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Abstract

Atmospheric water vapour is one of the key parameters for the analysis of global climate
systems, in particular over high latitudes where water vapour displays a significant
seasonal variability. The lack of detailed knowledge of the global distribution of
atmospheric water vapour in space and time is the major limiting factor toward the
accurate prediction of weather and climate using numerical models. In Canada, the sparse
spatial and temporal sampling of atmospheric water vapour observations needs to be
improved. GPS water vapour observations retrieved from geodetic (GPS) networks have
provided a unique opportunity for this need.

At present water vapor determination using GPS is mainly based on Differential GPS
(DGPS) techniques. But the large inter-station distance requirement has limited the
DGPS application in meteorology, because the GPS stations have to be sufficiently
separated in the network in order to estimate the water vapor on each station. An
innovative alternative to the DGPS technique is the Precise Point Positioning (PPP)
method which uses un-differenced observations from a single GPS receiver aided by
precise orbit and clock products.

The primary objective of this thesis is to develop a near real-time GPS PPP-inferred
water vapour system using precise point positioning (PPP) technique and Canada
sparsely distributed geodetic GPS network for operational weather forecasting, climate
monitoring and research. The fundamental problems in meeting this objective are:
designing and implementing a distributed GPS computing network system, interpolating
surface maps of precipitable water vapour (PWV) over Canada using the sample data
derived from the system, and analyzing GPS water vapour datasets.

The desired system is designed and implemented with five functional components
which are distributed over the Internet across Canada and cooperate under UDP/IP
Multicast UDP/IP protocols. The system concurrently processes multi-station GPS data
and produces (near) real-time tropospheric products ZTD/ZWD/PWV. The system
performance evaluation shows: (i) the position errors (East/North/Up): RMS = .1 ~ 4.3
cm and (ii) the ZTD and PWV accuracies of the (near) real-time water vapor system are

~13 mm and ~2mm, respectively, with the use of one-hour-latency MET data.



In the process of interpolating surface maps of PWV, an ordinary kriging program
has been developed in Matlab, which performances calculating experimental
semivariogram, model fitting and ordinary kriging algorithm for interpolation. Three
most common models are used: Spherical, Exponential and Gaussian. Model fitting
consists of (i) nonlinear weighted least-squares process for model parameter estimation
and (ii) cross-validation process for the best model determination. The hourly kriginged
PWYV maps over Canada and associated kriging standard error maps are generated by the
ordinary kriging program using limited-sample datasets, which provide valuable
information to evaluate the meteorological role of the current Canada geodetic GPS
network.

In the process of analyzing GPS water vapor dataset, we first categorize 17 variables
into four types and then use (i) principal component analysis (PCA) to derive the six-
principal-component/domain structure and six determinant variables of the system and
(i) correlation analysis to investigate and summarize quantitatively seven correlations

among the four types.



Acknowledgements

God, the Almighty you are always a wonderful inspiration to me.

I would like to extend my heartfelt gratitude to my mother, Wenhui. Thanks for all the

love and support for many years.

To my adviser, Professor Dr. Yang Gao, thank you very much for your patience,

guidance, encouragement and unlimited support while 1 fully explored my thesis project.

To my committee members, Professor Dr. Susan Skone and Professor Dr. Naser El-
Sheimy from the Department of Geomatics Engineering, and Professor Dr. Abraham
Fapojuwo from the Department of Electrical and Computer Engineering, thank you very

much for imparting your knowledge, and for checking and editing my work.

To my research colleagues, Yufeng Zhang, Kongzhe Chen, Zhizhao Liu and Min Wang,
thank you for frequent help and consultation for the past three years.

To the BCC church, especially to Poster Roger Wu, Dr. Patrick Wu, Poster Meiping Law,
thank you for your consistent encouragement and support.

To all faculty and staff members, the University of Calgary, thank you for providing the

beautiful academic environment.

Thanks also to the Canadian Geomatics for Informed Decisions (GEOIDE) Network
Centers of Excellence (NCE) and Natural Sciences and Engineering Research Council of
Canada for their financial support and to the Natural Resource Canada (NRCan) for their

valuable contributions to the project.



Table of Contents

Abstract i
Acknowledgements %
Table of Contents Vi
List of Figures X
List of Tables xiii
List of Abbreviations XV
List of Symbols XVi
Chapter One: INrOAUCTION ......c..oiviiiiiiiieiiee e 1
IR o =T ot =SSR 7
1.2 CONEIIDULIONS. ...ttt bbbt 8
1.3 OULIINE. ..ttt bbbt n e 9
Chapter TWO: GPS MEeteorolOgy ......c.cccueieeiieiieiieie e 10
2.1 INtrodUCtioN 10 GPS ......ooieiei et 10
2.2 Effect of the troposphere on GPS Measurements.........ccccvevveieeieeieeseeseereeseennean, 17
2.2.1 Nature of the tropPOSPRETE. .......ccv i, 17
2.2.2 Nature of the tropospheric delay ..., 18
2.2.3 Modeling zenith delays ... 22
2.2.4 MappPINg TUNCLIONS .......ooiiieiieiece et nne e 23
2.2.5 Stochastic path delay MOdElS.........cccoiveiiiieiice e, 25
2.2.6 Estimating zenith delays .........cccooeiiiiiiii i 27
2.2.7 Zenith wet delay conversion into precipitable water vapor............c.cccceevenene. 29

2.3 GPS SENSING TECANIGUES ....veevvevieie ettt e e ne e 30
2.3.1 Mapping precipitable water vapor using existing geodetic GPS networks ..... 30
2.3.2 Space-based GPS OCCUIALIONS...........cccveieiieiiee e 31

2.4 SUMMIAEY .ttt e bt e e kbt e et e e et e e et e e e e a b e e e snbe e e nbbe e e bbeeabeeeantees 32

Vi



Chapter Three: GPS PPP Water Vapor Determination Model .............ccoocoiveiiiiiinnnenn 34

T8 A [0 oo [0 od 1 o] o USRS 34
3.2 PPP water vapor determination MOdel.............cccooeiiiiniieiiiec e 35
3.2.1 ODSErvation BQUALIONS..........coiiiiieieieie et 35
3.2.2 Tropospheric delay eStimation.........cccccveierieeieeieiie e 36
3.3 Precise point positioning correction Models..........c.cccevveveiieiieie e, 36
3.3.1 Satellite ephemeris and CIOCK EITOIS ........c.cccvevveiieiieieee e, 36
3.3.2 Satellite antenna phase center OFfSet.........ccccovviiiiiiiiei e, 38
3.3.3 PNaSE WING-UP BITOT ..ottt 39
3.3.4 SOlid EArth tIdES.......coveieieii e 39
3.3.5 0CAN 10AUING ...cvvvevieiieie e 40
3.3.6 AtMOSPNEIIC TIUBS ...t 41
3.3.7 Relativity 41
34 SUMMIATY ..ttt ettt et b e e bt e et e e es b e e e sab e e e bt e e e bb e e e beeeentns 42
Chapter Four: System Design and Implementation.............ccccovvveveiieenieeiesieese e 43
4.1 Initial conditions and System reqUIreMENES..........ccovevveeeeveeresiiese e 43
4.1.1 Initial CONAITIONS .....viviiiiiicieiee e 43
4.1.2 System-level reqUIrEMENTS..........cccociiiieiecie e e 45
VA1 (=] 0 0 0 XS] o | o TSP UR PP 46
4.3 System IMPIEMENTALION. .........cooiiiiiiei e e 47
4.3.1 SyStem INFIaStIUCTUIE .......ccueiiiieieiiee e e 48
4.3.2 Software implemeNntation ... 50
A4 SUMIMAIY ...ttt ettt e ettt e st e e sa e e e sabe e e sbb e e e nsb e e e nbbeeebneeenbneeanes 51
Chapter Five: System Performance ANAlYSIS .........cccovveiverieiiienieie e 52
5.1 Data dESCIIPLION ...c.viieeeieicciece sttt re e ba et e neeneesreenneens 52
5.2 Performance eValUation ...........ccouiiiiiiiiiie e 53

5.2.1 Position error 53
5.2.2 ZTTD @CCUIACY -.....eeeteeeieieetee ettt sttt ettt e bt e s be e bt e snn e et e e saneenns 56



O.2.3 PWV BCCUIACY ....veeiieiiiieitie ettt sttt sttt ettt e 60

5.3 Accuracy comparison with external reSultS ...........c.ccoovviieienin e, 64
5.4 SUMIMANY ..ottt sttt b e b e e b e e neenne e 65
Chapter Six: PWV Prediction and Interpolation............ccccoovviiiineniieseseseeee, 66
6.1 Geostatistical Methodology.........cccevviiiiiieii e 66

6.1.1 Introduction 66

6.1.2 Geostatistical aPProaCh ...........ccveiiiiiiece e 69
6.2 Implementation of ordinary Kriging..........cccoeiieiiii i 82
6.3 RESUILS aNd @NAIYSIS ....cueeiiiieiiie e 83

6.3.1 SemMIVariogram PIOLS .......coviiiiiiiie e 84

6.3.2 Cross-validation for PWV semivariogram model performance ...........c.ccc...... 90

6.3.3 Kriginged PWV maps and associated kriging standard error maps .............. 101
5.4 SUMMIAIY ...ttt ettt ettt e et e bt e et e e et e e et e e e sab e e e nsb e e e s bbe e e bbeeanbneeanes 108

Chapter Seven: Principal Component Analysis of GPS Water Vapor Dataset .............. 109
7.1 Introduction of principal component analysis...........ccoovieiiniiiinnene e 109

7.1.1 Maximum variance formulation 0f PCA ..........cccooiiiinenen e 110
7.2 Principal component analysis of GPS water vapor dataset.............ccccevevervnrinnens 111

7.2.1 Data Preparation.......cceoeeieeiieie ettt ee et ae e b e nneas 112

7.2.2 ANAIYEIC TESUIES ... 114
7.3 Correlation analysis of GPS water vapor dataset.............ccvvveveiiveneereseeseerieenens 123

7.3.1 Correlation between zenith delays and meteorological parameters............... 124

7.3.2 Correlation between position errors and meteorological parameters ............ 126

7.3.3 Correlation between zenith delays and satellite geometrical factors............. 127

7.3.4 Correlation between satellite geometry factors and position errors............... 129

7.3.5 Correlation between PWV bias and satellite geometric factors..................... 132

7.3.6 Correlation between zenith delays and position errors............ccccceevvevveveenen. 133

7.3.7 Correlation between PWV bias and position errors...........cocceveeeveneeneniennnnnn 134
T4 SUMIMANY ..ottt bbbt b e b e b et sn e be e b e ennenne s 136



Chapter Eight: CONCIUSIONS ........coitieiiiie et nreas 138

8.1 CONLIIBULIONS. ...ttt este e s e sneesaeaneennees 138
8.2 FULUIE WOTKS ...ttt sttt e st sre e ste e sneenaeenaennees 140
Appendix A: Coefficients for Neill’s Mapping FUNCEION ..., 142
Appendix B: Introduction to Network Protocol............cccovveveiiiiiveie e 143
RETEIBNCES ...ttt 148



List of Figures

Figure 1.1 Layers of AIMOSPNEIE ......ccoiiiiiiiiiieee e 1
Figure 1.2 Water vapor ProfileS..........cooiiiiiiiiiiese e 2
Figure 1.3 The climatic hydrological cycle at global scale ..., 2

Figure 1.4 The comparison of radiosonde, WVR and GPS derived zenith wet delay at
Haystack observatory in Westford, MA, USA, from 15-30 August 1995............cccccvenne. 5
Figure 2.1 Constellation of 24 GPS satellites (not to scale) which consists of six orbits. 10

Figure 2.2 Configuration of two GPS receivers and two satellites with their

COrresPONAING Fay PALNS .......cviiiiieiiie e 14
Figure 2.3 Layers of the Earth’s atmosphere ... 17
Figure 2.4 GPS Signal GEOMELIY.......cc.iiiiiiieieieese e 19
Figure 2.5 Typical height profiles of dry refractivity and water vapor refractivity......... 21
Figure 2.6 Propagation delays as a function of elevation angle .............ccocoovviiieicnnnn 22
Figure 2.7 The path length of a signal through troposphere.............ccccccvnininieicnenn 24
Figure 2.8 Programming diagram for Kalman filter parameter estimation .................... 29
Figure 2.9 Schematic presentation 0f GPS PWV ... 30
Figure 2.10 Retrieve water vapor using geodetic GPS network............ccccovvviiiieicnnnn 31

Figure 2.11 Schematic diagram for GPS occultation geometry for path delay calculation

........................................................................................................................................... 32
Figure 3.1 IGS network of globally distributed tracking sites

(from:http://igsch.jpl.nasa.gov/network/complete.html) .......coooeiiiiinii 37
Figure 3.2 Satellite antenna phase center offSet..........ccocoeriiiiciiicee, 38
Figure 4.1 Canada (geodesy) GPS network operated by NRCan ..........cccooveveneniiniinnnn, 44



Figure 4.2 System design and dataflow diagram ...........ccccoooeriieiiiinneneeeeee 46

Figure 4.3 System infrastructure diagram.............ccooveiiiienenie s 48
Figure 4.4 The real-time GPS PPP-inferred water vapor system interface ..................... 49
Figure 4.5 Flowchart of MET data MOdUle ..........cooiiiiiiiiiieee e 51
Figure 5.1 Near real-time position errors of nine stations ............cccocevevnininiinicicnen 55
Figure 5.2 STD 0f Station POSITION ITOIS ......ecviiieiieie ettt 56

Figure 5.3 Ten station ZTD comparison plots between near real-time, post-mission and
(L 3 ) ST PPRSSSRRR 58
Figure 5.4 Ten station ZTD Mean/STD/RMS PIOLS ......ccveiiiiiiiiiiiie e 60
Figure 5.5 Ten station PWV comparison plots between near real-time, post-mission and
(L 3 ) TSRS PRPRSSSRRR 62
Figure 5.6 Ten station PWV Mean/STD/RMS PIOtS ......ccoeviiiiiieiiiieieereeeseee e 64

Figure 6.1 Characteristics of the semivariogram and relation between semivariogram and

COVATTANGCE ...tttk b bbb bbb bbbttt b bt e bt neneans 69
Figure 6.2 Three common semivariogram models (without nugget effect) .................... 73
Figure 6.3 An example plot of estimating semivariogram ProCess ..........cccevveevvereereesnens 77
Figure 6.4 Kriging Weighting SChEME...........coviiiiiiiicc e 79
Figure 6.5 Flowchart for ordinary Kriging program..........ccccceeeveeeereevieseeseeieeseese e 83
Figure 6.6 Plot of pair number for 2007-08-25-00:00 hour dataset............ccccccevvevveeenenn 85
Figure 6.7 Semivariogram plot for 2007-08-25-00:00 dataset ............cccevvvevveivesreriennnn 85
Figure 6.8 Hourly PWV experimental semivariogram plots (1)........cccceceviveveiieieerinnnn, 86
Figure 6.9 Sill plots of 24 hourly fitted semivariogram models............c.cccceveiveireinnen, 88
Figure 6.10 Range plots of 24 hourly fitted semivariogram models ............c.cccceeveeennn. 88

Xi



Figure 6.11 RMSE plots of 24 hourly fitted semivariogram models............c.cccceeeveinnen, 88
Figure 6.12 Negative kriged PWV maps from the Spherical model (left) and Gaussian
[ggloTo [T I (4T | 01 OO OP TR 90
Figure 6.13 Plots of 24-hour diagnostic statistics (ME, MSE, MSDR) associated with. 92
Figure 6.14 Scatterplots of cross-validation for Exponential model (left) and Gaussian
[ggloTo =T I (AT |01 I ) TSP 93

Figure 6.15 Plots of linear regression parameters of 24-hour cross-validation scatterplots

Figure 6.16 Hourly kriginged PWV maps (Horizontal axis = Longitude) (1)............... 102

Figure 6.17 Hourly kriginged standard error maps (Horizontal axis = Longitude) (1) . 105

Figure 7.1 Schematic diagram of principal component analysis (PCA)........ccccceuennen. 111
Figure 7.2 Output of 17 variable PCA analysis .........ccccoviiiiiniienienece e, 115
Figure 7.3 Output of fifteen-variable PCA analysis .........cccooooviiiiiiniiiiieneee e, 120
Figure 7.4 Seven variable correlations of the System ..........c.ccccvviieii i, 123
Figure 7.5 Scatterplots between zenith delays and meteorological parameters............. 124
Figure 7.6 Scatter plots of position errors and MET parameters...........cccccevvvevveireennenn, 127
Figure 7.7 Scatter plots of Zenith Delays vs Satellite Geometric Factors..................... 129
Figure 7.8 Scatter plots of position errors vs satellite geometric factors...................... 131
Figure 7.9 Scatter plots of PWV bias vs Satellite Geometric Factors............ccccccveeneen. 132
Figure 7.10 Scatterplots of Zenith Delays vs Position Errors...........cccoccevveevveieieennnn, 134

Figure 7.11 Plots of correlation coefficients of PWV biases versus position errors ..... 135

Figure 7.12 Scatter plots of PWV bias versus position errors.............ccceceeveeveerveseennnnn, 135

xii



List of Tables

Table 3.1 IGS combined orbit and clock products and their characteristics compared with

broadcast values (Ray et al., 2005) .........ccooiiiiiriieiisesese e 37
Table 3.2 GPS satellite antenna phase center offset (X) adopted by IGS............cccue..... 39
Table 4.1 Network GPS station ID and cOOrdinates.............cooveeierenencneneseseeeeeees 44
Table 5.1 Statistics of position errors of near real-time system (Unit: m).........cccccevenen. 55
Table 5.2 Position errors of the real-time system (UNIt: M) ..o, 56
Table 5.3Statistics of ZTD comparisons: N.R.T.-IGS and P.M.-IGS (unit: mm) ............ 59
Table 5.4 ZTD statistics of N.R.T. system (UNit: MmM) ......cccooviriiiiiiiniieieee e, 60

Table 5.5 Statistics of PWV comparisons: N.R.T.-IGS and P.M.-IGS (unit: mm).......... 63
Table 5.6 PWV statistics of near real-time system (UNit: Mm)........ccocovvvriininnenneniennnn, 64
Table 5.7 ZTD statistics between GPS operational models*™*...........cccocoviniiienneniennnn, 65
Table 6.1 Comparison of 24-hour diagnostic statistics from exponential-model-based and
Gaussian-model-based ordinary kriging interpolations (on August 25, 2007). ............... 91
Table 6.2 Comparison of linear regression parameters of 24-hour cross-validation

scatterplots from exp.-model-based OK interpolation and Gaussian-model-based OK

interpolation (0N AugUSt 25, 2007). ..cc.eoeiiiiiiieiesiesee et 99
Table 7.1 Original GPS water vapor dataSet...........cccoevuereriiiieenie e 112
Table 7.2 PCA loading for original GPS water vapor dataset ............ccoccevvererienneennenne 117
Table 7.3 PCA loading of fifteen-variable GPS water vapour dataset .............cccccoeeuenne. 121
Table 7.4 Correlation Coefficients of zenith delay and MET data............cccocevvviienenne 124
Table 7.5 Correlation coefficients of position errors and MET data............cccooevvennne 126

Xiii



Table 7.6 Correlation coefficients between zenith delays and satellite geometric factors

Table 7.7 Correlation coefficients between position errors and satellite geometric

variables and corresponding SigNIfiCant teStS ..........ccceviriiiiiiiiinie e 130
Table 7.8 Correlation Coefficients of PWV bias and Satellite Geometric Variables..... 132
Table 7.9 Correlation Coefficients of Zenith Delays and Position Errors...................... 133

Table 7.10 Correlation coefficients and significance test...........ccovveviiieniniiiin e 135

Xiv



DGPS
DOP
DOY
ECEF
FTP
GDOP
GNSS
GPS
HDOP
IGS
ITRF
WV
IP
JPL
LEO
MET
NAVSTAR
NRCan
NWP
PCA
PDOP
PPP
PRN
PWV
RCP
RTIGSA
SDD
STD
SOPAC
SWD
TDOP
RMS
UDP
WVR
VDOP
ZTD
ZWD
ZDD
ZHD

List of Abbreviations

Differential GPS

Dilution of precision

Day of year

Earth centered earth fixed

File transfer protocol
Geometric dilution of precision
Global navigation satellite system
Global point positioning

Horizontal dilution of precision
International GPS service

International terrestrial reference frame
Integrated water vapour

Internet protocol

Jet propulsion lab

Low earth orbit

Meteorological

Navigation satellite timing and ranging
Natural resource Canada

Numerical weather prediction
Principal component analysis
Positional dilution of precision

Precise point positioning
Pseudo-random noise

Precipitable water vapour

Right circularly polarized

Real-time 1GS archive

Slant dry delay

Slant total delay

Scripps orbit and permanent array center
Slant wet delay

Time dilution of precision
Root mean square

User datagram protocol
Water vapor radiometer
Vertical dilution of precision
Zenith total delay

Zenith wet delay

Zenith dry Delay

Zenith hydrostatic delay

XV



List of Symbols

Mean value

Wavelength
Pseudorange

Offset of GPS receiver clock

Offset of satellite clock
Effect of multipath and receiver noise

Un-modeled effects, modeling error and measurement error

for carrier phase observation
Phase observable

Semivariogram

Gaussian Markov correction time
Phase measurement at L1

Phase measurement at L2

lonosphere-free phase measurement

Carrier frequency
L1 carrier frequency

L2 carrier frequency

Dry mapping function

Wet mapping function

Refractive index

Universal gas constant for ideal gas
Universal gas constant for water vapor

Geometric range
Zero-mean white noise random variable of variance

lonosphere carrier phase advance
lonosphere code delay

L1 carrier (1575.42 MHz)
L2 carrier (1227.60 MHz)
Integer ambiguity resolution
Atmospheric refractivity

Ideal gas (dry) refractivity
Water vapor refractivity

Molar mass for ideal gas

Molar mass for water vapour
lonosphere-free pseudorange
Pseudorange measurement at L1

XVi



-

=%

N N - v 0O ®©

Pseudorange measurement at L2
Dimensionless conversion factor: 5.9 ~ 6.5

Dry air constant

Troposphere delay

Compressibility factor for dry air
Compressibility factor for water vapour
Real-valued stochastic process

xvii



Chapter One: Introduction

Since Global Positioning System (GPS) data were demonstrated to be a good source for
measuring atmospheric water vapor, there have been extensive studies of the role that
GPS water vapor measurements could play in weather prediction. There are two primary
methods by which GPS can be used to actively sense the properties of the Earth’s
atmosphere: ground-based and space-based (Businger et al., 1996). This study concerns
the ground-based GPS atmospheric water vapor sensing.

Water vapor is a normal constituent of atmosphere. It resides mostly in the
troposphere (Figure 1.1), ranging in depth from 9 km at the poles to more than 16 km at
the equator. Water vapor content decreases rapidly with elevation (Figure 1.2). In fact,
more than 90% of the water vapor is contained within the lower 5 km of the troposphere
and more than 50% within the lowest 1.5 to 2 km; only less than 5-6% of the water is
above 5 km, and less than 1% is in the stratosphere (Ramirez, 2007).

Water vapor in the atmosphere is a crucial constituent on the climate system. The
presence of water vapor is relatively small amounts, generally not exceeding 4% by

volume, but the significance of the water vapor is far greater than the relative amount

Exosphere — T
400 ken slimde

Thermosphere — . 300 km

Mesosphere ——# 0km

Stratosphere ——m 40k
Troposphere ——#=_10kn

Figure 1.1 Layers of Atmosphere
(Williams, 2008)
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Figure 1.2 Water vapor profiles
((a) Vertical distribution of water vapor for a standard atmosphere (Source: US Standard Atmosphere
1976); (b) Water vapor vertical profiles in and where each color line represents different method result
(Russell et al., 2003))

would indicate (Hidore, 1972). The distribution and content of water vapor are critical
factors for the description of the state and evolution of the atmosphere. Water vapor
impacts the global climate in two ways. First it plays a fundamental role in the Earth’s
hydrological cycle: transferring of energy in the atmosphere, forming and propagating
weather (Figure 1.3) (Hidore, 1972; Seidel, 1995). Second it is the dominant greenhouse
gas in the atmosphere (Cess, 2005; Hieb, 2003). It allows the short wavelength radiation
of the Sun to pass through the atmosphere, but traps the long wavelength radiation
emitted by the Earth's surface. This trapped radiation causes the temperatures to increase.

Clouds

Condensation

' Precipitation’

e - \ \ \ A W \

B 2007 Thomeon Higher Education

Figure 1.3 The climatic hydrological cycle at global scale
(Warner, 2006)



Atmospheric scientists employ three main techniques to routinely measure the water
vapor: (i) In-situ measurements, i.e. radiosondes, (ii) remote sensing from the ground, i.e.
ground-based upward-looking radiometry, and (iii) remote sensing from space, i.e.
satellite-based downward-looking radiometry (Bevis, 1992).

In-situ measurements are radiosondes. Radiosondes are balloon-borne instrument
packages which send data on pressure, ambient temperature, relative humidity, and wind
(speed and direction) to the ground by radio signal. Although radiosonde provides
respectable water vapor profiles, it has weaknesses of being expensive on the long run, a
low temporal resolution (usually two launches per day), a low spatial distribution (i.e.,
point measurement), a questionable accuracy, and being sparsely distributed on the earth
surface (Brocard, 2006). Thus, low spatial and temporal resolution of water vapor from
radiosonde, and limitations of water vapor data, are major sources of error in short-term
(< 24 hour) forecasts of precipitation (Rocken et al., 1993).

Ground-based radiometry employs upward-looking water vapor radiometer (WVR)
to measure microwave energy emitted by the atmosphere which is converted into zenithal
integrated water vapor (IWV) using retrieval coefficients. Retrieval coefficients are
derived from regression analysis of radiosonde data which depend on climate and site
variations. Ground-based radiometry provides high temporal but poor spatial resolution
because only a few of these instruments are used today.

Alternatively, satellite-based radiometry employs downward-looking WVRs to
measure microwave emissions from the atmosphere and underlying Earth's surface. The
recovery of IWV by downward-looking WVRs is greatly affected by large variability in
the surface brightness temperature and the results are limited to cloud-free conditions.
For this reason, satellite-based radiometry tends to be more applicable over the oceans
than over land, and their effectiveness is degraded in the presence of clouds. Satellite-
based radiometry provides good spatial but poor temporal resolution. Both ground- and
satellite-based radiometry are highly complementary and operating both together can
improve short term (1~12 hour) forecasting. However, both have common weaknesses:
(i) noisy signals during rainy weather as microwave is absorbed and scattered by
raindrops, (ii) expensive to operate (Li et al., 2005), and (iii) limited in high-latitude areas
like the Arctic.



Each of above techniques, either in situ measurement, ground-based or satellite-based
remote sensing, has various limitations and often does not adequately provide important
quantity information such as atmospheric water vapor required by the climatic research
(Bevis et al., 1992). In May 1995, a report produced by the U.S. Weather Research
Program identified a national need for a reliable, low-cost system for measuring
atmospheric water vapor (Michelsen, 1998).

Bevis et al. (1992) presented the discussion on GPS method for measuring water
vapor. This discussion shows a technical challenge using GPS to measure atmospheric
water vapor. GPS was originally designed as a navigation and time transfer tool. The
signals emitted from GPS satellites propagate through the ionosphere and neutral
atmosphere to be received by ground based GPS receivers. One of the major error
sources to positioning or navigating with GPS is the signal delay caused by atmospheric
refraction. The total delay of the radio signals between a GPS satellite and a ground GPS
receiver is essentially dependent on the total atmospheric mass, i.e., the pressure at the
surface, and the columnar atmospheric moisture content. Over the years, research efforts
have been dedicated to modelling atmospheric refraction in order to improve on
positioning accuracy. In the last decade, the estimation techniques used to solve for the
atmosphere has been refined so that such delay can be determined on a routine basis with
a high degree of accuracy. This innovation has lead to the possibility of using the GPS for
remote sensing, known as GPS meteorology, which is currently becoming an active area
of research (Alan and Shardlow, 1995; Awange and Grafarend, 2005).

The new technology of GPS atmospheric remote sensing has several advantages
over the conventional water vapor observing system including low cost, being global
coverage, reliable and stable result, high measurement accuracy, all weather operability
and having radio frequencies that can penetrate clouds and dusts (Awange and Grafarend,
2005; Gutman et al., 2004). This new technology plays a major role in complementing
the existing techniques, e.g. radiosonde and WVR. Figure 1.4 shows the GPS derived
zenith wet delay compared with the radiosonde and WVR derived zenith wet delays at
Haystack observatory, USA from 15-30 August 1995 (Coster et al., 1997).
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Figure 1.4 The comparison of radiosonde, WVR and GPS derived zenith wet delay at Haystack
observatory in Westford, MA, USA, from 15-30 August 1995
(With the exception of the time periods associated with rain, it is clear that the estimates of the zenith wet
delay from three techniques agree very closely (Coster et al., 1997))

In 1995, the results from the first proof of concept experiment GPS/STORM were
first reported (Rocken et al., 1995). Subsequently there has been substantial activity
involving ground-based GPS measurements in studies at various scales from national to
global. Many of these initiatives are being carried out by research institutions in
collaboration with national agencies, principally to assess the accuracy of ground-based
GPS estimates of integrated water vapor (IWV) using the network of GPS stations
(Bengtsson et al., 2003; Hagemann et al., 2002; Rocken et al., 1997; Ware and Gutman
2003; Wolfe et al., 2000). But their aim is also to develop and refine the fundamental
techniques involved in making the observations, processing the data and making them
available in a timely manner (Hagemann et al., 2002).

In Canada, some similar research activities have been carried out in recent years. A
study was conducted to analyze the characteristics of high-latitude water vapor time

series at some sites of Canadian Sun Radiometer Network/Aerosol Robotic Network



(AERONET/AEROCAN) (Bokoye et al., 2003). This research shows: (i) GPS
meteorology can retrieve columnar water vapor amounts with an accurate (RMS) of less
than +2 kg m as compared to radiosonde data; (ii) In comparison to radiometer, GPS
meteorology is potentially more appropriate for monitoring water vapor in Arctic regions
where there are months when the Sun is absent or nearly so. In 2004, Deblonde and
Macpherson (2005) conducted a similar research in order to evaluate GPS precipitable
water over the IGS network in Canada. Through the inter-comparisons of IGS GPS_PW
with radiosonde_PW and the Global Environmental Multiscale (GEM) model_PW for a
seven-month period, it is found that the GPS_PW has the lowest estimated PW error (~1
mm) for PW in the 5~30 mm range. For PW greater than 30 mm, the radiosonde_PW
error is ~2 mm while the GPS_PW error is ~2.5 mm. In Southern Alberta, Canada the
water vapor profile was retrieved using GPS technology to investigate the estimation of
vertical profiles of water vapor in a regional GPS network and the results indicate the
improvements in the integrated domain were on the order of ~5 mm for the assimilation
of radiosonde data (Skone and Shrestha, 2003; Hoyle et al., 2003; Hoyle, 2005). All these
studies demonstrate that GPS atmospheric remote sensing technology is a key method to
improve high latitude sparse spatial and temporal sampling of water vapor observation in
Canada and that GPS precipitable water vapor (PWV) should be a useful source of
humidity information for Numerical Weather Prediction (NWP) applications. Today,
GPS meteorology has transitioned from research into a global operational network (Haan,
2006). However, there is still no operational GPS network for GPS meteorology in
Canada. Thus, as a practical issue, it is important to build up a network of GPS stations
across Canada which can routinely retrieve PWV for weather prediction, atmospheric
research, and climate monitoring and prediction. This problem is the main motivation of
this thesis. In the following chapters, the methods for completing a real-time water vapor
monitoring system using GPS PPP (Precise Point Positioning) technique and a Canadian
GPS network are presented.



1.1 Objectives

The primary objective of this thesis is to develop a real-time GPS PPP-inferred water
vapor system using a Canadian GPS network.

There are two GPS techniques for water vapor remote sensing: Differential GPS
(DGPS) and PPP. DGPS is most commonly used in today’s GPS networks. It employs
two or more receivers simultaneously observing GPS satellites and provides the solutions
with high accuracy level. Its effectiveness, however, is limited by the inter-station
distance between the two receivers. In contrast, PPP uses one GPS receiver to observe
GPS satellites with the aid of precise GPS orbit and clock products and produces high-
precision PWV results. Since PPP eliminates the limitation of inter-station distance, it can
be efficiently implemented under any configurations of GPS networks. At present, there
is no nationwide sparsely-distributed GPS network using PPP technique. The
implementation of PPP technique within a Canada GPS network in this thesis is a

valuable testimony for GPS PPP based PWV research. The implementation of PPP

technique is based on the core functions of P*software developed at The University of
Calgary and the additional software components that have been developed from this
thesis to support concurrent multi-station GPS data processing in a real-time mode.
The system has the following major functions implemented:
1. Real-time raw GPS data acquisition — implemented using a Canadian GPS
network which consists of 21 GPS stations,
2. Network data communication for real-time GPS retrieving,
3. Concurrent multi-station GPS data processing to calculate water vapor,
4. Displaying real-time water vapor (PWV) distribution visually, and
5. PWV data storage and output.
The real-time GPS PPP-inferred water vapor system is developed in the following
four stages:
1. System design and implementation,
2. Evaluation of system performance,
3. Water vapor interpolation and mapping by ordinary kriging, and
4

Principal component analysis of GPS water vapor dataset.



To evaluate the system performance, the post-mission results are presented. The
inter-comparisons of the tropospheric results from (near) real-time system, 1GS and post-
mission are conducted.

1.2 Contributions

In this thesis, a real-time GPS water vapor system has been developed using real-time
PPP technique and a Canadian GPS network. Its performance and meteorological role
under near real-time operation mode has been evaluated. The contribution of each of 17
original GPS water vapor variables to the system variability and the association between
them has been investigated. The specific contributions of this thesis are as follows:

1. A real-time GPS PPP-inferred water vapor system based on a Canadian GPS
network has been developed. The system generates and outputs (near) real-
time PWV products under all weather conditions. The system performance
evaluation show that water vapor estimates have an accuracy of 1.5 ~ 2.0 mm.
An evaluation on the current Canadian GPS network performance as a
meteorological role has also been conducted.

2. A program which uses Ordinary Kriging technique to predict and
quantitatively describe water vapor distribution over Canada using the PWV
samples from the system has been developed. The program performs (i)
calculating experimental semivariogram, (ii) fitting semivariogram models by
a nonlinear weighted least-square process, (iii) determining best model using
cross-validation, and (iv) estimating PWV map and associated standard error
map.

3. A Principal Component Analysis (PCA) and variable correlation analysis on
GPS water vapor dataset has been conducted. PCA derives a seven-principal
component/domain model, which simplifies the description of the set of
intercorrelated original variables. The variable correlation analysis arrives at
the conclusions of the associations between 17 variables of GPS-derived water

vapor variables.



1.3 Outline

Chapter 2 presents the theoretical background of GPS water vapor remote sensing, which
includes a brief introduction of GPS, the effect of troposphere on GPS measurement,
GPS sensing techniques.

Chapter 3 presents the GPS PPP water vapor determination model used in this thesis.
Precise Point Positioning error correction models are also described.

In Chapter 4, the design of the real-time GPS water vapor sensing system design and
how it is implemented are explained. The system consists of five functional components
and each component’s function is illustrated. Since currently the meteorological data are
provided with one-hour latency files, an auxiliary component is used to handle the
downloading and unzipping the hourly meteorological files.

Chapter 5 gives the evaluation of the system performance, which includes
positioning errors, zenith total delay (ZTD) and zenith wet delay (ZWD). In order to
have a general assessment of the accuracy of the PPP-derived ZTD products, the
accuracy comparison results of the real-time system are presented with some operational
GPS network ZTD products.

The whole program for real-time precipitable water vapor prediction and
interpolation is presented in Chapter 6. The geostatistic theory of kriging, which is the
basis of this program, is briefly introduced. The three-step interpolation process of the
ordinary kriging is illustrated using a one-day real-time sample data to generate 24 hourly
PWV maps.

The principal component analysis (PCA) and the variable correlation analysis of
GPS water vapor dataset are provided in Chapter 7. The 17 variables of the system are
categorized into four groups. The chapter starts with a brief review of PCA theory and
then explains the PCA process to derive a seven-principal-component/domain structure,
which simplifies the description of the set of intercorrelated variables. A variable
correlation analysis is further presented using the scatter plots and linear regression.

The conclusions and future work are given in Chapter 8.



Chapter Two: GPS Meteorology
This chapter presents the theory of GPS water vapor remote sensing and its applications.

2.1 Introduction to GPS

The GPS system is officially known as the NAVSTAR System (Navigation Satellite
Timing and Ranging). It was originally envisioned as a ranging system from known
positions of satellites in space to unknown positions on land, sea, in air and space. The
GPS constellation consists of 24 satellites in 6 orbital planes with 4 satellites in each
plane. (Currently, at least 31 GPS satellites are operated) The ascending nodes of the
orbital planes are separated by 60 degrees and the planes are inclined 55 degrees. Each
GPS satellite is in an approximately circular, semi-synchronous (20,200 km altitude)
orbit (see Figure 2.1). The orbits of the GPS satellites are available from navigation
message broadcast from GPS satellites or (in much better accuracy knows as precise
orbits) organizations such as the Jet Propulsion Lab (JPL) and the International GNSS
Service (IGS). The GPS receivers convert the satellite's signals into position, velocity,

and time estimates for navigation, positioning, time dissemination, or geodesy.

~,

Figure 2.1 Constellation of 24 GPS satellites (not to scale) which consists of six orbits
(which has four satellites. The ascending nodes of the orbital planes are separated by 60 degrees; the planes
are inclined 55 degrees (Willkommen, 2005))
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GPS signals

Each GPS satellite transmits two signals for positioning purposes (Langley, 1990):

L1 signal. Modulated onto the L1 carrier (1,575.42 MHz) are two pseudo-random
noise (PRN) ranging codes and the navigation (broadcast) message. The codes
(used to determine the pseudo-ranges) are (a) the 1 millisecond-long C/A-code
(effective wavelength of ~300 m); (b) the weeklong segment of the P-code
(effective wavelength of ~30 m). The navigation (broadcast) message comprises
satellite orbital information (ephemeris), ionospheric modeling coefficients, status
information, system time and satellite clock bias, and drift information.

L2 signal. Modulated onto the L2 carrier (1,227.60 MHz) are the P-code and the

navigation message — the C/A code is not present.

The PRN codes are unique for each satellite and the correlation between any pair of

codes is very low. This allows all satellites to share the same carrier frequency.

The above GPS signals have some clear weakness: (i) Civil user has only access to

the C/A-code on L1; (ii) they are not provided total spectrum protection and can not

easily penetrate into interference and jamming; and (iii) the reflected signals (multipath)

cause position errors. In 1996, a GPS modernization was planned and since then it has

been advanced. According to this plan, a new civil signal would be added to the GPS L2

frequency. Instead of replicating the C/A-code, a truly modernized L2 civil (L2C) signal

was designed. Also, to satisfy the needs of aviation, the third civil frequency, known as

L5, would be centred at 1176.45 MHz, in the Aeronautical Radio Navigation Services
(ARNS) band (Bruyninx, 2008).

L2C signal. Modulated onto the L2 carrier are, two distinct PRN code sequences
to providing ranging information; the Civilian Moderate length code (called CM),
and the Civilian Long length code (called CL). The CM code is 10,230 bits long,
repeating every 20 ms. The CL code is 767,250 bits long, repeating every 1500
ms. Each signal is transmitted at 511,500 bits per second (bit/s), however they are
multiplexed together to form a 1,023,000 bit/s signal. L2C is tasked with

11



improving accuracy of navigation, providing an easy to track signal, and acting as
a redundant signal in case of localized interference (Bruyninx, 2008).

GPS observables

Pseudorange. The pseudorange is the measured distance between a GPS satellite at some
transmit time and the receiver’s antenna at some receive time. It is calculated by the time
the signal takes to propagate from the satellite to the receiver multiplied by the speed of
light. The pseudorange is biased by the lack of time synchronization between the clock in
the GPS satellite and the clock in the GPS receiver. Other bias effects include the
ionosphere and troposphere delay, multipath and receiver noise. The equation for the

pseudorange observable is (Misra and Enge, 2001):
p=r+c-(d, —a)+1 +T+s, 2.1)

where p is the pseudorange, r is the geometric range from the receiver to the satellite, ¢
is the speed of light, &, and &° are the offsets of the receiver and satellite clock from
the GPS time, | jandT are the delays imparted by the ionosphere and troposphere and
¢, represents the effect of multipath and receiver noise. The receiver coordinates (x, Y, z)
are related with the geometric range r along with the coordinates of the satellite

(xs, ys,zs) in the form of r? = (xS —x)2 +(yS - y)2 +(zS —2)2.

Carrier phase. The phase observable (¢) is the difference between the received satellite

carrier phase (sensed by the receiver's antenna) and the phase of the internal receiver
oscillator, which is also called carrier beat phase. A phase measurement is "ambiguous™
as it cannot discriminate one (either L1 or L2) wavelength from another. The receiver
measures the fractional phase and keeps track of the number of whole wavelengths of the
carrier wave. The initial phase is undetermined, or ambiguous, by an integer number of

cycles N. The equation for the carrier phase observation is (Misra and Enge, 2001):
$=2(r=1,+T )+ f (&, - )+ N +e, (2.2)
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where N is the integer ambiguity and f is the carrier frequency. Estimation of N is

referred to as integer ambiguity resolution or initialization. I, and T are the delays

¢

imparted by the ionosphere and troposphere and ¢, represents the un-modeled effects,

modeling error and measurement error for carrier phase observation. The carrier
measurements in equation (2.2) can be converted to units of length by multiplying the

wavelength (Misra and Enge, 2001):

D=1-¢
s (2.3)
—r—1,+T +c-(&, —a°)+2-N+4-s,

Differential techniques

Differential GPS surveying technique requires two or more GPS receivers to
simultaneously track the same set of satellites. Based on this strategy, appropriate
differential techniques have been developed to eliminate those biases common or linearly
correlated across different observations to obtain GPS solutions. In the following, single

and double differential processing for phase observations are given.

« Single difference (two different receivers tracking the same satellite) - eliminates
the satellite clock offset (Misra and Enge, 2001):

G =27+ f S H N+ L+ T ey (2.4)

where (o) = (o) —(e)' ; the superscript k denotes the kth satellite and the

ij i

subscripts i and j donate the ith and jth receiver, respectively.

When two receivers are within a short distance (e.g. < 10 km), I = Ijk and
T = Tjk since both observation signals have a proximately same atmospheric
pathand I and T, become zero. Under such condition, the model (2.4) becomes
(Misra and Enge, 2001):

g = AT -rf S + N+ ey (2.5)

U]
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o Double difference (i.e. difference either the between receivers or the between-
satellite difference pairs (Figure 2.2)) - eliminate both the receiver and satellite

clock offset.

The equation of double difference is (Misra and Enge, 2001):
b =4 — 4,
=2 NS T e (2.6)
where ()i = (o) (), . In particular,
ai' = - 0)-(6 - ).
The model (2.6) for a short baseline between two receivers becomes

kl -1kl kl ki
¢ij =A I +Nij + &4

Satellite |

Satellite k

Receiver i (basefine) Receiver j

Earth

Figure 2.2 Configuration of two GPS receivers and two satellites with their corresponding ray paths
(The four observations are used to form on double difference observation. The straight line between two
receivers is called baseline. (Adapted from (Kruse 2001)))
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Error sources

Orbit error. This error is the discrepancy between the true position (and velocity) of a
satellite and its known value. This discrepancy can be parameterized via the three orbit

components: alongtrack, crosstrack and radial.
There are two basic types of satellite orbit information:

o Real-time ephemerides that are predicted from past tracking information, and are
available to GPS users at the time of observation, and

o Post-mission ephemerides, which are orbit information available after fact as
there is a delay for collection of the data, transmission of the data to the computer
centre, the orbit determination process and the subsequent distribution to GPS

users.

In this study, near real-time GPS data processing is utilized. Hereafter both predicted

ephemerides and JPL real-time ephemerides correction data are used.

Satellite clock errors. These errors are satellite clock bias, drift and drift-rate, which are
explicitly determined in the same procedure as the estimation of the satellite ephemeris
and available to all GPS users as clock error coefficients broadcast in the Navigation

Message.

In this study, PPP algorithm is utilized and the clock errors are “‘eliminated’ using

real-time JPL satellite error correction data.

Receiver clock error. This error means the offset between the receiver clock and the
GPS system time. Since GPS receivers use inexpensive crystal clocks, which are much
less accurate than the satellite clocks, the receiver clock error is usually much larger than
that of the GPS satellite clock. The receiver clock error leads to a range error in the
pseudorange and carrier phase measurements. In this thesis, PPP algorithm is utilized and

the receiver clock error is estimated.
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lonosphere delay. The GPS signals passing through the atmosphere encounter refraction
effects including ray bending and propagation delays. lonosphere delay is imparted by
the ionosphere (thermosphere) which ranges from 80 to 1,500 km above the earth (Leick,
2004) and causes a significant range error. For day-time observations near solar
maximum this effect can be tens of meters. Fortunately, the ionospheric delay is
dispersive and can be reduced to a millimeter or less by forming particular linear
combinations of the L1 and L2 code/phase measurements (i.e., using dual-frequency

observations) (Misra and Enge, 2001):
(2.8)

and

O, = D, - ) 2.9
IF (szl _ fLZZ) L1 szl _ fL22 L2 ( )

where P. and ® . are the ionosphere-free pseudorange and phase measurements,
respectively; P, /® and P, /® , are the pseudorange/phase measurement at L1 and
L2 , respectively; f and f , are the corresponding carrier frequencies. The linear

combinations (2.8) and (2.9) eliminate the ionospheric effect, but may amplify other

sources of error (Misra et al., 2001).

Troposphere delay. This delay is imparted by troposphere which is the lower part of
atmosphere. Unlike ionosphere, troposphere is electically neutral and non-dispersive for
GPS frequencies; therefore the delay can not be removed using dual-frequency
relationship. The delay has to be measured, or estimated, from one of a number of
models. Details on the tropospheric efftects and the corresponding methods of reduction

will be discussed in later sections.
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2.2 Effect of the troposphere on GPS Measurements

In this section, the nature of troposphere, how the neutral part of atmosphere affects the
propagation of GPS signals, the nature of tropospheric effect and its size and variability,

and the estimation of troposphere delays using GPS will be described.

2.2.1 Nature of the troposphere

The troposphere is the lowest major atmospheric layer, and is located from the Earth's
surface up to the bottom of the stratosphere (Figure 2.3). It has decreasing temperature
with height (at an average rate of 6.5 degrees C per kilometer); whereas the stratosphere
has either constant or slowly increasing temperature with height. The thickness of the
troposphere is not same everywhere. It extends to a height of less than 8 kilometers over
the poles and exceeds 18 kilometers over the equator. The upper boundary of the
stratosphere, called the stratopause, extends to a height of about 50 kilometers (S & TR,
2004).

lonosphere (Aurora)

Mesosphere

Stratosphere
Tropopause

Troposphere

Figure 2.3 Layers of the Earth’s atmosphere
(Cardall and Daunt, 2008)
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The troposphere is denser than the layers of the atmosphere above it (because of the
weight compressing it), and it contains up to 75% of the mass of the atmosphere. It is
primarily composed of nitrogen (78%) and oxygen (21%) with only small concentrations
of other trace gases. All atmospheric water vapor or moisture is found in the troposphere
(Barry and Chorley, 2003).

The thin layer that divides the troposphere from the stratosphere is called the
"tropopause”, located at an altitude of around 8 km in the winter, to around 13 km high in
the summer, and as high as 17 or 19 km in the deep tropics. Both stratosphere and
troposphere layers are non-dispersive at radio frequencies below about 30 GHz because
they are electrically neutral. Because 80% of the neutral atmosphere lies within the
troposphere, the whole neutral atmosphere is commonly referred to as the “troposphere.”
(Brunner et al, 1993)

2.2.2 Nature of the tropospheric delay

As the GPS radio signals travels from satellite to receiver, it is affected by the atmosphere
in two distinct ways (see Figure 2.4). First, the signals are bent with respect to in
gradients in the index of refraction of the atmosphere, traveling along a curved path (S)
instead a geometrical straight line (G) the signal would travel in a region of constant
refractivity. The difference between the lengths of these two paths is known as the
geometrical delay. Second, the speed of propagation of GPS signals is slower in a region
of finite density than that in a vacuum. The increase in the time required to cover a given
distance can also be expressed in terms of excess path length, yielding the optical delay.
Both delays can be related to the variation of the refractive index, n, of the medium in the

following manner (Yuan et al., 1993):

AL = jn(s)-ds -G (2.10)

L
where n(s) is the refractive index as a function of position s along the curved path L, and
G is the geometrical straight-line path length through the atmosphere. Because the index
of refraction n(s) is numerically close to unity, it is more conveniently expressed in

terms of atmospheric refractivity (N) where
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N(s) = [n(s)- 1]-10° (2.11)
Equation (2.10) can be expressed in terms of refractivity (Yuan et al., 1993):

AL = 10°[N(s)-ds - (S - G) (2.12)

where S is the curved path length along L. In this equation, the first term of the equation

corresponds to optical delay and the second term corresponds to geometrical delay.

=3
w %,

E Atmosphere /'  Earth

Figure 2.4 GPS Signal Geometry
(where G is the geometrical straight line the signal would travel in a region of constant refractivity and S is
a curved path signal actually travels along due to the atmospheric refraction (Dodson et al., 1996))

To model the propagation delay one needs to develop a model to determine the
integral along the line-of-sight to the satellite. The atmosphere is conveniently divided
into two distinct strata: ionosphere and troposphere according to their natures and
abilities to model the refractivity integral. The ionosphere is a dispersive medium at GPS
signal frequencies and the delay imparted by it can be largely eliminated using dual-
frequency observations (see Equation (2.8) and (2.9)). However, the troposphere is
electrically neutral atmosphere which is a non-dispersive medium at GPS signal
frequencies; therefore, the delay imparted by troposphere can not be eliminated by the
linear combination of dual-frequency observations. The tropospheric delay has to be
measured or estimated. The requirement of the model is the ability to estimate the

integral of atmospheric refractivity along the line-of-sight.
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The refractivity of the neutral atmosphere is a function of the local pressure,
temperature, and water vapor content. The approximate expression for the refractivity is
(Leick, 2004)

N(r,pd,pwv)=kl.%-zd-1+k2-pT—WV-zv;3+k3-$—V;V-zV;§ (2.13)
where T is absolute temperature in degrees Kelvin, p, is partial pressure of dry air in
millibars, p,, is partial pressure of water vapor in millibars, k,, k, and k, are physical

constants: k, = 77.60K /mbar , k, =69.5K /mbar and k, = 370100K*/mbar, Z, and

Z,, are compressibility factors for dry air and water vapor, respectively. The first term

expresses the sum of distortion of electro charges of the dry air molecules under the
influence of an applied magnetic field. The second term accounts for the same effect but
for water vapor. The third term accounts for the permanent dipole moments of the water
vapor in the atmosphere; it is practically independent of frequency within GPS magnetic
frequency (Leick, 2004).

Equation (2.13) is further developed by splitting the first term into two terms, one that
represents refractivity of an ideal gas in hydrostatic equilibrium and another that is a
function of the partial water vapor pressure. Thus the large hydrostatic (dry) constituent

can be accurately computed using ground-based total pressure p (p =P, + pwv). The

smaller and more variable water vapor must be dealt with separately (Leick, 2004). The

modified equation (2.13) becomes

' pwv pWV =
N(T:pd’pwv):kl'Rd'p"'(kz'T""ks'T_zj'Zwi (2.14)
. . . . , Ry M.,
where R, is dry air constant, p is the total density, k, =k, —k; T k, =k, - It
wv d

p, and p,, are the universal gas constant for ideal gas and water vapor, respectively,
M, and M, are the molar mass for ideal (dry) gas and water vapor, respectively.

In equation (2.14) the refractivity is clearly split into a dry component, i.e. dry

refractivity N, and a wet component, i.e. water vapor refractivity N, :
Nd(Tvp):k1'Rd'P:k1'T£ (2.15)
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! pwv pWV -
NWV(T,pWV):(kz'T+k3'T—2]'ZW$ (2.16)

where N =N, + N, . The hydrostatic refractivity N, depends on total density o or the
total pressure p. Figure 2.5 shows a typical height profile of N, and N,, as derived

from radiosonde data (Brunner et al., 1993) where the shaded area indicates the overall

variability of the wet component. Figure 2.5 reveals (1) that the variability of N is very

small within the troposphere because the nearly constant ratio of the constituents of air,
with the exception of water vapor and condensed water; (2) that the effective height for
N, is about 40 kilometers, above which N, is negligible; (3) that the effective height for

N,, Is at heights below the troposphere, within this region the mixing of dry air and

water vapor is a rather complicated process depending on weather conditions. Thus the
N,, profiles show strong variations with height, time, and location and are very difficult

to predict.

40

Height (kilometers)
l’a_;

Ne
10
Nwy 2,
OL_I 4‘1,\‘-_.
100 200
Refractivity

Figure 2.5 Typical height profiles of dry refractivity and water vapor refractivity
(where the shaded area indicates the overall variability of the wet component (Brunner et al., 1993))

Integrating (2.13) along the zenith direction using (2.15) and (2.16) gives the zenith
hydrostatic (dry) delay (ZHD or ZDD) and zenith wet delay (ZWD), respectively,
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ZDD =107 | Ny(s)-ds (2.17)
ZWD =10 N,,(s)-ds (2.18)
where zenith total delay (ZTD) = ZDD + ZWD. The hydrostatic refractivity N, depends
on the total pressure p ; if integrating N, along the signal path then hydrostatic

equilibrium condition to ideal gases is applied (Leick, 2004). The integration of N, is

rather complicated due to the temporal and spatial variation of partial water vapor

pressure p,, along the path (Leick, 2004). Figure 2.6 shows a typical example of the

variation of the tropospheric delays as a function of elevation angle to a GPS satellite.
The shaded area indicates the range of water vapor delays. The total tropospheric delay
effects are the sum of both curves in Figure 2.6. Figure 2.6 indicates that it should be
possible to express the tropospheric delay at a certain elevation angle as the product of
the tropospheric zenith delay and a function that maps the increase in delay with an

increasing zenith angle.

25¢
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Figure 2.6 Propagation delays as a function of elevation angle
(Brunner et al., 1993)
2.2.3 Modeling zenith delays

Even though the hydrostatic refractivity N, obeys the ideal gas law, performing

integration (2.17) still requires assumption about the variation of temperature and gravity

along the path (Leick, 2004). A successful solution for ZHD is Saastamoinen model,

22



which simplifies assumptions regarding changes in pressure, temperature, and humidity.
The Saastamoinen’s model is given as (Leick, 2004)

_ 0.0022768 Pyrpar] (2.19)
1-0.00266 - cos(2¢)—0.00028 - H [km] |

ZHDy,;

where p, is the total pressure at the site whose orthometric height isH and latitude is ¢ .

The model assumptions about the wet refractivity are much more difficult because of
the strong variations of the water vapor with respect to time and space. There are some
models for ZWD solutions such as Hopfield model, and Mendes and Langley model. The
latter is presented below. Mendes and Langley model was derived based on the
radiosonde data and the correlation analysis between the ZWD and the surface partial

water vapor pressure p,, .. The model is (Leick, 2004)
ZWD = 0.0122+0.00943- p,,, (2.20)

Since the tropospheric zenith wet delay ZWD is poorly correlated with surface
meteorological data and the surface meteorological data are not necessarily representative
of adjacent layers along the line of sight to the satellites, the derived ZWD models tend to
be inadequate, offering poor results (Leick, 2004; Dodson et al., 1996).

As a remedy, meteorological data of a standard atmosphere has often been used. Such
a standard atmosphere is referenced to sea-level and then using the height of the GPS site
as the sole variable to calculate the meteorological values for a site. And so these values
are independent of time and actual weather conditions. Excellent results have been found
using standard atmospheric data as input for the Saastamoinen model in processing GPS
data (Brunner et al., 1993).

2.2.4 Mapping functions

The models described above provide the solutions for tropospheric delays in the zenith

direction. The satellites however are observed at numerous elevation angles (e). In fact,

tropospheric delay increases with the zenith angle ¢ as the air mass traversed by the
signal increases (see Figure 2.7). The exact functional relationship is again complicated
by temporal and spatial variability of the troposphere. As Figure 2.7 indicates, it is

possible to map a tropospheric delay from zenith down to slant path for the respective
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elevation angles. The mapping function models this dependency, which provides an
advantage for us to model or estimate a zenith delay for each site as an unknown
parameter in the least-squares adjustment of GPS observations instead of delay values at

all elevation angles (Brunner et al, 1993). The following functions show the relationship

]

Tropospheri

Figure 2.7 The path length of a signal through troposphere
(where $is zenith angle and € is the elevation angle. The parts of rays highlighted in red represent
schematically the different tropospheric delays, where the ZTD is the shortest one. (Adapted from (Misra
and Enge, 2001))

between the slant hydrostatic (dry) and wet delays, SDD, and SWD,, and the respective

zenith delays:
SDD, = ZDD;-m,;(e) (2.21)

SWD, = ZWD; -m,,, () (2.22)
The slant total delay (STD, ) is

STD, = ZDD, -m¥,(e)+ ZWD; - m{, ; (e). (2.23)

In this study the popular Niell mapping functions are used, which are derived based
on temporal changes and geographic location. Both the dry and wet mapping functions

are given as below respectively (Leick, 2004):
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m, (e)= +h- - (2.24)

1+c,.

(2.25)

) a
sine + wet
t

. b
sine+-—"——
sine+c,,,

where e is the geometric elevation of the observation, his the site height above sea level

in kilometers, both a, , by, , Cy, and @, , b, C,e are hydrostatic and wet coefficients

dry ? wet ? Mwet ! Ywet

which are listed in the look-up Tables in Appendix A, a,, by, c, are the height

correction constants: a,, = 2.53x10°, b, = 5.49x10°, and c, = 1.14x10°.

2.2.5 Stochastic path delay models

The water vapor in troposphere is variable in space and time which result in fluctuations
in the wet delay (ZWD). If its spatial and temporal characteristics can be characterized by
probabilistic laws or statistical models, then ZTD/ZWD can be predicted over varying
spatial dimensions and temporal scales according to a given probability density function
or stochastically in terms of the spatial and temporal correlations of the fluctuations
(Tralli et al., 1990). Two appropriate models for stochastic path are random walk and

first-order Gauss-Markov processes.

2.2.5.1 First-order Gauss-Markov process

The first-order Gauss-Markov process, expressing the change in the zenith wet delay
(ZWD) with time (dt), can be defined by the differential equation (Tralli et al., 1990):
dZWD/dt = —ZWD(t)/ 7o, + W(t) (2.26)
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where w(t) is a zero-mean white noise random variable of variance and z,, is the Gauss-

Markov correlation time. The discrete solution to (2.26) is represented by (Tralli et al.,
1990):

1

ZWD(t + 4t) = m-ZWD(t) + (1 = m2 )2 -wg (t) (2.27)
where
m=exp(— 4t/ zg, ) (2.28)

The parameter, m, is a measurement of the exponential correlation between adjacent
measurements of sampling interval At (in GPS, At donates the time difference between

epochs k + 1 and k) and it can be obtained from
m-[zZwWD?(t)|= [ZWD(t + 4t)- ZWD(t)] (2.29)

where [] denotes the expectation value operator; based on m, the Gauss-Markov

correlation time, z,, , is obtained by

At
Tom = _W (2.30)

Given m, the steady-state deviation of Gauss-Markov process, og,, , is obtained from

(2.27)

o \/{(ZWD(t T At)—m-ZWD(t))’ 23D

a-m?)

2.2.5.2 Random walk process

A random walk process is a defined simply by
dZWD/dt = w(t) (2.32)
which is the same as equation (2.26) in the limit of an infinite correlation time

(7gm = ). The discrete solution to equation (2.32) is given by

ZWD(t + At) =m-ZWD(t) + /At-w,, (2.33)

Hence, the deviation for random walk process is
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o \/{(ZWD(t+AtZt— ZWD(t))? .30

The random walk deviation actually is the reverse ratio of the sampling interval. It can
grow indefinitely and therefore is not steady-state.
Zenith delays (ZDD or ZWD) can be modeled either as Gauss-Markov process

entirely with parameters of the steady-state deviation (o, ) and correlation time (7, ),
or as random walks process based solely on the process noise rates (o, ). According to

the limit of infinite or large correlation time relative to data sampling interval At
modeling the tropospheric delays as a Gauss-Markov process becomes equivalent to
modeling as a random walk process. Since the first-order Gauss-Markov process is of
zero mean, a constant term is estimated jointly as an additional parameter (Tralli et al.,
1990). An advantage with the Gauss-Markov model is that the direct comparison can be
made among constant delay models to evaluate the marginal improvement to the
parameter estimates especially attributable to modeling the path delay fluctuations (Tralli
et al., 1988). A random walk process, in the limit of decreasing process noise, approaches
a constant constrained by an a priori deviation specified according to the expected path
delay at the start of the process. This a priori deviation is analogous to the constraint
imposed on the constant term which is estimated jointly with Gauss-Markov process
(Tralli et al., 1990).

Stochastic model parameters values such as o, , 7¢y and o, could be initially

from the data by fitting a sample mean and sample autocorrelation function.

2.2.6 Estimating zenith delays

The standard atmospheric model helps obtain accurate meteorological data, but it fails to
describe the meteorological conditions at a GPS site during a particular observation
session (Dodson et al., 1996).

Least-squares adjustment technique can be used to solve for the entire tropospheric
zenith delay, or the tropospheric wet delay (the dry tropospheric zenith delay is then
modeled from barometric pressure alone) for each GPS station.

For simplicity, equation (2.23) will be considered as:
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STD, = ZTD, -m! (e), (2.35)

combined ,i

where

K ZDD, 'mg,i(e)_l_ZWDi ’mxlz(vv,i (e)
M combined. (e) = ZDD. + ZWD.

(2.36)

Then the tropospheric delay is estimated as part of the least-squares procedure using the
double-difference observation, i.e.,

DN = pi —2-N¥ +2TD, -(m! —m*)-ZTD, - (m! —m¥) (2.37)
Usually an unknown troposphere zenith delay is estimated per site and session. Such
a model tends to average any variations of the troposphere zenith delay. The problem
with this technique is that it can not model certain error sources within the system such as
ocean loading effects, the wet tropospheric delay fluctuation (Brunner et al., 1993;
Dodson et al., 1996).
An alternative is to model the troposphere zenith delay by a stochastic model (see
Section 2.2.5), which treats the unknown troposphere zenith delay as a time-varying

parameter. The mathematical adjustment is performed with a sequential Kalman filter
(see Figure 2.8).

28



k=1 Initial State
Vector & covariance

GPS data / k = k+1
Meteorological data

h 4

Measurement Model

h 4

Prediction =
(Recursively |
calculate
Kalman Dynamic Model
v gain)

1

Measurement Update

Figure 2.8 Programming diagram for Kalman filter parameter estimation

The Kalman filter is designed to produce minimum error estimation for a system. The
development of Kalman filter needs to concern the initial state of the system, the system
dynamics, the measurement dynamics and assumptions of system noise and measurement
errors (Gelb, 1974).

2.2.7 Zenith wet delay conversion into precipitable water vapor

Zenith wet and precipitable water vapor (PWV) are related by:

Q- 2WD (2.38)

PWV
where Q is a dimensionless conversion factor and its value varies between 5.9 ~ 6.5,
depending on the air temperature (Leick, 2004). For warmer conditions, when the air

holds more water vapor, the ratio is toward the low end.
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A ground receiver can have simultaneous observations along 4-12 ray paths. GPS
sensed PWV is modeled using an average of all observed GPS rays after they have been

scaled to zenith, as shown in Figure 2.9.

to GPS satellites

\ \ f to GPS satellites

( | minimum elevation angle
L4

ground GPS receiver

Figure 2.9 Schematic presentation of GPS PWV
(GPS PWV is modeled as an average of all GPS satellite observations above the minimum elevation angle
represented by the cone. The cone is the maximum angle aperture of the GPS antenna) (Adapted from
Ware et al. (1997))

2.3 GPS sensing techniques

In terms of source of the GPS data for meteorological application, there are two primary
methods by which GPS data can be used for sensing the properties of atmospheric water
vapor (Bevis et al., 1992; Yuan et al., 1993).

2.3.1 Mapping precipitable water vapor using existing geodetic GPS networks

This technique utilizes stationary ground-based receivers, which originally are developed
for high-precision geodetic applications (see Figure 2.10). It is achieved in two steps:
accurately modeling all GPS signal delays, including the delay caused by the Earth’s
atmosphere, and then adopting the stochastic filter and other statistical techniques to
recover the zenith wet delay from GPS data. Afterwards, it is possible to estimate the
PWV from observed zenith wet delay (based on (2.3)). Given a sufficient dense network
of GPS receivers, it would be possible to map the distribution of PWV in some detail
(Bevis et al, 1992). This study is based on this technique, i.e., GPS PPP technique plus a
continuously operating GPS geodetic network.
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Figure 2.10 Retrieve water vapor using geodetic GPS network
(Ware et al., 2001)

2.3.2 Space-based GPS occultations

This technique means to obtain GPS soundings of the atmosphere by means of readings
from the GPS transmitter to a low Earth orbit (LEO) satellite (Figure 2.11). (Radio)
Occultation techniques have been applied for decades to explore and measure
atmospheric properties of other planets in the solar system. With the advent of GPS it is
regarded a valuable means to obtain profiles of refractivity, temperature, pressure, and
water vapor in the neutral atmosphere and electron density in the ionosphere. In April
1995, the GPS Meteorology (GPS MET) experiment, which placed a GPS receiver in a
low earth orbit (LEO), provided a wealth of data which was used to test this concept and
the accuracy of the retrievals. Several investigations have already demonstrated that the
retrieval accuracies obtained with GPS/MET is already comparable with the more
traditional atmospheric sensing techniques (Kursinski et al., 2001).

To extract atmosphere information from the LEO data, first the orbit of LEO must be
determined. This task can be achieved using GPS data from the LEO. Once the LEO —
GPS configuration is known accurately, the GPS measurements of an occulting LEO can
be interpreted in terms of atmospheric delay. This delay is caused by both the neutral
atmosphere and the ionosphere. The ionosphere effect can be corrected using dual
frequency signals from the GPS satellites; however, for LEO observations where the two

frequencies travel along paths, separated by several 100 m, there is an ionosphere
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correction error of 1 m or more. Brunner and Gu (1991) describes how path separation
effects may be compensated in order for GPS occultation work to achieve the highest

accuracy possible (Yuan et al., 1993).

Radio Occultation measurements using GPS and a receiver on a LEO have recently
been shown to produce accurate profiles of Atmospheric refractivity with high vertical
resolution (Yuan et al., 1993).

GPS transmitter
20,000 km altitude

LEO
(GPS receiver
1,000 km altitucle)

Figure 2.11 Schematic diagram for GPS occultation geometry for path delay calculation
(where ray paths through two (exaggerated) atmospheric layers with indices of refraction nl and n2 are
shown) (Adapted from: http://www.cpar.ginetig.com/ro.html)

2.4 Summary

This chapter has presented an overview of the GPS technique, the neutral atmospheric
effects on radio frequency signals and the GPS meteorological applications.

GPS meteorology is the application of GPS data to the monitoring and analyses of
atmospheric conditions. The use of GPS observations to estimate the precipitable water
vapor is based on the fact that the atmospheric water vapor introduces additional delay
(range error) to GPS observables as the GPS signals travel through neutral atmosphere.
To obtain the high positioning precision this delay has to be modeled or estimated by a
time-varying zenith wet delay (ZWD) which is retrieved by stochastic filtering of the
GPS data. Given surface temperature and pressure at the GPS receiver, the retrieved
ZWD can be transformed into an estimate of the precipitable water vapor (PWV).

GPS atmospheric remote sensing based on the ground-based GPS networks has two

advantages: (i) providing unattended, continuous, independent, frequent, and accurate
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observations of IPW/PWV at very low cost, and (ii) providing all-weather-condition
observations.

The GPS meteorological applications have been mainly developed in three areas:
mapping of IWV/PWV using existing geodetic GPS networks (ground-based),
tropospheric water vapor tomography using meteorological GPS networks (ground-
based), and GPS occultation observed from space (space-based).

In the following chapter, the precise point positioning (PPP) model which is adopted

in this thesis will be presented.
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Chapter Three: GPS PPP Water Vapor Determination Model

3.1 Introduction

In the previous chapter, the GPS remote sensing theory was represented. The most
commonly used technique for water vapor remote sensing is DGPS. The DGPS approach
requires at least two receivers simultaneously observing common GPS satellites and it
uses the double-difference observations to eliminate common satellite and receiver errors.
While the DGPS provides accurate positioning results, it has some drawbacks when it is
used to measure atmospheric water vapor. First, its precision is related to the baseline
length between the base and rover GPS receivers (Rocken et al., 1993; Zhang, 1999).
Next, its solution is a relative estimate of the water vapor (for shorter baselines). Third, its
operation requires data communication and synchronization between the network
receivers to facilitate double difference baseline processing. An alternative to the DGPS
approach is the Precise Point Positioning (PPP) technique.

The PPP is a concept of GPS positioning using data from a single GPS receiver and
precise satellite orbit and clock information generated by the International GNSS Service
(1GS). To achieve the highest possible point positioning accuracy to match DGPS
solution, PPP uses ionosphere-free, undifferenced code pseudorange and carrier-phase
measurements. In addition, the remaining errors such as tropospheric delay, satellite
attitude error and site displacement effect due to such as solid Earth tides are dealt with
by modelling or estimation. This technique has been demonstrated that carrier-phase-
based single point positioning can achieve decimetre or sub-decimetre accuracy levels
without the need for processing any GPS reference station data (Gao et al., 2001; Kouba
etal., 2001).

The next two sections will present the PPP water vapor determining model employed
in this thesis and the related PPP correction models.
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3.2 PPP water vapor determination model
3.2.1 Observation equations

The ionospheric-free combinations of dual-frequency GPS pseudorange and carrier-phase
obaservations are respectively given below (Gao et al., 2004):

P = f-P—f) P,
IF — £2_f2
1 2

= p+c-dt+d,, +dm, +&(P;) (3.1)

@ _ flz.q)l_ f22-CD2
IF — £2_f2
1 2

c-f,-N,—c-f,-N

=p+c-dt+d,, + T 21 om, +&(®,) (3.2)
where
P is the measured pseudorange on L, (m), i=1or 2;
D, is the measured carrier phase on L, (m),i=1or 2,
f, is the carrier frequency of L,, i=1or 2;
P is the true geometric range (m);

C is the speed of light (m/s);
dt is the receiver clock error (s);

wop 1S the tropospheric delay (m);

is the integer phase ambiguity on L, (cycle), i =1 or 2;

dm,. is the multipath effect in the measured pseudorange on L; (m);
om,- is the multipath effect in the measured carrier phase on L, (m);

g(-) is the measurement noise (m);
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3.2.2 Tropospheric delay estimation

In Equation 3.2, the slant tropospheric delay d,, can be represented using the following

trop
form (Leick, 2004):
dyo =M, (e)-ZDD +m,, (e)- ZWD (3.3)

trop

where

ZDD,ZWD are the zenith dry and wet delay, respectively;

m, (e) is the dry mapping function;
m,, (e) is the wet mapping function;
e is the elevation angle.

In this study, ZDD is modeled using the Saastamoinen’s model (Equation 2.19); ZWD is

estimated using the first-order Gauss-Markov process described in Section 2.2.5. m, (e)
and m,, (e) are the dry (Equation 2.24) and wet (Equation 2.25) Niell mapping functions,

respectively.

3.3 Precise point positioning correction models

Unlike in relative positioning, common errors can not be cancelled in PPP. The

corrections for these errors must be applied to the observations.

3.3.1 Satellite ephemeris and clock errors

The GPS navigation accuracy specification calls for a 16m 50% Spherical Error Probable
(SEP) and a 100m 95% 2drms, for the PPS and SPS systems, respectively (Warren et al.,
2003). Errors associated with satellite are ephemeris and satellite clock phase error (wrt
GPS time). Both of these errors are uncertainties. The magnitude of the former is ~2 m
and the magnitude of the latter is 7 ns. The effects of these errors depend on the type of
the GPS processing techniques that is being used. IGS provides precise GPS ephemerides
and adjusted clock parameters. Such a service is accomplished through a globally
distributed tracking stations equipped with continuously operating dual frequency
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receivers (see Figure 3.1). Positions and velocities are given for every 15 minutes, and
clock parameters for every 5 minutes. Table 3.1 gives the IGS precise data in different
latencies and intervals and their characteristics. Use of the IGS Rapid or Final products
reduces the uncertainty of satellite orbit and clock and achieves high level of accuracy.
The drawback of this precise data is the availability at some latency at present.

NASA JPL (Jet Propulsion Laboratory) has developed a model for predicting
ephemeris and satellite clock correction, which makes the real-time PPP applications
possible. For the JPL real-time precise correction products, the data sample intervals for
ephemeris and clock are 1 second and 31 seconds, respectively. This study uses JPL real-
time precise correction to implement PPP algorithm, which are sent to the University of

Calgary in a real-time data stream using UDP (User Datagram Protocol) via the Internet.
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Figure 3.1 IGS network of globally distributed tracking sites
(from:http://igscb.jpl.nasa.gov/network/complete.html)

Table 3.1 IGS combined orbit and clock products and their characteristics compared with broadcast
values (Ray et al., 2005)

GPS satellite ephemerides Accuracy Update Sample
and satellite/station clocks estimates Latency intervals interval
Broadcast Orbits ~~200 cm Real time — Daily
Sat. clocks ~T ns
Ultra-Rapid Orbits ~10ecm Real time Four times daily 15 min
(predicted half) Sat. clocks ~5ns
Ultra-Rapid Orbits =5cm 3h Four times daily 15 min
{observed half) Sat. clocks ~0.2ns
Rapid Orbits =5cm I7Th Draily 5 min
Sat. & stn. clocks ~0.l ns 5 min
Final Orbits =5cm ~13days Weekly 15 min
Sat. & stn. clocks ~0.lns 5 min
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3.3.2 Satellite antenna phase center offset

This offset is caused by the separations between the GPS satellite center of mass and the
antenna phase center. Since satellite antenna broadcasts its signals, all measurements are
made to the antenna phase centers. The IGS uses dynamic modeling for estimating the

GPS orbit and the resulting orbital data refers to the center of mass (Figure 3.2).

” OCenter of mass
@ Center of phase

Figure 3.2 Satellite antenna phase center offset
(where the z-axis points toward the Earth center; the x-axis points along the solar panel axis, the y-axis
completes the right-handed coordinate system and lies in the Sun-satellite Earth plane. (Kouba et al., 2001))

Starting on 1998-Nov-29 (GPS Week 986, day 0) the IGS products incorporated the
antenna phase center offsets given in Table 3.2. The correction of this error can be done
in Equation 3.4 (Leick, 2004):

- =1
Xphase_center = X mass_center + [I J k] X (34)

where X is the position of the satellite antenna (i.e. phase center); X is

phase _ center mass _ center

the position of the satellite’s center of mass; [T ] RJ is satellite body local unit matrix,
i=[1 0 0] is satellite-Sun unit vector in Earth Centered Earth Fixed (ECEF),
k=[0 0 1] is satellite unit vector toward Earth in ECEF, j=[0 1 0] is the third
vector of i and k which completes the right hand system, X = [xOffset Y offset zoﬁset]T,

which is offset in the satellite fixed coordinates system.
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Table 3.2 GPS satellite antenna phase center offset (X) adopted by IGS
(Block 1I/11A and 1IR are different prototype of satellites) (Kouba et al., 2001)

Xoffset (m) yoffset (m) Zoffset (m)
Block II/11A 0.279 0.000 1.023
Block IIR 0.000 0.000 0.000

3.3.3 Phase wind-up error

GPS satellites transmit right circularly polarized (RCP) radio wave and therefore, the
observed carrier-phase depends on the mutual orientation of the satellite and the receiver.
Any relative rotation between satellite antenna and receiver antenna will change the
carrier-phase up to one cycle, which corresponds to one complete revolution of the
antenna. When using GPS carrier phase observations, any relative orientation during the
observation period must be corrected by the following equations (Wu et al., 1993; Leick,
2004):

d=%-k(k-R)+kxy (3.5)

d'=%—k(k-X)+kxy’ (3.6)
. , L d'-d

5p = sign[k -(d"x d)]-cos (WJ (3.7)

where X, Yy, Z are the satellite body local unit vectors (as in satellite antenna phase

offset), X', ¥, 2" are the receiver local unit vector, k is the unit vector pointing from
satellite to receiver, |d|| is the magnitude of the vector, 5p is the phase wind-up

correction.

3.3.4 Solid Earth tides

The Earth as a whole responds to external forces as an elastic body. Solid earth tides are
caused by the gravitational force exerted by the sun and moon. The caused effect is the

periodic deformation of the solid Earth, i.e. vertical and horizontal site displacement, by

39



decimetre level. The effective values of displacements weakly depend on station latitude
and tide frequency and need to be taken account. The solid earth tide is corrected by the

following equation (Kouba and Heroux, 2001):

AF =i%-;—;{[3-lz(§j 7)lR, {3(%42}(@ 7Y _h?z]f}

j=2

+|-0.025-sin¢-cosg-sin(9, + 2)|-F, (3.8)

where GM, GM ; are the gravitational parameters of the Earth, the Moon (j = 2), and the
Sun (j = 3); r, R; are geocentric distances of the station, the Moon, and the Sun with the

corresponding unit vector F and R,

;» respectively; 1, and h, are the nominal second-

degree Love and Shida dimensionless numbers (0.609, 0.085); ¢ and A are the site
latitude and longitude and &, is Greenwich Mean Sidereal Time.

The tidal correction in (3.8) reaches ~30 cm in the radial and ~5 cm in the horizontal
direction (Kouba and Heroux, 2001).

3.3.5 Ocean loading

The ocean loading is primarily vertical variation of the crust in primarily coastal
areas, which is caused by sea level fluctuations due to the tides. These changes may cause
a surface displacement of 5 cm in the vertical and 2 cm in the horizontal direction. Tidal
ocean loading should be taken into account in space geodesy observations when precision
better than 4 cm is required and when the tropospheric zenith path delay or clock
solutions are required, unless the station is far (>1,000 km) from the nearest coast line.
The ocean load effects can be modeled in each principal direction by the following

correction term (Kouba and Heroux, 2001):

Ac=ij-chcos(a)j-t+;(j+uj—cbcj) (3.9
J
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where f; and u; depend on the longitude of lunar node (at 1 ~ 3-mm precision f;=1

and u; =0); > () represents the 11 tidal waves designated as M,, S,, N,, K,, K,
j

o,,R,Q,M,, M ,and S

m sa ?

w; and y; are the angular velocity and the
astronomical arguments at time t = 0 h, corresponding to the tidal wave component j; A,

is the station specific amplitude; @ is the station specific phase.

cj

3.3.6 Atmospheric tides

Atmosphere tides fundamentally affect the ocean and Earth tides in an indirect way. Sea
level is affected as a result of atmospheric pressure variations. Spatial and temporal
variations of atmospheric mass deform the Earth’s surface. The magnitude of the effect
can be up to ~20 mm (Tregoning et al., 2005). A simplified form for vertical
displacement correction (mm) is (Rabbel et al., 1986):

Ar=-0.35-p-0.55-p (3.10)
where Ar is the atmosphere pressure load displacement (mm); p is site pressure

difference from the standard value (101.3 KPA); p is the average pressure anomaly

within 2000 km radius surrounding the site.

3.3.7 Relativity

The clocks in satellites are subject to two relativistic effects. According to the Special
Theory of Relativity, a clock in satellite traveling at a constant speed would appear to tick
slower than a clock on the ground due to the time dilation effect of their relative motion.
According to the General Relativity, a clock located farther away a massive object (i.e. a
clock in satellites) will seem to run faster than ones on the ground (i.e. ground receiver
clocks) due to the difference in gravitational potential. The correction for the first effect
is suggested in the ICD-GPS_200C:

2
c?

At, =

r

7oV (3.11)
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where At, is the relativity correction; r® and v° are position and velocity of a GPS

satellite; c is the speed of light.

The correction for the second effect is (Rothacher et al., 2002):

at, = M- In(rs * ”;] (312)
c rf4r —r,

where At is gravity delay error; G is gravitational constant; M is mass of the earth;

r* is distance between the satellite and earth center; r, is distance between the receiver

and earth center; r.’ is distance from the receiver to satellite.

The above correction models have been implemented in the P* software.

3.4 Summary

GPS water vapor sensing can be performed by either of two ways: DGPS or PPP. The
former employs two (or more) GPS receivers simultaneously tracking the same satellites
and the latter employs one GPS receiver. While DGPS provides accurate solutions, its
performance is dependent on the inter-station distances. Through the use of ionosphere-
free, undifferenced code pseudorange and carrier-phase measurements with precise
satellite orbit and clock parameters and other error models, PPP can provide the high
accurate point positioning solutions to match the DGPS solution. Since PPP performs
single receiver station based data processing, PPP water vapor sensing technology can be

efficiently implemented in all kinds of GPS tracking site configurations.
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Chapter Four: System Design and Implementation

The real-time GPS PPP-inferred water vapor system development starts with the system
design. In this chapter, the initial conditions and system requirements are discussed firstly

and then the system design and implementation are illustrated.

4.1 Initial conditions and system requirements
4.1.1 Initial conditions

The initial conditions of this study are presented below.

4.1.1.1 Canadian geodetic (GPS) network

The present Canadian geodetic GPS network has been constructed during the last decade
and is now operated by Natural Resources Canada (NRCan). It consists of 35
continuously operating GPS stations. 20 of the 35 stations are equipped with collectable
surface weather stations which collect and record the meteorological (MET) data such as
pressure, temperature and relative humidity, and 21 of the 35 stations send raw GPS data
stream in real-time. Figure 4.1 shows the distribution of the 21 GPS stations with their
coordinate information provided in Table 4.1. The system is developed based on this 21-
real-time-GPS-station network. The raw GPS/MET data collection and management
within the network is done through RTIGSA (Real-Time IGS Archive) software, which is
developed in C++ by NRCan. RTIGSA is executed under LINUX environment and it
does the following tasks (NRcan, 2005):

= Listening to the RTIGS format data steam from the GPS stations,
= Validating the RTIGS messages,
= Saving the RTIGS data in files, and

= Multicasting the GPS/MET data on the subnet so that it is available to many users.
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The network of GPS reference stations operated by NRcan
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Figure 4.1 Canada (geodesy) GPS network operated by NRCan
(The network consists of 21 continuously operating GPS stations which send raw GPS data in real-time, 19
of 21 stations (except for USNO and MSSC) send real-time MET data stream, t00.)

Table 4.1 Network GPS station ID and coordinates

GPS site ID / name Lat (deg) Lon (deg) Height (m)
ALBH /VICTORIA 48.39 N 123.49 W 32.06
ALGO / ALGONQUIN PARK 49.90 N 78.07 W 201.97
BAIE / BAIE-COMEAU 49.18 N 68.26 W 28.48
CHUR / CHURCHILL 58.76 N 94.10 W -18.87
DRAO / PENTICTON 49.32N 119.63 W 542.24
EUR2 / EUREKA 79.99 N 85.94 W 28.68
FRDN / FREDERICTON 45.93 N 66.66 W 95.96
HLFX / DARTMOUTH 44.68 N 63.61 W 4.28
MSSC / MISSISSIPPI 30.38 N 89.61 W -13.00
NRC1/OTTAWA 45.45N 75.62 W 83.59
NRC3/OTTAWA 45.45N 75.62 W 83.59
PICL / PICKLE LAKE 51.48 N 90.17 W 315.87
PRDS / CALGARY 50.87 N 114.28 W 1248.39
SASK / SASKATOON 52.18 N 106.38 W 579.44
SCH2 / SCHEFFERVILLE 54.83 N 66.83 W 499.03
STJO/ST.JOHN'S 47.60 N 52.68 W 153.89
USNO / COLUMBIA 38.92N 77.06 W 50.17
VALD / VAL D'OR 48.09 N 77.56 W 313.77
WHIT / WHITEHORSE 60.75 N 135.22 W 1427.23
WINN / WINNIPEG 49.90 N 97.25 W 221.11
YELL / YELLOWKNIFE 62.48 N 114.48 W 181.03
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4.1.1.2 Precise satellite orbit and clock correction data

Jet Propulsion Laboratory (JPL) has developed a program to distribute the real-time
precise ephemeris correction products through the Internet. The University of Calgary is

granted to retrieve the data using User Datagram Protocol (UDP) protocol via Internet.

4.1.1.3 Meteorological (MET) data

At present, real-time MET data stream is not available in real-time stream. NRCan

provides one-hour-latency MET data files through its FTP file server on Internet.

4.1.1.4 GPS software sources

A PPP software product P* was developed at the University of Calgary, which runs in
both post-mission and real-time mode under MS Window environment. Under the static

real-time processing condition, PWV estimate at about 1 mm accuracy level has been

demonstrated using the software P® (Gao et al., 2004). P* will be the core function unit
for calculating water vapor in this real-time system, but it needs to be adapted for
concurrent real-time multi-station data processing since the real-time raw data stream
contains 21 station GPS and observation data.

NRCan offers an open source: RTIGSMR (Real-Time IGS Multicast Receiver)
software, which is a framework developed in C++ and run on LINUX platform.
RTIGSMR does the following (NRCan, 2005):

= Listens to the broadcast multicast, and

= Decodes the RTIGS messages.
Since RTIGSMR is a framework, some LINUX system functions of it can be replaced
with the corresponding MS Windows system functions or with the user’s developed

functions and then it can be applied to Microsoft Windows platform.

4.1.2 System-level requirements

Based on the system goals and development conditions stated above, the system-level

requirements are specified as below:
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= A GPS network is needed with receiver stations distributed over Canada;

= Real-time precise orbit and clock correction data is needed to support PPP data

processing;

= Data communication between the GPS data processing center (at the University of
Calgary) and RTIGSA (at the NRCan) via multicast IP address and port;

= Data communication between the GPS data processing center (at the University of

Calgary) and the JPL precise data server via UDP IP address and port;

= Concurrent multi-station GPS data processing;

= Produce near real-time estimated PWYV data for each individual station;

= Store/output the station daily/hourly log files to Web data server/FTP server; and

= Produce/output near real-time hourly PWV distribution map.

4.2 System design

The architecture of the system design is shown in Figure 4.2. The whole system

comprises five functional components (subsystems). Each of the components has its own

allocated function and is organized to cooperate with each other.
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Figure 4.2 System design and dataflow diagram
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(1) GPS tracking network component, which is a nation-wide network of GPS
reference stations. It includes tracking and collecting GPS observation data, navigation
data and meteorological data (temperature, pressure and relative humidity) from each
station and distributing them via Multicast (IP Multicast).

(2) Precise ephemeris correction data component, which is responsible for collecting
satellite orbit and clock correction data from JPL control center and distributing them to
internet users via UDP (User Datagram Protocol).

(3) PPP processing server component, which performs concurrent multi-station water
vapor calculation in real-time mode and outputs solutions: station coordinates, clock error
and ZTD/ZWD/PWV.

(4) Data communication component, which includes (1) implementing IP Multicast
protocol to set up data link between GPS tracking network component and PPP
processing server component and decode the incoming GPS/MET data stream, and (2)
implementing the UDP protocol to set up data links between Precise ephemeris
correction data component and PPP processing server component and decode the
incoming data stream.

(5) Database component, which includes a Web/FTP server and stores tropospheric

products for Web clients.

The system data processing is accomplished in a pipeline of three steps:
= Raw GPS/MET signal tracking and archiving,
= Data distributing/acquiring via Internet protocol in near real-time mode,
= Calculating PWV observables/products using GPS PPP technique,
Afterward, near real-time PWV surface maps are estimated using Kriging interpolation

based on the derived sample data from the system.

4.3 System implementation

The realization of the real-time water vapor sensing/measurement system relies on the
Internet. UDP and IP Multicast are the two Internet communication protocols used in this

thesis. To help understanding, these concepts are briefly illustrated in Appendix B.

47



4.3.1 System infrastructure

According to the system design, GPS tracking network component and Precise ephemeris
correction data component are already accomplished by NRCan and JPL, respectively.
To complete the whole system infrastructure, three computers are deployed at the

University of Calgary (Figure 4.3).
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Figure 4.3 System infrastructure diagram

= UDP client/server, which logs in the JPL UDP data server, listens to the JPL
orbit/clock correction data through UDP socket and then relays the data to computing

workstation through UDP port.
= RTIGSA server, which is loaded with NRCan RTIGSA software (LINUX system

environment) and performs the following tasks:
o0 Listening to the RTIGS format data steam from the GPS stations,

o Validating the RTIGS messages,
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0 Multicasting the GPS data on the subnet so that it is available to many

users.
= PPP processing workstation, which is the central service application. It is equipped
with Intel Core 2 CPU 6700 @ 2.66 GHz, 3.25 GB of RAM and 950 GB hard disk.

Its allocated functions include:

1. Data communication component, which includes two modules:

a. UDP data receiver, which listens to/decodes JPL precise satellite
orbit/clock correction data stream through UDP port.

b. Multicast data receiver, which listens to/decode the RTIGS format GPS
data through the IP multicast port.

2. PPP-based processing server, which provides the system interface (Figure 4.4),
performs multi-station real-time water vapor calculation and output solution log
files.

3. FTP/Web server, which stores the daily, hourly solution log files for each station
and PWV distribution files.
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Figure 4.4 The real-time GPS PPP-inferred water vapor system interface
(The right top pane shows the (near) real-time tropospheric observables/products: ZTD, ZWD and PWV in
time series in different scales)
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4.3.2 Software implementation

= Multicast receiver

Data communication component has two subcomponents: UDP receiver (for real-time
JPL orbit/clock precise data) and Multicast receiver (for real-time GPS data). The former
has already been done. This thesis handles the latter. The Multicast receiver
subcomponent is developed based on RTIGSMR (Real-Time IGS Multicast Receiver)
framework. Since RTIGSMR use Unix Socket for network programming interface, that
part of files needs to be replaced with Windows Sockets (abbreviated "Winsock" or
"WinSock") files. A new Multicast wrapper class: CMulticastSocket is created, which
derives from MFC CAsyncSocket and provides all multicast protocol programming
functions such as: JoinGroup, LeaveGrou, and OnReceive.

= PPP-based processing server

The development of PPP-based processing server is based on the P?software. P* is
originally designed for one-station processing. At present, twenty-one-station real-time
data is to be processed concurrently. In PPP-based processing server, twenty one objects
of Epoch are created, each of which presents a station and process its own data
individually. Currently only one main thread runs inside the server to execute twenty one
objects and the system performance is satisfied.

= MET data module

The real-time water vapor sensing system is designed to receive and process whole real-
time data set, i.e. GPS data, MET data and precise orbit/clock correction data. At present,
NRCan distributes hourly MET data by FTP server with one-hour latency instead by real-
time data stream. To handle this one-hour-latency MET data, an auxiliary MET data
module is created, which consists of four Window NT command script files:
MONTH_SCHEDULE.cmd, DAY_SCHEDULE_1.cmd, DAY_SCHEDULE_2.cmd and
RUNFILE.cmd (Figure 4.5). MONTH_SCHEDULE.cmd file takes charge of scheduling
for each individual month. Since there is a six-hour difference between local time and
CTU time of the MET file, two files are created to schedule whole day transaction
(hourly file downloading): DAY_SHEDULE_1.cmd for hour 00:00 ~ 15:00 and
DAY_SHEDULE_2.cmd for hourl6:00 ~ 23:00. RUNFILE.cmd takes charge of FTP
getting file, unzipping file and saving file to local directories.
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Figure 4.5 Flowchart of MET data module

» Integration of components
To make the whole system work, the UDP receiver, Multicast receiver, MET data

components need to be integrated with PPP-based processing server.

4.4 Summary

In this chapter, the real-time GPS PPP-inferred water vapor system design and
implementation has been introduced. The aim of the system design is to construct a
distributed system where distributed GPS data sources (network) and distributed
computing facility (GPS software/process) cooperate under network protocols to generate
the water vapor observables/products over Canada. The whole system consists of five
functional segments/components: two data components, one data communication
component, one GPS PPP process component and one database component. Since at
present there is no real-time MET data stream, an auxiliary component is added to handle
with downloading one-hour-latency MET files.

In the future when the GPS network is enlarged, i.e. more stations are added into the
network, the increased workload of data processing can be distributed throughout the

network to the newly added GPS processing center(s).
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Chapter Five: System Performance Analysis

This chapter presents the evaluation of the system performance based on a two-day real-
time executing segment results from the system. The performance analysis includes
position error, ZTD accuracy and PWV accuracy. In the evaluation process, the IGS
tropospheric products are used as comparison reference values (i.e., true values) and post-
mission results are also presented. In the end of the chapter, the accuracy comparison
between the real-time GPS PPP-inferred water vapor system and some developed

operational networks are shown.

5.1 Data description

The running real-time input raw dataset is from October 18~19, 2007. The observations
were started to be collected 20 hours later from the execution time of the system. The
data description is as follows:
= The number of GPS stations processed in the system is 19 (except MSSC and
USNO where no MET data available at present);
= Each station has its own Navigation data files;
= GPS observation data sampling rate at each station is 1 Hz,;
= JPL satellite orbit and clock correction data sampling intervals are 31 seconds
and 1 second, respectively;
= 18 out of 19 stations have their own one-hour-latency MET data files, except
for SASK;
= MET data sampling interval is 5 minutes;
= The used elevation cutoff angle is 7 degrees; and
= Each station is assigned an executing object (i.e. Epoch object) to process its
own real-time data; the executions of all objects are concurrent and

independent of each other.

Besides the real-time data set, the following IGS datasets were also downloaded:
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= 14-day-latency International GNSS Service (IGS) tropospheric product ZTD
files as ground truth for comparison calculation, and
= 14-day-latency IGS final orbit and clock products for post-mission

calculation.

5.2 Performance evaluation

Three aspects of the system performance are analyzed in this section: position error, ZTD
accuracy and PWV accuracy.

Since IGS tropospheric products are used as comparison reference values and 10 out
of 19 stations within the NRCan operated GPS reference network are also part of IGS

global network, the performance evaluation is conducted on these 10 stations.

5.2.1 Position error

The real-time system computes GPS receiver position, clock error, ambiguity and zenith
wet delay estimates simultaneously. The position error will illustrate the accuracy level of
the system solution and it can be used to assess the accuracy of the water vapor results.
The positioning error may also reflect the variation of the measurement environment
contributing to the water vapor bias (Skone et al., 2006). The correlation between
position errors and the water vapor will be discussed in Chapter 7.

The daily coordinates in the ITRF 2000 reference frame from the Scripps Orbit and
Permanent Array Center (SOPAC)' will be used as the reference values for the
positioning error analysis. Since SOPAC does not provide daily coordinates for the 1GS
station BAIE, the following positioning error analysis has been conducted only at the
other nine stations. Using the SOPAC coordinates as references, the position errors of

those nine stations are calculated.

1 SOPAC is an International GPS Service (IGS) Global Data Center and Global Analysis Center, which
calculates and provides precise near real-time and predicted GPS satellite orbits, determines precise polar
motion and Earth rotation variations and generates time series of daily three-dimensional positions for the
global and California stations respect to the International Terrestrial Reference Frame (ITRF).
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Shown in Figure 5.1 are the nine-station positioning errors in the North, East and Up
directions. The corresponding statistics of errors of nine stations are given in Table 5.1

and shown in Figure 5.2.

5.2.1.1 Discussion on position errors

(1) Figure 5.1 shows that (i) the horizontal position errors (i.e. both East and North
errors) are less than the vertical position error; (ii) the East position error is the
smallest and more stable over time; (iii) the biggest position error occurs in Up
direction with greater variations; (iv) the Up position error (RMS) varied greatly
with different stations (Figure 5.1), which could be related with the weather
variation state over each individual station (see Section 7.3.2) and the
measurement environmental conditions (e.g. multipath error) around each
individual station; (v) the biggest position error STD was found at station 5 (i.e.
CHUR) in UP direction, because the convergence level jumped from -0.03 mm to
0.00 mm in the second day of the dataset duration. Based on many long-time
experiments on the near real-time GPS PPP-referred water vapor system, it is
found that some stations need two days for the PPP-based solution process to
reach the final convergence limit. Since the dataset used in this analysis was
collected 20 hours later after the starting of the system, the phenomena happened
at station 5 is possible.

(2) Table 5.2 summarizes the overall positioning errors for all nine stations which
indicate a positioning accuracy of 1.8 cm in the North, 1.1 cm in the East and 4.3

cm in the Up direction, respectively.
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Figure 5.1 Near real-time position errors of nine stations
(The time axis represents the GPS time)
Table 5.1 Statistics of position errors of near real-time system (unit: m)
Station
NRC1 | PRDS | STJO | YELL | CHUR | ALGO | SCH2 | WHIT | HLFX
Mean | -0.017 | -0.015 | -0.025 | -0.009 0.000 -0.021 -0.005 | -0.019 -0.032
North Std 0.002 0.003 0.003 0.006 0.004 0.003 0.002 0.002 0.002
RMS 0.017 0.015 0.025 0.010 0.004 0.022 0.005 0.019 0.032
Mean | -0.010 | 0.011 0.009 0.016 0.004 -0.003 | -0.006 0.013 -0.014
East Std 0.002 0.001 0.001 0.003 0.002 0.001 0.001 0.001 0.002
RMS 0.010 0.011 0.009 0.016 0.005 0.003 0.007 0.013 0.015
Mean | -0.041 | 0.028 | -0.064 | -0.020 -0.018 -0.036 | -0.057 | -0.022 -0.060
Up Std 0.007 0.004 0.003 0.007 0.018 0.007 0.003 0.003 0.005
RMS 0.042 0.028 0.064 0.021 0.025 0.036 0.057 0.022 0.060
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Figure 5.2 STD of station position errors
Table 5.2 Position errors of the real-time system (unit: m)
RMS of North | RMS of East RMS of Up
Mean 0.016 0.010 0.039
Std 0.009 0.004 0.017
RMS 0.018 0.011 0.043

5.2.2 ZTD accuracy

The following two methods can be utilized to assess the real-time system performance on
the zenith total delay estimation:
(i) A comparison of the system against independent observations from
radiosondes and radiometers;

(it) A comparison of the system to the IGS tropospheric products.
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Since there is no water vapor observation from a radiosonde or radiometer at the ten test
stations, the second method has been employed. In this investigation, two types of ZTD
solutions are estimated from the near real-time system: the near real-time ZTD solution
and the post-mission ZTD solution. Both will be compared to the IGS’s ZTD products.
Because the meteorological data used for tropospheric product calculation has a
latency of one hour, the ZTD solutions from the near real-time system are actually the
estimates of the water vapor one hour earlier. A one-hour time shift is therefore applied
to the ZTD solutions before they are compared to the IGS ZTD products. Each station’s
ZTD curves obtained from the near real-time (N.R.T.) processing, the post-mission (P.M.)
processing and IGS are shown in Figure 5.3. The ZTD comparison statistics are presented
in Table 5.3 and Figure 5.4. A further statistic analysis was conducted on the data shown

in Table 5.3. A summary of the system performance is given in Table 5.4.

5.2.2.1 Discussion on ZTD accuracy

(1) Figure 5.3 shows that (i) both N.R.T. ZTD and P.M. ZTD curves have a good
agreement with the 1GS ZTD in tendency; (ii) both N.R.T. ZTD and P.M. ZTD
curves lag behind IGS ZTD for some distance; (iii) the values of ‘N.R.T. ZTD -
IGS ZTD* and ‘P.M.. ZTD - IGS ZTD’ are affected by the weather variation state:
the sharper the variation, the bigger the values of ‘N.R.T. ZTD - IGS ZTD’ and
‘P.M. ZTD - IGS ZTD’ due to the lag distances between them, which is displayed
clearly on the results of ALGO station.

(2) The results given in Table 5.4 indicate that (i) the N.R.T. ZTD has a difference of
~13 mm (RMS) from the IGS ZTD, which is within the accuracy level of current
tropospheric products (see Section 5.3); (ii) the N.R.T. ZTD can achieve the
accuracy of P.M. ZTD:; (iii) the overall accuracy of P.M. ZTD was not better than
the accuracy of N.R.T. ZTD, which is questionable and needed to be further
validated when real-time meteorological data stream is provided in the future.
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Figure 5.3 Ten station ZTD comparison plots between near real-time, post-mission and I1GS (1)

(Unit: mm)
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Figure 5.3 Ten station ZTD comparison plots between near real-time, post-mission and 1GS (2)

Table 5.3Statistics of ZTD comparisons: N.R.T.-IGS and P.M.-IGS (unit: mm)

(Unit: mm)

Mean | Std RMS
N.R.T. 11.2 9.4 14.6
NRC1 P.M. 0.0 15.4 15.3
N.R.T. 7.6 7.8 10.8
PRDS P.M. 10.7 8.2 13.4
N.R.T. 9.1 6.7 11.3
STJO P.M. 8.4 10.7 13.6
N.R.T. 9.8 49 10.9
YELL P.M. 13.2 7.3 15.1
N.R.T. 3.5 11.9 12.3
CHUR P.M. 0.3 8.5 8.5
N.R.T. 8.7 155 17.8
ALGO P.M. 6.3 22.0 22.9
N.R.T. 8.6 6.1 10.6
SCH2 P.M. 59 5.2 7.9
N.R.T. 7.9 4.2 8.9
WHIT P.M. 5.2 5.8 7.8
N.R.T. 8.3 10.4 13.3
HLFX P.M. 2.2 10.4 10.7
N.R.T. 13.5 10.2 16.9
MAIE P.M. 41 11.8 12.5
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Figure 5.4 Ten station ZTD Mean/STD/RMS plots

Table 5.4 ZTD statistics of N.R.T. system (unit: mm)

11

Mean of ZTD STD of ZTD RMS of ZTD
Comparison Comparison Comparison
N.R.T. P.M. N.R.T. P.M. N.R.T. P.M.
Mean 8.82 5.63 8.71 10.53 12.74 12.77
Std 2.57 4.29 3.47 5.03 2.89 4.55
RMS 9.15 6.95 9.31 11.56 13.03 13.48

5.2.3 PWV accuracy

Since IGS does not provide the PWV product, the IGS PWV values are obtained by
subtracting the ZHD (Zenith Hydrostatic Delay) from the IGS ZTD and then dividing the
resulting ZWD by a conversion coefficient (both ZHD (Equation 2.19) and the
conversion coefficient (= 6.5 (Equation 2.38)) are given in the GPS PPP-inferred water
vapor model). Each station’s PWV curves from the near real-time (N.R.T.), the post-

mission (P.M.) and IGS are shown in Figure 5.5. The PWV comparison statistics are
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presented in Table 5.5 and Figure 5.6. A further PWV analysis is conducted on the
statistical data presented in Table 5.5 and a summary of the system PWV performance is
provided in Table 5.6. The PWV results look consistent to the results obtained for the
ZTD estimates. The results show that the near real-time system PWV differs from the
IGS PWV in ~2 mm, which is within the accuracy level of current tropospheric products
(see Section 5.3). But, the overall accuracy of P.M. PWV was not better than the
accuracy of N.R.T. PWV, which is questionable and needed to be further validated when

real-time meteorological data stream is provided in the future.
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(Unit: mm)

Table 5.5 Statistics of PWV comparisons: N.R.T.-1IGS and P.M.-IGS (unit: mm)

Mean | Std | RMS

N.R.T. 2.0 1.4 2.5
NRC1 | p.Mm. 0.0 2.5 2.5
N.R.T. 1.3 1.2 1.7
PRDS | p.Mm. 1.7 1.3 2.1
N.R.T. 1.4 1.0 1.7
STIO | p.Mm. 1.3 1.7 2.1
N.R.T. 1.6 0.7 1.7
YELL | p.m. 2.0 1.1 2.3
N.R.T. 0.5 1.9 2.0
CHUR | p.M. 0.0 1.3 1.3
N.R.T. 15 2.4 2.8
ALGO | p.M. 1.0 35 3.7
N.R.T. 1.4 0.9 1.7
SCH2 | p.Mm. 0.9 0.8 1.2
N.R.T. 1.2 0.6 1.3
WHIT | p.m. 0.8 0.9 1.2
N.R.T. 1.4 1.6 2.1
HLEX | p.Mm. 0.4 1.7 1.7
N.R.T. 2.2 1.6 2.7
BAIE | p.m. 0.6 1.9 2.0
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Figure 5.6 Ten station PWV Mean/STD/RMS plots

Table 5.6 PWV statistics of near real-time system (unit: mm)

Mean of STD of RMS of
PWV Comparison | PWV Comparison | PWV Comparison
N.R.T. P.M. N.R.T. P.M. N.R.T. P.M.
Mean 1.45 0.87 1.33 1.67 2.02 2.01
Std 0.46 0.66 0.56 0.82 0.50 0.75
RMS 1.51 1.07 1.43 1.84 2.07 2.13

5.3 Accuracy comparison with external results

The accuracy of the GPS-derived ZTD products largely depends on the processing
method used. The current accuracy level of the GPS ZTD estimation is in the order of
10~15 mm. This is translated into an accuracy level of GPS-derived PWV estimation in
the order of 1~2 mm (Deblond et al., 2005; Haan, 2006). In order to have a general
assessment of the accuracy of the PPP-derived ZTD products, shown in Table 5.7 is an

accuracy comparison of the real-time system with some operational GPS network ZTD
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products (Haan, 2006). Since this study has no numerical weather prediction model
(NWPM) values, the ZTD accuracy results of the real-time GPS PPP-inferred water
vapor are from the comparison with 1GS. The results show that the real-time GPS PPP-
inferred water vapor system can reach a comparable accuracy level with other operational

GPS networks for water vapor estimation.

Table 5.7 ZTD statistics between GPS operational models**

Processing Center Number of Bias RMS STD | Comparison
Comparison | (mm) (mm) (mm) Model

ASI (ltaly) 7994 -5.58 11.74 10.32 NWPM*
BKG (Germany) 9632 -6.66 12.04 10.03 NWPM
GFZ (Germany) 9205 -4.76 9.94 8.73 NWPM
KNMI (Netherlands) 1377 -2.39 7.14 6.73 NWPM
LPT (Switzerland) 10286 -5.87 11.39 9.76 NWPM
METO (U.K.) 8766 -3.75 10.81 10.14 NWPM
SGN (France) 8354 7.57 13.60 11.29 NWPM
(el 22l s S8 FRE 3162 915 | 13.03 | 931 IGS
inferred water vapor system

* Numerical Weather Prediction Model

** The statistics of the first seven processing centers was over the period: 2005/10/05 — 2006/02/21; the statistics of (near) real-time
GPS PPP-inferred water system was over the period 2007/10/18 — 2007/10/19

5.4 Summary

The performance evaluation shows that (i) the position errors of the (near) real-time GPS
PPP-inferred water vapor system is within sub-decimeter (RMS = 0.011 ~ 0.043 m); (ii)
the significant position error happens in the Up direction which has relation to the un-
modeled atmospheric errors; (iii) the ZTD and PWV accuracies of the current (near) real-
time water vapor system are ~13 mm and ~2 mm, respectively, which should be further

validated when the real-time meteorological data stream is available to the system.
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Chapter Six: PWV Prediction and Interpolation

Prediction of local and regional PWV and quantitative description of its distribution over
Canada is an essential aspect of the real-time GPS PPP-inferred water vapor system. The
geostatistical interpolation method of kriging is a unique tool to deal with this issue.
Geostatistics is oriented to the analysis of spatially distributed variables and in particular
the estimation or prediction of values at unsampled locations. Geostatistical technologies
underlie most attempts to create surface maps based on point samples or observations
(Nelson et al., 1999). Three basic components of geostatistics are:
= (Semi)variogram analysis — characterization of spatial correlation
= Kriging — optimal interpolation; generation of best linear unbiased estimate at
each location with semivariogram model
= Stochastic simulation — generation of multiple equiprobable images of the
variable with semivariogram model (Bohling, 2005)

In this chapter, firstly, the geostatistical methodology is briefly described. And then,
how this method is implemented in a program to derive the desired interpolated map of
PWV is explained. At last, the products and analytic results of the program executed on
one-day 24-hour datasets from the real-time GPS PPP-inferred water vapor system are

presented.

6.1 Geostatistical methodology
6.1.1 Introduction

The basic object the geostatistics considers is the spatial data, which is usually viewed as
a real-valued stochastic process (i.e. a random function (RF)) {Z (5):seDc Rd} where
D is a subset of R® (d-dimensional Euclidean space, d = 1, 2, 3, ...). For example, Z(5)

may represent the concentration of atmospheric water vapor (PWV) at a specific location

S . Some geostatistics-related concepts are introduced as follows.
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= Strictly stationary process

Let x(5) = E{Z(S)} and &?(S) = var{Z(5)} denote the mean value and the variance
value, respectively. The process Z is said to be (strictly) stationary if its statistical

properties of Z are invariant to a shift of the origin (Fuentes, 2002): x(3) = u(S +h) = u

and o2(5)=c?(5+h)=c?forall § andany h.

= Second-order stationary process

Let cov{Z(§i ), Z(§; )}z cov{§i - §j} (for all 5;eD , s;eD ) denote the
covariance of this process at any two particular points S; and §;. The process Z is
called second-order stationary or weakly stationary if x(S) = u (constant), i.e., the mean
is the same for all §, and cov{Z(§i),Z(§j )}:cov{Z(§)—Z(§+ﬁ)}:cov(ﬁ), for all
s, €D, §; € D. This means that cov{Z(s;),Z(s;)} depends on the vector difference, h,
between §; and §;. cov(e) is referred as to the covariogram of the process, for short,

cov(e) is written as Cf(e).

= Variogram and semivariogram

Suppose x(5) is a constant and then define

var{z(s +h)-z(s)j=2/(n), (6.1)
for all 5, §+h e D. The statement (6.1) means that the differences of variables lagged
h -apart vary in a way that depends only on h . The quantity 27(5), which is a function

only of h, is called the variogram and ]/(ﬁ) the semivariogram. The semivariogram is a

plot of the structure function which decribes the relationship between measurements
taken some distance (h) apart (Figure 6.1). Semivariograms defines the range or distance
over which spatial dependence exists.

Semivariogram is central to geotatistics - it is the key to understanding, describing

and predicting spatial variation quantitatively (McBratney et al., 1986).
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= |sotropic process

The process Z is isotropic if itsZy(ﬁ): 2/°(Ih ), for h e R, i.e. (semi)variogram
depends on only the distance ||h| between locations; otherwise it is anisotropic.

Anisotropies are caused by the underlying physical process evolving differentially in
space (Cressie, 1994).

= Intrinsic stationary process

If the process Z satisfies the properties: E{Z (§ + ﬁ)— Z(s )}: 0 and
var{Z (§ + ﬁ)— Z(§)}: 2y(ﬁ), then it is called intrinsically stationary. That is, the process
Z is defined through a constant mean and constant variance in the location difference h .

A process which is both intrinsically stationary and isotropic is also called
homogeneous.

Generally speaking, intrinsic stationary assumption is mostly required by much of the

theory of spatial processes. Based on this point of view, the stronger forms of stationary
are not needed (Fuentes, 2002).

= The relation between covariogram and variogram

For a stationary process, it can be verified that
varlz(s)- 265, )
= var{Z(s; )} +var{z(s; ) - 2coviz (s, ). Z(s; )}
=2 cov(ﬁ)— 2 cov(ﬁ) (6.2)
thus
;/(ﬁ): cov(f))— cov(ﬁ)= ol - cov(ﬁ) (- cov(f)): a?). (6.3)
So, for a stationary spatial process the covariogram and vairogram provide similar

information in a different form.
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Figure 6.1 Characteristics of the semivariogram and relation between semivariogram and covariance
((2) Sill is the upper bound of variogram, i.e. maximum variogram; when the (semi)variogram reaches it the
graph flattens. The sill estimates a quantity known as the a prior variance of the random variable. (2)

Range is the lag value at which the variograms reaches its sill. Range is the limit of spatial dependence;
beyond it the variance bears no relation to the separated distance) (Adapted from Basu et al. (1997))

6.1.2 Geostatistical approach

Geostatistics is the standard approach in disciplines such geology and hydrology, in
which the aim is to generate the best estimates in the sense of unbiasedness and minimum
mean squared error and where it is desirable to have a realistic evaluation of the
estimation variance. As seen above, the geostatistical approach is stochastic and
considers the phenomenon under study as a random function (RF), a random field or a
stochastic process and the experimental data are realizations of the RF. The geostatistical
approach consists of three stages (Pardo-lguzquiza et al., 2005):

1) Model selection. The most practical model should explain the data
satisfactorily and have a simple model form as well. For instance, it must be
decided whether the stochastic process has the constant mean or a specially
variable mean for a realistic purpose; a decision must be made on the spatial
covariance is the isotropic or anisotropic.

2) Parameter inference. The values of parameters which defines the model are
unknown and need to be estimated using the sample data. For instance, the
semi-variogram is defined by the parameters such as: the range of correlation,

sill and nugget variance.
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3) Interpolation. This stage includes the estimation of the values of the variable
at the un-sampled points and a quantification of the magnitude of the error (i.e.

its variance) incurred in the estimation. This process is performed by kriging.
The three stages are related: what kind of kriging to be used depends upon the
resulting model at stage 1 and the application of kriging requires the model parameters to
be estimated at stage 2. Once stages 1 and 2 are completed, kriging (stage 3) is just a

process of a well-known computing algorithm.

6.1.2.1 Stage one: Model selection
1. The process model

The process of model selection consists of deciding which, among a family of possible
models, best explains the data on the basis of given criteria. The family of models must
be sufficiently flexible to cover most of the situation encountered in practical
applications. In particular:

1) The family of models must include both constant mean and spatially varying

mean.

2) The statistical function that describes spatial variability must have sufficient

parameters to model different degree of continuity of the RF.
In practice, the most useful model, and one that has physical interpretation, is an RF:
Z(s) that has two components, namely (Bailey et al., 1995):

Z(s)= u(s)+U(s) (6.4)
where ,u(§) is a trend surface representing mean, a large scale or first order component,
ie. E(Z(s))=u(s), where E(e) is the mathematical expectation operator; U(3)
represents a local or second order component, which is a zero-mean stationary RF with
covariance function C(n), i.e., EU(5))=0 and E[U(s)-U(s +h)|=C(h).

When the process to be predicted, Z(s), has a constant mean value, i.e. u(5)=u,

RF: Z(s) has a simplest form:

Z(s)=p+U(s) (6.5)
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and RF Z(s) is itself then second-order stationary. This case is sometimes referred to as a
model without drift.
If the mean of the process is not constant then it is assumed to vary in space and may
be represented in a low-order polynomial form. For instance, linear for a drift of order 1:
1(5)= By + BX,(5)+ B,%,(5) (6.6)
This model captures the local trend of the attribute besides the global trend. Equation

(6.4) can be rewritten in matrix notation:

Z=x"(s)p+U(s) (6.7)
where
Z" =[z00n2,],
Lo 1

and n is the number of sample data. The realistic type of kriging for this model is
universal kriging.
In this thesis, it is assumed that the process (PWV) to be predicted is second-order

stationary and the realistic type of kriging is ordinary kriging.

2. Semivariogram model
For interpolation purpose, the covariance C(ﬁ) must be estimated. Assuming second-
order stationary (see section 1.1.1), the relation of covariance and semivariogram is given
in Equation 6.3:

y(ﬁ): cov(ﬁ)— cov(ﬁ): ol - cov(ﬁ);
and the covariance and the semivariogram can be regarded as equivalent statistical tools.
Instead the appropriate semivariogram model must be selected for the process to be

predicted.
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Among the families of valid (semi)variogram models (Webster et al., 2004), three
most commonly used for stationary processes are:

(1) The spherical model:

2
£y o %—l(ﬁ] O<h=ua
2a 2\a
?')[’Eg]:‘c,:,+c, ho=a
0, =0 (6.8)
where c, is the nugget effect, ¢, + ¢ is the sill and a is the range.
(2) The exponential model:
3k
+el1-exp| - B0
Y =17 [ Exp[ 2 H ”
0, h=10 (6.9)
(3) The Guassian model:
3k*
pii= o +c[1—exp[—a—2]j|, h=0
0 f=0 (6.10)

The plots of these three theoretical semivariogram models are shown in Figure 6.2. The
different models represent different degrees of continuity of the process (RF) to be
predicted. The range of the semivariogram is equivalent to the correlation scale, i.e. it
gives the maximum distance for which the data are correlated (see Figure 6.1). The
nugget effect (see Figure 6.1) allows discontinous phenomena to be modeled; the
discontinuity may be caused by monitoring errors or by the structures of variability at
scales smaller than the smallest distances between sample locations (Pardo-lguzquiza et
al., 2005).
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Figure 6.2 Three common semivariogram models (without nugget effect)
(Different models have different shapes with different sills and ranges)

In this thesis, spherical model, Gaussian model and exponential model are fitted with
the hourly PWV experimental semivariogarm using nonlinear weighted least-squares
method (see Section 6.1.2.2). The best fit model is determined with cross-validation

method.

6.1.2.2 Stage two: Estimate semivariogram model

Estimating semivariogram is usually a two-step process: (i) calculate/estimate
experimental semivariogram from the sample data and (ii) fit a theoretical semivariogram

model to the experimental estimate.

1. Calculate/Estimate experimental semivariogram
The simplest estimator is the method of moment (MoM) estimator. In the case where N

sampling points S, S,, ... S, lie on a regular lattice, for any given separation h the
formula is defined by (Bailey and Gatrell, 1995)

)= —— Siz(s)-z6)f, (6.11)

Z‘N (Fl) 5N (R)
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where N(n) denotes all pairs (s,,5,) for which § -5, =h and ‘N(ﬁ)‘ denotes the
number of N(h); Z() is over all pairs of observed data points with a vector separation
of h . In the case where N points irregularly located, N(ﬁ) is defined as
N(h)={5.5,):5 -5, eT(h)} (6.12)
where T(ﬁ) denotes small neighbourhood or tolerance region around h . ;?(ﬁ) is

experimental semivariogram. An example plot of ?(ﬁ) is shown in Figure 6.2.

The experimental semivariogram summarizes the spatial relations in the data.
However, it is subject to error. This error arises largely from sampling fluctuation and
gives experimental variogram a more or less erratic appearance (Webster et al., 2004).
The experimental semivariogram is to be used to estimate the true variogram to describe
the variance of the region (see next section). To get statistically more reliable results, a
certain amount of observations is required to calculate the experimental semivariogram.

Some papers suggest this number should be greater than 20~30 (IHF, 2008).

2. Fitting semivariogram models

Fitting variogram model means choosing a suitable theoretic function and fitting it to the
semivariogram y(ﬁ) in a statistical way. This is an important procedure in geostatistics,
which makes it possible to estimate or predict values at unsampled places and in larger
region optimally by kriging.

There are two categories of statistic methods to achieve this task: maximum likelihood
(ML) and least squares (LS). The former has two main drawbacks: (1) it relies heavily
on the Gaussian distributional assumption, and (2) the estimations are biased (Jian et al.,
1996). And so, the semivariogram model fitting is usually performed by LS.

Let ;?(ﬁ) donate the vector of experimental semivariogram estimates, y(ﬁ,@) the
vector with values of semivariogram model of interest with a finite unknown parameter

vector. 6=16,,6,, ..., GPJ The best set of parameters is the one that minimizes the sum

74



of the squares differences, R, between the experimental values and those predicted by the

model, R = [3(1)-»(7; o) v} {R)-#(F; o))
There are three well-known versions of nonlinear least squares estimators:
= Oridnary least squares (OLS), in which V is a indentity matrix I ,i.e., V =1.
= Generalized least squares (GLS), in which V is the variance matrix of the
experimental semivariogram. Usually V is unknown and it must be assumed.

= Weighted least squares (WLS), in which V =W(#), the diagonal matrix

whose diagonal entries are the variances of variance of the entries of ?(ﬁ)
(Fuentes, 2002). This approach is a special situation of weighted least squares
(Jian et al., 1996).
Among these three estimators, the increasing order of efficiency is OLS, WLS, GLS and
the decreasing order of convenience to use is OLS, WLS, GLS (Fuentes, 2002). Based on
simulation studies, Zimmerman and Zimmerman (1991) have found that the weighted
least squares is the most favourable approach for semivariogram-model fitting of others
(Zimmerman and Zimmerman, 1991). In this thesis, WLS is the one employed.

Let 7(h(j)) be the experimental semivariogram estimated from the sample data at
discrete lagsh(1), h(2), ..., h(k). Let »(h(j), &) denote the semivariogram model with

the vector of parameters@. The weighted least squares estimates & which minimizes the

objective (cost) function:

F(0)= iw(j)- [#(h(i))-7(h(3).O)} . (6.13)
where W(j) is a weight function. Five weight functions can be applied to equation (6.13)
(Pardo-lguzqiza, 1999):
(1) w(j)=1.0. (6.14)
This is a constant weight which is given to the ordinary squares fitting.
(@) w(j)=Ny). (6.15)
This weight function considers the number of data pair only, so that the more
weight is applied to the experimental variogram points where more data points are
used, which gives a more statistically reliable result.
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3) w(i)=[r(h(j).o)". (6.16)
This weight function considers the theoretical semivariogram only, so that the
more weight is given to those experimental variogram points which are close to
the origin than those far from the origin.
(@) w(j) =Ny -[r(h().0)]". (6.17)
This weight function, suggested by Cresis (1985), is the combination of
weight functions given in (2) and (3), so that it has advantages from both: being
statistical reliable and a good fitting the semivariogram near the origin. The latter
is an attractive property. Stein and Handcock has shown that if the semivariogram
model is applied to the kriging, then the fit of the model near the origin is more
important than the fit at larger lags (Stein et al.,1989). However, there are some
drawbacks with this weight function (Zhang et al., 1995): (i) it is a function of the
parameters to be determined by the optimization program and the sum of weights
differs in the iterations, which can cause problems such as slow convergence,
local convergence or divergence; (ii) objective function (6.13) does not yield the

same cost for a positive or a negative deviation.

(5) w(j)=N,;-h(i)™. (6.18)
This weight function was promoted by Zhang et al. (1995). Analogous to

weight function given in (4), it emphasizes “a good fit near the origin”; but it

utilizes the factor h(j) instead of the theoretical semivariogram y(h(j), 8). Since

there is no statistical argument for introducing the factor h(j), the weights
Nij) - h(j)‘2 in the objective function are constant during the iterations. Thus, this

weight function overcomes the drawbacks of the fourth weight function, but keeps
the merits of it.
This thesis utilizes the fifth weight function for semivariogram modeling.
The convergence criterion for nonlinear regression process is set to be (Nielsen,
2007):
k' Pk

V' PV

<1.00001 (6.19)
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where K is a vector of variables: | — F(G*) (I'is a vector of observations; 8" is a vector
of estimated parameters at current iterative step; F(e*) is the value of a theoretic

parametric model for 67), P is the weight matrix and ¥ is a vector of estimated residual
error (Nielsen, 2007). The experiments show that the iterative numbers of the
convergence for those three theoretic models are usually 2 to15.

An example of estimating semivariogram process is shown in Figure 6.3.

Experimental Semivariogram and Fitted Theoretical Models (2007-08-25-00:00)
00 T T T T T T T T T
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300 (-
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150 -
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— Il L Il L Il Il T
(o] 5 10 15 20 25 30 35 40 45 50
Lag (lag = 5 deg / lag tolerance = 5 deg)

Figure 6.3 An example plot of estimating semivariogram process

3. Best fitted semivariogram model determination

In regular regression case, the least RMSE (Root Mean Squared Error) could be used as
the test criteria, i.e. the best model is chosen from those models which have the least
RMSE. In our nonlinear regression, the experimental values are weighted in proportion to
the numbers of pairs contributing to them, but pay no attention to the lag. Thus, the
model determined according to RMSE is not necessarily the best for kriging since the
points near the target point get more weight than more distant ones (Webster et al., 2001).

The cross-validation process is a practical way to evaluate this issue. It is performed
in three steps (Webster et al., 2001):

(1) An experimental semivariogram is computed from the whole sample dataset and

the different theoretical models are fitted to it (as it is done above).
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(2) For each model, each sample data value Z(Xi) is deleted in turn and then Z is
estimated at each sampling point is estimated from the rest of the data. The
kriging variance 6°(x;) is also calculated.

(3) Three diagnostic statistics are calculated from the results:

(a) the mean deviation or mean error, ME:
N
ME == [2(x )~ 201 )} (6.20)
i=1

(b) the mean squared error, MSE:

N 2

Z[Z(Xi )_ 2(Xi )] ; (6-21)

MSE = L
N 3

(c) the mean squared deviation ratio, MSDR, which is calculated from the
squared errors and kriging variance, 6°(x, ), by:
N N 2

MSDR = %2% (6.22)
The ME should be 0 since kriging is unbiased. However, the calculated ME is not a
strong diagnostic because kriging is not sensitive to inaccuracies in the semivariogram
(Webster et al., 2001). The less the MSE is, the more accurate the fitted model is. If the
fitted model is accurate then MSE should be equal to the kriging variance and the MSDR
should be 1. In this thesis, the diagnostic MSE is mainly used to choose the best fitted

model for ordinary kriging.
Another way to evaluate the fitted model performance with kriging is to plot the
scatterplot of the true values versus their estimated values (obtained in the above step (2))
and do regression analysis between them. In the best situation, it is expected that the

estimator is conditionally unbiased, i.e. (Webster et al., 2001)
E|Z(%)1 2(%)|= Z(%,)- (6.23)
Based on this, it follows that the regression of Z (%, )on Z(X,) is 1 (i.e. slope = 1). For

ordinary kriging, the regression coefficient is somewhat less than 1 (Webster et al., 2001).
In this thesis, both diagnostic statistics and scatterplots are examined to evaluate each

semivariogram model performance and then determine the best one for kriging.
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6.1.2.3 Stage three: Prediction and interpolation

After structure analysis (i.e. semivariogram modeling/estimating), predictions at
unsampled locations are made by ordinary kriging. Kriging is an “optimal prediction”
(Bailey et al., 1995). It provides a solution to the problem of estimation based on a
continuous model of stochastic spatial variation, such as semivariogram model. Among
the geostatitical interpolation procedures, “ordinary kriging” is the most common type of

kriging in practice. In this section, the basic of kriging is briefly presented.

1. Theory of kriging

Ordinary kriging assumes that the process to be predicted, Z (), has a unknown, constant

mean value . It estimates the unknown value at an un-sampled point S by 2(§) using a

weighted linear combination of the available sample (Bailey et al. 1995):

2(5): Za)i (5)z(s) (6.24)

w,(5)=1. (6.25)

Figure 6.4 Kriging weighting scheme
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The error variance is:

=o' (5)-C-0(5) + 6 - 20" (5)-c(5) (6.26)
where C is the (nx n) matrix of covariance, C(§i : §j) between all possible pairs of the n
sample points and ¢(5) is an (nx1) column vector of covariances, C(S, §, ), between the

predicted point S and each of the n sample point §,;.

Just like the least-squares variance, ordinary kriging minimizes the error variance,
subject to (6.25). This is achieved by Lagrance multiplier approach. Consider the
following Langrangian

L=0"(5)-C a(5)+0? —20" (5)-c(5)+ 2 1-1) v(s) (6.27)
where v(§) is the Lagrange multiplier and o is the maximum semivariance (i.e. sill) .
Differentiating (6.27) with respect to both v(5) and «(s)

oL _ 0,
do(s

—

leads to

C-(8)+1-v(5)=c(s)
which can be also represented in a matrix form:
C.-w =c, (6.28)

where
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C(5,,5,)C(5,,5,) C(8,,8,) 1] [,(3)] [C(5,5,)]
C(s;,5,)C(5,.8;) C(s;.8,) 1 ,(S) C(s,s,)
C+= ' ' ' ' , O, = . and C, =
C(s,,5)C(5,.8,) - C(5,5,) 1 @, (5) C(s.s,)
1 1 1 0 v(s) I |

Matrix C, is inverted, and the weights and the Lagrange multiplier are obtained as

1 (6.29)

+ +

o, =C

Note: (i) that C, would be unknown and it has to be derived from the estimated

semivariogram model according to C(h)=o?—y(h), where & is the maximum

semivariance (i.e., sill), which that shows how the semivariogram model is applied to

kriging process; (ii) that through entire kriging process matrixC, only has to be done

once, since it is not dependent on the prediction points ; (iii) that for each new point S
the only calculation is the change of c. .

The ordinary kriging variance is given by
o’ =0"-c/C'c,. (6.30)

To obtain the prediction, Z(5), the weight vector o(§) is further extracted from .,

equation (6.29), and then substituted into equation (6.29) and solved.
The ordinary kriging equations (6.28) and (6.29) can be represented using

semivariogram as below:

o, =T 'y, (6.31)
and

ol =y, (6.32)

where
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6.2 Implementation of ordinary kriging

andy, =

The preceding geostatistical approach process has been implemented in a Matlab

program, which derives hourly PWV maps using the support from the real-time GPS

PPP-inferred water vapor system.

The program flowchart is shown in Figure 6.5, where each function is matched with a

Matlab file:

(1) Calculate/Estimate experimental semivariogram,

(2) Fitting theoretical semivariogram models,

(3) Selecting the best fitted model by cross-validation,

(4) Interpolating with ordinary kriging, and

(5) Output hourly PWV maps and associated kriging standard error maps.

The current ordinary kriging program does not take account of the difference

elevation.
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Hourly log files
(from the R.T.
system)

Calculate
experimental
PWV semivariogram
¢ (Next hour dataset)
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semivariogram
[ —1 élj
Semivariogram plot
Ordinary kriging
Kriging entire Kriging a cell Cross-validation of
PWV map i ging PWV semivariogram

PV Kriging variance Cross-validation plot

Figure 6.5 Flowchart for ordinary kriging program
(This program includes: (1) calculating experimental semivariogram, (2) fitting semivariograms, (3)
selecting best fitted semivariogram model by cross-validation, (4) ordinary kriging interpolation, and (5)
producing hourly PWV maps and associated standard error maps.)

6.3 Results and analysis

As it was mentioned in section 6.1.2.2, a statistically more reliable semivariogram needs
a certain amount of observations for calculation. In the current Canada geodetic GPS
network, (i) 19 out of 21 stations send both GPS and MET data in real-time stream and (i)
NRC1 and NRC3 share the same coordinates. The maximum number of the available
observations used to estimate the PWV semivariogram is 18. However, the current
Canadian ground GPS station network is not working stably. Usually the available
observation number is 15 ~ 17. In this section, the ordinary kriging program is executed
on 24-hour 18-station datasets from the real-time GPS PPP-inferred water vapor system
on August 25, 2007. The following analysis was performed hour by hour and the average
values of each hour dataset were used. The analytic results include semivariogram plots,
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cross-validation for PWV semivariogram performance, and hourly PWV maps and

associated kriging standard error maps.

6.3.1 Semivariogram plots

The experimental semivariogram is calculated under the Latitude-Longitude coordinates
system. The range of study area is between Longitudes—145" to —45° and Latitudes 28°
to 85°. The optimal lag step length is determined to be 5-degree. Also, a 5-degree
tolerance is selected since the observations are irregularly spaced in the study area. This

means the number (N,;,) of observation pairs used to compute the semivariogram
7(n(j)) for the lag h(j) is calculated according to equation (6.9). The maximum lag is

the half of the Longitude dimension of the study area (—145° ~ —45°), i.e.50°. Figure
6.6 shows the pair numbers for each lag intervals. The 24-hour calculated experimental
semivariograms are plotted in blue colour in Figure 6.8.

After hourly experimental semivariogram is computed, three theoretical models are
fitted with it. Figure 6.8 shows hourly fitted models with the associated experimental
semivariogram for 24 hour datasets. The zoomed in figure of fitted models is shown in
Figure 6.7.

The fitted models’ sills, ranges and RMSEs for 24-hour datasets are plotted in Figure
6.9, Figure 6.10 and Figure 6.11, respectively.
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Figure 6.6 Plot of pair number for 2007-08-25-00:00 hour dataset
(The observations are irregularly spaced. The lag step is 5 degree. Lag tolerance is 5 degree. Maximum lag
is 5 degree. The plot shows that the pair number decrease as the lag value increases)

Experimental Semivariogram and Fitted Theoretical Models (2007-08-25-00:00)
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Figure 6.7 Semivariogram plot for 2007-08-25-00:00 dataset
(This plot is based on the optimal lag (5 degree) and Lag tolerance (5 degree). The plot shows that the
Gaussian model is best fitted close to the origin and the Exponential and Spherical models are best fitted in
the middle segment of the experimental semivariogram.)
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Figure 6.8 Hourly PWV experimental semivariogram plots (1)
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Figure 6.8 Hourly PWV experimental semivariogram plots (2)
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Figure 6.9 Sill plots of 24 hourly fitted semivariogram models
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Figure 6.10 Range plots of 24 hourly fitted semivariogram models
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Figure 6.7 and 6.8 show that (i) Gaussian model is fitted much more agreeably with
the experimental semivariogram near the origin area than both spherical and exponential
models are, (ii) exponential model is more agreeable with the middle segment of the
experimental semivariogram than other two models are, and (iii) spherical model is fitted
less than other two models are. It is common in geologic applications where there are
correlations at different length scales. At small lag distances h, the smaller scale
correlations dominate, while the large scale correlations dominate at larger lag distances
(Webster and Oliver, 2001). Both (i) and (ii) indicate that a combination (nested model)
of two semivariogram models, a Gaussian model and an exponential model, would be
needed for better representation of the variance structure of PWV, the former is for small
lag distance and the latter for the big lag distance, such as:

B 2
C, 1-exp[-ﬁj } for 0O<h<a,,
al
I 3h
y(h)=1<c,| 1-exp N for a, <h<a,, (6.33)
L 2
C, +C, for h>a,,

where ¢, and a, are the sill and range of the small lag distance (short-range component)
of the variation, and c, and a, are the sill and range of the big lag distance (long-range

component).

Figure 6.9 and Figure 6.10 indicate that (i) both spherical and Gaussian models have
relatively stable sills and ranges (since both models reached their sills and ranges), and (ii)
exponential models have fluctuating sills and ranges. Since most of exponential models
did not reach their sill and range within the X-axis range, the Weighted Least Squares
process estimated the sill and range under such condition which would not represent the
flattening sill and corresponding range. A more reasonable sill/range value of the
exponential model could be found at hour 23:00 where the exponential model almost
reached its flattening sill state (see Figure 6.8 (2) and Figure 9 ~ 10).

Figure 6.11 indicates that (i) RMSE’s varies greatly with hourly spatial data structure

due to the low precision of the small-sample-size semivariogram; (ii) the order of RMSEs
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of three models varies with the hourly data spatial structure, i.e. the data spatial structure
affects each model differently; and (iii) the RMSE may be used to evaluate the agreement
of a model fitness; but it can not be used to validate the best semivariogram model for
kriging since in the above case of nonlinear regression the experimental values are
weighted in proportion to the numbers of pairs contributing to them (Equation 6.15),
without paying attention to the lag. The obtained model determined according to RMSE
is not necessarily the best for kriging since the points near the target point get more
weight than those far away from the target points (Webster and Oliver 2001).

Figure 6.9, 6.10 and 6.11 were obtained under small-sample data environment and the
results from large-sample datasets need to be further tested.

6.3.2 Cross-validation for PWV semivariogram model performance

In this thesis, both diagnostic statistics and scatterplots are utilized to examine the
performance of each fitted model and then select the best fitted model for ordinary
kriging.

Through the experiments, it was found that for dataset dated on August 25, 2007, all
24 hourly kriged PWV maps from spherical model displayed negative values (see Figure
6.12); this obvious sign indicated that this model did not represent the true semivariogram
for 24-hour PWV datasets. So, this model was deleted and the comparisons between

exponential and gaussion models are conducted during the cross-validation process.

Map of the standard errors of PWV (mm) (2007-08-25-14:00) Map of the standard errors of PWV (mm) (2007-08-25-04:00)
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Figure 6.12 Negative kriged PWV maps from the Spherical model (left) and Gaussian model (right)
(Negative PWV values indicate that the semivariogram model used for kriging is not reasonable for this
hourly dataset)
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= Cross-validation by three diagnostic statistics

24-hour diagnostic statistics are given in Table 6.1, where hourly MSEs for the better
model are highlighted. The 24-hour diagnostic statistics are also plotted in Figure 6.13.
Table 6.1 Comparison of 24-hour diagnostic statistics from exponential-model-based and Gaussian-

model-based ordinary kriging interpolations (on August 25, 2007).
(The MSE value of the better model is highlighted) (unit; mm)

00:00 01:00 02:00

ME MSE MSDR ME MSE MSDR ME MSE MSDR

Exp. Mdl. -1.85 57.89 0.32 -1.88 60.76 0.33 -1.82 65.15 0.38

Gusn. Mdl -3.58 | 33058 | 23.0 -4.98 | 531.24 | 34.64 -7.0 861.71 | 59.4
03:00 04:00 05:00

ME MSE MSDR ME MSE MSDR ME MSE MSDR

Exp. Mdl. -1.80 77.80 0.48 -1.46 79.84 0.56 -1.52 83.19 0.60

Gusn. Mdl -7.36 | 825.95 | 46.25 | -6.72 | 51158 | 24.76 | -4.98 | 235.00 | 13.24
06:00 07:00 08:00

ME MSE MSDR ME MSE MSDR ME MSE MSDR

Exp. Mdl. -1.53 78.83 0.58 -1.49 81.82 0.57 -1.49 75.47 0.50

Gusn. Mdl -6.23 | 482.81 | 27.52 -7.83 | 761.41 | 44.90 -7.02 | 523.58 | 22.34
09:00 10:00 11:00

ME MSE MSDR ME MSE MSDR ME MSE MSDR

Exp. Mdl. -1.37 | 70.74 0.50 -1.32 | 71.83 0.51 -1.24 | 79.06 0.53

Gusn. Mdl -7.01 | 53452 | 33.50 -5.32 | 304.55 | 14.88 -4.68 | 279.44 | 8.45
12:00 13:00 14:00

ME MSE MSDR ME MSE MSDR ME MSE MSDR

Exp. Mdl. -1.21 90.06 0.57 -1.46 71.06 0.45 -1.45 58.67 0.38

Gusn. Mdl -5.50 | 365.29 | 9.94 -6.30 | 475.81 | 21.26 -6.23 | 404.70 | 30.81
15:00 16:00 17:00

ME MSE MSDR ME MSE MSDR ME MSE MSDR

Exp. Mdl. -1.52 57.99 0.37 -1.62 57.67 0.34 -1.67 63.17 0.35

Gusn. Mdl -3.50 | 113.96 | 3.91 -3.22 | 78.74 191 -2.82 | 64.63 0.99
18:00 19:00 20:00

ME MSE MSDR ME MSE MSDR ME MSE MSDR

Exp. Mdl. -1.61 67.67 0.37 -1.48 65.30 0.39 -1.50 59.36 0.37

Gusn. Mdl 0.43 | 187.91 | 1541 0.09 | 146.18 | 7.17 0.18 | 110.97 | 4.80
21:00 22:00 23:00

ME MSE MSDR ME MSE MSDR ME MSE MSDR

Exp. Mdl. -1.54 | 60.34 0.37 -1.49 | 66.61 0.40 -1.16 | 81.48 0.51

Gusn. Mdl 0.44 | 11854 | 5.79 -1.72 45.17 0.59 -1.68 42.69 0.51
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Figure 6.13 shows that three diagnostic statistics of exponential-model-based
ordinary kriging interpolation of PWV are much stable while those of Gaussian-model-
based ordinary kriging interpolation varied through the day since the Gaussian model
was well fitted only for short-range component (see Section 6.3.1). MSE behaviours
shows that (i) from 00:00 to 21:00, exponential-model-based ordinary kriging
interpolation was better than Gaussian-model-based ordinary kriging interpolation from
00:00 to 21:00; (ii) from 22:00 to 23:00, in reverse, Gaussian-model-based ordinary
kriging interpolation is better than exponential-model-based ordinary kriging
interpolation, and (iii) during 22:00 to 23:00, the MSE from Gaussian-model-based
ordinary kriging interpolation is 42.69 ~ 45.17 mm, the smallest out of 24-hour datasets.
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Figure 6.13 Plots of 24-hour diagnostic statistics (ME, MSE, MSDR) associated with

= Cross-validation by scatterplots

The 24-hour cross-validation scatterplots for both models are shown in Figure 6.14,
where the left column is for exponential-model-based ordinary kriging interpolation and
the right column is for Gaussian-model-based ordinary kriging interpolation. The
associated linear regression parameters and statistics are printed on these figures. The
linear regression parameters and statistics of the 24-hour cross-validation scatterplots are

summarized in Table 6.2 and are also plotted in Figure 6.15.
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Figure 6.14 Scatterplots of cross-validation for Exponential model (left) and Gaussian model (right) (1)
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Figure 6.14 Scatterplots of cross-validation for exp. model (left) and Gaussian model (right) (2)
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Figure 6.14 Scatterplots of cross-validation for Exponential model (left) and Gaussian model (right) (3)
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Figure 6.14 Scatterplots of cross-validation for Exponential model (left) and Gaussian model (right) (4)
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Figure 6.14 Scatterplots of cross-validation for Exponential model (left) and Gaussian model (right) (5)
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Figure 6-14 Scatterplots of cross-validation for Exponential model (left) and Gaussian model (right) (6)
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Table 6.2 Comparison of linear regression parameters of 24-hour cross-validation scatterplots from
exp.-model-based OK interpolation and Gaussian-model-based OK interpolation (on August 25, 2007).
(The STD value of the better model is highlighted) (unit: mm)

00:00 01:00 02:00

Cor.Co Std Slope | Cor.Co Std Slope | Cor.Co Std Slope

Exp. Mdl. 0.87 7.72 1.12 0.87 7.94 111 0.86 8.29 1.09

Gusn. Mdl 0.59 12.85 0.40 0.49 14.10 0.29 0.39 15.07 0.19
03:00 04:00 05:00

Cor.Co | Std Slope | Cor.Co | Std Slope | Cor.Co | Std Slope

Exp. Mdl. 0.83 9.13 1.09 0.80 9.34 1.07 0.77 9.53 1.09

Gusn. Mdl 0.38 15.28 0.20 0.41 14.13 0.26 0.56 12.51 0.48
06:00 07:00 08:00

Cor.Co Std Slope | Cor.Co Std Slope | Cor.Co Std Slope

Exp. Mdl. 0.80 9.28 1.07 0.81 9.47 1.06 0.83 9.06 1.08

Gusn. Mdl 0.41 14.09 0.27 0.32 15.16 0.18 0.41 14.67 0.27
09:00 10:00 11:00

Cor.Co Std Slope | Cor.Co Std Slope | Cor.Co Std Slope

Exp. Mdl. 0.84 8.79 1.07 0.83 8.84 1.09 0.79 9.29 111

Gusn. Mdl 0.43 14.45 0.27 0.54 13.16 0.42 0.52 12.96 0.42
12:00 13:00 14:00

Cor.Co Std Slope | Cor.Co Std Slope | Cor.Co Std Slope

Exp. Mdl. 0.75 9.92 1.15 0.82 8.66 1.17 0.87 7.72 1.19

Gusn. Mdl 0.39 13.78 0.30 0.40 13.97 0.26 0.48 13.55 0.33
15:00 16:00 17:00

Cor.Co Std Slope | Cor.Co Std Slope | Cor.Co Std Slope

Exp. Mdl. 0.86 7.60 1.22 0.87 7.52 1.23 0.86 7.88 1.23

Gusn. Mdl 0.74 10.06 0.74 0.82 8.68 0.89 0.86 8.01 0.98
18:00 19:00 20:00

Cor.Co Std Slope | Cor.Co Std Slope | Cor.Co Std Slope

Exp. Mdl. 0.86 8.20 1.23 0.86 8.01 1.26 0.87 7.47 1.28

Gusn. Mdl 0.67 11.81 0.56 0.71 10.91 0.62 0.77 9.84 0.69
21:00 22:00 23:00

Cor.Co Std Slope | Cor.Co Std Slope | Cor.Co Std Slope

Exp. Mdl. 0.87 7.48 1.30 0.86 7.93 131 0.81 8.92 1.38

Gusn. Mdl 0.76 9.96 0.66 0.91 6.54 1.19 0.90 6.52 1.14
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Figure 6.15 Plots of linear regression parameters of 24-hour cross-validation scatterplots
(The blue line is from Exponential.-model-based Ordinary Kriging interpolation and the pink line is from
Gaussian-model-based OK interpolation. According to STD criterion, Exponential model is the better
model for 00:00 to 21:00 datasets and Gaussian model is the better model for 22:00 to 23:00 datasets)

Figure 6.14 and 6.15 show that (i) The STD (regression standard error) decreases as
the regression coefficient (slope of regression line) is close to 1 (in Figure 6.14,
‘regression coefficient = 1’ means that ordinary kriging-derived PWVs is totally
consistent with the GPS-derived PWVS5); in reverse, the regression standard error increase
as the regression coefficient departs from 1 in either positive direction or negative
direction; (ii) The regression coefficient is somewhat less than 1 for the ordinary kriging
in the best case; (iii) According to STD, it derives the same conclusion as MSE does: (a)
from 00:00 to 21:00, exponential model outperformed Gaussian model in ordinary
kriging interpolation and (b) from 22:00 to 23:00, Gaussian model outperformed
exponential model; (iv) Gaussian-model-based ordinary kriging interpolations from 22:00
to 23:00 provide the best results: Correlation coefficient = 0.90 ~ 0.91, Standard error =
6.52 ~ 6.54 and Slope = 1.14 ~ 1.15.

Based on both cross-validation results above, it was determined that the exponential
model is for ordinary kriging from 00:00 to 21:00 and the guassian model from 22:00 to
23:00.
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6.3.3 Kriginged PWV maps and associated kriging standard error maps

The 24-hour best-model-based ordinary kriginged PWV maps are shown in Figure 6.16,
i.e. the kriginged PWV maps from 00:00 to 21:00 were based on exponential
semivariogram model and the kriginged PWV maps from 22:00 to 23:00 were based on
Gaussian semivariogram model.

These maps demonstrate the spatial and temporal natures of PWV overlaying Canada
from coast to coast during this study period. Notice that the PWV maps from 22:00 to
23:00 show more details than the PWV maps from 00:00 to 21:00 do, since Gaussian
model is fitted more agreeably with the experimental semivariogram near the origin than
exponential model does (see Figure 6.7).

The 24-hour associated kriging standard error maps are shown in Figure 6.17. Figure

6.17 indicates that the higher accurate areas are found in area between Longitudes —125°

to —60° and Latitudes 44° to 54° where most of GPS stations located and that the other
areas outside have lower accuracy level due to the lack of information data, i.e. the area

close to GPS station show high accuracy level.
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Figure 6.16 Hourly kriginged PWV maps (Horizontal axis = Longitude) (1)
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Figure 6.16 Hourly kriginged PWV maps (Horizontal axis = Longitude) (2)
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Figure 6-16 Hourly kriginged PWV maps (Horizontal axis = Longitude) (3)
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Figure 6.17 Hourly kriginged standard error maps (Horizontal axis = Longitude) (1)

105



Map of the standard errors of PWV (mm) (2007-08-25-08:00) Map of the standard errors of PWV (mm) (2007-08-25-09:00)

g g
= =
3 3
2 =]
£ £ 50
s 3
-140 -130 -120 -110 -100 -90 -80 -70 -60 -50
0 5 10 15 20
Map of the standard errors of PWV (mm) (2007-08-25-10:00)
R
=l =l
< g%
Py P
3 3
2 2
" T 50
3 3
-140 -140 -130 -120 -110 -100
0 2 4 6 8 10 12 14 16 18 20
Map of the standard erors of PWV (mm) (2007-08-25-13:00)
80
70
g geo
@ <
H E
E E 50
40
. 30
-140 -130 -120 -110 -100 -90 -80 -70 -60 -50
2 4 6 8 10 12 14 16 18 20 0 5 10 15 20
Map of the standard errors of PWV (mm) (2007-08-25-15:00)
80
70
3 3
= E
g 7 50

14:00 15:00

Figure 6.17 Hourly kriging standard error maps (Horizontal axis = Longitude) (2)
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Figure 6-17 Hourly kriging standard error maps (Horizontal axis = Longitude) (3)
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6.4 Summary

The geostatistical technique of kriging is a practical tool to analyze and predict values of
a variable distributed in space or in time, which has been implemented in a Matlab
program in this study to explore the PWV spatial structure, estimate PWV semivariogram
and produce interpolated PWV maps.
The Matlab program consists of following steps (functions):

(1) Calculate experimental semivariogram,

(2) Estimate semivariogram model (model fitting), and

(3) Estimate surface map of PWV by ordinary kriging.

In step one, the factors to be considered are lag distance (5°), lag tolerance (5°) and

maximum lag distance ( 50° ) and the reliability of the calculated experimental
semivariogram affects the accuracy of kriging interpolation. In step two, three different
semivariogram models are fitted by nonlinear weighted least-squares and the best fitted
model is determined by cross-validation process. In step three, ordinary Kkriging
interpolating process is hourly performed to produce near real-time maps of PWV and the
associated kriging standard error maps.

Both PWV maps and associated kriging standard error maps are created using limited
sample datasets, which is valuable information to broad applications.

The accuracy of the estimated PWV values does not depend directly on the
observation values but on the semivariogram and the configuration of the sample points
(IHF, 2008). The current Canada GPS network has a low number of real-time GPS
stations and its configuration is not balanced in Canada domain. Improving its
configuration by increasing the number of GPS stations and properly deploying them
within the network will increase the accuracy of semivariogram model and accordingly

increase the accuracy of the estimated PWV maps.
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Chapter Seven: Principal Component Analysis of GPS Water
Vapor Dataset

The datasets from the real-time GPS PPP-inferred water vapor system consists of
variables of observations/measurements, satellite geometry factors and meteorological
parameters. There often exist special correlations between these variables. It is needed to
discover the hidden relationships among them and extract meaningful variables for
further effective data analysis. This thesis dealt with this issue in two steps: (i) Principal
component analysis (PCA) was carried out to simplify the description of the GPS water
vapor dataset; (ii) Correlation analysis was further performed to explain and summarize
the inter-correlations between the four types of variables of the GPS water vapor dataset.
In this chapter, firstly, a brief introduction to the principal component analysis is
presented. Then, the PCA process and its derived principal components of the near real-
time GPS PPP-inferred water vapor system are explained. Next, the numerical analytic
results of the between-subset (between-type) relation found between four types of
variables of the system by correlation analysis are shown and discussed. At last, the

summary of the analysis results are given.

7.1 Introduction of principal component analysis

Principal component analysis is mathematically an orthogonal linear transformation that
transform a dataset from the original coordinate system to a new coordinate system,
known as the principal subspace, such that the greatest variance of the projected data is
reflected on the first coordinate (called the first principal component, or the first domain),
the second greatest variance on the second coordinate (called the second principal
component, or the second domain), and so on. PCA can be applied to dimension
reduction in a dataset by keeping the lower-order principal components which contain the
“most important” aspects of the dataset and ignoring the succeeding higher-order

principal components (Bishop, 2006).
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7.1.1 Maximum variance formulation of PCA

PCA can be defined by either maximum variance formulation or minimum-error
formulation; both formulations derive the same algorithm of PCA (Bishop, 2006). In this
section, the maximum variance formulation is shown below based on the book: Pattern
Recognition and Machine Learning by Christopher M. Bishop.

Let {X, } be a data set of vector samples in D-dimensional space, where n = 1, ..., N.
The primary goal of PCA is to project the data onto a M-dimension space (M < D) while
maximizing the variance of the projected data, i.e. the data is most ‘spread out’ in the
directions of new M-dimensional space.

When M = 1, that is the projection onto a one-dimensional space. The direction of this

space is defined using a D-dimensional unit vector T, (G, G, =1) (see Figure 7.1). Each

data point X, is projected onto a scalar value G, X, and the mean of the whole projected

n

=

data is (] X where X is the sample set mean given by

i:%ii (7.1)

n=1

and the variance of projected data is given by

I oo =T52  oTon

— {ufx —ulTx}Z:ulTSu1 (7.2)
where S is the data covariance matrix defined by

1 N — Y= =

<2, %, -] (73)

N =
To maximize the projected variance G, ST, with respect to &, under the constraint
u,u, =1, a Lagrange multiplier A, is introduced and makes an unconstrained
maximization:

max: @, Sti+ A4, (L, d, ).

Making the first derivative with respect to ; and setting it equal to zero:

%(u; Sti + 4, (L0 G, ) = S, - A,d,=0

1

then:
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SUy = AUy,
or

which means that (i) G, must be an eigenvector of S, and (ii) the variance of the
projected data will be a maximum when U, is set to be equal to the eigenvector with the
largest eigenvalue A4, . This eigenvector is called as the first principal component.

Following the above process, an additional principal component can be defined by
choosing each new direction which maximizes the projected variance among all possible
directions orthogonal to those considered. In the general case of an M-dimensional space,
the optimal linear projection for which the variance of the projected data is maximized is

now defined by the M eigenvectors t,, 0,, ..., U, of the data covariance matrix

S corresponding to the M largest eigenvalues 4,, 4,, ..., 4,,.

55
ha

-
-

€I

Figure 7.1 Schematic diagram of principal component analysis (PCA)
(Bishop, 2006)

7.2 Principal component analysis of GPS water vapor dataset

This section intends to simplify the description of the GPS water vapor dataset using

principle component analysis.
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7.2.1 Data preparation
7.2.1.1 Data categorizing

The dataset used for this analysis was from Chapter 5, which is a nine-station two-day
post-processed GPS water vapor dataset from October 18 ~ 19, 2007. There are totally
seventeen variables in this dataset. According to their attributes, the seventeen variables
of the dataset are sorted into four categories: Measurement, Satellite geometric factor,
Meteorological parameter and Position error (see Table 7.1) (since the actual GPS
receiver clock time were not provided at these stations, GPS receiver clock error variable

was not included in this analysis).

Table 7.1 Original GPS water vapor dataset

Category of Variables Description
ZTD (X))
ZDD (X,)
Measurement ZWD ( X3;)
PWV (X,)
PWV bias ( X)
# SAT (X¢)
GDOP ( X)

Satellite Geometry PDOP ( X,)
Factor HDOP ( X,)

VDOP ( X,,)
TDOP (X,;)
Pressure ( X,,)

Meteorological

Parameter Temperature ( X ;)

Relative Humidity ( X,,)

East Error ( X5)
Position Error North Error ( X4)
Up Error ( X ;)
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7.2.1.2 Outlier removing

Considering the impact of the outliers to PCA (Krzanowski 1988), thirteen outliers were

detected using the scatterplots of dilution of precision (DOP) and removed.

7.2.1.3 Data standardizing

Since the seventeen original variables were measured in various different units and had
significantly different variability, they need to be standardized prior to principal
component analysis (Krzanowski, 1988). Standardization is achieved by considering each
variable separately, subtracting the variable sample mean from each observation and then
dividing the result by that variable’s sample standard deviation such that each individual
variable had zero mean and unit variance. The data standardization was carried out
station by station considering the topographic difference of each individual station. Since
the original dataset was standardized, the following PCA analysis is equivalent to
analyzing the correlation matrix instead of the covariance matrix. When the principal
components are derived from the correlation matrix, the interpretation becomes easier in
two ways (Afifi et al., 2004):

Q) The total variance is simply the number of variables P, and the
proportion explained by each principal component is the
corresponding eigenvalue divided by P.

(i) The correlation between the ith principal component C, and the jth

variable X; is

1
r, =a; -(VarC,)z (7.4)
where a; is the coefficient of the jth variable x; for ith
principal component C,; “ VarC,’ means ‘the variance

(eigenvalue) of component C, .
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Therefore for a given component C; the a; can be compared to

qualify the relative degree of dependence of C, on each of the

standardized variables.
At last, the standardized datasets of the nine stations were merged into one data
matrix with size (4980 x 17), where the seventeen data items of each epoch are aligned

in a row.

7.2.2 Analytic results

Matlab PCA function is utilized to execute the principal component analysis on the
standardized data matrix (Section 7.2.1). The output results are shown in Figure 7.2. In
Figure 7.2, (i) COEFF is a 17-by-17 PCA coefficient matrix where each column
represents a new component/domain of the GPS water vapor dataset and each row
represents each original variable’s coefficient (i.e. loading or contribution from an
original variable) to each component/domain and the columns of COEFF are in order of
decreasing component variance; (ii) latent is a 17-by-1 eigenvalue vector where each row
element represents the eigenvalue (i.e., variance) of the corresponding component listed
in COEFF. The total variance of the seventeen components is equivalent to 17, i.e. the

number of the components.
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Figure 7.2 Output of 17 variable PCA analysis
(COEFF is a 17-by-17 matrix, each column containing coefficients for one principal component and the
columns of COEFF are in order of decreasing component variance. latent is a 17-by-1 vector containing the
eigenvalues of the covariance matrix of the GPS water vapor dataset.)

7.2.2.1 Validation of principal components
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As mentioned earlier, one of the objectives of PCA is dimension reduction. The purpose

of the dimension reduction is to make analysis and interpretation easier, while at the same
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time retaining most of the information (variation) contained in the data. Since the
principal components are arranged in decreasing order of variance, the leading principal
components would be selected as representatives of the original set of variables.

There are various rules proposed to estimate the number of components to retain in a
principal component analysis, but none of them appear to work well in all circumstances
(Afifi et al., 2004). One rule is to keep a sufficient number of principal components to
explain a certain percentage of the total variance. One common cutoff point for this rule
is 80%. Another rule is to discard principal components which have a variance less than
70/P (P: the number of variables) percent of the total variance. In this study, the principal
component which has a variance of less than 5% of the total variance is not retained.

Table 7.2 summarizes the first seven principal components from Figure 7.2, where a
new domain (a column) is retained when its variance/eigenvalue is greater than 5% of the
total variance. The principal component 7 is included, although it has a variance close to
5% (i.e., 4.97%). These seven components explain 88.59% of the total variance (i.e., the
number of the variables = 17). The values (coefficients/loadings) contained in Table 7.2
illustrate the strength of the relationship between each variable and the new

components/domains.
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Table 7.2 PCA loading for original GPS water vapor dataset

Original Principal Component (Domain)
Variable
1 2 3 1 5 6 7
(Size  [Size Mol (?)  Molof (EastUp (PWY
of of of Up  Posi Err Bias-Mor
DOPY  Total 20D Fosi Erml Contr)  Posi En
Delay) Contr)

# 00495 04449 03364 -00864 00857 -0.0633 -0.0464
Hz 00193 02468 05416 -0.2857 00960 01547 -00723
#3 00381 05238 01756 00346 00158 00042 -00272
e 00398 05252 01632 00230 00182 -0.0016 -0.0354
#5 00383 0065 02305 02766 -04475 -0.2395 0.5790
i 0.3183 00007 00437 01510 02236 01727 01147
Hr 04311 00457 00272 00833 00563 00478 -00232
5 0.4309 00522 00251 00781 00567 00333 -0.0240
#a 0.3830 00535 00308 00970 00135 -00676 00295
#10 04127 00435 00201 00803 00786 00702 -0.0413
H1 0.4239 00400 00232 00867 00439 00797 -0.0296
Hz 00194 02478 05420 -0.25873 00257 01516 -0.0726
H13 01032 -0.2602 02021 04468 01335 -0.1990 -0.2393
H14 00430 01675 02233 04185 -00413 03765 04764
H1s 00366 01343 02528 03366 -0.1439 05950 01724
H15 00765 -0.0250 00217 04266 -03511 -0.3123  0.5571
T 0.0511 -0.0430 00933 -0.1452 07398 04579 -0.0331
Eigervalue

or War Ci 51489 32466 21112 16092 1.0207 09818 08455
Variance

explained 30.27% 1910% 1242% 947% GB42% 578 497%
Cumulative

proportion J0.27% 49.37% B1.79% 71.25% 77 E7% 83.44% BO8.42%

1
0.5 War O, )2

02204 02775 03447 03942 047858 05046 05438

Interpretation of principal component

When the principal components are selected, they are interpreted in the context of the
variables with high coefficients. For each principal component the variables with a
correlation greater than 0.5 with that component are regarded as significantly contributing

variables (Afifi et al., 2004). In this study, this value (0.5) is taken as a cutoff point. Since

1
the correlation r; =a, -(VarC, )2 (Equation 7.4), a coefficient a; in Table 7.2 is

1
highlighted by bold typeface if it exceeds 0.5/(Var C, )z (Table 7.2).
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As Table 7.2 shows, six Satellite Geometry Factor variables are highly correlated

(greater than 0.5) with the first principal component. Thus, the first component C, can be
approximately represented as C, = 0.4(X, + X, + X4 + Xy, + X;,)—0.3X, . The most

extreme positive value on this component will be taken by a GPS satellite configuration

that has large values for X, through X, (i.e., all large DOPs) but small values for X,

(i.e., small number of available satellites). At the other extreme, a large negative value for

C, will be taken by a GPS satellite configuration that has a large number ( X ) of
available satellites but small values for all DOPs (i.e., X, through X,,). Hence C, is
identified as a measure of “Satellite availability” or Size of DOP.

Component C, shows a high correlation with X, (ZTD), X, (ZWD)and X, (PWV)
and it is approximately of the formC, = -0.5(X, + X, + X, ). As it is known, ZWD

contributes to ZTD and PWV contributes to ZWD. The previous combination indicates

that C, measures the Size of Total Delay.

Component C, is defined by X,(ZDD)and X,, (Pressure) and it is approximately of
the formC, = -0.5(X, + X,, ). Since X,, contributes directly to X, (see Equation 2.19),
C, is identified as a measure of ZDD. Thus, C, will be interpreted as the Volume of

ZDD.
Component C, is defined by a cluster of X ,(Temperature) , X,, (Humidity) and

X, (North Position Error)  and it is  approximately — of the  form
C,= 0.4(X,, — X,;)—0.4X,,. The first term shows the contrast between Temperature

and Humidity; but the second term represents the negative contribution of North Position

Error. In this context, component C, does not have a clear-up physical interpretation.
The question mark is put under component C, in Table 7.2.
Component C, is uniquely defined by a single variable X,, (Up Position Error). C.,

therefore, is interpreted as a measure of the position error in up direction and will be

called Volume of Up (Position) Error.

118



Component C, is defined by two position error metrics, X,. (East Position Error)
and X, (Up Position Error), which can be proximately represented as
C, = 0.5(X,,)-0.6(X,). This form indicates the negative association between two
position error metrics. C, will be called the East-Up (Position) Error Contrast.

Component C, is defined by two different kind of error metrics, X, (PWV bias) and
X s (North (Position) Error) and is approximately given by C, = 0.6(X16 - XS). The

form represents the negative association between PWV Bias and North (Position) Error.

Like Component C,, C, will be called PWV Bias-North (Position) Error Contrast.

7.2.2.2 Remodelling of principal components

There are some problems with the component structure above (Table 7.2):

Q) Component duplication exits between C, (Size of Total Delays) and C,
(Volume of ZDD). In fact, C, is included in C, because ZTD ( X,) is computed
in formula: ZTD = ZDD + ZWD and ZDD~0.9xZTD.

(i)  Some correlated original variables cause noises in the component structure,
which blurs some principal component identifications. One noise component is
ZTD ( X,) since it is highly correlated with ZDD. Another noise component is
PWV ( X,) since it is highly correlated with ZWD (i.e., PWV =ZWV /Q,
where Q is conversion factor: Q =5.9 ~ 6.5).
Hence ZDD ( X,) and PWV ( X,) are removed from the original GPS water vapor

dataset. Analyzing the reduced fifteen-variable GPS water vapor dataset again by
principal component analysis, the new, concise component structure is derived and
shown in Table 7.3 (The whole PCA results are shown in Figure 7.3), where the values of

the contributing variables are highlighted by bold typeface.
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COEFF =

Columns 1 through 2

—-0.014%2 -0.5718 -0.2510 -0.z027 0.1882 -0.0%941 0.0521 0.1z261 -0.0z2232
0.0164 O.z23z20 0.1412 -0.6148 0.2576& 0.1585 0.141% 0.3803 0.1461
-0.0332 =0.1770 0.3101 -0.273F -0.41:27 0.1773 0.65532 -0.3747 -0. 1425
-0.3186 =0.0450 0.1508 O.0656 0.2334 -0.1366 0.1z22% -0.z233% 0,676
0.4327 -0.043E 0.051& 0.0236 0.05325 -0.03325 0.030& -0.0566 0.13&7
0.4327 =0.0447 0.0757 0.02325 0.0551 -0.0262 0.0264 -0.0522 0.113&
0.38432 -0.0550 0.0336 o.o03z3 -0.0354 0.05532 -0.0352 0.0666 -0.3423
0.4142 -0.03432 o.0533 o.0z21s 0.08581 -0.0552 0.0454 -0.101% 0.3137
O.4252 -0.0366 0.08&67 o.oo77 0.06323 -0.0&30 0.0313 -0.0661 0.1626
-0.014%9 -0.57258 -0.2435 -0.2011 0.1567 -0.0318 0.0587 0.1265 -0.02158
0.0947 0.3508 -0.42158 -0.1467 0.1700 0.2631 0.3343 0.11zz 0.0431
-0.0552 -0.001%8 0.4532 -0.4633 0.2467 -0.1370 -0.3795 -0.17z20 -0.2092
-0.0337 -0.2&50 0.3408 0.0733 -0.2363 0.5244 -0.z002 0.4754 0.3169
0.0749 -0.0320 -0.3933 -0.3691 -0.24565 0.38558 -0.4523 -0.4819 0.1611
0.0503 0.1075 -0.1481 -0.2810 -0.61489 -0.5991 -0.0374 0.2618 0.2266
Calumns 10 through 1&

0.025& -0.0108 -0.000& 0.0003 -0.0199 0.7064

-0.4549 O.05&2 o.0z2324 o.o0zs -0.000& 0.000&

O.028%8 0.0472 -0.0008 -0.000& o.oolz 0.0005

-0.040& -0.47839 O.022E 0.0042 o.0017 -0.00032

0.0132 o.ozz7 O.0z20& 0.321k -0.8189 -0.0245

0.016% O.0L1&0 0.328%8 0.&307 0.5254 0.0128

-0.1810 -0.7&40 0.142% -0.2712 o.0zo9 0.00L1%

0.03%51 0.3414 0.392328 -0.&64532 0.0&50 0.0040

-0.0127 o.ozze9 -0.5441 -0.03232E5 0.218& 0.005&

o.ozz22 —-0.0035 O.oo02 -0.00z2 0.0z208 -0.7orz2

0.&6305 -0.20&87 -0.0238 —-0.0005 o.0o1z -0.00z22

0.4805 -0.0211 0.0032c5 —-0.0025 o.00z0 -0.001%

O.z2447 -0.051& ] -0.0001 0.00L0 0.00L1%

-0.1381 —-0.04632 -0.003& 0.00&6 -0.00322 0.000%

0.108%2 -0.1241 o.ozz24 O.0014 0.o0o0z2 -0.0011

lTatent =

E.134%58

2.3885

1.6031

1.2458

1.0624

0.9669

0.5344

0.61z24

0.5033

0.3336

0.2317

0.0402

0.007%

0.003%

0.001&

Figure 7.3 Output of fifteen-variable PCA analysis
(COEFF is a 15-by-15 matrix, each column containing coefficients for one principal component and the
columns of COEFF are in order of decreasing component variance. latent is a 15-by-1 vector containing the
eigenvalues of the covariance matrix of the GPS water vapor dataset.)
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Table 7.3 PCA loading of fifteen-variable GPS water vapour dataset

Original Principal Component (Domain)
Variable
1 2 3 4 5 6 7
(Size (ol (Waisture (val ol of  (East-Up (vol of
of of Content]  of Lp Pasi Posi Er Py
DoPy 7DD DDy Em) Caontr]  Bias)

#2 00148 05718 02510 02027 01882 -0.0941  0.089
#3 001B4 02920 01419 06148 02576 01535 01415
#5 00352 01770 03101 02737 -00ZF 01779 0.6559
#B 03186 -00450 01505 00856 02394 -0.1366 0.1295
i 04327 -00435 00316 00236 00595 -0.0395 0.0306
#3 04327 -00447 00757 00295 00551 -0.0262 0.0264
#3 03849 -00550 00335 00329 -00384 0.0559 -0.0352
10 04142 -00343 00533 00218 0.0851 -0.0553 0.0434
EA R 04252 -003B6 00867 00077 00533 -0.0890 0.0313
12 0.0143 05728 02495 -02011 01867 -0.0916 0.0337
*13 00947 03503 04218 -01457 01700 02691 0.3343
14 -0.0552 00019 04832 04633 02467 -01570 -0.3735
15 00337 02850 03405 00799 02953 05244 02002
K16 00743 -00320 -03333 -03691 -0.2456 03853 -0.4623
X7 00503 01075 01461 -02310 0.6149 05991 -0.0374
Eigenvalue

or War G 51348 23835 16091 12455 1.0624 05669 038344
Variance

explained 4 Z3% 15592% 1073% 831% 7.03% B45% 556%
Cumulative

proportion 3423% 50.16% B0B8S% B919% VB 27% 8272% B88.30%

.
0.5/(Var T, )3 02207 03235 03941 04450 04351 05035 05474

The new component structure (Table 7.3) has the following changes.

(1) Two *noisy’ variables X, (ZTD) and X , (PWV) were removed from

the component structure.

(i) Component Size of Delays is absent, i.e. no more component
duplication.

(iif)Components C,, C, and C, remain in their definitions and their

positions.

(iv)Component Size of ZDD remains in its definition, but it is moved up

the position Component C, with respect to the variance it explains.
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(v) In the case of Component C,, which is equivalent to the Component
C, of the previous component structure (Table 7.2), variable X (-
0.3933) is no longer highly correlated with C,. Thus C, is straight
defined by the two meteorological variables X, (Temperature) and
X, (Relative Humidity) and is proximately of the form
C, = 0.4(X,, — X,;). This contrast form expresses the Temperature-

Relative Humidity negative correlation, which represents the state of

water vapor in the troposphere. Component C, is, therefore, identified

as a measurement of Moisture Content.

(vi) Component C, is a new domain and it is defined by variables
X, (ZWD) and X, (Relative Humidity). Since X, contributes to
X5, C, isidentified as the domain of Size of ZWD.

(vii) Component C,, which was defined by both X, (PWV Bias) and
X s (North Position Error) in the previous component structure
(Table 7.2), is defined by the single position measurement, X . (PWV
Bias), which measures the PWV offset from the true value.
Component C, is, therefore, identified as the domain of Size of PWV
Bias.

(viii) Variable X does not contribute to any components; thus total

number of contributing variable is 14 (i.e. without ZTD, PWV and
North Position Error).

The above analysis arrives at the seven domain structure, which indicates that the
removal of correlated variables X,and X, makes the component structure represent the
net contribution of each domain more effectively and precisely. The variants Size of ZDD

and Size of ZWD are mapped to Component C, and C,, respectively. Components C,
and C, are defined uniquely by fewer (one or two) contributing variables. The

percentage of total variance (88.30%) explained by the seven principal component model
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is almost the same as the one (88.42%) explained by the previous component model even
through the number of variables is decreased.

The variance explained by each component in Table 7.3 also shows that Size of DOP
is the largest variant factor (34.23%) in the GPS water vapour measurement system and
its value is changing regularly, but almost a constant for each day. The variances for the
rest of components in decreasing order are Volume of ZDD (15.92%), Moisture Content
(10.73%), Volume of ZWD (8.31%), Volume of Up (Position) Error (7.08%), East-Up
(Position) Error Contrast (6.45%) and Volume of PWV Bias (5.56%); these components

vary with each day’s atmosphere conditions.

7.3 Correlation analysis of GPS water vapor dataset

This section will present the correlation analysis of the four types of variables listed in
Table 7.1. The purpose of this analysis is to explain and summarize the relationship of
between-subset (i.e. type) of variables in the GPS water vapor dataset using scatter plot
and linear regression techniques. Seven correlations are to be investigated, which are
shown in Figure 7.4. The dataset for analyzing is still the same one described in Section
7.2.1.

Meteorological 0 . Zenith

parameters ,delays

Satelite ,.-" (4} -, Position

geometric ¢------------- * errors
factors a
“(5) (7)
\“ ;
“» PWV bias

Figure 7.4 Seven variable correlations of the system
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7.3.1 Correlation between zenith delays and meteorological parameters

This between-subset relation represents the influence of meteorological variables over the
GPS signal delays. Table 7.4 gives the correlation coefficients between these two types
and their significant correlation tests. Figure 7.5 shows the scatter plots between them

and corresponding regression lines, where each cluster represents a site sample data

distribution pattern.

Table 7.4 Correlation Coefficients of zenith delays and MET data

Correlation coefficient (r) Correlation test (N =4980, a = 0.01)
Meteorological parameter PR TD RH
Zenith Popul- Popul- Popul-
mpl : mpl : mpl j
Delay PR TD RH S\?alt?ee ation S\?alt?ee ation S\?aILFJ)ee ation
value value value
ZTD 0.9578 | 0.6652 | 0.2560 | 235.105 | 2.4121 | 62.857 | 2.4121 | 18.685 | 2.4121
ZDD 1.0000 | 0.4922 | 0.1705 0 24121 | 39.894 | 2.4121 | 12.208 | 2.4121
ZWD 0.4558 | 0.8310 | 0.3679 | 36.130 | 24121 105.4 24121 | 27.915 | 24121
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(a) Zenith delays vs pressure

(b) Zenith delays vs temperature

Scatterplots of Zenith Delays vs Relative Humidity
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(c) Zenith delays vs relative humidity
Figure 7.5 Scatterplots between zenith delays and meteorological parameters
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The analytical results show that:

(1) All delays positively associate with all meteorological variables;

(2) Scatter plots show that: (i) most associations (except the association of ZDD
versus pressure) present the forms of function of multi variables where each
individual function value represent each sample site association pattern; (ii)
most associations (except the association of ZWD versus pressure) are
approximately linear and indicate the additivity of effect among different
site values, i.e., different site data clusters parallel with one another, which
means that these associations can better summarized by multiple regression
(Ott, 1988 (Ch 12)); (iii) the association between ZWD and pressure at each
site is nonlinear.(see Figure 7.5 (2));

(3) The correlation coefficient between ZTD and pressure has a high value (r =
0.96), which means pressure is the most informative variable for ZTD, that
is, if a value of pressure is given then the corresponding ZTD value can be
estimated quite accurately (Afifi et al. 2004); the regression coefficient
(slope = 2.69) indicates that 1-mbr-increment of pressure leads to ~2.69-
mme-increment of ZTD (see Figure 7.5 (a));

(4) The association of ZDD versus pressure presents the form of one-valued
function (r = 1) (Figure 7.5 (a)), i.e., pressure explains 100% of ZDD’
variance, which is the only one-valued function between these two types and
the regression coefficient (2.28) indicates that 1-mbr-increment of pressure
leads to ~2.28-mme-increment of ZDD (Dodson et al. (1996) found that a
pressure error of 1 mbar pressure error translates to a 2.3 mm ZDD error);

(5) Temperature has a very strong association with ZWD (r = 0.83), which, as a
whole, would cause an increment of ZWD by ~6.91 mm for each unit
temperature (Figure 7.5 (b)) (Dodson et al. (1996) found that a 2°C error
in temperature can result in a 12 mm ZWD error);

(6) Relative humidity contributes to ZWD (0.3676) much less than the
temperature does to ZWD (0.8312); and

(7) Both humidity and temperature had bigger varying ranges than pressure did
(this conforms the PCA results).
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7.3.2 Correlation between position errors and meteorological parameters

This correlation analysis provides us information how sensitive the system solutions are
to the variation of meteorological environment. Table 7.5 gives the correlation
coefficients between these two types of variables and their significant correlation test
results. Figure 7.6 shows the scatter plots of between these two types of variables. The
analytical results show that:
(1) Associations exist between most relations of these two types except the one of
north position error versus relative humidity;
(2) Associations between east position error and meteorological variables (at
each site) are approximately linear, while others are nonlinear;
(3) The affection of meteorological variables are mainly reflected on the east and
up position errors;
(4) Pressure and temperature mainly contributes negatively to east position error
(r=-0.6932 and r =-0.3451, as a whole); and
(5) Relative humidity mainly contributes positively to up position error (r =
0.4709, as a whole).

Table 7.5 Correlation coefficients of position errors and MET data

Correlation coefficient (r) Correlation test (N =4980,a = 0.01)
Meteorological parameter PR TD RH
Position Popul- Popul- Popul-
error PR TD RH ST ation S ation SEIE ation
value value value
value value value
East -0.6934 | -0.3448 | 0.2380 | -67.896 2412 -25.917 -2.412 17.289 2412
North -0.1892 | 0.0802 | -0.0214 | -13.595 -2.412 5.677 2412 -1.51* -2.412
Up -0.3339 | -0.1467 | 0.4703 -24.993 -2.412 -10.464 -2.412 37.60 2.412

*: means that test failed, i.e., no significant correlation
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Scatterplots of Position Error vs Pressure Scatterplots of Position Error vs Temperature
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Figure 7.6 Scatter plots of position errors and MET parameters
(Each cluster represents the observation sample from one station)

7.3.3 Correlation between zenith delays and satellite geometrical factors

This correlation analysis investigates the impacts from satellite geometric factors to
zenith delays. The correlation coefficients and their significant tests are given in Table
7.6. The scatter plots between them are shown in Figure 7.7. The analytical results show:
(1) That although the correlation coefficients do not show high values, the weak
associations exist between these two types of variables;
(2) That all six satellite geometrical factors have bigger influences over ZWD than
over ZTD/ZDD;
(3) That all DOPs have positive associations with zenith delays; and
(4) That satellite number has negative associations with zenith delays.
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Table 7.6 Correlation coefficients between zenith delays and satellite geometric factors

Correlation coefficient (r)

Correlation Test (N = 4980, = 0.01)

Satellite Zenith delays ZTDP0 = ZDDP0 = ZWDPO -
geometrlc ZTD ZDD ZWD sl atipon SAR atipon SRl at?on
variable value value value
value value value
Satellite # | -0.0895 | -0.0564 | -0.1369 | -6.34 -2.412 -3.986 -2.412 -9.751 -2.412
GDOP 0.0941 | 0.0665 | 0.1256 | 6.669 2.412 4,702 2.412 8.932 2.412
PDOP 0.0840 0.0591 0.1129 5.948 2.412 4177 2.412 8.017 2.412
HDOP 0.0883 | 0.0603 | 0.1232 | 6.254 2.412 4.262 2.412 8.759 2.412
VDOP 0.0726 | 0.0508 | 0.0983 | 5.136 2.412 3.589 2.412 6.969 2.412
TDOP 0.1129 | 0.0799 | 0.1503 | 8.017 2.412 5.655 2.412 10.726 2412

*: means that test failed, i.e., no significant correlation
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Scatterplots of Zenith Delays vs Satellite Number Scatterplots of Position Errors vs GDOP
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Figure 7.7 Scatter plots of Zenith Delays vs Satellite Geometric Factors

7.3.4 Correlation between satellite geometry factors and position errors

This correlation analysis investigates how satellite geometry factors influence the
position errors. Table 7.7 gives the correlation coefficients between these two types of
variables and corresponding significant test results. The scatter plots between these types

of variables are shown in Figure 7.8. Although the values of correlation coefficients are
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not high, the significant correlation tests indicate that the weak correlations exist between
most of them. The two obvious indications are:

(1) That satellite geometric variables exert impact mainly on east and up position
errors; the impacts on the latter (from -20 to -80 mm) are much bigger than on
the former (from -10 to 25 mm); and

(2) That in this association, HDOP is the most significant contributor to position

errors.

Table 7.7 Correlation coefficients between position errors and satellite geometric variables
and corresponding significant tests

Correlation coefficient (r) Correlation test (N = 4980, & = 0.01)
Satellite Position Error EastPo - Nortgo = UpPO =
3:?:2@:20 East North Up Sj;?ﬁ;e atipon S\?;TS!G at?on S\?Qgge at?on

value value value

Satellite # | 0.1746 | -0.0887 | 0.1481 | 12.30 2412 | -6.283 | -2.412 | 10566 | 2.412
GDOP -0.1188 | 0.0101 | -0.0918 | -15525 | -2.412 | 0.713* | 2412 | -6.504 | -2.412
PDOP -0.1050 | 0.0168 | -0.0792 | -7.449 | -2.412 | 1.185% | 2412 | -5.606 | -2.412
HDOP -0.1477 | -0.0017 | -0.1546 | -10.537 | -2.412 | -0.120* | -2.412 | -11.041 | -2.412
VDOP -0.0761 | 0.0249 | -0.0405 | -5.385 | -2.412 | 1.757* | 2412 -2.86 -2.412
TDOP -0.1509 | 0.0007 | -0.1180 | -10.77 | -2.412 | -0.049* | 2412 | -8.384 | -2.412

*: means that test failed, i.e., no significant correlation
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Figure 7.8 Scatter plots of position errors vs satellite geometric factors
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7.3.5 Correlation between PWV bias and satellite geometric factors

This correlation analysis investigates how satellite geometric variables impact the
measurements of PWV. The significant correlation test results are given in Table 7.8 and
the corresponding scatterplots are shown in Figure 7.9. Table 7.8 does not show strong
correlations between these two types of variables. The notable association is between
PWV bias and satellite number: PWV bias decreases as the satellite number increases

(Figure 7.9); this means that the more satellites the more accurate measurement of PWV.

Table 7.8 Correlation Coefficients of PWV bias and Satellite Geometric Variables

- e Correlation test
Correlation coefficient (r) (N — 4980, o = 0.01)
Satellite
geometric PWYV bias Sample value Population value
variable
Satellite # 0.0837 5.926 2.412
GDOP -0.0464 -3.277 -2.412
PDOP -0.0463 -3.270 -2.412
HDOP -0.0233 -1.644* -2.412
VDOP -0.0514 -3.631 -2.412
TDOP -0.0526 -3.716 -2.412
*: means that test failed, i.e., no significant correlation
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Figure 7.9 Scatter plots of PWV bias vs Satellite Geometric Factors
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7.3.6 Correlation between zenith delays and position errors

This correlation analysis investigates how zenith delays contribute to the position errors.
The correlation coefficients between these two types and the corresponding significant
test results are given in Table 7.9. The scatter plots between these two types of variables
are shown in Figure 7.10. The analytical results show:

(1) That ZTD/ZDD mainly contribute to east and up position errors: (1) as ZTD/ZDD
increases east position errors either decrease in positive domain or increase in
negative domain; (2) as ZTD/ZDD increase, up position errors increase in
negative domain;

(2) That ZWD mainly and positively contributes to horizontal position errors; and

(3) That up position errors have bigger varying ranges than both east position errors

do.
Table 7.9 Correlation Coefficients of Zenith Delays and Position Errors
Correlation coefficient (r) Correlation test (N =4980,a = 0.01)
Position Error East North Up
Zenith Popul- Popul- Popul-
delay East | North Up Sample | " ion | Sample | oion | SamPle | asion
value value value

value value value

ZTD -0.6635 | -0.0815 | -0.2444 | -62.57 -2.412 -5.769 2412 | -17.783 | -2.412
ZDD -0.6974 | -0.1902 | -0.3385 | -68.657 | -2.412 | -13.669 | -2.412 | -25.381 | -2.412
ZWD | -0.3041 | 0.2285 | 0.0956 | -22.522 | -2.412 16.560 2.412 6.776 2.412
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Scatterplots of Zenith delays vs East Position Error

3000
E [ L
£ 2000} — —
',Q r=-0.66; Std = 128.51; Slope = -11.41; Offset = 2337.47
1000 . . . . . .
-10 -5 0 5 10 15 20 25
East Err (mm)
2500 T T T
[~ Hpgmn ISP 0 cmmmwmo
8 2000} TR
N
r=-0.70; Std = 100.00; Slope = -9.74; Offset = 2234.30
1500 . . . . . .
-10 -5 0 5 10 15 20 25
East Err (mm)
400 T T T T T
r=-0.30; Std = 52.27; Slope = -1.67; Offset = 103.18
€ 200}
N | - —
0 I I I — 1
-10 -5 0 5 10 15 20 25

(a) Zenith delays vs east position error

East Err (mm)

3000

Scatterplots of Zenith delays vs North Position Error

North Err (mm)

(b) Zenith delays vs north position error

Scatterplots of Zenith delays vs Up Position Error
T T T T T

~ 2000+

r=-0.24; Std = 166.57; Slope = -3.72; Offset = 2087.05
I | | I

1000
-80 -70

2500

-60

-50

Up Err (mm)

-40 -30 -20

A 2000+

r=-0.34; Std = 131.30; Slope = -4.19; Offset = 1972.04
I . .

1500
-80 -70

400

-60

I
-50

Up Err (mm)

I
-40 -30 -20

S 200}
N

r=0.10; Std = 54.62; Slope = 0.46; Offset = 114.96

0 1
-80 -70

1
-50

I
-40 -30 -20

Up Err (mm)

(c) Zenith delays vs up position error

Figure 7.10 Scatterplots of Zenith Delays vs Position Errors

7.3.7 Correlation between PWV bias and position errors

Some author (Skone et al., 2006) mentioned that position errors could contribute to PWV
bias error. This issue is validated using the correlation coefficient test. Table 7.10 gives
the correlation coefficients of each individual station; the correlation coefficient of all-
nine-station is given in last line. Each individual station correlation coefficients are also
plotted in Figure 7.11. The all-nine-station scatter plot of PWV bias vs position errors is
shown in Figure 7.12. The significant correlation tests for each individual station show
that 80% of east, 90% of north and 55% of up position errors associate with PWV bias;
but the significant correlation tests of all-nine-station statistics indicates that only east

and north position errors have associations with PWV bias.
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Table 7.10 Correlation coefficients and significance test

Correlation coefficient (r) Correlation test (N = 4980, & = 0.01)
Position error East North U
PWV bias P Popul Popul : Popul
at Station P P el
( ) East North Up Sample ation Sample ation Sl ation
value value value
value value value
100 0.4320 -0.1774 0.0311 11.213 2.412 -4.22 -2.412 0.728* 2.412
101 0.5908 -0.0122 0.1979 17.142 2.412 -0.286* -2.412 4,726 2.412
102 -0.2895 0.1685 0.4913 -7.08 -2.412 4.002 2.412 13.205 2.412
104 0.4466 0.5140 -0.0669 11.685 2.412 14.027 2.412 -1.57* -2.412
105 0.3611 -0.2494 | -0.2808 9.065 2.412 -6.029 -2.412 -6.849 2.412
107 0.0243 -0.56313 | -0.1154 0.569* 2.412 -14.681 -2.412 -2.72 2.412
109 0.4020 -0.2610 | -0.0726 10.278 2.412 -6.329 -2.412 -1.704* -2.412
112 0.2577 0.2269 0.0027 6.243 2.412 5.454 2.412 0.063* 2.412
115 0.0207 -0.1483 0.1438 0.485* 2.412 -3.51 -2.412 3.402 2.412
All nine
stations 0.1706 -0.1723 | -0.0193 12.216 2.4121 -12.341 -2.412 -1.362* -2.412
(N = 4980)
*: means that test failed, i.e., no significant correlation
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Figure 7.11 Plots of correlation coefficients of PWV biases versus position errors

Figure 7.12 Scatter plots of PWV bias versus position errors
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7.4 Summary

The GPS water vapour dataset consists of four types of intercorrelated variables, which
are 17 by number. Principal component analysis has been performed to simplify the
description of the GPS water vapor dataset. Variable correlation analysis has been also
carried out to further investigate and explain the between-type relationship among those
four variable types.

The PCA of the GPS water vapor dataset derives a seven-principal-
component/domain structure of the GPS water vapor dataset: Size of DOP, Volume of
ZDD, Moisture Content, Volume of ZWD, Volume of Up Position Error, East-Up
(Position) Error Contrast and Volume of PWV Bias. In the GPS water vapor
measurement system (without GPS receiver clock error), Size of DOP takes up 34.23% of
the variance; Volume of ZDD 15.92%; Moisture Content 10.73%; Volume of ZWD 8.31%;
Volume of Up Position 7.08%; East-Up Error Contrast 6.45% and Volume of PWV Bias
5.56%. All the seven principal components explain the variances of the system by
88.30%.

The correlation analysis focuses on the seven between-subset associations between
four types of variables. These analytic results show that:

(1) All Zenith Delays have positive associations with Meteorological Parameters:
(i) ZTD associates strongly with pressure (r = 0.96); (ii) ZWD is strongly
associated with Temperature (r = 0.83); and (iii) ZWD has a weaker
association with Humidity (r = 0.37) than it does with temperature;

(2) The associations exist between Position Errors and Meteorological Parameters
as follows: (i) both Pressure and Temperature largely, negatively contribute to
east position error (r = -0.69 and r = -0.35); and (ii) Humidity largely,
positively contributes to Up Error (r = 0.47);

(3) Zenith Delays have weak associations with Satellite Geometrical Factors: (i)
all six satellite geometrical factors mainly contribute to ZWD; (ii) all DOPs
have positive associations with zenith delays;

(4) A weak association exists between position errors and satellite geometric
factors as follows: (i) HDOP is the most significant contributor to the position

errors; (ii) satellite geometric factors exert impact mainly on east and up
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position errors and the impacts on the latter (from -20 to -80 mm) are much
bigger than on the former (from -10 to 25 mm);

(5) PWV bias has very weak association with satellite geometric factors;

(6) ZTD/ZDD has a strong association with east error: east errors either decrease
in positive domain or increase in negative domain as ZTD/ZDD increases;
and

(7) Both east and north position error has a weak association with PWV bias.
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Chapter Eight: Conclusions

Atmospheric water vapor plays a crucial role in the climatic systems (transporting
moisture and latent heat), in particular over high latitudes where water vapor exhibits a
significant seasonal variability. Better knowledge of the global distribution of
atmospheric water vapor in space and time will improve the performance of weather
prediction and climate monitoring. In Canada, the sparse spatial and temporal sampling
of atmospheric water vapor observations needs to be improved. Conventional radiosonde
technique can not meet this requirement. Water vapor radiometry (WVR) can not either,
since it has poor spatial resolution and is also limited in high-latitude areas like the
Arctic. The GPS atmospheric remote sensing technology has been proved to be a key
method to improve high latitude sparse spatial and temporal sampling of water vapor
observation in Canada. In this thesis, the method for developing a near real-time GPS
water vapor sensing system using GPS PPP technique and Canada sparse geodetic GPS
network has been presented. The fundamental problems addressed in this work are (i)
how to design/implement a workable distributed GPS water vapor sensing network, (ii)
how to evaluate the system performance, (iii) how to create an interpolated map of (near
real time) water vapor, and (iv) how to investigate the hidden variable relations in a GPS

water vapor dataset.

8.1 Contributions

In this thesis, the following ideas and approaches were utilized to develop the real-time
GPS PPP-inferred water vapor system.

(1) A distributed real-time GPS PPP-inferred water vapor remote sensing system has
been realized, in which distributed GPS data sources (network) and distributed
computing facility (PPP software) cooperate under network protocols. The system
concurrently and continuously processes 21-station data and produces near real-
time tropospheric products: ZTD/ZWD/PWV for each station under all weather

conditions. In the future when the GPS network is expanded, i.e., more stations
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are added, the increased workload of data processing can easily be distributed
over network to newly added GPS processing centers.

(2) The performance of the developed system has been analyzed in three aspects:
position errors, ZTD and PWV. The results show: (i) the position errors: RMS =
1.1 ~ 4.3 cm; (ii) the significant position error occurs in the up direction which has
relation to the un-modeled atmospheric errors; (iii) the ZTD and PWV accuracies
of the current (near) real-time water vapor system are ~13 mm and ~2 mm,
respectively, which should be improved if the real-time Meteorological data
stream were available to the system.

(3) An ordinary kriging program has been developed in Matlab, which generates near
real-time interpolated surface maps of PWV over Canada using the limited
available sample datasets. The Matlab program consists of three steps: (i)
Calculating experimental semivariogram; (ii) Estimating semivariogram model
(model fitting); and (iii) Estimating surface map of PWV by ordinary kriging. In
step one, the reliability of the calculated experimental semivariogram impacts the
best model choosing, and consequently the accuracy of kriging interpolation. In
step two, firstly, three different semivariogram models: Spherical, Exponential
and Gaussian are fitted by nonlinear weighted least-squares respectively and then
the best fitted model is determined by cross-validation process. In step three, the
interpolated PWV maps and associated kriging standard error maps are generated
by ordinary kriging algorithm.

(4) The kriginged PWV maps over Canada and associated kriging standard error
maps based on the sparse and limited sample dataset provide valuable information
to other applications, and they are also used to evaluate the meteorological role of
Canada geodetic GPS network.

(5) The experiments show that the accuracy of the estimated PWV values does not
depend directly on the observation values but on the semivariogram and the
configuration of the sample points. The current Canada (real-time) GPS network
has a small number of (real-time) GPS stations and its configuration is not

balanced in Canada domain. In order to improve the accuracy of the estimated
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PWV maps, the configuration of the GPS network needs improving by increasing
the number of GPS stations and properly deploying them within the network.

(6) 17 variables of the GPS water vapor dataset derived from the developed system
are sorted into 4 categories. Principal Component Analysis has been performed to
simplify the description of this set of intercorelated variables. A seven-principal
component/domain structure of the GPS water vapor dataset is found: Size of
DOP, Volume of ZDD, Moisture Content, Volume of ZWD, Volume of Up
(Position) Error, East-Up (Position) Error Contrast and Volume of PVW Bias.
All the seven principal components explain the variance of the whole dataset by
88.30%; among it, Size of DOP explains 34.23%, Volume of ZDD 15.92%,
Moisture of Content 10.73% and Volume of ZWD 8.31%.

(7) Variable Correlation Analysis has been further performed on the GPS water
vapor dataset to investigate seven between-type relations among those 4 types.
The Correlation Analysis uses scatterplot and linear regression techniques to
quantitatively provide meaningful results to validate those seven relations.

The results of this study suggest that PPP technique integrated with a sparse GPS
reference network is an efficient approach to estimate atmospheric water vapor in Canada
and the developed system performance could reach an accuracy level comparable with
other operational GPS networks. The near real-time GPS PPP-inferred water vapor
system provides valuable information and experiences for the construction of workable

operational GPS network for meteorology in Canada.

8.2 Future works

Some aspects of this research work still need to be addressed.

(1) At present, the developed system works under near real-time mode because of
using one-hour-latency MET files. When the real-time MET data stream is
available, the system needs to be switched to real-time mode and its performance
needs to be validated again.

(2) In this thesis, the comparable post-mission results were derived based on I1GS

final GPS satellite orbits and clocks data. To get a more accurate and comparable
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performance validation, a PPP post-mission program which uses the recorded
real-time JPL satellite orbit and clock correction data needs to be created.

(3) In order to produce more accurate interpolated surface maps of PWV, universal
kriging algorithm may be implemented in the kriging program since the universal
kriging models the spatial process trend as a simple polynomial function instead
of a constant, which is a more general case of spatial variable.

(4) The PCA-derived conclusions obtained in near real-time mode need to be further

validated when the developed system works under real-time mode.
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Appendix A: Coefficients for Neill’s Mapping Function

The coefficients for Neill’s mapping functions m, (2.24) and m,, (2.25) are given in
Table A.1 and Table A.2 as a function of the latitude ¢ of the station. If ¢ <15° the
values for ¢ =15°should be used; if ¢ >75° then the values for ¢ =75° should be
used; if 15°< ¢ <75°, then linear interpolation applies. Before substitution, however,
the coefficients a, b, and c in Equation 2.24 (m,) must be corrected for periodic terms

using the following general formula: (Leick, 2004)

a(p, DOY)=3-a, ~cos(27z-

365.25

(A1)

DOY - DOY, j

where DOY denotes the day of year and DOY, is 28 or 211 for stations in the Southern

or Northern Hemisphere, respectively.

Table A. 1: Coefficients for Niell's Hydrostatic Mapping Function

® 2-10° 6.103 ¢ -10° a, -10° bp -10° C, -10°
15° 1.2769934 | 2.9153695 | 62.610505 0 0 0
30° 1.2683230 | 209152299 | 62.837393 | 1.2709626 | 2.1414979 | 9.0128400
45° 102465397 | 209288445 | 63.721774 | 2.6523662 | 3.0060779 | 4.3497037
60° 102196049 | 209022565 | 63.824265 | 3.4000452 | 7.2562722 | 84.795348
75° 102045996 | 2.9024912 | 64.258455 | 4.1202191 | 11.723375 | 170.37206
a, -10° b, -10° c, -10°
2.53 5.49 1.14
Table A. 2: Coefficients for Neill's Wet Mapping Function
@ a-10* b-10° ¢ -10°
15° 5.8021897 1.4275268 4.3472961
30° 5.6794847 1.5138625 4.6729510
45° 5.8118019 1.4572752 4.3908931
60° 5.9727542 1.5007428 4.4626982
75° 6.1641693 1.7599082 5.4736038
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Appendix B: Introduction to Network Protocol

The realization of the real-time water vapor sensing system relies on the Internet. UDP
and IP Multicast are the two Internet communication protocols used in this thesis. To
help understanding, the basic concepts on network protocol are briefly illustrated below.

B.1 Network transmission models

The network transmission models are also called network addressing methods. There are
three basic network transmission models: Unicast, Broadcast and Multicast (Figure B-1).
The number of transmitter (sources) and receivers (destinations) portray the different

models.
] receiver ] receiver [ receiver
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/’ / Pz / /// -
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(a) Unicast (b) Broadcast (c) Multicast

Figure B-1 Transmission models

= Unicast transmission

This is the traditional data transmission on the Internet, between one specific source and
one specific receiver, i.e., single sender and single receiver (Figure B-1 (a)). The vast
majority of all data transmissions on the Internet today are Unicast. The unicast flow is
the basic building block found in all networks.

= Broadcast transmission

In this model, a host sends a message to all other hosts, i.e., single sender and global
receivers (Figure B-1 (b)). The model is used when a piece of information needs
communicating to every host on the network, or used when the sender needs to send a

message to just one receiver, but doesn’t know its address.

143



The problem with the model is that sending the broadcast everywhere is a significant
usage of network resources if not all the hosts need to see the packets. This global
transmission can cause unnecessary traffic.

= Multicast transmission

Multicast model is similar to broadcast model in that there is a one-to-many traffic
pattern. The difference is that the receiving hosts are a subset of all the hosts, i.e., single
sender and selected receivers (Figure B-1 (c)). This model enables a single host to send
data to a specific set of hosts by making just a single call. Multicasting can conserve
network bandwidth by reducing the amount of unnecessary network traffic. In addition, it
is the most economic technique for sending a packet stream from one location to many

other locations on the Internet simultaneously.

B.2 Protocol layering

Protocols are sets of standards which define how data are represented when they are
being transmitted from one machine to another. Protocols govern the communications
between computers on a network: how the transmission occurs, how errors are detected,
and how acknowledgements are passed (Comer, 2000). To simplify protocol design and
implementation, network communication functionality is organized into a layered
protocol model, in which each layer corresponds to one protocol that deals with one part
of the communication problem (Figure B-2). Figure B-2 delineates the Open System
Interconnection Reference Model designed by the International Organization for
Standardization (1SO) and the corresponding Internet protocols. The Networking-layer
protocol is Internet Protocol (IP) and the Transport-layer protocols are Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP). The access interface
between protocols is implemented through protocol ports. Each protocol port is identified

by a positive integer (Figure B-3).
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Figure B-2 The conceptual organization of protocol software in layers

Layer Functionality

7 Application NFS
] FTP,Telnet ¥XDR
6 Presentation SMTP, SNMP
RPC
5 Session
4 Transport TCP, UDP
Routing
3 Network Frotocols IP
- ARP, RARP
Data Link
2 | (Hardware Interface)
Physical Hardware Not Specified
1 Connection
{a) 1SO 7-Layer Reference model {b) Intemet Protocol Suite

for protocol software

Figure B-3 OSI model layer and Internet protocols (Cisco Documentation) Cisco
Documentation, Internet Protocol. (Chow, 2006)
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Figure B-4 Example — A UNIX workstation network interface (Adapted from: Chow (2006))

B.3 IP, UDP and IP Multicast protocols

The common network protocols used in this thesis are introduced below.

Internet Protocol (IP). IP is the networking-layer protocol which specifies the format of
packets/datagrams (a piece of a message transmitted over network) and the addressing
scheme. IP functions like the postal system. It allows the sender to address a package and
drop it in the system, but there's no direct link between the sender and the receiver. Thus,
the service provided by IP is a connectionless, best-effort delivery service. But, when it is
combined with a higher-level transport-layer protocol called Transmission Control
Protocol (TCP), it establishes a connection between two hosts so that both can send
messages back and forth.

User Datagram Protocol (UDP). UDP is a core transport-layer protocol defined for use
with the IP network layer protocol. Like IP, UDP provides a connectionless and
unreliable (no acknowledge) service that provides no guarantees for delivery and no
protection from duplication. It merely sends out the message. Due to its simplicity and
low overhead, UDP may be adequate in many cases.

UDP provides a few functions beyond that of IP:
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= Port numbers. They are 16-bit destination port number and 16-bit source port number
and let multiple processes use UDP services on the same machine. A UDP address is

a combination of 32-bit IP address and the 16-bit number.
= Checksum. Unlike IP, UDP does checksum its data, ensuring data integrity.

0

IP Multicast protocol. IP Multicast is a protocol for transmitting IP datagrams from one
source to many destinations in a local or wide-area network of hosts (Figure B-1 (c)). The
current standard of IP is unicast transmission service (Figure B-1 (a)), i.e., each packet
sent is forwarded from a single source host to a single destination host identified by its IP
address. For IP multicast, the IP address refers to a group of IP hosts. This is done by
modifying IP protocol by adding multicast routing support to it. Besides this, IP
Multicast use UDP as its underlying transport protocol.

The idea of a basic IP multicast model is that any host can join a given multicast group G,
and any host can send a packet with destination address G, and have it delivered to all
members of the group G. The sender does not need to be a member of G (Intro to IP
muticast, The Norwegian research network).

The advantages with IP multicast are (i) that it conserves bandwidth; (ii) that it can
construct truly distributed applications and (iii) that it provides important performance
optimisations over unicast transmission.

In the thesis, IP multicast is used to transmit the real-time GPS data from Canadian
geodetic (GPS) network, which makes it possible for all receivers who are interested in
the data to share the same information simultaneously. Likewise, when the demand of
calculation resource is increased with more added GPS stations in the system, the system

can easily divide the workload into more servers using IP multicast.
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