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Abstract 

The Global Positioning System (GPS) nowadays is sized down to a chip sensor and built into 

almost every smart phone and tablet. Therefore, navigation using those intelligent gadgets 

becomes a must-have function. GPS has been widely employed for outdoor navigation, while its 

performance suffers from severe degradation in challenging scenarios such as urban canyon and 

indoor. Due to the overwhelming signal noise, building reflection and blockage, indoor 

navigation using GPS frequently encounters poor accuracy or even signal outage. In order to 

improve the service availability and navigation accuracy, inertial measurement units (IMU) are 

integrated with GPS, which continuously measures the user acceleration and rotation rate. 

Integrating these relative motion measurements derives the position, velocity and orientation, 

therefore it bridges the gap during GPS outage. However, IMU raw measurements are 

contaminated by sensor bias and drift, and for low-cost sensors on smart devices, the bias and 

drift are extremely severe and unstable. The navigation solution derived from these poor quality 

sensors results in significant accumulative errors, which will destroy the system reliability very 

soon. Furthermore, most smart devices embrace cellular and Wi-Fi network positioning to 

improve service availability, time-to-first-fix, accuracy and reliability in indoor scenarios. 

Unfortunately, network based positioning performance highly depends on the signal reception, 

and quality of the database of Wi-Fi access points (APs) and cellular towers. Based on our 

experiments, network based positioning performance can merely achieve tens of meters position 

accuracy on average. For indoor navigation application, however, users’ expectation is room-

level, turn-by-turn navigation guidance. 
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In this thesis, a vision navigation system is developed for pedestrian indoor navigation using 

smart device. In order to derive the three-dimensional camera position from the monocular 

camera vision, a geo-reference database is needed. Floor plan is a ubiquitous geo-reference 

database that every building refers to it during construction and facility maintenance. Comparing 

with other popular geo-reference database such as geo-tagged photos, the generation, update and 

maintenance of floor plan database does not require costly and time consuming survey tasks. In 

the proposed system, user is asked to take a picture of the surrounding indoor scenario, and a 

robust feature matching method is designed to match the indoor features contained in the camera 

image to those in the floor plan database. Given the image-to-floor plan feature correspondences, 

a navigation algorithm is developed to integrate the monocular vision with the floor plan geo-

reference information and derive the camera position and orientation. The vision navigation 

system is realized on an iOS App and tested with iPad in various indoor scenarios. The test 

results show that, comparing with Wi-Fi positioning, the proposed system has improved the 

position accuracy from tens of meters to 5 m on average. 
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Chapter One: Introduction 

This chapter describes current status of indoor positioning technologies and several pedestrian 

indoor navigation strategies. In these systems, a large variety of low cost built-in sensors are 

utilized, including GPS, accelerometer, gyro, magnetic compass and Wi-Fi. However, they suffer 

from various problems in indoor scenarios such as service outage and poor accuracy. Camera is 

also a built-in sensor on smart device, and a few vision navigation systems can potentially solve 

the problems when using other sensors. In order to develop a ubiquitous vision navigation 

system for pedestrian indoor applications, the advantages and disadvantages of several popular 

vision navigation methodologies are reviewed. 

 

1.1 Radio Frequency Signal Based Indoor Positioning Systems 

The expansion of personal mobile devices such as smart phone and tablet has boosted the 

popularity of location-based services (LBS). Previously, LBS was a basic concept proposed in 

the Enhanced 911 (E-911) program in North America, which is designed to promote the 

efficiency of the traditional emergency calls by accurately linking users and staff to appropriate 

places and resources. Nowadays, thousands of LBS software are available in the App stores 

focussing on serving users’ daily activities other than dealing with the emergency needs, 

especially connecting customers with public commercials such as airport and shopping mall. In 

order to assist costumers finding correct gate and store or wanted item in supermarket, the 

position and navigation requirement for those scenarios should achieve room-level, or even aisle-

level accuracy and turn-by-turn guidance. In outdoor scenarios where the visibility of GPS 

satellites is good, achieving these performance requirements is not difficult. However, for indoor 

environments, users always suffer from partial or entire GPS outage due to severe signal noise, 
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multipath and blockage. Downloading the GPS almanac takes up to 12.5 minutes to acquire 

satellites, and the acquired satellites should be stably tracked for up to 30 seconds to download 

the ephemeris data (Lachapelle, 2010). However, GPS signal is badly fragmentary in indoor 

scenarios, which results in extremely long time-to-first-fix (TTFF) or even tracking failure. 

Therefore, most of indoor location solutions rely on the hybrid location of GPS, cellular and Wi-

Fi network, and are using the initial position obtained from cellular and Wi-Fi network to 

improve the GPS start-up performance. However, the improvement from the assisted GPS by 

using wireless networks is rather limited in deep indoor applications where GPS signal is totally 

unavailable.  

 

In deep indoor scenarios, most LBS applications have to solely rely on cellular and Wi-Fi 

network based positioning solution. Both cellular and Wi-Fi positioning methods need the 

reference to a very comprehensive database containing the geolocations of cellular towers and 

Wi-Fi APs covering the world wide area. Comparing with GPS positioning, cellular and Wi-Fi 

positioning systems are much more power-economic, so they are particularly attractive for smart 

devices whose battery life is a concern. Taking advantage of the rapid growth in the early 21st 

century of the Wi-Fi APs in urban areas, Wi-Fi positioning has now become the most popular 

indoor positioning technology. Many commercial service providers including Google, Navizon 

and Skyhook have taken efforts to improve the availability, accuracy and reliability of Wi-Fi 

positioning system. Most Wi-Fi positioning technologies are based on measuring the received 

signal strength and their positioning methods can be further categorized into two different types. 

The first type of method uses the signal strength as an indicator of range. Several Wi-Fi APs with 

most intensive signal strengths are selected, and their geolocations are requested from the 
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database server of the service provider. And then multilateration is applied on range 

measurements between user and the selected Wi-Fi APs to calculate user positions. The second 

type of method uses the pattern of all received signal strengths as a fingerprint. Since the user’s 

motion will cause minor variation of the fingerprint, this allows the derivation of the user 

position. Obviously, these two approaches rely on a comprehensive Wi-Fi AP database, which 

contains the geolocations of APs and their beacon signal strengths.  

 

However, the accuracy of Wi-Fi positioning is not consistent everywhere and it highly depends 

on the quality of Wi-Fi AP database and the signal reception. On the one hand, the density of the 

APs in the server database varies dramatically in different scenarios. When user uploads the 

identifications (usually contain two kinds of identifications, namely Media Access Control 

(MAC) address and service set identification (SSID)) of all scanned Wi-Fi APs, their 

geolocations and beacon signal strengths are retrieved from the database. However, if the current 

area is covered by very sparse APs, the resultant positioning accuracy will be poor. On the other 

hand, Wi-Fi signal suffers from reflection and blockage by constructions, and disturbance from 

nearby electrical appliances, which result in rather weak signal reception (Mohammadi, 2011). 

As for multilateration based Wi-Fi positioning, due to the poor signal quality, the signal 

propagation model describing the transformation from received signal strength to range becomes 

inaccurate. As for the fingerprinting based Wi-Fi positioning, the pattern of attenuated signals 

does not agree well with the fingerprint in database, which results in poor positioning accuracy. 

According to our indoor tests in various scenarios, Wi-Fi positioning accuracy on average is at 

tens of meters. With this accuracy level, Wi-Fi positioning can hardly satisfy the required 

performance of indoor navigation. 
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1.2 Inertial Navigation System (INS) Based Indoor Positioning Systems 

In order to improve the position accuracy and service availability, inertial sensors are widely 

employed. Current smart devices are equipped with various inertial sensors including 

accelerometer, gyroscope and magnetic compass. Based on the INS mechanization equations, 

with given initial position and orientation, the acceleration and rotation rate measurements are 

integrated over time to derive the user position, velocity and orientation, which can bridge the 

gap during GPS outage. However, this dead-reckoning system suffers from severe accumulative 

error due to sensor bias and drift. Especially, the IMU on smart devices is manufactured with the 

Micro-Electromechanical system (MEMS) technology to reduce the size, weight, power 

consumption and price. The manufacture process of MEMS sensors has introduced many 

complex error sources, which results in extremely poor error characteristics such as large bias 

and drift, and poor run-to-run stability (El-Sheimy, 2003). Basically, using these poor quality 

measurements during GPS outage will result in tens of meters position error in less than five 

minutes run. Petovello (2003) and Li (2010) have implemented ultra-tight scheme to integrate 

high-end IMU to assist GPS signal tracking loop, hence to improve the signal availability in 

indoor scenario. This approach requires at least tactical grade IMU, e.g. HG1700 by Honeywell, 

while the signal tracking performance improvement is not prominent in deep indoor scenario.  

 

With such poor error characteristics of low-cost IMU, additional constraints are needed to 

improve the accuracy of the dead-reckoning algorithm. As for land vehicle application, 

nonholonomic constraints are frequently used to limit the orientation error. Wang (2006) has 

implemented fuzzy control to adjust the constraints according to the real dynamics hence to 
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improve the reliability of navigation solution. As for pedestrian navigation, the foot-mounted 

IMU assisted with the Zero Velocity Update (ZUPT) is widely implemented in sports 

applications. When pedestrian steps forward, the foot on ground is static. During this static 

period, the ZUPT is applied to limit the velocity error growth. Although the foot-mounted IMU 

is suitable for sports application, as for pedestrian navigation, however, it is not a practical way 

for pedestrian using smart devices. An improved method was developed by Susie (2012), namely 

pedestrian gait estimation. In her research, the smart device can automatically detect several 

common user contexts such as dangling in hand, staying in pocket, reading mode and staying in 

back-bag. Specifically, the frequency characteristics of IMU measurements vary dramatically in 

different contexts, and the dominant frequency of measurement indicates the user walking speed 

and stride length. An empirical gait model based on large amount of sample data is used to 

describe the relationship between the frequency characteristics of measurement and the stride 

length. Nevertheless, the gait model should vary from people with different height, age, gender 

and other aspects, and this is out of the research field of positioning and navigation domain. 

Moreover, both the ZUPT and pedestrian gait estimation method are dead-reckoning methods, 

but no absolute positions are available to avoid the accumulative errors. 

 

1.3 Vision Navigation Systems 

Vision navigation system is proposed in the computer vision domain to provide reliable 

navigation guidance for robotic vehicle. Due to its intelligence and reliability, vision navigation 

gains a lot of attentions from the field of survey and mapping applications. Because the platform 

of intelligent robotic vehicle is very similar with that of smart devices, which include GPS, IMU 

and camera, it means vision navigation methodologies can potentially be applied on smart 
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devices as well. Recent researches about the Augmented Reality (AR) systems also make vision 

navigation a hot topic, in which the navigation solution is accurate enough to be merged to the 

real scene in camera view, hence to improve users’ navigation experience. Vision navigation 

system usually consists of three parts, navigation, positioning and vision aiding: first, the 

navigation part is in charge of continuously tracking robotic motion, and it implements IMU to 

collect motion measurements; second, the positioning part employs GPS to calibrate the 

accumulative sensor error, which guarantees the navigation performance in long term use; third, 

the vision aiding part adopts vision measurements collected from monocular or stereo camera(s) 

to act like the robotics eyes and arms to “see” and “touch” the surrounding scenarios.  

 

Vision aiding methods can be categorized into two types: stereovision and monocular vision. For 

both methods, the first step is to apply feature detection methods on camera image flow to 

extract reliable image features those can be easily recognized and repeatedly detected in 

upcoming images. After feature detection, the second step is using feature matching techniques 

to match the features detected in sequential images, and guarantee the camera is tracking the 

same features in image sequence. Examples of using stereovision and monocular vision in 

navigation application are introduced in the following sections. 

 

1.3.1 Stereovision Navigation 

A typical example of the stereovision based navigation system is the visual Simultaneously 

Localization and Mapping (SLAM) robotics. SLAM was originally designed for robotic vehicle, 

and classic SLAM robotics employ laser scanner for mapping. Soloviev (2008) and Trawny et al. 

(2007) have developed laser scanner based SLAM robotics for land vehicle navigation and 
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aircraft landing respectively. Comparing with the costly laser scanner, visual SLAM employs 

two or more cameras to form the stereovision, which can substitute the measurements of laser 

scanners, hence largely reduce the system costs. Novak and Bossler (1995) have developed a on-

vehicle visual SLAM system for traffic mapping, which has largely reduced the system costs in 

traditional laser scanner based traffic mapping system. Visual SLAM is also adopted in high-end 

application such as aircraft landing, and Chu et al. (2011) have compared two different 

integration schemes for stereovision based SLAM robotic vehicle. Given the two-dimensional 

image features in the images captured from different perspectives, calculating their three-

dimensional positions in the world frame is called triangulation. Once these features with known 

positions are revisited in the upcoming images, calculating the camera position and orientation is 

called resection. The goal of triangulation is to generate a map of surrounding landmarks (or 

features), and the goal of resection is to estimate robotics ego-motion such as position, velocity 

and orientation. Furthermore, the triangulation and resection are two complimentary tasks in the 

visual SLAM, and they are fulfilled concurrently. Specifically, the mapping of feature positions 

is accurate only if the robotics ego-motion is accurately known, while the robotics ego-motion 

estimation becomes more reliable if a precise map of surrounding is available.  

 

Computer vision domain has dedicated in visual SLAM robotics systems and algorithms for 

decades, with their specialized focus and experts in image processing, pattern recognition and 

object reconstruction, which enable the visual SLAM robotic has the intelligence to understand 

the scene it has seen. Se et al. (2005) has developed a visual mobile robot implementing 

stereovision based SLAM algorithm. Efforts are dedicated to improve the image feature 

detection and matching quality, though the heavy computation burden only allows the proposed 
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system to be implemented in post mission. Although the feasibility in real-time mission is 

limited, the image processing methods implemented in their approach are inspiring for our 

research. The image processing methods consist image feature detection and robust feature 

matching. As for image feature detection, Se et al. (2002) have implemented the Scaled-invariant 

Feature Transform (SIFT) to accurately detect image features in sequential images no matter of 

the camera view. As for robust feature matching, the Random Sample Consensus (RANSAC) 

matching proposed by Fischler and Bolles (1981) has been well recognized as the most popular 

feature matching method. When using SIFT along with RANSAC, the computation burden is 

extremely heavy. A more light-weight image feature detection method, the Features from 

Accelerated Segment Test (FAST) corner detection proposed by Rosten and Drummond (2006) 

is demonstrated for its feasibility in high-speed feature detection. 

 

The accuracy and reliability of mapping and ego-motion estimation highly depends on the 

triangulation and resection geometry, which is determined by the distribution of features and the 

alignment of stereo cameras. The stereo cameras with short baseline typically result in poor 

geometry, because the perspective variation is insignificant and the stereovision is actually 

highly correlated. Given this fact, the stereovision based SLAM system is not applicable on the 

platform of smart device. Although a few smart phone manufactures have already released their 

binocular camera phones for enhanced camera vision, the binocular cameras are separated with 

only several centimeters as limited by the size of the smart phone. An example of binocular 

phone HTC EVO is shown in Fig. 1. With such short baseline, triangulation using the resultant 

stereovision will cause large uncertainty when deriving feature positions, and even destroy the 

reliability of the visual SLAM system (Lichti, 2011). 
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Figure 1: HTC three-dimensional phone equipped with binocular cameras (picture 

downloaded from http://dvice.com/archives/2011/03/htc-brings-3d-t.php) 

 

1.3.2 Monocular Vision Navigation 

Given the lack of qualified stereovision on smart device, monocular vision based navigation 

systems are reviewed. Unlike stereovision, only two-dimensional measurements are available 

from monocular vision, where the imaging scale is unknown. This unknown imaging scale is 

easily solved in the field of aerial photogrammetry, because the aerial vehicle height to ground is 

accurately measured by barometer or laser scanner. An example of using a ground-facing camera 

as visual odometer for unmanned aerial vehicle (UAV) is presented by Ding et al. (2010). 

According to the flight tests, their research is demonstrated to achieve meter-level position 

accuracy during GPS outages. With the inspiration of aerial photogrammetry, Hide et al. (2010) 

has realized a similar system on pedestrian handheld camera. In their proposed system, the hand 

held system consists of a ground facing camera and a low-cost MEMS IMU, and the features on 

the ground are continuously tracked in camera image sequence. Since no barometer or laser 

scanner is used in their system, the camera height to ground is set to an empirical value, and it is 

assumed to be stable and constant during the test. The derived trajectory has shown great 
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accuracy improvement comparing with the IMU-only result. A similar system is developed by 

Huang et al. (2011), and they have demonstrated that this system is very limited in practice due 

to two drawbacks: first, the ground-facing pose is not a practical way for pedestrian using smart 

device; second, unlike forward looking camera pose, there are not many recognizable features in 

the view of ground-facing camera. These sparse features will disappear from the camera view 

very soon, and not sufficient observations are available to allow the Kalman filter for feature 

position and camera ego-motion estimation to converge.  

 

Monocular camera based navigation system is still considered but with forward looking pose, 

although the problem of unknown imaging scale remains unsolved. Ignoring the lack of imaging 

scale, Ruotsalainen (2012) has developed a visual compass system on a Nokia camera phone to 

improve the heading accuracy of pedestrian indoor navigation. The vanishing point tracking 

method is employed to derive heading, which is used to calibrate the errors of the z-axis 

gyroscope in smart phone. According to their indoor tests, the heading error is successfully 

reduced to 2 degree, but no significant improvement is achieved on the position accuracy. 

Similar approach were proposed by Chu et al. (2012), Prahl and Veth (2011), which are designed 

for ground vehicle navigation. Field tests were conducted in highly constructed downtown area 

with straight streets. The vanishing point tracking has shown great improvement on heading 

accuracy. 

 

Furthermore, the vision navigation methods developed by Hide et al. (2010) and Ruotsalainen 

(2012) have two drawbacks which limited their feasibility in practice: first, tracking features in 

continuous camera images requires the camera keep turned-on for a long time to allow the 
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Kalman filter for the navigation states estimation to converge. But this working mode is not a 

practical way of using a smart device. It will also cause severe power consumption which will 

reduce its battery life; second, the feature detection and matching for each frame in the camera 

image flow is very time-consuming and with computational burden. As for feature detection, 

some delicate feature detection algorithms are employed in order to repeatedly detect reliable 

image features, such as the SURF and the Scale-invariant Feature Transform (SIFT), whose 

processing speed is extremely slow. As for feature matching, identifying the individual 

correspondences of the thousands of detected features in sequential images makes the 

computation speed even worse. Hide et al. (2010) have discussed the problem of computation 

speed, and their tests indicate that the camera sample interval is around 30 ms, but the feature 

detection and matching process costs 600 ms for each frame on average. 

 

1.3.3 Monocular Vision Navigation with Geo-Reference Database 

Considering the abovementioned limitations, some innovative vision navigation methods 

designed for tourism have attracted our attention, namely “landmark recognition” system. The 

landmark recognition system aims to solve the problem that, given one photo containing 

remarkable features such as a theater, museum or other landmarks, the camera position and 

orientation will be feedback to user. The key technique of retrieving camera position and 

orientation is matching the camera image with a powerful database containing large amount of 

photos tagged with geolocations. This geo-tagged photo database is usually collected by survey 

vehicles, and a practical outdoor application of geo-tagged photo database is Google Street 

View. Google dispatch survey vehicles equipped with GPS, high-end IMU and cameras 

periodically running through millions of streets in the world, collecting up-to-date panoramic 



 

12 

images of surrounding buildings and constructions, and concurrently tagging images with street-

level accurate GPS positions. For indoor scenarios where GPS is unusable, collection of geo-

tagged database is accomplished by the SLAM robotic vehicle with stereo cameras or even laser 

scanner. An example of indoor landmark recognition system is presented in Yuan et al. (2011). 

In their system, a SLAM robotic vehicle is sent out to travel around the indoor paths in the area 

of interest, capture the photo database of indoor scenes, and tag photos with robotic ego-motion. 

Later on, user revisits this area, uses the monocular camera on smart device, and takes one 

picture containing recognizable features. The features are detected and matched with geo-tagged 

photos in the database to find the most similar indoor scene. The geo-tag of the most similar 

photo in database is used to derive the camera position and orientation. By using their system, 

the battery life issue and the computation speed problem are no longer challenging because the 

feature detection and matching are only applied on single camera shot. However, the SLAM 

robotic vehicle requires the investment of high-end IMU, camera or even laser scanner, which 

increases the system costs. Moreover, the survey tasks of collecting the geo-tagged photos in a 

large area of interest are very time-consuming. Comparing with outdoor scenes, indoor scenarios 

change very often, and it means survey tasks should be conducted frequently to update the 

database. Although publications about landmark recognition systems have attracted lots of 

attentions from indoor navigation domain in recent years, due to the database limitations, there is 

no practical application yet. 

 

1.4 Research Objectives and Contributions 

Considering the limitations of the abovementioned systems, this thesis is devoted to the 

development of a ubiquitous monocular vision navigation system for pedestrian indoor 
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navigation using smart device. The development of other types of geo-reference database usually 

requires the use of expensive sensors and survey equipment, and it is time-consuming to collect 

measurements covering a large area of interest. Therefore, a major focus in this thesis is to apply 

floor plan database to replace other types of database, hence to reduce the costs of survey tasks 

and improve the database availability and coverage. Further, considering the severe accumulative 

error when using dead-reckoning algorithm with low-cost MEMS IMU, a navigation algorithm 

will be developed for the proposed system to provide absolute positions. Efforts will also be 

made to improve the accuracy and reliability of the navigation solution when comparing with the 

current popular indoor positioning systems like Wi-Fi positioning.  

 

The major contribution of this thesis to the field of low-cost pedestrian indoor navigation system 

can be summarized as follows: 

1) A method of generating accurate geo-reference information with floor plan pictures and 

outdoor maps is developed. The process is easy to implement in practice to produce 

customized floor plan database for indoor navigation. Comparing with the database 

collection methods those require high-end equipment and time-consuming survey tasks, 

the proposed method of using floor plan database has significantly reduced the database 

costs and improved the database availability and coverage. 

 

2) Development of a navigation algorithm to derive absolute positions from monocular 

vision and floor plan database. In order to avoid the accumulative errors in the dead-

reckoning navigation systems, the navigation algorithm in this thesis will derive absolute 

camera position and orientation. Two existing methods are modified to improve the 
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reliability of the navigation algorithm, which are the passive ranging method proposed by 

Hung et al. (1985) and the camera position and orientation derivation method proposed 

by Horn et al. (1988). The detailed mathematical model of the navigation algorithm is 

derived in this thesis. 

 

3) Implementation of a robust feature matching method. Given the detected image features 

and the floor plan features in the area of interests, the robust feature matching method 

will automatically identify the image-to-floor plan feature correspondences. Instead of 

using robust least square to exclude mismatches, the Random Sample Consensus 

(RANSAC) method is employed for the robust feature matching, and it is demonstrated 

to be more effective to avoid mismatches.  

 

4) Development of iOS App. Smart phone and tablet are the target devices of the proposed 

floor plan based monocular vision navigation system. An iOS App is developed to realize 

the proposed navigation system and algorithm. The reliability, accuracy and computation 

speed of the iOS App are evaluated with 500 indoor tests in various indoor scenarios. The 

derived positions are compared with Wi-Fi positioning, and the accuracy of using the 

proposed navigation system is demonstrated which can improve Wi-Fi position accuracy 

from tens of meters to 5 m on average. Further, the computation speed is proved suitable 

for real-time applications. 
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1.5 Thesis Outlines 

Chapter one contains the literature review of the indoor positioning systems using GPS, Wi-Fi 

network, motion sensors and camera. The vision navigation systems using stereo and monocular 

camera(s) are our focus. With the discussion of their advantages and disadvantages, the landmark 

recognition system is of great interest. Considering the limitation of the geo-reference database 

used in landmark recognition system, the objectives of our system design are introduced to solve 

the problem encountered by current indoor navigation systems. Moreover, the contributions of 

this thesis are highlighted in this chapter.  

 

Chapter two introduces the coverage, accessibility and availability of floor plan database. A 

simple example of generating customized floor plan database is illustrated to demonstrate the 

ubiquitous of the floor plan database. And then, the limitation when using two-dimensional 

vision measurements to derive three-dimensional navigation solution is mathematically analyzed. 

Further, detailed mathematics demonstrates the minimum requirement of geo-reference 

information to solve this limitation. 

 

Chapter three illustrates the flowchart of the floor plan based vision navigation system structure 

and explains the function of each component and their relationship. The most important content 

in this chapter is the derivation of the navigation algorithm, which consists of two steps, the 

passive ranging method and camera position and orientation derivation. The mathematical model 

in the passive ranging method is derived, which can reconstruct the three-dimensional feature 

positions from their two-dimensional image features. Using the results of the passive ranging 

method, a close-form solution is derived for the camera position and orientation derivation. 



 

16 

 

Chapter four compares the robust least square based matching with the Random Sample 

Consensus (RANSAC) method. With several feature matching example tests under control, the 

RANSAC method is demonstrated to be more effective and reliable for feature matching 

problem.  

 

Chapter five introduces the software development to realize the proposed system on an iOS App. 

The screenshots of an example have shown the functions realized in this App. A comprehensive 

indoor test plan is introduced to evaluate the system performance with the concerns of service 

availability, navigation algorithm precision and accuracy, performance consistency in various 

indoor scenarios and computation speed. 500 indoor tests are conducted in The University of 

Calgary, and the results of the vision navigation system are compared with the Wi-Fi positioning 

solutions. 
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Chapter Two: Floor Plan, Indoor Hallway Features and Vision Measurements 

This chapter introduces a method of generating floor plan database with geo-reference 

information. The proposed vision navigation system is on the basis of matching floor plan with 

camera image, but only indoor hallway features are considered as targets in matching process. 

The definition and example of indoor hallway features are presented in this chapter. The most 

important part in this chapter is the discussion of the characteristics of monocular vision 

measurement. Due to the unknown imaging scales of monocular image, it is impossible to 

reconstruct three-dimensional position from two-dimensional image. However, with the 

knowledge of geo-reference information about image features, the reconstruction is possible. In 

this chapter, the minimum requirement of geo-reference information for reconstruction is 

demonstrated, and detailed mathematics of reconstruction is derived. 

 

2.1 Floor Plan Database 

Floor plan is a scaled drawing depicting the indoor arrangement of rooms, hallways and other 

indoor objects. The scale of floor plan comes from real world measurements of lengths, angles 

and geodetic coordinates collected by survey equipment and the accuracy of measurements is 

typically at decimeter level. As for construction and facility maintenance, every building has 

stored floor plan in online server. Therefore, comparing with other geo-reference database such 

as geo-tagged photos, using floor plan database saves the labour, time and cost of survey tasks 

since it can be generated from existing resources. Furthermore, wireless connection through Wi-

Fi and 3G networks enables user download floor plan as an indoor map to supplement the 

insufficiency of traditional outdoor maps like Google Map. Thousands of LBS Apps dedicated in 

pedestrian indoor navigation have already made good use of floor plan as indoor maps. An 
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example LBS App, Point Inside, has dedicated in delivering reliable and accurate indoor 

navigation solutions for years with worldwide coverage of floor plans in major shopping malls 

and airport as shown in Fig. 2. Enrolled business partners are required to upload their floor plans 

to make their building supported by Point Inside. With this successful commercialized example 

of indoor navigation, building a floor plan database to support considerable area of interest has 

great feasibility in practice.  

 

Figure 2: Floor plan database worldwide coverage of the LBS App, Point Inside (picture 

downloaded from http://www.pointinside.com/solutions/mapped-locations/) 

 

Borrowing the inspiration from Point Inside, the proposed indoor vision navigation system in 

this thesis aims to provide innovative and reliable indoor positioning and navigation services for 

LBS application in major commercial and public places to facilitate their costumers. Any 

enrolled commercials who want to get their business supported by the indoor vision navigation 

service are expected to provide us a floor plan. This floor plan will be processed to generate all 

necessary geo-reference information to be added to our database. In the system developed in 
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Huang and Gao (2012), the floor plan database is supposed to be already available, while the 

database generation methods in practice is not introduced. Although lots of commercials provide 

floor plan for customers as indoor map, these floor plans are not survey-level floor plans and do 

not contain much geo-reference information, so most of these maps merely serve as pictures of 

indoor structure, which cannot be used to improve the indoor positioning accuracy. In order to 

develop a ubiquitous system no matter the commercials have survey-level floor plan database or 

not, the procedures of generating geo-reference information for newly added floor plan and 

updating old floor plan database should be easily implemented in practice. The example of the 

Google Floor Plan project launched by Google Maps team has given us the standard paradigm of 

generating floor plan database. Google Floor Plan project is a milestone for traditional outdoor 

Google Maps, which aims to realize its outstanding outdoor map and services in indoor floor 

plans. The procedure of generating customized floor plan and geo-reference information includes 

five steps:  

1) Search the target building on Google Maps and select the floor layer to add floor plan; 

 

2) Upload floor plan picture, which is widely available for download in most commercials 

such as shopping mall, airport, library, hospital et al.;  

 

3) Fix several landmarks on the floor plan picture, and these landmarks should be visible on 

the framework of the building, for example, the wall corners;  

 

4) Stretch the landmarks to coincide with the common points on outdoor Google Maps, 

hence to perfectly align the floor plan with outdoor map as shown in Fig. 3;  
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5) Image processing is applied to improve the alignment between the floor plan picture and 

outdoor Google Maps, and a customized floor plan with geo-reference information is 

generated. 

 

Figure 3: Google Maps Floor Plan program example to add floor plan to traditional 

outdoor Google Maps 

 

2.2 Geo-reference Information of Floor Plan and Indoor Hallway Features 

From the abovementioned paradigm of how Google Maps add floor plans to outdoor maps, the 

procedures suggest that some important geo-reference information is available in the generated 

floor plan database. Using the geo-reference information summarized as following, a floor plan 

frame is constructed, as shown in Fig. 4:  

1) Real scale of floor plan: Fixing three landmarks on floor plan picture to coincide with 

corresponding points on Google Maps produces the geodetic positions of these 

landmarks. Stretching the floor plan picture to align with Google Maps gives the range of 
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latitude and longitude in the region covered by floor plan. Transforming the range of 

spherical geodetic positions to the East-North-Up frame, the real scale of the floor plan 

picture is obtained, and the accuracy of the real scale of floor plan is typically good at 

decimeter level. As shown in Fig. 4, the floor plan frame is constructed, and the scale of 

its axes determined by the real scale of floor plan;  

 

2) Geodetic position and heading of floor plan: An origin is selected on floor plan, shown as 

the red dot in Fig. 4, and its geodetic position is available by referring to the Google 

Maps. Furthermore, once the axes of the floor plan frame are determined, the heading of 

the floor plan is also available. In the example shown in Fig. 4, the heading angle is the 

angle between the x-axis and the true North, which is 90 degree. With the local origin and 

heading, the coordinates transformation between the floor plan frame and the geodetic 

coordinates is determined. 

 

3) Floor plan features: the indoor features and their positions in the floor plan frame are 

added to the floor plan database, e.g. rooms, paths, turnings and gates, shown as the green 

dots in Fig. 4. These floor plan features can be extracted by applying imaging processing 

methods on the floor plan pictures. However, in this thesis, these features are manually 

selected. Referring to the real scale of floor plan, pixel locations of indoor features are 

transformed to their positions in the floor plan frame. 
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Figure 4: Floor plan frame and geo-reference information 

 

In this thesis, with the inspiration from the landmark recognition system, the proposed system 

integrates the geo-reference information in the floor plan database with camera image to derive 

the camera position and orientation. The key technique of integration is to find the most similar 

indoor scene in the floor plan database to match with the scene in camera image. Fig. 5 shows a 

picture of a hallway in The University of Calgary, which is a very common indoor scene. A few 

indoor objects are noticeable such as door, wall, furniture and lights. When choosing these 

indoor objects as features, we have two concerns: first, when user visit the same indoor scene at 

different time, the indoor structure and arrangement in the camera scene should not change. 

Therefore, only fixed indoor objects are chosen as features, instead of furniture, trash bin, et al., 

since those objects may probably be moved frequently; second, the floor plan picture merely 
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depict the framework of the indoor structure such as room, doorway and wall, but it ignores 

details of furniture, lights and other indoor appliances. In order to guarantee that image features 

can find correspondences in the floor plan database, only the features existing in floor plan are 

considered. Above all, the corners of doorway and wall, namely indoor hallway features, are 

selected as targets during feature detection and matching process. As shown in Fig. 5, the red 

dots illustrate the example of indoor hallway features, and green lines connects pairs of image-

to-floor plan feature correspondences. 

 

Figure 5: indoor hallway features in image and floor plan 

 

2.3 Image Feature Detection 

Feature detection is the first step of many vision tasks, and image features are defined as 

recognizable pattern of pixels that can be easily, stably and repeatedly detected in image 

sequence. Line and corner features are usually considered as targets in feature detection, but only 

corner features are considered in this thesis. Among the most popular corner detectors, the 

Feature from Accelerated Segment Test (FAST) corner detector is selected due to its simplicity 

and speed. The FAST corner detection is carried out on the basis of the segment test criterion by 
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considering a circle of pixels around the candidate pixel. The candidate pixel is classified as a 

corner if there is a set of n  contiguous pixels in the circle which are all brighter than the gray 

value Ip  of the candidate pixel plus a threshold t  or darker than that minus threshold. However, 

when applying the FAST corner detection on the whole image, it is inevitable to extract not only 

indoor hallway features but also unwanted features such as corners of furniture, lights, bulletin 

boards et al. Further, sometimes those unwanted features appear to be more intensive than indoor 

hallway features, so the FAST corner detection probably will only detect the unwanted features 

but do not recognize the indoor hallway features.  

 

More delicate image processing methods may solve this problem, for example, applying both 

line detection to find the intersection points as corner features. Since image processing is not a 

focus in this thesis, this problem is solved with assistance of user interaction. In order to 

accurately detect the indoor hallway features, the FAST corner detection is not applied on the 

whole image, but user interaction is needed to touch on the screen of smart device and point out 

wanted indoor hallway features. User’s touches specify the search region to apply the FAST 

corner detection, but due to the simplicity of the segment test criterion, the FAST detector 

always detects several corner features even in such small search regions, and one indoor hallway 

feature is unexpectedly detected as multiple features. Therefore, after applying the FAST corner 

detection in each user touched region, only the most intensive corner is selected as feature from 

all detected FAST corners. 
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2.4 Monocular Vision Measurements 

Most of smart phone and tablet are only equipped with monocular camera. Given some novel 

three-dimensional camera phone has binocular cameras, their stereovision should still be treated 

as monocular, because the short camera baseline results in highly correlated visions, which is not 

secured for triangulation. In this section, the geometry of monocular vision measurements 

employs the pinhole camera model, which is consisted with several elements: a feature object Q , 

its two-dimensional projection P  on image and the position of the camera perspective center O . 

When the line of sight (LOS) connecting the object point Q  and the camera point O  pierces 

through the camera imaging plane, the image point P  is formed. So all the three points should be 

collinear, and their relationship can be mathematically described as Eq. 1 and Eq. 2, which are 

well known as collinearity equations. Collinearity equations take the inputs of the position of the 

object point Q  and the camera parameters, where the camera parameters are categorized in to 

two types: 

1) Interior parameters including the camera focal length, and the pixel location of the image 

principal center, which is the projection point on image of the camera perspective center.  

 

2) Exterior parameters including camera position and camera orientation matrix. In our case 

of deriving navigation solutions, the exterior parameters are unknowns. 

 

Due to the art of manufacture, the image principal center does not necessarily locate in the 

middle of image. Camera calibration is expected to be finished before practical use to get interior 

parameters and they are treated as constant. For high-precision applications, camera lens 



 

26 

distortion should also be included into interior parameters, and they can also be obtained through 

camera calibration procedure. But in our case, Eq. 1 and Eq. 2 are the most basic model without 

consideration of lens distortion. 
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transformed position of the object Q  in the camera frame; Rworld
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 is the pixel 

location of the point P  in the image frame; u0 v0
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%&
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 is the pixel location of the camera 

perspective center O  on image; f  is the camera focal length in unit of pixel. 

 

If the exterior parameters of camera position and orientation are given, each object position is 

uniquely mapped to a pixel location. But it is impossible to reverse this mapping because one 

pixel location does not uniquely correspond to an object position. This fact brings difficulty 

when using monocular vision measurement, because given a set of image features, each of them 

does not uniquely correspond to an object in the real world. To better understand this fact, 

homography coordinates are introduced as shown in Eq. 3 to expand two-dimensional pixel 
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location of P  to three-dimensional. With homography coordinates, the collinearity equations in 

Eq. 1 and Eq. 2 can be rewritten with Cartesian coordinates and matrix multiplication as show in 

Eq. 3. Homography coordinates also mathematically explains the fact that the pixel location P  

of image feature does not uniquely correspond to one object position Q  in the world frame, 

because in Eq. 3 multiplying Q  with an unknown scale k  still result in the same pixel location.  
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2.5 Reconstructing Imaging Scale of Monocular Vision Using Passive Ranging 

In order to reconstruct the unknown imaging scale of monocular vision, the passive ranging 

method proposed by Hung et al. (1985) is implemented. According to their demonstration, given 

an image of features and the relative spatial locations of features, the ranges from the camera to 

individual feature can be derived. A question arises that how many features are needed to form 

the basic geometry for passive ranging. To find the answer, Fischler and Bolles (1981) have 

demonstrated that, given three image features, their corresponding object positions in the world 

frame form a triangle pattern, and if the side lengths of triangle are known, this dataset is the 

minimum set leading to finite solutions of imaging scales. Specifically, there are four possible 

solutions, and each one should be verified to determine the unique solution of imaging scales. 

Hung et al. (1985) have proved that, given four image features whose corresponding positions 

are coplanar and form a quadrangle pattern with at least one known length, it is able to further 
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narrow down four possible solutions to a unique one. In the following section, the unique 

solution of imaging scales from four coplanar features is derived. 

 

As shown in Fig. 6, when four features P1 , P2 , P3  and P4  are detected in camera image, their 

pixel locations are expressed in homography coordinate as shown in Eq. 4. The three-

dimensional feature positions Q1 , Q2 , Q3  and Q4  can be determined with the pixel locations 

and the imaging scales as shown in Eq. 5. 
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Q1 = k1P1           Q2 = k2P2           Q3 = k3P3             Q4 = k4P4                          (5) 

where, P  is the image feature with pixel location of u v!
"#

$
%&
T

; k  is the unknown imaging 

scale; Q  is the feature position in the world frame. 

 

Figure 6: illustration of solving feature ranges with four image features 
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Assume these four features are coplanar, so their coordinates must satisfy the coplanar equation 

as shown in Eq. 6. α  and β  are nonzero constant factors, and given these two factors, the shape 

of the quadrangle formed by the four features is fixed, shown as the red quadrangle in Fig. 6.  

Q4 = 1−α−β( )Q1 +αQ2 +βQ3                                               (6) 

where, α  and β  are known factors, which describe the coplanar relationship of four feature 

points. 

 

However, since multiplying scales on both sides of Eq. 6 will also make the equation satisfied, α  

and β  only narrow down the possible imaging scales with a series of similar quadrangles but 

cannot lead to a unique solution of imaging scales. Therefore, instead of solving the imaging 

scales, only the ratios of scales as shown in Eq. 7 are solved as shown in Eq. 8. 

P4 = 1−α−β( )P1 k1 k4 +αP2 k1 k4 +βP3 k1 k4                                    (7) 
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Moreover, at least one length should be given as shown in Eq. 9 to finally fix the real scale of the 

quadrangle, hence lead to the unique solutions of imaging scales. Finally, by taking the derived 

scales into Eq. 5, the three-dimensional feature coordinates in the camera frame are also 

calculated. 

Q1 −Q4 2
= k1P1 − k4P4( )

T
k1P1 − k4P4( )                                        (9) 
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where, ⋅ 2  calculates the Euclidean distance between two feature positions. 
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Chapter Three:  Navigation System and Algorithm 

In this chapter, all frames used in the proposed navigation system are defined. The system 

structure is explained with different function blocks and flowchart. The navigation algorithm is 

introduced and the mathematical models are derived for the passive ranging method and the 

derivation of camera position and orientation. 

 

3.1 Definition of Frames 

All coordinates involved in this thesis are expressed in three types of frames, the floor plan 

frame, the camera frame and the image frame, and all of them are illustrated in Fig. 7 and 

defined as following: 

1) Floor plan frame: a three-dimensional world frame with origin selected on the local floor 

plan, x-axis pointing along the hallway, z-axis pointing up and y-axis orthogonal with 

both, shown as the green axes in Fig. 7; 

 

2) Camera frame: a three-dimensional frame with origin at the camera perspective center, x-

axis pointing right, y-axis pointing up, z-axis orthogonal to the camera imaging plane, 

shown as the red axes in Fig. 7; 

 

3) Image frame: a two-dimensional frame of the camera imaging plane. It departs from the 

camera perspective center with the distance of focal length, shown as the blue axes in 

Fig. 7. 
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Figure 7: Definition of frames 

 

According to the geo-reference information available in the floor plan frame introduced in the 

Chapter two, the scale of the floor plan frame is determined by the real scale of the floor plan; 

the geodetic position of the selected local origin and the heading of floor plan are all available in 

the floor plan database. In the navigation algorithm, the derived camera position is expressed in 

the floor plan frame. But using the geodetic position and the heading of floor plan, the camera 

position can be transformed from the floor plan frame to geodetic frame. 

 

3.2 System Flowchart 

The system flowchart consists of six components as shown in Fig. 8, and their individual 

functions are described as following: 

1) Initial position and accuracy: The first component is in charge of collecting initial indoor 

position. The default indoor positioning method on smart device platform is 

GPS/Cellular/Wi-Fi hybrid location, but in most deep indoor scenarios, GPS signal is 
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totally unavailable. The indoor positioning technology on smart device relies on Wi-Fi 

network, and the accuracy of initial indoor position in this thesis is most of time at tens of 

meters;  

 

2) Floor plan database: The second component is in charge of downloading the floor plan 

geo-reference information from the database, and this is completed with the geo-fencing 

function. Geo-fencing is an important technique adopted in LBS software, and it is 

defined as a technique to detect users’ location when they are entering or leaving an area 

containing the points of interest and send notifications to their smart device with the 

information about the points of interest. In this thesis, the geo-fencing function is also 

needed when user has entered the area where the floor plan database is available. When 

user sending request message to server including the initial position and its accuracy, the 

areas of interest are determined. Then the feedback message is sent to user device which 

includes the floor plan pictures and geo-reference data of the indoor hallway features in 

the areas of interest;  

 

3) Photo of indoor scenario: The third component requires user to take a picture of the 

indoor scenario containing as many indoor hallway features as possible. Usually 15 

features are sufficient to derive reliable camera position and orientation. A suggested way 

to take picture is standing at the ends of hallways with camera looking forward. Then 

user interaction is needed to touch on screen and specify indoor hallway features; 
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4) Image feature detection: Instead of processing the whole image, the user-touched areas in 

the third component specify the search regions to apply the image feature detection. 

Specifically, the FAST corner detection is applied on user-touched regions to extract the 

exact pixel locations of indoor hallway features. Usually there are several features being 

detected in each region, but only the most intensive feature is selected. 

 

5) Robust feature matching: The fifth component is in charge of the robust matching task. 

The feedback from server contains a few floor plan features and user also specifies 

several image features, but their corresponding relationship is not figured out. In order to 

let the software automatically identify the image-to-floor plan correspondences, the 

RANSAC method is applied. The RANSAC method is in fact based on a series of 

iterative random guesses, where the navigation algorithm nests inside the RANSAC 

iterations. Details about the RANSAC method are introduced in the Chapter four;  

 

6) Navigation algorithm: The sixth component takes the image-to-floor plan 

correspondences as inputs to the navigation algorithm. The navigation algorithm contains 

two steps, the passive ranging method to derive the feature three-dimensional positions in 

the camera frame, and the derivation of camera position and orientation. The camera 

position is demonstrated in the Chapter five to have improved accuracy and reliability 

comparing with the initial position. 
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Figure 8: System flowchart 

 

3.3 Navigation Algorithm 

In this section, the navigation algorithm is developed, and Fig. 9 shows the structure of the 

navigation algorithm, which contains two steps, namely the passive ranging method and the 

camera position and orientation derivation. In the first step, the inputs for the passive ranging 

include the two-dimensional pixel locations of the image features and the three-dimensional 

positions of the floor plan features in the floor plan frame. The output of the passive ranging is 

the three-dimensional positions of the image features in the camera frame. In the second step, the 

inputs for the camera position and orientation derivation method include two sets of three-

dimensional coordinates, which are image feature positions in the camera frame and the 

corresponding floor plan feature positions in the floor plan frame. 
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Figure 9: Navigation algorithm structure 

 

3.3.1 The Passive Ranging Method 

The first step of the navigation algorithm is to reconstruct the three-dimensional feature position 

in the camera frame from its two-dimensional pixel location. On the basis of the derivation in the 

Chapter two, given four image features, if their corresponding feature positions in three-

dimensional space are coplanar and form a quadrangle pattern, then with the knowledge of the 

quadrangle shape and at least one known length, the unique set of imaging scales are derived, 

and the feature three-dimensional positions can be reconstructed. However, the indoor scene of 

camera image always contain more than four image features, so the mathematical model of the 

passive ranging method is derived in this chapter to deal with general case.  
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Similar with derivation in the Chapter two, the image feature position in the camera frame is 

determined by the pixel location of image feature and an unknown imaging scale, as shown in 

Eq. 10. All imaging scales consist the vector of unknowns as shown in Eq. 11.  

[ ]Tcam
i i i iQ k u v 1= ⋅                                                      (10) 

K = k1 k2  kn
!
"#

$
%&                                                    (11) 

where, camQ  is the feature position in the camera frame; u  and v  are pixel location of image 

feature; K  is the unknown vector of feature scales; 

 

Eq. 12 and Eq. 13 have mathematically described the coplanar relationship and Euclidian 

distance as functions of the feature positions in the camera frame. According to the discussion in 

the Chapter two, the real distance between features and the two constants of coplanar 

relationship should be obtained from the floor plan database, namely length constraint and 

coplanar constraint respectively.  

cam cam
i j ij ij2
Q Q d− = + δ                                                    (12) 

( ) 2 2

1 1 2 2 1 1

i jcam cam cam cam
i j i j i jQ 1 Q Q Q− −α−β −α −β = ε                                   (13) 

where, dij  is the real distance, whileα  and β  are constant factors for coplanar relationship; δ  

and ε  are residuals of distance and coplanar relationship respectively; 

 

The key of integration between image and floor plan is to find out the length and coplanar 

constraints by referring the image features to their corresponding floor plan features. 
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Specifically, the length constraints are quite straightforward to calculate from the feature 

positions in the floor plan frame as shown in Eq. 14, and the calculation of the two constant 

factors of the coplanar constraints are shown in Eq. 14-19.  

floorplan floorplan
ij i j 2
d Q Q= −                                                     (14) 

( )
1 1 2 2

floorplan floorplan floorplan floorplan
i j i jQ 1 Q Q Q 0− −α−β −α −β =                             (15) 

( ) ( ) ( )2 1 1 1 2 1 1 1

Tfloorplan floorplan floorplan floorplan floorplan floorplan floorplan floorplan
i i j i i i j i2 2

cos Q Q Q Q Q Q Q Q= − − − ⋅ −1θ (14) 

( ) ( ) ( )2 1 1 2 1 1 11

Tfloorplan floorplan floorplan floorplan floorplan floorplan floorplan floorplan
j i j i j i j i2 2

cos Q Q Q Q Q Q Q Q= − − − ⋅ −2θ (15) 

θ3 = π−θ1 −θ2                                                             (16) 
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floorplan floorplan floorplan floorplan floorplan floorplan
3 j i 1 j i 2 i i2 2 2

sin Q Q sin Q Q sin Q Q− = β − = α −θ θ θ (17) 

1 1 2 1

floorplan floorplan floorplan floorplan
2 j i 3 i i2 2

sin Q Q sin Q Qα = − −θ θ                        (18) 

1 1 2 1

floorplan floorplan floorplan floorplan
1 j i 3 j i2 2

sin Q Q sin Q Qβ = − −θ θ                        (19) 

where, floorplanQ  is the feature position in the floor plan frame. 

 

In the passive ranging method, any four pairs of image-to-floor plan correspondences contribute 

an equation of coplanar relationship as shown in Eq. 13, and each pair of correspondences 

contributes an equation of distance as shown in Eq. 12. Therefore, when more than four image 

features are detected and matched with floor plan, the resultant observations are highly 

redundant. Least square method is applied in the passive ranging to derive the unknown imaging 

scales, which can make the derived feature positions in the camera frame best-fit with the length 

and coplanar constraints. Apparently, the more image-to-floor plan correspondences are found, 
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the more reliable and accurate camera position is derived. The mathematical model is linearized 

and the Jacobian matrix is calculated as shown in Eq. 20-22, and the normal equations are shown 

as Eq. 23.  
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Jcoplanar
Jlength
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                                                        (20) 
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where, Jcoplanar  and Jlength  are Jacobian matrix for coplanar relationship equation and distance 

equation respectively.  

 

By taking the calculated imaging scales back to Eq. 10, each two-dimensional pixel location of 

image feature is reconstructed to three-dimensional position in the camera frame. Moreover, 

according to the derivation in the Chapter two, the four coplanar features are required to form 

quadrangle pattern, which means if three of them are collinear features, the geometry is not 

sufficient to derive unique solution of imaging scales. However, in practice, structures of indoor 

scenarios are very unpredictable and modern architectures especially have very irregular and 

complex indoor structures. When user touches on the screen to specify the indoor hallway 

features, it is possible that the geometry formed by the image features’ correspondences does not 
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sufficiently lead to a unique solution of imaging scales. Therefore, it is necessary to examine 

whether or not the design matrix in Eq. 23 is near to singular matrix. 

 

3.3.2 Camera Position and Orientation Derivation 

Following passive ranging, the second step of the navigation algorithm is to derive camera 

position and orientation. After passive ranging, the feature positions in the camera frame are 

obtained, hence their ranges to camera are also known. With their corresponding floor plan 

features positions, multilateration method was implemented on the feature ranges to solve 

camera position. However, the geometry of indoor hallway features often results in failure of 

using multilateration in practice. Specifically, all indoor hallway features locate in front of user, 

and sometimes their mutual distances are quite close while their ranges to user are distant. As a 

result, the LOS observations of those features are always highly correlated. This poor geometry 

will either cause large uncertainty when deriving the camera position using the multilateration 

method.  

 

Given the failure of multilateration, the method of deriving camera position is developed on the 

basis of the method proposed in Horn et al. (1988), in which the camera orientation is also 

derived. With the inspiration of their contributions, our problem is interpreted as following: after 

applying the passive ranging method, the three-dimensional feature positions in the camera 

frame are reconstructed. Referring to their correspondences in floor plan, the floor plan feature 

positions in the floor plan frame are paired with the reconstructed feature positions. These two 

sets of coordinates should be mutually transformable via a translation and a rotation as shown in 
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Eq. 24. The translation is equivalent with the camera position, and the rotation is equivalent with 

the camera orientation matrix. 

floorplan cam floorplan
cam i iR Q Q pos= −                                         (24) 

where, pos  is the unknown camera position; Rcam
floorplan  is the unknown camera orientation matrix; 

cam
iQ  is the ith feature coordinates in the camera frame and floorplan

iQ  is its corresponding floor plan 

feature position in the floor plan frame; 

 

Furthermore, two concerns are taken care in this thesis to guarantee the accuracy and reliability 

of the camera position and orientation derivation: 

1) Best fits of two sets of coordinates: Three pairs of coordinates are sufficient to derive a 

rotation matrix. In our case, however, in order to implement the passive ranging method, 

there are usually more than four features available, which result in redundancy when 

deriving the camera orientation matrix. Therefore, it is necessary to calculate a least 

square based solution to make the transformed feature positions in the camera frame to 

best fit with their correspondences in the floor plan frame. This least square problem is 

described in Eq. 25 

( )( )
n

floorplan cam floorplan
cam i i

i 1

min R Q Q pos
=

− −∑                                   (25) 

where, n  is the total number of image-to-floor plan correspondences. 

 

2) Orthogonality: An accurate camera orientation matrix is the premise of the derivation of 

camera position, and the most important property of orientation matrix is orthogonality as 



 

42 

shown in Eq. 26. It is necessary to preserve the orthogonal matrix property when deriving 

the orientation matrix. Specifically, when the orthogonal orientation matrix is derived to 

be the best-fit rotation from the camera frame to the floor plan frame, its transpose matrix 

directly gives the best-fit rotation from the floor plan frame back to the camera frame. In 

another word, preserving the orthogonality of the camera orientation matrix will ensure 

the finally derived transformation to be the best solution to make two sets of features in 

the camera frame and in the floor plan frame mutually transformable. 

Rfloorplan
cam = Rcam

floorplan( )
−1
= Rcam

floorplan( )
T

                                         (26) 

 

With the abovementioned two concerns, the close-form solution derived in Horn et al. (1988) is 

modified in this thesis. At first, the least square based transformation is derived, and this problem 

is equivalent with finding the camera position and orientation parameters to solve the 

minimization problem as shown in Eq. 25. But with the unknown camera position, it is difficult 

to directly solve the problem. Instead, the sum of squares in the minimization problems shown in 

Eq. 25 is re-parameterized to that in Eq. 28. In order to eliminate the effect of unknown camera 

position, we expect the second and third terms containing camera position equal to zero. 

floorplan cam floorplan floorplan 'cam 'floorplan
cam i i cam i iR Q Q pos R Q Q pos '− + = − +                    (27) 
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R Q Q 2pos ' R Q Q n pos '
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= − + − + ⋅
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∑ ∑
       (28) 
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As for making the second term in Eq. 28 equal to zero, the feature positions in both of camera 

frame and floor plan frame are centered to origin by deducting with their mean, as shown in Eq. 

29-30. Then the sum of the new feature positions is zero, and only the third term is left in Eq. 28; 

as for making the third term in Eq. 26 equal to zero, the Eq. 31 is obtained, and it provide a clue 

that the camera position can be derived after the camera orientation is calculated. 

n
cam

cam i
i 1

Q Q n
=

=∑                   
n

floorplan
floorplan i

i 1

Q Q n
=

=∑                         (29) 

'cam cam
i i camQ Q Q= −                'floorplan floorplan

i i floorplanQ Q Q= −                 (30) 

pos' = pos−Rcam
floorplanQcam −Qfloorplan = 0                                                (31) 

where, Qcam  is the mean vector of all feature coordinates in the camera frame; Qfloorplan  is the 

mean vector of all feature coordinates in the floor plan frame;  

 

Through the previous steps, only the first term is left in the minimization problem, as shown in 

Eq. 32. And then, Eq. 32 is expended as shown in Eq. 33, where the first and third terms are 

irrelevant to camera orientation. Now, the minimization problem is solved only if the camera 

orientation is found to maximize the second term, as shown in Eq. 34.  
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i 1 i 1

min R Q Q pos min R Q Q
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Let the production of the two sets of feature coordinates to be represented by the square matrix 

M . The trick is to decompose M  to the product of an orthogonal matrix U  and a symmetric 

matrix S  as shown in Eq. 35. If the matrix M  is nonsingular, it is easy to conduct such 

decomposition as shown in Eq. 36. Obviously, the matrix U  is orthogonal and the matrix S  is 

symmetric. In the following derivation, the trick of decomposing the matrix M  is the key to 

guarantee the derived camera orientation matrix is orthogonal. 

n
'floorplan 'camT
i i

i 1

M Q Q US
=

= =∑                                                 (35) 

U =M MTM( )
−1 2

, S = MTM( )
1 2

                                        (36) 

where, U  is orthogonal matrix which holds the property UUT = I ; S  is symmetric matrix which 

holds the property S =ST . 

 

Therefore, the maximization problem in Eq. 34 is now rewritten in Eq. 37. The symmetric matrix 

S  is at first considered. If M  is nonsingular, the symmetric matrix S  is positive definite which 

means all eigenvalues of S  are positive. Therefore, the matrix S  is decomposed to its 

eigenvalues and corresponding eigenvectors as shown in Eq. 38. 

( ) ( )
nT Tfloorplan 'floorplan 'camT floorplan

cam i i cam
i 1

max R Q Q max R US
=

=∑                           (37) 

S = λ1u1u1
T + λ2 u2u2

T + λ3u3u3
T                                                         (38) 

where, λ1 , λ2  and λ3  three eigenvalues of S ; u1 , u2  and u3  are their corresponding 

eigenvectors. 
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However, the matrix M  calculated from Eq. 35 is singular in our case, because all indoor 

hallway features are coplanar, which makes the matrix S  has zero eigenvalue. Although both the 

feature coordinates in the camera frame 'cam
iQ  and those in the floor plan frame 'floorplan

iQ  are 

coplanar, two normal vectors of these two sets of coordinates are calculated. In order to make 

matrix M  nonsingular, these two normal vectors are appended to the matrix M  as shown in Eq. 

39.  

n
'floorplan 'camT T
i i floorplan cam

i 1

M Q Q v v
=

= +∑ , rank M( ) = 3                               (39) 

where, rank ⋅( )  is the rank of matrix; vcam  and vfloorplan  are the normal vectors orthogonal to the 

feature coordinates in the camera frame and in the floor plan frame respectively;  

 

Back to the maximization problem, now it is rewritten as Eq. 40. It is easy to prove the matrix U  

shown in Eq. 36 is orthogonal. So the camera orientation matrix Rcam
floorplan  should also be 

orthogonal. 

max Rcam
floorplan( )

T
US =max Rcam

floorplan( )
T
US

= λ1 max Rcam
floorplanu1( )

T
Uu1 + λ2 max Rcam

floorplanu2( )
T
Uu2 + λ3 max Rcam

floorplanu3( )
T
Uu3

  (40) 

 

Since the eigenvectors in Eq. 39 are unit vectors, we have Eq. 41. The equality is satisfied only 

when the camera orientation matrix Rcam
floorplan  equals to the matrix U . Therefore, the least square 

based camera orientation is obtained as shown in Eq. 42 while its orthogonality is perfectly 
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persisted as well. By taking the derived camera orientation back to Eq. 31, the camera position is 

finally calculated. 

max Rcam
floorplanui( )

T
Uui =max ui

T Rcam
floorplan( )

T
Uui

!

"
#

$

%
& ≤ ui 2

2
=1                       (41) 

Rcam
floorplan = U =M u1u1

T λ1 + u2u2
T λ2 + u2u2

T λ2( )                            (42) 
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Chapter Four: Robust Matching Methods 

The navigation algorithm derives camera position from the correspondences of the indoor 

hallway features in camera image and the floor plan database. Therefore, the robust matching 

problem should be solved to find out reliable image-to-floor plan correspondences. This chapter 

compares two matching methods, the robust least square method and the Random Sample 

Consensus (RANSAC) method. The RANSAC method is demonstrated to be more effective 

when excluding mismatches. 

 

4.1 Robust Least Square Based Matching 

Robust least square method concerns that many assumptions commonly made in classical 

statistics are at most approximations to reality, such as student distribution and normal 

distribution, while deviations from the probability distribution in assumption are results of 

outliers (Gao, 2009). Specifically, when image features are correctly matched to the 

corresponding floor plan features, the derived camera position and orientation should allow floor 

plan features to be projected to the image frame and agree well with image features. However, 

there are several error sources causing residuals between image features and floor plan feature 

projections, such as image feature detection errors and inaccurate floor plan geo-reference, and 

these error sources can be treated as Gaussian noise. Therefore, the pixel location residuals of 

correct image-to-floor plan matches should be normally distributed. In another word, when some 

image features are incorrectly matched with floor plan features, the derived camera position and 

orientation are inaccurate. The error in the derived camera position and orientation will cause 

deviation between the image features and floor plan feature projections, and the robust least 

square method expects that the distribution of the residuals should deviate from normality.  
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In order to exclude the residuals caused by mismatches, the statistical hypothesis test is 

frequently adopted for robust estimation to detect the outliers deviating from the normal 

distribution. As shown in Table. 1, hypothesis test includes two situations that the residual is or 

is not caused by mismatch. Four types of behaviors are resultant, which are right decision of 

accepting correct match, right decision of declining mismatch, type I  wrong decision of 

declining correct match and type II  wrong decision of accepting mismatch. A confidence level 

α  is selected whose complement 1−α  equals to the probability of type I error. This confidence 

level α  in the meantime sets an error tolerance level in terms of the standard deviation (STD). 

The residuals exceeding the error tolerance level are classified as mismatches. At each time only 

one outlier is excluded, and the mean value and STD of the residuals should be recalculated for 

the next outlier detection (Peterson and McFarlane, 1991).  

Table 1: Statistical hypothesis test for robust least square 

 H0 is correct match H1 is mismatch 

Accept H0 Right decision Wrong decision 

Type II  Error 

Reject H1 Wrong decision 

Type I  Error 

Right decision 

 

The feature matching process aims to automatically find correspondences of image features from 

floor plan features in the area of interest. Referring to the current Wi-Fi indoor position accuracy, 

the floor plan area of interest always covers an entire hallway, so usually there are more than 30 
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indoor hallway features in the floor plan database should be considered. However, since the 

camera view is limited, the image features are always less than the floor plan features, which 

means there are lots of matching possibilities. Exhaustive test of each possible matching is not an 

efficient method. Instead, iterative random tests can achieve great probability to find out correct 

matching. Therefore, an iterative robust least square method is designed for feature matching, 

and the paradigm is described as following: 

1) The matching starts with an initial guess to randomly select equal number of floor plan 

features to match with all image features. This initial guess of matches is named M1 . 

Then the navigation algorithm is applied on this unverified initial guess M1 , and the 

camera position and orientation are derived, namely P1 . 

 

2) Statistical test is conducted to verify if the initial guess M1  contains mismatches. By 

using the derived camera position and orientation P1 , the floor plan features are projected 

to the image frame and compare with image features. The mean value and STD of their 

pixel location residuals are calculated. When the confidence level α  is determined, the 

pixel error tolerance in terms of STD is referred in statistical test. Table. 2 tabulates the 

several frequently confidence level and corresponding error tolerance for statistical test. 

Table 2: Confidence level and corresponding error tolerance for statistical test 

nσ  α  

n=1 68.27% 

n=1.28 80.00% 
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n=1.64 90.00% 

n=1.96 95.00% 

n=2 95.45% 

n=3 99.73% 

 

3) If the initial guess M1  is free of mismatch, the pixel location residuals are normally 

distributed and they will successfully pass the statistical test. However, since the initial 

guess is totally random, it is always inevitable to contain mismatches. These mismatches 

are expected to result in residuals deviating from normal distribution. By referring to the 

error tolerance, the statistical test excludes the mismatches one by one, whose pixel errors 

exceed the error tolerance. After statistical test, the mismatches in the initial guess are 

excluded, and the remaining matches are named M1
* . 

 

4)  A predefined threshold m  is set to examine the number of remaining good matches in 

M1
* . If too many mismatches are detected, the remaining matches in M1

*  are not reliable, 

and a new round of random guess M2  is started. If the number of remaining matches in 

M1
*  exceeds the threshold m , the navigation algorithm is applied on M1

*  to recalculate 

the camera position and orientation P1
* . A threshold N  is set to limit the maximum 

number of iterations, and the iteration will be terminated when the threshold is reached. 
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4.2 Reliability Test of Robust Least Square Matching 

In order to examine the reliability of the robust least square method, the following test is 

conducted under control. As shown in the right picture of Fig. 10, 12 floor plan features are 

selected from the floor plan picture, marked with magenta dots. In the left picture of Fig. 10, 

their correct image feature correspondences are manually selected from the camera image, 

marked with green dots. After applying the navigation algorithm on the manually selected 

correct matches, the camera position and orientation are derived. Using the correct camera pose, 

the floor plan features are projected to the image frame, marked with red dots. The residuals 

between the pixel locations of image features (green dots) and floor plan feature projections (red 

dots) are examined in statistical test. Specifically, given the fact that projections of close floor 

plan features have large pixel location residuals while distant features have small pixel location 

residuals, the pixel location residuals are weighted according to their feature ranges. The mean 

and STD of the weighted pixel locations errors are calculated. The confidence level is set to be 

95%, hence the pixel error tolerance is set to be the mean value plus and minus 1.96 times of the 

STD. If a pixel location residual exceeds the boundary, this pair of image-to-floor plan matches 

are excluded as mismatch, and marked with stars. In the left picture in Fig. 10, since all of 

matches are manually selected correct matches, no mismatch is detected. 
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Figure 10: Example of correct matches which have all passed the statistical test 

 

Fig. 10 demonstrates that, all correct matches can pass the statistical test. Further, it is necessary 

to test whether the statistical test can detect mismatches. As shown in the left picture of Fig. 11, 

the pixel location of the #6 image feature is changed to create one mismatch. The statistical test 

immediately detects that the residual of the #6 image feature has exceeded the error tolerance 

and marked the mismatch with stars. The test with one mismatch is continued in which the #12 

image feature is changed, as shown in the right picture of Fig. 11, and the statistical test 

successfully detects the mismatch as well. The tests are conducted with two mismatches, three 

mismatches and four mismatches as shown in Fig. 12 – 14. Unfortunately, when more than two 

mismatches are created, there are always undetected mismatches, marked as crosses. Moreover, 

when four mismatches exist out shown in Fig. 14, no mismatch is detected. 
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Figure 11: One mismatch is added and successfully detected 

 

 

Figure 12: Two mismatches are added; both are detected in the left picture; only one 

mismatch is detected in the right picture. 
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Figure 13: Three mismatches are added; only one mismatch is detected 

 

 

Figure 14: Four mismatches are added; all of them are not detected 

 

Comparing Fig. 11 – 14 with Fig. 10, when mismatches are added, the floor plan feature 

projections do not significantly deviate from image features. As a result, it is difficult for the 

statistical test to distinguish the mismatches. The reason causing the ineffectiveness of the robust 

least square method is due to the assumption of normal distribution. Specifically, the robust least 
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square method matches all image features to selected floor plan features. However, when the 

floor plan features are randomly selected, there are probably large amount of mismatches. With 

these unverified random matches, least square method best fits all image features with floor plan 

features by minimize the residuals between them, no matter how many mismatches exist. When 

the random matches merely contain few mismatches, it is valid to assume that the distribution of 

residuals is approximate to normality, because the normality is not destroyed if majority of 

matches are guaranteed to be correct. However, the random matches are totally unpredictable 

and always contain certain number of mismatches, so the assumption of the normality does not 

represent the real distribution of residuals. As a result, the mean and STD of residuals are 

distorted by mismatches, and the outlier residuals are unexpectedly smoothed out, which makes 

the statistical test ineffective to distinguish mismatches. 

 

4.3 Random Sample Consensus (RANSAC) Method 

The RANSAC method is first proposed in Fischler and Bolles (1981) and becomes a popular 

paradigm applied in camera scene analysis and automated cartography. Comparing with the 

abovementioned robust least square based feature matching, the RANSAC method is also based 

on the iterative random guesses, but it is novel from two aspects: first, rather than using all image 

features to match with floor plan features, the RANSAC method uses a sample set as small as 

feasible to derive camera position and orientation. Specifically, four image features consist the 

minimum set to apply the navigation algorithm; second, robust least square based feature 

matching employs the statistical test to exclude mismatches one by one if their residuals exceed 

the error tolerance. Instead of excluding mismatches, the RANSAC method enlarges the initial 
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random guess with consensus matches when their residuals are under error tolerance. The 

consensus matches are added to the initial guess to form a consensus set. If the size of consensus 

set accounts for the majority of image features, they are accepted to be reliable matches. The 

paradigm for RANSAC method is stated as following and illustrated in Fig. 15: 

 

Figure 15: Flowchart of RANSAC routine 
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1) Randomly select four image features and floor plan features as the initial sample set S1 . 

Apply the navigation algorithm on S1  to derive camera position and orientation, namely 

P1 ; 

 

2) Use P1  to project the rest floor plan feature positions in the image frame, calculate the 

pixel location of their projections, and compare with image features. If the pixel location 

residual between a floor plan feature projection and an image feature is smaller than a 

predefined threshold t , this pair of features is identified as consensus match and added to 

the initial sample set S1 ; 

 

3) After adding all consensus matches to S1 , the consensus set S1
*  is obtained. If the number 

of correspondences in S1
*  is larger than threshold m , the navigation algorithm is applied 

on S1
*  to recalculate the camera position and orientation, namely P1

* ; 

 

4) If the size of S1
*  fails to pass the threshold m , a new iteration starts with another random 

sample set S2  until the maximum number of iteration N  is reached. 

 

Obviously, there are three important parameters to be determined including the pixel error 

tolerance t , the maximum number of iterations N  and the threshold m  on the size of consensus 

set:  
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1) The pixel error tolerance t  describes the deviation between the image feature pixel 

location and the projection of its corresponding floor plan features. The error tolerance is 

a function of the error sources including the feature detection error, inaccurate camera 

interior parameters during camera calibration process and the inaccurate geo-reference 

information in the floor plan database. However, the function is always not 

straightforward expressed mathematically in practice. Taking the feature detection error 

as an example, when the luminosity in indoor scenario is too bright or too dark, the image 

features become not clearly recognizable by feature detection method, and large feature 

detection error occurs. In this thesis, the pixel error tolerance is determined 

experimentally. Specifically, several images are taken at various indoor scenarios, and 

selected image features are manually matched with their correct floor plan 

correspondences. The correct image-to-floor plan correspondences are perturbed by 

adding Gaussian white noise, and the error tolerance is derived by the residuals of the 

perturbed matches. 

 

2) The maximum number of iterations N  is the expected trials of random guesses until 

sufficient consensuses are selected. Exhaustive test of each possible matching is not 

efficient, because from the statistics point of view, randomly sampling a portion of 

possibilities can achieve considerable probability of finding the correct matching. 

Specifically, given several image features, there are always thousands of combinations 

when matching with the large amount of floor plan features in the area of interest. Instead 

of exhaustive test, random sampling is the key to achieve great probability of finding the 
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correct matching. Obviously, the more random guesses are tested, the larger probability is 

realized. But we wish to find out the minimum number of iterations to meet an expected 

probability. Fischler and Bolles (1981) have introduced detailed mathematical derivation 

of the relationship between the number of iterations and the probability of successfully 

finding correct matching. In this thesis, computation speed is a major concern in practice, 

therefore when there are numerous floor plan features in the area of interest, instead of 

setting the maximum number of iterations, a threshold of computation time is set. When 

the computation time is reached, the RANSAC method will be terminated mandatorily 

even if the correct matching is not found. 

 

3) The threshold m  on the size of consensus set answers the question that how many 

consensuses being found implies a sufficiently large consensus set to terminate the 

RANSAC iterations. In our case, since the number of all detected image features may 

vary from time to time, the ratio of the consensus set over the total number of image 

features is determined. This ratio must be large enough to prove the initial random guess 

is correct, that not only the features in the random guess but also a large number of 

remaining features all agree with it. However, unrealistically large ratio will result in 

matching failure. According to the experiments in this thesis, the threshold of the 

consensus ratio is found being closely related to the pixel error tolerance t . Specifically, 

the higher the error tolerance is, the fewer consensus matches can be found, and vice 

versa. The previous discussion shows that, the pixel error tolerance may vary in different 

conditions, and it has to be determined experimentally. The determination of the 
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consensus ratio also encounters this problem. Adjustability is an important aspect to 

guarantee the system reliability in practice (Yang, 2006). Especially, when the 

environment is uncertain, some error sources are impossible to be modeled accurately, 

parameters used in system model should subject to the variation of environment (Xie and 

Sol, 1993). Therefore, in this thesis, in order to make the RANSAC method adjustable to 

different scenarios, the RANSAC matching is conducted for three rounds. If the first 

round of RANSAC matching method fails, the threshold for consensus ratio decreases in 

the second round and the third round. 

 

4.4 Reliability Test of RANSAC Matching 

Four floor plan features are selected from the 12 features as the sample set, which are #1, #6, #7 

and #12. The reliability of the RANSAC method is tested with control: 

In Fig. 16, 12 images features are marked in red color. The corresponding image features of the 

#1, #6, #7 and #12 floor plan features are manually selected, marked as squares, therefore the 

sample set in Fig. 16 is free of mismatch. When the navigation algorithm is applied to the sample 

set, the derived camera position and orientation is correct. Using the derived camera pose, the 

floor plan features are projected to the image frame, marked with green color. Comparing image 

features with floor plan feature projections, if a pair of consensus match is found, they are 

marked with stars. In Fig. 16, since the accuracy of the georeference information in floor plan 

database is at decimeter level, it is possible that the camera image cannot be 100% matched with 

floor plan. As a result, #8 feature is detected as mismatch while it is actually correct match. 
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Nevertheless, remaining features are all successfully added to the initial sample set, which shows 

the matches are in great consensus. 

 

Figure 16: No mismatch in sample set; this matching is accepted by RANSAC  

 

In Fig. 17, the pixel location of #6 image feature is changed to create one mismatch. Since the 

sample set is not redundant, with one mismatch and three correct matches, the floor plan feature 

projections are significantly deviated. As a result, there are five image features fail to find 

consensus matches. At this moment, a new round of random matching should be started. 

 

Figure 17:  One mismatch in sample set; this matching is rejected by RANSAC  



 

62 

 

In Fig. 18, the pixel locations of #1, #6, #7 and #12 image features are all changed to make the 

sample set entirely mismatches. As a result, four image features fail to find consensus matches, 

and another round of random matching should be continued. 

 

Figure 18: Four mismatches in sample set; this matching is rejected by RANSAC 

 

Comparing Fig. 17 – 18 to Fig. 16, when mismatches exist in the sample set, the projections of 

the floor plan features are significantly deviated, so it is very easy to distinguish whether or not 

the sample set contains mismatches. In contrast, the robust least square method matches all 

image features to form a redundant set, but the residuals contaminated by mismatches have been 

averaged. Obviously, comparing with the robust least square method, the RANSAC method is 

more effective to obtain reliable image-to-floor plan matches. 

 

However, the disadvantage of the RANSAC method comparing with the robust least square is 

the slow computation speed. Since the number of floor plan features in the area of interest is 

fixed, the robust least square matches all image features to floor plan features, while the 
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RANSAC method only matches four features in each iteration. It means the RANSAC method 

has much more matching possibilities than the robust least square. Therefore, in order to achieve 

the same probability of finding correct matches, the RANSAC method always need much more 

iterations than the robust least square. The computation speed will be analyzed in the Chapter 

five. 

 

4.5 Unsolved Limitations 

Although the RANSAC method is demonstrated to be more effective than robust least square 

method when detecting mismatches, success of robust matching is guaranteed only if the 

arrangement of indoor hallway features is sufficiently distinguishable. However, in most indoor 

scenarios, rooms and hallways are arranged very similarly from block to block. When the area of 

interest is too large, numerous indoor hallway features in floor plan database should be 

considered during matching. This problem is attributed to a common limitation suffered by all 

indoor navigation applications, which is the initial position determination. To sum up, poor 

accuracy of indoor position will causes limitations as follows: 

1) If the initial position is totally biased that user is located in a wrong building, incorrect 

floor plan will be downloaded. Further, when position accuracy is too poor, it is possible 

that user location is out of any building contained in the floor plan database, and no floor 

plan will be downloaded. 

 

2) In order to download the correct layer of floor plan, additional sensor should be 

employed to get height measurements, and the accuracy is expected to be better than 3 m. 
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Further, the floor plan database should add the height of floor plan to its geo-reference 

information.  

 

3) The initial position accuracy should limit the area of interest where the arrangement of 

indoor hallway features forms a unique pattern. In practice, sometimes the arrangements 

of the indoor hallway features in different hallways are very similar. The initial position 

accuracy is expected to only cover one hallway. 

 

4) When the area of interest contains large amount of indoor hallway features, the robust 

matching will be challenged and results in slow matching or even failure. In this case, 

more accurate initial position is needed to further narrow down the area of interest. 

 

Barometer is available on some smart devices, and using barometer can provide meter level 

accurate height measurements. But the horizontal accuracy of initial position is still challenging. 

Current initial position only relies on the GPS/Cellular/Wi-Fi hybrid location, but for deep 

indoor environment, positioning only relies on Wi-Fi. According to our experiments, the 

accuracy is often worse than 60 m, which means the uncertainty area covers two or three 

building blocks. In this thesis, position accuracy was mandatorily set to 30 m during the indoor 

tests, and it is accurate enough to limit the area of interest in one hallway. In future works, 

integrating inertial sensors with pedestrian dead-reckoning algorithm is believed to bring 

significant improvement of the initial position accuracy. 
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Chapter Five: Experiments, Software Development and Results Analysis 

This chapter introduces the development of iOS App, the indoor test plan, performance 

evaluation methods and test results. Screenshots are presented to illustrate a paradigm of using 

this developed App. 500 indoor tests were conducted to evaluate the system performance from 

the aspects of accuracy, repeatability, computation speed et al. In various indoor test scenarios in 

The University of Calgary, the system performance is demonstrated to be significantly improved 

comparing with Wi-Fi positioning. 

 

5.1 Experiment Methodology 

The University of Calgary online interactive map is used, and the geo-reference floor plan 

database is manually collected online. In order to verify the accuracy of the geo-reference 

information, the distances of the feature positions in the floor plan frame are compared with 

lengths measurements collected in the Engineering building. The accuracy of the floor plan 

feature positions is demonstrated to be good at decimeter level. This database currently only 

covers the first level of Engineering building A, B, C, D and E Block. An iPad without 3G 

cellular module was adopted for indoor tests in Engineering Complex, where GPS signal is 

totally unavailable. Therefore, the initial positions during the indoor tests were only Wi-Fi 

network based result and the accuracy was on average at tens of meters.  

 

Structure of indoor environment can be extremely irregular and complex, and it is necessary to 

demonstrate the proposed system can work in general scenarios. In order to verify the 

performance in various indoor environments, indoor tests were conducted in the Engineering 
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Complex, where the test areas are categorized into three scenarios as following and illustrated 

with example pictures shown in Fig. 20: 

 

Figure 19: Different scenarios of indoor tests 

 

1) END, ENC and ENB are D, C and B blocks in the Engineering Complex respectively. 

These three blocks have parallel hallways with recognizable indoor features, as shown in 

the left picture in Fig. 20; 

 

2) ENE is the ground level E block and it represents the indoor scenario with irregular 

hallways, as shown in the middle picture in Fig. 20;  
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3) ENA in A block is an open area that no hallways are available, as shown in the right 

picture in Fig. 20. 

 

Figure 20: Left: standard hallway picture of END block; Middle: irregular hallway of ENE 

block; Right: open area of ENA block 

 

In the abovementioned test areas, 10 landmarks are selected in each area, and in total there are 50 

landmarks. For mean and STD positioning error analysis, the App was run 10 times at each 

landmark, and total number of indoor tests is 500 times. The performance analysis in this chapter 

is arranged to evaluate the following aspects: 

1) The RANSAC matching reliability: in the RANSAC method, only if the consensus 

correspondences account for the majority of all detected features, the RANSAC matching 

is considered to be reliable. The ratio of consensus matches over all detected features, 

namely matching rate, is examined to evaluate the RANSAC matching reliability. 
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2) Repeatability: when using Wi-Fi positioning at the same landmark, the Wi-Fi positions 

vary from switch-on to switch-on. Given this repeatability problem, since the RANSAC 

matching is based on random guesses, it is necessary to verify if the proposed system can 

produce more repeatable results than Wi-Fi positioning. At each landmark, the App was 

run 10 times, and the STD position errors of the proposed system and the Wi-Fi positions 

are compared. 

 

3) Position accuracy: by using the proposed system, the final derived indoor position should 

have better accuracy than Wi-Fi positioning. Indoor tests were conducted at landmarks, 

and the reference positions of these landmarks can be obtained from The University of 

Calgary online interactive map, whose accuracy is at decimeter level. Referring to the 

landmark reference positions, the mean and RMS position errors of the proposed system 

and the Wi-Fi positions are compared. 

 

4) Success rate: the indoor test is considered to be a successful test only if the proposed 

system has improved the RMS position error comparing with Wi-Fi positioning. The 

ratio of the successful tests over the total 500 tests is examined, namely success rate.  

 

5) Computation speed: the RANSAC matching process takes numerous iterations to find the 

correct matching. When the area of interest contains large number of indoor hallway 

features, the RANSAC matching speed may become very slow. In order to verify the 
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ability of delivering near real-time navigation results, the computation time of the 500 

indoor tests is analyzed. 

 

The computation speed highly depends on the hardware specification and the operating system. 

The device used in the experiments is a fourth generation iPad, which is equipped with Apple A6 

processor running with the iOS 6 operating system. The A6 processor is featured with 1GB 

Elpida LP DDR2 SDRAM, dual ARM cores and three PowerVR graphics chips. With this 

specification, the computation speed, especially the graphic processing capability is very 

prominent. Similar specification can also be found in other high-end smart phone and tablet 

manufactured by Samsung, Sony, Motorola et al. 

 

5.2 Development of iOS App 

An iOS App is developed to realize the system design on the iPhone and iPad platforms. The 

software structure and the objective-C frameworks being used in software development are 

illustrated in Fig. 21: the initial indoor location is collected by using the CoreLocation 

framework, which outputs user’s current latitude, longitude, and accuracy in unit of meter. The 

CoreLocation framework output is by default the combined results from GPS, cellular network 

and Wi-Fi fingerprinting; downloading floor plan data requires the communication with server 

through Wi-Fi connection, and the remote server is simulated with the Application Programming 

Interface (API) of a cloud storage Dropbox. The floor plan database is stored in Dropbox, and all 

necessary communication methods like sending request to server and receiving feedback to user 

are supported by API functions; once the user takes a picture of the indoor scenario, the feature 

detection implements the image processing library OpenCV, which provides the FAST corner 
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detection function; the navigation algorithm and RANSAC matching involve lots of matrix 

manipulations such as eigenvalue decomposition, and a linear algebra library LAPACK is 

employed. 

 

Figure 21: System and software structure 

 

Fig. 22 illustrates the paradigm of how to use this App: 

1) At the moment of the screen shot as shown in the first picture of Fig. 22, the initial indoor 

location was obtained with an accuracy of 74 m. In the meantime, the area of interest is 

determined. “Link to server” button is shown at the bottom of the screen. 
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2) After connecting to the remote server, the floor plan picture and geo-reference data are 

downloaded. The floor plan picture is centered around the initial location and overlaid on 

the map, as shown in the second picture of Fig. 22. 

 

 

3) User takes a photo of the hallway and touch on indoor hallway features. User touched 

regions are marked with red dots in the third picture of Fig. 22. The FAST corner 

detection is applied on those dots to extract the image features. If user can specify more 

than 10 image features, the App can usually achieve reliable and accurate results. 

 

4) After execution of the RANSAC matching and the navigation algorithm, the user position 

is derived and pinned on the floor plan, shown as the red dot in the fourth picture of Fig. 

22. Meanwhile, user can type in a destination room in the search bar. 

 

5) The navigation algorithm not only derives the camera position but also the orientation, 

which enables the floor plan picture and a navigation arrow to be transformed to user’s 

perspective and overlaid on the camera view. iPhone and iPad are equipped with 

magnetic compass, and its orientation measurements are more reliable than the derived 

camera orientation. Finally, the augmented navigation reality is realized with the camera 

position derived by the proposed system and the camera orientation measured by 

magnetic compass. If an up-to-date database of room inventory is available, event in the 

destination room can also be displayed, as shown in the fifth picture of Fig. 22. 
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Figure 22: Screen shots of iOS App 

 

5.3 The RANSAC Matching Reliability 

The RANSAC matching is expected to run randomly and automatically identify image-to-floor 

plan correspondences. In this session, the RANSAC matching results are discussed, which 

demonstrate its matching reliability. Fig. 23 has illustrated an example of finding the consensus 

matches. With a random guess of four pairs of image-to-floor plan correspondences, the camera 

position and orientation are calculated by applying the navigation algorithm on the random 

guess. Using the derived camera pose, the remaining floor plan features are projected to the 

image frame and compare with image features. In Fig. 23, the red dots are detected image 

features. Each of them has a yellow circle, and their radiuses are determined by the error 

tolerance for the pixel location residual. If the pixel location of a floor plan feature projection 
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falls into the yellow circle of an image feature, this pair of image and floor plan features is 

identified as a consensus match. In the consensus match, the image feature is marked with 

yellow dot, and the floor plan feature is marked with green dot. Furthermore, due to the fact that 

close features have larger pixel residuals while distant features have smaller pixel residuals, the 

pixel location residuals are weighted according to the feature ranges. As shown in Fig. 23, the 

radius of yellow circle decreases as feature range increase. 

 

When the random guess of four pairs of image-to-floor plan correspondences are correctly 

matched with each other, the derived camera pose is reliable, which will allow the remaining 

floor plan feature projections fall into the error tolerance circles. In contrast, if the random guess 

contains mismatches, the derived camera pose is distorted, which will only allow few projections 

fall into error tolerance circles. In another word, if more consensus correspondences are 

identified by the RANSAC method, the derived camera pose is typically more reliable. In Fig. 

23(a), it shows an example being rejected by the RANSAC matching, because the number of 

identified consensus matches does not exceed the threshold. It means the initial random guess 

contains mismatches, and a new round of random guess is needed. In Fig. 23(b), it shows an 

example being accepted by the RANSAC matching, because a large amount of consensuses are 

found, and the ratio of consensuses over the total number of feature has exceeded the threshold. 

It indicates the random guess is correct matching, and the camera position and orientation 

derived from the random guess are more reliable than those derived in Fig. 23(a).  
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Figure 23: RANSAC matching example 

 

With the consensus matches identified in Fig. 23 (b), it is necessary to recalculate the camera 

position and orientation using consensus matches. Because the random guess is the minimum set 

which only contains four pairs of features, the consensus set is redundant to apply the navigation 

algorithm, and the recalculated camera position and orientation will have better accuracy than 

those calculated from the random guess. What is more, the thresholds of the RANSAC matching 

method are determined experimentally in this thesis, and it is inevitable that the thresholds 

become too strict or too loose when the indoor scenario changes. As a result, few mismatches 

may not be excluded, and they will distort the camera position and orientation when applying the 
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navigation algorithm. Therefore, if large amount of consensus matches are found, errors due to 

few mismatches can be averaged since the majority of matches are correct.  

 

The number of consensus matches determines the reliability of the RANSAC matching. Fig. 24 

has shown the ratio of consensus matches over all detected features. The RANSAC matching 

reliability in areas of END, ENC and ENB is very identical, where more than 80% features can 

always be successfully matched. The ENE block with irregular hallway is more challenging to 

the RANSAC matching, but still over 75% features are successfully matched. In the open area of 

ENA, the RANSAC matching can only find over 60% consensus matches. This low matching 

rate may probably result in degraded accuracy in ENA block. 

 

Figure 24: Percentage of consensus matches out of all detected features 
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5.4 Repeatability and Position Accuracy 

In order to analyze the repeatability and position accuracy, both the Wi-Fi positions and the 

results derived by the proposed system are compared with the landmark reference positions. The 

50 indoor landmarks are marked with colorful dots on the floor plan picture as shown in Fig. 25 

and Fig. 26. From the 10 times of repeatability tests at each landmark, the mean and STD 

position error of both the proposed system and Wi-Fi positions are calculated. The radius of the 

dots indicate the mean position errors. The color scales indicate the STD position, from cold 

color representing small STD error to warm color representing large STD error.  

 

Figure 25: mean and STD position error of Wi-Fi positions 

 



 

77 

 

Figure 26: mean and STD position error of the floor plan based vision navigation system 

 

5.4.1 Repeatability 

The STD errors are compared in this section, which indicates the repeatability of positioning 

solutions. 

1) Wi-Fi position STD error 

Referring the colourful dots to the color bar in Fig. 26, the overall STD error varies from 

1.28 m to 8.17 m, which is very typical Wi-Fi positioning performance. Nevertheless, it 

is obvious to find significant performance degradation in some areas. For example, the 

dots in END, ENE and ENA blocks are with relatively warm color, while majority of the 
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dots in ENB and ENC blocks are blue. The reasons causing the inconsistent STD position 

errors of Wi-Fi positions are attributed to two reasons, the quality of the Wi-Fi AP 

database and the received signal strengths of Wi-Fi APs. Specifically, the CoreLocation 

framework adopted in this thesis employs the fingerprinting technique for Wi-Fi 

positioning. As for the database quality, although there is no way to investigate the 

coverage and density of the Apple’s Wi-Fi AP database, it is reasonable to conclude that 

indoor tests with large Wi-Fi positioning errors are with sparse Wi-Fi APs in database. 

The fingerprint formed by the sparse Wi-Fi APS does not provide sufficient statistical 

information about the signal distribution, which results in poor positioning reliability. As 

for the received signal strength, during the indoor tests, the Wi-Fi signal bar of iPad 

implies that the Wi-Fi reception in ENB and ENC is much stronger than other areas. 

Consequently, the weak signals are relatively fragile to disturbance by noise, reflection 

and attenuation by indoor structures and other disturbing RF signals. When the 

fingerprint formed by weak signals is compared with those in Wi-Fi AP database, the 

derived positions are also subject to various disturbances. 

 

2) STD error of the vision navigation results 

Comparing with Fig. 25, the dots in Fig. 26 have shown two significant improvements: 

first, the overall color of dots in Fig. 26 is cooler. Especially in the areas of ENA, END 

and ENE, where the Wi-Fi position repeatability is poor, by using the proposed system, 

the STD errors in these areas are significantly reduced; second, the consistency of the 

colors in Fig. 26 is much better than Fig. 25. Due to the signal reception and the quality 

of the Wi-Fi AP database, the repeatability of Wi-Fi positioning may suffer from severe 
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degradation in different scenarios. However, the repeatability of the position results is 

constantly good in various scenarios.  

 

The indoor tests in various scenarios have also demonstrated that, the developed 

navigation algorithm can provide reliable results in the indoor scenarios with parallel 

hallways, irregular hallways and open area. In most modern architectures, the indoor 

scenarios are highly irregular. However, given the floor plan database and sufficient 

recognizable indoor hallway features, the proposed system is always capable to derive 

reliable positions. 

 

The repeatability tests also imply the reliability of the RANSAC matching method. The 

RANSAC matching is based on the iterations of random guesses. Through the 

repeatability tests, the STD position errors are better than Wi-Fi positioning solutions at 

most landmarks. It indicates that although the RANSAC routine is random, the image-to-

floor plan correspondences identified by the RANSAC are repeatable and reliable. 

 

3) Limitations causing large STD error in the vision navigation system 

However, in the middle of the hallways in ENB and ENC blocks, there are two red dots 

with STD errors as large as 9 m. Furthermore, in ENB, ENC, END and ENE blocks, the 

dots in the middle of hallway are relatively with warmer color than the dots at the ends of 

hallway. This fact unveils one limitation of the proposed system, that user is expected to 

take picture near the ends of hallway. Specifically, the camera image is expected to 

contain as many indoor hallway features as possible to provide sufficient details of indoor 
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scenarios for the RANSAC matching. When user is approaching the middle of hallway, 

more indoor hallway features are left behind the user but less features are visible in 

camera view. Taking the largest STD error in ENB block as example: at the moment of 

snapshot, there was only 10 visible indoor hallway features in the middle of ENB, while 

the floor plan database in ENB block contains more than 60 features. Therefore, with the 

limited number of indoor hallway features, the RANSAC matching merely has very 

abstract information to match with the crowd of numerous features in the database. 

Moreover, sparse indoor hallway features not only degrades the repeatability of the 

RANSAC matching, but also challenges the matching speed, or even results in matching 

failure. In practical use, user is suggested to stand near the end of hallway instead of in 

the middle, hence to contain as many indoor hallway features in camera view as possible. 

According to the indoor test experience, if user can capture snapshot containing around 

50% of the indoor hallway features in the area of interest, the RANASAC matching is 

always fast and reliable. Assuming user takes indoor pictures as the suggested way, it is 

able to avoid the large STD errors at the red dots in ENB and ENC blocks as shown in 

Fig. 26. The STD errors at the remaining landmarks range from 0.22 m to 7.25 m. 

 

5.4.2 Position Accuracy 

The position accuracy with respect to the landmark positions is analyzed in this section. The 

mean position errors are examined by referring to the radiuses of the dots in Fig. 25 and Fig. 26. 

1) Mean error of Wi-Fi positions 

In Fig. 25, the dots in ENC block are on average smaller than the dots in other blocks. It 

means the mean position errors in ENC block are smaller than other blocks. A reasonable 
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explanation to this phenomenon is attributed with the uneven density of Apple’s Wi-Fi 

AP database, although it is not possible to investigate Apple’s database. The database 

probably has stored highly dense APs in ENC area but relatively sparse APs in other 

blocks. When user is not in ENC block, the device has collected the fingerprint consisted 

by the nearby Wi-Fi APs and the APs in ENC block. However, when comparing the 

crowd-sourcing fingerprint with the database, the crowded Wi-Fi APs in ENC block are 

given more weight while the nearby APs are making less contribution. Therefore, the 

fingerprinting technique unexpectedly inclines to map the user position to ENC block, 

and the large mean errors are resultant. 

 

2) Mean error of the vision navigation results 

Comparing with Fig. 25, Fig. 26 has shown great improvement of the mean position 

errors. On the one hand, in ENC block where the Wi-Fi positioning accuracy is good, 

radiuses of dots in Fig. 26 are as small as those in Fig. 25. On the other hand, in the areas 

of ENB, END, ENE and ENA where the mean errors of Wi-Fi positioning are large, the 

radiuses of the dots are significantly reduced by using the proposed system. 

 

Three conclusions can be drawn from the Fig. 26: first, extremely small dots indicating 

trivial mean errors always appear at the ends of the hallways. At the landmarks locate in 

the middle of hallways, the mean position errors are larger. This fact further confirms the 

limitation discussed previously, that in order to get reliable RANSAC matching result, 

the camera image should contain as many indoor hallway features as possible. Therefore, 

user is suggested to take indoor pictures at the ends of hallway; second, the proposed 
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system works well not only in the typical indoor scenarios with parallel hallways such as 

ENB, ENC and END blocks, but also perform well in irregular scenarios like ENE block. 

Decimeter level mean errors are found in ENB, ENC, END and ENE block, where the 

smallest mean position error is less than 0.5 m; third, the mean errors in the indoor 

scenario having open area like ENA block are larger than other scenarios. By looking 

back to Fig. 24, the performance degradation in ENA block is caused by the poor 

matching quality. Specifically, in Fig. 24, the open area of ENA block is the most 

challenging area for the RANSAC matching, and only 60% image features can be 

matched. With such poor matching quality, the image-to-floor plan correspondences 

identified by the RANSAC matching are relatively unreliable. Therefore, the derived 

camera positions are subject to more mismatches comparing with other test areas. 

 

3) RMS error comparison 

Fig. 27 shows the RMS position errors at the 50 landmarks, and the RMS error of Wi-Fi 

positioning ranges from 2.83 to 30.87 m, while the RMS error of the proposed system 

ranges from 0.58 to 10.22 m. By using the proposed system, the tests at 42 landmarks 

have improved Wi-Fi positioning accuracy. The greatest accuracy improvement occurs in 

ENE block in which the proposed system has improved the Wi-Fi position RMS error 

from 27 m to 2 m.  



 

83 

 

Figure 27: RMS error comparison of the floor plan based vision navigation and Wi-Fi 

positioning 

 

Table. 3 has summarized the position RMS error in each test area. It further demonstrates 

three contributions of the proposed system: first, the proposed system can bring position 

accuracy improvement to Wi-Fi positions; second, in the area where Wi-Fi performance 

is good, comparable accuracy is also achieved by the proposed system; third, unlike the 

inconsistent performance of Wi-Fi positioning, the accuracy of the proposed system have 

shown great consistency in different blocks. 

Table 3: Position RMS error in different test area 

RMS (m) END ENC ENB ENE ENA 

Wi-Fi based 
initial position 

6.74 5.60 11.47 19.02 24.60 

Floor Plan based 
vision navigation 

4.56 6.63 7.20 3.24 5.99 
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5.5 Success Rate 

In order to answer the question that how many times the proposed system produces more 

accurate position than Wi-Fi, the success rate and failure rate is analyzed in this section. Success 

rate is defined as the percentage of indoor tests with improved RMS position error, and these 

successful indoor tests are marked with green color in Fig. 28. In contrast, the failure rate is 

defined as the percentage of indoor tests with degraded RMS position error, and these failed 

indoor tests are marked with red color in Fig. 28.  

 

The success rate is 76%, and the more than 50% of indoor tests have brought more than 10 m 

accuracy improvement to Wi-Fi positioning. The failure rate is 24%, and among these tests, 

51.7% of them have achieved comparable accuracy with Wi-Fi positioning, in which the 

accuracy degradation is less than three meters. However, in the 500 indoor tests, there are still 

11.6% tests much worse than Wi-Fi positioning, and most of these failures happen in the middle 

of hallways in ENB, ENC and END blocks. This fact again emphasizes the necessary to take 

indoor pictures at the ends of hallways to contain as many as indoor hallway features as possible.  
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Figure 28: Success and failure rate 

 

5.6 Computation Speed 

The last aspect of performance evaluation focuses on the real-time capability of the proposed 

system. The feature detection process and the RANSAC matching account for the major reasons 

of slow computation speed. The statistics of the computation times of the 500 indoor tests are 

shown in Fig. 29. 59% tests can accomplish the feature detection, the RANSAC matching and 

the navigation algorithm in one second. There are still 13% tests spend more than three seconds. 

We have found these indoor tests with slow computation speed all locate in ENB block, and the 

reason is due to the crowded indoor hallway features in this area. Specifically, in this 40 m 

hallway of ENB block, there are more than 20 doorways and other indoor objects. In another 

word, more than 60 ENB block indoor hallway features are contained in the floor plan database, 

and the number is almost double of that in other blocks. These populated features in ENB block 

is challenging for the RANSAC matching, because it means the number of all matching 

possibilities is even more populous. According to the discussion in the Chapter four about 
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thresholds setting in the RANSAC method, in order to meet certain probability level, the 

maximum number of iterations should cover a portion of all matching possibilities. Apparently, 

the more indoor hallway features exist in the area of interest, the more possible matching should 

be tested, and the more iterations of random guesses are needed. Therefore, the indoor tests 

conducted in ENB block always need more iterations and longer time to wait the RANSAC 

matching finally identify reliable matches.  

 

Figure 29: Computation speed 
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Chapter Six: Conclusions and Future Works 

This thesis has demonstrated the advantage and effectiveness of using the floor plan based vision 

navigation system to improve the indoor positioning accuracy and reliability. This proposed 

system can provide satisfactory indoor positions in various scenarios with great performance 

consistency. The conclusions are drawn as following: 

1) Ubiquitous navigation system: an innovative vision navigation system is developed for 

pedestrian indoor navigation. This system only relies on the camera on smart devices, and 

does not makes any unpractical assumption of camera pose, neither causes threatens to 

the device battery life. Furthermore, the ubiquitous floor plan geo-reference database is 

used for geo-referencing. Unlike the other popular geo-reference database such as geo-

tagged photos, floor plan database does not require the investment on survey equipment, 

labour and time, which enables the floor plan database used in this thesis have 

outstanding availability and coverage. Therefore, the floor plan based vision navigation 

system is demonstrated to be easily implementable in practice for low-cost pedestrian 

indoor navigation.  

 

2) Robust feature matching: both the robust least square method and the RANSAC method 

are introduced, and they have very different schemes to avoid mismatches. However, the 

robust least square is demonstrated to be not suitable, because its assumption of normality 

does not represent the real error probability distribution in the feature matching problem. 

Instead, the RANSAC matching is employed in this thesis due to its effectiveness when 
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excluding mismatches. Although the RANSAC matching needs numerous iterative tests, 

the average computation time is demonstrated to be as fast as 1 s. 

 

3) Reliable navigation algorithm: two methods are employed in the navigation algorithm, 

which are the passive ranging and the derivation of camera position and orientation. 

These two methods are at first proposed by Hung et al. (1985) and Horn et al. (1988) 

respectively. On the basis of their derivation, the mathematical models are modified to 

interpret the proposed navigation system. Detailed derivation and modification are 

elaborated in this thesis, and they are demonstrated to enforce the reliability of the 

navigation solution.  

 

4) Repeatability and accuracy improvement: 500 indoor tests are conducted in The 

University of Calgary to demonstrate the performance of the proposed system. 

Comparing with Wi-Fi positioning, the proposed system has significantly improved the 

mean and STD position errors. The success rate shows that 76% of the indoor tests have 

achieved more accurate positions than Wi-Fi positioning. Furthermore, the accuracy of 

Wi-Fi positioning varies from meter level to tens of meters, while the proposed system 

has much more consistent performance in different indoor scenarios. 

 

Recommendations for future works are summarized as following to further improve the 

performance of the proposed system: 
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1) The initial position accuracy is very important to determine the area of interest. 

Integrating MEMS sensors such as accelerometer, gyroscope will significantly improve 

the current initial position accuracy by Wi-Fi, which is tens of meters. Accurate initial 

positions will not only accelerate the RANSAC matching speed but also improve the 

matching reliability. 

 

2) In order to refer to the correct layer of floor plan database, barometer is needed in future 

to provide height measurements. The geo-reference information in floor plan database 

should also contain the height information of floor plan in future.  

 

3) More delicate image processing methods are needed to automatically detect indoor 

hallway features in camera image. Currently, user is required to touch on screen to 

specify the search region, where the feature detection method is applied. In future, the 

line detection combined with corner detection can improve this process, and 

automatically extract the indoor hallway features. 
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