified 

cycle slips in the carrier phase measurements, improvements are observed on positioning 

accuracy. In two field tests, the horizontal and vertical position accuracies are improved 

by about 18% - 22%. 

 

5.3.2 Urban Area Results Summary 

As we know the GPS satellites availability is typically poor in urban canyons, the 

complete and partial GPS outages are frequently encountered in such conditions. Even 

though the MEMS IMU is able to bridge the GPS outages, the developed PPP 

GPS/MEMS IMU system offers the horizontal and vertical position accuracies at 8~10 m 

and 7~9 m, respectively. Even with the aiding from the 2D velocity constraints, the 

horizontal and vertical position accuracies can only achieve at 5~6 m and 6~7 m, 

respectively. For the applications requiring higher positioning performance, more 

investigations are need with the proposed integrated system.  
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Chapter Six: Conclusions and Recommendations 

 

This thesis is to investigate the integration of Precise Point Positioning GPS and low cost 

MEMS IMU. Both loosely and tightly coupled Kalman filters are developed to derive the 

optimal navigation solution. A closed loop approach is used to compensate the INS errors. 

Considering the high magnitudes of turn on biases and scale factors in the accelerometers 

and gyroscopes of the MEMS IMU, a 27-error state vector for INS errors is used in the 

filter. The 2D velocity constraints are incorporated to the integrated PPP GPS/MEMS 

IMU system to improve the attitude accuracies and to mitigate the INS error 

accumulation during GPS outages. With the aiding from the low cost MEMS IMU, a 

cycle slip detection and identification algorithm is developed to help the quality control 

in the PPP GPS. The proposed integrated system is tested and evaluated by two van tests, 

which are carried out in various GPS conditions (relatively open sky areas and urban 

areas). The equipments used in this study are the NovAtel OEM4 GPS receivers, the 

Crista MEMS IMU from the Cloud Cap Technology Inc and the tactical grade HG1700 

IMU. The reference solution is obtained from a high precision integrated DGPS/INS 

system based on the NovAtel OEM4 receivers and the tactical grade HG1700 IMU. 

 

The following sections outline the major conclusions drawn from this research and the 

recommendations for future improvements. 
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6.1 Conclusions 

The developed PPP GPS/MEMS IMU integrated system offers some promising results, 

although only a single dual-frequency GPS receiver is used. In PPP GPS, since the 

ambiguity terms are estimated as float numbers and they require a time period to 

converge to their true values, the position solution requires a convergence time to achieve 

centimetre to decimetre level accuracy. Normally the required convergence time is 20-40 

minutes. Since the two field tests only last for 16 min and 14 min, respectively, the 

ambiguities in the carrier phase measurements cannot be completely converged, a 

backward processing method is used to improve the obtainable navigation performance. 

The results indicate that the proposed integrated system provide the horizontal and the 

vertical position accuracies at 0.3 m and 0.4 m, respectively, under a relatively open sky 

environment, typically with 5~8 satellites. If the duration of the test is sufficient for the 

ambiguity terms to converge to their true values, then higher accuracy level can be 

expected from the proposed integrated PPP GPS/MEMS IMU system. The developed 

integrated system offers the velocity solutions with centimetre to sub-decimetre level 

accuracy. There is no convergence time required for velocity estimation since the 

velocity estimate highly depends on the Doppler measurements. 

  

The accuracies of the attitude estimates heavily depend on the grade of IMU used. Due to 

the significant sensor errors of the MEMS IMU, the attitude accuracies are much poorer 

than the tactical grade IMU. The proposed integrated system offers the pitch and roll 

estimates with the accuracy better than 0.5 degree and the azimuth estimate with the 

accuracy of about 1.5 degrees. The obtained results are comparable to the attitude 
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accuracies of the DGPS/MEMS IMU integrated system, which uses the same MEMS 

IMU. It has been found that some non-holonomic dynamic constraints can be used to 

improve the attitude accuracies for ground vehicles. The constraints used in this research 

are the 2D velocity constraints. Since the velocity error in the body frame is correlated 

with the attitude errors, the use of 2D velocity constraints can improve the observability 

of the attitude estimates. As a result, the attitude accuracies are improved. The results 

indicate that the azimuth accuracy is improved by 43%-48% and the pitch and roll 

accuracies are improved by 5%-9% after applying the dynamic constraints.  

 

Normally, the use of current generation of the low cost MEMS IMU can only result in 

relatively poor attitude accuracies due to its significant sensor errors. This is a limiting 

factor to apply the proposed integrated system to the applications that require high 

attitude accuracies. By the year 2020, the sensor error of the MEMS gyroscope can be 

reduced to 1˚/h (Steen et al., 2010), which is comparable to the tactical grade IMU. By 

then much higher attitude accuracies can be expected from the proposed integrated PPP 

GPS/MEMS IMU system and its application can be extended to applications requiring 

higher attitude accuracies. 

 

Results indicate that the MEMS IMU is able to bridge the GPS outages. However the 

navigation performance of the proposed integrated system degrades rapidly during GPS 

outages due to significant sensor errors of MEMS IMU. Under the complete GPS outages, 

the developed integrated system works in the pure prediction mode and therefore entirely 

relies on the INS mechanization solution without getting any correction. The position 
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error accumulates very fast and reaches about 38~40 m over 30 seconds. Even with the 

aiding from the 2D velocity constraints, it still accumulates to about 10~11 m. 

 

Under the partial GPS outages, the performance of the integrated system mainly depends 

on the sensor error characteristics, the number of satellites, and the geometry of the 

available satellites. Due to the lack of enough GPS updates, the position error still 

accumulates, although the rate of accumulation is damped. When 2 satellites are available, 

the position error accumulates to about 20~22 m over 30 seconds, and it is reduced to 

about 5~6 m after applying the 2D velocity constraints. When 3 satellites are available, 

although the position error accumulates at a much slower rate, it still reaches about 2 m 

within 30 seconds. Improvements are also observed after using the dynamic constraints.  

 

The proposed algorithm of inertial aided cycle slip detection and identification is 

implemented in 3 steps, namely WL phase based cycle slip detection and identification, 

EWL phase based cycle slip detection and identification, and cycle slip identification on 

L1 and L2 frequencies. The reason of using the WL and EWL phase is that they have 

much longer wavelength, especially for the EWL phase with a wavelength of 183 cm. 

This nature makes the cycle slip detection and identification on WL and EWL phase 

more reliable and robust. Since the WL and EWL phases are linear combination of carrier 

phase measurements on L1 and L2 frequencies, the cycle slips on L1 and L2 frequencies 

can be easily determined after the cycle slips on WL and EWL phase are identified. The 

results indicate that the developed algorithm is able to detect and identify every single 

cycle slip. By enabling the proposed algorithm in the integrated system, the horizontal 
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and vertical position accuracies are improved by 18% - 22% under a relatively open sky 

environment. 

 

The satellites availability is typically poor in the urban canyon areas. The partial and 

complete GPS outages with durations of several seconds to tens of seconds occur 

frequently. In such conditions, the positioning accuracy of the proposed integrated PPP 

GPS/MEMS IMU system can only be at several metres to tens of metres, for instance, 

with a horizontal position error of 8~10 m. Even with the aiding from the 2D velocity 

constraints, the horizontal position error can only be reduced to 5~6 m. For the 

applications requiring higher navigation performance under urban environments, more 

investigations are needed with the proposed integrated system. 

 

6.2 Recommendations 

The following recommendations can be made for the future investigation with integrated 

PPP GPS/MEMS IMU system: 

 

1) Develop fast ambiguity convergence techniques 

The proposed integrated PPP GPS/MEMS IMU system requires a convergence time, 

which is normally 20-40 minutes, to achieve centimetre to decimetre level accuracy. For 

post-mission applications, it can be overcome by using the backward processing strategy, 

which has been widely applied in GPS and INS data processing. In order to support real-

time applications, some fast ambiguity convergence techniques should be investigated. 
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2) Develop in-motion alignment algorithm for MEMS IMU.  

Due to the significant sensor errors in gyroscopes, the conventional INS alignment 

method is not suitable for MEMS IMU. In this thesis, the initial attitude of MEMS IMU 

is obtained from the HG1700 IMU, which is not practical for many applications. An 

innovative in-motion alignment algorithm should be developed to derive the initial 

attitude. 

 

3) Integrate the PPP GPS/MEMS IMU system with other sensors.  

The azimuth accuracy is typically poor in the integrated PPP GPS/MEMS IMU system, 

especially when there are no horizontal accelerations. Investigations should be placed on 

the integration of the PPP GPS/MEMS IMU system with other sensors such as steering 

angle sensor and GPS compass, which can directly provide the azimuth estimate. 

 

The positioning performance of the integrated PPP GPS/MEMS IMU system is degraded 

very fast during complete and partial GPS outages, which deteriorate the overall 

navigation performance. Investigation should be also placed on the integration of the PPP 

GPS/MEMS IMU system with other sensors, such as altimeter, video sensor and 

pseudolites, to provide a more reliable and robust navigation solution when GPS dropouts 

occur.   

 

4) Improved Estimation Method 

Since the sensor errors are modeled as Gauss-Markov processes in this thesis, future 

investigations could involve using Auto-Regressive modeling methods. Investigations 
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could be also conducted using adaptive Kalman filtering methods in the future, in 

addition to an extended Kalman filter. 
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