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Abstract 

Atmospheric water vapour is one of the key parameters for the analysis of global climate 

systems, in particular over high latitudes where water vapour displays a significant 

seasonal variability. The lack of detailed knowledge of the global distribution of 

atmospheric water vapour in space and time is the major limiting factor toward the 

accurate prediction of weather and climate using numerical models. In Canada, the sparse 

spatial and temporal sampling of atmospheric water vapour observations needs to be 

improved. GPS water vapour observations retrieved from geodetic (GPS) networks have 

provided a unique opportunity for this need. 

      At present water vapor determination using GPS is mainly based on Differential GPS 

(DGPS) techniques. But the large inter-station distance requirement has limited the 

DGPS application in meteorology, because the GPS stations have to be sufficiently 

separated in the network in order to estimate the water vapor on each station. An 

innovative alternative to the DGPS technique is the Precise Point Positioning (PPP) 

method which uses un-differenced observations from a single GPS receiver aided by 

precise orbit and clock products. 

      The primary objective of this thesis is to develop a near real-time GPS PPP-inferred 

water vapour system using precise point positioning (PPP) technique and Canada 

sparsely distributed geodetic GPS network for operational weather forecasting, climate 

monitoring and research. The fundamental problems in meeting this objective are: 

designing and implementing a distributed GPS computing network system, interpolating 

surface maps of precipitable water vapour (PWV) over Canada using the sample data 

derived from the system, and analyzing GPS water vapour datasets.  

      The desired system is designed and implemented with five functional components 

which are distributed over the Internet across Canada and cooperate under UDP/IP 

Multicast UDP/IP protocols. The system concurrently processes multi-station GPS data 

and produces (near) real-time tropospheric products ZTD/ZWD/PWV. The system 

performance evaluation shows: (i) the position errors (East/North/Up): RMS = l.1 ~ 4.3 

cm and (ii) the ZTD and PWV accuracies of the (near) real-time water vapor system are 

~13 mm and ~2mm, respectively, with the use of one-hour-latency MET data. 
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      In the process of interpolating surface maps of PWV, an ordinary kriging program 

has been developed in Matlab, which performances calculating experimental 

semivariogram, model fitting and ordinary kriging algorithm for interpolation. Three 

most common models are used: Spherical, Exponential and Gaussian. Model fitting 

consists of (i) nonlinear weighted least-squares process for model parameter estimation 

and (ii) cross-validation process for the best model determination. The hourly kriginged 

PWV maps over Canada and associated kriging standard error maps are generated by the 

ordinary kriging program using limited-sample datasets, which provide valuable 

information to evaluate the meteorological role of the current Canada geodetic GPS 

network.  

      In the process of analyzing GPS water vapor dataset, we first categorize 17 variables 

into four types and then use (i) principal component analysis (PCA) to derive the six-

principal-component/domain structure and six determinant variables of the system and 

(ii) correlation analysis to investigate and summarize quantitatively seven correlations 

among the four types. 
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Chapter One: Introduction 

 

Since Global Positioning System (GPS) data were demonstrated to be a good source for 

measuring atmospheric water vapor, there have been extensive studies of the role that 

GPS water vapor measurements could play in weather prediction. There are two primary 

methods by which GPS can be used to actively sense the properties of the Earth’s 

atmosphere: ground-based and space-based (Businger et al., 1996). This study concerns 

the ground-based GPS atmospheric water vapor sensing.  

       Water vapor is a normal constituent of atmosphere. It resides mostly in the 

troposphere (Figure 1.1), ranging in depth from 9 km at the poles to more than 16 km at 

the equator. Water vapor content decreases rapidly with elevation (Figure 1.2). In fact, 

more than 90% of the water vapor is contained within the lower 5 km of the troposphere 

and more than 50% within the lowest 1.5 to 2 km; only less than 5-6% of the water is 

above 5 km, and less than 1% is in the stratosphere (Ramirez, 2007).  

      Water vapor in the atmosphere is a crucial constituent on the climate system. The 

presence of water vapor is relatively small amounts, generally not exceeding 4% by 

volume, but the significance of the water vapor is far greater than the relative amount 

 

 
Figure 1.1 Layers of Atmosphere  

(Williams, 2008) 
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                             (a)                                                                        (b)                     

Figure 1.2  Water vapor profiles 
((a) Vertical distribution of water vapor for a standard atmosphere (Source: US Standard Atmosphere 
1976); (b) Water vapor vertical profiles in and where each color line represents different method result 
(Russell et al., 2003)) 
 

would indicate (Hidore, 1972). The distribution and content of water vapor are critical 

factors for the description of the state and evolution of the atmosphere. Water vapor 

impacts the global climate in two ways. First it plays a fundamental role in the Earth’s 

hydrological cycle: transferring of energy in the atmosphere, forming and propagating 

weather (Figure 1.3) (Hidore, 1972; Seidel, 1995). Second it is the dominant greenhouse 

gas in the atmosphere (Cess, 2005; Hieb, 2003). It allows the short wavelength radiation 

of the Sun to pass through the atmosphere, but traps the long wavelength radiation 

emitted by the Earth's surface. This trapped radiation causes the temperatures to increase.  

 

 
Figure 1.3  The climatic hydrological cycle at global scale  

(Warner, 2006) 
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        Atmospheric scientists employ three main techniques to routinely measure the water 

vapor: (i) In-situ measurements, i.e. radiosondes, (ii) remote sensing from the ground, i.e. 

ground-based upward-looking radiometry, and (iii) remote sensing from space, i.e. 

satellite-based downward-looking radiometry (Bevis, 1992).  

        In-situ measurements are radiosondes. Radiosondes are balloon-borne instrument 

packages which send data on pressure, ambient temperature, relative humidity, and wind 

(speed and direction) to the ground by radio signal. Although radiosonde provides 

respectable water vapor profiles, it has weaknesses of being expensive on the long run, a 

low temporal resolution (usually two launches per day), a low spatial distribution (i.e., 

point measurement), a questionable accuracy, and being sparsely distributed on the earth 

surface (Brocard, 2006). Thus, low spatial and temporal resolution of water vapor from 

radiosonde, and limitations of water vapor data, are major sources of error in short-term 

(< 24 hour) forecasts of precipitation (Rocken et al., 1993). 

       Ground-based radiometry employs upward-looking water vapor radiometer (WVR) 

to measure microwave energy emitted by the atmosphere which is converted into zenithal 

integrated water vapor (IWV) using retrieval coefficients. Retrieval coefficients are 

derived from regression analysis of radiosonde data which depend on climate and site 

variations. Ground-based radiometry provides high temporal but poor spatial resolution 

because only a few of these instruments are used today. 

        Alternatively, satellite-based radiometry employs downward-looking WVRs to 

measure microwave emissions from the atmosphere and underlying Earth's surface. The 

recovery of IWV by downward-looking WVRs is greatly affected by large variability in 

the surface brightness temperature and the results are limited to cloud-free conditions. 

For this reason, satellite-based radiometry tends to be more applicable over the oceans 

than over land, and their effectiveness is degraded in the presence of clouds. Satellite-

based radiometry provides good spatial but poor temporal resolution. Both ground- and 

satellite-based radiometry are highly complementary and operating both together can 

improve short term (1~12 hour) forecasting. However, both have common weaknesses: 

(i) noisy signals during rainy weather as microwave is absorbed and scattered by 

raindrops, (ii) expensive to operate (Li et al., 2005), and (iii) limited in high-latitude areas 

like the Arctic. 
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      Each of above techniques, either in situ measurement, ground-based or satellite-based 

remote sensing, has various limitations and often does not adequately provide important 

quantity information such as atmospheric water vapor required by the climatic research 

(Bevis et al., 1992). In May 1995, a report produced by the U.S. Weather Research 

Program identified a national need for a reliable, low-cost system for measuring 

atmospheric water vapor (Michelsen, 1998).  

       Bevis et al. (1992) presented the discussion on GPS method for measuring water 

vapor. This discussion shows a technical challenge using GPS to measure atmospheric 

water vapor. GPS was originally designed as a navigation and time transfer tool. The 

signals emitted from GPS satellites propagate through the ionosphere and neutral 

atmosphere to be received by ground based GPS receivers. One of the major error 

sources to positioning or navigating with GPS is the signal delay caused by atmospheric 

refraction. The total delay of the radio signals between a GPS satellite and a ground GPS 

receiver is essentially dependent on the total atmospheric mass, i.e., the pressure at the 

surface, and the columnar atmospheric moisture content. Over the years, research efforts 

have been dedicated to modelling atmospheric refraction in order to improve on 

positioning accuracy. In the last decade, the estimation techniques used to solve for the 

atmosphere has been refined so that such delay can be determined on a routine basis with 

a high degree of accuracy. This innovation has lead to the possibility of using the GPS for 

remote sensing, known as GPS meteorology, which is currently becoming an active area 

of research (Alan and Shardlow, 1995; Awange and Grafarend, 2005).  

        The new technology of GPS atmospheric remote sensing has several advantages 

over the conventional water vapor observing system including low cost, being global 

coverage, reliable and stable result, high measurement accuracy, all weather operability 

and having radio frequencies that can penetrate clouds and dusts (Awange and Grafarend, 

2005; Gutman et al., 2004). This new technology plays a major role in complementing 

the existing techniques, e.g. radiosonde and WVR. Figure 1.4 shows the GPS derived 

zenith wet delay compared with the radiosonde and WVR derived zenith wet delays at 

Haystack observatory, USA from 15-30 August 1995 (Coster et al., 1997).  
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Figure 1.4  The comparison of radiosonde, WVR and GPS derived zenith wet delay at Haystack 

observatory in Westford, MA, USA, from 15-30 August 1995 
(With the exception of the time periods associated with rain, it is clear that the estimates of the zenith wet 
delay from three techniques agree very closely (Coster et al., 1997)) 

 
      In 1995, the results from the first proof of concept experiment GPS/STORM were 

first reported (Rocken et al., 1995). Subsequently there has been substantial activity 

involving ground-based GPS measurements in studies at various scales from national to 

global. Many of these initiatives are being carried out by research institutions in 

collaboration with national agencies, principally to assess the accuracy of ground-based 

GPS estimates of integrated water vapor (IWV) using the network of GPS stations 

(Bengtsson et al., 2003; Hagemann et al., 2002; Rocken et al., 1997; Ware and Gutman 

2003; Wolfe et al., 2000). But their aim is also to develop and refine the fundamental 

techniques involved in making the observations, processing the data and making them 

available in a timely manner (Hagemann et al., 2002). 

       In Canada, some similar research activities have been carried out in recent years. A 

study was conducted to analyze the characteristics of high-latitude water vapor time 

series at some sites of Canadian Sun Radiometer Network/Aerosol Robotic Network 
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(AERONET/AEROCAN) (Bokoye et al., 2003). This research shows: (i) GPS 

meteorology can retrieve columnar water vapor amounts with an accurate (RMS) of less 

than  kg m  as compared to radiosonde data; (ii) In comparison to radiometer, GPS 

meteorology is potentially more appropriate for monitoring water vapor in Arctic regions 

where there are months when the Sun is absent or nearly so. In 2004, Deblonde and 

Macpherson (2005) conducted a similar research in order to evaluate GPS precipitable 

water over the IGS network in Canada. Through the inter-comparisons of IGS GPS_PW 

with radiosonde_PW and the Global Environmental Multiscale (GEM) model_PW for a 

seven-month period, it is found that the GPS_PW has the lowest estimated PW error (~1 

mm) for PW in the 5~30 mm range. For PW greater than 30 mm, the radiosonde_PW 

error is ~2 mm while the GPS_PW error is ~2.5 mm. In Southern Alberta, Canada the 

water vapor profile was retrieved using GPS technology to investigate the estimation of 

vertical profiles of water vapor in a regional GPS network and the results indicate the 

improvements in the integrated domain were on the order of ~5 mm for the assimilation 

of radiosonde data (Skone and Shrestha, 2003; Hoyle et al., 2003; Hoyle, 2005). All these 

studies demonstrate that GPS atmospheric remote sensing technology is a key method to 

improve high latitude sparse spatial and temporal sampling of water vapor observation in 

Canada and that GPS precipitable water vapor (PWV) should be a useful source of 

humidity information for Numerical Weather Prediction (NWP) applications. Today, 

GPS meteorology has transitioned from research into a global operational network (Haan, 

2006). However, there is still no operational GPS network for GPS meteorology in 

Canada. Thus, as a practical issue, it is important to build up a network of GPS stations 

across Canada which can routinely retrieve PWV for weather prediction, atmospheric 

research, and climate monitoring and prediction. This problem is the main motivation of 

this thesis. In the following chapters, the methods for completing a real-time water vapor 

monitoring system using GPS PPP (Precise Point Positioning) technique and a Canadian 

GPS network are presented. 

2± 2−
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1.1 Objectives 

The primary objective of this thesis is to develop a real-time GPS PPP-inferred water 

vapor system using a Canadian GPS network.  

      There are two GPS techniques for water vapor remote sensing: Differential GPS 

(DGPS) and PPP. DGPS is most commonly used in today’s GPS networks. It employs 

two or more receivers simultaneously observing GPS satellites and provides the solutions 

with high accuracy level. Its effectiveness, however, is limited by the inter-station 

distance between the two receivers. In contrast, PPP uses one GPS receiver to observe 

GPS satellites with the aid of precise GPS orbit and clock products and produces high-

precision PWV results. Since PPP eliminates the limitation of inter-station distance, it can 

be efficiently implemented under any configurations of GPS networks. At present, there 

is no nationwide sparsely-distributed GPS network using PPP technique. The 

implementation of PPP technique within a Canada GPS network in this thesis is a 

valuable testimony for GPS PPP based PWV research. The implementation of PPP 

technique is based on the core functions of 3P software developed at The University of 

Calgary and the additional software components that have been developed from this 

thesis to support concurrent multi-station GPS data processing in a real-time mode. 

     The system has the following major functions implemented: 

1. Real-time raw GPS data acquisition – implemented using a Canadian GPS 

network which consists of 21 GPS stations, 

2. Network data communication for real-time GPS retrieving, 

3. Concurrent multi-station GPS data processing to calculate water vapor, 

4. Displaying real-time water vapor (PWV) distribution visually, and 

5. PWV data storage and output. 

     The real-time GPS PPP-inferred water vapor system is developed in the following 

four stages: 

1. System design and implementation, 

2. Evaluation of system performance, 

3. Water vapor interpolation and mapping by ordinary kriging, and 

4. Principal component analysis of GPS water vapor dataset. 
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       To evaluate the system performance, the post-mission results are presented. The 

inter-comparisons of the tropospheric results from (near) real-time system, IGS and post-

mission are conducted.   

 

1.2 Contributions 

In this thesis, a real-time GPS water vapor system has been developed using real-time 

PPP technique and a Canadian GPS network. Its performance and meteorological role 

under near real-time operation mode has been evaluated. The contribution of each of 17 

original GPS water vapor variables to the system variability and the association between 

them has been investigated. The specific contributions of this thesis are as follows: 

1. A real-time GPS PPP-inferred water vapor system based on a Canadian GPS 

network has been developed. The system generates and outputs (near) real-

time PWV products under all weather conditions. The system performance 

evaluation show that water vapor estimates have an accuracy of 1.5 ~ 2.0 mm. 

An evaluation on the current Canadian GPS network performance as a 

meteorological role has also been conducted. 

2. A program which uses Ordinary Kriging technique to predict and 

quantitatively describe water vapor distribution over Canada using the PWV 

samples from the system has been developed. The program performs (i) 

calculating experimental semivariogram, (ii) fitting semivariogram models by 

a nonlinear weighted least-square process, (iii) determining best model using 

cross-validation, and (iv) estimating PWV map and associated standard error 

map. 

3. A Principal Component Analysis (PCA) and variable correlation analysis on 

GPS water vapor dataset has been conducted. PCA derives a seven-principal 

component/domain model, which simplifies the description of the set of 

intercorrelated original variables. The variable correlation analysis arrives at 

the conclusions of the associations between 17 variables of GPS-derived water 

vapor variables. 
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1.3 Outline 

Chapter 2 presents the theoretical background of GPS water vapor remote sensing, which 

includes a brief introduction of GPS, the effect of troposphere on GPS measurement, 

GPS sensing techniques. 

       Chapter 3 presents the GPS PPP water vapor determination model used in this thesis. 

Precise Point Positioning error correction models are also described.  

       In Chapter 4, the design of the real-time GPS water vapor sensing system design and 

how it is implemented are explained. The system consists of five functional components 

and each component’s function is illustrated. Since currently the meteorological data are 

provided with one-hour latency files, an auxiliary component is used to handle the 

downloading and unzipping the hourly meteorological files. 

        Chapter 5 gives the evaluation of the system performance, which includes 

positioning errors, zenith total delay (ZTD) and zenith wet delay (ZWD).  In order to 

have a general assessment of the accuracy of the PPP-derived ZTD products, the 

accuracy comparison results of the real-time system are presented with some operational 

GPS network ZTD products. 

       The whole program for real-time precipitable water vapor prediction and 

interpolation is presented in Chapter 6. The geostatistic theory of kriging, which is the 

basis of this program, is briefly introduced. The three-step interpolation process of the 

ordinary kriging is illustrated using a one-day real-time sample data to generate 24 hourly 

PWV maps. 

        The principal component analysis (PCA) and the variable correlation analysis of 

GPS water vapor dataset are provided in Chapter 7. The 17 variables of the system are 

categorized into four groups. The chapter starts with a brief review of PCA theory and 

then explains the PCA process to derive a seven-principal-component/domain structure, 

which simplifies the description of the set of intercorrelated variables. A variable 

correlation analysis is further presented using the scatter plots and linear regression. 

        The conclusions and future work are given in Chapter 8. 
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Chapter Two: GPS Meteorology 

 
This chapter presents the theory of GPS water vapor remote sensing and its applications. 

 

2.1 Introduction to GPS  

The GPS system is officially known as the NAVSTAR System (Navigation Satellite 

Timing and Ranging). It was originally envisioned as a ranging system from known 

positions of satellites in space to unknown positions on land, sea, in air and space. The 

GPS constellation consists of 24 satellites in 6 orbital planes with 4 satellites in each 

plane. (Currently, at least 31 GPS satellites are operated) The ascending nodes of the 

orbital planes are separated by 60 degrees and the planes are inclined 55 degrees. Each 

GPS satellite is in an approximately circular, semi-synchronous (20,200 km altitude) 

orbit (see Figure 2.1). The orbits of the GPS satellites are available from navigation 

message broadcast from GPS satellites or (in much better accuracy knows as precise 

orbits) organizations such as the Jet Propulsion Lab (JPL) and the International GNSS 

Service (IGS). The GPS receivers convert the satellite's signals into position, velocity, 

and time estimates for navigation, positioning, time dissemination, or geodesy. 

 

 

Figure 2.1 Constellation of 24 GPS satellites (not to scale) which consists of six orbits 
(which has four satellites. The ascending nodes of the orbital planes are separated by 60 degrees; the planes 
are inclined 55 degrees (Willkommen, 2005)) 
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GPS signals 

Each GPS satellite transmits two signals for positioning purposes (Langley, 1990): 

• L1 signal. Modulated onto the L1 carrier (1,575.42 MHz) are two pseudo-random 

noise (PRN) ranging codes and the navigation (broadcast) message. The codes 

(used to determine the pseudo-ranges) are (a) the 1 millisecond-long C/A-code 

(effective wavelength of ~300 m); (b) the weeklong segment of the P-code 

(effective wavelength of ~30 m). The navigation (broadcast) message comprises 

satellite orbital information (ephemeris), ionospheric modeling coefficients, status 

information, system time and satellite clock bias, and drift information. 

•  L2 signal. Modulated onto the L2 carrier (1,227.60 MHz) are the P-code and the 

navigation message — the C/A code is not present.  

      The PRN codes are unique for each satellite and the correlation between any pair of 

codes is very low. This allows all satellites to share the same carrier frequency. 

      The above GPS signals have some clear weakness: (i) Civil user has only access to 

the C/A-code on L1; (ii) they are not provided total spectrum protection and can not 

easily penetrate into interference and jamming; and (iii) the reflected signals (multipath) 

cause position errors. In 1996, a GPS modernization was planned and since then it has 

been advanced. According to this plan, a new civil signal would be added to the GPS L2 

frequency. Instead of replicating the C/A-code, a truly modernized L2 civil (L2C) signal 

was designed. Also, to satisfy the needs of aviation, the third civil frequency, known as 

L5, would be centred at 1176.45 MHz, in the Aeronautical Radio Navigation Services 

(ARNS) band (Bruyninx, 2008). 

• L2C signal. Modulated onto the L2 carrier are, two distinct PRN code sequences 

to providing ranging information; the Civilian Moderate length code (called CM), 

and the Civilian Long length code (called CL). The CM code is 10,230 bits long, 

repeating every 20 ms. The CL code is 767,250 bits long, repeating every 1500 

ms. Each signal is transmitted at 511,500 bits per second (bit/s), however they are 

multiplexed together to form a 1,023,000 bit/s signal. L2C is tasked with 
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improving accuracy of navigation, providing an easy to track signal, and acting as 

a redundant signal in case of localized interference (Bruyninx, 2008).  

GPS observables  

Pseudorange. The pseudorange is the measured distance between a GPS satellite at some 

transmit time and the receiver’s antenna at some receive time. It is calculated by the time 

the signal takes to propagate from the satellite to the receiver multiplied by the speed of 

light. The pseudorange is biased by the lack of time synchronization between the clock in 

the GPS satellite and the clock in the GPS receiver. Other bias effects include the 

ionosphere and troposphere delay, multipath and receiver noise. The equation for the 

pseudorange observable is (Misra and Enge, 2001): 

( ) ρρ εδδρ +++−⋅+= TIttcr s
u                                                           (2.1) 

where ρ  is the pseudorange, r  is the geometric range from the receiver to the satellite, c 

is the speed of light, utδ  and  are the offsets of the receiver and satellite clock from 

the GPS time, I are the delays imparted by the ionosphere and troposphere and 

stδ

T and ρ

ρε represents the effect of multipath and receiver noise. The receiver coordinates ( ) 

are related with the geometric range 

zyx ,,

r  along with the coordinates of the satellite 

( )ss z,sx y,  in the form of  ( ) ( ) ( )2222 zzyyxr sss −+−−x += . 

Carrier phase.  The phase observable ( )φ  is the difference between the received satellite 

carrier phase (sensed by the receiver's antenna) and the phase of the internal receiver 

oscillator, which is also called carrier beat phase. A phase measurement is "ambiguous" 

as it cannot discriminate one (either L1 or L2) wavelength from another. The receiver 

measures the fractional phase and keeps track of the number of whole wavelengths of the 

carrier wave. The initial phase is undetermined, or ambiguous, by an integer number of 

cycles N. The equation for the carrier phase observation is (Misra and Enge, 2001): 

( ) ( ) φφ εδδλφ ++−⋅++−⋅= − NttfTIr s
u

1                                          (2.2) 
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where N is the integer ambiguity and is the carrier frequency. Estimation of N is 

referred to as integer ambiguity resolution or initialization.  are the delays 

imparted by the ionosphere and troposphere and 

f

TI   and  φ

φε represents the un-modeled effects, 

modeling error and measurement error for carrier phase observation. The carrier 

measurements in equation (2.2) can be converted to units of length by multiplying the 

wavelength (Misra and Enge, 2001): 

  ( ) φφ ελλδδ

φλ

⋅+⋅+−⋅++−=

⋅=Φ

NttcTIr    s
u

         (2.3) 

Differential techniques 

Differential GPS surveying technique requires two or more GPS receivers to 

simultaneously track the same set of satellites. Based on this strategy, appropriate 

differential techniques have been developed to eliminate those biases common or linearly 

correlated across different observations to obtain GPS solutions. In the following, single 

and double differential processing for phase observations are given. 

• Single difference (two different receivers tracking the same satellite) - eliminates 

the satellite clock offset (Misra and Enge, 2001): 

                       (2.4) k
ij

k
ij

k
ij

k
ijij

k
ij

k
ij TINtfr ,

1
φεδλφ ++++⋅+⋅= −

where ; the superscript k denotes the kth satellite and the 

subscripts i  and 

( ) ( ) ( )k
j

k
i

k
ij •−•=•

j  donate the ith and jth receiver, respectively. 

      When two receivers are within a short distance (e.g. < 10 km),  =  and 

 =  since both observation signals have a proximately same atmospheric 

path and  and  become zero. Under such condition, the model (2.4) becomes 
(Misra and Enge, 2001): 

k
iI k

jI
k

iT k
jT

k
ijI k

ijT

                      (2.5) k
ij

k
ijij

k
ij

k
ij Ntfr ,

1
φεδλφ ++⋅+⋅= −
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• Double difference (i.e. difference either the between receivers or the between-

satellite difference pairs (Figure 2.2)) - eliminate both the receiver and satellite 

clock offset.  

      The equation of double difference is (Misra and Enge, 2001): 

l
ij

k
ij

kl
ij φφφ −=  

                              (2.6) kl
ij

kl
ij

kl
ij

kl
ij

kl
ij TINr ,

1
φελ ++++= −

             where ( ) ( ) ( )lijk
ij

kl
ij •−•=• . In particular, 

  ( ) ( )l
j

l
i

k
j

k
i

kl
ij φφφφφ −−−= . 

      The model (2.6) for a short baseline between two receivers becomes 

   kl
ij

kl
ij

kl
ij

kl
ij Nr ,

1
φελφ ++= −

        ( ) kl
ij

l
j

l
i

k
j

k
i

l
j

l
i

k
j

k
i NNNNrrrr ,

1
φελ ++−−++−−= −                   (2.7) 

 

 

Figure 2.2 Configuration of two GPS receivers and two satellites with their corresponding ray paths 
(The four observations are used to form on double difference observation. The straight line between two 
receivers is called baseline. (Adapted from (Kruse 2001))) 
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Error sources 

Orbit error. This error is the discrepancy between the true position (and velocity) of a 

satellite and its known value. This discrepancy can be parameterized via the three orbit 

components: alongtrack, crosstrack and radial. 

There are two basic types of satellite orbit information:  

• Real-time ephemerides that are predicted from past tracking information, and are 

available to GPS users at the time of observation, and  

• Post-mission ephemerides, which are orbit information available after fact as 

there is a delay for collection of the data, transmission of the data to the computer 

centre, the orbit determination process and the subsequent distribution to GPS 

users.  

      In this study, near real-time GPS data processing is utilized. Hereafter both predicted 

ephemerides and JPL real-time ephemerides correction data are used. 

Satellite clock errors. These errors are satellite clock bias, drift and drift-rate, which are 

explicitly determined in the same procedure as the estimation of the satellite ephemeris 

and available to all GPS users as clock error coefficients broadcast in the Navigation 

Message.  

      In this study, PPP algorithm is utilized and the clock errors are ‘eliminated’ using 

real-time JPL satellite error correction data. 

Receiver clock error.  This error means the offset between the receiver clock and the 

GPS system time. Since GPS receivers use inexpensive crystal clocks, which are much 

less accurate than the satellite clocks, the receiver clock error is usually much larger than 

that of the GPS satellite clock. The receiver clock error leads to a range error in the 

pseudorange and carrier phase measurements. In this thesis, PPP algorithm is utilized and 

the receiver clock error is estimated. 
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Ionosphere delay. The GPS signals passing through the atmosphere encounter refraction 

effects including ray bending and propagation delays. Ionosphere delay is imparted by 

the ionosphere (thermosphere) which ranges from 80 to 1,500 km above the earth (Leick, 

2004) and causes a significant range error. For day-time observations near solar 

maximum this effect can be tens of meters. Fortunately, the ionospheric delay is 

dispersive and can be reduced to a millimeter or less by forming particular linear 

combinations of the L1 and L2 code/phase measurements (i.e., using dual-frequency 

observations) (Misra and Enge, 2001): 

( ) ( ) 22
2

2
1

2
2

12
2

2
1

2
1

L
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=              (2.8) 

and  
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where and  are the ionosphere-free pseudorange and phase measurements, 

respectively; and  are the pseudorange/phase measurement at L1 and 

L2 , respectively; and  are the corresponding carrier frequencies. The linear 

combinations (2.8) and (2.9) eliminate the ionospheric effect, but may amplify other 

sources of error (Misra et al., 2001). 

IFP IFΦ

1 /L Φ 1LP

1Lf

22 / LLP Φ

2Lf

Troposphere delay. This delay is imparted by troposphere which is the lower part of 

atmosphere. Unlike ionosphere, troposphere is electically neutral and non-dispersive for 

GPS frequencies; therefore the delay can not be removed using dual-frequency 

relationship. The delay has to be measured, or estimated, from one of a number of 

models. Details on the tropospheric efftects and the corresponding methods of reduction 

will be discussed in later sections. 
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2.2 Effect of the troposphere on GPS Measurements 

In this section, the nature of troposphere, how the neutral part of atmosphere affects the 

propagation of GPS signals, the nature of tropospheric effect and its size and variability, 

and the estimation of troposphere delays using GPS will be described. 

 

2.2.1 Nature of the troposphere 

The troposphere is the lowest major atmospheric layer, and is located from the Earth's 

surface up to the bottom of the stratosphere (Figure 2.3). It has decreasing temperature 

with height (at an average rate of 6.5 degrees C per kilometer); whereas the stratosphere 

has either constant or slowly increasing temperature with height. The thickness of the 

troposphere is not same everywhere. It extends to a height of less than 8 kilometers over 

the poles and exceeds 18 kilometers over the equator. The upper boundary of the 

stratosphere, called the stratopause, extends to a height of about 50 kilometers (S & TR, 

2004). 

 

 

 
 

Figure 2.3  Layers of the Earth’s atmosphere 
(Cardall and Daunt, 2008) 
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      The troposphere is denser than the layers of the atmosphere above it (because of the 

weight compressing it), and it contains up to 75% of the mass of the atmosphere. It is 

primarily composed of nitrogen (78%) and oxygen (21%) with only small concentrations 

of other trace gases. All atmospheric water vapor or moisture is found in the troposphere 

(Barry and Chorley, 2003). 

      The thin layer that divides the troposphere from the stratosphere is called the 

"tropopause", located at an altitude of around 8 km in the winter, to around 13 km high in 

the summer, and as high as 17 or 19 km in the deep tropics. Both stratosphere and 

troposphere layers are non-dispersive at radio frequencies below about 30 GHz because 

they are electrically neutral. Because 80% of the neutral atmosphere lies within the 

troposphere, the whole neutral atmosphere is commonly referred to as the “troposphere.” 

(Brunner et al, 1993) 

 

2.2.2 Nature of the tropospheric delay 

As the GPS radio signals travels from satellite to receiver, it is affected by the atmosphere 

in two distinct ways (see Figure 2.4). First, the signals are bent with respect to in 

gradients in the index of refraction of the atmosphere, traveling along a curved path (S) 

instead a geometrical straight line (G) the signal would travel in a region of constant 

refractivity. The difference between the lengths of these two paths is known as the 

geometrical delay. Second, the speed of propagation of GPS signals is slower in a region 

of finite density than that in a vacuum. The increase in the time required to cover a given 

distance can also be expressed in terms of excess path length, yielding the optical delay. 

Both delays can be related to the variation of the refractive index, n, of the medium in the 

following manner (Yuan et al., 1993):  

           (2.10) ∫ −⋅=Δ
L

GdssnL     )(    

where  is the refractive index as a function of position s along the curved path L, and 

G is the geometrical straight-line path length through the atmosphere. Because the index 

of refraction )  is numerically close to unity, it is more conveniently expressed in 

terms of atmospheric refractivity (N) w

( )sn

(sn

here 
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          (2.11) ( )[ ] 610 1        )( ⋅−= snsN

Equation (2.10) can be expressed in terms of refractivity (Yuan et al., 1993): 

  ( ) ( )∫ −−⋅=Δ −

L

GSdssNL         10    6        (2.12) 

where S is the curved path length along L. In this equation, the first term of the equation 

corresponds to optical delay and the second term corresponds to geometrical delay. 

 

 

Figure 2.4 GPS Signal Geometry 
(where G is the geometrical straight line the signal would travel in a region of constant refractivity and S is 
a curved path signal actually travels along due to the atmospheric refraction (Dodson et al., 1996)) 
 
 
      To model the propagation delay one needs to develop a model to determine the 

integral along the line-of-sight to the satellite. The atmosphere is conveniently divided 

into two distinct strata: ionosphere and troposphere according to their natures and 

abilities to model the refractivity integral. The ionosphere is a dispersive medium at GPS 

signal frequencies and the delay imparted by it can be largely eliminated using dual-

frequency observations (see Equation (2.8) and (2.9)). However, the troposphere is 

electrically neutral atmosphere which is a non-dispersive medium at GPS signal 

frequencies; therefore, the delay imparted by troposphere can not be eliminated by the 

linear combination of dual-frequency observations. The tropospheric delay has to be 

measured or estimated. The requirement of the model is the ability to estimate the 

integral of atmospheric refractivity along the line-of-sight. 

 19



  

      The refractivity of the neutral atmosphere is a function of the local pressure, 

temperature, and water vapor content. The approximate expression for the refractivity is 

(Leick, 2004) 

1
23

1
2

1
1),,( −−− ⋅⋅+⋅⋅+⋅⋅= wv

wv
wv

wv
d

d
wvd Z

T
p

kZ
T
p

kZ
T
p

kppTN     (2.13) 

where T is absolute temperature in degrees Kelvin,  is partial pressure of dry air in 

millibars,  is partial pressure of water vapor in millibars,   and  are physical 

constants: , 

dp

wvp

k1 =

,k1 2k 3k

mbarK /60.77 mbarKk /5.692 =  and ,  and 

 are compressibility factors for dry air and water vapor, respectively. The first term 

expresses the sum of distortion of electro charges of the dry air molecules under the 

influence of an applied magnetic field. The second term accounts for the same effect but 

for water vapor. The third term accounts for the permanent dipole moments of the water 

vapor in the atmosphere; it is practically independent of frequency within GPS magnetic 

frequency (Leick, 2004).  

mbarKk /2
3 = 370100 dZ

wvZ

      Equation (2.13) is further developed by splitting the first term into two terms, one that 

represents refractivity of an ideal gas in hydrostatic equilibrium and another that is a 

function of the partial water vapor pressure. Thus the large hydrostatic (dry) constituent 

can be accurately computed using ground-based total pressure p ( )wvd ppp += . The 

smaller and more variable water vapor must be dealt with separately (Leick, 2004). The 

modified equation (2.13) becomes 

1
2321),,( −⋅⎟
⎠
⎞

⎜
⎝
⎛ ⋅+⋅′+⋅⋅= wv

wvwv
dwvd Z

T
p

k
T
p

kRkppTN ρ      (2.14) 

where  is dry air constant, dR ρ  is the total density, 
d

wv

wv

d

M
M

kk
R
R

kkk ⋅−=⋅−=′ 12122 , 

 and  are the universal gas constant for ideal gas and water vapor, respectively, 

 and  are the molar mass for ideal (dry) gas and water vapor, respectively. 

dp

dM

wv

wv

p

M

      In equation (2.14) the refractivity is clearly split into a dry component, i.e. dry 

refractivity , and a wet component, i.e. water vapor refractivity : dN wvN

 ( )
T
pkRkpTN dd ⋅=⋅⋅= 11, ρ         (2.15) 
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kpTN        (2.16)  

where . The hydrostatic refractivity  depends on total density wvd NNN += dN ρ  or the 

total pressure p . Figure 2.5 shows a typical height profile of  and  as derived 

from radiosonde data (Brunner et al., 1993) where the shaded area indicates the overall 

variability of the wet component. Figure 2.5 reveals (1) that the variability of  is very 

small within the troposphere because the nearly constant ratio of the constituents of air, 

with the exception of water vapor and condensed water; (2) that the effective height for 

 is about 40 kilometers, above which  is negligible; (3) that the effective height for 

 is at heights below the troposphere, within this region the mixing of dry air and 

water vapor is a rather complicated process depending on weather conditions. Thus the 

 profiles show strong variations with height, time, and location and are very difficult 

to predict. 

dN wvN

dN

dN

wvN

wvN

dN

 

 
 

Figure 2.5  Typical height profiles of dry refractivity and water vapor refractivity 
(where the shaded area indicates the overall variability of the wet component (Brunner et al., 1993)) 

 
 

      Integrating (2.13) along the zenith direction using (2.15) and (2.16) gives the zenith 

hydrostatic (dry) delay (ZHD or ZDD) and zenith wet delay (ZWD), respectively, 
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                     (2.17) ( )∫ ⋅⋅= − dssNZDD d 10    6

          (2.18) ( )∫ ⋅⋅= − dssNZWD wv 10    6

where zenith total delay ZWDZDDZTD +=)( . The hydrostatic refractivity  depends 

on the total pressure

dN

p ; if integrating along the signal path then hydrostatic 

equilibrium condition to ideal gases is applied (Leick, 2004). The integration of  is 

rather complicated due to the temporal and spatial variation of partial water vapor 

pressure  along the path (Leick, 2004). Figure 2.6 shows a typical example of the 

variation of the tropospheric delays as a function of elevation angle to a GPS satellite. 

The shaded area indicates the range of water vapor delays. The total tropospheric delay 

effects are the sum of both curves in Figure 2.6. Figure 2.6 indicates that it should be 

possible to express the tropospheric delay at a certain elevation angle as the product of 

the tropospheric zenith delay and a function that maps the increase in delay with an 

increasing zenith angle.  

dN

wvN

wvp

 

 

Figure 2.6  Propagation delays as a function of elevation angle 
 (Brunner et al., 1993) 

 

2.2.3 Modeling zenith delays 

Even though the hydrostatic refractivity obeys the ideal gas law, performing 

integration (2.17) still requires assumption about the variation of temperature and gravity 

along the path (Leick, 2004). A successful solution for ZHD is Saastamoinen model, 

dN
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which simplifies assumptions regarding changes in pressure, temperature, and humidity. 

The Saastamoinen’s model is given as (Leick, 2004) 

[ ]
[ ]

( ) [ ]km

mbar
m H

p
ZHD

⋅−⋅−

⋅
=

00028.02cos00266.01
0022768.0 0

ϕ
      (2.19) 

where  is the total pressure at the site whose orthometric height is0p H  and latitude is ϕ . 

      The model assumptions about the wet refractivity are much more difficult because of 

the strong variations of the water vapor with respect to time and space. There are some 

models for ZWD solutions such as Hopfield model, and Mendes and Langley model. The 

latter is presented below. Mendes and Langley model was derived based on the 

radiosonde data and the correlation analysis between the ZWD and the surface partial 

water vapor pressure . The model is (Leick, 2004) 0,vwp

0,0.00943  0.0122    wvpZWD ⋅+=                     (2.20) 

      Since the tropospheric zenith wet delay is poorly correlated with surface 

meteorological data and the surface meteorological data are not necessarily representative 

of adjacent layers along the line of sight to the satellites, the derived models tend to 

be inadequate, offering poor results (Leick, 2004; Dodson et al., 1996). 

ZWD

ZWD

      As a remedy, meteorological data of a standard atmosphere has often been used. Such 

a standard atmosphere is referenced to sea-level and then using the height of the GPS site 

as the sole variable to calculate the meteorological values for a site. And so these values 

are independent of time and actual weather conditions. Excellent results have been found 

using standard atmospheric data as input for the Saastamoinen model in processing GPS 

data (Brunner et al., 1993). 

 

2.2.4 Mapping functions 

The models described above provide the solutions for tropospheric delays in the zenith 

direction. The satellites however are observed at numerous elevation angles ( . In fact, 

tropospheric delay increases with the zenith angle 

)e

ϑ  as the air mass traversed by the 

signal increases (see Figure 2.7). The exact functional relationship is again complicated 

by temporal and spatial variability of the troposphere. As Figure 2.7 indicates, it is 

possible to map a tropospheric delay from zenith down to slant path for the respective 
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elevation angles. The mapping function models this dependency, which provides an 

advantage for us to model or estimate a zenith delay for each site as an unknown 

parameter in the least-squares adjustment of GPS observations instead of delay values at 

all elevation angles (Brunner et al, 1993). The following functions show the relationship  

 

Figure 2.7  The path length of a signal through troposphere 
(where ϑ is zenith angle and e  is the elevation angle. The parts of rays highlighted in red represent 
schematically the different tropospheric delays, where the ZTD is the shortest one. (Adapted from (Misra 
and Enge, 2001)) 

 

between the slant hydrostatic (dry) and wet delays, , and the respective 

zenith delays: 

ii SWDSDD  and 

( )emZDDSDD idii ,⋅=           (2.21) 

( )emZWDSWD iwvii ,⋅=          (2.22) 

The slant total delay ( ) is  iSTD

 ( ) ( )emZWDemZDDSTD k
iwvi

k
idii ,, ⋅+⋅= .                                                         (2.23) 

      In this study the popular Niell mapping functions are used, which are derived based 

on temporal changes and geographic location.  Both the dry and wet mapping functions 

are given as below respectively (Leick, 2004): 
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where e is the geometric elevation of the observation, h is the site height above sea level 

in kilometers, both  and  are hydrostatic and wet coefficients 

which are listed in the look-up Tables in Appendix A,  are the height 

correction constants: . 

drydrydry c  ,b  ,a

ht 53.2  a ×=

wetwetwet c  ,b  ,a

ht 1049.5  b  , ×=

hththt c  ,b  ,a

ht 14.1  c  ×= 35 10and10 3    ,

 

2.2.5 Stochastic path delay models 

The water vapor in troposphere is variable in space and time which result in fluctuations 

in the wet delay (ZWD). If its spatial and temporal characteristics can be characterized by 

probabilistic laws or statistical models, then ZTD/ZWD can be predicted over varying 

spatial dimensions and temporal scales according to a given probability density function 

or stochastically in terms of the spatial and temporal correlations of the fluctuations 

(Tralli et al., 1990). Two appropriate models for stochastic path are random walk and 

first-order Gauss-Markov processes. 

 

2.2.5.1 First-order Gauss-Markov process 

The first-order Gauss-Markov process, expressing the change in the zenith wet delay 

(ZWD) with time (dt), can be defined by the differential equation (Tralli et al., 1990): 

 ( )t  w  /)t(ZWD    td/ZWDd GM +−= τ        (2.26) 
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where w(t) is a zero-mean white noise random variable of variance and GMτ  is the Gauss-

Markov correlation time. The discrete solution to (2.26) is represented by (Tralli et al., 

1990): 

 ( ) ( ) ( ) ( )twm    1    tZWDm    ttZWD GM
2
1

2 ⋅−+⋅=+ Δ       (2.27) 

where  

 ( GM/texpm )τΔ−=           (2.28) 

The parameter, m, is a measurement of the exponential correlation between adjacent 

measurements of sampling interval tΔ  (in GPS, tΔ donates the time difference between 

epochs k + 1 and k) and it can be obtained from 

 

 ( )[ ] ( ) ( )[ tZWDttZWDtZWDm 2 ⋅+=⋅ Δ ]        (2.29) 

 

where [] denotes the expectation value operator; based on m, the Gauss-Markov 

correlation time, GMτ , is obtained by  

  ( )m
t

GM ln
Δ

−=τ           (2.30) 

Given m, the steady-state deviation of Gauss-Markov process, GMσ , is obtained from 

(2.27) 

 ( ) ( )( )
( ) ⎥

⎦

⎤
⎢
⎣

⎡

−
⋅−Δ+

= 2

2

1 m
tZWDmttZWD

GMσ        (2.31) 

 

2.2.5.2 Random walk process 

A random walk process is a defined simply by 

( )twt/dZWDd =           (2.32) 

which is the same as equation (2.26) in the limit of an infinite correlation time 

( ∞=GMτ ). The discrete solution to equation (2.32) is given by  

 ( ) ( ) rwwttZWDmttZWD ⋅Δ+⋅=Δ+              (2.33) 

Hence, the deviation for random walk process is 
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−Δ+
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tZWDttZWD
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2        σ        (2.34) 

The random walk deviation actually is the reverse ratio of the sampling interval. It can 

grow indefinitely and therefore is not steady-state. 

      Zenith delays (ZDD or ZWD) can be modeled either as Gauss-Markov process 

entirely with parameters of the steady-state deviation ( GMσ ) and correlation time ( GMτ ), 

or as random walks process based solely on the process noise rates ( rwσ ). According to 

the limit of infinite or large correlation time relative to data sampling interval tΔ , 

modeling the tropospheric delays as a Gauss-Markov process becomes equivalent to 

modeling as a random walk process. Since the first-order Gauss-Markov process is of 

zero mean, a constant term is estimated jointly as an additional parameter (Tralli et al., 

1990). An advantage with the Gauss-Markov model is that the direct comparison can be 

made among constant delay models to evaluate the marginal improvement to the 

parameter estimates especially attributable to modeling the path delay fluctuations (Tralli 

et al., 1988). A random walk process, in the limit of decreasing process noise, approaches 

a constant constrained by an a priori deviation specified according to the expected path 

delay at the start of the process. This a priori deviation is analogous to the constraint 

imposed on the constant term which is estimated jointly with Gauss-Markov process 

(Tralli et al., 1990). 

      Stochastic model parameters values such as GMσ , GMτ  and rwσ  could be initially 

from the data by fitting a sample mean and sample autocorrelation function. 

 

2.2.6 Estimating zenith delays 

The standard atmospheric model helps obtain accurate meteorological data, but it fails to 

describe the meteorological conditions at a GPS site during a particular observation 

session (Dodson et al., 1996).  

      Least-squares adjustment technique can be used to solve for the entire tropospheric 

zenith delay, or the tropospheric wet delay (the dry tropospheric zenith delay is then 

modeled from barometric pressure alone) for each GPS station.  

      For simplicity, equation (2.23) will be considered as: 
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 ( )emZTDSTD k
icombinedii ,    ⋅= ,         (2.35) 

where 
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Then the tropospheric delay is estimated as part of the least-squares procedure using the 

double-difference observation, i.e., 

 ( ) ( )k
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jj

kl
ij

kl
ij

kl
ij mmZTDmmZTDN −⋅−−⋅+⋅−=Φ λρ      (2.37) 

      Usually an unknown troposphere zenith delay is estimated per site and session. Such 

a model tends to average any variations of the troposphere zenith delay. The problem 

with this technique is that it can not model certain error sources within the system such as 

ocean loading effects, the wet tropospheric delay fluctuation (Brunner et al., 1993; 

Dodson et al., 1996). 

      An alternative is to model the troposphere zenith delay by a stochastic model (see 

Section 2.2.5), which treats the unknown troposphere zenith delay as a time-varying 

parameter. The mathematical adjustment is performed with a sequential Kalman filter 

(see Figure 2.8). 
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Figure 2.8  Programming diagram for Kalman filter parameter estimation 

 
 

      The Kalman filter is designed to produce minimum error estimation for a system. The 

development of Kalman filter needs to concern the initial state of the system, the system 

dynamics, the measurement dynamics and assumptions of system noise and measurement 

errors (Gelb, 1974). 

 

2.2.7 Zenith wet delay conversion into precipitable water vapor 

Zenith wet and precipitable water vapor (PWV) are related by: 

 
PWV
ZWDQ =            (2.38) 

where Q is a dimensionless conversion factor and its value varies between 5.9 ~ 6.5, 

depending on the air temperature (Leick, 2004). For warmer conditions, when the air 

holds more water vapor, the ratio is toward the low end.  
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      A ground receiver can have simultaneous observations along 4-12 ray paths. GPS 

sensed PWV is modeled using an average of all observed GPS rays after they have been 

scaled to zenith, as shown in Figure 2.9. 

 

 

Figure 2.9  Schematic presentation of GPS PWV 
(GPS PWV is modeled as an average of all GPS satellite observations above the minimum elevation angle 
represented by the cone. The cone is the maximum angle aperture of the GPS antenna) (Adapted from 
Ware et al. (1997)) 

 

2.3 GPS sensing techniques 

In terms of source of the GPS data for meteorological application, there are two primary 

methods by which GPS data can be used for sensing the properties of atmospheric water 

vapor (Bevis et al., 1992; Yuan et al., 1993). 

 

2.3.1 Mapping precipitable water vapor using existing geodetic GPS networks 

This technique utilizes stationary ground-based receivers, which originally are developed 

for high-precision geodetic applications (see Figure 2.10). It is achieved in two steps: 

accurately modeling all GPS signal delays, including the delay caused by the Earth’s 

atmosphere, and then adopting the stochastic filter and other statistical techniques to 

recover the zenith wet delay from GPS data. Afterwards, it is possible to estimate the 

PWV from observed zenith wet delay (based on (2.3)). Given a sufficient dense network 

of GPS receivers, it would be possible to map the distribution of PWV in some detail 

(Bevis et al, 1992). This study is based on this technique, i.e., GPS PPP technique plus a 

continuously operating GPS geodetic network. 
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Figure 2.10  Retrieve water vapor using geodetic GPS network 
(Ware et al., 2001) 

 

2.3.2 Space-based GPS occultations 

This technique means to obtain GPS soundings of the atmosphere by means of readings 

from the GPS transmitter to a low Earth orbit (LEO) satellite (Figure 2.11). (Radio) 

Occultation techniques have been applied for decades to explore and measure 

atmospheric properties of other planets in the solar system. With the advent of GPS it is 

regarded a valuable means to obtain profiles of refractivity, temperature, pressure, and 

water vapor in the neutral atmosphere and electron density in the ionosphere. In April 

1995, the GPS Meteorology (GPS MET) experiment, which placed a GPS receiver in a 

low earth orbit (LEO), provided a wealth of data which was used to test this concept and 

the accuracy of the retrievals.  Several investigations have already demonstrated that the 

retrieval accuracies obtained with GPS/MET is already comparable with the more 

traditional atmospheric sensing techniques (Kursinski et al., 2001).  

      To extract atmosphere information from the LEO data, first the orbit of LEO must be 

determined. This task can be achieved using GPS data from the LEO. Once the LEO – 

GPS configuration is known accurately, the GPS measurements of an occulting LEO can 

be interpreted in terms of atmospheric delay. This delay is caused by both the neutral 

atmosphere and the ionosphere. The ionosphere effect can be corrected using dual 

frequency signals from the GPS satellites; however, for LEO observations where the two 

frequencies travel along paths, separated by several 100 m, there is an ionosphere 
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correction error of 1 m or more. Brunner and Gu (1991) describes how path separation 

effects may be compensated in order for GPS occultation work to achieve the highest 

accuracy possible (Yuan et al., 1993). 

 

      Radio Occultation measurements using GPS and a receiver on a LEO have recently 

been shown to produce accurate profiles of Atmospheric refractivity with high vertical 

resolution (Yuan et al., 1993). 

 

Figure 2.11  Schematic diagram for GPS occultation geometry for path delay calculation 
(where ray paths through two (exaggerated) atmospheric layers with indices of refraction n1 and n2 are 
shown) (Adapted from: http://www.cpar.qinetiq.com/ro.html) 
 
 
2.4 Summary 

This chapter has presented an overview of the GPS technique, the neutral atmospheric 

effects on radio frequency signals and the GPS meteorological applications. 

      GPS meteorology is the application of GPS data to the monitoring and analyses of 

atmospheric conditions. The use of GPS observations to estimate the precipitable water 

vapor is based on the fact that the atmospheric water vapor introduces additional delay 

(range error) to GPS observables as the GPS signals travel through neutral atmosphere. 

To obtain the high positioning precision this delay has to be modeled or estimated by a 

time-varying zenith wet delay (ZWD) which is retrieved by stochastic filtering of the 

GPS data. Given surface temperature and pressure at the GPS receiver, the retrieved 

ZWD can be transformed into an estimate of the precipitable water vapor (PWV).  

      GPS atmospheric remote sensing based on the ground-based GPS networks has two 

advantages: (i) providing unattended, continuous, independent, frequent, and accurate 
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observations of IPW/PWV at very low cost, and (ii) providing all-weather-condition 

observations. 

      The GPS meteorological applications have been mainly developed in three areas: 

mapping of IWV/PWV using existing geodetic GPS networks (ground-based), 

tropospheric water vapor tomography using meteorological GPS networks (ground-

based), and GPS occultation observed from space (space-based).  

      In the following chapter, the precise point positioning (PPP) model which is adopted 

in this thesis will be presented. 
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Chapter Three: GPS PPP Water Vapor Determination Model 

 
3.1 Introduction 

In the previous chapter, the GPS remote sensing theory was represented. The most 

commonly used technique for water vapor remote sensing is DGPS. The DGPS approach 

requires at least two receivers simultaneously observing common GPS satellites and it 

uses the double-difference observations to eliminate common satellite and receiver errors. 

While the DGPS provides accurate positioning results, it has some drawbacks when it is 

used to measure atmospheric water vapor. First, its precision is related to the baseline 

length between the base and rover GPS receivers (Rocken et al., 1993; Zhang, 1999). 

Next, its solution is a relative estimate of the water vapor (for shorter baselines). Third, its 

operation requires data communication and synchronization between the network 

receivers to facilitate double difference baseline processing. An alternative to the DGPS 

approach is the Precise Point Positioning (PPP) technique. 

      The PPP is a concept of GPS positioning using data from a single GPS receiver and 

precise satellite orbit and clock information generated by the International GNSS Service 

(IGS). To achieve the highest possible point positioning accuracy to match DGPS 

solution, PPP uses ionosphere-free, undifferenced code pseudorange and carrier-phase 

measurements. In addition, the remaining errors such as tropospheric delay, satellite 

attitude error and site displacement effect due to such as solid Earth tides are dealt with 

by modelling or estimation. This technique has been demonstrated that carrier-phase-

based single point positioning can achieve decimetre or sub-decimetre accuracy levels 

without the need for processing any GPS reference station data (Gao et al., 2001; Kouba 

et al., 2001). 

      The next two sections will present the PPP water vapor determining model employed 

in this thesis and the related PPP correction models. 
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3.2 PPP water vapor determination model 

3.2.1 Observation equations 

The ionospheric-free combinations of dual-frequency GPS pseudorange and carrier-phase 

obaservations are respectively given below (Gao et al., 2004): 
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where 

iP  is the measured pseudorange on (m),  i = 1 or 2; iL

iΦ   is the measured carrier phase on (m), i = 1 or 2; iL

if  is the carrier frequency of ,  i = 1 or 2; iL

ρ   is the true geometric range (m); 

c  is the speed of light (m/s); 

dt   is the receiver clock error (s); 

tropd  is the tropospheric delay (m); 

iN   is the integer phase ambiguity on (cycle), i = 1 or 2; iL

IFdm   is the multipath effect in the measured pseudorange on (m); iL

IFmδ   is the multipath effect in the measured carrier phase on (m); iL

( )⋅ε   is the measurement noise (m); 
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3.2.2 Tropospheric delay estimation 

In Equation 3.2, the slant tropospheric delay  can be represented using the following 

form (Leick, 2004): 

tropd

( ) ( ) ZWDemZDDemd wvdtrop ⋅+⋅=                                                                  (3.3) 

where 

ZWDZDD,  are the zenith dry and wet delay, respectively; 

( )emd    is the dry mapping function; 

( )emwv   is the wet mapping function; 

e    is the elevation angle. 

In this study, ZDD is modeled using the Saastamoinen’s model (Equation 2.19); ZWD is 

estimated using the first-order Gauss-Markov process described in Section 2.2.5. ( )emd  

and  are the dry (Equation 2.24) and wet (Equation 2.25) Niell mapping functions, 

respectively. 

( )emwv

 

3.3 Precise point positioning correction models 

Unlike in relative positioning, common errors can not be cancelled in PPP. The 

corrections for these errors must be applied to the observations.  

 

3.3.1 Satellite ephemeris and clock errors 

The GPS navigation accuracy specification calls for a 16m 50% Spherical Error Probable 

(SEP) and a 100m 95% 2drms, for the PPS and SPS systems, respectively (Warren et al., 

2003). Errors associated with satellite are ephemeris and satellite clock phase error (wrt 

GPS time). Both of these errors are uncertainties. The magnitude of the former is ~2 m 

and the magnitude of the latter is 7 ns. The effects of these errors depend on the type of 

the GPS processing techniques that is being used. IGS provides precise GPS ephemerides 

and adjusted clock parameters. Such a service is accomplished through a globally 

distributed tracking stations equipped with continuously operating dual frequency 
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receivers (see Figure 3.1). Positions and velocities are given for every 15 minutes, and 

clock parameters for every 5 minutes. Table 3.1 gives the IGS precise data in different 

latencies and intervals and their characteristics. Use of the IGS Rapid or Final products 

reduces the uncertainty of satellite orbit and clock and achieves high level of accuracy. 

The drawback of this precise data is the availability at some latency at present.  

      NASA JPL (Jet Propulsion Laboratory) has developed a model for predicting 

ephemeris and satellite clock correction, which makes the real-time PPP applications 

possible. For the JPL real-time precise correction products, the data sample intervals for 

ephemeris and clock are 1 second and 31 seconds, respectively. This study uses JPL real-

time precise correction to implement PPP algorithm, which are sent to the University of 

Calgary in a real-time data stream using UDP (User Datagram Protocol) via the Internet. 

 

 

Figure 3.1 IGS network of globally distributed tracking sites 
(from:http://igscb.jpl.nasa.gov/network/complete.html) 

 
Table 3.1 IGS combined orbit and clock products and their characteristics compared with broadcast 
values (Ray et al., 2005) 
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3.3.2 Satellite antenna phase center offset 

This offset is caused by the separations between the GPS satellite center of mass and the 

antenna phase center. Since satellite antenna broadcasts its signals, all measurements are 

made to the antenna phase centers. The IGS uses dynamic modeling for estimating the 

GPS orbit and the resulting orbital data refers to the center of mass (Figure 3.2).  
 

 

Figure 3.2  Satellite antenna phase center offset 
(where the z-axis points toward the Earth center; the x-axis points along the solar panel axis, the y-axis 
completes the right-handed coordinate system and lies in the Sun-satellite Earth plane. (Kouba et al., 2001)) 
 
 
      Starting on 1998-Nov-29 (GPS Week 986, day 0) the IGS products incorporated the 

antenna phase center offsets given in Table 3.2. The correction of this error can be done 

in Equation 3.4 (Leick, 2004): 

 [ ] XiXX
1

rmass_cente _center phase k    j   
−

+=
GGG

         (3.4) 

where  is the position of the satellite antenna (i.e. phase center);  is 

the position of the satellite’s center of mass;

centerphaseX _ centermassX _

[ ]k  j  
GGG

i  is satellite body local unit matrix, 

[ ]T0   0   1i =
G

 is satellite-Sun unit vector in Earth Centered Earth Fixed (ECEF), 

[ ]T1   0   0 k =
G

 is satellite unit vector toward Earth in ECEF, [ ]T0   1   0j =
G

is the third 

vector of i
G

 and  which completes the right hand system, k
G [ ]Toffsetoffset z  yoffset   x    X = , 

which is offset in the satellite fixed coordinates system. 
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Table 3.2 GPS satellite antenna phase center offset (X) adopted by IGS 

(Block II/IIA and IIR are different prototype of satellites) (Kouba et al., 2001) 
 

 offsetx  (m) offsety  (m) offsetz  (m) 

Block II/IIA 0.279 0.000 1.023 

Block IIR 0.000 0.000 0.000 

 

 

 

3.3.3 Phase wind-up error 

GPS satellites transmit right circularly polarized (RCP) radio wave and therefore, the 

observed carrier-phase depends on the mutual orientation of the satellite and the receiver. 

Any relative rotation between satellite antenna and receiver antenna will change the 

carrier-phase up to one cycle, which corresponds to one complete revolution of the 

antenna. When using GPS carrier phase observations, any relative orientation during the 

observation period must be corrected by the following equations (Wu et al., 1993; Leick, 

2004): 

 

 ykxkkxd ˆ)ˆ(ˆ ×+⋅−=            (3.5) 

            (3.6) ykxkkxd ′×+′⋅−′=′ ˆ)ˆ(ˆ

 ( )[ ] ⎟
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⎠

⎞
⎜
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⎝

⎛

⋅′
⋅′

⋅×′⋅= −

dd
ddddksign 1cosδϕ          (3.7) 

where ẑ   ,ŷ   ,x̂  are the satellite body local unit vectors (as in satellite antenna phase 

offset), ẑ  ,ŷ  ,x̂ ′′′  are the receiver local unit vector, k  is the unit vector pointing from 

satellite to receiver, d  is the magnitude of the vector, δϕ  is the phase wind-up 

correction. 

 

3.3.4 Solid Earth tides 

The Earth as a whole responds to external forces as an elastic body. Solid earth tides are 

caused by the gravitational force exerted by the sun and moon. The caused effect is the 

periodic deformation of the solid Earth, i.e. vertical and horizontal site displacement, by 
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decimetre level. The effective values of displacements weakly depend on station latitude 

and tide frequency and need to be taken account. The solid earth tide is corrected by the 

following equation (Kouba and Heroux, 2001): 
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where  are the gravitational parameters of the Earth, the Moon (j  = 2), and the 

Sun (j = 3);  are geocentric distances of the station, the Moon, and the Sun with the 

corresponding unit vector 

jGM  ,GM

jR  ,r

r�  and jR
�

, respectively;  and  are the nominal second-

degree Love and Shida dimensionless numbers (0.609, 0.085); 

2l 2h

φ  and λ  are the site 

latitude and longitude and gθ  is Greenwich Mean Sidereal Time. 

      The tidal correction in (3.8) reaches ~30 cm in the radial and ~5 cm in the horizontal 

direction (Kouba and Heroux, 2001). 

  

3.3.5 Ocean loading 

      The ocean loading is primarily vertical variation of the crust in primarily coastal 

areas, which is caused by sea level fluctuations due to the tides. These changes may cause 

a surface displacement of 5 cm in the vertical and 2 cm in the horizontal direction. Tidal 

ocean loading should be taken into account in space geodesy observations when precision 

better than 4 cm is required and when the tropospheric zenith path delay or clock 

solutions are required, unless the station is far (>1,000 km) from the nearest coast line. 

The ocean load effects can be modeled in each principal direction by the following 

correction term (Kouba and Heroux, 2001):  

( )cjjjjcj
j

j utcosAfc ΦχωΔ −++⋅⋅= ∑          (3.9) 
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where  and  depend on the longitude of lunar node (at 1 ~ 3-mm precision = 1 

and );  represents the 11 tidal waves designated as , , , , , 

, , , , , and S ; 

jf

=j

2P

ju

∑ ⋅
j

M
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20u ( )

O Q M

2M 2S 2N K 1K

2 1 f m sa jω  and jχ are the angular velocity and the 

astronomical arguments at time t = 0 h, corresponding to the tidal wave component j;  

is the station specific amplitude; 

cjA

cjΦ  is the station specific phase. 

 
3.3.6 Atmospheric tides 

Atmosphere tides fundamentally affect the ocean and Earth tides in an indirect way. Sea 

level is affected as a result of atmospheric pressure variations. Spatial and temporal 

variations of atmospheric mass deform the Earth’s surface. The magnitude of the effect 

can be up to ~20 mm (Tregoning et al., 2005). A simplified form for vertical 

displacement correction (mm) is (Rabbel et al., 1986): 

 p55.0p35.0r ⋅−⋅−=Δ                     (3.10) 

where rΔ is the atmosphere pressure load displacement (mm); p is site pressure 

difference from the standard value (101.3 KPA); p  is the average pressure anomaly 

within 2000 km radius surrounding the site. 

 

3.3.7 Relativity  

The clocks in satellites are subject to two relativistic effects. According to the Special 

Theory of Relativity, a clock in satellite traveling at a constant speed would appear to tick 

slower than a clock on the ground due to the time dilation effect of their relative motion. 

According to the General Relativity, a clock located farther away a massive object (i.e. a 

clock in satellites) will seem to run faster than ones on the ground (i.e. ground receiver 

clocks) due to the difference in gravitational potential. The correction for the first effect 

is suggested in the ICD-GPS_200C: 

  ss
r vr

c
t GG

⋅⋅=Δ 2

2            (3.11) 
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where  is the relativity correction;rtΔ
srG  and svG  are position and velocity of a GPS 

satellite;  is the speed of light. c

     The correction for the second effect is (Rothacher et al., 2002): 
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rrr
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2          (3.12) 

where  is gravity delay error; G  is gravitational constant;  is mass of the earth; ptΔ EM

sr  is distance between the satellite and earth center;  is distance between the receiver 

and earth center;  is distance from the receiver to satellite. 

rr
s

vr

      The above correction models have been implemented in the 3P  software. 

3.4 Summary 

GPS water vapor sensing can be performed by either of two ways: DGPS or PPP. The 

former employs two (or more) GPS receivers simultaneously tracking the same satellites 

and the latter employs one GPS receiver. While DGPS provides accurate solutions, its 

performance is dependent on the inter-station distances. Through the use of ionosphere-

free, undifferenced code pseudorange and carrier-phase measurements with precise 

satellite orbit and clock parameters and other error models, PPP can provide the high 

accurate point positioning solutions to match the DGPS solution. Since PPP performs 

single receiver station based data processing, PPP water vapor sensing technology can be 

efficiently implemented in all kinds of GPS tracking site configurations.  
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 System Design and Implementation Chapter Four:

 

The real-time GPS PPP-inferred water vapor system development starts with the system 

design. In this chapter, the initial conditions and system requirements are discussed firstly 

and then the system design and implementation are illustrated.  

 

4.1 Initial conditions and system requirements 

4.1.1 Initial conditions 

The initial conditions of this study are presented below. 

4.1.1.1 Canadian geodetic (GPS) network 

The present Canadian geodetic GPS network has been constructed during the last decade 

and is now operated by Natural Resources Canada (NRCan). It consists of 35 

continuously operating GPS stations. 20 of the 35 stations are equipped with collectable 

surface weather stations which collect and record the meteorological (MET) data such as 

pressure, temperature and relative humidity, and 21 of the 35 stations send raw GPS data 

stream in real-time. Figure 4.1 shows the distribution of the 21 GPS stations with their 

coordinate information provided in Table 4.1. The system is developed based on this 21-

real-time-GPS-station network. The raw GPS/MET data collection and management 

within the network is done through RTIGSA (Real-Time IGS Archive) software, which is 

developed in C++ by NRCan. RTIGSA is executed under LINUX environment and it 

does the following tasks (NRcan, 2005): 
 

 Listening to the RTIGS format data steam from the GPS stations, 

 Validating the RTIGS messages, 

 Saving the RTIGS data in files, and  

 Multicasting the GPS/MET data on the subnet so that it is available to many users. 

 43



  

 
Figure 4.1 Canada (geodesy) GPS network operated by NRCan   

(The network consists of 21 continuously operating GPS stations which send raw GPS data in real-time, 19 
of 21 stations (except for USNO and MSSC) send real-time MET data stream, too.) 
 
 

Table 4.1 Network GPS station ID and coordinates 

GPS site ID / name Lat (deg) Lon (deg) Height (m) 
ALBH / VICTORIA 48.39 N 123.49 W 32.06 

ALGO / ALGONQUIN PARK 49.90 N 78.07 W 201.97 
BAIE / BAIE-COMEAU 49.18 N 68.26 W 28.48 
CHUR / CHURCHILL 58.76 N 94.10 W -18.87 
DRAO / PENTICTON 49.32 N 119.63 W 542.24 

EUR2 / EUREKA 79.99 N 85.94 W 28.68 
FRDN / FREDERICTON 45.93 N 66.66 W 95.96 
HLFX / DARTMOUTH 44.68 N 63.61 W 4.28 
MSSC / MISSISSIPPI 30.38 N 89.61 W -13.00 

NRC1 / OTTAWA 45.45 N 75.62 W 83.59 
NRC3 / OTTAWA 45.45 N 75.62 W 83.59 

PICL / PICKLE LAKE 51.48 N 90.17 W 315.87 
PRDS / CALGARY 50.87 N 114.28 W 1248.39 

SASK / SASKATOON 52.18 N 106.38 W 579.44 
SCH2 / SCHEFFERVILLE 54.83 N 66.83 W 499.03 

STJO / ST. JOHN'S 47.60 N 52.68 W 153.89 
USNO / COLUMBIA 38.92 N 77.06 W 50.17 
VALD / VAL D'OR 48.09 N 77.56 W 313.77 

WHIT / WHITEHORSE 60.75 N 135.22 W 1427.23 
WINN / WINNIPEG 49.90 N 97.25 W 221.11 

YELL / YELLOWKNIFE 62.48 N 114.48 W 181.03 
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4.1.1.2 Precise satellite orbit and clock correction data 

Jet Propulsion Laboratory (JPL) has developed a program to distribute the real-time 

precise ephemeris correction products through the Internet. The University of Calgary is 

granted to retrieve the data using User Datagram Protocol (UDP) protocol via Internet. 

 

4.1.1.3 Meteorological (MET) data  

At present, real-time MET data stream is not available in real-time stream. NRCan 

provides one-hour-latency MET data files through its FTP file server on Internet. 

 

4.1.1.4 GPS software sources 

A PPP software product 3P  was developed at the University of Calgary, which runs in 

both post-mission and real-time mode under MS Window environment. Under the static 

real-time processing condition, PWV estimate at about 1 mm accuracy level has been 

demonstrated using the software 3P  (Gao et al., 2004). 3P  will be the core function unit 

for calculating water vapor in this real-time system, but it needs to be adapted for 

concurrent real-time multi-station data processing since the real-time raw data stream 

contains 21 station GPS and observation data. 

      NRCan offers an open source: RTIGSMR (Real-Time IGS Multicast Receiver) 

software, which is a framework developed in C++ and run on LINUX platform. 

RTIGSMR does the following (NRCan, 2005): 

 Listens to the broadcast multicast, and 

 Decodes the RTIGS messages. 

Since RTIGSMR is a framework, some LINUX system functions of it can be replaced 

with the corresponding MS Windows system functions or with the user’s developed 

functions and then it can be applied to Microsoft Windows platform. 

 

4.1.2 System-level requirements 

Based on the system goals and development conditions stated above, the system-level 

requirements are specified as below: 
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 A GPS network is needed with receiver stations distributed over Canada; 

 Real-time precise orbit and clock correction data is needed to support PPP data 

processing; 

 Data communication between the GPS data processing center (at the University of 

Calgary) and RTIGSA (at the NRCan) via multicast IP address and port; 

 Data communication between the GPS data processing center (at the University of 

Calgary) and the JPL precise data server via UDP IP address and port; 

 Concurrent multi-station GPS data processing; 

 Produce near real-time estimated PWV data for each individual station; 

 Store/output the station daily/hourly log files to Web data server/FTP server; and  

 Produce/output near real-time hourly PWV distribution map. 

 

4.2 System design 

The architecture of the system design is shown in Figure 4.2. The whole system 

comprises five functional components (subsystems). Each of the components has its own 

allocated function and is organized to cooperate with each other.  

 
 

Figure 4.2  System design and dataflow diagram 
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    (1) GPS tracking network component, which is a nation-wide network of GPS 

reference stations. It includes tracking and collecting GPS observation data, navigation 

data and meteorological data (temperature, pressure and relative humidity) from each 

station and distributing them via Multicast (IP Multicast). 

     (2) Precise ephemeris correction data component, which is responsible for collecting 

satellite orbit and clock correction data from JPL control center and distributing them to 

internet users via UDP (User Datagram Protocol). 

     (3) PPP processing server component, which performs concurrent multi-station water  

vapor calculation in real-time mode and outputs solutions: station coordinates, clock error 

and ZTD/ZWD/PWV. 

     (4) Data communication component, which includes (1) implementing IP Multicast 

protocol to set up data link between GPS tracking network component and PPP 

processing server component and decode the incoming GPS/MET data stream, and (2) 

implementing the UDP protocol to set up data links between Precise ephemeris 

correction data component and PPP processing server component and decode the 

incoming data stream. 

     (5) Database component, which includes a Web/FTP server and stores tropospheric 

products for Web clients. 

 

     The system data processing is accomplished in a pipeline of three steps: 

 Raw GPS/MET signal tracking and archiving, 

 Data distributing/acquiring via Internet protocol in near real-time mode, 

 Calculating PWV observables/products using GPS PPP technique, 

Afterward, near real-time PWV surface maps are estimated using Kriging interpolation 

based on the derived sample data from the system. 

 

4.3 System implementation 

The realization of the real-time water vapor sensing/measurement system relies on the 

Internet. UDP and IP Multicast are the two Internet communication protocols used in this 

thesis. To help understanding, these concepts are briefly illustrated in Appendix B. 
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4.3.1 System infrastructure 

According to the system design, GPS tracking network component and Precise ephemeris 

correction data component are already accomplished by NRCan and JPL, respectively. 

To complete the whole system infrastructure, three computers are deployed at the 

University of Calgary (Figure 4.3).  

 

 

Figure 4.3  System infrastructure diagram 

 

 UDP client/server, which logs in the JPL UDP data server, listens to the JPL 

orbit/clock correction data through UDP socket and then relays the data to computing 

workstation through UDP port. 

 RTIGSA server, which is loaded with NRCan RTIGSA software (LINUX system 

environment) and performs the following tasks: 

o Listening to the RTIGS format data steam from the GPS stations, 

o Validating the RTIGS messages, 
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o Multicasting the GPS data on the subnet so that it is available to many 

users. 

 PPP processing workstation, which is the central service application. It is equipped 

with Intel Core 2 CPU 6700 @ 2.66 GHz, 3.25 GB of RAM and 950 GB hard disk. 

Its allocated functions include: 

1. Data communication component, which includes two modules:  

a. UDP data receiver, which listens to/decodes JPL precise satellite 

orbit/clock correction data stream through UDP port. 

b. Multicast data receiver, which listens to/decode the RTIGS format GPS 

data through the IP multicast port. 

2. PPP-based processing server, which provides the system interface (Figure 4.4), 

performs multi-station real-time water vapor calculation and output solution log 

files. 

3. FTP/Web server, which stores the daily, hourly solution log files for each station 

and PWV distribution files. 

 

 

Figure 4.4  The real-time GPS PPP-inferred water vapor system interface 
(The right top pane shows the (near) real-time tropospheric observables/products: ZTD, ZWD and PWV in 
time series in different scales) 
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4.3.2 Software implementation 

 Multicast receiver  

Data communication component has two subcomponents: UDP receiver (for real-time 

JPL orbit/clock precise data) and Multicast receiver (for real-time GPS data). The former 

has already been done. This thesis handles the latter. The Multicast receiver 

subcomponent is developed based on RTIGSMR (Real-Time IGS Multicast Receiver) 

framework. Since RTIGSMR use Unix Socket for network programming interface, that 

part of files needs to be replaced with Windows Sockets (abbreviated "Winsock" or 

"WinSock") files. A new Multicast wrapper class: CMulticastSocket is created, which 

derives from MFC CAsyncSocket and provides all multicast protocol programming 

functions such as: JoinGroup, LeaveGrou, and OnReceive. 

 PPP-based processing server 

The development of PPP-based processing server is based on the 3P software. 3P  is 

originally designed for one-station processing. At present, twenty-one-station real-time 

data is to be processed concurrently. In PPP-based processing server, twenty one objects 

of Epoch are created, each of which presents a station and process its own data 

individually. Currently only one main thread runs inside the server to execute twenty one 

objects and the system performance is satisfied. 

 MET data module 

The real-time water vapor sensing system is designed to receive and process whole real-

time data set, i.e. GPS data, MET data and precise orbit/clock correction data. At present, 

NRCan distributes hourly MET data by FTP server with one-hour latency instead by real-

time data stream. To handle this one-hour-latency MET data, an auxiliary MET data 

module is created, which consists of four Window NT command script files: 

MONTH_SCHEDULE.cmd, DAY_SCHEDULE_1.cmd, DAY_SCHEDULE_2.cmd and 

RUNFILE.cmd (Figure 4.5). MONTH_SCHEDULE.cmd file takes charge of scheduling 

for each individual month.  Since there is a six-hour difference between local time and 

CTU time of the MET file, two files are created to schedule whole day transaction 

(hourly file downloading): DAY_SHEDULE_1.cmd for hour 00:00 ~ 15:00 and 

DAY_SHEDULE_2.cmd for hour16:00 ~ 23:00. RUNFILE.cmd takes charge of FTP 

getting file, unzipping file and saving file to local directories.  
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Figure 4.5  Flowchart of MET data module 

 

 Integration of components 

To make the whole system work, the UDP receiver, Multicast receiver, MET data 

components need to be integrated with PPP-based processing server. 

 

4.4 Summary 

In this chapter, the real-time GPS PPP-inferred water vapor system design and 

implementation has been introduced. The aim of the system design is to construct a 

distributed system where distributed GPS data sources (network) and distributed 

computing facility (GPS software/process) cooperate under network protocols to generate 

the water vapor observables/products over Canada. The whole system consists of five 

functional segments/components: two data components, one data communication 

component, one GPS PPP process component and one database component. Since at 

present there is no real-time MET data stream, an auxiliary component is added to handle 

with downloading one-hour-latency MET files.  

      In the future when the GPS network is enlarged, i.e. more stations are added into the 

network, the increased workload of data processing can be distributed throughout the 

network to the newly added GPS processing center(s). 
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Chapter Five: System Performance Analysis 

 
This chapter presents the evaluation of the system performance based on a two-day real-

time executing segment results from the system. The performance analysis includes 

position error, ZTD accuracy and PWV accuracy. In the evaluation process, the IGS 

tropospheric products are used as comparison reference values (i.e., true values) and post-

mission results are also presented. In the end of the chapter, the accuracy comparison 

between the real-time GPS PPP-inferred water vapor system and some developed 

operational networks are shown. 

 

5.1 Data description 

The running real-time input raw dataset is from October 18~19, 2007. The observations 

were started to be collected 20 hours later from the execution time of the system. The 

data description is as follows: 

 The number of GPS stations processed in the system is 19 (except MSSC and 

USNO where no MET data available at present); 

 Each station has its own Navigation data files; 

 GPS observation data sampling rate at each station is 1 Hz; 

 JPL satellite orbit and clock correction data sampling intervals are 31 seconds 

and 1 second, respectively; 

 18 out of 19 stations have their own one-hour-latency MET data files, except 

for SASK;  

 MET data sampling interval is 5 minutes;  

 The used elevation cutoff angle is 7 degrees; and 

 Each station is assigned an executing object (i.e. Epoch object) to process its 

own real-time data; the executions of all objects are concurrent and 

independent of each other. 

       

        Besides the real-time data set, the following IGS datasets were also downloaded: 
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 14-day-latency International GNSS Service (IGS) tropospheric product ZTD 

files as ground truth for comparison calculation, and 

 14-day-latency IGS final orbit and clock products for post-mission 

calculation. 

 

5.2 Performance evaluation 

Three aspects of the system performance are analyzed in this section: position error, ZTD 

accuracy and PWV accuracy. 

      Since IGS tropospheric products are used as comparison reference values and 10 out 

of 19 stations within the NRCan operated GPS reference network are also part of IGS 

global network, the performance evaluation is conducted on these 10 stations. 

 

5.2.1 Position error 

The real-time system computes GPS receiver position, clock error, ambiguity and zenith 

wet delay estimates simultaneously. The position error will illustrate the accuracy level of 

the system solution and it can be used to assess the accuracy of the water vapor results. 

The positioning error may also reflect the variation of the measurement environment 

contributing to the water vapor bias (Skone et al., 2006). The correlation between 

position errors and the water vapor will be discussed in Chapter 7. 

      The daily coordinates in the ITRF 2000 reference frame from the Scripps Orbit and 

Permanent Array Center (SOPAC) 1  will be used as the reference values for the 

positioning error analysis. Since SOPAC does not provide daily coordinates for the IGS 

station BAIE, the following positioning error analysis has been conducted only at the 

other nine stations. Using the SOPAC coordinates as references, the position errors of 

those nine stations are calculated. 

                                                 

1 SOPAC is an International GPS Service (IGS) Global Data Center and Global Analysis Center, which 
calculates and provides precise near real-time and predicted GPS satellite orbits, determines precise polar 
motion and Earth rotation variations and generates time series of daily three-dimensional positions for the 
global and California stations respect to the International Terrestrial Reference Frame (ITRF). 
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      Shown in Figure 5.1 are the nine-station positioning errors in the North, East and Up 

directions. The corresponding statistics of errors of nine stations are given in Table 5.1 

and shown in Figure 5.2. 

 

5.2.1.1 Discussion on position errors 

(1) Figure 5.1 shows that (i) the horizontal position errors (i.e. both East and North 

errors) are less than the vertical position error; (ii) the East position error is the 

smallest and more stable over time; (iii) the biggest position error occurs in Up 

direction with greater variations; (iv) the Up position error (RMS) varied greatly 

with different stations (Figure 5.1), which could be related with the weather 

variation state over each individual station (see Section 7.3.2) and the 

measurement environmental conditions (e.g. multipath error) around each 

individual station; (v) the biggest position error STD was found at station 5 (i.e. 

CHUR) in UP direction, because the convergence level jumped from -0.03 mm to 

0.00 mm in the second day of the dataset duration. Based on many long-time 

experiments on the near real-time GPS PPP-referred water vapor system, it is 

found that some stations need two days for the PPP-based solution process to 

reach the final convergence limit. Since the dataset used in this analysis was 

collected 20 hours later after the starting of the system, the phenomena happened 

at station 5 is possible. 

(2) Table 5.2 summarizes the overall positioning errors for all nine stations which 

indicate a positioning accuracy of 1.8 cm in the North, 1.1 cm in the East and 4.3 

cm in the Up direction, respectively. 
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Figure 5.1  Near real-time position errors of nine stations 

(The time axis represents the GPS time)  
 

Table 5.1 Statistics of position errors of near real-time system (unit: m) 

Station  
NRC1 PRDS STJO YELL CHUR ALGO SCH2 WHIT HLFX 

Mean -0.017 -0.015 -0.025 -0.009 0.000 -0.021 -0.005 -0.019 -0.032 
Std 0.002 0.003 0.003 0.006 0.004 0.003 0.002 0.002 0.002 

 
North 

RMS 0.017 0.015 0.025 0.010 0.004 0.022 0.005 0.019 0.032 
Mean -0.010 0.011 0.009 0.016 0.004 -0.003 -0.006 0.013 -0.014 
Std 0.002 0.001 0.001 0.003 0.002 0.001 0.001 0.001 0.002 

 
East 

RMS 0.010 0.011 0.009 0.016 0.005 0.003 0.007 0.013 0.015 
Mean -0.041 0.028 -0.064 -0.020 -0.018 -0.036 -0.057 -0.022 -0.060 
Std 0.007 0.004 0.003 0.007 0.018 0.007 0.003 0.003 0.005 

 
Up 

RMS 0.042 0.028 0.064 0.021 0.025 0.036 0.057 0.022 0.060 
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Figure 5.2  STD of station position errors 

 
Table 5.2 Position errors of the real-time system (unit: m) 

 RMS of North RMS of East RMS of Up 
Mean 0.016 0.010 0.039 
Std 0.009 0.004 0.017 

RMS 0.018 0.011 0.043 
 

5.2.2 ZTD accuracy 

The following two methods can be utilized to assess the real-time system performance on 

the zenith total delay estimation: 

(i) A comparison of the system against independent observations from 

radiosondes and radiometers; 

(ii)  A comparison of the system to the IGS tropospheric products. 
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Since there is no water vapor observation from a radiosonde or radiometer at the ten test 

stations, the second method has been employed. In this investigation, two types of ZTD 

solutions are estimated from the near real-time system: the near real-time ZTD solution 

and the post-mission ZTD solution. Both will be compared to the IGS’s ZTD products. 

      Because the meteorological data used for tropospheric product calculation has a 

latency of one hour, the ZTD solutions from the near real-time system are actually the 

estimates of the water vapor one hour earlier. A one-hour time shift is therefore applied 

to the ZTD solutions before they are compared to the IGS ZTD products. Each station’s 

ZTD curves obtained from the near real-time (N.R.T.) processing, the post-mission (P.M.) 

processing and IGS are shown in Figure 5.3. The ZTD comparison statistics are presented 

in Table 5.3 and Figure 5.4. A further statistic analysis was conducted on the data shown 

in Table 5.3. A summary of the system performance is given in Table 5.4. 

 

5.2.2.1 Discussion on ZTD accuracy 

(1) Figure 5.3 shows that (i) both N.R.T. ZTD and P.M. ZTD curves have a good 

agreement with the IGS ZTD in tendency; (ii) both N.R.T. ZTD and P.M. ZTD 

curves lag behind IGS ZTD for some distance; (iii) the values of ‘N.R.T. ZTD – 

IGS ZTD‘ and ‘P.M.. ZTD – IGS ZTD’ are affected by the weather variation state: 

the sharper the variation, the bigger the values of ‘N.R.T. ZTD – IGS ZTD’ and 

‘P.M. ZTD – IGS ZTD’ due to the lag distances between them, which is displayed 

clearly on the results of ALGO station.  

(2) The results given in Table 5.4 indicate that (i) the N.R.T. ZTD has a difference of 

~13 mm (RMS) from the IGS ZTD, which is within the accuracy level of current 

tropospheric products (see Section 5.3); (ii) the N.R.T. ZTD can achieve the 

accuracy of P.M. ZTD; (iii) the overall accuracy of P.M. ZTD was not better than 

the accuracy of N.R.T. ZTD, which is questionable and needed to be further 

validated when real-time meteorological data stream is provided in the future. 
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Figure 5.3  Ten station ZTD comparison plots between near real-time, post-mission and IGS (1) 
(Unit: mm) 

 58



  

 

 Figure 5.3 Ten station ZTD comparison plots between near real-time, post-mission and IGS (2) 
(Unit: mm) 

 

Table 5.3Statistics of ZTD comparisons: N.R.T.-IGS and P.M.-IGS (unit: mm) 

 
 Mean Std RMS 

N.R.T. 11.2 9.4 14.6  
NRC1 P.M. 0.0 15.4 15.3 

N.R.T. 7.6 7.8 10.8  
PRDS P.M. 10.7 8.2 13.4 

N.R.T. 9.1 6.7 11.3  
STJO P.M. 8.4 10.7 13.6 

N.R.T. 9.8 4.9 10.9  
YELL P.M. 13.2 7.3 15.1 

N.R.T. 3.5 11.9 12.3  
CHUR P.M. 0.3 8.5 8.5 

N.R.T. 8.7 15.5 17.8  
ALGO P.M. 6.3 22.0 22.9 

N.R.T. 8.6 6.1 10.6  
SCH2 P.M. 5.9 5.2 7.9 

N.R.T. 7.9 4.2 8.9  
WHIT P.M. 5.2 5.8 7.8 

N.R.T. 8.3 10.4 13.3  
HLFX P.M. 2.2 10.4 10.7 

N.R.T. 13.5 10.2 16.9  
MAIE P.M. 4.1 11.8 12.5 
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Figure 5.4  Ten station ZTD Mean/STD/RMS plots 

 

Table 5.4 ZTD statistics of N.R.T. system (unit: mm) 

Mean of ZTD 
Comparison 

STD of ZTD 
Comparison  

RMS of ZTD 
Comparison 

 

N.R.T. P.M. N.R.T. P.M. N.R.T. P.M. 
Mean 8.82 5.63 8.71 10.53 12.74 12.77 
Std 2.57 4.29 3.47 5.03 2.89 4.55 

RMS 9.15 6.95 9.31 11.56 13.03 13.48 
 

5.2.3 PWV accuracy 

Since IGS does not provide the PWV product, the IGS PWV values are obtained by 

subtracting the ZHD (Zenith Hydrostatic Delay) from the IGS ZTD and then dividing the 

resulting ZWD by a conversion coefficient (both ZHD (Equation 2.19) and the 

conversion coefficient (= 6.5 (Equation 2.38)) are given in the GPS PPP-inferred water 

vapor model). Each station’s PWV curves from the near real-time (N.R.T.), the post-

mission (P.M.) and IGS are shown in Figure 5.5. The PWV comparison statistics are 
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presented in Table 5.5 and Figure 5.6. A further PWV analysis is conducted on the 

statistical data presented in Table 5.5 and a summary of the system PWV performance is 

provided in Table 5.6. The PWV results look consistent to the results obtained for the 

ZTD estimates. The results show that the near real-time system PWV differs from the 

IGS PWV in ~2 mm, which is within the accuracy level of current tropospheric products 

(see Section 5.3). But, the overall accuracy of P.M. PWV was not better than the 

accuracy of N.R.T. PWV, which is questionable and needed to be further validated when 

real-time meteorological data stream is provided in the future.  
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Figure 5.5  Ten station PWV comparison plots between near real-time, post-mission and IGS (1) 
(Unit: mm) 
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Figure 5.5  Ten station PWV comparison plots between near real-time, post-mission and IGS (2) 
(Unit: mm) 

 

Table 5.5  Statistics of PWV comparisons: N.R.T.-IGS and P.M.-IGS (unit: mm) 

 Mean Std RMS
N.R.T. 2.0 1.4 2.5  

NRC1 P.M. 0.0 2.5 2.5 
N.R.T. 1.3 1.2 1.7  

PRDS P.M. 1.7 1.3 2.1 
N.R.T. 1.4 1.0 1.7  

STJO P.M. 1.3 1.7 2.1 
N.R.T. 1.6 0.7 1.7  

YELL P.M. 2.0 1.1 2.3 
N.R.T. 0.5 1.9 2.0  

CHUR P.M. 0.0 1.3 1.3 
N.R.T. 1.5 2.4 2.8  

ALGO P.M. 1.0 3.5 3.7 
N.R.T. 1.4 0.9 1.7  

SCH2 P.M. 0.9 0.8 1.2 
N.R.T. 1.2 0.6 1.3  

WHIT P.M. 0.8 0.9 1.2 
N.R.T. 1.4 1.6 2.1  

HLFX P.M. 0.4 1.7 1.7 
N.R.T. 2.2 1.6 2.7  

BAIE P.M. 0.6 1.9 2.0 
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Figure 5.6  Ten station PWV Mean/STD/RMS plots 

 

Table 5.6 PWV statistics of near real-time system (unit: mm) 

Mean of   
PWV Comparison 

STD of   
PWV Comparison 

RMS of  
PWV Comparison 

 

N.R.T. P.M. N.R.T. P.M. N.R.T. P.M. 
Mean 1.45 0.87 1.33 1.67 2.02 2.01 
Std 0.46 0.66 0.56 0.82 0.50 0.75 

RMS 1.51 1.07 1.43 1.84 2.07 2.13 
 

 

5.3  Accuracy comparison with external results 

The accuracy of the GPS-derived ZTD products largely depends on the processing 

method used. The current accuracy level of the GPS ZTD estimation is in the order of 

10~15 mm. This is translated into an accuracy level of GPS-derived PWV estimation in 

the order of 1~2 mm (Deblond et al., 2005; Haan, 2006). In order to have a general 

assessment of the accuracy of the PPP-derived ZTD products, shown in Table 5.7 is an 

accuracy comparison of the real-time system with some operational GPS network ZTD 
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products (Haan, 2006). Since this study has no numerical weather prediction model 

(NWPM) values, the ZTD accuracy results of the real-time GPS PPP-inferred water 

vapor are from the comparison with IGS. The results show that the real-time GPS PPP-

inferred water vapor system can reach a comparable accuracy level with other operational 

GPS networks for water vapor estimation. 

 

Table 5.7 ZTD statistics between GPS operational models** 

Processing Center Number of 
Comparison

Bias 
(mm) 

RMS 
(mm) 

STD 
(mm) 

Comparison 
Model 

ASI (Italy) 7994 -5.58 11.74 10.32 NWPM* 
BKG (Germany) 9632 -6.66 12.04 10.03 NWPM 
GFZ (Germany) 9205 -4.76 9.94 8.73 NWPM 
KNMI (Netherlands) 1377 -2.39 7.14 6.73 NWPM 
LPT (Switzerland) 10286 -5.87 11.39 9.76 NWPM 
METO (U.K.) 8766 -3.75 10.81 10.14 NWPM 
SGN (France) 8354 7.57 13.60 11.29 NWPM 
(Near) Real-time GPS PPP-
inferred water vapor system 3162 9.15 13.03 9.31 IGS 

* Numerical Weather Prediction Model   

** The statistics of the first seven processing centers was over  the period: 2005/10/05 – 2006/02/21; the statistics of (near) real-time     
GPS PPP-inferred water system was over the period 2007/10/18 – 2007/10/19 

 

5.4 Summary 

The performance evaluation shows that (i) the position errors of the (near) real-time GPS 

PPP-inferred water vapor system is within sub-decimeter (RMS = 0.0l1 ~ 0.043 m); (ii) 

the significant position error happens in the Up direction which has relation to the un-

modeled atmospheric errors; (iii) the ZTD and PWV accuracies of the current (near) real-

time water vapor system are ~13 mm and ~2 mm, respectively, which should be further 

validated when the real-time meteorological data stream is available to the system. 
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Chapter Six: PWV Prediction and Interpolation 

 
Prediction of local and regional PWV and quantitative description of its distribution over 

Canada is an essential aspect of the real-time GPS PPP-inferred water vapor system. The 

geostatistical interpolation method of kriging is a unique tool to deal with this issue. 

Geostatistics is oriented to the analysis of spatially distributed variables and in particular 

the estimation or prediction of values at unsampled locations. Geostatistical technologies 

underlie most attempts to create surface maps based on point samples or observations 

(Nelson et al., 1999). Three basic components of geostatistics are: 

 (Semi)variogram analysis – characterization of spatial correlation 

 Kriging – optimal interpolation; generation of best linear unbiased estimate at 

each location with semivariogram model 

 Stochastic simulation – generation of multiple equiprobable images of the 

variable with semivariogram model (Bohling, 2005) 

      In this chapter, firstly, the geostatistical methodology is briefly described. And then, 

how this method is implemented in a program to derive the desired interpolated map of 

PWV is explained. At last, the products and analytic results of the program executed on 

one-day 24-hour datasets from the real-time GPS PPP-inferred water vapor system are 

presented. 

 

6.1 Geostatistical methodology 

6.1.1 Introduction 

The basic object the geostatistics considers is the spatial data, which is usually viewed as 

a real-valued stochastic process (i.e. a random function (RF)) { }dRDssZ ⊂∈
GG :)(   where 

 is a subset of D dR  (d-dimensional Euclidean space, d = 1, 2, 3, …). For example, )(sZ G  

may represent the concentration of atmospheric water vapor (PWV) at a specific location 

. Some geostatistics-related concepts are introduced as follows. sG
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 Strictly stationary process 

      Let { )()( sZEs GG
= }μ  and { })(var)(2 sZs GG

=σ  denote the mean value and the variance 

value, respectively. The process Z  is said to be (strictly) stationary if its statistical 

properties of Z are invariant to a shift of the origin (Fuentes, 2002): μμμ =+= )()( hss
GGG  

and 22 σσ 2 )()( σ =+= hss
GGG  for all sG  and any h

G
. 

 

 Second-order stationary process 

      Let { } { }jiji s    scov    )s(Z  ),s(Zcov GGGG
−=  (for all Dsi ∈

G , Ds j ∈
G ) denote the 

covariance of this process at any two particular points isG  and jsG . The process Z  is 

called second-order stationary or weakly stationary if μμ ≡)(sG  (constant), i.e., the mean 

is the same for all sG , and { } ( ) ( ){ } ( )hcovscov)s j hZsZ(Z),s(Zcov i

GGGGGG
=+−= , for all 

Dsi ∈
G , Ds j ∈

G . This means that  { })( jsZ),(cov isZ GG  depends on the vector difference, h
G

, 

between isG  and jsG .  is referred as to the covariogram of the process, for short, 

 is written as . 

( )•cov

( )•C( )•cov

 

 Variogram and semivariogram 

      Suppose ( )sGμ  is a constant and then define 

 ( ) ( ){ } ( )h2sZhsZvar
GGGG γ=−+ ,            (6.1) 

for all ,sG  . The statement (6.1) means that the differences of variables lagged 

-apart vary in a way that depends only on 

Dhs ∈+
GG

h
G

h
K

. The quantity ( )h
G

γ2 , which is a function 

only of h , is called the variogram and 
G ( )h

G
γ  the semivariogram. The semivariogram is a 

plot of the structure function which decribes the relationship between measurements 

taken some distance (h) apart (Figure 6.1). Semivariograms defines the range or distance 

over which spatial dependence exists.  

      Semivariogram is central to geotatistics - it is the key to understanding, describing 

and predicting spatial variation quantitatively (McBratney et al., 1986). 
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 Isotropic process 

      The process Z is isotropic if its ( ) ||),(||22 0 hh
GG

γγ =  for dRh ∈
G

, i.e. (semi)variogram 

depends on only the distance |||| h
G

 between locations; otherwise it is anisotropic. 

Anisotropies are caused by the underlying physical process evolving differentially in 

space (Cressie, 1994). 

 

 Intrinsic stationary process 

      If the process Z satisfies the properties: ( ) ( ){ } 0=−+ sZhsZE GGG  and 

( ) ( ){ } ( )hsZhsZ
GGGG γ2var =−+ , then it is called intrinsically stationary. That is, the process 

Z is defined through a constant mean and constant variance in the location difference h
G

.  

      A process which is both intrinsically stationary and isotropic is also called 

homogeneous. 

      Generally speaking, intrinsic stationary assumption is mostly required by much of the 

theory of spatial processes. Based on this point of view, the stronger forms of stationary 

are not needed (Fuentes, 2002). 

 

 The relation between covariogram and variogram 

      For a stationary process, it can be verified that 

( ) ( ){ }ji sZsZ GG
−var  

( ){ } ( ){ } ( ) ( ){ }jiji sZsZsZsZ GGGG ,cov2varvar −+=  

( ) ( )h
GG

cov20cov2 −=             (6.2) 

thus 

( ) ( ) ( ) ( )hhh
GGGG

covcov0cov 2 −=−= σγ   ( ( ) 20cov σ=
G

∵ ).       (6.3) 

      So, for a stationary spatial process the covariogram and vairogram provide similar 

information in a different form. 
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Figure 6.1 Characteristics of the semivariogram and relation between semivariogram and covariance 
((1) Sill is the upper bound of variogram, i.e. maximum variogram; when the (semi)variogram reaches it the 
graph flattens. The sill estimates a quantity known as the a prior variance of the random variable. (2) 
Range is the lag value at which the variograms reaches its sill. Range is the limit of spatial dependence; 
beyond it the variance bears no relation to the separated distance) (Adapted from Basu et al. (1997))   
 
6.1.2 Geostatistical approach 

Geostatistics is the standard approach in disciplines such geology and hydrology, in 

which the aim is to generate the best estimates in the sense of unbiasedness and minimum 

mean squared error and where it is desirable to have a realistic evaluation of the 

estimation variance. As seen above, the geostatistical approach is stochastic and 

considers the phenomenon under study as a random function (RF), a random field or a 

stochastic process and the experimental data are realizations of the RF.  The geostatistical 

approach consists of three stages (Pardo-Iguzquiza et al., 2005): 

1) Model selection. The most practical model should explain the data 

satisfactorily and have a simple model form as well. For instance, it must be 

decided whether the stochastic process has the constant mean or a specially 

variable mean for a realistic purpose; a decision must be made on the spatial 

covariance is the isotropic or anisotropic. 

2) Parameter inference. The values of parameters which defines the model are 

unknown and need to be estimated using the sample data. For instance, the 

semi-variogram is defined by the parameters such as: the range of correlation, 

sill and nugget variance. 
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3)  Interpolation. This stage includes the estimation of the values of the variable 

at the un-sampled points and a quantification of the magnitude of the error (i.e. 

its variance) incurred in the estimation. This process is performed by kriging. 

      The three stages are related: what kind of kriging to be used depends upon the 

resulting model at stage 1 and the application of kriging requires the model parameters to 

be estimated at stage 2. Once stages 1 and 2 are completed, kriging (stage 3) is just a 

process of a well-known computing algorithm.  

 

6.1.2.1 Stage one: Model selection 

1. The process model 

The process of model selection consists of deciding which, among a family of possible 

models, best explains the data on the basis of given criteria. The family of models must 

be sufficiently flexible to cover most of the situation encountered in practical 

applications. In particular: 

1) The family of models must include both constant mean and spatially varying 

mean. 

2) The statistical function that describes spatial variability must have sufficient 

parameters to model different degree of continuity of the RF. 

In practice, the most useful model, and one that has physical interpretation, is an RF: 

 that has two components, namely (Bailey et al., 1995): ( )sZ K

  ( ) ( ) ( )sUssZ KKK += μ             (6.4) 

where ( )sKμ  is a trend surface representing mean, a large scale or first order component, 

i.e. ( )sZE K( ) (sK)μ= , where ( )•E  is the mathematical expectation operator; ( )sU K  

represents a local or second order component, which is a zero-mean stationary RF with 

covariance function ( )hC
K

,  i.e., ( )( ) 0sUE =K  and ( ) ( )[ ] ( )hChsUsUE
KKKK =+⋅ . 

      When the process to be predicted, ( )sZ K , has a constant mean value, i.e. ( ) μμ =sK , 

RF:  has a simplest form: ( )sZ K

( ) ( )sUsZ KK += μ             (6.5) 
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and RF  is itself then second-order stationary. This case is sometimes referred to as a 

model without drift.  

( )sZ K

      If the mean of the process is not constant then it is assumed to vary in space and may 

be represented in a low-order polynomial form. For instance, linear for a drift of order 1: 

 ( ) ( ) ( )sxsxs GKK
22110 βββμ ++=           (6.6) 

This model captures the local trend of the attribute besides the global trend. Equation 

(6.4) can be rewritten in matrix notation: 

 ( ) ( )sUsxZ T KKK +⋅= β           (6.7) 

where 

 , [ ]n
T zzZ ,......,1=

 , ( ) ( )
( ) ( )⎥

⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

n

n
T

sxsx
sxsxx

212

111

,,.........
,,.........

1...,..........,.........1
K

 ,  [ ]2,10 , ββββ =T

[ ]n
T UUU ,......,1= , 

and n is the number of sample data. The realistic type of kriging for this model is 

universal kriging. 

      In this thesis, it is assumed that the process (PWV) to be predicted is second-order 

stationary and the realistic type of kriging is ordinary kriging. 

 

2. Semivariogram model 

For interpolation purpose, the covariance ( )hC
K

 must be estimated. Assuming second-

order stationary (see section 1.1.1), the relation of covariance and semivariogram is given 

in Equation 6.3: 

 ( ) ( ) ( ) ( )hhh
GGGG

covcov0cov 2 −=−= σγ ; 

and the covariance and the semivariogram can be regarded as equivalent statistical tools. 

Instead the appropriate semivariogram model must be selected for the process to be 

predicted. 
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      Among the families of valid (semi)variogram models (Webster et al., 2004), three 

most commonly used for stationary processes are:  

(1)  The spherical model: 

        (6.8) 

 where  is the nugget effect, 0c cc +0  is the sill and a is the range. 

      (2)  The exponential model: 

                                                      (6.9) 

           (3)  The Guassian model: 

                                                   (6.10) 

 

The plots of these three theoretical semivariogram models are shown in Figure 6.2. The 

different models represent different degrees of continuity of the process (RF) to be 

predicted. The range of the semivariogram is equivalent to the correlation scale, i.e. it 

gives the maximum distance for which the data are correlated (see Figure 6.1). The 

nugget effect (see Figure 6.1) allows discontinous phenomena to be modeled; the 

discontinuity may be caused by monitoring errors or by the structures of variability at 

scales smaller than the smallest distances between sample locations (Pardo-Iguzquiza et 

al., 2005). 
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Figure 6.2 Three common semivariogram models (without nugget effect) 
(Different models have different shapes with different sills and ranges) 

 

      In this thesis, spherical model, Gaussian model and exponential model are fitted with 

the hourly PWV experimental semivariogarm using nonlinear weighted least-squares 

method (see Section 6.1.2.2). The best fit model is determined with cross-validation 

method. 

 

6.1.2.2 Stage two: Estimate semivariogram model 

Estimating semivariogram is usually a two-step process: (i) calculate/estimate 

experimental semivariogram from the sample data and (ii) fit a theoretical semivariogram 

model to the experimental estimate. 

 

1. Calculate/Estimate experimental semivariogram 

The simplest estimator is the method of moment (MoM) estimator. In the case where N 

sampling points ,s   …1
G ,s2

G
NsG  lie on a regular lattice, for any given separation h

G
 the 

formula is defined by (Bailey and Gatrell, 1995) 
 

 ( ) ( ) ( ){ }
( )

2

),()(2
1 ∑

∈

−=
hNss

ji
ji

sZsZ
hN

h
GG

GG
G

G�γ ,        (6.11) 
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where ( )hN
G

denotes all pairs ( )ji ss GG ,  for which hss ji

KGG
=−  and )(hN

G
 denotes the 

number of )(hN
G

;  is over all pairs of observed data points with a vector separation 

of 

( )∑ ⋅

h
K

. In the case where N points irregularly located,  ( )hN
G

 is defined as 

 ( ) ( ) ( ){ },:, hTsssshN jiji

KGGGG
∈−=         (6.12) 

where ( )hT
K

denotes small neighbourhood or tolerance region around h
K

. ( )h
G

γ̂  is 

experimental semivariogram. An example plot of ( )h
G

γ̂  is shown in Figure 6.2. 

      The experimental semivariogram summarizes the spatial relations in the data. 

However, it is subject to error. This error arises largely from sampling fluctuation and 

gives experimental variogram a more or less erratic appearance (Webster et al., 2004). 

The experimental semivariogram is to be used to estimate the true variogram to describe 

the variance of the region (see next section). To get statistically more reliable results, a 

certain amount of observations is required to calculate the experimental semivariogram. 

Some papers suggest this number should be greater than 20~30 (IHF, 2008). 
 

2.  Fitting semivariogram models 

Fitting variogram model means choosing a suitable theoretic function and fitting it to the 

semivariogram ( )h
G

γ  in a statistical way. This is an important procedure in geostatistics, 

which makes it possible to estimate or predict values at unsampled places and in larger 

region optimally by kriging. 

      There are two categories of statistic methods to achieve this task: maximum likelihood 

(ML) and least squares (LS).  The former has two main drawbacks: (1) it relies heavily 

on the Gaussian distributional assumption, and (2) the estimations are biased (Jian et al., 

1996). And so, the semivariogram model fitting is usually performed by LS. 

      Let ( )h
G

γ̂  donate the vector of experimental semivariogram estimates, ( )θγ ,h
G

 the 

vector with values of semivariogram model of interest with a finite unknown parameter 

vector. [ ]p21   ...,  , , θθθθ =  The best set of parameters is the one that minimizes the sum 
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of the squares differences, R, between the experimental values and those predicted by the 

model, ( ) ( )[ ] ( ) ( )[ ]θγγθγγ   ;hhˆV  ;hhˆR 1T GGGG
−−= − . 

There are three well-known versions of nonlinear least squares estimators: 

 Oridnary least squares (OLS), in which V is a indentity matrix I , i.e., IV = . 

 Generalized least squares (GLS), in which V is the variance matrix of the 

experimental semivariogram. Usually V is unknown and it must be assumed. 

  Weighted least squares (WLS), in which ( )θWV = ,  the diagonal matrix 

whose diagonal entries are the variances of variance of the entries of ( )h
G

γ̂  

(Fuentes, 2002). This approach is a special situation of weighted least squares 

(Jian et al., 1996). 

Among these three estimators, the increasing order of efficiency is OLS, WLS, GLS and 

the decreasing order of convenience to use is OLS, WLS, GLS (Fuentes, 2002). Based on 

simulation studies, Zimmerman and Zimmerman (1991) have found that the weighted 

least squares is the most favourable approach for semivariogram-model fitting of others 

(Zimmerman and Zimmerman, 1991). In this thesis, WLS is the one employed. 

( )( )jhγ̂

( ) ( ) ( )kh   ,...  ,2h  ,1h

      Let  be the experimental semivariogram estimated from the sample data at 

discrete lags . Let ( )( )θγ   ,jh  denote the semivariogram model with 

the vector of parametersθ . The weighted least squares estimates θ  which minimizes the 

objective (cost) function: 

( ) ( ) ( )( ) ( )( )[∑ −⋅=
k

j

2,jhjhˆjwF θγγθ

( )jw

w

( ) ( )jhNjw =

] ,       (6.13) 

where  is a weight function. Five weight functions can be applied to equation (6.13) 

(Pardo-Iguzqiza, 1999): 

(1) ( ) 0.1=j .          (6.14) 

       This is a constant weight which is given to the ordinary squares fitting. 

(2) .          (6.15) 

      This weight function considers the number of data pair only, so that the more       

weight is applied to the experimental variogram points where more data points are 

used, which gives a more statistically reliable result. 
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(3) ] 2, − .                                                                                   (6.16) ( ) ( )( )[= θγ jhjw

       This weight function considers the theoretical semivariogram only, so that the 

more weight is given to those experimental variogram points which are close to 

the origin than those far from the origin. 

(4) .             (6.17) ( ) ( ) ( )( )[ ] 2, −⋅= θγ jhNjw jh

      This weight function, suggested by Cresis (1985), is the combination of 

weight functions given in (2) and (3), so that it has advantages from both: being 

statistical reliable and a good fitting the semivariogram near the origin. The latter 

is an attractive property. Stein and Handcock has shown that if the semivariogram 

model is applied to the kriging, then the fit of the model near the origin is more 

important than the fit at larger lags (Stein et al.,1989). However, there are some 

drawbacks with this weight function (Zhang et al., 1995): (i) it is a function of the 

parameters to be determined by the optimization program and the sum of weights 

differs in the iterations, which can cause problems such as slow convergence, 

local convergence or divergence; (ii) objective function (6.13) does not yield the 

same cost for a positive or a negative deviation.  

(5) .                                                                                   (6.18) ( ) ( ) ( ) 2−⋅= jhNjw jh

This weight function was promoted by Zhang et al. (1995). Analogous to 

weight function given in (4), it emphasizes “a good fit near the origin”; but it 

utilizes the factor  instead of the theoretical semivariogram ( )jh ( )( )θγ   ,jh

( )j
. Since 

there is no statistical argument for introducing the factor , the weights 

 in the objective function are constant during the iterations. Thus, this 

weight function overcomes the drawbacks of the fourth weight function, but keeps 

the merits of it.  

h

( ) ( ) 2−⋅ jhN jh

This thesis utilizes the fifth weight function for semivariogram modeling.  

      The convergence criterion for nonlinear regression process is set to be (Nielsen, 

2007): 

00001.1
ˆˆ
<

vPv
kPk

T

T
GG

          (6.19) 
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where  is a vector of variables:  k
G ( )*θFl −

G
 ( l
G

is a vector of observations; is a vector 

of estimated parameters at current iterative step;

*θ
G

( )*θF

ˆ

 is the value of a theoretic 

parametric model for ), P is the weight matrix and v  is a vector of estimated residual 

error (Nielsen, 2007). The experiments show that the iterative numbers of the 

convergence for those three theoretic models are usually 2 to15.  

*θ
G

      An example of estimating semivariogram process is shown in Figure 6.3. 
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Figure 6.3 An example plot of estimating semivariogram process 

 

3. Best fitted semivariogram model determination 

In regular regression case, the least RMSE (Root Mean Squared Error) could be used as 

the test criteria, i.e. the best model is chosen from those models which have the least 

RMSE. In our nonlinear regression, the experimental values are weighted in proportion to 

the numbers of pairs contributing to them, but pay no attention to the lag. Thus, the 

model determined according to RMSE is not necessarily the best for kriging since the 

points near the target point get more weight than more distant ones (Webster et al., 2001). 

      The cross-validation process is a practical way to evaluate this issue. It is performed 

in three steps (Webster et al., 2001): 

(1) An experimental semivariogram is computed from the whole sample dataset and 

the different theoretical models are fitted to it (as it is done above). 
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(2) For each model, each sample data value ( )ixz G  is deleted in turn and then Z is 

estimated at each sampling point is estimated from the rest of the data. The 

kriging variance ( )ix2σ̂  is also calculated. 

(3) Three diagnostic statistics are calculated from the results: 

(a) the mean deviation or mean error, ME: 

   ( ) ( )[1
1
∑
=

−=
N

i
ii xzxz

N
ME ];ˆ         (6.20) 

(b) the mean squared error, MSE: 

( ) ( )[ ] ;ˆ1 2

1
∑
=

−=
N

i
ii xzxz

N
MSE         (6.21) 

(c) the mean squared deviation ratio, MSDR, which is calculated from the 

squared errors and kriging variance, ( )ix2σ̂ , by: 

 
( ) ( )[ ]

( )∑
=

−
=

N

i i

ii

x
xzxz

N
MSDR

1
2

2

ˆ
ˆ1

σ
.       (6.22) 

The ME should be 0 since kriging is unbiased. However, the calculated ME is not a 

strong diagnostic because kriging is not sensitive to inaccuracies in the semivariogram 

(Webster et al., 2001). The less the MSE is, the more accurate the fitted model is. If the 

fitted model is accurate then MSE should be equal to the kriging variance and the MSDR 

should be 1. In this thesis, the diagnostic MSE is mainly used to choose the best fitted 

model for ordinary kriging.  

      Another way to evaluate the fitted model performance with kriging is to plot the 

scatterplot of the true values versus their estimated values (obtained in the above step (2)) 

and do regression analysis between them. In the best situation, it is expected that the 

estimator is conditionally unbiased, i.e. (Webster et al., 2001) 

   ( ) ( )[ ] ( )000
ˆˆ| xZxZxZE GGG

= .       (6.23) 

Based on this, it follows that the regression of ( )0xZ G on ( )0
ˆ xZ G  is 1 (i.e. slope = 1). For 

ordinary kriging, the regression coefficient is somewhat less than 1 (Webster et al., 2001). 

      In this thesis, both diagnostic statistics and scatterplots are examined to evaluate each 

semivariogram model performance and then determine the best one for kriging. 
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6.1.2.3 Stage three: Prediction and interpolation 

After structure analysis (i.e. semivariogram modeling/estimating), predictions at 

unsampled locations are made by ordinary kriging. Kriging is an “optimal prediction” 

(Bailey et al., 1995). It provides a solution to the problem of estimation based on a 

continuous model of stochastic spatial variation, such as semivariogram model. Among 

the geostatitical interpolation procedures, “ordinary kriging” is the most common type of 

kriging in practice. In this section, the basic of kriging is briefly presented.  

 

1. Theory of kriging 

Ordinary kriging assumes that the process to be predicted, ( )sZ G , has a unknown, constant 

mean value μ . It estimates the unknown value at an un-sampled point s  by G ( )sZ Gˆ  using a 

weighted linear combination of the available sample (Bailey et al. 1995): 

 ( ) ( ) ( )∑
=

=
n

i
ii sZssZ

1

ˆ GGG ω                                                                                          (6.24) 

where ( )si
Gω are weights assigned to each sample point isG  (see Figure 6.4) and  

 ( ) 1
1

=∑
=

n

i
i sGω .           (6.25) 

 

 

Figure 6.4 Kriging weighting scheme 
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      The error variance is: 

( ) ( )[ ]{ }2ˆ sZsZE GG
−   

( )[ ] ( )[ ] ( ) ( )[ ]sZsZEsZEsZE GGGG 222 ˆ2ˆ −+=  

( ) ( ) ( ) ( ) ( )i
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1j

n

1i
i

2
jiji

n

1i
s,sCs2s,sCss GGGGGGG

⋅−+⋅⋅= ∑ ∑∑
= ==

ωσωω  

( ) ( ) ( ) ( )scs2        sCs T2T GGGG
⋅−+⋅⋅= ωσωω         (6.26) 

where C  is the (  matrix of covariance, )nn× ( )ji s  ,sC GG  between all possible pairs of the n 

sample points and   is an ((sc G) )1×n  column vector of covariances, ( )is  ,sC GG , between the 

predicted point and each of the n sample point sG isG . 

      Just like the least-squares variance, ordinary kriging minimizes the error variance, 

subject to (6.25). This is achieved by Lagrance multiplier approach. Consider the 

following Langrangian 

( ) ( ) ( ) ( ) ( ) ( )s112scs2sCsL TT2T GGGGGG νωωσωω ⋅−+⋅−+⋅⋅=           (6.27) 

where ( )sGν  is the Lagrange multiplier and is the maximum semivariance (i.e. sill) . 

Differentiating (6.27) with respect to both 

2σ

( )sGν  and ( )sGω  

  
( )
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ω
 

leads to  

  
( ) ( ) ( )scssC

T

GGGG

G

=⋅+⋅

=⋅

νω

ω

1

11
 

which can be also represented in a matrix form: 

+++ =⋅ cC ω            (6.28) 

where 
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Matrix  is inverted, and the weights and the Lagrange multiplier are obtained as +C

+
−
++ ⋅= cC 1ω .           (6.29) 

Note: (i) that would be unknown and it has to be derived from the estimated 

semivariogram model according to

+C

( ) ( )hhC γσ −= 2 , where is the maximum 

semivariance (i.e., sill), which that shows how the semivariogram model is applied to 

kriging process; (ii) that through entire kriging process matrix +C only has to be done 

once, since it is not dependent on the prediction point s

2σ

G ; (iii) that for each new point sG  

the only calculation is the ch gean  of c+ . 

      The ordinary kriging variance is given by 

 .                      (6.30) +
−
++−= cCcT

e
122 σσ

      To obtain the prediction, ( )sZ Gˆ , the weight vector ( )sGω  is further extracted from +ω , 

equation (6.29), and then substituted into equation (6.29) and solved. 

      The ordinary kriging equations (6.28) and (6.29) can be represented using 

semivariogram as below: 

                        (6.31) +
−
++ Γ= γω 1

and  

                        (6.32) +
−
++ Γ= γγσ 12 T

e

where 
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6.2 Implementation of ordinary kriging 

The preceding geostatistical approach process has been implemented in a Matlab 

program, which derives hourly PWV maps using the support from the real-time GPS 

PPP-inferred water vapor system.  

      The program flowchart is shown in Figure 6.5, where each function is matched with a 

Matlab file: 

(1) Calculate/Estimate experimental semivariogram, 

(2) Fitting theoretical semivariogram models, 

(3) Selecting the best fitted model by cross-validation, 

(4) Interpolating with ordinary kriging, and  

(5) Output hourly PWV maps and associated kriging standard error maps. 

      The current ordinary kriging program does not take account of the difference of 

elevation. 
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Figure 6.5 Flowchart for ordinary kriging program 
(This program includes: (1) calculating experimental semivariogram, (2) fitting semivariograms, (3) 
selecting best fitted semivariogram model by cross-validation, (4) ordinary kriging interpolation, and (5) 
producing hourly PWV maps and associated standard error maps.) 
 
 
6.3 Results and analysis 

As it was mentioned in section 6.1.2.2, a statistically more reliable semivariogram needs 

a certain amount of observations for calculation. In the current Canada geodetic GPS 

network, (i) 19 out of 21 stations send both GPS and MET data in real-time stream and (ii) 

NRC1 and NRC3 share the same coordinates. The maximum number of the available 

observations used to estimate the PWV semivariogram is 18. However, the current 

Canadian ground GPS station network is not working stably. Usually the available 

observation number is 15 ~ 17. In this section, the ordinary kriging program is executed 

on 24-hour 18-station datasets from the real-time GPS PPP-inferred water vapor system 

on August 25, 2007. The following analysis was performed hour by hour and the average 

values of each hour dataset were used. The analytic results include semivariogram plots, 
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cross-validation for PWV semivariogram performance, and hourly PWV maps and 

associated kriging standard error maps. 

 

6.3.1 Semivariogram plots 

The experimental semivariogram is calculated under the Latitude-Longitude coordinates 

system. The range of study area is between Longitudes  to  and Latitudes  

to .  The optimal lag step length is determined to be 5-degree. Also, a 5-degree 

tolerance is selected since the observations are irregularly spaced in the study area. This 

means the number ( ) of observation pairs used to compute the semivariogram 

D145− D45− D28
D85

( )( jh

( )jhN

)γ̂  for the lag  is calculated according to equation (6.9). The maximum lag is 

the half of the Longitude dimension of the study area (  ~ ), i.e. . Figure 

6.6 shows the pair numbers for each lag intervals. The 24-hour calculated experimental 

semivariograms are plotted in blue colour in Figure 6.8.   

( )jh
D145− D45− D50

      After hourly experimental semivariogram is computed, three theoretical models are 

fitted with it. Figure 6.8 shows hourly fitted models with the associated experimental 

semivariogram for 24 hour datasets. The zoomed in figure of fitted models is shown in 

Figure 6.7. 

      The fitted models’ sills, ranges and RMSEs for 24-hour datasets are plotted in Figure 

6.9, Figure 6.10 and Figure 6.11, respectively. 
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Figure 6.6 Plot of pair number for 2007-08-25-00:00 hour dataset 
(The observations are irregularly spaced. The lag step is 5 degree. Lag tolerance is 5 degree. Maximum lag 
is 5 degree. The plot shows that the pair number decrease as the lag value increases) 
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Figure 6.7  Semivariogram plot for 2007-08-25-00:00 dataset 
(This plot is based on the optimal lag (5 degree) and Lag tolerance (5 degree). The plot shows that the 
Gaussian model is best fitted close to the origin and the Exponential and Spherical models are best fitted in 
the middle segment of the experimental semivariogram.) 
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Figure 6.8  Hourly PWV experimental semivariogram plots (1) 
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Figure 6.8 Hourly PWV experimental semivariogram plots (2) 
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Figure 6.9  Sill plots of 24 hourly fitted semivariogram models 
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Figure 6.10  Range plots of 24 hourly fitted semivariogram models 
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Figure 6.11  RMSE plots of 24 hourly fitted semivariogram models 
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      Figure 6.7 and 6.8 show that (i) Gaussian model is fitted much more agreeably with 

the experimental semivariogram near the origin area than both spherical and exponential 

models are, (ii) exponential model is more agreeable with the middle segment of the 

experimental semivariogram than other two models are, and (iii) spherical model is fitted 

less than other two models are. It is common in geologic applications where there are 

correlations at different length scales. At small lag distances h, the smaller scale 

correlations dominate, while the large scale correlations dominate at larger lag distances 

(Webster and Oliver, 2001). Both (i) and (ii) indicate that a combination (nested model) 

of two semivariogram models, a Gaussian model and an exponential model, would be 

needed for better representation of the variance structure of PWV, the former is for small 

lag distance and the latter for the big lag distance, such as:  

 ( )

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

>+

<<⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

≤<
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=

,ah  for                                           cc

,aha  for                         
a
3h-exp  1 c

,ah0  for                        
a
3h-exp - 1 c

h

221

21
2

2

1

2

1
1

γ      (6.33) 

where  and  are the sill and range of the small lag distance (short-range component) 

of the variation, and  and  are the sill and range of the big lag distance (long-range 

component).  

1c 1a

2c 2a

      Figure 6.9 and Figure 6.10 indicate that (i) both spherical and Gaussian models have 

relatively stable sills and ranges (since both models reached their sills and ranges), and (ii) 

exponential models have fluctuating sills and ranges. Since most of exponential models 

did not reach their sill and range within the X-axis range, the Weighted Least Squares 

process estimated the sill and range under such condition which would not represent the 

flattening sill and corresponding range. A more reasonable sill/range value of the 

exponential model could be found at hour 23:00 where the exponential model almost 

reached its flattening sill state (see Figure 6.8 (2) and Figure 9 ~ 10). 

      Figure 6.11 indicates that (i) RMSE’s varies greatly with hourly spatial data structure 

due to the low precision of the small-sample-size semivariogram; (ii) the order of RMSEs 
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of three models varies with the hourly data spatial structure, i.e. the data spatial structure 

affects each model differently; and (iii) the RMSE may be used to evaluate the agreement 

of a model fitness; but it can not be used to validate the best semivariogram model for 

kriging since in the above case of nonlinear regression the experimental values are 

weighted in proportion to the numbers of pairs contributing to them (Equation 6.15), 

without paying attention to the lag. The obtained model determined according to RMSE 

is not necessarily the best for kriging since the points near the target point get more 

weight than those far away from the target points (Webster and Oliver 2001). 

      Figure 6.9, 6.10 and 6.11 were obtained under small-sample data environment and the 

results from large-sample datasets need to be further tested. 

 

6.3.2 Cross-validation for PWV semivariogram model performance 

ed to examine the 

performance of each fitted model and then select the best fitted model for ordinary 

 kriged PWV maps from spherical model displayed negative values (see Figure 

In this thesis, both diagnostic statistics and scatterplots are utiliz

kriging.  

      Through the experiments, it was found that for dataset dated on August 25, 2007, all 

24 hourly

6.12); this obvious sign indicated that this model did not represent the true semivariogram 

for 24-hour PWV datasets. So, this model was deleted and the comparisons between 

exponential and gaussion models are conducted during the cross-validation process. 

Logitude (deg)

La
tit

ud
e 

(d
eg

)

Map of the standard errors of PWV (mm) (2007-08-25-14:00)
 

Logitude (deg)

La
tit

ud
e 

(d
eg

)

Map of the standard errors of PWV (mm) (2007-08-25-04:00)
 

 
-140 -130 -120 -110 -100 -90 -80 -70 -60 -50

30

40

50

60

70

80

-400 -300 -200 -100 0 100

 

70

80

-140 -130 -120 -110 -100 -90 -80 -70 -60 -50
30

40

50

60

-40 -20 0 20 40 60 80

 
Figure 6.12  Negative kriged PWV maps from the Spherical model (left) and Gaussian model (right) 

(Negative PWV values indicate that the semivariogram model used for kriging is not reasonable for this 
hourly dataset) 
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 Cross-validation by three diagnostic statistics 

24-hour diagnostic statistics are given in T

model are highlighted. The 24-hour diagnostic statistics are also plotted in Figure 6.13.  

 

able 6.1, where hourly MSEs for the better 

 
Table 6.1 Comparison of 24-hour diagnostic statistics from exponential-model-based and Gaussian-
model-based ordinary kriging interpolations (on August 25, 2007).  

(The MSE value of the better model is highlighted) (unit: mm) 

00:00 01:00 02:00  
ME MSE MSDR ME MSE MSDR ME MSE MSDR 

Exp. Mdl. -1.85 57.89 0.32 -1.88 60.76 0.33 -1.82 65.15 0.38 
Gusn. Mdl 861.71 59.4 -3.58 330.58 23.0 -4.98 531.24 34.64 -7.0 

 
03:00 04:00 05:00  

ME MSE MSDR ME MSE MSDR ME MSE MSDR 
Exp. Mdl. -1.80 77.80 0.48 -1.46 79.84 0.56 -1.52 83.19 0.60 
Gusn. Mdl -7.36 825.95 46.25 -6.72 511.58 24.76 -4.98 235.00 13.24 

 
06:00 07:00 08:00  

ME MSE MSDR ME MSE MSDR ME MSE MSDR 
Exp. Mdl. -1.53 78.83 0.58 -1.49 81.82 0.57 -1.49 75.47 0.50 
Gusn. Mdl -6.23 482.81 27.52 -7.83 761.41 44.90 -7.02 523.58 22.34 

 
09:00 10:00 11:00  

ME MSE MSDR ME MSE MSDR ME MSE MSDR 
Exp. Mdl. -1.37 70.74 0.50 -1.32 71.83 0.51 -1.24 79.06 0.53 
Gusn. Mdl -7.01 534.52 33.50 -5.32 304.55 14.88 -4.68 279.44 8.45 

 
12:00 13:00 14:00  

ME MSE MSDR ME MSE MSDR ME MSE MSDR 
Exp. Mdl. -1.21 90.06 0.57 -1.46 71.06 0.45 -1.45 58.67 0.38 
Gusn. Mdl -5.50 365.29 9.94 -6.30 475.81 21.26 -6.23 404.70 30.81 

 
15:00 16:00 17:00  

ME MSE MSDR ME MSE MSDR ME MSE MSDR 
Exp. Mdl. -1.52 57.99 0.37 -1.62 57.67 0.34 -1.67 63.17 0.35 
Gusn. Mdl -3.50 113.96 3.91 -3.22 78.74 1.91 -2.82 64.63 0.99 

 
18:00 19:00 20:00  

ME MSE MSDR ME MSE MSDR ME MSE MSDR 
Exp. Mdl. -1.61 67.67 0.37 -1.48 65.30 0.39 -1.50 59.36 0.37 
Gusn. Mdl 0.43 187.91 15.41 0.09 146.18 7.17 0.18 110.97 4.80 

 
21:00 22:00 23:00  

ME MSE MSDR ME MSE MSDR ME MSE MSDR 
Exp. Mdl. -1.54 60.34 0.37 -1.49 66.61 0.40 -1.16 81.48 0.51 
Gusn. Mdl 0.44 118.54 5.79 -1.72 45.17 0.59 -1.68 42.69 0.51 
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      Figure 6.13 shows ree diagnostic cs of exponential-model-based 

ordin g i la f P  ar h  w tho Gaussian-model-

base  kr  i t ari ro e 

that th statisti

ary krigin nterpo tion o WV e muc  stable hile se of 

d ordinary iging nterpola ion v ed th ugh th day since the Gaussian model 

was well fitted only for short-range component (see Section 6.3.1). MSE behaviours 

shows that (i) from 00:00 to 21:00, exponential-model-based ordinary kriging 

interpolation was better than Gaussian-model-based ordinary kriging interpolation from 

00:00 to 21:00; (ii) from 22:00 to 23:00, in reverse, Gaussian-model-based ordinary 

kriging interpolation is better than exponential-model-based ordinary kriging 

interpolation, and (iii) during 22:00 to 23:00, the MSE from Gaussian-model-based 

ordinary kriging  interpolation is 42.69 ~ 45.17 mm, the smallest out of 24-hour datasets.  
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Figure 6.13  Plots of 24-hour diagnostic statistics (ME, MSE, MSDR) associated with  

 

 Cro

r both models are shown in Figure 6.14, 

n is for exponential-model-based ordinary kriging interpolation and 

y kriging interpolation. The 

ss-validation by scatterplots  

The 24-hour cross-validation scatterplots fo

where the left colum

the right column is for Gaussian-model-based ordinar

associated linear regression parameters and statistics are printed on these figures. The 

linear regression parameters and statistics of the 24-hour cross-validation scatterplots are 

summarized in Table 6.2 and are also plotted in Figure 6.15.  
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Figure 6.14  Scatterplots of cross-validation for Exponential model (left) and Gaussian model (right) (1) 

 93



  

 

0 10 20 30 40 50 60
-10

0

10

20

30

40

50

60

70

PWV from Ordinary Kriging (mm)

P
W

V
 fr

om
 G

P
S

 (m
m

)

Corr coef = 0.80  (p value = 0.000058)
Std dev = 9.34
Sample size = 17
Slope = 1.07
Offset = -3.47

ME = -1.46
MSE = 79.84
MSDR = 0.56

1:1

Cross-validation of Ordinary Kriging Interpo (Exp Mdl, 04:00 08/25/2007)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

PWV from Ordinary Kriging (mm)

P
W

V
 fr

om
 G

P
S

 (m
m

)

Corr coef = 0.41  (p value = 0.051076)
Std dev = 14.13
Sample size = 17
Slope = 0.26
Offset = 17.17

ME = -6.72
MSE = 511.58
MSDR = 24.76

1:1

Cross-validation of Ordinary Kriging Interpo (Gusn Mdl, 04:00 08/25/2007)

 
04:00 

Cross-validation of Ordinary Kriging Interpo (Exp Mdl, 05:00 08/25/2007)

0 10 20 30 40 50 60
-10

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60
0

10

20

30

40

50

PWV from Ordinary Kriging (mm)

P
W

V
 fr

om
 G

P
S

 (m
m

)

Corr coef = 0.77  (p value = 0.000133)
Std dev = 9.53
Sample size = 17
Slope = 1.09
Offset = -3.67

ME = -1.52
MSE = 83.19
MSDR = 0.60

1:1

60

PWV from Ordinary Kriging (mm)

P
W

V
 fr

om
 G

P
S

 (m
m

)

Corr coef = 0.56  (p value = 0.009699)
1:1

Cross-validation of Ordinary Kriging Interpo (Gusn Mdl, 05:00 08/25/2007)

Std dev = 12.51
Sample size = 17
Slope = 0.48
Offset = 9.83

ME = -4.98
MSE = 235.00
MSDR = 13.24

 
05:00 

0 10 20 30 40 50 60
-10

0

10

20

30

40

50

60

70

PWV from Ordinary Kriging (mm)

P
W

V
 fr

om
 G

P
S

 (m
m

)

Corr coef = 0.80  (p value = 0.000058)
Std dev = 9.28
Sample size = 17
Slope = 1.07
Offset = -3.32

ME = -1.53
MSE = 78.83
MSDR = 0.58

1:1

Cross-validation of Ordinary Kriging Interpo (Exp Mdl, 06:00 08/25/2007)

-10 0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

PWV from Ordinary Kriging (mm)

P
W

V
 fr

om
 G

P
S

 (m
m

)

Corr coef = 0.41  (p value = 0.051076)
Std dev = 14.09
Sample size = 17
Slope = 0.27
Offset = 16.18

ME = -6.23
MSE = 482.81
MSDR = 27.52

1:1

Cross-validation of Ordinary Kriging Interpo (Gusn Mdl, 06:00 08/25/2007)

 
06:00 

0 10 20 30 40 50 60
-10

0

10

20

30

40

50

60

70

PWV from Ordinary Kriging (mm)

P
W

V
 fr

om
 G

P
S

 (m
m

)

Corr coef = 0.81  (p value = 0.000041)
Std dev = 9.47
Sample size = 17
Slope = 1.06
Offset = -3.15

ME = -1.49
MSE = 81.82
MSDR = 0.57

1:1

Cross-validation of Ordinary Kriging Interpo (Exp Mdl, 07:00 08/25/2007)

-20 0 20 40 60 80 100
0

10

20

30

40

50

60

PWV from Ordinary Kriging (mm)

P
W

V
 fr

om
 G

P
S

 (m
m

)

Corr coef = 0.32  (p value = 0.105259)
Std dev = 15.16
Sample size = 17
Slope = 0.18
Offset = 20.11

ME = -7.87
MSE = 761.41
MSDR = 44.90

1:1

Cross-validation of Ordinary Kriging Interpo (Gusn Mdl, 07:00 08/25/2007)

 
07:00 

 
Figure 6.14 Scatterplots of cross-validation for exp. model (left) and Gaussian model (right) (2) 
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Figure 6.14 Scatterplots of cross-validation for Exponential model (left) and Gaussian model (rig t) (3) h
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Figure 6.14 Scatterplots of cross-validation for E ntial model (left) and Gaussian model (rig t) (4) 
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Figure 6.14 Scatterplots of cross-validation for Exponential model (left) and Gaussian model (rig t) (5) h
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Figure  6-14 Scatterplots of cross-validation for Exponential model (left) and Gaussian model (right) (6) 
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Table 6.2 Comparison of linear regression parameters of 24-hour cross-validation scatterplots from 
exp.-model-based OK interpolation and Gaussian-model-based OK interpolation (on August 25, 2007).  

(The STD value of the better model is highlighted) (unit: mm) 

 
00:00 01:00 02:00  

Cor.Co Std Slope Cor.Co Std Slope Cor.Co Std Slope 
Exp. Mdl. 0.87 7.72 1.12 0.87 7.94 1.11 0.86 8.29 1.09 
Gusn. Mdl 0.59 12.85 0.40 0.49 14.10 0.29 0.39 15.07 0.19 

 
03:00 04:00 05:00  

Cor.Co Std Slope Cor.Co Std Slope Cor.Co Std Slope 
Exp. Mdl. 0.83 9.13 1.09 0.80 9.34 1.07 0.77 9.53 1.09 
Gusn. Mdl 0.38 15.28 0.20 0.41 14.13 0.26 0.56 12.51 0.48 

 
06:00 07:00 08:00  

Cor.Co Std Slope Cor.Co Std Slope Cor.Co Std Slope 
Exp. Mdl. 0.80 9.28 1.07 0.81 9.47 1.06 0.83 9.06 1.08 
Gusn. Mdl 14.67 0.27 0.41 14.09 0.27 0.32 15.16 0.18 0.41 

 
09:00 10:00 11:00  

Cor.Co Std Slope Cor.Co Std Slope Cor.Co Std Slope 
Exp. Mdl. 0.84 8.79 1.07 0.83 8.84 1.09 0.79 9.29 1.11 
Gusn. Mdl 0.43 14.45 0.27 0.54 13.16 0.42 0.52 12.96 0.42 

 
12:00 13:00 14:00  

Cor.Co Std Slope Cor.Co Std Slope Cor.Co Std Slope 
Exp. Mdl. 0.75 9.92 1.15 0.82 8.66 1.17 0.87 7.72 1.19 
Gusn. Mdl 0.39 13.78 0.30 0.40 13.97 0.26 0.48 13.55 0.33 

 
15:00 16:00 17:00  

Cor.Co Std Slope Cor.Co Std Slope Cor.Co Std Slope 
Exp. Mdl. 0.86 7.60 1.22 0.87 7.52 1.23 0.86 7.88 1.23 
Gusn. Mdl 0.74 10.06 0.74 0.82 8.68 0.89 0.86 8.01 0.98 

 
18:00 19:00 20:00  

Cor.Co Std Slope Cor.Co Std Slope Cor.Co Std Slope 
Exp. Mdl. 0.86 8.20 1.23 0.86 8.01 1.26 0.87 7.47 1.28 
Gusn. Mdl 0.67 11.81 0.56 0.71 10.91 0.62 0.77 9.84 0.69 

 
21:00 22:00 23:00  

Cor.Co Std Slope Cor.Co Std Slope Cor.Co Std Slope 
Exp. Mdl. 0.87 7.48 1.30 0.86 7.93 1.31 0.81 8.92 1.38 
Gusn. Mdl 0.76 9.96 0.66 0.91 6.54 1.19 0.90 6.52 1.14 
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Figure 6.15  Plots of linear regression parameters of 24-hour cross-validation scatterplots 

(The blue line is from Exponential.-model-based Ordinary Kriging interpolation and the pink line is from 
Gaussian-model-based OK interpolation. According to STD criterion, Exponential model is the better 
model for 00:00 to 21:00 datasets and Gaussian model is the better model for 22:00 to 23:00 datasets) 
 

      Figure 6.14 and 6.15 show that (i) The STD (regression standard error) decreases as 

the regression coefficient (slope of regression line) is close to 1 (in Figure 6.14, 

‘regression coefficient = 1’ means that ordinary kriging-derived PWVs is totally 

consistent with the GPS-derived PWVs); in reverse, the regression standard error increase 

as the regression coefficient departs from 1 in either positive direction or negative 

direc ging 

ary 

kriging interpolation and  (b) from 22:00 to 23:00, Gaussian model outperformed 

tion; (ii) The regression coefficient is somewhat less than 1 for the ordinary kri

in the best case; (iii) According to STD, it derives the same conclusion as MSE does: (a) 

from 00:00 to 21:00, exponential model outperformed Gaussian model in ordin

exponential model; (iv) Gaussian-model-based ordinary kriging interpolations from 22:00 

to 23:00 provide the best results: Correlation coefficient = 0.90 ~ 0.91, Standard error = 

6.52 ~ 6.54 and Slope = 1.14 ~ 1.15. 

      Based on both cross-validation results above, it was determined that the exponential 

model is for ordinary kriging from 00:00 to 21:00 and the guassian model from 22:00 to 

23:00.  
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6.3.3  Kriginged PWV maps and associated kriging standard error maps 

The 24-hour best-model-based ordinary kriginged PWV maps are shown in Figure 6.16, 

i.e. the kriginged PWV maps from 00:00 to 21:00 were based on exponential 

semivariogram model and the kriginged PWV maps from 22:00 to 23:00 were based on 

ast to coast during this study period. Notice that the PWV maps from  22:00 to 

ore details than the PWV maps from 00:00 to 21:00 do, since Gaussian 

e origin than 

exponential model does (see Figure 6.7). 

 level due to the lack of information data, i.e. the area 

Gaussian semivariogram model.  

      These maps demonstrate the spatial and temporal natures of PWV overlaying Canada 

from co

23:00 show m

model is fitted more agreeably with the experimental semivariogram near th

      The 24-hour associated kriging standard error maps are shown in Figure 6.17. Figure 

6.17 indicates that the higher accurate areas are found in area between Longitudes D125−  

to D60−  and Latitudes D44  to D54  where most of GPS stations located and that the other 

areas outside have lower accuracy

close to GPS station show high accuracy level. 
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Figure 6.16  Hourly kriginged PWV maps (Horizontal axis = Longitude) (1) 
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Figure 6.16 Hourly kriginged PWV maps (Horizontal axis = Longitude) (2) 
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Figure 6-16 Hourly kriginged PWV maps (Horizontal axis = Longitude) (3) 
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Map of the standard errors of PWV (mm) (2007-08-25-04:00)
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Map of the standard errors of PWV (mm) (2007-08-25-05:00)
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Map of the standard errors of PWV (mm) (2007-08-25-06:00)
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Map of the standard errors of PWV (mm) (2007-08-25-07:00)
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Figure 6.17  Hourly kriginged standard error maps (Horizontal axis = Longitude) (1
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Map of the standard errors of PWV (mm) (2007-08-25-08:00)
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Map of the standard errors of PWV (mm) (2007-08-25-09:00)
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Map of the standard errors of PWV (mm) (2007-08-25-10:00)
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Map of the standard errors of PWV (mm) (2007-08-25-11:00)
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Map of the standard errors of PWV (mm) (2007-08-25-12:00)
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Map of the standard errors of PWV (mm) (2007-08-25-13:00)
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Map of the standard errors of PWV (mm) (2007-08-25-14:00)
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Map of the standard errors of PWV (mm) (2007-08-25-15:00)
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Figure 6.17 Hourly kriging standard error maps (Horizontal axis = Longitude) (2) 
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Map of the standard errors of PWV (mm) (2007-08-25-16:00)
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Map of the standard errors of PWV (mm) (2007-08-25-17:00)
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Map of the standard errors of PWV (mm) (2007-08-25-18:00)
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Map of the standard errors of PWV (mm) (2007-08-25-19:00)
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Map of the standard errors of PWV (mm) (2007-08-25-20:00)
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Map of the standard errors of PWV (mm) (2007-08-25-21:00)
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Map of the standard errors of PWV (mm) (2007-08-25-22:00)
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Map of the standard errors of PWV (mm) (2007-08-25-23:00)
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Figure  6-17 Hourly kriging standard error maps (Horizontal axis = Longitude) (3) 
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6.4 Summary 

The geostatistical technique of kriging is a practical tool to analyze and predict values of 

a variable distributed in space or in time, which has been implemented in a Matlab 

program in this study to explore the PWV spatial structure, estimate PWV semivariogram 

and produce interpolated PWV maps. 

      The Matlab program consists of following steps (functions): 

(1) Calculate exp

(2)

(3) Estimate surface map of PWV by ordinary kriging. 

 factors to be considered are lag distance ( , lag tolerance (  and 

ation process. In step three, ordinary kriging 

e maps of PWV and the 

s are created using limited 

tions.  

t o

V maps. 

erimental semivariogram, 

 Estimate semivariogram model (model fitting), and 

°5 ) °5 )In step one, the

maximum lag distance ( °50 ) and the reliability of the calculated experimental 

semivariogram affects the accuracy of kriging interpolation. In step two, three different 

semivariogram models are fitted by nonlinear weighted least-squares and the best fitted 

model is determined by cross-valid

interpolating process is hourly performed to produce near real-tim

associated kriging standard error maps. 

      Both PWV maps and associated kriging standard error map

sample datasets, which is valuable information to broad applica

      The accuracy of the estimated PWV values does no depend directly n the 

observation values but on the semivariogram and the configuration of the sample points 

(IHF, 2008). The current Canada GPS network has a low number of real-time GPS 

stations and its configuration is not balanced in Canada domain. Improving its 

configuration by increasing the number of GPS stations and properly deploying them 

within the network will increase the accuracy of semivariogram model and accordingly 

increase the accuracy of the estimated PW

 108



  

Chapter Seven: Principal Component Analysis of GPS Water 
Vapor Dataset 

 
The datasets from the real-time GPS PPP-inferred water vapor system consists of 

variables of observations/measurements, satellite geometry factors and meteorological 

parameters. There often exist special correlations between these variables. It is needed to 

discover the hidden relationships among them and extract meaningful variables for 

further effective data analysis. This thesis dealt with this issue in two steps: (i) Principal 

component analysis (PCA) was carried out to simplify the description of the GPS water 

vapor dataset; (ii) Correlation analysis was further performed to explain and summarize 

the inter-correlations between the four types of variables of the GPS water vapor dataset. 

      In this chapter, firstly, a brief introduction to the principal component analysis is 

presented. Then, the PCA process and its derived principal components of the near real-

time GPS PPP-inferred water vapor system are explained. Next, the numerical analytic 

results of the between-subset (between-type) relation found between four types of 

variables of the system by correlation analysis are shown and discussed. At last, the 

summary of the analysis results are given. 

 

7.1 Introduction of principal component analysis 

Principal component analysis is mathematically an orthogonal linear transformation that 

transform a dataset from the original coordinate system to a new coordinate system, 

known as the principal subspace, such that the greatest variance of the projected data is 

reflected on the first coordinate (called the first principal component, or the first domain), 

the second greatest variance on the second coordinate (called the second principal 

component, or the second domain), and so on. PCA can be applied to dimension 

reduction in a dataset by keeping the lower-order principal components which contain the 

“most important” aspects of the dataset and ignoring the succeeding higher-order 

principal components (Bishop, 2006). 
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7.1.1 Maximum

PCA can be defined by either mulation or minimum-error 

 variance formulation of PCA 

maximum variance for

formulation; both formulations derive the same algorithm of PCA (Bishop, 2006). In this 

section, the maximum variance formulation is shown below based on the book: Pattern 

Recognition and Machine Learning by Christopher M. Bishop.  

      Let { }nxG  be a data set of vector samples in D-dimensional space, where n = 1, …, N. 

The primary goal of PCA is to project the data onto a M-dimension space (M < D) while 

maximizing the variance of the projected data, i.e. the data is most ‘spread out’ in the 

directions of new M-dimensional space.  

      When M = 1, that is the projection onto a one-dimensional space. The direction of this 

space is defined using a D-dimensional unit vector 1uG  ( 111 =uu T GG ) (see Figure 7.1). Each 

data point nxG  is projected onto a scalar value n
T xu GG
1  and the mean of the whole projected 

data is xu T GG
1  where xG  is the sample set mean given by  

∑
=

=
N

n
nx

N
x

1

1 GG                                                           (7.1)  

and the variance of projected data is given by 

{ }∑
=

=−
n

TT
n

T uSuxuxu
N 1

11
2

11

N1 GGGGGG                                                                  (7.2) 

where S is the data covariance matrix defined by 

( )( )∑
=

−−
N

n

T
nn xxxx

N 1
.1 GGGG                                                                            (7.3) 

To maximize the projected variance 11 uSu T GG with respect to 1uG  under the constraint 

111 =uu T GG , a Lagrange multiplier 1λ  is introduced and makes an unconstrained 

maximization: 

max: ( )1111 1 uuuSu TT GGGG
−+ λ . 

Making the first derivative with respect to 1uG  and setting it equal to zero:  

( )( ) 01 1111111
1

=−=−+
∂
∂ uuSuuuSu
u

TT GGGGGG
G λλ    

then: 
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111 uuS GG λ= ,  

or  

111 λ=uSu T GG  

 

which means that (i) 1uG must be an eigenvector of S , and (ii) the variance of the 

projected data will be a maximum when 1uG  is set to be equal to the eigenvector with the 

largest eigenvalue 1λ . This eigenvector is called as the first principal component. 

      Following the above process, an additional principal component can be defined by 

choosing each new direction which maximizes the projected variance among all possible 

directions orthogonal to those considered. In the general case of an M-dimensional space, 

the optimal linear projection for which the variance of the projected data is maximized is 

now defined by the M eigenvectors ,u1
G  u2 ,G  …, MuG of the data covariance matrix 

S corresponding to the M largest eigenvalues ,1λ  ,2λ  …, Mλ . 

 

 
Figure 7.1  Schematic diagr principal component analysis (PCA) am of 

(Bishop, 2006) 
 
 

This section intends to simplify the description of the GPS water vapor dataset using 

nent analysis. 

7.2  Principal component analysis of GPS water vapor dataset 

principle compo
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7.2.1 Data preparation 

 Data categorizing  

The dataset used for this analysis was from Chapter 5, which is a nine-station two-day 

of the dataset are sorted into four categories: Measurement, Satellite geometric factor, 

 

7.2.1.1

post-processed GPS water vapor dataset from October 18 ~ 19, 2007. There are totally 

seventeen variables in this dataset. According to their attributes, the seventeen variables 

Meteorological parameter and Position error (see Table 7.1) (since the actual GPS 

receiver clock time were not provided at these stations, GPS receiver clock error variable 

was not included in this analysis).  

 
Table 7.1 Original GPS water vapor dataset 

Category of Variables Description 
ZTD )  ( 1X
ZDD ( ) 2X
ZWD ( ) 3X
PWV ( ) 4X

Measurement 

PWV bias ( ) 5X
# SAT ( ) 6X
GDOP ( ) 7X
PDOP ( ) 8X

9X ) HDOP (

10X ) VDOP (

Satellite Geometry 
Factor 

TDOP ( ) 11X
Pressure ( ) X 12

Temperature ( 13X ) Meteorological 
Parameter 

Relative Humidity )  ( 14X
East Error ( ) 15X

North Error ( 16X ) Position Error 

Up Error ( 17X ) 

 112



  

7.2.1.2 Outlier removing 

the outliers to PCA (Krzanowski 1988), thirteen outliers were 

detected using the scatterplots of dilution of precision (DOP) and removed. 

variable sample mean from each observation and then 

ividing the result by that variable’s sample standard deviation such that each individual 

variable had zero mean ization was carried out 

station by station cons  difference of each individual station. Since 

the original dataset was standardized, the following PCA analysis is equivalent to 

analyzing the correlation matrix instead of the covariance matrix. When the principal 

components are derived fr tion matrix, the interpretation becomes easier in 

two ways (Afifi et al., 2004): 

(i) The total variance is simply th er of variables P, and the 

proportion explained by eac cip component is the 

corres e divided 

(ii) The correlation between the ith principal component  and the jth 

variable  is  

)

Considering the impact of 

 

7.2.1.3 Data standardizing 

Since the seventeen original variables were measured in various different units and had 

significantly different variability, they need to be standardized prior to principal 

component analysis (Krzanowski, 1988). Standardization is achieved by considering each 

variable separately, subtracting the 

d

 and unit variance. The data standard

idering the topographic

om the correla

e numb

h prin al 

ponding eigenvalu by P.  

iC

jx

2
1

(Vijij ar ⋅=

where 

ar iC                                (7.4) 

 is the coefficient of the jth variable  for ith 

princi component m

  

ija

pal 

(eigenvalue) of com

jx

eans ‘the variance  iC ; ‘ Var ’ iC 

ponent iC ’. 
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Therefore for a given component  the  can be compared to 

    At last, the standardized datasets of the nine stations were merged into one data 

7), where the seventeen data items of each epoch are aligned 

in a row. 

riance) of the corresponding component listed 

in 

number of the com

iC ija

qualify the relative degree of dependence of iC  on each of the 

standardized variables. 

  

matrix with size (4980 ×  1

 

7.2.2 Analytic results 

Matlab PCA function is utilized to execute the principal component analysis on the 

standardized data matrix (Section 7.2.1). The output results are shown in Figure 7.2. In 

Figure 7.2, (i) COEFF is a 17-by-17 PCA coefficient matrix where each column 

represents a new component/domain of the GPS water vapor dataset and each row 

represents each original variable’s coefficient (i.e. loading or contribution from an 

original variable) to each component/domain and the columns of COEFF are in order of 

decreasing component variance; (ii) latent is a 17-by-1 eigenvalue vector where each row 

element represents the eigenvalue (i.e., va

COEFF. The total variance of the seventeen components is equivalent to 17, i.e. the 

ponents. 
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Figure 7.2  Output of 17 variable PCA analysis 
(COEFF is a 17-by-17 matrix, each column containing coefficients for one principal component and the 
columns of COEFF are in order of decreasing component variance. latent is a 17-by-1 vector containing the 
eigenvalues of the covariance matrix of the GPS water vapor dataset.) 
 

7.2.2.1 Validation of principal components 

Number of components retained  

As mentioned earlier, one of the objectives of PCA is dimension reduction. The purpose 

of the dimension reduction is to make analysis and interpretation easier, while at the same 
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time retaining most of the information (variation) contained in the data. Since the 

principal components are arranged in decreasing order of variance, the leading principal 

components would be selected as representatives of the original set of variables.  

 There are various rules proposed to estimate the number of components to retain in a 

principal component analysis, but none of them appear to work well in all circumstances 

(Afifi et al., 2004). One rule is to keep a sufficient number of principal components to 

explain a certain percentage of the total variance. One common cutoff point for this rule 

is 80%. Another rule is to discard principal components which have a variance less than 

70/P (P: the number of variables) percent of the total variance. In this study, the principal 

component which has a variance of less than 5% of the total variance is not retained. 

 Table 7.2 summarizes the first seven principal components from Figure 7.2, where a 

new domain (a column) is retained when its variance/eigenvalue is greater than 5% of the 

total variance. The principal component 7 is included, although it has a variance close to 

5% (i.e., 4.97%). These seven components explain 88.59% of the total variance (i.e., the 

number of the variables = 17). The values (coefficients/loadings) contained in Table 7.2 

illustrate the strength of the relationship between each variable and the new 

components/domains. 
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Table 7.2 PCA loading for original GPS water vapor dataset 

 
 

Interpretation of principal component 

When the principal components are selected, they are interpreted in the context of the 

variables with high coefficients. For each principal component the variables with a 

correlation greater than 0.5 with that component are regarded as significantly contributing 

variables (Afifi et al., 2004). In this study, this value (0.5) is taken as a cutoff point. Since 

the correlation ( )2
1

Var iijij Car ⋅=  (Equation 7.4), a coefficient  in Table 7.2 is 

highlighted by bold typeface if it exceeds 

ija

( )2
1

Var /5.0 iC  (Table 7.2).  
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      As Table 7 hly correlated 

(greater than 0.5) with the first principal component. Thus, the first component  can be 

approximately represented as 

.2 shows, six Satellite Geometry Factor variables are hig

1C

( ) 611109871 0.34.0   XXXXXXC −++++= . The m

igura

X

). Hence 

ost 

extreme positive value on this com tion 

that has large values fo o

(i.e., small number of av

 will be take ber (

available satellites but sm

identified as a measure of ‘Satellite availability’ or Size of DOP.  

      Component shows a high correlation with 

and it is approximately of the form

ponent will be taken by a GPS satellite conf

11 through X (i.e., all large DOPs) but small values f

e satellites). At the other extreme, a large negative valu

onfiguration that has a large num

all values for all DOPs (i.e., 117  through XX

r 7X

ailabl

n by a GPS satellite c

r 6X  

e for 

) of 

1C  is 

1C 6

2C ( )PWV  and (ZWD)  (ZTD), 431 XXX  

( )43 XX12 5.0-   XC ++= . As it is known, ZWD 

D. The previous combination indicates contributes to ZTD and PWV contributes to 

that measures the Size of Total Delay

  Component is defined by

ZW

. 2C

3C  ( )Pressure  and (ZDD) 122 XX  

. Since 12X  contributes directly

easure of ZDD. Thus, 3C  will be interp

and it is approximately of 

the form  to (see Equation 2.19), 

ted as the Volume of 

ZDD. 

   Component is defined by a cluster of and 

 and it is approxim

. The first term  

 represents the nega  

called Volume of Up (Position) Error. 

( )1223 -   XXC +=

is identified as a m

5.0 2X  

re3C  

4C

( )13X

re)(Temperatu13X

a

 shows the cont

tive contribution of 

, (Humidity) 14X

tely of the form 

rast between Temperature

North Position

( )ErrorPosition North  16X

144 4.04.0   XXC −−=

nd Humidity; but the second term

16

a

Error. In this context, component C does not have a clear-up physical interpretation. 4

The question mark is put under component 4C in Table 7.2. 

      Component 5C  is uniquely defined by a single variable 17X  (Up Position Error). 5C , 

therefore, is interpreted as a measure of the position error in up direction and will be 
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      Component 6C is defined by two position error metrics, 15X  (East Position Error) 

and 17X (Up Position Error), which can be proximately represe ted as 

( ) ( )15176 6.05.0   XXC −= . This etween two 

position error metrics. C  will be called the East-Up (Position) Error Contrast. 

  Component 7C  is defined by two different kind of error metrics, 5X  (PWV bias) and 

16X  (North (Position) Error) and is approximately given by ( )5167 6.0   XXC −

n

 form indicates the negative association b

6

= . The 

Like Component C , C  will be called PWV Bias-North (P ontrast. 

 

form represents the negative association between PWV Bias  Error. 

osit

lin

 (Size of Total Delays) and 

is includ  becau

in formula: 

 and North (Position)

ion)  C6 7 Error

7.2.2.2 Remodel g of principal components 

There are some problems with the component structure above (Table 7.2):  

(i) Component duplication exits between 2C

ed in C

3C  

(Volume of ZDD). In fact, se ZTD ( 1X ) is computed 

ZWD

3C  2

ZDDZTD +=  and ZTD0.9 ZDD ×≈ . 

(ii) Some correlated original variables cause noises in the component structure, 

ZTD ( ) since it is highly correlated with ZDD. Another noise component is 

ted with ZWD (i.e., 

where Q is conversi

Hence ZDD ( ) and PWV

n Figure 7.3), where the values of 

which blurs some principal component identifications. One noise component is 

1X

XPWV ( ) since it is highly correla Q , 

on factor: Q = 5.9 ~ 6.5). 

 ( 4X ) are removed from the original GPS water vapor 

dataset. Analyzing the reduced fifteen-variable GPS water vapor dataset again by 

principal component analysis, the new, concise component structure is derived and 

shown in Table 7.3 (The whole PCA results are shown i

4 ZWVPWV /=

1X

the contributing variables are highlighted by bold typeface. 
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Figure 7.3 Output of fifteen-variable PC

F is a 15-by-15 matrix, each column containing coefficien
A analysis 

(COEF ts for one principal component and the 
asi

co he

 

 

 

 

columns of COEFF are in order of decre ng component variance. latent is a 15-by-1 vector containing the 
eigenvalues of the variance matrix of t  GPS water vapor dataset.) 
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Table 7.3 PCA loading of fifteen-variable GPS water vapour dataset 

 
 

      The new component structure (Table 7.3) has the following changes.  

(i) Two ‘noisy’ variables ZTD) and PWV) were removed from 

the component structure.  

(ii) Component Size of Delays is absent, i.e. no more component 

duplication.  

(iii)Components ,  and  remain in their definitions and their 

positions.  

(iv) Component Size of ZDD mains in its definition, but it is moved up 

the position Component  with respect to the variance it explains. 

1X ( 4X (

1C 5C 6C 

re

2C
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(v) In the case of Component 3C , which is equivalent to the Component 

of the previous com cture (Table 7.2), variable (-

) . Thus  is t 

defined by the two meteorological variables (Tem  

(Relative Humidity) and is proxim tely of the f m 

4C

0.3933

14X

3 C

ponent stru

is no longer highly correlated  with 

16X

straigh

perature) and

or

3C

X

a

3C

13

( )13144.0  XX −= . This contrast form p

tive relation, which presen  of 

water vapor in the troposphere. Component is, therefore, ide  

as a measurement of Moisture Content.  

(vi)  Component  is a new domain and it is defined by variables 

(ZWD  (Relative Humidity). Since contributes to 

 is iden d as the domain of Size of ZW

(vii) Component , which was defined by both  (PWV Bias) and 

(

(Table 7.2),  is defined by the single position m ent,  (PWV 

Bias), which measures the PW  value. 

ponent erefore, identified as the dom V 

Bias. 

(viii) Variable does not contribute to any components; thus total 

TD, PWV and 

  The a re, which indicates that the 

removal of correlated variables 

net contrib e e  and precisely. The variants Size of ZDD 

and Si

and  are defined uniquely by fewer (one or two) contributing variables. The 

percen

 expresses the Tem erature-

e state

ntified

Relative Humidity nega  cor  re

3  

ts th

C

4C

) and 

tif

3X

3X , 

14X

ie

14X

D.  4C

7C

North Position Error

 is, th

5X

) in the previous component structure 

easurem

V offset from the tru

16X

Com

5X

e

ain of Size of PW7C

16X

number of contributing variable is 14 (i.e. without Z

North Position Error). 

bove analysis arrives at the seven domain structu

1X and 4X  makes the component structure represent the 

ution of each domain mor ffectively

ze of ZWD are mapped to Component 2C  and 4C , respectively. Components 3C  

7C

tage of total variance (88.30%) explained by the seven principal component model 
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is alm

through the num

  The variance explained

is the largest variant factor (34.23%) in the GPS water vapour measurement system and 

its value i

rest of components in

(10.73%), Volume of ZWD (8.31%

(Position)

vary with 

 

7.3 Correlation analysis of GPS w

This section will p

Table 7.1. Th  relationship of 

between-subset (i.e. type) of va

and linear regression techniques. Seven correlations are to be investigated, which are 

shown in Figur

7.2.1.  

 

ost the same as the one (88.42%) explained by the previous component model even 

ber of variables is decreased.  

 by each component in Table 7.3 also shows that Size of DOP 

s changing regularly, but almost a constant for each day. The variances for the 

 decreasing order are Volume of ZDD (15.92%), Moisture Content 

), Volume of Up (Position) Error (7.08%), East-Up 

 Error Contrast (6.45%) and Volume of PWV Bias (5.56%); these components 

each day’s atmosphere conditions. 

ater vapor dataset 

resent the correlation analysis of the four types of variables listed in 

e purpose of this analysis is to explain and summarize the

riables in the GPS water vapor dataset using scatter plot 

e 7.4. The dataset for analyzing is still the same one described in Section 

 

Figure 7.4  Seven variable correlations of the system 
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7.3.1 Correlation between zenith delays and meteorological parameters 

This between-subset relation represents the influence of meteorological variables over the 

GPS signal delays. Table 7.4 gives the correlation coefficients between these two types 

and their significant correlation tests. Figure 7.5 shows the scatter plots between them 

and corresponding regression lines, where each cluster represents a site sample data 

distribution pattern.  

 
Table 7.4 Correlation Coefficients of zenith delays and MET data 

 

Correlation coefficient (r) C  ( )0.01 ,4980 == αN  orrelation test
Meteorological parameter PR TD RH 

Zenith 
Delay PR TD RH Sample 

value  

Popul-
ation 
value  

Sample 
value  

Popul-
ation 
value  

Popul-Sample ation value  value  
ZTD 0.9578 0.6652 0.2560 235.105 2.4121 62.857 2.4121 18.685 2.4121 
ZDD 1.0000 0.4922 0.1705 ∞  2.4121 39.894 2.4121 12.208 2.4121 
ZWD 0.4558 0.8310 0.3679 36.130 2.4121 105.4 2.4121 27.915 2.4121 
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(c) Zenith delays vs relative humidity 

Figure 7.5  Scatterplots between zenith delays and meteorological parameters 

ZW
D
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      The analytical results show that: 

(1) All delays positively associate with all meteorological variables; 

(2) Scatter plots show that: (i) most associations (except the association of ZDD 

versus pressure) present the forms of function of multi variables where each 

individual function value represent each sample site association pattern; (ii) 

most associations (except the association of ZWD versus pressure) are 

approximately linear and indicate the additivity of effect among different 

sit another, which 

ssociations c arized by multiple r gression 

i)  the a  betwee nd pres ch 

nonlinear.(see Fig  (a

(3) o  i e  s s v  = 

 w e es  th t i at ia  Z at 

is, if a value of pressure is given then the corresponding ZTD value can be 

estimated quite accurately (Afifi et al. 2004);  the regression coefficient 

(slope = 2.69) indicates that 1-mbr-inc

mm-increment of ZTD (see Figure 7.5 (a));  

ZDD versus pressure presents the form of one-valued 

function (r = 1) (Figure 7.5 (a)), i.e., pressure explains 100% of ZDD’ 

he only one-valued function between these two types and 

the regression coefficient (2.28) indicates that 1-mbr-increment of pressure 

leads to ~2.28-mm-increment of ZDD (Dodson et al. (1996) found that  a

or);  

(5) Temperature has a very strong association with ZWD (r = 0.83), which, as a 

whole, would cause an increment of ZWD by ~6.91 mm for each unit 

temperature (Figure 7.5 (b)) (Dodson et al. (1996) found that  a  error 

in temperature c  error); 

(6) Relative humidity contributes to ZWD (0.3676) much less than the 

temperature does to ZWD (0.8312); and 

(7) Both humidity and temperature had bigger varying ranges than pressure did 

(this conforms

e values, i.e., different site data clusters parallel with one 

means that these a an better summ e

(Ott, 1988 (Ch 12)); (ii ssociation

));   

n ZWD a sure at ea

site is ure 7.5

 The c rrelation coeffic ent betw en ZTD and pre sure ha  a high alue (r

0.96), hich m ans pr sure is e mos nform ive var ble for TD, th

rement of pressure leads to ~2.69-

(4) The association of  

variance, which is t

an result in a 12 mm ZWD

 

pressure error of 1 mbar pressure error translates to a 2.3 mm ZDD err

C2°

 the PCA results). 
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7.3.2 Correlation between position errors and meteorological parameters 

This correlation analysis provi

to the variation of meteorological envi

coefficients between these two types of va

results. Figure 7.6 shows the scatter plots of

analytica

 others are nonlinear; 

 

 

des us information how sensitive the system solutions are 

ronment. Table 7.5 gives the correlation 

riables and their significant correlation test 

 between these two types of variables. The 

l results show that:  

(1) Associations exist between most relations of these two types except the one of 

north position error versus relative humidity; 

(2) Associations between east position error and meteorological variables (at 

each site) are approximately linear, while

(3) The affection of meteorological variables are mainly reflected on the east and 

up position errors; 

(4) Pressure and temperature mainly contributes negatively to east position error 

(r = -0.6932 and  r = -0.3451, as a whole); and 

(5) Relative humidity mainly contributes positively to up position error (r = 

0.4709, as a whole).  

Table 7.5 Correlation coefficients of position errors and MET data 

Correlation coefficient (r) Correlation test ( )0.01 ,4980 == αN  
Meteorological parameter PR TD RH 

Position 
error PR TD RH Sample 

value  

Popul-
ation 
value  

Sample 
value  

Popul-
ation 
value  

Sample 
value  

Popul-
ation 
value  

East -0.6934 -0.3448 0.2380 -67.896 2.412 -25.917 -2.412 17.289 2.412 
North -0.1892 0.0802 -0.0214 -13.595 -2.412 5.677 2.412 -1.51* -2.412 

Up -0.3339 -0.1467 0.4703 -24.993 -2.412 -10.464 -2.412 37.60 2.412 
: means that test failed, i.e., no significant correlation *
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This correlat a v s p ro ll om fac o 
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 in Figure 7.7. The analytical results show: 

(1) That although the correlation coefficients do not show high values, the weak 

associations exist between these two types of variables; 

(2) That all six satellite geometrical factors have bigger influences over ZWD than 

over ZTD/ZDD; 

(3) That all DOPs have positive associations with zenith delays; and 

(4) That satellite number has negative associations with zenith delays. 

 

 
Figure 7.6  Scatter plots of position errors and MET parameters 

(Each cluster represe vation sample from
 
 

.3.3 Corr on b een ys and s tellite 
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7.6. The scatter plots between them are shown
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Table 7.6 Correlation coefficients between zenith delays and satellite geometric factors 
 

 ( )0.01 ,4980 == αN  Correlation coefficient (r) Correlation Test
Zenith delays ZTD ZDD ZWD Satellite 

geometric  
variable ZTD ZDD ZWD Sample 

value  

Popul-
ation 
value  

Sample 
value  

Popul-
ation 
value  

Popul-Sample ation value  value  
Satellite # -0.0895 -0.0564 -0.1369 -6.34 -2.412 -3.986 -2.412 -9.751 -2.412 

GDOP 0.0941 0.0665 0.1256 6.669 2.412 4.702 2.412 8.932 2.412 
PDOP 0.0840 0.0591 0.1129 5.948 2.412 4.177 2.412 8.017 2.412 
HDO 1232 6.254 2.41 59 2.412 P 0.0883 0.0603 0. 2 4.262 2.412 8.7
VDOP 0.0726 0.0508 0.0983 5.136 2.412 3.589 2.412 6.969 2.412 
TDOP 2.412 0.1129 0.0799 0.1503 8.017 2.412 5.655 2.412 10.726 

*: means that test failed, i.e., no significant correlation 
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Figure 7.7  Scatter plots of Zenith Delays vs Satellite Geometric Factors 

 

7.3.4 Correlation between satellite geometry factors and position errors 

This correlation analysis investigates how satellite geometry factors influence the 

position errors. Table 7.7 gives the correlation coefficients between these two types of 

variables and corresponding significant test results. The scatter plots between these types 

of variables are shown in Figure 7.8. Although the values of correlation coefficients are 
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not high, the significant correlation tests indicate that the weak correlations exist between 

most of them. The two obvious indications are: 

(1) That satellite geometric variables exert impact  mainly on east and up position 

errors; the impacts on the latter (from -20 to -80 mm) are much bigger than on 

the former (from -10 to 25 mm); and 

(2) That in this association, HDOP is the most sig position 

errors. 

 

Table 7.7 Correlation coefficients between position errors and satellite geometric variables 
and corresponding significant tests 
 

nificant contributor to 

 ( )0.01 ,4980 == αN  Correlation coefficient (r) Correlation test

Position Error East North Up Satellite 
geometric  
variable East North Up Sample 

value  

Popul-
ation 
value  

Sample 
value  

Popul-
ation 
value  

Popul-Sample ation value  value  
Satellite # 0.1746 -0.0887 0.1481 12.30 2.412 -6.283 -2.412 10.566 2.412 

GDOP -0.1188   0.0101    -0.0918 -15.525 -2.412 0.713* 2.412 -6.504 -2.412 
PDOP -0.1050 0.0168 -0.0792 -7.449 -2.412 1.185* 2.412 -5.606 -2.412 

HDOP -0.1477 -0.0017 -0.1546 -10.537 -2.412 -0.120* -2.412 -11.041 -2.412 

VDOP -0.0761 0.0249 -0.0405 -5.385 -2.412 1.757* 2.412 -2.86 -2.412 

TDOP -10.77 -2.412 -0.049* 2.412 -8.384 -2.412 -0.1509 0.0007 -0.1180 
 *: means that test failed, i.e., no significant correlation 

 

 

 

 

 

 

 

 

 130



  

4 5 6 7 8 9 10 11 12 13
-20

0

20

40
r = 0.17; Std = 9.84; Slope = 1.19; Offset = -4.20

t E
rr 

(m
m

)

Scatterplots of Position Errors vs Satellite Number

E
as

4 5 6 7 8 9 10 11 12 13
-10

0

10

20

r = -0.09; Std = 3.79; Slope = -0.23; Offset = 11.89

N
or

th
 E

rr 
(m

m
)

4 5 6 7 8 9 10 11 12 13
-80

-60

-40

-20

r = 0.15; Std = 11.U
p 

E
rr 

(m
m

)

16; Slope = 1.14; Offset = -58.04

Satellite Number

1 2 3 4 5 6 7 8 9 10 11
-20

40

0

r = -0.12; Std = 9.92; Slope = -2.08; Offset = 10.99
20

t E
rr 

(m
m

)

Scatterplots of Position Errors vs GDOP

E
as

1 2 3 4 5 6 7 8 9 10 11
-10

0

10

20

rr 
(m

m
)

r = 0.01; Std = 3.81; Slope = 0.07; Offset = 9.71

N
or

th
 E

1 2 3 4 5 6 7 8 9 10 11
-80

-60

-40

-20

r = -0.09; Std = 11.24; Slope = -1.81; Offset = -43.89

GDOP

U
p 

E
rr 

(

 

m
m

)

(a) Position errors vs satellite #                          (b) Position errors vs GDOP 

1 2 3 4 5 6 7 8 9
-20

0

20

40
r = -0.10; Std = 9.94; Slope = -2.28; Offset = 10.83

 E
rr 

(m
m

)

Scatterplots of Position Errors vs PDOP

E
as

t

1

40

1.5 2 2.5 3

2 3 4 5 6 7 8 9
-10

0

10

20

r =

N
or

th

 0.02; lo  = 

 E

 Std = 3.81; S pe = 0.14; Offset 9.58

rr 
(m

m
)

1 2 3 4 5 6 7 8 9
-80

-60

-40

-20

r = -0.0  Sl set

PD

U
p 

E
rr 

(m
m

)

8; Std = 11.25; ope = -1.95; Off  = -44.13

OP

0.5 1 3.5 4
-20

0

20
r = -0.15; S

rr 
(m

m
)

td = 9.88; Slope = -5.59; Offset = 12.28

Scatterplots of Position Errors vs HDOP

E
as

t E

0.5 1.5 2 2.5 31 3.5 4
-10

0

10

20

r  3.81; 02; O

N
or

th
 E

rr 
(m

m
)

= -0.00; Std =  Slope = -0. ffset = 9.89

0.5 1.5 2 2.5 31 3.5 4
-80

-60

-40

-20

r = -0.15; Std = 11. .61;U
p 

E
rr 

(m
m

)

 

   (d) Position errors vs HDOP 

15; Slope = -6  Offset = -40.92

HDOP

(c) Position errors vs PDOP                           

1 2 3 4 5 6 7 8
-20

0

20

40
r = -0.08; Std = 9.96; Slope = -1.87; Offset = 9.40

E
as

t E
rr 

(m
m

)

Scatterplots of Position Errors vs VDOP

1 2 3 4 5 6 7 8
-10

0

10

20

r = 0.02; Std = 3.81; Slope = 0.23; Offset = 9.47

N
or

th
 E

rr 
(m

m
)

1 2 3 4 5 6 7 8
-80

-60

-40

-20

r = -0.04; Std = 11.27; Slope = -1.12; Offset = -46.12

VDOP

U
p 

E
rr 

(m
m

)

0 1 2 3 4 5 6 7
-20

0

20

40
r = -0.15; Std = 9.88; Slope = -4.28; Offset = 10.92

E
as

t E
rr 

(m
m

)

Scatterplots of Position Errors vs TDOP

0 1 2 3 4 5 6 7
-10

0

10

20

r = 0.00; Std = 3.81; Slope = 0.01; Offset = 9.85

N
or

th
 E

rr 
(m

m
)

0 1 2 3 4 5 6 7
-80

-60

-40

-20

r = -0.12; Std = 11.20; Slope = -3.78; Offset = -43.91

TDOP

U
p 

E
rr 

(m
m

)
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Figure 7.8  Scatter plots of position errors vs satellite geometric factors 

 

 131



  

7.3.5 Correlation between PWV bias and satellite geometric factors 

This correlation analysis investigates how satellite geometric variables impact the 

measurements of PWV. The significant correlation test results are given in Table 7.8 and 

the corresponding scatterplots are shown in Figure 7.9. Table 7.8 does not show strong 

correlations types of variables. The etween 

PWV bias and satellite number: PWV bias decreases as the satellite number increases 

(Figure  more satellites the mo  of PWV. 
 

T  

 between these two  notable association is b

 7.9); this means that the re accurate measurement

able 7.8 Correlation Coefficients of PWV bias and Satellite Geometric Variables

Correlation test 
Correlation coefficient (r) ( )0.01 ,4980 == αN  

Satellite 
geometric 
variable 

PWV bias Sample value  Population value  

Satellite # 0.0837 5.926 2.412 
GDOP -0.0464 -3.277 -2.412 
PDOP 0 -2.412 -0.0463 -3.27
HDOP -0.0233 -1.644* -2.412 
VDOP -0.0514 -3.631 -2.412 
TDOP -0  -2.412 .0526 -3.716

      *: means that test failed, i.e., no significant correlation 

 
Figure 7.9  Scatter plots of PWV bias vs Satellite Geometric Factors 
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7.3.6 Correlation between zenith delays and position errors 

This correlation analysis investigates how zenith delays contribute to the position errors. 

The correlation coefficients between these two types and the corresponding significant 

test results are given in Table 7.9. The scatter plots between these two types of variables 

are shown in Figure 7.10. The analytical results show: 

(1) That ZTD/ZDD mainly contribute to east and up position errors: (1) as ZTD/ZDD 

increases east position errors either decrease in positive domain or increase in 

negative domain; (2) as ZTD/ZDD e, up position errors increase in 

n

(2) That ZWD ontributes to tion errors; and 

(3) That up position errors have bigger varying ranges than both east position errors 

do. 

 
Ta orrelation nts of Zeni d Positi rs 

 increas

egative domain; 

 mainly and positively c  horizontal posi

ble 7.9 C Coefficie th Delays an on Erro

 ( )0.01498  ,0 == αN  Correlatio ient (r) Correlation testn coeffic

East North Up Position Error 
Zenith 
delay East North Up Sample 

value  

Popul-
ation 
value  

Sample 
value  

Popul-
ation 
value  

Popul-Sample ation value  value  
ZTD -0.6635 -0.0815 -0.2444 -62.57 -2.412 -5.769 -2.412 -17.783 -2.412 

ZDD -0.6974 -0.1902 -0.3385 -68.657 -2.412 -13.669 -2.412 -25.381 -2.412 

ZWD -0.3041 0.2285 0.0956 -22.522 -2.412 16.560 2.412 6.776 2.412 
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Scatterplots of Zenith delays vs North Position Error
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Scatterplots of Zenith delays vs Up Position Error

-80 -70 -60 -50 -40 -30 -20
1000

3000

2000

r = -0.24; Std = 166.57; Slope = -3.72; Offset = 2087.05

ZT
D

Up Err (mm)

-80 -70 -60 -50 -40 -30 -20
1500

2500

2000
r = -0.34; Std = 131.30; Slope = -4.19; Offset = 1972.04

ZD
D

Up Err (mm)

400

-80 -70 -60 -50 -40 -30 -20
0

200

r =

ZW
D

 0.10; Std = 54.62; Slope = 

Up Err (

(c) ith d
 

Fi 10 o eni ays tion

 

7.3.7 Correlation between PWV bias and position errors 

Some author (Skone et al., 2006) mentioned that position errors could contribute to PWV 

bias error. This issue is validated using the correlation coefficient test. Table 7.10 gives 

the correlation coefficients of each individual station; the correlation coefficient of all-

nine-station is given in last line. Each individual station correlation coefficients are also 

plotted in Figure 7.11. The all-nine-station scatter plot of PWV bias vs position errors is 

shown in Figure 7.12. The significant correlation tests for each individual station show 

that 80% of east, 90% of north and 55% of up position errors associate with PWV bias; 

but the significant correlation tests of all-nine-station statistics indicates that only east 

and north position errors have associations with PWV bias.  

0.46; Offset = 114.96

mm)

 
Zen elays vs up position error 

gure 7.  Scatterpl ts of Z th Del vs Posi  Errors 
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Table 7.10 Correlation coefficients and significance test 

( )0.01 ,4980 == αN  Correlation coefficient (r) Correlation test 
Position error East North Up 

PWV bias 
(at Station) 

 East North Up Sample 
value  

Popul-
ation 
value  

Sample 
value  

Popul-
ation 
value  

Popul-Sample ation value  value  
100 0.4320    -0.1774   0.0311 11.213 2.412 -4.22 -2.412 0.728* 2.412 
101 0.5908    -0.0122   0.1979 17.142 2.412 -0.286* -2.412 4.726 2.412 
102 -7.08 -2.412 2.412 -0.2895   0.1685    0.4913 4.002 2.412 13.205 
104 0.4466    0.5140    -0.0669 11.685 2.412 14.027 2.412 -1.57* -2.412 
105 0.3611    -0.2494   -0.2808 9.065 2.412 -6.029 -2.412 -6.849 2.412 
107 0.0243    -0.5313   -0.1154 0.569* 2.412 -14.681 -2.412 -2.72 2.412 
109 0.4020    -0.2610   -0.0726 10.278 2.412 -6.329 -2.412 -1.704* -2.412 
112 0.2577    0.2269    0.0027 6.243 2.412 5.454 2.412 0.063* 2.412 
115 0.0207    -0.1483   0.1438 0.485* 2.412 -3.51 -2.412 3.402 2.412 

All nine 
stations 0.1706   -0.1723   -12.341 -2.412 -1.362* -2.412 -0.0193 12.216 2.4121 

( )4980=N  
*: means that test failed, i.e., no significant correlation 
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es versus position errors Figure 7.11  Plots of correlation coefficients of PWV bias
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Figure 7.12  Scatter plots of PWV bias versus position errors 
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7.4 Summary 

The GPS water vapour dataset consists of four types of intercorrelated variables, which 

are 17 by number. Principal component a s been d to sim e 

d scription of GP er v r da Va  c on s e o 

carri ut to a  e th ee e r sh  

four able

      T PC te

com nt/d G ter r d  S  D ol f 

ZDD oistu f V  o P  E p 

(Position) E o f  B In P ter r 

me ent system (without c loc r) f D k 4. f 

e Content 10.73%; Volume of ZWD 8.31%; 

Volume of Up Position 7.08%; East-Up Error Contrast 6.45% and Volume of PWV Bias 

5.56%. All the seven principal components explain the variances of the system by 

88.30%.  

      The correlation analysis focuses on the seven between-subset associations between 

four types of variables. These analytic results show that: 

(1) All Zenith Delays have positive associations with Meteorological Parameters: 

(i) ZTD associates strongly with pressure (r = 0.96); (ii) ZWD is strongly 

associated with Temperature (r = 0.83); and (iii) ZWD has a weaker 

association with Humidity (r = 0.37) than it does with temp ; 

( eters 

as follows: (i) both Pressure and Temperature largely, negatively contribute to 

east position error (r = -0.69 and r = -0.35); and (ii) Humidity largely, 

positively contributes to Up Error (r = 0.47); 

(3) Zenith Delays have weak associations with Satellite Geometrical Factors: (i) 

all six satellite ge  contribute to ZWD; (ii) all DOPs 

have positive associations with zenith delays; 

(4) A weak association exists between position errors and satellite geometric 

factors as follows: (i) HDOP is the most significant contributor to the position 

errors; (  on east and up 

nalysis ha

riable

 performe

 analy

plify th

en alse  the S wat apo taset. orrelati is has b

ed o  further investig te and xplain e betw n-typ elation ip among those

 vari  types.  

he A of the GPS wa r vapor dataset derives a seven-principal-

pone omain structure of the PS wa  vapo ataset: ize of OP, V ume o

, M re Content, Volume o ZWD, olume f Up osition Error, ast-U

rror Contrast  and V lume o PWV ias. the G S wa vapo

asurem GPS re eiver c k erro , Size o OP ta es up 3 23% o

the variance; Volume of ZDD 15.92%; Moistur

erature

2) The associations exist between Position Errors and Meteorological Param

ometrical factors mainly

ii) satellite geometric factors exert impact ma lyin
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position errors and the impacts on the latter (from -20 to -80 mm) are much 

 

 

 

 

 

 

 

 

 

 

bigger than on the former (from -10 to 25 mm); 

(5) PWV bias has very weak association with satellite geometric factors; 

(6) ZTD/ZDD has a strong association with east error: east  errors either decrease 

in positive domain or increase in negative domain as ZTD/ZDD increases; 

and 

(7) Both east and north position error has a weak association with PWV bias. 
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Chapter Eight: Conclusions 

 
sporting 

signif

atm r in space and time will improve the performance of weather 

ling 

f atmospheric water vapor observations needs to be improved. Conventional radiosonde 

chnique can not meet this requirement. Water vapor radiometry (WVR) can not either, 

nce it has poor spatial resolution and is also limited in high-latitude areas like the 

rctic. The GPS atmospheric remote sensing technology has been proved to be a key 

ethod to improve high latitude sparse spatial and temporal sampling of water vapor 

bservation in Canada. In this thesis, the method for developing a near real-time GPS 

ater vapor sensing system using GPS PPP technique and Canada sparse geodetic GPS 

etwork has been presented. The fundamental problems addressed in this work are (i) 

ow to design/implement a workable distributed GPS water vapor sensing network, (ii) 

ow to evaluate the system performance, (iii) how to create an interpolated map of (near 

al time) water vapor, and (iv) how to investigate the hidden variable relations in a GPS 

ater vapor dataset. 

.1 Contributions 

 this thesis, the following ideas and approaches were utilized to develop the real-time 

PS PPP-inferred water vapor system.  

(1) A distributed real-time GPS PPP-inferred water vapor remote sensing system has 

been realized, in which distributed GPS data sources (network) and distributed 

computing facility (PPP software) cooperate under network protocols. The system 

concurrently and continuously processes 21-station data and produces near real-

time tropospheric products: ZTD/ZWD/PWV for each station under all weather 

conditions. In the future when the GPS network is expanded, i.e., more stations 

Atmospheric water vapor plays a crucial role in the climatic systems (tran

moisture and latent heat), in particular over high latitudes where water vapor exhibits a 

icant seasonal variability. Better knowledge of the global distribution of 

ospheric water vapo

prediction and climate monitoring. In Canada, the sparse spatial and temporal samp

o

te

si

A

m

o

w

n

h

h

re

w

 

8
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are added, the increased workload n easily be distributed 

over network to newly added GPS processing centers. 

 model is determined by cross-validation process. In step three, the 

interpolated PWV maps and associated kriging standard error maps are generated 

riging algorithm. 

(4) The kriginged PWV maps over Canada and associated kriging standard error 

n 

e also used to evaluate the meteorological role of 

 of data processing ca

(2) The performance of the developed system has been analyzed in three aspects: 

position errors, ZTD and PWV. The results show: (i) the position errors: RMS = 

l.1 ~ 4.3 cm; (ii) the significant position error occurs in the up direction which has 

relation to the un-modeled atmospheric errors; (iii) the ZTD and PWV accuracies 

of the current (near) real-time water vapor system are ~13 mm and ~2 mm, 

respectively, which should be improved if the real-time Meteorological data 

stream were available to the system. 

(3) An ordinary kriging program has been developed in Matlab, which generates near 

real-time interpolated surface maps of PWV over Canada using the limited 

available sample datasets. The Matlab program consists of three steps: (i) 

Calculating experimental semivariogram; (ii) Estimating semivariogram model 

(model fitting); and (iii) Estimating surface map of PWV by ordinary kriging. In 

step one, the reliability of the calculated experimental semivariogram impacts the 

best model choosing, and consequently the accuracy of kriging interpolation. In 

step two, firstly, three different semivariogram models: Spherical, Exponential 

and Gaussian are fitted by nonlinear weighted least-squares respectively and then 

the best fitted

by ordinary k

maps based on the sparse and limited sample dataset provide valuable informatio

to other applications, and they ar

Canada geodetic GPS network. 

(5) The experiments show that the accuracy of the estimated PWV values does not 

depend directly on the observation values but on the semivariogram and the 

configuration of the sample points. The current Canada (real-time) GPS network 

has a small number of (real-time) GPS stations and its configuration is not 

balanced in Canada domain. In order to improve the accuracy of the estimated 
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PWV maps, the configuration of the GPS network needs improving by increasing 

the number of GPS stations and properly deploying them within the network. 

xplain the variance of the whole dataset by 

gy in Canada.  

eed to be addressed. 

final GPS satellite orbits and clocks data. To get a more accurate and comparable 

(6) 17 variables of the GPS water vapor dataset derived from the developed system 

are sorted into 4 categories. Principal Component Analysis has been performed to 

simplify the description of this set of intercorelated variables. A seven-principal 

component/domain structure of the GPS water vapor dataset is found: Size of 

DOP, Volume of ZDD, Moisture Content, Volume of ZWD, Volume of Up 

(Position) Error, East-Up (Position) Error Contrast and Volume of PVW Bias. 

All the seven principal components e

88.30%; among it, Size of DOP explains 34.23%, Volume of ZDD 15.92%, 

Moisture of Content 10.73% and Volume of ZWD 8.31%.  

(7) Variable Correlation Analysis has been further performed on the GPS water 

vapor dataset to investigate seven between-type relations among those 4 types. 

The Correlation Analysis uses scatterplot and linear regression techniques to 

quantitatively provide meaningful results to validate those seven relations.  

The results of this study suggest that PPP technique integrated with a sparse GPS 

reference network is an efficient approach to estimate atmospheric water vapor in Canada 

and the developed system performance could reach an accuracy level comparable with 

other operational GPS networks. The near real-time GPS PPP-inferred water vapor 

system provides valuable information and experiences for the construction of workable 

operational GPS network for meteorolo

 

8.2 Future works 

Some aspects of this research work still n

(1) At present, the developed system works under near real-time mode because of 

using one-hour-latency MET files. When the real-time MET data stream is 

available, the system needs to be switched to real-time mode and its performance 

needs to be validated again. 

(2) In this thesis, the comparable post-mission results were derived based on IGS 
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performance validation, a PPP post-mission program which uses the recorded 

real-time JPL satellite orbit and clock correction data needs to be created. 

(3) In order to produce more accurate interpolated surface maps of PWV, universal 

kriging algorithm may be implemented in the kriging program since the universal 

kriging models the spatial process trend as a simple polynomial function instead 

of a constant, which is a more general case of spatial variable. 

(4) The PCA-derived conclusions obtained in near real-time mode need to be further 

validated when the developed system works under real-time mode. 
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Appendix A:  Coefficients for Neill’s Mapping Function 

The coefficients for Neill’s mapping functions m (2.24) and m  (2.25) are gd wv iven in 

Table A.1 and Table A.2 as a function of the latitude ϕ  of the station. If °<15   ϕ  the 

values for °=15  ϕ should be used; if °> 75   ϕ  then the values for °= 75  ϕ  should be 

used; if °≤≤° 75      15 ϕ , then linear interpolation applies. Before substitution, however, 

 

the coefficients a, b, and c in Equation 2.24 ( dm ) must be corrected for periodic terms 

using the following general formula: (Leick, 2004) 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅−=

25.365
DOY - DOY

2cos~DOY  , 0πϕ paaa        (A.1) 

where DOY denotes the day of year and is 28 or 211 for stations in the Southern 

or Northern Hemisphere, respectively. 

 
Table A. 1: Coefficients for Niell's Hydrostatic Mapping Function 

0DOY  

ϕ  310~ ⋅a  310~
⋅b  310~ ⋅c  510⋅pa  510⋅pb  510⋅pc  

°15  1.2769934 2.9153695 62.610505 0 0 0 
°30  1.2683230 209152299 62.837393 1.2709626 2.1414979 9.0128400
°45  102465397 209288445 63.721774 2.6523662 3.0060779 4.3497037
°60  102196049 209022565 63.824265 3.4000452 7.2562722 84.795348
°57  102045996 2.9024912 64.258455 4.1202191 11.723375 170.37206

 
2.53 5.49 1.14 

   
510⋅ha  310⋅hb  310⋅hc  

 

Table A. 2: Coefficients for Neill's Wet Mapping Function 

ϕ  410⋅a  310⋅b  210~ ⋅c  
°15  5.8021897 1.4275268 4.3472961 
°30  5.6794847 1.5138625 4.6729510 
°45  5.8118019 1.4572752 4.3908931 
°60  5.9727542 1.5007428 4.4626982 
°57  6.1641693 1.7599082 5.4736038 
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A l 

ing system relies o

o  thesis.

anding,  networ

twork addressing methods. There are 

three basic network transmission models: Unicast, Broadcast and Multicast (Figure B-1). 

he number of transmitter (sources) and receivers 

models. 

ppendix B:  Introduction to Network Protoco

The realization of the real-time water vapor sens n the Internet. UDP 

and IP Multicast are the two Internet communication pr tocols used in this  To 

help underst  the basic concepts on k protocol are briefly illustrated below. 

 

B.1 Network transmission models  

The network transmission models are also called ne

T (destinations) portray the different 

 

 

Figure B-1 Transmission 

 

 Unicast transmission 

This is the traditio ecific source and 

one specific receiver, i.e., single sender and single receiver (Figure B-1 (a)). The vast 

majority of all data transmissions on the Internet nicast. The  is 

the basic building block found in all networks. 

 Broadcast transmission 

In this model, a host sends a m all other hosts, i.e., single sender and global 

receivers (Figure B-1 (b)). The model is used when a piece of information needs 

communicating to every host on the network, or used when the sender needs to send a 

message to just one receiver, but doesn’t know its address.  

models 

nal data transmission on the Internet, between one sp

today are U  unicast flow

essage to 
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The problem  significant 

t model is similar to broadcast model in that there is a one-to-many traffic 

 are a subset of all the hosts, i.e., single 

sender and selected receivers (Figure B-1 (c)). This model enables a single host to send 

ations on the Internet simultaneously. 

B.2 Protocol layering 

Protocols are sets of standards which define how data are represented when they are 

being transmitted from one machine to another. Protocols govern the communications 

between computers on a network: how the transmission occurs, how errors are detected, 

and how acknowledgements are passed (Comer, 2000). To simplify protocol design and 

implementation, network communication functionality is organized into a la red 

protocol model, in which each tocol that deals with one part 

f the communication problem (Figure B-2). Figure B-2 delineates the Open System 

Interconnection Reference Model designed by the International Organization for 

d the corresponding Internet protocols. The Networking-layer 

 with the model is that sending the broadcast everywhere is a

usage of network resources if not all the hosts need to see the packets. This global 

transmission can cause unnecessary traffic. 

 Multicast transmission 

Multicas

pattern. The difference is that the receiving hosts

data to a specific set of hosts by making just a single call. Multicasting can conserve 

network bandwidth by reducing the amount of unnecessary network traffic. In addition, it 

is the most economic technique for sending a packet stream from one location to many 

other loc

 

ye

 layer corresponds to one pro

o

Standardization (ISO) an

protocol is Internet Protocol (IP) and the Transport-layer protocols are Transmission 

Control Protocol (TCP) and User Datagram Protocol (UDP). The access interface 

between protocols is implemented through protocol ports. Each protocol port is identified 

by a positive integer (Figure B-3). 
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Figure B-2 The conceptual organization of protocol software in layers 

 

 

Figure B-3 OSI model layer and Internet protocols (Cisco Documentation) Cisco 
Documentation, Internet Protocol. (Chow, 2006) 
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Figure B-4 Example – A UNIX workstation network interface (Adapted from: Chow (2006)) 

 

B.3 IP, UDP and IP Multicast protocols 

The common network protocols used in this thesis are introduced below.  

Internet Protocol (IP). IP is the networking-layer protocol which specifies the format of 

packets/datagrams (a piece of a message transmitted over network) and the addressing 

scheme. IP functions like the postal system. It allows the sender to address a package and 

drop it in the system, but there's no direct link between the sender and the receiver. Thus, 

the service provided by IP is a connectionless, best-effort delivery service. But, when it is 

combined with a higher-level transport-layer protocol called Transmission Control 

Protocol (TCP), it establishes a connection between two hosts so that both can send 

messages back and forth. 

ice that provides no guarantees for delivery and no 

protection from duplication. It merely sends out the message. Due to its simplicity and 

low overhead, UDP may be adequate in many cases. 

UDP provides a few functions beyond that of IP: 

User Datagram Protocol (UDP). UDP is a core transport-layer protocol defined for use 

with the IP network layer protocol. Like IP, UDP provides a connectionless and 

unreliable (no acknowledge) serv

 146



  

 Port numbers. They are 16-bit destination port number and 16-bit source port number 

and let multiple processes use UDP services on the same machine. A UDP address is 

a combination of 32-bit IP address and the 16-bit number. 

 Checksum. Unlike IP, UDP does checksum its data, ensuring data integrity. 

0 

IP Multicast protocol. IP Multicast is a protocol for transmitting IP datagrams from one 

source to many destinations in a local or wide-area network of hosts (Figure B-1 (c)). The 

current standard of IP is unicast transmission service (Figure B-1 (a)), i.e., each packet 

sent is forwarded from a single source host to a single destination host identified by its IP 

address. For IP multicast, the IP address refers to a group of IP hosts. This is done by 

modifying IP protocol by adding multicast routing support to it. Besides this, IP 

The idea of a basic IP multicast model is that any host can join a given multicast group G, 

nation address G, and have it delivered to all 

 G (Intro to IP 

reased with more added GPS stations in the system, the system 

Multicast use UDP as its underlying transport protocol.  

and any host can send a packet with desti

members of the group G. The sender does not need to be a member of

muticast, The Norwegian research network).  

      The advantages with IP multicast are (i) that it conserves bandwidth; (ii) that it can 

construct truly distributed applications and (iii) that it provides important performance 

optimisations over unicast transmission.  

      In the thesis, IP multicast is used to transmit the real-time GPS data from Canadian 

geodetic (GPS) network, which makes it possible for all receivers who are interested in 

the data to share the same information simultaneously. Likewise, when the demand of 

calculation resource is inc

can easily divide the workload into more servers using IP multicast. 
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