

UCGE Reports
Number 20289

Department of Geomatics Engineering

Geospatial-based Publish/Subscribe: Improving Real-

time Notification and Situational Awareness in Fire

Emergency
(URL: http://www.geomatics.ucalgary.ca/research/publications)

by

Ala’ Kassab

August 2009

UNIVERSITY OF CALGARY

Geospatial-based Publish/Subscribe: Improving Real-time Notification and Situational

Awareness in Fire Emergency

by

Ala‘ S. Kassab

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF GEOMATICS ENGINEERING

CALGARY, ALBERTA

AUGUST, 2009

© Ala' S. Kassab 2009

ii

Abstract

The mission of fire services plays an essential role in protecting lives, property and

natural resources. The dynamics of emergency situations and developing fire hazards

require integrating disparate sources of information and distributed parties or clients to

maintain situational awareness and timely decision making. The traditional request/reply

interaction style may function inefficiently in time-sensitive scenarios, where real-time

notification about critical events is needed. This thesis proposes Geospatial-based

Publish/Subscribe, an event-based interaction framework for transacting dynamic

geospatial events in real-time manner. Also, a system prototype, called Real-time Fire

Emergency Response System (RFERS), has been developed. The system has been

designed to integrate multiple sources of geospatial events required in the context of fire

emergencies. The system clients can be notified about geospatial events of interests and

interactively visualize the events in a GIS application. Simulated emergency scenarios

have been demonstrated and experiments have been conducted to evaluate the

performance of the interaction. The results have shown the efficiency of the developed

RFERS matching engine in searching for matched interests registered by subscribers.

iii

Acknowledgements

This thesis would not have been possible without the grace of God and the support of

many people.

First and foremost, I am sincerely grateful to my supervisor, Dr. Yang Gao, who

gave me the opportunity to join his research group at the Department of Geomatics

Engineering, University of Calgary. His continuous guidance, support, and

encouragement assisted me throughout the research for and writing of this thesis. I would

like also to thank my co-supervisor, Dr. Steve Liang, whose stimulating suggestions and

creative ideas have always been the source of my inspiration for carrying out the research

challenges. I would like to acknowledge NSERC, GEOIDE, and the Department of

Geomatics Engineering for their funding and financial support.

Thanks to my colleagues, Dr. Hamid Assilzadeh, Nand Jha, Tim Liu, and Dr.

Zhinong Zhong, for their scholastic support. I am speechless to describe the immense

support I have had from Nour El Messiri, Abdel Rahman Muhsen, and Yaser Ghanam in

refining the writing of this thesis. Special thanks to my friends, Derar Alassi, Hosam Al-

Kordi, Mohammed Alshalalfa, Mohannad Al-Durgham, and Thaer Shunnar who have

always been there for me all the way through my study.

This acknowledgement would not be completed without mentioning the endless

love of my family. Thank you.

iv

Dedication

To whom I owe everything, to my beloved parents,

Shawqi and Nabeela…

v

Table of Contents

Abstract ... ii
Acknowledgements .. iii

Dedication .. iv
Table of Contents ...v
List of Tables ... viii
List of Figures and Illustrations ... ix
List of Symbols, Abbreviations and Nomenclature ... xi

CHAPTER ONE: INTRODUCTION ..1
1.1 Introduction ..1

1.2 Publish/Subscribe Paradigm ..1
1.3 Fire Emergency Response and Situational Awareness ..3
1.4 Problem Definition and Motivation ...5
1.5 Research Objectives ...8

1.6 Research Methodology ..8
1.7 Contribution ...10

1.8 Thesis Organization ...11
1.9 Summary ..12

CHAPTER TWO: EVENT-BASED AND PUBLISH/SUBSCRIBE SYSTEMS13

2.1 Introduction ..13

2.2 Event and Notification ...14
2.3 Producers and Consumers ..17
2.4 Event-Notification Service ..19

2.4.1 Centralized ...21
2.4.2 Distributed ...22

2.5 Subscription and Expressiveness ...23
2.5.1 Topic-based Publish/Subscribe ...25
2.5.2 Content-based Publish/Subscribe ..26

2.6 Notification Matching Algorithms...28
2.6.1 Brute Force Method ...29

2.6.2 Counting-based Algorithm ..30
2.6.3 Tree-based Algorithm ..32

2.7 Related Work ...34
2.8 Summary ..39

CHAPTER THREE: GEOSPATIAL-BASED PUBLISH/SUBSCRIBE

INTERACTION ..42
3.1 Introduction ..42
3.2 Geospatial Semantics of Events ...43
3.3 Geospatial Event Clients and the Interaction Flow ...45

3.4 Design Considerations ...46
3.5 Geospatial-based Publish/Subscribe Data Models ..48

3.5.1 Geospatial Notification Data Model ..48

3.5.2 Geospatial Subscription Data Model ...50

vi

3.6 Geospatial Notification Matching ..54
3.6.1 Matching Problem ...55
3.6.2 Matching Challenges ...57
3.6.3 Improving the Matching Process ...59

3.6.3.1 Spatial Data Indexing ...59
3.6.3.2 Indexing of Geospatial Subscriptions ..61
3.6.3.3 The Proposed Geospatial Notification Matching Approach63

3.7 Delivery of Geospatial Notifications ...67
3.8 Summary ..69

CHAPTER FOUR: DEVELOPMENT OF REAL-TIME FIRE EMERGENCY

RESPONSE SYSTEM ..71

4.1 Introduction ..71
4.2 System Design and Architecture ..72

4.2.1 RFERS Topics and Data Models ...74
4.2.1.1 Emergency Asset Locations ...75

4.2.1.2 Wireless Sensor Observations ...76
4.2.1.3 Fire Incident Reports ...78

4.2.1.4 Wildfire Thermal-Infrared Images ...81
4.2.2 Client Tier ..84
4.2.3 Business Logic Tier ...87

4.2.4 Database Tier ...92
4.3 Prototype Implementation ..94

4.3.1 Development Tools and Software Packages ...95
4.3.2 Simulation of Geospatial Notifications ...95

4.3.3 Subscriber GIS Application ...98
4.3.4 Middleware Server ..102

4.4 Summary ..103

CHAPTER FIVE: TESTING RESULTS AND PERFORMANCE106
5.1 Introduction ..106

5.2 RFERS Prototype Testing ..107
5.2.1 Emergency Assets Close by a Fire Incident ..108

5.2.2 High Temperature and Low Relative Humidity Observations of Wireless

Sensors ...112

5.2.3 Wildfire Monitoring Using Remote Sensing Thermal-Imaging114
5.2.4 Discussion ..116

5.3 Performance Evaluation ...122
5.3.1 Evaluation Metric ..122
5.3.2 Simulation Environment ..123
5.3.3 Experiments ...125

5.3.3.1 Number of Geospatial Subscriptions ...126

5.3.3.2 Brute Force versus the Proposed Matching Approach128
5.3.3.3 Effectiveness of Spatial Indexing ..130

5.3.4 Discussion ..132
5.4 Summary ..133

vii

CHAPTER SIX: CONCLUSIONS AND FUTURE WORK ..135
6.1 Introduction ..135
6.2 Conclusions and Limitations ...136
6.3 Future Work ...141

6.4 Summary ..142

REFERENCES ..143

APPENDIX A: TOPOLOGICAL RELATIONSHIPS BETWEEN SIMPLE

GEOMETRIES ...149

viii

List of Tables

Table 3.1: Examples of name/value pair formatting with a geometry data type 50

Table 3.2: Examples of spatial interests‘ expressions and their respective spatial

predicates formation .. 54

Table 3.3: An example of content data structure for geospatial notifications 69

Table 4.1: Geospatial notification content-data model in Emergency Asset Locations

topic ... 76

Table 4.2: Geospatial notification content-data model in Wireless Sensor

Observations topic .. 77

Table 4.3: Geospatial notification content-data model in Fire Incident Reports topic 81

Table 4.4: Geospatial notification content-data model in Wildfire Remote Sensing

Images topic .. 84

Table 4.5: The spatial queries executed in the spatial matching process 91

Table 4.6: Data fields structure of the geospatial subscription tables 93

ix

List of Figures and Illustrations

Figure 2.1: Publish/Subscribe system components ... 14

Figure 2.2: Publish/Subscribe Model .. 20

Figure 2.3: (a) Centralized and (b) Distributed architecture of publish/subscribe

notification service .. 21

Figure 2.4: An example of content-based matching using Counting algorithm 32

Figure 2.5: An example of content-based matching using Tree-based algorithm 33

Figure 3.1: Geometrical representations of simple geographic features 50

Figure 3.2: Geospatial notification matching using the Brute Force method 58

Figure 3.3: An example of geospatial subscriptions clustering process 65

Figure 4.1: High-level architecture of RFERS ... 74

Figure 4.2: UAV in monitoring wildfire disasters .. 82

Figure 4.3: RFERS subscriber client application .. 86

Figure 4.4: The notification service process flow upon issuing geospatial subscription .. 89

Figure 4.5: The notification service process flow upon publishing a geospatial

notification .. 91

Figure 4.6: The simulation programs for publishing geospatial notifications into

RFERS topics: (a) Emergency Asset Locations topic, (b) Wireless Sensor

Observations topic, (c) Fire Incident Reports topic, and (d) Wildfire Thermal-

Infrared Images topic .. 97

Figure 4.7: Subscriber‘s application login screen ... 98

Figure 4.8: Subscriber‘s application Map tab ... 99

Figure 4.9: Subscriber‘s application Subscription/Notifications tab 101

Figure 5.1: Subscription and publishing scenario utilizing the ―FireIncReports‖ topic

of the RFERS prototype .. 110

Figure 5.2: Subscription and publishing scenario utilizing ―Emergency Asset

Location‖ topic of RFERS prototype .. 112

Figure 5.3: Subscription and publishing scenario utilizing ―Wireless Sensor

Observations‖ topic of RFERS prototype ... 114

x

Figure 5.4: Publishing and subscription scenario utilizing ―Wildfire Remote Sensing

Images‖ topic of RFERS topic .. 116

Figure 5.5: Simulated geospatial subscriptions dataset .. 125

Figure 5.6: Average matching time of a single geospatial notification using the

proposed matching approach .. 127

Figure 5.7: Average matching time of a single geospatial notification using the brute

force method ... 129

Figure 5.8: The effect of using spatial index on the average matching time 131

xi

List of Symbols, Abbreviations and Nomenclature

Symbol Definition
2D Two Dimensional

3D Three Dimensional

API Application Programming Interface

CPU Central Processing Unit

EMS Enterprise Messaging Service

FSA Forward Sortation Area

GB Gigabyte

GeoTIFF Georeferenced Tagged Image File Format

GIS Geographic Information System

GPS Global Positioning System

GUI Graphical User Interface

LBS Location Based Service

PDA Personal Digital Assistant

RAM Random-Access Memory

RFERS Real-time Fire Emergency Response System

SDK Software Development Kit

SMS Short Message Service

SQL Structured Query Language

UAV Unmanned Aerial Vehicle

USDA United States Department of Agriculture

WSN Wireless Sensor Network

1

Chapter One: Introduction

1.1 Introduction

Fire emergency services and public safety agencies play an essential role in preventing

loss of lives and property as well as in protecting environment resources. Acquiring the

relevant geospatial information about an emergency event and its surroundings provides

decision makers better insight to effectively determine the appropriate response tactics

and allocate safety resources and personnel. The dynamics of the emergency situation

and its circumstances require collecting information from disparate sources. Timely

disseminating this volume of dynamic information among multiple users and responsible

parties can be challenging. This research aims to develop an information communication

framework based on the publish/subscribe interaction paradigm. By disseminating

geospatial events (i.e., events that are associated to the 2D geographic space) of interest

to the right party at the right time, the proposed framework shall support public safety

and heighten situational awareness.

This chapter starts with a brief introduction on the publish/subscribe interaction

model and the application scope in fire emergency in Section 1.2 and Section 1.3,

respectively. The remaining discusses the problem addressed in this research, the

objectives, the research methodology, the contribution, and ends with the organization of

the thesis document and the summary of this chapter.

1.2 Publish/Subscribe Paradigm

The Internet has become a primary and effective medium for distributed users to

share information and resources all over the world. In such distributed computing

2

environment, prompt discovery and delivery of relevant information are highly

demanded by users to help them make responsive and timely decisions. The interaction

style, namely client/server or request/reply, has been traditionally adopted for transacting

information in distributed systems. To obtain particular information, clients have to

submit a request (e.g., a database query) then wait to get the response containing the

information from the addressed server (i.e., information provider). This point-to-point

and synchronous interaction has served information browsing activities very well.

However, this interaction model is not necessarily efficient in all data communication

activities, particularly, in responsive systems. Several deficiencies of the request/reply

interaction model will be detailed in the problem definition of this research (Section 1.4).

This issue has raised the need for more flexible communication model especially for

dynamic, scalable, and responsive distributed applications.

Recently, the publish/subscribe paradigm has gained increasing attention from

researchers and industry to overcome the burden of the request/reply model (Pietzuch

2004, Eugster et al. 2003). The publish/subscribe is an asynchronous, powerful, and

event-driven communication paradigm that supports many-to-many interaction between

event clients, where an event is a piece of information that represents an instantaneous

occurrence or happening of interest. An event client can be an information producer

(publisher), an information consumer (subscriber), or both at the same time. Event clients

are exchanging events in form of data messages, called notifications, throughout the

system network. Producers publish events that might be of interest to other clients, and

consumers subscribe their theme of interests in events that they would like to receive.

Consider the following example, a client monitors stocks and bases his decision in

3

trading certain stocks on current real-time quotes. The quoting server (i.e., publisher)

broadcasts current quotes for trading and the client (i.e., subscriber) registers his interest

to be notified about certain quotes‘ prices. The fundamental component of any

publish/subscribe system is the middleware layer, namely the event-notification service.

It delivers published events to their corresponding subscribers asynchronously and in

timely manner. Event clients are loosely coupled in space and time in this style of

interaction. This communication paradigm aids distributed systems in terms of

scalability, integration of autonomous and heterogeneous components, intelligent

dissemination of relevant information, and timely delivery of crucial events data.

The means of the publish/subscribe interaction model can efficiently meet the

communication requirements of many distributed systems and applications. Specifically,

the focus of this research, revolves around exploiting the publish/subscribe interaction

paradigm in developing a robust and flexible information communication model for fire

emergency response systems. The scope of this research‘s application area is discussed

further in the next section.

1.3 Fire Emergency Response and Situational Awareness

Fire emergency systems are responsive in their nature; dispatching and rescuing

operations are performed as response actions upon the occurrence of fire. Delaying the

response would cause an increase in the loss of lives and property, where few seconds

can separate between fire containment and flashover.

Fire services rely on acquiring accurate information that reflects the emergency

environment before and during the occurrence of an event in order to conduct successful

4

response operations. Geographical data is broadly utilized to comprehensively describe

the spatial and descriptive semantics of fire hazards and their surrounding features. The

advent of the Geographical Information Systems (GIS) technology has widely supported

the operations of planning, preparedness, mitigation, and delivery of fire services by

effective storing, retrieving, analyzing, and processing of geospatial information

(Maguire 2005). GIS technology has been turned into a key role component in the

process of efficient management of crisis incidents (Zerger and Smith 2003). Moreover,

leveraging such technology along with decision support systems results in numerous

profits (Keramitsoglou et al. 2004, Wybo 1998). However, utilizing such systems comes

in a stage following the collection of the current and up-to-date information about the

emergency. Here, information communication plays a vital role in effectively connecting

sources of situational data on one side with emergency response teams and other involved

parties on the other side. As time is the critical factor in such situations, real-time

awareness of crucial data is also essential. Otherwise, decisions would be delayed which

in turn might lead to failure in the emergency response.

The nature of data that assists fire response operations can be classified into two

categories: static and dynamic data. Geographical information such as locations of

historical incidents, statistics, risk areas, street networks, points of interest and other

features are included in the static data class as they are rarely changeable over time.

Current GIS systems and applications are capable of handling this class of information

efficiently. On the other hand, dynamic data encompasses sudden occurrences of events

or rapidly changing information. Locations of emergency vehicles, meteorological sensor

observations, 911 emergency calls, and airborne visible and infrared images of current

5

active fires are some examples of dynamic data. Acquiring such data and monitoring

crucial occurrences of events highly requires an advanced information communication

framework between dynamic data sources and responsible parties. Usually, fire

emergencies involve responders from different teams and jurisdictions, including:

firefighting crews, police stations, medical services, fire chiefs and managers. Timely

dissemination of dynamic events is necessary to reduce the response time. However, the

involved parties may have different interests in dynamic data according to their

operational functions in the emergency. In other words, instead of tracking all the

changes of dynamic data or events, they would rather prefer to be alarmed about certain

happenings or specific changes in state. These requirements add more challenges to the

current interaction and information dissemination protocols.

1.4 Problem Definition and Motivation

The information communication and transacting of dynamic observations between

distributed components is a key function in fire emergency response and management

systems (Turoff et al. 2004). However, the traditional interaction models are based on the

request/reply communication style between distributed entities. These models may not be

appropriate for modern requirements as they lack the following features:

1. Real-time delivery and pushing of dynamic events data to interested clients:

Usually, newly generated or updated information is made available in web servers

for public use. Using the request/reply interaction, clients have to initiate requests

for obtaining the latest data and the servers passively respond to the requests. As

clients do not know when the required data will be available in the servers, they

6

tend to send requests to the servers in constant cycles of time. Periodic requesting,

also called pulling, of data opposes the merit of real-time data acquisition as it

usually results in either redundant data or delayed awareness of current, may be

crucial, data. The former happens because of issuing requests too often, while the

latter happens because of issuing requests too infrequently. Also, continuous

pulling is a resource-intensive operation, it might overload the interacting

components, and it might cause the entire system to break down (Franklin and

Zdonik 1998).

2. Many-to-many and asynchronous interaction style: with the availability of

numerous information sources over wide-area of networks, request/reply

interaction makes it difficult for clients to track their needs of information from

all different data sources. In the request/reply interaction, a client synchronously

requests information from a server then waits until the server responds with a

reply (Muhl 2002). The request operation is transacted between one client and one

server at a time. In case the required information is available on multiple servers,

the client needs to request the information one by one from the servers.

3. Scalability and loose coupling of interacting clients: part of this problem is

introduced from the previous item. Interacting components are tightly coupled as

a consequence of the synchronization procedure of interaction in the request/reply

model; while waiting for the reply from the server, the client component stays

quiescent until the request results come back to the client side (Muhl 2002). Any

failure of either side breaks down the communication completely. Additionally,

clients and servers should have previous knowledge about the identity (i.e., IP

7

address) of each other in order to communicate by means of the request/reply

model. At a time, a request is issued to a single server whose identity must be

defined in the request operation. Then, the server replies to the client by a call

back function that addresses this specific client. These issues significantly impede

the scalability of distributed systems in terms of supporting growing number of

clients (Pietzuch 2004). Also, they limit the ability of the system to grow and

integrate new members in the interaction flow.

4. Supporting heterogeneous and dynamic behaviours of clients: in many cases,

employing the request/reply style leads to static and rigid types of applications

(Eugster et al. 2003). Thus, it would raise difficulties to accommodate clients who

are joining and leaving the system without coordination or pre-configuration.

Furthermore, clients require expressive ways to define their variety and precise

interests in data, so that they can flexibly set roles that suit their demands and

prevent irrelevant data to be delivered. This is cumbersome to achieve using the

request/reply model.

Emergency response and management systems necessitate transacting information

between components in a timely and flexible manner. This cannot be realized efficiently

by using the request/reply model. There is a need of an alternative paradigm, namely

event-based publish/subscribe, to alleviate the deficiencies of the traditional style as

mentioned above. Achieving this can significantly support current emergency systems in

fire crises, which in turns, improves situational awareness, decision making, and recovery

8

processes, hence preventing loss of lives and property. This is the main motivation of this

research work.

1.5 Research Objectives

The primary goal addressed in this research is to outline an event-based interaction

framework for real-time notification and dissemination of dynamic geospatial events to

support situational awareness in fire hazards. To serve this primary goal, the following

objectives are to be met:

1. Investigating the current theory and implementation aspects of event-based and

publish/subscribe systems.

2. Incorporating geospatial type of events in the interaction scheme by designing

suitable data models.

3. Designing a geospatial event-based publish/subscribe framework and improving

the performance of the dissemination flow.

4. Developing a prototype system for real-time fire emergency response.

5. Testing and evaluating the performance of the interaction by simulating geospatial

events in several emergency scenarios.

1.6 Research Methodology

The methodology of this research consists of four major components: literature review,

design and data modeling, development and implementation, and finally testing and

evaluation.

9

The research starts by a review of the literature relating to this research‘s

objectives (see Section 1.5). One can notice that the research problem (see Section 1.4) is

multidisciplinary; it combines the research field of event-based and publish/subscribe

paradigm which is one recent concern of many computer science communities, the GIS

and spatial databases research, and in addition to the information technology and systems

development. As the publish/subscribe paradigm is the main focus, a large part of the

literature review has been oriented to explore terminologies, interaction components,

development tools, and techniques used in current publish/subscribe and event-based

systems.

The second stage focuses on designing an extended publish/subscribe interaction

model particularly suitable to incorporate spatial semantics of operations. The extended

model is called Geospatial-based Publish/Subscribe. In the extended model, two data

structures, geospatial event/notification and geospatial subscription, are proposed for the

interaction operations. Based on these two data structures, the flow process between the

publish/subscribe components, namely the publisher, the subscriber, and the event-

notification service middleware, is defined. Moreover, an efficient approach for matching

geospatial notifications against geospatial subscriptions is proposed.

The third stage is concerned with developing and implementing a system

prototype named Real-Time Fire Emergency Response System. The above proposed

model, Geospatial-based Publish/Subscribe, is realized in the system implementation.

Two main software components were developed for the prototype: 1) the subscriber

component, which is a GIS software intended for users to perform geospatial

subscriptions and visualize received geospatial notifications interactively in GIS mapping

10

environment; and 2) the event-notification service, which is the mediator component

residing between the system clients. Simulation programs were developed to publish

several themes of geospatial events throughout the system network. Four types of

geospatial event data structures, aka topics, were defined: emergency assets locations,

wireless sensors observations, fire incidents reports, and wildfire remote sensing thermal

images. The system was implemented using C# programming language, ArcGIS 9.3

products, and TIBCO Enterprise Messaging Service (EMS) 4.4.

Finally, to test the implemented system prototype, several scenarios are

envisioned using simulated geospatial events to evaluate the proposed Geospatial-based

Publish/Subscribe model. The performance of the system prototype was evaluated by

measuring the time consumed to match and disseminate geospatial events among

different numbers of registered subscribers.

1.7 Contribution

In this thesis, an extended framework called Geospatial-based Publish/Subscribe is

developed which resembles a generic middleware for supporting information

dissemination of dynamic geospatial events in fire emergencies. To date, our

investigations have shown that no similar framework has been developed. The literature

has presented a variety of applications to which publish/subscribe paradigm has been

employed, including stock markets, news dissemination, control systems, network

monitoring and many others. These applications incorporate transacting primitive types

of events data, mainly textual data. Whereas, this research tackles more complex data

structures, namely spatial events data, which encapsulates spatial representation of the 2D

11

geographic space. Recent research efforts have investigated the publish/subscribe

interaction in geographical nature of applications, such as Location Based Services (LBS)

and Wireless Sensor Networks (WSN). However, the publish/subscribe interaction was

limited to include point type of events and spatial range query type of subscriptions. This

research differs from the previous works in the sense that a wider range of spatial types of

events as well as more expressiveness of spatial subscriptions are incorporated.

The major contribution of this research is the exploitation of events-based and

publish/subscribe model in emergency and hazards applications. Furthermore, it is

expected that the direction addressed in this research can be a motive to establish a

standard geospatial-based publish/subscribe model recognizing the transaction of

spatially-related events worldwide.

1.8 Thesis Organization

Chapter 2 gives the conceptual and theoretical background of this research. Chapter 3

introduces the proposed Geospatial-based Publish/Subscribe model including definitions

of geospatial events and geospatial subscriptions, and also explains the proposed event-

subscription matching approach by means of clustering and spatial indexing. Chapter 4

presents the Real-Time Fire Emergency Response System (RFERS) prototype designed

and developed as part of this research. Chapter 5 discusses the testing of the system

implementation with several simulation scenarios, and also provides an evaluation of the

system prototype and the proposed matching approach performance in disseminating

geospatial events. Finally, Chapter 6 concludes this research with a summary, limitations,

and future works.

12

1.9 Summary

This chapter gave a brief presentation of the research topic by first introducing the

publish/subscribe paradigm and its potential application in fire emergency and situational

awareness. Next, it defined the research problem, and stated the research objectives. It

then introduced the methodology through which the research problem has been tackled as

well as the contribution of this research. Lastly, the thesis chapters were outlined.

13

Chapter Two: Event-based and Publish/Subscribe Systems

2.1 Introduction

Event-based systems are increasingly gaining attention and growing over the recent

years. They manifest a powerful information-driven middleware for efficient interaction

between clients in large-scale and distributed applications. Publish/subscribe is widely

common interaction model used in event-based computing (Muhl et al. 2006). The key

concept of this interaction paradigm is introducing the middleware component which

facilitates the interaction between distributed clients. The middleware component takes

the responsibility of conveying the information messages from producer clients

(publishers), who generate and publish events information, to consumer clients

(subscribers), who are interested in receiving the events‘ information message. In this

form of interaction, clients are loosely coupled from each other. In other words, they

interact without direct knowledge of each other. The only aspect that relates clients is the

content data and values of the events information messages. Producers publish event

messages, usually called notifications, throughout the system as they might be of interest

to other clients. Consumers receive events that are only of interest as they previously

have registered their need of events by specifying filters, called subscriptions. The

middleware, called the event-notification service, handles published events, matches them

with the registered subscriptions, and pushes the events to matched subscriber clients

asynchronously and in a timely manner. This interaction procedure is what enables

heterogeneous, autonomous, and dynamic clients or sensor devices to be integrated in the

system and leads to better scalability and communication efficiency. The main

components of publish/subscribe system are depicted in Figure 2.1.

14

Figure 2.1: Publish/Subscribe system components

This chapter presents the theoretical background of event-based and

publish/subscribe interaction model aiming to help the reader to conceptualize the key

terminologies, components, system design, and techniques used in this research field.

Section 2.2 defines the terms event and notification used in the context of this research.

Section 2.3 and Section 2.4 describe the publish/subscribe system components and their

roles in the interaction flow. Section 2.5 explains two publish/subscribe communication

models by which producers and consumers transact events or notifications. Section 2.6

introduces several algorithms used to improve matching events with registered

subscriptions, thus, enhancing the efficiency of events dissemination. Section 2.7

concludes by a review of some research works related to the topic of this research.

2.2 Event and Notification

The definition of the term event has been presented in many places in the literature. In

this research, however, the definitions adopted by the distributed computing communities

will be used. According to Mansouri-Samani & Sloman (1997), an event is defined as

15

any happening of interest or an instantaneous change of state. Also in Muhl et al. (2006),

an event is regarded as any detectable change of state that can be observed from within a

computer system. Despite the small discrepancies of defining an event, both definitions

mentioned above and many others agree on two major characteristics of an event: firstly

is the irregular and instantaneous occurrence and secondly that this occurrence is of

interest to other clients or parties. The appearance of a person detected by sensors, an

increase of a currency quote in stock markets, an observation of a temperature sensor, and

a car accident on a highway street are some examples of an event. The concept of events

is considered a proper abstraction for observing the dynamic nature of real world entities.

Events are generated and broadcasted as data-of-interest packets usually to inform or

notify disparate clients about the current state or crucial happening of associated objects.

Detection and monitoring systems rely on receiving such events, and accordingly,

appropriate actions would be taken when needed at the right time.

Modeling the abstraction of an event might be given different forms and

semantics. Some of the critical aspects are considered essentials in defining an event

model (Carzaniga 1998), including: (1) events have duration or not, (2) binding events

with objects that relate to or else events are modeled irrespectively of their origins, (3)

modeling the observation mechanism of events or modeling the occurrence of events

regardless of the existence of any object responsible of detecting their occurrence, and (4)

the type and the amount of information associated with an event. Usually, conducting a

sufficient event model involves analyzing the requirements of the intended application

and the functionalities that have to be accomplished.

16

An event notification, a notification in short, is defined as the datum that reifies an

event (Muhl et al. 2006). In other words, a notification contains information describing

the occurrence of an event. Usually, the actual representation of a notification is a

message that contains data values about the event occurrence. The term notification

seems a useful abstraction as in most cases a particular occurrence of events is of interest,

for example: ―Notify me when the temperature is above 35
o
C‖. In many event-based

systems, a notification is considered the primitive element in the interaction process as it

involves the physical representation of an event. Thus, designing a notification model is

investigated instead of modeling the events themselves. Notifications may describe the

plain occurrence of events, but they may contain additional information that describes the

circumstances of these occurrences. For instance, a notification of a temperature value

may contain additional information such as: Sensor ID, Location, Time, and other

attributes describing this particular occurrence. Furthermore, this additional information

may be considered for security or authorization reasons or simply for the process of

routing the generators of notifications. Various notification data models have been

investigated in many research works. A common data model used to structure the content

attributes of a notification is the name/value pairs (Carzaniga et al. 2001). There are other

data models also used in this context, such as: semi-structured records (e.g., XML)

(Altinel and Franklin 2000, Muhl and Fiege 2001) and object-oriented records (Hayton et

al. 1996, Eugster et al. 2001).

17

2.3 Producers and Consumers

Producers and consumers, also called publishers and subscribers respectively, are two

classes of users or software components, generally they are called clients, that

interconnect by means of publish/subscribe systems. Software components in this context

refer to applications, processes, threads, web services, or other active entities that take

roles in the communication flow of the publish/subscribe system. Each component has an

identity and location on the network during the interaction with the system. Those

components should have the ability to transact, broadcast and/or receive, events or

notifications. It should be mentioned that a client can act as a producer and a consumer

simultaneously, but here the two types are distinguished in order to understand the role of

each of them.

Producers are clients that generate notifications; they publish notifications via the

system as those notifications might be of interest to other clients. The focus of each

producer is bounded by observing the local happenings, including its own state changes,

and generates notifications accordingly. The decision of when and what notifications are

needed to be published is left to the producer itself. For instance, a temperature sensor,

acts as a publisher component, can publish temperature observations on regular time

basis, while an officer would publish a notification of a fire incident report once it

happens. Producers publish notifications asynchronously in the sense that neither

receivers are addressed in the notifications nor are producers aware of other clients on the

network. Rather, all published notifications are addressed to the event notification

service; this is detailed in Section 2.4.

18

On the other hand, consumers are those clients who receive notifications of their

interests. Consumers subscribe their theme of interests in one or a set of events that might

be published in the future. Accordingly, they are notified of events that match their

interests (i.e., subscriptions). Similar to the producers, consumers perform subscriptions

in asynchronous manner and without any previous knowledge about the actual source of

notifications or any other clients incorporated in the system. In other words, a

subscription action would be performed in order to register an interest on certain types of

notifications rather than subscribing to one or set of destinations and thus receiving

notifications that are only generated by those predefined sources. Using the previous

example of temperature observations, a monitoring station, acts as a subscriber client,

would subscribe its interest in temperature observations that exceed 32
o
C rather than

subscribing to a particular source of the observations. Consequently, whenever a

temperature observation is published by any temperature sensor and exceeds 32
o
C, this

particular observation will be delivered to the monitoring station in a timely manner.

Regarding the subscription operation, two key questions may arise. The first question is

regarding the mechanism through which subscribers can register their interests using the

publish/subscribe system. The second question concerns the level of expressiveness that

the subscribers can have in order to describe their specific interests. The answers of those

questions are detailed in two models of subscriptions that are widely used and

investigated in the literature: Topic-based and Content-based models; both models are

discussed later in Section 2.5.

19

2.4 Event-Notification Service

Event-notification service, notification service in short, is the core component of event-

based systems. It interposes between publisher from one side and subscriber from the

other side. Notification service is responsible for conveying notifications between clients.

All the notifications published by producers as well as all the subscriptions issued by

consumers are addressed to and handled by the notification service. The service takes the

responsibility for delivering each notification to all consumers having registered

subscriptions that matched the published notification. The key function of this component

is decoupling the producers and the consumers from being responsible for the

communication procedure. In other words, the mediating service handles the notifications

delivery process on behalf of producers and the evaluation and matching of subscriptions

on behalf of consumers. Clients of publish/subscribe system deal with the notification

service as a black box (Muhl, et al., 2006).

Four basic operations are provided by the interface of the publish/subscribe model

(Cao 2006). When a producer decides to publish a notification, the required attributes are

encapsulated in a form of a notification message and the Publish(event) operation is

called then. A consumer registers his interest in events by calling Subscribe(sub) where

the sub parameter determines what notifications are of interest to the consumer.

Accordingly, the notification service stores this subscription and prepares it for later

matching with published notification. Similarly, a consumer can terminate an existing

subscription by calling Unsubscribe(sub) operation. Upon matching published

notifications with registered subscriptions, Notify(event) operation is performed by the

notification service as a call back function in order to propagate notifications among

20

consumers whose subscriptions are met. Additionally, a fifth operation, Advertise(ad),

might be exhibited by which producers can advertise their notifications data structure that

will be published in the future. The advertisement operation would serve the notification

service to improve the delivery and the matching processes utilizing the expected flows

of notifications. Furthermore, this operation can be used to inform subscriber clients

about the data structure and content format of future publications. Figure 2.2 shows a

high-level design of the publish/subscribe model.

Figure 2.2: Publish/Subscribe Model

The strength of event-based systems relies on the successful operation of the

notification service. In fact, most of the computation and the communication processes

are happening inside the core of the middleware component. The internal architecture of

the notification service is one essential factor that has a large influence on the scalability

of the system. In the next sub-sections, two types of notification service architecture are

addressed: centralized and distributed architectures, as shown in Figure 2.3.

Thorough investigation and analysis of different architectures of the notification

service is beyond the scope of this research. However, the major types of notification

service architecture are explained for the sake of providing a general background on

21

different aspects of this research topic. In the development of the remaining chapters, the

centralized architecture of the notification service is considered for simplicity reasons.

This issue is discussed more later on.

Figure 2.3: (a) Centralized and (b) Distributed architecture of publish/subscribe

notification service

2.4.1 Centralized

As shown in Figure 2.3(a), the centralized architecture of the notification service

comprises one server component. This central unit is addressed by all the subscription

operations as well as all the publications. One principal element of the notification

service is the matching engine, which is an algorithm used to match the publications (i.e.,

notifications) with the registered subscriptions. Consequently, it sends the published

notifications to the subscribers whose subscriptions are successfully matched. The

centralized notification service is introduced as the first generation for the

implementation of event-based systems. It is claimed as an easy architecture to deploy

22

and manage and it is well suited for small-scale event-based applications (Cao 2006).

From a technical perspective, the centralized notification service architecture enables the

developers to focus on implementing complex matching algorithms (Fabret et al. 2001).

Despite the simplicity of the centralized architecture, it may reduce the scalability of the

system and introduce a single point of failure (Cugola and Jacobsen 2002). Moreover, in

Cao (2006), several examples were shown where the centralized notification service

tends to be an inefficient architecture in cases such as high volume of event publications,

high subscriptions diversity and wide users distribution.

2.4.2 Distributed

As shown in Figure 2.3(b), the distributed architecture of the notification service

comprises several interconnected server components acting conceptually as a whole as a

centralized middleware between users. Usually, these components are called event

brokers (Pallickara and Fox 2003) or dispatching servers (Cugola et al. 2001). Each

broker serves the local users that are connected to it. Every broker is connected to other

brokers within the notification service and thus enabling connectivity to other subnets in

the system network. A broker in the notification service acts simultaneously as a

publisher and a subscriber on behalf of the publications and the subscriptions that are

directed to it from its subnet or the neighbour brokers. The role of a client, publisher or

subscriber, ends by accessing the closest brokers in the system network and performing

the required publish/subscribe operation. Afterwards, the notification service takes the

responsibility of managing this operation throughout its inner brokers. The

publish/subscribe operations performed by clients are distributed efficiently among the

notification service brokers in a sense to exploit localities in the notification delivery

23

process (Muhl 2002). Delivering notifications to interested subscribers means routing

those notifications starting from publisher components located in certain subnets,

throughout the notification service cloud, and reaching potentially numerous subscribers

within other distributed subnets. This mechanism is called Event/Notification Routing

(Muhl et al. 2006, Cao 2006).

The distributed architecture of the notification service seems promising for

achieving highly scalable event-based systems over wide-area or large-scale networks

(e.g., the Internet). This matter is a primary motivation that led vast research works to

realize the distributed architecture of notification services. However, reaching reliable

and efficient event-based systems becomes more challenging. Extensive efforts have

been spent mainly by the computer science communities in many aspects that concern the

distributed notification service architecture, such as: security of publish/subscribe

systems (Belokosztolszki et al. 2003, Wang et al. 2002), fault tolerance in reliable

notification delivery and self-stabilizing strategies (Jaeger and Muhl 2005, Pallickara et

al. 2007), and automatic topology configuration and self-organizing publish/subscribe

systems (Jaeger et al. 2007, Jaeger 2005). These topics and many others, however, still

subjects for future research towards improving the efficiency of distributed notification

service in publish/subscribe systems.

2.5 Subscription and Expressiveness

Subscriptions can be seen as boolean-valued filters, which are functions that take a single

notification as an input and return true, in case of a match found, or false, in case of no

match found. When a consumer client requires to be notified by certain events, the

24

consumer would express an interest of notifications by defining a filter function then

performing a Subscribe operation, as mentioned in Section 2.4, via the publish/subscribe

system interface. The operation then is transmitted to the notification service which in

turn manages and stores the filter information inside its core. Once a notification is

published, the notification service evaluates all the filters of the registered subscriptions

and delivers the notification to the consumers whose subscriptions are matched.

Consumers are limited in defining their filters by the provided subscription model or

language. How fine-grained filters the consumers can use to express their specific

interests is what defines the term subscription expressiveness (Carzaniga et al. 1999).

Increasing the expressiveness of the subscription language means enlarge the domain of

the filter model in defining precisely the notifications of interest. In fact, offering rich and

more expressive subscription language for consumers is one of the objectives that

researchers are seeking to achieve. However, the degree of the expressiveness

significantly affects the complexity of the matching algorithm, thus, impacts the

efficiency of the delivery of notifications process. Moreover, considering expressive

subscriptions would raise a big challenge in terms of the scalability of distributed event-

based systems as those features are conflicting (Carzaniga 1998). Therefore,

compromising between the aforementioned tradeoffs in deploying event-based systems

should be considered.

In notification services, four subscription models (i.e., filtering models) are

distinguished in the literature: channel-based, topic-based, type-based, and content-based

models (Muhl et al. 2006). Particularly, topic-based and content-based are emphasized in

25

this research as they are the most widely adopted models. The next sub-sections discuss

these two models in details.

2.5.1 Topic-based Publish/Subscribe

Topic-based, also called subject-based (Oki et al. 1994, TIBCO 1999), is the earliest

subscription model adopted in event-based systems. By employing the topic-based

mechanism, the notification service predefines a set of subjects or topics by which

notifications and subscriptions are classified. Producers are able to publish notifications

to any of the predefined topics by annotating each of their notifications with a name

string or an ID that refers to a certain topic. From the other side, consumers subscribe

their interests in one or a set of topics and thus they receive all the notifications that are

published to the topics of interest. A topic can be composed of a set of keywords.

Producers and consumers can use those keywords for publishing or subscribing,

respectively. The notification service then uses those keywords to classify them into

groups.

Topic-based publish/subscribe extends the notion of channels or groups

communication, and can leverage the existing group-based multicast communication

techniques, such as IP multicast (Floyd et al. 1997), in the notifications delivery process.

In other words, subscribing to a certain topic can be seen as becoming a member of a

group that refers to that topic. Consequently, publishing an event to that topic is viewed

as broadcasting this event to the entire topic‘s members. Topic-based introduces a

programming abstraction that maps individual topics to distinct channels in the

communication procedure.

26

The topic-based filtering model is simple to understand and deploy. Industrial

solutions, such as Vitria M3O (Holloway 2008), TIBCO Enterprise Messaging Bus

(TIBCO 2000), and USENET News system (Harrison 1995), have adopted the topic-

based mechanism. Various enhancements to this mechanism have been proposed in the

literature. The use of hierarchies in organizing nested topics offers the consumers to

perform subscriptions on certain nodes of the topics‘ trees and thus involving all child

topics of those nodes (Eugster et al. 2003). The idea of wildcards (TIBCO 1999) has

been introduced in describing the topics by a set of keywords, thus enabling the

consumers to publish or subscribe to several topics that match a given set of keywords.

Utilizing an XML model in describing topics schema has been investigated as part of the

web notification service standard (Graham et al. 2004).

Despite the simplicity and the enhancements added to the topic-based model, the

static scheme of a predefined set of topics may restrict the power of subscribers in

expressing their specific interests. It should be clear that the actual content information of

published notifications has no effect in the matching process and the delivery of those

notifications, as it is all about which topics that notifications are published to and

subscriptions are registered in. Subscribers have to subscribe to all or none of the

notifications published to certain topic. In this case, receiving large amount, irrelevant

information would be resulted.

2.5.2 Content-based Publish/Subscribe

Content-based subscription model is the most generic notification selection mechanism

(Muhl 2001). This mechanism allows subscribers to express their interest not only in the

topic, but also in the actual content information of notifications. In fact, topic-based is

27

considered a special case of the content-based in which the topic name string of

notifications is evaluated against register subscriptions (Cao 2006). Usually using the

content-based model, a subscription encapsulates a single or conjunctive predicates (i.e.,

boolean-valued expressions) that constrain the notifications of interest. Those predicates

are evaluated over the content information of notifications and accordingly delivering the

matched ones. A simple predicate usually contains an attribute name, a basic comparison

operator (e.g., =, >, <, ≥, ≤, LIKE), and a value in the same data type of the attribute

name. More complex subscriptions can be formed by combining more than one predicate

using logical operators (e.g., AND, OR). For instance, meteorological observations are

published by sensors network, while a consumer is interested in those observations where

the temperature exceeds 35
o
C. Thus, the consumer would register a subscription as:

TEMPERATURE > 35. Another consumer is interested in certain values of humidity and

temperature, thus the consumer would subscribe an interest as: TEMPERATURE > 40

AND HUMIDTY ≤ 0.20.

Enriching the expressiveness of the subscription language by introducing the

content-based model adds remarkable value in the paradigm of publish/subscribe

systems. Consumers are released from being restricted in set of topics, as in the topic-

based model, and allowing them to express their diversified interests at a fine-grained

level (Carzaniga and Wolf 2003). Moreover, delivery of irrelevant or uninteresting

notifications to consumers is reduced by employing this model, and this is important for

parties that have limited processing power devices (Muhl 2002). Nevertheless, realizing a

scalable publish/subscribe system as well as conducting an efficient implementation of

the matching engine by employing the content-based model is challenging. The content-

28

based requires more complex notifications matching algorithms because of the need of

handling potentially high diversity and large amount of subscriptions; the diversity of

registered subscriptions would prevent them from being classified into a finite set of

groups, as in the topic-based. This may lead the matching engine to evaluate each single

subscription separately against the published notifications, which is an inefficient and

time wasting approach. Many researchers have spent their efforts towards developing

notification matching algorithms and thus optimizing the matching procedure in the

content-based publish/subscribe systems. This is detailed in Section 2.6.

2.6 Notification Matching Algorithms

As mentioned in Section 2.4, the notification service takes the role of connecting

producers with consumers by distinguishing the published events or notifications and

distributes the information messages to the interested parties. Notification matching is a

principal process in any publish/subscribe system. This process is what determines the

communication or the information flow between clients. The matching problem can be

formulated as identifying the satisfied subscriptions by a given notification. The output

from this process is a set of matched subscriptions that refer to one or a set of consumers

for which the published notification should be delivered. Usually, the notification service

executes the matching process right after a notification is published. Consequently, the

consumers interested in this notification are determined then notified by pushing and

delivering the published notification to them.

The performance of a publish/subscribe system predominately relies on the

efficiency of the matching process or algorithm applied. The faster the matching

29

algorithm can determine the interested consumers, the minimum the time delay is from

publishing the notification until delivering it to interested consumers, hence, the better the

performance is. The complexity of the matching process increases relatively with

increasing the expressiveness of the subscription language. In the topic-based

subscription model, the matching process can be limited by strings matching of the topic

names attached with the published notifications against topic names of registered

subscriptions. While in the content-based subscription model, the matching process is

extended to reach the content-data encapsulated in published notifications. Moreover, the

matching becomes more complex as the fine granularity of the filters encapsulated in the

subscriptions. Recently, several research works have focused on developing matching

algorithms to optimize this process in the content-based model, as it is considered the

most generic form in publish/subscribe interaction (Eugster et al. 2003, Muhl 2001).

 In the next sub-sections, three matching algorithms of the content-based model

are presented: the naïve algorithm (also called the brute force method), the counting-

based method, and the tree-based method. The last two methods have been extensively

recognized in the literature for optimizing the matching process. Several extensions have

been developed based on the main idea of these two methods. A thorough investigation

of these algorithms and their extensions is not in the main interest of this research.

However, the following sub-sections discuss the general concept of these algorithms and

how they can optimize the matching process.

2.6.1 Brute Force Method

This is the naïve and the simplest solution of the matching problem. All the subscriptions

are evaluated sequentially (i.e., one by one) against a single notification and consequently

30

the matched subscriptions are determined. Commonly, all the subscriptions are stored in a

single table inside the notification service, where each row refers to a single subscription.

A matching function takes a single notification and a single subscription row as inputs

and associates a boolean output to the subscription; true if the notification matches the

subscription and false if the notification does not match the subscription. The matching

function iterates all over the subscriptions, which is evaluating one subscription at a time.

Although the brute force matching method is simple to implement, obviously, the

performance degrades as the number of subscriptions increases. A single predicate may

be evaluated many times as this predicate appears in more than one subscription, and that

could be a waste of resources. Furthermore, subscriptions are considered independent

elements in this matching method while relations may exist among each other. For

instance, if a predicate ―TEMPERATURE > 30
o
C‖ is evaluated and found as a match,

then another predicate ―TEMPERATURE > 25
o
C‖ should also be a match without even

evaluating it. Those dependencies between subscriptions can be exploited to improve the

matching process.

2.6.2 Counting-based Algorithm

The focus of the counting-based algorithm (Yan and Garcia-Molina 1994) is to evaluate

the predicates contained by the subscriptions rather than evaluating the subscriptions

themselves. The counting algorithm separates the process of predicates matching from

the process of subscriptions matching. In other words, the matching process of the

counting algorithm is divided into two steps: finding the predicates that are matched by a

notification, and finding the matched subscriptions whose predicates are satisfied.

31

The idea of the counting algorithm is to maintain a counter initialized as zero for

each subscription. Given a notification, the matching process iterates sequentially over

the inner attributes of the notification and matches it with all the predicates. In each

iteration, if a predicate is matched with the notification attribute the counter of the

associated subscription increases by one. Finally after all the notification attributes are

processed, the matched subscriptions are those whose counters are equal to their number

of predicates. Figure 2.4 shows an example of the matching procedure using the

counting-based algorithm.

All predicates are organized and clustered in one or a set of tables separately from

the subscriptions in a way where similarities or covering relationships among predicates

together can be exploited (Ashayer et al. 2002). In other words, predicates that have same

attribute name and the same comparison operator can be clustered in one group. Another

technique to manage the predicates is to sort them in a table column where the predicates

on a higher level cover other predicates in the lower level. In this way, evaluating similar

predicates more than once can be avoided, in contrast to the brute force method, and that

would improve the search process for matching subscriptions. Association tables are

usually used to maintain the predicates-subscriptions relationships. A more advanced

method for organizing the predicates is to maintain the attribute names, the comparison

operators, and the values of the predicates in indexing structures and assume those

indexes in the predicates matching step in order to look up for matched predicates quickly

and efficiently (Carzaniga and Wolf 2003).

32

Figure 2.4: An example of content-based matching using Counting algorithm

The counting algorithm assumes subscriptions that are more likely formed by

conjunctive predicates. Moreover, predicates have to be pre-processed and organized in a

certain scheme before the matching process is actually executed. Thus, insertion and

deletion of predicates, upon performing subscribe and unsubscribe operations

respectively, should be maintained in a pre-processing step, this would consume some of

the processing time. However, the counting algorithm is relatively simple to implement

and it is realized in many matching processes of publish/subscribe systems.

2.6.3 Tree-based Algorithm

Similar to the counting-based algorithm discussed in Section 2.6.2, the tree-based

algorithm (Aguilera et al. 1999) considers each subscription as a conjunction of

elementary predicates. In the tree-based algorithm, the subscriptions initially are pre-

processed and organized in a form of a multi-level matching tree. The matching tree

consists of three elements: non-leaf nodes, leaf nodes and edges. Each non-leaf node

contains an attribute test, while the successor edges contain the constants of that test. Leaf

nodes, which exist in the bottom level of the tree, represent the subscriptions by which

the matching tree is built upon. All the nodes of the matching tree are linked together in

the sense of exploiting similarity relationships between the subscriptions‘ predicates.

33

Each subscription is explained in a single path starting from the corresponding leaf node

in the bottom and ending by the root of the matching tree.

In order to match a given notification, the matching tree is traversed from the root

down where the notification attributes are tested against the non-leaf nodes and their

corresponding edges. At each level of the matching tree, successfully matched edges are

followed until the process hits the leaf nodes. Finally the matched subscriptions are those

whose leaf nodes are hit by the matching process. Figure 2.5 shows an example of the

matching procedure using the tree-based algorithm.

Figure 2.5: An example of content-based matching using Tree-based algorithm

The cost of pre-processing the subscriptions‘ predicates and maintaining the

matching tree is relatively high (Aguilera et al. 1999). However, the tree-based algorithm

is claimed to be an efficient approach due to the fact that not all the predicates have to be

tested, and this would reduce the matching time.

The literature has shown a vast usage of the tree-based mechanism for efficient

content-based matching in many research works. The Gryphon (Guruduth Banavar et al.

1999, G. Banavar et al. 1999), a prototype for event distributed middleware, uses the

34

tree-based algorithm in content-based matching. In Kale et al. (2005), the authors have

proven that the tree-based algorithm performs better than the counting-based algorithm

according to their model, then they have adopted the tree-based method in developing

RAPIDMatch, a content-based matching algorithm. Furthermore, Binary Decision

Diagram (BDD) have been exploited for building ordered binary decision tree which is

used for content-based matching (Campailla et al. 2001). It has shown that the BDD

method is an efficient matching algorithm even with disjunctive predicates.

2.7 Related Work

The research field of event-based and publish/subscribe systems has been immensely

investigated in many directions and aspects especially by the computer science

communities. This resulted in many existing systems and research prototypes. Most of

the related works that will be mentioned later on in this section have established various

advances that can be gained over the traditional request/reply interaction style (see

Section 1.2 and Section 1.4). This fact is what caught our attention to realize the

publish/subscribe paradigm and serve this research‘s objectives (see Section 1.5).

This section investigates some of the major research work related to the field of

publish/subscribe systems and highlight the scope of this research.

The following research prototypes are considered a major foundation in the world

of distributed event-based systems. Scalable Internet Event Notification Architecture

(SIENA) (Carzaniga 1998, Carzaniga et al. 2001) is one of the early implementations of

distributed event-based systems. SIENA targeted the realization of event-based systems

at the internet-scale of networks. The main focus of SIENA was on the scalability and the

35

expressiveness issues and their tradeoffs in the deployment of content-based

publish/subscribe over a distributed architecture. HERMES (Pietzuch 2004) is another

prototype for large-scale distributed event-based middleware platform. Scalable event

dissemination was claimed in this prototype by utilizing peer-to-peer communication

techniques for automatic management of its overlay network between event brokers. In

events routing, the design of HERMES followed the type-based and the content-based

publish/subscribe model. Java Event-based Distributed Infrastructure (JEDI) (Cugola et

al. 2001), a Java-based object-oriented implementation of a distributed content-based

publish/subscribe system. Routing events throughout event dispatchers was based on a

hierarchal structure. JEDI prototype has been extended to support mobile computing and

dynamic reconfiguration of the network topology as introduced by potentially large

number of wireless and non-stationary publishers and subscribers (Cugola and Jacobsen

2002).

Despite the architectural and the functional differences between the

aforementioned systems, those pioneers and many other systems that are not mentioned

herein have served in conducting a substantial theoretical background for the purposes of

this research work. In terms of applicability, however, those systems supported primitive

data types of notification, mainly descriptive/textual attributes, while our research tackles

the ability of accommodating geospatial type of events and notifications. Handling

geospatial events in the publish/subscribe interaction raises the need of dealing with

spatial types of interests or subscriptions; this is also not well addressed in the previous

publish/subscribe prototypes.

36

Adapting the spatial semantics of events in publish/subscribe systems has been

investigated in few research works. In Bauer & Rothermel (2002), specifications and

definitions of the subscription language for handling spatial semantics of events in

location-aware applications were proposed. This work is more focused in defining an

event and an event composition in the context of spatial locations. Also in Romer &

Mattern (2004), an event-based approach for detecting certain states of real world

phenomena via Wireless Sensor Networks (WSN) was examined; sensor nodes emit

observations in a form of notifications whenever a transition in their local state is

happened. Subscribers can issue their interests in a composite of events based on

temporal or spatial relationships between the events. Temporal as well as spatial

constrains were realized in the subscription language.

In the context of this research, both previous works, however, did not well address

the mechanism of handling spatial events in the notification service core. Also, there was

no study about the mechanism of how spatial events are matched with subscriptions.

In Chen et al. (2003), the authors investigated the issue of accommodating

spatially-related events and subscriptions in the context of Location Based Services

(LBS) applications. The authors defined a spatial event model as a set of name/value

pairs by which mobile users publish their locations using intelligent devices while they

are moving. The spatial subscription model was designed to accommodate spatial

predicates and allow subscribers to express their spatial interests in events. However, the

subscription language only supported two types of spatial predicates: Within and

Distance. Subscribers, who are interested to be notified by certain mobile users, would

37

use Within spatial predicate when they are interested in mobile users once located in

predefined zones, and Distance spatial predicate when they are interested in mobile users

currently located within a predefined distance from the subscribers‘ origins. The same

work was extended to propose the CAMEL project (Ying Chen et al. 2003) aiming to

develop a spatial publish/subscribe system for LBS. The authors proposed a client-side

approach for event matching processing of the subscriptions that have Within spatial

predicates, the procedure as follows: upon registering the subscribers‘ interests, the

central publish/subscribe server dispatches the Within subscriptions to the involved

mobile clients. On the client side, the received Within subscriptions are spatially

evaluated against the acquired location by the client device. In case of a match found,

only the matching location event is sent out as a notification to the publish/subscribe

server and consequently the client receives messages, such as products promotions,

broadcasted for the matched zone area. Handling the spatial matching process in the

client sides was claimed to relieve the workload of the publish/subscribe server (i.e., the

notification service) as if the location events of the mobile clients are published to the

publish/subscribe server regardless and the server in turns takes the charge of matching

all the events. However, dispatching the spatial subscriptions to the client sides would

cause a burden in the processing load of the clients‘ mobile devices in case of a large

number of subscriptions exist. Further, the system utilizes a predefined and well-known

set of zones, rectangles and circles, limiting the subscribers in registering their spatial

predicates. The spatial matching engine of the system used a spatial indexing technique,

R-tree, to enhance the performance of searching for interested users in certain zones.

38

The previous work may suit specific applications (e.g. LBS), but it seems that the

subscribers are limited in their subscriptions as they have to register their interest only

with the predefined zones. Also, the subscribers are still limited by using only two types

of spatial constraints, Within and Distance, which limits the expressiveness of the

subscription language to accommodate other spatial relationships (e.g., Disjoint, Overlap,

etc).

In Burcea and Jacobsen (2003), the authors proposed L-ToPSS (Location-aware

Toronto Publish/Subscribe System), a publish/subscribe system for LBS applications.

Publisher and subscribers were addressed in L-ToPSS as being either stationary (i.e.,

fixed location) or mobile users (i.e., location is changing over time). Similar to the work

presented in Chen et al. (2003), publishers publish their locations as events and

subscribers subscribe their locations as spatial constraints. The central publish/subscribe

server in L-ToPSS is responsible for matching the spatial locations of publishers against

the previously registered subscriptions and then notifying the subscribers about

publishers who are close by a certain distance. As noticed, all the publications and

subscriptions encapsulate spatial coordinates that represent their point location in space,

and the geographical distance is the only spatial relationship realized to relate the

publications with the subscriptions. The matching engine of L-ToPSS uses the counting-

based algorithm for spatial matching processing. This procedure may be considered

efficient enough for L-ToPSS as the matching process is limited by testing only the

spatial distances constrains. However, accommodating wider range of spatial data types

39

(i.e., points, lines and polygons) as well as other spatial relationships needs a more

effective matching procedure.

Generally, and in spite of the great efforts spent through the research work that

was reviewed in this section, there is no enough study found addressing the geospatial

semantics of events in the interaction of publish/subscribe systems. Using

publish/subscribe interaction and adopting the geospatial semantics of events can be an

added-value in a broad range of applications, including: GPS asset tracking, fleet

management, natural hazard management, environmental monitoring, and many others.

Furthermore, the applications developed using the publish/subscribe model were

restricted in minor range, including: LBS and WSN. In the scope or capacity of this

research, there has not in the past been enough research implementing the

publish/subscribe interaction in the context of emergency management systems. This

research aims to address a more generic design of the geospatial publish/subscribe model

and employ this design in fire emergency response applications.

2.8 Summary

This chapter defined the major characteristics of an event as an instantaneous occurrence

of interest or a change in the state or certain phenomenon. Also, the term notification was

defined as a message where its attributes describe the circumstances of an event

occurrence. The chapter presented the major components of publish/subscribe systems

and role of each component in the interaction framework. Publish/subscribe clients are

classified into two types: producers, who publish events, and consumers, who subscribe

40

their interests in receiving certain events. The notification service is the middleware and

the core component of the system. It is responsible of conveying notification messages

from producers to consumers in asynchronous and real-time manner. The efficiency of

the system largely depends on the performance of notification service in the

communication mechanism.

Two commonly used subscription models were presented in the chapter: Topic-

based and Content-based. In topic-based, the notification service predefines a set of

topics by which producers can publish events and consumers can receive published

events. In content-based, consumers can express their specific interests by subscribing

filters on the inner (i.e., content) attributes of the future published events. It is considered

the most generic form of interaction.

The chapter emphasized the notification matching process, which is a principal

function of the notification service to determine the flow of the notification messages.

Improving the search mechanism for matched subscriptions leads to accelerate the

delivery process of published events thus improving the performance of the whole

system. Employing the content-based publish/subscribe needs a more complex matching

algorithm. Content attributes should be evaluated against the registered filters (i.e.,

subscriptions). The chapter explained the brute force method (the naïve matching

solution) and two other matching algorithms which are widely used to improve the

matching process, namely: counting-based and tree-based. Their main idea is to exploit

possible similarities or other relations between the registered subscriptions together in

order to avoid unnecessary evaluation of redundant predicates or to reduce the volume of

the matching. Clustering of similar or related subscriptions‘ predicates and using indexes

41

are some techniques that can be used to amend and speed up the matching process

significantly.

Lastly, the chapter reviewed some of the major research works that have been

investigated in the fields of event-based and publish/subscribe systems. The chapter

presented three research prototypes established for distributed event-based systems

development, SIENA, HERMES, and JEDI. The primary scopes of these projects were

focused on realizing distributed systems over large-scale of networks. They supported

textual or descriptive type of event data models, while this research development

attempts to address geospatial semantics of events. The chapter also critiqued some

research works that attempted to recognize spatial type of events in LBS and WSN

applications. However, the interaction and the spatial event models were limited to their

designed applications by incorporating few geometrical types (e.g., points) and a small

set of spatial constraints provided in the subscription language. The chapter declared that

the aim of this research is to address a more generic design of geospatial

publish/subscribe model and employ this design in fire emergency response applications.

42

Chapter Three: Geospatial-based Publish/Subscribe Interaction

3.1 Introduction

This chapter presents the Geospatial-based Publish/Subscribe interaction model, an

extended model proposed in this research to accommodate events that are associated with

the 2D geographic domain called geospatial events.

The main motivation to develop this model is to exploit the publish/subscribe

interaction paradigm in transacting geospatial events, therefore, leveraging the situational

awareness in fire emergencies.

As shown previously in Section 2.5, the generic subscription model, namely the

content-based, has been widely employed as an expressive language allowing consumers

of events to specify their detailed interests in the content data of published events. Most

of the available implementations of the content-based model support well the attributed

(i.e., descriptive or textual values) filters on events by using comparison (e.g., =, >, <)

and logical operators (e.g., AND). In the context of geospatial events, these types of

filters may not be appropriate for expressing spatial constraints. Spatial filters are needed

to offer consumers specifying their interests in a certain geospatial context. Extending the

expressiveness of the attributed content-based subscription model is intended by adopting

spatial type of constraints. Some of the recent works (see Section 2.7) attempted to study

the spatial aspect in the publish/subscribe interaction model. However, they were limited

in the representation of spatial events (i.e., only point type) and their work was focused

on different applications (e.g., LBS and WSN). Therefore, it is necessary to develop an

extended publish/subscribe model to incorporate broader ranges of geospatial event

representations and spatial constraints. It was also necessary to utilize this model in the

43

development of a system prototype, namely a real-time fire emergency response system

(see the research objectives in Section 1.5).

The remainder of this chapter explains the proposed geospatial-based

publish/subscribe model in details.

3.2 Geospatial Semantics of Events

This section describes how to use publish/subscribe events to represent dynamic

geospatial information. It also describes the characteristics of geospatial events conceived

in the development of this chapter.

The abstraction of an event in publish/subscribe is defined as an instantaneous

occurrence of interest or a state-change of an entity observed and published by producer

clients (see Section 2.2). In the context of this research, the concern here is about those

events that are associated with geospatial domains; the occurrence is related to a

geographical location in space or a real world phenomenon. This type of events is called

in this research geospatial events (Worboys and Hornsby 2004). Geospatial events can be

a useful abstraction to represent sudden occurrences of Earth‘s phenomena or dynamic

state changes of geographic features. GPS locations of vehicles, locations of fire

incidents, meteorological sensor observations, and temporal spreading of forest fires are

some examples of dynamic geospatial information that can be represented as geospatial

events.

The term geospatial notification is used in this context to formalize the actual data

modeling of geospatial events. In this research, a geospatial notification is defined as a

composition of two data components, (1) a spatial component and (2) an attribute

44

component. The spatial component is used to describe the spatial semantics of an event

and considered the predominant data part of a geospatial notification. It contains the

geometric shape and location of the event. The spatial component can be represented by

one of the following basic spatial feature: a point, a line, or a polygon. The

implementation of such data type can be GIS vector or a collection of XY coordinates.

The attribute component is a collection of attributes used to assign descriptive

information about the circumstances or the properties of an event. Each attribute has a

distinct name, a data type, and a data value. Data types include numeric, string, boolean,

date/time, and bytes (e.g., Base64 encoding). They can be utilized to attach broad kinds

of descriptive information to a geospatial notification. Here, the binary data type supports

digital files, including images, documents, media files and other types, to be serialized

and encapsulated in the content data of geospatial notifications. For instance, an airborne

camera captures thermal images of an active wildfire scene, where in each camera

exposure a geospatial notification is initialized. The captured dataset is serialized to a

binary format and assigned to a binary type attribute. Finally, the geospatial notification

is published to notify other interested clients about the current status of the wildfire event.

Extending the scope of publish/subscribe events to contain geospatial semantics

seems promising for numerous web GIS applications. Particularly, applications like

emergency response need dynamic geospatial information to flow and be proactively

disseminated right away to the right people. However, associating geospatial semantics

with events in publish/subscribe systems invokes new challenges to the underlying

communication infrastructure. Thus, the proposed model, namely geospatial-based

45

publish/subscribe, attempts to provide a suitable interaction framework for transacting

geospatial events between distributed clients.

3.3 Geospatial Event Clients and the Interaction Flow

After defining the abstraction of geospatial events and geospatial notifications in the

previous section, this section explains the interaction workflow between the

publish/subscribe components using geospatial events.

Publishers, subscribers, and the notification service middleware are the main

publish/subscribe components. In the context of geospatial-based publish/subscribe,

publishers are those clients who observe geospatial events, including their geospatial state

changes, and consequently publish geospatial notifications as they might be of interest to

other clients. Subscribers are those clients who register their interests to be notified about

specific geospatial notifications. As geospatial notifications contain attribute and spatial

data (see Section 3.2), the subscribers express their interests not only in the content

descriptive attribute (using comparison operators discussed in Section 2.5.2), but also

they can express their spatial interests in geospatial notifications. This type of

subscription is called geospatial subscription. For instance, considering emergency assets

publish their current GPS locations as geospatial notifications, an officer can subscribe

his interest to be notified about any asset within proximity of 1000m from a reported

incident location. To define such a subscription, the subscription language should support

expressions used to assign spatial constraints on the published geospatial notifications.

Using the previous examples, the officer would use the ―Contain‖ spatial operator in his

subscription expression to receive those emergency assets‘ points located within a 1000m

46

buffer zone centered at the incident point location. This is detailed later on in Section

3.5.2.

The notification service mediates between geospatial event clients. It handles the

published geospatial notifications, matches them with the registered geospatial

subscriptions, and finally delivers those notifications to the matched subscribers. The

geospatial notifications that satisfy the subscribers‘ interests should be delivered to them

in timely manner. The middleware service provides predesigned interfaces for publisher

and subscriber clients granting them the performance of publish and subscribe operations,

respectively, for geospatial notifications. The interaction operations are previously shown

in Figure 2.2.

3.4 Design Considerations

There are some considerations that must be taken into account while designing the

geospatial-based publish/subscribe model. The remaining sections of this chapter serve as

a detailed analysis of the model based on the following considerations.

Regarding the architecture of the notification service middleware, the centralized

architecture (see Section 2.4.1) is adopted in designing the geospatial-based

publish/subscribe model. Employing the distributed architecture may offer a more

scalable system in terms of integrating clients over a wide-scale of networks (i.e., the

Internet). However, it increases the complexity of the design and the implementation of

the system. Also, it invokes more research challenges regarding the development of

dispatching algorithms of events and maintaining the connectivity between the

notification service‘s brokers. Studying this type of architecture is outside the scope of

47

this research. In this research, the focus is on designing data models and matching

algorithm cope with the geospatial nature of events rather than focusing on the distributed

architecture of the system. Realizing the distributed architecture of the notification

service is addressed as a part of the future works for this research (see Section 6.3).

As mentioned in Section 2.3, publish/subscribe clients act as subscribers to

events, publishers of events, or both roles at the same time. Subscriber clients usually use

a software application to perform geospatial subscriptions via the provided notification

service interface. The software application provides tools for the subscriber suitable to

connect to the notification service unit and perform geospatial subscriptions. Publisher

clients may refer to users who utilize a software application to publish geospatial events

or to an electronic device (e.g., GPS, sensor, camera, etc) that has the capability to

observe and publish geospatial events through the system network. Publishers also should

communicate with the notification service unit via the interfaces provided for them. All

the clients are unknown to each other; clients interact with the notification service

simultaneously and regardless of other clients existing on the network. The only visible

component for all the clients is the notification service.

A reliable communication network (i.e., TCP/IP) is assumed underlying between

clients and the notification service middleware.

The development of the proposed geospatial-based publish/subscribe model is

conducted in three phases. The first is designing the geospatial notification data model by

which producer clients publish geospatial events/notifications. The second is designing

the geospatial subscription data model which is used by consumer clients to subscribe

their interests in geospatial notifications. The final phase is developing the matching

48

method to evaluate published geospatial notifications with registered geospatial

subscriptions and finding the matched subscribers. Section 3.5 introduces the first two

phases and Section 3.6 discusses the final phase.

3.5 Geospatial-based Publish/Subscribe Data Models

This section proposes two data models: the Geospatial Notification Data Model and the

Geospatial Subscription Data Model. Clients are supposed to utilize these data models in

their publications or subscriptions, respectively. Section 3.5.1 introduces the content data

model of geospatial notifications by which publishers can perform publish operations,

and Section 3.5.2 introduces the geospatial subscription language model by which

subscribers can perform subscribe operations for geospatial notifications.

3.5.1 Geospatial Notification Data Model

A geospatial event is described by a geospatial notification which in turns comprises a set

of name/value pairs. Each pair specifies a single attribute of the associated geospatial

event. The abstraction of name/value pairs is similar to the data structure of records; a

record in a table consists of several cells where each cell has a field name and a value in

the same data type of the field. Formally, a geospatial notification ng is formed by a set of

nonempty attributes (a1, a2, …, an), where each ai is a name/value pair (ni, vi). Each name

ni is assumed unique in the attributes set and has a single data type associated with it. The

value vi should be assigned according to the data type of the name ni. The data types

supported for constructing the name/value pairs are similar to the SQL data types, briefly:

string, integer, float, boolean, date/time, and byte-array. In addition to that, geometry

data types, including: GeometryPoint, GeometryPolyline, GeometryPolygon,

49

GeometryMPoint, GeometryMPolyline, and GeometryMPolygon, are added to the

collection in order to accommodate the spatial semantics when generating geospatial

notifications. This is detailed in the following.

As mentioned in Section 3.2, a geospatial notification has two data components:

an attribute component and a spatial component. The attribute component can be

formatted by a set of name/value pairs with traditional data types, such as string, integer,

and date/time. On the other hand, the spatial component is defined by adding a

name/value pair with a geometry data type. In this context, the geometry data type is used

to assign the shape and location of the geographic feature that corresponds to the

occurred geospatial event. The geometries of simple geographic features, as shown in

Figure 3.1, are supported in the geospatial notification model. The value of the geometry

data type is assigned as a single or conjunction(s) of XY coordinates which correspond to

the actual geometry of the spatial component. In case of a point or multi-point geometry

type, the coordinates correspond to the points‘ locations, and in cases of polyline, multi-

polyline, polygon, and multi-polygon geometry types, the coordinates correspond to the

vertices‘ locations that form those geometries. Table 3.1 shows examples of the geometry

data format for simple geographic features. The geometries of simple geographic features

can cover a large variety of the spatial component representation in generating geospatial

notifications. However, complex spatial representations, such as a polygon with a hole

inside, need a more complex topological structure in formatting the geometry data value.

Using conjunction of coordinates in this case would not be sufficient.

50

Figure 3.1: Geometrical representations of simple geographic features

Other types of data can be part of the geospatial notifications data contents,

specifically computer files, including: images, documents, and media files. Name/value

pairs with byte-array data types are employed for this regard. Byte-array data types

handle any arbitrary information in binary format. Therefore, the required files are

converted first to binary data then assigned to byte-array name/value pairs.

Table 3.1: Examples of name/value pair formatting with a geometry data type

Geometry Type Name/Value Format

Point, Multi-point
{GeometryPoint, (10 10)}, {GeometryMPoint, (10 10); (15

10); (13 12)}

Polyline, Multi-polyline

{GeometryPolyline, (10 10, 12 10, 15 12)},

{GeometryMPolyline, (10 10, 12 10, 15 12); (12 10, 12 15);

(11 11, 8 10, 13 12)}

Polygon Multi-polygon

{GeometryPolygon, (12 14, 10 10, 13 15)},

{GeometryMPolygon, (12 14, 10 10, 13 15); (13 11, 10 15, 16

18); (11 12, 15 12, 12 14, 9 8)}

3.5.2 Geospatial Subscription Data Model

Geospatial subscriptions can be seen as filters or boolean-valued functions that evaluate

whether or not published geospatial notifications match the defined constraints. One can

51

understand geospatial subscriptions as database queries and the evaluation process is

nothing more than selecting the rows that match those queries.

Generally, the design of the subscription model should follow the underlying

notification data model. Having descriptive and spatial content data in the published

geospatial notification, as discussed in Section 3.5.1, imposes incorporating types of

predicates capable of expressing specific interests in the descriptive information as well

as in the spatial features of geospatial notifications. Therefore, two types of predicates are

supported in the geospatial subscription language model: attribute predicates (AP) and

spatial predicates (SP).

Attribute predicates are utilized to constrain the selection of geospatial

notifications according to their content descriptive data. An attribute predicate APi

specifies an attribute name string, a comparison operator, and a comparison value (e.g.,

“HUMIDITY” > 0.30). The attribute string name entails the process of searching for an

attribute (i.e., a name/value pair) within the content data of the evaluated geospatial

notification that has the same name string as the predicate‘s name string. In case of a

name/value pair existing in the geospatial notification content data, the value of this pair

is evaluated against the comparison value specified by the predicate using the comparison

operator. The result of this evaluation process is either true in case of a match or false

otherwise. If the attribute name string does not exist in the geospatial notification content

data, the geospatial notification is considered not matching the subscription. The

comparison operators supported herein are =, >, <, ≥, and ≤ for numeric values, and = and

LIKE for string values. The comparison values should be consistent with the assigned

comparison operator.

52

Spatial predicates are introduced in the subscription language model offering the

subscribers more expressiveness to define their interests in geospatial notifications that

satisfy certain spatial constraints. A spatial predicate SPi is defined as triple parameters:

base geometry Gp, a spatial operator SOp, and a buffer value buff, i.e. SPi = (Gpi, SOpi,

buffi). The following is a list of the supported values for each parameter.

 Base geometry Gb: simple features of Point, Polyline, Polygon, Multi-point,

Multi-polyline, and Multi-polygon.

 Spatial operator SOp: Contain, Disjoint, Cross, Touch, Overlap, and Within.

 Buffer value buff (optional): any numeric value of type float.

The base geometry Gpi is one of the simple geometries listed above. The data

structure of the base geometry is similar to the data structure in defining the spatial

components of geospatial notifications, discussed in Section 3.5.1. The subscriber usually

defines type, shape, and location of the base geometry by manual drawing on the screen

or selecting existing geographic features using a GIS map; these functionalities should be

provided by the software application that the subscriber is using. Spatial operators SOpi

are equivalent to the role of the comparison operators as mentioned previously in the

attribute predicates. However, instead of comparing numeric or string values, spatial

operators are used for spatial comparison between geometries. The spatial operators listed

above have been recognized as standards of topological relationships between simple

geographic features (Schneider and Behr 2006). Spatial operators take two geometries as

an input to determine if a specific spatial relationship exists between the two geometries.

Usually, the first geometry is called base geometry (e.g., the geospatial subscription

geometry) and the second is called comparison geometry (e.g., the geospatial notification

53

geometry). In this context, the base geometry is the one defined by the spatial predicate

and the comparison geometry is the spatial component of the geospatial notification. A

complete definitions list of all the possible topological relationships between simple

features, i.e. point, polyline and polygon, are shown in Appendix A. The output from this

comparison is a boolean value; true if the comparison meets the function criteria, and

false otherwise. For instance, to evaluate if the position of an emergency truck (point

object) is located inside a county region (polygon object), the spatial operator contain is

performed as ―(Polygoncounty) contain (Pointtruck)”. The output here is either true if the

emergency truck is inside the county area, or false otherwise. The buffer value buff is an

optional numeric value of type float assigned if a zone area is required around the base

geometry to be included in the evaluation process.

Based on the previous definitions of attribute and spatial predicates, the data

structure of a single geospatial subscription Subi is formulated as,

Subi = [SP , APi(s)]

In this definition, a single subscribe operation Subi can encapsulate two Boolean

functions: a maximum of one spatial predicate SP and one or more attribute predicates

APi(s) conjugated by logical operators. Assigning the two functions means that any

geospatial notification has to satisfy both functions at the same time in order to be

considered as a match. Otherwise, the subscriber can assign the key word “NULL” to any

one of the functions stating that the subscriber is not interested in constraining the

required geospatial notifications by this function.

As discussed in the content-based publish/subscribe section of this thesis (see

Section 2.5.2), the subscription language supports various forms of attribute predicates to

54

filter the notifications of interest based on their content attribute data. In the geospatial

subscription language proposed herein, the addition of the spatial predicates extends the

expressiveness by involving spatial type of constraints in specifying the geospatial

notifications of interest. The definition proposed above for geospatial subscriptions

allows subscribers to express fine-grained level of interests. Table 3.2 shows some

examples of spatial types of interests in geospatial notifications and their respective

expressions of spatial predicates.

Table 3.2: Examples of spatial interests’ expressions and their respective spatial

predicates formation

Spatial Interest

Geospatial Notification Respective Spatial Predicate

Source

Desc.

Comparison

Geometry

Base

Geometry

Gb

Spatial

Operator

SOp

Buffer Value

buff (m)

Notify me of any

vehicle is within a

municipality

boundary

Vehicles

current

positions

Contain 0

Notify me of any fire

incident happens

within 5km of my

center

Fire

incidents

reporters

Contain 5000

Notify me of any fire

spreading exists in

the neighborhood

area

Temporal

fire

spreading

area

Overlap 0

Notify me of any

police car far from

the highway road by

2km

Police cars

current

positions

Disjoint 2000

3.6 Geospatial Notification Matching

Notification matching is a prominent process executed by the notification service. The

results from this process determine the flow of information between the interacting

clients. In this section, the matching process in the context of the geospatial-based

publish/subscribe is investigated in details.

Point

Point

Point

 Polygon

 Polygon

Point

 Polygon

Polyline

55

3.6.1 Matching Problem

The geospatial notification matching problem can be formulated as the following. Let‘s

assume a geospatial notification ng is published throughout the publish/subscribe system.

A set of subscriptions Sub1, Sub2, ..., Subn have been previously registered where each

Subi defines a filter on geospatial notifications that are of interests. The matching process

determines a subset of subscriptions where each Subi in the subset matches the geospatial

notification ng. According to the geospatial subscription model discussed in Section 3.5.2,

each Subi comprises two boolean functions, SP and APi (i.e., Subi[SP, APi]), of a spatial

constraint and an attribute constraint respectively. Both functions take the geospatial

notification ng as input, evaluate ng according to the assigned conditions, and generate a

boolean value as an output. The Subi matches ng if the output boolean values from both

functions are true (i.e., Subi[true, true]), whereas the Subi does not match ng otherwise

(i.e., Subi[true, false], Subi[false, true], or Subi[false, false]). In cases where the key word

“NULL” is assigned to any one of the subscription‘s functions, the output of the

associated function is considered true without evaluating ng.

To understand the matching process of geospatial notifications, let‘s assume the

following example of matching a single geospatial notification against a single geospatial

subscription. A vehicle mounted by a GPS device publishes geospatial notifications of its

current position to the publish/subscribe system on a regular basis. The type of

information encapsulated in every geospatial notification includes: ID, X and Y

coordinates for the GPS position, current speed, and time of the acquired position. A user

is interested in monitoring the movements of vehicles and requires to be notified if any of

the vehicles pass through the geographic boundary of a certain municipality region

56

exceeding 80 km/hr. This theme of interest requires formulating two constraints: a spatial

predicate which states that the municipality region (polygon geometry) should contain the

vehicle‘s current position (point geometry), and an attribute predicate which indicates

that the vehicle‘s speed should exceed 80 km/hr. Accordingly, the user issues the

following subscription: Subscribe [{(GeometryPolygon,…), Contain, 0}, {“SPEED” >

80}], where the GeometryPolygon, Contain, and the value 0 are representing the vertices

coordinates of the municipality polygon geometry, the required spatial operator, and the

buffer zone value, respectively. ―SPEED > 80” is the attribute constraint required over

the vehicles‘ geospatial notifications. At a certain moment, the following geospatial

notification is published by a vehicle: Publish [{GeometryPoint,...}, {ID, 4}, {SPEED,

87}, {PosTIME, “12/9/2008 1:00:06 pm”}]. Subsequently, the notification service

matches the published geospatial notification by the vehicle against the registered

subscription by the user. As the user‘s subscription contains spatial and attribute

constraints, the vehicle‘s geospatial notification should be evaluated against both

constraints. In other words, the matching process should answer the following questions:

1. Does GeometryPolygonsub with a buffer zone of 0 Contain GeometryPointpub?

2. Is the vehicle‘s speed value SPEEDpub larger than (>) SPEEDsub speed value?

Then, the notification service will notify the user about the vehicle‘s geospatial

notification if the output from both tests mentioned above is true. Otherwise, the

vehicle‘s geospatial notification will be discarded and the user will not be notified.

The aforementioned matching procedure seems quite simple when evaluating a

single geospatial notification against a single geospatial subscription. However, the

matching process becomes more complicated and expensive as potentially thousands or

57

even millions of geospatial subscriptions will be involved in the matching process. The

challenges of the matching process are discussed in the next section.

3.6.2 Matching Challenges

In the publish/subscribe interaction model, hypothetically, published notifications should

be pushed to interested subscribers in timely manner. However, involving a large amount

of interest (i.e., subscriptions) in the matching process would prevent the real-time

delivery of notification as the process would consume more time. Thus, optimizing the

notification matching process is essentially needed. The optimal goal here is to reduce

time latency consumed by the matching process. Achieving this means rapid streaming of

geospatial notifications to interested clients thus improving the situational awareness in

time-sensitive situations.

There are two main issues that would potentially reduce the efficiency of the

matching process of geospatial notifications: (1) a large number of registered geospatial

subscriptions and (2) high diversity of interests. The former issue entails searching for

matching subscriptions among a large dataset of registered geospatial subscriptions,

which would increase the processing time and delay the notification delivery. The latter

issue would cause the matching process to evaluate each subscription separately when the

constraints of geospatial subscriptions are different, which also would consume the

processing time. The naïve solution of the geospatial notifications matching, the brute

force method, is to store all the subscriptions in one table inside the notification service

and conduct the matching procedure on a one by one basis (i.e., evaluating the published

geospatial notification against one subscription at a time). Then if a match is found, the

geospatial notification is delivered to the associated subscriber. Figure 3.2 illustrates the

58

geospatial notification matching process using the brute force method. This naïve method

simply solves the matching problem by evaluating geospatial notification with all the

subscriptions sequentially. However, it is an evidently inefficient and time consuming

process when the number of registered subscriptions increases.

Figure 3.2: Geospatial notification matching using the Brute Force method

As mentioned earlier, to grant a real-time or near real-time delivery of published

geospatial notifications, searching for matched subscribers amongst the whole set of

issued subscriptions should be performed efficiently and with the minimum processing

time possible. To achieve this goal along with the aforementioned challenges, the

subscriptions involved in the matching process should be structured inside the

notification service unit in a way to speed up the searching process.

The counting-based and tree-based content-based matching algorithms,

investigated in Section 2.6.2 and Section 2.6.3 respectively, conceptualize the idea of

transforming the registered subscriptions into better data structure and thus enhancing the

matching process speed. Data structuring of subscriptions is accomplished by exposing

the internal predicates of the subscriptions and exploiting the relationships possible

between them to reduce evaluating redundant or unnecessary predicates. Both algorithms

59

have proven their efficiency in dealing with attributed predicates. In the geospatial

publish/subscribe context, however, both algorithms are not generally applicable for

evaluating geospatial subscriptions as they contain spatial type queries. Thus, it was

necessary to develop an alternative matching approach that can deal with evaluating

spatial queries (i.e., constraints). In this research, an efficient matching approach is

proposed which is suitable for matching geospatial notifications with geospatial

subscriptions efficiently. This approach is detailed in the next section.

3.6.3 Improving the Matching Process

This section describes the proposed approach for improving the geospatial notification

matching process.

Before introducing the proposed matching approach, the concept of spatial

indexing to enhance spatial query processing is briefly introduced. Then, an explanation

is provided on how spatial indexes can be used for indexing the geospatial subscriptions

data and thus improving the matching process. Finally, the proposed approach for

geospatial notifications matching in the context of the geospatial-based publish/subscribe

model is described.

3.6.3.1 Spatial Data Indexing

In general, databases rely on the index data structure for quick access of data requested

by a certain query, and that is in contrast with the traditional way of sequentially scanning

the data entries which is considered a time-consuming and expensive process. Spatial

indexing enhances the processing of spatial queries and speed up retrieving the data of

the required spatial objects. The fundamental concept of spatial indexing is the use of

approximations (Shekhar and Chawla 2003). Spatial objects are structured inside the

60

index using a simple approximation of the geometries. The prime geometry

approximation used is the smallest bounding rectangle of the objects‘ geometry, called

minimal bounding box (mbb) (Rigaux et al. 2002). Using a spatial index, the processing

of an operation that involves a spatial predicate on a collection of spatial objects is

performed in two steps: the filter step; selecting all the spatial objects whose mbb satisfies

the spatial predicate. This step returns a superset of candidates of spatial objects. In the

second step, called the refinement step, the exact geometries of the spatial objects in the

superset are tested against the spatial predicate. This key procedure is behind querying

and retrieving spatial data quickly and efficiently. The cost of evaluating complex

geometries of the spatial objects is saved by evaluating their approximations, i.e. mbb,

which is much easier process.

The most commonly used spatial indexing techniques are: Grid-indexing (Rigaux

et al. 2002), Quad-tree (Samet 2006, Berg et al. 2008), and R-tree (Manolopoulos et al.

2005). Grid-index and Quad-tree are conceptually similar; both of them divide the 2D

space into rectangular partitions. Each partition is a key reference for its fully or partially

contained spatial objects. The construction and data structure of both indexes are easy

and simple, that entails also the simplicity in reconstructing those indexes while insertion

or deletion of spatial objects. On the other hand, the performance of both techniques is

relatively less than the R-tree technique with huge and highly-clustered spatial data. R-

tree and its extensions have proven their high efficiency for structuring spatial datasets in

different operations and under many circumstances. Nevertheless, the clustering time in

building this index is relatively expensive. The performance of an index structure may

vary under substantial amounts of insertion and deletion operations of spatial objects. In

61

this regard, Quad-tree and R-tree may perform better as their structures are dynamic and

can tolerate updates on existing spatial objects. It is generally known that there is no

single indexing method with the capacity to give the best performance under all

circumstances. All of them have inherent strengths and weaknesses. The choice of a

specific index depends on the nature of the underlying spatial data in terms of the spatial

distribution, the size of the dataset, updating the existing spatial data and other factors.

3.6.3.2 Indexing of Geospatial Subscriptions

After introducing the idea of spatial indexing and how it can be used for efficient data

retrieval from spatial databases, this section explains the matching procedure of

geospatial notifications from a different perspective, and how spatial indexing can

enhance the matching process by indexing the registered geospatial subscriptions.

The focus here is on the spatial predicates part encapsulated within the geospatial

subscriptions (see Section 3.5.2). The abstraction of geospatial subscriptions is similar to

the notion of spatial query processing; a spatial query defines a geometry and spatial

relationship (e.g., Contain, Disjoint, Overlap, etc) and selects a set of spatial features that

satisfy the spatial relationship condition. In our case, geospatial subscriptions are

previously stored in the notification service database. When a published geospatial

notification attains the notification service tier, the central matching engine starts

evaluating the notification spatial object (i.e., spatial data) with the previously stored

geospatial subscriptions (i.e., spatial queries). Let‘s assume that all the registered

geospatial subscriptions are rectangular polygons and have the same spatial constraint

type, for example Contain. Thus traditionally, the following spatial query ―(the geometry

of the geospatial subscription) Contains (the geometry of the geospatial notification)‖ is

62

executed many times, equal to the number of the geospatial subscriptions, to select the

matched geospatial subscriptions. Instead, the matched geospatial subscriptions set can be

found reversely by searching for all the geospatial subscriptions, at once, where the

geospatial notification geometry is located within. Notice that both procedures give the

same results, namely the matched geospatial subscriptions set. However, the latter

procedure can be conducted by processing only one spatial query, namely ―(the geometry

of the geospatial notification) Within (the geometries of the geospatial subscriptions)‖.

Here the roles of geospatial notification and geospatial subscriptions are revered; instead

of taking geospatial notifications as spatial data and geospatial subscriptions as spatial

queries, geospatial subscriptions are considered as spatial data and geospatial

notifications as spatial queries. This idea raises the need for enhancing the data storage

structure of geospatial subscriptions in order to efficiently retrieve the required

subscriptions from the database, which can be achieved by using spatial indexes.

The aforementioned idea of reversing the roles of notifications and subscriptions

has been proposed by several works in the context of LBS applications (Kalashnikov et

al. 2002, Wu et al. 2004). The notifications represented the current positions of moving

objects and the subscriptions represented rectangular spatial queries requesting all

moving objects located inside the queries boundaries (i.e., Contain constraint). They

argued that it is more efficient to index the continual range queries (i.e., subscriptions)

rather than indexing moving objects data (i.e., events or notifications). That is because

objects may continuously move irregularly and in unpredictable ways, which makes it

difficult to maintain effective indexes. Rather, their attempts were to build spatial indexes

63

on range queries to quickly select the range queries that contain a given object. This

approach is called query indexing.

For improving the matching process in the context of this research work, the idea

of indexing the geospatial subscriptions is adopted similarly to the work presented earlier.

However, several types of spatial queries, other than Contain constraint, are supported in

the geospatial subscription language (see Section 3.5.2) and should be accommodated in

the matching process. Thus, further considerations have to be taken into account while

designing the matching approach. The matching approach proposed in this research is

discussed in the next section.

3.6.3.3 The Proposed Geospatial Notification Matching Approach

The proposed approach for matching published geospatial notifications with registered

geospatial subscriptions is performed in two phases: (1) a pre-processing phase and (2) a

matching phase. The matching engine initially pre-processes geospatial subscriptions into

a data structure that allows fast matching. This phase is conducted prior to the actual

matching with published geospatial notifications or after geospatial subscriptions are

issues by subscribers. At a later stage and when a geospatial notification is published, the

matching engine uses the prepared data structure of geospatial subscriptions and conducts

the matching process searching for the matched ones. The following explains each phase

in more details.

A geospatial subscription contains a base geometry, a spatial operator, and

optionally a buffer value (see Section 3.5.2). The spatial operator and the buffer value

parameters vary from one subscription to another. In the pre-processing phase, the

subscriptions are transformed into homogenous groups of subscriptions, where all

64

geospatial subscriptions within each group have the similar spatial operator and a zero

buffer value (i.e., no further buffering required on the base geometry). Geospatial

subscriptions are clustered into feature classes according to their assigned spatial

operators. For instance, all geospatial subscriptions assigned the Contain spatial operator

are clustered in a single feature class, where as all geospatial subscriptions assigned the

Overlap spatial operator are clustered in another feature class. As the geospatial

subscription language supports six types of spatial operators (see Section 3.5.2), six

feature classes are pre-created the output from the clustering process described above will

be at a maximum of six feature classes of geospatial subscriptions. In each feature class,

afterwards, the base geometry of each geospatial subscription is buffered according to the

buffer value assigned. The new geometry resulted from the buffer processing is

reassigned to the associated geospatial subscription as the new base geometry. Two

examples of the buffering process are depicted in Figure 3.3. Notice that the buffering

process can be skipped if the buffer value is originally assigned zero. The final step of the

pre-processing phase is structuring the subscriptions‘ feature classes into spatial indexes.

One spatial index is built for each of the subscriptions‘ feature classes.

65

Figure 3.3: An example of geospatial subscriptions clustering process

At the pre-processing stage, geospatial subscriptions are pre-processed into

homogeneous feature classes and structured in spatial indexes. In the matching phase, as

soon as a geospatial notification ng reaches the notification service, the matching engine

uses the prepared spatial indexes of registered geospatial subscriptions and executes the

matching process. The process takes the geometry (i.e., the spatial component) of the

geospatial notification and uses it as a spatial query to retrieve the matched set of

geospatial subscriptions from the stored feature classes. As there are potentially six

subscription feature classes, six spatial queries are executed. The formulations of these

queries are as follows:

 (the geometry of ng) Within (the geometries of Contain feature class).

66

 (the geometry of ng) Contains (the geometries of Within feature class).

 (the geometry of ng) Disjoints (the geometries of Disjoint feature class).

 (the geometry of ng) Crosses (the geometries of Cross feature class).

 (the geometry of ng) Touches (the geometries of Touch feature class).

 (the geometry of ng) Overlaps (the geometries of Overlap feature class).

Notice that in the first two feature classes, Contain and Within feature classes, the

spatial operators Within and Contains are used respectively as the spatial relationship is

reversed by using the geospatial notification ng as a query. Whereas, in the remaining

four feature classes, Disjoint, Cross, Touch, and Overlap, similar spatial relationship,

Disjoints, Crosses, Touches, and Overlaps are used in their respective queries as the

function criteria does not change with reversing the base geometry and the comparison

geometry. Lastly, the geospatial subscription features selected by executing the above

spatial queries are considered matches to the geospatial notification ng.

As mentioned in the proposed geospatial subscription language (see Section

3.5.2), geospatial subscriptions may also encapsulate attribute filters. The aforementioned

matching procedure only evaluates the spatial predicates of geospatial subscriptions.

Thus, to conduct a complete matching process, the spatially matched subscriptions set

resulted from the above process are evaluated with the content-attributes of the geospatial

notification. Those subscriptions that pass through the attribute evaluation process

completely match the geospatial subscription.

The proposed matching approach described above is intended to be implemented

by the matching engine of the notification service component to accelerate the

67

dispatching process of published geospatial notifications. This will be explained later on

in this document (Section 4.2.3).

3.7 Delivery of Geospatial Notifications

So far, the previous section discussed how the middleware service matches published

geospatial notifications with registered geospatial subscriptions and consequently finds

the interested subscriber clients whose subscriptions are satisfied. The next stage is to

deliver or push the information to the interested subscribers‘ applications. Technically,

the notification service executes the output operation Notify(ng) (see Figure 2.2)

encapsulating the published geospatial notification within this operation and addressing

the matched subscribers on the delivery process. This section underlines some issues the

subscribers should be aware of in receiving geospatial notifications.

In the proposed geospatial-based publish/subscribe interaction, subscriber clients

may use mapping applications, where a map containing basic geographic data layers is a

primary part of those applications. As the received geospatial notifications contain

geospatial data, subscribers generally need to interactively visualize the received

notifications on a GIS map and perform various spatial analyses based on the received

data, such as overlaying, proximity, and network analyses, or potentially conducting

responsive processes and actions upon receiving particular types of geospatial

notifications. To this end, there are important issues that the interacting components

should be aware of regarding effective handling of delivered geospatial notifications.

First and foremost, the content-data schema of potentially published geospatial

notifications should be well-known by the interested subscribers (i.e. receivers‘

68

applications). In this manner, the core processing of the subscribers applications can be

customized in a way to handle, parse, and manipulate the received notifications data

according to the requirements. For instance, a user requires overlying the received points‘

notifications of assets‘ current positions automatically in a GIS map and with a certain

symbology style. Another user needs an automatic storage of the received notifications of

sensors‘ temperature observations in a certain format inside a database. Second, the

coordinate referencing system by which the spatial component of geospatial notifications

is created should be known, too. The subscribers then can georeference the received

geospatial notifications and perform an appropriate coordinate transformation processing

required to be consistent with the coordinate system of their GIS datasets.

There are two methods that can be applied to enhance adopting the above issues

in receiving geospatial notifications. First, establishing standards for the content data

structure of geospatial notifications, therefore those standards will be recognized and

followed in performing publications and subscriptions operations. This can be achieved

by predefining well-structured name/value pairs, including the required attribute names,

their data types, and other necessary descriptions according to the topic or theme of

geospatial notifications. For instance, geospatial notifications for meteorological

observations should contain the name/value pairs specified in Table 3.3. The second

method is by employing the advertisement technique, using Advertise(ad) operation as

discussed in Section 2.4, where publishers advertise their notifications data structure and

thus subscribers can expect the content data schema of future publications. The latter

method seems to be more sophisticated and effective as publishers are not restricted to

limited standards of data structures. It needs more development to adopt this technique in

69

the system. In our research work, however, the first method, namely establishing well-

defined content-data structures, is assumed in the implementation of the Real-Time Fire

Emergency Response System (RFERS) prototype (detailed in Chapter 4) for simplicity

reasons. Adopting the advertisement operations in the geospatial-based publish/subscribe

model is addressed as a future work for this research.

Table 3.3: An example of content data structure for geospatial notifications

Attribute Name Data Type Description Example

SensorID String ID of the sensor {SensorID, ―A1‖}

X Double
X-axis coordinate (UTM

Zone 11N)
{X, -1211956}

Y Double
Y-axis coordinate (UTM

Zone 11N)
{Y, 1535061}

Temp Double
Current temperature

observation (
o
C)

{Temp, 12.8}

Humidity Double
Current temperature

observation (%)
{Humidity, 0.12}

ObsTime String
Current observation

time
{ObsTime, ―24/11/2008 15:12:00‖}

3.8 Summary

 This chapter presented the Geospatial-based Publish/Subscribe model proposed in this

research for handling events and subscriptions that are spatially-related to the geographic

space in the publish/subscribe interaction style.

The chapter introduced geospatial events as a useful abstraction for representing

dynamic phenomena in the real world. Geospatial events can be greatly utilized in

distributing geospatial information about crucial happenings to interested parties and

clients and thus being situational aware of time-sensitive events.

Section 3.5 proposed geospatial notification and geospatial subscriptions data

models. Publisher clients can utilize the geospatial notification model to encapsulate

simple spatial geometries and attributes data to represent events. Subscribers can utilize

70

the geospatial subscriptions model to define spatial as well as attribute constraints or

filters over the geospatial notifications of interest. The geospatial subscription language

supports various spatial operators to offer the subscribers more expressive filters.

Efficient matching of geospatial notifications against geospatial subscriptions is

challenging. Section 3.6 investigated several problems in the matching and described the

brute force method for the matching process. An efficient approach for geospatial

notification matching is proposed in this research. Spatial indexing of registered

geospatial subscriptions is utilized to enhance the speed and the efficiency of the

matching engine, thus, disseminating geospatial notifications quickly to interested clients.

Lastly, the chapter discussed some issues regarding the delivery process of

geospatial notifications to subscribers‘ applications. Subscribers are assumed to have

previous knowledge about the content-data structures of delivered geospatial

notifications. Their applications can be customized to interactively visualize and process

received geospatial notification in GIS applications.

71

Chapter Four: Development of Real-Time Fire Emergency Response System

4.1 Introduction

This chapter presents Real-Time Fire Emergency Response System (RFERS), a system

prototype developed in this research. The design of RFERS targets the transaction of

spatio-temporal events crucial in the context of fire incidents and emergencies including:

GPS location of emergency field assets (e.g., fire trucks and police cars), temperature and

humidity observations of wireless sensors, 911 reports of urban fire incidents, and

thermal-infrared airborne imageries of active wildfires. Potential users of RFERS may

include first responders, officers, fire chiefs, managers, and responsible agencies as those

parties interested in being notified about the occurrence of specific events and

accordingly respond and take the appropriate actions. Even the public can be part of the

system interaction in broadcasting emergencies and informing interested parties. As time

is an essential element in fire emergencies, real-time dissemination of instant happenings

of geospatial events to interested clients is the key matter underlined in the system

development.

Geospatial-based publish/subscribe framework, developed throughout Chapter 3,

is realized in the development of RFERS. RFERS is not intended to be a complete

software solution for emergency management applications. Rather, RFERS is developed

as a proof of concept to evaluate the adequacy of the geospatial-based publish/subscribe

framework and provides an indication of its potential use. The RFERS prototype is

attempted to demonstrate the following features:

 Integrating publisher clients that publish heterogeneous, dynamic, and

unexpected geospatial events essential for fire emergency services.

72

 Providing a real-time notification mechanism of essential information for

many users simultaneously required for taking quick responses and

conducting early warning scenarios.

 Offering an asynchronous style of communication and geospatial events

dissemination needed for multi-incident emergency management.

 Enabling a ―plug and play‖ approach for integrating new parties in the system

workflow.

 Using GIS technology to map and analyze geospatial notifications leading to

better realization of emergency situations.

The design and architecture of RFERS is described in the following section. This

section also describes four types of information (i.e., topics) that can be contained in

geospatial events with RFERS—Emergency Asset Locations, Wireless Sensor

Observations, Fire Incident Reports, and Wildfire Thermal-Infrared Images. The data

structure of each topic is described in details. Section 4.3 then describes the prototype

implementation of RFERS.

4.2 System Design and Architecture

Geospatial publish/subscribe interaction model (see Chapter 3) is implemented in the

design of RFERS. The main three components of RFERS are publishers, subscribers, and

the notification service middleware. The architecture of RFERS is divided into a three-

tier system model: the client tier, the business logic tier (also called application server),

and the database tier. Publishers and subscribers fall inside the client tier. They interact

73

with the middleware tier by sending and receiving messages (i.e., geospatial

events/notifications). The notification service component resides in the business logic

tier, where most of the application processing work occurs. The business logic tier, from

one side, communicates with the client tier by handling all the incoming publications and

subscriptions and consequently sending out notification messages. From the other side,

the processes running inside the business logic tier are permitted access to the database

tier for data storing and retrieving. A portion of the business logic functions resides in the

users‘ applications in the client tier for processing and visualizing the messages data.

APIs and TCP/IP protocols facilitate the underlying communication among the tiers.

High-level architecture of RFERS tiers is shown in Figure 4.1.

The rest of this section describes each tier of the RFERS architecture in more

detail. Before that, Section 4.2.1 introduces four topics of geospatial notification designed

for RFERS. The data structure of each topic is described in detail.

74

Figure 4.1: High-level architecture of RFERS

4.2.1 RFERS Topics and Data Models

In the development of RFERS, several topics of geospatial notifications are designed by

which producers and consumers should structure their publications and subscriptions,

respectively. The data model of each topic is predefined as a set of name/value pairs.

Those topics then are assumed as built-in standards recognized by the notification service

unit. Thus, RFERS clients should realize the topics data models and follow their

structures in order to successfully compile their issued operations. Otherwise, the

operations will be discarded and not processed by the notification service.

75

For the purpose of this research, four geospatial notification topics are devised as

potential applications of RFERS—Emergency Asset Locations, Wireless Sensor

Observations, Fire Incident Reports, and Wildfire Thermal-Infrared Images. The

aforementioned topics are selected in the sense that those scenarios would add great

values in the operational response for fire emergencies. The following explains each topic

and the associated data model in details.

4.2.1.1 Emergency Asset Locations

Being able to pinpoint the instant locations of the first responders‘ assets, such as fire

trucks and ambulances, in the emergency field is of a great importance for effective crew

allocation and efficient rescuing operations. Emergency commanders can be part of this

scenario as they can be updated in real-time by the locations of their assets in the incident

field, thereby adequately dispatching the available resources and decreasing the response

time. In some cases, tracking step-by-step movements of all emergency assets is not in

the interest of commanders, they would rather demand to be notified of certain instants

where the location or the state of emergency assets is crucial. For instance, the

commander requests to be notified if any emergency vehicles are within a1000m radius

of the incident location, or if the speed of certain vehicles exceeds 80 km/hr. This way,

clients of RFERS are saved from receiving large amount of locations data that might be

irrelevant or useless for them.

The data structure of this RFERS topic, namely Emergency Asset Locations, is

detailed in Table 4.1. Emergency assets are assumed to be capable of publishing this type

of geospatial notifications by potentially utilizing GPS devices integrated with computer

76

software. Notice that the mandatory type of name/value pairs in the content-data model

must be assigned in publishing geospatial notifications to this RFERS topic.

Table 4.1: Geospatial notification content-data model in Emergency Asset Locations

topic

Attribute

Name
Data Type Description

Mandatory /

Optional
Example

Topic String

Emergency Asset

Locations topic

(fixed string:

―EALocation‖)

Mandatory {Topic, ―EALocation‖}

GeometryPoint Point
1

Point feature

represents the

current position of

emergency asset

(X-axis Y-axis)

(UTM Zone 11N)

Mandatory
{GeometryPoint, (-1351656.9

1735269.3)}

AssetID String
Unique ID of

emergency asset
Mandatory {AssetID, ―A1‖}

AssetName String

Name of

emergency asset or

driver

Optional {AssetName, ―Ala‖}

Speed Integer

The current speed

of the asset

(km/hr)

Mandatory {Speed, 63}

PosDate Date/Time

The current date of

the acquired asset

position

(dd/mm/yyyy)

Mandatory {PosDate, 12/4/2008}

PosTime Date/Time

The current time of

the acquired asset

position

(hh:mm:ss.sss)

Mandatory {PosTime, 14:15:21.245}

4.2.1.2 Wireless Sensor Observations

Wireless sensor networks have been broadly utilized in distributed sensing of

environmental phenomena. Those small devices (also called nodes) are capable of

observing, processing, and broadcasting data for use by emergency responders. The

technology of wireless sensors has proven its efficiency in monitoring physical or

1
 Point data type of geospatial notifications is discussed in Section 3.5.1

77

environmental conditions of open spaces, such as forest area (Yanjun et al. 2006), and

even in closed areas, such as buildings (Wilson et al. 2007) and tunnels (Costa et al.

2007).

Table 4.2: Geospatial notification content-data model in Wireless Sensor

Observations topic

Attribute

Name
Data Type Description

Mandatory /

Optional
Example

Topic String

Wireless Sensor

Observations

Topic (fixed

string:

―WSObservation‖)

Mandatory {Topic, ―WSObservation‖}

GeometryPoint Point

Point feature

represents the

current position of

wireless sensor (X-

axis Y-axis) (UTM

Zone 11N)

Mandatory
{GeometryPoint, (-1532686.3

1234245.1)}

SensorID String
Unique ID of

wireless sensor
Mandatory { SensorID, ―S1‖}

SensorName String

Name of wireless

sensor (e.g., serial

number)

Optional { SensorName, ―SENS001‖}

Temperature Float

The temperature

observation value

(
o
C)

Mandatory { Temperature, 12.5}

Humidity Float

The relative

humidity

observation value

(%)

Mandatory { Humidity, 0.24}

ObsDate Date/Time

The date of the

acquired wireless

sensor observation

(dd/mm/yyyy)

Mandatory {ObsDate, 05/08/2008}

ObsTime Date/Time

The time of the

acquired wireless

sensor observation

(hh:mm:ss.sss)

Mandatory {ObsTime, 14:15:21.245}

The design of the RFERS prototype assumes that wireless sensor nodes are

deployed and distributed over an area to capture meteorological data, particularly

temperature and relative humidity observations. The sensors publish their current

locations and observations in forms of geospatial notifications. The data model of this

78

type of geospatial notifications is shown in Table 4.2. There are no restrictions on when

geospatial notifications should be published by wireless sensors. In this topic, irregular

patterns of geospatial notifications can be broadcasted throughout RFERS. RFERS

subscribers usually register their interests in receiving certain readings in specific

geographic locations. They are subsequently notified once these interests are met.

4.2.1.3 Fire Incident Reports

One of the fundamental responsibilities that any fire call center has is to process

emergency calls or reports and dispatch the appropriate safety resources to the location of

the incidents. Usually, emergency incidents are reported by the public via 911 phone calls

or through internet reports issued to the responsible fire departments. The location or the

address of the incident is vital and must be identified from the emergency report.

Immediately, first responders, such as police cars and medical services, are dispatched to

the emergency locations for rescuing operations. This procedure may involve also

notifying other agencies and resources for cooperation and effective mitigation of the

emergency. Furthermore, the notification procedure may be extended to reach the

neighbourhood and the surrounding community to the emergency location for warning

and evacuation purposes. As noticed, many parties are potentially involved in fire

emergency situations, and time delay is the essential condition here in terms of saving

lives and property. One of the key elements necessitated for conducting successful

response is to share incidents information among the involved parties in timely manner.

This geospatial notifications topic of RFERS involves reporting of present fire

incidents by publisher clients, including: emergency call operators, dispatchers, officers,

and even individual civilians or residents. They potentially can utilize any platform to

79

publish incident notifications, such as: applications GUI, the internet, web services, PDA,

and phone SMS. The address information or the location coordinates of the incidents

must be attached in the geospatial notifications content-data. In addition, photos that are

captured or associated to the incident scene (e.g., indoor photos, floor plan, and incident

exterior scenes) can be encapsulated in the content-data.

80

Table 4.3 shows the data model of fire incident geospatial notification.

The notification service processes geospatial notifications that are published to

this topic. It also performs address geocoding processing in case of unidentified location

coordinates, and delivers the data to the interested subscribers in real-time. The following

are some examples of scenarios where real-time delivery of incident information for

RFERS subscribers is important and effective. Police cars get immediate notification

about emergency incidents within a proximity of 3500m to their locations, emergency

centers asynchronously receive incident notifications located within their administrative

regions, and civilians get notified if emergency incidents occur within their neighbouring

areas.

81

Table 4.3: Geospatial notification content-data model in Fire Incident Reports topic

Attribute

Name
Data Type Description

Mandatory /

Optional
Example

Topic String

Fire Incident

Reports topic

(fixed string:

―FireIncReports‖)

Mandatory {Topic, ―FireIncReports‖}

GeometryPoint Point

Point feature

represents the

location of the

reported fire

incident (X-axis

Y-axis) (UTM

Zone 11N)

Mandatory /

Optional

{GeometryPoint, (-1522785.1

1248242.6)}

Address String

The addressing

information of the

fire incident

(Street, City,

Province)

Optional /

Mandatory

{ Address, ―2454 17th AVE

NE, Calgary, AB‖}

IncDate Date/Time

Date of the fire

incident

(dd/mm/yyyy)

Optional { IncDate, 14/11/2008}

IncTime Date/Time

Time of the fire

incident

(hh:mm:ss.sss)

Optional { IncTime, 08:45:00.000}

ReportID String
Unique ID of the

fire incident report
Optional {ReportID, ―I198‖}

Reporter String Reporter name Optional {Reporter, ―Kassab‖}

IncCause String

Initial cause of the

fire incident

(Electricity,

Human, Lightning,

Gas…)

Optional {IncCause, ―Human‖}

IncPhoto

Binary

(serialized

raster)

Photo of the file

incident scene
Optional {IncPhoto, (binary_raster)}

Description String

More description

about the fire

incident (phone

number, loss,

injuries, floor

information…)

Optional
{Description, ―Tel.: 403-224-

5421‖}

4.2.1.4 Wildfire Thermal-Infrared Images

Remote sensing technology has been widely recognized as an effective tool used for

emergency planning, response, recovery, and mitigation efforts. Processing and

visualizing remote sensing images give emergency managers the ability to have

82

comprehensive understanding of the emergency phenomenon, hence, leading to efficient

execution of relief and evacuation operations. In wildfire, airborne sensing has been

exploited in monitoring active wildfire spreading by capturing temporal images, visible

and infrared, data of such disasters (Riggan et al. 2003). Moreover, the advent of

Unmanned Aerial Vehicle (UAV) technology (see Figure 4.2) has made the acquisition

of real-time images more feasible and efficient (NASA 2007, WRAP 2004). Recent

research efforts have been targeting the evolution of integrating UAV systems with web-

based 3D geoinformation services to provide real-time and directly georeferenced spatial

information (Eugster and Nebiker 2008). Disseminating real-time alerting of such

essential data in disaster scenarios can be an added value to the existing systems of

emergency agencies.

Figure 4.2: UAV in monitoring wildfire disasters
1

1
 NASA, 2003, ―Top Story - NASA Develops New Technology to Reduce Wildfire Response Time -

August 21, 2003‖, Accessed January 19, 2009

http://www.nasa.gov/centers/goddard/news/topstory/2003/firesames.html

http://www.nasa.gov/centers/goddard/news/topstory/2003/firesames.html

83

Wildfire Thermal-Infrared Images topic is developed in RFERS to accommodate

remote sensing images of wildfire in the system interaction by means of geospatial

notifications. The content-data model geospatial notifications designed for this topic is

shown in Table 4.4. An instance from this class of geospatial notifications encapsulates

an image file which is a spatial dataset captured at the scene of the fire hazard. Usually,

each image dataset is associated with a time stamp (i.e., temporal images) and RFERS

publishers of this topic are concerned in broadcasting consecutive images of the fire

through a period of time. The image datasets, encapsulated in geospatial notifications, are

supposed to be georeferenced with a predefined coordinate system, processed, and ready

for visualization and mapping. RFERS subscribers can register their interests in this topic

and consequently receive and visualize those datasets once published. Besides, they can

constrain the delivery of those geospatial notifications by a region boundary, thus, they

receive those images which are located in the predefined boundary region (i.e., using

Contain or Cross spatial predicates as discussed in Section 3.5.2).

84

Table 4.4: Geospatial notification content-data model in Wildfire Remote Sensing

Images topic

Attribute

Name
Data Type Description

Mandatory /

Optional
Example

Topic String

Wildfire Remote

Sensing Images

topic (fixed string:

―WFireRSImage‖)

Mandatory {Topic, ―WFireRSImage‖}

RasterFile

Binary (serialized

raster) /

GeometryPolygon

Remote sensing

raster file

(Georeferenced,

e.g., GeoTIFF)

(UTM Zone 11N)

Mandatory
{RasterFile,

(binary_raster)}

RasterDate Date/Time

Date of remote

sensing image

acquisition

 Mandatory {RasterDate, 02/03/2008}

RasterTime Date/Time

Time of remote

sensing image

acquisition

Mandatory
{RasterTime,

11:25:35.100}

RasterDesc String

Description of the

remote sensing

image (wind speed,

temperature,

location info, type

of trees…)

Optional

{RasterDesc, ―average

temperature of 25oC,

relative humidity of 8%,

medium-high wind speed‖}

4.2.2 Client Tier

Clients of the RFERS application reside in the topmost level of the system architecture,

as depicted in Figure 4.1. They are either publishers or subscribers of geospatial

notifications. The main function of RFERS is the mediation of geospatial notifications

conveyed from publishers to subscribers asynchronously and in a timely manner. RFERS

clients are distributed over the network. They are unknown to each other as they only

communicate with notification service middleware regardless of other clients existing on

the network. In order for clients to communicate with the RFERS notification service

unit, they use Application Programming Interface (API) libraries which abstract the

complexity of the communication protocols to higher software level and facilitate

performing publish and subscribe operations.

85

In RFERS, the implementation of clients‘ applications is independent of the

system behaviour. In other terms, clients can utilize any software platform or application

to communicate with the notification service and be part of the system interaction.

However, clients‘ applications have to implement the APIs provided by the notification

service in order to perform publish/subscribe operations. In the RFERS prototype

implementation (see Section 4.3), a desktop GIS application is implemented to be utilized

by subscriber clients. Simulation programs are implemented to act as publishers of

geospatial notifications. Those applications are developed for the purpose of this research

to demonstrate the interaction mechanism and evaluate the underlined geospatial-based

publish/subscribe model. The following describes the major functionalities of RFERS

clients‘ applications.

Subscribers‘ applications interact with the RFERS middleware unit via the

network and visualize the received geospatial notifications over a GIS map. RFERS

subscriber clients register their specific interests in receiving geospatial notifications

published to one or more of the RFERS topics, discussed in Section 4.2.1. They are

assumed to know about these topics as well as the specifications of their data models. A

single subscription should be addressed to one topic, and the encapsulated filter should be

formulated strictly over the attributes of the data model associated to that topic. RFERS

subscribers can utilize their applications‘ GUI to formulate their subscription filters then

execute the required subscribe operations. The work flow of the subscriber client

application is shown in Figure 4.3. A subscription (Subg) data is processed and prepared

according to the content-data format of the required topic and finally transmitted through

the RFERS web network. The middleware notification service receives, processes, and

86

stores the subscription inside the database tier for later matching. Finally, an

acknowledgment message (Ack_Msg) is sent back to the subscriber confirming that the

subscribe operation is compiled and registered successfully. As soon as a published

geospatial notification (ng) matches the registered subscription, the geospatial notification

will be sent to the subscriber who owns the matched subscription. In the subscriber client

side, a message listener asynchronously triggers the core computation of the subscriber

application once a message (i.e., geospatial notification) arrives from the RFERS web

network. Automatically, the message is parsed to expose the content data of the message.

The local business logic of the client application transforms the message data into a

spatial feature thus to be overlaid with the GIS base map layers already contained in the

map control. The subscriber then can store the new received data inside a local database

repository and conduct further GIS or mapping analysis using the tools provided in the

GUI.

Figure 4.3: RFERS subscriber client application

87

Publisher clients are the sources of geospatial notifications data. They generate

and broadcast geospatial notification messages throughout the RFERS web network. The

data encapsulated in those messages should be structured according to the data models of

the RFERS topics specified in Section 4.2.1. Each geospatial notification message should

be tagged (i.e., defining the ―Topic‖ attribute predicate in the message content-data) by

the topic string name. Thus, the notification service can distinguish the geospatial

notification topic and the content-data format. Any failure in structuring and defining the

geospatial notification predicates leads the notification service middleware to discard the

data and not reach the subscriber clients.

4.2.3 Business Logic Tier

There are two main components that reside in this tier: the notification service

middleware and the GIS map service. RFERS notification service acts as the

intermediary component and supplies the communication between RFERS clients. There

is no direct connection between clients together as mentioned in Section 4.2.2. Rather,

the notification service takes the responsibility of channelizing the information from

publishers to subscribers.

The notification service interacts closely with the database tier through the data

access layer. Upon receiving geospatial subscriptions issued from subscribers, the

notification service manages and stores the subscriptions information inside the

predesigned subscriptions database. Also, when receiving geospatial notifications issued

from publishers, the notification service retrieves the registered subscriptions and

conducts the matching process to find the interested subscribers in such notifications. As

depicted in Figure 4.1, the notification service consists of three key processes: the

88

subscription manager, the matching engine, and the notification dispatcher. To clarify the

middleware tier work flow and the function of each of the notifications service‘s

processes, the remaining of this section details the process flow when a subscriber client

registers a geospatial subscription and a publisher client broadcasts a geospatial

notification.

As soon as a client subscribes a geospatial subscription Subi, the operation

message is transmitted to the notification service unit. The subscription manager takes the

role of processing the subscription‘s message and storing the encapsulated information

inside the RFERS subscriptions‘ database. The process starts by parsing the

subscription‘s message to expose the internal information which usually includes a

spatial predicate, an attribute predicate, and other attributes related to the identity of the

subscriber client, such as: ID and Name attributes. The notification service uses the ID

attribute to uniquely identify the client and send him published geospatial notifications

that match his subscription(s). The spatial predicate, as defined in Section 3.5.2,

comprises a base geometry Gb, a spatial operator SOp, and an optional buffer value buff.

After parsing the subscription‘s message, the next step is applying the buffer zone on Gb

with the value of buff and accordingly modifies the original Gb. Afterwards, the

geospatial subscription is clustered according to the assigned SOp type and stored in the

associated table of the subscriptions database. More details about the process of preparing

issued geospatial subscriptions are described in Section 3.6.3.3. The spatial indexes

created for the subscriptions tables are maintained during the insertion of the new base

geometry of the geospatial subscription. Finally, the notification service sends back an

acknowledgement message to the client confirming that the geospatial subscription is

89

processed and registered successfully. Figure 4.4 illustrates the aforementioned process

flow.

Figure 4.4: The notification service process flow upon issuing geospatial

subscription

When a publisher client issues a geospatial notification ng, similarly the operation

message is transmitted to the RFERS middleware. Figure 4.5 illustrates the process

procedure inside the notification service upon publishing a geospatial notification. This

time, the function of the notification service is to deliver ng to RFERS subscribers who

have previously registered geospatial subscriptions that match the ng features. The

matching engine is the primary and the most consuming process at this stage; it takes

charge of filtering the stored geospatial subscriptions and finding the matched set. The

RFERS matching process is developed similar to the proposed matching approach

discussed in Section 3.6.3.3. Here the matching procedure is clarified again for the sake

of completing this context.

90

After parsing the ng message (Step 1 in Figure 4.5), the matching engine takes the

spatial feature of ng (i.e., the geometry of ng) as an input and executes a maximum of six

spatial queries to retrieve the geospatial subscriptions whose spatial geometries satisfy

the queries criteria (Step 2 in Figure 4.5). Those spatial queries are shown in Table 4.5.

The spatial indexes created from the subscriptions tables are used in this step to

accelerate the searching process. This is the key improvement of the matching engine

(more details are discussed in Section 3.6.3.3). The result from this step is a subset of

geospatial subscriptions whose spatial constraints (i.e., spatial predicates) are satisfied by

the geometry of the published ng. Subsequently, the other attributes of the ng are

evaluated against the attribute predicates, if available, assigned in the geospatial

subscriptions subset resulted from the previous spatial matching step (Step 3 in Figure

4.5). The attribute evaluation here is conducted in a one-by-one basis. The geospatial

subscriptions that pass this step are considered to completely match the published ng.

Thus, the associated subscribers will be notified about the ng. The notification dispatcher

process takes the matched geospatial subscriptions along with the published ng and

pushes the ng message data to the associated subscribers‘ applications (Steps 4 and 5 in

Figure 4.5). The notification dispatcher identifies each subscriber by his unique ID

throughout the RFERS network, thus uses the subscriber‘s ID to deliver the ng message

for the subscriber application through a Notify() operation.

91

Figure 4.5: The notification service process flow upon publishing a geospatial

notification

Table 4.5: The spatial queries executed in the spatial matching process

Base Geometry Target Geometry Table Spatial Query

The geometry of the

geospatial notification

(ng.Geometry)

Contain_Subs

SELECT * FROM Contain_Subs WHERE

Within (ng.Geometry, Contain_Subs.Geometry) =

true;

Cross_Subs

SELECT * FROM Cross_Subs WHERE

Cross (ng.Geometry, Cross_Subs.Geometry) =

true;

Touch_Subs

SELECT * FROM Touch_Subs WHERE

Touch (ng.Geometry, Touch_Subs.Geometry) =

true;

Overlap_Subs

SELECT * FROM Overlap_Subs WHERE

Overlap (ng.Geometry, Overlap_Subs.Geometry)

= true;

Disjoint_Subs

SELECT * FROM Disjoint_Subs WHERE

Disjoint (ng.Geometry, Disjoint_Subs.Geometry)

= true;

Within_Subs

SELECT * FROM Within_Subs WHERE

Contain (ng.Geometry, Within_Subs.Geometry) =

true;

The second component of the business logic tier is the GIS map service. RFERS

clients are provided this service to access and view georeferenced maps and GIS data in

various scales. Subscribers can utilize this service to overlay received geospatial

notifications and conduct further modeling and geoprocessing analysis.

92

4.2.4 Database Tier

RFERS database tier holds two databases: the subscriptions database and the GIS

database. Only the middleware tier has a direct access to both databases through a data

access layer.

The subscriptions database stores all the geospatial subscriptions issued by

subscribers that are successfully compiled and processed by the notification service. As

mentioned in the previous section, the registered geospatial subscriptions are clustered in

six tables: Contain_Subs, Cross_Subs, Touch_Subs, Disjoint_Subs, Within_Subs, and

Overlap_Subs, where each of them records the attributes of the geospatial subscriptions

whose spatial predicates are assigned Contain, Cross, Touch, Disjoint, Within, and

Overlap spatial operators, respectively. The subscriptions tables have the same fields

schema shown in Table 4.6. A geometry data type field, called the spatial_shape, is

created in each of the aforementioned tables. The values of the shape field are assigned

the base geometries of the spatial predicates encapsulated in the geospatial subscriptions,

and those geometries refer to the spatial features of the geospatial subscriptions.

Moreover, a spatial index is created on the spatial_shape field and used in the matching

procedure while searching for match geometries with the published geospatial

notification geometry.

93

Table 4.6: Data fields structure of the geospatial subscription tables

Field Name Data Type Description

Topic String

The topic name string of the geospatial subscription

(‗EALocation‘, ‗WSObservation‘, ‗FireIncReports‘, or

‗WFireRSImage‘)

spatial_shape Geometry The base geometry of the geospatial subscription

subID Long integer Unique ID of the geospatial subscription

subscriberID Long Integer Unique ID of the subscriber client (application)

att_filter String
the attribute filter/predicate assigned in the geospatial

subscription

subDate Date/Time Date of the geospatial subscription

subTime Date/Time Time of the geospatial subscription

The GIS database is designed as a repository of spatial data needed for developing

a regional base map. Through the GIS map service component in the middleware tier, the

application‘s GUI provided for subscriber clients can be used to visualize the base map

data layers. Subscribers would use the base map mainly for overlaying with the received

geospatial notifications. Also, the base map can be utilized for performing various GIS

analysis, such as: attribute and spatial query, proximity, and network analysis. The base

map data layers include provinces, regional municipalities, capitals and major cities,

highways, water areas, and topography features created at the national scale of Canada.

Other large-scale and detailed data layers, including local streets, healthcare facilities,

schools, police stations, buildings footprints, parks and recreations, land use, and other

features, are collected particularly for the Alberta and British Columbia provinces. In

addition to that, multi-scale satellite image services are included to enrich the base map

with more comprehensive information. The GIS data is collected mainly from DMTI

94

Spatial
1
, ESRI

2
 and GeoGratis

3
, then processed, prepared, and migrated in the GIS

database.

4.3 Prototype Implementation

This section describes the prototype implementation of RFERS developed throughout this

chapter. The RFERS prototype is not meant to be a commercial product for the market,

where further technical and development issues should be maintained in considering this

matter. Rather, the focus here is to test the adequacy of the RFERS architecture and

evaluate the interaction and dissemination of data by means of the proposed model,

geospatial publish/subscribe, for a potential market product in the future.

The prototype implementation of RFERS is conducted in developing three main

components to model the interaction mechanism: (1) simulation programs for publishing

geospatial notifications into the four RFERS topics, (2) a desktop GIS application for

subscribers to receive geospatial notifications and visualize the data in a GIS

environment, and (3) the notification service middleware for managing subscriptions,

matching geospatial notifications against registered subscriptions, and dispatching

geospatial notifications to subscriber clients. The next sections explain the development

tools used for the prototype implementation then describe each of the prototype

components in details.

1
 DMTI Spatial, 2008, ―Location Intelligence Solutions. Mapping Software, Enterprise Mapping Solutions,

Address Data, Geo Data, DMTI Spatial‖, Accessed March 25, 2009, http://www.dmtispatial.com/
2
 Environmental Systems Research Institute (ESRI), 2009, ―ESRI - The GIS Software Leader‖, Accessed

March 25, 2009, http://www.esri.com/
3
 GeoGratis, 2009, ―GeoGratis – Home‖, Accessed Match 25, 2009,

http://geogratis.cgdi.gc.ca/geogratis/en/index.html

http://www.dmtispatial.com/
http://www.esri.com/
http://geogratis.cgdi.gc.ca/geogratis/en/index.html

95

4.3.1 Development Tools and Software Packages

In general, there are plenty of programming libraries and commercial software packages

that can be utilized to develop the RFERS prototype. However, the choice of the required

development tools has been made considering the following factors: user-friendly

programming environment, availability of the software packages for the research,

availability of documentations and user tutorials, and the author‘s previous experience.

TIBCO Enterprise Messaging Service (EMS) v4.4 and ESRI ArcGIS v9.3 products are

the main utilized packages from the RFERS prototype implementation. TIBCO EMS is a

standard-based messaging software that serves as a communications backbone between

distributed and a wide range of applications and platforms (TIBCO 2008). ESRI ArcGIS

family is widely known, easy to use GIS software utilized in many GIS applications and

development solutions (ESRI 2004). Both of the software packages provide .NET

Framework APIs for developers to customize extended and advance applications that

meet their requirements. In the implementation of the RFERS prototype, C# is the

programming language used, in addition to EMS and ArcGIS Engine .NET SDK for

implementing the system prototype components. For building the RFERS database,

ArcSDE v9.3 Workgroup Geodatabase and Microsoft SQL Server 2005 Express Edition

are used for the storage and access management of spatial data required for the purposes

of the prototype.

4.3.2 Simulation of Geospatial Notifications

For experiment and evaluation purposes, four versions of a simulation program, one for

each RFERS topic, have been developed to publish geospatial notifications throughout

the system prototype in regular or irregular timing basis. The simulation programs are

96

Windows based desktop interfaces implemented in C# and using EMS API for creating

messages sender object. They facilitate the creation of geospatial notifications content-

data and the execution of publish operations. The geospatial notification data models

described in Section 4.2.1 are realized in the simulation programs; the simulation

program interface is used to fill out the attribute values according to the RFERS topic

specifications. Figure 4.6 shows the simulation programs for publishing geospatial

notifications into (a) the Emergency Asset Locations, (b) the Wireless Sensor

Observations, (c) Fire Incident Reports, and (d) Wildfire Remote Sensing Images topics.

As discussed previously is Section 4.2.2, clients applications are independent of

the system behaviour. They only use the appropriate APIs provided by the notification

service to perform publish/subscribe operations. As the simulation programs act as

RFERS publishers, they implement the notification service APIs for publishing

geospatial notifications. One can create many instances of the simulation programs to

publish geospatial notifications to one or more RFERS topics simultaneously. These

instances also can be run on different computers and publish geospatial notifications

without any synchronization with other instances. Furthermore, the simulation instances

can join and leave the RFERS network irregularly and without pre-configurations needed.

Therefore, the irregular behaviour of publisher clients can be demonstrated using the

simulation programs.

97

Figure 4.6: The simulation programs for publishing geospatial notifications into

RFERS topics: (a) Emergency Asset Locations topic, (b) Wireless Sensor

Observations topic, (c) Fire Incident Reports topic, and (d) Wildfire Thermal-

Infrared Images topic

98

4.3.3 Subscriber GIS Application

RFERS subscriber clients are provided a front-end software application capable of

interacting with the RFERS framework and managing the received geospatial

notifications in a GIS environment. The application is implemented in C# and uses

ArcGIS Engine .NET APIs to build and customize GIS mapping functions. The

application also uses EMS .NET API to create an instance of a messages receiver object.

When a user runs the application, a login screen, depicted in Figure 4.7, turns up

asking the user to enter a user name needed to identify the user location on the RFERS

network as well as maintain previous subscriptions registered by the same username. As

the user logs in to the main application, the notification service opens a unique

communication channel with the subscriber‘s application for potentially exchanging

messages. In addition, the user is granted an access to a map service for viewing base

map data prepared inside the RFERS geodatabase.

Figure 4.7: Subscriber’s application login screen

The application user interface, depicted in Figure 4.8, contains two main tabs,

namely Map and Subscriptions/Notifications. In the Map tab, a base map is viewed inside

99

a mapping control. Several mapping and navigation tools are provided in the main

toolbar, including: zoom in, zoom out, pan, full extent, search, identify, measure

distances and areas, go to XY, and others. These tools help the user to explore the overall

region data. While receiving geospatial notifications (i.e., dynamic spatial features), those

features will be overlaid with the base map data and visualized automatically inside the

mapping control. The user then is updated by the geospatial notifications visually and

uses the received data for conducting further GIS analysis which would help him to take

the appropriate actions if needed.

Figure 4.8: Subscriber’s application Map tab

The Subscriptions/Notifications tab is used to perform geospatial subscriptions or

explore the information of the received geospatial notifications. The tab area, depicted in

Figure 4.9, is divided horizontally into two main horizontal panels, namely Subscriptions

and Notifications. The user utilizes the Subscriptions panel to subscribe or unsubscribe

100

for geospatial notifications. The Notification panel shows several attributes of the

received geospatial subscriptions in a table form, the attributes mainly include: the

matched subscription ID, the publisher name, date and time of sending and receiving the

notification, and the content-data attributes.

By clicking the subscribe button, a dialog box appears requesting the user to

formulate the parameters values of the geospatial subscription. According to the

geospatial subscription model described in Section 3.5.2, three main parameters are

needed to define a geospatial subscription: a topic string name, an attribute

filter/predicate, and a spatial filter/predicate. As shown in Figure 4.9, the user selects one

of the four RFERS topics via the topics combo box specifying the topic string name that

the user is interested in. Then, the user goes further to assign an attribute and spatial

filters as required. If the user does not assign any of those filters, then the user is

interested in receiving all the geospatial notifications published to the assigned topic

name.

Defining the attribute filter is conducted by a manual typing of the required query

in the appropriate text box for this feature. As mentioned previously, previous knowledge

about the geospatial notifications data models in each topic is assumed. Thus, the user

should be aware of the correct syntax as well as the exact string names of the topic‘s

geospatial notification attributes in defining the attribute query.

For defining the required spatial filter, three parameters should be assigned by the

user, namely the base geometry, the spatial operator, and the buffer value. The user

defines the type of the geometry (i.e., point, polyline, or polygon) according to the

required spatial filter. Further, the user utilizes the Map tab to define the shape and the

101

spatial location of the subscription‘s geometry; this is conducted by either manual

drawing of the geometry on the mapping control or selecting an existing spatial feature(s)

whose spatial shapes and locations will be taken to define the geometry. The user then

uses the appropriate dialog box controls to assign the other two parameters.

Finally, the user confirms the subscription parameters and closes the dialog box,

thus the operation is sent out to the RFERS notification service for registration. After a

successful registration, the geospatial subscription will be added as a table record in the

Subscription panel entailing that any geospatial notification that matches the registered

subscription will be delivered to the user‘s application. Unsubscribe operation can be

simply conducted by selecting one of the registered geospatial subscriptions then clicking

unsubscribe button, thus unregistering the selected subscription from the notification

service.

Figure 4.9: Subscriber’s application Subscription/Notifications tab

102

Likely to the publisher simulation programs discussed in the previous section, the

independent and the irregular behaviour of RFERS subscriber clients is assumed. The

subscriber GIS application can be used by many users and deployed in distributed

computers over the network. A user can also join and leave RFERS network, by running

or closing the application respectively, irregularly and without pre-knowledge of other

clients on the network. Although the number of active clients on the RFERS network

would affect the performance of the middleware component, there are no restrictions on

how many clients should interact simultaneously in the RFERS prototype.

4.3.4 Middleware Server

The notification service component is implemented in C#. ArcGIS Engine .NET SDK is

used for handling and managing the geospatial subscriptions inside a spatial database as

well as for conducting the matching process when geospatial notifications are published

(see Section 4.2.3). In addition, EMS API is used for receiving published geospatial

notifications as well as for dispatching them to matched subscribers‘ applications. The

RFERS database is created and prepared using ArcSDE 9.3 and SQL Server 2005

Express to support spatial type of data. Feature classes are prepared in the RFERS

database to store the geometry features of the geospatial subscriptions that are issued by

subscribers. Multi-level grid, a maximum of three grid levels, spatial index is the only

indexing technique supported in SQL Server Express database (ESRI 2008). For the

purpose of this research and the prototype implementation, however, that the grid spatial

indexing is considered sufficient and can be used to improve the matching process.

The GIS map service component (see Figure 4.1) hosts a map service which is

consumed by subscribers‘ applications to view a base map for Canada. The map service

103

is created using ArcGIS Server v9.3 and the base map spatial layers are managed in the

RFERS database. ArcGIS Server v9.3 is an easy-to-use software for creating several GIS

services and resources for sharing information and GIS functionalities by making them

available to clients‘ applications. Different tools provided by the software are utilized to

improve the map service for faster performance and high-quality in viewing the base

map.

4.4 Summary

This chapter presented Real-Time Fire Emergency Response System (RFERS), a system

prototype developed in this research. Geospatial-based publish/subscribe framework

proposed in Chapter 3 is realized in the development of RFERS. Clients of this system

interact by means of geospatial events/notifications. RFERS is a proof of concept

prototype proposed in this research to demonstrate how dynamic geospatial information

in the context of fire emergency can be disseminated in real-time to interested parties thus

potentially improving response actions and situational awareness. The system is also

developed to evaluate the adequacy and the performance of the proposed geospatial-

based publish/subscribe model.

The chapter proposed four geospatial event topics: Emergency Asset Locations,

Wireless Sensor Observations, Fire Incident Reports, and Wildfire Thermal-Infrared

Images. In the Emergency Asset Locations topic, geospatial notifications represent the

current locations of emergency assets moving in the geographical space. Subscriber

clients can be notified in real-time about those assets whose properties satisfy certain

spatial and attributes constraints, such as assets that are within proximity of 1000m from

104

an emergency location. In Wireless Sensor Observation topic, meteorological data

observed by distributed sensors are published in RFERS. Subscribers, for instance, can

receive a subset of those observations that are acquired in certain geographic region and

their temperature readings when they exceed a certain value which can potentially cause

an ignition of fire. In Fire Incident Reports, addresses of present fire incidents are

published as geospatial notifications. Thus, interested clients can be notified in timely

manner and dispatch the appropriate response resources. In Wildfire Thermal-Infrared

topic, airborne temporal images captured at the scene of active forest fires can be

disseminated to monitoring agencies, thus, they would allocate firefighters and available

emergency personnel for efficient emergency mitigation.

The architecture of RFERS is divided into three tiers: clients tier, business logic

tier, and database tier. Clients communicate with the notification service unit that resides

in the business logic tier (i.e., the middleware component) by performing

publish/subscribe operations. The middleware component communicates with the

database tier to manage subscriptions inside the RFERS database and match geospatial

notifications with registered subscriptions. The middleware component also offers a GIS

map service and provides RFERS clients with GIS base map data useful to visualize

geospatial notifications and conduct GIS mapping analysis.

The chapter also described a prototype implementation of RFERS. C#

programming language and commercial software packages, EMS v4.4 and ArcGIS v9.3,

are used for the implementation. A desktop GIS application is implemented for the use of

subscriber clients, and simulation programs are developed to simulate publishing

geospatial notification to RFERS topics. The irregular behaviour of RFERS clients is

105

assumed in the prototype implementation; many instances of those applications can be

run on different computers simultaneously without any synchronization of the interaction

processes.

106

Chapter Five: Testing Results and Performance

5.1 Introduction

This chapter discusses the attempts made to test the RFERS prototype developed in

Chapter 4. Further, the chapter evaluates the performance of the proposed interaction

model, namely geospatial-based publish/subscribe, through using the RFERS prototype

with simulated data.

In this chapter, several simulation scenarios are demonstrated to show the

mechanism of disseminating geospatial events in real-time to interested clients. The

scenarios also give an indication on the usefulness of geospatial-based publish/subscribe

interaction in the context of fire emergency and situational awareness. The efficiency of

the RFERS prototype can be evaluated by how quick dynamic geospatial information is

reflected and delivered to the interested clients. This largely depends on the performance

of the applied matching engine in searching for matched interests (i.e., geospatial

subscriptions) within a potentially large number of clients‘ subscriptions. Thus, this

chapter evaluates the performance of the RFERS prototype in matching geospatial

notifications with different sets of numbers of geospatial subscriptions.

The chapter is divided into two main parts. The first part, in Section 5.2,

investigates the efforts made to test the RFERS prototype implementation and whether

the system‘s components meet their requirements. The second part, in Section 5.3,

discusses the evaluation process of the implemented geospatial-based publish/subscribe

interaction by testing the RFERS matching engine with simulated datasets of geospatial

subscriptions.

107

5.2 RFERS Prototype Testing

This section attempts to assess the implemented prototype of RFERS developed

throughout Chapter 4; the actual implementation of the prototype components is

described in Section 4.3. The prototype testing herein can be stated as the process of

validating and verifying whether the functions provided by the prototype software meet

their requirements and the interaction between the system‘s components work properly.

The major testing process has been conducted by simulating the geospatial

publish/subscribe interaction in different scenarios. Three interaction scenarios are

envisioned between the RFERS publishers and subscribers utilizing the topics‘ data

models proposed in Section 4.3.1. The next three sub-sections explain the outcomes from

each scenario in details. In addition to that, the prototype has been demonstrated for other

members of the Positioning & Mobile Information System group at the University of

Calgary with the intent of obtaining feedbacks regarding the usability and the adequacy

of the software. This has contributed on enhancing the prototype implementation by

fixing some software bugs as well as in highlighting some techniques that can be

considered to improve the software functionalities.

For testing purposes, the RFERS prototype components have been set up as

follows: the RFERS middleware as well as the RFERS database (see Section 4.3.4) has

been installed on a server workstation with 2.4GHz Intel Core 2 Quad-Q6600 CPU and

4GB RAM running Windows XP Professional. The RFERS GIS subscriber application

and the publisher simulation programs (see Section 4.3.3 and Section 4.3.2 respectively)

have been set up on a local computer with 1.86GHz Intel Core 2 Duo E6320 CPU and

2GB RAM also running Windows XP Professional. Both machines, the server and the

108

local, are connected through a local network, thus ease the communication of information

between both computers and without taking care of other network and accessibility

configurations which is not the concern on the testing process. The testing results,

including the major limitations and problems, are presented in the last subsection.

5.2.1 Emergency Assets Close by a Fire Incident

To illustrate this scenario, let us consider the following example. An officer in a fire

station is concerned about immediate notification in any fire incident reported in the

designated region area the fire station is responsible for. The fire station service area is

bounded by the geographical region of the Forward Sortation Area (FSA) code number

―T2N‖, Calgary, Alberta—located in this region are the University of Calgary and the

Foothills Hospital. To implement this type of interest utilizing the RFERS software, the

officer would subscribe his interest in the geospatial notifications that will be published

to Fire Incident Reports topic (―FireIncReports‖ topic string name) and their locations are

contained by the ―T2N‖ FSA geographical boundary. Thus, as the RFERS subscriber

application is running on the officer‘s local computer, the officer would locate the FSA

polygon that has the code ―T2N‖ utilizing the base map data and the mapping tools

provided in the application. After that, the officer initiates a new subscription and assigns

the parameters with values that fit the respective interest. The parameters and their values

are defined as the following: Topic Name = FireIncReports, Attribute Filter = Null,

Subscription Geometry Type = Polygon, Spatial Operator = Contain, and Buffer Value =

zero. For the subscription geometry, the officer selects the ―T2N‖ FSA polygon and uses

it to define the subscription geometry required. Finally, the officer submits his

109

subscription then he gets an acknowledgement message that his subscription has been

registered successfully by the RFERS notification service.

The steps mentioned above to initiate new subscription have been performed by

the author using the RFERS subscriber application. Meanwhile, random geospatial

notifications of type ―Fire Incidents Reports‖ have been generated and published to the

FireIncReports topic using the simulation program designed for this, where the main

piece of information encapsulated in every generated geospatial notification is the

address text of the incident. The addresses that stated point locations outside the previous

registered subscription‘s geometry (i.e., ―T2N‖ polygon boundary) have not been

delivered to the RFERS subscribe application. When ―2500 University Drive NW‖,

Calgary, AB‖ address text published, the RFERS subscriber application received that

geospatial notification and the address is located instantly over the base map. Figure 5.1

depicts the received geospatial notification of type ―Fire Incident Reports‖ that

encapsulated the address ―2500 University Drive NW, Calgary, AB‖. The officer then

would explore the neighbourhood area and features to come up with the appropriate

response action to the reported incident.

110

Figure 5.1: Subscription and publishing scenario utilizing the “FireIncReports”

topic of the RFERS prototype

Let‘s assume that in the example above the officer further requires to be notified

about the positions of emergency vehicles within proximity of 3000m from the incident

location. Accordingly, the officer initiates another new subscription and defines its

parameters as the following: Topic Name = EALocations (the string name of ―Emergency

Asset Location‖ topic), Attribute Filter = Null, Subscription Geometry Type = Point (the

fire incident location), Spatial Operator = Contain, and Buffer Value = 3000. The

111

subscription geometry is defined as the point location of the reported fire incident. Figure

5.2 shows the area of this subscription for the ―Emergency Asset Location‖ topic after

submitting the operation to the RFERS notification service. During this time, it is

assumed that several emergency assets are moving all over the area in different directions

and they are constantly publishing their current positions throughout the system. For this

matter, four instances of the publisher simulation program have been run simultaneously

to broadcast fabricated coordinates of four moving assets, E1, E2, E3, and E4. The time

interval has been set to 5 seconds in the simulation program instances, where in each time

interval tick a geospatial notification of the current position of the asset is published to

the ―Emergency Asset Location‖ topic. While publishing the assets current positions, two

of them, E2 and E4, entered the subscription region and the subscriber application started

to receive geospatial notifications of the two assets positions. The rest of the emergency

assets were driving away from the region of interest by the subscriber, thus their positions

were not delivered to the subscriber application. The received geospatial notifications

were shown instantly on the base map, where the consecutive positions of one asset are

symbolised as a driving path and the latest position as a car symbol labelled by the asset

name. Figure 5.2 shows received geospatial notifications of the two aforementioned

assets.

112

Figure 5.2: Subscription and publishing scenario utilizing “Emergency Asset

Location” topic of RFERS prototype

5.2.2 High Temperature and Low Relative Humidity Observations of Wireless Sensors

In the context of this scenario, the correlation between wildfire hazards or ignition

potential and meteorological conditions is significant and well known in the history.

Wildfire danger tends to increase as a consequence of increasing temperature and

decreasing relative humidity observations. Thus, it is of importance to get notified about

the happening of this critical condition once observed in wildlife environment. This

simulation scenario is planned to trial the RFERS prototype interaction mechanism in

producing and consuming geospatial notifications of type ―Wireless Sensor

Observations‖ topic.

The simulation program was utilized to create 10 instances of ―Wireless Sensor

Observation‖ topic publishers. Each one of the instances referred to one simulated

wireless sensor. The geospatial notifications encapsulated random values of temperature

113

and relative humidity observations ranging from 20
o
C to 30

o
C and from 5% to 20%,

respectively. The time interval for publishing a single geospatial notification by one

sensor is set to 10 seconds. The spatial locations of the simulated wireless sensors were

distributed all over Jasper National Park area located in Western Alberta, Canada.

In the subscriber application side, a subscription operation was performed to

consume wireless sensor observations whose temperature and humidity values are greater

than 27
o
C and less than 8%, respectively. At the same time, the observations of interest

were only those located within Jasper National Park boundary. Accordingly, the

subscription‘s parameters were assigned as the following: Topic Name = WSObservation

(the string name of ―Wireless Sensor Observations‖ topic), Attribute Filter =

Temperature > 27 AND Humidity < 0.08, Subscription Geometry Type = Polygon

(Jasper National Park boundary), Spatial Operator = Contain, and Buffer Value = zero.

The Jasper National Park polygon was selected from the base map data and used as the

spatial geometry of this subscription. The subscription then was submitted and registered

successfully (see Figure 5.3).

A while from registering the subscription, the sensors‘ observations started to

show on the base map. The observation values kept updating on the map as long as the

simulated sensors publish geospatial notification matching with the previously registered

subscription. To ensure that the observations received are only the matched ones with the

registered subscription, the content-data of the received geospatial notification were

checked out by the author and found they correctly matched the registered subscription.

Figure 5.3 illustrates the subscriber application resulting from applying this scenario.

114

Figure 5.3: Subscription and publishing scenario utilizing “Wireless Sensor

Observations” topic of RFERS prototype

5.2.3 Wildfire Monitoring Using Remote Sensing Thermal-Imaging

The aim of this scenario is to ensure that transacting geospatial notifications by means of

the ―Wildfire Remote Sensing Images‖ topic functions and meets the requirements of

RFERS prototype. The geospatial notifications publisher this time is assumed publishing

imaging datasets captured by an airborne camera at the scene of a wildfire. The imaging

datasets should be in their final form, in other words, previously processed and ready to

be visualized and mapped in a GIS before publishing them throughout RFERS. Temporal

flight lines or over passes can be conducted by the aircraft to monitor the spread and the

growth of the fire. The subscriber in this scenario is concerned to be notified about the

imaging datasets in real-time providing sufficient information for responding and

preventing more loss and damage of natural resources.

115

The USDA Forest Service, Pacific Southwest Research Station (PSW) in

California, USA, developed an airborne thermal-infrared imaging system, FireMapper, to

monitor the progress and the intensity of wildfires and support tactical fire suppression by

providing temporal thermal-infrared imageries of current wildfire events (Riggan et al.

2003). The captured imageries data is processed and georeferenced, the final products

then are made widely available on their website (2009) for downloading in different data

formats. For this scenario, nine datasets of temporal thermal-imageries were downloaded.

The datasets were captured and made available on the Internet while monitoring the

Corral Fire event that took place in Los Angeles County, CA, USA during November

2007. The data format of those imageries is GeoTIFF, where georeferencing information

of the imageries is embedded within the data files. The images were encapsulated in the

content-data of geospatial notifications and published to the ―Wildfire Remote Sensing

Images‖ topic using the publisher simulation program. On the other side, a subscription

was previously performed to receive all published geospatial notifications to the

―Wildfire Remote Sensing Images‖ topic. In other words, there are no constraints or

filters applied on the content-data. Consequently after executing the publications, the

images are visualized directly on the base map showing the active fire spreading and the

temperature intensity classes. As further geospatial notifications are published, the

images would overlap each other and the most recent image would appear on the top

level. Figure 5.4 shows the subscriber application resulting from applying this scenario.

116

Figure 5.4: Publishing and subscription scenario utilizing “Wildfire Remote Sensing

Images” topic of RFERS topic

5.2.4 Discussion

Throughout the aforementioned scenarios and other software demonstrations and

experiments conducted, the results of the RFERS prototype testing process established

that the RFERS software meets its requirements and the provided functions are working

properly. However, the results also have shown major limitations and problems

associated with the prototype implementation and the publish/subscribe interaction

methodology applied. The rest of this section emphasizes these issues.

117

Heavy server load and single point of failure: the centralized architecture of

notification service (see Section 2.4.1) is assumed in the proposed geospatial

publish/subscribe model, as mentioned in Section 3.4, and realized in the implementation

of the RFERS prototype. This introduces a major limitation in terms of heavy load

expected on the server unit since all the publications and subscriptions are handled by the

centralized matching engine. Further, the interaction between clients is all dependent on

the correct functioning of the server unit, in particular the matching engine; if the server

fails, the whole system breaks down. On the other hand, this architecture is simple to

implement and can be efficient and well suited for relatively small-scale businesses.

The solution of this problem would be by realizing the distributed architecture of

the notification service (see Section 2.4.2). The distributed architecture increases the

scalability of the system in accommodating globally distributed clients. Nevertheless, it

also introduces new difficulties in implementing the matching engine and brings in new

algorithms that should be recognized in routing the operations between the notification

service‘s nodes.

The centralized architecture fits the objectives of this research. The comparison

between different notification service architectures is beyond this research scope.

Realizing the distributed architecture with the proposed geospatial publish/subscribe

model is one of the intended future works for this research (see Section 6.3).

Availability status of subscribers: the application provided for RFERS subscribers

receives the geospatial notifications delivered from the notification service and visualize

the data on the base map automatically, as shown in the testing scenarios of Section 5.2.

However, what would happen to the geospatial notifications data in case a subscriber is

118

not available on the RFERS network at the time of dispatching? This question was

investigated and taken into considerations in the RFERS prototype implementation.

When a subscriber is not running the front-end application, the notification data will be

stored temporally inside the notifications service. Therefore, as soon as the subscriber

logins to the RFERS network, the original notifications data will be dispatched to the

subscriber. Technically, this issue is addressed in the RFERS prototype by implementing

a method called createDurableSubscriber() available in the EMS API. Hence, the

geospatial notifications will not be discarded even if the subscriber is inactive.

Furthermore, the messages of the geospatial notifications can be assigned an additional

attribute, message expiration, indicating a period of time to keep the message alive.

Thereby, the message will be destroyed and not delivered if the current passes the

expiration value of the message. Using this property would maintain the resources of the

notification service unit in case many interested subscribers happen to be inactive for a

long time.

Visualization of received geospatial notifications: the spatial locations of

geospatial notifications are highly dynamic and unpredictable. Visualization of newly

added spatial features of the geospatial notifications requires continuously refreshing the

base map in order to screen the new features and symbols. The traditional technique of

refreshing the map screen after receiving new data is either to refresh the whole base

map, which means all the existing GIS layers, or refreshing only the GIS layer where the

new spatial features are stored. The former method is inefficient as all the data have to be

redrawn every refreshing time thus wasting the computation resources. The latter can be

considered in cases where the update frequency on the dynamic layer (i.e., the geospatial

119

notifications data layer) is relatively low. However, both methods potentially burden the

visualization of the spatial data when high volume of geospatial notifications is received

and affect the overall performance of the subscribers‘ applications.

To refine the visualization performance, an advanced drawing method of dynamic

spatial data is applied to avoid refreshing unchanged background areas of the base map.

This functionality is provided by the programming libraries of ArcGIS Engine 9.3, the

method is called PartialRefresh (a detailed documentation is available online
1
). This

method allows the map view to redraw partial areas of spatial data and work with the

display caches in order to make the drawing process quicker and more efficient. This

mechanism is implemented in the RFERS subscriber application. The internal

computation of the application is developed in a way to redraw only the local area

surrounding the new incoming geospatial notification. This has contributed significantly

in minimizing the drawing time of the map data and thus enhancing the application

performance. Although the visualization performance has been greatly enhanced utilizing

the above method, this problem still exists to a certain extent in the RFERS subscriber

application. This issue is addressed as part of future work to be further investigated and

developed for this research.

Windows-based desktop subscriber application: the subscriber application

developed for RFERS prototype is Windows-based desktop software. This implies that

the user has to setup and configure the subscriber software on a local computer with

Windows operating system and also meet or install other software requirements in order

1
 ESRI Developer Network (EDN), 2009, ―IActiveView.PartialRefresh Method‖, Accessed April 10, 2009,

http://resources.esri.com/help/9.3/ArcGISEngine/ArcObjects/esriCarto/IActiveView_PartialRefresh.htm

http://resources.esri.com/help/9.3/ArcGISEngine/ArcObjects/esriCarto/IActiveView_PartialRefresh.htm

120

to run the application. With the advent technology of web-based applications, it is highly

recommended to replace the subscriber desktop software with a web-based application.

This entails many advantages for the users of RFERS, which mainly include: (1) the

system becomes platform-independent; users do not need certain operating systems to

interact within the RFERS, the only thing they need is a browser, which is available for

everybody, and an internet connection, (2) there is no special configuration required to

run the application, (3) accessibility for users is available anytime and anywhere, and (4)

it is easier to add new functionalities and update or improve the system performance.

Nevertheless, the desktop application also has its advantages over the web-based

application in terms of security, performance, dependency on the internet connection,

easy development, and others. The comparison between desktop- and web-based

applications is still a subject of debate beyond this research scope.

 In the context of this research, developing a web-based application for RFERS

subscribers would be a great asset to the research. On the other hand, meeting the

requirements of the interaction between web application clients by means of geospatial

publish/subscribe model is highly challenging. The interaction style in most of the web

applications relies on ―pulling‖ the data from a provider or a source of information by a

request/reply operation. Thus, if a client needs to be updated in near real-time of the new

information, the client has to pull the provider periodically which is an inefficient

mechanism for the overall system performance. In contrast, the ―push‖ style can be

considered to overcome the problems originated from the ―pull‖ style. Instead of clients

originating requests to the data provider, the data provider server pushes the data to the

clients upon receiving new or updated information. Adopting the ―push‖ style in web

121

applications is promising and potentially pertinent to the mean of the publish/subscribe

model. However, our investigations have shown that applying this style takes time and

effort considering the time constraints set to this research. Integrating web applications in

the RFERS publish/subscribe interaction is intended in the future work of this research.

User-interface: although the user interface of the subscriber application is

designed in a way regular computer users would be familiar with, it requires more

improvement to make it easier and simpler. Training prior to using the software or

creating a user manual can be considered to assure the proper usage of the RFERS

prototype.

Dependency on commercial software packages: ArcGIS Engine 9.3, ArcGIS

Server 9.3, and TIBCO EMS software products and their .NET framework APIs are

required to deploy and run the RFERS prototype components. This places some

constraints on the developed system from being an independent product. The prototype is

meant to be a proof of concept and not a commercial product, as mentioned in Section

4.3. The aforementioned commercial products have been utilized to facilitate the

implementation of the prototype as they provide high-level functions that abstract the

complexity of dealing with low-level objects and controls. The proposed model,

geospatial-based publish/subscribe, and the design of the RFERS can be implemented

regardless the development framework or the software used. In this regard, open source

software and data format can be potentially employed to reduce the deployment cost of

the system. This issue needs more investigation and it is addressed in the future work of

this research.

122

5.3 Performance Evaluation

This section introduces the second part of this chapter, namely evaluating the

performance of the geospatial-based publish/subscribe interaction using the implemented

RFERS prototype. As mentioned early in this chapter, the efficiency of the RFERS

prototype in integrating distributed clients and disseminating geospatial events, so do

publish/subscribe systems in general, mostly rely on the performance of the middleware

(i.e., the notification service). This is not surprising due to the fact that most of the

communication processes, particularly the matching engine, are executed inside the

middleware core. In geospatial-based publish/subscribe, the process of matching

geospatial notifications against registered geospatial subscriptions is the most resources

consuming. The speed of delivering geospatial events to interested clients largely

depends on the matching speed. Achieving high matching speed, thus high performance,

means quick awareness of dynamic geospatial events, potentially crucial, which in turn

accelerates decision-making and response actions in emergency situations.

This section attempts to evaluate the performance of the proposed geospatial

notifications matching approach detailed in Section 3.6.3 and implemented in the RFERS

middleware (see Section 4.2.3). The next sub-sections describe the evaluation process in

details.

5.3.1 Evaluation Metric

The metric selected to evaluate the performance of the RFERS middleware is the

matching time, which is the processing time that the matching engine takes to find

matched subscriptions (or subscribers) upon publishing geospatial events. The matching

time gives an indication on how fast published geospatial notifications can be

123

disseminated to subscribers. The delivery time, which is the time consumed from the

moment of publishing a geospatial notification to the moment the geospatial notification

triggers the subscriber application, can be also considered as an evaluation metric.

However, it is hard to measure the delivery time accurately as it is dependent on the

network technology and connection speed used in transferring information, the network

distance between the middleware server and the clients‘ computers, the size of the

transferred data, and other factors which are difficult to control. Thus, it does not give a

realistic measure of the matching engine performance.

In evaluating the performance of the RFERS prototype, the matching time is

measured in different scenarios in an attempt to see how the performance of the matching

engine changes with changing the number of registered subscriptions and spatial indexing

used to structure the subscriptions data. The experiments are shown in Section 5.3.3.

5.3.2 Simulation Environment

In this evaluation process, the same computer setup applied in testing the functionalities

of RFERS prototype (see Section 5.2) is used here. A server workstation with 2.4GHz

Intel Core 2 Quad-Q6600 CPU and 4GB RAM running Windows XP is used to deploy

the RFERS middleware and the database, and a local computer with 1.86GHz Intel Core

2 Duo E6320 CPU and 2GB RAM also running Windows XP is employed to run the GIS

subscriber application and publisher simulation programs.

For simulating geospatial subscriptions, the FSA 6-digits postal code boundaries

(i.e., polygon features) for Alberta, Canada are used to represent the base geometries of

registered geospatial subscriptions. The postal code polygons can be good representation

of potential geospatial subscriptions that would be performed in real cases. Because they

124

give realistic spatial distribution of populated areas, the interests of subscriber clients

may be more focused to monitor geospatial events in those regions. Moreover, the

irregular shape of these polygons gives more practical measures of the matching

performance rather than using rectangular or regular shapes of all the subscriptions,

which eases the matching process. The polygon feature class of Alberta postal codes

originally contains almost 100,000 features. In real cases, the base geometries geospatial

subscriptions can overlap with each other as multiple subscribers may register their

interests in same regions, thus, their subscriptions tend to overlap. To reflect this nature,

the postal code polygons are replicated and slightly shifted to create dense, larger

numbers and overlapped polygons which are used as geospatial subscriptions. Figure 5.5

shows a portion of the simulated polygons feature class. The final geospatial

subscriptions dataset contains around 1,000,000 polygon features.

Satisfying the spatial constraints contained by geospatial subscriptions is the main

concern in the proposed geospatial-based publish/subscribe interaction. Although the

geospatial subscription language and the matching process proposed in this research (see

Section 3.5.2 and Section 3.6.3.3 respectively) support attribute constraints, enhancing

the matching process in matching attribute type of constraints is not of the interest in this

research. In our experiments herein, therefore, geospatial subscriptions that have only

spatial constraints are considered. To simplify the evaluation process, all the geospatial

subscriptions are considered assigning a spatial filter with a polygon base geometry (the

created postal code geometries), Contain spatial operator, and zero buffer value. The

spatial indexing technique used in structuring the geospatial subscriptions is the Multi-

Grid indexing technique (see Section 4.3.4).

125

Figure 5.5: Simulated geospatial subscriptions dataset

5.3.3 Experiments

There are three main experiments conducted to evaluate the performance of the proposed

matching engine in RFERS middleware. First, the proposed matching approach,

implemented in the RFERS notification service, is evaluated by measuring the matching

time with increasing the number of geospatial subscriptions. The second experiment is

intended to compare the proposed matching approach with the brute force matching

approach to understand the efficiency that can be achieved by using the proposed

matching approach over the naive solution (i.e., brute force matching). The third

experiment is intended to see the effect of the spatial indexing of the matching process.

Thus, the matching time with and without indexing the geospatial subscriptions is

measured. The next sub-sections describe these experiments in details.

126

5.3.3.1 Number of Geospatial Subscriptions

This experiment is set up to assess the matching time using the proposed matching

approach with increasing the number of registered geospatial subscriptions. The

geospatial subscriptions dataset, described previously in Section 5.3.2, is used to extract

several subsets of geospatial subscriptions. For instance, to create a subset of 100,000

features, this number of features is selected randomly from the geospatial subscriptions

dataset and extracted to create a new subset. After extracting each subset, the subset‘s

polygon features (i.e., geospatial subscriptions) are uploaded and prepared in the RFERS

subscription database. Afterwards, the spatial indexes created on the geospatial

subscriptions tables are updated to maintain the new addition of geospatial subscriptions

subset. The subset‘s geospatial subscriptions then are ready to be matched with published

geospatial notifications. The matching time is measured after uploading each of the

subsets.

Geospatial subscriptions in this experiment are assumed to be registered in the

―EALocations‖ topic (i.e., Emergency Asset Locations topic). As mentioned before in

Section 5.3.2, geospatial subscriptions encapsulate spatial filters (i.e., polygon base

geometry, Contain spatial operator, and zero buffer value) and are without attribute

constraints. The simulation programs are utilized to generate and publish random

emergency assets locations to the ―EALocations‖ topic. Around 1000 geospatial

notifications are published to this topic (100 notifications per second) and the matching

time is measured for each notification. With each geospatial subscriptions subset, the

average matching time to match a single geospatial notification is calculated. Figure 5.6

127

shows the relation between the average matching time and the number of registered

geospatial subscriptions.

Figure 5.6: Average matching time of a single geospatial notification using the

proposed matching approach

As can be seen in the graph, matching the number of simulated geospatial

subscriptions ranges from 100,000 to 1,000,000 features. The matching process takes

around 4 milliseconds to match one geospatial notification with 100,000 subscriptions.

While in matching 100 geospatial notifications with 1,000,000 subscriptions, the

matching time is around 135 milliseconds. The relation shown in the graph between the

number of subscriptions and the matching time tends to be a logarithmic curve. The

increasing ratio of the number of subscriptions is getting larger than the increase ratio of

the matching time, which means, the performance is getting higher proportionally with a

larger number of subscriptions. This relation is resulted from the effect of the spatial

indexing in structuring the subscriptions, which leads to better performance in the

matching process.

00.000

00.017

00.035

00.052

00.069

00.086

00.104

00.121

00.138

00.156

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

Ti
m

e
 (

se
co

n
d

s)

Number of Susbcriptions

Average Matching Time with Spatial Index

128

5.3.3.2 Brute Force versus the Proposed Matching Approach

In this experiment, the brute force method (see Section 3.6.2) is compared with the

proposed matching approach.

The matching procedure using the brute force method functions as the following

steps. First of all, all registered geospatial subscriptions are previously stored in one table

inside the RFERS database, where each record refers to one geospatial subscription.

Upon publishing a geospatial notification, the matching process takes the first geospatial

subscription in the table and parses its constraints. Second, the matching process buffers

the subscription geometry according to the assigned buffer value. Third, the assigned

spatial operator is used to evaluate the buffered geometry of the subscription against the

geometry of the geospatial notification. Finally, if a match is found, the geospatial

notification is delivered to the owner client of this subscription. The matching process

continues to match the next subscription in the table until all the subscriptions are

evaluated.

Similar to the previous experiment, several subsets of geospatial subscriptions are

created and both matching approaches are run to measure the matching time in each

subset. The geospatial subscriptions in this experiment are also registered in the

―EALocations‖ topic and the simulation program runs to publish random geospatial

notifications to the same topic through the network. Around 500 geospatial notifications

are published, 100 notifications per seconds, and the matching time is measured for each

notification. Finally, the average matching time is calculated in each geospatial

subscriptions subset. Figure 5.7 shows a graph of the average matching against the

number of subscriptions registered in each trial.

129

Figure 5.7: Average matching time of a single geospatial notification using the brute

force method

Using the brute force method, the average time of matching one geospatial

notification with 1,000 subscriptions is around 5 seconds (i.e., 5000 milliseconds). With

100,000 subscriptions, the average matching time is approximately 900 seconds. As can

be seen in the previous graph, the matching time keeps increasing with larger numbers of

geospatial subscriptions. The results from the previous experiment (see Section 5.3.3.1)

have shown clearly that the proposed matching approach outperforms the naïve matching

solution. The matching time results that are achieved by using the proposed matching

approach in this experiment were close to small fractions of a millisecond. The brute

force method consumes relatively large time in the buffering process of the subscriptions‘

geometries during the matching. This issue is mainly what causes the matching process

using the brute force method to take huge time. In this experiment, the naïve solution

spends almost two hundred thousand times more to process a geospatial notification with

100,000 subscriptions than the proposed matching approach.

00.000

200.000

400.000

600.000

800.000

1000.000

0 20000 40000 60000 80000 100000 120000

Ti
m

e
 (

se
co

n
d

s)

Number of Geosaptial Subscriptions

Brute Force Matching Method

130

5.3.3.3 Effectiveness of Spatial Indexing

This experiment tests the effect of using spatial index to structure geospatial subscriptions

on the matching process. Here the proposed matching approach is examined twice: in

matching geospatial notifications with spatially indexed geospatial subscriptions, and the

second time is in matching geospatial notifications without indexing geospatial

subscriptions.

The simulated geospatial subscriptions dataset (see Section 5.3.2) is used to create

several subsets with different number. Each subset is stored in the RFERS subscriptions

database. Like the previous experiments, geospatial subscriptions are registered in the

―EALocations‖ topic. Geospatial notifications of the same topic are published by the

simulation program; almost 1000 points are published in a speed rate of 100 points per

second. The matching process then is executed twice on each of the geospatial

subscriptions subsets: one with indexing the geospatial subscriptions and another without

using index. Figure 5.8 graphs the relation between the average matching time of a single

geospatial notification and the number of geospatial subscriptions and the effect of using

spatial indexing in the matching process.

131

Figure 5.8: The effect of using spatial index on the average matching time

As can be seen from the previous graph, using spatial index to structure geospatial

notifications greatly increases the performance of the matching process. Without

indexing, the matching time tends to scale linearly with increasing the number of

registered geospatial notifications. A spatial index can be built initially on the geospatial

subscriptions table that is stored inside the RFERS database. Inserting new features to the

geospatial subscriptions table, however, requires maintaining the spatial index to achieve

high performance in the matching process. Maintaining the spatial index may consume

some processing time. Nevertheless, spatial indexes can significantly leverage the

matching process. Furthermore, rebuilding the spatial indexes can be managed cautiously

to avoid repeated processing of the indexes, thus, resources can be saved.

00.000

01.728

03.456

05.184

06.912

08.640

10.368

12.096

13.824

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000

Ti
m

e
 (

se
co

n
d

s)

Number of Susbcriptions

Average Matching Time

without spatial index with spatial index

132

5.3.4 Discussion

The performance results conducted throughout the previous experiments established that

the matching approach, proposed in the research (see Section 3.6.3.3), performs well in

the context of geospatial-based publish/subscribe. Evidently, this approach outperforms

the naïve solution in matching geospatial notifications with geospatial subscriptions. The

use of spatial indexing in structuring and matching the registered geospatial subscriptions

greatly improves the RFERS notification service function in the interaction. In summary,

our experiments show that the matching engine implemented in the RFERS prototype

will be capable to match 100 geospatial notifications against 1,000,000 geospatial

subscriptions in almost 14 seconds. The previous experiments, however, also show a

major limitation in the implemented matching process. The following describes this issue

and how it can be more improved.

Processing of published geospatial notification: the matching process

implemented in the RFERS prototype evaluates a single geospatial notification at a time

with the registered geospatial subscriptions. In other words, if a collection of geospatial

notifications are published about the same time to the server unit, they will be kept in

order inside a data queue. They will then be processed sequentially by the matching

engine; the first geospatial notification added to the queue is the first to be processed and

removed, this data structure is called First-In-First-Out (FIFO). The sequential processing

of the geospatial notifications was a point of criticism. It is suggested that the geospatial

notifications should be processed simultaneously regardless of their publishing order,

thus accelerating the dispatching time of geospatial notifications. This can be achieved by

using a number of threads (i.e., thread pool) that can be created to perform the matching

133

process for a collection of geospatial notifications in parallel mechanism. The number of

threads can be tuned and dynamically determined based on the number of waiting

geospatial notifications. Although the thread pool technique can be used to enhance the

matching process performance, it introduces additional implementation challenges to the

RFERS prototype as it requires a solid background on multi-threading programming and

parallel computing. Studying these issues is beyond the scope of this research work and

can be considered in future research work and development.

5.4 Summary

This chapter discussed the procedure made to test the actual implementation of the

RFERS prototype. Further, the chapter also evaluated the performance of the RFERS

prototype, particularly, the efficiency of the developed matching engine of the

notification service middleware.

The RFERS prototype was tested through conducting simulated interaction

scenarios and several demonstrations of the system. The testing procedure showed that

the implementation of the RFERS software meets the desired requirements. The feedback

acquired from demonstrating the system helped in enhancing the implementation.

The performance of the matching engine in RFERS was evaluated by simulating

the matching process with different numbers of geospatial subscriptions. The matching

time was measured and considered as an indication of the efficiency of the matching

process; the lower the matching time, the faster the matching process, thus, the more

efficient the system would be. The results established that the proposed matching

134

approach greatly outperforms the naive solution. Moreover, the use of spatial indexes

significantly improves the matching process.

135

Chapter Six: Conclusions and Future Work

6.1 Introduction

This final chapter concludes this research by summarizing the work that has been done

and outlining the conclusions drawn out of this research work. It also comments on the

limitations and proposes areas for future work.

This research has developed Geospatial-based Publish/Subscribe, an interaction

framework based on publish/subscribe style to transact dynamic geospatial events in the

context of heighten situational awareness in fire emergencies. Loosely-coupled,

heterogeneous, and autonomous distributed clients communicate by means of this

interaction framework in producing and/or consuming geospatial events asynchronously

and in real-time. Moreover, Real-time Fire Emergency Response System (RFERS)

prototype has been implemented in this research as a proof of concept to evaluate the

adequacy and the efficiency of the interaction.

To summarize, Chapter 1 provided a brief introduction about the topic of this

research and outlined this research problem and the key objectives. Chapter 2 reviewed

terminologies, system components, interaction models, and processing algorithms used in

the literature of publish/subscribe interaction systems. Chapter 2 also presented some

major works that have been done in this field and investigated several related research.

Chapter 3 proposed Geospatial-based Publish/Subscribe interaction framework that is

developed in this research to transact and disseminate geospatial events between

distributed clients. Chapter 3 defined the data models used to encapsulate geospatial

semantics in performing publish/subscribe operations and also proposed an efficient

matching approach that can be utilized to enhance the efficiency of the notification

136

service, thus, increasing the performance of the system interaction. Chapter 4 discussed

the development of RFERS prototype realizing the proposed geospatial-based

publish/subscribe in integrating distributed clients. Chapter 4 also discussed the design of

the system and the implementation of the prototype software components. Chapter 5

presented simulation scenarios used to testify the sufficiency of the provided functions by

the RFERS prototype. Also, the chapter evaluated the performance of the underlined

interaction and the matching process of geospatial events with geospatial subscriptions

that potentially scale to large numbers.

6.2 Conclusions and Limitations

Emergency agencies seek to maintain situational awareness and effective decision

making by continuous monitoring of and real-time alerting about sources of information

regarding current incidents and developing fire hazards. The nature of this goal requires

integrating different types, potentially numerous, sources of dynamic geospatial

information from one side and large number of clients having heterogeneous and fine-

grained interests in data from the other side. The traditional request/reply communication

style may function inefficiently in such scenarios as it is based on point-to-point,

synchronous and pulling mode interaction between consumer clients and information

providers/services. Publish/subscribe interaction style has leveraged many application to

alleviate the shortcomings of the traditional request/response by providing many-to-

many, asynchronous, real-time, and intelligent interaction between distributed clients.

In publish/subscribe systems, publisher and subscriber clients communicate by

producing and consuming events, respectively. An event can be given many semantics to

137

represent an instantaneous happening of interest. A notification represents the actual

message that encapsulates attributes data describing the associated event. The

publish/subscribe middleware (i.e., the notification service) acts as a mediator by routing

notifications from publisher clients to interested subscriber clients in timely manner. The

middleware takes the charge of the information dissemination which makes distributed

clients loosely-coupled in the interaction and leads the system to extend efficiently over

wide-area of networks. In the context of fire emergency, events can be given geospatial

semantics and used to represent sudden occurrences or highly-dynamic changes of

features‘ states that are related to the geographic space. Although the literature has shown

an exhaustive understanding of publish/subscribe systems, there were few research

tackling the issue of accommodating generic geospatial semantics in the

publish/subscribe interaction. This issue has arose the need to develop an extended

publish/subscribe interaction model and incorporate geospatial events in the

communication framework.

Geospatial-based Publish/Subscribe has been proposed in this research for two

main objectives: the ability to encapsulate geospatial representations of events, called

geospatial events, in the clients‘ publications and offering subscribers an extended

expressiveness to define their spatial interests in receiving geospatial events.

Consequently, a geospatial notification data model has been proposed to construct

geospatial notifications. A single geospatial notification is a composition of two data

components: a spatial component and an attribute component. The spatial component is a

name/value pair that represents the shape and geometry of the associated event. The

attribute component composes one or set of name/value pairs with primitive data types,

138

such as: numeric, textual, binary, date/time and others. The focus here is on the spatial

component and it is considered the primary representation of geospatial notifications. The

spatial component holds XY coordinates pair(s) as a geographic representation of

geospatial events, including: a point, a polyline, a polygon or multi anyone of these types.

Publisher clients can use this data model to publish geospatial notifications that could be

of interest to other subscriber clients. A geospatial subscription data model has been

proposed to enable subscribers specifying not only attribute constraints but also spatial

type of constraints. A geospatial subscription composes two types of predicates: a spatial

predicate and an attribute predicate. Subscribers use spatial predicates to select geospatial

notifications that satisfy certain spatial relationship by defining a base geometry (e.g.,

point, polyline, and polygon), a spatial operator (e.g., Contain, Overlap, Cross …etc),

and a buffer value. This definition of spatial predicate provides a wide variety of spatial

constraints to express fine-grained spatial interests. The attribute predicate in this data

model supports defining constraints of the content attribute data of geospatial

notifications by means of comparison and logical operators (e.g., =, <, ≥, AND,

OR…etc). As publishers and subscribers perform geospatial-based publish/subscribe

operations, the middleware handles published geospatial notifications and disseminates

them among subscribers according to their geospatial subscription criteria. Matching

geospatial notifications with geospatial subscriptions is a primary process executed

within the notification service core. It determines the flow of information. The efficiency

of the interaction largely relies on the performance of the matching process. This research

has proposed an efficient matching approach by pre-processing of geospatial

139

subscriptions into clusters and using spatial indexes to structure the subscriptions and

accelerate searching for matched ones with published geospatial notifications.

The proposed geospatial-based publish/subscribe interaction has been realized for

developing Real-time Fire Emergency Response System (RFERS), a system prototype

for transacting geospatial events essential in the context of fire emergencies. Four data

models (i.e., topics) have been designed in the prototype, these topics are: Emergency

Asset Locations, Wireless Sensor Observations, Fire Incidents Reports, and Wildfire

Thermal-Infrared Images. Publishers and subscribers are assumed to have previous

knowledge about the RFERS topics as they perform the required publish/subscribe

operations following the data structure of these topics. Three components have been

implemented for the RFERS prototype: (1) a desktop GIS application for subscribers to

facilitate performing geospatial subscriptions and visualize received geospatial

notifications in a mapping environment, (2) simulation programs to simulate publishing

geospatial notifications into the RFERS topics, and (3) the notification service

middleware where the proposed geospatial notifications matching approach has been

realized in implementing this component. TIBCO v4.4 and ArcGIS v9.3 software

products have been utilized with C# programming language for the implementation.

The RFERS prototype has been tested in two phases. First, several interaction

scenarios using the RFERS topics have been carried out to test the requirements of the

implemented prototype functionalities. Second, the performance of the matching engine

implemented in the RFERS middleware has been evaluated with simulated data. The

matching time has been selected as a performance measure; the lower the matching time,

the fast the matching process is, the better the interaction performance would be. The

140

proposed matching approach has shown satisfactory performance in matching geospatial

notifications with geospatial subscriptions; 100 geospatial notifications can be matched

against 1,000,000 geospatial subscriptions within 135 seconds. It has proven the use of

spatial indexes significantly enhances the performance of the matching process.

The development of this research work is limited in several issues which will be

discussed now in this section.

The first is regarding the scope of the proposed geospatial-based

publish/subscribe interaction framework. The aim here is to extend the expressiveness of

the subscription language by adopting geospatial semantics in the data models of events

and subscriptions. The definitions proposed for geospatial events and geospatial

subscriptions are limited to accommodate simple geographic representations and simple

spatial relationships, respectively. Designing data models to accommodate more complex

relationships needs more investigation and is intended for future work. Moreover, the

matching process has been improved using spatial indexing considering the spatial data

only, while the content attribute data can be further structured aiming to more

improvement in the matching process.

The second concerns the RFERS design and implementation. The system

prototype is intended to provide a proof of concept for the interaction mechanism by

means of geospatial-based publish/subscribe. Geospatial events are structured is limited,

built-in number of topics (i.e., the four RFERS topics mentioned early). Realizing a

generalized data structure of geospatial events needs further investigation and potentially

exploiting the use of the advertise operation (see Section 2.4) in the interaction model.

Furthermore, deploying the implemented software of the system prototype requires

141

installing and configuring other commercial products (i.e., ArcGIS v9.3 and TIBCO

v4.4).

The third issue is related to the use of different spatial indexing techniques in

improving the geospatial notifications matching. In the performance experiments (see

Section 5.3), multi-grid index technique is used to structure geospatial subscriptions,

thus, enhancing the matching process. Although the evaluation results have shown

satisfactory performance, using other indexing techniques (e.g., R-tree and Quad-tree)

may result in better system performance as those techniques can maintain the addition

and deletion of geospatial subscriptions sufficiently (i.e., dynamic indexing structure).

Comparing different spatial indexing techniques is not addressed as it is beyond the scope

of this research.

6.3 Future Work

There is a wide range of potential avenues in which this research can be improved and

extended. In this section, some of the major research avenues that can be further

investigated and guide the future work are highlighted.

The centralized architecture of the middleware is assumed in the design of

geospatial-based publish/subscribe. It is highly recommended to pursue further research

to realize this interaction in distributed middleware architecture, thus, increasing the

scalability of the framework in adopting large numbers of globally distributed clients.

Furthermore, the service provided by the middleware can be extended to accommodate

composite events detection by which subscribers can specify their interests not only in

unity of geospatial events, but also in the advanced correlation, spatial or temporal, that

142

may happen between geospatial events together. Addressing the composite event

detection service would benefit many applications where monitoring complex patterns of

geospatial events is essential. For instance, a subscriber is interested to be notified if more

than five emergency vehicles are located in the same region. Another subscriber is

interested in the temperature observations published by wireless sensors if the readings

keep decreasing for over 6 hours.

Another research avenue can be targeted towards extending the RFERS prototype

for developing an enterprise service and integrating clients‘ applications by means of

transacting geospatial events in the context of fire emergencies. The service can be

offered to potential clients via GIS web application or by interoperable web service

supporting a large variety of clients‘ applications.

More potential future work pertains realizing the geospatial-based

publish/subscribe interaction in supporting emergency management systems in crisis

situations, including: earthquakes, floods, tsunamis, tornados and other natural hazards.

These situations require dynamic and real-time coordination of a large number of

disparate groups and management of information gathered from variety of sensor

networks and mobile objects. Geospatial-based publish/subscribe middleware can support

delivering the right information to the right place at the right time.

6.4 Summary

This chapter concluded this research by summarizing the work, highlighting the major

key findings, and commenting on the main limitations. The chapter also discussed

recommendations for the future work.

143

References

Aguilera, M. K., Strom, R. E., Sturman, D. C., Astley, M. and Chandra, T. D. (1999)

Matching Events in a Content-based Subscription System, translated by Atlanta,

Georgia, United States: ACM New York, NY, USA, 53 - 61.

Altinel, M. and Franklin, M. (2000) Efficient Filtering of XML Documents for Selective

Dissemination of Information, translated by Cairo, Egypt.

Ashayer, G., Leung, H. K. Y. and Jacobsen, H.-A. (2002) Predicate Matching and

Subscription Matching in Publish/Subscribe Systems, translated by Vienna,

Austria: IEEE Computer Society Washington, DC, USA, 539 - 548.

Banavar, G., Chandra, T., Mukherjee, B., Nagarajarao, J., Strom, R. E. and Sturman, D.

C. (1999) An Efficient Multicast Protocol for Content-Based Publish-Subscribe

Systems, translated by Austin, TX, USA: IEEE Computer Society Washington,

DC, USA, 262 - 272.

Banavar, G., Kaplan, M., Shaw, K., Strom, R. E., Sturman, D. C. and Wei, T. (1999)

Information Flow Based Event Distribution Middleware, translated by Austin,

TX, USA: IEEE Computer Society Washington, DC, USA, 114 - 121.

Bauer, M. and Rothermel, K. (2002) Towards the Observation of Spatial Events in

Distributed Location-Aware Systems, translated by Vienna, Austria: IEEE

Computer Society Washington, DC, USA, 581 - 582.

Belokosztolszki, A., Eyers, D. M., Pietzuch, P. R., Bacon, J. and Moody, K. (2003) Role-

based access control for publish/subscribe middleware architectures, translated

by San Diego, California: ACM New York, NY, USA, 1 - 8.

Berg, M. d., Cheong, O., Kreveld, M. v. and Overmars, M. (2008) Computational

Geometry: Algorithms and Applications, Springer.

Burcea, I. and Jacobsen, H.-A. (2003) L-ToPSS - Push-oriented Location-based Services,

translated by Berlin, Germany: Springer-Verlag, London, UK, 131 - 142.

Campailla, A., Chaki, S., Clarke, E., Jha, S. and Veith, H. (2001) Efficient Filtering in

Publish-Subscribe Systems using Binary Decision Diagrams, translated by

Toronto, Ontario, Canada: IEEE Computer Society Washington, DC, USA, 443 -

452.

Cao, F. (2006) Architecture Design for Distributed Content-Based Publish-Subscribe

Systems, unpublished thesis Princeton University.

144

Carzaniga, A. (1998) Architectures for an Event Notification Service Scalable to Wide-

area Networks, unpublished thesis University of Colorado.

Carzaniga, A., Rosenblum, D. and wolf, A. (2001) 'Design and Evaluation of a Wide-

Area Event Notification Service', ACM Transactions on Computer Systems, 19(3),

332–383.

Carzaniga, A., Rosenblum, D. S., Wolf, A. L. and Wolf, E. L. (1999) Challenges for

Distributed Event Services: Scalability vs. Expressiveness, translated by Los

Angeles, CA, USA.

Carzaniga, A. and Wolf, A. L. (2003) Forwarding in a content-based network, translated

by Karlsruhe, Germany: ACM New York, NY, USA, 163 - 174.

Chen, X., Chen, Y. and Rao, F. (2003) An Efficient Spatial Publish/Subscribe System for

Intelligent Location-Based Services, translated by San Diego, California: ACM

New York, NY, USA, 1 - 6.

Chen, Y., Rao, F., Yu, X. and Liu, D. (2003) CAMEL: A Moving Object Database

Approach for Intelligent Location Aware Services, translated by Melbourne,

Australia: Springer-Verlag, London, UK, 331 - 334.

Costa, P., Coulson, G., Gold, R., Lad, M., Mascolo, C., Mottola, L., Picco, G. P.,

Sivaharan, T., Weerasinghe, N. and Zachariadis, S. (2007) The RUNES

Middleware for Networked Embedded Systems and its Application in a Disaster

Management Scenario, translated by White Planes, New York, USA: IEEE

Computer Society, 69 - 78.

Cugola, G. and Jacobsen, H.-A. (2002) 'Using publish/subscribe middleware for mobile

systems', ACM SIGMOBILE Mobile Computing and Communications Review,

6(4), 25 - 33.

Cugola, G., Nitto, E. D. and Fuggetta, A. (2001) 'The JEDI Event-Based Infrastructure

and Its Application to the Development of the OPSS WFMS', IEEE Transactions

on Software Engineering, 27(9), 827 - 850.

ESRI (2004) ESRI GIS and Mapping Software, Redlands, CA, USA.

ESRI (2008) 'ArcGIS Desktop Help 9.3 - Tuning spatial indexes', [online], available:

[accessed

Eugster, H. and Nebiker, S. (2008) UAV-Based Augmented Monitoring – Real-Time

Georeferencing and Integration of Video Imagery with Virtual Globes, translated

by Beijing, China: 1229 - 1235.

145

Eugster, P. T., Felber, P. A., Guerraoui, R. and Kermarrec, A.-M. (2003) 'The Many

Faces of Publish/Subscribe', ACM Computing Surveys (CSUR), 35(2), 114 - 131.

Eugster, P. T., Guerraoui, R. and Damm, C. H. (2001) On Objects and Events, translated

by Tampa Bay, FL, USA: ACM New York, USA, 254 - 269.

Fabret, F., Jacobsen, H.-A., Llirbat, F., Pereira, J., Ross, K. and Shasha, D. (2001)

'Filtering Algorithms and Implementation for Very Fast Publish/Subscribe

Systems', in ACM SIGMOD, Santa Barbara, California, USA,

Floyd, S., Jacobson, V., Liu, C.-G., McCanne, S. and Zhang, L. (1997) 'A reliable

multicast framework for light-weight sessions and application level framing',

IEEE/ACM Transactions on Networking (TON), 5(6), 784 - 803.

Franklin, M. J. and Zdonik, S. B. (1998) "Data In Your Face": Push Technology in

Perspective, translated by Seattle, Washington, USA: ACM New York, USA,

516-519.

Graham, S., Niblett, P., Chappell, D., Lewis, A., Nagaratnam, N., Parikh, J., Patil, S.,

Samdarshi, S., Sedukhin, I., Snelling, D., Tuecke, S., Vambenepe, W. and Weihl,

B. (2004) Publish-Subscribe Notification for Web Services.

Harrison, M. (1995) The USENET handbook: a user's guide to Netnews, O'Reilly &

Associates, Inc. Sebastopol, CA, USA.

Hayton, R., Bacon, J., Bates, J. and Moody, K. (1996) Using Events to Build Large Scale

Distributed Applications, translated by Connemara, Ireland: ACM New York,

NY, USA, 9 - 16.

Holloway, S. (2008) 'Are you ready for M3O - Vitria's new BPM offering?', available:

http://www.vitria.com [accessed

Jaeger, M. A. (2005) Self-organizing publish/subscribe, translated by Grenoble, France:

ACM New York, NY, USA, 1 - 5.

Jaeger, M. A. and Muhl, G. (2005) 'Stochastic Analysis and Comparison of Self-

Stabilizing Routing Algorithms for Publish/Subscribe Systems', in 13th IEEE

International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems (MASCOTS’05), Atlanta, Georgia, 471-479.

Jaeger, M. A., Parzyjegla, H., Mühl, G. and Herrmann, K. (2007) Self-organizing broker

topologies for publish/subscribe systems, translated by Seoul, Korea: ACM New

York, NY, USA, 543 - 550.

http://www.vitria.com/

146

Kalashnikov, D., Prabhakar, S., Hambrusch, S. and Aref, W. (2002) Efficient Evaluation

of Continuous Range Queries on Moving Objects, translated by Springer-Verlag,

731 - 740.

Kale, S., Hazan, E., Cao, F. and Singh, J. P. (2005) Analysis and Algorithms for Content-

Based Event Matching, translated by Columbus, Ohio, USA: IEEE Computer

Society Washington, DC, USA, 363 - 369.

Keramitsoglou, I., Kiranoudis, C. T., Sarimveis, H. and Sifakis, N. (2004) 'A

Multidisciplinary Decision Support System for Forest Fire Crisis Management',

Environmental management, 33(2), 212-225.

Maguire, D. J. (2005) GIS, Spatial Analysis, and Modeling, 1st ed. ed., ESRI Press.

Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A. N. and Theodoridis, Y. (2005)

Rtrees: Theory and Applications, Advanced Information and Knowledge

Processing, Springer.

Mansouri-Samani, M. and Sloman, M. (1997) 'GEM: a generalized event monitoring

language for distributed systems', IEE/IOP/BCS Distributed Systems Engineering

Journal, 4, 96-108.

Muhl, G. (2001) Generic Constraints for Content-Based Publish/Subscribe, translated by

Trento, Italy: Springer-Verlag, London, UK, 211 - 225.

Muhl, G. (2002) Large-Scale Content-Based Publish/Subscribe Systems, unpublished

thesis Technische Universität Darmstadt.

Muhl, G. and Fiege, L. (2001) 'Supporting covering and merging in content-based

publish/subscribe systems: Beyond name/value pairs', IEEE Distributed Systems

Online (DSOnline), 2(7).

Muhl, G., Fiege, L. and Pietzuch, P. (2006) Distributed Event-Based Systems, Germany:

Springer.

NASA (2007) 'Wildfire Imaging Flights By NASA's Ikhana UAV Conclude', [online],

available:

http://www.nasa.gov/centers/dryden/news/Features/2007/wildfire_socal_10_07.ht

ml [accessed

Oki, B., Pfluegl, M., Siegel, A. and Skeen, D. (1994) The Information Bus - An

Architecture for Extensible Distributed Systems, translated by Asheville, North

Carolina, United States: ACM New York, USA, 58 - 68.

http://www.nasa.gov/centers/dryden/news/Features/2007/wildfire_socal_10_07.html
http://www.nasa.gov/centers/dryden/news/Features/2007/wildfire_socal_10_07.html

147

Pallickara, S., Bulut, H. and Fox, G. (2007) 'Fault-Tolerant Reliable Delivery of

Messages in Distributed Publish/Subscribe Systems', in Fourth International

Conference on Autonomic Computing (ICAC'07), Jacksonville, Florida, USA,

IEEE Computer Society, 19 - 19.

Pallickara, S. and Fox, G. (2003) NaradaBrokering: A Distributed Middleware

Framework and Architecture for Enabling Durable Peer-to-Peer Grids, translated

by Rio Janeiro, Brazil.

Pietzuch, P. R. (2004) Hermes: A Scalable Event-Based Middleware, unpublished thesis

University of Cambridge.

Rigaux, P., Scholl, M. and Voisard, A. (2002) Spatial Databases: With Application to

GIS, 2nd ed., Morgan Kaufmann Publishers Inc.

Riggan, P. J., Tissell, R. G. and Hoffman, J. W. (2003) Application of the Firemapper

Thermal-imaging Radiometer for Wildfire Suppression, translated by 1863 -

1872.

Romer, K. and Mattern, F. (2004) 'Event-Based Systems for Detecting Real-World States

with Sensor Networks: A Critical Analysis', in International Conference on

Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP'04),

Melbourne, Australia, IEEE Computer Society, 389 - 395.

Samet, H. (2006) Foundations of Multidimensional and Metric Data Structures,

Computer Graphics and Geometric Modeling, San Francisco, CA, USA:

Elsevier/Morgan Kaufmann Publishers Inc.

Schneider, M. and Behr, T. (2006) 'Topological Relationships Between Complex Spatial

Objects', ACM Transactions on Database Systems (TODS), 31(1), 39 - 81.

Shekhar, S. and Chawla, S. (2003) Spatial Databases: A Tour, Prentice Hall.

TIBCO (1999) TIB/Rendezvous.

TIBCO (2000) 'TIBCO - Service Oriented Architecture (SOA) Software, Business

Process Management (BPM) Software Leader', [online], available:

http://www.tibco.com [accessed

TIBCO (2008) TIBCO Enterprise Messaging Service, Palo Alto, CA, USA.

Turoff, M., Chumer, M., Van de Walle, B. and Yao, X. (2004) 'The Design of A

Dynamic Emergency Response Management Information System (DERMIS)',

Information technology Theory and Application, 5(4), 1-36.

http://www.tibco.com/

148

USDA (2009) 'Freeway Complex Fire, PSW Research Station - USDA Forest Service',

[online], available: [accessed

Wang, C., Carzaniga, A., Evans, D. and Wolf, A. L. (2002) Security Issues and

Requirements for Internet-Scale Publish-Subscribe Systems, translated by Island

of Hawaii: IEEE Computer Society Washington, DC, USA, 303.

Wilson, J., Bhargava, V., Redfern, A. and Wright, P. (2007) A Wireless Sensor Network

and Incident Command Interface for Urban Firefighting, translated by

Philadelphia, PA: IEEE Computer Society, 1 - 7.

Worboys, M. F. and Hornsby, K. (2004) 'From Objects to Events: GEM, the Geospatial

Event Model', in GIScience, Springer, 327-344.

WRAP (2004) 'The Wildfire Research and Applications Partnership', [online], available:

http://geo.arc.nasa.gov/sge/WRAP/ [accessed

Wu, K.-L., Chen, S.-K. and Yu, P. S. (2004) Indexing Continual Range Queries for

Location-Aware Mobile Services, translated by IEEE Computer Society, 233 -

240.

Wybo, J.-L. (1998) 'FMIS: A Decision Support System for Forest Fire Prevention and

Fighting', IEEE Transactions on Engineering Management, 45(2), 127-131.

Yan, T. W. and Garcia-Molina, H. (1994) 'Index Structures for Selective Dissemination

of Information Under the Boolean Model', ACM Transactions on Database

Systems (TODS), 19(2), 332 - 364.

Yanjun, L., Zhi, W. and Yeqiong, S. (2006) Wireless Sensor Network Design for Wildfire

Monitoring, translated by Dalian, China: IEEE Computer Society, 109 - 113.

Zerger, A. and Smith, D. I. (2003) 'Impediments to using GIS for real-time disaster

decision support', Computers, Environment and Urban Systems, 27(2), 123 - 141.

http://geo.arc.nasa.gov/sge/WRAP/

149

APPENDIX A: TOPOLOGICAL RELATIONSHIPS BETWEEN SIMPLE

GEOMETRIES

The following figure shows all the spatial relationship combinations between simple

geometries (i.e., point, line and polygon) using Contain, Within, Touch, Overlap, Cross,

and Disjoint spatial operators. Only ―true‖ relationships are shown in this figure. The

spatial relationships are taken as defined in ESRI ArcObject v9.3
1

1
 ESRI Developer Network (EDN), 2009, ―IRelationalOperator Interface‖, Accessed February, 2009.

150

